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Abstract

We discuss the idea that computers might soon help mathematicians prove theorems in
areas where they have not previously been useful. Furthermore, we argue that these same
computer tools will also help us in the communication and teaching of mathematics.
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1. Introduction

Computers in 2021 are phenomenal. They can do billions of calculations in a second.
They are extremely good at obeying precise instructions accurately. Mathematics is a game
with precise rules. One can thus ask in what ways computers can be used to help us1 math-
ematicians to do our job.

Of course, computers have been used to help some mathematicians to do their
job ever since computers have existed. Birch and Swinnerton-Dyer used an early computer
(which was the size of a large room and had 20 kilobytes of memory) to compute many exam-
ples of solutions to cubic equations in two variables modulo prime numbers [5]. Graphing
the output data in the right way led to new insights in the theory of elliptic curves which
ultimately became the Birch and Swinnerton-Dyer conjecture, one of the Clay Millennium
problems. At the time of writing, this conjecture is still open, although regular breakthroughs
(most recently in noncommutative Iwasawa theory) provide us with incremental progress.

This article is not about using computers in that way. This article is an attempt to
explain to all researchers in mathematics that, thanks to breakthroughs in computer science,
computers can now be used to help us not just with computations, but with reasoning. In
other words, it is about the possibility that computers might soon be helping us prove the-
orems, whether they be about “computable” objects such as elliptic curves, or about more
intractable objects such as Banach spaces, schemes, abelian categories or perfectoid spaces,
things which cannot be listed or classified, or in general stored in a traditional computer alge-
bra package in any meaningful way. In particular, it is about the possibility that computer
proof assistants can help mathematicians who up until this point have had no need for com-
putation in their research and might hence incorrectly deduce that computers have nothing at
all to offer them. I should also stress that the applications are not limited to people interested
in foundational subjects such as set theory or type theory; I am thinking about applications
in geometry, topology, combinatorics, number theory, algebra, analysis,…

I end this introduction with a summary of what to expect, and what not to expect,
from this fast-growing area within the next decade. The first thing to stress is that computers
will not be putting us out of a job. Computer proof assistants can now understand the state-
ment of the Riemann hypothesis, but I will eat my hat if a computer, all by itself, comes up
with a proof of the Riemann hypothesis (or indeed a proof of any open problem of interest
to mainstream pure mathematicians) within the next 10 years.2

What I do believe is going to happen within the next 10 years: tools will be cre-
ated which will helpmathematicians prove theorems. Digitized and semantically searchable
databases of mathematics are appearing. Computers are going to start doing diagram chases
for us, filling in the proofs of lemmas, pointing out counterexamples to our ideas, and sug-
gesting results which might be helpful to us. The technology to make such tools is already

1 Throughout this article, by “us” and “we” I am referring to the community of people who,
like myself, identify themselves as pure mathematicians.

2 Conjectures which stretch beyond a 10-year period are, I think, very unwise; like mathe-
matics, sometimes computer science moves very quickly.
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coming; it is viable. Furthermore, the databases of theorem statements and proofs which are
appearing will not only have applications in research; we will be able to use them for teach-
ing and for communicating mathematics in new ways. Undergraduates will be able to get
instant feedback on their work. PhD students will be able to search for theorems and coun-
terexamples in databases. Researchers will be able to write next-generation error-free papers
where details can be folded and unfolded by the user. PatrickMassot has written a thoughtful
piece [44] explaining these and other ideas in more detail. Computers are going to be able to
understand your area of mathematics, and even keep up with it as it develops. But there is a
catch. Who is going to make the database of important results in noncommutative Iwasawa
theory, or whatever area you are interested in, which will power these tools? It is not going
to be the computer scientists, because most of them know nothing about noncommutative
Iwasawa theory. It has to be us.

If you want to see progress within this domain in your own area of mathematics,
I would urge you to take some time working through some tutorials and learning one of these
computer proof assistant languages. It is not difficult to do so—I teach a popular course to
final year mathematics students where we learn how to do undergraduate level mathematics
(topology, analysis, group theory, and so on) using the Lean theorem prover.3 Engaging with
harder mathematics is not at all difficult once you know the language. If you want to learn
Lean’s language, a good place to start is the Lean prover community’s website [58]. Coq and
Isabelle/HOL are two other well-established theorem provers with big mathematics libraries,
and there are plenty of others. If you can get to the point where you are able to explain the
statements of your own theorems to a computer proof assistant, then these statements can be
added to databases, and, furthermore, you have learnt a new skill. If, however, you can get to
the point where you can explain the proofs, then the AI people will be extremely interested,
as will the people building huge formalized mathematical libraries which represent a 21st
century Bourbaki. Furthermore, you will be having fun: formalization of proofs is mathemat-
ics reinterpreted as an interesting computer puzzle game. If you do not have the time, then
find a student who does. Instead of the traditional “do a project consisting of reading a paper
and then writing a paper showing that you understood the paper,” why not get a student to
write some code which proves that they understood the paper? They can learn the language
of the prover themselves, and then teach it to you as you teach them the mathematics.

The files which computer proof assistants can read and write represent a way of
digitizing mathematical ideas. Digitizing something completely changes (in fact, it vastly
augments) the ways in which it can be used. Consider, for example, the digitization of music,
with the CD and the mp3 file. This has revolutionized howmusic is consumed and delivered.
My collection of music consists of hundreds of vinyl records, tapes, and CDs in my office
and loft. My children’s collection is in the cloud, has essentially zero mass and volume, and
is accessible anywhere. Not only that, but cloud-based music platforms have also fundamen-
tally changed the way the modern musicians communicate with their fans, bypassing the
traditional process completely. The music industry was turned upside-down by digitization.

3 If you have Lean installed then you can take the course yourself; the materials are here [8].
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Mathematics has been done in the same “pencil and paper” way for millennia, but
now there is a true opportunity to rethink and enhance this approach. I do not dare to dream
what the ultimate consequences of digitizing mathematics will be, but I firmly believe that
it will make mathematics more accessible—and easier for us to do, to communicate, and to
play with. The ball is in our court.

2. Overview of the paper

This paper describes a “new” way in which computers can be used by mathemati-
cians. As mathematicians, our typical experience with computers is that we can use tra-
ditional programming languages like Python or traditional computer algebra packages like
sage to do things like compute the sum of the first 100 prime numbers. We know equally
well that these traditional tools, even though they can compute as many prime numbers as
you like (within reason), are not capable of proving that there are infinitely many primes; the
infinite is our domain, not the domain of the computer.

However, this is no longer the case. Computer proof assistants are programs which
know the axioms of mathematics. A consequence of this is that they can do both com-
puting in the traditional sense, and also reasoning. In practice this means that one can
write some computer code in a proof assistant which corresponds to the proof that there
are infinitely many primes (https://leanprover-community.github.io/lean-web-editor/#url=
https%3A%2F%2Fraw.githubusercontent.com%2Fkbuzzard%2Fxena%2Fmaster%2Fsrc%
2FICM%2Finfinitude_primes.lean), or even to a proof [22] of the main result in a recent
Annals paper [26].

I wrote “new” in quotes above because it is not new at all; computer scientists have
been creating tools like this for decades now. Indeed, the first computer proof assistants
appeared in the 1960s. However, more recently three things have happened. First, the tech-
nology has now reached the point where research level results across all of the traditional
mainstream areas of puremathematics are now simultaneously accessible to these systems, at
least in theory, and, increasingly, in practice. Secondly, the systems are far more autonomous
than they used to be. Tactics are commands which can be designed by users and which are
capable of putting together hundreds if not thousands of tedious axiomatic steps, enabling
mathematicians to communicate with these machines in a high-level way, similar to the way
which they communicate with each other. Finally, and crucially, research level mathemati-
cians are finally beginning to get involved; we are seeing material at MSc level and beyond
being formalized, by mathematicians, across many areas of mathematics now. These devel-
opments mean that teaching research level material to a computer proof system in all areas
of mathematics is now becoming a feasible possibility—indeed, it is already happening right
now, and shows no signs of stopping.

The main body of this paper consists of 4 sections (numbered sections 3 to 6), which
are independent of one another, and can be read in any order.

The first is historical; it consists of descriptions of the systems which are being, or
have been used, to formalize mathematics, and discussions of results which have been taught
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by humans to computers over the last 20 years. It also notes various historical technical
advances.

The second is an overview of one of the largest currently available monolithic math-
ematical libraries in existence, namely Lean’s mathematics library mathlib. Lean [23] is a
free and open source computer proof assistant written primarily by Leonardo de Moura at
Microsoft Research. Lean’s maths library mathlib [60] is a free and open source library for
Lean, developed by a community of users across the world, ranging from undergraduates to
professional mathematicians. mathlib is the library which has powered several of the most
recent significant results in the area.

The third section consists of an introduction to type theory as a foundation formathe-
matics; it explains howmathematical structures, theorems, and proofs can be encoded within
these foundations. Note that many of the modern computer proof systems where nonfounda-
tional mathematics is happening (Lean, Coq, Isabelle/HOL) use type theory rather than set
theory; however, type theory proves the same theorems as set theory. Furthermore, mathe-
maticians who can prove theorems but who do not know the axioms of ZFC set theory can
happily write code in a type theory proof system corresponding to these theorems without
knowing the axioms of type theory either.

Finally, a speculative final section describes in more detail some personal ideas of
the author and others about the kinds of things which software such as this can be used for,
and how it might help us to do our jobs.

I thank the Lean prover community for welcoming me, a mathematician with very
little programming experience, into their community back in 2017, and also for reading and
giving extensive comments on a preliminary version of this article. Patrick Massot in par-
ticular sent many helpful comments on a first draft. I thank Assia Mahboubi and Manuel
Eberl for giving advice on the Coq and Isabelle/HOL code in this paper, and to both them
and Jeremy Avigad for helpful historical comments. Finally, I would like to effusively thank
Leonardo deMoura for writing my favorite computer game, andMario Carneiro for teaching
me how to play it.

3. A brief history of formally verified theorems

In this section I will talk about the previous successes of computer proof assistants—
computer programswhich check human proofs—inmathematics. There are far more projects
here which I could have mentioned, and I apologize to those who have undertaken major
mathematical formalization projects which I have not cited. Examples of computer proof
assistants in which a substantial amount of mathematics has been formalized include
Lean [23], Coq [19], Isabelle/HOL [48], HOL Light [37], Metamath [45], and Mizar [47].

For a computer to formally verify a theorem, it ultimately needs to be able to deduce
the theorem from the axioms of the foundational system (typically, set theory or type theory)
which the proof assistant has been designed to use. I will use the below discussion of histor-
ical results to introduce some conceptual breakthroughs which have over the years enabled
the formalization of mathematics to become feasible.
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This section cannot do justice to all of the work which has occurred in the area;
I thoroughly recommend Hales’ paper “Mathematics in the age of the Turing machine” [33]

for more background and examples, although much has happened since that paper was writ-
ten in 2014.

3.1. The 20th century
Consider the problem of proving from first principles that if x and y are real num-

bers, then .x C y/.x C 2y/.x C 3y/ D x3 C 6x2y C 11xy2 C 6y3. We all know that the
real numbers are a commutative ring, so let us assume that fact. The question now becomes
how to use the axioms of a commutative ring to prove the equality that we want. How many
lines would a proof from first principles be? Surely not too many! We apply distributivity a
few times to expand out the brackets on the left-hand side, and then, of course, it just becomes
a matter of tidying up and equating terms. As humans we do not think too much about the
tidying-up process; however, if you try proving this in a theorem prover then you will dis-
cover that actually it is a combinatorial nightmare. For example, there is a step in the proof
where where we need to prove something of the form�

.A C B/ C .C C E/
�

C
�
.D C F / C .G C H/

�
D

�����
.A C B/ C C

�
C D

�
C E

�
C F

�
C G

�
C H

using only the laws of commutativity and associativity of addition. Humans apply a principle
to justify this step, not an axiom, and indeed proving such a triviality using only the axioms
of a ring is surprisingly fiddly. There is also the issue of turning things like x..2y/x/ into
.2.x2//y and so on.

The very early theorem provers had very limited ability to apply principles, meaning
that proving results such .x C y/.x C 2y/.x C 3y/ D x3 C 6x2y C 11xy2 C 6y3 would
need to be done manually, meaning something like a 30 line proof. If such a triviality hides
30 lines of axiomatic mathematics, imagine what is hidden behind claims of the form “The
function f is clearlyO.x�2/ for x large”? It is one thingwriting a computer proof assistant—
it is quite another one to write one which scales to do the kind of things which we humans
do intuitively. For this and other reasons, many of the earlier formalization achievements of
the 20th century were mathematically trivial. In particular, there were many proofs of the
irrationality of

p
2 and of the infinitude of primes, but these were being used as benchmarks

for the systems.
In the final two decades of the 20th century, computer provers began to appear which

had new functionality. In these later systems, users could write “tactics.” Tactics are com-
puter code which assembles axiom applications together into principles. For example, in a
modern prover like Lean, .x C y/.x C 2y/.x C 3y/ D x3 C 6x2y C 11xy2 C 6y3 can
now be proved in one line by invoking the ring tactic.4 Tactics allow formalized mathemat-
ics to more closely resemble ordinary mathematical practice by making “obvious” things
automatic.

4 See [31] for a description of the sort of issues which arise when writing such a tactic.
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3.2. The prime number theorem
In 2004, a team comprising Jeremy Avigad, Kevin Donnelly, David Gray, and Paul

Raff formally verified the prime number theorem, in the Isabelle/HOL system. The proof they
formalizedwas the Erdős–Selberg “elementary proof.” Thework used inputs from both arith-
metic and basic real analysis. Of course, calculations involving growth of functions which
look easy on paper still took time and effort to formalize. Manipulation of inequalities which
to humans look easy need to be done either by hand or via a Fourier–Motzkin elimination
tactic in a theorem prover. The reason that the Erdős–Selberg proof was preferred to the tra-
ditional complex analysis proof was that at that time Isabelle/HOL had no complex analysis
library at all.

What we conclude is that by 2004, more serious undergraduate andMSc level mate-
rial was now in theory accessible to these systems, at least in some areas of mathematics.
We also see that we are at a stage where libraries of proofs in distinct areas of mathematics
are able to interact with one another.

In 2009 John Harrison formalized the complex-analytic proof of the prime number
theorem in the HOL Light theorem prover [36], motivated in part by the fact that HOL Light
already had a theory of complex analysis including Cauchy’s integral formula. In 2016Mario
Carneiro formalized the Erdős–Selberg proof in Metamath, a set theory based prover which
has essentially no tactics; as you can imagine this was a heroic effort.

Thus the Prime Number Theorem became some kind of a poster child for formal-
ization. One can understand why—it was a celebrated theorem in mathematics, the proof is
not at all trivial, and any formalization in a theorem prover demonstrates that the prover is
capable of reasoning about both the discrete and the continuous simultaneously.

As may be becoming apparent to the reader, however, one reason that the result
was being independently formalized in several theorem provers was that it is extremely dif-
ficult to translate a proof written in one of the systems to a proof in another system. One
issue is that different systems might have different foundations; for example, HOL Light and
Isabelle/HOL are type theory systems, and Metamath is a set theory system. Another issue
is that even if two proof systems have very similar foundations, they might have different
idioms; different libraries in different systems could be set up to do the same thing in very
different ways. Without getting too technical, in order for these computer proof systems to
work, one has to have some kind of a method for moving between structures “behind the
scenes”—for example, the reals are a field, and hence they are an additive group (and a mul-
tiplicative monoid), and in particular one wants all theorems about additive groups such as
0 C a D a to apply instantly to fields such as the reals without any fuss. Humans, of course,
have no problems with this, but in a computer proof system one needs some kind of infras-
tructure which is making this happen automatically, and if different systems are doing this
in different ways then, of course, this makes automatic proof translation much harder.

Thus it came as a shock to me when in 2020 Mario Carneiro announced that he
had used his Metamath Zero project [14] to port the Metamath proof of the prime number
theorem to Lean. The two systems are about as far apart as it is possible to be—Metamath
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uses set theory as a foundation and Lean uses type theory, for example. Metamath proofs are
typically far more low-level, with limited automation available, whereas typical Lean proofs
are very tactic-heavy. However, the system worked, and produced code which compiled; it
was, of course, also unreadable. It was tens of thousands of lines of completely unmotivated
primitive code defining variables and applying basic principles of logic, with no comments.
In fact, it was a wonderful example of something which satisfied a formal definition of “being
a proof,” whilst in some sense imparting no information whatsoever to the human reader
other than the fact that the theorem was true.

Of course, if computers begin to write proofs by themselves, they might all look like
this, at least at first.

3.3. The four color theorem
The four color theorem (formerly the four color conjecture) was a notorious problem

in graph theory raised in the 1850s and which remained unresolved for over 100 years. One
formulation of it is the assertion that the vertices of every planar graph can be colored with
four colors in such a way that no two adjacent vertices share a color. The statement is an ele-
gant combinatorial problem, and it came as a shock to some in the mathematical community
that the proof, announced by Appel and Haken in 1976, used a computer in an essential way.
Appel and Haken constructed a collection of 1834 graphs with the property that a minimal
counterexample must contain one of these graphs as a subgraph, but that conversely no graph
containing one of these 1834 graphs as a subgraph can be a minimal counterexample. The
verification of these claims was done using a bespoke computer program which, in those
days, took over a month to finish running. The Appel–Haken proof was an outlier because
whilst the principle of the proof was possible to understand, the details were too difficult for
a human to follow in practice; one billion case splits (this is what the computer part of the
proof looks like) is not something which humans can do manually and accurately within a
reasonable time frame. The proof relies, essentially, on a computer calculation and hence it
relies on the correctness of the computer code. Small bugs in computer code are, of course,
commonplace, although it could be added that small bugs in human-written proofs are also
commonplace. However, the mathematical community is well-equipped to discover and fix
small bugs in human-written proofs, and was perhaps rather less well equipped to verify the
correctness of computer code, especially in 1976.

In 2004 Georges Gonthier finished a formal verification of the Appel–Haken
result—more precisely he formalized the 1997 Robertson–Sanders–Seymour–Thomas vari-
ant of the argument [27]. The work comprised 60,000 lines of code written in the Coq
proof assistant. In particular, it completely dwarfs the prime number project discussed in
the previous subsection. It contains a complete formalization of the theoretical part of the
work—formal proofs of results in topology (to reduce the statement about arbitrary planar
graphs to one of a discrete combinatorial nature) and graph theory—whilst also formally
verifying the computer calculation necessary to finish the proof. Note in particular that (as in
the proof of the prime number theorem) much of the work comprised writing foundational
material rather than formalizing the proof itself.
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It is interesting to note that the process of formalization led to simplifications in the
argument. For example, Gonthier developed a theory of what he called combinatorial hyper-
maps, which greatly reduced the amount of topology needed in the proof, and in particular
removed the dependency of the argument on the Jordan Curve theorem. Gonthier developed
some original mathematics as part of the work—for example, he isolated a combinatorial
criterion for his hypermaps which was equivalent to planarity.

Naively, it looks like in this case we are replacing one “proof by computer” with
another one; however, this is missing the point. Firstly, the Coq formalization covers not
just the Appel–Haken computer code, but also all of the rest of the Appel–Haken argument.
Secondly, one can view the formal verification as an independent check of the proof. Finally,
instead of having to trust the code written by Appel and Haken and which few people have
read, we are instead having to trust code written by the authors of Coq. Coq has been around
for a long time (the first version was written in 1984), has a small kernel, and the system has
many users. A bug which meant that Coq could incorrectly claim that an unproved theorem
was true would be unlikely to manifest itself in just one project and is far more likely to
ultimately be discovered. In contrast, the Appel–Haken code is a bespoke piece of code with
few users so arguably bugs are more likely.

Gonthier wrote a very informative piece [28] about his work for the Notices of the
American Mathematical Society (including an exposition of the theory of hypermaps), as
part of the November 2008 issue; this issuewas devoted to formal verification ofmathematics
in a computer proof system and provides an excellent survey of the field as it then stood.

3.4. The odd order theorem
The odd order theorem is the theorem that any finite group of odd order is solvable.

In 2013 a team of 15 people led by Gonthier formally verified a proof of this theorem in
Coq [29]. This piece of work is notable for several reasons. Firstly, the proof is very long;
a complete argument (modulo the basics in group and representation theory) is presented
in the two volumes [2] and [50]. Secondly, we have moved way beyond MSc level math-
ematics here—this work was one of the reasons that Thompson was awarded the Fields
Medal in 1970. The proof is a very delicate argument in finite group theory, much of which
involves analyzing the structure of a minimal counterexample and ultimately showing that it
cannot exist. The Coq proof involved formalizing both of the books mentioned above, plus,
of course, all the background material in group theory, representation theory, Galois theory,
and number theory; indeed, formalization of the background material took up much of the
six years which the authors spent on the proof. Figuring out how to handle such a large-scale
formalization project was also a nontrivial task.

It is perhapsworth stepping back and asking howwork like this contributes to human
understanding. The naive answer to this is “it guarantees that the human proof is correct.”
However, in my opinion, this is not the main contribution. Humans were well aware even
back in the 1960s that the proof was correct—had there been any doubt, Thompson would
not have got the Fields Medal. What the formalization work shows us that theorem provers
have now become able to operate at this kind of scale. Entire books of mathematics can now
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be formalized in one system without the system running out of memory or grinding to a halt.
On average, one line of mathematics in [2] or [50] corresponded to five lines of computer
code, so we learn that by 2013 the so-called “De Bruijn factor” for this kind of mathematics
is around 5. However, this ratio should not be taken too seriously: in parts of the argument,
the ratio is essentially one, and in other parts it is much larger. Note also that this factor may
vary considerably between theorem provers.

We also learn that large formalization projects such as this are a very effective way
to motivate development of foundational mathematics libraries. One consequence of this
formalization project was that Coq developed a very solid library of undergraduate-level
algebra which can, of course, be used (and is used) for other projects.

The write-up [29] of the odd order work is an interesting read. Some sections con-
centrate on the mathematics or the history, but there is also a discussion about constructive
mathematics, something which I felt should have nothing to do with the work, and also about
implementation issues, something else which mathematicians typically do not ever have to
think about. For example, one observation made in section 3 was that many theorems involv-
ing two or more finite groups would usually be formalised assuming that these groups were
both subgroups of some larger ambient finite group X . This can be done without any loss of
generality of course, because given two groupsG andH , they are both subgroups ofG � H .
Why is this observation important? This is an implementation issue – the domain of the com-
puter scientist. Working with subgroups rather than groups might be easier, or nicer, when
it comes to actually implement certain theorems in the theorem prover. It is worth noting
however that such a trick does not work more generally: for example in algebraic geometry
one uses the category of commutative rings with 1, and morphisms by definition send 1 to 1.
If R and S are general commutative rings with 1 then there is in general no morphism of
rings fromR toR � S sending 1 to 1, so one is forced to implement commutative ring theory
in a more “traditional” manner. See [63] for how this was done in Lean.

Regarding constructivism – the authors of the work put in a lot of effort to keep their
proof “constructive”, for example the avoidance of all uses of the complex numbers when
setting up the basics of representation theory. The complex numbers do not have decidable
equality, meaning that there is in general no algorithm for proving that two constructively
defined complex numbers are equal (for example, one can evaluate a definite integral numer-
ically and observe that it seems to be 0 to 1000 decimal places, but there is not some generic
algorithm which we can apply to an arbitrary integral in order to decide whether or not it
equals 0). This means that in constructive mathematics, where the law of the excludedmiddle
cannot be assumed, one cannot do a case split on whether z D 0 or not, if z is a complex
number, andmore generally plenty of constructions become noncomputable and hence much
harder to reason with constructively. These design choices thus increase the amount of work
needed to get representation theory working. I had thought that constructivists had died out
in the early part of the 20th century. It turns out that they are alive and well, and typically
working nowadays in computer science departments. One reason for this is that construc-
tivism plays an important role in the theory of programming languages. Reluctance to use
the law of the excludedmiddle is to a certain extent a cultural decision. However there are also
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situations where working constructively enables a computer proof system to prove certain
results “automatically” (for example by an explicit computation). Whilst working construc-
tively may have been feasible for a project about finite groups, the law of the excluded middle
is used throughout most modern research level mathematics and it is not really feasible to
work constructively when doing the kind of mathematics which is happening nowadays in
mathematics departments. However it is also worth stressing that most modern proof assis-
tants have no problems with the law of the excluded middle, the axiom of choice, and other
non-constructive axioms – they are available, if you want them. Certain proof strategies are
ruled out if one chooses to work nonconstructively, but one can counter this by writing new
tactics specifically designed to do computations in fields such as the real and complex num-
bers. Nonconstructive axioms are used extensively in Lean’s mathematics library mathlib,
for example.

3.5. The Kepler conjecture
The Kepler conjecture states that the face-centered cubic packing is the densest way

to pack congruent spheres in 3-space. Hales and Ferguson proved the conjecture in 1998; it
had at that point been open for over 350 years (it was raised byKepler before Fermat proposed
his Last Theorem). Part of the Hales–Ferguson proof involved the checking of over 23000
nonlinear inequalities on a computer; another part involved a computer classification of all
tame graphs. Other computer calculations were also involved. In this respect the proof is
similar to the Appel–Haken proof of the four color theorem; computations need to be carried
out which are simply far too great for humans to do in a reasonable time frame.

Because the result was regarded as important, the referees felt duty-bound to attempt
to check the computer part of the proof in some way; however, ultimately they gave up, and
in [34] Hales states that the paper was published (in the Annals) without complete certifi-
cation from the referees. In 2003 Hales announced a project to formally verify the proof
using computer proof systems. Hales used a combination of HOL Light and Isabelle/HOL,
and the project turned into an international collaboration, with 22 authors listed on the final
paper. The formalization project took around 12 years to complete, and comprised over half
a million lines of code. Just as for the other projects in this section, one of the main benefits
of the work to the formal proof community is that HOL Light’s standard library grew to
include theorems such as the Brouwer fixed-point theorem, the Krein–Milman theorem, and
the Stone–Weierstrass theorem.

In 2017 Hales gave a talk [32] at the Newton Institute where he told the story of the
Kepler proof, and explained a vision for the future of formalized mathematics. This talk was,
for me, the turning point, and was one of the main motivations behind the work described in
the following subsection.

3.6. Perfectoid spaces
The previous formalized results all have something in common. Whilst some of

them represent truly deep mathematics, all of the formalized proofs involve reasoning about
objects which are in some sense elementary (planar graphs, prime numbers, finite groups,
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spheres). Furthermore, most (but not all) of the formalizing done prior to 2017 was being
done by computer scientists. In Hales’ talk linked to above, he coherently argued that for
further progress in this area, this state of affairs had to change. At that time I had only just
begun to dabble with computer proof assistants and my initial plans were to attempt to inte-
grate them into my undergraduate teaching. However, Hales’ arguments resonated with me,
and within a few months I found myself working with undergraduates at Imperial College,
formalizing the definition and basic properties of schemes in the Lean theorem prover. This
project involved developing basic theories of localization of rings and of sheaves on topo-
logical spaces; however, it was relatively straightforward (modulo poor design decisions; the
reader interested in more details can see them in [12]). I was thus shocked to discover after-
wards that schemes—such a basic notion in algebraic geometry—had not been previously
formalized in any other computer proof system! Furthermore, the project made it quite clear
to me that formalizing far more heavyweight mathematical objects should easily be possible.

In late 2017 Patrick Massot (a topologist) and myself independently came up with
the idea of formalizing perfectoid spaces; the topic was in the air because it was at that time
an open secret that Scholze was going to be awarded a Fields Medal for his invention/dis-
covery of the concept and its applications to arithmetic geometry. I knew the mathematical
definition, having dabbled in the area myself, and when Johan Commelin, another arithmetic
geometer, appeared in the Lean Zulip chatroom in 2018 the three of us decided to go for it.
Around 16000 lines of code and eight months later, we had a formalized definition; one could
summarize the work as a computer formalization of the single line of mathematics “let X be
a perfectoid space”.5

The work was, of course, partly intended as a public relations stunt; computer scien-
tists were well aware of the existence of computer theorem provers, however, mathematicians
seemed not to be, and this was an attempt to make them notice. The plan was a success—
the project did seem to raise the profile of computer theorem provers within the mathematics
community. Note, however, that we did not construct any examples of perfectoid spaces other
than the empty perfectoid space,6 and all three of us were well aware of the problems prevent-
ing us from formalizing any of Scholze’s serious theorems about perfectoid spaces at that
time; we were missing so many of the prerequisites. As with previous projects, one tangible
gain from the work was the growth of the mathematics library of the system in question.
Most of the results in Bourbaki’s General Topology ended up as part of Lean’s mathematics
library mathlib as a result of this project, as well as plenty of results in topological algebra,
and it also motivated the beginnings of a theory of valuations and discrete valuation fields.

One can consider the perfectoid space work as in some sense being orthogonal to
what was usually being attempted in a theorem prover. Many of the prior results highlighted

5 In the odd order formalization, the de Bruijn factor (ratio of lines of computer code to lines
of human text) was around 5. Here one could argue that it is 16000. However, one could,
of course, also argue that it might well take several thousand lines of human text to define a
perfectoid space in full.

6 To prove that the empty set can be given the structure of a perfectoid space, one needs to
check that an arbitrary product of trivial topological rings is the trivial topological ring.
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in this section are proofs of long and complex theorems about relatively simple objects.
The proof that the empty set can be given the structure of a perfectoid space is a very simple
theorem about a muchmore complex concept. Of course, the natural next question is whether
computer proof systems can prove complex theorems about complex objects. One year after
the perfectoid space project, we began to find out.

3.7. Condensed mathematics
Clausen and Scholze have been developing a theory of condensed mathematics.

A condensed set is a variant of a topological space. Themain insight is that condensed objects
may have better homological properties than topological objects (for example, the category
of condensed abelian groups is an abelian category, whereas the category of topological
abelian groups is not). They hope that these ideas will enable techniques in homological
algebra to apply to new areas of analytic geometry. At the end of 2020, Scholze approached
me and asked if we had had a study group on the work at Imperial; I answered that we had.
Scholze then asked whether we had looked through all the details of the proof of Theorem 9.1
of [51]; I answered that we had not. Scholze then remarked that he had had the same response
from other mathematicians, and raised the possibility that perhaps nobody other than himself
and Clausen had ever read the proof carefully. Furthermore, he suggested that perhaps this
might remain true even after the refereeing process. The reason he was concerned about this
was that, for Scholze, this was the theorem that the entire theory stood upon. The proof was
very technical; it built upon a more “elementary” but rather unwieldy intermediate result,
Theorem 9.4 of [51]. Scholze agreed to challenge the formalization community to prove his
Theorem 9.1 in a blog post [55], later published as [53]. Although the challenge was to the
formalization community in general, it seems that only the Lean community responded; this
is perhaps unsurprising, as (for perhaps only for sociological reasons) it has come to be the
case that mathematicians interested in “the kind of mathematics which wins Fields Medals”
and also interested in theorem provers tend to gravitate towards Lean.

Johan Commelin became the de facto leader of the formalization process, with
Patrick Massot supporting him in making a blueprint [18] of the strategy (that is, a carefully-
written roadmap) and a team of algebraic number theorists, arithmetic geometers and other
mathematicians (Riccardo Brasca, Damiano Testa, Filippo Nuccio, Adam Topaz, myself,
Patrick Massot, Bhavik Mehta,…) then began working on the project, with the occasional
help from people with a computer science background such as Mario Carneiro. Within six
months the team had grown to over ten people and we had formalized a complete proof of
Theorem 9.4 (see [15]). At the time of writing, we have not deduced Theorem 9.1, but it
is only a matter of time. A second blog post [54] by Scholze indicates his thoughts on the
matter; in particular, we see that he is now far less concerned about the situation regarding
the correctness of the results. Furthermore, Scholze has indicated (personal communication)
that the process has enabled him to better understand what powers the proof, and Commelin
not only learnt the mathematics as part of the process, but also simplified the argument in
several places, most notably in the removal of the dependency of the argument on prior work
of Breen and Deligne.
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For me, this represents substantial evidence that now any pure mathematics can
be formalized in theorem provers—both in theory, and in practice. It takes time, but it is
possible. The formalization of the work led both to better understanding of it, and to sim-
plifications of the argument. Also worth mentioning is that, as in many other formalization
projects, a substantial amount of time was spent formalizing background material (for exam-
ple, the theory of normed groups and the theory of profinite spaces). As the libraries of the
provers get better and start to contain the kind of material which working mathematicians
take for granted, there will be fewer of these “startup costs.”

3.8. Other results
There are plenty more examples of serious formalization efforts which we do not

have the space to cover. We list some examples here. Gouëzel formalized the basic defi-
nitions of C k and C 1 manifolds in Lean, extending earlier work done in Isabelle/HOL.
Mahboubi and Sibut-Pinote proved irrationality of �.3/ in Coq [16] and Eberl proved it in
Isabelle/HOL [24]. Mahboubi has also done extensive work on rigorous numerical values of
integrals in Coq, and also in Coq Bertot, Rideau, and Théry formally verified the first one
million decimal digits of � [4]. Eberl has formalized much of Apostol’s textbook on analytic
number theory in Isabelle/HOL [25]. Han and van Doorn proved independence of the contin-
uum hypothesis in Lean [35]. Immler formally verified Tucker’s calculations used to verify
the existence of the strange attractor [38]. Mehta and Dillies formally verified Szemerédi’s
regularity lemma and Roth’s theorem on arithmetic progressions in Lean, and Edmonds,
Koutsoukou-Argyraki and Paulson verified them in Isabelle/HOL. The Poincaré–Bendixson
theorem was formalized by Immler and Tan [39] in Isabelle/HOL; note that the usual proof
as understood by mathematicians relies on drawings, and formalizing drawings can be hard
work. The Ellenberg–Gijswijt resolution of the cap set conjecture was verified in Lean by
Dahmen, Hölzl, and Lewis [22]. Commelin and Lewis constructed Witt vectors and showed
that W.Fp/ D Zp in [17]; this work is interesting because not only did they formalize the
delicate mathematics involved, they also wrote tactics which would enable them to reduce
various questions to the universal case in a painless manner. Finiteness of the class group
of a global field was proved in Lean by Baanen, Dahmen, Narayanan, and Nuccio in [1] (it
still astonishes me that this result, special cases of which were known to Gauss and which
is a standard theorem in an undergraduate mathematics degree, was formalized in a proof
assistant for the first time in 2021).

There is also work in progress (at the time of writing). Teams of people who collab-
orate on the Lean Zulip chat [65] are currently working on a proof of Fermat’s Last Theorem
for regular primes, and on Smale’s theorem that it is possible to evert a sphere. A general
project to formalize many basic results in the theory of schemes is also underway.

4. mathlib

In this section I will give an overview of Lean’s mathematics library, one of the
largest monolithic collections of formalized mathematics in existence and, more importantly,
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one which is currently experiencing rapid growth. To a certain extent it is a personal perspec-
tive; a different point of view, which talks more about the computer science powering the
library, is presented in [60].

The principal developer of the Lean Theorem Prover is Leonardo de Moura, who
started the project in 2013. At the 2017 Big Proof conference in Cambridge, it was decided
to split off most of the “mathematical” part of the prover from the “core” part, and move
the mathematics into a library of its own. Thus mathlib was born. At the time mathlib

contained definitions of groups, rings, and topological spaces, filters, a construction of the
rational numbers (the naturals and integers remained in core Lean), and little else. Johannes
Hölzl and Mario Carneiro became the maintainers of the library, and between them they
began to slowly build more mathematics, for example, the real numbers. Hölzl had written a
lot of the topology part of the repository, following the Isabelle/HOL approach which relied
heavily on the concept of a filter. Carneiro wrote a robust theory of finiteness, and slowly the
library began to become relevant to the “working mathematician.”

The library is a free and open source project. It is monolithic in the sense that there
is one definition of a group, one definition of a ring, one definition of the real numbers, and
so on, and all of these definitions can be imported simultaneously and interact with each
other. Initially it was not clear what its goals were, other than being a place where people
could experiment with doing mathematics in Lean. Mathematicians such as Scott Morrison,
myself, and Patrick Massot got involved at a very early stage, and because our background
was in mathematics which relied on classical logic (i. e., the law of the excluded middle) and
other nonconstructive axioms such as the axiom of choice, the library developed with these
classical assumptions at its core. Each successful mathematics project written in Lean and
powered by mathlib seemed to attract more mathematicians to its chatroom, which in turn
led to more projects. Within a couple of years Lewis had formalized the p-adic numbers [41],
myself and a team of undergraduates (Lau, Hughes, Livingston, and Fernández Mir) formal-
ized schemes [12], Dahmen, Hölzl, and Lewis formalized the 2017 Ellenberg–Gijswijt Annals
proof of the cap set conjecture [22], and Massot, Commelin, and myself formalized the def-
inition of a perfectoid space [10]. Each of these projects could not have happened without
mathlib; conversely, each of these projects contributed to the growth of mathlib.

Plenty of developments were also taking place which were not written up as papers,
and whose main purpose was simply to grow mathlib. I supervised student projects where
undergraduates could formalize material they were learning in class and add it to the library;
for example, Sylow’s theorems (Chris Hughes), nilpotent groups (Ines Wright), conformal
maps (Yourong Zang), and the Radon–Nikodym theorem (Kexing Ying) were added this
way. Amelia Livingston developed a theory of localization of monoids and rings which we
needed for algebraic geometry. I pushed undergraduates (Hughes, Lau, Lee) to formalize
a standard Galois theory course in Lean; they developed a theory of field extensions, and
the project was then taken up by a group of mathematics PhD students in Berkeley (Miller,
Browning, Lutz) who finished the job, proving the fundamental theorem of Galois theory
and the insolvability of the quintic [7] (note that this was coincidentally formalized in Coq
just a couple of months beforehand [3]). Baanen, Dahmen, Narayanan, and Nuccio formal-
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ized a proof of the finiteness of the class group of a global field [1]. I was pushing algebra,
but others were pushing geometry and analysis. Gouëzel and Macbeth developed a theory
of manifolds, and Gouëzel and Kudryashov developed an extensive theory of single and
multivariable calculus, including the implicit function theorem and the Picard–Lindelöf the-
orem. Gouëzel also formalized the Gromov–Hausdorff space: a metric space parametrizing
nonempty compact Hausdorff metric spaces up to isometry.

Morrison has developed a huge amount of category theory, and he and Topaz have
now formalized the definitions of abelian categories and the beginning of the development
of derived functors and homological algebra. Massot has developed valuation theory and a
theory of completions of uniform spaces and of topological groups and rings. Tuma devel-
oped the theory of Jacobson rings, and I developed some of the basics of other standard
ideas in commutative algebra (projective and flat modules, discrete valuation rings), and
Springer, Kuelshammer, and many others have also contributed to algebra. Hölzl developed
the theory of Lebesgue measure, and van Doorn formalized Haar measure. There are many
more people who have made contributions (mathlib now has over 200 contributors) and
new contributions are always welcome. Contributions are reviewed by the maintainers. One
of the principles of the library is to do things “in the correct generality.” Thismeant, for exam-
ple, that multivariable calculus and some exotic integrals taking values in Banach vector
spaces was developed first, and single variable calculus was deduced as a corollary. The
library is not optimized for pedagogy or readability; the idea is to continue to make a solid
foundation for the kind of mathematics which is happening in a contemporary mathematics
department.

It is interesting to note that Lean seems to be learning mathematics at around the
same speed as an undergraduate. In the four years which the library has been growing, it
has gone from essentially zero to a solid MSc level coverage in number theory and commu-
tative algebra, and BSc level real analysis. In complex analysis, differential geometry, and
representation theory it is perhaps not quite yet at final year BSc level, but things move fast
and this sentence, written in 2021, will quickly date. For an up to date idea of the current
status of mathlib, the best idea is to take a look at the Lean community’s full overview of
mathlib [57], or its summary of the undergraduate level mathematics it contains [59].

5. A brief guide to type theory

In this section we explain the basics of type theory and how it can be used as a
foundation of mathematics. Many modern theorem provers use some version of type theory
as their foundations. For example, Isabelle/HOL and the other HOL systems use simple type
theory, Lean and Coq use dependent type theory, and the various HoTT systems developed by
Voevodsky and others use homotopy type theory. There are a few computer proof assistants
which use set theory—Metamath and Mizar are the two most prominent—however, it is not
unfair to say that what nowadays most mathematics have done in theorem provers is done in
a type theory system, so a mathematician interested in dabbling in formal proofs should at
least know something about the basics, which is what this section attempts to describe.

593 What is the point of computers? A question for pure mathematicians



5.1. What is a type?
Mathematicians nowadays are used to seeing the word “set” floating around when

it comes to basic definitions. For example, we are told that a group is a set equipped with a
multiplication such that some axioms hold. We are not told what a set is though; a course on
ZFC set theory tells us a list of properties which sets have, but they do not tell us what a set is.
Indeed, in this context the word “set” has no formal definition; it is simply the generic term
for an object in our model of the axioms of mathematics, and we build other mathematical
objects on top of this basic object.

In definitions such as the definition of a group, the word “set” is being used to mean
no more than “collection of elements.” In type theory, the role of a “collection of elements”
is played by the type. A type is a collection of terms. The definition of a group in type
theory: a group is a type equippedwith amultiplication such that some axioms hold. The only
difference is the notation: the set-theoretic a 2 X is replaced by the type-theoretic a : X.

As mentioned above, those of us who have been to a set theory class will know
that, when using set theory as a foundation of mathematics, everything is a set. For example,
the elements of a group are, strictly speaking, also sets, so one could in theory talk about
their elements too, although within the context of group theory such questions would not
be mathematically meaningful, as they are not isomorphism-invariant. In type theory this is
not possible; the elements of a type are called terms, and in general terms are not types. In
type theory, everything is a term, and every term has a type, but not every term is a type.
For example, in type theory 37�2 is a term, whose type is R, the type of real numbers. We
write 37�2 W R. However, x W 37�2 does not make sense, because 37�2 is not a type. In a
set-theory based theorem prover, questions such as asking if the trivial group is an element of
the Riemann zeta function would make sense but its meaning would be unmathematical—it
would depend on implementation decisions. Type theory thus provides a basic check that
what you are writing has mathematical meaning.

In a type theory system, the type R is still built from Q as equivalence classes of
Cauchy sequences, or via Dedekind cuts, or as another of the standard constructions; the
mathematical part of the story is identical to the set theory setup, it is just that the language
used is slightly different (types and terms, rather than sets and elements).

One difference between types and sets, however, is that types do not mix: distinct
types are disjoint. This has practical advantages when formalizing mathematics because it
provides a strong check that the mathematics you are typing makes sense: in type theory, if
g is an element of the group G, then the only type that g can ever be a term of is G.

This approach does, however, have consequences which can initially come as a
shock to a mathematician. For example, one could make a type representing the positive
reals R>0 and a type representing the reals R, but if a term x had type R>0 then x itself
would not, strictly speaking, have type R; I stress again that every term has a unique type. To
make a term of typeR>0, one has to give two pieces of data: a real number, and a proof that it
is positive. A term of typeR>0 is an object corresponding to this pair, so, strictly speaking, it
is not a real number, and a type theory based systemwill hold you to this. However, of course,
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there is a canonical map from R>0 to R—you just throw away the proof. More generally, a
type theory system could well have a coercion system, consisting of a collection of “invisi-
ble functions” mapping types to other types in the way which mathematicians would expect.
For example, given a term of type R>0, it might well be possible to feed it into a function
which is expecting a term of type R; the system will just throw away the proof of positivity
and use the underlying real number anyway. Mathematicians use these invisible functions
everywhere, often without noticing. We have already mentioned above that in a foundational
system the real numbers need to be built using one of the standard constructions, for exam-
ple, via Cauchy sequences. In particular, a rational number is not literally a real number.
However, taking Lean as an example, if one has a term x : Q then one can simply write
x : R to get the corresponding real number, although a careful inspection of the corre-
sponding term will unearth the fact that the real number is actually called "x, indicating that
a coercion has been applied. The coercion is a ring homomorphism, and Lean has a “nor-
malize casts” tactic [42] which knows this and will apply theorems such as "(x+y)="x+"y

and "(x�y)="x�"y automatically (before this tactic had been written, doing mathematics
which involved switching between the naturals, integers, and rationals could be quite frus-
trating because of these invisible maps). In summary then, type theory forces you to think
more precisely about the actual objects you are working with, however, tactics can be used
to manipulate these objects the way we usually manipulate them. Learning how to “steer”
mathematics in a theorem prover this way simply comes from practice.

5.2. Inductive types
I have already mentioned that in a type theory system the definition of the real num-

bers is the same as in a set theory system—it is Cauchy sequences, or Dedekind cuts, or
whatever your favorite construction of the reals is. Similarly, the usual definitions of the
rationals and integers as quotients work just as well in type theory as they do in set theory.
But one place where the type-theoretic and set-theoretic foundations of mathematics differ
is in the definition of the natural numbers. The natural numbers are a foundational object in
mathematics—they are typically the first example of an infinite object to be born—so it is
perhaps unsurprising that different foundational systems will treat them in different ways.

In ZFC set theory, the existence of the set of natural numbers is postulated as an
axiom, namely the axiom of infinity. Type theories such as Lean’s instead allow the user
to define custom inductive types. Such types include the naturals and other recursively-
defined constructions. Implementation details of this so-called calculus of inductive con-
structions [20] differ between systems; the rest of this section explains details which are
specific to Lean’s type theory, but much of what I say applies to Coq and Agda, other popular
type theory provers.

In Lean, the definition of the naturals looks like this:

inductive nat

| zero : nat

| succ (n : nat) : nat
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This definition says “zero is a natural number, the successor of a natural number is
a natural number, and that is it.” As one might guess, this inductive construction can be used
to construct far more exotic types, but one can show that any type which can be defined using
the rules of the calculus of inductive constructions corresponds to a set which can be built
using the usual axioms of set theory.

Let us see what goes on under the hood when the naturals are defined as an inductive
type. When such a definition is made, a new type nat appears in the system, as does the
term nat.zero and the function nat.succ : nat ! nat. The latter terms are called
constructors: they are ways to make natural numbers. However, one more thing also appears,
namely the eliminator for the type—the object which enables the user to construct functions
whose domain is the naturals and whose codomain is something else. It represents the idea
that the only way that one can construct naturals is via nat.zero and nat.succ, and it
states that to define a function out of the naturals, it suffices to (1) say where nat.zero

goes, and (2) to say where nat.succ n goes, given where n went. In other words, it is the
principle of recursion.

So this is how new inductive types are born in Lean; after their definition they,
together with their constructors and eliminator, are automatically added by the proof assis-
tant to the system as new constants, or axioms, or however you would like to think of them.
There are, of course, precise rules telling us the exact form of the eliminator for a given induc-
tive type; we do not go into these here. From a foundational point of view, this approach,
where new axioms appear “by magic” as types are constructed, is very different to the set-
theoretic viewpoint; however, in [62] it is shown that type theory with these constructions is
equiconsistent with set theory. The strategy of the proof is to make a model of set theory
within type theory, and to make a model of type theory within set theory. For a more precise
statement, one has to be more precise about exactly what kind of type theory one is work-
ing with. For example, Mario Carneiro’s MSc thesis [13] shows that Lean’s type theory is
equiconsistent with ZFC plus countably many inaccessible cardinals.

It is worth noting, and quite amusing, that equality itself is defined as an inductive
type in many type theory systems. This is in contrast to set theory, where equality is typically
considered as part of the logic. Indeed, equality in type theory is generally more subtle than
in set theory. Here is Lean’s definition of equality:

inductive eq {X : Type} : X ! X ! Prop

| refl (a : X) : eq a a

The slightly unnerving X ! X ! Prop, bracketed as X ! (X ! Prop),
means that equality is a function which takes in an element of X and outputs a function
which takes in an element of X and outputs a Proposition, that is, a true–false statement. In
other words, if a and b are terms of type X then eq a b is a true–false statement. Using the
usual notation a = b for eq a b, we see that equality of terms of a type X is an inductive
type with one constructor, namely eq.refl a, a proof that a = a. It turns out that from this
definition we can prove all the usual properties of equality! The eliminator for the equality
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type is the substitution property, that if a D b then given a term of type P.a/ we can get
a term of type P.b/. It is a rather pleasant game to go on from this to deduce that equality
is both symmetric and transitive (for more details on this, see, for example, [9]). Of course,
whilst it is of interest to some to see how basic properties of equality can be proved within a
type theory system, it is also worth stressing that to use a computer theorem prover one does
not have to know anything about them.

5.3. Dependent types
Lean and Coq both use a version of type theory called dependent type theory, so

it is perhaps worth taking some time to explain what a dependent type is. Imagine X is a
geometric object, for example, a real manifold. Say that we have a vector bundle onX , that is,
for each point x of X a vector space Vx (which varies smoothly with x in some appropriate
sense). A section of this bundle is a function which takes as input a point x in X and outputs
an element of Vx . From a foundational point of view, there are two ways to think about such
a section. One could regard this section as a function from X to the disjoint union of the Vx ,
sending x 2 X to an element of Vx . Alternatively, one could regard it as a slightly stranger
kind of “function” which has domain X but whose codomain varies according to the input.
There are times in mathematics when taking the disjoint union of the codomains is a natural
thing to do—for example, in the example above, the disjoint union of the Vx is naturally a
space V sitting above X . However, there are also times when taking the disjoint union is
quite unnatural. For example, in algebraic geometry one way of defining the sections of the
structure sheaf on an affine scheme Spec.R/ is functions which send a prime ideal P of R

to an element of the localization RP of R at P , and the disjoint union of the RP as P varies
over the prime ideals of R has no natural algebraic structure. The set or type consisting of
the disjoint union of these local rings is typically not part of the mental model which an
algebraic geometer has when describing these sections.

These kinds of “functions” which have a well-defined domain, but a codomain
which can vary according to the input, are called dependent functions. Not all proof assistants
have such functions; for example, Isabelle/HOL (a powerful proof assistant which contains
a lot of analysis and analytic number theory) and various other HOL systems do not have
them, which means that certain constructions in geometry are more convoluted than in Coq
or Lean. See, for example, [6], which defines schemes in Isabelle/HOL but which has to build
a new implementation of ring theory from scratch in order to do so.

5.4. Examples
Let us take a look at some examples of what mathematics looks like in a theorem

prover based on type theory. I give these examples mainly to convince the reader who has
been brought up using the language of set theory that there really is very little difference.

Here is what the claim that
p

2 is not rational looks like in Isabelle/HOL:

theorem sqrt2_not_rational:

"sqrt 2 =2 Q"
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You can see the proof on Isabelle’s Wikipedia article [64]. The fact that 2 is a term
of a type and not a set, or an element of a set, is invisible.

Here is some more advanced mathematics, written in Coq:

Lemma prod_Cyclotomic n :

(n > 0)%N -> \prod_(d <- divisors n) 'Phi_d = 'X^n - 1.

This is the statement that the product of the d th cyclotomic polynomials over d j n

is Xn � 1. Note the hypothesis n > 0, an assumption which a human would typically omit;
computers are very picky with such “edge cases.”

Here is the definition of a perfectoid ring in Lean, taken from the Lean perfectoid
spaces website [11] which accompanies the article [10].

/-- A perfectoid ring is a Huber ring that is complete, uniform,

that has a pseudo-uniformizer whose p-th power divides p in the

power bounded subring,

and such that Frobenius is a surjection on the reduction

modulo p.-/

structure perfectoid_ring (R : Type) [Huber_ring R] extends

Tate_ring R : Prop :=

(complete : is_complete_hausdorff R)

(uniform : is_uniform R)

(ramified : 9 $ : pseudo_uniformizer R, $^p | p in R°)
(Frobenius : surjective (Frob R°/p))

The comment at the top of the code is the “docstring” for the code—this is the
human-readable explanation of what the Lean definition perfectoid_ring represents,
and this docstring is visible when you hover your cursor on the word perfectoid_ring

in some Lean code; if you are running the code in an IDE such as Microsoft VS Code then
right-clicking on this word will jump you to the definition.

The Lean definition prettymuch coincides with the human definition. IfR is a Huber
ring which is a Tate ring (these are technical properties of topological rings), then we say R

is a perfectoid ring if it is complete, uniform, and satisfies a couple of technical properties.
The point to observe is that the computer code is no more or less difficult than the human
definition.

5.5. Foundations
In my experience, mathematicians often have very little interest in the technicalities

of the logical foundations of their subject—they cannot list the axioms of set theory, but
they know from experience what is “legal mathematics.” The controversies of the early 20th
century about whether nonconstructive methods are allowed in mathematical proofs have
long ago died down; working mathematicians use the law of the excluded middle all over the
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place, and many use the axiom of choice in some form or another (indeed, countable depen-
dent choice can be invoked almost without one noticing). A typical research mathematician
will have gone to at most one course on the foundations of mathematics; in such a course
one typically learns that Zermelo–Frankel set theory with the axiom of choice, or ZFC, can
be used as a foundation for much of mathematics. Indeed, it can be used for essentially all of
mathematics up until the 1960s; however, Grothendieck’s supergeneral cohomology theories
developed in SGA4 introduced a new “axiom of universes” (the assertion that every set is an
element of a set which is a model of ZFC). This axiom cannot be proved from the axioms
of ZFC, by Gödel’s theorem. The original proofs of the Weil conjectures in theory used this
axiom in the weak sense that at the time the only reference for étale cohomology was SGA4.
However, Deligne and others point out in SGA41

2
that the theory of étale cohomology, and

hence the proof of the Weil conjectures, can be set up within ZFC alone. Readers interested
in the contortions that one has to go through in order to do this can look at the Set Theory sec-
tion of the Stacks project, for example, here [61, https://stacks.math.columbia.edu/tag/000H].
For a more extreme example, see Section 4 of [52], where we see a Fields Medallist forcing
a more elaborate theory into ZFC.

My personal opinion is that whilst ZFC was a wonderful foundation for much of
early 20th century mathematics, the lack of a universe axiom now means that it is becoming
more and more of an effort to get parts of modern mathematics to fit into it. In books and
papers dealing with infinity categories or condensed mathematics, it is not at all uncommon
to see universes showing up, and I do wonder whether now it is time for mathematicians
to begin embracing universes, as Grothendieck was encouraging us to do since the 1960s.
Coq’s type theory and Lean’s type theory both contain universes as part of the foundations;
however, mathematicians can choose not to use them if they so desire.

6. The future

In this section I describe some of the plausible consequences of formalizing mathe-
matics in a computer theorem prover. I also highlight some things which I believe will remain
out of reach for some time yet. Patrick Massot’s more extensive observations [44] are also
well worth a read (indeed, several of my ideas here were formed after conversations with
Massot).

6.1. A new kind of mathematical document
Right now, an author of a textbook or research paper has to decide how much

background material to assume, and which techniques they will regard as standard in the
arguments they present. In other words, they have to decide where to start, and how fast to
go. If a potential reader (for example, a new PhD student, or an undergraduate interested in
the area) does not have the necessary prerequisites then it will be far more difficult for them
to get anything out of the paper.

Computer formalization offers the possibility of a new kind of mathematical doc-
ument, where the reader can make the decisions about how much detail is visible. Patrick
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Massot has been experimenting with such documents. A preliminary version of his vision
can be seen at his Sphere Eversion Project web pages [43]. This is a project whose main
goal is to formalize in Lean a proof of Smale’s theorem saying that a sphere can be turned
inside out (or more formally, that there is a homotopy of immersions between the identity
immersion of S2 in R3 and the antipodal immersion). At the time of writing, the proof is
not yet fully formalized, but it is only a matter of time. The blueprint is written in LATEX, but
using plasTeX it has been converted into a web page with live Lean links. Right now these
links take you to static web pages containing Lean code, but tools are currently being devel-
oped which will change this. Alectryon is a program available for Coq and Lean which can
turn compiled code into web pages. Tools like Alectryon will enable us to make documents
which will allow links to dynamic web pages displaying anything from mathematical details
to interactive pictures, in a human-readable form, and which will allow one to keep digging
right down to the axioms, although, of course, it is unlikely that anyone would like to go
down this far.

There are already variants of this idea in existence, Lamport’s idea of a “structured
proof” came from a desire to encourage mathematicians to write far more details down in
their papers, but one can see why such a proposal would not go down well. Here we can
let automation do part of the work for us. The Metamath proof assistant also offers similar
functionality already, because Metamath has very little automation and hence drilling down
to the axioms is essentially the same as inspecting the proof.

One could also imagine error-free undergraduate textbooks also written in this way,
where statements which a student cannot understand (perhaps because they are ambiguous)
can be inspected in more details until difficulties are resolved.

6.2. Semantic search in a mathematical database
One thing that is not going to happen any time soon is some kind of revolution where

all mathematicians start writing all their papers in a formal proof assistant. Whilst one might
expect a future where some papers are partially, or even completely formalized in a theorem
prover (see, for example, [30, 40, 56]), this kind of approach will not become the norm any
time soon. Faced with this reality, how will formalized mathematics be able to keep up with
the frontiers of mathematics?

I have already mentioned Tom Hales’ 2017 “Big Conjectures” talk at the Newton
Institute in Cambridge. In the talk [32], Hales argued for a formalized version of Math
Reviews/Zentralblatt. That is, a website whose role is to formally state the results being
announced in the main mathematical journals. Note that such a project is nowhere near as
far-fetched as the idea of formalizing mathematical proofs in real time; theorem statements
are far easier to formalize.

The issue with Hales’ plan, as he points out in the talk, is that to be able to formalize
statements of theorems in even a part of modern mathematics such as the Langlands philos-
ophy, one would have to define all of the basic objects which mathematicians in this area
use. In the Langlands philosophy this would include, but be by no means limited to, defini-
tions of automorphic forms and automorphic representations, Galois representations, abelian
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varieties, the rings defined by Fontaine and used to do p-adic Hodge theory, schemes, all the
cohomology theories used in the area, perfectoid spaces, adeles and ideles,…. The Lean
community has over the last few years pushed hard to get some of the main definitions of
modern research mathematics into mathlib. At Imperial College alone we currently have
Oliver Nash developing the basics of the theory of Lie Algebras so we can talk about centers
of universal enveloping algebras, María Inés de Frutos-Fernández developing the theory of
adeles and ideles of global fields with an eye on the statements of class field theory, Amelia
Livingston developing group and Galois cohomology, Jujian Zhang developing sheaf coho-
mology with an eye on GAGA, and Ashvni Narayanan developing the basics of Iwasawa
theory in her PhD thesis. I have alreadymentioned the work ofmyself,Massot and Commelin
defining perfectoid spaces. The work of Scott Morrison, Bhavik Mehta, Justus Springer, and
Adam Topaz has recently enabled us to start developing the theory of sheaves on sites and
homological algebra, so cohomology theories are now not too far away. Of course, much
remains to be done, but we are hoping that the idea of being able to formally state the theo-
rems of Annals and Inventiones algebraic number theory papers in Lean will soon become
a reality.

A related project is formalizing tags in the Stacks Project [61], which is a gigantic
online database of algebraic geometry, freely accessible online. When printed out, it fills
over 7000 pdf pages. Formalizing all the proofs in the database would be an extremely
arduous task involving many person-decades of work with current technology. In theory
it is possible, however, one would need a team who were experts in both algebraic geom-
etry and in formalization. Furthermore, for it to actually happen, the incentive structure in
academic mathematics would have to change drastically. Publishing papers in prestigious
computer science conference proceedings explaining how you developed the basic theory
of Cohen–Macauley rings and modules in a theorem prover (and, of course, such work
would be publishable in a prestigious computer science conference proceedings—nobody
has ever done it before) is perhaps not something which is recognized by promotions com-
mittees.

However, there is a solution available to us right now. Formalizing just the definitions
and theorem statements in the Stacks Project is a much simpler task. Anybody interested in
algebraic geometry would be more than welcome to learn Lean by attempting to formalize
statements in Stacks Project tags. Point your web browser to the Lean Zulip instance [65] and
ask where to get started in the #new members stream.

The reason that building such databases is important is that they will enable the
community to build tools the likes of which mathematicians have never seen before. Let
us imagine that all the definitions and theorem statements in the Stacks Project have been
formalized in Lean or some other theorem prover. A “hammer” is a tool which runs inside
a theorem prover and which can attempt to construct mathematical arguments by piecing
together results in a database. The original hammer was Isabelle/HOL’s Sledgehammer [49].
The cleverness behind such tools is the ability to isolate which of the many results in the
database look the most useful, and to concentrate on these when attempting to prove the
required result. Now consider a PhD student who is beginning to learn algebraic geometry.
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Such a student would then be able to ask the theorem prover a question, and the prover could
attempt to use the database to answer the question positively (by piecing together a proof) or
negatively (by producing a counterexample, like the website �-base [21] is doing for coun-
terexamples in topology). The resulting output of the computer would be able to explicitly
point to references in the literature, or direct proofs of the claims it is making in its argument.
This sort of tool—computer assisted learning—has the potential to beat the techniques cur-
rently used by PhD students (“google hopefully,” “page through a textbook/paper hopefully,”
“ask on a maths website and then wait,” “ask another human”) hands down. But as I have
stressed before, the main thing which is missing is the database of theorems, and it is up to
us to construct it. The sooner it is there, the sooner the tools will appear. And the bigger the
database gets, the more powerful the tools will become.

6.3. Checking proofs
Some computer scientists have argued that mathematicians are sloppy, and our liter-

ature has errors in, and that this problem can be solved with computer proof assistants. Such
an argument might initially look plausible, and I myself was a proponent of it a few years
ago, but it does not stand up to much scrutiny. Firstly, the experts in our community know
which results can be relied upon. Secondly, many errors are not serious and can be fixed.
Thirdly, the more serious instances of this problem cannot be solved with computer proof
assistants right now anyway. A great example is Mochizuki’s claimed proof of the ABC con-
jecture [46]. This proof has now been published in a serious research journal; however, it is
clear that it is not accepted by the mathematical community in general. One could challenge
Mochizuki, or indeed anyone, to formalize the proof in a computer theorem prover. How-
ever, this would be a completely unreasonable thing to do. A computer formalization is not
expected of other proofs appearing in our literature. Furthermore, the key sticking point right
now is that the unbelievers argue that more details are needed in the proof of Corollary 3.12
in the main paper, and the state-of-the-art right now is simply that one cannot begin to for-
malize this corollary without access to these details in some form (for example, a paper proof
containing far more information about the argument).

What would, however, be feasible is for mathematicians to formalize parts of tech-
nical work, or to get others to do so. There might be several reasons to do such a thing—
Commelin and his team have already shown that theorem provers can be used to check parts
of complex proofs which humans might find it difficult to plough through, whilst learning
about the mathematics in the process.

6.4. Teaching
I have heard students say “I think my proof is OK” when talking about their home-

work. Computer proof assistants are able to tell them immediately if this is so—as long as
the student has taken the trouble to learn the language of the proof assistant. Should we be
teaching undergraduate mathematicians how to use computer proof assistants? I certainly
think so. Patrick Massot in Orsay and myself at Imperial College London are both teaching
undergraduate-level courses which do precisely this.
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Students want feedback on their work as soon as possible. A computer proof assis-
tant can supply it immediately.

Beginner students can be confused about the basics. What is the difference between
8� > 0; 9ı > 0; : : : and 9ı > 0; 8� > 0; : : :? Once these systems become easier for mathe-
maticians to use, students can experiment for themselves with well-chosen examples supplied
by a lecturer and begin to understand what is going on. I was once told by a student “I did
not understand equivalence relations, so I formalized them in Lean, and then I understood
them.” Forcing students to think pedantically and logically can be good for them.

It is, however, worth stressing that asking a weak student to both keep up with your
course and to simultaneously learn how to use a computer theorem prover is clearly asking
toomuch from that student. The provers need to become easier to use, perhaps with graphical
interfaces and documentationmore appropriate for mathematicians. Asking people to change
the way they teach is, of course, asking a lot. However, mathematics education experts will
be only too happy to tell us that our preferred medium—“write for an hour on a board”—is
becoming less and less appropriate for our students, who like to learn things by watching 5
minute videos or playingwith interactive toys. Canwemake abstractmathematicsmore inter-
active? I suspect that we can. The more people who understand how to use these machines,
the sooner the new ideas will come.

6.5. Other ideas
I do not claim to have exhausted the possibilities here. The people who designed

the CD in the 1980s surely could not envisage music services like YouTube and Spotify,
or the audiobook. The people who started to think about how to make typesetting of books
look good on a computer screen surely did not envisage devices like the Kindle. It is time to
look beyond how we usually teach and learn mathematics, and try to understand how we as
a community of mathematicians can use the inevitable digitization of mathematical material
as a tool to make our lives, and the lives of our students, better. As Carneiro once said, you
cannot stop progress.
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Abstract

The reciprocity conjecture in the Langlands program links motives to automorphic forms.
The proof of Fermat’s Last Theorem by Wiles [171,181] introduced new tools to study reci-
procity. This survey reports on developments using these ideas (and their generalizations)
in the last three decades.
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1. Introduction

The reciprocity conjecture in the Langlands program predicts a relationship between
pure motives1 and automorphic representations. The simplest version (as formulated by
Clozel [48, Conj. 2.1]) states that there should be a bijection between irreducible motives M

over a number field F with coefficients in Q and cuspidal algebraic representations �

of GLn.AF / satisfying a number of explicit additional compatibilities, including the equal-
ity of algebraic and analytic L-functions L.M; s/ D L.�; s/. In light of multiplicity-one
theorems [105], this pins down the correspondence uniquely. There is also a version of this
conjecture for more general reductive groups, although its formulation requires some care
(as was done by Buzzard and Gee [32]). Beyond the spectacular application by Wiles to
Fermat’s Last Theorem [181, Theorem 0.5], the Taylor–Wiles method [171, 181] gave a com-
pletely new technique—and to this date the most successful one—for studying the problem
of reciprocity. The ideas in these two papers have sustained progress in the field for almost2

30 years. In this survey, we explain how the Taylor–Wiles method has evolved over this
period and where it stands today. One warning: the intended audience for this document is
entirely complementary to the audience for my talk—I shall assume more than a passing
familiarity with the arguments of [171,181]. Moreover, this survey is as much a personal and
historical3 discussion as a mathematical one—giving anything more than hints on even a
fraction of what is discussed here would be close to impossible given the space constraints
and the competence of the author. Even with the absence of any real mathematical details in
this paper, the sheer amount of activity in this field has led me to discard any discussion of
advances not directly related to R D T theorems, which necessitates the omission of a lot of
closely related beautiful mathematics.

1.1. The Fontaine–Mazur conjecture
Let F be a number field. The Fontaine–Mazur conjecture4 [83] predicts that any

continuous irreducible p-adic Galois representation

� W GF ! GLn.Qp/

1 Here (in light of the standard conjectures [124]) one may take pure motives up to numerical
or homological equivalence. Conjecturally, one can also substitute (for irreducible motive)
the notion of an irreducible weakly compatible system of Galois representations [167] or an
irreducible geometric Galois representation in the sense of Fontaine–Mazur [83].

2 Wiles in [181] dates the completion of the proof to September 19, 1994.
3 A whiggish history, naturally. Even with this caveat, it should be clear that the narrative arc

of progress presented here at best represents my own interpretation of events. I have added
a few quotes from first hand sources when I felt they conveyed a sense of what the experts
were thinking in a manner not easily obtainable from other sources. For other survey articles
on similar topics, see [24,30].

4 Fontaine told me (over a salad de gésiers in Roscoff in 2009) that he and Mazur formulated
their conjecture in the mid-1980s. (Colmez pointed me towards these notes [81] from a
talk given by Fontaine at the 1988 Mathematische Arbeitstagung in Bonn.) He noted that
Serre had originally been skeptical, particularly of the claim that any everywhere unramified
representation inside GLn.Qp/ must have finite image, and set off to find a counterexample
(using the construction of Golod–Shavarevich [91]). He (Serre) did not succeed!
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which is both unramified outside finitely many primes and potentially semistable (equiva-
lently, de Rham [62]) at all places vjp should be associated to a motive M=F with coef-
ficients in Q. Any such � is automatically conjugate to a representation in GLn.E/ for
some finite field E=Qp and further stabilizes an OE -lattice. The corresponding residual
representation � W GF ! GLn.k/ where k D OE =�E is the residue field of E is unique
up to semisimplification. Let us assume here for expositional convenience that � is abso-
lutely irreducible. FollowingMazur [129], one may define a universal deformation ring which
parameterizes all deformations of � unramified outside a finite set S . One can then further
impose local conditions to define deformation rings R whose Qp-valued points are associ-
ated to Galois representations which are de Rham at vjp with fixed Hodge–Tate weights.
Assuming the Fontaine–Mazur conjecture, these Qp-valued points correspond to all pure
motives M unramified outside S whose p-adic realizations are Galois representations with
the same local conditions at p and the same fixed residual representation �. Assuming the
reciprocity conjecture, these motives should then be associated to a finite dimensional space
of automorphic forms. This leads to the extremely nontrivial prediction that R has finitely
many Qp-valued points. The problem of reciprocity is now to link these Qp-valued points
of R to automorphic forms.

1.2. R D T theorems
Associated to the (conjectural) space of automorphic forms corresponding to

Qp-valued points of R is a ring of endomorphisms generated by Hecke operators. The
naïve version of T is defined to be the completion of this ring with respect to a maximal
ideal m defined in terms of �. The mere existence of m is itself conjectural, and amounts—
in the special case of odd absolutely irreducible 2-dimensional representations � of GQ—to
Serre’s conjecture [156]. Hence, in the Taylor–Wiles method, one usually assumes the exis-
tence of a suitable m as a hypothesis. The usual shorthand way of describing what comes
out of the Taylor–Wiles method is then an “R D T theorem.” Proving an R D T theorem
can more or less be divided into three different problems:

(1) Understanding T. Why does there exist5 a map R ! T? This is the problem
of the “existence of Galois representations.” Implicit here is the problem of
showing that those Galois representations not only exist but have the “right local
properties” at the ramified primes, particularly those dividing p.

(2) Understanding R. Wiles introduced a mechanism for controlling R via its tan-
gent space using Galois cohomology (in particular Poitou–Tate duality [131]),
and this idea has proved remarkably versatile. What has changed, however, is
our understanding of local Galois representations and how this information can
be leveraged to understand the structure of R.

(3) Understanding why the map R ! T is an isomorphism.

5 At the time of Wiles’ result, this was seen as the easier direction (if not easy), although,
in light of the success of the Taylor–Wiles method, it may well be the harder direction in
general.
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We begin by summarizing the original R D T theorem from this viewpoint (or
more precisely, the modification by Faltings which appears as an appendix to [171]). We
only discuss for now the so-called “minimal case6” since this is most relevant for subse-
quent generalizations (see Section 6.2). Our summary is cursory, but see [67,68] for excellent
expositional sources on early versions of the Taylor–Wiles method. We start with a represen-
tation � W GQ !GL2.Fp/ forp > 2which (say) comes from a semistable elliptic curveE and
which we assume to be modular. By a theorem of Ribet [149], we may assume it is modular
of level either N D N.�/ or N D N.�/p where N.�/ is the Serre weight [156] of �.

(1) UnderstandingT: The construction of Galois representations associated tomod-
ular forms has its own interesting history (omitted here), but (in the form origi-
nally needed by Wiles) was more or less complete for modular forms (and even
Hilbert modular forms) by 1990. The required local properties at primes dif-
ferent from p followed from work of Carayol [47], and the local properties at p

were well understood either by Fontaine–Laffaille theory [82], or, in the ordinary
case, by Mazur–Wiles [130] (see also work of Hida [101,102]).

(2) Understanding R: Here R is a deformation ring of � subject to precise local
deformation conditions at p and the primes dividing N.�/. For the prime p, the
local conditions amount either to an “ordinary” or “finite-flat” restriction. One
then interprets the dual of the reduced tangent spacemR=.m2

R;p/ ofR in terms
of Galois cohomology, in particular as a subgroup (Selmer group) of classes
in H 1.Q; ad0.�// satisfying local conditions. This can be thought of as analo-
gous to a class group, and one does not have any a priori understanding of how
large it can be although it has some finite dimension d . Using the Greenberg–
Wiles formula, the obstructions in H 2.Q; ad0.�// can be related to the reduced
tangent space, and allow one to realize R as a quotient of W.k/Jx1; : : : ; xd K by
d relations. In particular, if R was finite and free as a W.k/-module (as would
be the case if R D T) then R would be a complete intersection.

(3) Understanding why the map R ! T is an isomorphism. Here lies the heart of
the Taylor–Wiles method. The ring T acts on a natural module M of modular
forms. One shows—under a mild hypothesis on �—the existence of (infinitely
many) sets Q D QN for any natural number N of cardinality jQj D d—so-
called Taylor–Wiles primes—with a number of pleasant properties:

(i) The primes q 2 Q are congruent to 1 mod pN .

(ii) Let RQ be the deformation ring capturing the same local properties as R

but modified so that the representations at primes in Q may now be ram-
ified of degree pN . There is naturally a surjection RQ ! R, but for

6 The case when the Galois representations attached to R and T have minimal level N as
determined by the residual representation.

613 Reciprocity in the Langlands program since Fermat’s Last Theorem



Taylor–Wiles primes, this modification does not increase the size of the
tangent space. In particular, for a fixed ring R1 D W.k/Jx1; : : : ; xd K
there are surjections R1 ! RQ ! R for every Q.

(iii) The corresponding rings T and TQ act naturally on spaces of modu-
lar forms M and MQ, respectively. Using multiplicity one theorems,
Wiles proves (see [181, Theorem 2.1]) that M and MQ are free of rank
one over T and TQ, respectively. The space M can be interpreted as a
space of modular forms for a particular modular curve X . The second
key property of Taylor–Wiles primes is that there are no new modular
forms associated to � at level X0.Q/, and hence M can also be inter-
preted as a space of modular forms for X0.Q/. There is a Galois cover
X1.Q/ ! X0.Q/with Galois group .Z=QZ/�, and hence an intermedi-
ate coverXH .Q/ ! X0.Q/with Galois group �N D .Z=pNZ/d acting
via diamond operators. The space MQ is essentially a localization of
a certain space of modular forms for XH .Q/ (with some care taken at
the Hecke operators for primes dividing Q). Since the cohomology of
modular curves (localized at the maximal ideal corresponding to m) is
concentrated in degree one, the module MQ turns out to be free over
an auxiliary ring SN D W.k/Œ�N � of diamond operators, and the quo-
tient MQ=aQ for the augmentation ideal aQ of SN is isomorphic to M .
It follows that TQ=aQ D T.

(iv) The diamond operators have an interpretation on the Galois deformation
side, and there is a identification RQ=aQ D R where RQ and TQ can be
viewed compatibly as SN -modules.

(4) Finally, one “patches” these constructions together for larger and larger Q. This
is somewhat counterintuitive, since for different Q the Galois representations
involved are not compatible. However, one forgets the Galois representations
and only remembers the structures relative to both the diamond operators SN

and R1, giving the data of a surjection

R1 ! T1

with a compatible action of S1 D proj limSN ' W.k/Jt1; : : : ; td K. Using the
fact that T1 is free of finite rank over S1, and that R1 and S1 are formally
smooth of the same dimension, one deduces that R1 D T1 and then R D T
after quotienting out by the augmentation ideal of S1.

2. The early years

2.1. The work of Diamond and Fujiwara
Wiles made essential uses of multiplicity one theorems in order to deduce that MQ

was free over TQ. Diamond [72] and Fujiwara [85] (independently) had the key insight that
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one could instead patch the modulesMQ directly—and then argue directly with the resulting
object M1 as a module over R1 which was also free over S1. Using the fact that R1

is formally smooth, this allowed one to deduce a posteriori that M1 was free over R1

using the Auslander–Buchsbaum formula [9]. This not only removed the necessity of proving
difficult multiplicity-one results but gave new proofs of these results7 which could then be
generalized to situations where the known methods (often using the q-expansion principle)
were unavailable.8 Diamond had the following to say about how he came up with the idea to
patch modules rather than use multiplicity-one theorems:

My vague memory is that I was writing down examples of ring homomorphisms
and modules, subject to some constraints imposed by a Taylor–Wiles setup, and I
could not break “M free over the group ring implies M free over R.” (I still have
the notebook with the calculations somewhere, mostly done during a short trip
with some friends to Portugal.) I did not know what commutative algebra state-
ment I needed, but I knew I needed to learn more commutative algebra and found
my way to Bruns and Herzog’s “Cohen–Macaulay Rings” [28] (back in the library
in Cambridge, UK by then). When I saw the statement of Auslander–Buchsbaum,
it just clicked.

Diamond made a second improvement [70,71] dealing with primes away from p in
situations where the corresponding minimal local deformation problem was not controlled
by the Serre level N.�/ alone.

2.2. Integral p-adic Hodge Theory, part I: Conrad–Diamond–Taylor
One early goal after Fermat was the resolution of the full Taniyama–Shimura con-

jecture, namely, the modularity of all elliptic curves over Q. After the improvements of
Diamond, the key remaining problem was understanding deformation rings associated to
local Galois representations at p coming from elliptic curves with bad reduction at p. Since
Wiles’ method (via Langlands–Tunnell [127,178]) was ultimately reliant on working with the
prime p D 3, this meant understanding deformations at p of level p2 and level p3, since any
elliptic curve over Q has a twist such that the largest power of 3 dividing the conductor is at
most 27. Ramakrishna in his thesis [145] had studied the local deformation problem for finite
flat representations (the case when .N;p/ D 1) and proved that the corresponding local defor-
mation rings were formally smooth. The case when p exactly divides N was subsumed into
the ordinary case, also treated by Wiles. In level p2, one can show that the Galois represen-

7 There is an intriguing result of Brochard [27] which weakens the hypotheses of Diamond’s
freeness criterion even further, although this idea has not yet been fully exploited.

8 The history of the subject involves difficult theorems in the arithmetic geometry of Shimura
varieties being replaced by insights from commutative algebra, paving the way to gener-
alizations where further insights from the arithmetic geometry of Shimura varieties are
required.
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tations associated to the relevant modular forms9 of level p2 become finite flat after passing
to a finite extension L=Qp with ramification degree e � p � 1. In this range, Conrad [64,65]

was able to adapt ideas of Fontaine [80] to give an equivalence between the local Galois
deformations (assuming �jGQp

was irreducible) and linear algebra data. In particular, as in
the work of Ramakrishna, one can show that the relevant local deformation rings are formally
smooth, and so Conrad, Diamond, and Taylor were able to adapt the Taylor–Wiles method
to this setting [66].

2.3. Integral p-adic Hodge Theory, part II: Breuil–Conrad–Diamond–Taylor
A central technical ingredient in all of the arguments so far has been some use

of integral p-adic Hodge Theory, and in particular the theory of finite flat group schemes
and Barsotti–Tate groups as developed by Fontaine and others. All integral versions of this
theory required a hypothesis on either the weight or the ramification index e relative to the
bound p � 1. However, around this time, Christophe Breuil made a breakthrough10 by find-
ing a new way to understand the integral theory of finite flat group schemes over arbitrarily
ramified bases [19]. This was just the technical tool required to push the methods of [66] to
level p3. Using these results, Breuil, Conrad, Diamond, and Taylor [25] were able to show
that enough suitably chosen local deformation rings were formally smooth to prove the mod-
ularity of all elliptic curves.

2.4. Higher weights, totally real fields, and base change
Many of themethods which worked for modular formswere directly adaptable to the

case both of general rank 2motives overQwith distinct Hodge–Tate weights (corresponding
to modular forms of weight k � 2 rather than k D 2) and also to such motives over totally real
fields (which are related to Hilbert modular forms), see in particular the work of Fujiwara [85]

(and more recently Frietas–Le Hung–Siksek [84]). Another very useful innovation was a
base change idea of Skinner–Wiles [161] which circumvented the need to rely on Ribet’s
level lowering theorem. The use of cyclic base change ([127] in this case and [5] in general)
subsequently became a standard tool in the subject. For example, it meant that one could
always reduce to a situation where the ramification at all primes v − p was unipotent. The
paper [161] was related to a more ambitious plan by Wiles to prove modularity for all totally
real fields:

After Fermat I started to work with Taylor and then Diamond on the general case
but decided very soon that I would rather try to do the totally real case for GL.2/.

9 This is not true for all modular forms of level p2 and weight 2, but only for those whose
conductor at p remains divisible by p2 after any quadratic twist.

10 Much of the development of integral p-adic Hodge theory over the last 20 years since [25]
has been inspired by its use in the Taylor–Wiles method. However, the timing of Breuil’s
work was more of a happy coincidence, although Breuil was certainly aware of the fact that
a computable theory of finite flat group schemes over highly ramified bases could well have
implications in the Langlands program.
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I think this was while I was getting back into other kinds of problems but I thought
I should still earn my bread and butter. One lunch time at the IAS in 1996 Flo-
rian Pop spoke to me and explained to me about finding points over fields totally
split at some primes (e.g., real places) as he had written a paper [92] about this
with some others. Was this any use for the Tate–Shafarevich group? I immediately
saw that whether or not it was any use for TS (I doubted it) it should certainly give
potential modularity. This gave some kinds of lifting so I worked on the other half
(i.e., descent) thinking that just needed a similar insight. At some point I suggested
to Chris that we try to do Ribet’s theorem using cyclic base change as that would
be useful in proving modularity and was buying time while I waited to get the
right idea. Unfortunately, I completely misjudged the difficulty of descent and the
problem is still there. I think it is both much harder than I thought and also more
important. I hope still to prove it! Of course, Taylor found potential modularity
and then, what I had assumed was much harder, a way to think about GL.n/.

3. Reducible representations: Skinner–Wiles

One of the key hypotheses in the Taylor–Wiles method concerns restrictions on the
representation �, in particular the hypothesis that �jGQ.�p/

is absolutely irreducible. In [159,

160,162], Skinner andWiles introduced a new argument in which this hypothesis was relaxed,
at least assuming the representations were ordinary at p. In the ordinary setting, one can
replace the rings R and T (which in the original setting are finite over W.k/) by rings which
are finite (and typically flat) over Iwasawa algebras ƒ D W.k/J.Zp/d K for some d which
arise as weight spaces, the point being that the ordinary deformations of varyingweight admit
a good integral theory. The first innovation (in part) involves making a base change so that
the reducible locus is (relatively) “small,” (measured in terms of the codimension over ƒ).
The second idea is then to apply a variant of the Taylor–Wiles method to representations
% W GF ! GL2.T=p/ for nonmaximal prime ideals p of F .11 Wiles again:

We had worked out a few cases we could do without big Hecke rings in some
other papers and I would say it was more a feat of stamina and technique to work
through it. Of course, the use of these primes was much more general and system-
atic than anything that went before. There is also an amusing point in this paper
where we use a result from commutative algebra. It seemed crucial then though I
don’t know if it still is. This is Proposition A.1 of Raynaud [148]. I had thought at
some point during the work on Fermat that this result might be needed and had
asked Michel Raynaud about it. He said he would think about it. A week later he
came back to me, somewhat embarrassed that he had not known right away, to say

11 Representations % to infinite quotients T=p had also arisen in Wiles’ paper on Galois
representations associated to ordinary modular forms [180] where the concept of pseu-
dodeformation was also first introduced.
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that it was a result in his wife’s thesis. So the reference to M. Raynaud is actually
to his wife, Michèle Raynaud, though he gave the reference.

Allen [1] was later able to adapt these arguments to the p D 2 dihedral case, which
(in a certain sense) realized the original desire12 of Wiles to work at the prime p D 2.

4. The Artin conjecture

While the approach of [171, 181] applied (in principle) to all Galois representations
associated to modular forms of weight k � 2, the case of modular forms of weight k D 1 is
qualitatively quite different (see also Section 10.1). It was therefore quite surprising when
Buzzard–Taylor [33] proved weight one modularity lifting theorems for odd continuous
representations � W GQ ! GL2.Qp/ which were unramified at p. Using this, Buzzard–
Dickinson–Shepherd-Barron–Taylor [31] proved the Artin conjecture for a positive propor-
tion of all odd A5 representations, which had previously only been known in a finite number
of cases13 up to twist. Standard ordinary modularity theorems showed the existence of ordi-
narymodular forms associated to such representations �—however, the classicality theorems
of Hida [101] do not apply (and are not true!) in weight one. The main idea of [33] was to
exploit the fact that � is unramified to construct two ordinary modular forms each corre-
sponding to a choice of eigenvalue of �.Frobp/ assuming these eigenvalues are distinct.14

One then has to argue [33] that these two ordinary forms are the oldforms associated to a
classical eigenform of weight one, which one can do by exploiting both the rigid geometry
of modular curves and the q-expansion principle.

Although the original version of this argument required a number of improvements
to the usual Taylor–Wiles method (Dickinson overcame some technical issues when p D

2 [73] and Shepherd-Barron–Taylor proved some new cases of Serre’s conjecture for SL2.F4/

and SL2.F5/-representations in [157]), it was ripe for generalization to totally real fields.15

After a key early improvement by Kassaei [106], the n D 2 Artin conjecture for totally real
fields is now completely resolved under the additional assumption that the representation is
odd by a number of authors, including Kassaei–Sasaki–Tian and Pilloni–Stroh [107–109,141,

12 As far as primary historical sources go, the introduction of Wiles’ paper [181] is certainly
worth reading.

13 In a computational tour de force for the time, Buhler [29] in his thesis had previously estab-
lished the modularity of an explicit odd projective A5 representation of conductor 800.

14 This argument can be modified to deal with the case when the eigenvalues of �.Frobp/

coincide by modifying R and T to include operators corresponding (on the Hecke side)
to Up . Geraghty and I discovered an integral version of this idea ourselves (“doubling,”
following Wiese’s paper [179]) during the process of writing [38], although it turned out
that, at least in characteristic zero, Taylor already had the idea in his back pocket in the early
2000s.

15 The proof all that finite odd 2-dimensional representations over Q are modular was com-
pleted by Khare and Wintenberger as a consequence of their proof of Serre’s conjecture,
see Section 8.
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143, 152]. On the other hand, the reliance on q-expansions in this argument has proved an
obstruction to extending this to other groups. (See also Section 11.2.)

5. Potential modularity

One new idea which emerged in Taylor’s paper [166] was the concept of potential
modularity. Starting with a representation � W GF ! GL2.Qp/ for a totally real field F , one
could sidestep the (difficult) problem of proving the modularity of � by proving it was modu-
lar over some finite totally real extension F 0=F . In the original paper [181], Wiles employed
a 3–5 switch to deduce the modularity of certain mod 5 representations from the modu-
larity of mod 3 representations. More generally, one can prove the modularity of a mod p

representation �p from the modularity of a mod q representation �q if one can find both of
them occurring as the residual representation of a compatible family where the Taylor–Wiles
hypotheses apply to �q . For example, if �p and �q are representations valued in GL2.Fp/

and GL2.Fq/ respectively, one can try to find the compatible family by finding an elliptic
curve with a given mod p and mod q representation. The obstruction to doing such a p–q

switch over F is that the corresponding moduli spaces (which in this case are twists of the
modular curve X.pq/) are not in general rational, and hence have no reason to admit ratio-
nal points. However, exploiting an idea due to Moret-Bailly [132], Taylor showed that these
moduli spaces at least had many points over totally real fields where one could addition-
ally ensure that the Taylor–Wiles hypothesis applies at the prime q. At the cost of proving
a weaker result, this gives a huge amount of extra flexibility that has proved remarkably
useful. Taylor’s first application of this idea was to prove the Fontaine–Mazur conjecture for
many 2-dimensional representations, since the potential modularity of these representations
was enough to prove (for example) that they come from compatible families of Galois rep-
resentations (even over the original field F !), and that they satisfy purity (which is known
for Hilbert modular forms of regular weight). The concept of potential modularity, however,
has proved crucial for other applications, not least of which is the proof of the Sato–Tate
conjecture (see Section 9.2).

6. The work of Kisin

A key ingredient in the work of Breuil–Conrad–Diamond–Taylor (Sections 2.2
and 2.3) (and subsequent work of Savitt [153, 154]) was the fact that a certain local defor-
mation ring Rfl defined in terms of integral p-adic Hodge theory was formally smooth.
The calculations of [25, 154], however, applied only to some (very) carefully chosen situ-
ations sufficient for elliptic curves but certainly not for all 2-dimensional representations.
In the 2000s, Kisin made a number of significant contributions, both to the understand-
ing of local deformation rings but also to the structure of the Taylor–Wiles argument
itself [117–119,121–123].
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6.1. Local deformation rings at v D p

One difficulty with understanding local deformation rings Rfl associated to finite
flat group schemes over highly ramified bases is that the group schemes themselves are
not uniquely defined by their generic fibers. Kisin [122] had the idea that one could also
define the moduli space of the group schemes themselves, giving a projective resolution
GR ! Spec.Rfl/ (this map is an isomorphism after inverting p). Kisin further realized that
the geometry of GR was related to local models of Shimura varieties, for which one had
other available techniques to analyze their structure and singularities. Later, Kisin was also
able [119] to construct local deformation rings R capturing deformations of a fixed local rep-
resentation � which become semistable over a fixed extension L=Qp and had Hodge–Tate
weights in any fixed finite range Œa; b�, absent a complete integral theory of such representa-
tions. (There are also are constructions where one fixes the inertial type of the corresponding
representation.) Kisin further proved that the generic fibers of these rings were indeed of the
expected dimension and often formally smooth.

6.2. Kisin’s modification of Taylor–Wiles
Beyond analyzing the local deformation rings themselves, Kisin crucially found a

way [122] tomodify the Taylor–Wilesmethod to avoid the requirement that these rings are for-
mally smooth, thus greatly expanding the scope of the method. First of all, Kisin reimagined
the global deformation ring R as an algebra over a (completed tensor product)

Rloc
D

bO
v2S Rv

of local deformation rings Rv for sets of places v 2 S , in particular including the prime p.16

Now, after a Taylor–Wiles patching argument, one constructs a big module M1 over R1

(and free over the auxiliary ring of diamond operators S1) but where R1 is no longer a
power series ring overW.k/ but a power series ring overRloc. If the algebrasRv for v 2 S are
themselves power series rings, one is reduced precisely to the original Taylor–Wiles setting
as modified by Diamond. On the other hand, if the Rv are (for example) not power series
rings but are integral domains over W.k/ of the expected dimension, then Kisin explained
how one could still deduce that MŒ1=p� was a faithful RŒ1=p�-module, which proves that
RŒ1=p� D TŒ1=p� and suffices for applications to modularity. More generally, assuming only
that the Rv are flat over W.k/ and that the generic fiber RvŒ1=p� is equidimensional of the
expected dimension, the modularity of any point of R reduces to showing that there is at
least one modular point which lies on the same component of RvŒ1=p�.17

16 Since the local residual representations are typically reducible, Kisin also introduced the
notion of framed deformation rings which are always well defined, and which (properly
taking into account the extra variables) are compatible with the Taylor–Wiles argument.

17 There are some subtleties to understanding RŒ1=p� for complete local Noetherian W.k/-
algebras that are not obvious on first consideration. The first and most obvious blunder
to avoid is to recognize that RŒ1=p� is usually far from being a local ring. Similarly, the
ring RŒ1=p� can be regular and still have multiple components, as can be seen in an example
as simple as R D ZpJXK=X.X � p/. Perhaps more importantly, however, the ring RŒ1=p�

“behaves” in some important ways like a finitely generated algebra over a field.
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In the original modularity lifting arguments, one treated the minimal case first and
then deduced the nonminimal cases using a subtle commutative algebra criterion which
detected isomorphisms between complete intersections. From the perspective of Kisin’s
modification, all that is required is to show that there exists a single modular point with the
right nonminimal local properties. In either case, both Wiles and Kisin used Ihara’s Lemma
to establish the existence of congruences between old and new forms, but Kisin’s argument
is much softer and thus more generalizable to other situations.18 Kisin had the following to
say about his thought process:

The idea of thinking of R as an Rloc algebra just popped into my head, after I’d
been thinking about the Wiles–Poitou–Tate formula, and how it fit into the Taylor–
Wiles patching argument. This was in Germany, I think in 2002. I had the idea
about moduli of finite flat group schemes in the Fall of 2003, after I arrived in
Chicago. It was entirely motivated by modularity. I had been trying to compute
these deformation rings, by looking at deformations of finite flat group schemes.
For e < p � 1, the finite flat model is unique, so I knew this gave the deformation
ring in this case; this already gave some new cases. However, I was stuck about
the meaning of these calculations in general for quite some time. At some point
I thought I’d better write up what I had, but as soon as I started thinking about
that—within a day—I realized what the correct picture was with the families of
finite flat group schemes resolving the deformation ring. I already knew about
Breuil’s unpublished note [18], and quite quickly was able to prove the picture was
correct. It was remarkable that prior to coming to Chicago, I didn’t even know
the definition of the affine Grassmannian, but within a few months of arriving, it
actually showed up in my own work.
To me the whole project was incredibly instructive. If I had known more about
what was (thought to be) essential in the Taylor–Wiles method, I never would
have started the project. Not having fixed ideas gave me time to build up intuition.
I also should have gotten the idea about moduli of finite flat group schemes much
sooner if I’d been more attentive to what the geometry was trying to tell me.

7. p-adic local Langlands

7.1. The Breuil–Mézard conjecture
Prior to Kisin’s work, Breuil and Mézard [26] undertook a study of certain low

weight potentially semistable deformation rings, motivated by [25]. They discovered (in part
conjecturally) a crucial link between the geometry of these Galois deformation rings (in

18 In particular, Wiles’ numerical criterion [68, Thm. 5.3] relies on certain rings being com-
plete intersections, and Kisin’s local deformation rings are not complete intersections (or
even Gorenstein) in general—see [163].
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particular, the Hilbert–Samuel multiplicities of their special fibers) with the mod-p reduc-
tions (and corresponding irreducible constituents) of lattices inside locally algebraic p-adic
representations of GL2.Zp/. In the subsequent papers [20, 21], Breuil raised the hope that
there could exist a p-adic Langlands correspondence relating certain mod-p (or p-adic
Banach space) representations of GL2.Qp/ to geometric 2-dimensional p-adic represen-
tations of GQp .19 Breuil recounts the origins of these conjectures as follows:

The precise moment I became 100% sure that there would be a non-trivial p-adic
correspondence for GL2.Qp/ was in the computations of [21]. In these compu-
tations, I reduced mod p certain Zp–lattices in certain locally algebraic repre-
sentations of GL2.Qp/, and at some point, I found out that this reduction mod p

had a really nice behaviour, so nice that clearly, it was predicting (via the mod-p
correspondence) what the reduction mod-p would be on the Gal.Qp=Qp/-side.

These ideas were further developed by Colmez in [57–59] amongst other papers20:
Colmez studied various Banach space completions defined by Breuil and proved they were
nonzero using the theory of .'; �/-modules. Since the theory of .'; �/-modules applies
to all Galois representations and not just potentially semistable ones, this led Colmez
to propose a p-adic local Langlands correspondence for arbitrary 2-dimensional repre-
sentations GQp ! GL2.E/, and he was ultimately able to construct a functor from suit-
able GL2.Qp/-representations to Galois representations of GQp . Colmez gave a talk on
his construction at a conference in Montreal in September 2005. At the same conference,
Kisin gave a talk presenting a proof of the Breuil–Mézard conjecture by relating it directly
to R D T theorems and the Fontaine–Mazur conjecture for odd 2-dimensional representa-
tions of GQ with distinct Hodge–Tate weights. While Kisin’s argument exploited results of
Berger–Breuil [14] and Colmez, it was realized by the key participants (perhaps in real time)
that Colmez’ p-adic local Langlands correspondence should be viewed as taking place over

19 The starting observation [22] is as follows: if � D ˝0�v is the automorphic representation
associated to a modular form f , then �v determines (and is determined by) �f jGQv

for
all v ¤ p (at least up to Frobenius semisimplification). On the other hand, �p does not
determine the p-adic representation �f jGQp

(except in the exceptional setting where �p is
spherical and ap is not a p-adic unit), raising the question of what extra GL2.Qp/ structure
associated to f should determine (and be determined by) �f jGQp

.
20 In [116], Kisin had shown that the p-adic representations V associated to nonclassical finite

slope overconvergent modular forms with Up-eigenvalue ap satisfied dimDcris.V / D 1,
and moreover that crystalline Frobenius acted on this space by ap . (This paper was itself
apparently motived by the goal of disproving the Fontaine–Mazur conjecture!) On the way
to the 2004 Durham symposia on L-functions and Galois representations, Fontaine raised
the question to Colmez to what extent this determined the corresponding Galois represen-
tation. Colmez worked out the answer the evening before his talk and incorporated it into
his lecture the following day, ultimately leading to the notion of trianguline representa-
tions [57].
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the entire local deformation ring. Subsequently Colmez was able to construct the inverse
functor.21 Colmez writes:

I received a paper of Breuil (a former version of [23]) during my stay at the
Tata Institute in December 2003–January 2004. In December, I was spending
Christmas under Goa’s palm trees with my daughter when Breuil’s paper arrived
in my email. That paper contained a conjecture (in the semi-stable case) that I
was sure I could prove using .'; �/-modules (if it was true…). I spent January
2004 working on it and after 15 days of computations in the dark, I finally found
a meaning to some part of a painful formula (you can find some shadow of all of
this in (iii) of Remark 0.5 of my unpublished [56]). By the end of the month, I was
confident that the conjecture was proved and I told so to Breuil who adapted the
computations to the crystalline case, and wrote them down with the help of Berger
(which developed into [14]). (One thing that makes computations easier and more
conceptual in the crystalline case is that you end up with the universal completion
of the locally algebraic representation you start with; something that is crucial
in Matthew [Emerton]’s proof of the FM conjecture.) Durham was in August of
that year and Berger–Breuil had notes from a course they had given in China [13].
Those notes were instrumental in my dealing with trianguline representations at
Durham (actually, I did some small computation and the theory just developed
by itself during the night before my talk which was supposed to be on something
else…I think I came up with the concept of trianguline representations later, to
justify the computations, I don’t remember what language I used in my talk which
had some part on Banach–Colmez spaces as far as I can remember.

7.2. Local–global compatibility for completed cohomology
From a different perspective, Emerton had introduced the completed cohomology

groups [77] as an alternative means for constructing the Coleman–Mazur eigencurve [55].
Inspired by Breuil’s work, Emerton formulated [76] a local–global compatibility conjecture
for completed cohomology in the language of the then nascent p-adic Langlands correspon-
dence. After the construction of the correspondence for GL2.Qp/ by Colmez and Kisin,

21 To add some further confusion to the historical chain of events, the published version
of [120] incorporates some of these subsequent developments. Note also that the cur-
rent state of affairs is that the proof of the full p-adic local Langlands correspondence
for GL2.Qp/ (for example as proved in [63] but see also [59, Remarque VI.6.51]) still
relies on the global methods of [78], which in turn relies on [59]. These mutual depen-
dencies, however, are not circular! The difficulty arises in the supercuspidal case. One
philosophical reason that global methods are useful here is that all global representations
are yoked together by an object (the completed cohomology group QH 1.Zp/) with good
finiteness properties. One can then exploit the fact that crystabeline representations (for
which the p-adic local Langlands correspondence is known by [59]) are Zariski dense
inside unrestricted global deformation rings ([78, Theorem 1.2.3], using arguments going
back to Böckle [15]).
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Emerton was able to prove most of his conjecture, leading to a new proof of (many cases of)
the Fontaine–Mazur conjecture. The results of Kisin [120] and Emerton fell short of proving
the full version of this conjecture for two reasons. The first was related to some technical
issues with the p-adic local Langlands correspondence, both at the primes p D 2 and 3

but also when the residual representation locally had the shape 1 ˚ " for the cyclotomic
character ". (The local issues have now more or less all been resolved [63]. The most gen-
eral global results for p D 2 are currently due to Tung [177].) A second restriction was the
Taylor–Wiles hypothesis that � was irreducible. Over the intervening years, a number of
key improvements to the local story have been found, in particular by Colmez, Dospinescu,
Hu, and Paškūnas [63, 104, 139]. Very recently, Lue Pan [137] found a way to marry tech-
niques from Skinner–Wiles in the reducible case (Section 3) to techniques from p-adic
local Langlands to completely prove the modularity (up to twist) of any geometric repre-
sentation � W GQ ! GL2.Qp/ for p � 5 only assuming the hypotheses that � has distinct
Hodge–Tate weights and that � is odd.22

8. Serre’s conjecture

In Wiles’ original lectures in Cambridge in 1993, he introduced his method with the
statement that it was orthogonal to Serre’s conjecture [150]. In some senses, this viewpoint
turned out to be the opposite of prophetic, in that the ultimate resolution of Serre’s conjec-
ture used the Taylor–Wiles method as its central core. The proof of Serre’s conjecture by
Khare and Wintenberger [111,113–115] introduced a new technique for lifting residual Galois
representations to characteristic zero (see §8.2) which has proved very useful for subsequent
modularity lifting theorems.

8.1. Ramakrishna lifting
Ramakrishna, in a series of papers in the late 1990s [146,147], studied the question

of lifting an odd Galois representation

� W GQ ! GL2.Fp/

to a global potentially semistable representation in characteristic zero unramified outside
finitely many primes. This is a trivial consequence of Serre’s conjecture23 but is highly
nonobvious without such an assumption. Ramakrishna succeeded in proving the existence
of lifts by an ingenious argument involving adding auxiliary primes and modifying the local
deformation problem to a setting where there all global obstructions vanished. The resulting
lifts had the added property that they were valued in GL2.W.k// whenever � was valued
in GL2.k/. Adaptations of Ramakrishna’s method had a number of important applications

22 The assumption on the Hodge–Tate weights is almost certainly removable using recent
progress on the ideas discussed in Section 4 (Sasaki has announced such a result). More-
over, Pan has found a different approach to this case as well, see [138, Theorem 1.0.5]

and the subsequent comments. The hypothesis that � is odd is more troublesome—see Sec-
tion 9.7.

23 Trivial only assuming the results of Tsuji [176] and Saito [151], of course.
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even under the assumption of residual modularity, including in [50] where it was used to
produce characteristic zero lifts with Steinberg conditions at some auxiliary primes. There
is also recent work of Fakhruddin, Khare, and Patrikis [79]which considerably extends these
results in a number of directions.

8.2. The Khare–Wintenberger method
One disadvantage of Ramakrishna’s method was that it required allowing auxil-

iary ramification which (assuming Serre’s conjecture) should not be necessary.24 Khare and
Wintenberger found a new powerful method for avoiding this. The starting point is the idea
that, given an odd representation � W GF ! GL2.Fp/ for a totally real field F satisfying the
Taylor–Wiles hypotheses, one could find a finite extensionH=F where � is modular (exactly
as in Section 5). Then, using an R D T theorem over H , one proves that the corresponding
deformation ring RH of �jGH

is finite over W.k/. However, for formal reasons, there is a
map RH ! RF (where R is the deformation ring corresponding to the original representa-
tion �) which is a finite morphism, and hence the ring RF =p is Artinian. Then, by Galois
cohomological arguments, one proves the ring RF has dimension at least one, from which
one deduces that RF hasQp-valued points. Even more can be extracted from this argument,
however,—the Qp-valued point of RF certainly comes from a Qp-valued point of RH , and
hence comes from a compatible family of Galois representations over H . Using the fact that
one member of the family extends to GF , it can be argued that the entire family descends
to a compatible family over F . This one can then hope to prove is modular by working at a
different (possibly smaller) prime, where (hopefully) one can prove the associated residual
representation is modular. In this way, one can inductively reduce Serre’s conjecture [156]

to the case p D 2 and N.�/ D 1, where Tate had previously proved in a letter to Serre [61,

July 2, 1973] (also [164]) that all such absolutely irreducible representations are modular by
showing that no such representations exist. The entire idea is very clean, although in prac-
tice the difficulty reduces to the step of proving modularity lifting theorems knowing either
that � is either modular and absolutely irreducible or is reducible. Khare andWintenberger’s
timing was such that the automorphy lifting technology was just good enough for the proof
to work, although this required some extra effort at the prime p D 2 (both in their own work
and in a key assist by Kisin [121]). As with Ramakrishna’s method, the Khare–Wintenberger
lifting method has also been systematically exploited for modularity lifting applications (for
example, in [11] (see Section 9.6) building on ideas of Gee [87]).

9. Higher dimensions

Parallel to the developments of p-adic Langlands for n D 2, the first steps were
made to generalize the theory to higher dimensional representations. Unlike in the case of

24 If one insists on finding a lift valued in GL2.W.k// rather than GL2.OE / for some ramified
extension E=W.k/Œ1=p�, then some auxiliary ramification is necessary in general, at least
in fixed weight.
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modular forms, substantially less was known about the existence of Galois representations
until the 1990s.

9.1. Construction of Galois representations, part I: Clozel–Kottwitz
The first general construction25 of Galois representations in dimension n > 2 was

made by Clozel [48] (see also the work of Kottwitz [125]). Clozel’s theorem applies to cer-
tain automorphic forms for GLn.AL/ for CM fields L=LC. The construction requires three
important hypotheses on � : The first is that � is conjugate self-dual, that is, �_ ' �c . If � is
a base change from an algebraic representation of LC and n D 2 then this condition is auto-
matic,26 but it is far from automatic when n > 2. The second condition is an assumption on
the infinitesimal character which (in the case of modular forms) is equivalent to the condition
that the weight k is � 2. Finally, there is a technical condition that for some finite place x

the representation �x is square integrable. A number of improvements (particularly at the
bad primes) were made by Harris–Taylor in [100, Theorem C], and later by Taylor–Yoshida
and Caraiani [42,43, 172], bringing the theory roughly in line with that of modular forms at
the time of Wiles, and in particular primed for possible generalizations of the Taylor–Wiles
method to higher dimensions.

9.2. The Sato–Tate conjecture, part I
Harris and Taylor (as early as 1996) started the work of generalizing the Taylor–

Wiles machinery to the setting of n-dimensional representations. They quickly understood
that the natural generalization of these ideas in n-dimensions required the hypothesis that the
Galois representations were self-dual up to a twist. This meant that one should not consider
general automorphic forms on the groupGLn.AQ/ but rather groups of symplectic or orthog-
onal type depending on the parity of n. If one replaced Galois representations over totally
real fields by Galois representations over imaginary CM fields and then further imposed the
condition that the Galois representations are conjugate self-dual, the relevant automorphic
forms should then come from unitary groups. There were two benefits of working with these
hypotheses. First of all, the relevant automorphic representations for unitary groups were,
as with modular forms, associated to cohomology classes on Shimura varieties. In partic-
ular, under the assumption that there existed an auxiliary prime x such that �x was square
integrable, they could be seen inside the “simple” Shimura varieties of type U.n � 1; 1/

considered by Kottwitz [125]. On the other hand, the same Hecke eigenclasses (if not Galois
representations) also came from a compact form of the group and thus inside the coho-
mology of zero-dimensional varieties.27 The advantage of working in this setting is that

25 Clozel’s paper is from 1991 and thus not strictly “post-Fermat” as is the remit of this survey.
However, it can be considered a natural starting point for the “modern” arithmetic theory of
automorphic forms for GL.n/ and so it seems reasonable to mention it here.

26 At least after a twist which is always possible to achieve in practice, see [50, Lemma 4.1.4].
More generally, one can work with unitary similitude groups and consider � with
�_ ' �c ˝ � for suitable characters �.

27 Inside H 0, of course.
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the freeness of MQ over the ring of diamond operators is immediate.28 In the fundamental
paper [50], Clozel, Harris, and Taylor succeeded in overcomingmany of the technical difficul-
ties generalizing the arguments of [171,181] to these representations. Although the argument
in spirit was very much the same, there are a number of points for GL2 where things are
much easier. One representative example of this phenomenon is understanding Taylor–Wiles
primes. While the Galois side generalizes readily, the automorphic side requires many new
ideas and some quite subtle arguments concerning the mod p structure of certain GLn.Qq/-
representations of conductor 1 and conductor q. In order to prove the Sato–Tate conjecture
for a modular form f , it was already observed by Langlands that it sufficed to prove the mod-
ularity of all the symmetric powers of f . However, it turns out that the weaker assumption
that each of these symmetric powers is potentially modular suffices, and by some subterfuge
only the even powers are required [95]. In order to prove potential modularity theorems,
one needs to be able to carry out some version of the p–q switch (Section 5). In order to
do this, one needs a source of motives which both generate Galois representations of the
right shape (conjugate self dual and with distinct Hodge–Tate weights) and yet also come
in positive dimensional families. It turned out that there already existed such motives in the
literature, namely, the so-called Dwork family. However, given the strength of the automor-
phy lifting theorems in [50], considerable effort had to be made in studying the geometry of
the Dwork family to ensure that the p–q switch would produce geometric Galois representa-
tions with the right local properties. These issues were precisely addressed in the companion
paper by Harris, Shepherd-Barron, and Taylor [97]. Taken together, these papers contained
all the ingredients to prove the potential modularity of higher symmetric powers of modu-
lar forms (satisfying a technical square integrable condition at some auxiliary prime) with
one exception. As mentioned earlier, the work of Kisin had simplified the passage from the
minimal case to the nonminimal case—“all” that was required was to produce congruences
between the original form and forms of higher level rather than to compute a precise congru-
ence number as in [181]. However, even applying Kisin’s approach seemed to require Ihara’s
Lemma, and despite several years of effort, the authors of [50]were not able to overcome this
obstacle.29 Here is Michael Harris’ recollection of the process:

In the spring of 1995, I was at Brandeis, Richard was at MIT, and I wanted to
understand the brand new proof of Fermat’s Last Theorem. So I asked Richard if
he would help me learn by collaborating on modularity for higher-dimensional
groups. The collaboration took off a year later, when Richard wrote to tell me
about the Diamond–Fujiwara argument and suggested that we work out the
Taylor–Wiles method for unitary groups. This developed over the next 18 months
or so into the early version of what eventually became the IHES paper with
Clozel. But it had no punch line. I was hoping to work out some non-trivial exam-

28 In more general contexts, the freeness of MQ is closely related to the vanishing of coho-
mology localized at m in all but one degree.

29 The issue remains unresolved to this day.
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ples of tensor product functoriality for GL.n/ � GL.m/, where one of the two
representations was congruent mod l to one induced from a CM Hecke character.
This would have required some numerical verification. In the meantime we got
sidetracked into proving the local Langlands conjecture [100].
The manuscript on automorphy lifting went through several drafts and was cir-
culated; you can still read it on my home page [99]. Genestier and Tilouine [88]

quoted it when they proved modularity lifting for Siegel modular forms. When
Clozel saw the draft he told me we should try to prove the Sato–Tate Conjecture.
Although this was in line with my hope for examples of tensor product functori-
ality, it seemed completely out of reach, because I saw no way to prove residual
modularity of symmetric powers.
When I heard about the Skinner–Wiles paper I came up with a quixotic plan to
prove symmetric power functoriality for Eisenstein representations, using the main
conjecture of Iwasawa theory to control the growth of the deformation rings. This
was in the spring of 2000, at the IHP special semester on the Langlands program,
where I first met Chris Skinner.
One day Chris told me that Richard had invented potential modularity. This led
me to a slightly less hopeless plan to prove potential symmetric power functo-
riality by proving it for 2-dimensional representations congruent to potentially
abelian representations, as in the potential modularity argument. I told Richard
about this idea, probably the day he arrived in Paris. He asked: why apply poten-
tial modularity to the 2-dimensional representation; why not instead apply it to
the symmetric power representations directly? I then replied: that would require
a variation of Hodge structures with a short list of properties: mainly, the cor-
rect hp;q’s and large monodromy groups. We checked that potential modularity
was sufficient for Sato–Tate. We then resolved to ask our contacts if they knew of
VHS with the required properties. The whole conversation lasted about 20 min-
utes.
I asked a well-known algebraic geometer, who said he did not know of any such
VHS. Richard asked Shepherd-Barron, who immediately told him about the
Calabi–Yau hypersurfaces that had played such an important role in the mirror
symmetry program. (And if my algebraic geometer hadn’t wanted to be dismissive,
for whatever reason, he would have realized this as well.) The hp;q’s were fine
but we didn’t know about the monodromy. However, Richard was staying at the
IHES, and by a happy accident so was Katz, and when Richard asked Katz about
the monodromy for this family of hypersurfaces Katz told him they were called the
Dwork family and gave him the page numbers in one of his books.
So within a week or two of our first conversation, we found ourselves needing
only one more result to complete the proof of Sato–Tate. This was Ihara’s lemma,
which occupied our attention over the next five years. In the meantime, Clozel had
written a manuscript on symmetric powers, based on the reducibility mod ell of
symmetric powers. The argument was incomplete but he had several ideas that led
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to his joining the project, and he also hoped to use ergodic theory to prove Ihara’s
lemma. In the summer of 2003 Clozel and I joined Richard in “old” Cambridge
to try to work this out. The rest you know. We finally released a proof conditional
on Ihara’s lemma in the fall of 2005. A few months later Richard found his local
deformation argument, and the proof was complete.

9.3. Taylor’s trick: Ihara avoidance
Shortly after the preprints [50,157] appeared, Taylor [168] found a way to overcome

the problem of Ihara’s lemma. Inspired by Kisin’s formulation of the Taylor–Wiles method
(Section 6.2), Taylor had the idea of comparing two global deformation rings R1 and R2.
Here (for simplicity) the local deformation problems associated to R1 and R2 are formally
smooth at all but a single prime q. At the prime q, however, the local deformation problem
associated to R1 consists of tamely ramified representations where a generator � of tame
inertia has characteristic polynomial .X � 1/n, and for R2 the characteristic polynomial has
the shape .X � �1/ � � � .X � �n/ for some fixed distinct roots of unity �i � 1 mod p. On
the automorphic side, there are two patched modules H1 and H2, and there is an equal-
ity H1=p D H2=p. The local deformation ring R1

q associated to R1 at q is reducible and
has multiple components in the generic fiber, although the components in characteristic zero
are in bijection to the components in the special fiber. On the other hand, the local deforma-
tion ring associated toR2 at q consists of a single component, and so using Kisin’s argument
one deduces that H2 has full support. Now a commutative algebra argument using the iden-
tity H1=p D H2=p and the structure of R1

q implies that H1 has sufficiently large support
over R1, enabling one to deduce the modularity of every Qp-valued point of R1.30

9.4. The Sato–Tate conjecture, part II
After Taylor’s trick, one was almost in a position to complete the proof of Sato–Tate

for all classical modular forms. A few more arguments were required. One was the tensor
product trick due to Harris which enabled one to pass from conjugate self-dual motives with
weights in an arithmetic progression to conjugate self-dual motives with consecutive Hodge–
Tate weights by a judicious twisting argument using CM characters. A second ingredient was
the analysis of the ordinary deformation ring by Geraghty [89]. One of the requirements of
the p–q trick was the condition that certain moduli spaces (the Dwork family in this case)
had points over various local extensions E of Qp , in order to construct a motive M over
a number field F with Fv D E for vjp. For the purposes of modularity lifting, one wants
strong control over the local deformation ring at p, and the choice of local deformation ring
is more or less forced by the geometric properties of the p-adic representations associated
to M . One way to achieve this would be to work in the Fontaine–Laffaille range where the

30 Taylor’s argument proves theorems of the form RŒ1=p�red D TŒ1=p� rather than R D T.
This is still perfectly sufficient for proving modularity lifting results, but not always other
interesting corollaries associated to R D T theorems like finiteness of the corresponding
adjoint Selmer groups (though see [2,133]).
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local deformation rings were smooth. But this requires both that M is smooth at p and that
the ramification degree e of E=Qp is one. It is not so clear, however, that the Dwork family
contains suitable points (for a fixed residual representation �) which lie in any unramified
extension of Qp . What Geraghty showed, however, was that certain ordinary deformation
rings31 were connected over arbitrarily ramified bases. The final piece, however, was the
construction of Galois representations for all conjugate self-dual regular algebraic cuspidal�
without the extra condition that �q was square integrable for some q. This story merits it own
separate discussion; suffice to say that it required the combined efforts of many people and
the resolution of many difficult problems, not least of which was the fundamental lemma by
Laumon and Ngô [128, 136] (see also the Paris book project [49, 93], the work of Shin [158],
and many more references which if I attempted to make complete would weigh down the
bibliography and still contain grievous omissions).

9.5. Big image conditions
The original arguments in [171,181] required a “big image” hypothesis, namely that �

was absolutely irreducible after restriction to the Galois group of Q.�p/. Wiles’ argument
also required the vanishing of certain cohomology groups associated to the adjoint repre-
sentation of the image of �. These assumptions had natural analogues in [50] (so-called
“big image” hypotheses) although they were quite restrictive, and it wasn’t clear that they
would even apply to most residual representations coming from some irreducible compatible
family. In the setting of 2-dimensional representations, the Taylor–Wiles hypothesis guaran-
tees the existence of many primes q such that q � 1 mod p and such that �.Frobq/ has
distinct eigenvalues. This ensures, for example, that there cannot be any Steinberg deforma-
tions at q because the ratio of the eigenvalues of any Steinberg deformation must be q. In
dimension n, one natural way to generalize this might be to say that �.Frobq/ has distinct
eigenvalues, although this is not always possible to achieve for many irreducible representa-
tions �. A weaker condition is that �.Frobq/ has an eigenvalue ˛ with multiplicity one. For
such q, there will be no deformations which are unipotent on inertia at q for which the gen-
eralized ˛ eigenspace is not associated to a 1-dimensional block. The translation of this into
an automorphic condition onUq-eigenvalues is precisely what is done in [50] (there are addi-
tional technical conditions on Frobq with respect to the adjoint representation ad.�/ which
we omit here). In [173], however, Thorne finds a way to allow �.Frobq/ to have an eigen-
value ˛ with higher multiplicity, and yet still cut out (integrally) the space of automorphic
forms whose Galois representations decompose at q as an unramified representation plus a
one dimensional representation which is tamely ramified of p-power order. This technical
improvement is very important because (as proved in the appendix by Guralnick, Herzig,
Taylor, and Thorne [173]) it imposes no restrictions on � when p � 2n C 1 beyond the con-

31 In Geraghty’s setting, the residual representations � were locally trivial. Hence the defini-
tion of “ordinary” was not something that could be defined on the level of Artinian rings,
and the construction (as with Kisin’s construction of local deformation rings associated to
certain types) is therefore indirect.
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dition that � is absolutely irreducible after restriction to GQ.�p/. This improvement is very
useful for applications.

9.6. Potentially diagonalizable representations
After the proof of Sato–Tate for modular forms, Barnet-Lamb, Gee, and Geraghty

turned their attention to proving the analogous theorem for Hilbert modular forms of regular
weight. The methods developed so far were well suited both to representations � which were
either ordinary or when � was not ordinary but still Fontaine–Laffaille. (The latter implies
that �jGQp

is absolutely irreducible of some particular shape.) For a modular form over Q,
one easily sees that � takes one of one of these forms for any sufficiently large p. For Hilbert
modular forms, one certainly expects that the ordinary hypothesis should hold for all vjp

and infinitely many p, but this remains open. The difficulty arises when, for some prime p

(that splits completely, say) the p-adic representation is ordinary at some vjp but nonordi-
nary other vjp. The reason that this causes issues is that, when applying the Moret-Bailly
argument in the p–q switch, one wants to avoid any ramification at p for the nonordinary
case, and yet have large ramification at the ordinary case to make � locally trivial, and these
desires are not compatible. The resolution in [10] involved a clever refinement of the Harris
tensor product trick. These ideas were further refined in [11] and led to the concept of a poten-
tially diagonalizable representation � W GE ! GLn.Qp/ for some finite extension of E=Qp .
Recall from Section 6.2 that, in the modified form of the Taylor–Wiles method, proving
modularity of some lift of � often comes down to showing the existence of a modular lift
lying on a smooth point of the corresponding component of the generic fiber of Rloc. In light
of Taylor’s Ihara avoidance trick (Section 9.3), the difficulty in this problem is mostly at the
prime p, and in particular the fact that one knows very little about the components of general
Kisin potentially crystalline deformation rings. A potentially diagonalizable representation
is one for which, after some finite (necessarily solvable!) extension E 0=E, the representa-
tion �jG0

E
is crystalline and lies on the same generic irreducible component as a diagonal

representation. This notion has a number of felicitous properties. First, it includes Fontaine–
Laffaille representations and ordinary potentially crystalline representations. Second, it is
clearly invariant under base change. Third, it is compatible with the tensor product trick of
Harris. These features make it supremely well adapted to the current forms of the Taylor–
Wiles method. By combining this notion with methods of [10,12], as well as extensive use of
Khare–Wintenberger lifting (Section 8.2), Barnet–Lamb, Gee, Geraghty, and Taylor in [11]

proved the potential automorphy of all conjugate self-dual irreducible32 odd33 compatible
systems of Galois representations over a totally real field.

32 One variant proved shortly thereafter by Patrikis–Taylor [140] replaced the irreducibility
condition by a purity condition (which is automatically satisfied by representations coming
from pure motives).

33 Although there is no longer a nontrivial complex conjugation in the Galois group of a CM
field, there is still an oddness condition related to the conjugate self-duality of the represen-
tation and the fact that there are two ways for an irreducible representation to be self-dual
(orthogonal and symplectic).

631 Reciprocity in the Langlands program since Fermat’s Last Theorem



9.7. Even Galois representations
The Fontaine–Mazur conjecture for geometric Galois representations � W GQ !

GL2.Qp/ predicts that, up to twist, either � is modular or � is even with finite image. The
methods of [171,181] required the assumption that � was modular and so a priori the assump-
tion that � was odd (at least when p > 2). Nothing at all was known about the even case
before the papers [34,35] in which a very simple trick made the problem accessible to modu-
larity lifting machinery under the assumption that the Hodge–Tate weights are distinct. The
punch line is that, for any CM field F=F C, the restriction Sym2.�/ W GF ! GL3.Qp/ is
conjugate self-dual and no longer sees the “evenness” of �.34 Hence one can hope to prove
it is potentially modular for some CM extension L=LC, and then by cyclic base change [5]

potentially modular for the totally real field LC. But Galois representations coming from
regular algebraic automorphic forms for totally real fields will not be even,35 and thus one
obtains a contradiction. These ideas are already enough to deduce the main result of [34]

directly from [11], although in contrast [35] uses (indirectly) the full strength of the p-adic
local Langlands correspondence via theorems of Kisin [120]. The papers [34,35] still fall short
of completely resolving the Fontaine–Mazur in this case even for p > 7, since there remain
big image hypotheses on �. On the other hand, this trick has nothing to say about the case
when the Hodge–Tate weights are equal (see Section 12).

9.8. Modularity of higher symmetric powers
Another parallel development in higher dimensions was the extension of Skinner–

Wiles (Section 3) to higher dimensions. Many of the arguments of Skinner–Wiles relied
heavily on the fact that any proper submodule of a 2-dimensional representation must have
dimension 1, and one-dimensional representations are very well understood by class field
theory. Nonetheless, in [174], Thorne proved a residually reducible modularity theorem
for higher dimensional representations. In order to overcome the difficulty of controlling
reducible deformations, he imposed a Steinberg condition at some auxiliary prime. Although
this is a definite restriction, it does apply (for example) to the Galois representation coming
from the symmetric power of a modular form which also satisfies this condition. In a
sequence of papers [51–53], Clozel and Thorne applied this modularity lifting theorem to
prove new cases of symmetric power functoriality (see also the paper of Dieulefait [74]).
A key difficulty here is again the absence of Ihara’s lemma in order to find automorphic
forms with the correct local properties. Very recently (using a number of new ideas), Newton
and Thorne [134,135] were able to (spectacularly!) complete this program and prove the full
modularity of all symmetric powers of all modular forms.

34 The representation � itself restricted to GF will not be odd in the required sense—one
exploits the fact here that 3 is odd whereas symplectic representations are always even
dimensional.

35 I managed to twist Taylor’s arm into writing the paper [169] which proved this for odd n,
which sufficed for my purposes where n was either 3 or 9. This is now also known for gen-
eral n, see Caraiani–Le Hung [44].
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10. Beyond self-duality and Shimura varieties

All the results discussed so far—with the exception of those discussed in Sec-
tion 4—apply only to Galois representations which are both regular and satisfy some form
of self-duality. Moreover, they all correspond to automorphic forms which can be detected
by the (étale) cohomology of Shimura varieties. Once one goes beyond these representations,
many of the established methods begin to break immediately.36

An instructive case to consider is the case of 2-dimensional geometric Galois rep-
resentations of an imaginary quadratic field F with distinct Hodge–Tate weights. The cor-
responding automorphic forms for GL2.AF / contribute to the cohomology of locally sym-
metric spaces X which are arithmetic hyperbolic 3-manifolds.37 These spaces are certainly
not algebraic varieties and their cohomology is hard to access via algebraic methods. One of
the first new questions to arise in this context is the relationship between torsion classes
and Galois representations. Some speculations about this matter were made by Elstrodt,
Grunewald, and Mennicke at least as far back as 1981 [75], but the most influential conjec-
ture was due to Ash [6], who conjectured that eigenclasses in the cohomology of congruence
subgroups ofGLn.Z/ overFp (which need not lift to characteristic zero) should give rise ton-
dimensional Galois representations over finite fields. Later, conjectures were made [7, 8] in
the converse conjecture in the spirit of Serre [156] linking Galois representations to classes in
cohomology modulo p. Certainly around 2004, however, it was not at all clear what exactly
one should expect the landscape to be,38 and so it was around this time I decided to start
thinking about this question39 in earnest. I became convinced very soon (for aesthetic rea-
sons if not anything else) that if one modified T to be the ring of endomorphisms acting on
integral cohomology (so that it would see not only the relevant automorphic forms but also
the torsion classes) then there should still be an isomorphismR D T. Moreover, this equality
would not only be a form of reciprocity which moved beyond the conjecture linking motives
to automorphic forms, but it suggested that the integral cohomology of arithmetic groups
(including the torsion classes) were themselves the fundamental object of interest. Various

36 I should warn the reader that this section and the next (even more than the rest of this paper)
is filtered through the lens of my own personal research journey—caveat lector!

37 Already by 1970, Serre (following ideas of Langlands) was trying to link Mennicke’s
computation that GL2.ZŒ

p
�109�/ab is infinite to the possible existence of elliptic curves

over Q.
p

�109/ with good reduction everywhere [60, Jan 14, 1970].
38 I recall conversations with a number of experts at the 2004 Durham conference, where

nobody seemed quite sure even what the dimension of the ordinary deformation ring R

of a 3-dimensional representation � W GQ ! GL3.Fp/ should be. Ash, Pollack, and
Stevens had computed numerical examples where a regular algebraic ordinary cuspidal
form for GL3.AQ/ not twist-equivalent to a symmetric square did not appear to admit
classical deformations. (I learnt about this example from Stevens at a talk at Banff in
December 2003.) This would be easily explained if R had (relative) dimension 0 over Zp

but be more mysterious otherwise.
39 One great benefit to me at the time of thinking about Galois representations over imaginary

quadratic fields was that it did not require me to understand the geometry of Shimura vari-
eties which I have always found too complicated to understand. The irony, of course, is that
the results of [4,17] ultimately rely on extremely intricate properties of Shimura varieties.
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developments served only to confirm this point of view. Inmy paper withMazur [40], we gave
some theoretical evidence for why ordinary families of Galois representations of imaginary
quadratic fields might on the one hand be positive dimensional and explained completely by
torsion classes and yet not contain any classical automorphic points at all. During the pro-
cess of writing [36], Dunfield (numerically) compared the torsion classes in the cohomology
of inner forms of GL2 and the data was in perfect agreement with a conjectural Jacquet–
Langlands correspondence for torsion (later taken up in joint work with Venkatesh [41]).
Emerton and I had the idea of working with completed cohomology groups both to con-
struct Galois representations and even possibly to approach questions of modularity. The
first idea was to exploit the well-known relationship between the cohomology of these man-
ifolds and the cohomology of the boundary of certain Shimura varieties. We realized that if
we could control the codimension of the completed cohomology groups over the noncom-
mutative Iwasawa algebra, the Hecke eigenclasses would be forced to be seen by eigenclasses
coming from the middle degree of these Shimura varieties where one had access to Galois
representations.40 On the automorphy lifting side, we had even vaguer ideas [37, §1.8]41 on
how to proceed. A different (and similarly unsuccessful) approach42 was to work with ordi-
nary deformations over a partial weight space for a split prime p D vw in an imaginary
quadratic field F . That is, deformations of � which had an unramified quotient at v and w

but with varying weight at v and fixed weight at w. Here the yoga of Galois deformations
suggested that R should be finite flat over W.k/ in this case (and even a complete inter-
section). Moreover, one had access to T using an overlooked43 result of Hida [103], and in
particular one could deduce that T has dimension at least one. If one could show that T
was flat over W.k/, then one could plausibly apply (assuming the existence of Galois repre-
sentations) the original argument of [171, 181]. The flatness of T, however, remains an open
problem.44

10.1. The Taylor–Wiles method when l0 > 0, part I: Calegari–Geraghty
Shortly before (and then during) the special year onGalois representations at the IAS

in 2010–2011, I started to work with Geraghty in earnest on the problem of proving R D T
in the case of imaginary quadratic fields, assuming the existence of a surjection R ! T.
A computation in Galois cohomology shows that the expected “virtual” dimension of R

over W.k/ should be �1, and hence the patched module M1 should have codimension 1

40 Unfortunately, these conjectures [37, Conj. 1.5] remain all open in more or less all cases
except for Scholze’s results in the case of certain Shimura varieties [155, Cor. 4.2.3].

41 Pan’s remarkable paper [137] turned some of these pipe dreams into reality.
42 This is taken from my 2006 NSF proposal, and I believe influenced by my conversations

with Taylor at Harvard around that time.
43 One should never overlook results of Hida. I only learnt about this paper when Hida pointed

it out to me (with a characteristic smile on his face) after my talk in Montreal in 2005. I was
pleased at least that the idea that these families were genuinely nonclassical was not antici-
pated either in [103] or in Section 4 of Taylor’s thesis [170].

44 One might even argue that there is no compelling argument to believe it is true—the
problem is analogous to the vanishing of the �-invariant in Iwasawa-theoretic settings.
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over the ring of diamond operators S1. We realized this was a consequence of the fact
that, after localizing the cohomology at a non-Eisenstein maximal ideal, the cohomology
should be nonzero in exactly two degrees. More precisely, patching the presentations of these
SN -modules would result in a balanced presentation ofM1 as an S1-module with the same
(finite) number of generators as relations. We then realized that the same principle held more
generally for n-dimensional representations over any number field. In characteristic zero,
the localized cohomology groups were nonzero exactly in a range Œq0; q0 C l0� (with q0

and l0 as defined in [26]) where �l0 coincided with the expected virtual dimension of R

over W.k/ coming from Galois cohomology. We could thus show—assuming the localized
torsion cohomology also vanished in this range—that by patching complexesPQ (rather than
modules MQ), one arrives at a complex P1 of free S1 modules in degrees Œq0; q0 C l0�.
Because the ring R1 of dimension dimR1 D .dimS1/ � l0 acts by patching on H �.P1/,
a simple commutative algebra lemma then shows that M1 D H �.P1/ has codimension l0

over S1 and must be concentrated in the final degree. In particular, the Taylor–Wiles method
(as modified by Diamond) could be happily adapted to this general setting.45 Moreover, the
arguments were compatible with all the other improvements, including Taylor’s Ihara avoid-
ance argument amongst other things.46 We also realized that the same idea applied to Galois
representations coming from the coherent cohomology of Shimura varieties even when the
corresponding automorphic forms were not discrete series. While our general formulation
involved a number of conjectures we considered hopeless, the coherent case had at least one
setting in which many more results were available, namely the case of modular forms of
weight one, where the required vanishing conjecture was obvious, and where we were able
to establish the existence of the required map R ! T with all the required local proper-
ties by direct arguments. Although the state of knowledge concerning Galois representations
increased tremendously between the original conception of [38] and its final publication, by
early 2016 it still seemed out of reach to make any of the results in [38] unconditional.

10.2. Construction of Galois representations, part II
Before one can hope to prove R D T theorems, one needs to be able to associate

Galois representations to the corresponding automorphic forms. There are two contexts in
which one might hope to make progress. The first is in situations where the automorphic
forms contribute to the Betti cohomology of some locally symmetric space—for exam-
ple, tempered algebraic cuspidal automorphic representations for GLn.AF / and any F . The
second is in situations where the automorphic forms contribute to the coherent cohomology

45 David Hansen came up with a number of these ideas independently [94].
46 These methods only prove RŒ1=p�red DTŒ1=p�red, of course. In situations where T˝QD 0,

the methods of [38] in the minimal case prove not only that R D T but also that (both) rings
are complete intersections. Moreover, one also has access to level raising (on the level of
complexes) and Ihara’s lemma [41, §4], and I tried for some time (unsuccessfully) to adapt
the original minimal ) nonminimal arguments of [181] to this setting. There certainly
seems to be some rich ideas in commutative algebra in these situations to explore, see, for
example, recent work of Tilouine–Urban [175].
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of some Shimura variety. Here the first and easiest case corresponds to weight one modular
forms, where the Galois representations were first constructed by Deligne and Serre [69].

In work of Harris–Soudry–Taylor [98,165], Galois representations were constructed
for regular algebraic forms for GL2.AF / for an imaginary quadratic field F and satisfying a
further restriction on the central character. Harris, Soudry, and Taylor exploited (more or less)
the fact that the automorphic induction of such forms are self-dual (although not regular) and
still contribute to coherent cohomology, so one can construct Galois representations using a
congruence argument as in the paper of Deligne and Serre [69]. On the other hand, this does
not prove the expected local properties of the Galois representation at vjp.

It was well-known for many years that the Hecke eigenclasses associated to regular
algebraic cuspidal automorphic forms for GLn.AF / for a CM field F could be realized as
eigenclasses coming from the boundary of certain unitary Shimura varieties of type U.n;n/.
It was, however, also well known that the corresponding étale cohomology classes did not
realize the desired Galois representations.47 Remarkably, this problem was completely and
unexpectedly resolved in 2011 in [96] by Harris–Lan–Taylor–Thorne. Richard Taylor writes:

For [96] I knew that the Hecke eigenvalues we were interested in contributed to
Betti cohomology of U.n; n/. The problem was to show that they contributed to
overconvergent p-adic cusp forms. I was convinced on the basis of Coleman’s
paper “classical and overconvergent modular forms” [54] that this must be so.
I can’t now reconstruct exactly why Coleman’s paper convinced me of this, and it
is possible, even probable, that my reasoning didn’t really make any sense. How-
ever, it was definitely this that kept me working at the problem, when we weren’t
really getting anywhere.

Amazingly, this breakthrough immediately inspired the next development:

10.3. Construction of Galois representations, part III: Scholze
In [155], Scholze succeeded in constructing Galois representations associated to tor-

sion classes in the setting of GLn.AF / for a CM field F . Scholze had the idea after seeing
some lectures on [96]:

During a HIM trimester at Bonn, Harris and Lan gave some talks about their con-
struction of Galois representations. At the time, I had some ideas in my head
that I didn’t have any use for: That Shimura varieties became perfectoid at infi-
nite level, and that there is a Hodge–Tate period map defined on them. The only
consequence I could draw from this were certain vanishing results for completed
cohomology as conjectured in your work with Emerton; so at least I knew that the

47 For a more basic example of what can go wrong, note that the Hecke eigenvalues of Tl

on H 0.X;Qp/ of a modular curve are 1 C l , which corresponds to the Galois representa-
tion Qp ˚ Qp.1/. However, only the piece Qp occurs inside H 0.
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methods were able to say something nontrivial about torsion classes in the coho-
mology. After hearing Harris’ and Lan’s talks, I was trying to see whether these
ideas could help in extending their results to torsion classes. After a little bit of
trying, I found the fake-Hasse invariants, and then it was clear how the argument
would go.

Even after this breakthrough, Scholze’s construction still fell short of the conjectures
in [38] in two ways. The first was that the Galois representation (ignoring here issues of
pseudorepresentations) was valued not in T but in T=I for some ideal I of fixed nilpotence.
This is not a crucial obstruction to the methods of [38]. The second issue, however, was that
the Galois representations were constructed (in the end) via p-adic congruences, and thus
one did not have control over their local properties at p which are crucial for modularity
applications.

10.4. The Taylor–Wiles method when l0 > 0, part II: DAG
Although not directly related to new R D T theorems, one new recent idea in the

subject has been the work of Galatius–Venkatesh [86] on derived deformation rings in the
context of Venkatesh’s conjectures over Z. This work (in part) reinterprets the arguments
of [38] in terms of a derived Hecke action. The authors define a derived version R of R

with �0.R/ D R. Under similar hypotheses to [38], the higher homotopy groups of R are
shown to exist precisely in degrees 0 to l0. One viewpoint of the minimal case of [38] is that
one constructs a (highly noncanonical) formally smooth ring R1 of dimension n � l0 with
an action of a formally smooth ring S1 of dimension n such that the minimal deformation
ring R is R1 ˝S1

S1=a for the augmentation ideal a. Moreover, the ring R is identified
both with the action of T on the entire cohomology and simultaneously on the cohomol-
ogy in degree q0 C l0. On the other hand, when l0 > 1, the intersection of R1 and S1=a

over S1 is never transverse,48 and homotopy groups of the derived intersection recover the
cohomology in all degrees (under the running assumption, one also knows that the patched
cohomology is free). On the other hand, there is a more canonical way to define R, namely
to take the unrestricted global deformation ring Rglob (which has no derived structure) and
intersect it with a suitable local crystalline deformation ring as algebras over the unrestricted
local deformation ring. The expected dimension of this intersection is also �l0 over W.k/,
although this is not so clear from this construction. Hence [86] can be viewed as giving an
intrinsic definition of R independent of any choices of Taylor–Wiles primes and showing
that its homotopy groups are related (as with R1 ˝L

S1
S1=a) to the cohomology.49 These

48 When l0 D 1, the intersection can be transverse when R is a finite ring. In this setting, the
relevant cohomology is also nonzero and finite in exactly one degree. On the other hand,
as soon as Hom.R; Qp/ is nonzero (for example, when there exists an associated motive)
and l0 > 0, the intersection will always be nontransverse.

49 There are some subtleties as to what the precise statement should be in the presence of
global congruences, but already this author gets confused at the best of times between
homology and cohomology, so I will not try to unentangle these issues here.
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ideas have hinted at a closer connection between the Langlands program in the arithmetic
case and the function field case than was previously anticipated,50 see, for example, the work
of Zhu [182].

11. Recent progress

11.1. Avoiding conjectures involving torsion I: the 10-author paper
As mentioned in Section 10.3, even after the results of [155] there remained a signif-

icant gap to make the results of [38] unconditional, namely, the conjecture that these Galois
representations had the right local properties at p and a second conjecture predicting the
vanishing of (integral) cohomology localized at a nonmaximal ideal m outside a certain
precise range (corresponding to known results in characteristic zero). It should be noted
that the second conjecture was still open (in all but the easiest cases) in the simpler setting
of Shimura varieties. The first hints that one could possibly make progress on this second
conjecture (at least for Shimura varieties) was given in an informal talk by Scholze in Bel-
lairs51 in 2014. This very quickly led to a long term collaboration between Scholze and
Caraiani [45,46], which Caraiani describes as follows:

At the Barbados conference in May 2014, Peter gave a lecture on how one might
compute the cohomology of compact unitary Shimura varieties with torsion coef-
ficients. The key was to have some control for R�HT �F` restricted to any given
Newton stratum. He was expressing this in terms of a conjecture that had grown
out of his work on local Langlands using the Langlands–Kottwitz method. After
his talk, I went to ask him some questions about this conjecture and it sounded
like there were some things that still needed to be made precise. He asked if I
wanted to help him make his strategy work. After some hesitation (because I didn’t
think I knew enough or was strong enough to work with him), I accepted. Later
that evening, I suggested switching from the Langlands–Kottwitz approach to
understanding R�HT �F` to an approach more in the style of Harris–Taylor. This
relies on the beautiful Mantovan product formula that describes Newton strata
in terms of Rapoport–Zink spaces and Igusa varieties. Maybe something like this
could help illuminate the geometry of the Hodge–Tate period morphism? Peter

50 Not anticipated by many people, at least; Michael Harris has been proselytizing the exis-
tence of a connection for quite some time.

51 I was invited to give the lecture series in Bellairs after Matthew Emerton did not respond to
his emails. Through some combination of the appeal of my own work and the fact that the
lectures were given on a beach in Barbados, I managed to persuade Patrick Allen, George
Boxer, Ana Caraiani, Toby Gee, Vincent Pilloni, Peter Scholze, and Jack Thorne to come,
all of whom are now my coauthors, and all of whom (if they were not already at the time)
are now more of an expert in this subject than I am. The thought that I managed to teach any
of them something about the subject is pleasing indeed.
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immediately saw that this should work and we made plans for me to visit Bonn
that summer to continue the collaboration.
As Peter and I were finishing writing up the compact case, it became clear to us
that the vanishing theorem would give a way to construct Galois representations
associated to generic mod p classes that preserves the desired information at p.
Peter started thinking about the non-compact case and how that might apply to
the local-global compatibility needed for Calegari–Geraghty. I remember dis-
cussing this with him at the Clay Research conference in Oxford in September
2015. By spring 2016, Richard started floating the idea of a working group on
Calegari–Geraghty and found out that Peter and I had an approach to local-
global compatibility. Around June 2016, Richard suggested to me to organize the
working group with him. Peter was very excited about the idea, but wasn’t sure
he would be able to attend for family reasons. In the end, we found a date in late
October 2016 that worked for everyone.

Theworking groupmet under the auspices of the first “emerging topics” workshop52

at the IAS to determine the extent to which the expected consequences could be applied
to modularity lifting: A clear stumbling point was the vanishing of integral cohomology
after localization outside the range of degrees Œq0; q0 C l0�. On the other hand, Khare and
Thorne had already observed in [112] by a localization argument that this could sometimes
be avoided in certain minimal cases. It was this argument we were able to modify for the
general case, thus avoiding the need to prove the (still open) vanishing conjectures for torsion
classes.53 The result of the workshop was a success beyond what we could have reasonably
anticipated—we ended up with more or less54 the outline of a plan to prove all the main
modularity lifting theorems which finally appeared in [4], namely the Ramanujan conjecture
for regular algebraic automorphic forms for GL2.AF / of weight zero for any CM field F ,
and potential modularity (and the Sato–Tate conjecture) for elliptic curves over CM fields.

There have already been a number of advancements beyond [4] including in particu-
lar by Allen, Khare, and Thorne [3] proving the modularity of many elliptic curves over CM

52 Although later described as a “secret” workshop, it was an “invitation-only working group.”
53 I regard my main contribution to [4] as explaining how the arguments in [38] using Taylor’s

Ihara avoidance (Section 9.3) were incompatible with any characteristic zero localization
argument in the absence of (unknown) integral vanishing results in cohomology. The objec-
tion (even in the case l0 D 0) was that it was easy to construct complexes P 1 and P 2 of
free S1 modules so that the support of H �.P 1=p/ and H �.P 2=p/ coincided (as they
must) but that (for example) H �.P 1/Œ1=p� was zero even though H �.P 2/Œ1=p� was not.
The objection to this objection, however, which was resolved during the workshop (and
which to be clear I played no part in resolving!) is to not merely to compare the support
of the complexes P i =p but to consider the entire complex in the derived category. In
particular, even (say) for a finite Zp-module M , the module MŒ1=p� is nonzero exactly
when M ˝L Fp has nonzero Euler characteristic.

54 It is worth emphasizing that an incredible amount of work was required to turn these ideas
into reality, and that this intellectual effort was by and large carried out by the younger
members of the collaboration.
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fields and a potential automorphy theorem for ordinary representations by Qian [144]. It does
not seem completely implausible that results of the strength of [11] for n-dimensional regular
Galois representations of GQ are within reach.

11.2. Avoiding conjectures involving torsion II: abelian surfaces
A second example that Geraghty and I had considered during the 2010–2011 IAS

special year was the case of abelian surfaces, corresponding to low (irregular) weight Siegel
modular forms of genus g D 2. It was clear that a key difficulty was proving the vanish-
ing of H 2.X; !2/m where X was a (compactified) Siegel 3-fold with good reduction at p,
where m is maximal ideal of the Hecke algebra corresponding to an absolutely irreducible
representation, and where !jY D det���1

A=Y
on the open moduli space Y � X admitting

a corresponding universal abelian surface A=Y . In other irregular weights (correspond-
ing to motives with Hodge–Tate weights Œ0; 0; k � 1; k � 1� for k � 4) the vanishing of
the corresponding cohomology groups was known by Lan and Suh [126]. The vanishing
ofH 2.X;!2/m was more subtle, however, because the corresponding group does not vanish
in general before localization in contrast to the previous cases. In [39], we proved a minimal
modularity theorem for these higher weight representations and a minimal modularity the-
orem in the abelian case contingent on the vanishing conjecture above which we did not
manage to resolve (and which remains unresolved). I finished and then submitted the paper
after I had moved to Chicago and Geraghty had moved to Facebook in 2015. I then started
working with Boxer and Gee55 on this vanishing question under certain supplementary local
hypotheses. (By this point, Galois representations associated to torsion classes in coherent
cohomology had been constructed by Boxer [16] and Goldring–Koskivirta [90].) But then
in November of 2016 (one week after the IAS workshop!), Pilloni’s paper on higher Hida
theory [142] was first posted. It was apparent to us that Pilloni’s ideas would be extremely
useful, and the four of us began a collaboration almost immediately. Just as in [4], we were
ultimately able to avoid proving any vanishing conjectures. However, unlike [4], the way
around this problem was not purely by commutative algebra, but instead by working with
ideas from [142]. Namely, instead of working with the cohomology of the full Siegel modu-
lar variety X , one could work with the coherent cohomology of a certain open variety of X

with cohomological dimension one whose (infinite dimensional) cohomology could still be
tamed using the methods of higher Hida theory [142] in a way analogous to how Hida theory
controls the (infinite dimensional) cohomology of the affine variety (with cohomological
dimension zero) corresponding to the ordinary locus. Generalizing this to a totally real field,
one could then combine these ideas with the Taylor–Wiles method as modified in [38] to

55 George Boxer had also arrived at Chicago in 2015, and was collaborating with Gee on
companion form results for Siegel modular forms, with the hope (in part) of deducing the
modularity of abelian surfaces from Serre’s conjecture for GSp4 in a manner analogous
to the deduction by of the Artin conjecture from Serre’s conjecture for GL2 in [110, 114].
They usually worked together at Plein Air cafe. Since I had thought about similar questions
with Geraghty and frequently went to Plein Air for 6 oz cappuccinos, it was not entirely
surprising for us to start working together.
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prove the potential modularity of abelian surfaces over totally real fields [17]. This coinci-
dentally gives a second proof of the potential modularity of elliptic curves over CM fields
proven in [4]. (The papers [4] and [17] both were conceived of and completed within a week
or so of each other.)

12. The depths of our ignorance

Despite what can reasonably be considered significant progress in proving many
cases of modularity since 1993, it remains the case that many problems appear just as hope-
less as they did then.56 Perhaps most embarrassing is the case of even Galois represen-
tations GQ ! GL2.C/ with nonsolvable image (equivalently, projective image A5). For
example, we cannot establish the Artin conjecture for a single Galois representation whose
image is the binary icosahedral group SL2.F5/ of order 120. The key problem is that the
automorphic forms (Maass forms with eigenvalue � D 1=4 in this case) are very hard to
access—given an even (projective) A5 Galois representation, we do not even know how to
prove that there exists a corresponding Maass form with the right Laplacian eigenvalue, let
alone onewhose Hecke eigenvalues correspond to the Galois representation.57 Inmanyways,
we have made no real progress on this question. The case of curves of genus g > 2 whose
Jacobians have no extra endomorphisms seems equally hopeless. One can only take solace
in the fact that the Shimura–Taniyama conjecture seemed equally out of reach before Wiles’
announcement in Cambridge in 1993.
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are the motives (conjecturally) associated to automorphic representations which are at least
seen by some flavor of cohomology, either by the Betti cohomology of locally symmetric
spaces or the coherent cohomology of Shimura varieties (possibly in degrees greater than
zero) which are amenable in principle to the modified Taylor–Wiles method. The fourth
form consist of the rest, which (besides a few that can be accessed by cyclic base change)
are a complete mystery.
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in particular Christophe Breuil, Ana Caraiani, Pierre Colmez, Fred Diamond, Michael
Harris, Mark Kisin, Peter Scholze, Richard Taylor, and Andrew Wiles.
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1. Introduction

This article is meant to serve as an overview of the current state of the field of gravi-
tational wave astrophysics. It is not meant to be comprehensive, or a reference for experts, but
rather an introduction to this nascent field of observational science, targeted toward mathe-
maticians and scientists. The three primary goals are (a) to give a sufficient introduction to
the physics of general relativity to appreciate the challenges of gravitational wave detection,
as well as the remarkable nature of sources of gravitational waves in the dynamical, strong
field regime of the theory, (b) to review what has been learnt about the Universe from the
gravitational wave signals detected to date by the LIGO (Laser Interferometer Gravitational-
Wave Observatory)/Virgo detectors, and (c) to briefly speculate about future discoveries that
will unfold over the coming decades as a variety of observational campaigns are undertaken.
To set the stage then, in Section 2 we review the underlying theoretical framework, Einstein’s
theory of general relativity, focusing on the nature of gravitational waves and how they are
produced. In Section 3 we briefly survey the current detectors and observational campaigns,
either in operation today or planned for the coming decade or two: ground-based detectors (as
LIGO/Virgo), the space-based mission LISA (Laser Interferometer Space Antenna), pulsar
timing arrays, and the search for B-mode polarization of the cosmic microwave background
(CMB).

LIGO measured the first gravitational wave signal, GW150914, in 2015, which is
interpreted as originating from the merger of two black holes [1]. Since then, LIGO/Virgo has
observed almost 100 additional signals, most also from binary black hole mergers, though
a small handful likely coming from black hole/neutron star or binary neutron star mergers.
However, the loudest event to date, GW170817, was a binary neutron star merger, as con-
firmed by a spectacular suite of electromagnetic observations of its aftermath. In Section 4
we review these observations, and what they have so far taught us about the Universe. High-
lights are the first quantitative evidence that black holes as described by Einstein’s theory
do in fact exist, that the speed of gravitational waves is equal to that of the speed of light
to within � 1 part in 1015, and that neutron star mergers are responsible for at least a class
of the mysterious so-called short gamma ray bursts (observed at a rate of about one every 3
days by special purpose satellites designed for this).

We conclude in Section 5 with speculations on the coming two decades of gravita-
tional wave astronomy.

2. Einstein gravity

The working hypothesis upon which the science of gravitational wave astrophysics
is built is that “gravity” is described by Einstein’s classical theory of general relativity. This
begins by positing that space and time taken together, or spacetime for short, has the structure
of a 4-dimensional Lorentzian geometry. A convenient way to describe this geometry is via
the metric tensor gab , defined in a coordinate basis through the line element

ds2
D gabdxadxb; (1)
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which gives the local, infinitesimal proper distance-squared ds2 as a quadratic form of an
arbitrary infinitesimal coordinate displacement dxa (we use the Einstein summation con-
vention where repeated indices in a tensor expression imply summation). The phrase proper
distance means the coordinate invariant, physically measurable length or time interval, in
contrast to a coordinate distance in some (arbitrary) coordinate system. The Lorentzian
(indefinite) character of the metric is crucial, as it allows one to define causality through
geometry: two different events are causally related if and only if there exists at least one
curve connecting them where the proper distance along the curve is everywhere timelike,
ds2 < 0, and/or null, ds2 D 0 (the sign convention for timelike ds2 < 0 versus spacelike
ds2 > 0 is arbitrary).

The second key postulate of general relativity is that the geometry of spacetime
relevant to the Universe is not a fixed structure given a priori, but instead is a dynamical
entity governed by the Einstein field equations:

Gab � Rab �
1

2
Rgab D

8�G

c4
Tab; (2)

where the Einstein tensor Gab is defined as above in terms of the Ricci tensor Rab and
Ricci scalar R, Tab is the stress–energy–momentum tensor of the matter content of the Uni-
verse, G is Newton’s constant, and c is the speed of light. General relativity ignores torsion,
which is thought would only be needed to describe matter with intrinsic spin, and is expected
to be irrelevant for macroscopic distributions of matter in the classical limit. Thus all ten-
sors appearing in (2) are symmetric. In terms of practically solving this equation, one views
the Einstein tensor as a second order, quasilinear partial differential operator acting on the
metric tensor gab . In 4 spacetime dimensions, this gives a set of 10 coupled equations for
the independent components of gab , and must be solved simultaneously with the additional
equations governing the matter fields in Tab . It is obvious from (2) then that matter (Tab)
will influence the dynamics and curvature of spacetime. Less obvious is even in the absence
of matter (Tab D 0) nontrivial, dynamical solutions exist: most interesting among these are
those describing black holes and gravitational waves.

It is often stated that a third key postulate of general relativity is the geodesic hypoth-
esis: a test body not subject to any force follows a geodesic of the spacetime (a test body is
one with insufficient energy to cause any noticeable perturbation on the surrounding geom-
etry). However, perhaps more fundamentally, geodesic motion in the test body limit can be
viewed as coming from energy/momentum conservation, which is already built into the Ein-
stein equations and does not need to be imposed as a separate hypotheses. This follows from
the contracted Bianchi identities, showing that the Einstein tensor necessarily has vanishing
divergence raGab D 0. Thus, any matter that can self-consistently be coupled to spacetime
through the Einstein equations (2) must have a divergenceless stress tensor raT ab D 0, the
latter equation being the covariant statement of the conservation of energy/momentum of
the matter. Likewise, pure spacetime energy, whether in the form of gravitational waves, or
confined to black holes, will exhibit similar dynamics in an equivalent test body limit. For
example, in vacuum an infinitesimal mass black hole will orbit a large (finite mass) black
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hole following a geodesic of the latter’s spacetime by virtue of the vacuum Einstein equa-
tions alone, and not any additional hypothesis one needs to supply.

If the nature of spacetime is as described by general relativity, the most immediate
consequences of this are well described by Newtonian’s theory of gravity in the weak field
limit (for example, our environment here on Earth and in the solar system). This is why
Einstein’s theory is also called a theory of gravity despite there being no gravitational force
in general relativity.

2.1. Gravitational waves
It is not possible to precisely define what a gravitational wave is in all scenarios.

For our purposes, it suffices to think of gravitational waves as small, local disturbances
in spacetime that propagate at the speed of light. In an asymptotically flat space time (the
metric at large distances from any source of curvature approaches that of special relativity—
Minkowski spacetime) the properties of gravitational waves can be defined more precisely.
Our Universe is not asymptotically flat, thoughwith appropriate accommodation for the over-
all cosmic expansion with time, to good approximation we can consider ourselves to be in
an asymptotically flat region relative to any source we expect to observe.

Regarding sources of gravitational waves, there are two broad classes. First is what
one traditionally thinks of as a source: at some place a localized event occurs that produces
gravitational waves over a period of time, and these waves then stream outward away from
the source. Second are “primordial” gravitational waves, namely an overall background of
gravitational waves filling all of space, having been produced in an earlier epoch of the evo-
lution of the Universe. In some cases the distinction between these classes is blurred; for
example, a sufficiently high density of localized sources emitting over a long period of time
will eventually also fill the observable Universe with a background of gravitational waves.
In these settings then, we next review some of the basic properties of gravitational waves,
and how they are produced.

2.1.1. Basic properties of gravitational waves in the weak field limit
Consider a metric perturbation hab about a background Minkowski spacetime �ab ,

i.e., gab D �ab C hab with �abdxadxb D �c2dt2 C dx2 C dy2 C dz2 in Cartesian coordi-
nates. Then the linearized Einstein equations show that general relativity allows two linearly
independent gravitational wave solutions for hab , or so-called polarizations,1 propagating in
any given direction. Even restricting the background metric to be in Cartesian form, there
is still much coordinate (or “gauge”) freedom to choose the representation of the solution.
A gauge commonly used is the so-called transverse traceless gauge, and in these coordinates
a wave propagating in the Cz direction (for example) takes the form (e.g., [18,29])

habdxadxb
D hC.t � z=c/

�
dx2

� dy2
�

C h�.t � z=c/Œ2dxdy�: (3)

1 In principle, a general metric theory of gravity can allow up to 6 linearly independent polar-
izations; see, e.g., [53].
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Here hC and h� are arbitrary (but small amplitude) functions of their arguments, and
describe the so-called plus and cross polarized waves, respectively. From (3) one can see
that gravitational waves in general relativity are transverse, namely they only perturb the
background metric along a plane (the .x; y/ plane in this example) orthogonal to the direc-
tion of propagation (z here). Equation (3) also shows that as a plus polarized wave passes a
given point, when hC > 0, it will stretch proper distances in x by

p
1 C hC while simulta-

neously squeezing distances in y by
p

1 � hC, and the opposite when hC < 0. The effect
of the cross-polarized wave on the transverse geometry is qualitatively the same, except the
directions of stretching/squeezing are rotated by 45ı about the z axis relative to that of the
plus polarized wave.

The energy flux density carried by these waves is

dE

dAdt
D

c3

16�G

��
dhC

dt

�2

C

�
dh�

dt

�2�
; (4)

where dA is the transverse area element, and the angle brackets denote a time average over
a characteristic period of the wave (the reason for the averaging is that gravitational wave
energy cannot be localized—see, e.g., [41]). A truly infinite plane wave such as (3) will have
infinite total energy, which is not consistent with an asymptotically flat space time when
backreaction is taken into account. However, sufficiently far from a local source (as discussed
below) the outgoing spherical wavefronts are locally well approximated by these plane wave
solutions. Similarly, an on-average homogeneous, primordial stochastic background that fills
all of spacetime cannot be asymptotically flat when backreaction is considered,2 but still the
above (generalizing to superpositions of plane waves traveling in all directions) can give a
good description of the geometry in any local patch of the spacetime.

Notice the wayG and c appear in (4), and hence the dimension-full constant relating
energy flux on the left-hand side to the time derivative of metric strain on the right-hand side:
in SI units c3=G � 1036J � s=m2. This implies, at least from the perspective of our every-
day intuition of energy and length scales, that it requires an enormous amount of energy to
perturb spacetime by a comparatively miniscule amount. This is the reason why it is com-
pletely impractical to study gravitational waves by building transmitters/receivers on Earth
in analogy with electromagnetic waves. Instead, we must look to cataclysmic gravitational
wave “explosions” in the cosmos, such as those produced by black hole mergers, and even
then, despite the astonishing sensitivity of the LIGO/Virgo detectors, we are now just barely
able to observe them.

Regarding localized sources of gravitational waves, good insight can again be
obtained from linearized theory, resulting in the so-called quadrupole formula. Here, one
assumes a weak field, slowly varying distribution of energy density �.t; x; y; z/. This will
emit gravitational waves propagating outward that at a large distance r from the source takes

2 Instead, then one obtains the Friedmann–Robertson–Lemaître–Walker (FRLW) asymptotics
that observations indicate describe our Universe on very large scales.
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the following form in terms of the spatial components of the metric perturbation hij :

hij .t; r/ D
1

r

2G

c4

d 2Ikl .t � r=c/

dt2

�
Pi

kPj
l

�
1

2
P klPij

�
; (5)

with all indices here only running over the spatial coordinates xi 2 .x; y; z/ (in transverse
traceless gauge there are no time–time or space–time propagating components of hab),
Iij is the reduced quadrupole moment tensor of the source, and the projection tensor
Pij � ıij � ni nj , where ni is a unit spatial vector pointing from the origin r D 0 to the
observer location r D

p
x2 C y2 C z2; Iij is defined in terms of the quadrupole moment

tensor Iij as

Iij � Iij �
1

3
I k

kıij ; Iij .t/ �

Z
xi xj �.t; x; y; z/dV; (6)

where the integration is over all of space at some instant of time t , but note that in deriving
(5) the source is assumed to be localized in space around r D 0, and the observer location
r � 0 is assumed to be in vacuum.

Several properties of gravitational wave emission are evident from (5). First, unsur-
prisingly, the outgoing wave propagates at the speed of light, and its amplitude decays with
distance like 1=r from the source. Second, similar to that implied by the energy expres-
sion in (4), the factor of G=c4 � 10�44s2=kg=m illustrates what extreme dynamics, in the
form of rapid accelerations of large energy densities, need to be present in the source to
produce nonnegligible metric perturbations. Third, it is only the acceleration of asymmetric
concentrations of energy that produce gravitational waves in general relativity; for example,
a spherically symmetric pulsating star cannot produce any gravitational waves.

2.1.2. Weak field emission from a compact object binary
Though it is not obvious from the discussion above, it turns out that the quadrupole

formula (5) gives a good approximation to the gravitational wave emission even for certain
strong field sources, and even if the energy density is purely gravitational, such as with black
hole binaries. Another property of binary systems in general relativity that we will simply
mention without giving further details is that backreaction from the loss of energy to grav-
itational wave emission not only causes the semimajor axis of the binary to decrease (as
anticipated by Newtonian energy balance), but it also reduces the eccentricity of the binary
with time. LIGO/Virgo is only sensitive to the very last stages of binary inspiral, and the
majority of observable systems are thus expected to have close to zero eccentricity. In all then,
to get a good understanding of the structure of gravitational waves emitted by such a so-called
quasicircular inspiral, we can evaluate the quadrupole formula (5) for two point masses m1

and m2 orbiting each other on a circle separated by a distance D, with orbital frequency !,
which for large separations is well approximated by the Keplerian result ! D

p
GM=D3,

with M D m1 C m2. For a binary orbiting in the z D 0 plane about r D 0, using spherical
polar coordinates to label the observer location .x;y;z/ D .r cos� sin�;r sin� sin�;r cos�/,
and expressing the answer in terms of the two polarization amplitudes in the plane orthogonal
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to the propagation vector ni , gives

hC.t; r; �; �/ D
1

r

4G

c4
�D2!2 cos

�
2!.t � r=c/ � 2�

��1 C cos2 �

2

�
; (7)

h�.t; r; �; �/ D
1

r

4G

c4
�D2!2 sin

�
2!.t � r=c/ � 2�

�
cos �; (8)

where � D m1m2=.m1 C m2/ is the reduced mass of the binary, and an arbitrary initial
phase was set to zero. The corresponding orbit-averaged energy fluxes, from (4), are

dEC

dAdt
D

2

�r2

G

c5
�2D4!6

�
1 C cos2 �

2

�2

; (9)

dE�

dAdt
D

2

�r2

G

c5
�2D4!6 cos2 �: (10)

Integrating these over the sphere gives the net radiated power in the two modes
dEC

dt
D

56

15

G

c5
�2D4!6; (11)

dE�

dt
D

8

3

G

c5
�2D4!6: (12)

Several interesting properties are apparent from expressions (7)–(12): the observed gravita-
tional wave frequency is twice the orbital frequency, the orbit averaged amplitudes (hence
energy fluxes) are not isotropic in latitude, nor is emission equally balanced between the
plus and cross polarizations. Also, as expected, the emission vanishes in the test body limit
� ! 0. The total energy flux dE=dt D 32G�2D4!6=5c5, or using the Kepler relation for
!.D/, is

dE

dt
D

32G4M 3�2

5c5D5
D

32G7=3M 4=3!10=3�2

5c5
: (13)

This illustrates how sensitive the luminosity is to orbital separation D or frequency !.
Note again that equations (7)–(13) do not include back reaction; we have simply

evaluated the quadrupole formula for two point masses moving in a circular orbit. To obtain
the so-called Newtonian quasicircular approximation to estimate the radiation reaction on
the orbit, one elevates the frequency (or equivalently separation) to a function of time !.t/,
assumes theNewtonian expression for the energy of the orbit, and uses the latter together with
the total luminosity of the binary to derive an equation for the evolution of !.t/ consistent
with total energy conservation. The result is

!�11=3 d!

dt
D

96

5
�

�
GM

c3

�5=3

; (14)

where � D �=M is the symmetric mass ratio of the binary. It is essentially a measurement
of (14) from the famous Hulse–Taylor binary pulsar that gave the first (indirect) evidence
for the existence of gravitational waves, and that the weak-field description of the emission
process is consistent with general relativity.
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2.1.3. Strong field gravitational wave emission
In contrast to the other fundamental laws of physics, the strongly interacting, or

strong field, regime of classical general relativity is not associated with any particular scale
within the theory. Or said another way, general relativity is a geometric theory, but there is no
fundamental constant of dimension length in the field equations that would describe a radius
of curvature to demark a scale where a qualitative change in the character of solutions might
occur. Despite that, general relativity does have a strong field regime, essentially because the
field equations are nonlinear. In contrast, Newtonian gravity, a scale-free linear theory, does
not have a strong field regime: the Newtonian gravitational force can certainly be “strong,”
but it is not qualitatively different from a “weak” Newtonian gravitational force—they only
differ in magnitude.

In general relativity there is no universal criteria for when nonlinear effects become
significant enough to qualitatively change solutions, though for spherical-like compact
objects in asymptotically flat spacetime there is a good heuristic understanding: if an amount
of energy Mc2 is confined to a region within a radius (roughly) smaller than its so-called
Schwarzschild radius Rs D 2GM=c2, the geometry of spacetime qualitatively changes char-
acter compared to a less compact distribution of energy. In particular, spacetime necessarily
becomes dynamical, undergoing what is called gravitational collapse, and some kind of
spacetime singularity forms in the interior. A version of Penrose’s cosmic censorship con-
jecture argues that generically one expects an event horizon to form about the collapsing
region of spacetime [43], i.e., from an exterior observer’s perspective a black hole forms.
If the collapsing region is much more elongated (more cylindrical rather than spherical),
Thorne’s hoop conjecture argues a naked singularity would form instead [52], though there
are comparatively few studies of such asymmetric collapse, nor indications that such scenar-
ios arise in astrophysical settings.

Regarding sources of gravitational waves, again it is not easy to define when we are
in the strong versus weak field emission regime, though for binary inspiral we can heuris-
tically characterize the differences. In the weak field the linearized results described in the
previous section are quite accurate. Somewhat surprisingly, as mentioned, the weak field
description can still be good even if the individual members of the binary by themselves
require strong field gravity to describe their local geometries (case in point the Hulse–Taylor
binary pulsar, as a neutron star’s radius is only a factor of 3 or so larger than its Schwarzschild
radius). A strong field description for a compact binary interaction is necessary either when
the two objects come close enough that the local geometry of one object is significantly
perturbed by the other (i.e., the point mass approximation breaks down), or the metric per-
turbation hab of the observed radiation, when “scaled back” by r to the location of the source,
becomes of order unity.

Interestingly, the radiative perturbation reaching of order unity coincides with the
gravitational wave luminosity approaching the Planck luminosity, Lp D c5=G. Planck units
are a set of units based on the dimensionful constants one can obtain from the simplest prod-
ucts of powers of the fundamental constants of nature, in particularG, c, Planck’s constant h,
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and the Boltzmann constant k. It is theorized that “quantum gravity” effects become impor-
tant when any relevant physical scale in a process becomes of order unity when measured
in Planck units. The Planck luminosity does not involve Planck’s constant, the hallmark of
quantum processes, yet still, exceeding Lp in a local interaction does seem to anticipate
evolution to a regime where quantum gravity would be necessary. The reason is based on
dimensional analysis, together with the above heuristic for when one expects gravity to be so
strong that a black hole would be present, as follows.3 Consider a causal process confined to
a volume of characteristic size 2R, emitting gravitational waves with total energy E. For the
gravitational waves by themselves to not have enough energy to form a black hole requires
R to be larger than the effective Schwarzschild radius 2GE=c4 of the gravitational wave
energy, or E < c4R=2G. If not confined to a black hole, these gravitational waves will
leak out on a light crossing time of the system T D 2R=c, implying a luminosity limit of
L D E=T < Lp=4. Or conversely, a process emitting at super-Planck luminosity is neces-
sarily confined to a black hole, hence censored from exterior observation, and whose interior
would require some form of quantum gravity for a complete description.

2.1.4. Strong field emission from a compact object binary
For a quasicircular binary black hole merger, the weak field description breaks down

primarily because of finite size effects (the two horizons fuse together), and less so because
of high gravitational wave luminosity, which “only” reaches up to around 10�3Lp for equal
mass mergers (� D M=4) as computed via full numerical solutions [45].4 To put this number
in context, the sun’s luminosity in light is � 10�26Lp; thus, for the brief moment about the
time of merger, a binary black hole radiates as much power in gravitational waves as 1023

suns do in light—that is comparable to the current estimated luminosity of all stars in the
visible Universe combined. That gravitational wave energy liberated from black holemergers
does not dominate the energy content of the Universe is in part because they are so rare,
and in part because this incredible luminosity only lasts for a short time. For example, with
GW150914, the merger of two black holes each roughly 30 times the mass of the sunMˇ, the
luminosity integrated over the entire inspiral and merger came to about 3Mˇc2; the majority
of this was emitted within a few tens of milliseconds [1].

The quadrupole formula based calculation (13) does a decent job of anticipating
these properties, both the rapid increase in luminosity approaching merger, and the ballpark

3 To our knowledge, arguments like this were first proposed by Dyson in thought experiments
on whether a single “graviton,” the hypothetical quantum particle of geometry, could be
detected [25].

4 A binary neutron star merger has a peak luminosity a couple of orders of magnitude lower
than that of a binary black hole merger. Finite size effects are more pronounced for neutron
stars at late stages of the inspiral due to their higher tidal deformability, and, of course,
when they finally collide the point mass approximation used in (7)–(13) completely breaks
down. If the neutron star does not promptly collapse to a black hole, the gravitational wave
emission of the remnant can still qualitatively be understood using weak field/quadrupole-
formula type analysis, though the complicated dynamics of the matter in the remnant would
not be easy to compute without a numerical solution.
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maximum, if for the latter we take some liberty in interpreting when the inspiral should
terminate. Rewriting the distance D between the two point masses in (13) as a fraction
Ds of the Schwarzschild radius 2GM=c2 of the combined mass M of the system, i.e.,
D D Ds � 2GM=c2, for the equal mass � D M=4 case gives

dE

dt
D

Lp

80D5
s

: (15)

Clearly, the maximum inspiral luminosity depends quite sensitively on Ds . For an upper
limit, one would not expect this to be remotely accurately ifDs < 1, as then the two horizons
of the individual black holes would already be overlapping.WithDs � 1, dE=dt � 10�2Lp .
For a lower limit estimate, one can appeal to a result from circular geodesics, where the inner
most stable orbit is at R D 3Rs , and then a small loss of angular momentum will cause the
geodesic to plunge into the black hole. SettingDs � 3 for the maximum in (15) thus amounts
to assuming that for comparable mass mergers a similar instability sets in that accelerates
the merger beyond what radiation reaction does by itself; this gives dE=dt � 10�4Lp .

Of course, for these back-of-the-envelope estimates to have any relevance to the
maximummerger luminosity requires that the actual collision of two black holes is not much
more violent than the last stages of inspiral. In fact, before numerical solutions become avail-
able, it was unknown whether black hole collisions would generically even adhere to cosmic
censorship, let alone how bright they ultimately were. If a merger does satisfy cosmic cen-
sorship, the no-bifurcation theorem of Hawking would apply, telling us two black holes must
fuse into a larger one [35]; then also, by Hawking’s area theorem [34], one can place limits on
the maximum amount of energy that could be liberated in this most nonlinear phase of the
merger. If a naked singularity is produced, classical general relativity will cease to predict
the spacetime to the causal future of this event, and we would have no idea what the remnant
of such a black hole collision is. Fortunately for our ability to predict waveforms to interpret
LIGO events, but unfortunately for our ability to use black hole mergers to give an observa-
tional glimpse into the mystery of quantum gravity, there is no example yet from a merger
simulation that shows any violation of cosmic censorship, or anomalously large curvatures
forming exterior to the existing horizons.5

Though likely not relevant to the kind of black hole mergers that occur in the Uni-
verse, there is a regime of the two body problem where it is large gravitational energy that
pushes the interaction to the nonlinear regime, and not any finite size effects: the ultrarela-
tivistic scattering problem. Here, one imagines shooting two black holes toward each other at
very high velocities, so that in the center of mass frame of the interaction the kinetic energy
of either black hole is much greater than its rest mass energy: .i � 1/mi c

2 � mi c
2, with

5 In spacetime dimensions above four, there are examples of (apparent) naked singularity
formation from fragmentation of unstable horizons [40], and hints that certain collisions
may also lead to naked singularities [42]. Though the kind of microscopic extra dimensions
that could exist while still evading experimental detection will not cause instabilities in
astrophysically sized black holes, and then the effective four dimensional simulations used
to study the latter should be quite accurate.
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i D 1=

q
1 � v2

i =c2. Though few detailed results are available for the case with generic
impact parameter b, it is expected that when b is of order a few times or less than that of
the Schwarzschild radius Rs D 2GE=c4 D 2G.1m1 C 2m2/=c2 of the system (and note
that this scale is much larger than the Schwarzschild radii of either black hole when i � 1),
a sizable fraction of the kinetic energy can be converted to gravitational wave energy on a
time scale Rs=c. Moreover, for b . Rs , an encompassing black hole forms, trapping most of
the kinetic/gravitational wave energy. Again, exactly how much is not known for generic b,
though for b D 0 numerical simulations show � 14% of E is liberated as gravitational wave
energy, with the remainder trapped [51]. It has been conjectured that the highest luminosity
will be reached at the critical impact parameter bcrit marking the threshold of formation of a
central black hole (for larger impact parameters the two black holes will fly apart again) [47].
Then, essentially all of the kinetic energy (� E) is expected to be converted to gravitational
wave energy, though due to how strongly this seems to be focused inward when produced,
only about half of this energy may likely escape as gravitational waves [33,50]. The other half
will then be trapped in the central black hole for b < bcrit , or the two individual black holes
for b & bcrit (whose local Schwarzschild radii would consequently grow by an enormous
amount).

A fascinating conjectured aspect of the ultrarelativistic scattering problem is that it
actually does not matter what the source of the kinetic energy is, be it black holes, or some
compact distribution of matter, such as a neutron star, or even a fundamental particle. It is
this conjecture behind the arguments that the Large Hadron Collider(LHC) [24,32], or cosmic
ray collisions with the earth’s atmosphere [27], could produce black holes in certain extra
dimension scenarios which give a much lower Planck luminosity than our (then erroneous)
4-dimensional analysis predicts. To date, numerical evidence in favor of this “matter does
not matter” conjecture has only been obtained for a few select matter models in the head-on
collision limit [23,26,46].

2.1.5. The ringdown
Due to the uniqueness, or “no hair” theorems of general relativity [21,35,37,48], the

two-parameter (mass and angular momentum) Kerr family of metrics are the only vacuum,
stationary, asymptotically flat black hole solutions without any exterior (naked) singularities
allowed by general relativity in four spacetime dimensions. Taken by itself, this would sug-
gest that either black holes are sets of measure zero and not relevant to realistic gravitational
collapse (the Kerr solutions being axisymmetric and stationary), or Kerr black holes are in a
sense dynamical attractors where once an asymmetric, dynamical horizon forms, evolution
causes the exterior spacetime to “loose its hair” and settle down to a Kerr solution. The latter
is a special case of Penrose’s final state conjecture [44]: the generic endstate of evolution
governed by general relativity, beginning with naked-singularity free vacuum initial data on
a Cauchy slice of an asymptotically flat spacetime, is a set black holes flying apart, the local
geometry of each approaching that of a given member of the Kerr family, together with grav-
itational waves streaming outward to null infinity. Indeed, this is what seems to generically
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happen in gravitational collapse studies andmerger simulations to date. In particular, for both
quasicircular inspirals and ultrarelativistic scattering with b < bcrit , once a single common
horizon forms, the spacetime rapidly settles down to a Kerr black hole. This is accompa-
nied by the emission of gravitational waves, whose characteristics are largely determined
by the quasinormal mode oscillation spectrum of the remnant black hole. In analogy with
a bell emitting decaying sound waves after it is hit, this is called the ringdown of the black
hole. The least damped mode of a Kerr black hole is the ` D m D 2 spherical harmonic
mode. The damping rate decreases with the spin of the black hole, approaching zero for the
maximally spinning (extremal) black holes allowed in general relativity. However, the spins
of remnants produced in comparable mass mergers, as observed by LIGO/Virgo, are suffi-
ciently far from extremal that their ringdown phases are very short, damping exponentially
with a characteristic e-fold time on order-of-magnitude the light-crossing time Rs=c of the
remnant.

3. Gravitational wave observational landscape

In this section we outline what the current and planned near future observational
campaigns to witness the Universe in gravitational waves are. Gravitational wave “observa-
tories” fall into two categories: those that people have built specifically for this purpose, and
those that the Universe has fortuitously provided us. The former include earlier resonant bar
detectors pioneered by Joseph Weber, the LIGO/Virgo and Kagra ground-based detectors,
and various planned future ground- and space-based detectors. The latter include a network
of millisecond pulsars in our galaxy, and the cosmic microwave background (CMB). We will
not cover the history of any of these endeavors, instead we will comment on properties/chal-
lenges common to any of them that can be appreciated with knowledge of the properties of
gravitational waves outlined in the previous section.

Given that general relativity is a theory about the geometric nature of space and
time, and that gravitational waves are propagating distortions in the geometry, it should not
be surprising that essentially all gravitational wave detectors are composed of elements that
are sensitive to changing distances or times. Moreover, the most sensitive measurements
are those adapted to the plus and cross-polarized transverse disturbances allowed in general
relativity. This informs the “L” shape of the current ground-based detectors, that measure
relative changes in distances along the two arms of the detector through laser interferome-
try. Pulsar timing relies on the remarkably stable rotational periods of certain pulsars, where
models can be built to predict the arrival time of radio pulses from them to within tens of
nanoseconds over a year of observation. Long wavelength gravitational waves between the
earth and the pulsar will change the arrival times, and the most subtle signals can be extracted
from correlations between changes in arrival times between pairs of pulsars. Regarding the
CMB, this is an image of the “surface of last scattering,” where photons were last able to
Thompson-scatter off free electrons (afterward the temperature of the Universe dropped
below a threshold allowing the electrons to recombined with free protons to form neutral
hydrogen). The photons can pick up a net polarization after Thompson scattering if the
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background radiation field is anisotropic. The ability to use polarization measurements of
the CMB to detect gravitational waves present then is due to the fact that of the known
sources of anisotropy in the early Universe, only gravitational waves are able to produce
anisotropy that creates a so-called “B-mode” polarization pattern over the CMB (as opposed
to an “E-mode” pattern, that both matter anisotropies and gravitational waves can create).

Most sources produce gravitational waves at some characteristic length or frequency
scale. Gravitational wave detectors tend to be most sensitive to a frequency/length associ-
ated with some scale of the detector. Therefore, since the different detectors operate at very
different scales, they are sensitive to a correspondingly broad spectrum of potential sources.
The ground-based detectors are km-scale instruments, and are most sensitive to physical
processes associated with km-scale sources: stellar mass black holes, neutron stars, and the
inner core of a star undergoing a supernova explosion. The space-based LISA instrument is
planned to be a triangular configuration of satellites with 2.5 million km length arms; this is
the scale of the smaller of the so-called supermassive black holes thought to exist in the cen-
ters of most galaxies, as well as the orbits of many close binaries containing white dwarfs,
neutron stars, and black holes. Pulsar timing is most sensitive to gravitational waves with
periods close to the years-to-decades long observation time of the pulsars. This translates to
physical scales on the order of a few light years, and one of themost promising sources on this
scale is an effective stochastic background from the population of supermassive black hole
binaries in their last stages of inspiral. Gravitational waves from the early Universe would
likely leave a most pronounced effect on the CMB on scales of order the Hubble radius at
the surface of last scattering, which is roughly 1=1000 that of the present day Hubble radius
RH0 � 1026 m.

A common problem for all detectors is how weak the gravitational waves are
expected to be when they reach the detectors. This is true even for the strongest known
source—a binary black hole merger—when factoring in how far away the event is expected
to occur from the earth. For stellar mass black hole binaries, the observed merger rate is� 10

per cubic gigaparsec (Gpc) per year [12]. In fact, the first event ever detected, GW150914,
is still one of the closest black hole mergers seen to date, at an estimated distance of
0:4 Gpc � 1025 m. Since gravitational waves decay like 1/distance from the source, what
were metric perturbations of magnitude h � 1=10 on the � 105 m scale of GW150914’s last
orbit, caused a metric perturbation h � 10�21 as it passed the earth, resulting in a maximum
change in distance along LIGO’s 4 km long arms of� 10�17 m, or about 1=100th the diame-
ter of a proton!6 It is not surprising then that one of the most significant challenges facing all

6 Though the 1/distance decay seems like a curse, and it is for being able to detect rare events
like black hole mergers relatively frequently on a human timescale, once the tremendous
experimental effort needed to cross that threshold has been met, the 1/distance decay also
means it does not take that much more effort to open up a significantly larger volume of
spacetime to observation. For example, the next (third) generation of ground-based detectors
are planned to be about 10 times more sensitive than Advanced LIGO’s design sensitivity.
Being able to see 10 times further is enough that GW150914-like black hole mergers could
be seen throughout the visible Universe!
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detectors is a thorough understanding and mitigation of sources of noise that could otherwise
swamp or masquerade as gravitational waves. This is one of the primary reasons why LIGO
consists of two detectors with nearly the same orientation relative to the sky, but separated
by a few thousand kilometers: a true gravitational wave must produce signals with similar
characteristics in both detectors, separated in time by at most the few ms of light travel time
between them; conversely, the probability that noise could mimic such a correlated signal is
much less than noise being able to mimic a gravitational wave in a single detector alone.

A second issuewithmost gravitational wave detectors is how to interpret an observed
signal once it is confirmed to be of likely astrophysical origin. Except for the CMB, the dif-
ficulty here is that the signal is a one-dimensional time series, and so these detectors are
more akin to seismometers than telescopes (with the CMB a two-dimensional polariza-
tion map over the sky can be obtained). Without theoretical templates of waveforms from
expected sources to compare against, there is very little other than broad temporal/spectral
characteristics that could be inferred from a novel, or unmodeled, source. Thus a crucial
part of the gravitational wave astronomy endeavor is to have banks of template waveforms
from expected sources. For compact object mergers, the issue of source interpretation is
also closely tied to detection: current instruments are still not sensitive enough for the vast
majority of mergers to be clearly evident above the detector noise, and matched filtering is
essential to extract such weak signals from the noise.7 This is why solving the two-body
problem in general relativity became such a focused effort within the theoretical general
relativity community beginning in the early 1990s. Due to the complexities of the Einstein
field equations, no analytical solution seems possible, and currently a full solution (for a
given set of orbital parameters) needs to be computed numerically, which introduces some
numerical truncation error. Moreover, since numerical solutions are currently too computa-
tionally expensive to use to produce template banks that densely sample parameter space,
template banks of practical use are constructed using various approximation methods; these
include the effective one body (EOB) approach [19], modern versions of which use select
numerical results to calibrate the stitching together of perturbative post-Newtonian inspiral
calculations with linear quasinormal mode ringdown calculations, and reduced basis models
constructed from a set of numerical waveforms [28] (see [16] for a review of these and other
approaches). In the future, as more sensitive detectors come online, templates will not be
needed as much for detection, though will still be crucial for source identification and param-
eter estimation, which would be hampered if systematic modeling errors are present in the
template libraries. Thus, even though the first numerical solution to a general relativistic two
body problem describing inspiral, merger, and ringdown was obtained almost two decades
ago [45], it is still an active area of research to calculate ever more accurate binary merger
waveforms.

7 Matched filtering refers to convolving the detector signal with a template waveform. If a
nearly periodic signal with many cycles is present, such as the inspiral phase of a merger,
and an accurate template is phase aligned with the signal, then with time the convolution
will increase the signal-to-noise ratio, as the signal will add coherently while typical noise
will not.
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4. Survey of what has been observed to date

In this section we give an overview of the three most important (in our opinion)
scientific advances to date coming from gravitational wave observation of the Universe:
testing dynamical strong field gravity, multimessenger observation of neutron star merg-
ers, and obtaining the first glimpses of the demographics of black holes in our Universe.
Amongst the observatories mentioned in the previous section, only LIGO/Virgo have made
actual detections, and we will only comment on these.8

First quantifiable evidence for the existence of black holes as governed by the theory
of general relativity. Though the evidence for the existence of black holes has steadily
grown since the first candidates where identified beginning in the 1960s—the first stellar
mass black hole candidate Cygnus X-1, the suggested connection between quasars and super-
massive black holes, our own Milky Way supermassive black hole Sagittarius A�—before
GW150914 the evidence was all circumstantial. In other words, the only scientifically sound
statement one could have made is that the Universe definitely harbors a few ultracompact
objects and has some unusual sources of electromagnetic emission, and none of these obser-
vations can readily be explained using conventional physics if Kerr black holes are not
involved.

The gravitational wave data from black hole mergers is fundamentally different in
this regard, as it is coming from the strong field dynamics of spacetime itself, and there
is already enough signal in some of the loudest events, such as GW150914, that quantifi-
able self-consistency tests can be performed. Most notable in this regard is the consistency
between the inspiral and ringdown portions of the waveforms. From the inspiral signal alone,
an estimate of the progenitor black holes in the binary can be made, and from this, together
with predicted dynamics of the merger using numerical solutions of the field equations, the
mass and spin of the remnant can be computed. From the observed decay and frequency of
the ringdown signal alone, and using black hole perturbation theory calculations, the mass
and spin of the remnant black hole can also be determined. These two independent measures
of properties of the final black hole must agree if the signal comes from two Kerr black holes
colliding and forming a remnant Kerr black hole, as described by general relativity. So far
all the LIGO/Virgo data is consistent in this regard [2, 13, 14], albeit the error bars are quite
large, as the signal-to-noise ratios (SNRs) of current events are still quite small for making
precise tests of this kind. As an illustrative example to put this data and its veracity in context
compared to that obtained using the Event Horizon Telescope images of M87, or the Nobel
prize winning data of stellar orbits around Sagittarius A� used to measure its gravitational
mass and confirm its ultracompact nature: we still cannot rule out that M87 or Sagittarius

8 Of course, that is not to say that the absence of a signal does not provide useful informa-
tion, e.g., the negative results from the CMB and pulsar timing place constraints on the
magnitude of stochastic backgrounds, and the absence of long-lived periodic signals in
LIGO/Virgo data from known pulsars place limits on the size of quadrupolar deformations
(“mountains”) of those neutron stars.
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A� are ultracompact boson stars9; nor can we exclude that the progenitors in GW150914
were ultracompact boson stars. However, for the latter, if they were boson stars, the ring-
down part of the signal shows they promptly collapsed and formed a Kerr black hole, with
mass and angular momentum consistent with that of the binary just prior to merger. In other
words, even in this hypothetical scenario GW150194 still gives evidence for the existence of
Kerr black holes—exotic compact objects more “bizarre” than boson stars would need to be
invoked to avoid that conclusion [54].

Because of the uniqueness properties of black holes in general relativity, and if
general relativity does accurately describe strong field gravity on astrophysical scales, then
unfortunately we cannot learn anything more about the physics of black holes from more
precise merger observations (the astrophysics of black holes is a different issue, discussed
below). In other words, all black holes in the Universe are then Kerr black holes to within
environmental perturbations, and perhaps future ultraprecisemeasurements ofmergers could
show imprints of a circumbinary environment, but there are no novel classes, shapes, or
topologies of black holes to discover. Then, the utility of black hole merger observations for
fundamental physics is essentially entirely to provide detailed tests of nonlinear general rela-
tivity as outlined in the previous paragraph. Of course, as the scientific method requires such
tests for the health of its theories this is a useful endeavor, and we do not need a motivation
other than that. However, there is at least one observationally driven motivation for why one
might be skeptical about the precise nature of strong field gravity as described by general
relativity, namely dark energy.

On large scales, the Universe is observed to be in an epoch of accelerated expansion;
interpreting this as being due to dark energy comes from assuming that Einstein gravity accu-
rately describes the geometry of the Universe on such scales. Specifically, on large scales it
is assumed that, with an appropriate time slicing, the spatial metric of the Universe is nearly
homogeneous and isotropic, and its time evolution is driven by a stress energy tensor charac-
terizing the average energy densities and pressures of all the matter/energy in the Universe.
It is sometimes stated that today (i.e., away from any “big bang” singularities) gravity on
average in the Universe is weak, and certainly on small scales like our solar system, galaxy,
or even that of galaxy clusters it is weak (except near the rare black hole or neutron star).
However, as described in Section 2.1.3, the strong field regime of general relativity is not
associated with any physical length scale per se, but rather manifests when some physi-
cal scale in the problem becomes commensurate with the radius of curvature of spacetime.
And by that measure, our Universe is always in the strong field regime on scales of the
Hubble radius RH , i.e., RH is of the same order of magnitude as the Schwarzschild radius
Rs �

p
3c2=8�G� of a spherical distribution of matter with the same average energy density

� as the matter in the Universe. For example, today �0 is roughly that of six hydrogen atoms

9 Boson stars are hypothetical star-like objects formed from exotic (i.e., not part of the stan-
dard model of particle physics) self-interacting bosonic matter, in contrast to neutron stars
which are largely composed of fermionic matter. A boson star’s gravitational dynamics is
still governed by general relativity, so it is not an “alternative” to a black hole, but could be
a novel class of compact object.
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per cubic meter, giving Rs0 � 1026 m � RH0 . One might complain that the Schwarzschild
radius argument does not apply to our Universe because the latter is not asymptotically flat.
Perhaps, though the point here is not to argue whether or not we are inside a Schwarzschild
black hole, but instead that on scales of the Hubble radius the Universe must be in the nonlin-
ear regime of general relativity for an entirely different class of solution (the FRLWmetrics)
to be possible. Bringing the discussion back to testing gravity on stellar mass black holes
scales, if dark energy is telling us general relativity gets things wrong on the scale of the
Hubble radius, we should be cautious about immediately accepting its predictions for black
holes, as the scale-free nature of general relativity implies cosmological horizons and event
horizons reside in a related regime of the theory.10 The current LIGO/Virgo observations are
therefore an important step toward quantitative verification of the physics of horizons.

The wealth of knowledge gained from GW170817, the first binary neutron star merger
detected [4]. That so much information was garnered from this event is because a host of
electromagnetic counterpart emission was also seen—the first, and to date only gravitational
wave–electromagnetic “multimessenger” event [5]. Here we briefly comment on the high-
lights. The first is that a short Gamma Ray Burst (sGRB) was detected � 1:7 s after the
observed gravitational wave inspiral, the latter which ended a few ms before the presumed
collision of the two neutron stars (this and any postcollision gravitational waves were not seen
by LIGO/Virgo, which is as expected as they occur at frequencies several times higher than
what LIGO/Virgo is sensitive to). The origin of sGRBs has long been a mystery, though one
of the leading hypothesis for their formation is that they are produced in polar jets powered
by accretion onto the remnant of a binary neutron star merger (whether it be a hypermassive
neutron star or a black hole that formed, though the latter seems to be a more favorable envi-
ronment for jet formation). The coincidence of the gravitational wave emission and sGRB,
both in terms of time and region of the sky where both fluxes appeared to come from, gives
the first solid evidence that at least a class of sGRBs are produced following a binary neutron
star merger. Assuming this connection, together with the estimated distance to the event of
� 40 Mpc, then also gives a direct measurement of the speed of gravitational waves rela-
tive to the speed of light, and a remarkably tight constraint for a first measurement: the two
speeds are the same to within approximately 1 part in 1015 [3].

Almost immediately after GW170817 was detected, a worldwide effort was under-
taken by astronomers to search for other electromagnetic counterparts, and within 11 hours
a bright, but fading, optical transient was identified in the galaxy NGC 4993. Follow-up
observation over the subsequent weeks saw the event in radio, X-ray, infrared, and the ultra-
violet. The observed properties of the emission are consistent with the neutron star merger
having produce a so-called kilonova (or macronova) [39]. During merger, a small fraction
(� 0:1–1%) of the neutron star’smaterial is tidally ejected from the system atmildly relativis-

10 The majority of proposals to explain dark energy using modified gravity specifically intro-
duce a new physical length scale into the problem, and if that scale is tuned to the Hubble
radius it would avoid the conclusion that altering gravity on present day cosmological
horizon scales could have consequences for stellar mass or supermassive black holes.
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tic speeds (� c=3), and over the subsequent few seconds following merger a similar amount
of material can be blown away from a hot accretion disk formed around the remnant, at sim-
ilar but slightly lower velocities. This initially high density material is very neutron rich,
and as it expands heavy elements (with atomic number in the range Z 2 28::90) are formed
through the r-process. Many of these elements are radioactive with relatively short lifetimes,
and it is their decay over the subsequent days that produces the light of the kilonova. This
also confirms that neutron star mergers are one of the sites where a significant fraction of
the Universe’s heavy elements are produced—it is quite likely that the gold and platinum we
humans so love to adorn ourselves with are the ashes of ancient galactic neutron star mergers.

The late stages of the gravitational wave emission in GW170817 also showed mild
deviation from the predictions of a black hole inspiral, indicative of tidal deformations occur-
ring in both neutron stars. The strength of the tidal deformation is governed by the equation of
state of matter at nuclear density, which is not theoretically well understood today, or acces-
sible to experiments on the earth to investigate. Thus neutron star mergers offer an avenue to
explore this extreme state of matter, and though this first event did not provide strong con-
straints on competing models, this is one of the subjects future observations are expected to
bring increasing clarity to.

Another subject that GW170817 allowed gravitational wave astronomy to take a
first step in, but will also require more future observations to make a useful contribution
toward, is measuring the local expansion rate of the Universe. This is typically done by mea-
suring both the distance d and redshift z to a set of sources in galaxies, and the expansion
history can be inferred from the relationship z.d/ (for small redshifts, so nearby galaxies,
z � H0d=c, where H0 is the Hubble constant). Measuring the distance to a source is quite
challenging. One method relies on a so-called standard candle, where the intrinsic luminos-
ity L of a source is assumed known, and hence the observed flux is simply L=4�d 2. Type Ia
supernovae are the most well-known standard candles, though inferring their intrinsic lumi-
nosity relies on several calibration steps, including the cosmic distance ladder. With a binary
neutron star merger where a counterpart is seen (and hence the host galaxy identified for
a redshift measurement), a luminosity distance–redshift measurement can be obtained that
bypasses all of these calibration steps, since the intrinsic luminosity of the merger is known
from the general relativity waveform calculation. This makes a binary neutron star merger a
standard “siren” (siren is used here instead of candle as the last stages of inspiral emit waves
in the audio frequency range).11 GW170817 has already by itself allowed a measurement of
H0 to within about 10%; though this is not an improvement over other existing measure-
ments, the more multimessenger binary neutron star events that are observed, the tighter the
standard siren based value will become. Eventually, this might prove to be instrumental to
help resolve the present “Hubble tension”: measurements of H0 inferred by the Planck satel-

11 Binary black holes are also standard sirens, and better ones in fact, as some uncertainty will
be present in the neutron star measurements until the nuclear equation of state is known.
However, binary black holes are not typically expected to be in an environment where a
strong electromagnetic counterpart will be produced, and none have been observed to date.
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lite’s observation of the CMB show a small, but statistically significant, mismatch with H0

obtained using supernovae data (see, e.g., [30]).

Tentative hints pointing to an “unusual” stellar mass black hole population. Of the
almost 100 signals LIGO/Virgo have so far detected that are of likely astrophysical origin, the
vast majority are consistent with binary black hole merger templates [7,10,11].12 As discussed
above, if general relativity is correct, then we know these are all merging Kerr black holes,
forming remnant Kerr black holes. The utility then in having this large number of events, and
anticipating even more in the years to come, is to learn what the distribution of masses and
spins of this subpopulation of black holes in the Universe is as a function of time (redshift).
This will provide information on the fates of the most massive stars that are expected to
form black holes at the ends of their lives, as well as binary formation channels. Regarding
the latter, the two thought to be predominant are from stellar binaries where both stars are
massive enough to form black holes, and dynamical assembly in dense cluster environments
(following chance encounters between either two isolated black holes, a binary containing
a black hole and a single black hole, or a binary–binary interaction where each contains a
black hole). Though even 100 events is not yet enough to give definitive answers to some of
these population questions, there are already some interesting trends, and a few outliers that
are somewhat puzzling or surprising (at least without hindsight to select amongst the many
reasonable arguments present in the prior body of literature speculating about the unknown).

The first surprise came with GW150914, in that both progenitor black holes had
masses (� 29Mˇ and 36Mˇ) at least twice that of any known stellar mass black hole can-
didate in the Milky Way (see, e.g., [22]). Subsequent detections showed that GW150914 is
not an outlier in this regard, and most (though not all) LIGO/Virgo black hole progenitors
are more massive than known galactic black holes. This could partly be a selection effect, as
LIGO/Virgo is more sensitive to higher mass mergers, and also that the X-ray binary systems
that have been used to identify galactic black holes might be a distinct population of binaries
from those that lead to black holes that merge within a Hubble time.

A second puzzle is that the vast majority of progenitor black holes seem to have very
low spin (the remnants acquire higher spin, around 60–80% that of the maximum allowed
for Kerr black holes). Or to be more technically precise, given the detector’s current sensitiv-
ities, with most inspirals a confident measurement can only be made of the net spin angular
momentum aligned with the orbital angular momentum—for most mergers detected to date
this result is consistent with zero (to within error bars). There are three primary configu-
rations that can achieve this: (1) the individual black holes actually do have close to zero
spins, (2) the individual black holes have roughly equal but opposite spin angular momenta,

12 The remainder also match binary black hole templates, but when one or both compan-
ions have masses less than � 2:5Mˇ, the event is classified as a black hole–neutron star
or binary neutron star merger, respectively. To be able to distinguish between black holes
and neutron stars from the gravitational waves alone would require observation of the higher
frequency late stages of inspiral/merger, or a high enough SNR event that the effect of tidal
deformation is already evident in the earlier lower frequency inspiral that can be observed
with present detectors.
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one aligned, the other antialigned with the orbital angular momentum, (3) the black holes
have arbitrary spins (less than extremal) but the spin vectors are mostly within the orbital
plane. Both options (2) and (3) are difficult to explain with a binary formed from a stellar
binary, where onewould typically expect the spin vectors to be almost alignedwith the orbital
angular momentum vector. Options (2) and (3) are consistent with the occasional dynami-
cally assembled binary, as there is no preferential orientation for an essentially random close
encounter, but one would not expect this for the majority of events as currently observed.
Thus (1) seems the most plausible explanation at the moment. Given how challenging it is
to simulate stellar collapse at present, hence have robust predictions for what the initial spin
distributions of black holes should be, the observations will serve as useful guide posts for
ongoing theoretical studies of collapse.

There are more speculative suggestions for why the progenitors have low spin. One
is that many of these low-spinning black holes are primordial in nature, meaning the black
holes might have formed at a very early epoch in the Universe (well before structure forma-
tion) from rare superhigh density fluctuations in the background radiation field. The concrete
mechanisms people have proposed for this typically produce very low spin black holes (see,
e.g., [20] for a review). Another possibility is that there are as of yet undiscovered “ultra-
light” particles, with Compton wavelengths on the order of the tens of kilometer scale of
the Schwarzschild radii of stellar mass black holes. Such particles can form bound states
around the black holes, and if the black hole is spinning, these bound states can grow by a
so-called superradiant interaction with the surrounding spacetime [17]. In reaction, the black
hole spins down, possibly quite rapidly on astrophysical timescales (much less than the rel-
evant gigayear timescale, which is order of magnitude the maximum time between a black
hole’s birth and when it should suffer a collision with another to be visible to LIGO/Virgo).
Of course, even if such particles exists, they might not be the reason for the low spin black
hole population—that could still just be due to properties of stellar collapse and black hole
formation.

The third surprise relates to several outlier events, the two most prominent being
GW190521 and GW190814, that seem to have progenitor compact objects in the so-called
“mass gaps.” GW190814 is the merger of a � 23 ˙ 1Mˇ (presumed) black hole with a
� 2:6 ˙ 0:1Mˇ compact object [9]. GW190521 is the merger of a � 85 ˙ 20Mˇ black hole
with a � 66 ˙ 18Mˇ black hole [8]. Regarding GW190814, arguments from stellar collapse
studies, as well as a dearth of candidates from our known galactic compact object popu-
lation, suggest objects with masses in the range � 2:5Mˇ–5Mˇ do not typically form in
stellar collapse. Moreover, it is currently unknown if the maximum allowed mass for a neu-
tron star can reach 2:5Mˇ; if it turns out to be less than 2:5Mˇ, the lower mass companion of
GW190814 would be challenging to explain (or be an exceedingly rare object, for example,
a lowmass black hole formed via a prior binary neutron star merger). Regarding GW190521,
stellar structure theory suggests stars with cores in the mass range� 65Mˇ–135Mˇ are sub-
ject to the so-called pulsational pair-instability supernova processes, which blows the cores
apart leaving behind no remnant. However, similar to the issue of the spin of a black hole
at birth, there is a fair amount of uncertainty to the exact range of this mass gap, and given
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the error bars in the mass measurements, there is only mild tension between GW190814 and
conventional theories.

5. The future of gravitational wave astronomy

Einstein’s theory of general relativity is over 100 years old, and the quest to observe
the Universe in gravitational waves is over 50 years old, beginning with Joseph Weber’s pio-
neering attempts in the 1960s. Despite these long histories, the field of gravitational wave
astronomy is in its infancy, with the first detection only 6 years ago. Though many signals
observed to date are solidly above the threshold for confident assertion that they are grav-
itational waves coming from astrophysical sources, they are still not loud enough for high
precision tests of strong field gravity, or for high accuracy estimation of all source parameters.
Moreover, most of these detections have relied on theoretical templates of expected sources,
which improves the effective sensitivity of the detectors. Thus any truly novel source will
likely only be discovered once the detector sensitivities are well above the threshold the new
source could otherwise have been seen using templates. The one exception here is a source
that emits a short burst well approximated by a sine-Gaussian, as LIGO/Virgo do employ
searches using such templates (this can be thought of as an “unmodeled” search in the sense
that there is no particular astrophysical source from which the template is derived).

To realize a future where a detailed picture of the Universe in gravitational waves is
attained will thus require more sensitive detectors that cover a broader range of frequencies
than at present. These are being planned, and within the next decade or two we can expect
an order of magnitude improvement over essentially the entire slate of observational cam-
paigns. LIGO is within a factor of two of the original “Advanced LIGO” design sensitivity,
which should be reached during the next observing campaign (beginning late 2022–early
2023), when the KAGRA detector in Japan will also join the LIGO/Virgo network [6]. Fol-
lowing that, the plan is for an “A+” upgrade that will improve sensitivity by another factor
of two, and LIGO India will join the network (anticipated to start in 2025). To improve
sensitivities significantly beyond this will require new facilities, and several third genera-
tion designs are being planned for the 2030s, including Cosmic Explorer and the Einstein
Telescope [38]. These could further increase sensitivity by a factor of 10, as well as offer
improved frequency bandwidth over both lower (earlier in the inspiral for binary compact
objects) and higher frequencies (merger regime for binary neutron stars). New technologies
are also being considered, most promising among these are atom interferometers [31], though
it is less clear what the timeline for their deployment is. The space-based LISA mission is
expected to launch in the late 2030s. Both LISA and third generation ground-based detectors
could see black hole mergers with SNR close to a thousand (the current SNR record holder
is GW170817, at � 32). CMB measurements of B-mode polarization over the next decade
(e.g., with the Simons Observatory [15] currently under construction, and the LiteBIRD satel-
lite planned to be launched by the end of the decade [49]), should lower the threshold above
which cosmic gravitational waves would be observed by about an order of magnitude. The
sensitivity of the pulsar timing network increases roughly with the square-root of the obser-
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vation time, and could be accelerated with the discovery of more highly stable pulsars clocks
to add to the network (see, e.g., [36]).

We conclude with a brief discussion of what we can hope/expect to learn from these
observatories if everything goes according to plan. At the very least we can expect an ever
clearer picture of the demographics of compact objects in our Universe unfolding, improved
tests of the dynamical strong field regime of general relativity, tighter constraints on the
Hubble constant H0 from gravitational wave standard sirens, first detection of a stochastic
background of gravitational waves from unresolved supermassive black hole binaries, and
either a first measurement of a primordial gravitational wave background from an inflation-
ary epoch in the early Universe, or a bound on the latter that would severely challenge the
inflationary paradigm. If we are fortunate, a binary neutron star merger as close or closer
than GW170817 will occur during the era of the third generation of ground-based detectors,
which would provide unprecedented insight into the nature of matter at the extreme nuclear
densities present in the interior of neutron stars. If we are very fortunate, a star will go super-
nova (while the detectors are on!) in our neighborhood of the Milky Way, which should be
close enough for us to be able to hear it in gravitational waves.

A wish opening up our view of the Universe to the medium of gravitational waves
has always been that new, unexpected, and surprising sources will be discovered. Though,
of course, we cannot make a list of the truly unexpected, there are sources that people have
speculated about that would be surprising, and some quite revolutionary, if discovered. These
include cosmic strings, ultralight particles driving black hole superradiance, new kinds of
compact objects such as boson stars, and various “exotic” horizonless compact object alter-
natives to black holes. The latter include fuzzballs, gravastars, and AdS (anti-de Sitter) black
bubbles, all inspired by ideas on how “quantum gravity” could resolve the singularities of
general relativity and apparent information loss paradox associated with black holes that
evaporate via the Hawking process. But perhaps the biggest surprise of all would be if, once
all is said and done, there are no surprises beyond a few black holes having been born with
their two strands of Kerr hair standing mildly out of place.
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Abstract

This is a (very subjective) survey paper for nonspecialists, covering group actions on
Gromov hyperbolic spaces. The first section is about hyperbolic groups themselves,
while the rest of the paper focuses on mapping class groups and Out.Fn/, and the way
to understand their large scale geometry using their actions on various hyperbolic spaces
constructed using projection complexes. This understanding for Out.Fn/ significantly lags
behind that of mapping class groups, and the paper ends with a few open questions.
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1. Introduction

The goal of this paper is to give a flavor of the developments in geometric group
theory in the last 35 years, focusing on groups acting on Gromov hyperbolic spaces. The
field of geometric group theory is relatively young and its birth can be attributed to Gromov’s
paper [71] in 1987, when the subject exploded and attracted many mathematicians. The term
itself was coined byNiblo and Roller, who organized and named a very influential conference
in 1991 [107,108] (though it was possibly used informally before). Loosely speaking, geomet-
ric group theory studies groups by looking at their actions on metric spaces and the geometry
and topology of these spaces. Increasingly, methods of other branches of mathematics, such
as dynamics and analysis, are also brought to bear.

There were, of course, significant developments that can be comfortably placed
within this subject even long before Gromov’s paper. Works of Klein, Dehn, Nielsen,
Stallings, and others in some sense form the backbone of the subject. The theory of groups
acting on trees, i.e., Bass–Serre theory [6,131] and its language, will be used freely in these
notes. Gromov’s celebrated theorem that groups of polynomial growth are virtually nilpo-
tent [69] appeared in 1981, and Gromov’s basic philosophy of viewing groups as metric
spaces was eloquently explained in [70]. Of course, the influence on this subject of the work
of Thurston cannot be overstated. Perhaps the development of combinatorial group theory,
focusing on the combinatorics of the words in a finitely presented group, distracted from a
more geometric approach to group theory.

This paperwill focus on the part of geometric group theory that studies groups acting
on (Gromov) hyperbolic spaces. In the early days, right after Gromov’s paper, this meant
studying (Gromov) hyperbolic groups. Around 2000, the work of Masur and Minsky [95,96]

shifted the focus to groups that are not hyperbolic but admit interesting actions on hyperbolic
spaces. The main examples of such groups are mapping class groups of compact surfaces
(the subject of the papers byMasur andMinsky) andOut.Fn/, the outer automorphism group
of a finite rank free group. This survey will concentrate on these two classes of groups.

The definition of Gromov hyperbolic spaces is modeled on the standard hyperbolic
spaces by “coarsification” and captures the fact that geodesic triangles in the hyperbolic plane
are “thin.” For a wonderful survey of the history of hyperbolic geometry from Lobachevsky
to 1980, see Milnor’s paper [99]. For much more about this subject, see Bridson–Haefliger
[44], Ghys–de la Harpe [68], or Druţu–Kapovich [58]. There are many important topics this
survey will not cover, e.g., relative hyperbolicity [61], hyperbolic Dehn filling [74,114], small
cancelation [1,112], uniform embeddings in Hilbert spaces [120], the celebrated work of Agol
and Wise, see, e.g., [16], random walk [93], Cannon–Thurston maps [100], and many others.

2. Hyperbolic groups

Every finitely generated groupG can be viewed as a metric space. Fix a finite gener-
ating set S which is symmetric, i.e., S�1 D S . The word norm jgjS of g 2 G is the smallest
n such that g can be written as g D s1s2 � � � sn for si 2 S . Then dS .g; h/ D jg�1hjS is the
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word metric onG, and left translationsLx W g 7! xg are isometries. More geometrically, this
is the distance function on the vertices of the Cayley graph �S , with vertex set G, and edges
of length 1 between g and gs for g 2 G and s 2 S . If S 0 is a different finite symmetric gener-
ating set for G, the identity map G ! G is bilipschitz with respect to the two word metrics,
and are considered equivalent. There is a more general equivalence relation between metric
spaces that is very convenient in the subject. Let .X;dX / and .Y;dY / bemetric spaces. A (not
necessarily continuous) function f W X ! Y is a quasiisometry if there is a number A > 0

such that
1

A
dX .a; b/ � A � dY

�
f .a/; f .b/

�
� AdX .a; b/ C A

for all a;b 2 X , and every metric ball of radiusA in Y intersects the image of f . Without the
second condition, f is a quasiisometric embedding (when we want to refer to the constantA,
we say A-quasiisometric embedding). Two metric spaces are quasiisometric if there is a
quasiisometry between them, and this is an equivalence relation. For example, inclusion
Z ,! R is a quasiisometry, as is any bilipschitz homeomorphism or a finite index inclusion
between finitely generated groups equippedwith wordmetrics.More generally, the following
is considered to be the Fundamental Theorem of Geometric Group Theory.

Theorem 2.1 (Milnor [98], Švarc [135]). Suppose a group G acts properly and cocompactly
by isometries on a proper geodesic metric space X . Then G is finitely generated and any
orbit map G ! X is a quasiisometry.

Ametric space is proper if closed metric balls are compact, and it is geodesic if any
two distinct points a; b are joined by a subset isometric to the closed interval Œ0; d.a; b/�.
For example, cocompact lattices in a simple Lie group are quasiisometric to each other. The
“Gromov program” is to classify groups, at least in a given class, up to quasiisometry.

According to Gromov, the following definition was given by Rips. There are several
other definitions, all of which are equivalent up to changing the value of ı, see [44,58].

Definition 2.2. Let ı � 0. A geodesic metric space X is ı-hyperbolic if in any geodesic
triangle each side is contained in the ı-neighborhood of the other two sides. We say X is
hyperbolic if it is ı-hyperbolic for some ı � 0. See Figure 1.

For example, trees are 0-hyperbolic and so are complete simply-connected Rieman-
nian manifolds of sectional curvature � �" < 0. A fundamental property of hyperbolic
spaces is the Morse Lemma, proved by Morse [105], Busemann [48], and Gromov [71] in
increasing generality.

Lemma 2.3 (Morse Lemma). There is a numberD D D.ı;A/ such that for any ı-hyperbolic
space X and any A-quasiisometric embedding f W Œa; b� ! X the image of f is contained
in the D-neighborhood of any geodesic from f .a/ to f .b/.

It then quickly follows that if two geodesic spaces are quasiisometric and one is
hyperbolic, so is the other. In particular, groups that act properly and cocompactly by isome-
tries on proper hyperbolic spaces are hyperbolic.
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Figure 1

The union of the ı-neighborhoods of two sides contains the third.

Hyperbolic groups are well behaved, both topologically and geometrically, and they
are generic, so they form a model class of groups in geometric group theory. We now elab-
orate.

2.1. Classification of elements
LetG be a hyperbolic group. If g 2 G has finite order, then there is a coset hgix that

has diameter � 4ı C 2, so in particular there is an a priori bound on the order in terms of ı

and the number of generators. This is proved by a coarse version of the standard argument
that a bounded set in Rn (or any Hadamard manifold) is contained in a unique closed ball
of smallest radius. If g has infinite order, then k 7! gkx is a quasiisometric embedding for
every x 2 G, and g is loxodromic.

2.2. The Rips complex
The classical Cartan–Hadamard theorem states that closed manifolds of nonposi-

tive sectional curvature have contractible universal cover. In a similar way, every hyperbolic
group G acts properly and cocompactly on a contractible simplicial complex, called the Rips
complex. It is constructed as follows. Fix a number d > 0 and form the complex Pd .G/:
the set of vertices is G, and a set ¹v0; v1; : : : ; vnº of distinct vertices forms a simplex if
d.vi ; vj / � d for all i; j . This is a version of the Vietoris approximation of a metric space
by a simplicial complex, except here we think of d as being large.

Theorem 2.4. For d > 4ı C 6, Pd .G/ is contractible.

So, for example, if G is torsion-free, the quotient Pd .G/=G is a finite classifying
space for G, and in any case G is finitely presented, and has a classifying space with finitely
many cells in each dimension. Every finite subgroup ofG fixes a point ofPd .G/ (for d large),
so it follows that G has finitely many conjugacy classes of finite subgroups. Interestingly, it

681 Groups acting on hyperbolic spaces—a survey



is not known whether every infinite hyperbolic group is virtually torsion-free, or even if it
always has a proper subgroup of finite index.

2.3. Subgroups
If g 2 G has infinite order, there is a unique maximal virtually cyclic subgroupE.g/

of G that contains g, and E.g/ also contains the normalizer of g. It follows that G cannot
contain Z2 as a subgroup. Translation length considerations show that G cannot contain any
Baumslag–Solitar groupsB.m;n/ D ¹a; t j tamt�1 D anº,m;n ¤ 0, as subgroups. The long
standing open question whether every group with finite classifying space and not containing
any B.m; n/ is necessarily hyperbolic was recently answered in the negative [86].

2.4. Boundary
Inspired by the visual boundary of Hadamard manifolds, Gromov defined a bound-

ary @G of a hyperbolic group (or a proper geodesic metric space which is hyperbolic). It
is a compact metrizable space and a point is represented by a quasigeodesic ray ZC ! G,
with two rays representing the same boundary point if their images stay a bounded distance
apart. The topology is based on the principle that rays issuing from a basepoint and with
fixed quasigeodesic constants will stay longer together if they represent points that are closer
together. If G is infinite and virtually cyclic then @G consists of two points, and if G is not
virtually cyclic (termed “nonelementary”) @G has no isolated points.

There is also a natural topology on the union

X D Pd .G/ t @G

of the Rips complex and the Gromov boundary that makes it into a compact metrizable
space, and G acts naturally by homeomorphisms. Loxodromic elements act by north–south
dynamics on X . The most important property of the boundary, used, for example, in the
proof of Mostow rigidity [106], is the following:

Theorem 2.5. Let f W X ! Y be a quasiisometry between two hyperbolic proper geodesic
mmetric spaces. Then f extends to a homeomorphism @X ! @Y .

Theorem 2.6 ([38]). X is a Euclidean retract, i.e., it is contractible, locally contractible, and
finite-dimensional. The covering dimension of @G can be computed from the cohomology of
G and, in particular, if G is torsion-free, dim @G equals the cohomological dimension of G

minus 1, and in any case the rational cohomological dimension of @G equals the rational
cohomological dimension of G minus 1.

2.5. Asymptotic dimension
In [72] Gromov introduced many quasiisometric invariants of groups and spaces.

Here we focus on asymptotic dimension. Let X be any metric space. For an integer n � 0,
we write asdim.X/ � n provided that for every R > 0 there exists a cover of X by uniformly
bounded sets such that every ball of radius R in X intersects at most n C 1 elements of
the cover. This is the “large scale” analog of the usual covering dimension. For example,
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asdim.Rn/ D n and asdim.T / � 1 for a tree T with the geodesic metric. This is a quasiiso-
metric invariant, so it is well defined for finitely generated groups as well. See [12] for the
basic properties of asdim. There are many groups that contain Zn for every n, and they will
have infinite asymptotic dimension. However, Gromov proved:

Theorem 2.7 ([72]). Every hyperbolic group has finite asymptotic dimension.

One can hardly make a claim that one understands the large-scale geometry of a
group if its asymptotic dimension is not known to be finite or infinite. However, the signif-
icance of the theorem became particularly clear with the work of Guoliang Yu [143] (see
also [57]), who proved that groups with finite asdim and finite classifying space satisfy the
Novikov conjecture (this predicts the possible placement of Pontrjagin classes in the coho-
mology ring of a closed oriented manifold with the given fundamental group).

An even stronger conjecture in manifold topology is the Farrell–Jones conjecture.
If it holds for a (torsion-free) group G then one can in principle compute the set of closed
manifolds homotopy equivalent to a given closed manifold of dimension � 5 and fundamen-
tal group G. Following the work of Farrell and Jones, there has been a great progress in
proving the Farrell–Jones conjecture for many groups. For hyperbolic groups, this was done
by Bartel, Lück, and Reich [5], see also [3] for a proof using coarse methods that generalize
to other groups.

2.6. JSJ decomposition
For simplicity, we now assume that G is a torsion-free hyperbolic group. By Grush-

ko’s theorem [75,132], G can be decomposed as a free product G D G1 � G2 � � � � � Gk � Fr

where each Gi is noncyclic and freely indecomposable and Fr is a free group. Each Gi

is a 1-ended group by the celebrated theorem of Stallings [133], meaning that the Cayley
graph of Gi has one end (every finite subgraph has only one unbounded complementary
component). Quite unexpectedly, Rips–Sela [119] discovered a further structure theorem for
1-ended hyperbolic groups (the theorem applies to many groups that are not hyperbolic as
well). The theorem is motivated by the Jaco–Shalen–Johanssen torus decomposition the-
orem for 3-manifolds, which provides a canonical decomposition of an aspherical closed
orientable 3-manifold by cutting along pairwise disjoint tori so that each piece either has
many tori (it is Seifert fibered), or it is not an I -bundle and has no essential tori (except on
the boundary, and then by Thurston’s hyperbolization theorem it is hyperbolic), or it is an
I -bundle. The Rips–Sela theorem can be stated as follows:

Theorem 2.8. Let G be a 1-ended torsion-free hyperbolic group. Then G is a finite graph of
groups with all edge group infinite cyclic, and with vertex groups V coming in three types:

(QH) V is the fundamental group of a compact surface (with a pair of intersecting
2-sided simple closed curves) and the incident edge groups correspond exactly
to the boundary components,
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(rigid) V is not cyclic and does not admit a nontrivial splitting over a cyclic group
such that all incident edge groups are elliptic, and

(cyclic) V is cyclic.

See also [59,64,76] for different proofs and generalizations, and [40] for how to read
off the JSJ decomposition purely from the boundary of G. For example, a splitting over Z

gives a pair of points in @G that together separate @G, and Bowditch shows how to go in the
other direction. Thus the QH vertices give rise to many splittings of G over cyclic groups
(one for every simple closed curve), while rigid vertices give rise to none.

Figure 2

A possible JSJ decomposition of a group G, with two rigid vertices and one QH vertex.

We can picture G as the fundamental group of the space obtained from a disjoint
union of compact surfaces, “black boxes” and circles by attaching cylinders according to
the graph of groups. See Figure 2. The JSJ decomposition is not quite unique, but there are
standard moves that transform one such decomposition to another. For example, sometimes
one can slide one cylinder over another if they meet at a common circle. The main feature
of a JSJ decomposition is that splittings over cyclic groups can be “read off,” at least up
the standard moves, just like all essential tori in a 3-manifold can be read off from its JSJ
decomposition.

2.7. The combination theorem
This is also motivated by 3-manifold theory. The classical Klein–Maskit combi-

nation theorem gives conditions under which two discrete groups A; B of isometries of
hyperbolic spaceH3 with intersectionC D A \ B generate the amalgamA �C B . Thurston’s
Hyperbolization Theorem [101,138] is proved by cutting the 3-manifold into pieces, and then
inductively constructing a hyperbolic structure when gluing the pieces together. There are
two opposite extremes in the kinds of gluings, when the intersection of the pieces is quasi-
isometrically embedded on both sides, and when it is exponentially distorted. The latter
arises when the 3-manifold fibers over the circle and the monodromy is pseudo-Anosov. The
following is the hyperbolic group analog.
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Theorem2.9 ([25,26]). LetG be the fundamental group of a finite graph of hyperbolic groups
so that each edge group is quasiisometrically embedded in both vertex groups (but not nec-
essarily in G). Assume the “annuli flare” condition. Then G is a hyperbolic group.

The precise definition of the annuli flare condition is a bit technical, but let us men-
tion two special cases. The first is when the graph of groups is acylindrical, that is, for some
M > 0 the stabilizer of every segment of lengthM in the associated Bass–Serre tree is finite.
In this case there are no (long) annuli at all. The other case is that of a hyperbolic automor-
phism � W H ! H of a hyperbolic group H . This means that there is M > 0 such that for
every element h 2 H of sufficiently large word length jhj we have

max
®ˇ̌

�M .h/
ˇ̌
;
ˇ̌
��M .h/

ˇ̌¯
� 2jhj;

so in this case the induced infinite annulus defined on S1 � R sending S1 � ¹Kº to the
loop determined by �K.h/ flares exponentially. Aside from automorphisms of closed surface
groups induced by pseudo-Anosov homeomorphisms, there are many examples (in fact, they
are generic in the sense of random walk [87]) of hyperbolic automorphisms of free groups
coming from train track theory [34]. The combination theorem then implies that the mapping
torus H Ì� Z is hyperbolic.

The combination theorem has also been used to study hyperbolicity of extensions of
free or surface groups in terms of the monodromy homomorphism from the quotient group
to the mapping class group or Out.Fn/, giving rise to convex cocompact subgroups of these
groups [56,63,78,89].

2.8. Random groups are hyperbolic
Themost straightforward way to talk about “random groups” is the followingmodel.

Fix integers k � 2 and m � 1, and for integers n1; : : : ; nm consider the finite set

N.k; mI n1; : : : ; nm/

of all group presentations with k generators and m relators of lengths n1; : : : ; nm. We say
that a random group has property P if the fraction of groups in N.k; mI n1; : : : ; nm/ that
have P goes to 1 as min¹n1; : : : ; nmº ! 1.

Theorem 2.10 ([50, 110]). A random group is hyperbolic and its boundary is the Menger
curve.

Thus a random group has rational cohomological dimension 2 and does not split
over a finite or a 2-ended group.

Gromov [73] introduced a more sophisticated random model for groups, called the
density model, that depends on a parameter d 2 .0;1/ and properties of random group depend
on the chosen range of d . For more information, see [67,111].

2.9. R-trees and applications
R-trees are metric spaces such that any two distinct points x; y are contained in

a unique subspace homeomorphic to a closed interval in R with x; y corresponding to the
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endpoints, and this subspace is isometric to a closed interval. Simplicial trees with the length
metric induced by identifying edges with closed intervals are examples of R-trees. More
generally, R-trees can have a dense set of “vertices” (points whose complement has more
than two components). For example, let T D R2 as the underlying set, and define the metric
d as follows: d.x; y/ D jx � yj is the Euclidean distance if x; y are on the same vertical
line, and otherwise if x D .x1; x2/, y D .y1; y2/, then d.x; y/ D jy1j C jy2j C jx1 � x2j.
Thus one imagines train lines running along all vertical lines and along the x-axis, with the
distance function being the shortest train trip.

R-trees were put to good use by Morgan and Shalen [102–104] in their work on
hyperbolization of 3-manifolds following Thurston’s work.

The importance of R-trees in geometric group theory comes from two principles
that we briefly review. Let X be a proper hyperbolic space with the isometry group of X

acting with coarsely dense orbits.

(1) A sequence of actions of a finitely generated group G on X either, after taking
a subsequence, converges (after conjugations) to an isometric action on X , or
else it converges to an isometric action on an R-tree.

(2) There is a theory analogous to the Bass–Serre theory, called the “Ripsmachine,”
that explains the structure of a group acting isometrically on an R-tree from the
stabilizers of the action (under some technical conditions).

2.10. Hyperbolic spaces degenerate to R-trees
This construction is due to F. Paulin [116] and the author [13]. See also [14]. We fix

a group G and a finite generating set a1; : : : ; an. Suppose we are given an isometric action
� W g 7! �.g/ W X ! X of G on a proper ı-hyperbolic space X , defined up to conjugation
by an isometry of X . We impose the mild assumption that the action is nonelementary, i.e.,
the function

x 7! max
j

®
dX

�
x; aj .x/

�¯
is a proper function X ! Œ0; 1/. We then choose a basepoint x� 2 X where the minimum
is attained. Identifying G with the orbit of x�, this induces a left-invariant (pseudo)metric
on G via

d�.g; h/ D dX

�
g.x�/; h.x�/

�
:

This metric is “hyperbolic,” although G as a discrete set is not a geodesic metric
space. To make this precise, it is convenient to give Gromov’s reformulation of ı-hyper-
bolicity, in terms of the “4-point condition.” For a; b 2 X , define the “Gromov product”

.a � b/ D
1

2

�
dX .x�; a/ C dX .x�; b/ � dX .a; b/

�
:

Thus, when X is a tree, .a � b/ is the distance between x� and Œa; b�, and in general it is
within 2ı of it. If a; b; c 2 X then consider the 3 numbers .a � b/; .b � c/, and .c � a/. When
X is a tree, the two smaller numbers are equal. Gromov’s 4-point condition is that the two
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smaller numbers are within ı of each other. Up to changing the value of ı, a geodesic metric
space is hyperbolic if and only if it satisfies the 4-point condition. Moreover, if the 4-point
condition holds with ı D 0, then the space can be isometrically embedded in an R-tree.

Returning to our setup, assume now that �i is a sequence of isometric actions of
G on X , x�i

are the corresponding basepoints, and d�i
the induced metrics on G. They all

satisfy the 4-point condition with a fixed ı. There are now two cases, up to passing to a
subsequence. Define Di D maxj ¹x�i

; aj .x�i
/º.

Case 1. Di ! 1. Then rescale the metrics d�i
byDi , i.e., consider d�i

=Di . After a
subsequence, this will converge to a (pseudo)metric on G which will now satisfy the 4-point
condition with ı D 0. Thus .G; d/ can be isometrically embedded into a (unique) R-tree T

and there will be an induced isometric action of G on T . Thanks to the careful choice of
basepoints, this action will not have a global fixed point.

Case 2. Di stays bounded. Under the mild condition that the isometry group of X

acts with coarsely dense orbits, we can conjugate the given actions so that all x�i
belong to

a fixed bounded set. Since X is proper, there is a further subsequence so that �i converge to
an isometric action � of G on X .

2.11. The Rips machine
If a group acts freely on a simplicial tree, it is necessarily free. This simple instance

of Bass–Serre theory follows quickly from covering space theory. However, this is not true
for R-trees. For example, Zn acts freely on R by letting basis elements act by n rationally
independent translations. More interestingly, closed surfaces of Euler characteristic < �1

admit measured foliations with simple singularities and with all leaves being trees (and all
but finitely many are lines), see [140]. Lifting to the universal cover, the transverse measure
turns the leaf space to an R-tree and the deck group induces a free action of the fundamental
group of the surface on this R-tree.

Suppose now we are given an isometric action of a finitely presented group G on an
R-tree T . We make a technical condition that the action is stable meaning that for every arc
I � T there is a subarc J � I such that the stabilizer of J is equal to the stabilizer of any
further subarc of J . This property is frequently satisfied for actions on R-trees obtained by
degenerating ı-hyperbolic spaces described above. We then fix a finite simplicial 2-complex
K with G D �1.K/ and construct a G-equivariant map QK ! T , called a resolution of T .
Point inverses form a foliation of QK (with certain standard singularities) which descends
to K. The Rips machine transforms K with this foliation, changing neither the fundamental
group nor the fact that the universal cover resolves T , and puts it in a certain “normal form.”
The pieces of this normal form are foliated subcomplexes that occur, very surprisingly, in
only the following four types:

(simplicial) leaves are compact and the piece resolves a simplicial tree,

(surface) the piece is a surface (perhapswith boundary) and the nonboundary leaves
are trees as above,
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(axial) the piece resolves the tree which is a line, and

(Levitt) the piece is of Levitt type.

Levitt-type foliations were first constructed by G. Levitt [91]. Generic leaves are 1-
ended graphs, and in fact they are quasiisometric to 1-ended trees with finite graphs attached.
In addition to proving this classification, the Rips machine also provides the structure of the
group corresponding to these cases, and particularly in the Levitt case. It turns out that if
there is a Levitt piece then G always splits along a subgroup which fixes an arc in T . The
other three cases are classical, with the simplicial case amounting to Bass–Serre theory. As
an example, Rips proved the conjecture of Morgan and Shalen that any finitely generated
group acting freely on an R-tree is isomorphic to the free product of surface groups and free
abelian groups. For more details, see [28,66].

2.12. Applications
We mention some of the applications of R-trees; for more see [14]. They are a basic

tool in the theory of Out.Fn/. Zlil Sela used them extensively in his seminal work on the
Tarski problems [124–130].

2.12.1. Automorphisms of hyperbolic groups
Let G be a 1-ended hyperbolic group, and for simplicity assume it is torsion-free.

Combining Paulin’s construction [117] with the Rips machine, we get

Theorem 2.11. If G does not split over Z then Out.G/ is finite.

This is analogous to a consequence of Mostow Rigidity that Out.G/ is finite when
G is the fundamental group of a closed hyperbolic n-manifold with n � 3.

The proof goes like this. Assuming Out.G/ is infinite, choose a sequence fi of
automorphisms in distinct classes and consider isometric actions �i of G on itself given by
left translations twisted by fi , i.e., g 7! .h 7! fi .g/h/. Since fi are distinct in Out.G/, we
see that we are in Case 2 of the construction outlined above and we obtain an isometric action
of G on an R-tree and with arc stabilizers cyclic (or trivial). The Rips machine now yields a
splitting of G over a cyclic group.

A proper generalization of this theorem was given by Z. Sela. Fix a JSJ decomposi-
tion of G. There are now “visible” automorphisms of G realized as compositions of powers
of Dehn twists in the cylinders and homeomorphisms of the QH vertices, which are surfaces.

Theorem 2.12 ([118]). The subgroup of visible automorphisms has finite index in Out.G/.

The proof is quite a bit harder. The idea is that if the index is infinite, one can choose
a sequence of automorphisms fi in distinct cosets of the visible subgroup. In addition, one
chooses the fi ’s to be the “shortest” in their cosets. Then one argues that the action in the
limit produces a “new” splitting of G, one not explained by the JSJ, or else the fi could be
shortened for large i .
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Recall that a group G is Hopfian if every surjective endomorphism of G is an auto-
morphism and it is co-Hopfian if every injective endomorphism is an automorphism. For
example, nontrivial free groups are not co-Hopfian. By adapting the above methods to endo-
morphisms, Sela proved:

Theorem 2.13 ([122, 123]). Let G be torsion-free hyperbolic. Then G is Hopfian. If G is
1-ended it is also co-Hopfian.

In 1911 Max Dehn proposed three algorithmic problems about groups: the word
problem (decide if a word in the generators represents the trivial element), the conjugacy
problem (decide if two words in the generators represent conjugate elements), and the iso-
morphism problem (decide if two groups given by presentations are isomorphic). Dehn
solved theword problem for surface groups and his solution generalizes to hyperbolic groups.
There is also a similar solution of the conjugacy problem for hyperbolic groups, see [71]. The
isomorphism problem takes more work and uses R-trees. For torsion-free hyperbolic groups
that do not split over cyclic subgroups, the isomorphism problem was solved by Sela [121],
and for general hyperbolic groups by Dahmani–Guirardel [54].

Even though hyperbolic groups are generally very well behaved, they also contain
a certain amount of pathologies, see, e.g., [46].

2.12.2. Local connectivity of @G

The use of R-trees completed the proof of the following theorem.

Theorem 2.14. If G is a 1-ended hyperbolic group, then @G is locally connected (as well
as connected).

There are several ingredients in the proof. First, [38] shows that if @G is not locally
connected then it has (many) cut points. Bowditch [40] then shows that G acts on an R-
tree constructed as a kind of a “dual” tree, which does not come with a metric but can be
endowed with one using [92]. The Rips machine then yields a splitting of G over a 2-ended
group, finishing the proof if such splittings do not exist. Swarup [136] finished the proof in
the general case by showing how to continue refining these splittings (in the presence of cut
points in @G) until the full JSJ decomposition is obtained, at which point a contradiction
arises with any further splitting.

2.12.3. Thurston’s compactness theorem
With the machinery of R-trees one can give a quick proof of the following theorem.

Theorem 2.15 ([139]). LetM be a compact aspherical 3-manifold whose fundamental group
does not split over a cyclic group. Then the space of hyperbolic structures H.M/ on M is
compact.

The spaceH.M/ is the space of discrete and faithful representations ofG D �1.M/

into the orientation isometry group PSL2.C/ of hyperbolic 3-space H3, up to conjugacy
(it takes some work to see that the quotient of H3 by such a group is homeomorphic to
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the interior of M ). Indeed, to rule out Case 2 above, one shows that the limiting action
on an R-tree is stable and has abelian arc stabilizers (which follows from discreteness and
faithfulness).

3. Mapping class groups

A fundamental shift in the subject occurred after the work of Masur and Minsky
[95,96] on mapping class groups, the work that set the foundations for an eventual under-
standing of the large scale geometry of these groups.Mapping class groups are not hyperbolic
(except for some sporadic surfaces) but naturally act on hyperbolic spaces.

We start by recalling some definitions. Let S be an orientable surface of finite type,
i.e., one obtained from a closed orientable surface by removing finitely many points (called
punctures). The group HomeoC.S/ of orientation preserving homeomorphisms of S has
the natural compact-open topology which makes it locally path-connected, and the mapping
class group (or the Teichmüller modular group) Mod.S/ is the discrete group of (path) com-
ponents of HomeoC.S/. Classically, this group has been studied since the early 20th century.
A very nice introduction to the subject is the book [62], and we will freely use the standard
concepts. For example, the subgroup PMod.S/ of “pure” mapping classes (those that fix the
punctures) is generated by finitely many Dehn twists and the group will not be hyperbolic if
S is big enough to contain two essential (not bounding a disk or a punctured disk) nonparallel
(not cobounding an annulus) disjoint simple closed curves.

To the surface S Harvey [83] associates a simplicial complex C D C.S/, called the
curve complex of S . A vertex is an isotopy class of essential simple closed curves. A col-
lection of distinct vertices spans a simplex if each pair can be represented by curves that
intersect minimally (most of the time this means “disjointly,” but in a torus punctured at
most once it means “once” and in a four times punctured sphere it means “twice”). For the
purposes of this discussion, we restrict to the 1-skeleton (called the curve graph), which we
equip with the length metric with all edges of length 1. The group Mod.S/ acts naturally
on C.S/. For some very small surfaces, like a 3 times punctured sphere, the curve complex
is empty, but otherwise it is infinite, and even locally infinite, a big contrast with Cayley
graphs of hyperbolic groups. In a similar way, one can define the arc complex of a surface
with punctures.

Theorem 3.1 ([95]). C.S/ is hyperbolic. An element ofMod.S/ acts loxodromically if and
only if it is pseudo-Anosov.

Here are some ideas in the original proof, which uses Teichmüller theory. Let T D

T .S/ be the Teichmüller space of S , i.e., the space of all (marked) hyperbolic structures
on S . There is a natural coarse map � W T ! C that to a hyperbolic metric on S assigns
(the isotopy class of) a shortest simple closed geodesic. Any two points in T are joined by a
unique Teichmüller geodesic, and their images under � form a family of coarse paths in C

satisfying (and this needs proof):
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• any two points in C are connected by some such path,

• the family is closed under taking subpaths,

• any two paths in the collection starting at nearby points are contained in each
other’s uniform Hausdorff neighborhood (i.e., they fellow travel), and

• triangles formed by these paths are uniformly thin.

Thus the collection behaves like the collection of geodesics in a hyperbolic space.
Remarkably, the existence of such a collection of paths implies that the space is hyperbolic
and the paths are (reparametrized) quasigeodesics with uniform constants. See [97], which
proves that arc complexes are hyperbolic, and [42].

Since the original proof of hyperbolicity of C.S/, there have been others, the sim-
plest being [84], not using Teichmüller theory at all but constructing a family of paths in
C.S/ directly using surgeries on curves. Perhaps surprisingly, the more recent proofs also
show that curve graphs are uniformly hyperbolic, i.e., ı can be taken independently of the
surface.

3.1. The boundary of the curve complex
IfX is a hyperbolic space which is not proper, its boundary @X may not be compact.

For example, the boundary of the wedge of countably many rays joined at the initial point
is a discrete countable set, and the boundary of a tree all of whose vertices have countable
valence is homeomorphic to the irrationals.

In [90] E. Klarreich identified the boundary @C of the curve complex as a proper
quotient of a subspace of Thurston’s boundary of Teichmüller space T . This description
serves as a model for boundaries of other hyperbolic complexes.

3.2. WPD, acylindrically hyperbolic groups, quasimorphisms
In the absence of properness of the action, one needs some kind of a substitute. The

property WPD (for “weak proper discontinuity”) was introduced in [32].

Definition 3.2. Suppose a group G acts by isometries on a hyperbolic space X . A loxo-
dromic element g 2 G is WPD if for every x 2 X and C > 0 there is N > 0 such that the
set ®

h 2 G j d
�
x; h.x/

�
� C; d

�
gN .x/; hgN .x/

�
� C

¯
is finite. The action of G on X is WPD if G is not virtually cyclic and every loxodromic
element is WPD.

The WPD condition says that the collection of translates of an axis (or an orbit) of
a loxodromic element is discrete: any two translates are either parallel or else they are in a
bounded Hausdorff neighborhood of each other only along a bounded length interval.
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Theorem 3.3 ([32]). The action ofMod.S/ on C.S/ is WPD. If a nonvirtually cyclic group
acts isometrically on a hyperbolic space with a WPD element then the space eQH.G/ of
(reduced) quasimorphisms on G is infinite-dimensional.

A quasimorphism is a function f W G ! R such that

sup
a;b2G

ˇ̌
f .ab/ � f .a/ � f .b/

ˇ̌
< 1:

Denote byQH.G/ the vector space of all quasimorphisms onG and note the vector subspaces
Hom.G; R/ of homomorphisms G ! R and B.G/ of bounded functions on G. Then the
spaceeQH.G/ is defined as the quotient

eQH.G/ D QH.G/=
�
Hom.G; R/ C B.G/

�
and it can also be identified with the kernel of the natural homomorphism H 2

b
.GI R/ !

H 2.GI R/ from bounded cohomology of G. For more on bounded cohomology, see [49].
The basic method for showingeQH.G/ is infinite-dimensional is due to Brooks [47]

in the case of free groups. Fix a free group F with a basis a1; a2; : : : Let w be any cyclically
reduced word in the basis. Define fw W F ! Z � R as fw.x/ D Cw.x/ � Cw�1.x/, where
Cw.x/ is the number of occurrences of w as a subword of x, written as a reduced word. That
fw is a quasimorphism can be seen by considering the tripod in the Cayley tree of F spanned
by 1; a, and ab, and marking all occurrences of w˙1 along it. All such occurrences that do
not contain the central vertex will be counted twice, with opposite signs, in the expression
f .ab/ � f .a/ � f .b/, and, of course, the number occurrences that do contain the central
vertex is uniformly bounded.With a bit more work, one can show that for a suitable choice of
wi ’s the quasimorphisms fwi

will yield linearly independent elements ofeQH.F /. The proof
of the second half of Theorem 3.3 is a coarse version of this method, where w is replaced by
a long segment along an axis of a WPD element, and the discreteness of the set of translates
guarantees that the counting function is finite.

A quick application is the following statement, suggesting that pseudo-Anosov ele-
ments of Mod.S/ are “generic.”

Corollary 3.4. Fix a finite generating set and the corresponding word metric on Mod.S/.
For any R > 0, there exists M > 0 such that every ball of radius M contains a ball of radius
R that consist entirely of pseudo-Anosov mapping classes.

This follows quickly from the feature of the quasimorphisms onMod.S/ constructed
above that they are uniformly bounded on all elements of Mod.S/ which are not pseudo-
Anosov.

Bowditch noticed that the action of Mod.S/ on C.S/ satisfies a property stronger
than WPD.

Definition 3.5. An isometric action of G on a hyperbolic space X is acylindrical if for all
r > 0 there exist R; N > 0 so that whenever a; b 2 X with d.a; b/ � R, then there are at
most N elements h of G such that d.a; h.a// � r and d.b; h.b// � r .

692 M. Bestvina



Thus acylindricity gives control in all directions, not only along axes of loxodromic
elements.

Theorem 3.6 ([41]). The action ofMod.S/ on C.S/ is acylindrical.

These results motivated Denis Osin to propose acylindrically hyperbolic groups as a
generalization of hyperbolic groups. A group is acylindrically hyperbolic if it is not virtually
cyclic and admits an acylindrical action on a hyperbolic space with unbounded orbits. This
class contains many groups of interest (e.g., mapping class groups and Out.Fn/) and many
constructions on hyperbolic groups carry over to this larger class, e.g., small cancelation
theory, or quasimorphisms indicated above; see [113,115].

3.3. Subsurface projections
The main drawback of acylindrically hyperbolic groups is that in general one does

not have access to elements that do not act loxodromically. In the case of mapping class
groups, this problem is resolved through subsurface projections ofMasur andMinsky [95,96].

Let S be a surface as before and X � S a connected �1-injective subsurface which
is closed as a subset. Let ˛ be a simple closed curve in S which cannot be homotoped in the
complement ofX and which is in minimal position with respect to @X . Then the intersection
˛ \ X consists of finitely many disjoint arcs (or just ˛ if ˛ � X ). For each such arc J ,
consider one or two curves obtained as follows. If the endpoints of J are contained in the
same boundary component b of X , there are two ways of closing up J to a closed curve by
adding an arc in b; take both of these curves. If the endpoints of J are on distinct boundary
components b; b0 then form a curve by taking two parallel copies of J and connect them by
adding “long” arcs in b and b0. It is not hard to see that taking the collection of all these curves
for all arcs J produces a uniformly bounded set �X .˛/ � C.X/ (we collapse all boundary
components of X to punctures). This construction makes sense whenever C.X/ is defined
(so notably a pair of pants is excluded). It also makes sense when X is an annulus, in which
case the curve complex is formed by arcs joining the boundary components, but we will not
describe this case in detail. If ˛ is disjoint from X then �X .˛/ is not defined and we set it to
be empty.

Now fix a finite collection of curves Ę D ¹˛1; : : : ;˛nº in S that “fill” the surface, i.e.,
every (essential) curve intersects at least one of them. By the classical fact that the distance
in the curve complex is bounded by a function of the intersection number, if �X .˛i / and
�X . j̨ / are both defined then their union has uniformly bounded diameter (with the bound
depending on the intersection number between ˛i and j̨ ). We then define

�X . Ę/ D

[
i

�X .˛i /:

This is always a nonempty, uniformly bounded subset of C.X/.
The following is the fundamental result of Masur andMinsky, expressing (coarsely)

the word metric in Mod.S/ in terms of subsurface projections. For K > 0 and x � 0, define
¹¹xººK as 0 if x < K and as x if x � K.

693 Groups acting on hyperbolic spaces—a survey



Theorem 3.7 (The distance formula, [96]). For all sufficiently large K (depending on Ę) and
for all g; h 2 Mod.S/, we have

d.g; h/ �

X
X

®®
dX

�
g. Ę/; h. Ę/

�¯¯
K

:

The left-hand side is the distance in the word metric. The summation is over all
(isotopy classes of) connected,�1-injective subsurfacesX withC.X/ ¤ ;, and the displayed
summand is the diameter of the set �X .g. Ę// [ �X .h. Ę//. The symbol�means that there is
a linear function (depending on K and the finite generating set of Mod.S/) f .x/ D Ax C B

such that the left-hand side is bounded by the f -value of the right-hand side, and vice versa.
In particular, only finitely many terms are � K.

The distance formula is a powerful tool in the study of large-scale geometry of map-
ping class groups. It is used in an essential way in the following remarkable theorem, estab-
lishing quasiisometric rigidity of mapping class groups. To state the theorem, let Mod˙.S/

denote the extended mapping class group, i.e., allowing orientation-reversing homeomor-
phisms (this is an index 2 extension of Mod.S/). If G is a finitely generated group with
a word metric, denote by QI.G/ the group of quasiisometries G ! G with the equiva-
lence relation f1 � f2 if supg d.f1.g/; f2.g// < 1. There is a natural homomorphism
G ! QI.G/ sending g to the left translation by g.

Theorem 3.8 ([10,79]). Let S be a surface of finite type. Except for a small number of spo-
radic surfaces, the natural homomorphismMod˙.S/ ! QI.Mod˙.S// is an isomorphism.
In particular, if G is any group quasiisometric to Mod.S/, then there is a homomorphism
G ! Mod˙.S/ with finite kernel and finite index image.

4. Projection complexes

It is tempting to view the distance formula as saying that the coarse map

Mod.S/ !

Y
X

C.X/

defined by g 7! �X .g. Ę// is a quasiisometric embedding, where we equip the right-hand
side with the `1-metric. The trouble is that this is not really a metric, and “cutting off” at K

in each coordinate would not satisfy the triangle inequality. Up to modifying each coordinate
a bounded amount, the image of this map was identified in [7, 10]. The main restriction on
the image is the following inequality.

Theorem 4.1 (Behrstock inequality, [7]). There is a � � 0 such that the following holds.
Suppose X; Y � S are two subsurfaces such that the boundary of each intersects the other.
Then at least one of dX .@Y; Ę/ and dY .@X; Ę/ is � � .

There is a simple proof of the Behrstock inequality, due to Chris Leininger, see
[94]. If we focus on the two coordinates C.X/ � C.Y /, the inequality says that the image is
contained in a Hausdorff neighborhood of the “wedge” of C.X/ � ¹yº [ ¹xº � C.Y / where
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x D �X .@Y / and y D �Y .@X/. This suggests taking wedges instead of products for the right-
hand side in order to fix the metrizability problem, and leads to the following construction
that can be axiomatized.

Let Y be a collection of metric spaces (technically we allow the distance to be infi-
nite, for example, we might have disconnected graphs with the path metric). Suppose that
for distinct X; Y 2 Y we are given a subset �X .Y / � X . If Z 2 Y, Z ¤ X , we define

dX .Y; Z/ D diam
�
�X .Y / [ �X .Z/

�
:

We will assume that the following axioms hold for some fixed � � 0:

(P1) dX .Y; Y / � � ,

(P2) if dX .Y; Z/ > � then dY .X; Z/ � � , and

(P3) for X ¤ Z, the set ®
Y 2 Y j dY .X; Z/ > �

¯
is finite.

There are many natural situations where these axioms hold.

Examples 4.2. (1) Let T be a simplicial tree andY a collection of pairwise disjoint
simplicial subtrees. The projection �X .Y / is the point of X nearest to Y . The
axioms hold with � D 0. See Figure 3.

�A.B/D�A.C / �B .A/D�B .C /

�C .A/ �C .B/

A B

C

Figure 3

The situation of Example 4.2(1), dC .A; B/ > 0 while dA.B; C / D dB .A; C / D 0.

(2) Let S be a closed hyperbolic surface and  an immersed closed geodesic which
is not a multiple. In the universal cover QS D H2 consider the set Y of all lifts
of  , and define projections as nearest point projections. A similar construction
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can be performed with a group acting on a hyperbolic space and a maximal
virtually cyclic subgroup that contains a WPD element.

(3) Let S be a complete hyperbolic surface of finite area and a cusp. In the universal
cover QS D H2, consider the set Y of all lifts of a fixed horocyclic curve in the
cusp (with either the intrinsic or the induced metric). Again the projection is the
nearest point projection. A similar construction can be performedwith relatively
hyperbolic groups.

(4) Let G be a group acting on a simplicial hyperbolic graph X and let H be the
stabilizer of a vertex v 2 X . Assume thatH acts simply transitively on the edges
incident to v, and that the metric on the link Lk.v; X/ (which can be identified
withH ) induced by the path metric onX X ¹vº is proper (finite radius balls con-
tain finitely many points; here we allow distances to be infinite). Let Y be the
collection of links of vertices in the orbit of v with this proper metric on each.
If u; w are two distinct vertices in the orbit of v the projection of Lk.u; X/ to
Lk.w; X/ is the set of points in Lk.w; X/ that belong to a geodesic between u

and w. If .G; H/ admit such an action, H is said to be hyperbolically embed-
ded in G; see [55]. For example, parabolic subgroups of hyperbolic groups, or
maximal virtually cyclic subgroups containing a WPD element as in (2) are
hyperbolically embedded, as can be seen by building the projection complex
below.

(5) Let S be an orientable surface of finite type and let Y be a collection of isotopy
classes of �1-injective subsurfaces where subsurface projections are defined,
and assume that if X; Y 2 Y and X ¤ Y then @X is not disjoint from Y (up to
isotopy). Define �Y .X/ D �Y .@X/.

The construction of a projection complex P .Y/ (and the blow-up version C.Y/) is
kind of a converse to Example 4.2(2) above, where one tries to “reconstruct” the ambient
space from the projection data (though usually one gets a different ambient space).

Theorem 4.3 ([19], for a simpler construction see [22]). Suppose the projection data�
Y; �X .Y /; �

�
satisfy (P1)–(P3). There is a metric space C.Y/ containing metric spaces in Y as pairwise
disjoint isometrically embedded subspaces and so that �X .Y / agrees, up to a bounded error,
with the nearest point projection of Y to X within C.Y/. Moreover,

• If each Y 2 Y is ı-hyperbolic for some ı � 0 then C.Y/ is hyperbolic.

• If each Y 2 Y is quasiisometric to a tree (a “quasitree”) with fixed QI constants,
then C.Y/ is also a quasitree.

• If the collection Y consists of finitely many isometry types of metric spaces and
they all have asymptotic dimension � n then asdimC.Y/ � n C 1.
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• The spaceP .Y/ obtained fromC.Y/ by collapsing all embedded copies of spaces
in Y is a quasitree.

• If a group G acts by isometries on
F

Y 2Y Y preserving the projections (i.e.,
g.�X .Z/ D �g.X/.g.Z// for all g 2 G) then G acts by isometries on C.Y/

extending the action on
F

Y 2Y Y , and it also acts isometrically on P .Y/.

We briefly outline the construction. As indicated above, the idea is to start with the
disjoint union of all Y 2 Y and then for certain pairs .X; Z/ add edges joining points in
�X .Z/ to points in �Z.X/.

Step 1 is to promote (P2) to a stronger property (P2++):

(P2++) If dY .X; Z/ > � then �Y .X/ D �Y .Z/.

This can be done by modifying the projection �X .Y / by a bounded amount and
replacing � by a larger constant. This modification preserves group equivariance.

In step 2, assuming (P1), (P2++), and (P3), one chooses a constantK � 2� and posits
that X and Z are connected by edges as above provided dY .X; Z/ � K for all Y ¤ X; Z.
The key property that makes the proof of Theorem 4.3 possible is that the set

¹Xº [
®
Y j dY .X; Z/ > K

¯
[ ¹Zº

is finite (by (P3)) and is naturally linearly ordered giving a path from X to Z, called a stan-
dard path, in PK.Y/. These standard paths are quasigeodesics and behave very nicely. The
construction depends on the choice of the constant K: when K is enlarged, there will be
more edges attached.

We mention a few applications of this construction to mapping class groups.

Theorem 4.4 ([19]). asdim.Mod.S// < 1.

The basic idea is to replace the infinite product of curve complexes by a smaller
space. The collection of all subsurfacesY does not satisfy the assumptions of Example 4.2(5)
above since subsurfaces can be disjoint or nested. However, one shows that there is a way
to write Y equivariantly as a finite disjoint union tYi so that each collection Yi satisfies
Example 4.2(5). Thus one gets the spacesC.Yi /. These are all hyperbolic, and crucially, have
finite asymptotic dimension by Theorem 4.3 and the theorem of Bell–Fujiwara [11] that curve
complexes have finite asymptotic dimension. Then we have a quasiisometric embedding

Mod.S/ !

Y
i

C.Yi /

which finishes the proof since passing to finite products and subspaces preserves finiteness
of asymptotic dimension.

There is quite a bit of inefficiency when we take the product of the blown-up projec-
tion complexes over the families Yi . There is a more involved system of axioms that keeps
track of pairs of surfaces that are disjoint or nested leading to the notion of a hierarchically
hyperbolic group, due to J. Behrstock, M. Hagen, and A. Sisto. For example, in [8] they
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derive a bound on asdim.Mod.S//, using [18], which is quadratic in the complexity of the
surface. There are other applications of this theory, for example, in [9] they show how to
understand quasiflats in mapping class groups and how to approximate a “hull” of a finite
set by a CAT.0/ cube complex.

Theorem 4.5 ([21]). There is a classification, in terms of the Nielsen–Thurston normal form,
of those elements g ofMod.S/ that have stable commutator length scl.g/ D 0.

Recall that for g 2 ŒG; G� cl.g/ is the smallest k such that g can be written as a
product of k commutators, and scl.g/ D limn

cl.gn/
n

. By Bavard duality (see [49]), scl.g/ > 0

is equivalent to having a quasimorphism G ! R which is unbounded on the powers of g.
Projection complexes are used to construct actions of finite index subgroups of Mod.S/

on hyperbolic spaces with a power of a given element acting loxodromically, and then
the Brooks method can be used to construct such quasimorphisms. It is worth stating this
fact:

Theorem 4.6 ([21]). Let S be a finite type surface. There is a torsion-free finite index sub-
group G < Mod.S/ such that for every element g 2 G of infinite order there an action of G

on a hyperbolic space such that g is loxodromic.

For example, this applies to (powers of) Dehn twists. By contrast, a theorem of
Bridson [43] says that whenever Mod.S/ (with S of genus � 3) acts on a CAT.0/ space,
Dehn twists have translation length 0.

Projection complexes are useful more generally for constructing quasicocycles on
groups G with coefficients in orthogonal representations on strictly convex Banach spaces
(such as lp.G/ for 1 < p < 1); see [20].

Theorem 4.7 (Balasubramanya [2]). If a group G acts on a hyperbolic space with a WPD
element, then it admits a cobounded acylindrical action on a quasitree.

Another proof of Balasubramanya’s theorem is given in [22]. The quasitree is the
projection complex applied to Example 4.2(2) and acylindricity is proved using the geometry
of standard paths.

F. Dahmani, V. Guirardel, and D. Osin solved a long standing open problem when
they proved the following.

Theorem 4.8 ([55]). Let � 2Mod.S/ be a pseudo-Anosovmapping class. Then for a suitable
power �n with n > 0 the subgroup normally generated by �n is free.

They derive this theorem using the method of rotating families.

Theorem 4.9 ([55]). For every ı � 0 there is R > 0 such that the following holds. Let X be
a ı-hyperbolic space and G a group of isometries of X . Let C � X be a G-invariant set
which is R-separated (meaning that d.c; c0/ > R if c; c0 2 C are distinct). Suppose for every
c 2 C we are given a subgroup Gc of the stabilizer StabG.c/ such that
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(i) Gg.c/ D gGcg�1 for c 2 C and g 2 G, and

(ii) if g 2 Gc X ¹1º, c0 2 C and c0 ¤ c then every geodesic from c0 to g.c0/ passes
through c.

Then the subgroup of G generated by [c2C Gc is the free product of a subcollection of the
family ¹Gcºc2C .

To prove Theorem 4.8, they apply this theorem to the space obtained from the curve
complex C.S/ by equivariantly coning off an orbit of the elementary closure EC.�/. Pre-
tending that this orbit is in an isometrically embedded line, one would attach the universal
cover of a disk of large radius in H2 punctured at the center, and then completed to add the
cone point back in. The set of these cone points is the set C from the theorem, and Gc is the
cyclic group generated by (a conjugate of) a suitable power �n.

More recently, M. Clay, J. Mangahas, and D. Margalit proved a version of The-
orem 4.9 that applies to projection complexes. Rotating families are replaced by spinning
families.

Theorem 4.10 ([51]). For every � and K, there is L so that the following holds. Suppose a
group G acts on the projection data and on the associated projection complex P D PK.Y/.
Suppose for every vertex v 2 P we are given a subgroup Gv of the stabilizer StabG.v/ such
that

(i) Gg.v/ D gGvg�1 for any vertex v and g 2 G, and

(ii) if v; v0 are distinct vertices and g 2 Gv X ¹1º then dv.v0; g.v0// > L.

Then the subgroup of G generated by
S

v Gv is the free product of a subcollection of the
family ¹Gvºv2P .0/ .

They derive Theorem 4.8 directly from Theorem 4.10 using the projection complex
as in Example 4.2(2). They also prove several statements about normal closures of powers
of other kinds of elements, or collections of elements, in Mod.S/. One extreme behavior is
that the normal closure is free, another that it is the whole Mod.S/, but surprisingly there
are examples when the normal closure turns out to be a certain kind of (infinitely generated)
right angled Artin groups.

In [24] the two theorems above are revisited, and in particular the paper shows how
to derive Theorem 4.9 from Theorem 4.10.

Here are two more applications of projection complexes to mapping class groups,
though we will not comment on the proofs.

Theorem 4.11 ([4]). Mapping class groups satisfy the Farrell–Jones conjecture.

Theorem 4.12 ([60]). Mapping class groups are semihyperbolic.
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This means that one can equivariantly choose uniform quasigeodesics connecting
any pair of points in Mod.S/ so that they fellow-travel, i.e., if the endpoints are at distance
� 1 then each is in the other’s uniform Hausdorff neighborhood.

5. Group Out.Fn/

Let Fn be the free group of rank n � 2, Aut.Fn/ its automorphism group, and
Out.Fn/ D Aut.Fn/=Fn the outer automorphism group of Fn, obtained by quotienting out
the inner automorphisms. This group has been studied for over a century, see Nielsen’s paper
[109] where he proves that Out.Fn/ is generated by n C 1 involutions. A big impediment in
the study of Out.Fn/, and free groups in general, was the tendency to think of elements of
free groups as words in a basis. A much more flexible approach is to think of a free group as
the fundamental group of a graph, which is not necessarily a rose Rn (a wedge of n circles).
For example, the proof that subgroups of free groups are free is essentially trivial using cov-
ering spaces and general graphs, while the more algebraic proof is much less transparent. In
[134] J. Stallings introduced the operation of folding graphs and used it to show that many
standard algorithmic problems about free groups have easy solutions.

5.1. Outer space
Given this philosophy, the definition of Culler–Vogtmann’s Outer space CVn should

seem very natural. Fix the roseRn. A point in CVn is represented by a homotopy equivalence
h W Rn ! � , called marking, where � is a finite graph with all vertices of valence > 2

equipped with a metric of volume 1, i.e., an assignment of positive numbers to its edges that
add to 1. Two such markings h W Rn ! � and h0 W Rn ! � 0 represent the same point in CVn

if there is an isometry � W � ! � 0 such that �h is homotopic to h0. Formally, the definition
is analogous to the definition of Teichmüller space, where metric graphs are replaced by
hyperbolic surfaces. There are many useful analogies between mapping class groups and
Out.Fn/, perhaps stemming from the classical theorem of Dehn–Nielsen–Baer (see [62]) that
whenG is the fundamental group of a closed orientable surface S then Out.G/ ŠMod˙.S/.
While Teichmüller space is diffeomorphic to Euclidean space, Outer space is a contractible
polyhedron and the study of Out.Fn/ is decidedly more combinatorial compared to the study
ofmapping class groups. The groupOut.Fn/ acts naturally on CVn by changing themarking.
The action is proper. For more on Outer space and the consequences to the structure of
Out.Fn/, see the original paper [53], as well as the excellent survey [141], and also [15].

5.2. The boundary of Outer space
By taking universal covers, another way to think about a point h W Rn ! � in CVn

is as a free action of Fn on a simplicial metric tree. The construction in Section 2.10 then
yields a compactification of CVn with the points in the ideal boundary @CVn represented
by actions of Fn on R-trees (which are either nonsimplicial or non-free). This construction
was carried out in [52]. Exactly which trees arise in @CVn was identified in [27,85].
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5.3. Lipschitz metric and train-track maps
There is a natural notion of a Lipschitz distance between two points hi W Rn ! �i ,

i D 1; 2. It is defined by
d.�1; �2/ D log�

where � � 1 is the smallest possible Lipschitz constant of all maps f W �1 ! �2 that com-
mute with markings, i.e., h2f is homotopic to h1 (and �i are viewed as geodesic metric
spaces). This “metric” is not symmetric, but satisfies the triangle inequality d.�1; �3/ �

d.�1; �2/ C d.�2; �3/, and d.�; � 0/ � 0 with equality only for � D � 0. This metric has
interesting properties and displays a mixture of behaviors of the well-studied metrics on
Teichmüller space (Teichmüller, Weil–Petersson, and Thurston metrics). It can be used in
the Out.Fn/ setting in a way similar to the Bers’ proof of the Nielsen–Thurston classifica-
tion of mapping classes (see [62]) to give a proof of the following train-track theorem; see
[17].

Theorem 5.1 ([35]). Every irreducible automorphism � 2 Out.Fn/ can be represented by a
train-track map f W � ! � for some � 2 CVn.

A marking gives an identification between �1.�/ and Fn and f W � ! � “repre-
sents” � if the induced endomorphism on �1.�/ is �. We say that � is irreducible if it cannot
be represented by some f W � ! � that leaves a proper subgraph with nontrivial �1 invari-
ant. The map f is a train-track map if all positive powers of f are locally injective on all
edges of � . It is easy to control the growth of lengths of loops under iteration by train-track
maps, which makes them important in the study of the dynamics of an automorphism. More
generally, when � is not irreducible, there are relative train-track representatives.

The Lipschitz metric admits geodesic paths, called folding paths, which are induced,
in the spirit of Stallings, by identifying segments of the same length and issuing from the
same vertex. For more on this, see [17].

5.4. Hyperbolic complexes
By analogy with the arc and curve complexes, there are several complexes where

Out.Fn/ acts.

5.4.1. The free splitting complex FSn

This one is analogous to the arc complex. A k-simplex is a .k C 1/-edge free split-
ting of Fn, i.e., it is a minimal action of Fn on a simplicial tree with vertices of valence > 2,
with trivial edge stabilizers and with .k C 1/ orbits of edges. Passing to a face is induced
by equivariantly collapsing an orbit of edges. Outer space CVn is naturally a subset of FSn,
which can be viewed as a “simplicial completion” of CVn.

5.4.2. The cyclic splitting complex FZn

This is defined the same way, except that the edge stabilizers can be cyclic sub-
groups. It is analogous to the curve complex.
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5.4.3. The free factor complex FFn

This one is different from FZn but can also be viewed as an analog of the curve com-
plex. A vertex of FFn is a proper free factor A < Fn, i.e., a subgroup such that
Fn D A � B for some A ¤ 1 ¤ B , defined up to conjugation. A k-simplex is a k-tuple
of distinct conjugacy classes of proper free factors that are nested after suitable conjugation.

There are natural coarse equivariant maps

CVn ! FSn ! FZn ! FFn :

For example, FSn ! FFn sends a free splitting to a nontrivial vertex group (or if they are all
trivial, to a free factor represented by a subgraph of the quotient graph).

Now, it turns out that all three of these complexes are hyperbolic, and there are
several others that this survey is not mentioning. The first hyperbolic Out.Fn/-complex was
constructed in [29], though it is not canonical. The hyperbolicity of FFn was established in [30]

along the lines of theMasur–Minsky’s argument for the curve complex, by projecting folding
paths from CVn to FFn. A novel argument by Handel–Mosher [80] established hyperbolicity
of FSn, by considering folding paths directly in FSn. Kapovich–Rafi [88] found a general
criterion that a Lipschitz map X ! Y has to satisfy in order for the hyperbolicity of X to
imply the hyperbolicity of Y . Essentially, Lipschitz images of thin triangles are thin triangles.
The maps FSn ! FZn ! FFn satisfy the Kapovich–Rafi criterion, so the hyperbolicity of
FSn implies the hyperbolicity of the other two. Loxodromic elements in FFn are precisely the
fully irreducible automorphisms (those whose positive powers are irreducible) and they are
all WPD (in FSn there are more loxodromic elements and they are not all WPD). Thus the
space of quasimorphisms on Out.Fn/ is infinite-dimensional and Out.Fn/ is acylindrically
hyperbolic. Handel and Mosher [81, 82] extended this and proved the H 2

b
-alternative: any

subgroup of Out.Fn/ which is not virtually abelian has an infinite-dimensional space of
quasimorphisms. This recovers the theorem of Bridson and Wade [45] that no higher rank
lattice embeds as a subgroup of Out.Fn/. The proof is much more involved than the H 2

b
-

alternative for mapping class groups [32].
The boundary of FFn was identified with a proper quotient of a subspace of @CVn

in [39] and in [77].

5.5. Subfactor projections
By analogy with the Masur–Minsky subsurface projections, there are subfactor

projections, see [31, 137]. Let A; B be two proper free factors in Fn. Our goal is to define
�A.B/ 2 FS.A/, the projection of B to the free splitting complex of A. Choose � 2 CVn so
that B is represented by a subgraph �B of � . Then represent A by an immersion �A ! � .
Thus �A determines a simplex in Outer space for A, and can be projected to FS.A/ (or
FF.A/). It takes some work to show that coarsely this projection does not depend on the
choice of � , at least when A and B are sufficiently far apart in FFn. Moreover, the set Y

of all free factors can be equivariantly and finitely partitioned into tYi so that projection is
defined within each Yi , and this projection satisfies the projection axioms. One then gets a
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map
Out.Fn/ !

Y
i

C.Yi /

in the sameway as formapping class groups (see the discussion after Theorem 4.4). However,
here the map is not a quasiisometric embedding. The main issue is that there is no analog
of annulus projections: when A has rank 1, the corresponding complex FS.A/ is a single
point. For example, the orbits on the right-hand side under the powers of any polynomially
growing automorphism are bounded. For more on this, see [142].

5.6. Questions
The following is the key question, if one hopes to understand Out.Fn/ using hyper-

bolic methods. The other questions reiterate the state of affairs that the large scale geometry
of Out.Fn/ is lagging behind the one of mapping class groups.

(1) Given � 2 Out.Fn/ of infinite order, is there a finite index subgroup G <

Out.Fn/ and an isometric action of G on a hyperbolic space so that a positive
power of � that belongs to G acts loxodromically?

This is true for mapping class groups (see Theorem 4.6), and it is also true for auto-
morphisms � that grow exponentially.

(2) Do any of hyperbolic Out.Fn/-complexes admit tight (quasi-)geodesics?

These were defined for curve complexes by Masur and Minsky, and a very strong
finiteness property was established by Bowditch [41]. Thus the question is asking for an
equivariant collection of uniform quasigeodesics so that any two are connected by at least
one, but only finitely many of these.

Bowditch used his strong finiteness of tight geodesics to show that translation
lengths in the curve complex are rational, and Bell–Fujiwara [11] used it to show that curve
complexes have finite asymptotic dimension.

(3) Do the hyperbolic Out.Fn/-complexes FSn; FZn; FFn have finite asymptotic
dimension? Are the translation lengths always rational? Does Out.Fn/ have
finite asymptotic dimension?

We remark that the Novikov conjecture is known for Out.Fn/ [33].
The following seems out of reach with the present methods, although [36] is a

promising start:

(4) Does Out.Fn/ satisfy the Farrell–Jones conjecture?

(5) Does the local and global connectivity of @FFn go to infinity as n ! 1?

By the work of Gabai [65], the answer is yes for the boundary of the curve complex.
Each @FFn is finite0dimensional [37], and [23] is a start. Of course, the same question can be
asked about the boundaries of FZn and FSn.
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1. Introduction

Fix a prime number p. The last decade has witnessed multiple conceptual advances
in algebraic geometry over mixed characteristic rings (which, in this article, we take to mean
commutative rings that arep-adically complete). These advances have led to the resolution of
longstanding questions in different areas of mathematics where p-adic completions appear.
Moreover, entirely new and fascinating domains of inquiry have been uncovered. The goal of
this survey is to discuss some of these developments, especially in topics close to the author’s
expertise.

A highlight of the last decade of activity in the area has been its seat as an exchange
of ideas across different fields of mathematics. For instance, a central topic of this survey
is prismatic cohomology, which is a new cohomology theory for mixed characteristic rings
(Sections 2 and 3); its discovery was inspired in part by calculations in homotopy theory and
in part by developments inGalois representation theory (Remark 4.5). Prismatic cohomology
in turn played a prominent role in the proof of a mixed characteristic analog of the Kodaira
vanishing theorem (Theorem 5.7), which then helped develop the minimal model program
in the birational geometry of arithmetic threefolds (Theorem 5.10). In the reverse direction,
an important flatness lemma discovered in the solution [3] of a longstanding question in
commutative algebra facilitated, via prismatic cohomology again, the proof of an analog
of Bott’s vanishing theorem for algebraic K-theory (Theorem 4.8). The author hopes this
survey can convey some of the excitement surrounding this interplay of ideas.

We emphasize right away that the topics covered are chosen somewhat idiosyncrat-
ically, and we have not attempted to be comprehensive even in the topics we do cover; to
make partial amends, a number of references have been included to help the reader navigate
the subject. Moreover, the level of the exposition is uneven across sections; for instance, we
have taken a macroscopic view of topics that are reasonably well documented elsewhere, but
have gone into more detail and depth while covering very recent ideas that seem promising.

This survey is organized as follows. In Section 2, we discuss relative prismatic coho-
mology and related developments. The absolute version of this story, which is comparatively
new, is the subject of Section 3.We then present applications, covering algebraicK-theory in
Section 4 and commutative algebra and birational geometry in Section 5.We end in Section 6
with some relatively recent work on p-adic Riemann–Hilbert problems and their algebro-
geometric implications.

All rings that appear are assumed commutative unless otherwise specified.

2. Prisms and relative prismatic cohomology

In the last century, especially following the work of Grothendieck, cohomology the-
ories have emerged as extremely important tools in algebraic geometry and number theory:
they lie at the heart of some of the deepest theorems and conjectures in both subjects. For
example, classical Hodge theory, which studies the singular cohomology with real/complex
coefficients for complex varieties, is a central topic inmodern algebraic geometry, with appli-
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cations throughout the subject and beyond. Likewise, p-adic Hodge theory, which studies
the p-adic cohomology of p-adic varieties, is an equally fundamental notion in arithmetic
geometry: it provides one of the best known tools for understanding Galois representations
of the absolute Galois group of Q. Moreover, unlike in the complex setting, there is a large
number of cohomology theories in the p-adic world: étale, de Rham, Hodge, crystalline, de
Rham–Witt, etc. In this section, we will report on work from the last few years dedicated
to finding an organizational framework to better understand p-adic cohomology theories in
p-adic arithmetic geometry, especially their relationships with each other.

Remark 2.1 (Why do derived objects appear repeatedly?). Before embarking on our jour-
ney, let us explain one reason derived notions (i.e., those with a homological/homotopical
flavor) often appear in recent work in the area and consequently also in our exposition.

In classical algebraic geometry, the fundamental objects are smooth algebraic vari-
eties over an algebraically closed field. Similarly, in mixed characteristic algebraic geometry,
the basic geometric objects are (p-adic formal1) smooth schemes over the ring of integers
OC of a complete algebraically closed nonarchimedean field C=Qp . In particular, unlike the
classical setting, the rings of functions that appear in mixed characteristic algebraic geometry
are often not noetherian: indeed, the ring OC is a nonnoetherian valuation ring as its value
group is divisible. Replacing OC with a discrete valuation ring like Zp , while quite tempting
and important for applications, leads to arithmetic subtleties that one would like to avoid, at
least at first pass, in a purely geometric study. Even more exotic nonnoetherian rings are crit-
ical to several recent innovations in the area, such as perfectoid geometry [143,202], descent
techniques for extremely fine Grothendieck topologies such as the pro-étale, quasisyntomic,
v and arc topologies [36,38–40,205], the theory of ı-rings [138], etc.

In the nonclassical situations described above, derived notions often have better sta-
bility properties than their classical counterparts. For instance, given a commutative ring R

with a finitely generated ideal I , the category of derived I -complete R-modules forms an
abelian subcategory (e.g., it is closed under kernels and cokernels) of the category of all
R-modules, unlike the subcategory of classically I -adically complete R-modules; more-
over, the assignment carrying R to the 1-category DI�comp.R/ of derived I -complete
R-complexes forms a stack for the flat topology (or even a suitably defined I -completely flat
topology), unlike the corresponding assignment at the triangulated category level. For such
reasons, the language of higher category theory and derived algebraic geometry [169–171,223,

224] has played an important role in the developments discussed in this paper.

The work described in this section began with the goal to enhance Fontaine’s per-
spective [93] on p-adic Hodge theory to work well with integral coefficients. A concrete goal
was to understand how the torsion in the Zp-étale cohomology of the geometric generic fiber
of a smooth projective scheme over a mixed characteristic discrete valuation ring relates
to the torsion in the crystalline cohomology of its special fiber; this question was already

1 A p-adic formal scheme is a formal scheme whose affine opens are given by formal spectra
of p-adically complete rings equipped with the p-adic topology.
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stressed by Grothendieck in his Algerian letter to Deligne in 1965 (see [60] for a survey on
the status of this question 20 years ago, and Section 2 in [60] for history). After initial attempts
[37,38] that worked well in important examples, a satisfactory theory was found via the notion
of a prism, recalled next. The definition relies on the notion of a ı-ring, which is roughly a
commutative ring A equipped with a map ' W A! A lifting the Frobenius endomorphism
f 7! f p of A=p (interpreted in a derived sense when A has p-torsion); see [61, 138]. The
importance of this notion in arithmetic geometry has long been stressed by Borger, see [57].

Definition 2.2 (Prisms, [41]). A prism is a pair .A; I /, where A is a ı-ring and I � A is an
invertible ideal such that A is derived .p; I /-complete and p 2 .I; '.I //. Write A WD A=I .

In practice, we restrict to bounded prisms, i.e., those prisms .A; I / where the p-
power torsion in A is annihilated by pn for some n � 0; this restriction allows us to avoid
certain derived technicalities without sacrificing the key examples. Two important examples
are discussed next; see Remark 2.9 for another key example.

Example 2.3 (Crystalline prisms). If A is any p-complete p-torsion-free ı-ring, then
.A; .p// is a bounded prism. For instance, given a reduced Fp-algebra R, we could take
A D W.R/ to be the ring of p-typical Witt vectors of ring with its natural Frobenius lift.

Example 2.4 (Perfect prisms). A prism .A; I / is called perfect if the Frobenius map
' W A ! A is an isomorphism; any such prism is bounded and the ring A is perfectoid
as in [37, 101]. In fact, the construction .A; I / 7! A yields an equivalence of categories
between perfect prisms and perfectoid rings; thus, the notion of a prism may be viewed
as a “deperfection” of the notion of a perfectoid ring. An important example is the perfect
prism .A; I / corresponding to the perfectoid ring A D OC , where C=Qp is a complete and
algebraically closed extension; we call this a Fontaine prism, in homage to its discovery
[92, §5].

Given a bounded prism .A; I / as well as an A-scheme X , the following key defini-
tion allows us to extract an A-linear cohomology theory for X .

Definition 2.5 (The relative prismatic site). Fix a bounded prism .A; I / and a p-adic formal
A-scheme X . The relative prismatic site .X=A//� is the category of all bounded prisms
.B; J / over .A; I / equipped with an A-map Spf.B=J /! X , topologized via the flat topol-
ogy; write O/�, I/�, and O/� for the sheaves obtained by remembering B , J , and B=J ,
respectively, so there is a natural '-action on O/� and O/� D O/�=I/�. Write R�/�.X=A/ WD

R�..X=A//�; O/�/ ˚ ' for the resulting cohomology theory.

The main comparison theorems for R�/�.X=A/ are informally summarized next:

Theorem 2.6 (Relative prismatic cohomology, [37, 41]). Fix a bounded prism .A; I / and
let X be a smooth p-adic formal A-scheme. The relative prismatic cohomology theory
R�/�.X=A/ ˚ ' recovers the standard integral p-adic cohomology theories for X=A with
their extra structures (e.g., étale, de Rham, Hodge, crystalline, de Rham–Witt) via a special-
ization procedure, thereby giving new relationships between them.
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For instance, if .A; I / is crystalline, Theorem 2.6 leads to a canonical Frobenius
descent of crystalline cohomology [17]; this descent was previously observed on cohomol-
ogy groups in [189, 210]. On the other hand, the Ainf-cohomology of [37] is recovered by
specializing to a Fontaine prism; we refer to the surveys [24,183] for more precise assertions
(with pictures!) about the comparisons in this case. An early concrete application of the
latter was the following result relating étale and de Rham cohomology integrally; via classi-
cal comparisons, this gives a new technique to bound the p-torsion in singular cohomology
of complex algebraic varieties via the geometry of their mod p reductions.

Corollary 2.7 (Torsion inequality, [37]). Let C=Qp be a complete and algebraically closed
field with residue field k (e.g., we may take C D Cp D

cQp , so k D Fp). Let X=OC be a
proper smooth p-adic formal scheme. Then

dimFp H i
et .XC ;Fp/ � dimk H i

dR.Xk/ for all i � 0:

More generally, a similar inequality bounds the length of the torsion subgroup of
H i

et .XC ; Zp/ in terms of that of H i
crys.Xk/. In particular, if the latter is torsion-free, so

is the former.

Since its discovery, the prismatic theory in [37, 41] has found several applications,
some of which are discussed below and elsewhere in this paper. Other results featuring this
theory include: Hodge theory of classifying spaces of reductive groups [28, 154], vanishing
theorems for the cohomology of the moduli space of curves with level structures [196], essen-
tial dimension calculations [89], Poincaré duality for Z=pn-coefficients in rigid geometry
[232], calculation of the Zp-cohomology of Drinfeld’s p-adic symmetric spaces [67], a fairly
optimal form of Dieudonné theory in mixed characteristic [8], better understanding of the
moduli stacks of Breuil–Kisin–Fargues modules [81], and several improvements to known
comparisons in integral p-adic Hodge theory [160,161,182].

Remark 2.8 (Rational comparison theorems). Specializing part of Theorem 2.6 to a Fon-
taine prism .A; I / gives a generalization of Fontaine’s crystalline comparison conjecture
Ccrys to proper smooth formal schemes X=A; variants of both this result and its proof have
a long history in p-adic Hodge theory, including [15,50,68,83,85,95,187,226].

Remark 2.9 (q-de Rham cohomology, [41]). Given a smooth Z-algebra R equipped with
a choice of étale coordinates (which we call a framing and indicate by �), one can define
a complex q��

.R;�/
of ZJq � 1K-modules by q-deforming the differential of the de Rham

complex ��
R=Z (see [12, 204]); this complex strongly depends on the framing �. Neverthe-

less, motivated by some local calculations from [37], Scholze had conjectured in [204] that
q��

.R;�/
is independent of the framing � up to canonical quasiisomorphism. This conjec-

ture was deduced from the existence of prismatic cohomology in [41], as explained next;
prior partial progress was made by Pridham [192], also using ı-rings.

By a patching procedure, Scholze’s coordinate independence conjecture reduces
to its analog when all objects are p-completed. The latter follows from the existence of
prismatic cohomology relative to the q-de Rham prism .A;I / WD .ZpJq � 1K; . qp�1

q�1
//where
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'.q/D qp: given a formally smoothp-completeZp-algebraR equipped with a framing� as
before, the relative prismatic complexR�/�.Spf.R˝Zp A/=A/ (which is visibly independent
of the framing �) is naturally quasiisomorphic to the q-dR complex q��

.R;�/
.

The preceding perspective on q-de Rham cohomology also yields a formalism for
more systematically discussing related notions such as, e.g., Gauss–Manin q-connections;
we refer to [64,107,108,184] for more on these and related developments.

Remark 2.10 (Perfections in mixed characteristic, [41]). The theory of perfectoid rings can
be regarded as a mixed characteristic analog of the theory of perfect Fp-algebras, i.e., Fp-
algebras where the Frobenius map is bijective. The utility of this analogy is enhanced by
Theorem 2.6: by attaching objects with Frobenius actions to rings in mixed characteristic,
this result yields a notion of “perfectoidization” for a large class of mixed characteristic rings.
Indeed, given any perfect prism .A; I / and an A-algebra R, one can naturally construct a
“(derived) perfectoidization” R ! Rperfd with excellent formal properties. For instance, if
R is integral over A, then R! Rperfd is in fact the universal map to a perfectoid ring. This
construction has several applications. For instance, [41] uses these to prove an optimal gener-
alization of the Faltings’ almost purity theorem (extending versions from [4,83,86,143,202]),
as well as the result that “Zariski closed D strongly Zariski closed” for affinoid perfectoid
spaces; the latter plays an important role in aspects of [90]. The perfectoidization functor also
powers the construction of the p-adic Riemann–Hilbert functor in Section 6.

Remark 2.11 (A new perspective on de Rham–Witt complexes, [34]). The de Rham–Witt
complex of Bloch–Deligne–Illusie [47,134] is a fundamental object in characteristic p alge-
braic geometry with applications transcending algebra (e.g., [119]). Its construction tradi-
tionally relied on somewhat laborious calculations. The paper [34], inspired by structures on
relative prismatic cohomology, offered a new homological perspective on this object.

To explain this, we first recall the isogeny theorem for prismatic cohomology. In the
setup of Theorem 2.6, when X D Spf.R/ is affine, one often writes /�R=A D R�/�.X=A/,
regarded as an object of the derived category of A. There is then a natural quasiisomorphisme'R=A W '

�/�R=A ' L�I /�R=A (Isog)

induced by the relative Frobenius map, where L�I is a variant of the Berthelot–Ogus–De-
ligne décalage functor (see [37, §6]); the isomorphism e'R=A, which is a prismatic avatar of
the Berthelot–Ogus isogeny theorem [18], plays a critical organizational role in capturing the
additional structures on /�R=A (such as the Nygaard filtration).

The paper [34] shows that when .A;I / is a perfect crystalline prism (e.g., .Zp; .p//),
one can reconstruct the de Rham–Witt complex W ��

R from the pair ./�R=A;e'R=A/ by a pure
homological algebra construction dubbed “saturation.” Moreover, this construction has the
potential to offer a better behaved alternative to the de Rham complex for singular varieties
in characteristic p, analogous to the du Bois complex in characteristic 0; we refer to [135,188]

for more on these developments.

Remark 2.12 (Logarithmic analogs). The smoothness assumption onX in Theorem 2.6 is a
“good reduction” hypothesis.While adequate for several purposes, this is often too restrictive
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for studying the generic fiber: not every proper smooth scheme X�=C admits such a smooth
model X=OC . A more natural assumption—one that is conjecturally always satisfied, up to
replacing models—would be a form of logarithmic smoothness of X=OC (e.g., semistabil-
ity) in the sense of log geometry [139]. Thus, one wants a version of [37,41] in the logarithmic
setting. This has been accomplished in [62,150,151]; it is also possible to approach this prob-
lem by reduction to the smooth case using the language of infinite root stacks, following
ideas of Olsson [190] (work in progress with Mathew).

Remark 2.13 (Nonabelian p-adic Hodge theory). Fix a bounded prism .A; I / and a smooth
p-adic formal A-scheme X . Motivated by the precise form of Theorem 2.6, define a pris-
matic F -crystal on .X=A/ to be a vector bundle E on ..X=A//�; O/�/ equipped with a
Frobenius structure 'E W '

�EŒ 1
I/�

� ' EŒ 1
I/�

�; see Definition 3.2 for a more explicit descrip-
tion in a variant context. Prismatic F -crystals provide a viable notion of “coefficients” in the
theory, somewhat analogous to the role played by harmonic bundles in complex nonabelian
Hodge theory [212, 213]. In particular, given such an F -crystal .E; 'E/, the specialization
functors used in Theorem 2.6 yield a Zp-local system T .E/ on the rigid generic fiber X�

when A is perfect, a vector bundle EdR with flat connection on X=A, an F -crystal Ecrys on
X ˝A .A=p/perf, and (under certain auxiliary lifting data) a Higgs bundle EHiggs on X=A.
The relationship realized by these functors is rather close and has been investigated by vari-
ous authors (such as [32,184,222]). When .A; I / is a Fontaine prism, this relationship is part
of the p-adic Simpson correspondence pioneered by Faltings [1,87,88]. On the other hand, if
.A; I / is a perfect crystalline prism, this relationship yields an alternative perspective on (at
least the local aspects of) the nonabelian Hodge theory of [189].

Remark 2.14 (Extension to the singular case via animation). For several applications
including most results discussed in this paper, it is important to extend the prismatic coho-
mology construction R 7! /�R=A (see Remark 2.11) to possibly singular A-algebras R.
Directly imitating Definition 2.5 does not produce a computable or useable result. Instead,
inspired by the construction of the cotangent complex and derived de Rham cohomology
[132,133] as well as their utility in a wide variety of problems [14,19,20,26,111,136], one extends
the functor /��=A to arbitraryp-completeA-algebras by Quillen’s nonabelian derived functor
machinery [194] (dubbed animation by Clausen [63]) as reformulated in [169]. The resulting
complex /�R=A can be fairly efficiently controlled using the cotangent complex LR=A thanks
to the animated Hodge–Tate comparison, which makes this extension quite useable.

3. Absolute prismatic cohomology

In Section 2, we fixed a base prism .A; I / and discussed results about the rela-
tive prismatic cohomology of a smooth p-adic formal A-scheme X . In this section, we
describe the picture that arises if one does not fix a base prism .A; I /. This distinction is
analogous to that between geometric and absolute étale cohomology in arithmetic, or that
between singular cohomology and Deligne–Beilinson cohomology in Hodge theory. The
objects considered here are newer than those in Section 2; consequently, some results are
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surely not optimal, and we have tried to indicate some natural further directions in the expo-
sition.

3.1. Definition and key examples
To begin, let us recall the definition of the absolute prismatic site (obtained roughly

from Definition 2.5 by discarding .A; I /).

Definition 3.1 (The absolute prismatic site). Given a p-adic formal scheme X , its abso-
lute prismatic site X/� is the category of all bounded prisms .B; J / equipped with a map
Spf.B=J /! X , topologized using the flat topology; write O/�, I/�, and O/� for the sheaves
obtained by rememberingB ,J , andB=J , respectively.WriteR�/�.X/ WDR�.X/�;O/�/ ˚ '
and R� /�

.X/ WD R�.X/�; O/�/ for the resulting cohomology theories.

If there exists a perfect prism .A; I / and a map X ! Spf.A/, the natural map
.X=A//� ! X/� is an equivalence, so Theorem 2.6 describes R�/�.X/ in this case, e.g.,
R�/�.Spf.A//'A. At the other end, Spf.Zp//� is the opposite of the category of all bounded
prisms. As this category has no final object, the cohomology theoryR�/�.Spf.Zp// is poten-
tially interesting; in fact, we shall see in Section 4 that R�/�.Spf.Zp// is closely related to
the p-completed algebraic K-theory of Zp .

In this section, we shall be interested in the following objects on X/�:

Definition 3.2 (Crystals). Fix a p-adic formal scheme X . A prismatic crystal (resp.Hodge–
Tate crystal) E of vector bundles on X is given by an assignment

.B; J / 2 X/� 7! E.B/ 2 VectB WD ¹finite projective B-modulesº�
resp. .B; J / 2 X/� 7! E.B/ 2 VectB=J

�
that is compatible with base change in .B;J / 2X/�. A prismaticF -crystal of vector bundles
onX is given by a prismatic crystalE with an isomorphism 'E W '

�EŒ 1
I/�

�' EŒ 1
I/�

�. Similarly,
one has analogous notions of crystals of perfect (or just .p; I/�/-complete) complexes.

As in the relative case (Remark 2.13), there are realization functors carrying a pris-
matic F -crystal E on X to a Zp-local system T .E/ on the rigid generic fiber X� , a vector
bundle EdR with flat connection on X , and an F -crystal Ecrys on X ˝Zp Fp . The simplest
examples of such crystals are as follows:

Example 3.3 (Breuil–Kisin twists). For any prism .B;J /, one has a naturally defined invert-
ible B-module B¹1º given heuristically by

B¹1º WD J ˝ '�J ˝ '2;�J ˝ � � � :

ThisB-module comes equipped with a natural isomorphism 'B¹1º W '
�B¹1º ' J �1˝B¹1º,

so the assignment .B; J / 7! .B¹1º; 'B¹1º/ gives a prismatic F -crystal .O/�¹1º; 'O/�
¹1º/ on

Spf.Zp//� (and thus on X/� for any X ); we refer to this F -crystal as the (first) Breuil–Kisin
twist. The étale realization of O/�¹1º is identified with the usual Tate twist Zp.1/.
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Example 3.4 (Gauss–Manin F -crystals). Fix a proper smooth map f W Y ! X of
p-adic formal schemes. The formalism of relative prismatic cohomology yields an F -crystal
Rf�O/� of perfect complexes onX/�: its value on a prism .B;J / 2X/� identifies with the rel-
ative prismatic complex R�/�..Y �X Spf.B=J //=B/. Similarly, one obtains a Hodge–Tate
crystal Rf�O/� of perfect complexes on X/�. The formation of Rf�O/� (resp. Rf�O/�)
is compatible with the aforementioned realization functors. Moreover, if Y D P1 � X ,
then the prismatic logarithm [32] yields a natural isomorphism H 2.Rf�O/�/ ' O/�¹�1º of
F -crystals, giving a geometric description of the Breuil–Kisin twist.

3.2. Hodge–Tate crystals
In this subsection, we fix a perfect field k of characteristic p, and write

W.k//� D Spf.W.k///� for the absolute prismatic site of W.k/. Our goal is to explicitly
describe the structure of Hodge–Tate crystals on W.k//�; we then specialize this description
to the Gauss–Manin case to obtain geometric consequences. For the former, we have:

Proposition 3.5 (Sen theory, [32,76,77]). The1-category ODcrys.W.k//�;O/�/ of Hodge–Tate
crystals E of p-complete complexes on W.k//� can be identified as the1-category of pairs
.E; ‚/ consisting of a p-complete object E 2D.W.k// and an endomorphism ‚ W E! E

such that ‚p � ‚ is locally nilpotent on H �.E=p/; we refer to such pairs .E; ‚/ as Sen
complexes and ‚ as the Sen operator.

The implicit functor carrying the crystal E to E 2 D.W.k// in Proposition 3.5 is
given by evaluating at the object of W.k//� obtained by base changing to W.k/ the F�

p-fixed
points of the q-de Rham prism (Remark 2.9).

Remark 3.6 (The stacky approach to prismatic crystals, [32,76]). Proposition 3.5 is proven
via a stacky approach to prismatic cohomology, developed independently in [76] (with a
precursor in [75]) and [32]. Using a tiny amount of derived algebraic geometry [171], these
works attach a stack WCartX—the Cartier–Witt stack of X (called the prismatization X /� in
[76])—on p-nilpotent test rings to any p-adic formal scheme X . This stack comes equipped
with an effective Cartier divisor WCartHTX � WCartX called the Hodge–Tate locus. These
stacks are devised to geometrize the study of crystals on the prismatic site: for a quasisyn-
tomic X , there is a natural ˝-identification of the 1-category ODcrys.X/�; O/�/ of crystals
of .p; I/�/-complete complexes on .X/�; O/�/ with the quasicoherent derived 1-category
Dqc.WCartX /; similarly the 1-category ODcrys.X/�; O/�/ of crystals of p-complete com-
plexes on .X/�; O/�/ identifies with the quasicoherent derived1-category Dqc.WCartHTX /.
Proposition 3.5 is then deduced from an explicit description ofWCartHTW.k/ asBG for a group
scheme G=W.k/ whose representations are identified with Sen complexes.

Notation 3.7 (Diffracted Hodge cohomology). Let f W X ! Spf.W.k// be a smooth map
of p-adic formal schemes. Write .R�.X;� /D

X /;‚/ for the Sen complex corresponding to the
Hodge–Tate crystal Rf�O/� 2

ODcrys.W.k//�; O/�/ via Proposition 3.5; we call R�.X; � /D
X /

the diffracted Hodge complex of X .
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The next result says that R�.X; � /D
X / is a slightly twisted form of the Hodge coho-

mology complex
L

i R�.X; �i
X Œ�i �/, justifying the name “diffracted Hodge cohomology.”

Theorem 3.8 (The Sen structure of � /D
X , [32]). Let X=W.k/ be a smooth p-adic formal

scheme. Then the Sen complex .R�.X; � /D
X /; ‚/ has a natural multiplicative increasing

conjugate filtration Fil�conj equipped with natural isomorphisms

griconj
�
R�.X; � /D

X /; ‚
�
'
�
R�.X; �i

X=W.k//Œ�i �; ‚ D �i
�

for all i .

Theorem 3.8 also shows that the assignment U 7! R�.U; � /D
U / patches to a perfect

complex � /D
X on X , justifying the notation R�.X; � /D

X /.

Remark 3.9 (Relation to classical Sen theory, [32]). Fix a proper smooth map f W X !

Spf.W.k// of p-adic formal schemes; write K DW.k/Œ1=p�, fix a completed algebraic clo-
sure C=K, and write GK for the absolute Galois group of K. Classical results in
p-adic Hodge theory [83,209] show that for each n � 0, the C -semilinear GK-representation
H n.XC ;Qp/˝Qp C comes equipped with a canonical semisimple endomorphism �n whose
eigenvalue decomposition yields the Hodge–Tate decomposition: we have

H n.XC ;Qp/˝Qp C '

nM
iD0

H n�i .X; �i
X=W.k//˝W.k/ C.�i/;

with �n acting by �i on the i th summand on the right. Using the comparison isomorphisms
in Theorem 2.6, one can roughly regard Theorem 3.8 as an integral lift of this assertion: the
value of Rf�O/� on the Fontaine prism for OC recovers R�.XC ;Qp/˝Qp C on inverting
p, the Sen operator ‚ from Theorem 3.8 induces the Sen operator �n on each H n with
the conjugate filtration from Theorem 3.8 yielding the Hodge–Tate decomposition. It was a
pleasant surprise to the author that the Sen operator admits a nice integral form.

Remark 3.10 (Drinfeld’s refinement of Deligne–Illusie, [32, 76]). In the setup of Theo-
rem 3.8, there is a natural identification R�.X; � /D

X /=p ' R�dR.Xk/ compatible with
the conjugate filtration via Theorem 2.6. Drinfeld observed that the Sen operator then
yields interesting consequences for R�dR.Xk/. More precisely, there is a Z=p-grading on
R�dR.Xk/ corresponding to the generalized eigenspace decomposition for the Sen operator
‚, and the i th conjugate graded piece grconji ' R�.Xk ; �i

Xk
/Œ�i � contributes only to the

generalized eigenspace for ‚D �i by Theorem 3.8. In particular, if dim.Xk/ < p, the con-
jugate filtration on R�dR.Xk/ splits canonically. This gives a conceptual new proof—in fact,
a refinement—of the seminal Deligne–Illusie result [73] on Hodge-to-de Rham degeneration
(itself inspired by [83, 95, 141]). As in [73], one only needs a W2.k/-lift of Xk to obtain the
Sen operator—and thus the Z=p-grading—on R�dR.Xk/; this follows from an analysis of
WCartHTW2.k/ similar to Proposition 3.5. The results discussed in this paragraph refine those
in [2] by one cohomological degree; another stacky proof was recently found in [162].

For X=W.k/, a smooth formal scheme without any constraints on dim.Xk/,
one now obtains a residual nilpotent operator ‚ C i on the generalized ‚-eigenspace
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R�dR.Xk/i � R�dR.Xk/ corresponding to the eigenvalue �i ; this operator seems to be
a new piece of structure that awaits further investigation.

3.3. The Nygaard filtration
The absolute prismatic cohomology2 R�/�.X/ of a p-adic formal schemeX carries

an important filtration Fil�N , called the Nygaard filtration. This filtration plays roughly the
same role for prismatic cohomology as the Hodge filtration does for de Rham cohomology.
Moreover, for applications to algebraic topology (such as Theorem 4.8 below), it is critical
to understand this filtration. Its defining feature is that the Frobenius map ' on R�/�.X/

carries FiliN R�/�.X/ to R�.X/�; I i

/�
/ for all i . The relative version of this filtration is well

understood, at least on graded pieces, thanks to the isomorphism (Isog) and the Beilinson
t -structure (see [38, Proposition 5.8]). For the absolute version, one has a similar description:

Theorem 3.11 (The Nygaard fiber sequence, [32]). For any p-adic formal scheme X and
any integer i � 0, there are natural fiber sequences

griN R�/�.X/! Filconji R�.X; � /D
X /

‚Ci
���! Filconji�1R�.X; � /D

X / (Nyg)

and
R�/�.X/¹iº WD R�

�
X/�; O/�¹iº

�
! R�.X; � /D

X /
‚Ci
���! R�.X; � /D

X / (HT)

with the convention that Filconj<0 D 0.

Remark 3.12 (Calculations via the Nygaard fiber sequence). The sequence (Nyg) is quite
useful for calculations of theNygaard filtration. For instance, in conjunctionwith the THH.�/

variant of Theorem 4.2 below (see Remark 4.3 as well), one may use (Nyg) to calculate
��THH.RIZp/ for a p-completely smooth OK-algebra R, where K is a discretely valued
extension of Qp with perfect residue field; this recovers calculations of [54, 163]. Compar-
ing (Nyg) and (HT) also quantifies the failure of the Frobenius map ' W griN R�/�.X/ !

R� /�
.X/¹iº to be an isomorphism in terms of coherent cohomology, thus giving a new

mechanism to study the so-called Segal conjecture for THH.

Remark 3.13 (View Spec.Z/ as a curve). Several results in mathematics have been inspired
by the seemingly nonsensical idea that Spec.Z/ is a curve over some nonexistent base F. In
p-adic arithmetic geometry, this idea can sometimes lead to useful (and testable!) predictions
in conjunction with the following related heuristics:

• Perfectoid rings (e.g., finite fields) are formally étale over F.

• Topologically finite type regular p-complete Zp-algebras R are smooth over F of
relative dimension dim.R/ (the Krull dimension).

2 The complex R�/�.X/ as defined in Definition 3.1 works well under mild assumptions on
the singularities of X (e.g., for lci X ). In general, one modifies the definition of R�/�.X/ by
a categorical procedure involving quasisyntomic descent and animation; we do not elaborate
on this further in this survey and refer to [11,32] for more.
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Webriefly discuss some examples of such predictions. First, ifR is a perfectoid ring,
then the p-completion of LR=Zp

identifies with RŒ1�, which is consistent with the prediction
of a transitivity triangle of cotangent complexes for F! Z! R and the heuristics above;
this was already essentially observed in [84].

Next, Theorem 3.11 was partially conceived based on these heuristics: the fiber
sequence (Nyg) is obtained as the associated graded of a fiber sequence of filtered complexes
allowing one to compute the absolute Nygaard filtration in terms of the relative one; the
underlying fiber sequence of complexes for the latter was guessed based on the analogy
between Z and a smooth curve over a perfectoid ring.

Next, if one views the Hodge–Tate locus WCartHTX � WCartX of the Cartier–Witt
stack (Remark 3.6) as a version of the Hodge stack (i.e., the classifying stack of the tangent
bundle) over F, then the second heuristic above predicts that WCartHTX is well behaved if X

is regular, e.g., the map � WWCartHTX ! X should be a gerbe, and R�� must have coherent
cohomological dimension at most dim.X/; the first of these predictions is true, while the
second is true at least in dimension 1 ([32]). Relatedly, there are some recently defined can-
didate notions of differential forms relative to F [80,128,198]; it would be interesting to find
a direct connection between the stack WCartHTX and these objects.

Finally, let us remark that the philosophy discussed in this remark also featured in
Scholze’s report for the previous ICM [206], and has paid amazing dividends in geometrizing
the local Langlands correspondence in recent years [90,205,207].

Remark 3.14 (p-adic Tate twists, [38,41]). An early observable extracted from absolute pris-
matic cohomology was a good notion of p-adic Tate twistsZp.i/.�/ in mixed characteristic:
these are functors on p-adic formal schemes X defined by a fiber sequence

Zp.i/.X/! FiliN R�/�.X/¹iº
'�1
��! R�/�.X/¹iº (Syn)

for all i � 0. These functors are often called syntomic complexes for mixed characteris-
tic rings as they extend those in characteristic p considered in [140, 181]. One can also
regard Zp.i/.�/ as a form of étale motivic cohomology in weight i (see the forthcom-
ing Remark 4.6). In fact, for formally smooth OK-schemes with K=Qp finite, the syntomic
complexes Zp.i/.�/ agree with the p-adic étale Tate twists of Geisser–Sato–Schneider
[103, 199, 200] defined by glueing motivic complexes on the generic and special fibers [35].
We refer the reader to [11,32,38,41] for more on these syntomic complexes.

Remark 3.15 (p-adic Picard and Brauer groups via coherent cohomology). The syntomic
complex from Remark 3.14 in weight 1 has the following relationship with Gm ([38, Propo-
sition 7.17]), as motivic intuition predicts: for any p-adic formal scheme X , we have

Zp.1/.X/ ' R�.Xet ;Gm/^Œ�1�;

where the completion is p-adic. Plugging this into the sequence (Syn) gives a fiber sequence

R�.Xet ;Gm/^Œ�1�! Fil1N R�/�.X/¹1º
'�1
��! R�/�.X/¹1º (Lef)
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that can be regarded as a weak p-adic analog of the Lefschetz .1; 1/-theorem, e.g., it enables
one to compute the p-completion of Pic.X/ or Br.X/ in terms of absolute prismatic coho-
mology, and thus ultimately via coherent cohomology.

The idea described in the previous paragraph inspired the eventual proof of (a gen-
eralization of) Gabber’s purity conjectures for Picard and Brauer groups in [63]. In a global
direction, Cotner and Zavyalov have recently used (Lef) to prove the vanishing of Pic� .X/

for complete intersection surfaces X � PN in characteristic p (in progress), settling a ques-
tion left open since [109]. In a different direction, the sequence (Lef) can be used to prove that
R 7! R�.Spf.R/et ;Gm/^ commutes with sifted colimits in R (in the p-complete world);
this allows one to reduce general questions about R�.Spf.R/et ;Gm/^ to particularly nice
rings, and played an important role in Bragg and Olsson’s work [58] on finiteness results for
higher direct images of finite flat group schemes along projective morphisms in characteris-
tic p.

3.4. Galois representations
In this subsection, fix a discretely valued field K=Qp with perfect residue field k.

We discuss the relationship of prismatic F -crystals over X D Spf.OK/ and Galois represen-
tations of GK D Gal.K=K/.

For a prime `¤ p, the notion of unramifiedness forZ`- orQ`-representations ofGK

is a Galois-theoretic analog of the property of having “good reduction” for varieties over K:
viewed as an `-adic local system on Spec.K/, an unramifiedGK-representation is exactly one
that extends to a local system over Spf.OK/. In contrast, for Zp- or
Qp-representations, unramifiedness is too restrictive: even the cyclotomic character—or
any nonzero H i .YK ;Qp/ with Y=OK smooth projective and i > 0—is not unramified. To
remedy this, Fontaine invented [93] the notion of crystalline GK-representations; it has been
stunningly successful at capturing the desired “good reduction” intuition. On the other hand,
any prismatic F -crystal E on Spf.OK/ gives rise to a GK-representation T .E/, as well an
F -crystal Ecrys on k (see Definition 3.2 and following discussion); these have the same rank,
so one may view Ecrys as “a special fiber” of T .E/, suggesting that the prismatic F -crystal E

itself should be viewed as a witness for a “good reduction” of T .E/. The following theorem
shows that these two perspectives on good reduction for p-adic representations coincide:

Theorem 3.16 (Prismatic F -crystals and crystalline GK-representations, [42]). The étale
realization functor E 7! T .E/ gives an equivalence of the category of prismatic F -crystals
on Spf.OK/ with the category of Zp-lattices in crystalline Qp-representations of GK .

Thus, prismatic F -crystals on Spf.OK/ provide a reasonable notion for “local sys-
tems on Spf.OK/ with Zp-coefficients”.

Remark 3.17. Theorem 3.16 can be viewed as a refinement of Kisin’s classification of crys-
talline GK-representations [146]; in particular, this refinement attaches prismatic meaning to
the integrality properties of a somewhat mysterious connection in [146]. An alternative proof
of Theorem 3.16 was since given in [78], relying on the theory in [166]; see also [230].
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Various results in the deformation theory ofGK-representations (e.g., [81,147]) indi-
cate it would be fruitful to extend the notion of crystalline GK-representations to torsion
coefficients or even to the derived category. However, as the property of being crystalline
is essentially a rational concept, it is not clear how to proceed. Theorem 3.16 points to a
way forward, e.g., perhaps prismatic F -crystals with O/�=pn-coefficients are a reasonable
candidate for crystalline Z=pn-representations? While satisfactory for describing Zp-local
systems, this approach does not quite lead to a reasonable derived theory as the definition of a
prismatic F -crystal .E; 'E/ is not quantitative enough: the isomorphism 'E does not come
equipped with bounds on its poles/zeroes, leading to certain poorly behaved Ext-groups.
Instead, the correct objects seem to be perfect complexes on an enlargement of the Cartier–
Witt stack WCartOK

(Remark 3.6) constructed by Drinfeld [76]; we describe one piece of
evidence for this correctness assertion in the rest of the subsection.

Write D
'
perf.WCartC

OK
/ for the 1-category of perfect complexes on the stack

Spf.OK//�
00

from [76, §1.8]; let us call such objects prismaticF -gauges onOK
3. Given such an

F -gauge E , write R�'.WCartC
OK

; E/ for its global sections. To a first approximation, a pris-
matic F -gauge E consists of a prismatic F -crystal E of perfect complexes on WCartOK

equipped with the additional datum of a Nygaard-style filtration on R�.WCartOK
; E/; in

fact, this can be made precise if OK is replaced by a qrsp ring (work in progress with Lurie).
The prismaticF -crystals fromExamples 3.3 and 3.4 have natural lifts to prismaticF -gauges.
The promised piece of evidence is the following result:

Theorem 3.18 (A Lagrangian property, [33]). Assume K is unramified. Let

E 2 D
'
perf.WCartC

OK
/

be a prismatic F -gauge with O-linear dual D.E/ and étale realization T .E/ in an appro-
priate derived category of continuous Zp-representations of GK . Then the natural map

R�'.WCartC
OK

; E/! R�
�
GK ; T .E/

�
is the exact annihilator of the corresponding map of local Tate duals, i.e., there is a natural
fiber sequence

R�'.WCartC
OK

; E/! R�
�
GK ; T .E/

�
!
�
R�'

�
WCartC

OK
;D.E/¹1ºŒ2�

��_ (Lag)

where .�/_ D RHomZp .�;Zp/ on the rightmost term.

Theorem 3.18 is work in progress with Lurie [33]; the statement is likely not quite
optimal yet (e.g., we hope to show it for ramified K as well).

Remark 3.19 (The crystalline part of Galois cohomology). Given a Qp-representation V

of GK , Bloch–Kato constructed [51, §3] the “crystalline part” H 1
f

.GK ; V / � H 1.GK ; V /

of the Galois cohomology of V , and proved that the crystalline parts for V and V _.1/ are

3 The definition of WCartC
OK

in [76] (and denoted †0
OK

there) is inspired by the Fontaine–
Jansen theory [94] of F -gauges in crystalline cohomology.
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orthogonal complements under the Tate duality pairing.WhenV is crystalline, Theorem 3.18
may be viewed as an integral and cochain-level variant of this statement. Such integral refine-
ments have been formulated previously in special cases (e.g., [102]); it would be interesting
to compare them to Theorem 3.18.

Remark 3.20 (The analogy with 3-manifolds). In the Mazur(–Mumford) analogy between
number rings and 3-manifolds [158, 180], the scheme Spec.K/ corresponds to a Riemann
surface † while Spf.OK/ corresponds to a 3-manifold M with boundary @M D †. A stan-
dard topological result states that the space Loc.†/ of local systems on † has a symplectic
structure induced by Poincaré duality on †, and the restriction map Loc.M/! Loc.†/ is
Lagrangian (see [96, Proposition 3.27]). The sequence (Lag) may be viewed as an arithmetic
analogue of the infinitesimal form of this result, with the role of a local system on Spf.OK/

played by prismatic F -gauges; in fact, this picture motivated the discovery of Theorem 3.18.

Remark 3.21 (Lichtenbaum–Quillen for OK). The Breuil–Kisin prismatic F -gauges O¹iº

compute the p-adic Tate twists from Remark 3.14, i.e., we have natural identifications
R�'.WCartC

OK
; O¹iº/ ' Zp.i/.OK/. Using the vanishing of Zp.i/.�/ for i < 0, the se-

quence (Lag) then implies that the natural map

Zp.i/.OK/! R�
�
GK ;Zp.i/

�
is an equivalence for i � 2. Under the relationship of either side to the étale K-theory of OK

and K, as well as the localization sequence in K-theory, this result was essentially known
([119]); nevertheless, Theorem 3.18 provides a different conceptual explanation.

4. Algebraic K-theory

Quillen’s algebraic K-theory [193] functor attaches a space (in fact, a spectrum)
K.X/ to a scheme X , generalizing the construction of the Grothendieck group K0.X/; the
study of these invariants and their generalizations is an important pursuit in modern alge-
braic topology. In fact, its impact extends far beyond algebraic topology: the higherK-groups
Ki .X/ feature prominently in some of the deepest conjectures in arithmetic geometry. In this
section, we report on some recent progress in understanding the structural features of the p-
completed algebraicK-theory spectrumK.RIZp/ of ap-complete ringR, with an emphasis
on connections to prismatic cohomology; the case of `-adic completions for ` ¤ p is clas-
sical, going back to work of Thomason [221], Suslin [217], and Gabber [98]. More complete
recent surveys of material covered in this section include [120,121,179].

In classical algebraic topology, combining the Atiyah–Hirzeburch spectral sequence
with Bott periodicity gives the following structure on the complex K-theory K top.X/ of a
(reasonable) topological space X :

The K-theory spectrum K top.X/ admits a natural filtration with gri

identified with the shifted singular cohomology complex R�.X;Z/Œ2i �. (FiltK)
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In recent work, motivated in part by conjectures of Beilinson [13] and Hesselholt,
a p-adic analog of (FiltK) for (étale sheafified) algebraic K-theory of p-complete rings has
been established, with the role of singular cohomology now played by prismatic cohomology.
To explain this better, recall that algebraic topologists often study algebraicK-theory through
a “cyclotomic trace” map

Tr W K.�/! TC.�/;

where TC.�/ is the topological cyclic homology functor; this invariant of rings was invented
by contemplating Hochschild homology over the sphere spectrum, goes back to [55], and
was recently given a simple1-categorical definition in [186]. The trace map is a powerful
calculational tool (see [104, 117–119] for some successes), and there are two main reasons
for this. First, TC.�/ is built, via a rather elaborate homotopical procedure, from objects of
coherent cohomology (namely, differential forms) and is thus potentially more computable
than K-theory. Secondly, the trace map turns out to yield a very good approximation of
K-theory in various situations; in our p-adic context, the state of the art is the following:

Theorem 4.1 (p-adic étale K-theory is TC, [65,66]). For p-complete rings R, the trace map
K.RIZp/! TC.RIZp/ identifies the target with the p-completed étale sheafified K-theory
of R. Moreover, the étale sheafification is not necessary in sufficiently large degrees if R

satisfies mild finiteness conditions.

Via Theorem 4.1, the following result can be viewed as a p-adic analog of the
Atiyah–Hirzebuch part of (FiltK):

Theorem 4.2 (The motivic filtration on étale K-theory, [11,38]). As a functor on p-complete
rings, there is a natural “motivic” filtration on TC.�IZp/ with grimotTC.�IZp/ naturally
identified with the shifted syntomic complex Zp.i/.�/Œ2i � from Remark 3.14.

Remark 4.3 (Variants for THH and cousins). Let us briefly recall the [186] approach to cal-
culating TC. For a commutative ring R, the p-completed topological Hochschild homology
spectrum THH.RIZp/ comes equipped with a natural action of the circle S1 and a certain
Frobenius map. One can then define auxiliary invariants TC�.RIZp/ WD THH.RIZp/hS1

and TP.RIZp/ WD THH.RIZp/tS1 together with two natural maps can; ' W TC�.RIZp/!

TP.RIZp/. The paper [186] then proves there is a natural fiber sequence

TC.RIZp/! TC�.RIZp/
'�can
����! TP.RIZp/; (TC)

thereby yielding a clean modern construction of TC.RIZp/.
The construction of the motivic filtration on TC.�I Zp/ in Theorem 4.2 is suffi-

ciently flexible to ensure that similar ideas also yield compatible “motivic filtrations” on
TC�.RIZp/ and TP.RIZp/. In fact, [38] lifts the sequence (TC) to a filtered fiber sequence
that recovers the sequence (Syn) on associated graded pieces, up to Nygaard completions. In
particular, one recovers (Nygaard completed) absolute prismatic cohomology as the associ-
ated graded of a filtration on TP.

Note that while THH.�/ and cousins are noncommutative invariants (i.e., can be
defined for arbitrary stable1-categories), the construction of the motivic filtration crucially
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uses algebraic geometry; it is unclear if analogous filtrations exist even in slightly more gen-
eral settings, e.g., for TC.C/ for a symmetric monoidal stable1-category C .

Remark 4.4 (Comparison with the Hodge filtration on classical Hochschild homology).
The topological Hochschild homology of a commutative ring R is defined as THH.R/ WD

HH.R=S/, i.e., it is the Hochschild homology relative to the sphere spectrum S. From this
optic, Theorem 4.2 and the variants in Remark 4.3 are analogs of known constructions in
the Hochschild homology of ordinary rings. For instance, given a smooth algebra R over a
commutative ring k, there is a natural filtration on HC�.R=k/ WD HH.R=k/hS1 with gri

identified with the Hodge filtration level FiliHodge��
R=k

Œ2i � (see [167, §5.1.2] and [228] for char-
acteristic 0, and [38, §5.2] and [9] in general). Specializing to k D A for a Fontaine prism
.A; I /, this allows one to recover crystalline and de Rham cohomology—but not étale coho-
mology of the generic fiber—as graded pieces of a natural filtration on classical Hochschild
homology and its variants. Theorem 4.2 and the variants in Remark 4.3 thus contain the sur-
prise that working relative to the sphere spectrum permits one to see the étale cohomology
of the generic fiber as well: one can in fact recover prismatic cohomology.

Remark 4.5 (Origin story). Let .A; I / be a Fontaine prism (Example 2.4). Write Acrys for
the ring obtained by formally adjoining divided powers of I to A in the p-complete set-
ting. Given a smooth proper scheme X over OC D A, its absolute crystalline cohomology
R�crys.X/ is a perfect complex of Acrys-modules with a Frobenius structure. The relation
between the theory of Breuil modules [59] andBreuil–Kisinmodules [146] in Galois represen-
tation theory strongly suggested that R�crys.X/ ought to descend naturally along A! Acrys.
Separately, Hesselholt had calculated [116] that �0TP.OC IZp/ equals A. Comparing this to
the known fact that �0HP.OC IZp/ equals Acrys (up to a completion), it was natural to spec-
ulate that for any X=OC as above, one could find a filtration on TP.X IZp/ whose graded
pieces realize the desired descent of R�crys.X/ along A! Acrys; this eventually led to the
TP.�/-variant of Theorem 4.2 and gave a construction of prismatic cohomology over the
Fontaine and Breuil–Kisin prisms [38, §11]. In fact, as TP.�IZp/ is independent of the base
OC , this also gave the first construction of absolute prismatic cohomology [38, §7.3].

Remark 4.6 (Étale motivic cohomology). We briefly explain why Theorem 4.2 can be
viewed as a p-completed and étale sheafified analog of the filtration of algebraic K-theory
by motivic cohomology (defined via Bloch’s higher Chow groups [48]). Recall that the latter
geometric motivic filtration was conjectured to exist in [13], and established in many cases,
including most smooth cases, in [52,97,159,227]; see [129] for a clean construction. It is thus
natural to conjecture that the p-completed étale sheafification of this geometric motivic fil-
tration identifies with the one in Theorem 4.2. For smooth varieties over a perfect field k of
characteristic p, this is indeed the case by combining [106] and [38]. In mixed characteristic,
while we do not know the full story, a positive answer at the associated graded level follows
from the comparison result from [35] mentioned in Remark 3.14. Let us also remark that
[168] has established the expected relationship of Milnor K-theory (extended as in [145]) and
the .i; i/-part of the syntomic complexes, giving a p-adic analog of [185,225].

728 B. Bhatt



The above discussion raises a natural question: as Theorem 4.2 applies to any p-
complete ring, can the domain of definition of the geometric motivic filtration of the previous
paragraph also be extended to all p-complete rings? In particular, is there a meaningful
geometric motivic filtration on K.R/ for a non-reduced p-complete ring R? Thanks to a
forthcoming result of Mathew on glueing the filtration from Theorem 4.2 with the étale
sheafified Postnikov filtration on K.1/-local K-theory, there is a variant of Theorem 4.2 for
any ring, so one may even reasonably ask these questions for all rings.

Remark 4.7 (Constructing the motivic filtration via quasisyntomic descent). The construc-
tion of the motivic filtration in Theorem 4.2 is quite different from that of the geometric
motivic filtrationmentioned in Remark 4.6. Indeed, the general case of Theorem 4.2 is proven
in [11] (see also [32]) by reducing (via animation as in Remark 2.14) to the quasisyntomic
case treated in [38]. The latter has two essential ingredients. The topological ingredient is
Bökstedt’s fundamental periodicity result [53] that ��THH.Fp/D FpŒu� for a degree 2 class
u; see [153] for a quickmodern proof based on properties of the dual Steenrod algebra, [91] for
an overview of other approaches, and [120] for a deduction of Bott periodicity from Bökstedt
periodicity. The new algebraic input is the flat descent property ([20, 38]) of the cotangent
complex, used in conjunction with the very perfectoid idea (going back in spirit to [95])
that working with certain infinitely ramified covers can “discretize” constructions involving
differential forms in the p-adic world.

As Remark 4.5 explains, the first construction of absolute prismatic cohomology
was through Theorem 4.2 and variants. However, thanks to the alternative and more direct
construction via the prismatic site, one can now use Theorem 4.2 as a tool to study K-theory
via prismatic cohomology. For instance, this approach gives the following result:

Theorem 4.8 (The odd vanishing theorem, [41]). For odd i , the functor�i K.�IZp/ is quasi-
syntomic locally 0 on the category of quasi-syntomic rings.

Theorem 4.8 can be regarded as a variant of the Bott periodicity part of (FiltK) in
the algebraic setting: while periodicity is known to be false due to geometric phenomena, we
still have vanishing in odd degrees. The proof in [41] relies on André’s flatness lemma [3],
and it would be interesting to find a more explicit description of the necessary covers.

Remark 4.9 (Further relations to p-adic arithmetic geometry). Another application of pris-
matic cohomology to K-theory was proving that LK.1/K.R/ ' LK.1/K.RŒ1=p�/ for any
associative ring R ([27]). This equality is a K-theoretic avatar of the étale comparison from
[41] and was proved in [27] via explicit calculations in prismatic cohomology; it has since
been reproved and significantly extended using purely homotopy-theoretic methods in [156].

In the reverse direction (and preceding most of the developments reported in this
paper), [49] used results from topological cyclic homology [105] to prove the infinitesimal
portion of the p-adic variational Hodge conjecture in the unramified case. The extension
to the ramified case was recently obtained in [11] as a consequence of a purely K-theoretic
assertion called the Beilinson fiber square. Using this square and Theorem 4.2, [11] also
gave a simple description of the rationalized syntomic complexesZp.i/.�/Œ1=p� via derived

729 Algebraic geometry in mixed characteristic



de Rham cohomology. This description is quite useful as derived de Rham cohomology is
more computable in practice than prismatic cohomology; in fact, this description formed an
essential ingredient in the classification of crystalline representations given in Theorem 3.16.

The connections discussed above have mostly concerned relative prismatic coho-
mology. It seems likely that a better understanding of absolute prismatic cohomology (as in
Section 3) will lead tomore refined applications. For instance, [164] recovers rather conceptu-
ally the highly non-trivial calculation [119] of theK-theory of local fieldsK=Qp by exploiting
certain covers of the final object in the absolute prismatic topos of OK coming from Breuil–
Kisin prisms. Other related observations are discussed in Remark 3.12 and Remark 3.21.

5. Commutative algebra and birational geometry

The Kodaira vanishing theorem (as well as the generalization by Kawamata–Vieh-
weg) is one of the most important foundational results in complex algebraic geometry; it is
especially useful in birational geometry. Its (original) proof relies crucially on Hodge theory,
and thus no longer applies in positive/mixed characteristic. In fact, the result is known to be
false in those settings [195]; alongside the nonavailability of resolution of singularities in
dimensions� 4, this is a major obstacle to progress in birational geometry in positive/mixed
characteristic. About a decade ago, Schwede observed [208] that methods fromF -singularity
theory in positive characteristic commutative algebra can sometimes be used as a substitute
for the use of vanishing theorems in positive characteristic algebraic geometry; this eventu-
ally led to significant progress in birational geometry in positive characteristic in dimension
� 3, such as [113]. In recent years, input from p-adic Hodge theory has made it possible to
prove similar vanishing theorems in mixed characteristic algebraic geometry; this has led
to solutions of longstanding questions in commutative algebra and also to progress in the
minimal model program in mixed characteristic.

5.1. Vanishing theorems in commutative algebra
F -singularity theory is the study of singularities in positive characteristic via the

behavior of the Frobenius endomorphism. It was born with a classical theorem of Kunz [155]

proving that a noetherian Fp-algebra is regular exactly when its Frobenius endomorphism is
flat. This subject was systematically developed by Hochster–Huneke and several others over
many decades; see [125] as well as the survey [218]. An important landmark in the subject was
a Cohen–Macaulayness result of Hochster–Huneke [126]; see [130] for a fairly recent survey.
The following recent result extends this to mixed characteristic:

Theorem 5.1 (Cohen–Macaulayness of RC, [25, 43]). Let R be an excellent noetherian
domain. Let RC be the integral closure of R in an algebraic closure of its fraction field.
Then the p-adic completion bRC is Cohen–Macaulay over R.

Remark 5.2 (A concrete formulation). Despite involving the large ringRC, Theorem 5.1 is a
finitistic statement whose essential content is the following: if R is local and
x WD ¹p; x1; : : : ; xd º is a system of parameters, then any relation on x becomes a linear
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combination of the trivial Koszul relations in a finite extension S of R. This formulation
explains why Theorem 5.1 can be viewed as a “vanishing theorem up to finite covers”: it
says that the local cohomology classes on R coming from the potentially nontrivial relations
can be annihilated by passing to finite extensions R ! S . Moreover, it also highlights the
essential difficulty: one must construct finite extensions of R from the unwanted relations.

Remark 5.3 (Weakly functorial Cohen–Macaulay algebras). André’s recent resolution [3,4]

of Hochster’s direct summand conjecture led to a lot of activity in mixed characteristic
commutative algebra, including [23,115,175,176,178,211]; see [177] for a recent survey. In partic-
ular, André [6] and Gabber [99] proved the existence of “weakly functorial Cohen–Macaulay
algebras” in the key remaining mixed characteristic case (via rather indirect constructions).
This existence result implies many of the “homological conjectures” in commutative algebra
(a notable exception being Serre’s intersection multiplicity conjecture); see [5,123,124]. Prior
to André and Gabber’s work, this existence was known [114, 122] only in dimension � 3.
Theorem 5.1 now yields an alternative and extremely simple construction of such weakly
functorial Cohen–Macaulay algebras in mixed characteristic: we may simply usebRC.

Remark 5.4 (What was known?). Theorem 5.1 is straightforward in dimension � 2, and
is the main result of [126] in the positive characteristic case. In mixed characteristic, The-
orem 5.1 is new even in dimension 3: it was previously known [114] in dimension � 3

only in the almost category (in the sense of Faltings’ almost mathematics [83,100]); see [25,

Remark 1.9] for an explanation of prior expectations.

Remark 5.5 (Splinters). A noetherian commutative ring R is called a splinter if it satisfies
the conclusion of the direct summand conjecture, i.e., it splits off as a module from every
finite extension. This class of singularities, formally introduced in [172], has recently received
renewed attention (e.g., [7,10,70,173]). An external reason to care about this notion is a major
conjecture in F -singularity theory (see [126, page 85], [127, page 640]): splinters in charac-
teristic p are expected to be the same as strongly F -regular rings (see [174, end of §3] for a
discussion). This conjecture is known forQ-Gorenstein rings [214]. One consequence of this
conjecture is that characteristic p splinters are derived splinters, i.e., they satisfy a derived
version of the splinter condition for any proper surjective map and are thus analogous to
rational singularities. This consequence was proven unconditionally in [21]. Methods from
[29] used in proving Theorem 5.1 give the same result in mixed characteristic. In conjunction
with Theorem 5.1 itself, one learns that any mixed characteristic splinter is Cohen–Macaulay
and has rational singularities in the sense of [152]; it would be interesting to prove the latter
(even just after inverting p) without using p-adic Hodge theory.

Remark 5.6 (Ingredients in the proof of Theorem 5.1). Using essentially elementary meth-
ods, [43] reduces Theorem 5.1 to the statement that RC=p is Cohen–Macaulay over R=p,
which is proven in [25]. Despite the simple reformulation highlighted in Remark 5.2, the proof
relies on two major theoretical inputs. The first is prismatic cohomology (Theorem 2.6),
which gives a substitute for the Frobenius operator in mixed characteristic; this allows one
to begin mimicking the cohomological proof of [126] given in [131] in mixed characteristic
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at the cost of replacing rings with derived rings. The second is the p-adic Riemann–Hilbert
functor from Theorem 6.1 below, applied to certain perverse Fp-sheaves on the generic fiber
Spec.RŒ1=p�/ arising from finite covers, to facilitate the induction on dimension strategy
of [131]. This proof is not effective, and it might be interesting to explicitly constructed the
relevant covers in low dimensional examples, such as cones over smooth projective curves
and surfaces over a p-adic discrete valuation ring.

5.2. Birational geometry
There is a well-known analogy between projective geometry and local algebra, e.g.,

the global cohomological properties of a projective variety X � Pn are faithfully reflected
in the local cohomological properties of its affine cone Y � AnC1 over X near the vertex
0 2 Y . This analogy suggests that Theorem 5.1 ought to have a global variant; this is indeed
the case, and the result can be summarized as follows:

Theorem 5.7 (Kodaira vanishing up to finite covers, [25]). Let V be a p-adic discrete val-
uation ring (e.g., V D Zp). Let X=V be a flat proper scheme equipped with a semiample
and big line bundle L. Then any p-power torsion class in H �.X; L�1/, H �.X; OX /, or
H �.X; L/ can be annihilated by pullback to a finite cover of X .

Analogous results hold true in the relative setting [25], and were previously known
in characteristic p ([126] for L ample, and [21] in general).

Remark 5.8 (Relation to Kodaira vanishing). The classical Kodaira vanishing theorem says
thatH <dim.Y /.Y;M �1/D 0 for a smooth projective variety Y=Cwith ample line bundle M .
This assertion is false in characteristic p ([195]) and mixed characteristic (by Totaro, see [43,

Footnote 1]). The L�1 case of Theorem 5.7 can be viewed as an “up to finite covers” variant
of the Kodaira vanishing theorem that is true in mixed characteristic: spurious cohomology
classes—those that should not be there if Kodaira vanishing were true for .X; L/—can be
annihilated by passing to finite covers. This “up to finite covers” perspective was pioneered
in characteristic p by [215] in the wake of [126].

For completeness, we remark that an “up to finite covers” version of themore general
Kodaira–Akizuki–Nakano vanishing theorem also holds true in the setting of Theorem 5.7:
in fact, the cases not covered by Theorem 5.7 are much easier as sheaves of differential forms
themselves become p-divisible on passage to finite covers.

Remark 5.9 (Relation to the p-adic Poincaré lemma). The assertion in Theorem 5.7 for
H �.X; OX /, with finite covers weakened to alterations, was previously known by [14, 22];
in fact, it formed the key geometric ingredient in the proof of the p-adic Poincaré lemma
in [14]. Curiously, while the p-adic Poincaré lemma was used in [14] to give a new proof
of the fundamental de Rham comparison conjecture in p-adic Hodge theory, the proof of
Theorem 5.7 uses the full strength of modern advances in p-adic Hodge theory (such as the
primitive comparison theorem of [203] for arbitrarily singular varieties).

We end this section with an application of Theorem 5.7 to birational geometry in
mixed characteristic. Briefly, it is possible to use this variant of Kodaira vanishing in a critical
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lifting argument in an inductive proof of the existence of flips in dimension 3, following
[113] (which goes back to ideas of Shokurov). Combining this with Witaszek’s recent mixed
characteristic analog [229] of Keel’s semiampleness theorems [144], it became possible to
emulate the ideas of [44,45,69,113] (amongst others) to show the following:

Theorem 5.10 (Minimal model program in mixed characteristic, [43,219]). One can run the
minimal model program for arithmetic threefolds whose residue characteristics are > 5.

Theorem 5.10 uses ideas from [46,178] and extends [142,220]. Global geometric appli-
cations of (the ideas going into) Theorem 5.10 can be found in [43,112,216,219,231].

Remark 5.11 (The C-stable sections). We informally discuss a new notion introduced in
the proof of Theorem 5.10 in a simple case, and state a question; see [43, §4] or [219, §3.2] for
the general notion. For reasonable mixed characteristic rings R, one can define a submodule
B0.R; !R/ � !R of the dualizing module !R: it is the submodule of elements that lift to
all alterations of Spec.R/ under the trace maps. If R is regular, then B0.R; !R/ D !R, so
in general B0.R; !R/ is an invariant measuring the singularities of R. Analogous invariants
exist in characteristic 0 (given by the Grauert–Riemenschneider sheaf [157, Example 4.3.12])
and characteristic p (given by the parameter test submodule [46, §2.5 & Corollary 3.4]). Basic
properties of B0.R; !R/, such as its behavior under alterations or restriction to divisors,
play a key role in the proof of Theorem 5.10. However, a fundamental question about these
invariants remains open: does their formation commute with localization? Due to the infinite
intersection implicit in the definition of B0.R; !R/, this question is delicate. Nevertheless,
a positive answer (which we expect) would have several geometric applications. As evidence
for a positive answer, using Theorem 6.4, one can show the claim for inverting p: the local-
ization B0.R; !R/Œ1=p� agrees with the Grauert–Riemenschneider sheaf of Spec.RŒ1=p�/

(work in progress as a sequel to [43]).We refer to [112, §8] for more discussion of this question.

6. p-adic Riemann–Hilbert

The Riemann–Hilbert problem has a rich history, going back at least to Hilbert’s
21st problem. In modern terms, it asked if anyC-local system on a smooth complex algebraic
curve X could be realized as the solution system of a flat vector bundle on X with regular
singularities at1; this variant was (precisely formulated and) solved by Deligne [71]. Soon
after, this picture was generalized to higher dimensions by Kashiwara and Mebkhout: there
is an equivalence of categories between topological objects (C-linear perverse sheaves) and
differential objects (regular holonomicD-modules) on any smooth complex variety, see [56].

In this section, we discuss joint work with Lurie towards a p-adic analog of the
preceding story; our aim was to extend existing results attaching flat connections to p-adic
local systems on p-adic varieties (such as [1,74,87,88,165,203]) to p-adic constructible com-
plexes and in particular, to p-adic perverse sheaves. Unlike the complex picture, there are
several meanings one can attach to “p-adic sheaves”: one can work with Z=pn, Zp or Qp-
coefficients. Our theorem for Fp-coefficients is the following (the Z=pn case is analogous):
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Theorem 6.1 (Riemann–Hilbert for torsion coefficients, [29]). Let C=Qp be a complete and
algebraically closed extension. Let X=OC be a finite type scheme. Then there is a natural
exact functor

RH W Db
cons.XC ;Fp/! Db

qc.X ˝OC
OC =p/:

This functor commutes with proper pushforward, intertwines Verdier andGrothendieck dual-
ity in the almost category [83,100], and interacts well with the perverse t -structure.

The functor RH above also almost commutes with tensor products and pullbacks
provided the target is refined to RH.Fp/-modules. In fact, it is possible to refine the target
further to Frobenius modules over the tilt RH.Fp/[; the resulting functor is fully faithful,
and agrees with the construction in [31] (which was a dual form of [82] that works for all
characteristic p schemes) when X has characteristic p.

Remark 6.2 (Relation to existing work in p-adic geometry). Theorem 6.1 appears to be
the first general construction attaching coherent objects to constructible Fp-sheaves on alge-
braic varieties in characteristic 0. On the other hand, several ingredients that go into the
proof have appeared before in p-adic arithmetic geometry. Indeed, the functor RH can be
regarded as a generalization of a perfectoidization functor from Remark 2.10 to nonconstant
coefficients: one can almost identify RH.Fp/ with OX;perfd=p. Moreover, the compatibility
with duality with constant coefficients is closely related to the Gabber–Zavyalov approach
[232] to Poincaré duality for the Fp-cohomology of rigid spaces. Nevertheless, the flexibility
of applying RH.�/ to nonconstant perverse coefficients is immensely useful in applications
including Theorems 5.1 and 5.7 or the localization result mentioned in Remark 5.11. Relat-
edly, let us mention that Theorem 6.1 itself suffices to prove Theorem 5.1 in the almost
category, extending Heitmann’s almost vanishing theorem [114] to arbitrary dimensions.

Prima facie, Theorem 6.1 looks quite different from the complex Riemann–Hilbert
correspondence: the output is a quasicoherent (and in fact almost coherent) complex rather
than a D-module. In fact, the functor in Theorem 6.1 is better understood as a p-adic analog
of a construction from Saito’s fundamental work [197] on mixed Hodge modules. Recall that
this theory gives a filtered refinement of the classical Riemann–Hilbert functor for many
constructible sheaves, including those that are “of geometric origin.” More precisely, given
a smooth proper complex variety X , any mixed Hodge module on X has an underlying
DX -module equipped with a Hodge filtration and an underlying perverse sheaf; the picture
relating them can be summarized in the following commutative diagram:

MHM.X/

forget

xx

forget

&&
Db

cons.X;C/

RHcl

&&

DFcoh.DX /
gr�.�/ //

forget

xx

Db
coh;gr.T

�X/
��.�/ // Db

coh;gr.X/

Db.DX /;
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where MHM.X/ is Saito’s category of mixed Hodge modules, DFcoh.DX / is a suitable
derived category of DX -modules equipped with a “good” filtration, the functor RHcl is the
classical Riemann–Hilbert functor, the functor gr�.�/ is the associated graded construction
carrying a filteredD-module to a gradedOX -module with an action of gr�DX D Sym�.TX /

(i.e., a Higgs module), and the functor ��.�/ is the graded Higgs complex construction.
Heuristically, the functor in Theorem 6.1 is an analog of the composite correspondence

Db
cons.X;C/

forget
 ��� MHM.X/

��.�/ıgr�.�/ıforget
�������������! Db

coh;gr.X/ (fRH)
for Fp-coefficients. Slightly surprisingly, unlike in the complex story, we get an honest func-
tor instead of a correspondence in thep-adic setting. (On the other hand, objects ofMHM.X/

also have a weight filtration, which we ignore in our discussion.)

Remark 6.3 (Why is there no grading?). In comparisonwith the correspondence (fRH), there
is no grading in the target of Theorem 6.1. But this is to be expected: the grading on the target
of (fRH) reflects the fact that objects in MHM.X/ are fairly motivic in nature, e.g., they give
variations of Hodge structures on an open subset of X . In contrast, in Theorem 6.1 we are
working with all constructible sheaves over the algebraically closed field C , so there is no
motivicity or even a Galois action.

The previous discussion suggests it might be useful to lift Theorem 6.1 to Qp-
coefficients and restrict to sheaves defined over a discretely valued field (so there is a Galois
action) in order to obtain a p-adic variant of (fRH). This can indeed be done, and the resulting
structure seems slightly cleaner than (fRH):
Theorem 6.4 (Riemann–Hilbert for Qp-coefficients, [30]). Let K=Qp be a finite extension.
Let X=K be a smooth proper variety. Then there is a natural exact functor

RHD W D
b
wHT.X;Qp/! DFcoh.DX /;

where the source is a full subcategory of Db
cons.X; Qp/ spanned by what we call “weakly

Hodge–Tate sheaves” (including all sheaves of geometric origin). This functor commutes
with proper pushforward, intertwines Verdier and Grothendieck duality, and interacts well
with the perverse t -structure.

Theorem 6.4 represents ongoing work in progress with Lurie, and the statement
above is not quite optimal (e.g., there is a variant for singular X ).

Remark 6.5 (The case of local systems). The functor RHD from Theorem 6.4 is not really
new for local systems: up to a certain nilpotent operator encoding that a weakly Hodge–Tate
local system is not quite de Rham, it coincides with the one appearing in [165, Theorem 1.5]

(and is thus related to constructions from [203]; see also [1, 74, 87]). However, for geometric
applications such as Example 6.7 below, it is critical to apply RHD to constructible com-
plexes that are not local systems.

Remark 6.6 (Why is the Hodge filtration automatic?). Theorem 6.4 implies that con-
structible Qp-sheaves F of geometric origin on a variety X=K as above have a functorially
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attached filtered DX -module M WD RHD.F /, i.e., the Hodge filtration on the DX -module
M is actually determined by F , unlike in the correspondence (fRH). This discrepancy is ulti-
mately because the constructible sheaves in Theorem 6.4 carry Galois symmetries as they
are defined over K. Moreover, this is perfectly consistent with known phenomena in p-adic
Hodge theory that stem ultimately from the richness of the absolute Galois group GK of K.
For instance, when X D Spec.K/ and F D Rf�Qp for a smooth proper map f W Y ! X ,
we are simply observing that the GK-representation H �.YK ;Qp/ knows the de Rham coho-
mology of H �

dR.Y=K/ as a filtered vector space (and in particular knows the Hodge numbers
of X ) via the de Rham comparison; see [137] for a purely geometric application of this fact.

As Theorem 6.4 gives an honest functor, one can now directly apply RHD to deep
theorems on the constructible side, such as the BBDG decomposition theorem [16], to obtain
highly nontrivial results on the coherent side. This mechanism appears robust enough to
yield some results in birational geometry that are traditionally best understood via mixed
Hodgemodule theory, e.g., Kollár’s vanishing theorems [148,149] (see [201, §25] for the Hodge
module proof); we sketch the argument for vanishing next to illustrate this idea.

Example 6.7 (Recovering Kollár vanishing, p-adically). Fix a finite extension K=Qp . Sup-
pose f W Y ! X is a projective surjective morphism of proper K-varieties of dimensions
dY and dX , respectively, with Y smooth. Consider the functor

RH W Db
wHT.Y;Qp/! Db

coh;gr.Y /

obtained by composing the functor RHD from Theorem 6.4 with ��.�/ ı gr�.�/, as
in (fRH). Essentially by the local Hodge–Tate decomposition of [203], we have

RH
�
QpŒdY �

�
D

M
i

�i
Y=K ŒdY � i �

with its natural grading, so i -forms have weight i . (If Y were singular, one would have a
similar formula with the Deligne–Du Bois variants �i

Y=K of differential forms, as in [79]

and [191, §7.3], on the right by [110].) Pushing forward along f , using the proper pushforward
compatibility of RH, and extracting the weight dY summand gives

RH
�
Rf�QpŒdY �

�
wtDdY

D Rf�!Y :

On the other hand, the decomposition theorem [16,72] shows that

Rf�QpŒdY � '

 
dY �dXM

iD�.dY �dX /

pH i Œ�i �

!
˚N

where each pH i is perverse and N is a summand of Rg�QpŒdY � with g W YZ ! Z � X

being the restriction of f over the closed subvariety Z ¨ X where f is not smooth. The
singular variant of the reasoning just used for f applied to g then shows that

RH
�
Rg�QpŒdY �

�
wtDdY

D Rg��
dY

YZ
' 0;
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where the last vanishing follows as �
dY

YZ
D 0 since dY > dim.YZ/ (see [110] for a purely

p-adic proof of this property of Deligne–Du Bois complexes). But then the same vanishing
is also true for the summand N of Rg�QpŒdY �, so we learn that

Rf�!Y D RH
�
Rf�QpŒdY �

�
wtDdY

D

dY �dXM
iD�.dY �dX /

RH
�
H i Œ�i �

�
wtDdY

:

The perverse exactness properties of RH now imply that the i th summand on the right lies
in D�i whence Rf�!Y 2 D�dY �dX as i � dY � dX , i.e.,

Rj f�!Y D 0 for j > dY � dX ;

proving the Kollár vanishing theorem [148, Theorem 2.1]. From this perspective, one answer
to Kollár’s question “Why is !Y better behaved than OY ?” [149] could be the following: as
!Y is the highest Hodge–Tate weight summand of RH.QpŒdY �/, it does not see interference
from smaller dimensional varieties when moved around via operations such as Rf�.
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approach
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Abstract

The evolution of a gas can be described by different models depending on the observation
scale. A natural question, raised by Hilbert in his sixth problem, is whether these models
provide consistent predictions. In particular, for rarefied gases, it is expected that con-
tinuum laws of kinetic theory can be obtained directly from molecular dynamics governed
by the fundamental principles of mechanics.
In the case of hard sphere gases, Lanford [46] showed that the Boltzmann equation emerges
as the law of large numbers in the low density limit, at least for very short times. The goal
of this survey is to present recent progress in the understanding of this limiting process,
providing a complete statistical description.
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Figure 1

At time t , the hard-sphere system is described by the positions .x"
k
.t//k�N and the velocities .v"

k
.t//k�N of the

N particles. Particles move in straight lines and when two particles touch each other at distance " > 0 (the
diameter of the spheres), they are scattered according to elastic reflection laws. The scattering rules, mapping the
precollisional velocities .v"

i ; v"
j / to the postcollisional velocities .v"

i
0; v"

j
0/, are determined in terms of the relative

position ! D .x"
i .�/ � x"

i .�//=" of the particles at the collision time � . The collisions preserve the total
momentum v"

i C v"
j D v"

i
0
C v"

j
0 and the kinetic energy 1

2 .jv"
i j2 C jv"

j j2/ D
1
2 .jv"

i
0
j2 C jv"

j
0
j2/.

1. Aim: providing a statistical picture of dilute gas

dynamics

1.1. A very simple physical model
Even though at the time Boltzmann published his famous paper [17], the atom-

istic theory was still dismissed by some scientists, it is now well established that matter
is composed of atoms, which are the elementary constituents of all solid, liquid, and gaseous
substances. The particularity of dilute gases is that their atoms are very weakly bound and
almost independent. In other words, there are very few constraints on their geometric arrange-
ment because their volume is negligible compared to the total volume occupied by the gas.

If we neglect the internal structure of atoms (consisting of a nucleus and electrons)
and their possible organization into molecules, we can represent a gas as a large system of
correlated interacting particles. We will also neglect the effect of long range interactions and
assume strong interatomic forces at very short distance. Each particle moves freely most of
the time and occasionally collideswith some other particle leading to an almost instantaneous
scattering. The simplest example of such a model consists in assuming that the particles are
identical tiny balls of unit mass interacting only by contact (see Figure 1). We then speak of
a gas of hard spheres. All the results we will present should nevertheless extend to isotropic,
compactly supported stable interaction potentials [57,63].

This microscopic description of a gas is daunting because the number of particles
involved is extremely large, the individual size of these particles is tiny (of diameter " � 1)
and therefore positions are very sensitive to small spatial shifts (see Figure 2). In practice,
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Figure 2

Particles are very small (of diameter " � 1) and therefore the dynamics is very sensitive to small spatial shifts. In
the first case depicted above, two particles with initial positions x1; x2 and velocities v1; v2 collide and are
scattered. In the second case, by shifting the first particle by a distance " in the direction En, the two particles no
longer collide and they move in straight lines. Thus a perturbation of order " of the initial conditions can lead to
very different trajectories.

this model is not efficient for making theoretical predictions, and numerical methods are
often in favor of Monte Carlo simulations. The question we would like to address here is a
more fundamental one, namely the consistency of this (simplified) atomic description with
the kinetic or fluid models used in applications. This question was formalized by Hilbert
at the ICM in 1900, in his sixth problem: “Boltzmann’s work on the principles of mechan-
ics suggests the problem of developing mathematically the limiting processes, there merely
indicated, which lead from the atomistic view to the laws of motion of continua.”

The Boltzmann equation, mentioned by Hilbert and which we will present in more
detail later, expresses that the distribution of particles evolves under the combined effect of
free transport and collisions. For these two effects to be of the same order of magnitude,
a simple calculation shows that, in dimension d � 2, the number of particles N and their
diameter size " must satisfy the scaling relation N"d�1 D O.1/, the so-called Boltzmann–
Grad scaling [40]. Indeed, the regime described by the Boltzmann equation is such that the
mean free path, namely the average distance covered by a particle traveling in straight line
between two collisions, is of order 1. Thus a typical particle trajectory should span a tube
of volume 1 � "d�1 between two collisions. This means that, on average, this tube should
intersect the position of one of the other .N � 1/ particles (see Figure 3). Note that in this
regime the total volume occupied by the particles at a given time is proportional to N"d and
therefore is negligible compared to the total volume occupied by the gas. We speak then of
a dilute gas.
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Figure 3

Consider N spheres of diameter " uniformly distributed in a box. If the mean free path is equal to 1, then the grey
tube of length 1 and section area of order "d�1 represents the volume spanned by a typical particle between two
collisions. The Boltzmann–Grad scaling N"d�1 D 1 is tuned such that on average this tube intersects one particle.

1.2. Three levels of averaging
As already shown in the previous scaling argument, the equations that we want to

derive describe the behavior of “typical particles.” We therefore have to introduce several
averaging processes, and then to describe the average dynamics.

For a statistical description of a monoatomic gas, all particles are considered identi-
cal (same geometry, samemass, same interaction law,…). This is referred to as the exchange-
ability assumption. The empirical distribution of particles is defined as

�N
t .x; v/ D

1

N

NX
iD1

ıx�x"
i .t/ıv�v"

i .t/; (1.1)

where .x"
i .t/; v"

i .t//i�N stands for the positions and velocities of the N particles at time t

and ıx stands for the Dirac mass at x D 0. This measure is completely symmetric (i.e.,
invariant under any permutation of the particle labels) due to the exchangeability assumption.
However, this first averaging is not enough to obtain a simple description of the dynamics
when N is large because of the instabilities mentioned in the previous section (see Figure 2)
which lead to a strong dependency in " of the particle trajectories.Wewill therefore introduce
a second averaging with respect to initial configurations.

From the physical point of view, this averaging is natural as only fragmentary infor-
mation on the initial configuration is available. A natural starting point is the particle dis-
tribution f 0 D f 0.x; v/ which prescribes the probability for a particle to be at position x

with velocity v. As N is large, we assume that the initial data .XN ; VN / D .xi ; vi /1�i�N

are independent random variables identically distributed according to f 0. This assumption
has, however, to be slightly corrected in order to take into account the exclusion between
particles jxi � xj j > " for i ¤ j . This statistical framework is referred to as the canoni-
cal ensemble [63]. This is a simple framework to derive rigorous foundations for the kinetic
theory, i.e., to characterize, in the large N asymptotics, the average dynamics and more
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precisely the evolution equation governing the distribution f .t; x; v/ at time t of a typical
particle.

In this paper, our goal is actually to go beyond this average dynamics, and to under-
stand in a fine way the correlations arising dynamically inside the gas. Fixing a priori the
number N of particles induces additional correlations and thus technical difficulties. To
bypass them, we introduce a third level of averaging, by assuming that the number N of
particles is also a random variable, and that only its average tuned by �" D "�.d�1/ is deter-
mined according to the Boltzmann–Grad scaling. Roughly speaking, N is chosen according
to a Poisson law of mean close to �", and then for any fixed N , the variables .XN ; VN / are
identically distributed, and independent up to the spatial exclusion. More precisely, the vari-
ables .N; XN ; VN / are chosen jointly under the so-called grand canonical measure which
will be introduced later in (2.3). This is referred to as the grand canonical ensemble and from
now on, we will use this setting.

We therefore seek to understand the statistical behavior of the empirical measure

�"
t .x; v/ D

1

�"

NX
iD1

ıx�x"
i .t/ıv�v"

i .t/; (1.2)

where the initial configuration .N; .X"0
N ; V "0

N // is a random variable, but the microscopic
dynamics is completely deterministic (governed by the hard sphere equations represented in
Figure 1).

1.3. A probabilistic approach
The first question is to determine the law of large numbers, that is, the limiting

distribution of a typical particle when �" ! 1. In the case of N independent identically
distributed variables .�i /1�i�N , the law of large numbers implies in particular that the aver-
age converges in probability to its expectation

1

N

NX
iD1

�i ����!
N !1

E.�/:

For the interacting particle system, two difficulties arise. The first is that, even at time 0, the
variables .xi ;vi /1�i�N are weakly correlated due to the exclusion. In the low density regime,
this problem is well understood by classical methods of equilibrium statistical mechanics
(see, e.g., [63]). In particular, denoting the average of any continuous test function h under
the initial empirical measure by˝

�"
0; h

˛
D

1

�"

NX
iD1

h.x"0
i ; v"0

i /;

the following convergence in probability holds:˝
�"

0; h
˛
�

Z
f 0h.x; v/ dxdv �����!

�"!1
0 under the grand-canonical measure:

We stress the fact that, throughout this paper, the limit �" ! 1 implies that the sphere
diameter " tends also to 0 as both parameters are linked by the Boltzmann–Grad scaling
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�""d�1 D 1. The second difficulty, which is the main challenge, is to understand whether
the initial quasiindependence is propagated in time so that there exists a function f .t; x; v/

such that the following convergence in probability holds:˝
�"

t ; h
˛
�

Z
f .t/h dxdv �����!

�"!1
0 under the grand-canonical measure

on initial configurations; (1.3)

and whether f .t/ evolves according to a deterministic equation, namely the Boltzmann
equation. As we will see, this question is particularly delicate since the Boltzmann equa-
tion obtained in the limit is singular (see (2.1)). The major result proving this convergence
goes back to Lanford [46] and will be explained in Section 2.2.

The approximation (1.3) of the empirical measure neglects two types of errors. The
first is the fact that there are corrector terms which converge to 0 as �" ! C1. The second
is related to the vanishing probability of the initial configurations for which the convergence
does not hold. A classical question in statistical physics is to quantify more precisely these
errors, by studying fluctuations, i.e., deviations between the empirical measure and its expec-
tation. In the case ofN independent and identically distributed random variables .�i /1�i�N ,
the central limit theorem implies that the fluctuations are of order O.1=

p
N / and the fol-

lowing convergence in law holds:

p
N

 
1

N

NX
iD1

�i � E.�/

!
.law/

����!
N !1

N
�
0;Var.�/

�
;

where N .0;Var.�// is the normal law of variance Var.�/ D E..� � E.�//2/. In particular,
at this scale, some randomness is retrieved. Investigating the same fluctuation regime for the
dynamics of hard sphere gases consists in considering the scaled fluctuation field �"

t defined
by duality ˝

�"
t ; h

˛
D

p
�"

�˝
�"

t ; h
˛
� E"

�˝
�"

t ; h
˛��

; (1.4)

where h is a continuous test function, andE" denotes the expectation on initial configurations
under the grand-canonical measure. A series of recent works [13–16] has allowed to charac-
terize these dynamical fluctuations, and to derive a stochastic evolution equation governing
the limiting process. These results will be presented in Sections 3.4 and 4.2.

The last question generally studied in a classical statistical approach is that of quanti-
fying rare events, i.e., of estimating the probability of observing an atypical behavior (which
deviates macroscopically from the average). For independent and identically distributed
random variables, this probability is exponentially small, and it is therefore natural to study
the asymptotics

I.m/ WD lim
ı!0

lim
N !1

�
1

N
logP

 ˇ̌̌̌
ˇ 1

N

NX
iD1

�i � m

ˇ̌̌̌
ˇ < ı

!
with m 6D E.�/: (1.5)

The limit I.m/ is called the large deviation function and it can be expressed as the Legendre
transform of the log-Laplace transform of a single variable u W R 7! logE.exp.u�// [23]. To
generalize this statement to correlated variables, it is necessary to compute a more global
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Laplace transform and this requires a control on the correlations with exponential accuracy.
The methods of dynamical cumulants introduced in [13,14] are a key tool to compute expo-
nential moments of the hard sphere distribution and, in this way, to control the measure of
events up to scales which are vanishing exponentially fast. We will give a flavor of those
techniques in Section 3.4.

Note that precise conjectures regarding those three questions are formulated by
Rezakhanlou in [62].

2. Typical dynamical behavior

2.1. Boltzmann’s great intuition
The equation which rules the typical evolution of a hard sphere gas was proposed

heuristically by Boltzmann [17] about one century before its rigorous derivation by Lan-
ford [46] as the “limit” of the particle system when �" ! C1. The revolutionary idea of
Boltzmann was to write an evolution equation for the probability density f D f .t; x; v/

giving the proportion of particles at position x with velocity v at time t . In the absence of
collisions and in a domain without boundary, this density f would be exactly transported
along the physical trajectories x.t/ D x.0/ C vt , meaning that f .t; x; v/ D f 0.x � vt; v/.
The difficulty consists then in taking into account the statistical effect of collisions. Insofar
as the size of the particles is negligible, one can consider that these collisions are pointwise
both in t and x. Boltzmann proposed therefore a rather intuitive counting:

• the number of particles with velocity v is increased when a particle of velocity v0

collides with a particle of velocity v0
1, and jumps to velocity v (see (2.2)). Notice

that here, the pair .v0; v0
1/ plays the role of precollisional velocities, while instead

in Figure 1 this notation was used for the postcollisional velocities in the particle
system;

• the number of particles with velocity v is decreased when a particle of velocity v

collides with a particle of velocity v1, and is deflected into another velocity.

The probability of these jumps is described by a transition rate, referred to as the collision
cross-section b. The function b.v; v1; !/ is nonnegative, depends only on the relative veloc-
ity jv � v1j and on the angle between .v � v1/ and !, a scattering vector which is distributed
uniformly in the unit sphere Sd�1 � Rd . For the hard sphere interactions, we shall see that!
keeps track of the way two hard spheres collide (see Figure 1) and that b.v � v1; !/ D

..v � v1/ � !/C. In particular, it is invariant under .v; v1/ 7! .v1; v/ (exchangeability) and
under .v; v1; !/ 7! .v0; v0

1; !/ (microscopic reversibility).
The fundamental assumption in Boltzmann’s theory is that, in a rarefied gas, the

correlations between two particles about to collide should be very weak. Therefore the joint
probability to have both precollisional particles of velocities v and v1 at position x at time t

should be well approximated by f .t; x; v/f .t; x; v1/. This independence property is called
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the molecular chaos assumption. The equation then states8̂̂̂̂
ˆ̂̂<̂
ˆ̂̂̂̂̂:

@t f C v � rxf„ ƒ‚ …
transport

D C.f; f /„ ƒ‚ …
collision

C.f; f /.t; x; v/

D

“ �
f .t; x; v0/f .t; x; v0

1/„ ƒ‚ …
gain term

� f .t; x; v/f .t; x; v1/„ ƒ‚ …
loss term

�
b.v � v1; !/„ ƒ‚ …
cross section

dv1d!;

(2.1)

where the scattering rules

v0
D v �

�
.v � v1/ � !

�
!; v0

1 D v1 C
�
.v � v1/ � !

�
! (2.2)

are analogous to the microscopic collision rules introduced in Figure 1, with the important
difference that ! is now a random vector chosen uniformly in the unit sphere Sd�1 � Rd .
Indeed, the relative position of the colliding particles has been forgotten in the limit " ! 0.
As a consequence, the Boltzmann equation is singular as it involves a product of densities at
the same point x.

Boltzmann’s idea of reducing to a kinetic equation the Hamiltonian dynamics
describing the atomistic behavior was revolutionary and opened the way to the description
of nonequilibrium phenomena by mesoscopic equations. However, the Boltzmann equation
was first heavily criticized as it seems to violate some basic physical principles. Indeed, what
made Boltzmann’s theory such a breakthrough, but also made it unacceptable by many of his
contemporaries, is that it predicts a time irreversible evolution, providing actually a quantita-
tive formulation of the second principle of thermodynamics. The Boltzmann equation (2.1)
has indeed a Lyapunov functional defined by S.t/ D �

’
f logf .t; x; v/dxdv and referred

to as the entropy, which can only increase along the evolution d
dt

S.t/ � 0, with equality if
and only if the gas is at thermal equilibrium. At first sight, this irreversibility does not seem
to be compatible with the fact that the hard sphere dynamics is governed by a Hamiltonian
system, i.e., a system of ordinary differential equations which is completely time reversible.
Soon after Boltzmann postulated his equation, these two different behaviors were considered
by Loschmidt as a paradox and an obstruction to Boltzmann’s theory. A fully satisfactory
mathematical explanation of this issue remained open during almost one century, until the
role of probability was precisely identified: the underlying dynamics is reversible, but the
description which is given of this dynamics is only partial (obtained by averaging or looking
at the most probable path) and therefore is not reversible.

2.2. Lanford’s theorem
Lanford’s result [46] shows in which sense the Boltzmann equation (2.1) is a good

approximation of the hard sphere dynamics. Let us first define the initial distribution.

Initial data. Consider T d D Œ0; 1�d the unit domain with periodic boundary conditions
and f 0 D f 0.x; v/ a Lipschitz probability density in T d � Rd , with Gaussian tails at large
velocities. To define a system of hard spheres which are initially independent (up to the exclu-
sion) and identically distributed according tof 0, we introduce the grand canonical measure:
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the probability density of finding N particles with coordinates ZN D .xi ; vi /i�N is given
by

1

N Š
W "

N .ZN / D
1

Z"

�N
"

N Š

NY
iD1

f 0.xi ; vi /
Y
i¤j

1jxi �xj j>"; for N D 0; 1; 2; : : : ; (2.3)

where the constant Z" is the normalization factor of the probability measure. Once the
random initial configuration is chosen, the hard sphere dynamics evolve deterministically
and the corresponding probability and expectation on the particle trajectories will be
denoted by P" and E".

Lanford’s result can be stated as follows (this is not exactly the original formulation,
see in particular Section 2.5 below for comments).

Theorem 2.1 (Lanford). In the Boltzmann–Grad limit (�" ! 1 with �""d�1 D 1), the
empirical measure �"

t of the hard sphere system defined by (1.2) concentrates on the solution
of the Boltzmann equation (2.1), i.e., for any bounded and continuous function h,

8ı > 0; lim
�"!1

P"

�ˇ̌̌̌˝
�"

t ; h
˛
�

Z
f .t/hdxdv

ˇ̌̌̌
� ı

�
D 0;

on a time interval Œ0; TL� depending only on the initial distribution f 0.

Let us comment on the time of validity TL of the approximation. This time depends
on the initial data f 0 and turns out to be of the order of a fraction of the mean time between
two successive collisions for a typical particle. This time is large enough for the microscopic
system to undergo a large number of collisions (of the order O.�"/), and in particular irre-
versibility already shows up at this scale. But this time is (far) too small to see phenomena
such as relaxation towards (local) thermodynamic equilibrium, and a fortiori hydrodynamic
regimes. Physically we do not expect this time to be critical, in the sense that the dynam-
ics would change nature afterwards. Actually, in practice the Boltzmann equation is used in
many applications (such as calculations for the reentrance of spatial vehicles in the atmo-
sphere) without time restriction. However, it is important to note that a time restriction may
not be only technical: from themathematical point of view, one cannot exclude that the Boltz-
mann equation exhibits singularities (typically, spatial concentrations which would prevent
making sense of the collision term, and which would also contradict locally the low density
assumption). In order to construct global in time solutions for the Boltzmann equation, one
actually has either to consider small fluctuations around some equilibrium, or to introduce
a renormalization procedure [28]. These two approaches rely strongly on entropy production
estimates, which do not have any counterpart at the microscopic level (i.e., for fixed�", "). In
the current state of our knowledge, the problem of extending Lanford’s convergence result to
longer times faces serious obstructions, even to the time of existence and uniqueness of the
solution to the Boltzmann equation. This will be discussed later on in Section 4.1 (see also
Section 5). In Section 4, we will also present some recent results in this direction, providing
a global in time convergence for the fluctuation field at equilibrium.
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2.3. Heuristics of the proof
Let us now explain informally how the Boltzmann equation (2.1) can be guessed

from the particle dynamics. The goal is to transport the initial grand-canonical measure,
defined in (2.3), along the dynamics and then to project this measure at time t on the 1-point
particle phase space. We therefore define by duality F "

1 .t; z/ the density of a typical particle
with respect to the test function h asZ

F "
1 .t; z/h.z/dz D E"

�˝
�"

t ; h
˛�

; (2.4)

where the empirical measure �"
t was introduced in (1.2). More generally, we are going to

introduce �"
k;t
, the natural extension of the empirical measure �"

t to k distinct particles. For
simplicity, the particle coordinates .x"

i .t/; v"
i .t// at time t will be denoted by z"

i .t/. For any
test function hk of k variables, we define˝

�"
k;t ; hk

˛
D

1

�k
"

X
.i1;:::;ik/

hk

�
z"

i1
.t/; : : : ; z"

ik
.t/
�

(2.5)

and the sum is over the k-tuples of indices among all the particles at time t . We stress the
fact that �"

k;t
differs from .�"

t /˝k as the variables are never repeated. We will study the k-
particle correlation functions F "

k
which are symmetric finite dimensional projections of the

probability measure Z
F "

k .t; Zk/hk.Zk/dZk D E"

�˝
�"

k;t ; hk

˛�
; (2.6)

denoting Zk D .xi ; vi /1�i�k . The correlation functions are key to describe the kinetic limit.
In particular, Theorem 2.1 shows that F "

1 .t; z/ converges to the solution of the Boltzmann
equation f .t/ in the Boltzmann–Grad limit (�" ! 1 with �""d�1 D 1). Let us explain
briefly why this holds.

Let h be a bounded smooth test function on T d � Rd . Consider the evolution of the
empirical measure during a short time interval Œt; t C ı� and split the different contributions
according to the number of collisions for each particle

E"

�˝
�"

tCı ; h
˛�

� E"

�˝
�"

t ; h
˛�

D E"

�
1

�"

X
j

no collision

�
h
�
z"
j .t C ı/

�
� h

�
z"
j .t/

���
C E"

�
1

2�"

X
.i;j /

with 1 collision

�
h
�
z"

i .t C ı/
�

C h
�
z"
j .t C ı/

�
� h

�
z"

i .t/
�

� h
�
z"
j .t/

���
C O

�
ı2
�
;

(2.7)

and we are going to argue that the error term ı2 takes into account all the groups of particles
undergoing at least 2 collisions in the short time interval ı.

The asymptotic behavior when ı tends to 0 will be analyzed now for each term
in (2.7). The transport contribution arises from the particles moving in straight line without
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Figure 4

Two particles collide in the time interval Œt; t C ı� according to the scattering rules of Figure 1. The collision
occurs at time � if x1 � x2 C .� � t /.v1 � v2/ D �"!. Therefore x2 has to be in a tube with axis v1 � v2 and the
coordinates z1; z2 at time t can be parametrized by .x1; v1; v2; �; !/. This change of variables has a Jacobian
dz1dz2 D "d�1..v1 � v2/ � !/Cd!d�dx1dv1dv2.

collisions; indeed, if the distribution F "
1 is smooth enough, one gets

E"

�
1

�"

X
j

no collision

�
h
�
z"
j .t C ı/

�
� h

�
z"
j .t/

���
D ı

Z
dz1F "

1 .t; z1/v1 � rxh.z1/ C o.ı/:

We turn next to the term involving one collision. Note first that two particles starting
at .x1; v1/ and .x2; v2/ at time t collide at a later time � � t C ı if the following geo-
metric condition holds (see Figure 4):

x1 � x2 C .� � t /.v1 � v2/ D �"!: (2.8)

This implies that their relative positionmust belong to a tube oriented in the direction v1 � v2

with length ıjv1 � v2j and width ". This set has a size proportional to ı"d�1jv2 � v1j with
respect to the Lebesgue measure. More generally, a series of k � 1 collisions between k

particles imposes k � 1 constraints of the previous form. Using the Boltzmann–Grad scaling
�""d�1 D 1 and neglecting the velocity contribution, one can show that this event has a
vanishing probability bounded from above by�

ı

�"

�k�1

: (2.9)

Since there are, on average, �k
" ways of choosing these k colliding particles, we deduce that

the occurrence of k � 1 collisions in (2.7) has a probability of order ık�1�". This explains
why in (2.7) the probability of the terms involving more than 1 collision, i.e., involving k � 3

colliding particles, has been estimated by O.ı2/.
This crude estimate is not sufficient to recover the collision operator C.f; f / of the

Boltzmann equation (2.1). We are going now to analyze more carefully the term with one
collision in (2.7) in order to identify C.f; f /. As the collision term involves 2 particles, it is
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no longer a function of the empirical measure. The correlation function F "
2 defined in (2.6)

will be needed to rewrite it :

Coll D E"

�
1

2�"

X
.i;j /

with 1 collision

�
h
�
z"

i .t C ı/
�

C h
�
z"
j .t C ı/

�
� h

�
z"

i .t/
�

� h
�
z"
j .t/

���
D

�"

2

Z
dz1dz2F "

2 .t; z1; z2/11 and 2 collide
�
h
�
z1.ı/

�
C h

�
z2.ı/

�
� h.z1/ � h.z2/

�
C o.ı/; (2.10)

where z1.ı/; z2.ı/ stands for the particle coordinates after a time ı. After the collision, the
velocities are scattered to v0

1; v0
2 according to the deflection parameter ! (see Figure 4), but

the positions are almost unchanged as ı � ". Since the function h is smooth, the last term
in (2.10) can be approximated by the velocity jump

�h.z1; z2; !/ D h
�
x1; v0

1

�
C h

�
x2; v0

2

�
� h.z1/ � h.z2/: (2.11)

By condition (2.8), it is equivalent to parametrize two colliding particles either by their coor-
dinates z1; z2 at time t or by their coordinates at the collision time � which are determined by
x1; v1; �;!; v2 (see Figure 4). This change of variables has a Jacobian "d�1..v1 � v2/ � !/C.
Since "d�1 D 1=�" and ı � ", we deduce from (2.11) that

Coll D
1

2

Z tCı

t

d�

Z
dz1dv2d!F "

2 .�; z1; z2/
�
.v1 � v2/ � !

�
C

�h.z1; z2; !/ C o.ı/;

(2.12)

with z2 D .x1 C "!; v2/, as both particles are next to each other at the collision time. The
cross-section b.v1 � v2; !/ D ..v1 � v2/ � !/C in the Boltzmann equation can be identified
from the equation above. From the previous heuristics, the relation (2.7) provides “almost”
a weak formulation of the collision operator in (2.1) in the limit ı ! 0,

@t

Z
dz1F "

1 .t; z1/h.z1/

D

Z
dz1F "

1 .t; z1/v1 � rh.z1/

C
1

2

Z
dz1 d! dv2ıx2�x1�"!F "

2 .t; z1; z2/
�
.v1 � v2/ � !

�
C

�h.z1; z2; !/; (2.13)

where we used the Dirac notation to stress that z2 D .x1 C "!; v2/. The key step to close
the equation is the molecular chaos assumption postulated by Boltzmann which asserts that
the precollisional particles remain independently distributed at any time so that

F "
2 .t; z1; z2/ ' F "

1 .t; z1/F "
1 .t; z2/: (2.14)

When the diameter of the spheres " tends to 0, the coordinates x1 and x2 coincide and the
scattering parameter ! becomes a random parameter. Assuming that F "

1 converges, its limit
has to satisfy the Boltzmann equation (2.1). Establishing rigorously the factorization (2.14)
requires implementing a different and more involved strategy which will be presented in
Section 2.4.
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2.4. Some elements of proof
Lanford’s proof [46] has been completed and improved over the years; we refer to the

monographs [21, 22, 67] for accounts of the related results. In the more recent years, several
quantitative convergence results were established, and the proofs extended to the case of
compactly supported potentials [37,57,58]. In the following, we sketch the main steps of the
proof for the hard sphere dynamics.

The proof of Lanford’s theorem relies on the study of the correlation functions F "
k

defined in (2.6), characterizing joint probabilities of k particles. In particular, we do not
consider directly the empirical measure, but only its average F "

1 under the grand-canonical
probability P". The starting point is the system of ordinary differential equations for the hard
sphere positions and velocities (see Figure 1), which provides, by applying Green’s formula
to the Liouville equation, the following equation on the first correlation function:8̂̂̂̂
ˆ̂̂<̂
ˆ̂̂̂̂̂:

@t F
"
1 C v � rxF "

1„ ƒ‚ …
transport

D C "
�
F "

2

�
;„ ƒ‚ …

collision at distance "

C "
�
F "

2

�
.t; x; v/

D

“ �
F "

2

�
t; x; v0; x C "!; v0

1

�„ ƒ‚ …
gain term

� F "
2 .t; x; v; x � "!; v1/„ ƒ‚ …

loss term

� �
.v � v1/ � !

�
C„ ƒ‚ …

cross-section

dv1d!:

(2.15)

A weak form of this equation has been stated in (2.13). In the limit �" ! 1, we expect that
it can be closed by the factorization F "

2 � F "
1 ˝ F "

1 , called the propagation of chaos (2.14).
We are unable to prove it directly, nor will it be shown directly from (2.15) that the limit F1

of F "
1 satisfies an infinitesimal evolution equation of the previous form.We will rather obtain

a series expansion ofF1, which will be identifiedwith the solution of the Boltzmann equation
by a uniqueness argument. The proof is therefore very different from the heuristics presented
in Section 2.3.

The proof can be divided into three steps. The first is to rewrite F "
1 .t; x; v/ as an

“average” (weighted with the initial correlation functions F
";0
k

) of all possible dynamics
such that at time t , a particle stands at position x with velocity v. The analytical way of
doing so is to derive evolution equations similar to (2.15) for all correlation functions F "

k
,

and then to write the iterated Duhamel formula for this hierarchy of equations, called the
BBGKY hierarchy after Bogoliubov–Born–Green–Kirkwood–Yvon (see [22] for an account
and references). We will not give the details of these technical computations here, but will
retrieve the final series expansion (formally) using a more probabilistic perspective based on
geometric representations in terms of pseudotrajectories.

The idea is to track back the history of the particle sitting at position x with velocity v

at time t , referred to as particle �, in order to characterize all initial configurations which
contribute to F "

1 .t; x; v/. We start by following (backward in time) this particle, which has a
uniform rectilinear motion x.t 0/ D x � v.t � t 0/ until it collides with another particle, called
particle 1, say at time t1. Note that this collision can actually be either a physical collision
(with scattering) or a mathematical artefact coming from the loss term of equation (2.15)
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Figure 5

The sequence of collisions in the backward history can be encoded in a tree with the root indexed by the particle �

and n branchings (here n D 4). At each creation time, the label of the particle colliding with the fresh particle is
indicated. For example, at time t3, the particle � collides with particle 3 so that a3 D �.

(particles touch each other but are not deflected). Thus in order to understand the history of
particle �, we need to track back the history of both particles � and 1 before time t1. From
time t1, both particles are then transported by the 2-particle backward flow until the next
collision, say with particle 2 at time t2, etc., and we iterate this procedure until time 0. Notice
that in between the creations of new particles, the particles may collide between themselves
as they are transported by the backward hard sphere flow: this will be called recollision. The
history of the particle � can be reconstructed (see Figure 5) by prescribing

• the total number of collisions n;

• the combinatorics of collisions, encoded in a tree a 2 A1;n with root indexed by
the label � and n branchings (ai 2 ¹�; 1; : : : ; i � 1º for 1 � i � n);

• the collision parameters .Tn; Vn; �n/ D .ti ; vi ; !i /1�i�n with 0 < tn < � � � <

t1 < t .

We then define the pseudotrajectory ‰"
1;n starting from z D .x; v/ at time t as follows:

• on �ti ; ti�1Œ, the group of i particles is transported by the backward flow;

• at time ti , particle i is added at position xai
.ti / C "!i , with velocity vi ;

• if the velocities .vi ; vai
.tC

i // are postcollisional, meaning that .vai
.tC

i / � vi / �

!i > 0, then they are instantaneously scattered as in Figure 1 (with deflection
angle !i ).

We stress the fact that pseudotrajectories are not particle trajectories of the physical system,
but a geometric interpretation of an iterated Duhamel expansion. In particular, pseudo-
trajectories do not involve a fixed number of particles, they are coded in terms of random
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trees (with creation of particles at random times as in Figure 5) and of signs associated with
the gain and loss terms of the collision operator.

Note that not all collision parameters .Tn; Vn; �n/ are admissible since particles
should never overlap. We denote by G " the set of admissible parameters. With these nota-
tions, we obtain the following representation of F "

1 :

F "
1 .t; x; v/ D

C1X
nD0

X
a2A1;n

Z
G "

dTndVnd�nC
�
‰"

1;n

�
F

";0
1Cn

�
‰"

1;n.0/
�
; (2.16)

where ‰"
1;n.0/ stands for the particle configuration at time 0 of the pseudotrajectory and the

term C.‰"
1;n/ comes from the collision cross-sections

C
�
‰"

1;n

�
D

nY
iD1

��
vi � vai

�
tC

i

��
� !i

�
:

The elementary factor indexed by i is positive if the addition of particle i corresponds to a
physical collision (with scattering), and negative if not.

Remark 2.2. A similar formula holds for the k point correlation function F "
k
, except that

collision trees a 2 Ak;n have k roots and n branchings.

Formula (2.16) for the first correlation function has been obtained in a rather formal
way. In order to study the convergence as�" tends to infinity, we need to establish the uniform
convergence of the series (2.16). We actually use very rough estimates (forgetting in partic-
ular the signs of the gain and loss terms in (2.15), although the cancelations between these
different contributions should improve the estimates) and prove that the series is absolutely
convergent for short times uniformly with respect to ". Note that this is the only argument in
the proof which requires a restriction on short kinetic times.

Let us now estimate the size of the term in (2.16) corresponding to n branchings.
The different contributions are:

• a combinatorial factor taking into account all the branching choices jA1;nj D nŠ;

• the volume tn=nŠ of the simplex in time ¹tn < � � � < t1 < tº;

• the L1-norm of F
";0
1Cn which grows like kf 0kn

1.

This leads to an upper bound of the form .C kf 0k1t /n which implies that the series is
absolutely convergent uniformly in " on a small time interval depending only on a (weighted)
L1-norm of f 0.

Remark 2.3. For the sake of simplicity, we do not discuss here the problem of large veloc-
ities which create a divergence in the collision cross-section C.‰"

1;n/. It can be dealt with
similar, but more technical arguments, introducing weighted functional spaces encoding the
exponential decay of correlation functions F

";0
1Cn at large energies.

The convergence of F "
1 , as �" tends to infinity, will then follow termwise. In this

third step of the proof, we therefore fix the number n of branchings, as well as the collision
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Figure 6

When two particles recollide in the backward flow for fixed ", their velocities are scattered and the resulting
pseudodynamics is quite different from the Boltzmann pseudodynamics. The sets OB"

n are the sets of integration
parameters leading to at least a recollision within a pseudotrajectory (as on the picture with n D 4).

tree a 2 A1;n. One goal is to understand the asymptotic behavior of the pseudotrajectories
‰"

1;n. Going back to their definition, we see that it is natural to define limit pseudotrajectories
‰1;n (when �" tends to 1) as follows:

• on �ti ; ti�1Œ, the group of i particles is transported by the backward free flow (since
the particles become pointwise in the limit, they cannot see each other);

• at time ti , particle i is added at position xai
.tC

i /, with velocity vi (the spatial shift
at the creation time disappears);

• if the velocities .vi ; vai
.tC

i // are postcollisional, then they are scattered (with
deflection angle !i ).

Note that in the limit, all collision parameters are admissible (since the non overlap condition
disappears). With this definition of‰1;n, we see that there is a very natural coupling between
‰"

1;n and ‰1;n: in most cases, the velocities are exactly equal and the positions differ at most
by n". The only problem is when two particles of size " recollide (see Figure 6) in the back-
ward flow on some interval �ti ; ti�1Œ : in this case they are deflected, and the pseudotrajectory
‰"

1;n is no longer close to ‰1;n on Œ0; ti�1�. We therefore split the set of collision parameters
.Tn;Vn;�n/ into two parts (and correspondingly split each term in (2.16) into two integrals):
the first subset corresponds to admissible integration parameters such that there is no rec-
ollision in ‰"

1;n, and the second subset, denoted by OB"
n corresponds either to nonadmissible

integration parameters (leading to some overlap) or to integration parameters for which ‰"
1;n

has at least one recollision. Using the coupling between ‰"
1;n and ‰1;n and the regularity of

the initial limiting correlation functions (which are nothing else than .f 0/˝.1Cn/), we easily
obtain the convergence of the first integral. It remains then to prove that the set OB"

n has vanish-
ing measure so that the corresponding integral has a negligible contribution. The recollision
(or overlap) condition implies that the relative velocity between the two recolliding particles
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j1 and j2 has to be in a small cone, which imposes strong constraints on the last creation
involving either j1 or j2. We do not detail these geometric estimates here, but they are quite
explicit and provide the following rate of convergence for t sufficiently small (independently
of ") F "

1 .t/ � F1.t/


1
� C "˛ for any ˛ < 1;

provided that f 0 is Lipschitz. This concludes the proof, as the series expansion defining F1

turns out to be the (unique) solution of the Boltzmann equation with initial data f 0. Note
that the convergence still holds if f 0 is only continuous, but, in that case, we lose the explicit
rate of convergence.

Remark 2.4. Actually one can prove (see [12]) the following quantitative propagation of
chaos, where the sets B"

k
have vanishing measure:

sup
t�TL

sup
Zk 62B"

k

ˇ̌̌̌
ˇF "

k .t; Zk/ �

kY
iD1

f .t; zi /

ˇ̌̌̌
ˇ � C k"˛; (2.17)

for some ˛ > 0 and a constantC depending on the initial measure f 0. This is a much stronger
notion of convergence than the one stated in Theorem 2.1.

2.5. On the irreversibility
In this paragraph, we are going to argue that the answer to the irreversibility para-

dox is hidden in the chaos assumption (2.14) which holds only for specific configurations.
Understanding the range of validity of the chaos assumption will be the key to derive not
only the Boltzmann equation, but also the stochastic corrections.

Actually, the notion of convergence which appears in the statement of Theorem 2.1
differs slightly from the one used in the proof (see Section 2.4): Theorem 2.1 states the
convergence of observables h�"

t ; hi, that is, a convergence in the sense of measures since
the test function h has to be continuous. This convergence is rather weak and is actually
not enough to ensure the stability of the collision term in the Boltzmann equation since
this term involves traces. In the proof of Lanford’s theorem, one actually considers all the
correlation functionsF "

k
introduced in (2.6), and one shows that each one of these correlation

functions converges uniformly outside a set B"
k
of vanishing measure when �" tends to

infinity (see Remark 2.4).Moreover, the setB"
k
of badmicroscopic configurations .t;Zk/ (on

whichF "
k
is not converging) is somehow transverse to the set of precollisional configurations

(as can be seen in Figure 7, two particles in B"
2 tend to move far apart so that they are

unlikely to collide). The convergence defect is therefore not an obstacle to taking limits in
the collision term, however, these singular sets B"

k
carry important information on the time

correlations: in particular, they encode the memory of the evolution and by neglecting them
it is no longer possible to reverse time and to retrace the dynamics backwards. Thus by
discarding the microscopic information encoded in B"

k
, one can only recover an irreversible

kinetic description which is far from describing the complete microscopic dynamics. The
singular setsB"

k
have been described in [12,24,68] and their complex structure has been made

more precise in [14] by means of the cumulants which will be introduced in Section 3.3.
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Figure 7

(Left) Particles 1 and 2 will encounter in the future so they are likely not to have collided in the past, and we
expect that the correlation function F "

2 factorizes in the limit �" ! 1. (Right) The particle coordinates belong to
the bad set B"

2, meaning that they have met in the past. In this case, microscopic correlations have been built
dynamically and the factorization (2.14) should not be valid.
The sets leading to a forward or a backward collision have a similar geometric structure and a similar size which
vanishes with respect to the Lebesgue measure when " tends to 0. However, they play different roles: the memory
of the system is encoded in the sets B"

2; on the other hand, the forward sets are the only ones relevant for the
chaos assumption. The sets B"

k
are built similarly in terms of the backward flow of k particles (see [12]).

3. Correlations and fluctuations

3.1. From instability to stochasticity
In order to understand the specific features of the hard sphere dynamics in the low

density regime (dilute Boltzmann–Grad limit), it is worthwhile to compare its behavior to the
mean field dynamics. For this, let us consider more general microscopic dynamics interpo-
lating between the short range and themean field regimes. For a given numberN of particles,
we set

8i � N;
d

dt
xi D vi ;

d

dt
vi D �

1

N �d

X
j

rˆ

�
xi � xj

�

�
;

for some smooth repulsive (radial decreasing) potentialˆ W Œ0; 1�d ! RC and a fixed param-
eter � 2 .0; 1�. This dynamics is Hamiltonian and by choosing � D " (with N"d�1 D 1),
one recovers dynamics with a short range potential which behaves qualitatively as the hard
sphere gas and which follows a Boltzmann equation in the limit [37,57]. For fixed �, however,
say � D 1, the limiting behavior is mean field like and the typical density follows the Vlasov
equation [20]

@t f .t; x; v/ C v � rxf .t; x; v/ D

�Z
dydwf .t; y; w/rˆ.x � y/

�
� rvf .t; x; v/:

The Vlasov equation has very different properties from the Boltzmann equation, in partic-
ular it is reversible, as the microscopic dynamics. Furthermore, contrary to the hard sphere
dynamics, the precise structure of the initial data plays no role in the limiting behavior and it
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has even been shown in [20] that the fluctuations of the initial data are simply transported by
the linearized Vlasov equation. Finally, we stress the fact that the chaos assumption (2.14)
is known to be propagated in a very strong sense for the mean field dynamics [38,42].

A drastic difference between the two regimes comes from the fact that the mean
field dynamics is not sensitive to a small shift of the coordinates, as the function ˆ is smooth
for fixed �. This is not the case for the choice � D " in the Boltzmann–Grad limit. Indeed, in
the latter situation the scattering behaves qualitatively as in Figure 2, where asymptotically
for " small the deflection parameter decouples completely from the positions and becomes
random (cf. Section 2.3). This gives a probabilistic flavor to the surface integral in Boltz-
mann’s collision operator. As we shall see in Theorem 3.4, the corrections to the limiting
Boltzmann equation are driven by a stochastic noise which is also generated by the dynami-
cal instabilities. Thus the limiting structure of the hard sphere dynamics behaves qualitatively
as a stochastic process, combining free transport and a random jump process in the velocity
space. Notice that in the mean field regime, some instability remains for large times O.�"/

and this is expected to lead to the Lenard–Balescu stochastic correction [30,52].
The crucial role of randomness in the low density limit was understood by Mark

Kac. He devised a purely stochastic process [43] whose limiting distribution is a solution to
the homogeneous Boltzmann equation. Mathematically, at the microscopic level, this model
has a very different structure from the Hamiltonian dynamics previously mentioned. Indeed,
it is a Markov chain restricted only to particle velocities and the collisions are modeled by
a jump process with a random deflection parameter. For Kac’s model, the chaos assumption
has been derived in a very strong sense [51].

In the following sections, we are going to argue that the hard sphere dynamics shares,
however, many similarities with Kac’s model, not only at the typical level, but also at the level
of the fluctuations and of the large deviations. In this respect, randommodeling is an excellent
approximation of the hard sphere dynamics. The key step to accessing this refined statistical
information will be to understand more precisely the chaos assumption (2.14).

3.2. Defects in the chaos assumption
Going back to the equation (2.15) on F "

1 , one can see that up to the small spatial
shifts in the collision term (known as Enskog corrections to the Boltzmann equation), devia-
tions from the Boltzmann dynamics are due to the defect of factorization F "

2 � F "
1 ˝ F "

1 , the
so-called second order cumulant. In terms of our geometric interpretation, this corresponds
to pseudotrajectories which are correlated. Recall that F "

2 can be described by interact-
ing collision trees with two roots, say labeled by 1� and 2�, and n1 C n2 branchings (see
Remark 2.2), while the tensor product is described by two independent collision trees each
with one root, and n1, n2 branchings, respectively. The main difference when building the
pseudodynamics corresponding to F "

2 is that particles from tree 1� and 2� may (or may not)
interact. We start by extracting the pseudotrajectories of F "

2 having at least one interaction
between the two trees, which will be called an external recollision (see Figure 8) in contrast
with a recollision inside a collision tree which will be called internal.
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Figure 8

Among the pseudodynamics describing F "
2 , we separate those having a recollision between trees 1� and 2�, and

those where particles from tree 1� and particles from tree 2� remain at a distance greater than ", which will be
denoted by 6�. In this picture, n1 D n2 D 1.

Figure 9

Expanding the dynamical exclusion condition leads to the definition of overlaps.

We stress that pseudodynamics without external recollision are not independent
since they satisfy a dynamical exclusion condition. We therefore decompose the exclusion
condition 11� 6�2� D 1 � 11��2� (see Figure 9).

Note that this decomposition is a pure mathematical artefact to compare pseudo-
dynamics without external recollision with independent pseudodynamics. In particular, the
overlapping condition 1� � 2� does not affect the dynamics itself (overlapping particles
are not scattered!). If we ignore the correlation encoded in the initial data, we then end up
with a representation of the second order cumulant by trees which are coupled by external
recollisions or overlaps (see Figure 10).

Remark 3.1. Recall that the initial measure does not factorize exactly F
";0
2 ¤ F

";0
1 ˝ F

";0
1

due to the exclusion condition. Thus the initial data induces also a small correlation which
is actually much smaller than the dynamical correlations (by a factor "), so we will neglect
it in the following.

Recolliding and overlapping pseudotrajectories should provide a contribution of
order 1 inL1 toF "

2 � F "
1 ˝ F "

1 . For n1 D n2 D 0, i.e., for collision trees without branchings,
this defines the bad set of configurations B"

2 (mentioned in Sections 2.4–2.5) encoding the
collisions between two particles in the backward flow (see Figure 7). In particular, by choos-
ing z1� and z2� at time t such that jx1� � x2� � .v1� � v2�/.t � s/j � " for some s � t ,
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Figure 10

The second order cumulant corresponds to pseudotrajectories with at least one external recollision or overlap.

the contribution to the cumulant of the pseudodynamics with n1 D n2 D 0 is expected to
be nonzero (except at equilibrium when recollisions and overlaps almost compensate). The
smallness of the second cumulant F "

2 � F "
1 ˝ F "

1 actually comes from the size of its sup-
port. The right norm to measure the smallness of correlations is thus the L1-norm and the
quantity to be studied asymptotically is the rescaled second-order cumulant

f "
2 D �"

�
F "

2 � F "
1 ˝ F "

1

�
: (3.1)

With this scaling, we expect that f "
2 has a limit f2 in the sense of measures. The set sup-

porting the function f "
2 records the correlation between two pseudotrajectories (rooted in 1�

and 2�) via a recollision or an overlap. On the other hand, once the two pseudotrajectories are
correlated by a recollision or an overlap then any additional recollision, overlap or internal
recollision will impose stronger geometric constraints and they can be discarded in the limit
as in Lanford’s proof (see Figure 6). Therefore the limit f2 corresponds to pseudotrajectories
with exactly one (external) recollision or overlap on Œ0; t �.

In order to understand fluctuations with respect to the Boltzmann dynamics, we
also need to understand time correlations. To characterize these time correlations, one can
proceed exactly in the same way, using a kind of duality method with weighted pseudo-
trajectories. Recall that F "

2 is by definitionZ
F "

2 .t; z1� ; z2�/h1.z1�/h2.z2�/dz1�dz2� D E"

�
1

�2
"

X
.i1;i2/

h1

�
z"

i1
.t/
�
h2

�
z"

i2
.t/
��

;

meaning that there is a weight h1.z1�/h2.z2�/ at time t in the geometric representation. The
counterpart for the time correlations

F "
2

�
.hi ; �i /i�2

�
D E"

�
1

�2
"

X
.i1;i2/

h1

�
z"

i1
.�1/

�
h2

�
z"

i2
.�2/

��
(3.2)

is to construct the same pseudotrajectories ‰"
2;n starting from some �2 > �1, and to evaluate

the weight h1 on the resulting configuration of particle 1� at time �1 and the weight h2 on
the resulting configuration of particle 2� at time �2 (see Figure 11).

We then define the rescaled weighted second order cumulant

f "
2

�
.hi ; �i /i�2

�
D �"

�
F "

2

�
.hi ; �i /i�2

�
� F "

1 Œh1; �1�F "
1 Œh2; �2�

�
; (3.3)
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Figure 11

Time correlations (3.2) can be computed by introducing weights along the pseudotrajectories.

and performing the same geometric analysis as before, the cumulant f "
2 Œ.hi ; �i /i�2� at dif-

ferent times converges also to a limit f2Œ.hi ; �i /i�2� as �" diverges.

3.3. Higher-order correlations and exponential moments
For a Gaussian process, the first two correlation functions F "

1 , F "
2 determine com-

pletely all other correlation functions F "
k
, but in general part of the information is encoded

in the (scaled) cumulants of higher order defined by (restricting here for simplicity to only
one time)

f "
k .t; Zk/ D �k�1

"

kX
`D1

X
�2P `

k

.�1/`�1.` � 1/Š
Ỳ
iD1

F "
j�i j

.t; Z�i
/;

where P `
k
is the set of partitions of ¹1; : : : ; kº in ` parts with � D ¹�1; : : : ; �`º, j�i j stands

for the cardinality of the set �i and Z�i
D .zj /j 2�i

. Each cumulant encodes finer and finer
correlations. Contrary to correlation functions F "

k
, they do not duplicate the information

which is already encoded at lower orders.
From the geometric point of view, one can extend the analysis of the previous

paragraph and show that the cumulant of order k can be represented by k pseudotrajec-
tories which are completely connected either by external recollisions or by overlaps (see
Figure 12).

One can classify these completely connected pseudotrajectories by associating them
with a dynamical graph G with k vertices representing the different trees encoding the exter-
nal recollisions (edge with aC sign) and the overlaps (edges with a� sign). Furthermore, one
can define a systematic procedure to extract from this connected graph G a minimally con-
nected graph T by identifying k � 1 “clustering recollisions” or “clustering overlaps” (see
Figure 13). Here we use a cluster expansion reminiscent of the method originally developed
by Penrose to deal with correlations in the grand canonical Gibbs measure [54,55].

We then expect the scaled cumulant f "
k
to decompose in a sum of 2k�1kk�2 terms

obtained by grouping all pseudotrajectories compatible with each one of the signed mini-
mally connected graphs T (recall that kk�2 is the number of trees on k labeled vertices,
known as Cayley’s formula). For each given signed minimally connected graph, the recol-
lision/overlap conditions can be written as k � 1 “independent” constraints on the config-
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Figure 12

The cumulant of order k corresponds to pseudotrajectories issued from z1� ; : : : ; zk� completely connected by
external recollisions or overlaps.

Figure 13

All recollisions and overlaps from the pseudotrajectories depicted in Figure 12 are encoded in the graph G. Only
recollisions/overlaps which do not create a cycle (going backward in time) are kept in the tree T .

uration z1� ; : : : ; zk� at time t . Therefore, neglecting the velocity dependence as in (2.9),
this contribution to the cumulant f "

k
has a support of size O..t=�"/k�1/ with respect to

Lebesgue measure and from this we deduce the expected L1 estimatef "
k


L1 � �k�1

"„ƒ‚…
scaling

� 2k�1kk�2„ ƒ‚ …
number of signed trees

�

�
C t

�"

�k�1

„ ƒ‚ …
support size

� kŠ.C t/k�1: (3.4)

Furthermore, a geometric argument similar to the one developed in Lanford’s proof (see
Section 2.4) and already used in the study of the second order cumulant allows showing
that f "

k
converges to some limiting cumulant fk and that only the pseudotrajectories having

exactly k � 1 recollisions or overlaps (and no cycle) contribute in the limit.
This geometric approach allows characterizing all corrections to the chaos assump-

tion, up to exponential order, at least for times of the same order as TL [13, 14]. Actually,
a classical and rather straightforward computation (based on the series expansions of the
exponential and logarithm) shows that cumulants are nothing else than the coefficients of
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the series expansion of the exponential moment

I"
t .h/ D

1

�"

logE"

�
exp

�
�"

˝
�"

t ; h
˛��

D
1

�"

logE"

�
exp

�X
i

h
�
z"

i .t/
���

(3.5)

D

1X
kD1

1

kŠ

Z
f "

k .t; Zk/

kY
iD1

�
eh.zi /

� 1
�
dZk :

The quantity I"
t .h/ is referred to as the cumulant generating function. Estimate (3.4) provides

the analyticity of I"
t .h/ as a functional of eh, and this uniformly with respect to " (small

enough). The limit It of I"
t can then be determined as a series in terms of the limiting

cumulants fk .
Instead of using the cumulant expansion, we present a heuristic approach to char-

acterize the limit It as the solution of the Hamilton–Jacobi equation (3.8). At first reading,
this formal derivation can be skipped and the reading can be resumed at Equation (3.8). We
proceed as in Section 2.3 for the Boltzmann equation (2.1) and write the formal equation
satisfied by I"

t .h/ for fixed ". Considering an evolution for a short time ı as in (2.7) and then
taking a formal limit ı ! 0, we get

E"

h
exp

�X
i

h.z"
i .t//

�i
@t I

"
t .h/

D E"

��
1

�"

X
j

dx"
j

dt
� rxh

�
z"
j .t/

��
exp

�X
i

h
�
z"

i .t/
���

C

Z
d!E"

24 1

�2
"

X
j1¤j2

ıx"
j2

.t/�x"
j1

.t/�"!

��
v"

j2
.t/ � v"

j1
.t/
�

� !
�

C

�
�
e

h.z"
j1

.tC//Ch.z"
j2

.tC//
� e

h.z"
j1

.t�//Ch.z"
j2

.t�//� exp� X
i 6Dj1;j2

h
�
z"

i .t/
��35 ;

where ! becomes a random parameter after changing variables at the collision time as
in (2.12). We used the Dirac notation as in (2.13) to stress that x"

j2
.t/ D x"

j1
.t/ C "! at the

collision. Denoting by �"
2;t the generalized empirical measure depending on 2 arguments

(see (2.6)), we get

E"

h
exp

�
�"h�"

t ; hi
�i

@t I
"
t .h/ D E"

�
�"

t ¹v � rxhº exp
�
�"

˝
�"

t ; h
˛��

C
1

2

Z
d!E"

�
�"

2;t

®
ıx2�x1�"!

�
e�h.z1;z2;!/

� 1
�¯
exp

�
�"

˝
�"

t ; h
˛��

;

(3.6)

where �h.z1; z2; !/ D h.x1; v0
1/ C h.x2; v0

2/ � h.z1/ � h.z2/ was already introduced
in (2.11). To obtain a closed equation, it remains to find the counterparts of the correla-
tion functions F "

1 and F "
2 which describe the distribution under the measure tilted by the

exponential weight h�"
t ; hi.
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Differentiating the exponential moment (3.5) at h in the direction ', we recover the
quantity h�"

t ; 'i�
@I"

t

@h
.h/; '

�
D lim

ı!0

1

ı

�
I"

t .h C ı'/ � I"
t .h/

�
D

1

E"Œexp.�"h�"
t ; hi/�

E"

�˝
�"

t ; '
˛
exp

�
�"

˝
�"

t ; h
˛��

:

Thus the transport term has the form h
@I"

t

@h
.h/; v � rxhi. By taking a second derivative, the

tilted distribution of the two-point correlations can be identified in terms of

1

�"

@2I"
t

@h2
.h/ C

@I"
t

@h
.h/ ˝

@I"
t

@h
.h/:

The collision term is singular, but formally the right-hand side of (3.6) can be rewritten as

@t I
"
t .h/ D

1

2

�
@I"

t

@h
.h/ ˝

@I"
t

@h
.h/;

Z
d!
�
.v2 � v1/ � !

�
C

ıx2�x1�"!

�
e�h.z1;z2;!/

� 1
��

C
1

2�"

�
@2I"

t

@h2
.h/;

Z
d!
�
.v2 � v1/ � !

�
C

ıx2�x1�"!

�
e�h.z1;z2;!/

� 1
��

C

�
@I"

t

@h
.h/; v � rxh

�
:

(3.7)
We recognize here a kind of Hamilton–Jacobi equation, with a small “viscous” term (involv-
ing derivatives of order 2 with respect to h, but without a definite sign). Thus the limiting
functional It has to satisfy the following Hamilton–Jacobi equation obtained by formally
taking the limit �" ! 1,

@t It .h/ D
1

2

�
@It

@h
.h/ ˝

@It

@h
.h/;

Z
d!
�
.v2 � v1/ � !

�
C

ıx2�x1

�
e�h.z1;z2;!/

� 1
��

C

�
@

@h
It .h/; v � rxh

�
:

(3.8)

The structure of this Hamilton–Jacobi equation is reminiscent of the Boltzmann equa-
tion (3.8), with a collision term and a transport term. However, it encodes a much more
complete description of the hard sphere dynamics, including in particular the structure of
the exponentially small correlations and of the large deviations (see Theorem 3.5).

As in (3.2), further information on the correlations in a time interval Œ0; t � can be
obtained by generalizing (3.5)

I"
Œ0;t�.H/ D

1

�"

logE"

�
exp

�X
i

H
�
z"

i

�
Œ0; t �

����
; (3.9)

for functions H depending on the trajectory of a particle in Œ0; t �. For example, a sampling at
different times �1 < �2 < � � � < �k � t by test functions .h`/`�k is obtained by considering

H
�
z
�
Œ0; t �

��
D

kX
`D1

h`

�
z.�`/

�
: (3.10)

Remark 3.2. The procedure described here allows to obtain easily the limiting equa-
tion (3.8) without having to guess how to combine the different cumulant terms (which
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happens to be quite technical). However, the weak understanding we have on this equation
does not allow to use it to justify the limit as �" ! 1 (without going through the cumulant
analysis of [14]).

Remark 3.3. In the absence of spatial inhomogeneities, one can discard the transport term
and retrieve asymptotically the same cumulant generating function as for the Kac model, i.e.,
the dynamics in which collisions are given by a random jump process [4,41,47,60]. This indi-
cates that in the limit �" ! 1, both models are indistinguishable (up to exponentially small
corrections). In other words, the Hamilton–Jacobi equation (3.8) conserves the stochastic
reversibility, but not the deterministic reversibility: one cannot hope for any strong conver-
gence result.

3.4. A complete statistical picture for short times
As mentioned in the previous paragraph, the cumulant generating function provides

a complete statistical picture of the hard sphere dynamics. We now explain how it can be
used to answer the main questions raised in Section 1.3 (on a short time T ?, of the same
order as Lanford’s time TL in Theorem 2.1).

As a first consequence of the uniform estimates on the cumulant generating func-
tion I"

Œ0;t�
, the convergence of the fluctuation field, defined by (1.4) and recalled below˝

�"
t ; h

˛
D

p
�"

�˝
�"

t ; h
˛
� E"

�˝
�"

t ; h
˛��

;

can be obtained.
At time 0, it is known that, under the grand-canonical measure introduced on

page 757, the fluctuation field �"
0 converges in the Boltzmann–Grad limit to a Gaussian

field �0 with covariance

E
�
�0.h/�0.g/

�
D

Z
dzf 0.z/h.z/g.z/: (3.11)

The following theorem controls the dynamical fluctuations.

Theorem 3.4 (Bodineau, Gallagher, Saint-Raymond, Simonella [15]). Under the assump-
tions on the initial data stated on page 757, the fluctuation field �"

t of the hard sphere system
converges, in the Boltzmann–Grad limit (�" ! 1 with �""d�1 D 1), on a time interval
Œ0; T ?� towards a process �t , solution to the fluctuating Boltzmann equation8̂̂̂̂

<̂
ˆ̂̂:

d�t D Lt �t dt„ ƒ‚ …
linearized Boltzmann operator

C d�t„ƒ‚…
Gaussian noise

Lt h D �v � rxh„ ƒ‚ …
transport

C C.ft ; h/ C C.h; ft /„ ƒ‚ …
linearized collision operator

(3.12)

where ft denotes the solution at time t to the Boltzmann equation (2.1) with initial data f 0,
and d�t is a centered Gaussian noise delta-correlated in t; x with covariance

Covt .h1; h2/ D
1

2

Z
dz1dz2d!

�
.v2 � v1/ � !

�
C

ıx2�x1f .t; z1/f .t; z2/�h1�h2.z1; z2; !/

with �h.z1; z2; !/ D h.z0
1/ C h.z0

2/ � h.z1/ � h.z2/ as in (2.11).
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As hinted in Section 3.2, the limiting noise is a consequence of the asymptotically
unstable structure of the microscopic dynamics (see Figure 2). The randomness of the initial
configuration is transported deterministically by the dynamics and generates a white noise
in space and time through a particular class of collisions. The velocity scattering mechanism
is coded in the covariance of the noise.

If the system starts initially from an equilibriummeasure, i.e., with particle positions
spatially independent (up to the exclusion) and velocities identically distributed according
to the Maxwell–Boltzmann equilibrium distribution

f 0.x; v/ D M.v/ D
1

.2�/d=2
exp

�
�

jvj2

2

�
; (3.13)

then ft D f 0 so that the linearized operator is time independent and it will be denoted
by Leq. The limiting stochastic partial differential equation d�t D Leq�t C d�t satisfies the
fluctuation/dissipation relation: the dissipation from the linearized operator Leq is exactly
compensated by the noise �t . As the equilibrium measure is time invariant, it was expected
on physical grounds that a stochastic correction should emerge in order to keep this invari-
ance in time. In fact, the equation governing the covariance of the limiting process Cov.�t /

away from equilibrium was obtained, and the full fluctuating equation for .�t /t�0 conjec-
tured, in the pioneering works by Spohn [65–67]. In particular, it was already understood in
[65] that out of equilibrium, a nontrivial contribution to Cov.�t / is provided by the second-
order cumulant (3.1). Note that the predictions on the stochastic corrections from the Kac
model [49, 50, 59] fully agree with the stochastic equation emerging from the determinis-
tic hard sphere dynamics. Thus from a phenomenological point of view, it is equivalent to
consider a stochastic model (including as well the positions as in [59]) or a deterministic evo-
lution. We refer also to the work by Ernst and Cohen [34] for further discussion on the time
correlations and the fluctuations.

Note that equilibrium fluctuations for a microscopic evolution with spatial coordi-
nates and stochastic collisions have been derived in [59] for arbitrary long times. We will see
in Theorem 4.2 that the convergence time of the previous theorem can be greatly improved
at equilibrium.

Out of equilibrium, although the solution f to the Boltzmann equation (describing
the averaged dynamics) is very smooth on Œ0; T ?�, the fluctuating Boltzmann equation is
quite singular: the linearized operator Lt is nonautonomous, non-self-adjoint, and the cor-
responding semigroup is not a contraction. Thus we consider a very weak notion of solution
of (3.12), requiring only that

• the process �t is Gaussian;

• its covariance defined, for test functions h1; h2 and times �1; �2, as

C.�1; h1; �2; h2/ D lim
"!0

E"

�˝
�"

�1
; h1

˛˝
�"

�2
; h2

˛�
(3.14)

satisfies a set of equations governed by the linearized Boltzmann equation.

The convergence of the process .�"
t /t�T ? can be derived in 3 steps:
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• The convergence of the time marginals to a Gaussian process
The characteristic function of the process tested at times �1 < � � � < �k � T ?

by functions .h`/`�k is encoded by the exponential moment (3.9) by choos-
ing H.z.Œ0; T ?�// D

ip
�"

Pk
`D1 h`.z.�`// as in (3.10)

logE"

"
exp

 
i

kX
`D1

�˝
�"

�`
; h`

˛
C

p
�"E"

�˝
�"

�`
; h`

˛��!#
D �"I"

Œ0;T ?�.H/: (3.15)

The cumulant expansion (3.5) combined with sharp controls on the cumulants
ensure that I"

Œ0;T ?�
.H/ is an analytic function of H in a neighborhood of 0 so that

complex values can also be handled. Furthermore, in the scaling considered for
the fluctuations, H is of order 1p

�"
. Thus in the cumulant expansion (3.5), the

term of order n scales as

f "
n

��
eH

� 1
�˝n�

'
1

�
n=2
"

;

so that the asymptotics of the characteristic function (3.15) is only determined
by the cumulants of order less than 2. This implies that the Wick rule holds and
therefore the limiting variables are Gaussian.

• The characterization of the limit covariance
The evolution equation of the covariance C.�1; h1; �2; h2/ can be recovered from
the equations satisfied by the first two cumulants. As already pointed out in [65],
we stress that the behavior of the covariance C.�1; h1; �2; h2/ is determined by
means of a careful analysis of the second cumulant f "

2 Œ.h`; �`/`�2� introduced
in (3.3). Out of equilibrium, the cumulant of order 2 takes into account the contri-
bution of one external recollision or of one overlap (as explained in Section 3.2).
Even though the contribution of the recollisions vanishes when deriving the Boltz-
mann equation (recall the chaos assumption (2.14)), it plays an important role in
the stochastic corrections.

• The tightness of the sequence .�"
t /">0

This is the most technical part of the proof as it requires to control uniform esti-
mates in time for a wide class of test functions h,

E"

h
sup

js�s0j�ı

ˇ̌˝
�"

s ; h
˛
�
˝
�"

s0 ; h
˛ˇ̌i

:

We will not discuss further this point and refer to [14] for details.

Note that Theorem 3.4, which is a kind of central limit theorem, does not use the fine structure
of cumulants: a sufficient decay of the correlations is enough to control the typical fluctua-
tions (which are of size O.1=

p
�"/).

The strength of the cumulant generating function appears at the level of large devi-
ations, i.e., for very unlikely trajectories which are at a “distance” O.1/ from the averaged
dynamics. The counterpart of the large deviation statement (1.5) for independent variables
can be rephrased, in a loose way, as follows: observing an empirical particle distribution

777 Dynamics of dilute gases: a statistical approach



close to the density '.t; x; v/ during the time interval Œ0; T ?� decays exponentially fast with
a rate quantified by the large deviation functional F ,

P"

�
�"

t ' 't ; 8t � T ?
�

� exp
�
��"F .'/

�
:

Notice that at time 0, under the grand-canonical measure introduced on page 757, it is known
that the large deviations around a density '0 can be informally stated as follows:

P"

�
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0 ' '0
�

� exp
�
��"H

�
'0

jf 0
��

;

with a static large deviation functional given by the relative entropy

H
�
'0

jf 0
�

D

Z �
'0 log

'0

f 0
�
�
'0

� f 0
��

dz:

More precisely, the distance between �" and ' is measured with respect to a weak
topology on the Skorokhod space of measure valued functions. This topology is used in the
theorem below.

Theorem 3.5 (Bodineau, Gallagher, Saint-Raymond, Simonella [14]). Under the assump-
tions on the initial data stated on page 757, there is a time T ? > 0 such that the empirical
measure .�"

t /t�T ? satisfies, in the Boltzmann–Grad limit �" ! 1 (�""d�1 D 1), the fol-
lowing large deviation estimates:8̂̂<̂

:̂
lim sup
�"!1
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logP"
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'2K
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2 O open
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'2O\R

F .'/;

for some (nontrivial) restricted set R.
The large deviation functional F is defined by convex duality from the cumulant

generating function IŒ0;T ?� (obtained as the limit of (3.9)). It coincides on the restricted
set R with8̂̂̂̂
<̂̂
ˆ̂̂̂:

QF .'/ D H
�
'0

jf 0
�„ ƒ‚ …

relative entropy of the initial data

C sup
p

Z T ?

0

�˝
p; .@t C v � rx/'

˛
� H .'; p/

�
„ ƒ‚ …

Legendre transform of the Hamiltonian

;

H .'; p/ D
1

2

Z
dz1dz2 d!

�
.v2 � v1/ � !

�
C

ıx2�x1'.z1/'.z2/
�
e�p.z1;z2;!/

� 1
�
;

(3.16)

with �p.z1; z2; !/ D p.z0
1/ C p.z0

2/ � p.z1/ � p.z2/ as in (2.11).

All the functionals appearing in the above statement are quite singular (notice that
the Hamiltonian is defined by an integral over a manifold of codimension d with a weight
growing for large velocities) and our method is restricted to considering very smooth and suf-
ficiently decaying test functions. These restrictions on the functional spaces are the reason
why we are not able to obtain a more precise large deviation principle, or to identify clearly
the large deviation functional. We refer to [14] for the proof which follows a quite standard
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path, once the limiting cumulant generating function IŒ0;T ?� has been constructed. The iden-
tification between F and QF relies on the limiting Hamilton–Jacobi equation (3.8).

Remark 3.6. Note that the large deviation functional QF defined by (3.16) was conjectured in
[62] and [19]. As already mentioned, it actually corresponds to the large deviation functional
for stochastic microscopic processes, such as the Kac model (in the absence of transport)
[41,47], or intermediate models (with transport and stochastic collisions) introduced by Reza-
khanlou [60].

4. Beyond Lanford’s time

Up to a short time, Theorems 3.4 and 3.5 provide a good statistical description of
the hard sphere dynamics in the Boltzmann–Grad limit (�" ! 1 with �""d�1 D 1). The
stochastic corrections to the Boltzmann equation emerge from the complex interplay between
the random initial data and the asymptotic instability of the dynamics.

However, these results are still far from being satisfactory as the time restriction is
not expected from physics: it does not allow understanding the relaxation toward equilib-
rium (and the corresponding entropy cascades between cumulants), or deriving fluid limits.
This question remains quite open, and the goal of this last section is to discuss theoreti-
cal obstructions and methodological difficulties, as well as some recent progress close to
equilibrium.

4.1. Main difficulties
A natural way to address this problem is trying to understand what kind of conver-

gence one can hope for beyond Lanford’s time TL. Recall that Lanford’s theorem describes
the approximation of a reversible system by an irreversible system, where a macroscopic part
of the information is missing. This excludes any kind of “strong” convergence in terms of
relative entropy. This implies in particular that one will hardly use the fine knowledge one
might have on the solution to the Boltzmann equation to obtain a robust notion of stability
which would be as well compatible with the microscopic system.

Remark 4.1. In the framework of fluid limits, modulated energy ormodulated entropymeth-
ods are among the most powerful to prove convergence theorems [39,64,71] since they require
very few properties on the original system, typically

• an energy/entropy inequality satisfied by weak solutions;

• the consistency of the approximation (meaning that the limiting equations are
those inferred from the formal asymptotics);

• some bootstrap estimates controlling (nonlinear) fluxes in terms of the modulated
energy/entropy.

An alternative would be to establish some weak convergence F "
1 * f , which para-

doxically requires better compactness estimates on the sequence .F "
1 /". In this framework,
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the best one can do in general is to retrieve the structure of the limiting equation and its good
(weak) stability properties from the solutions F "

1 for fixed ", and this uniformly in ". The
problem here, as mentioned in Section 2.2, is that the Boltzmann equation does not have
such a weak stability. Two ingredients are necessary to construct solutions satisfying only
physical bounds (mass, energy, and entropy estimates):

• a renormalization procedure to tame the possible singularity (concentration in x)
in the loss collision term f .t; x; v/ �

R
f .t; x; v1/b.v � v1; !/d!dv1;

• a bound on the entropy dissipation to control the gain term by the loss term.

These ingredients have been used in [61] to recover the Boltzmann equation from a micro-
scopic dynamics with stochastic collisions, but they do not seem to have a clear counterpart
for a deterministic microscopic evolution.

The Hamilton–Jacobi equation (3.7) retains much more information on the system,
thus the convergence of I"

t to It , in a sense to be understood, could provide a more stable
framework to study the kinetic limit for large times. This would then imply the convergence
to the Boltzmann equation.

4.2. Close to equilibrium
An easier setting to control the long-time evolution is to consider a perturbation of

an equilibrium measure. Here the stationarity of the equilibrium becomes a key tool in order
to provide uniform estimates in time and to control the pathological behaviors previously
mentioned. In a series of recent works [15,16], we took advantage of the equilibrium structure
to extend Theorem 3.4 to arbitrarily long kinetic times, and even slowly diffusive times.

Theorem 4.2 (Bodineau, Gallagher, Saint-Raymond, Simonella [15,16]). Consider a system
of hard spheres initially at equilibrium, i.e., with a spatially uniform distribution and with a
Maxwell–Boltzmann distributionM in velocities as in (3.13) (Gibbs grand-canonical ensem-
ble, f 0 D M in (2.3)).

Then, in the Boltzmann–Grad limit �" ! 1 (�""d�1 D 1), the fluctuation field
.�"

t /t�0 of the hard sphere system converges on any time interval Œ0; T"�, with
T" D O.log log log�"/, towards the process .�t /t�0, solution to the fluctuating Boltzmann
equation 8̂̂̂̂

<̂
ˆ̂̂:

d�t D Leq�t dt„ ƒ‚ …
linearized Boltzmann operator

C d�t„ƒ‚…
Gaussian noise

Leqh D �v � rxh„ ƒ‚ …
transport

C C.h; M/ C C.M; h/„ ƒ‚ …
linearized collision operator

(4.1)

where the linearized operator Leq is time independent and � is a Gaussian noise delta-
correlated in t; x with a time independent covariance

Cov.h1; h2/ D
1

2

Z
dz1dz2d!

�
.v2 � v1/ � !

�
C

ıx2�x1M.v1/M.v2/�h1�h2.z1; z2; !/;

with �h.z1; z2; !/ D h.z0
1/ C h.z0

2/ � h.z1/ � h.z2/ as in (2.11).
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Since the approximation holds true for very long times compared to the mean free
time (diverging to infinity as log log log�"), it makes sense to look at fluid limits, i.e., at
regimes when the collision process is much faster than the transport (density is still low but
makes the collisions a bit more likely) �""d�1 D ˛�1 with ˛ � ", ˛ ! 0. Starting from the
scaled linearized Boltzmann equation

@t h C v � rxh D
1

˛

�
C.h; M/ C C.M; h/

�
;

it is well known [3] that, in the limit ˛ ! 0, the gas will be close to a local thermodynamic
equilibrium, with density, bulk velocity, and temperature satisfying the acoustic equations.
Zooming out on longer times O.1=˛/, these acoustic waves become fast oscillating and thus
converge weakly to 0, but the incompressible component has a diffusive behavior, satisfying
the Stokes–Fourier equations. This by now classical asymptotic analysis can be actually com-
binedwith Theorem 4.2 to derive directly the Stokes–Fourier equations from the dynamics of
hard spheres as in [11]. In a work in progress, we also take into account the noise, and get the
corresponding fluctuating hydrodynamics (satisfying the fluctuation-dissipation principle).

4.3. Some elements of the proof of Theorem 4.2
As in the previous sections, we will not enter into the technicalities of the proof,

which is actually quite involved. We will just focus here on some key arguments, provid-
ing a better understanding of large time asymptotics. We work directly on moments of the
fluctuation field, defined for any collection of times �1 < � � � < �p by

E"

�˝
�"

�1
; h1

˛
� � �
˝
�"

�p
; hp

˛�
; (4.2)

and we are going to prove their convergence to the moments of the field in the stochastic
equation d�t D Leq�t dt C d�t . Combined with the tightness results from [14], this fully
characterizes the convergence of the microscopic fluctuation field.

Let us start with p D 2 and compute the covariance E"Œ�"
�1

.h1/�"
�2

.h2/�. The idea is
to pull back the observable h2 from time �2 to �1 in order to reduce the estimates at a single
time �1. A similar strategy was presented in Sections 2.4 and 3.2 to transport the correlation
up to time 0 for which the distribution was known. In particular, we have seen that the cor-
relation functions at a time �2 can be represented by backward pseudotrajectories involving
collision trees with a numberm of additional particles encoding the dynamical history during
the time interval Œ�1; �2�. The time restriction TL for the convergence to Boltzmann equation
in Theorem 2.1 was due to the lack of control on the growth of the tree sizesm at large times.
Indeed, dynamical correlations may develop and form giant components of correlated par-
ticles for very pathological trajectories. In order to reach larger time scales, one has to show
that the contribution of these bad trajectories with large m remains negligible. For this we
perform a time sampling. The idea is to build the pseudotrajectories iteratively from �2 to �1

on time steps of length � � 1 and to neglect the collision trees with a fast (superexponen-
tial) growth during a time � (see Figure 14). The large collision trees are therefore discarded
before they reach the time �1, i.e., before their sizes become uncontrollable. This can be
achieved by using the time invariance property of the equilibrium measure which provides
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Figure 14

Pseudotrajectories are build iteratively on short time intervals of length � starting from �2. The procedure stops
before reaching time �1 if superexponential branchings occur in a time interval of length � . The corresponding
pseudotrajectories stop at time �stop and are then discarded. A double sampling at scales ı � � � 1, depicted on
the right figure, is implemented to control the recollisions.

a priori controls on the statistics. This kind of sampling was introduced for the first time in
the context of the Boltzmann–Grad limit in [10, 11], but it is also an important ingredient in
the weak coupling limit for quantum systems leading to quantum diffusion [32,33].

Another key ingredient, to derive the convergence to the Boltzmann equation, is the
procedure to neglect the “bad” trajectories involving recollisions (see Section 2.4). Control-
ling the growth of the collision trees is also essential to discard recollisions. The idea is to
introduce a double sampling in time (with time scales ı � � � 1, see Figure 14) which
takes care simultaneously of the recollisions and of the collision tree growth. The backward
iteration is stopped and the corresponding pseudotrajectories are discarded as soon as one
of the following conditions is violated:

• there is at least one recollision on the last very small interval of size ı D O."1� 1
2d /;

• on the last small interval of size � D .log log�"/�1=2, the number of particles has
been multiplied at least by 2.

Note that both conditions are entangled. On the one hand, the bigger the size of the system,
the easier for recollisions to occur. On the other hand, it is rather difficult to control the
growth of the system if there are recollisions.

Assuming that the pseudotrajectories can be controlled by the previous time sam-
pling, let us now explain the weak convergence method for computing the covariance. The
two-time correlation E"Œh�"

�1
; h1ih�"

�2
; h2i� can be rephrased as the expectation of two fluc-
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Figure 15

Starting from z1� at time �2, the blue pseudotrajectory is built backward and leads to a configuration Zm at time
�1 (with m D 3 on the picture). The dual procedure goes forward, starting from Zm in order to reconstruct z1� as
a function of Zm at time �2. Following the forward flow, a tree is built by removing one of the particles at each
encounter between two particles. Notice that one has to choose which particle will be removed and if a scattering
occurs. Thus there are potentially several ways to build forward trajectories, but their combinatorics is well under
control. This is no longer the case when recollisions can occur. Indeed, this adds the possibility that when two
particles encounter in the forward flow, none of them disappears (see the dotted path on the figure) so when the
number of recollisions is not bounded the combinatorics diverges.

tuation fields at the same time �1

E"

�˝
�"

�1
; h1

˛˝
�"

�2
; h2

˛�
“D”

X
m

E"

�˝
�"

�1
; h1

˛˝
�"

m;�1
; ��2��1

˛�
; (4.3)

where the new test function ��2��1
.Zm/ is obtained from h2 by considering all possible

forward flows starting from Zm at time �1 and having only one particle left at time �2 (see
Figure 15). In this sense, (4.3) is dual to the backward representation of the correlation func-
tions (2.16). The price to pay, to reduce the expectation at a single time, is that the new test
function ��2��1

depends on m particles (a parameter related to the size of the collision trees
in the time interval Œ�1; �2�) so that the fluctuation field �"

m;�1
has the form˝

�"
m;�1

; ��2��1

˛
D

p
�"

�
1

�m
"

X
.i1;:::;im/

��2��1

�
z"

i1
.�1/; : : : ; z"

im
.�1/

�
� E".��2��1

/

�
;

which is related to the generalized empirical measure defined in (2.6), with the abbreviation

E".��2��1
/ D E"

�˝
�"

m;�1
; ��2��1

˛�
:

In the following, we will abusively forget the subscript m.
The difficulty to make sense of the pullback in (4.3) is that the forward flow is not

a priori well defined. Indeed, different backward pseudotrajectories may end up at time �1

with the same particle configurationZm. Thus starting fromZm, there are many possibilities
to build the forward flow from �1 to �2: when two particles touch each other, we need to
prescribe whether one of them will be deleted (corresponding to a creation in the backward
flow) or not (corresponding to a recollision), and in the case of deletion whether there is
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scattering of the remaining particle (see Figure 15). The combinatorics of these choices is
diverging very fast if the number of recollisions is not under control. The very short time
sampling ı is introduced so that the number of recollisions during a time ı is controlled with
high probability under the equilibrium measure.

Then the pullback relation (4.3) is obtained by successive iterations of the sampling
time ı. After the first elementary time step in the time interval Œ�2 � ı; �2�, the patholog-
ical events are discarded and then the elementary pullback can be iterated. This means
that, at each time �2 � rı, remainder terms due to recollisions are neglected, and that, at
each time �2 � k� , remainder terms due to superexponential growth can also be discarded.
Let �stop 2 Œ�1; �2� be the first time at which a pseudotrajectory becomes pathological (see
Figure 14). The corresponding terms obtained by forward transport from the time �stop are
generically denoted by �bad

�stop
and are proved to be small by using the time invariance of the

equilibirum measure. Indeed, the time decoupling follows from a Cauchy–Schwarz estimateˇ̌
E"

�˝
�"

�1
; h1

˛˝
�"

�stop
; �bad

�stop

˛�ˇ̌
� E"

�˝
�"

�1
; h1

˛2�1=2
E"

�˝
�"

�stop
; �bad

�stop

˛2�1=2
; (4.4)

and from the strong geometric constraints on the corresponding pathological pseudotrajec-
tories which can be estimated under the equilibrium measure on can deduce that

E"

�˝
�"

�stop
; �bad

�stop

˛2�
! 0 as �" ! 1:

The last important step to prove that the limiting process is Gaussian boils down to
showing that, asymptotically when �" ! 1, the moments, defined in (4.2), are determined
by the covariances according to Wick’s rule

lim
�"!1

ˇ̌̌̌
E"

�˝
�"

�1
; h1

˛
� � �
˝
�"

�p
; hp

˛�
�

X
�2S

pairs
p

Y
¹i;j º2�

E"

�˝
�"

�i
; hi

˛˝
�"

�j
; hj

˛�ˇ̌̌̌
D 0; (4.5)

where S
pairs
p is the set of partitions of ¹1; : : : ; pº made only of pairs. Notice that if p is odd

then S
pairs
p is empty and the product of the moments is asymptotically 0.
To understand this pairing mechanism, let us start with a simpler example for which

explicit computations can be achieved. Consider the moments of the fluctuation field at
time 0, under the equilibriummeasure with independently distributed particles. This reduces
to the case " D 0 and �1 D � � � D �p D 0. Assuming furthermore that the test functions are
of mean E0.hi / D 0 (we abusively write here E0 for this iid case, not to be confused with
E" for " D 0), we get

E0

"
pY

`D1

˝
�"

0; h`

˛#
D

1

�
p=2
"

E0

"
pY

`D1

�X
i`

h`.zi`/

�#
D

1

�
p=2
"

E0

" X
i1;:::;ip

pY
`D1

h`.zi`/

#
; (4.6)

where the sum is over all the possible choices (with repetition) among N particles (with
N ' �" under the grand-canonical measure). As the mean of the test functions is assumed
to be 0, each particle has to be chosen at least twice, otherwise by the independence of the
variables the expectation is equal to 0. Thus in the sum over i1; : : : ; ip , the number k of
different particles is such that k � p=2. Choosing k different particles gives a combinatorial
factor �k

" so that only the pairings with k D p=2 and p even contribute to the limiting
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moment. In this way, one recovers the Wick decomposition (4.5) in terms of pairings. Note
that for " > 0, a similar result holds (at time zero) in the Boltzmann–Grad limit, but a cluster
expansion of the equilibrium measure is necessary to control the (weak) correlations of the
Gibbs measure.

For time-dependent fluctuation fields, the pairing cannot be achieved in one step as
in the previous example. One has instead to proceed iteratively. Let us revisit the computation
above to explain the idea first in this simple setting. We start by focusing on the product of
two fields and decompose it as follows:˝

�"
0; hp

˛˝
�"

0; hp�1

˛
D

1

�"

X
i

hp.zi /hp�1.zi /„ ƒ‚ …
D‰

C
1

�"

X
i 6Dj

hp.zi /hp�1.zj /„ ƒ‚ …
Dh�"

0 ;hpi˝h�"
0 ;hp�1i

: (4.7)

The pairing between h�"
0; hpi and h�"

0; hp�1i is coded by the function ‰ which is called
a contracted product as the variables are repeated. As the variables are independent, the
covariance between hp and hp�1 is given by

E0

�˝
�"

0; hp

˛˝
�"

0; hp�1

˛�
D E0Œ‰�: (4.8)

From the central limit theorem,‰ can be interpreted as a small fluctuation around the covari-
ance

‰ D E0Œ‰� C
1

p
�"

b‰ with b‰ D
1

p
�"

�X
i

hp.zi /hp�1.zi / � �"E0Œhphp�1�

�
; (4.9)

where b‰ behaves as a random variable with finite covariance (uniformly in "). The second
term in (4.7) will be called a ˝-product and denoted by h�"

0; hpi ˝ h�"
0; hp�1i. It behaves

qualitatively as a fluctuation field as the variables are not repeated.
Returning to (4.6), to extract the pairing between h�"

0; hpi and h�"
0; hp�1i, we write

E0

"
pY

`D1

˝
�"

0; h`

˛#
D E0

" 
p�2Y
`D1

˝
�"

0; h`

˛!
‰

#
„ ƒ‚ …

pairing of hp ; hp�1

C E0

" 
p�2Y
`D1

˝
�"

0; h`

˛!�˝
�"

0; hp

˛
˝
˝
�"

0; hp�1

˛�#
„ ƒ‚ …

product of p � 1 fields

:

(4.10)
The second term can be seen as a product of p � 1 fields which will be treated recursively
at the next step. The pairing between h�"

0; hpi and h�"
0; hp�1i can be extracted from the first

term as follows. Using the decomposition (4.9), we get

E0

" 
p�2Y
`D1

˝
�"

0; h`

˛!
‰

#
D E0

"
p�2Y
`D1

˝
�"

0; h`

˛#
E0Œ‰� C

1
p

�"

E0

" 
p�2Y
`D1

˝
�"

0; h`

˛!b‰#

D E0

"
p�2Y
`D1

˝
�"

0; h`

˛#
E0

�˝
�"

0; hp

˛˝
�"

0; hp�1

˛�
C O

�
1

p
�"

�
;

where the smallness of the last term follows from Hölder’s inequalityˇ̌̌̌
ˇE0

" 
p�2Y
`D1

˝
�"

0; h`

˛!b‰#ˇ̌̌̌ˇ � E0

�b‰2
� 1

2

p�2Y
`D1

E0

�˝
�"

0; h`

˛2.p�2/� 1
2.p�2/ ; (4.11)
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provided bounds on the moments of single fields can be obtained. For independent variables,
this procedure is far from optimal; however, it will be extremely useful to decouple fields at
different times. In this way, the pairing between h�"

0; hpi and h�"
0; hp�1i can be extracted

without investigating the correlations between these two fields and the p � 2 other fields.
Note that a time decoupling inequality similar to (4.11) was used in the computation of the
covariance (4.4) to neglect bad pseudotrajectories. Finally, it remains to iterate this procedure
with E0Œ

Qp�2

`D1
h�"

0; h`i� and the second term in (4.10) which involves a product of at most
p � 1 fluctuation fields.

We turn now to the time dependent case (4.5) and proceed backward in time to
achieve the pairing step by step. First, the fluctuation at time �p is pulled back at time �p�1

as a sum of (more complicated) fluctuations by the same duality method as for the covari-
ance (4.3). Using analogous notation as in (4.3), the test function hp is transformed into a
function �

.p/

�p��p�1
with m variables. Forgetting for a moment the product

Qp�2

`D1
h�"

�`
; h`i, we

focus on the product of the fields at time �p�1,˝
�"

�p�1
; hp�1

˛˝
�"

m;�p�1
; �

.p/

�p��p�1

˛
(4.12)

and decompose it as in (4.7) according to the repeated indices in the spirit of the example
above. This leads to two types of contribution:

• a “contracted product” (by analogy with the function ‰) which records all the
repeated indices in the product (4.12) at time �p�1. By Hölder’s inequality as
in (4.11), this term can be decoupled from the rest of the weight formed by the
moments

Qp�2

`D1
h�"

�`
; h`i. This strategy is particularly relevant for time-dependent

fields as it reduces the estimates to computing moments of fields at a single time.
In an equilibrium regime, the moments of the field at a single time can be easily
analyzed as the distribution is time invariant. In this way, the moments at �p and
�p�1 are paired and their covariance E"Œh�"

�p�1
; hp�1ih�"

�p
; hpi� is recovered. It

remains then to study the remaining moments E"Œ
Qp�2

`D1
h�"

�`
; h`i�.

• a “˝-product”, which by definition takes into account the nonrepeated indices,
and which can be interpreted as a product of two independent fluctuations at time
�p�1. In a very loose way, we have to evaluate now the following structure:

E"

" 
p�2Y
`D1

˝
�"

0; h`

˛!˝
�"

�p�1
; hp�1

˛
˝
˝
�"

m;�p�1
; �

.p/

�p��p�1

˛#
;

with a more complicated fluctuation field at time �p�1.

The key point here is that using the cumulant techniques introduced in Section 3.3, one
can then prove that the tensorized structure ˝ is essentially preserved by the pullback of
test functions: the configurations for which the ˝-product breaks can be neglected. Thus
with high probability the fields h�"

�p�1
; hp�1i ˝ h�"

m;�p�1
; �

.p/

�p��p�1
i can be pulled back up to

time �p�2 as if they were independent. Then we apply the pairing procedure at time �p�2.
This leads to new pairings between h�"

�p�2
; hp�2i and the pulled-back fields. In particular, the
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covariances E"Œh�"
�p�2

; hp�2ih�"
�p

; hpi� and E"Œh�"
�p�2

; hp�2ih�"
�p�1

; hp�1i� can be identified.
The nonrepeated variables at time �p�2 build new˝-products involving the fluctuation fields
(or their pullbacks) from times �p�2, �p�1 and �p .

Iterating this procedure up to time �1, all the pairings can be recovered and the
Wick’s decomposition (4.5) is obtained in the limit �" ! 1. This shows that the limiting
process is Gaussian, thus achieving the proof of Theorem 4.2.

5. Open problems and perspectives

The research program that we conducted during this last decade and which is pre-
sented in this survey has led to two important breakthroughs compared to the state-of-the-art
after Lanford’s theorem:

• an extended statistical picture of the dynamics of hard-sphere gases for short
times, including fluctuations and large deviations;

• a complete answer to Hilbert’s sixth problem connecting the three levels of mod-
eling (atomistic, kinetic, and fluid) for linear equations of dilute hard-sphere gases
close to equilibrium.

Nevertheless, the problem of the axiomatization of gas dynamics remains largely open, even
in dilute regimes. We propose in this final section to review some important directions to be
explored in the future. We choose to discuss here only kinetic limits, involving a separation
of scales, for which an enterprise in the spirit of those discussed above is conceivable (albeit
possibly hard).

5.1. Long time behavior for dilute gases
The only case in which we have a complete picture of the transition from the atom-

istic description to fluid models is the equilibrium case. Nevertheless, the diffusive scaling
considered in these linear regimes is sublogarithmic (see, e.g., [10,15]). It would be interest-
ing to reach more relevant physical scales, for which we expect the limiting picture to remain
unchanged.

The law of large numbers in the equilibrium case is trivial, and the fluctuations are
governed by linear models. In order to extend this analysis to gases which are initially out
of equilibrium, a major obstruction is to define a good notion of stability for the nonlinear
Boltzmann equation, which plays the role of pivot between the microscopic and macroscopic
scales. In other words, this requires designing a good notion of convergence. The weak con-
vergence method developed in the equilibrium case uses a topology which is a priori too
weak to make sense of the nonlinear collision operator. Based on our analysis, we believe
that stronger convergence methods require a rather precise understanding of the mechanisms
responsible for the entropy cascade through the cumulants, retaining enough information in
the limiting system. Note that this information is encoded in the supports of the cumulants,
which have a finer and finer structure as the order of the cumulant increases. This structure
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might well be a key ingredient, as entropy and entropy dissipation play a crucial role in the
stability of the Boltzmann equation.

Beyond the law of large numbers, it would be also natural to extend the analy-
sis of fluctuations and large deviations for long kinetic times, and even diffusive times.
This would allow deriving the fluctuating hydrodynamics (typically, the fluctuating Navier–
Stokes–Fourier equations). A fine understanding of the Hamilton–Jacobi equations and of
the associated gradient structure would be certainly a major step in this direction.

5.2. The role of microscopic interactions
Our study is focused on the case of hard-sphere gases, for which the interaction is

pointwise in time and the scattering law is very simple. The papers [37, 45, 57] have shown
that, despite technical complications, the same average behavior, in the low density limit,
is obtained for compactly-supported potentials satisfying some suitable lower bound (ther-
modynamic stability). Only the collision cross-section (i.e., the transition rate of the jump
process in the velocity space) and, consequently, the hydrodynamic transport coefficients are
modified. One expects, and can prove for short times [45], that multiple collisions (three or
more particles simultaneously interacting at a given time) are a correlation of higher order
with respect to the dynamical correlations determining the fluctuation theory. It is then very
likely that the description of fluctuations and large deviations for short times can be also
extended to this short-range case. Notice that the absence of monotonicity of the potential
would require a more delicate treatment, as some trajectories can be trapped for a very long
time [57].

A problem of amuch higher level of difficulty is to deal with long-range interactions.
We know that, as soon as the potential is not compactly supported, the collision cross-section
(which can be computed by solving the two-body problem) has a nonintegrable divergence
at grazing angles. It is therefore impossible to define solutions of the Boltzmann equation
without taking into account the cancelations between the gain and loss terms in the collision
operator, which would imply to find new ideas (in our methods dealing with microscopic
systems, such cancelations are never used). Close to equilibrium, using a sampling to discard
superexponential growth (as in Section 4 above), N. Ayi [2] has proved a convergence result
for very fast decaying potentials, but the method does not seem robust enough to deal with
weaker decays or systems out of equilibrium.

A natural idea, often used by physicists, would be to decouple the short range part
(acting as “collisions”), and the long range part of the interaction potential (to be dealt with
by mean field methods). However, from the mathematical point of view, this leads to a major
issue: no analysis method is available so far, as the techniques used for the low density limit
and for the mean field limit are completely different and apparently incompatible. This prob-
lem is investigated in [27], where a linear Boltzmann–Vlasov equation is derived rigorously
for a simple (Lorentz gas) model system (see also [26]).

A related issue is how to precisely identify and separate the long range and the colli-
sional part for a given potential law, capturing the good scaling for both parts. There are some
delicate aspects here involving the details of the potential and the dimension of the problem
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[52, 53]. Formal considerations as in [7] indicate that, in case of power law potentials 1=xs ,
the low density scaling should lead to a Boltmann equation for s > d � 1, to a Boltzmann–
Vlasov equation for s D d � 1, and to a Vlasov equation (with Boltzmann’s operator still
describing the collisions as a long time correction) for s 2 .d � 2; d � 1/. For the Coulomb
potential (and for smaller values of s), the Boltzmann operator has to be replaced by a dif-
fusive variant of it (Landau, or Lenard–Balescu operator; see also Section 5.4). We refer to
[52] for details.

We remark that the combination of mean-field and collisions has an interest in con-
nection with the problem of binary mixtures exhibiting phase segregation [5] (see also [1] on
a derivation result for mixtures).

5.3. Nonequilibrium stationary states
For short times, Lanford’s theorem allows considering particle systems which are

initially put out of equilibrium, provided that their distribution is controlled in some sense
by an equilibrium state. This assumption is a key argument to get uniform bounds (even for
short times when the relaxation phenomenon cannot be observed). In this situation, one can
use a comparison principle because nothing forces the system to stay out of equilibrium, and
the invariant measure is well known.

A natural extension is to deal with a gas evolving in a domain with boundary con-
ditions, rather than the whole space or the periodic setting as considered previously. In the
case of boundary conditions ensuring conservation of energy, we still have a control by the
invariant measure, and the main extra difficulty caused by the presence of boundaries lies in
the geometric analysis of recollisions. This has been discussed so far in the case of simple
geometries [29,48] (see also [35] for the case of external forces).

A much more delicate situation is when the system of interacting particles is main-
tained out of equilibrium by a forcing or a boundary condition (reservoir, thermostat, …).
One would like to derive, in this nonequilibrium framework, the Boltzmann equation and
more generally the properties of the steady states. As exposed in [18], this question is a “chal-
lenge to theorists,” and few quantitative results are known either for gas dynamics or for other
mechanical systems such as chains of anharmonic oscillators. Even though, under reason-
able assumptions on the nonequilibrium forces, the existence of a stationary measure of the
microscopic dynamics is expected, one does not know how to construct such a measure or
any exact solution which would play the role of supersolution for the actual distribution of
particles. In particular, a good starting point for the analysis of the low density limit seems to
be missing at present. Finally, it is worth mentioning that the theory of stationary solutions
for the Boltzmann equation with thermal reservoirs is still far from mature, see [36] for a
recent review.

Beyond the derivation of the Boltzmann equation for boundary driven systems, it
would be interesting to investigate the large deviations as they can provide some knowledge
on the invariant measure [6, 25]. Also it is conjectured [9, 18] that the Fourier law should be
valid for a dilute gas maintained out of equilibrium by reservoirs. To prove its validity would
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require an analysis beyond the kinetic time scale in order to derive fluid equations out of
equilibrium.

5.4. A realm of kinetic limits
Besides the low density (Boltzmann–Grad) scaling discussed so far, there is a vari-

ety of interacting particle models admitting a kinetic limit and sharing many similarities with
the classical Boltzmann gas [67]. We shall only mention here the two main obvious modifi-
cations of our assumptions (which are reviewed in detail in [56]): (i) start from a microscopic
description based on quantum mechanics instead of classical mechanics, namely replace the
Newton equations by theN -body Schrödinger equation, including additional symmetry/anti-
symmetry constraints which take into account the specificity of bosons/fermions; (ii) perform
a high-density, weak-coupling scaling with potential "˛�.x="/, where ˛ 2 Œ0; 1� and the par-
ticle density is correspondingly tuned as �d C 1 � 2˛. For ˛ 2 .0; 1/, the latter scaling
should lead to the diffusive Landau equation in the case of classical systems, and is suited
to a description of collisions in plasmas. The diffusion emerges from a central limit type
effect on an accumulation of many weak collisions. The limiting point ˛ D 1 is expected to
capture the famous Lenard–Balescu correction. Conversely, in the case of quantum systems,
each value of ˛ should lead to a quantum version of the Boltzmann equation. The amount
and quality of quantum features surviving in the limit depends on the particular value of
˛. For ˛ D 0, the collision operator contains the full quantum cross-section. On the other
hand, for ˛ D 1=2 (when only the first term of the Born series survives), one expects to
get additional cubic terms in the collision operator, expressing the inclination of particles to
aggregate (Bose–Einstein condensation) or to repel each other (Pauli’s exclusion principle).

For such a variety of situations, no rigorous full derivation result is available at
present, not even for short kinetic times; see however [8,56,69,70] for consistency results and
attempts in this direction (full results are instead available for Lorentz type (linear) models,
see [31,44] for the classical case and [32] for a review in the quantum case). When trying to
reproduce Lanford’s strategy, one stumbles indeed upon many difficulties. The construction
of the equilibrium measure is delicate, and it is not completely clear how to identify the
suitable functional spaces for the study of the limit. The Wigner transform, which allows
computing observables, is nonpositive and quadratic with respect to the wave function: this
implies that the combinatorics associated with the Duhamel series, which can be represented
by Feynman diagrams is much worse than the combinatorics of collision trees. In general,
these formal series are never absolutely convergent.

All the open questions regarding the long-time behavior, the structure of correlations
and the deviations from the average dynamics, the role of microscopic interactions or the
stationary nonequilibrium case remain, also in these different settings, as challenges for the
future.
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1. Introduction

1.1. Langlands correspondence over functional fields
Let C be a smooth projective irreducible curve over a finite field Fq . One can con-

sider the global field F D Fq.C/ of rational functions on C and its adele ring A. Given
a split semisimple group G one can study automorphic forms on the adelic group G.A/

– these are (by definition) irreducible representations of G.A/ which appear in the space
of C-valued functions on G.A/=G.F/. For many purposes, it is important to consider dis-
crete automorphic representations – these are automorphic representations appearing in
L2.G.AF =G.F//.

In this introduction we restrict our attention to unramified automorphic representa-
tions, i.e., those which have a G.OF /-invariant vector where OF � A is the ring of integral
adeles. In other words, we consider functions on G.OF /nG.A/=G.F/ which are eigenfunc-
tions of certain commuting family of linear operators, called Hecke operators; for every place
c of F (which is the same as a point of C.Fq/ up to the action of Frobenius), one constructs
the algebra of Hecke operators which is isomorphic to the complexified Grothendieck ring of
finite-dimensional representations of the Langlands dual group G_ (and for different c these
algebras commute with each other). The weak form of the Langlands conjecture (now proved
by V. Lafforgue for global fields of positive characteristic) asserts that (after the replacement
of the coefficient field C by Q`) the common eigenvalues of all the Hecke operators come
from `-adic G_-local systems on C .

The quotient G.OF /nG.A/=G.F/ is canonically isomorphic to the set of Fq-points
of the moduli stack BunG.C/ of principal G-bundles on C . Thus Hecke eigenfunctions are
functions on BunG.C/.Fq/ and unramified discrete automorphic forms correspond to Hecke
eigenfunction lying in L2.BunG.C/.Fq// (with respect to the Tamagawa measure).

We fix a curve C and a group G, and will write Bun instead of BunG.C/ when it
does not lead to a confusion.

1.2. Hecke eigenfunctions on moduli spaces of bundles over local fields
This survey reports on an attempt to extend the above constructions and results to

the case when instead of a curve over Fq we start with a curve over a local field F . The idea
to consider Hecke eigenfunctions in this case was first formulated by Langlands in the case
F D C (cf. [25] and also [18]) several years ago. A systematic study of this question was
started in [9] in a slightly different framework. To simplify notations we often assume that G

is semisimple and the genus g of C is � 2.
Here several difficulties are present. First, since Bun is a stack, it is not clear what

space of functions on Bun.F / to consider. In fact, a big part of this paper is devoted to a
discussion of three different spaces with actions of Hecke algebras one can attach to stacks
over local fields and the relation between them (cf. Sections 2 and 3). In the first approach
(which follows the papers of P. Etingof, E. Frenkel, and D. Kazhdan), the action of the Hecke
algebra is defined on the Hilbert spaceL2.Bunst.F // of half-measures where Bunst � Bun is
the open Deligne–Mumford substack of stable bundles. In this case the space is familiar, but
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one has to justify the convergence of the integrals definingHecke operators. In the second and
third approaches, the action of Hecke operators is well defined, but it is not easy to describe
spaces on which they act. Some of our conjectures are on the relation between these different
realizations.

In all three approaches the definition of Hecke operators, in fact, comes from [6]

where some version of Satake isomorphism for Hecke algebras over a local field F is studied
(formally, [6] only deals with non-archimedian fields, but the extension to archimedian case
is straightforward).

Remark 1.1. In [9] (which deals with the case F D C), the role of Hecke operators is played
by the algebra D of global differential operators on Bun.F / (and their complex conjugate).
In fact, as was observed in [3] there is no nontrivial regular differential operators acting on
functions, but there is a large algebra of differential operators on half-forms. This algebra D

is commutative and is equal to algebra of functions on the moduli space of certain special
G_-local systems on C called opers. This is another reason why half-forms are better suited
for this problem. One of the main purposes of [9] is a formulation of a conjectural description
of eigenvalues of the algebra A D D ˝ D in terms of certain G_-local systems on C (opers
with realmonodromy). ForG D SL.2/, a very close conjecturewas formulated by J. Teschner
in [27].

A systematic study of Hecke operators as self-adjoint operators acting on a Hilbert
space started in [10] (in the case F D C). As was mentioned above, the definition of Hecke
operators is based on [6], and it again follows from [6] that in order to define Hecke operators
one must work with half-forms; in this case Hecke operators are given by certain integrals
(which are not guaranteed to converge). In [10] the authors conjectured that these integrals, in
fact, define compact self-adjoint operators on L2.Bun/.F / for any local field F (in particu-
lar, contrary to the case of finite fields, their common spectrum on L2.Bun.F // is discrete);
in the case F D C, it is expected that their eigenvectors are essentially the same as the
eigenvectors for the algebra A (we shall give a precise formulation in Section 6). It is also
explained in [10] (in the case F D C) how to produce Hecke eigenvalues from opers with
real monodromy (again, this is reviewed in Section 6). For non-archimedian fields F and
G D SL2, analogous conjectures were formulated earlier by M. Kontsevich in [22].

In Section 5we propose two other constructions ofmodules over the Hecke algebra –
the last one only in the non-archimedian case. Aswasmentioned before, the spaceL2.Bun/ is
not the only choice of functional space one can work with. One can define another functional
space (still having to do with half-forms) on which the Hecke operators will automatically
act. The relationship between this space and L2.Bun/, in the case when G D SL2, is the
subject of a forthcoming paper by A. Braverman, D. Kazhdan, and A. Polishchuk.We review
the relevant definitions and statements in Sections 2 and 3.

As a byproduct, when F is non-archimedian and the curve C is defined over its
ring of integers OF (and has good reduction), we give a conjectural construction of finite-
dimensional spaces of cuspidal functions with an action of Hecke operators generalizing the
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space of cuspidal functions on Bun.Fq/, where Fq is the residue field of F (but in this way
one gets only a very small portion of Hecke eigen-functions).1 This is reviewed in Section 5.

In Sections 6 and 7, we formulate in the archimedian case a precise conjecture on
the interpretation of the spectrum of Hecke operators on L2.Bun.F // in terms of some kind
of Galois data (involving the dual group G_). It would be extremely interesting to find an
interpretation of the spectrum of Hecke operators to for the non-archimedian case.

1.3. Relation of the archimedian case to geometric Langlands correspondence
and conformal field theory
In the case when the field F is archimedian, our program is related to the quantum

gauge theory (see [19]).
In this case Beilinson and Drinfeld associate to every G_-oper o a certain algebraic

D-module Mo on Bun which is a Hecke eigenmodule which is equipped with a canonical
generator (here D stands for the sheaf of differential operators on Bun acting on half-forms).
This is an important part of a general geometric Langlands conjecture. The D-module Mo

can be thought of as a system of linear differential equations on Bunst. The corresponding
Hecke eigen-half-form (in the case when o has real monodromy) is a solution of both this
system of equations and its complex conjugate.

The difference between the traditional categorical Langlands correspondence and
the analytic Langlands correspondence for complex curves can be illustrated by an analogy
with the two-dimensional conformal field theory (CFT). In CFT, there are two types of cor-
relation functions. The first is chiral correlation functions, also known as conformal blocks.
They form a vector space for fixed values of the parameters of the CFT, so we obtain a vector
bundle of conformal blocks on the space of parameters, equipped with a projectively flat
connection (or more generally, a twisted D-module). Conformal blocks are its multivalued
horizontal sections. The second type is the “physical” correlation functions. They can be
expressed as sesquilinear combinations of conformal blocks and their complex conjugates
(anticonformal blocks), which is a single-valued function of the parameters.

The Hecke eigensheaves on Bun constructed in the categorical Langlands cor-
respondence may be viewed as sheaves of conformal blocks of a certain CFT. They are
parametrized by all G_-opers on the curve. It turns out that for special G_-opers (namely,
the real ones) there exists a sesquilinear linear combinations of these conformal blocks and
their complex conjugates which are single-valued functions (more precisely, 1=2-measures)
on Bun. These are the automorphic forms of the analytic theory. Thus, the objects of the
analytic theory of automorphic forms on Bun can be constructed from the objects of the
categorical theory in roughly the same way as the correlation functions of CFT are obtained
from conformal blocks (see [16] and the references therein for more details). An important
difference with traditional CFT is that while usually in CFT the monodromy of conformal
blocks is typically unitary, here the monodromy is expected to be in a split real group.

1 The construction itself is, in fact, not conjectural – we can do it rigorously. But at the
moment, we cannot prove that the resulting eigenfunctions are not equal to 0.
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1.4. Notations
We shall use the letter k to denote an arbitrary field (which could be finite) and the

letter F for local fields. For a variety (or stack) X over k, we denote by X.k/ the set of
k-points (for a stack we consider isomorphism classes of points). If F is non-archimedian,
we denote byOF its ring of integers. We shall also consider the field K D k..t// (or F..t//)
with ring of integers which we denote just by O.

For a split semisimple group G, we denote by G_ the Langlands dual group of
G considered as a group over C. We fix a Borel subgroup B D T U of G, where T is a
maximal torus and U is a maximal unipotent subgroup; similarly we have a Borel subgroup
B_ D T _U_ � G_.

We denote by ƒ and ƒ_ the lattices of coweights and of weights of T (so ƒ is also
the lattice of weights of T _) and by ƒC � ƒ the subset of dominant coweights.

1.5. Organization of the paper
In Section 2 we review some basic information about varieties and stacks over local

fields and various spaces of functions on them. In Section 3 we begin the discussion of the
moduli stack Bun of G-bundles on a curve C over a local field F and formulate some con-
jectures about the relation between various function spaces one attaches to Bun. In Section 4
we review the definition of Hecke operators and the formulation of the unramified Langlands
correspondence for curves over Fq . In Section 5 we explain the definition of Hecke operators
in the case of local fields, formulate our main conjectures and also discuss some construc-
tions specific for the non-archimedian case. Section 6 is dedicated to the case F D C and
Section 7 to the case F D R.

2. Smooth sections of line bundles on varieties and

stacks

2.1. Smooth sections on varieties
If X is an algebraic variety over a local field F (archimedian or not), the set X.F /

is endowed with a natural topology.

Definition 2.1. A function f W X.F / ! C is smooth if

(a) F is non-archimedian and f is locally constant;

(b) F is archimedian and (locally) there exists a closed embedding X ,! Y where
Y is a smooth variety over F and a C1-function Nf W Y.F / ! C such that
f D Nf jX.F /.

We denote by C1.X/ the space of smooth functions on X.F / and by �.X/ its
subspace of functions with compact support.
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For a line bundleL overX , we denote byL0 WD LnX the correspondingGm-torsor
over X and set

jLj
�

D L0.F / �
F �

C� ;

whereC� denotes the 1-dimensional spaceC on which F � acts by j � j� . Then jLj� is a com-
plex line bundle overX.F /. Since the bundle jLj� is locally trivial with respect to the natural
topology, we can define its space of smooth sections which we denote by C1.X; jLj�/.
Similarly, we denote by �.X; jLj�/ � C1.X; jLj�/ the subspace of sections with compact
support.

In the case when X is smooth we shall often take L D !X , where !X is the line
bundle of differential forms of top degree and write ��.X/ instead of �.X; j!j�/. The case
� D 1=2 is of special interest since the space �1=2.X/ is endowed with a natural Hermitian
product. We denote by L2.X/ its Hilbert space completion.

Remark 2.2. (1) If U � X is an open subset and Z D XnU then we have a short
exact sequence

0 ! �
�
U; jLj

�
U

�
! �

�
X; jLj

�
�

! �
�
Z; jLj

�
Z

�
! 0:

(2) More generally, instead of choosingL 2 Pic.X/ and � 2 C we can start with any
element of Pic.X/ ˝ C – all the above definitions make sense in this context.

2.2. Smooth sections on stacks
In this subsection we extend the above definitions to a class of algebraic stacks.

Definition 2.3. An algebraic stack Y is admissible if locally there exists a presentation of Y

as a quotient stack X=G where X is a smooth variety and G is an affine algebraic group. We
denote by p W X ! Y the projection.

A presentation ofY as a quotientY D X=GLn is called an admissible presentation.2

Remark 2.4. (1) Any smooth admissible stack of finite type can be presented as a
quotientX=GLn for a smooth varietyX (see [21]). As follows from the Hilbert’s
90, we have Y.F / D X.F /=GLn.F /.

(2) Any admissible stack is automatically locally of finite type.

(3) A line bundle on a quotient X=G is a G-equivariant line bundle on X .

Definition 2.5. (1) Assume that F is non-archimedian, Y is an admissible stack of
finite type over F . Choose an admissible presentation Y D X=GLn for some
variety X and set

�
�
Y; jLj

�
�

D �
�
X; jLX j

�
�
GL.n;F /

;

2 The definition of admissibility that we use here is close to the one introduced in [21] but
slightly different. It is easy to see that every admissible stack locally has an admissible pre-
sentation.
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where the latter space stands for the space of GL.n; F /-coinvariants on
�.X; jLX j�/.

(2) If F is non-archimedian and Y is only locally of finite type, then we can
write Y as a direct limit of open substacks Yi of finite type over F and define
�.Y; jLj�/ WD lim

!
�.Yi ; jLj�/.

(3) In the case when F is archimedian we make an analogous definition but take
coinvariants �.X; jLX j�/GL.n;F / in the category of topological spaces where
�.X; jLX j�/ is endowed with Fréchet topology.3

The above definition makes sense because of the following

Claim 2.6. If Y is an admissible stack of finite type then the space �.Y; jLj�/ does not
depend on a choice of an admissible presentation Y D X=GLn.

Remark 2.7. In the case when F is non-archimedian, L D !X , and � D 1, this claim is
proven in [21, Section 6]. The same arguments work in the general case.

2.3. Functoriality
If Y is an admissible stack and U is an open substack, we have a natural map

�.U; jLj�/ ! �.Y; jLj�/, which is not injective in general.
More generally, let f W Z ! Y be a smooth representable map of admissible stacks

and !Z=Y be the relative canonical bundle. Then we have a natural (“integration over the
fibers”) map

�
�
Z; jLj

�
˝ j!Z=Y j

�
! �

�
Y; jLj

�
�
:

2.4. An example: stacks over OF

In this subsection we consider the case when the field F is non-archimedian (with
residue field k) and construct some explicit elements in �.Y; jLj�/. Assume that Y D X=G

where both X and G are defined over OF and that XOF
is a regular scheme over OF such

that Y.F / D X.F /=G.F /. Assume also that the line bundle L is defined over OF . Then in
the same way as before we can define �.YOF

; jLj�/ with an obvious map �.YOF
; jLj�/ !

�.Y; jLj�/.
Consider now the case when L D !Y . Then the complex line bundle jLj has a

canonical trivialization on Y.OF /. Let �.Y.k// denote the space of C-valued functions
with finite support on Y.k/. Then the above trivialization gives rise to a map �.Y.k// !

�.YOF
; jLj�/. Composing it with the map �.YOF

; jLj�/ ! �.Y; jLj�/, we get a mapEY;� W

�.Y.k// ! ��.Y/.

Remark 2.8. (1) This map is often not injective.

3 We define the space �.X; jLX j�/GL.n;F / as the quotient of �.X; jLX j�/ by the clo-
sure of the subset generated by elements of the form g.s/ � s where g 2 GLn.F / and
s 2 �.X; jLX j�/.
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(2) We will be mostly interested in the space �1=2.Y/ (for a particular choice of Y).
In the case when Y was a smooth scheme, this space had a canonical Hermitian
product. We do not expect to see a Hermitian product on �1=2.Y/ for general
admissible stacksY but we define a class of excellent stackswhen such a product
exists.

(3) We write M.Y/ WD �1=2.Y/.

2.5. Nice and excellent stacks
In this subsection we assume that Y is an admissible stack which contains an open

substack Yvs � Y such that Yvs D Yvs=Z where Yvs is a smooth scheme and Z is a finite
group acting trivially on Yvs.4

Remark 2.9. (1) To simplify the notations, let us assume that Z D ¹eº (but gener-
alization to arbitrary Z is straightforward).

(2) A choice of this open substack is not unique, and some of the definitions below
depend on this choice.

(3) Let L2.Yvs/ be the Hilbert space completion of the space of smooth half-
measures on Yvs.F / with compact support. It is easy to see that this space
is in fact independent of the choice of Yvs.

If Y is of finite type over F , we choose a presentation Y D X=GLn, denote by U

the preimage of Yvs in X and by p W U ! Yvs the quotient map.
Let s be a smooth section with compact support of the complex line bundle

p�j!Yvs j
� ˝ j!X=Y j. Then sjU is a section of p�j!Yvs j

� ˝ j!U=Y j. We can try to inte-
grate it over the fibers of p to get a section of j!Yvs j

� on Yvs. The problem is that these
integrals might not converge since the intersection of the support of s with the fibers of the
map p might not be compact.

Definition 2.10. (1) The stack Y is �-bounded if there exists an open substack of
finite type Y0 � Y such that the map ��.Y0/ ! ��.Y/ is an isomorphism.

(2) A pair .Y;Yvs/ is �-nice ifY is �-bounded and for every s as above supported on
the preimage of Yvs the push-forward p�.s/ is well-defined (i.e., it is absolutely
convergent) and defines a smooth section of j!Yvs j

� on Yvs.

(3) A pair as above is excellent if it is nice for all � � 1=2 and for � D 1=2 we have
p�.s/ 2 L2.Yvs/ for every smooth section s with compact support.

When the substack Yvs � Y is fixed we refer to the stack Y as “nice” or “excellent.”

4 The subscript vs stands for “very stable.” The reason for this notation is that later when
we work with the stack Bun of G-bundles on a curve, we define Bunvs � Bun as the open
subset of very stable bundles.
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Remark 2.11. The convergence in the definition of �-niceness is automatically true for
� � 1.

If Y is �-nice, then the map s 7! p�.s/ descends to a map ��.Y/ ! C1.Yvs/. If Y

is excellent we get a map M.Y/ D �1=2.Y/ ! L2.Yvs/ D L2.Y/.

Example 2.12. Let X D .P 1/3, G D PGL2, and Y D X=G, where G acts diagonally; we
take U to be the complement to all diagonals in .P 1/3. Then G acts freely on U and we
set Yvs D U=G (note that Yvs is just SpecF ). In this case one can check that Y is nice for
� > 1=3 and the stack Y is excellent.

3. The case of BunG: preliminaries

We fix a split connected semisimple group G and denote by Z it center.
Let C be a smooth complete irreducible curve over a field k.

Definition 3.1. (1) BunG is the stack of the principal G-bundles on C and
BunG;st � BunG is the open substack of stable bundles.

(2) For a G-bundle F on C we denote by AdF the adjoint bundle to F associated
with the adjoint action of G on g.

(3) A G-bundle F is very stable if there is no nonzero section of �.C ;AdF / ˝ !C

whose values at all points of C are nilpotent.

(4) We denote by BunG;vs � BunG the substack of very stable bundles.

Remark 3.2. If C is of genus � 2 then:

(1) Every very stable bundle is stable.

(2) Bunst is a dense open subset of Bun of the form Y=Z where Y is a smooth
scheme of finite type over F and Z acts trivially on Y .

(3) Bunvs is a dense open subset of Bunst.

(4) When it does not lead to a confusion we shall drop the subscript G from the
notation (e.g., we shall write Bun for BunG).

Claim 3.3. The stack Bun is �-bounded for all �.

Remark 3.4. This statement is inspired by the proof of the main result of [7].

Conjecture 3.5. Assume that the genus g of C is � 2.

(1) Bun is �-nice for Re.�/ � 1=2. In particular, for � � 1=2, we get a map
�� W ��.Bun/ ! C1� .Bunvs/.

(2) For � � 1=2 any section in the image of the map �� extends to a continuous
section of j!Bunj

� on Bunst.

(3) Bun is excellent.
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For G D PGL2, the first assertion of Conjecture 3.5 (as well as some special cases
of the second and third assertions) will appear in a forthcoming paper of A. Braverman,
D. Kazhdan, and A. Polishchuk. Let us note that (again for G D PGL2) the second assertion
can be reduced to the following purely algebro-geometric statement using [2] (we can prove
the conjecture for curves of genus 2 and 3).

Conjecture 3.6. Let E be a stable bundle on C of degree 2g � 1. Let FE denote the scheme
of pairs .L; s/ where L 2 Pic0.C/ and s 2 P .H 0.C ; L ˝ E//. Then

(1) FE is irreducible.

(2) dimFE D g.

(3) FE has rational singularities.

4. Affine Grassmannian and Hecke operators: the case of

finite field

In this section we collect some facts about the canonical class of certain Schubert
varieties that we shall need in the future. All the results of this section follow easily from
[12] and [3]. In what follows we a ground field k and set denote by O the ring functions on
the formal one-dimensional disc D over k and by K the field of functions on the punctured
disc D?. So O � kŒŒt �� and K � k..t//. We denote by !D the canonical bundle on D and
fix a square root !

1=2
D (unique up to an isomorphism; the isomorphism is unique up to ˙1).

4.1. The affine Grassmannian
Let G be a split semisimple group over k and GrG WD G.K/=G.O/. It is known

that GrG has a natural structure of a proper ind-scheme over k and the orbits of the group
G.O/ on GrG are parameterized by the elements of ƒC.

For each � 2 ƒC, we shall denote by Gr�G the corresponding orbit and by Gr�G the
closure of Gr�G .

4.2. Satake isomorphism
In the rest of this section we assume that k is a finite field.
Let H .G; k/ be the algebra of compactly supported G.O/-biinvariant distributions

on G.K/ (by choosing a Haar measure on G.K/ such that G.O/ has volume 1, we can
identify these distributions with functions). Let G_ be the Langlands dual group, consid-
ered as a group over C. The Satake isomorphism identifies H .G; k/ with the complexified
Grothendieck ring of the category Rep.G_/ of finite-dimensional representations of G_. It
can also be identified with the algebraCŒT _�W ofW -invariant polynomial functions on T _.

4.3. Hecke operators
Let now C be a smooth projective irreducible curve over k. As before we consider

the stack Bun WD BunG of principal G-bundles on C . Let c 2 C be a closed point with
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residue field k0 which is a finite extension of k. Choose of a local parameter near c,5 (in the
end nothing will depend on this choice) and consider the stack Heckec classifying triples
.E1; E2; �/ where every Ei is a principal G-bundle on C and � is an isomorphism between
E1 and E2 on Cn¹cº. We have canonical projections

Heckec

pr2
�����! Bun

pr1
??y

Bun :

(1)

Every fiber of the map pr2 is isomorphic to GrG and this isomorphism is canonical
up to the action ofG.O/. Thus every h 2 H .G;k0/ defines a canonical function Qh on Heckec .
We can use it as a correspondence, and set

Th;c.f / D pr2;�

�
pr�1.f / � Qh

�
for any f W Bun.Fq/ ! C. This construction defines an action of the algebra H .G; k0/ on
the space of all functions on Bun.k/ (given a choice of c as above). For different choices
of c, these operators commute.

Claim 4.1. (1) The operators Th;c preserve the space �.Bun/ of functions with
finite support on Bun.k/.

(2) Let L2.Bun.k// be the L2-completion of the space �.Bun.k// with respect to
the standard L2-norm given by the measure on the (discrete) set Bun.k/ where
the volume of every E is equal to 1

#Aut.E/
. Then for every c the action ofH .G;k/

extends to an action on L2.Bun.k// by bounded operators. If h is real-valued,
the operator Th;c is self-adjoint.

4.4. Langlands conjectures
In the theory of automorphic forms, we are usually interested in eigenfunctions of all

the operators Th;c . Let us replace the field of coefficientsC byQ` where ` is a prime number
different from the characteristic of Fq . Then (the weak form) of the Langlands conjecture
states that if f is such an eigenfunction, then the eigenvalues of all the operators Th;c come
from a homomorphism � W W .C/ ! G_.Q`/ where W .C/ is the Weil group of C (a close
cousin of the fundamental group of C ). In fact, in this form the Langlands conjecture has
been proved by V. Lafforgue (cf. [24]).

Let us recall the connection between Hecke-eigenvalues and homomorphisms � as
above. First of all, any c defines a conjugacy class Frc � W .C/. For any V 2 Rep.G_/ the
by Satake isomorphism associates to V an element in H .G; k/, which we denote by hV . We
denote TV;c the corresponding Hecke operator. We say that the eigenvalue of an eigenfunc-
tion f comes from � if

TV;c.f / D Tr
�
�.Frc/; V

�
� f (2)

for all c and V .

5 That is an identification of the formal neighborhood of c with Spec k0ŒŒt ��.
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In general, Hecke eigenfunctions lie neither in �.Bun/ nor in L2.Bun/ (here we
come back to considering C-coefficients). Those which lie in the former are called cuspi-
dal, and those which lie in the latter are called discrete. The fact that not all eigenfunctions
are discrete is related to the fact that the operators Th have both discrete and continuous
spectrum.

Remark 4.2. Note that the operators Th;c would be compact, if the stack Bun were of finite
type over k (in fact,L2.Bun.k//would be finite-dimensional in this case), and so in that their
common spectrum would be discrete. So, the existence of continuous spectrum of Hecke
operators is related to the fact that Bun is not of finite type over k.

5. The affine Grassmannian and Hecke operators: the case

of local field

5.1. More on formal discs
We are going to make a very mild change of notation (compared to the previous

section). Namely, let F be a field (very soon we shall assume that F is a local field). In what
follows we denote by O some discrete valuation ring over F which (as a discrete valuation
ring) is isomorphic to F ŒŒt �� (the point is that we do not want to fix this isomorphism). We
let K be the field of fractions of O. We set D D Spec.O/, D� D Spec.K/. We shall denote
by 0 the canonical F -point of D.

We let !D be canonical sheaf of D and let !D;0 be its fiber at 0. This is a vector
space over F .

5.2. Line bundles on GrG

It is well-known (cf. [3] and [12]) that every finite-dimensional representation V of
G gives rise to a (determinant) line bundle LV on GrG ; the fiber of this bundle over a point
g 2 G.K/=G.O/ is equal to the determinant of the vector space g.V.O//=g.V .O// \ V.O/.
In particular, we let Lg denote the line bundle corresponding to the adjoint representation
of G. The line bundle L�1

g has a square root (unique up to isomorphism) which we denote
by Lcrit.

The following result from [3] is crucial for us:

Theorem 5.1. For every � 2 ƒC, there is a canonical isomorphism

LcritjGr�G
' !Gr�G

˝ !
�h�;�_i
D;0 :

(Here, as before, !Gr�G
denotes the canonical bundle of on Gr�G).6

6 The formulation of the theorem requires a clarification when G is not simply connected,
since in this case h�; �_i might be a half-integer (and not an integer). It is sufficient for
our purposes to say that we choose a square root of !D;0 and that the isomorphism above
is canonical up to ˙1. This potential sign will disappear when we apply j � j to both sides
which we shall do in applications.
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We need more information about the structure of the varieties Gr�G . The following
result is proved in [12] (cf. also [23] and [26] for the corresponding result in characteristic 0).

Theorem 5.2. (1) Each Gr�G is a normal and Cohen–Macaulay projective variety
over F .

(2) Each Gr�G has a resolution of singularities7 and, for every such resolution
�� W eGr�G ! Gr�G , one has

R��
� .OeGr�G / D O

Gr�G
:

(in other words, Gr�G has rational singularities).

The next result is an easy corollary of Theorems 5.2 and 5.1 (cf. [6] for a proof):

Theorem 5.3. (1) For every � 2 ƒC, the variety Gr�G is Gorenstein. Moreover,
the canonical sheaf of Gr�G is isomorphic to LcritjGr�G

˝ !
h�;�_i
D;0 . Abusing the

notation, we shall denote this sheaf by !
Gr�G

.

(2) For any � 2 ƒC, let �� W eGr�G ! Gr�G be any resolution of singularities. Then
the identification between .��/�!

Gr�G
and!eGr�G that one has at the generic point

of eGr�G comes from an embedding�
��

��
!
Gr�G

,! !eGr�G :

(In the case char k D 0, this implies that Gr�G has canonical singularities).

5.3. Hecke algebra over local field
In this subsection F can be any local field.
Let us now work over a local field F instead of k with the corresponding ring O and

its field of fractions K .8 Then we would like to define the Hecke algebra H .G; F /. First we
consider the space

C11=2.GrG/ D lim
 

�
�
Gr�.F /; jLcritj

�
:

Assume first that F is non-archimedian. Then we defineH .G;F / to be the space of
all G.O/-invariant linear functionals on C1

1=2
.GrG/ with compact support. The latter condi-

tion means that we consider functionals ı W C1
1=2

.GrG/ ! C which factorize through a map

C1
1=2

.GrG/ ! �.Gr�.F /; jLcritj/ for some �. It is easy to see that H .G; F / is an algebra
with respect to convolution.

It turns our that Theorems 5.1, 5.2, and 5.3 allow one to construct a lot of elements
in H .G; F / (what follows is essentially equivalent to the main result of [6]). Namely, let
� be as above and let � 2 C1

1=2
.GrG/. Let us first trivialize the space !D;0. Then �jGr�G

7 Of course, this statement is not a priori clear only if char F > 0.
8 In the case when F is non-archimedian the reader should not confuse O D F ŒŒt �� with OF

which is the ring of integers of F .
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is a distribution on Gr�.F / and we can try to consider its integral. A priori it might not
be well defined since Gr�G.F / is not compact, but it is explained in [6] that Theorems 5.2
and 5.3 imply that in fact this integral is absolutely convergent and thus defines an element
h� 2 H .G; F /. These elements have the property that for any dominant � and � we have

h� ? h� D h�C�:

In other words, we get an embedding CŒƒC� ,! H .G; F /. It is easy to see that it is actually
an isomorphism.

If we do not want to trivialize the space !D;0 then canonically h� is a map from
j!D;0j�h�;�_i ! H .G; F /, and we get an isomorphismM

�2ƒC

j!D;0j
h�;�_i

' H .G; F /

(the left-hand side has an obvious algebra structure).

5.4. Hecke operators for curves over local fields: the first approach
We would like to define Hecke operators in some space of actual functions on Bun

(or, rather, sections of j!Bunj
1=2), or maybe some open subset of it. Let us assume that the

genus of C is � 2. Then, as we have discussed before, Bun contains a dense open sub-
stack Bunst of stable bundles which is a Deligne–Mumford stack. So, one can try to start
with a smooth section � of j!Bunj

1=2 on Bunst.F / and apply the operator T�;c using the
diagram (1).9

In this case the definition will involve integration over Gr�G , and we are not guaran-
teed that the corresponding integral is convergent. The trouble is caused by the following:
take some E 2 Bun.F / (which one can assume to be stable or even very stable) and con-
sider pr�1

2 .E/. Let us identify it with GrG and consider the corresponding G.O/-invariant
subset Gr�G in it. Let S be a compact subset of Bunst.F /. Then typically pr�1

1 .S/ \ Gr�G is
not compact.

We say that � 2 C1
1=2

.Bunvs/ is good if the integral defining T�;c.�/ is absolutely
convergent and the result is again an element of C1

1=2
.Bunvs/. The following result is easy:

Claim 5.4. Assume the validity of Conjecture 3.5(1). Then the image of the map �1=2 consists
of good sections and the map �1=2 commutes with the operator T�;c .

Note that the image of �1=2 obviously contains �1=2.Bunvs/. Thus Conjecture 3.5(1)
implies that any � 2 �1=2.Bunvs/ is good. On the other hand, without assuming Conjec-
ture 3.5(1) we cannot a priori construct any good element of C1

1=2
.Bunvs/.

We now proceed to the discussion of the action of the Hecke operators on L2.Bun/.
The main expectation is the following:

9 We are slightly abusing the notation here: namely, we are going to denote by T�;c both the
operator on M.Bun/ and on some space of sections of j!Bunj

1=2 which we are going to
discuss below. We hope that it does not lead to a confusion.

809 Automorphic functions on moduli spaces of bundles on curves over local fields: a survey



Conjecture 5.5. The operators T�;c on L2.Bun/ are bounded, compact, and self-adjoint.
In particular, their common spectrum is discrete.

Philosophically, the reason for the fact that in the case of local fields the operators
T�;c have discrete spectrum (as opposed to the case of finite fields) is that in the case of local
fields we always work only with some open subset of Bun of finite type (cf. also Claim 3.3),
and as was noted in Remark 4.2, the source for noncompactness of the Hecke operators in
the case of finite fields has to do with the fact that the stack Bun is not globally of finite type
(and in particular, not quasicompact).

5.5. Hecke operators for curves over local fields: the second approach
We now go back to the setup of Section 3. We would like to define Hecke operators

in this context. First, we need to decide on what space they are going to act. The first (and the
easiest) choice is to work with the space M.Bun/ D �1=2.Bun/ (another choice is discussed
in the next subsection). In what follows it will be convenient (but not necessary) to choose
a particular square root !

1=2
Bun of !Bun (this is always possible, but the choice is slightly not

canonical).
Let us also choose a closed point c of the scheme C with residue field F 0 which is a

finite unramified extension of F ; we shall take O to be the local ring of c (so, it is a discrete
valuation ring over F 0 noncanonically isomorphic to F 0ŒŒt ��). To emphasize the dependence
on c, we denote the corresponding Hecke algebra by Hc.G/ (instead of H .G; F 0/).

Then we again can consider the diagram (1) as in Section 4.3. Then since the line
bundle Lcrit on GrG is G.O/-equivariant, we can define a line bundle eLcrit on Heckec whose
restriction to every fiber of pr2 is canonically isomorphic to Lcrit (this property makes sense
since every fiber is canonically isomorphic to GrG up to the action of G.O/).

Lemma 5.6. We have
pr�1 !

1=2
Bun ' pr�2 !

1=2
Bun ˝ eLcrit: (3)

The isomorphism (3) easily allows one to define action of H .G; F 0/ ' CŒƒC�

on M.Bun/. We denote by T�;c the operator corresponding to h�;c (more generally, we
denote by Th;c the operator corresponding to any h 2 H .G; F 0/). For different choices of c,
these actions commute. Therefore, one can try to study eigenvectors of all these operators in
M.Bun/.

Remark 5.7. Recall that the operators T�;c are canonically defined only up to a scalar;
canonically each T�;c is an operator from M.Bun/ to M.Bun/ ˝ j!C ;c jh�;�_i. Therefore
when we vary c each eigenvalue gives rise to a section of j!C j�h�;�_i. This will not be
important for us until the end of Section 6 (where it will in fact become quite crucial).

Note that M.Bun/ is an analog of the space of functions with finite support on
Bun.k/ (where k is a finite field). But unlike in the case of finite fields, we expect the fol-
lowing (some philosophical reasons for this difference are discussed in the next subsection):
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Conjecture 5.8. Assume that F is non-archimedian. Then the space M.Bun/ has a basis of
Hecke eigenvectors. Similarly, in the archimedian case, the space M.Bun/ has a topological
basis of Hecke eigenvectors.

Before we try to say something about the eigenvalues, let us discuss a slightly dif-
ferent version of Hecke operators.

5.6. Example
We now want to explain how to produce some Hecke eigenfunction using the con-

struction of Section 2.4.
In the case when F is non-archimedian and that C is defined over OF , i.e., we

choose a model COF
of C over OF . We assume that COF

is a regular scheme and we denote
by Ck the corresponding curve over k. Then the stack Bun is canonically defined over OF ,
and we have the map EBun;1=2 W �.Bun.k// ! M.Bun/ (see Section 2.4).

We claim that this map commutes with the Hecke operators in the appropriate sense.
Namely, letF 0 be a finite Galois extension ofF with ring of integersOF 0 and residue field k0.
Then one can construct a homomorphism F 0 W H .G; F 0/ ! H .G; k0/ with the following
property. Let c be a closed point of C whose residue field is F 0. Note that C.F 0/ D C.OF 0/,
so c has canonical reduction Nc which is a closed point of Ck with residue field k0. Then for
any h 2 H .F; F 0/ and for any � 2 �.Bun.k// we have

EBun;1=2.TF 0 .h/.�// D Th

�
EBun;1=2.�/

�
: (4)

Remark 5.9. We do not know how to describe the map F 0 in general. It is easy to see that
F 0.h�/ is supported on Gr�G.k0/ (when viewed as a function on GrG.k0/). But this informa-
tion is sufficient only in the case when G D PGLn when minuscule coweights generate ƒ.

Equation (4) implies that EBun;1=2 sends Hecke eigenfunctions to Hecke eigenfunc-
tions. This operator is certainly not injective, but we expect it to be injective on cuspidal
functions. More precisely (assuming the validity of Conjecture 3.5), we formulate the fol-
lowing

Conjecture 5.10. Assume the validity of Conjecture 3.5. Then the composition of �1=2 ı

EBun;1=2 is unitary on cuspidal functions.

Conjecture 5.10 implies that we can attach a nonzero Hecke eigenvector inL2.Bun/

to any cuspidalHecke eigenfunction in �.Bun.k//. On the other hand, we expect that themap
EBun;1=2 is highly noninjective on noncuspidal functions. For example, letG D PGL2 and let
�.Bun.k//?cusp denote the space of functions with finite support which are orthogonal to all
cuspidal functions (with respect to the standard Hermitian product). This space is infinite-
dimensional, but we expect that

dimEBun;1=2

�
�

�
Bun.k/

�?
cusp

�
D 1:

Note that equation (4) implies that the action of anyT�;c on any section in the image
of EBun;1=2 depends only on Nc (and not on c). This is certainly a very restrictive condition.
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Also, one should think about EBun;1=2 as some kind of Eisenstein series operator between
the group G.k/ and the group G.F / (with G.OF / playing the role of a parabolic subgroup).
This is in fact the source for our notation.

5.7. Parabolic bundles
We would like to introduce a generalization of the above setup, which allows in

particular, to consider the case of curves of genus � 1 when we may analyze some explicit
nontrivial examples.

Definition 5.11. (1) Let us denote by Fl the variety of Borel subgroups of G.

(2) For a G-bundles F on C , we denote by FlF the associated Fl-bundle over C .

(3) For a divisor D � C defined over k, we denote by BunD the stack of G-bundles
F on C with a section a of FlF over D.

It is easy to extend the definition of the Hecke operators T�;c for c … D. All our
constructions and conjectures can be extended to this case. As was noted above, considering
parabolic points allows one to consider explicit examples. For example, in the case when
C D P 1, D consists of at least 3 points and G is of rank 1, Conjecture 5.5 is proved in [8]

(Proposition 3.13).

5.8. More spaces with Hecke action
5.8.1. The map EY ;�;n

Here we would like to discuss how to generalize the construction of Sections 2.4
and 5.6. Namely, let Y be as in Section 2.4. Let An D OF =mn

F . Let Yn denote the reduction
of YOF

modulo mn
F . This is a regular stack over An. We consider the set Yn.An/ and we

set �.Yn.An// to be the vector space of C-valued functions on Yn.An/ with finite support.
Then for any � 2 C, we have the obvious map

�
�
Yn.An/

�
! �.YOF

/ ' �
�
YOF

; j!�
Y j

�
:

Composing it with the natural map �.YOF
; j!�

Y
j/ ! ��.Y/, we get a map

EY;�;n W �
�
Yn.An/

�
! ��.Y/:

It is easy to see that this map is surjective if themapY.O/ ! Y.F / is surjective; in particular,
this is true for Y D BunG for a reductive group G.

In fact, when G is a reductive but not semisimple group, we also need the following
variant of the definition of ��.Y / for Y D BunG .

Definition 5.12. LetG be a reductive group andZ the connected component of the center of
G (soZ is a torus). For a character �n W BunZ;n.An/ ! C�, we denote by ��n.BunG;n.An//

the vector the space of .BunZ;n.An/; �n/-coinvariants in �.BunG;n.An//. Similarly, for
� W BunZ.F / D BunZ.O/ ! C�, we denote by ��.BunG/� the space of .BunZ.F /;�/-
coinvariants in ��.BunG/.
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As before we have a map EBunG ;�;n;� W ��n.BunG;n.An// ! ��;�.BunG/ provided
that � is equal to the pullback of �n under the natural map BunZ.F / D BunZ.O/ !

BunZ;n.An/.

5.8.2. Commutation with Hecke operators
We now want to specialize to the case Y D BunG and � D 1=2. We claim that in

this case the map EBun;1=2;n commutes with the Hecke operators in the sense similar to (4).
To explain the formulation we first need to discuss an analog of the homomorphism F ; this
is a local question.

Namely, let us consider the ringKn D An..t//. This is a locally compact topological
ring; its subring On D AnŒŒt �� is open and compact. Thus the group G.Kn/ is a totally
disconnected locally compact topological group with an open compact subgroup G.On/.
Hence, we may consider the corresponding Hecke algebra

Hn.G/ D H
�
G.Kn/; G.On/

�
:

Here is a variant. Let C be a smooth projective curve over OF . We denote by Cn its
reduction mod mn

F . Let F 0 be a finite unramified extension of F and let c be an F 0-point
of C . As before we can also view it as an OF 0 -point of C and we denote by cn its reduction
modulo mn

F 0 . This is an A0n-point of Cn. Then we might consider the corresponding Hecke
algebra Hcn.G/. It is noncanonically isomorphic to Hn.G/.

This Hecke algebra is quite bad: it is not commutative for n > 1 and apparently
it does not have any reasonable description. However, it has the following two important
features:

(1) Let C above and let c be a point of C defined over a finite unramified extension
F 0 of F . Then the (noncommutative) algebra Hcn.G/ acts on �.Bunn/. Given
h 2 Hcn.G/, we denote by Th;n the corresponding operator on �.Bunn/.

(2) We have a canonical homomorphism c;n W Hc.G/ ! Hcn.G/.

(3) For any h 2 Hc.G/ and � 2 �.Bunn/, we have

EBun;1=2;n

�
c;n.Th;c/.�/

�
D Th;c

�
EBun;1=2;n.�/

�
: (5)

5.8.3. Eigenfunctions and cuspidal functions: the idea
Definition 5.13. Let � be a unitary character of BunZ.An/.

(1) A function � 2 �.BunG;n/� is cuspidal if the span of ¹Th;n.�/º; h 2 Hc.G/,
c 2 Cn is finite dimensional.

(2) �cusp.BunG;n/� � �.Bunn/� is the subspace of cuspidal functions.

Conjecture 5.14. �cusp.Bunn/� is finite dimensional for any n and dim.�cusp.Bunn/�/ �

qn dim.BunG=Z/ for q � 1.
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Remark 5.15. Such that Hecke operators c;n.Th;c/ are self-adjoint with respect to the nat-
ural Hermitian form on �cusp.Bunn/�.

Since BunG.O/ maps surjectively to BunG.F /, it follows from the statement at the
end of Section 5.8.1 that

��.BunG/ D

[
n

EBunG ;�;n.�
�
BunG;n.An/

��
(and a similar statement holds for the space ��;�.BunG/). We can now define

��;cusp.BunG/ D

[
n

EBunG ;�;n.�cusp
�
BunG;n.An/

��
(and again similarly for ��;�;cusp.BunG//. Note that for � D 1=2 this space is locally finite
dimensional with respect to the Hecke operators.

5.9. The case of G D GL2

The proof of Conjecture 5.14 in the case G D GL2 will appear in a forthcoming
publication by A. Braverman, D. Kazhdan, and A. Polishchuk. In this subsection we outline
a notion of the constant term used in our proof Conjecture 5.14 (again in the case in the case
whenG DGL2; for simplicity, we shall also restrict ourselves to the case n D 2). This notion
is used for a different (but equivalent) definition of cuspidality.

5.9.1. The constant term in the usual case
Recall that the usual constant term operator (for n D 1) is defined as follows. Let

P be a parabolic subgroup of G; it has a natural homomorphism to M – the Levi factor.
Consider the diagram

BunP .k/
p

�����! BunG.k/

q

??y
BunM .k/:

(6)

Then the constant term cG;P is equal to qŠ ı p� (when k is a finite field).

Claim 5.16. A function � on BunG.k/ is cuspidal in the sense of Definition 5.13 if and only
if cG;P .�/ D 0 for all parabolic subgroups P of G; let �cusp.BunG.k// be the space of all
cuspidal functions.

The following facts are well known and are easy to prove:

(1) �cusp.BunG.k// is invariant under the Hecke operators.

(2) �cusp.BunG.k// consists of functions with finite support.

(3) dim �cusp.BunG.k// < 1 if G is semisimple. More generally,
dim �cusp;�.BunG.k// < 1 if G is reductive and � is a character of BunZ0

where Z0 is the connected componenent of identity of the center of G.
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We expect that for a proof of Conjecture 5.14, one has to extend the definition of a
constant term onto the space �.Bunn/�.

The definition is not completely straightforward; as was mentioned above, we shall
only discuss the caseG D GL2 and n D 2. So, we shall now assume thatG D GL2 and again
just write Bun instead of BunGL2 . Also in this case the only proper parabolic subgroup up
to conjugacy is the Borel subgroup; we shall also denote the corresponding constant term
operator (that we are going to define) simply by c.2/.

In this case T D Gm � Gm, so BunT .C2/ D Pic.C2/ � Pic.C2/, so it would be
natural to expect that our constant term operator c.2/ maps functions on Bun.C2/ to functions
on Pic.C2/ � Pic.C2/. However, we do not know how to define such an operator if we want
it to commute with the Hecke operators in some reasonable sense. Instead, let us do the
following. Consider the semigroup Pic02 (which contains the Picard group Pic2 of C2). By
definition, Pic02 consists of coherent sheaves M on C such that tM ¤ 0 and there exists an
imbeddingM ,! LwhereL is a line bundle onC . The tensor product defines the semigroup
structure on Pic02.

Example 5.17. Let C D Spec.A2Œx�/, J � A2Œx� be the maximal ideal generated by .x; t/,
and J the corresponding sheaf on C . Then J ˝ J D I where I � xA2Œx� is generated by
.x2; tx/.

We would like now to define an analog of the diagram (6). Namely, we consider the
diagram

Bun0B.C2/
p2

�����! Bun2

q2

??y
Pic02 �Pic02;

(7)

where Bun0B.C2/ consists of all short exact sequences

0 ! L1 ! F ! L2 ! 0;

where F 2 Bun2; L1, L2 2 Pic02. It is easy to see that in this case we have Li D

Hom.Lj ; det.F // for i; j D 1; 2 and i ¤ j . So if we fix det.F / and one of the bundles L1

of L2, this determines the isomorphism class of the other.

Theorem 5.18. (1) The space �cusp.Bun2/ of Conjecture 5.14 is the space of func-
tions � 2 �.Bun2/ such that .q2/Šp

�
2 .�/ D 0.

(2) dim�cusp;�.Bun2/ < 1 for any unitary character � W Pic2 ! C�. In fact, Con-
jecture 5.14 holds in this case.

The proof will be discussed in another publication. Let us note that it is not difficult
to deduce the second assertion of Theorem 5.18 from the first.

5.10. Main question
Assuming the above conjectures, one can ask how to describe the Hecke eigenval-

ues. It would be extremely interesting to relate them to some kind of Galois data (involving
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the dual group G_). At the moment, we do not know how to do it in the non-archimedian
case even for G D GL2 when we defined an action of these operators of finite-dimensional
spaces EBun;1=2;n.�cusp;�.Bunn//.

In the archimedian case, a precise conjecture of this sort is formulated in [9] and
[10]. We discuss it in the next section.

6. The case F D C

6.1. From Hecke operators to differential operators: the idea
In this section we specialize to the case F D C. In this case, in addition to Hecke

operators, one can introduce another player, namely the algebra of twisted (polynomial) dif-
ferential operators on Bun, which will, roughly speaking, act on the same space as the Hecke
operators and the two actions will commute. This will allow us to formulate a variant of
Langlands conjecture in this case. More precisely, we are going to relate the Hecke eigenval-
ues to some particular G_-local systems on C – opers with real monodromy. Let us begin
by recalling basic information about opers and differential operators on Bun.

6.2. Opers
For a principal G_-bundle G on C , we denote by FlG the associated Fl-bundle on

C where Fl is the variety of Borel subgroups of G_.

Definition 6.1. (1) A G_-oper on C is a triple .G ; r; s/, where G is a principal
G_-bundle on C , r is a connection on G , and s is a section of FlG satisfying
an analog of the Griffiths-type condition with respect to r (see [4]). We denote
by OperG_.C/ the variety of opers.10

(2) For an oper o D .F ; r; s/, we denote by �o W �1.C / ! G_.C/ the mor-
phism defined by the connectionr. We denote by Oper_G.C/R � Oper_G.C/ the
subset of opers o such that the homomorphisms �o and �o are conjugate, where
� W G_.C/ ! G_.C/ is the complex conjugation corresponding to a choice of
a split real form of G_.

Let usmake several comments. First, it is known (cf. [3]) that given just a pair .G ;r/,
the B structure s is unique if it exists. Thus OperG_.C/ is actually a closed subset of the
moduli stack of G_-bundles with a connection (in other words, for such a local system to be
an oper is a property rather than a structure). Second, let us comment on the reality condition
in (2). Obviously, one way to guarantee this condition is to require that the monodromy
representation of �1.C/ corresponding to .G ; r/ is conjugate to a homomorphism going

10 If G_ is adjoint then the moduli stack of opers is, in fact, an algebraic variety (which is
isomorphic to an affine space of dimension rk.G/). If G_ is not adjoint then formally one
needs to consider the coarse moduli space here, since the center Z of G_ is equal to the
group of automorphisms of every oper. We shall ignore this subtlety for the rest of this
section.
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into G_.R/ for a real split form of G_. We expect that the converse is also true, and this
is proved for G_ D SL.2/ in [10] (Remark 1.8), but we do not know how to prove this in
general. However, it is not hard to see (cf. again [10]) that up to conjugation the image of
the monodromy homomorphism �1.C/ ! G_ lies in some inner form of the split real form
of G_. When we are in the setup of Section 5.7 and jDj � 1 it is also shown in [10] that the
monodromy is lies in the split real form of G_.

6.3. Opers and differential operators
LetD be the algebra of global sections of the sheafD1=2.Bun/ of regular differential

operators on !
1=2
Bun . We denote by � W D ! D the involution on D induced by the Cartan

involution of G.
The following statement is one of the main results of [3] (a local version of this result

appears in [13]).

Theorem 6.2. (1) The algebra D is commutative.

(2) Spec.D/ D OperG_.C/.

(3) Let o 2 OperG_.C/ and let �o W D ! C be the corresponding homomorphism.
Let also Io � D1=2.Bun/ be the sheaf of ideals of D1=2.Bun/ generated ele-
ments of the form d � �o.d/where d 2 D . Then theD1=2.Bun/-moduleMo WD

D1=2.Bun/=Io is OBun-coherent when restricted to Bunvs.11

6.4. Differential operators and Hecke operators
Recall that we denote by C1

1=2
.Bunvs/ the space of smooth 1=2-forms on Bunvs. The

algebra A WD D ˝ D acts naturally on C1
1=2

.Bunvs/. We denote by O� the involution on A

such that O�.d1 ˝ Nd2/ D d �
2 ˝ d �

1 and define AR � A as the subalgebra of O� -fixed points.
Wewould like to claim that the action of the algebraA on 1=2-forms commutes with

the action of the Hecke operators. Here we must be careful, as a priori it is not clear how to
construct one vector space on which both algebras will act. For this, we need to formulate
one more definition.

Let us define a space �ch.Bun/ – “the Schwartz space of Bun.” Namely, we set

�ch.Bun/ D
®
� 2 C11=2.Bunvs/j a.�/ 2 L2.Bun/ for any a 2 A

¯
: (8)

For a 2 A, we denote by Oa the induced endomorphism of �ch.Bun/.
Note that by definition �ch.Bun/ � L2.Bun/ and also �.Bunvs/ � �ch.Bun/. The

reader might ask why we start with C1-forms on Bunvs rather than on Bunst. The reason
is that below we want to study eigenvectors of A on �ch.Bun/, and it follows easily from
Theorem 6.2(3) that any such eigenvector is automatically smooth on Bunvs (but there is no
reason for it to be smooth on Bunst).

11 Part (3) of this theorem explains the reason for our belief in Conjecture 3.5(2).
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Conjecture 6.3. (1) Any a 2 AR extends to an (unbounded) self-adjoint operator
on L2.Bun/.

(2) The space �ch.Bun/ is stable under the action of all Hecke operators.

(3) �ch.Bun/ D �1=2.�1=2.Bun//.12

(4) The action of A on �ch.Bun/ commutes with the action of Hecke operators.

(5) There exists a dense (in the L2-sense) subspace �ch.Bun/0 of �ch.Bun/ which
is stable under A and the Hecke operators and such that �ch.Bun/0 is a direct
sum of 1-dimensional eigenspaces for A (in other words, the space �ch.Bun/0

is locally finite dimensional for A and every generalized eigenvalue has multi-
plicity 1).

Let us comment on the multiplicity 1 statement. A 1/2-form is actually an eigen-
vector if it satisfies a certain system of linear differential equations. Locally on Bunvs.C/,
the space of solutions is finite dimensional but certainly not one dimensional (this has to do
with the fact the D-module Mo has high rank on Bunvs; for example, for SL2 this rank is
23g�3). However, globally most of these solutions become multivalued, so the multiplicity-
one conjecture says that only one-dimensional space of solutions is single-valued globally.
This, in fact, would follow if we knew that theD-moduleMo was irreducible and had regular
singularities. For G D PGL2, this can be deduced from [20] (and probably similar analysis
can be carried over for PGLn).

Conjecture 6.3 implies that L2.Bun/ is a (completed) direct sum of eigenspaces
for A and eigenvalues have multiplicity 1. A priori any such eigenvalue is given by a pair
of opers .o; o0/, but part .1/ of Conjecture 6.3 implies that o0 D o� , so we are supposed to
attach an eigenspace to a single oper o. It is also not difficult to see that o 2 OperG_.C/R.
We denote the corresponding eigenspace byL2.Bun/o. Note that Conjecture 6.3 implies that
L2.Bun/o � �ch.Bun/.

Conjecture 6.4. We have L2.Bun/o ¤ 0 if and only if o 2 OperG_.C/R.

Remark 6.5. As was remarked above, the “only if” direction is easy.What is hard is to prove
existence of eigenvectors for A which lie in L2.

Note that Conjectures 5.5, 6.3, and 6.4 together imply the following

Corollary 6.6. Let W denote the set of Hecke eigenvalues on L2.Bun/. Then there exists a
surjective map � W OperG_.C/R ! W such that for any c 2 C and any h 2 H .G; C/ the
operator Th;c acts on L2.Bun/0 by �.o/.h/.

Let us comment on the connection between Corollary 6.6 and Conjecture 5.5. We
actually expect themap � to be finite-to-one (and inmany cases it should be an isomorphism),
so Conjecture 5.5 should imply that OperG_.C/R should be a discrete subset of OperG_.C/.

12 Note that if we assume the validity of Conjecture 3.5 for F D C, then (3) implies (2).
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This assertion is not obvious, and at the moment we do not know how to prove it in general,
but let us note that for G_ D PGL2 it was proven by G. Faltings in [11].

6.5. Eigenvalues of Hecke operators
We conclude this section by describing a conjectural formula for the map � (the

contents of this subsection is described in more detail in [10]). More precisely, we are going
to do the following.Wewould like to understand the scalar by which the operatorT�;c acts in
L2.Bun/o.We can actually regard c as a variable here. In view of Remark 5.7, this eigenvalue
is, in fact, a section ˆ�;o of j!C ;c j�h�;�_i (recall that �_ denotes the half-sum of positive
coroots of G).

For � 2 ƒC, let V� be the corresponding irreducible finite-dimensional representa-
tion of G_. Choose an o D .F ; r; s/ 2 OperG_.C/. Moreover, the Griffiths transversality
condition implies that theT _-bundle induced from theB_-structure s bymeans of the homo-
morphism B_ ! T _ is induced from !C by means of the cocharacter �_ W Gm ! T _.13

Therefore if we denote by .Vo;�; ro;�/ the vector bundle on C associated to F via the rep-
resentation V� (with the corresponding flat connection), then s defines an embedding

!
h�;�_i
C ,! Vo;�

and hence a morphism
OC ,! !

�h�;�_i
C ˝ Vo;�:

We let �� be the image of 1 under this morphism.
Let now o 2 OperG_.C /R. Then we have isomorphism of Vo;� and Vo;� as flat

C1-bundles (and this isomorphism is canonical up to the action of the center of G_).
Since V �

�
' V�w0.�/, we get a pairing .�; �/� between C1-sections of Vo;� and of Vo;�.

Since h�w0.�/; �_i D h�; �_i, we can regard ��w0.�/ as a section of !
�h�;�_i

C
˝ V

�

�. Since
!
�h�;�_i

C
˝ !

�h�;�_i

C
D j!C j�h�;�_i, we can formulate the following Conjecture (cf. [10]):

Conjecture 6.7.
ˆ�;o D .��; ��w0.�//� 2 C1

�
C ; j!C j

�h�;�_i
�
:

6.6. Parabolic bundles: results
All the conjectures of this section can be easily generalized to the setup of Sec-

tion 5.7. In the case when C is P 1 and the cardinality of the divisor D is 3, 4, or 5, they are
proven in [8] (and most of them are proven in [8] even for jDj > 5).

13 Strictly speaking, this makes sense only if G_ is simply connected since �_ is a well-
defined cocharacter of T _ only in that case. For general G, the corresponding T _-bundle is
induced from !

1=2
C

by the character 2�_ for some choice of !
1=2
C

. To simplify the notation,
we are going to write the answer in the case when G_ is simply connected – the generaliza-
tion to any G is straightforward.
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7. The case F D R

In this section we would like to describe the conjectural picture of the analytic Lang-
lands correspondence in the case F D R. This picture has been developed by P. Etingof,
E. Frenkel, D. Gaiotto, D. Kazhdan, and E. Witten, and is discussed in [19, Section 6].

Warning. Some of the letters used in the previous section (such as � or � ) will have a
different meaning in this section.

7.1. Real groups, L-groups, and all that
Let G be a connected complex semisimple group. Recall that a real structure on G

is defined by an antiholomorphic involution � W G ! G. The corresponding group of real
points is G� (it may be disconnected). The inner class of � gives rise to a based root datum
involution s D s� for G which is also one for G_. If G is semisimple, this is just a Dynkin
diagram automorphism.

Recall [1] that toG, s we may attach the Langlands L-group LG D LGs , the semidi-
rect product of Z=2 D Gal.C=R/ by G_, with the action of Z=2 defined by  ı s, where 

is the Cartan involution.

7.2. L-systems
Let C be a compact complex Riemann surface of genus g � 2. Let � W C ! C be an

antiholomorphic involution. Given a holomorphic principalG-bundle E on C , we can define
the antiholomorphic bundle �.E/, hence a holomorphic bundle ��.E/. Let us say that E is
real under � if there exists an isomorphism A W E ! ��.E/ such that

��.A/ ı A D 1: (9)

This isomorphism A is unique if it exists, and (9) is automatic if Aut.E/ D 1, which happens
generically for stable bundles if G is adjoint. In this case, gA W E ! g��.E/ has the same
property for � 0 D g� , where g 2 G and g�.g/ D 1. Thus the moduli space of such stable
bundles depends only on s [5, Proposition 3.8]. We will denote it by BunG;s .

Consider the simplest case when � has no fixed points, i.e., C.R/ D ;. Let � be a
local system on the nonorientable surface C=� with structure group LG. Let us say that �

is an L-system if it attaches to every orientation-reversing path in C=� a conjugacy class in
LG that maps to the nontrivial element in Z=2. The following conjecture is formulated in
[19, Section 6] (in the case of the compact inner class).

Conjecture 7.1. The spectrum of Hecke operators on L2.Bun/ is parametrized by L-
systems on C=� with values in LG D LGs whose pullback to C has a structure of a G-oper.

Example 7.2. Let s D  . Then LG D Z=2 � G_, so an L-system is the same thing as a G_-
local system on C=� . So in this case the condition on the G_-local system on C to occur in
the spectrum is (conjecturally) that it extends to the 3-manifoldM WD .C � Œ�1;1�/=.�;�Id/

whose boundary is C (and this extension is a part of the data).
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Namely, in this case the spectral local systems are � which are isomorphic to �� and
such that � is an oper (hence also an anti-oper), so � is a real oper “with real coefficients.”
But among these we should only choose those that extend to C=� (and then the multiplicity
of eigenvalue may be related to the number of such extensions). This agrees with the picture
[19, Section 6.2] coming from 4-dimensional supersymmetric gauge theory.14 More precisely,
recall that by a result of Beilinson andDrinfeld [3], opers for adjoint groups have no nontrivial
automorphisms. So for any connected semisimple G, we get an obstruction for such � to
extend toC=� which lies inZ=Z2 D H 2.Z=2;Z/, whereZ is the center ofG_.15Moreover,
if this obstruction vanishes then the freedom for choosing the extension is in a torsor over
H 1.Z=2; Z/ D Z2, the 2-torsion subgroup in Z.

Example 7.3. Let G D K � K for some complex group K, and s be the permutation of
components (the only real form in this inner class is K regarded as a real group). This is
equivalent to the caseF D C considered above (forC defined overR). Then LGs D LGıs D

Z=2 Ë .K_ � K_/, where Z=2 acts by permutation. So an L-system is a K_ � K_ local
system on C of the form .�; �� /. Thus the spectrum is parametrized by � such that both � and
�� are opers, i.e., � is both an oper and an anti-oper, i.e. a real oper, which agrees with the
conjecture for F D C. (Note that in this case H i .Z=2; Z/ D 1 so there is no obstructions
or freedom for extensions).

Remark 7.4. If C.R/ ¤ ;, the story gets more complicated, and we will not discuss the
details here. Let us just indicate that, as explained in [19, Section 6], to define the appropriate
moduli space and the spectral problem on it, we need to fix a real form Gi of G in the inner
class s for each component (oval) Ci of C.R/, and the eigenvalues of Hecke operators are
conjecturally parametrized by a certain kind of “real” opers corresponding to this data, i.e.,
opers with real coefficients satisfying appropriate reality conditions on the monodromy of
the corresponding G_-connection. Furthermore, in the tamely ramified case, when we also
have a collection of marked pointsD on C defined overR, to define the most general version
of our spectral problem, we need to fix a unitary representation �i of the real group Gi for
every marked point c 2 D on Ci and a unitary representation of the complex group GC

for every pair of complex conjugate marked points c; Nc 2 D not belonging to C.R/. For
example, the case of parabolic structures corresponds to taking s to be the split inner class,
Gi the split forms, and �i the unitary principal series representations. In the genus zero case,

14 More precisely, as was explained to us by E. Witten, what comes from ordinary gauge
theory is this picture for the compact inner class s. To obtain other inner classes, one needs
to consider twisted gauge theory where the twisting is by a Dynkin diagram automorphism
of G. Namely, gauge fields in this theory are invariant under complex conjugation � up to
such an automorphism.

15 Indeed, �1.C=�/ is generated by �1.C/ and an element t such that tbt�1 D ˇ.b/ for some
automorphism ˇ of �1.C/, and t2 D c 2 �1.C/, so that ˇ2.b/ D cbc�1. So given a
representation � W �1.C/ ! G_, an L-system would be given by an assignment �.t/ D T 2

G_ such that (1) T 2 D �.c/ and (2) T �.a/T �1 D �.ˇ.a//. If � Š � ı ˇ then T satisfying
(2) is unique up to multiplying by u 2 Z, and T 2 D �.c/z, z 2 Z. Moreover, if T is replaced
by T u then z is replaced by zu2, hence the obstruction to satisfying (1) lies in Z=Z2.
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this was discussed in detail in [8], and it was shown that this problem leads to appearance of
T -systems.

7.3. Connection to Gaudin model
Recall that the Gaudin model for a simple complex Lie algebra g is the problem of

diagonalization of the Gaudin hamiltonians

Hi WD

X
1�j�N;j¤i

�ij

zi � zj

on the space .V1 ˝ � � � ˝ VN /g, where Vi are finite-dimensional g-modules, zi 2 C are
distinct points, � 2 .S2g/g is the Casimir tensor dual to the Killing form, and �ij denotes
the action of � in the i th and j th factor. These operators commute, and if g ¤ sl2 then
there are also higher Gaudin hamiltonians associated to the Feigin–Frenkel higher Sugawara
central elements at the critical level (see [14]), which commute with each other and with Hi ,
and the problem is to simultaneously diagonalize all these operators.

It turns out that this problem (for real zi ) is a special case of the spectral problem
considered in this paper, in the case F D R. Namely, let us take C D P 1 with the usual
real structure and fix the compact inner class s of the complex simply connected group G

with Lie.G/ D g. As explained in the previous remark, on the real locus P 1.R/, we are
supposed to fix a real form of G in this inner class, and we fix the compact form Gc . Further,
consider marked points z1; : : : ; zN on the real locus (the tamely ramified case). Then we are
supposed to fix a unitary representation of Gc at every zi , and we take it to be Vi . Then the
Hilbert space of the analytic Langlands theory is H D .V1 ˝ � � � ˝ Vn/Gc (so in this case it
is finite dimensional), and the quantum Hitchin system comprises the Gaudin hamiltonians
(including the higher ones), cf. [14].

As is explained in [15, 17], the Bethe ansatz method shows that the eigenvectors of
the Gaudin hamiltonians are labeled by monodromy-free G_-opers on P 1 with first-order
poles at zi and residues in the conjugacy class of ��i � �, where �i is the highest weight
of Vi . These are exactly the “real opers” for this situation. Thus the results of [15, 17] may
be considered as a finite-dimensional instance of the tamely ramified analytic Langlands
correspondence for genus zero and F D R.
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Abstract

The evolution of form and shape can be described by differential equations. Many of these
equations originate in various branches of science and engineering. They are fundamental
and in a sense canonical. The fact that they make sense geometrically means that they are
relevant everywhere and have fundamental properties that appear over and over in many
settings. Understanding them requires simultaneous insight into analysis and geometry and
the interplay between these.
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1. Introduction

The evolution of form and shape can be described by differential equations. These
equations are classical, and those we will consider are variants of the heat equation that gov-
erns how heat distributes over time. The questions and equations, many of which originate
in various branches of science and engineering, are fundamental and in a sense canonical,
and as a consequence come up in many areas. The Laplace equation, for example, is the
canonical linear second order partial differential equation once we have a metric structure.
The Laplace operator appears classically in the physics of gravity, electricity and magnetism,
fluid mechanics, and quantum mechanics, it has played a central role in many areas of math-
ematics, and its study in increasing generality played a central role in the development of the
theory of PDEs. The fact that the equations make sense geometrically means that they are
relevant everywhere in physical settings, and they have certain fundamental properties that
appear over and over. Understanding them requires simultaneous insight into analysis and
geometry, and the interplay between these. The new ideas and techniques to deal with these
questions apply to many different situations. Recent years have seen dramatic progress on
many of these questions thanks to the combined efforts of many people with different points
of views and techniques. The goal here is to give a flavor of some of these results.

The first equation we will consider is mean curvature flow of hypersurfaces. Surface
tension is the tendency of fluid surfaces to shrink into the smallest surface area possible.
Mathematically, the force of surface tension is described by the mean curvature. In equilib-
rium themean curvature is zero and one getsminimal surfaces.Minimal surfaces date back to
Euler and Lagrange and the beginning of the calculus of variations. Many of the techniques
developed have played key roles in geometry and partial differential equations. Examples
include monotonicity and tangent cone analysis originating in the regularity theory for min-
imal surfaces, estimates for nonlinear equations based on the maximum principle arising in
Bernstein’s classical work, and even Lebesgue’s definition of the integral that he developed
in his thesis on the Plateau problem for minimal surfaces.

Undermean curvature flow, the surfacemoves to decrease surface area as fast as pos-
sible. If we think of the hypersurface as the level set of a function and insist that all level sets
move by mean curvature flow, then this gives rise to a nonlinear degenerate parabolic PDE
on a Euclidean space. This is the level set formulation of the equation. The level set method
has been intensively studied in many pure and applied fields over the last 35 years. One of
the first questions that comes up is the regularity of solutions. The equation is degenerate
and a priori solutions are only defined weakly. We will see that the regularity of solutions
is equivalent to a question that has been widely studied in geometry over the last 40 years,
namely, the question of uniqueness of blowups. This is very much in the spirit of the simple
fact that a function is differentiable at a point if, at all sufficiently small scales, it not only
looks like a linear function but the same linear function independent of scale.

As growth of solutions to PDEs plays an important role in many different areas, we
will discuss the growth of some classical and basic equations on manifolds. These include
harmonic and caloric functions. That is, functions that are either solutions to the Laplace
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equation or the heat equation. We will also discuss more general eigenfunctions of drift
equations. Drift Laplacians are ubiquitous in many areas, including quantum field theory,
stochastic PDE, and anywhere the heat equation or Gaussian appears, such as functional
inequalities, parabolic PDEs, geometric flows, and probability. The drift term arises in two
different ways. One is whenever there is a natural scaling or, more generally, a gradient flow.
A second way it arises is when there is a natural measure, in which case the drift operator
is the canonical self-adjoint second order operator. There is a long history of studying the
growth of solutions to differential equations, inequalities, and systems. These new growth
estimates have direct application to longstanding open questions.

Analysis of noncompact manifolds almost always requires some controlled behav-
ior at infinity. Without such, one can neither show nor expect strong properties. On the other
hand, such assumptions restrict the possible applications and often too severely. In a wide
range of areas, noncompact spaces come with a Gaussian weight and a drift Laplacian.
Eigenfunctions are L2 in the weighted space allowing for extremely rapid growth. Rapid
growth would be disastrous for many applications. Surprisingly, for very general tensors,
manifolds, and weights, we will show the same polynomial growth bounds that Laplace and
Hermite observed for functions on a Euclidean space for the standard Gaussian. This covers
all shrinkers for Ricci and mean curvature flows.

These new growth estimates for the PDEs open a door to study delicate analyti-
cal questions on a wide class of non-compact manifolds without assuming any asymptotic
decay at infinity. They provide an analytic framework for investigating nonlinear PDE on
Gaussian spaces where previously the Gaussian weight allowed wild growth that made it
impossible to approximate nonlinear by linear. They are key to bound the growth of dif-
feomorphisms of noncompact manifolds and to solving the “gauge problem.” Many key
problems are defined intrinsically without a canonical coordinate system. In those prob-
lems, the infinite-dimensional diffeomorphism group (gauge group) becomes a major issue
and dealing with it a major obstacle. Ricci flow is such an example. There are many problems
where this degeneracy under diffeomorphisms plays a central role, but most techniques rely
on compactness or rapid decay which we do not have in the situations we consider.

Another common feature for all of these problems is that they are dynamical and can
be thought of as infinite-dimensional dynamical systems. Classical results from dynamics
do not apply directly, but they do give some guiding principles, [85,88,92]. In mathematics,
structural stability is a fundamental property of a dynamical system, which means that the
qualitative behavior of the trajectories is unaffected by small perturbations. Given a smooth
function f on a finite-dimensional space, the gradient rf points in the direction of the
steepest ascent. The critical points of f are the points where rf vanishes. If p is a local
minimum of f , then the second derivative test tells us that the Hessian matrix of f at p is
nonnegative. More generally, the number of negative eigenvalues of the Hessian is called the
index of the critical point. A fundamental method to find the minimum of f is the method of
gradient descent. Here, we make an initial guess p0 and then iteratively move in the negative
gradient direction, the direction of the steepest descent, by setting piC1 D pi � rf .pi /.
The function f .x.t// decreases as efficiently as possible as x.t/ heads towards theminimum.
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The dynamics near a nondegenerate critical point are determined by the index. If the index is
zero, then the critical point is attracting and the entire neighborhood flows towards the critical
point. However, when the index is positive, a generic point will flow out of the neighborhood,
missing the critical point. In the final part we will discuss stable structures in geometry.

Part 1. Optimal regularity of PDEs. In mean curvature flow, the velocity vector field is
the mean curvature vector and the evolving front is the level set of a function that satisfies
a nonlinear degenerate parabolic equation. Solutions are defined in a weak, so-called “vis-
cosity” sense; in general, they may not even be differentiable (let alone twice differentiable).
However, it turns out that for a monotonically advancing front viscosity solutions are in fact
twice differentiable and satisfy the equation in the classical sense. Moreover, the situation
becomes very rigid when the second derivative is continuous.

Suppose † � RnC1 is an embedded hypersurface and n is the unit normal of †.
The mean curvature is given by H D div†.n/. Here

div†.n/ D

nX
iD1

hrei
n; ei i;

where ei is an orthonormal basis for the tangent space of †. For example, at a point where
n points in the xnC1 direction and the principal directions are in the other axis directions,

div†.n/ D

nX
iD1

@ni

@xi

is the sum (n times the mean) of the principal curvatures. If † D u�1.s/ is the level set of a
function u on RnC1 and s is a regular value, then n D

ru
jruj

and

H D

nX
iD1

hrei
n; ei i D divRnC1

�
ru

jruj

�
:

The last equality used that hrnn;ni is automatically 0 because n is a unit vector.
A one-parameter family of smooth hypersurfaces Mt � RnC1 flows by the mean

curvature flow if the speed is equal to the mean curvature and points inward:

xt D �Hn;

where H and n are the mean curvature and unit normal of Mt at the point x. Our flows will
always start at a smooth embedded connected hypersurface, even if it becomes disconnected
and nonsmooth at later times. The earliest reference to the mean curvature flow we know
of is in the work of Birkhoff from the 1910s, where he used a discrete version of this, and
independently in the material science literature of the 1920s.

Two key properties.

• H is the gradient of area, so the mean curvature flow is the negative gradient flow
for volume (VolMt decreases most efficiently).

• (Avoidance property) If M0 and N0 are disjoint, then Mt and Nt remain disjoint.
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The avoidance principle is simply a geometric formulation of the maximum prin-
ciple. An application of it shows that if one closed hypersurface encloses another, then the
outer one can never catch up with the inner. The reason for this is that if it did there would
be a first point of contact, and right before that the inner one would contract faster than the
outer, contradicting that the outer was catching up.

Curve shortening flow. When n D 1 and the hypersurface is a curve, the flow is the curve
shortening flow.Under the curve shortening flow, a round circle shrinks through round circles
to a point in finite time. A remarkable result of Grayson [103] from 1987 (using earlier work
of Gage and Hamilton [100]) shows that any simple closed curve in the plane remains smooth
under the flow until it disappears in finite time in a point. Right before it disappears, the curve
will be an almost round circle.

Level set flow. The analytical formulation of the flow is the level set equation that can be
deduced as follows. Given a closed embedded hypersurface † � RnC1, choose a function
v0 W RnC1 ! R that is zero on †, positive inside the domain bounded by †, and negative
outside. (Alternatively, choose a function that is negative inside and positive outside.)

• If we simultaneously flow ¹v0 D s1º and ¹v0 D s2º for s1 ¤ s2, then avoidance
implies they stay disjoint.

• In the level set flow, we look for v W RnC1 � Œ0; 1/ ! R so that each level set
t ! ¹v.�; t / D sº flows by mean curvature and v.�; 0/ D v0.

• If rv ¤ 0 and the level sets of v flow by mean curvature, then

vt D jrvj div
�

rv

jrvj

�
:

This is degenerate parabolic and undefined whenrv D 0. It may not have classical solutions.
In a paper from 1988, Osher and Sethian [159] studied this equation numerically.

The analytical foundation was provided by Evans and Spruck [98] in a series of four papers
in the early 1990s and, independently and at the same time, by Chen, Giga, and Goto [41]; see
also [5]. Both of these two groups constructed (continuous) viscosity solutions and showed
uniqueness. The notion of viscosity solutions had been developed by Lions and Crandall in
the early 1980s. The work of these two groups on the level set flow was one of the significant
applications of this theory.

Examples of singularities. Under mean curvature flow, a round sphere remains round but
shrinks and eventually becomes extinct in a point. A round cylinder remains round and even-
tually becomes extinct in a line. The marriage ring is the example of a thin torus of revolution
in R3. Under the flow, the marriage ring shrinks to a circle then disappears.

Dumbbell. If the neck is sufficiently thin, then under the evolution the neck of a rotationally
symmetric mean convex dumbbell in R3 pinches off first and the surface disconnects into
two components. Later each component (bell) shrinks to a round point. This example falls
into a larger category of surfaces that are rotationally symmetric around an axis. Because

830 T.H. Colding



of the symmetry, then the solution reduces to a one-dimensional heat equation. This was
analyzed already in the early 1990s byAngenent, Altschuler, andGiga [4]; cf. also thework of
Soner and Souganidis from around the same time. A key tool in the arguments of Angenent–
Altschuler–Giga was a parabolic Sturm–Liouville theorem of Angenent that holds in one
spatial dimension.

Singular set. Under mean curvature flow, closed hypersurfaces contract, develop singulari-
ties, and eventually become extinct. The singular set � is the set of points in space and time
where the flow is not smooth.

In the first three examples—the sphere, cylinder, and marriage ring—� is a point,
line, and closed curve, respectively. In each case, the singularities occur only at a single time.
In contrast, the dumbbell has two singular times with one singular point at the first time and
two at the second.

Mean convex flows. A hypersurface is convex if every principal curvature is positive. It is
mean convex if H > 0, i.e., if the sum of the principal curvatures is positive at every point.
Under the mean curvature flow, a mean convex hypersurface moves inward and, since mean
convexity is preserved, it will continue to move inward and eventually sweep out the entire
compact domain bounded by the initial hypersurface.

Monotonemovement can bemodeled particularly efficiently numerically by the Fast
Marching Method of Sethian.

Level set flow for mean convex hypersurfaces. When the hypersurfaces are mean convex,
the equation can be rewritten as a degenerate elliptic equation for a function u defined by

u.x/ D ¹t j x 2 Mt º:

We say that u is the arrival time since it is the time the hypersurfaces Mt arrive at x as the
front sweeps through the compact domain bounded by the initial hypersurface. Kohn and
Serfaty [131] provided a game theoretic interpretation of the arrival time. It follows easily
that if we set v.x; t/ D u.x/ � t , then v satisfies the level set flow. Now the level set equation
vt D jrvj div.rv=jrvj/ becomes

�1 D jruj div
�

ru

jruj

�
:

This is a degenerate elliptic equation that is undefined when ru D 0. Note that if u sat-
isfies this equation, then so does u plus a constant. This just corresponds to shifting the
time when the flow arrives by a constant. A particular example of a solution to this equa-
tion is the function u D �

1
2
.x2

1 C x2
2/, that is, the arrival time for shrinking round cylinders

in R3. In general, Evans–Spruck (cf. Chen–Giga–Goto) constructed Lipschitz solutions to
this equation.

Singular set of mean convex level set flow. The singular set of the flow is the critical set
of u. Namely, .x; u.x// is singular if and only if rxu D 0. For instance, in the example of
the shrinking round cylinders in R3, the arrival time is given by u D �

1
2
.x2

1 C x2
2/ and the

flow is singular in the line x1 D x2 D 0; that is, exactly where ru D 0.
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Wewill next see that even though the arrival time was only a solution to the level set
equation in a weak sense, it always turns out to be a twice differentiable classical solution.

Differentiability [79,80].

• u is twice differentiable everywhere, with bounded second derivatives, and smooth
away from the critical set.

• u satisfies the equation everywhere in the classical sense.

• At each critical point, the Hessian is symmetric and has only two eigenvalues 0

and �
1
k
; �

1
k
has multiplicity k C 1.

This result is equivalent to saying that at a critical point, say x D 0 and u.x/ D 0,
the function u is (after possibly a rotation of RnC1) up to higher order terms equal to the
quadratic polynomial

�
1

k

�
x2

1 C � � � C x2
kC1

�
:

This second-order approximation is simply the arrival time of the shrinking round cylinders.
It suggests that the level sets of u right before the critical value and near the origin should be
approximately cylinders (with an .n � k/-dimensional axis). This has indeed been known for
a long time and is due to Huisken [114–116], White [182–184], Huisken–Sinestrari [117, 118],
Andrews [8], and Haslhofer–Kleiner [109]. It also suggests that those cylinders should be
nearly the same (after rescaling to unit size). That is, the axis of the cylinders should not
depend on the value of the level set. This last property, however, was only very recently
established in [78] (cf. [90]) and is the key to proving that the function is twice differentiable.1

The proof that the axis is unique, independent on the level set, relies on a key new inequality
that draws its inspiration from real algebraic geometry although the proof is entirely new.
This kind of uniqueness is a famously difficult problem in geometric analysis and no general
case had previously been known.

Regularity of solutions. We have seen that the arrival time is always twice differentiable,
and one may wonder whether there is even more regularity. Huisken [116] showed already in
1990 that the arrival time is C 2 for convex M0. However, in 1992 Ilmanen gave an example
of a rotationally symmetricmean convex M0 inR3 where u is notC 2. This result of Ilmanen
[120] shows that the above theorem about differentiability cannot be improved toC 2. We will
see later that in fact one can entirely characterize when the arrival time is C 2. In the plane,
Kohn and Serfaty [131] showed that u is C 3, and for n > 1 Sesum [168] gave an example of
a convex M0 where u is not C 3. Thus Huisken’s result is optimal for n > 1.

The next result shows that one can entirely characterize when the arrival time is C 2.

Continuous differentiability [82]. u is C 2 if and only if:

1 Uniqueness of the axis is parallel to the fact that a function is differentiable at a point pre-
cisely if on all sufficiently small scales at that point it looks like the same linear function.
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• There is exactly one singular time (where the flow becomes extinct).

• The singular set � is a k-dimensional, closed, connected, embedded, C 1 subman-
ifold of cylindrical singularities.

Moreover, the axis of each cylinder is the tangent plane to � .
When u is C 2 in R3, the singular set � is either:

(1) A single point with a spherical singularity, or

(2) A simple closed C 1 curve of cylindrical singularities.

The examples of the sphere and marriage ring show that each of these phenomena
can happen, whereas the example of the dumbbell does not fall into either, showing that in
that case the arrival time is not C 2.

We can restate this result for R3 in terms of the structure of the critical set and
Hessian: u is C 2 if and only if u has exactly one critical value and the critical set is either:

(1) A single point where Hessu is �
1
2
times the identity, or

(2) A simple closed C 1 curve where Hessu has eigenvalues 0 and �1 with multi-
plicities 1 and 2, respectively.

In case (2), the kernel of Hessu is tangent to the curve, in fact, more is true, see [84].

2. Uniqueness of blowups in geometry

We saw that the key for optimal regularity for the level set equation was to show that
the second-order approximation to a solution is independent of scale. The level sets of the
second-order approximation are cylinders, and the key was that the axis of the cylinders was
independent of scales.

This, independence of scale, is part of a larger question about uniqueness of blowups
that has been widely studied whenever singularities occur. Indeed, once singularities occur,
one naturally wonders what the singularities are like. A standard technique for analyzing sin-
gularities is to magnify around them. Unfortunately, singularities in many of the interesting
problems in geometric PDEs looked at under a microscope will resemble one blowup, but
under higher magnification, it might (as far as anyone knows) resemble a completely dif-
ferent blowup. Whether this ever happens is perhaps the most fundamental question about
singularities; see, e.g., [171] and [108]. By general principles, the set of blowups is connected
and, thus, the difficulty for uniqueness is when the blowups are not isolated in the space of
blowups.

One of the first major results on uniqueness was by Allard–Almgren in 1981 [3],
where uniqueness of tangent cones with smooth cross-section for minimal varieties is proven
under an additional integrability assumption on the cross-section. The integrability condition
applies in a number of important cases, but it is difficult to check and is not satisfied in many
other important cases.
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The next breakthrough on uniqueness was inspired by some old results in real alge-
braic geometry. Perhaps surprisingly, blowups for a number of important geometric PDEs
can essentially be reformulated as infinite-dimensional gradient flows of analytic function-
als. Thus, the uniqueness question would follow from an infinite-dimensional version of
Lojasiewicz’s theorem for gradient flows of analytic functionals. In real algebraic geome-
try, Lojasiewicz’s theorem asserts that any integral curve of the gradient flow of an analytic
function that has an accumulation point has a unique limit. Lojasiewicz proved this result
in the early 1960s as a consequence of his gradient inequality. Infinite-dimensional ver-
sions of Lojasiewicz’s theorem and the underlying Lojasiewicz inequalities were proven in
a celebrated work of Simon [170] for the area, energy, and related functionals, and used, in
particular, to prove a fundamental result about uniqueness of tangent cones with smooth
cross-section of minimal surfaces. This holds, for instance, at all singular points of an area-
minimizing hypersurface in R8. It also holds for singularities with smooth compact tangent
flows for mean curvature flow by Schulze [174].

These method are very powerful and have had a major impact, but they do not apply
when the blowups are noncompact. Indeed, in the most important examples, for essentially
all of the natural flows the most common singularities are products with nontrivial Euclidean
factors and thus are noncompact.

We will say that a singular point is cylindrical if at least one tangent flow is a
multiplicity-one cylinder Sk � Rn�k . We will later see that these are the most common and
most important singularities. In [78] we showed that at each cylindrical singular point of a
mean curvature flow the blowup is unique, that is, it does not depend on the sequence of
rescalings.

Theorem 2.1. Let Mt be an MCF in RnC1. At each cylindrical singular point, the tangent
flow is unique. That is, any other tangent flow is also a cylinder with the same Rk factor that
points in the same direction.

This settled a major open problem that was open even in the case of mean convex
hypersurfaces where it was known that all singularities are cylindrical. Moreover, this was
the first general uniqueness theorem for blowups to a geometric PDE at a noncompact sin-
gularity.

To prove our uniqueness result, we established two completely new infinite-dimen-
sional Lojasiewicz-type inequalities. Infinite-dimensional Lojasiewicz inequalities were
pioneered 30 years ago by Simon [170]. However, unlike all other infinite-dimensional
Lojasiewicz inequalities we know of, ours do not follow from a reduction to the classi-
cal finite-dimensional Lojasiewicz inequalities from the 1960s from algebraic geometry,
rather we prove our inequalities directly and do not rely on Lojasiewicz’s arguments or
results.

This is only a brief introduction to a very central and active area, see [37,39,47,52,

74,76,78,95,101,112,154,155,174].
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3. Regularity of singular set

A major theme in PDEs over the last 50 years has been understanding singularities
and the set where singularities occur. In the presence of a scale-invariant monotone quantity,
blowup arguments can often be used to bound the dimension of the singular set; see, e.g., [3].
Unfortunately, these dimension bounds say little about the structure of the set. The key to get
more structure is uniqueness of blowups. Uniqueness of tangents has important applications
to regularity of the singular set; see, e.g., [171]. We will see in this section that the results of
the previous sections lead to a rather complete description of the singular set for MCF with
cylindrical singularities:

Theorem 3.1 ([81]). Let Mt � RnC1 be an MCF of closed embedded hypersurfaces with
only cylindrical singularities, then the space-time singular set is contained in finitely many
(compact) embedded C 1 submanifolds each of dimension at most .n � 1/ together with a set
of dimension at most .n � 2/.

In fact, [81] proves considerably more than what is stated in Theorem 3.1; see The-
orem 4:18 there. For instance, instead of just proving the first claim of the theorem, the
entire stratification of the space-time singular set is Lipschitz of the appropriate dimension.
Moreover, this holds without ever discarding any subset of measure zero of any dimension
as is always implicit in any definition of rectifiable. To illustrate the much stronger version,
consider the case of evolution of surfaces in R3. In that case, this gives that the space-time
singular set is contained in finitely many (compact) embedded Lipschitz curves with cylinder
singularities together with a countable set of spherical singularities. In higher dimensions,
the direct generalization of this is proven.

Theorem 3.1 has the following corollaries:

Corollary 3.2 ([81]). Let Mt � RnC1 be an MCF of closed embedded mean convex hyper-
surfaces or an MCF with only cylindrical singularities, then the conclusion of Theorem 3.1
holds.

More can be said in dimensions three and four:

Corollary 3.3 ([81]). If Mt is as in Theorem 3.1 and n D 2 or 3, then the evolving hypersur-
face is completely smooth (i.e., has no singularities) at almost all times. In particular, any
connected subset of the space-time singular set is completely contained in a time-slice.

A key technical point in [81] is to prove a strong parabolic Reifenberg property for
MCF with generic singularities. In fact, the space-time singular set is proven to be (paraboli-
cally) Reifenberg vanishing. In analysis, a subset of a Euclidean space is said to be Reifenberg
(or Reifenberg flat) if on all sufficiently small scales it is, after rescaling to unit size close,
to a k-dimensional plane. The dimension of the plane is always the same but the plane itself
may change from scale to scale. Many snowflakes, like the Koch snowflake, are Reifenberg
with Hausdorff dimension strictly larger than one. A set is said to be Reifenberg vanishing if
the closeness to a k-plane goes to zero as the scale goes to zero. It is said to have the strong
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Reifenberg property if the k-dimensional plane depends only on the point but not on the
scale.

Using the uniqueness of tangent flows, [81] shows that the singular set in space-time
is strong (half) Reifenberg vanishing with respect to the parabolic Hausdorff distance. This
is done in two steps, showing first that nearby singularities sit inside a parabolic cone (i.e.,
between two oppositely oriented space-time paraboloids that are tangent to the time-slice
through the singularity). In fact, this parabolic cone property holds with vanishing constant.
Next, in the complementary region of the parabolic cone in space-time (that is essentially
space-like), the parabolic Reifenberg essentially follows from the space Reifenberg that the
uniqueness of tangent flows implies.

An immediate consequence, of independent interest, of the parabolic cone property
with vanishing constant is that nearby a generic singularity in space-time (nearby is with
respect to the parabolic distance) all other singularities happen at almost the same time.

These results should be contrasted with a result of Altschuler–Angenent–Giga [4]

showing that in R3 the evolution of any rotationally symmetric surface obtained by rotating
the graph of a function r D u.x/, a < x < b around the x-axis is smooth except at finitely
many singular times where either a cylindrical or spherical singularity forms. For more gen-
eral rotationally symmetric surfaces (even mean convex), the singularities can consist of
nontrivial curves. For instance, consider a torus of revolution bounding a region �. If the
torus is thin enough, it will be mean convex. Since the symmetry is preserved and because
the surface always remains in �, it can only collapse to a circle. Thus at the time of collapse,
the singular set is a simple closed curve.

White showed that a mean convex surface evolving by MCF in R3 must be smooth
at almost all times, and at no time can the singular set be more than 1-dimensional. In fact,
White’s general dimension reducing argument [180, 181] gives that the singular set of any
MCF with only cylindrical singularities has dimension at most .n � 1/.

These results motivate the following conjecture:

Conjecture 3.4 ([81]). Let Mt be an MCF of closed embedded hypersurfaces in RnC1 with
only cylindrical singularities. Then the space-time singular set has only finitely many com-
ponents.

If this conjecture was true, then it would follow that in R3 and R4 MCF with only
generic singularities is smooth except at finitely many times; cf. the three-dimensional con-
jecture at the end of Section 5 in [183].

Part 2. Growth of solutions to differential equations. On a Riemannian manifold M with
metric h�; �i and Levi-Civita connection r, the gradient of a function f is defined by

V.f / D hrf; V i for all vectors fields V: (3.5)
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The Laplacian of f is the trace of the Hessian. That is, if ei is an orthonormal frame for M ,
then

�f D TrHessf D

X
i

Hessf .ei ; ei / D

X
i

hrei
V; ei i: (3.6)

The Laplace operator is the canonical linear second order partial differential equation once
we have a metric structure.

4. Harmonic functions with polynomial growth

The classical Liouville theorem, named after Joseph Liouville (1809–1882), states
that a bounded (or even just positive) harmonic function on all ofRn must be constant. There
is a very short proof of this for bounded functions using the mean value property:

Given two points, choose two balls with the given points as centers and of equal
radius. If the radius is large enough, the two balls will coincide except for an
arbitrarily small proportion of their volume. Since the function is bounded, the
averages of it over the two balls are arbitrarily close, and so the function assumes
the same value at any two points.

The Liouville theorem has had a huge impact across many fields, such as com-
plex analysis, partial differential equations, geometry, probability, discrete mathematics, and
complex and algebraic geometry, as well as many applied areas. The impact of the Liouville
theorem has been even larger as the starting point of many further developments.

On manifolds with nonnegative Ricci curvature, mean values inequalities hold, but
are no longer equalities, and the above proof does not give a Liouville type property. How-
ever, in the 1970s, S. T. Yau [187] showed that the Liouville theorem holds for suchmanifolds.
Later, in the mid 1970s, Yau together with S. Y. Cheng [42] showed a gradient estimate on
these manifolds giving an effective version of the Liouville theorem; see also Schoen [165].

The situation is very different for negatively curved manifolds such as hyperbolic
space. This is easiest seen in two dimensions where being harmonic is conformally invariant,
so each harmonic function on the Euclidean disk is also harmonic in the hyperbolic metric.
In particular, each continuous function on the circle extends to a harmonic function on the
disk and the space of bounded harmonic functions is infinite dimensional; cf. Anderson [6],
Sullivan [173], and Anderson–Schoen [7].

On a Euclidean space, as soon as one allows a polynomial rate of growth, there
are lots of harmonic functions. In fact, on a Euclidean space the harmonic functions with
polynomial growth are the harmonic polynomials which play a central role in analysis. On
a general manifold, the situation is much more complicated, and one does not expect an
explicit representation. Given a manifold M and a constant d , Hd .M/ is the linear space of
harmonic functions of polynomial growth at most d . Namely, u 2 Hd .M/ if �u D 0 and
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for some p 2 M and a constant Cu depending on u

sup
BR.p/

juj � Cu.1 C R/d for all R: (4.1)

In 1974, S. T. Yau conjectured that manifolds with nonnegative Ricci curvature
should have a strong Liouville property, namely that Hd .M/ is finite dimensional for each
d when RicM � 0. The conjecture was settled in [59]; see [86] for more results.2 In fact,
[59,62,63] proved finite dimensionality under much weaker assumptions of:

(1) A volume doubling bound,

(2) A scale-invariant Poincaré inequality or mean value inequality.

Both (1) and (2) hold for Ric � 0 by the Bishop–Gromov volume comparison and
work of Buser. However, these properties do not require much regularity of the space and are
quite flexible. In particular, they make sense for more general metric-measure spaces and are
preserved by bi-Lipschitz changes of the metric. Moreover, properties (1) and (2) make sense
also for discrete spaces, vastly extending the theory andmethods out of the continuous world.
This extension opens up applications to geometric group theory and discrete mathematics,
some of which we will touch upon later.

An interesting feature of these dimension estimates is that they follow from “rough”
properties of M and are therefore surprisingly stable under perturbation. Unlike a Ricci
curvature bound, these properties are stable under bi-Lipschitz transformations, cf. [134].
Moreover, these properties make sense also for discrete spaces, vastly extending the theory
and methods out of the continuous world. Kleiner [128] (see also Shalom–Tao [169,175,176])
used, in part, this in his new proof of an important and foundational result in geometric
group theory, originally due to Gromov [104]. Harmonic functions also play a central role in
complex geometry, [136,142,157].

5. Ancient caloric functions with polynomial growth

Harmonic functions are functions that are in equilibrium for the Laplace equation.
For the heat equation, equilibrium is reached when solutions have existed for all prior times.
This naturally leads to the question of whether there is a generalization of the results in the
previous section to ancient solutions of the heat equation with polynomial growth. Ancient
solutions are those that are defined for all negative t . Many solutions of the heat equation,
including the fundamental solution, cannot be extended to all negative t . Given d > 0,
u 2 Pd .M/ if u is ancient (defined for all negative t ), @t u D �u and for some p 2 M

and a constant Cu,

sup
BR.p/�Œ�R2;0�

juj � Cu.1 C R/d for all R: (5.1)

2 For Yau’s 1974 conjecture, see: page 117 in [188], problem 48 in [189], Conjecture 2:5 in
[97,124–126,165], Conjecture 1 in [137], and problem (1) in [138], amongst others.
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On Rn, these functions are the classical caloric polynomials that include the spherical har-
monics and generalize the Hermite polynomials.

A manifold has polynomial volume growth if there are constants C and dV so that
Vol.BR.p// � C.1 C R/dV for some p 2 M , and all R > 0.3 In [89] the following sharp
inequality, which is an equality on Rn, was shown:

Theorem 5.2. If M has polynomial volume growth and k is a nonnegative integer, then

dimP2k.M/ �

kX
iD0

dimH2i .M/: (5.3)

Since Hd1
� Hd2

for d1 � d2, Theorem 5.2 implies:

Corollary 5.4. If M has polynomial volume growth, then for all k � 1,

dimP2k.M/ � .k C 1/ dimH2k.M/: (5.5)

Combining this with the bound dimHd .M/ � Cd n�1 when RicM n � 0 from [59]

gives:

Corollary 5.6. There exists C D C.n/ so that if RicM n � 0, then for d � 1,

dimPd .M/ � Cd n: (5.7)

The exponent n in (5.7) is sharp: There is a constant c depending on n so that for
d � 1,

c�1d n
� dimPd

�
Rn

�
� cd n: (5.8)

Recently, Lin and Zhang [141] proved very interesting related results, adapting the methods
of [59,62,63] to get the bound d nC1.

An immediate corollary of the parabolic gradient estimate of Li and Yau [139] is
that if d < 2 and Ric � 0, then Pd .M/ D Hd .M/ consists only of harmonic functions of
polynomial growth. In particular, Pd .M/ D ¹constant functionsº for d < 1 and, moreover,
dimP1.M/ � n C 1, by Li and Tam [138], with equality if and only if M D Rn by [38].

The exponent n � 1 is also sharp in the bound for dimHd when RicM n � 0. How-
ever, as in Weyl’s asymptotic formula, the coefficient of d n�1 can be related to the volume
[63]:

dimHd .M/ � Cn VM d n�1
C o

�
d n�1

�
; (5.9)

where

• VM is the “asymptotic volume ratio” limr!1 Vol.Br /=rn.

• o.d n�1/ is a function of d with limd!1 o.d n�1/=d n�1 D 0.

Combining (5.9) with Corollary 5.4 gives dim Pd .M/ � Cn VM d n C o.d n/ when
RicM n � 0.

3 A volume-doubling space with doubling constant CD has polynomial volume growth of
degree log2 CD .
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6. Growth of drift equations

The Laplacian � is self-adjoint with respect to the ordinary L2 inner product. How-
ever, if we instead use aweightedL2 inner product, then the Laplacianmay not be self-adjoint
but there is a natural self-adjoint elliptic operator known as the drift Laplacian. Drift Lapla-
cians are ubiquitous in many areas, including quantum field theory, stochastic PDEs, and
anywhere the heat equation or Gaussian appear, such as functional inequalities, parabolic
PDEs, geometric flows, and probability. The drift term arises whenever there is natural mea-
sure or a natural scaling or, more generally, a gradient flow.

To make the drift Laplacian precise, fix a function � and define the weighted
L2-norm k � k� by

kuk
2
� �

Z
M

u2 e�� : (6.1)

Similarly, we will define the weighted inner product by

hu; vi� �

Z
M

uv e�� : (6.2)

The drift Laplacian L� is defined by

L�u D �u � hr�; rui D e� div
�
e��

ru
�

(6.3)

and

hL�u; vi� D �

Z
M

hru; rvi e��
D hu; L�vi� : (6.4)

The operator is self adjoint and under reasonable hypothesis has discrete eigenvalues going to
infinity, see, for instance, [11,43,111,144]. The best-known example is the Ornstein–Uhlenbeck
operator on Rn,

L D � �
1

2
rx ; (6.5)

where � D
jxj2

4
and k � k� is the Gaussian L2-norm.

Drift Laplacians were considered very early on. Laplace discovered that on the line
eigenfunctions of Lu D u00 �

x
2
u0 in the Gaussian L2 space are polynomials whose degree

is exactly twice the eigenvalue. These polynomials were later rediscovered twice. First by
Chebyshev and a few years later by Hermite. They are now known as the Hermite polyno-
mials and the eigenvalue equation as the Hermite equation. The first few eigenfunctions are:
constants with eigenvalue 0, the linear function x with eigenvalue 1

2
, and the quadratic poly-

nomial x2 � 2 with eigenvalue 1. The Hermite polynomials and their higher-dimensional
analogues play an important role in diverse fields. We will describe a vast generalization of
these results that has many applications.

6.1. Growth of drift equations
Wewill next describe optimal polynomial growth bounds for eigenfunctions of drift

Laplacians in a general setting that includes all shrinking solitons for both Ricci and mean
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curvature flows (or MCF). These bounds are sharp for the Ornstein–Uhlenbeck operator on
Euclidean space.

There is a long history of studying the growth of solutions to differential equations,
inequalities, and systems. At a very rough level, there are two main techniques. The first,
exemplified in the work of Carleman and Hörmander, is to consider weightedL2-norms with
growing weights. The second, seen, for instance, in the work of Hadamard and Almgren, is
to study the growth of spherical maxima or averages. The second is an extreme version of
the first where the weight is a measure concentrated on a lower-dimensional set. As such,
the second method typically gives stronger information and requires greater structure, such
as invariance under dilations. However, general manifolds do not come with any dilation
structure.

The growth estimates that we describe here hold in remarkable generality and with-
out any assumptions on asymptotic decay. This is surprising and in contrast to most other
situations, like unique continuation, that require very strong geometric assumptions on the
space. A typical starting point for growth estimates is a Pohozaev identity or commutator esti-
mate that come from a dilation, or approximate dilation, structure. We have none of these
here in this general setting. In contrast, we rely on a miraculous cancelation for just the right
quantity. A consequence of the generality is that the growth estimates hold for all singularities
which is key for applications.

In many settings, one has an n-dimensional Riemannian manifold .M;g/, that could
even be flat Euclidean space, with two nonnegative functions f and S satisfying

�f C S D
n

2
; (6.6)

jrf j
2

C S D f; (6.7)

and where f is proper and C n. The weight e�f gives a drift Laplacian L on tensors u

Lu D ef div
�
e�f

ru
�

D �u � rrf u (6.8)

that is self-adjoint with respect to theL2-norm kuk2
L2 D

R
juj2 e�f . Using the function f , we

can define a very natural exhaustion function b that will share many of the same properties
that the distance function has on a Euclidean space with the standard Gaussian measure.
Since jr

p
f j �

1
2
by (6.7), b D 2

p
f satisfies jrbj � 1 as in [35]. On Rn, f D

jxj2

4
and

S D 0 satisfy (6.6), (6.7) with L D � �
1
2
rx the Ornstein–Uhlenbeck operator and b D jxj.

In a Ricci flow, singularities are gradient shrinking solitons, f is the potential, and S is scalar
curvature.4 In an MCF, singularities are shrinkers † � RN , f D

jxj2

4
, and S D jHj2, where

H is the mean curvature vector.5

Throughout, � > 0 is a constant and u is a tensor on M . We will often assume that

hLu; ui � ��juj
2
I (6.9)

4 See [32,40,49–51,107,129,160,178].
5 See, e.g., [72,78,115].
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this includes eigentensors with Lu D ��u. To understand the growth of u, we will study a
weighted average of juj2 on level sets of b,

I.r/ D r1�n

Z
bDr

juj
2
jrbj: (6.10)

This is defined at regular values of b, but extends continuously to all values to be dif-
ferentiable a.e. and absolutely continuous. The weight jrbj will play a crucial role (cf.
[1,53,60,61,75,105]). The growth of I will be bounded above in terms of the solid integral

D.r/ D r2�n e
r2

4

Z
b<r

�
jruj

2
C hLu; ui

�
e�f : (6.11)

The frequency U D
D
I
is defined when I is positive and will measure the growth of log I .

The frequency U describes the rate of growth of the function u. To illustrate this,
when u is a degree m Hermite polynomial, so � D

m
2
, it is easy to see that

U.r/ D m
�
1 C O

�
r�2

��
D 2�

�
1 C O

�
r�2

��
: (6.12)

The next theorem from [91] shows that an L2 tensor satisfying (6.9) has frequency
bounded by 2� and, accordingly, it grows at most polynomially at this rate. This may seem
surprising since the weight e�f decays rapidly, so theL2 condition a priori allows extremely
rapid growth.

Theorem 6.13. Suppose u; Lu 2 L2, (6.6), (6.7), (6.9) hold, and u does not vanish iden-
tically outside a compact set. Given " > 0, there exists R D R.n; �; "/ such that if r > R,
then

U.r/ � 2� C "; (6.14)

and for all r2 > r1 > R,

I.r2/ � I.r1/

�
r2

r1

�2.2�C"/

: (6.15)

This is sharp for the Ornstein–Uhlenbeck operator on Rn where the L2 eigenfunc-
tions are Hermite polynomials with degree twice the eigenvalue. Note that u cannot vanish
on an open set if u has unique continuation, e.g., if Lu D ��u.

Our results give that polynomially growing “special functions” are dense inL2. This
gives manifold versions of some very classical problems in analysis. Whereas Weierstrass’s
approximation theorem shows that polynomials are dense among continuous functions on
any compact interval, the classical Bernstein problem [145], dating back to 1924, asks if
polynomials are dense on R in the weighted Lp.e�f dx/ space if f is assumed to grow
sufficiently fast at infinity. On the line, the Hermite polynomials are dense in L2.e�

jxj2

4 dx/

and Lennart Carleson (and implicitly Izumi–Kawata) showed that polynomials are dense in
Lp.e�jxj˛ dx/ if and only if ˛ � 1. A similar problem in several complex variables is the
completeness problem, going back to Carleman in 1923, about the density of polynomials in
weighted L2 spaces of holomorphic functions [22].

Almgren’s frequency has been used to show unique continuation [102] and structure
of the nodal sets [143]; prior to this, the main tool in unique continuation was Carleman
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estimates that still is the primary technique. Almgren’s frequency bounds relied on scaling
for Rn; cf. [60, 61]. The papers [18] (cf. [179]), [83] developed frequencies for conical and
cylindrical MCF shrinkers and did not involve a weight like jrbj. Theorem 6.13, in contrast,
holds very generally, including for all shrinkers in both Ricci flow and MCF. A much weaker
version of Theorem 6.13, that was not relative, was proven in [83] in the special case of
MCF.

Part 3. Stable structures. In mathematics, structural stability is a fundamental property
of a dynamical system which means that the qualitative behavior of the trajectories is unaf-
fected by small perturbations. Given a smooth function f on a finite-dimensional space, the
gradient rf points in the direction of the steepest ascent. The critical points of f are the
points whererf vanishes. If p is a local minimum of f , then the second derivative test tells
us that the Hessian matrix of f at p is nonnegative. More generally, the number of negative
eigenvalues of the Hessian is called the index of the critical point. A fundamental method
to find the minimum of f is the method of gradient descent. Here, we make an initial guess
p0 and then iteratively move in the negative gradient direction, the direction of the steepest
descent, by setting piC1 D pi � rf .pi /. This can also be done continuously by defining a
negative gradient flow

dx

dt
D �rf

�
x.t/

�
: (6.16)

The function f .x.t// decreases as efficiently as possible as x.t/ heads towards theminimum.
The dynamics near a nondegenerate critical point are determined by the index. If the index is
zero, then the critical point is attracting and the entire neighborhood flows towards the critical
point. However, when the index is positive, a generic point will flow out of the neighborhood,
missing the critical point.

Many of the fundamental problems in geometry can be understood as problems
about dynamical systems on an infinite-dimensional space. Sometimes this is immediate.
For instance, in the case of geodesics or minimal surfaces. Geodesics are critical points for
energy, whereas minimal surfaces are critical points for area. Another example where the
connection to dynamical systems is immediate is the mean curvature flow that is the nega-
tive gradient flow for area. In other cases the connection is hidden, but no less fundamental.
An example of this is uniqueness of blowups, that we discussed earlier. Uniqueness can be
thought of as the question of whether a related recurrent flow has a limit or is wandering.
One of the most basic and fundamental questions about a dynamical system is the question of
equilibria: which equilibria are stable (generic) and which are not. For a nongeneric equilib-
rium, a nearby flow line passes by the equilibria and thus the nongeneric ones can typically
be ignored.

We will look for stable structures in four situations and discuss what is known and
unknown, see [58]. Those four are: (1) minimal hypersurfaces; (2) minimal submanifolds of
higher codimension; (3) singularities that are stable or generic, and cannot be perturbed away,
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for motion by mean curvature of hypersurfaces; and, finally, (4) singularities for motion by
mean curvature in higher codimension.

7. Minimal surfaces

Let†n �RN be a smooth submanifold (possiblywith boundary). Given an infinitely
differentiable (i.e., smooth), compactly supported, normal (orthogonal to †) vector field V

on †, consider the one-parameter variation

†s;V D
®
x C sV .x/ j x 2 †

¯
: (7.1)

This gives a path s ! †s;V in the space of submanifolds with †0;V D †. The so-called first
variation formula of area or volume is the equation (integration is with respect to d Vol)

d

ds sD0
Vol.†s;V / D

Z
†

hV;Hi; (7.2)

whereH is the mean curvature vector. When † is a hypersurface,H is the unit normal times
the sum of the principal curvatures. In general, H D �

P
i A.ei ; ei / where A is the second

fundamental form and ei is an orthonormal frame for the tangent space of †; A.ei ; ej / D

Aij D r?
ei

ej where r is the Euclidean derivative and “?” is the component orthogonal to
the submanifold. When † is noncompact, †s;V is replaced by �s;V D ¹x C sV .x/ j x 2 �º

where � is a compact subset of † containing the support of V .
The submanifold † is said to be a minimal if

d

ds sD0
Vol.†s;V / D 0 for all V ; (7.3)

or, equivalently, by (7.2), if H is identically zero. Thus † is minimal if and only if it is a
critical point for the volume functional. Since a critical point is not necessarily a minimum,
the term minimal is misleading but time-honored. It is easy to see that being minimal is
equivalent to all the coordinate functions of RN restricted to the submanifold are harmonic
with respect to the Laplacian, �†, on the submanifold. In higher codimension, the minimal
surface equation is a complicated system.

A computation shows that if † is minimal, then the second derivative of volume is

d 2

ds2 sD0
Vol.†s;V / D �

Z
†

hV; LV i; (7.4)

where LV D �†V C hAij ;ViAij is the so-called second variational (or Jacobi) operator.
This is an operator on the normal bundle of † and is the Laplacian plus a zeroth-order term.
When the submanifold is a hypersurface, this simplifies and becomesLV D �†V C jAj2V ,
where jAj2 is the sum of the squares of the principal curvatures. It simplifies further if one
identifies V with its projection � D hV;ni onto the unit normal n. ThenL� D �†� C jAj2�.

A minimal submanifold is stable if it passes the second derivative test

d 2

ds2
Vol.†s;V / � 0 for all V: (7.5)
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Obviously, if a minimal surface is area or volume minimizing among competitors with the
same boundary, then it is stable as well. However, stability is much more general than being
minimizing. Stability becomes a question about whether the Jacobi operator L is nonnega-
tive or not. The operator L is much simpler for hypersurfaces and, in particular, it is easy to
see that a minimal graph is stable. In higher codimension, the question of stability becomes
much more complicated because of the vector-valued nature of L and the curvature of the
normal bundle. For example, minimal graphs are not necessarily stable in higher codimen-
sion.6

A classical theorem of Bernstein from 1916 shows that entire (that is, where the
domain of definition is all of R2) minimal graphs in R3 are planes. Whether this is true in
higher dimensions became known as the Bernstein problem. This problem played an impor-
tant role in the field for decades and is closely related to regularity for area minimizers.
In 1965 and 1966, De Giorgi and Almgren proved the Bernstein theorem for graphs in R4

and R5. In 1968, Simons extended the Bernstein theorem to R6, R7, and R8, which was
shown to be sharp the next year by Bombieri, De Giorgi, and Giusti. Simons’ influential
paper introduced the second variation operator and stability to minimal surface theory. Sta-
bility of hypersurfaces was studied by Schoen–Simon–Yau [166], who showed that, as long as
the dimension of the hypersurface is at most six and the volumes of balls are up to a constant
the same as Euclidean balls of the same radius and dimension, all stable minimal hyper-
surfaces are planes, cf. [186] and references there. In R3 Fischer-Colbrie and Schoen [99]

showed the same, but without assuming area bounds. This was also proved independently by
Do Carmo and Peng. Schoen [164] (see also [46,57]) later showed a local version of this that
has had a huge influence on the development of minimal surfaces in three dimensions. Stable
minimal surfaces can be constructed variationally, see, for instance, [152]. These estimates
can also be applied to low index minimal surfaces, [146, 147, 172]. See [64–71] and [161] for
more about minimal surfaces.

The situation is much more complicated in higher codimension where there is no
analog of the Bernstein theorem, cf. [96,163]. A simple argument ofWirtinger from the 1930s,
using Stokes’ formula, shows that any complex submanifold of CN is volume minimizing
among things with the same boundary and, thus, a stable minimal submanifold. This gives a
plethora of area-minimizing, and thus also stable, minimal submanifolds once the codimen-
sion is at least two. Moreover, these examples can have arbitrarily large areas. Remarkably,
Micallef [153] proved a converse in R4. Namely, he showed that a stable oriented, parabolic
minimal surface in R4 is complex for some orthogonal complex structure. Being parabolic
is a conformal property that holds, for instance, if the volume of balls grows at most quadrat-
ically. Examples of Arezzo and Micallef show that this converse does not hold for surfaces
in codimension larger than two.

6 By [153], Osserman’s minimal graph x3 D
1
2 cos x2

2 .ex1 �3 e�x1 / and
x4 D �

1
2 sin x2

2 .ex1 �3 e�x1 / in R4 is not stable.
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8. Motion by mean curvature

Surface tension is the tendency of fluid surfaces to shrink into the minimum sur-
face area possible. Mathematically, the force of surface tension is described by the mean
curvature.

A one-parameter family of n-dimensional submanifolds Mt � RN is said to move
by motion by mean curvature, see, for instance, [9,92], if the time derivative of the position
vector x moves by minus the mean curvature. That is,

@x

@t
D �H: (8.1)

It follows from the first variation formula that themean curvature flow is the negative gradient
flow for area. That is, the mean curvature flow moves the submanifold in the direction where
the area or volume decreases as fast as possible.

We can view the mean curvature flow as a type of heat equation. This is exemplified
by that the coordinate functions of the ambient Euclidean space restricted to the evolving
submanifolds satisfy the heat equation

@x

@t
D �Mt x: (8.2)

This equation is nonlinear since the Laplacian �Mt depends on Mt . Moreover, since the
submanifolds are evolving, the induced metric is time-varying so the Laplacian �Mt is also
time-varying. From the first variation formula (7.2), it follows easily that the mean curvature
flow moves in the direction where the volume decreases as fast as possible; thus, the mean
curvature flow is the negative gradient flow of volume. The motion is by surface tension. In
higher codimension, (8.1) and (8.2) are complicated parabolic systems where much less is
known.

Since the coordinate functions on the evolving submanifolds satisfy the heat equa-
tion, it follows from the parabolic maximum principle that the evolving submanifolds remain
inside the convex hull of the initial submanifold. A straightforward computation shows that
also the function jxj2 � 2nt satisfies the heat equation on the evolving submanifolds. At
the initial time t D 0, this is nonnegative and therefore, by the parabolic maximum prin-
ciple, it remains nonnegative as long as the flow exists. Since we have already seen that
maxMt jxj2 remains bounded under the evolution, it follows that the flow must become
extinct in finite time and, thus, singularities occur. There are two approaches either consider-
ing a weak flow through singularities or considering flow with surgery through singularites;
see, [17,30,110,119,130] for surgery.

For a fixed constant c > 0, rescaling the flow parabolically

t ! cMc�2 D Mc;t (8.3)

gives a new solution to motion by mean curvature that has the effect that the submanifolds
are magnified by the constant c. If we simultaneously with rescaling also reparametrize time,
then we get a rescaled mean curvature flow. It is easy to see that such a one-parameter family
satisfies the rescaled mean curvature flow equation

@x

@t
D

x?

2
� H: (8.4)
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The rescaled mean curvature flow, which is so critical for understanding the mean curvature
flow, can itself be interpreted as the negative gradient flow of a functional that we call the
Gaussian surface area.

8.1. Gaussian surface area and entropy
The Gaussian surface area F of an n-dimensional submanifold †n � RN is

F.†/ D .4�/� n
2

Z
†

e�
jxj2

4 : (8.5)

The constant .4�/� n
2 is a normalization that makes the Gaussian area equal to one for an

n-plane through the origin. Following [72], the entropy � is the supremum of F over all
translations and dilations

�.†/ D sup
c;x0

F.c† C x0/: (8.6)

By considering all centers and scales and taking the supremum over these, we get some rough
low-regularity measure of the complexity of the submanifold. In particular, it is easy to see
that the entropy is always at least 1 and achieved only on a n-dimensional plane.

It follows easily from Huisken’s monotonicity formula that the entropy is monotone
under mean curvature flow and, moreover, the entropy at the initial time gives an upper bound
for the entropy of any future singularity; see [72].

Prior to the entropy, many results focused on either convexity conditions or graph-
ical restrictions as these were preserved under the flow by the maximum principle. These
properties, however, are pretty strong and heavily restrict the types of singularities that can
occur. The entropy now plays a central role in mean curvature flow and a great deal is now
known about low entropy flows, [20,21,45,48,55].

If V is a normal vector field and †s;V , as before, is the variation †s;V D

¹x C sV .x/ j x 2 †º, then an easy computation shows that

d

ds sD0
F.†s;V / D .4�/� n

2

Z
†

�
V;H �

x?

2

�
e�

jxj2

4 : (8.7)

It follows that the Gaussian surface area F is monotone nonincreasing under the rescaled
mean curvature flow and constant if and only if

H D
x?

2
: (8.8)

This equation is the shrinker equation and is equivalent to the rescaled flow is static. Or,
equivalently, the evolution under the mean curvature flow is by rescaling. That is, a later time
slice is exactly like an earlier, just scaled down. That Gaussian surface area ismonotone under
the rescaled flow corresponds to Huisken’s celebrated monotonicity formula [115]. From this,
it follows also that the entropy is a Lyapunov function for both the mean curvature flow and
the rescaled mean curvature flow.

From Huisken’s monotonicity [115], as well as work of Ilmanen [121] and White
[180], one knows that every sequence ci ! 1 has a subsequence (also denoted by ci ) such
that Mci ;t converges to a shrinker M1;t (so M1;t D

p
�tM1;�1) with supt �.M1;t / �
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supt �.Mt /. Such a limit is said to be a tangent flow at the origin. Similarly, one can magnify
(blow up) around any other point in space time. If one does not fix the point around where
one blows up, but still looks at limits of a sequence of blowups, then the limiting flows are
not shrinkers, but even then the limiting flows will exist for all negative times and are said to
be ancient flows.

The shrinker equation (8.8) is a second order nonlinear elliptic equation that is
closely related to the classical minimal surface equation. In fact, shrinkers are minimal sur-
faces for a conformally changedmetric that is not particularlywell-behaved: it is not complete
and the curvature is unbounded. This perspective has limited utility for global questions, but
it is very useful for local regularity (e.g., any tangent cone is a minimal cone); cf. [55,72,73].

8.2. Second variation and stability
We have already seen that shrinkers are critical points for the Gaussian area. The

critical points for the Gaussian surface area are the fixed points for the rescaled flow. To
understand the dynamics of the flow, we would like to understand which fixed points can be
avoided and, more generally, the dynamics near any fixed point.

When † is a shrinker, we therefore look at the second derivative. A calculation (see
[72]) gives

d 2

ds2 sD0
F.†s;V / D �.4�/� n

2

Z
†

hV; LV i e�
jxj2

4 : (8.9)

Here LV D LV C hAij ; V iAij C
1
2
V is the second variation operator, and LV D

�†V �
1
2
r?

xT V is the Ornstein–Uhlenbeck operator on the normal bundle. For hypersur-
faces, there is a similar simplification of the operator L, as we saw for the second derivative
of volume; cf. [10,14,135] for higher codimension.

For any shrinker, translations and scaling give directions where the Gaussian area
decreases [72], so there are no stable shrinkers in the usual sense. Translation of a submanifold
in the direction E 2 RN is infinitesimally given by the normal part E? of E. Similarly,
rescaling is given by the normal vector field x?

2
. This corresponds to E? (with E 2 RN )

and H D
x?

2
being eigenvectors of L with eigenvalues �

1
2
and �1, respectively. Perturbing

by either translation or scaling has the effect of moving the same singularity to a different
point in space or time. However, the singularity is not avoided; it just occurs at another time
or place for the flow. For this reason, we say [72] that a shrinker is F -stable if

d 2

ds2 sD0
F.†s;V / � 0 for all V orthogonal to H and to all E?: (8.10)

Here orthogonal means with respect to the Gaussian inner product on the space of normal
vector fields. It is easy to see that spheres and planes are F -stable in any codimension. In
[72] the F -stable hypersurfaces were classified.

Theorem 8.11. The only F -stable hypersurfaces are the planes and the round sphere.

At first it may seem surprising that round cylinders are not F -stable. Indeed, for
nonompact shrinkers, it turns out that the right notion of stability is that of entropy stability,
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however, for compact singularities those two notions of stability are the same [72]. A shrinker
is entropy-stable if it is a local minimum for the entropy �. Entropy-unstable shrinkers are
singularities that can be perturbed away, whereas entropy-stable ones cannot; see [72].

Even for hypersurfaces, examples show that singularities of the mean curvature flow
are too numerous to classify. The hope is that the generic ones that cannot be perturbed away
are much simpler. Indeed, in all dimensions, generic singularities (that is, entropy-stable
shrinkers) of hypersurfaces moving by mean curvature flow have been classified in [72].

Theorem 8.12. In all dimensions, generic singularities (that is, entropy-stable shrinkers) of
hypersurfaces are round generalized cylinders Skp

2k
� Rn�k .

The generic singularities in R3 are the sphere S2
2, cylinder S1p

2
� R, and plane R2.

In contrast to the Bernstein theorems for minimal hypersurfaces, this classification of generic
singularities holds in every dimension.

The paper [55] showed that for hypersurfaces round spheres are the shrinkers with
the smallest entropy. The authors of [55] conjectured further that round spheres had the least
entropy for any closed hypersurface; this was proven by Bernstein–Wang [20] up to dimen-
sion 7 and extended by Zhu [190] to higher dimensions; cf. also [21,24,127,185]. For surfaces
embedded shrinkers with genus zero has been classified by Brendle, [28].

8.3. Higher codimension
For the mean curvature flow in higher codimension, we search again for the stable

singularities. Recall that stable singularities are those that are entropy stable, which is equiv-
alent to being F -stable for closed shrinkers. In higher codimension, [87] gave the following
bound for the entropy:

Theorem 8.13. If †2 � RN is an F -stable shrinker diffeomorphic to a two-sphere, then

�.†/ < 4 D e�
�
S2

2

�
: (8.14)

The sharp constant is unknown, but (8.14) is at most off by a factor of e. By [87],
similar bounds also hold for other closed shrinking surfaces of any finite index where the
entropy bound depends on the genus and index. This implies that any such F -stable shrinker,
that, a priori, lies in a high-dimensional Euclidean space, in fact, lies in a linear subspace
of some fixed small dimension. The sharp bound for the dimension of the linear space is
unknown, though [87] provides sharp dimension bounds in various other important situations.

There is no analog of (8.14) for minimal surfaces in R4. Namely, viewing R4 as
C2, one sees that the parametrized complex submanifold z ! .z; zm/ is a stable mini-
mal variety that is topologically a plane for each integer m. It has Area.Br \ †/ � C mr2

for r � 1. In contrast, [87] implies that Area.Br \ †/ � C.1 C /r2 for a closed stable
2-dimensional shrinker† of genus  . Similarly, there is no analog of the codimension bound
for minimal surfaces. Indeed, for eachm, the parametrized surface z ! .z; z2; z3; : : : ; zmC1/

is a stable minimal variety that is topologically a plane. Its real codimension is 2m and it is
not contained in a proper subspace.
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Once one has the entropy bound in (8.14), to conclude that stable singularities have
low codimension, one needs a result about the number of linearly independent coordinate
functions. The coordinate functions on a mean curvature flow produce a linear space of
caloric functions, i.e., solutions of the heat equation, that grow at most linearly. The bound
on the codimension is a consequence of a muchmore general result about polynomial growth
caloric functions on an ancient mean curvature flow that has a variety of other useful appli-
cations.

Let M n
t � RN be an ancient mean curvature flow of n-dimensional submanifolds

with entropies �.Mt / � �0 < 1. Recall that ancient flows are solutions that exist for all
negative times. The space Pd of polynomial growth caloric functions consists of u.x; t/ onS

t Mt � ¹tº so that .@t � �Mt /u D 0 and there exists C depending on u withˇ̌
u.x; t/

ˇ̌
� C

�
1 C jxj

d
C jt j

d
2
�

for all .x; t/ with x 2 Mt ; t < 0: (8.15)

The simplest example is when the flow consists of a static (constant in time) hyperplane Rn.
In this case, Pd .Rn/ consists of polynomials in .t; x1; : : : ; xn/ known as the caloric polyno-
mials and, using the special structure in this case, it is easy to see that dimPd .Rn/ � cnd n.
The paper [87] showed sharp bounds for dim Pd for all d � 1 for an ancient flow with
�.Mt / � �0,

dimPd � Cn�0d n: (8.16)

One remarkable consequence when d D 1 is a bound for the codimension. Namely, the
flow sits inside a linear subspace of dimension at most dimP1, since a linear relation for
coordinate functions specifies a hyperplane containing the flow.

The next result we will describe gives sharp bounds for codimension in arguably
some of the most important situations for ancient flows. The bounds mentioned above were
sharp in the exponent of d and, thus, asymptotically sharp as d ! 1. The next result is
more delicate and obtains sharp constants for d fixed.

Suppose that M n
t � RN is an ancient MCF with supt �.Mt / < 1. For each con-

stant c > 0 define the flow Mc;t by Mc;t D
1
c
Mc2t . It follows that Mc;t is an ancient MCF

as well. Since supt �.Mt / < 1, it follows from Huisken’s monotonicity [115], as well as
work of Ilmanen [121] and White [180], that every sequence ci ! 1 has a subsequence (also
denoted by ci ) such that Mci ;t converges to a shrinker M1;t (so M1;t D

p
�tM1;�1) with

supt �.M1;t / � supt �.Mt /. We will say that such an M1;t is a tangent flow at �1 of the
original flow. In [87] the following sharp bound for the codimension was shown:

Theorem 8.17. If M n
t � RN is an ancient MCF and one tangent flow at �1 is a cylinder

Skp
2k

� Rn�k , then Mt is a flow of hypersurfaces in a Euclidean subspace.

Combining this result with results of Angenent–Daskalopoulos–Sesum [12, 13],
Brendle–Choi [29], and Choi–Haslhofer–Hershkovits [48] gives uniqueness for ancient flows
of surfaces in higher codimension.

850 T.H. Colding



Part 4. The gauge group. Comparing and recognizing metrics can be extraordinarily dif-
ficult because of the group of diffeomorphisms. Two metrics, which could even be the
same, could look completely different in different coordinates. Many key problems are
defined intrinsically without a canonical coordinate system. In those problems, the infinite-
dimensional diffeomorphism group (gauge group) becomes a major issue and dealing with
it a major obstacle. Ricci flow is such an example.

“Gauge theory is a term which has connotations of being a fearsomely compli-
cated part of mathematics—for instance, playing an important role in quantum
field theory, general relativity, geometric PDEs, and so forth. But the underlying
concept is really quite simple: a gauge is nothing more than a coordinate system
that varies depending on location …By fixing a gauge (thus breaking or spending
the gauge symmetry), the model becomes something easier to analyse mathemat-
ically …Deciding exactly how to fix a gauge (or whether one should spend the
gauge symmetry at all) is a key question in the analysis of gauge theories, and one
that often requires the input of geometric ideas and intuition into that analysis.”
[177]

One of the most interesting results of transformation groups is the existence of
slices. A slice for the action of a group on a manifold is a submanifold which is trans-
verse to the orbits near a given point.7 Ebin and Palais proved the existence of a slice for
the infinite-dimensional diffeomorphism group of a compact manifold acting on the space
of all Riemannian metrics. However, here we will be interested in when the manifolds are
not compact.

8.4. A new approach to dealing with the gauge group
We describe a new way of dealing with the diffeomorphism group from [91] that

should be useful in a broad range of applications, and explain how it can be used to solve a
well-known problem in Ricci flow. A key new tool is a detailed analysis of a natural second-
order system operator P . The operator will be used to “fix the gauge.” The analysis applies
to all noncompact singularities. This makes it particularly useful, but also delicate. At each
scale, a diffeomorphism is applied to fix the gauge, requiring precise and delicate estimates
for the growth of the diffeomorphism. The gauge-fixing diffeomorphism satisfies a nonlinear
system of PDEs, where P is the linearization. We will need, and show, strong bounds for
the displacement function of the gauge-fixing diffeomorphism.

Suppose we have two weighted manifolds. Assume that on a large, but compact set,
the manifolds, metrics, and weights almost agree after identification by a diffeomorphism.

7 If the group is compact and Lie and the space is completely regular, Mostow proved, as a
generalization of works of Gleason, Koszul, Montgomery, Yang, and others, that there is a
slice through every point. If the group is not compact but Lie and if the space is a Cartan
space, then Palais proves the same result.
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On this set, in these coordinates, we write the metric on one as g and on the other as g C h,
where h is small, and the weights as e�f and e�f �k , where k is small. We would like to
mod out by the diffeomorphism group, by adjusting by a diffeomorphism to put the equation
in an appropriate gauge so that the difference h in the metrics is orthogonal to the action
of the group. Orthogonality corresponds to making divf h D 0,8 which means finding a
diffeomorphism ˆ so that

divf

�
ˆ�.g C h/ � g

�
D 0: (8.18)

The pullback metric is quadratic in the differential of ˆ, so this is a second-order nonlinear
system of PDEs for ˆ. This is the PDE that is in the spirit of the slice theorem for group
actions and a solution ˆ gives the desired “gauge-fixing.” Terms involving divf h come up
again and again, so many quantities simplify in this gauge and things become easier.

In [91]we construct the diffeomorphism solving (8.18) using an iteration scheme for
the linearized operator P on vector fields Y . We show first sharp polynomial bounds on P

and then use them to show sharp polynomial bounds for the displacement function of ˆ

x ! distg
�
x; ˆ.x/

�
: (8.19)

The bounds are relative, meaning that better initial bounds give better bounds further out.
These optimal bounds hold on all singularities and give a key new tool for dealing with the
gauge group of all noncompact singularities.

The linearization of (8.18) is to find a vector field whose Lie derivative of the
metric has divf equal to � divf h. The Lie derivative in a direction Y can also be writ-
ten as �2 div�

f Y , where div�
f is the operator adjoint of divf with respect to the weighted

measure. Therefore, the linearization of (8.18) is P Y D
1
2
divf h, where

P Y D divf ı div�
f Y: (8.20)

Solutions of P Y D
1
2
divf h are unique once we require that Y is orthogonal to the kernel of

P . The kernel is the Killing fields. We will solve P Y D
1
2
divf h on any shrinker and show

via L2-methods that kY kW 1;2 � k divf hkL2 . Given the noncompactness, the L2-estimates
are not sufficient to implement the iteration scheme, and we need stronger polynomial esti-
mates. The problems are magnified by that initial closeness is only on a given compact set.
As one builds out to get closeness on larger sets, one needs at each step to adjust the entire
diffeomorphism so that the normalization is zero on larger and larger sets. Understanding P

and proving growth estimates is a major point.
The L2-theory for P shares formal similarities with Hörmander’s influential L2

N@-method in several complex variables. In the L2 N@-method, one solves the Poisson equa-
tion N@u D F , with estimates, where N@F D 0. To do so, one introduces the adjoint of N@ with
respect to a weight. Hörmander’s idea for the weight came from Carleman’s method for
proving unique continuation of a PDE. Here we solve P Y D F , where F D

1
2
divf h is

8 For a symmetric two-tensor h, the f -divergence is divf .h/ D ef div.e�f h/ D

div.h/ � h.rf; �/.
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orthogonal to the kernel of div�
f . Hörmander’s method gives weighted L2-bounds for N@ sim-

ilar to our weighted bounds for P . To introduce a second weight to capture the growth à
la Carleman and Hörmander is less natural here. Instead, we go a different route to prove
stronger bounds.

8.5. Bounding the growth of gauge transformations
We need to control the growth of Y to control the metric in the new coordinates,

but Y will be constructed using weighted L2-methods and, thus, a priori could grow rapidly.
The next theorem from [91] shows that an L2 eigenvector field with eigenvalue � for P

grows polynomially of degree at most 4� C 1. A Poisson version is used to control Y with
P Y D

1
2
divf h. We set b D 2

p
f and measure the growth of Y by the weighted average

IY .r/ D r1�n

Z
bDr

jY j
2
jrbj: (8.21)

A one-parameter family of smooth manifolds, [15–17, 25, 106, 129, 130], is said to flow by the
Ricci flow if

gt D �2 Ric :

The triple .M; g; f / is a gradient shrinking soliton, or shrinker for short, if

RicCHessf D
1

2
gI

shrinkers are the singularities in Ricci flow, [33,36,107,122,158,162].

Theorem 8.22. For any shrinker .M; g; f /, if Y 2 L2, P Y D �Y and

Z D Y C
2

2� C 1
r divf .Y /;

then divf .Z/ D 0 and for any ı > 0 and r2 > r1 > R D R.�; n; ı/,

Ir divf .Y /.r2/ �

�
r2

r1

�4�Cı

Ir divf .Y /.r1/; (8.23)

IZ.r2/ �

�
r2

r1

�8�C2Cı

IZ.r1/: (8.24)

Each of these growth bounds is sharp and so is the requirement that Y 2 L2. Com-
bining them bounds Y . As a corollary, L2 Killing fields on a shrinker grow at most linearly.

Corollary 8.25. On any shrinker, for any L2 Killing field Y , r divf .Y / is parallel and if
Z D Y C 2r divf .Y /, then divf .Z/ D 0 and for any ı > 0 and r2 > r1 > R D R.n; ı/,

IZ.r2/ �

�
r2

r1

�2Cı

IZ.r1/: (8.26)

It is easy to see that this is sharp; on the two-dimensional Gaussian soliton,
Y D x2e1 � x1e2 is a Killing field with divf .Y / D 0 that grows linearly.

On a shrinker, the operator P relates to the manifold version of the much studied
Ornstein–Uhlenbeck operator L on vector fields Y by the formula

�2P Y D r divf Y C LY C
1

2
Y: (8.27)
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Whereas P is a true system operator, L is not, and for that reason, P is more complicated.
On the other hand, on solitons, P has many nice properties: it commutes with L and if Y is
an eigenvector field of P with eigenvalue ��, then r divf .Y / is an eigenvector field of L

with eigenvalue �. The unweighted version ofP was used implicitly by Bochner to show that
closed manifolds with negative Ricci curvature have no Killing fields. Building on this the
unweighted operator was later used by Bochner and Yano to show that the isometry group of
such manifolds is finite. The unweighted operator also arises in general relativity. The rela-
tionship between P and the unweighted version, used by Bochner, mirrors the relationship
between the Ornstein–Uhlenbeck operator and the Laplacian.

8.6. Applications
This new understanding of the “gauge group” can be used to settle a well-known

problem in Ricci flow. Namely, using it one can show, see [91], a strong rigidity for cylinders,
quotients of cylinders, and more general shrinking solitons; [23,34], cf. [140].

Theorem 8.28. Let † be the round cylinder S` � Rn�` (or quotient of such) as a shrinker
with potential f† D

jxj2

4
C

`
2
. There exists an R D R.n/ such that if .M n; g; f / is another

shrinker and ¹f† � Rº \ † is close to ¹f � Rº � M in the smooth topology and f† and
f are close on this set, then .M; g; f / is a round shrinking cylinder (or quotient of such).

Since blowups only converge on compact subsets, rather than globally, the most
useful characterizations involve only a compact subset as in Theorem 8.28. An important
difficulty is that there are nontrivial infinitesimal variations, i.e., variations in the kernel of the
linearized operator (not generated by diffeomorphisms). One consequence of Theorem 8.28
is that these infinitesimal variations are not integrable; cf. also [54].

The principle behind Theorem 8.28 is that closeness to a large enough piece of †

propagates outwards, becoming even closer on larger scales. We will explain some of the
ideas behind this shortly. A much weaker extension will follow from pseudolocality [160],
which says that flatness propagates forward in time; accordingly, flatness propagates out-
ward in space for shrinkers. This gives a priori curvature estimates on a slightly larger scale.
However, it gives little control over the metric itself because of the gauge invariance and,
second, there is a loss in the estimates that makes it impossible to iterate. There are three
major ingredients in the proof of Theorem 8.28; we loosely refer to these as propagation of
almost splitting, gauge fixing, and quadratic rigidity in the right gauge. These are of inde-
pendent interest and will described in order next.

“Propagation of almost splitting” shows that if a shrinker is close to a product
N � Rn�` on a large scale, then it remains close on a fixed larger scale. The closeness
on the first scale is used to get n � ` eigenvalues that are exponentially close to 1

2
, which

is a lower bound for any shrinker that is only achieved by linear functions on products. The
corresponding eigenfunctions will have exponentially small L2-bounds for their Hessians,
which forces the gradients to be virtually parallel on small sets but says little on large balls
because of the Gaussian weight. It is here that the growth bounds from [91] first play a crucial
role, showing that the Hessian bounds can only grow polynomially so the initial exponen-
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tial smallness gives control on larger scales. These almost parallel vector fields are then
used to construct a diffeomorphism to † on the larger scale, giving vastly more control than
what followed from pseudolocality. This is very much a Ricci flow fact that does not have
an MCF analogue where we do not have a corresponding description of the bottom of the
spectrum.

The almost splitting gives considerable control on the larger scale, but does not
fix the gauge—the difference in metrics is small, but is not orthogonal to the action of the
gauge group. Moreover, even when the two metrics are the same, the difference between the
potentials could be a linear function, corresponding to a translation along the axis.

There are many other important uniqueness results in Ricci flow, see, for instance,
[16,26,27,132,133].

Part 5.Minimal surfaces. Surfaces that locallyminimize area have been extensively used to
model physical phenomena, including soap films, black holes, compound polymers, protein
folding, etc. The mathematical field dates to the 1740s.

Minimal surfaces with uniform curvature or area bounds are well understood, yet
essentially nothingwas knownwithout such bounds.We discuss here the theory of embedded
(i.e., without self-intersections) minimal surfaces in Euclidean space R3 without a priori
bounds; see [64–70, 77, 161] for more. The study is divided into three cases, depending on
the topology of the surface. In case one the surface is a disk, in case two the surface is a
planar domain (genus zero), and the third case is that of finite (nonzero) genus. The complete
understanding of the disk case is applied in both cases two and three. In all three cases
the surface is allowed to have a boundary. This is an essential point and makes the results
particularly useful. For instance, given any minimal surface, independent of its topology, if
a component of the intersection of the surface with a Euclidean ball is a disk, then case one
applies and gives a good description of that component. Similarly, for cases two and three.
The surface itself may then be thought of as built out of these snapshots (or building blocks).
We will here mostly only discuss the case of disks.

The helicoid, which is a double spiral staircase, was discovered to be a minimal
surface by Meusnier in 1776. As we will see, the helicoid is the most important example of
an embedded minimal disk. In fact, we will see that every such disk is either a graph of a
function or part of a double spiral staircase. For planar domains the fundamental examples
are the catenoid, also discovered byMeusnier in 1776, and the Riemann examples discovered
by Riemann in the beginning of the 1860s.9 Finally, for general fixed genus, an important
example is the recent example by Hoffman–Weber–Wolf of a genus-one helicoid. The genus-
one helicoid is a complete minimal surface that on a large scale, away from the genus, looks
essentially like an ordinary helicoid. This illustrates that the helicoid is one of the basic
building blocks of general minimal surfaces. This is also true for the Riemann examples.
The Riemann examples are a two-parameter family of complete minimal surfaces. As the

9 Riemann worked on minimal surfaces in the period 1860–1861. He died in 1866. The Rie-
mann example was published post-mortem in 1867 in an article edited by Poggendorf.
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parameters degenerate, the Riemann examples looks like either a collection of catenoids
stacked on top of each other or two oppositely oriented helicoids (with parallel axes) glued
together.

In the last section we discuss why (complete) embedded minimal surfaces are auto-
matically proper (i.e., why divergent sequences of points on the surface diverge in Euclidean
space). This question is known as the Calabi–Yau conjectures for embedded surfaces. For
immersed (but not embedded) surfaces, there are counterexamples by Jorge-Xavier andNadi-
rashvili.

8.7. Minimal graphs and the helicoid
The derivation of the equation for a minimal graph goes back to Lagrange’s 1762

memoir. There are questions of existence of solutions, uniqueness of equilibria, and the
global structure of the space (or spaces) of examples. At the intersection of all of these ques-
tions is the question of what the (shape of the) natural building blocks are. In a broad sense,
graphs and helicoids are in a fundamental way the key building blocks of embedded minimal
surfaces.

There are two local models for embedded minimal disks. One model is the plane
(or, more generally, a minimal graph) and the other is a piece of a helicoid.

Minimal graphs over proper simply connected domains in R2 gives a large class
of embedded minimal disks, however, by a classical theorem of Bernstein from 1916 entire
(i.e., where � D R2) minimal graphs are planes.

The second model comes from the helicoid which was discovered by Meusnier in
1776.10 The helicoid is a “double spiral staircase” given by sweeping out a horizontal line
rotating at a constant rate as it moves up a vertical axis at a constant rate. Each half-line traces
out a spiral staircase and together the two half-lines trace out (up to scaling) the double spiral
staircase .s cos t; s sin t; t /, where s; t 2 R.

For the results about embedded minimal disks, it will be important to understand a
sequence of helicoids obtained from a single helicoid by rescaling as follows:

Consider the sequence †i D ai † of rescaled helicoids where ai ! 0. (That is,
rescaleR3 by ai , so points that used to be distance d apart will in the rescaledR3 be distance
ai d apart.) The curvatures of this sequence of rescaled helicoids are blowing up (i.e., the
curvatures go to infinity) along the vertical axis. The sequence converges (away from the
vertical axis) to a foliation by flat parallel planes; that is, it converges to the collection of
planes x3 D constant. The singular set (the axis) then consists of removable singularities.

10 Meusnier had been a student of Monge. He also discovered that the catenoid is minimal in
the sense of Lagrange, and he was the first to characterize a minimal surface as a surface
with vanishing mean curvature. Unlike the helicoid, the catenoid is not topologically a plane
but rather a cylinder.

856 T.H. Colding



8.8. Multivalued graphs, spiral staircases, double spiral staircases
To be able to give a precise meaning to the statement that the helicoid is a double

spiral staircase, we will need the notion of a multivalued graph, each staircase will be a
multivalued graph. Intuitively, a multivalued graph is a surface covering an annulus, such
that over a neighborhood of each point of the annulus, the surface consists of N graphs.
To make this notion precise, let Dr be the disk in the plane centered at the origin and of
radius r and let P be the universal cover of the punctured plane C n ¹0º with global polar
coordinates .�;�/ so � > 0 and � 2R. AnN -valued graph on the annulusDs n Dr is a single
valued graph of a function u over ¹.�; �/ j r < � � s; j� j � N�º. For working purposes, we
generally think of the intuitive picture of a multisheeted surface in R3, and we identify the
single-valued graph over the universal cover with its multivalued image in R3.

The multivalued graphs that we will consider will all be embedded, which corre-
sponds to a nonvanishing separation between the sheets (or the floors). If † is the helicoid,
then † n ¹x3 � axisº D †1 [ †2, where †1, †2 are 1-valued graphs on C n ¹0º; †1 is the
graph of the function u1.�; �/ D � and †2 is the graph of the function u2.�; �/ D � C � .
(Further, †1 is the subset where s > 0 in the parametrization of the helicoid and †2 the
subset where s < 0.) In either case the separation between the sheets is constant, equal to
2� . A multivalued minimal graph, see chapter 1 in [71], is a multivalued graph of a function
u satisfying the minimal surface equation.

8.9. Structure of embedded minimal disks
All of our results for disks, as well as for other topological types, require only a piece

of a minimal surface. In particular, the surfaces may well have boundaries and when we, for
instance, say in the next theorem “Any embedded minimal disk in R3 is either a graph of a
function or part of a double spiral staircase”, then we mean that if the surface is contained in
a Euclidean ball of radius r0 and the boundary is contained in the boundary of that ball, then
in a concentric Euclidean ball with radius a fixed (small) fraction of r0, any component of the
surface is either a graph of a function or part of a double spiral staircase. That the surfaces
are allowed to have boundaries is a major point and makes the results particularly useful.
Note also that as the conclusion is for a “fixed fraction of the surface” this is an interior
estimate.

The following is the main structure theorem for embedded minimal disks:

Theorem 8.29. Any embedded minimal disk inR3 is either a graph of a function or part of a
double spiral staircase. In particular, if for some point the curvature is sufficiently large, then
the surface is part of a double spiral staircase (it can be approximated by a piece of a rescaled
helicoid). On the other hand, if the curvature is below a certain threshold everywhere, then
the surface is a graph of a function.

As a consequence of this structure theoremwe get the following compactness result:
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Corollary 8.30. A sequence of embedded minimal disks with curvatures blowing up (i.e.,
going to infinity11) at a point mimics the behavior of a sequence of rescaled helicoids with
curvature going to infinity.

8.10. Two key ideas behind the proof of the structure theorem for disks
The first of these key ideas says that if the curvature of such a disk† is large at some

point x 2 †, then near x a multivalued graph forms (in †), and this extends (in †) almost
all the way to the boundary12 of †. Moreover, the inner radius, rx , of the annulus where the
multivalued graph is defined is inversely proportional to jAj.x/, and the initial separation
between the sheets is bounded by a constant times the inner radius.

An important ingredient in the proof of Theorem 8.29 is that general embedded
minimal disks with large curvature at some interior point can be built out ofN -valued graphs.
In other words, any embedded minimal disk can be divided into pieces each of which is an
N -valued graph. Thus the disk itself should be thought of as being obtained by stacking
these pieces (graphs) on top of each other.

The second key result (Theorem 8.31) is a curvature estimate for embeddedminimal
disks in a half-space (in this theorem r0 is a scaling factor, which after rescaling can be taken
to be one):

Theorem 8.31. There exists " > 0 such that for all r0 > 0, if † � B2r0 \ ¹x3 > 0º � R3 is
an embedded minimal disk with @† � @B2r0 , then for all components †0 of Br0 \ † which
intersect B"r0 ,

sup
x2†0

ˇ̌
A†.x/

ˇ̌2
� r�2

0 : (8.32)

This theorem has an equivalent formulation thatmay be easier to appreciate. Namely,
for " > 0 sufficiently small, (8.32) is equivalent to the statement that †0 is a graph over
(a domain in) the plane ¹x3 D 0º.

Theorem 8.31 is an interior estimate where the curvature bound, (8.32), is on the
ball Br0 of one-half of the radius of the ball B2r0 containing †. This is just like a gradient
estimate for a harmonic function where the gradient bound is on one-half of the ball where
the function is defined. Theorem 8.31 is often referred to as the one-sided curvature estimate
(since † is assumed to lie on one side of a plane). The assumption in Theorem 8.31 that †

is simply connected (i.e., that † is a disk) is crucial, as can be seen from the example of
a rescaled catenoid. Rescaled catenoids converge (with multiplicity two) to the flat plane.
Likewise, by considering the universal cover of the catenoid, one sees that Theorem 8.31
requires the disk to be embedded, and not just immersed.

The one-sided curvature estimate has strong implications for embedded minimal
surfaces. We will return to some of these applications later, but note here that it can be

11 A minimal surface in R3 the curvature K D �
1
2 jAj2 is nonpositive; so that by the curva-

tures of a sequence is going to infinity we mean that K ! �1 or, equivalently, jAj2 ! 1.
12 Our results require only that we have a piece of a minimal surface and thus it may have

boundary.
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applied even to ends of embedded minimal surfaces with finite topology to give a different
of a conjecture of Nitsche, see [56,93].

8.11. Uniqueness theorems
There is a long history of uniqueness theorems for properly embedded minimal sur-

faces, but all of those made very strong assumptions. A typical example is Catalan’s theorem.
Catalan proved in 1842 that any complete ruled minimal surface is either a plane or a heli-
coid. A surface is said to be ruled if it has the parametrization X.s; t/ D ˇ.t/ C sı.t/, where
s; t 2 R, and ˇ and ı are curves in R3. The curve ˇ.t/ is called the directrix of the surface,
and a line having ı.t/ as direction vector is called a ruling. For the helicoid, the x3-axis
is a directrix, and for each fixed t the line s ! .s cos t; s sin t; t / is a ruling. More recent
uniqueness results (for instance, by Lopez, Meeks, Nirenberg, Nitsche, Osserman, Perez,
Ros, Schoen, Shiffman, and Simon) assumed either finite total curvature or periodicity. The
structure theorems in [65–68] opened up the possibility of showing uniqueness theorems in
complete generality.

To give a flavor of some of the results that led to spetacular development in the theory
of minimal surfaces, wewill mention just a few highlights. Using the above structure theorem
for disks, Meeks–Rosenberg [150] proved, cf. [19], that the plane and the helicoid are the
only complete properly embedded simply-connected minimal surfaces in R3. The Riemann
examples were shown to be unique by Meeks–Perez–Ros [148]. In addition to the structure
theory for disks, they also used the structure theory of all finite-genus embedded minimal
surfaces from [70]. The paper [148] also introduced two very interesting new techniques into
the subject: the KdV equation and a careful analysis of the Shiffman function.

9. Embedded minimal surfaces are automatically proper

Implicit in all of the results mentioned above was an assumption that the minimal
surfaces were proper. However, as we will see next, it turns out that embedded minimal
surfaces are, in fact, automatically proper. This was the content of the Calabi–Yau conjectures
which were proven to be true for embedded surfaces in [66].

9.1. Proper embeddings
An immersed surface in R3 is proper if the preimage of any compact subset of R3

is compact in the surface. For instance, a line is proper whereas a curve that spiral infinitely
into a circle is not.

9.2. The Calabi–Yau conjectures; the statements and examples
The Calabi–Yau conjectures about surfaces date back to the 1960s. Their original

form was given in 1965 where Calabi [31]made the following two conjectures about minimal
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surfaces13:

Conjecture 9.1. Prove that a complete minimal surface in R3 must be unbounded.

Calabi continued: “It is known that there are no compact minimal surfaces in R3

(or of any simply connected complete Riemannian 3-dimensional manifold with sectional
curvature � 0). A more ambitious conjecture is”:

Conjecture 9.2. A complete [non-flat] minimal surface in R3 has an unbounded projection
in every line.

The immersed versions of these conjectures turned out to be false. Namely, Jorge and
Xavier [123] constructed non-flat minimal immersions contained between two parallel planes
in 1980, giving a counterexample to the immersed version of the more ambitious Conjec-
ture 9.2. Another significant development came in 1996, when Nadirashvili [156] constructed
a complete immersion of a minimal disk into the unit ball inR3, showing that Conjecture 9.1
also failed for immersed surfaces; cf. [2].

The main result in [70] is an effective version of properness for disks, giving a
chord–arc bound.14 Obviously, intrinsic distances are larger than extrinsic distances, so the
significance of a chord–arc bound is the reverse inequality, i.e., a bound on intrinsic distances
from above by extrinsic distances. Given such a chord–arc bound, one has that as intrinsic
distances go to infinity, so do extrinsic distances. Thus as an immediate consequence:

Theorem 9.3. A complete embedded minimal disk in R3 must be proper.

Theorem 9.3 gives immediately that the first of Calabi’s conjectures is true for
embedded minimal disks. Another immediate consequence of the chord–arc bound together
with the one-sided curvature estimate (i.e., Theorem 8.31) is a version of that estimate for
intrinsic balls. As a corollary of this intrinsic one-sided curvature estimate, we get that the
second, andmore ambitious, of Calabi’s conjectures is also true for embeddedminimal disks.
The second Calabi conjecture (for embedded disks) is an immediate consequence of the fol-
lowing half-space theorem:

Theorem 9.4. The plane is the only complete embedded minimal disk in R3 in a half-space.

Theorem 9.4 is a byproduct of the proof of Theorem 9.3. However, given Theo-
rem 9.3, Theorem 9.4 follows from the half-space theorem of [113].

The results for disks imply both of Calabi’s conjectures and properness also for
embedded surfaces with finite topology. A surface † is said to have finite topology if it is
homeomorphic to a closed Riemann surface with a finite set of points removed or “punc-
tures.” Each puncture corresponds to an end of †.

13 S. S. Chern [44] also promoted these conjectures at roughly the same time and they were
revisited several times by S. T. Yau.

14 A chord–arc bound is a bound above and below for the ratio of intrinsic to extrinsic dis-
tances.
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See [94,149,151] for related results and further references.
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1. Introduction

Let U be a bounded open subset of the Euclidean space RmCn and let † � U be
an m-dimensional surface (e.g., a C 1 m-dimensional submanifold, but we will allow more
general concept of surfaces for most of this note). Then † is said to be a “critical point of
the area functional,” or more commonly a “minimal surface,” if

d

dt

ˇ̌̌̌
tD0

Volm
�
ˆt .†/

�
D 0 (1.1)

for every smooth one-parameter family of diffeomorphisms Œ�ı; ı� 3 t 7!ˆt ofU such that:

(a) ˆt .x/ D x for every x 2 @U and every t ;

(b) ˆ0.x/ D x for every x 2 U .

Here Volm denotes a suitable concept of m-dimensional volume: in the case of classical
submanifolds, we can take the usual one from differential geometry.

Notable examples of minimal surfaces are those that minimize the volume in some
suitable class C . It suffices to assume that C is closed under deformations satisfying (a)
and (b) above to conclude that any minimizer in C is necessarily a critical point of the area
functional.

We call the attention of the reader to condition (a): the deformations fix the boundary
of the open set U . Thus an example of a class C is that formed by those surfaces†’s whose
boundary (in a suitable sense, for instance, we can take the usual one of differential topology,
if we are dealing with smooth surfaces) is a fixed � contained in @U . Such minimizer is then
a surface of “least area spanning the contour � .” However, we ultimately have to agree on
the very definition of an “admissible surface” (Must it be embedded or do we allow self-
intersections? Do we allow any topological type? In fact, must it be smooth or do we allow
singularities? If we allow singularities, which type should we allow?), on what it means to
span � , and how we define its volume.

Having assumed that we have answered all the above questions, i.e., that we have
selected a suitable class C and a related concept of m-dimensional volume, a minimizer in
C can be regarded as one possible solution to a celebrated problem in the calculus of varia-
tions, which goes under the name of Plateau problem. Indeed, the Belgian physicist Joseph
Plateau investigated it in the early 19th century with the intention of finding a good descrip-
tion of soap films. However, the problem had already appeared in the mathematical literature
decades before the investigations of Plateau, and can be found in the works of Lagrange,
Meusnier, Monge, and Légendre. In particular, Lagrange considered minimizers of the area
as early as the 1760s and he used his newly established method (which leads to what nowa-
days are called “Euler–Lagrange” conditions for minima of integral energies (cf. [79])) to
describe 2-dimensional minimal graphs inR3 through a suitable partial differential equation.

As it is well known, if † is of class C 2, minimality in the sense of (1.1) is equiv-
alent to the vanishing of the mean curvature vector. The latter is a condition which can be
explained without any knowledge of differential geometry and it is, in fact, fairly easy to
describe to anybody with a basic knowledge of multivariate calculus. Having fixed a point
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p0 2 †, choose first an orthonormal system of coordinates so that † is the graph of a map
 W Rm � � ! Rn with the properties that

• p0 D .0;  .0// (i.e., p0 is the origin of the coordinate system);

• and r .0/ D 0 (i.e., the tangent to † at the origin is horizontal).

Then the mean curvature vector of † vanishes at p0 if and only if � .0/ D 0. One way
to think about minimal surfaces is thus to understand them as solutions to a (somewhat
complicated) nonlinear elliptic system of partial differential equations which linearize to the
Laplace equation, namely� D 0, when we rotate the coordinates so that the tangent to the
graph is horizontal.

The Laplace equation is universally considered as the prototypical elliptic partial
differential equation of second order, and its solutions, i.e., the harmonic functions, are the
prototype to understand the behavior of solutions to more general second order elliptic PDEs.
The Laplace equation as well has a variational flavor, since it characterizes critical points of
the Dirichlet energy

R
jr j2. But one could argue that minimal surfaces are even more

natural objects than harmonic functions: indeed, a surface is minimal independently of the
system of coordinates used to describe the ambient Euclidean space, while rigid motions of
graphs which “mix domain and target” do not preserve the harmonicity: the latter is a concept
which depends strongly on the selection of the dependent and independent variables used to
describe the surface as a graph.

Critical points of the area functional have fascinated (and have been the object
of study of) generations of mathematicians throughout at least two centuries and a half.
One very interesting aspect of minimal surface theory is that it is relatively easy to pro-
duce singular examples. A particularly simple instance is given by holomorphic subvarieties
in Cn: if we identify Cn with R2n and we understand holomorphic subvarieties of dimen-
sion k as 2k-dimensional surfaces (with singularities), then the latter are always minimal.
In fact, they are much more than just minimal: they minimize the area among a vast class of
possible deformations. So an object as seemingly innocent as the complex algebraic curve
† D ¹.z; w/ 2 C2 W z2 D w3º is a 2-dimensional minimal surface in R4 and, in fact, it is
minimal according to one of the most restrictive meanings that we can give. However, the
origin is a point where† is not a regular submanifold: in particular, there is no neighborhood
of 0 in which it can be described as the graph of a function (at least if we understand our
functions “classically” and do not allow them to take more than one value at each fixed point
of their domain).

Another simple example is given by the connected set E of least length which con-
tains three noncolinear points p1; p2; p3 2 R2. Such a set is the union of three distinct
segments �i ’s which:

• have pi as one endpoint,

• have all a common q as the other endpoint,

• meet at q forming angles of 120° degrees.
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Again q is a “singular point” in the sense of differential topology: E is not a submanifold of
R2 in any neighborhood of q.

If we accept that a good theory of minimal surfaces must include singular objects,
we then open a Pandora box, in particular the following seemingly innocent questions imme-
diately come to mind:

• How do we define the admissible surfaces, or otherwise put, which kind of sin-
gularities do we allow?

• Which kind of deformations do we take into account?

• What is the m-dimensional volume of a singular surface?

All these questions can be studied from different points of view and can be given very dif-
ferent answers depending on which goals one has in mind. For instance, answers which deal
efficiently with the problem of minimizing the m-dimensional volume of surfaces in some
fixed homology class of a given Riemannian manifold do not seem to give a satisfactory
description of the complexity of soap films in real life. On the other hand, even though real
life soap films display singularities, it can be proved that any 2-dimensional integral homol-
ogy class in a closed smooth Riemannian 3-manifold has a smooth representative which
minimizes the area. At any rate, whichever the goal, a rather large number of answers to
these questions can be given in a subject of modern mathematics called geometric measure
theory.

Geometric measure theory provides powerful tools to study various variational
questions linked to the theory of minimal surfaces and has produced, in more than half
a century, several notions of “singular minimal surfaces.” In what follows, I will address
several of them and, for lack of a better term, I will call all of them “generalized minimal
surfaces.” A subtopic of geometric measure theory, which is commonly called “regularity
theory,” studies natural questions like:

• Under which conditions singularities can be ruled out, i.e., the generalized mini-
mal surfaces of a particular class end up being classical minimal submanifolds?

• How large can the set of singularities be when its existence cannot be completely
ruled out?

• Which structural properties can the singularities have?

The ambition of this article is to give a rather extensive, and yet nontechnical, account of the
birth of this topic, of its various ramifications along the decades, of the most recent develop-
ments, and of some of the remaining challenges. Since the topic is vast and complicated, I
will probably not do a good service to much of the existing literature and I emphasize from
the start that I consider my views quite biased.
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2. Plateau’s problem, criticality, and stability

Before coming to a description of the “regularity theory,” I will first introduce, in
this section, some of themost common notions of “generalizedminimal surfaces” considered
in geometric measure theory.

2.1. Plateau’s problem: two general approaches
As already mentioned, the Plateau problem can be loosely described as “looking for

the surfaces † of least volume spanning a given contour � .” If the surfaces † in question
are C 1 submanifolds, it is commonly understood that them-dimensional volume is the usual
one from calculus books. If the given contour is as well a submanifold, a seemingly natural
possibility to give a rigorous definition of “† spans �” is to say that � is the boundary
of † in the usual sense of differential topology. From this point of view, it is also natural
to consider ambient spaces more general than the Euclidean one, and a common natural
choice is to have a general complete and smooth Riemannian ambient manifold. Practically
all the “positive results” which we will discuss in this note have a generalization to smooth
Riemannian ambient manifolds, but in order to be as nontechnical as possible, I will refrain
to state the general theorems and always assume that the ambient is Euclidean. There are,
however, some counterexamples which have been thus far found only in ambient Riemannian
manifolds, and given their relevance in some of the problems examined below, I felt that they
should be discussed.

If we want to enlarge the class of surfaces (and, in particular, allow minima with
singularities in our class C ), we then have to specify at the same time what we mean by
a surface, its volume, and the fact that it spans a given contour � . First of all, we will fix
the convention that the dimension of the surfaces in C is m, the dimension of � is m � 1,
and the ambient Euclidean space (or Riemannian manifold, when the general case will be
discussed) has dimensionmC n. Secondly, we will restrict our attention to regular contours
�: even though this can be relaxed considerably and one can fix certain type of nonsmooth
boundaries (depending on the framework), clearly, when dealing with “boundary regularity”
theorems, it is natural to assume that � itself has some regularity to start with. Once we have
defined our generalized class of surfaces, their generalized volume, and what it means for
them to span � , we will say that we have a “variational framework” for the Plateau problem.

It is possible to subdivide the various variational frameworks proposed in geomet-
ric measure theory in two large classes, which follow two rather different philosophical
approaches. I will loosely describe them as:

• Set-theoretic. We insist in this case that our generalized surfaces† are just merely
closed subsets of the ambient space which include � as a subset. The fact that
they “span” � will then be encoded in some topological condition which † must
satisfy, while them-dimensional volume is defined by a suitable “measure” which
satisfies the usual requirements of measure theory and coincides with the classical
m-dimensional volume when † is a subset of a C 1 surface (or a countable union
of subsets of C 1 surfaces).
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• Functional-analytic. In this case we focus first on some nice, sufficiently regular,
class of surfaces †, and we prescribe that their boundary is � in some suitable
convenient sense coming from algebraic topology: let us denote this privileged
class by R. On R the concept of volume will be also given in terms of classical
differential geometry and algebraic topology, and this will give us a functional A

(the area functional) on R. We then introduce some topology on R, for instance,
a distance, and the class C will be a suitable completion of this topological space,
while the functional A will be extended to C in some natural way (for instance,
we can take its lower semicontinuous envelope).

Observe that the “classical” parametric approach of Douglas and Rado does not fit in any of
these two broad descriptions. The fact that I am not including it in the scope of these notes
does not reflect any judgment on its mathematical interest: the “classical parametric theory”
is a beautiful piece of mathematics, but it has a rather different flavor compared to the results
and problems which will be discussed here.

In all the variational frameworks which we will examine, no matter whether they fall
in one class or the other, there is a common and recurrent use of two important objects from
geometric measure theory: the Hausdorff m-dimensional measure and rectifiable sets. The
Hausdorff m-dimensional measure, which we will denote by H m, is a very natural way of
extending the classical notion ofm-dimensional volume to any subset of the Euclidean space
(or, more generally, of a metric space). In fact, it is just one possibility, while a general theory
of such extensions can be given in terms of the so-called “Caratheodory construction” andwe
refer the reader to some of the several textbook in the literature which treats it (cf. [59,62,88]).
Rectifiablem-dimensional sets are a very natural class of sets which contain C 1 surfaces but
is closed under many more operations which are natural from the point of view of measure
theory: they consist of countable unions of closed subsets ofC 1 m-dimensional submanifold
plus a set of zeroH m measure (some people, for instance, Misha Gromov, consider the latter
a somewhat very unpleasant technical addition, and the author agrees that there might be an
efficient theory which works without the annoying technicality of adding null sets; however,
most people in analysis grew accustomed to it, as “completing” a � -algebra by adding sets
of measure zero is a fairly common operation).

It was a major discovery of Besicovitch in the first half of the 20th century that any
set of finite H 1 measure can be decomposed into the union of a “rectifiable portion” and
a “purely unrectifiable portion” (cf. [14–16]). The latter is somewhat “orthogonal” to any
C 1 submanifold, in the sense that it intersects any C 1 curve in a set of H 1 measure zero,
even though it might have positive H 1 measure. The more general theory ofm-dimensional
rectifiable sets was developed later Federer, cf. [61] (and see also [92]). While the rectifiable
part has much of the features of C 1 submanifolds, and can be considered as a weak version
of the latter, the purely unrectifiable part behaves in a rather counterintuitive way and in what
follows we will discount it: it is, however, one of the major early developments of geometric
measure theory that one can, without loss of generality, discard unrectifiable sets pretty much
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in all variational theories for the area functional and I am hiding quite deep and beautiful
theorems here.

2.2. Examples of set-theoretic approaches
The first to pioneer what I dubbed “set-theoretic approach” was Reifenberg in [96].

In his variational framework, the definition of “E spans �” is that � is trivial in the rela-
tive Cech homology of E (cf. [96] for the precise definition). More recently Harrison (cf.
[71, 72]) suggested another, very elegant, possible definition of “E spans �” which for sim-
plicity we describe in the easiest case of (m� 1)-dimensional �’s inRmC1: any closed curve
 � RmC1 n � which is not contractible in RmC1 n � must intersect E.

Another point of view is that taken by Almgren in his theory of .M; "; ı/-minimal
sets, cf. [9]: rather than giving a precise notion of “spanning,” we focus on which defor-
mations are allowed and assume that our class C is closed under the latter deformations.
In his work, Almgren gave a far-reaching existence and regularity theory, and the existence
part was recently revisited and extended in [60]. Concerning deformations, a very interesting
point raised only recently by David is that in practically all the works in the literature thus
far the authors used deformations which completely “fix” the boundary � , while it would
be much more natural to impose that they, in fact, map � onto itself in some controlled way
(for instance, they are isotopic to the identity within the class of diffeomorphisms of �): this
idea is at the base of his recent theory of “sliding minimizers”, cf. [25,27,28].

In all these variational frameworks, for any given sequenceEk of compact sets there
is a natural notion of convergence, that of Hausdorff, for which we can extract a converging
subsequence. However, the Hausdorff measure H m does not behave well in terms of the
latter convergence, in the sense that it is not lower semicontinuous. On the other hand, one
can suitably adjust minimizing sequences so to achieve the lower semicontinuity of H m:
it thus suffices to prove that the limit is in the considered class C to achieve a minimizer.
The author, in a joint work with F. Ghiraldin and F. Maggi in [37], pointed out that there
is, in fact, no need to adjust the minimizing sequence and that a suitable compactness and
lower-semicontinuity statement is valid for any minimizing sequence in a class C as soon
as it allows a rather limited number of basic competitors. In particular, this gives a unified
framework which treats all known examples of set-theoretic approaches put forward thus far,
cf. also [36,57,58].

From the point of view of differential and algebraic topology, all the set-theoretic
approaches have some very undesirable properties. Typical set-theoretic minimizers of the
Plateau problem will always have singularities: if the boundary � is complicated, it is ener-
getically convenient to form “triple junctions” along a singularity of codimension 1. On
the other hand, one of the biggest achievements of the functional-analytic approach is that
for every smooth closed embedded curve � in R3 there is always a smooth oriented 2-
dimensional submanifold with boundary � which minimizes the 2-dimensional area among
all smooth oriented 2-dimensional submanifolds with boundary � . Likewise, it is possible to
show that every 2-dimensional integral homology class in a closed Riemannian 3-manifold
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has a smooth representative which minimizes the area. The set-theoretic approaches are not
able to detect these two beautiful phenomena.

On the other hand, actual soap films do form triple junction singularities (and even
more complicated ones) in real life, and these phenomena do not seem to be efficiently cap-
tured by functional-analytic frameworks (even though such singularities do occur in some
specific situations, see below). Much of the research in the set-theoretic frameworks is thus
motivated by the original intention of Plateau of finding a good variational description of
soap films. In that respect the recent paper [85] by Maggi, Scardicchio, and Stuvard pointed
out that much of the investigations in the mathematical literature have thus far ignored some
very relevant physical attributes of real-life soap films. Combining some of the aspects of
the set-theoretic approaches with other modern techniques, like �-convergence, and with
more accurate considerations from mathematical physics, the papers [76–78] propose a new
variational theory which promises to provide a much more accurate description of real-life
soap films.

2.3. Functional-analytic frameworks
The pioneer of functional-analytic frameworks seems to be Renato Caccioppoli. In

his works [18,19], Caccioppoli proposed the following definition of “perimeter” of a general
(Lebesgue measurable) set of RmC1 (I will actually describe a slight variation of Cacciop-
poli’s approach, but the actual differences are just of technical nature and for the purposes
of this discussion I will ignore them). First of all, if the set has a C 1 boundary, its perime-
ter is defined to be the usual m-dimensional volume of the boundary. Next, given a general
Lebesgue measurable setE � RmC1, we consider all possible sequencesEk of sets with C 1

boundaries with the property that the Lebesgue measure of the symmetric differenceEk�E

goes to 0. We then consider
lim inf
k!1

H m.Ek/

and we further take the infimum of all such numbers among all approximating sequences
¹Ekº. The latter is defined to be the perimeter of E. If it is finite, E is commonly called a
set of finite perimeter or (especially if you are Italian!) Caccioppoli set.

Caccioppoli’s approach is very natural in the calculus of variations. We start from a
class of “good” objects, the open sets with smooth boundary, over which the energy we are
interested in, i.e., their perimeter, is classically defined. However, a sequence of smooth sets
with uniformly controlled perimeter might converge to nonsmooth sets (for instance, one can
easily form a corner, cusp, or other type of singularity) and we therefore would like to enlarge
this class. We then take a much larger class, that of all measurable sets, with a topology in
which the good objects are dense and we extend the energy to be the lower semicontinuous
envelope. Interestingly Caccioppoli’s approachwas initially dismissed by his contemporaries
(cf. the reviews by L. C. Young of the aforementioned papers) because he was not able to
relate his abstract definition to any concrete notion of perimeter in a measure-theoretic sense.
In the early 1950s, De Giorgi took up Caccioppoli’s approach and proved, in his celebrated
works on the isoperimetric property of the sphere (cf. [29–31]), that:
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• the class of sets with finite perimeter in the sense of Caccioppoli is compact, under
a uniform bound on their perimeter;

• the perimeter has a precise measure-theoretic interpretation, i.e., if the set �
has a finite perimeter, one can introduce a suitable notion of (oriented) measure-
theoretic boundary which turns out to be rectifiable and whose Hausdorffmeasure
is indeed the perimeter of �.

De Giorgi also reformulated the theory of sets of finite perimeters through a useful duality: if
correctly interpreted, the usual divergence theorem holds for them, and the boundary integral
in the formulation is, in fact, a classical integral, in the sense of measure theory, over the
measure-theoretic boundary. For open sets with smooth boundaries, the “measure-theoretic”
one coincides with the topological one. An interesting byproduct (not at all obvious from the
definition) is that the perimeter as defined by Caccioppoli is, in fact, the classical surface area
of the topological boundary when the latter is smooth.

Thus, the oriented “generalized” boundaries of Caccioppoli and De Giorgi act as
linear functionals on vector fields. In the celebrated theory developed later by Federer and
Fleming (cf. [64]), these are particular instances of “integral currents,” which act on general
forms (and hence can have arbitrary codimension). Like De Giorgi’s theory of Caccioppoli
sets, the theory of integral currents of Federer and Fleming can also be seen as a suitable
variational completion: after introducing an appropriate class of good objects (in this case
integral smooth chains, which are formal linear combinations, with integer coefficients, of
smooth oriented submanifolds with smooth boundaries), the more general objects, namely
the integral currents, can be characterized as the limits, in an appropriate weak topology, of
sequences of those good objects, under uniform bound on their volume and on the volume
of their boundaries. Like in the case of De Giorgi’s theory of Caccioppoli sets, integral cur-
rents can be represented, in a suitable measure-theoretic sense, as integration over “oriented”
rectifiable sets.

While the duality with differential forms limits the choice of coefficient groups in
the formal linear combinations to integer and real coefficients (or anyway to subgroups of the
reals), the “completion point of view” allows choosing other “coefficient groups” (endowed
with an appropriate norm, so that we can make sense of the notion of “mass”), cf. the foun-
dational paper of [66] for the case of finite groups. Notable choices are the so-called “flat
chains mod p” (which, with a slight abuse of terminology, we will call currents mod p). In
the latter case, p is a positive integer larger than 1 and the coefficient group is Zp D Z=.pZ/

(for an element Œq� 2 Zp , endowed with the usual normˇ̌
Œq�

ˇ̌
min

®
jq � kpj W k 2 Z

¯
:

In this note the coefficient group will always be either Z, or Zp . Note in particular that in
both cases the norm will always take integer values, a fact which will play a fundamental
role in our discussions.

In all these instances, we have a framework where we can apply the direct methods
of the calculus of variations. In particular,
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• the concept of a boundary comes naturally either from the duality with differential
forms, or from the closure procedure;

• the underlying space of generalized objects is closed;

• the generalized area functional (often called the mass) is lower semicontinuous
and its sublevel sets are compact (if we assume that the boundary of our general-
ized surfaces is a fixed given one).

In particular, the Plateau problem in the above frameworks has a very elegant existence
theory.

2.4. Varifolds and the calculus variations “in the large”
One notable drawback of the functional-analytic frameworks outlined above is that

the mass is not continuous for the natural convergence in the underlying spaces. Continuity
along a sequence might be lost because of two mechanisms:

• High frequency oscillations: for instance, the graphs of the functions 1
k
sin kx in

the two-dimensional plane have locally bounded length and they converge, in the
sense of integral currents, to the straight line. It is, however, easy to see that the
total length of any segment in the limiting line is strictly less than the limit of the
corresponding approximations.

• Cancelation: a line in R2 can be given two distinct orientations, thereby defining
two different integral currents. However, their sum is 0. If we approximate the
two different oriented lines with a sequence of two shifted oriented lines with dis-
joint supports, then we get a sequence of integral currents with masses uniformly
bounded from below which converges to the trivial current.

We are concerned mostly with the second, since the approximating sequence is a sequence
of minimal surfaces. Indeed, we can reasonably expect that a sequence of critical surfaces
will not exhibit the oscillatory behavior of the first example (this fact was, in fact, proved
by Allard as a byproduct his famous regularity theory, see below). On the other hand, the
criticality assumption does not rule out the second example, which is therefore “particularly
bad” because it shows that in the space of currents we cannot expect any reasonable type of
“Palais–Smale” property.

A way to remedy this loss of continuity is to introduce the notion of varifold, which
is just a positive measure on the Grassman space of m-dimensional unoriented m-planes in
the tangent bundle of the Euclidean space (or, more generally, of a Riemannian manifold).
For a smooth (not necessarily oriented) surface †, the corresponding varifold is given by

ıTx† ˝ d Vol† : (2.1)

General varifolds were introduced by L. C. Young (cf. [126]), while in the context of minimal
surfaces Almgren introduced them precisely in order to tackle general existence problems for
critical points of the area functional, cf. [7]. A particularly useful subclass of varifolds is that
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of integral varifolds, which satisfy a structure as in (2.1) where d Vol† is substituted by the
Hausdorff k-dimensional measure restricted on a general m-dimensional rectifiable set R
(with an integer-valued weight), and ıTx† is substituted by ıTxR, where TxR is a natural
measure-theoretic generalization, to rectifiable sets, of the tangent to a smooth surface.

In his notable monograph [95], based on some groundbreaking ideas of Almgren
[7], Pitts developed a quite powerful variational theory for finding generalized critical points
of the area functional. In codimension 1, i.e., in the case of hypersurfaces, the theory of
Almgren and Pitts has found striking geometric applications in the works of A. Neves and
F. Coda Marques, cf. [81, 86, 87]. These results have spurred a number of interesting works
in the area, and Pitts’ existence theory has been revisited in several different ways, see, for
instance, [21,22,56,75,127].

Varifolds can be naturally deformed using one-parameter family of diffeomor-
phisms, and this allows introducing a rather natural notion of the kth variation of the varifold
along smooth vector fields. Of particular relevance are then

• stationary varifolds, i.e., varifolds for which the first variation vanishes along any
vector field,

• and stable varifolds, i.e., stationary varifolds for which the second variation is
nonnegative along any vector field.

Since all the objects encountered above in the existence theories for the Plateau problem nat-
urally induce corresponding varifolds, all the minimizers in the various senses given above
are, in fact, stable varifolds.

3. Monotonicity formula and tangent cones

One simple and very powerful tool in the regularity theory for minimal submani-
folds is the monotonicity formula. In order to gain an intuition about it, consider a smooth
m-dimensional surface † � RmCn which minimizes the volume in some suitable class of
comparison surfaces and fix an “interior” point p 2 †. Consider then a ball Br .p/ which
does not intersect @†. We wish to compare the volume of † \ Br .p/ to the volume of the
cone†c with vertex p and base†\ @Br .p/. By Sard’s lemma, we can assume that† inter-
sects @Br .p/ transversally. Note that our comparison surface is somewhat singular because
of the vertex singularity of the cone and the discontinuity in the tangents that might be intro-
duced by cutting†\ Br .p/ out and replacing it with � . On the other hand, it is also simple
to see that †c [ .† n Br .p// can be obtained as limit of deformations of † by smooth iso-
topies of the ambient space: in particular, it is a good comparison surface in pretty much all
the variational frameworks considered so far.

The minimizing property of † implies then that

Volm
�
† \ Br .p/

�
� Volm.†c/ D

r

m
Volm�1

�
† \ @Br .p/

�
;
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which in turn (considering that Volm�1.† \ @Br .p// �
d
dr

Volm.† \ Br .p//) gives

d

dr

Volm.† \ Br .p//

rm
� 0: (3.1)

The latter is the classical monotonicity formula for minimal submanifolds. It is very robust,
in the sense that

(a) It can be derived for critical points by using stationarity with respect to some
specific radial deformations. In particular, it holds for stationary varifolds
(see [4]).

(b) Allowing for suitablemultiplicating factors like eC r , the formula holds formuch
more general objects, in particular for stationary varifolds in smooth Rieman-
nian manifolds (cf. again [4]).

(c) A suitable version of the formula can be derived at boundary points too, under
the assumption that the boundary @† is smooth enough (cf. [5]). An intuition
for this can be gained through the following observation: if the boundary
@† were an affine subspace passing through p, then the competitor surface
†c [ .† n Br .p// would have the same boundary, namely @†.

(d) Perhaps most importantly, a more refined version of the arguments leading
to (3.1) shows that the equality case in holds if and only if†c coincides with � ,
i.e., if † itself is a cone with vertex p.

For further reference, we will call density of † at p (denoted by ‚.†; p/ the limit of the
“mass ratio”

lim
r#0

Volm.† \ Br .p//

!mrm
;

where !m is the volume of them-dimensional disk. Obviously, the density is not particularly
interesting for smooth†’s as it will be 1 at every interior point and 1

2
at every boundary point

(or k at every interior point and k
2
at every boundary point, if we entertain the possibility

of allowing for multiplicities in the normed groups Z and Zp , or if we consider integral
varifolds). However, due to (a), the density exists for any “generalized minimal surface”
encountered in the previous section and this is a very nontrivial information, given that the
latter might be singular. Another interesting byproduct of the monotonicity formula is that
the density is nowhere smaller than 1 at interior points, which in turn implies that some
suitable definition of “support” of the generalized minimal surface is a closed rectifiable set
of locally finite Hausdorff measure.

3.1. Tangent cones
Fact (d) above is maybe the most relevant, as it is the starting point for a fruitful

fundamental concept in minimal surface theory. Let us fix a point p in (the support of) our
generalizedminimal surface† (and, in light of (c) above, wemight even fix it at the boundary
as long as the latter is sufficiently smooth). For every radius r , consider then the translated
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and rescaled surface
†p;r WD

† � p

r
D ¹y W p C ry 2 †º:

The volume of the surface in BR.0/ is then uniformly bounded for every fixed R, indepen-
dently of the parameter r . Again, while this is not particularly exciting for a smooth †, it is
a highly nontrivial fact for the generalized minimal surfaces, which are potentially singular
at p. Given the uniform bound and the compactness properties available for all the gener-
alized minimal surfaces introduced thus far, up to subsequences we can assume that †p;r

converges to a generalized minimal surface in the same class, which for convenience we will
denote by †c .

Assuming convergence of the volume (which is, in fact, correct for objects like vari-
folds because of their definition, while it is a property shared byminimizers out of variational
arguments, in any of the classes described thus far) the mass ratio R�m Volm.†c \ BR/ is
constant inR, and hence by point (d) it is a cone. In the literature,†c is called a tangent cone
to† at p. Note that we are speaking about a tangent cone: the uniqueness of this object, i.e.,
its independence of the subsequence rk # 0, is a widely open problem, even though several
fundamental result have been proved in the past (see Section 15 below).

At a regular pointp, i.e., a point in a neighborhood of which the generalizedminimal
surface † is smooth, the tangent cone †c is, of course, unique and it is given by the tangent
space to † at p (counted with the appropriate multiplicity, depending upon the chosen vari-
ational framework), or half of the tangent space if p is a boundary point. A later section will
examine under which assumption the latter conclusion is correct.

At any rate, even in the possible presence of singularities, we have gained a great
deal of new information about †c compared to †: †c is a “global minimal surface” (it has
no boundary if p is in the interior, or its boundary is affine if p 2 @†) and, moreover, it is
conical. In particular, its spherical cross-section carries all the information about †c , even
when †c is singular: at all effects, †c must be less complex than †, i.e., †c has “lost one
dimension.”

4. Invariant spaces and strata

For simplicity, in what follows we will focus on tangent cones †c at interior points
p, even though a variant of the following discussion applies to boundary tangent cones as
well. Since p is not a boundary point,†c has no boundary. Moreover, two simple corollaries
of the monotonicity formula are that:

• ‚.†c ; 0/ � ‚.†c ; q/ for every q,

• and if the quality holds at some q¤ 0, then†c “splits off a line,” i.e., it is invariant
under translations in the direction q.

The latter property is the starting point of Federer in his celebrated “dimension reduction
argument” (cf. [62,63]), which we will illustrate below. Here we want to present Almgren’s
stratification theory, which is a far-reaching generalization of Federer’s original idea.
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First of all, it follows from the above consideration that the set

V D
®
q 2 †c W ‚.†c ; q/ D ‚.†c ; 0/

¯
is a linear subspace of RmCn. If V has the same dimension as†c , then, in fact,†c coincides
with V (counted with the correct multiplicity and, in some cases, given the correct orienta-
tion). Otherwise, assuming that k D dim.V /,†c is the product of V and a minimal cone†0

in the orthogonal complement of V ?, which is not invariant by any translation. This is a great
deal of information, and in several cases implies severe restrictions upon k. For instance, for
area-minimizing integral currents, it can be easily checked that k � m� 2 in general, while
in the particular case of codimension 1 the celebrated paper of Simons on stable minimal
hypercones (cf. [62]) implies that k � m � 7 (again this will be discussed further below)!
In [11] Almgren coined the term building dimension of the cone †c to identify the nonneg-
ative integer k and introduced a stratification of the interior points p 2 † according to the
maximal building dimension of its tangent cones. In particular, the stratum Sk is the set of
(interior) points p 2 † such that the building dimension of any tangent cone to † at p is at
most k. Almgren’s fundamental discovery is the following

Theorem 4.1. For a stationary integral varifold †, the stratum Sk is a closed set of Haus-
dorff dimension at most k.

Almgren’s approach is very general and can be applied to a variety of different con-
text. For a framework which is very flexible and covers a wide range of applications, see
[123]. Almost four decades after the work of Almgren, groundbreaking ideas allowed Naber
and Valtorta to improve massively upon Almgren’s original theorem, showing (cf. [93,94])

Theorem 4.2. For a stationary integral varifold †, the stratum Sk is k-rectifiable, i.e., it
can be covered, up to a set of H k-measure zero, with countably many C 1 submanifolds of
dimension k.

Theorem 4.2, which was predated by pioneering works of Simon (cf. [108,109]) cov-
ering some particular cases (most notably the stratum Sm�7 for area-minimizing integral
currents, see below for more details), builds upon a new sophisticated version of Reifenberg’s
topological disk theorem combined with a clever use of the remainder in the monotonicity
formula. The ideas are quite general and can be applied to other contexts.

5. Interior "-regularity at multiplicity 1 points

Following the above terminology, two things are obvious: the stratumSm coincides
with the whole support of the m-dimensional generalized minimal surface and the stratum
Sm�1 consists necessarily of singular points. A point p 2 Sm n Sm�1 is clearly a good
candidate for being a regular point, since we know that at least one tangent cone to† at p is,
in fact, a plane (counted with its multiplicity). However, a famous theorem by Federer shows
that the existence of a “flat tangent” does not guarantee the regularity of the point. Indeed,
based on a classical theorem of Wirtinger in Kähler geometry, Federer proved (cf. [62])

885 The regularity theory for the area functional (in geometric measure theory)



Theorem 5.1. Any holomoprhic subvariety † of complex dimension k in Cn induces an
area-minimizing integral current of dimension 2k in R2n.

It can be readily checked that the holomorphic curve

† D
®
z2

D w3
W .z; w/ 2 C2

¯
(5.1)

gives then an example of an area-minimizing integral current of dimension 2 inR4 for which
0 2 S 2 n S 1 is a singular point. One crucial fact is, however, that the flat tangent at 0
is a 2-dimensional plane (i.e., the complex line ¹z D 0º) but counted with multiplicity 2.
A celebrated theorem of Allard (cf. [4]), extensively used in the literature, shows that the
naive expectation “flat tangent cone ” regular point” is indeed correct if the flat tangent
cone has multiplicity 1.

Theorem 5.2. If a stationary integral varifold † is sufficiently close in B2r .p/ to a plane
(counted with multiplicity 1) in the weak topology, then in Br .p/ it is a smooth graph over
that plane. Moreover, at any interior point p where the density of† is 1, such a plane always
exists for a sufficiently small r .

Among the various objects examined in this note, there are three situations where
it is relatively simple to see a priori that our generalized minimal surface † will not “pick
higher multiplicity” at flat points:

(a) † is a portion of the boundary of some Caccioppoli set;

(b) † is a solution of the Plateau problem in one of the set-theoretic senses desc-
ribed in Section 2.2;

(c) † is an area-minimizing current mod 2 or an area-minimizing current mod 3.

In fact, Theorem 5.2 was realized independently by De Giorgi and Reifenberg, in [32] and
[97,98], respectively in the particular cases of (a) and (b) (this is literally correct for DeGiorgi,
while in reality Reifenberg in [97,98] dealt with the only set-theoretic solutions of the Plateau
problem known at his time, which were those he himself introduced in [96]; it must also be
noticed that De Giorgi’s monograph appeared three years before Reifenberg’s paper, but it
was probably not yet widely known when Reifenberg wrote his papers [97,98]). The two pio-
neering approaches are rather different, but they both rely on the fact that the “linearization”
of a minimal surface, understood as a graph over his tangent plane, is harmonic (in fact,
it would be more correct to say that the linearization of the minimal surface equation is the
Laplace equation, or that, at the level of the energies, the Dirichlet energy is the second order
Taylor expansion of the area functional).

Reifenberg used harmonic competitors to estimate how much an area-minimizing
surface deviates from being conical if it is close to a plane, and derived his famous “epiperi-
metric inequality,” which can be thought as a quantitative improvement of the cone-compa-
rison outlined above to prove the monotonicity formula. De Giorgi used a linearization
technique which has a more PDE flavor, and which was generalized afterwards by Almgren
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in any codimension and for much more general energy functionals, cf. [7]. Both approaches
exploit in a substantial way the minimizing property of the surfaces in question. Allard’s
proof of Theorem 5.2, while still based on the intuition that harmonic functions provide
a good approximation for minimal graphs, deviates drastically from both of them, having
to deal with stationary objects. But ultimately it is fair to say that Allard’s approach bor-
rows much more substantially from the works of De Giorgi and Almgren, than from that of
Reifenberg.

It is worth spending some words on why all the approaches mentioned above for the
"-regularity theory fail at the origin in the example (5.1): no matter how small is the scale
that we look at, it is not possible to approximate efficiently (5.1) around the origin with the
graph of a single-valued function. Of course, before knowing Theorem 5.2 we also do not
know that, under the corresponding assumptions, a generalized surface is graphical over the
approximating plane: however, a crucial point in Allard’s proof of Theorem 5.2 is that, before
proving any regularity, he was able to produce a graphical approximation which covers most
of the support of the generalized minimal surface. In contrast, no matter how small the r is,
a single-valued graph will cover no more than half of † \ Br .p/ when † is given by (5.1).

The assumption on the multiplicity of the varifold severely limits the effectiveness
of Theorem 5.2 in bounding the size of the singular set for stationary integral varifolds. In
fact, it would be natural to expect that singular points with a flat tangent cone form anyway a
set of relatively modest size: according to the known examples, its dimension is likelym� 2.
The latter is less than the dimension of Sm�1 and so one could reasonably conjecture that
the singular set of a stationary integral varifold has dimension at most m � 1. On the other
hand, so far the best that we can conclude is still a corollary of Theorem 5.2 noted by Allard
in [4] almost 50 years ago.

Corollary 5.3. Let † be a stationary m-dimensional varifold in U � RmCn. Then the sin-
gular set of † is a closed subset which has empty (relative) interior.

6. Boundary "-regularity at multiplicity 1
2
points

In his second groundbreaking work [5], Allard proved a statement parallel to Theo-
rem 5.2 at boundary points. The following is an informal description of his main “boundary
regularity” theorem.

Theorem 6.1. Assume† is anm-dimensional integral varifold in some open setU � RmCn,
which is stationary for variations which keep fixed a smooth .m � 1/-dimensional subman-
ifold � . Then the following conclusions hold:

(a) If p 2 � belongs to the support of the varifold, then ‚.p;†/ �
1
2
.

(b) If in B2r .p/ the varifold is sufficiently close, in the weak topology, to a single
copy of half of an m-dimensional plane � , then in Br .p/ it is a C 1 graph over
a suitable portion of � .
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(c) If ‚.p;†/ D
1
2
, then the assumption of (b) (and hence the corresponding con-

clusion) holds for a sufficiently small r .

For this boundary version as well, the overall intuition is that V is, in first approxi-
mation, very well approximated by the graph of a (single-valued) harmonic function.

While in the rest of this note I will touch upon interior regularity results for many
different notions of generalizedminimal surfaces, concerning boundary regularity I will only
focus on the case of area-minimizing integral currents. This is also due to the fact that there
are not many other cases studied in the literature. Aside from Allard’s general theorem (i.e.,
Theorem 6.1 stated above), the author is only aware of:

• the work [80] (cf. also [91]), which contains a conjectural list of boundary tangent
cones for set-theoretic 2-dimensional solutions of the Plateau problem;

• the recent work of David [26], which, for 2-dimensional sliding minimizers, gener-
alizes the conclusion of Theorem 6.1 to the union of two half-planes, and possible
additional transverse cones as in the classical theorem of Taylor in the interior (cf.
Theorem 8.1);

• an argument by White which shows how to gain curvature estimates for stable
minimal hypercurrents at the boundary, under some convexity assumption (cf.
[45, Section 6.4]).

7. Interior regularity theory: minimizing integral

hypercurrents

Even though Allard’s Theorem 5.2 needs the multiplicity 1 assumption, the latter
might be dropped in the case of integral area-minimizing currents of codimension 1 (which
for simplicity we will call hypercurrents from now on). The key point is that area-minimizing
integral hypercurrents† can be locally decomposed into the sum of area-minimizing bound-
aries of Caccioppoli sets (this is a consequence of the Coarea formula, see, for instance,
[104]). If in B2r .p/ the original current † is close to a multiple Q of a hyperplane � , each
of these boundaries is then close to a multiplicity 1 copy of � . We can then apply Allard’s
theorem to prove that each of them is a C 1 graph in Br .p/, obtaining what can be called (cf.
for instance [102]) a “sheeting theorem” for † \ Br .p/. However, each of these sheets must
be ordered (for minimizing reasons they cannot cross) and they must touch at the point p:
the maximum principle (each of these graphs is a solution of the minimal surface equation)
then implies that they collapse all into a single smooth surface counted with the appropriate
multiplicity, which must beQ.

This argument rules out that an example like (5.1) could exist for integral area-
minimizing hypercurrents. We are therefore in the luckiest of situations where we can infer
that a single flat tangent cone at p is indeed a necessary and sufficient condition for regularity
at p. If we introduce the notation Singi .†/ for the interior singularities of †, when † is an
m-dimensional area-minimizing integral current in RmC1 (or, more generally, in a complete
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smooth Riemannian manifold of dimension mC 1), we infer Singi .†/ � Sm�1. Consider,
however, that the existence of a point p 2 Sm�1 n Sm�2 implies the existence of a singular
1-dimensional area-minimizing cone in R2, and it is rather elementary to see that the latter
cones do not exist, namely that Singi .†/ � S m�2. Of course, we can now wonder whether
for some† the setSm�2 n Sm�3 is nonempty, which is equivalent to the existence of an area-
minimizing 2-dimensional cone in R3 which is not a plane (i.e., it is singular at the origin).
In [63] Federer introduced his well-known reduction argument, which could be formalized
as follows.

Theorem 7.1. Letm be the smallest integer with the property that there is anm-dimensional
area-minimizing integral current †0 in RmC1 which is a nonplanar cone with vertex at the
origin. Then †0 is everywhere regular except at the origin.

It was also realized by De Giorgi in [33] that the well-known Bernstein problem, i.e.,
whether a complete minimal graph over RmC1 must be affine, would also be implied by the
nonexistence of nonplanar area-minimizing oriented hypercones inRmC1. After progress by
Fleming, De Giorgi, and Almgren (cf. [8, 33, 65]), Simons in [112] proved his famous result
about stable minimal hypercones, namely

Theorem 7.2. Ifm� 6 and�0 � @B1 � RmC1 is a smooth connected submanifold of dimen-
sion m � 1, such that the cone †0 with base �0 and vertex 0 is a stable varifold, then �0 is
a great sphere (i.e., †0 is planar). On the other hand,

†s WD
®
x2

1 C x2
2 C x2

3 C x2
4 D x2

5 C x2
6 C x2

7 C x2
8

¯
� R8 (7.1)

is a nonplanar, oriented, stable singular cone of dimension 7.

Since area-minimizing currents are automatically stable varifolds, in combination
with Federer’s reduction argument, the first part of Theorem 7.2 implies that
Singi .†/ � Sm�7 for any m-dimensional area-minimizing integral hypercurrents. In par-
ticular, for m � 6, † is a regular hypersurface (in the interior), while, for m � 7, Singi .†/

has dimension at most m � 7. In fact, by Theorem 4.2 we can conclude that Singi .†/ is
.m� 7)-rectifiable. The latter conclusion was first reached by Simon in his pioneering work
[108]. However, compared to Simon’s techniques, the approach by Naber and Valtorta (cf.
[94]) allows proving the stronger conclusion, namely

Theorem 7.3. Let† be anm-dimensional area-minimizing integral current in RmC1. Then
Singi .†/ has locally finite Hausdorff .m � 7)-dimensional measure, and it is .m � 7)-
rectifiable.

In their famous work [17], Bombieri, De Giorgi, and Giusti completed the solution
of the Bernstein problem showing that indeed the Simons cone (7.1) is an area-minimizing
integral current of dimension 7, and that in addition there is a nonaffine global solution
u W R8 ! R of the minimal surface equation.
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8. Interior regularity theory: minimal sets

As already mentioned, the phenomenon of “picking higher multiplicity at flat
points” is absent in the solutions of the Plateau problem that fall in the “set-theoretic”
approach. This was pioneered by Reifenberg in [97,98], who proved that his m-dimensional
solutions of the Plateau problem are always real analytic except for a closed H m-null set.
A much more general statement, valid in a variety of contexts and also for a vast class of
elliptic energies was proved by Almgren in [9].

Following the Remarks of Section 4, we conclude that the singular set of an m-
dimensional set-theoretic solution of the Plateau’s problem is necessarily contained in
S m�1. While Theorem 4.2 implies that S m�1 is rectifiable, much more can actually be
said in the codimension 1 case. First of all, for 2-dimensional minimizing sets in R3 Taylor
in [117] proved the following complete structure theorem.

Theorem 8.1. Let † be a 2-dimensional set which minimizes the area in the sense of Alm-
gren. Then:

(a) S1.†/ n S2.†/ is the (locally finite) union of C 1;˛ arcs and for each
p 2 S1.†/ there is a neighborhood U of p in which † is the union of three
classical minimal surfaces meeting in S1.†/ \ U at 120 degrees;

(b) S0.†/ consists of isolated points and for each p 2 S0.†/ there is a neighbor-
hood U in which † is diffeomorphic to the cone over a regular tetrahedron.

The same conclusion as in part (a) of the above remarkable theorem is, in fact, valid
for the stratum Sm�1 n Sm�2 of m-dimensional area-minimizing sets in RmC1 and can be
inferred from Simon’s theory on the uniqueness of multiplicity 1 cylindrical cones, cf. [106].
Part (b) can also be generalized to a similar statement for m-dimensional area-minimizing
sets of RmC1, implying in particular that S2 n Sm�3 is an .m � 2/-dimensional subman-
ifold. This generalization was announced by White in [120] and a proof has been recently
published by Colombo, Edelen, and Spolaor in [23], as a corollary of a more general result.
The main Theorem in [23] also implies that the stratum Sm�3 has finite H m�3 measure.

9. Interior regularity theory: stable hypersurfaces and

stable hypervarifolds

In [103] Schoen, Simon, and Yau realized that Simons’ theorem on stable minimal
hypercones could be recast in a suitable a priori estimate for the curvature of stable minimal
surfaces. More precisely, combining Simons’ inequality with techniques from elliptic PDEs
they were able to prove the following groundbreaking theorem.

Theorem 9.1. Let † be a smooth minimal hypersurface in U � RmC1 with m � 5. Then
for every V �� U there is a constant C which depends on U;V , and H m.†/ such that the
Hilbert–Schmidt norm of the second fundamental form A of † is bounded by C at every
point of † \ V .
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In their subsequent work [102], Schoen and Simon were able to cover the casemD 6

of the above statement and also to give a “GMT regularity theory” counterpart of the Schoen–
Simon–Yau estimates. More precisely, they were able to prove

Theorem 9.2. Assume† is a stablem-dimensional varifold inU � RmC1 with the property
that1 H m�2.Singi .†// < 1. Then Singi .†/ � Sm�7.

It has been recently shown by Simon, see [110, 111], that the subsequent conclu-
sion that Singi .†/ is .m � 7/-rectifiable is optimal, in the sense that there are stable m-
dimensional varifolds in m C 1 smooth Riemannian manifolds whose singular sets are
closed sets of arbitrary Hausdorff dimension ˛ � m � 7. On the other hand, the assump-
tion H m�2.Singi .†// D 0 is not at all optimal. Based on the examples known thus far, one
could expect that for a general stable hypervarifold the top stratum Sm�1 n Sm�2 is a C 1;˛

.m� 1)-dimensional submanifold and that if the latter is empty, then Singi .†/ is contained
in Sm�7. A notable theorem in this direction, in particular covering the second conclusion,
has been achieved byWickramasekera in his deep regularity theory of stable hypervarifolds.
The main conclusion of his paper [124] is the following

Theorem 9.3. Assume† is a stablem-dimensional varifold in a connected set U � RmC1.
Then:

• either Singi .†/ contains a point p in a neighborhood of which † consists
of a finite number of smooth minimal hypersurfaces meeting at a common
C 1;˛ .m � 1/-dimensional boundary (which in particular is a nonempty subset
of Sm�1 n Sm�2),

• or otherwise Singi .†/ � Sm�7.

While the latter is a remarkable achievement, for general stable hypervarifolds the
best unconditional regularity result is still that which can be concluded from the sole condi-
tion of stationarity through Allard’s work, namely Corollary 5.3.

10. Interior regularity theory: minimizing integral

currents in higher codimension

As already witnessed in Example (5.1), the regularity theory for area-minimizing
integral currents in codimension larger than 1 differs dramatically from the regularity theory
for hypercurrents, since there are singular points which belong to Sm n Sm�1, and which
from now on we will call “flat singular points.” The major problem of how to give a suitable
dimension bound for “flat singular points” was finally conquered by Almgren in a titanic
effort, which resulted in a famous 1728 page preprint in the early 1980s (cf. [10]), published

1 In their paper, Schoen and Simon assume the stronger property that Hm�2.Singi .†// D 0,
but it is well known by the experts that their arguments apply if the Hausdorff measure is, in
fact, finite.
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pusthumously thanks to the editorial work of Scheffer and Taylor in [11]. Almgren’s mono-
graph achieves the optimal dimension bound for area-minimizing integral currents in any
dimension and codimension.

Theorem 10.1. Let † be an area-minimizing integral current of dimension m in RmCn.
Then the Hausdorff dimension of the set of interior flat singular points is at most m � 2,
while the stratum Sm�2 n Sm�1 is empty. In particular, dimH .Singi .†// � m � 2.

Almgren invented several tools to prove Theorem 10.1. In particular,

(i) he introduced an entire new concept of “multivalued functions minimizing
the Dirichlet energy” in order to find the “appropriate linearization” of area-
minimizing integral currents at flat singular points, and he developed a subse-
quent existence and regularity theory for these new objects;

(ii) he introduced several flexible techniques to approximate currents with Lipschitz
multivalued graphs;

(iii) he developed a very intricate regularization technique to find a sufficiently
smooth “central sheet” at possible branching singularities (the so-called “center
manifold”);

(iv) he discovered a new monotonicity formula for a harmonic function (the mono-
tonicity of the “frequency”) which has meanwhile been used in a variety of
different contexts in elliptic and parabolic partial differential equations (see,
e.g., [67,70,84]).

Almgren’s theory has been revisited by the author and Emanuele Spadaro in the series of
works [47–51]. Besides making the proof of Theorem 10.1 shorter, these works improve upon
Almgren’s monograph in several aspects, and, moreover, they have been the starting point
of several further developments, which will be detailed in the next sections

Shortly after Almgren completed his 3-volume preprint, White proved that in the
case of 2-dimensional area-minimizing currents the stratum S0 consists, in fact, of isolated
points, cf. [119] (this is indeed a corollary of a more precise theoremwhich shows the unique-
ness of tangent cones in that particular case andwhichwill be discussed further in Section 15.
The program of understanding the singularities of 2-dimensional area-minimizing currents
was then completed by Chang in [20].

Theorem 10.2. Let† be a 2-dimensional area-minimizing current inR2Cm. Then Singi .†/

consists of isolated points. Moreover, for each p 2 Singi .†/ there is a neighborhood U in
which† can be decomposed as the union of a finite numberN of branchedminimal immersed
disksDi with the following properties:

• eachDi is an embedding, except for the point p;

• Di \Dj is either the empty set or consists only of the point p.
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However, the proof given in [20] is, strictly speaking, incomplete, as Chang needs
the existence of a suitable generalization of Almgren’s center manifold to a “branched ver-
sion.” For the latter, he just gives a 4-page sketch (cf. the appendix of [20]), invoking suitable
modifications of Almgren’s statements (it must be noted that the construction of the center
manifold occupies more than half of Almgren’s monograph [11]). Based on the works [47–51],
the author, Spadaro, and Luca Spolaor gave a complete independent proof of the existence
of a branched center manifold in [52]. We also developed a suitable more general counter-
part of Chang’s theory in the papers [53–55], proving in particular the same regularity result
for spherical cross-sections of area-minimizing 3-dimensional cones and for semicalibrated
2-dimensional currents (previous theorems in [12,13] proved some cases of particular inter-
est, based on the works of Rivière and Tian, see [99–101]). Almgren’s dimension bound in
Theorem 10.1 has also been extended to semicalibrated currents by Spolaor in [113].

11. Interior regularity theory: minimizing currents mod p

The regularity theory for area-minimizing currents mod p started around the same
time as the regularity theory for integral currents. As a consequence of Almgren’s gener-
alization of De Giorgi’s " regularity theorem, the cases p D 2; 3 were already rather well
understood in the 1960s. In particular, the absence of flat singular points allowed inferring
the following theorem (the case p D 2 is due to Federer, cf. his pioneering work on the
reduction argument [63]).

Theorem 11.1. If † is an m-dimensional area-minimizing current mod 2 in RmCn, then
Singi .†/ � Sm�2. If † is an m-dimensional area-minimizing current mod 3, then
Singi .†/ � Sm�1.

The casepD 2 in codimension 1 allows evenmore restrictive results (the same regu-
larity as for integral area-minimizing currents holds and, in fact, locally any area-minimizing
integral hypercurrent mod 2 is the boundary of a Caccioppoli set), while in higher codimen-
sion there are indeed area-minimizing 2-dimensional currents mod 2with point singularities.

For p D 3, the union of three half-planes in R3 meeting at a common line at 120
degrees gives an obvious example for which Sm�1 ¤ ;. The beautiful result of Taylor [116]
gave a complete description of the interior singular set for area-minimizing 2-dimensional
currents mod 3 in R3: locally the singular set is always diffeomorphic to the above example.
The subsequent work of Simon [106] on the uniqueness of cylindrical tangent cones allowed
giving a suitable generalization of Taylor’s result in any dimension and codimension. The
final outcome is the following

Theorem 11.2. If † is an m-dimensional area-minimizing current mod 3 in RmCn, then
Sm�1 n Sm�2 is an .m� 1/-dimensional submanifold and at everyp 2 Sm�1 n Sm�2 there
is a neighborhoodU in which† consists of 3 smoothminimal surfaces meeting atSm�1 \U

at 120 degrees. If † is in addition an hypercurrent (i.e., n D 1), then Sm�2 n Sm�3 is an
empty set. In particular, if m D 2 and n D 1, then Singi .†/ consists of pairwise disjoint
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closed simple curves and pairwise disjoint simple arcs with endpoints lying in the support
of the boundary of †.

In order to progress beyond Corollary 5.3 for higher moduli, it is necessary to either
rule out flat singular points or bound their dimension. In the special case of mod 4 hypercur-
rents, White in [118] discovered a beautiful fact which allowed him to derive the following
structural result

Theorem 11.3. If † is an m-dimensional area-minimizing current mod 4 in RmC1, then it
can be locally decomposed, away from its boundary, into the union of two m-dimensional
area-minimizing currents mod 2.

He also showed a converse to Theorem 11.3. In particular, his results imply the
existence of flat singular points even for hypercurrents mod 2k. More precisely, consider a
function u W R2 � B1 ! R which solves the minimal surface equation and, after applying a
suitable translation and rotation, assume that u.0/ D 0, ru.0/ D 0, andD2u.0/ ¤ 0. Since
�u.0/D 0, it follows that the zero set of u in a neighborhood of 0 consists of 2 arcs crossing
orthogonally in 0. We can thus assume that the disk Br .0/ � R2 is subdivided by ¹u D 0º

into 4 sectorsS1;S2;S3;S4.We then consider inCr WDBr .0/� R � R3 the union of the four
sectors Si � ¹0º and of the four portionsGi of the graph of u lying over the respective sector
Si . We give to Si opposite alternating orientations and sum them to construct an integral
current S in Cr .0/. Clearly, @S is formed by the four arcs which describe ¹u D 0º � ¹0º,
suitably oriented and counted with multiplicity 2. In particular, S is a cycle mod 2. We then
perform an analogous operation with the 4 portions Gi of the graph of u and construct a
corresponding integral current T . By choosing the orientations correctly, we can achieve
that @T D @S . Therefore the current † D T C S is a cycle mod 4 and, according to the
results in [118], it is area-minimizing (as a cycle mod 4). In particular, 0 is a flat singular
point for †.

This phenomenon is typical of even moduli, and indeed in his subsequent work
[121]White proved that area-minimizing hypercurrents mod 2kC 1 cannot have singular flat
points.

Theorem 11.4. If † is an m-dimensional area-minimizing current mod p in RmC1 and p
is odd, then Singi .†/ � Sm�1.

In the papers [41, 42], the author, Jonas Hirsch, Andrea Marchese, and Salvatore
Stuvard developed a theory to bound the dimension of flat singular points of a general area-
minimizing current † mod p (i.e., in any dimension and codimension), which implies that
the Hausdorff dimension of the set of flat singular points of † is at most m � 1.

Theorem 11.5. If † is an m-dimensional area-minimizing current mod p in RmCn, then
dimH .Singi .†// � m � 1.

While the latter theorem is a considerable improvement compared to what was
known before (aside from the cases covered by Theorems 11.1, 11.3, and 11.4, in all others
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the best known result was that the singular set is meager, thanks to Corollary 5.3). Indeed,
the known examples would suggest that the set of flat singular points of any area-minimizing
current mod p is at most m � 2. The work [40] and the forthcoming one [38], by the author,
Hirsch, Marchese, Spolaor, and Stuvard, give a first step towards the latter picture in codi-
mension 1.

Theorem 11.6. Let† be anm-dimensional area-minimizing current mod p inRmC1. Then:

(a) Sm�1 n Sm�2 is a C 1;˛ submanifold and for every q 2 Sm�1 n Sm�2 there is
a neighborhood U in which † consists of p minimal hypersurface meeting at
Sm�1 \ U ;

(b) At every flat singular point there is a unique tangent cone, which is a flat plane
with multiplicity p

2
(in particular, p must be even).

In fact, after the appearance of [40] Minder and Wickramasekera (cf. [90]) pointed
out to the authors that it is possible to derive Theorem 11.6 directly from the theory developed
in [124], starting from one observation in [40] concerning tangent cones in the top stratum
Sm�1 n Sm�2 and the verification of Simon’s no hole condition. In [39], Theorem 11.6 will
be further used to confirm the conjectural picture in codimension 1, namely to prove

Theorem 11.7. Let† be anm-dimensional area-minimizing current mod p in RmC1. Then
Singi .†/\ Sm is empty for p odd (as implied by Theorem 11.4), while Singi .†/\ Sm has
dimension at most m � 2 for even p.

12. Boundary regularity theory: minimizing integral

hypercurrents

The first boundary regularity theorem for area-minimizing integral currents † was
proved by Allard in his PhD thesis [3] in codimension 1. More precisely, we have

Theorem 12.1. Assume † is an area-minimizing integral current of dimension m in RmC1

and assume that

(a) @† is a smooth (more precisely C 2) .m � 1/-dimensional surface � with mul-
tiplicity 1;

(b) there is a uniformly convex smooth (more precisely C 2) bounded open set U
such that � � @U .

Then † is smooth in a neighborhood of �; more precisely, there is an open set V � � such
that V \ † is a smooth minimal hypersurface (with boundary) and its boundary (in V ) is
precisely � (in the classical sense of differential topology).

In fact, the proof in [3] contains an "-regularity result which is the precursor of
Theorem 6.1, while assumption (a) is combined with a suitable classification of boundary
tangent cones to prove that any point p 2 � has density 1

2
. In order to remove the “convex
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barrier” of assumption (a), one needs to handle situations in which p might be a “2-sided”
boundary point.

To illustrate the latter point, consider a 2-dimensional plane V in R3 and the two
circles 1 D @B1.0/\ V and 2 D @B2.0/\ V . Give to 1 and 2 the “same orientation,” so
that they bound the disksD1 D B1.0/\ V andD2 D B2.0/\ V , taken with the same orien-
tation where they overlap. It can be easily shown that, if � D 1 C 2, then†DD1 CD2 is
the unique area-minimizing integral current bounded by � . Moreover,† can be described as
the sum of the coronaD2 nD1, counted with multiplicity 1, and the diskD1, counted with
multiplicity 2. A point p 2 1 is what can be naturally called a “2-sided” boundary point,
and note that its density is 3

2
(for a more rigorous definition, cf. [35]). The regularity theory

at such points is rather subtle, and (in codimension 1) it was handled in the famous work [69]

by Hardt and Simon.

Theorem 12.2. Let � be a smooth oriented closed .m � 1/-dimensional submanifold of
RmC1 and let † be an area-minimizing integral current whose boundary (in the sense of
currents) is given by� counted with multiplicity 1. Then every pointp 2† is regular, namely
one of the following two mutually exclusive possibilities holds:

(i) either the density of† atp is 1
2
and hence the conclusion of Theorem 6.1 applies

in a neighborhood U of p;

(ii) or the density of† at p is kC
1
2
for some positive integer k; in this case there is

a neighborhood U of p and a minimal hypersurface ƒ of U without boundary
such that:

• ƒ contains �;

• � subdivides ƒ in two regions ƒC and ƒ�;

• † in U is given by ƒC counted with multiplicity k C 1 and ƒ�

counted with multiplicity k.

Among the many ideas introduced in [69], one has been highly influential in several
other problems in minimal surface theory, and it is the so-called Hardt–Simon inequality. In
a nutshell, the Hardt–Simon inequality makes clever use of the remainder in the monotonic-
ity formula (namely the precise expression for the quantity d

dr
Volm.†\Br /

rm ) in order to infer
nontrivial information on the graphical approximation of † at small scales.

While we have stated Theorems 12.1 and 12.2 as “global theorems,” suitable local
versions of them are also valid, and, in fact, the very nature of the main arguments is com-
pletely local.
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13. Boundary regularity theory: minimizing integral

currents with smooth boundaries of multiplicity 1

In his fundamental boundary regularity paper [5], Allard noticed that Theorem 6.1
can be used to generalize the conclusion of Theorem 12.1 to all codimensions.

Theorem 13.1. Let � be a smooth .m � 1/-dimensional closed oriented submanifold of
RmCn and letU be a bounded smooth uniformly convex set such that� � @U . Then any area-
minimizing integral current † whose boundary is given by � (counted with multiplicity 1)
is smooth in a neighborhood of � , in the sense of the conclusion of Theorem 12.1.

Again, a local version of the above theorem holds as well; in fact, in order to con-
clude that a boundary point p is regular and one-sided in the sense of Theorem 12.2(i),
it suffices to find a uniformly convex “barrier” which touches � at p and so that † lies
(locally) on one side of it, cf. [68]. A simple argument furnishes such a barrier for any smooth
� � RmCn: for instance, one could consider the smallest closed ball containing � . It then
follows that under the mere assumption that � is sufficiently smooth, an area-minimizing
current bounding � (taken with multiplicity 1) has always at least one boundary regular
point.

Up until recently nothing more was known, except that in codimension higher than 1
singular boundary points are certainly possible. A simple example is given by the union
of a smooth simple curve 1 � ¹x1 D x2 D 0º � R4 containing the origin and a smooth
simple curve 2 � ¹x3 D x4 D 0º � R4 which does not contain the origin. This union
bounds an area-minimizing 2-dimensional integral current for which 0 is a boundary singular
point. Moreover, since in a general Riemannian manifold the barrier argument outlined in the
previous paragraph is not available, even in the simplest case of a smooth simple closed curve
in a closed smooth Riemannian 4-manifoldM , the results outlined so far could not exclude
the possibility that all boundary points of an area-minimizing current † � M bounding �
are singular.

As in the case of Theorem 12.2, the main difficulty in removing the convex barrier
assumption is the possibility that boundary points have density larger than 1

2
. And as in

the case of Theorem 10.1, the most problematic issue is that, unfortunately, the existence
of a flat tangent cone at the boundary does not guarantee regularity: flat boundary singular
points exist as soon as the codimension is larger than 1, cf. [35]. In [35], the author, Guido De
Philippis, Hirsch, and Annalisa Massaccesi were able to develop a suitable “Almgren-type”
regularity theory for boundary points, building on a previous important step of Hirsch [73].
In particular, we proved the following

Theorem 13.2. Let � be a smooth closed oriented .m � 1/-dimensional submanifold of
RmCn and let† be an area-minimizing integral current whose boundary is given by � taken
with multiplicity 1. Then the set of boundary regular points, understood as points where one
of the two alternatives (i) and (ii) of Theorem 12.2 hold, is a dense relatively open subset
of � .
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While Theorem 13.2 might look very far from optimal, it turns out that a naive
counterpart of the bound of the dimension of the interior singular set is, in fact, false. In [35]

we prove also the following

Theorem 13.3. There is a smooth 1-dimensional embedded submanifold of R4 which
bounds an area-minimizing current † of R4 whose boundary singular set has Hausdorff
dimension 1.

Theorem 13.3 leaves open the possibility that at least the set of boundary singular
points has zero .m � 1/-dimensional Hausdorff measure and that it has dimension m � 2 if
the boundary is real analytic. We also caution the reader that a less restrictive definition of
a boundary regular point might restrict the size of boundary singularities even in the C1

case. For amore detailed discussion of all these possibilities we refer the reader to Section 16.
However, that boundary regularity is subtle is also witnessed by the following example of
the author, De Philippis, and Hirsch (cf. [34]).

Theorem 13.4. There is a smooth closed 4-dimensional Riemannian manifold M and a
smooth simple closed curve � � M which bounds a unique area-minimizing 2-dimensional
current† which is smooth inM n � and whose first homology group is infinite-dimensional.
In fact, † is smooth except at a single point p 2 � .

14. Boundary regularity theory: minimizing integral

currents with smooth boundaries of higher multiplicity

In the previous sections we examined the boundary regularity of area-minimizing
integral currents under the assumption that the multiplicity of the boundary is 1. A rather
intriguing and widely open question, already raised by Allard in his PhD thesis [3], is what
happens when the multiplicity is an integer larger than 1 (the fact that it must be an integer
is, of course, a consequence of the integrality assumption, but we also remind the reader that
when T is integer rectifiable and @T has finite mass, @T is necessarily integer rectifiable, cf.
[62]).

The problem raised by Allard in [3] is highlighted again by White in [1]. In the
same reference, White observes also that, thanks to the decomposition theorem for area-
minimizing hypercurrents, if † is an m-dimensional area-minimizing integral current in
RmC1 whose boundary is a smooth submanifold � counted with multiplicity Q > 1, then
† can be decomposed into the sum of Q area-minimizing integral currents whose bound-
ary is � counted with multiplicity 1 also. In particular, we are in the position of applying
the Hardt–Simon Theorem 12.2 to each element of the decomposition. While this is the
same “codimension 1 phenomenon” that rules out flat singular points in the interior for area-
minimizing integral hypercurrents, we pause a moment to make one important remark. It
is well known that there are smooth .m � 1/-dimensional oriented closed submanifolds of
RmC1 that bound more than one area-minimizing integral current. This is already the case
for smooth simple closed curves� in @B1 � R3. Consider in particular one such� and let†1
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and†2 be two area-minimizing integral 2-dimensional currents which bound � (with multi-
plicity 1). Thanks to the above decomposition theorem,†D†1 C†2 is an area-minimizing
current which bounds a double copy of �2. By the interior regularity theory,†1 and†2 have
no interior point in common. Therefore, by the Hopf boundary lemma, there is no boundary
point at � in which †1 and †2 have the same tangent: †1 and †2 meet at every point of �
transversally.

In light of the above example, it seems sensible to give the following definition of a
boundary regular point.

Definition 14.1. Assume that � � RmCn is a smooth oriented .m � 1/-dimensional sub-
manifold and that Q is a positive integer. Let † be an area-minimizing integral current in
RmCn whose boundary is given byQ copies of � . Then p 2 � is a regular boundary point
if one of the following two alternatives occur in some neighborhood U of p:

(i) There are N positive integers ki with
P

i ki D Q and N smooth minimal sur-
facesƒi in U with boundary � such that†\ U D

P
i kiƒi , and each distinct

pair ƒi and ƒj meet transversally at p;

(ii) There is a minimal surface ƒ in U without boundary, which contains �: the
latter subdivides ƒ in two regions ƒC and ƒ� and

† \ U D .QC k/ƒC
CQƒ�

for some positive integer k.

In particular, the discussion above reduces the following statement to a mere corol-
lary of Theorem 12.2:

Corollary 14.2. Let � be a smooth oriented closed .m � 1/-dimensional submanifold of
RmC1,Q be a positive integer, and † an area-minimizing integral current with @† D Q� .
Then every boundary point p 2 � is regular in the sense of Definition 14.1.

The boundary regularity theory for Q > 1 and in codimension larger than 1 is
widely open. A very first preliminary result, which is a counterpart of Theorem 12.1 for
2-dimensional area-minimizing currents, has been proved very recently by the author, Ste-
fano Nardulli, and Simone Steinbrüchel in [43,44], building in part upon the theory developed
in [35] and the paper [74].

Theorem 14.3. Consider a smooth 1-dimensional closed submanifold � of R2Cn and
assume that there is a bounded smooth uniformly convex open set U such that � � @U .

2 It is one of the most beautiful discoveries of geometric measure theory that this conclu-
sion is in general false in higher codimension. In particular, following the pioneering
work of L. C. Young [125], there are several constructions of smooth simple curves �
in R4 with the following remarkable property. If we let m.�/ be the mass of an area-
minimizing 2-dimensional current which bounds one copy of � and m.2�/ the mass of
an area-minimizing integral current which bounds two copies of � , then m.2�/ < 2m.�/.
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Let † be an area-minimizing 2-dimensional integral current such that @† D Q� for some
integerQ. Then every point p 2 � is a boundary regular point and moreover alternative (i)
in Definition 14.1 holds at every such point.

15. Uniqueness of tangent cones

One major open question in the regularity theory of minimal submanifolds, which
has attracted the attention of a large number of researchers since the dawn of geometric
measure theory, is the uniqueness of tangent cones. This amounts to the question of whether
there is at every point p a unique limit for the rescalings †�p

r
of the minimal submanifold†.

In some situations the question is intimately connected to the understanding of the regularity
properties of the various strataSk n Sk�1. For instance, the pioneering works of Taylor [116,
117] leading to the Theorems 8.1 and 11.2 can be reduced to suitable uniqueness statements
for the relevant tangent cones.

The most striking result in the area is the celebrated theorem of Simon in [105].

Theorem 15.1. Let† be a stationary integral varifold and assume that the spherical cross-
section of one tangent cone †0 at an interior point p of † is a regular submanifold of @B1

with multiplicity 1. Then †0 is the unique tangent cone to † at p.

Once again a similar uniqueness theorem is widely open when the multiplicity of the
cross-section is allowed to take multiplicity higher than 1, except for some lucky situations
in which the case of higher multiplicity can be reduced to that of multiplicity 1. Two notable
examples are that of area-minimizing hypercurrents and that of area-minimizing currents
mod 2.

Corollary 15.2. Let † be an area-minimizing m-dimensional integral current in RmC1 or
an area-minimizingm-dimensional current mod 2 in RmCn and assume that p is an interior
point at which one tangent cone †0 has smooth spherical cross-section. Then †0 is the
unique tangent cone at p.

Even in the case of multiplicity 1, the uniqueness of tangent cones whose spherical
cross-section is not smooth is a much more subtle issue. Before discussing it, we wish to
introduce a suitable concept which has played a pivotal role in many contexts. Let †0 be a
stationary varifold which is a cone with smooth cross-section �0, taken with multiplicity 1.
It is then well known that �0 is a minimal submanifold of the sphere @B1. If†k is a sequence
of cones converging to †0, with cross-section �k , up to extraction of a subsequence �k is
the graph of a solution of a suitable linear elliptic PDE over �0 plus higher order terms.
Such solutions are called Jacobi fields in the literature, and they are the higher-dimensional
counterpart of the classical Jacobi fields on geodesics. A Jacobi field u is called “integrable”
if there is a sequence �k of minimal submanifolds of @B1 converging to �0 which generates
u as outlined above. Prior to Theorem 15.1, Allard and Almgren in [6] proved the following
important result:
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Theorem 15.3. Let† be a stationary integral varifold, let p be an interior point and assume
that a tangent cone †0 to † at p satisfies the following two properties:

(i) The spherical cross-section �0 of†0 is smooth and is taken with multiplicity 1;

(ii) Every Jacobi field of �0 is integrable.

Then †0 is the unique tangent cone to † at p and, moreover, the rescalings †�p
r

converge
to †0 with a polynomial rate.

The integrability condition (ii) of Theorem 15.3 has several drawbacks. In order to
verify it, one must know rather explicitly the cross-section �0. But even in the cases in which
�0 is known and has a rather simple formula, verifying the condition is in general quite hard
(in particular, it requires a classification result for all the solutions of some particular elliptic
PDE). Last but not least, there are examples in which it does not hold, see [2], and in which
the convergence rate of †�p

r
to †0 is just logarithmic. The powerful approach of Simon to

Theorem 15.1 avoids any discussion of the integrability of the Jacobi vector fields thanks to
his realization that the convergence of †�p

r
to †0 can be reduced to an infinite-dimensional

version of a classical result of Lojasiewicz for finite-dimensional gradient flows. The corre-
sponding “Lojasiewicz–Simon inequality” has been widely used to study the convergence of
parabolic PDEs to a unique steady state and the uniqueness of model singularities in other
geometric variational problems.

Coming back to cones whose spherical cross-sections are not smooth, a particu-
larly simple subclass are called “cylindrical tangent cones.” In his notable investigation [106],
Simon has been able to prove a useful generalization of the Allard–Almgren Theorem 15.3.

Theorem 15.4. Let† be a stationary integral varifold, letp be an interior point, and assume
that a tangent cone †0 to † at p satisfies the following structural properties:

(i) †0 D V �ƒ0 for some minimal cone ƒ0 and some linear subspace V ;

(ii) The spherical cross-section �0 ofƒ0 is smooth and is taken with multiplicity 1;

(iii) Every Jacobi field of �0 is integrable;

(iv) The following “no hole condition” holds for a sufficiently small ı.�0/: pro-
vided †�p

r
is sufficiently close to †0, every Bı.q/ with q 2 B1 \ V contains a

point x of density ‚.†; x/ larger than ‚.†;p/ � ı.

Then †0 is the unique tangent cone to † at p and, moreover, the rescalings †�p
r

converge
to †0 with a polynomial rate.

Quite a few of the structural results for singular strata mentioned in the previous
sections depend heavily on the above result (or can be deduced from it). A notable exception
is the uniqueness theorem of Taylor which underlines the second conclusion of Theorem 8.1
(and the higher-dimensional counterpart in [23]). The latter is, in fact, derived through a direct
epiperimetric inequality à la Reifenberg.
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One major drawback of the approaches to Theorems 15.1, 15.3, and 15.4 is that the
underlying PDE arguments rely heavily on the "-regularity result of Allard, namely Theo-
rem 5.2 (or on some other analogous results). For instance, in Theorem 15.1 themultiplicity 1
assumption and the regularity of �0 allow us to conclude that @B1 \

†�p
r

is a smooth graph
over �0. On the contrary, the epiperimetric inequality, which is based on exhibiting a suit-
able competitor, can be applied in situations where the cross-section is irregular or taken
with higher multiplicity. On the other hand, its applicability is limited to minimizers. Up
until recently, another obvious objection to a wider plausibility of an epiperimetric inequal-
ity à la Reifenberg was that it immediately implies a polynomial decay rate, which is known
to be false in general cf. [2]. However, the recent paper of Colombo, Spolaor, and Velichkov
[24] shows that Theorem 15.1 can be recovered (and, in fact, generalized to suitable “quasi-
minima”) through a suitable generalization of Reifenberg’s epiperimetric (it must be noted
that the proof of the latter is nonetheless achieved using the Lojasiewicz–Simon inequality).

An important case in which an epiperimetric inequality can be proved and used
effectively to prove uniqueness of tangent cones (while a “PDE-approach” has not been given
yet) is that of 2-dimensional area-minimizing currents at interior points. In particular, White
in [119] proved

Theorem 15.5. Let † be a 2-dimensional area-minimizing integral current in R2Cn. Then
the tangent cone to † is unique at every interior point p.

A counterpart to Theorem 15.5 has been shown by Hirsch and Marini in [74] at
smooth boundaries taken with multiplicity 1. However, as noticed in [44], the proof of Hirsch
and Marini can easily be adapated to the case of smooth boundaries with arbitrary multiplic-
ities, thus giving a complete result for 2-dimensional area-minimizing integral currents in
any dimension and codimension.

16. Open problems

In this section we will collect some open questions. I wish to emphasize that the
selection given here by no means exhausts the interesting open problems in the area, it rather
reflects a personal choice of the author.

16.1. Stationary and stable varifolds
Perhaps the most intriguing question is whether it is possible to improve Corol-

lary 5.3 in any situation which is not the trivial one of 1-dimensional stationary varifolds.
The most modest goal would be to show that the singular set of stationary 2-dimensional
integral varifolds in R3 has zero 2-dimensional Hausdorff measure. In general, there is no
example of singular stationary m-dimensional varifolds (in any codimension) for which the
singular set has dimension larger than m � 1.

In the case of stable varifolds of codimension 1, the deep theory of Wickramasekera
developed in [124] (see also [89] for some further progress) gives one hope that in the future
some final unconditional structural result might be at hand. A coronation of the efforts in the
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area would be a theorem which proves that Sm�1 n Sm�2 is a C 1;˛ .m � 1/-dimensional
submanifold, while the set of flat singularities is .m � 2)-rectifiable. The latter statement
seems to be reachable in the very particular case of area-minimizing hypercurrents mod p.

Awidely open problem is whether stability allows going beyondAllard’s conclusion
in codimension higher than 1. It is quite baffling that no further regularity information has
been concluded thus far for stable varifolds as soon as the codimension is larger than 1. A par-
ticularly intriguing case would be that of 2-dimensional stable varifolds, already inR4. A first
question in that direction is whether some counterpart of the Schoen–Simon–Yau estimates
and hence a corresponding compactness theorem hold for classical (possibly branched) min-
imal 2-dimensional surfaces in, say,R4. In other words, assume that†k is such a sequence in
some bounded open set U � R4, that the area of†k is uniformly bounded, and that each†k

is stable. Is it possible to extract a subsequence which is converging (in the varifold sense) to
a classical stable (possibly branched) immersed minimal surface? What if we restrict further
†k and ask that they are embedded except for a finite number of branching singularities?
Note that Theorem 10.2 does imply the desired conclusion if each †k can be oriented so to
give an area-minimizing integral 2-dimensional current.

16.2. Singularities of area-minimizing integral hypercurrents
Area-minimizing integral currents of dimension m in RmC1 are the objects for

which we have the strongest regularity theory. Is it possible to prove more facts about the
structure of the singular set? In particular, is it true thatSm�7 n Sm�8 is aC 1;˛ submanifold,
or rather are there examples (as the recent stable minimal hypersurfaces in some Rieman-
nian manifolds given by Simon in [110]) for which Sm�7 has a fractal Hausdorff dimension
m � 8 < ˛ < m � 7? Does it make a difference if the ambient is a smooth Riemannian
manifold rather than Euclidean space?

A closely related question is whether the no-hole condition of (iv) in Theorem 15.4
can be violated at some point p of an area-minimizing hypercurrent (in the Euclidean space
or in a general smooth Riemannian ambient). This is indeed the case for some points in the
examples of stable minimal hypersurfaces constructed in [110], while in the Euclidean space
a completely different example has been given by Gabor Székelyhidi in [115].

16.3. Singularities of area-minimizing integral currents in codimension
higher than 1

It is very tempting to conjecture that for m � 3 Almgren’s partial regularity theo-
rem can improved to say that the singular set of any area-minimizing integralm-dimensional
current in RmCn is .m � 2/-rectifiable. This problem seems intimately linked to the “sim-
plest” open case of uniqueness of tangent cones for area-minimizing currents in codimension
n � 2:

• Consider an area-minimizing integral current† of dimensionm in RmCn and let
p 2 Singi .†/ be a point where one tangent cone is flat. Is the latter the unique
tangent cone to † at p?
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The forthcoming work [46] seems to suggest that a positive answer to the latter question,
together with the additional information that the convergence rate is polynomial, would imply
.m � 2/-rectifiability of Singi .†/.

On the other hand, the works [82, 83] suggest that further structural results cannot
be expected, at least not in general smooth ambient manifolds, and instead there are 3-
dimensional area-minimizing integral currents in closed smooth Riemannian manifolds
whose singular sets have any preassigned Hausdorff dimension ˛ 2 .0; 1/.

16.4. Singularities of area-minimizing currents mod p

As already mentioned, in the works [38–40] (see also [90,124]) we plan to show that,
for anm-dimensional area-minimizing current mod p in RmC1, the stratumS m�1 n S m�2

is a C 1;˛ .m � 1/-dimensional submanifold, while the set of flat singular points has dimen-
sion at most m � 2. In fact, it is expected that the latter is .m � 2/-rectifiable. The same
properties could be expected in higher codimension, but the problem poses considerable dif-
ficulties. Moreover, the author does not know examples in which the stratumS m�2 n S m�3

is nonempty. To that respect, the most basic question is whether there is any counterpart of
Taylor’s theorem for the case pD 3: is there any 2-dimensional area-minimizing cone mod p
in R3 which is not invariant under some translation? The works [116] and [118] imply that the
answer is no for p D 3 and 4 (while it is a simple exercise to see that it is no for p D 2 as
well, since it reduces to the case of integral currents).

16.5. Boundary regularity of area-minimizing integral currents at
multiplicity 1 boundaries
Is it possible to improve Theorem 13.2 and show that for general smooth � the set

of boundary singular points has zero Hausdorff .m � 1/-dimensional measure? It must also
be noted that, in the examples of Theorem 13.3 given by the argument of [35], most of the
boundary singular pointsp’s are of “crossing type,” i.e., in some neighborhoodU of suchp’s
the area-minimizing current can be decomposed in one area-minimizing current which takes
the boundary � smoothly and a second one which is area-minimizing and has no boundary
(but includes p in its support). In particular, the following two conjectures seem likely:

• Boundary singularities of noncrossing type have amuch lower dimension (accord-
ing to the examples, the best we can hope is m � 2).

• Since crossing-type singularities have necessarily dimensionm� 2 when � (and
the ambient Riemannian manifold) is real analytic, the whole boundary singular
set has dimension at most m � 2 under the latter assumption.

In fact, the following elegant conjecture is due to White in [122].

Conjecture 16.1. Let � � R2Cn be a simple closed real-analytic curve and † an area-
minimizing integral current such that @† D � . Then the union of the boundary and interior
singular points of † is discrete. In particular,
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• the “overall singular set” is finite,

• † has finite genus g,

• and it is a classical Douglas–Rado solution of the Plateau problem among sur-
faces of genus g.

16.6. Boundary regularity of area-minimizing integral currents at boundaries
with higher multiplicity
It is tempting to conjecture that Theorem 14.3 holds form-dimensional integral cur-

rents for m � 2, but in reality the situation might be more complicated. Otherwise, a more
modest expectation is that for generalm, under the assumptions of Theorem 14.3, the bound-
ary singular set has dimension at most m � 3. Nothing is known in the case of a general
integral multiplicityQ and a general boundary � , i.e., without the assumption that there is a
“convex barrier” at (a portion of) � . One might expect that the counterpart of Theorem 13.2
holds for general multiplicitiesQ � 1.

16.7. Uniqueness of tangent cones
The uniqueness of interior tangent cones when the multiplicity of the cross-section

is larger than 1 is widely open. As already mentioned, the most striking case is that of flat
singular points, i.e., points at which at least one tangent cone is a plane with higher multi-
plicity, but the generalized minimal surface is not regular. This problem is open for integral
area-minimizing currents of dimension m � 3 in codimension larger than n � 2, but it is
also open for stationary and stable varifolds in dimension m � 2 and codimension 1.

It is also widely open whether Simon’s Theorem 15.4 can be improved. In particular,
can one drop the “no-hole condition” (iv) or the integrability condition (iii), at least for some
suitable subclass of stationary varifolds? Some situations in which the “no-hole condition”
can be dropped are given in [107], while the recent work [114] is the first, to the best of author’s
knowledge, in which the uniqueness of the cylindrical cone is proved for one example in
which both conditions (iii) and (iv) in Theorem 15.4 can be dropped.

We finish this survey by mentioning that the following very innocent question is still
open (even in the case m D 3 and nC 2 D 5):

• Consider an m-dimensional area-minimizing integral current † in RmCn with
m � 3 and n � 2. Assume that one tangent cone †0 at some point p 2 Singi .†/

is the union of two distinct linear planes counted both with multiplicity 1. Is †0

the unique tangent cone to † at p?

Acknowledgments

I am very grateful to Guido De Philippis and Luca Spolaor for carefully reading a very
preliminary version of this manuscript, suggesting several precious improvements, and
reminding me of a few pertinent results in the literature.

905 The regularity theory for the area functional (in geometric measure theory)



Funding

This work was partially supported by the National Science Foundation through the grant
FRG-1854147.

References

[1] Some open problems in geometric measure theory and its applications suggested
by participants of the 1984 AMS summer institute. In Geometric measure theory
and the calculus of variations (Arcata, Calif., 1984), edited by J. E. Brothers,
pp. 441–464, Proc. Sympos. Pure Math. 44, Amer. Mathd. Soc., Providence, RI,
1986.

[2] D. Adams and L. Simon, Rates of asymptotic convergence near isolated singulari-
ties of geometric extrema. Indiana Univ. Math. J. 37 (1988), 225–254.

[3] W. K. Allard, On boundary regularity for the Plateau problem. Ph.D. thesis,
Brown University, Providence, 1968.

[4] W. K. Allard, On the first variation of a varifold. Ann. of Math. (2) 95 (1972),
417–491.

[5] W. K. Allard, On the first variation of a varifold: boundary behavior. Ann. of
Math. (2) 101 (1975), 418–446.

[6] W. K. Allard and F. J. Jr. Almgren, On the radial behavior of minimal surfaces
and the uniqueness of their tangent cones. Ann. of Math. (2) 113 (1981), 215–265.

[7] F. J. Jr. Almgren, The theory of varifolds: A variational calculus in the large for
the k-dimensional area integrand. Mimeographed notes, Princeton Univ. Math.
Library, 1965.

[8] F. J. Jr. Almgren, Some interior regularity theorems for minimal surfaces and an
extension of Bernstein’s theorem. Ann. of Math. (2) 84 (1966), 277–292.

[9] F. J. Jr. Almgren, Existence and regularity almost everywhere of solutions to
elliptic variational problems with constraints. Mem. Amer. Math. Soc. 4 (1976),
no. 165, viii+199 pp.

[10] F. J. Jr. Almgren,Q-valued functions minimizing Dirichlet’s integral and the reg-
ularity of area minimizing rectifiable currents up to codimension two. Bull. Amer.
Math. Soc. (N.S.) 8 (1983), 327–328.

[11] F. J. Jr. Almgren, Almgren’s big regularity paper.Q-valued functions minimizing
Dirichlet’s integral and the regularity of area-minimizing rectifiable currents up to
codimension 2. With a preface by Jean E. Taylor and Vladimir Scheffer. Monogr.
Ser. Math. 1, World Scientific, River Edge, NJ, 2000.

[12] C. Bellettini, Almost complex structures and calibrated integral cycles in contact
5-manifolds. Adv. Calc. Var. 6 (2013), 339–374.

[13] C. Bellettini and T. Rivière, The regularity of special Legendrian integral cycles.
Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 11 (2012), 61–142.

[14] A. S. Besicovitch, On the fundamental geometrical properties of linearly measur-
able plane sets of points. Math. Ann. 98 (1928), 422–464.

906 C. De Lellis



[15] A. S. Besicovitch, On the fundamental geometrical properties of linearly measur-
able plane sets of points II. Math. Ann. 115 (1938), 296–329.

[16] A. S. Besicovitch, On the fundamental geometrical properties of linearly measur-
able plane sets of points III. Math. Ann. 116 (1939), 349–357.

[17] E. Bombieri, E. De Giorgi, and E. Giusti, Minimal cones and the Bernstein
problem. Invent. Math. 7 (1969), 243–268.

[18] R. Caccioppoli, Misura e integrazione sugli insiemi dimensionalmente orientati.
Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. (8) 12 (1952), 3–11.

[19] R. Caccioppoli, Misura e integrazione sugli insiemi dimensionalmente orientati II.
Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. (8) 12 (1952), 137–146.

[20] S. X. Chang, Two-dimensional area minimizing integral currents are classical
minimal surfaces. J. Amer. Math. Soc. 1 (1988), 699–778.

[21] O. Chodosh and C. Mantoulidis, Minimal surfaces and the Allen-Cahn equation
on 3-manifolds: index, multiplicity, and curvature estimates. Ann. of Math. (2) 191
(2020), 213–328.

[22] T. H. Colding and C. De Lellis, The min–max construction of minimal surfaces.
In Surveys in differential geometry, Vol. VIII, Int. Press, Somerville, MA, 2003.

[23] M. Colombo, N. Edelen, and L. Spolaor, The singular set of minimal surfaces
near polyhedral cones. 2017, arXiv:1709.09957.

[24] M. Colombo, L. Spolaor, and B. Velichkov, (Log)-epiperimetric inequality
and regularity over smooth cones for almost area-minimizing currents. 2018,
arXiv:1802.00418.

[25] G. David, Should we solve Plateau’s problem again? In Advances in analysis: the
legacy of Elias M. Stein, pp. 108–145, Princeton Math. Ser. 50, Princeton Univ.
Press, Princeton, NJ, 2014.

[26] G. David, A local description of 2-dimensional almost minimal sets bounded by a
curve. 2019, arXiv:1901.10701.

[27] G. David, Local regularity properties of almost- and quasiminimal sets with a
sliding boundary condition. Astérisque 411 (2019), ix+377 pp.

[28] G. David, Sliding almost minimal sets and the Plateau problem. In Harmonic
analysis and applications, pp. 199–256, IAS/Park City Math. Ser. 27, Amer.
Math. Soc., Providence, RI, 2020.

[29] E. De Giorgi, Su una teoria generale della misura .r � 1/-dimensionale in uno
spazio ad r dimensioni. Ann. Mat. Pura Appl. (4) 36 (1954), 191–213.

[30] E. De Giorgi, Nuovi teoremi relativi alle misure .r � 1/-dimensionali in uno
spazio ad r dimensioni. Ric. Mat. 4 (1955), 95–113.

[31] E. De Giorgi, Sulla proprietà isoperimetrica dell’ipersfera, nella classe degli
insiemi aventi frontiera orientata di misura finita. Atti Accad. Naz. Lincei, Mem.
Cl. Sci. Fis. Mat. Nat., Sez. Ia (8) 5 (1958), 33–44.

[32] E. De Giorgi, Frontiere orientate di misura minima. Semin. Mat. Sc. Norm.
Super. Pisa, Editrice Tecnico Scientifica, Pisa, 1961.

907 The regularity theory for the area functional (in geometric measure theory)

https://arxiv.org/abs/1709.09957
https://arxiv.org/abs/1802.00418
https://arxiv.org/abs/1901.10701


[33] E. De Giorgi, Una estensione del teorema di Bernstein. Ann. Sc. Norm. Super.
Pisa Cl. Sci. (3) 19 (1965), 79–85.

[34] C. De Lellis, G. De Philippis, and J. Hirsch, Nonclassical minimizing surfaces
with smooth boundary. 2019, arXiv:1906.09488. To appear in J. Differential
Geom.

[35] C. De Lellis, G. De Philippis, J. Hirsch, and A. Massaccesi, On the boundary
behavior of mass-minimizing integral currents. 2018, arXiv:1809.09457. To
appear in Mem. Amer. Math. Soc.

[36] C. De Lellis, A. De Rosa, and F. Ghiraldin, A direct approach to the anisotropic
Plateau problem. Adv. Calc. Var. 12 (2019), 211–223.

[37] C. De Lellis, F. Ghiraldin, and F. Maggi, A direct approach to Plateau’s problem.
J. Eur. Math. Soc. (JEMS) 19 (2017), 2219–2240.

[38] C. De Lellis, J. Hirsch, A. Marchese, L. Spolaor, and S. Stuvard, in preparation.
[39] C. De Lellis, J. Hirsch, A. Marchese, L. Spolaor, and S. Stuvard, in preparation.
[40] C. De Lellis, J. Hirsch, A. Marchese, L. Spolaor, and S. Stuvard, Area mini-

mizing hypersurfaces modulo p: a geometric free-boundary problem. 2021,
arXiv:2105.08135.

[41] C. De Lellis, J. Hirsch, A. Marchese, and S. Stuvard, Area-minimizing currents
mod 2Q: linear regularity theory. 2019, arXiv:1909.03305. To appear in Comm.
Pure Appl. Math.

[42] C. De Lellis, J. Hirsch, A. Marchese, and S. Stuvard, Regularity of area mini-
mizing currents mod p. Geom. Funct. Anal. 30 (2020), 1224–1336.

[43] C. De Lellis, S. Nardulli, and S. Steinbrüchel, An Allard-type boundary regularity
theorem for 2d minimizing currents at smooth curves with arbitrary multiplicity.
2021, arXiv:2111.02991

[44] C. De Lellis, S. Nardulli, and S. Steinbrüchel, Uniqueness of tangent cones at the
boundary for 2-dimensional area-minimizing currents. 2021, arXiv:2111.02981

[45] C. De Lellis and J. Ramic, Min–max theory for minimal hypersurfaces with
boundary. Ann. Inst. Fourier (Grenoble) 68 (2018), 1909–1986.

[46] C. De Lellis and A. Skorobogatova, in preparation.
[47] C. De Lellis and E. N. Spadaro,Q-valued functions revisited. Mem. Amer. Math.

Soc. 211 (2011), no. 991, vi+79 pp.
[48] C. De Lellis and E. N. Spadaro, Regularity of area minimizing currents I: gradient

Lp estimates. Geom. Funct. Anal. 24 (2014), 1831–1884.
[49] C. De Lellis and E. N. Spadaro, Multiple valued functions and integral currents.

Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 14 (2015), 1239–1269.
[50] C. De Lellis and E. N. Spadaro, Regularity of area minimizing currents II: center

manifold. Ann. of Math. (2) 183 (2016), 499–575.
[51] C. De Lellis and E. N. Spadaro, Regularity of area minimizing currents III: blow-

up. Ann. of Math. (2) 183 (2016), 577–617.

908 C. De Lellis

https://arxiv.org/abs/1906.09488
https://arxiv.org/abs/1809.09457
https://arxiv.org/abs/2105.08135
https://arxiv.org/abs/1909.03305
https://arxiv.org/abs/2111.02991
https://arxiv.org/abs/2111.02981


[52] C. De Lellis, E. N. Spadaro, and L. Spolaor, Regularity theory for 2-dimensional
almost minimal currents II: branched center manifold. Ann. PDE 3 (2017), no. 2,
18.

[53] C. De Lellis, E. N. Spadaro, and L. Spolaor, Uniqueness of tangent cones for two-
dimensional almost-minimizing currents. Comm. Pure Appl. Math. 70 (2017),
1402–1421.

[54] C. De Lellis, E. N. Spadaro, and L. Spolaor, Regularity theory for 2-dimensional
almost minimal currents I: Lipschitz approximation. Trans. Amer. Math. Soc. 370
(2018), 1783–1801.

[55] C. De Lellis, E. N. Spadaro, and L. Spolaor, Regularity theory for 2-dimensional
almost minimal currents III: blowup. J. Differential Geom. 116 (2020), 125–185.

[56] C. De Lellis and D. Tasnady, The existence of embedded minimal hypersurfaces.
J. Differential Geom. 95 (2013), 355–388.

[57] G. De Philippis, A. De Rosa, and F. Ghiraldin, A direct approach to Plateau’s
problem in any codimension. Adv. Math. 288 (2016), 59–80.

[58] G. De Philippis, A. De Rosa, and F. Ghiraldin, Existence results for minimizers of
parametric elliptic functionals. J. Geom. Anal. 30 (2020), 1450–1465.

[59] L. C. Evans and R. F. Gariepy, Measure theory and fine properties of functions.
Revised edition. Textb. Math., CRC Press, Boca Raton, 2015.

[60] Y. Fang and S. Kolasinski, Existence of solutions to a general geometric elliptic
variational problem. Calc. Var. Partial Differential Equations 57 (2018), no. 3, 91.

[61] H. Federer, The .'; k/ rectifiable subsets of n-space. Trans. Amer. Math. Soc. 62
(1947), 114–192.

[62] H. Federer, Geometric measure theory. Grundlehren Math. Wiss. 153, Springer,
New York, 1969.

[63] H. Federer, The singular sets of area minimizing rectifiable currents with codi-
mension one and of area minimizing flat chains modulo two with arbitrary codi-
mension. Bull. Amer. Math. Soc. 76 (1970), 767–771.

[64] H. Federer and W. H. Fleming, Normal and integral currents. Ann. of Math. (2) 72
(1960), 458–520.

[65] W. H. Fleming, On the oriented Plateau problem. Rend. Circ. Mat. Palermo (2) 11
(1962), 69–90.

[66] W. H. Fleming, Flat chains over a finite coefficient group. Trans. Amer. Math. Soc.
121 (1966), 160–186.

[67] N. Garofalo and F.-H. Lin, Monotonicity properties of variational integrals, Ap

weights and unique continuation. Indiana Univ. Math. J. 35 (1986), 245–268.
[68] R. M. Hardt, On boundary regularity for integral currents or flat chains modulo

two minimizing the integral of an elliptic integrand. Comm. Partial Differential
Equations 2 (1977), 1163–1232.

[69] R. Hardt and L. Simon, Boundary regularity and embedded solutions for the ori-
ented Plateau problem. Ann. of Math. (2) 110 (1979), 439–486.

909 The regularity theory for the area functional (in geometric measure theory)



[70] R. Hardt and L. Simon, Nodal sets for solutions of elliptic equations. J. Differen-
tial Geom. 30 (1989), 505–522.

[71] J. Harrison, Soap film solutions of Plateau’s problem. J. Geom. Anal. 24 (2014),
271–297.

[72] J. Harrison and H. Pugh, Existence and soap film regularity of solutions to
Plateau’s problem. 2013, arXiv:1310.0508.

[73] J. Hirsch, Boundary regularity of Dirichlet minimizingQ-valued functions. Ann.
Sc. Norm. Super. Pisa Cl. Sci. (5) 16 (2016), 1353–1407.

[74] J. Hirsch and M. Marini, Uniqueness of tangent cones to boundary points of two-
dimensional almost-minimizing currents. 2019, arXiv:1909.13383.

[75] D. Ketover, Genus bounds for min–max minimal surfaces. J. Differential Geom.
112 (2019), 555–590.

[76] D. King, F. Maggi, and S. Stuvard, Plateau’s problem as a singular limit of capil-
larity problems. 2019, arXiv:1907.00551.

[77] D. King, F. Maggi, and S. Stuvard, Collapsing and the convex hull property in a
soap film capillarity model. 2020, arXiv:2002.06273.

[78] D. King, F. Maggi, and S. Stuvard, Smoothness of collapsed regions in a capil-
larity model for soap films. 2020, arXiv:2007.14868.

[79] J. L. Lagrange, Essai d’une nouvelle méthode pour determiner les maxima et les
minima des formules integrales indefinies. Misc. Taurinensis 2 (1760), no. 325,
173–199.

[80] G. Lawlor and F. Morgan, Curvy slicing proves that triple junctions locally mini-
mize area. J. Differential Geom. 44 (1996), 514–528.

[81] Y. Liokumovich, F. C. Marques, C. Fernando, and A. Neves, Weyl law for the
volume spectrum. Ann. of Math. (2) 187 (2018), 933–961.

[82] Z. Liu, Calibrated area-minimizing surfaces with a fractal singular set. 2021,
arXiv:2110.13137

[83] Z. Liu, Every finite graph arises as the singular set of a compact 3-d calibrated
area minimizing surface. 2021, arXiv:2106.03199.

[84] A. Logunov, Nodal sets of Laplace eigenfunctions: proof of Nadirashvili’s con-
jecture and of the lower bound in Yau’s conjecture. Ann. of Math. (2) 187 (2018),
241–262.

[85] F. Maggi, S. Stuvard, and A. Scardicchio, Soap films with gravity and almost-
minimal surfaces. Discrete Contin. Dyn. Syst. 39 (2019), 6877–6912.

[86] F. C. Marques and A. Neves, Min–max theory and the Willmore conjecture. Ann.
of Math. (2) 179 (2014), 683–782.

[87] F. C. Marques, A. Neves, and A. Song, Equidistribution of minimal hypersurfaces
for generic metrics. Invent. Math. 216 (2019), 421–443.

[88] P. Mattila, Geometry of sets and measures in Euclidean spaces. Fractals and
rectifiability. Cambridge Stud. Adv. Math. 44, Cambridge University Press, Cam-
bridge, 1995.

910 C. De Lellis

https://arxiv.org/abs/1310.0508
https://arxiv.org/abs/1909.13383
https://arxiv.org/abs/1907.00551
https://arxiv.org/abs/2002.06273
https://arxiv.org/abs/2007.14868
https://arxiv.org/abs/2110.13137
https://arxiv.org/abs/2106.03199


[89] P. Minter, The structure of stable codimension one integral varifolds near classical
cones of density 5

2
. 2021, arXiv:2108.02614.

[90] P. Minter and N. Wickramasekra, A Structure Theory for Stable Codimension 1
Integral Varifolds with Applications to Area Minimising Hypersurfaces mod p.
2021, arXiv:2111.11202

[91] F. Morgan, Geometric measure theory. A beginner’s guide. Fifth edn. Else-
vier/Academic Press, Amsterdam, 2016.

[92] A. P. Morse and J. F. Randolph, The �-rectifiable subsets of the plane. Trans.
Amer. Math. Soc. 55 (1944), 236–305.

[93] A. Naber and D. Valtorta, Rectifiable-Reifenberg and the regularity of stationary
and minimizing harmonic maps. Ann. of Math. (2) 185 (2017), 131–227.

[94] A. Naber and D. Valtorta, The singular structure and regularity of stationary vari-
folds. J. Eur. Math. Soc. (JEMS) 22 (2020), 3305–3382.

[95] J. T. Pitts, Existence and regularity of minimal surfaces on Riemannian manifolds.
Math. Notes 27, Princeton University Press, Princeton, NJ, 1981.

[96] E. R. Reifenberg, Solution of the Plateau Problem for m-dimensional surfaces of
varying topological type. Acta Math. 104 (1960), 1–92.

[97] E. R. Reifenberg, An epiperimetric inequality related to the analyticity of minimal
surfaces. Ann. of Math. (2) 80 (1964), 1–14.

[98] E. R. Reifenberg, On the analyticity of minimal surfaces. Ann. of Math. (2) 80
(1964), 15–21.

[99] T. Rivière, A lower-epiperimetric inequality for area-minimizing surfaces. Comm.
Pure Appl. Math. 57 (2004), 1673–1685.

[100] T. Rivière and G. Tian, The singular set of J -holomorphic maps into projective
algebraic varieties. J. Reine Angew. Math. 570 (2004), 47–87.

[101] T. Rivière and G. Tian, The singular set of 1–1 integral currents. Ann. of Math. (2)
169 (2009), 741–794.

[102] R. Schoen and L. Simon, Regularity of stable minimal hypersurfaces. Comm.
Pure Appl. Math. 34 (1981), 741–797.

[103] R. Schoen, L. Simon, and S. T. Yau, Curvature estimates for minimal hypersur-
faces. Acta Math. 134 (1975), 275–288.

[104] L. Simon, Lectures on geometric measure theory. Proc. Centre Math. Anal. Aus-
tral. Nat. Univ. 3, The Australian National University, Canberra, 1983.

[105] L. Simon, Asymptotics for a class of nonlinear evolution equations, with applica-
tions to geometric problems. Ann. of Math. (2) 118 (1983), 525–571.

[106] L. Simon, Cylindrical tangent cones and the singular set of minimal submanifolds.
J. Differential Geom. 38 (1993), 585–652.

[107] L. Simon, Uniqueness of some cylindrical tangent cones. Comm. Anal. Geom. 2
(1994), 1–33.

[108] L. Simon, Rectifiability of the singular sets of multiplicity 1 minimal surfaces and
energy minimizing maps. In Surveys in differential geometry, Vol. II, pp. 246–305,
Int. Press, Cambridge, MA, 1995.

911 The regularity theory for the area functional (in geometric measure theory)

https://arxiv.org/abs/2108.02614
https://arxiv.org/abs/2111.11202


[109] L. Simon, Theorems on regularity and singularity of energy minimizing maps.
Based on lecture notes by Norbert Hungerbühler. Lectures Math. ETH Zürich,
Birkhäuser, Basel, 1996.

[110] L. Simon, A Liouville-type theorem for stable minimal hypersurfaces. 2021,
arXiv:2101.06404.

[111] L. Simon, Stable minimal hypersurfaces in RN C1C` with singular set an arbitrary
closed K in ¹0º � R`. 2021, arXiv:2101.06401.

[112] J. Simons, Minimal varieties in Riemannian manifolds. Ann. of Math. (2) 88
(1968), 62–105.

[113] L. Spolaor, Almgren’s type regularity for semicalibrated currents. Adv. Math. 350
(2019), 757–815.

[114] G. Székelyhidi, Uniqueness of certain cylindrical tangent cones. 2020,
arXiv:2012.02065.

[115] G. Székelyhidi, Minimal hypersurfaces with cylindrical tangent cones. 2021,
arXiv:2107.14786.

[116] J. E. Taylor, Regularity of the singular sets of two-dimensional area-minimizing
flat chains modulo 3 in R3. Invent. Math. 22 (1973), 119–159.

[117] J. E. Taylor, The structure of singularities in soap-bubble-like and soap-film-like
minimal surfaces. Ann. of Math. (2) 103 (1976), 489–539.

[118] B. White, The structure of minimizing hypersurfaces mod 4. Invent. Math. 53
(1979), 45–58.

[119] B. White, Tangent cones to two-dimensional area-minimizing integral currents are
unique. Duke Math. J. 50 (1983), 143–160.

[120] B. White, Regularity of the singular sets in immiscible fluid interfaces and solu-
tions to other Plateau-type problems. In Miniconference on geometry and partial
differential equations (Canberra, 1985), pp. 244–249, Proc. Centre Math. Anal.
Austral. Nat. Univ. 10, Austral. Nat. Univ., Canberra, 1986.

[121] B. White, A regularity theorem for minimizing hypersurfaces modulo p. In
Geometric measure theory and the calculus of variations (Arcata, CA, 1984),
pp. 413–427, Proc. Sympos. Pure Math. 44, Amer. Math. Soc., Providence, RI,
1986.

[122] B. White, Classical area minimizing surfaces with real-analytic boundaries. Acta
Math. 179 (1997), 295–305.

[123] B. White, Stratification of minimal surfaces, mean curvature flows, and harmonic
maps. J. Reine Angew. Math. 488 (1997), 1–35.

[124] N. Wickramasekera, A general regularity theory for stable codimension 1 integral
varifolds. Ann. of Math. (2) 179 (2014), 843–1007.

[125] L. C. Young, Some extremal questions for simplicial complexes. V. The relative
area of a Klein bottle. Rend. Circ. Mat. Palermo (2) 12 (1963), 257–274.

[126] L. C. Young, Lectures on the calculus of variations and optimal control theory.
W. B. Saunders Co., Philadelphia–London–Toronto, ON, 1969.

912 C. De Lellis

https://arxiv.org/abs/2101.06404
https://arxiv.org/abs/2101.06401
https://arxiv.org/abs/2012.02065
https://arxiv.org/abs/2107.14786


[127] X. Zhou and J. Zhu, Min–max theory for constant mean curvature hypersurfaces.
Invent. Math. 218 (2019), 441–490.

Camillo De Lellis

School of Mathematics, Institute for Advanded Study, 1 Einstein Drive, Princeton,
NJ 08540, USA, camillo.delellis@ias.edu

913 The regularity theory for the area functional (in geometric measure theory)

mailto:camillo.delellis@ias.edu


A mathematical
perspective of
machine learning
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Abstract

What lies at the heart of modern neural network-based machine learning is the ability to
approximate very high dimensional functions with good accuracy. This opens up two
major avenues of research. The first is to develop machine learning-based algorithms for
scientific problems that suffer from the curse of dimensionality. The second is to build a
theoretical framework that helps us to form a better foundation for machine learning. For
the latter, the most important questions that need to be addressed include: Why do neural
network models work so well in high dimension? Why does their performance depend so
sensitively on the choice of the hyperparameters? Can we develop more robust and equally
accurate new machine learning models and algorithms? In this article, we review some of
the major progresses made in these directions.
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1. Introduction

Supervised learning. We begin with the simplest task in machine learning (ML), super-
vised learning. The goal is to approximate an unknown target function from a finite train-
ing dataset. Denote by f � W X D Œ0; 1�d ! R the target function. Let S D ¹.xj ; yj D

f �.xj //; j 2 Œn� D ¹1; 2; : : : ; nºº be the available dataset. Our objective is to approxi-
mate f � as accurately as we can. This usually means that we would like to minimize the
population risk in a given function class:

R.f / D E
�
f .x/ � f �.x/

�2
D

Z
X

�
f .x/ � f �.x/

�2
d�;

where � is a given probability distribution on X .
A typical supervised learning algorithm consists of the following three major com-

ponents:

� Defining a hypothesis space. This is a set of functions that we use to approxi-
mate f �. It is the analog of the finite element trial function space, except that in
modern ML, we typically use neural network functions as the trial functions. We
will use Hm to denote the hypothesis space where m is roughly the dimension
of Hm. We denote the functions in Hm generically as f .�; �/ and we use � to
parametrize the functions in Hm.

� Setting up an optimization problem for finding the optimal parameters. Though
we are interested in minimizing the population risk, in practice we have to work
with the empirical risk (or its variants):

Rn.�/ D
1

n

X
j

�
f .xj ; �/ � yj

�2
D

1

n

X
j

�
f .xj ; �/ � f �.xj /

�2

or, more generally,
Rn.�/ D

1

n

X
j

j̀ .�/;

where the term j̀ is the loss for the j th data point. Regularization terms are
sometimes added to this expression. The population and empirical risks are more
commonly referred to as the training and testing errors, respectively.
The difference between the true objective, the population risk, and the objective
function that we work with in practice, the empirical risk, is an important issue
that differentiates the optimization problems in ML from those in other settings.

� Solving this optimization problem. The simplest idea is to use the gradient descent
algorithm (GD),

�kC1 D �k � �rRn.�k/ D �k � �
1

n

X
j

r j̀ .�k/;

where � is called the learning rate. Since the full gradient is an average over all
training samples and is costly to evaluate, in practice, one often randomly selects
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one term in that average and uses it instead of the full gradient. This leads to the
stochastic gradient descent algorithm (SGD),

�kC1 D �k � �r j̀k
.�k/;

where j1; j2; : : : are i.i.d. random variables uniformly drawn from ¹1; 2; : : : ; nº.
One of the main mysteries in ML is that SGD is not only more efficient than GD,
it often leads to a smaller test error.

How do we choose the hypothesis space? In classical numerical algorithms, we
choose polynomials, piecewise polynomials, wavelets, and the like. In linear regression, we
choose functions of the form f .x/ D ˇ � x C ˇ0, where ˇ and ˇ0 are the parameters to be
found. Neural network models are the most popular choice in modern ML. A simple neural
networkmodel takes the form f .x/ D

P
k ak�.wk � x C ck/, where � is some scalar nonlin-

ear function, called the activation function. Popular choices of � include �.x/ D max.x; 0/,
the ReLU (rectified linear units) function, and �.x/ D .1 C e�x/�1, the sigmoid function.
This is called a two-layer neural network model since there are two affine transformations
(represented by the parameters ¹akº and ¹wkº, respectively) involved. As is usually the case
in ML, we have neglected the constant terms in the affine transformations. To include them,
one can think of x as being .xT ; 1/T and change the dimensionality accordingly. We will
adopt this convention throughout this report. Multilayer neural network models, or deep
neural networks (DNN), are formed by compositions of functions of the form above:

f .x; �/ D WL� ı
�
WL�1� ı

�
� � � � ı .W0x/

��
; � D .W0; W1; : : : ; WL/:

Here the W ’s are vectors or matrices, “ı” means that the scalar function is applied to each
component of the vector. In practice, it has been found that training such networks is often
quite hard when L is large due to the exploding or vanishing gradient problem [50]: The
gradient with respect to the parameters either grows or diminishes fast as L, the number
of layers or the depth, increases. This problem is very much alleviated if one switches to a
residual form:

z0.x/ D Vx;

zlC1.x/ D zl .x/ C Ul� ı
�
Wlzl .x/

�
; l D 0; 1; : : : ; L � 1;

(1.1)

and f .x; �/ D ˛ � zL.x/ for some vector ˛. This is the residual neural network model, or
the ResNet model [48]. The issue of exploding or vanishing gradients has been analyzed for
DNNs in [47], but we still lack a rigorous mathematical analysis for ResNets.

In addition to supervised learning, there are two other major subjects in classical
machine learning:

� unsupervised learning, which is mainly concerned with finding some aspects of
an underlying probability distribution using a finite sample;

� reinforcement learning, which is about finding the optimal strategy for aMarkov
decision process [93].

Deep neural network-based ML is commonly referred to as deep learning [62,85].
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Deep learning is a very powerful tool. In the last ten years or so, deep learning has achieved
tremendous success for a wide variety of problems. The most representative example is in
computer vision, e.g., the classification of images. Typically, the images are labeled into
several different categories according to the content of each image. Our task is to predict the
correct category for images of the same kind. This is a supervised learning problem where
the target function is the mapping from each image to its content, i.e., the category of that
image.1

Another example is generating extremely real-looking pictures of fake human
faces.2 Using pictures of real human faces as samples, generative ML models can produce
new samples which are pictures of fake human faces. This is an example of unsupervised
learning. We can view pictures of human faces as being a random variable in the spaces of
images. The probability distribution of that random variable is unknown to us. But we do
know some samples of that probability distribution, namely the pictures of real human faces.
From that sample, one can approximate the underlying probability distribution sufficiently
accurately that one can produce new samples. These new samples are the pictures of fake
human faces.

The best known example of reinforcement learning is AlphaGo [90]. Given the strat-
egy of the opponent, the Go game can be formulated as a Markov decision process whose
optimal strategy satisfies the underlying Bellman equation. What AlphaGo did was to solve
that Bellman equation approximately for an increasingly better opponent.

Approximating functions, probability distributions, and solutions of difference or
differential equations are among the most common tasks in computational mathematics. One
is naturally led to ask: What is different in the tasks described above from those that are
commonly done in mathematics? One most important difference is the dimensionality of the
problems. Take the CIFAR-10 dataset as an example. We can view each image as being a
point in a d D 32 � 32 � 3 D 3072-dimensional space, counting the number of pixels and
the dimensionality of the color space. Classical algorithms in computational mathematics
are not able to handle problems in such high dimension.

The curse of dimensionality. To see this more clearly, let us take a look at a typical result
in classical approximation theory, the approximation by piecewise linear functions over a
regular mesh. Let h be the typical size of the mesh. Then we have

inf
f 2Hm

f �
� f


L2.X/

� Cd h2
f �


H 2.X/

� Cd m�2=d
f �


H 2.X/

;

where kf �kH 2.X/ is the Sobolev norm of f �. If we want to reduce the error by a factor of 10,
we need to reduce h by a factor of

p
10 and increase m by a factor of 10d=2. For d D 3072,

this is truly a huge number.

1 See, for example, https://www.cs.toronto.edu/~kriz/cifar.html.
2 See, for example, https://machinelearningmastery.com/resources-for-getting-started-with-

generative-adversarial-networks/.
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The problem described here is referred to as the curse of dimensionality (CoD):
As dimensionality grows, computational cost grows exponentially. This phenomenon is
common to all classical algorithms, such as algorithms based on fixed meshes and wavelets.

CoD has been a major obstacle for many problems in science and engineering,
including quantum and classical many-body problems, dynamic programming and control
problems, and nonparametric statistics. Before deep learning, many approximate algorithms
and models have been developed to bypass the CoD problems. The most well-known ones
include the Hartree and Hartree–Fock approximation in quantummechanics, the generalized
linear models in statistics, and approximate dynamic programming models. Although these
models are heavily used in practice, we lack systematic ways to improve their accuracy. It
is fair to say that deep learning seems to be the first general methodology that is capable of
handling a large class of such problems with satisfactory accuracy.

2. Deep learning-based algorithms for problems in

scientific computing

Deep learning has been very successful for many high-dimensional problems in
computer vision and natural language processing [62]. It is natural to ask whether it can be
used to solve high-dimensional problems in other areas such as scientific computing and
computational science. This has indeed been a very active research area since 2016. Below
we briefly review some representative progresses in this direction.

2.1. Control problems
The first successful application of deep learning to problems in scientific computing

was presented in [43] for stochastic control problems. Consider the stochastic dynamic model

zlC1 D zl C gl .zl ; ul / C �l ; (2.1)

where zl , ul , �l denotes the state of the system, the control, and the noise at step l , respec-
tively. Our objective is

min
¹ul ºT �1

lD0

E¹�l º

´
T �1X
lD0

cl

�
zl ; ul .zl /

�
C cT .zT /

µ
: (2.2)

We are interested in looking for the feedback control (or closed-loop control)

ul D ul .z/;

and we will approximate this function by some neural network model (the details of the
network model is not important for this discussion)

ul .z/ � Qul .zj�l /; l D 0; : : : ; T � 1:

With this approximation, the optimization problem becomes

min
¹�l ºT �1

lD0

E¹�l º

´
T �1X
lD0

cl

�
zl ; Qul .zl j�l /

�
C cT .zT /

µ
: (2.3)
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This was the first example on developing deep learning-based algorithms for prob-
lems in scientific computing. The motivation for using this as the first example was the close
similarity between stochastic control problems andResNet-based deep learning: the dynamic
model (2.1) in the control problem plays the role of the ResNet, the objective function (2.2)
plays the role of the empirical risk and the random noise in (2.1) plays the role of the training
data. Using this analogy, Han and E developed an SGD and neural network-based algorithm
for the stochastic control problem and demonstrated that it can readily handle very high
dimensional problems [43]. The neural network model used was a composite network, with
the control at each step represented by a subnetwork.

Subsequently, there have been many developments on deep learning-based algo-
rithms for control problems. For a survey of the activities in this area, we refer to the UCLA
IPAMworkshop in the Spring of 2020.Wemention in particular the extension to determinis-
tic control problems in [77]. These developments have demonstrated adequately the potential
of deep learning-based algorithms for solving real world control problems. Yet there are still
serious work to be done to fully realize that potential in practice. There are two main obsta-
cles. The first is that we often lack reliable dynamic models for the practical problems we are
interested in. The second is the robustness of the deep learning-based algorithms in realistic
settings.

2.2. High-dimensional partial differential equations
Motivated by the success for control problems, E, Han, and Jentzen developed deep

learning-based algorithms for nonlinear parabolic partial differential equations (PDEs). The
idea is to use backward stochastic differential equations (BSDEs) to reformulate the nonlin-
ear PDE as a control-like problem, and then follow similar strategies for stochastic control
problems [26,44].

Consider the initial value problem
@v

@t
D

1

2
��T

W r
2v C � � rv C f .�T

rv/; v.0; x/ D g.x/:

It is better to turn this into a terminal value problem by reversing the direction of time. Let
u.t; �/ D v.T � t; �/. Then the problem above becomes

@u

@t
C

1

2
��T

W r
2u C � � ru C f .�T

ru/ D 0; u.T; x/ D g.x/:

One can reformulate this as a stochastic optimization problem using BSDEs [78]:

inf
Y0;¹Zt º0�t�T

E
ˇ̌
g.XT / � YT

ˇ̌2
; (2.4)

such that Xt D X0 C

Z t

0

�.s; Xs/ ds C

Z t

0

�.s; Xs/ dWs; (2.5)

Yt D Y0 �

Z t

0

f .Zs/ ds C

Z t

0

.Zs/T dWs : (2.6)

It can be shown that both problems have unique solutions and these solutions are related to
each other by [79]

Yt D u.t; Xt / and Zt D �T .t; Xt / ru.t; Xt /: (2.7)
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Problem (2.4) is very much like a stochastic control problem and one can then
develop algorithms using ideas similar to those described above. The resulted algorithm,
the Deep BSDE method, has turned out to be an elegant and powerful tool for solving (non-
linear) Black–Scholes equations in finance, Hamilton–Jacobi–Bellman equations, as well as
BSDEs. See [27] for a review.

In the Deep BSDE method, much effort has gone into the reformulation of the PDE
problem as a control-like problem, in order to explore the intrinsic structure of the underlying
problem. In the opposite direction, [82,91] developed strategies that are “foolproof.” The idea
is to use least squares and formulate the PDE and boundary condition as an optimization
problem, and then more or less blindly apply ML to that optimization problem [82,91]. This
has become quite popular in applied mathematics since it offers applied mathematicians a
way to gain experience in deep learning by playing with the problems they are familiar with.

2.3. Parametrizing solutions of differential equations
Another idea is to explore the representative power of deep neural network models

and parametrize solutions of PDEs as a functional of the coefficients and boundary data. This
was first demonstrated by Khoo, Lu, and Ying for the Schrödinger equation with random
potential [59]. For a more systematic development along this direction, we refer to [66].

In contrast to most other applications in which the object of interest is a function
(though maybe in high dimension), in this setting, the object of interest is an operator on
an infinite-dimensional space. This raises new mathematical issues beyond those discussed
below.

2.4. Molecular dynamics
In molecular dynamics, we model the dynamic trajectory of each atom in a material

or a molecule by solving the Newton’s equation

mi

d 2xi

dt2
D �rxi

V; V D V.x1; x2; : : : ; xi ; : : : ; xN /;

wheremi , xi are the mass and position of the i th atom, respectively. The key question is how
to model the potential energy function V that describes the interaction between the atoms.
Traditionally, this has been modeled either empirically or by solving quantum mechanics-
based models, such as density functional theory, on the fly computing the forces between
the atoms [12,22]. Neither is satisfactory: the empirical approach is unreliable; the on-the-fly
quantum mechanics-based approach is expensive and limited to systems with only hundreds
or thousands of atoms.

With the advent of ML, we can contemplate a new paradigm in which quantum
mechanics models are used to provide data, from which one can learn a highly accurate
potential energy function, which can then be used to perform molecular dynamics. Such a
paradigm was first proposed in [9]. One of the most successful examples of such a model is
the Deep Potential models developed in [45,110] (see Figure 1). Using high performance com-
puting resources, one can perform molecular dynamics calculation with ab initio accuracy
for systems with hundreds of millions atoms [54].
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Figure 1

Comparison of the accuracy of the energies predicted by the Deep Potential model and density functional theory
for different kinds of systems [110].

With the Deep Potential model, one can do many things that were either impossible
or very difficult before. Examples include complex reaction processes in combustion [109],
crystal nucleation of liquid silicon [10], liquid–liquid phase transition of water [38], one-
dimensional cooperative diffusion in a three-dimensional crystal [98], structural order in
quasicrystal growth [42], and the phase diagram of water [112].

2.5. Multiscale modeling
It has long been recognized that multiscale modeling can be a very effective tool

in computational science and engineering (see Figure 2). However, its practical usage has
been hampered by our inadequate ability to analyze the data obtained from the underlying
microscopic model [22]. This is exactly where ML can help. Indeed ML-based ab initio
molecular dynamics is an example of the application of ML to multiscale modeling. Besides
molecular dynamics, ML-based multiscale models have been developed for density func-
tional theory, coarse-grained molecular dynamics, moment closure models for the kinetic
equations, hydrodynamic models for non-Newtonian fluids, etc. There is no doubt that this
will continue to be a very fruitful line of research.
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Figure 2

The hierarchy of multiscale physical models.

Most if not all existing applications ofML tomultiscalemodeling belong to the class
of sequential multiscale modeling [22], i.e., ML algorithms are used at the pre-computing
stage to obtain accurate coarse-grained models. One is naturally led to ask: How can we
develop reliable and interpretable new physical models using ML? There are three most
important issues involved here [28]:

� The first is how to collect the training data. The training dataset needs to be rep-
resentative enough of all the practical situations that the model is intended for,
yet at the same time, it needs to be as small as possible since each data point
usually involves solving the microscale model. For this purpose, Zhang et al.
developed the ELT (exploration–labeling–training) algorithm and it has been suc-
cessfully applied to molecular dynamics and coarse-grained molecular dynamics
[28,111,113].

� The second issue is the starting point of the new physical model. To be inter-
pretable, it usually helps to formulate the new physical model as some kind of pro-
jection of the underlying microscale model. An example is the moment-closure
model for the kinetic equation. The projection scheme, or the coarse-grained
model, should not violate the physical conservation laws in the problem.
To formulate this projection scheme, one needs to know the set of coarse-grained
variables. In principle, ML can also be a very powerful tool for this purpose. In
practice, this is still a relatively unexplored area.

� The projected model is usually not closed and involves terms that need to be mod-
eled. These terms are analogous to the constitutive relations in classical models
such as the Navier–Stokes equation. This situation is very similar to that of the
heterogeneous multiscale method [22,25]. The third issue is therefore to formulate
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MLmodels for the unclosed terms in the coarse-grained model. To do so, one has
to take into account physical constraints such as the symmetries in the system.

For a discussion of these issues, we refer to [28].

2.6. The many-electron Schrödinger equation
The many-electron Schrödinger equation in quantum mechanics is a notoriously

hard problem not only due to its high dimensionality but also the fact that its solution must
satisfy the Pauli exclusion principle, i.e., the wave-function must be antisymmetric. It is also
arguably the most fundamental problem in computational science since it represents the true
first principle. This latter feature is becoming increasingly more clear due to the advance of
ML-based algorithms and the Schrödinger equation is the ultimate provider of the data that
we use to train more coarse-grained models, particularly density functional theory models.

For the spin Schrödinger equation, Carleo and Troyer developed an algorithm using
the restricted Boltzmann machine and the least squares formulation [13]. Deep learning-
based algorithm for themany-electron Schrödinger equationwas first developed in [46]. More
sophisticated ansatz for the antisymmetric part of the wave-functionwas developed in [49,80].
A spectral projection algorithm was proposed in [102] to fully take advantage of the linear
character of the Schrödinger equation. It is fair to say that at this stage, deep learning-based
algorithm still remains an experimental effort and has not outperformed traditional quantum
chemistry methods.

2.7. Purely data-driven methods
The most remarkable example of the purely data-driven method is AlphaFold2 [58].

By using only the structures in the protein data bank and protein sequence data, AlphaFold2
is able to predict the native structure of proteins to experimental accuracy. This was quite
unexpected and has changed the way things are done in structural biology.

As a structural optimization problem, protein folding can be considered as a (classi-
cal) many-body problem. This is NOT how AlphaFold2 solved the problem. AlphaFold2 did
not try to find the native structure by exploring the high-dimensional configuration space of
the protein of some energy function. Instead, it took an interpolation viewpoint: Given the
structures we know in the protein data bank, try to find the unknown structures by exploring
the similarity between the given protein sequence and the sequences in the protein data bank.
For this purpose, one needs to explore the structure of the sequence space. This is done by
pushing multiple sequence alignment to a limit [58].

3. Mathematical theory of neural network-based machine

learning models

At this point, the objective of a mathematical theory for deep learning is not to
explain in detail everything we see in practice, but rather to formulate general principles that
can help organize our thoughts and guide future work.
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The two most important puzzles in deep learning are:

� Why do deep learning models work so well on such seemingly very complicated
tasks?

� Why does the performance of deep learning models depend so sensitively on the
choice of the hyper-parameters, such as the network size, architecture, and the
learning rate in the optimization algorithm?

A more advanced question is whether we can come up with new formulations of ML models
that are both accurate and robust.

There are many different ways of looking at these issues, ranging from classical
learning theory [94], statistical physics perspective [108], to information theory perspec-
tive [1]. We will take the viewpoint of classical numerical analysis (approximation theory,
convergence of training algorithms, convergence rates, etc.) but put emphasis on the feature
of high dimensionality. For a review along this line of thoughts, we refer to [34].

Before proceeding further, let us note that we will use the terminology “norm” in a
loose way, in the sense that the triangle inequality is not necessarily satisfied.

3.1. An overview of approximation theory
Approximation theory is concerned with the question whether a given hypothesis

space can efficiently approximate the target functions we are interested in. In this direction,
there are three kinds of results.

The first is the so-called Universal Approximation Theorem (UAT), which, roughly
speaking, asserts that under mild conditions, one can use neural network functions to approx-
imate arbitrary continuous functions uniformly on compact domains [18]. Such results are of
course important, without them the whole foundation of neural network models would be in
doubt, but they do not explain why neural network models are so much better than classi-
cal polynomial approximations. After all, as we know from the Weierstrass theorem, UAT
also holds for polynomial approximations, which we know is a bad idea in high dimension.
To see the difference between the two kinds of approximations, we must study the rate of
convergence.

The second kind of results are convergence rates of neural network approximations
for functions with certain regularity conditions. A typical result states that if a function has
derivatives of order up to k, then it can be approximated by neural networks with an error of
O.m�k=d / where m is the total number of parameters. The first systematic result of this type
can be found in [107]. The most recent and sharpest results can be found in [70]. These results
do suffer from CoD. But they are useful for analyzing neural network-based algorithms for
low dimensional problems.

The third kind of results are convergence rates for neural network approximations
that do not suffer from CoD. This line of research began with the pioneering work of Barron
[7,8,11,57]. We will focus on this type of results.
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3.2. General remarks about high-dimensional problems
Before continuing, let us recap the important parameters that we have: m is the

dimensionality of the hypothesis space; n is the size of the training sample; d is the dimen-
sionality of the input variable to the ML model. We are interested in the case when d � 1.

The one high-dimensional problem that has been very well studied is high dimen-
sional numerical integration. We are interested in approximating the following integral:

I.g/ D

Z
X

g.x/dx

by a sum Im.g/ D
1
m

P
j g.xj /. If we use grid-based quadrature rules such as the Trapezoidal

Rule, then the error behaves like

I.g/ � Im.g/ �
C.g/

m˛=d

for some fixed constant ˛, indicating CoD. If instead we use Monte Carlo integration, say by
taking ¹xj ; j 2 Œm�º to be independent, uniformly distributed in X , then we have

E
�
I.g/ � Im.g/

�2
D

var.g/

m
; var.g/ D

Z
X

g2.x/dx �

�Z
X

g.x/dx

�2

:

The O.1=
p

m/ rate is (almost) the best we can hope for, and is independent of d : Improve-
ments on the convergence rate, say using quasi-Monte Carlo or other lattices, diminish
quickly as d becomes large [20].

The variance var.g/ can be very large in high dimension. For this reason many
variance-reduction algorithms have been developed. These ideas allow physicists to study
statistical physical models in very high dimension.

Function approximation is a harder problem than numerical integration. In light of
the discussion above, the best we can hope for function approximation in high dimension are
results of the following type:

inf
f 2Hm

R.f / D inf
f 2Hm

f � f �
2

L2.d�/
.

�.f �/

m
:

The questions that we need we address are: Can this be true? Given a neural network model,
say two-layer neural networks or ResNets, for what class of functions is this true? If true,
what should the quantity �.f �/ be?

3.3. Approximation theory for the random feature model
To explain the general philosophy, we will use the random feature model [81] as an

illustration. Let �.�I w/ denote some feature function parametrized by w, e.g., �.x; w/ D

�.wT x/. A random feature model is defined by

fm.xI a/ D
1

m

mX
j D1

aj �
�
xI w0

j

�
; (3.1)

where ¹w0
j ºm

j D1 are i.i.d. samples drawn from a prefixed distribution �0. Once drawn,
¹w0

j ºm
j D1 are fixed; a D .a1; : : : ; am/T 2 Rm are the trainable parameters. For simplic-

ity, we assume � WD supp.�0/ is compact. Denote W 0 D .w0
1; : : : ; w0

m/T 2 Rm�d . Note
that random feature models are linear models.
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If the inner parameters ¹w0
j º are also allowed to change, then this becomes a (gen-

eralized) two-layer neural network model. For this reason, the random feature model can
be considered as a simplified two-layer neural network model in which the inner parame-
ters are frozen at some random initial value. This connection has proven to be important for
understanding the two-layer neural network model.

We are interested in identifying the function class and the functional �.�/ for this
model. To this end, consider the reproducing kernel Hilbert space (RKHS) [2] induced by
the kernel k.x; x0/ D Ew��0 Œ�.xI w/�.x0I w/�. Denote by Hk this RKHS. Then for any
f 2 Hk , there exists a.�/ 2 L2.�0/ such that

f .x/ D

Z
a.w/�.xI w/d�0.w/ (3.2)

and
kf k

2
Hk

D

Z
a2.w/d�0.w/: (3.3)

Theorem 1 (Direct Approximation Theorem). For any f � 2 Hk , let

f �.x/ D

Z
a�.w/�.xI w/d�0.w/: (3.4)

Then we have

EW 0

fm

�
�I a�.W 0/

�
� f �

2

L2 �
kf �k2

Hk

m
;

where a�.W 0/ D .a�.w0
1/; : : : ; a�.w0

m//T .

Theorem 2 (Inverse Approximation Theorem). Let .w0
j /1

j D0 be a realization of the sequence
of i.i.d. random samples drawn from �0. Let f � be a continuous function on X D Œ0; 1�d .
Assume that there exists a constant C and a sequence .aj /1

j D0 satisfying supj jaj j � C , such
that

lim
m!1

1

m

mX
j D1

aj �
�
xI w0

j

�
D f �.x/; (3.5)

for all x 2 X . Then with probability 1, there exists a function a�.�/ W � 7! R such that

f �.x/ D

Z
�

a�.w/�.xI w/d�0.w/:

Moreover, ka�k1 � C .

This pair of direct and inverse theorems are not exactly converses of each other since
different norms (L2 and L1) are used. But they do tell us that the associated RKHS is the
appropriate function space to study in connection with the random feature model. These
results are not new, but it seems difficult to identify the origin of these results.
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3.4. Approximation theory for two-layer neural networks
We will restrict our attention to the case when ReLU is used as the activation func-

tion. The hypothesis space for two-layer neural networks is defined by

Hm D

²
fm.x/ D

1

m

X
j

aj �
�
wT

j x
�³

A good candidate for the associated function space for this model is the Barron space [30,33]

(see also [6,7,35,60]). To define the Barron space, consider functions f W X D Œ0; 1�d 7! R

of the following form:

f .x/ D

Z
�

a�.wT x/�.da; dw/ D E�

�
a�.wT x/

�
; x 2 X;

where � D R1 � RdC1 and � is a probability distribution on �. The “Barron norm” is
defined by

kf kBp
D inf

�2Pf

�
E�

�
ap

kwk
p
1

��1=p
;

where Pf WD ¹� W f .x/ D E�Œa�.wT x/�º. Let Bp D ¹f 2 C 0 W kf kBp
< 1º. Functions in

Bp are called Barron functions. As was shown in [33], we actually have k � kBp
D k � kBq

for
any 1 � p � q � 1. Hence, we will use k � kB and B denote the Barron norm and Barron
space.

One immediate question is: What kinds of function are Barron functions? In this
direction, a general result is given by:

Theorem3 ([60]). Let 2.f / WD
R

Rd k!k2
1j Qf .!/jd! < 1, where Qf is the Fourier transform

of f , then f can be represented as

f .x/ D

Z
�

a�.wT x/�.da; dw/:

Moreover, kf kB � 22.f / C 2krf .0/k1 C 2jf .0/j.

Remark 4. One should note the difference between the Barron norm and the quantities
like 2 which were originally introduced by Barron [7]. The Barron norm is defined using a
probabilistic setting. The quantity 2.f / and the like are defined using the Fourier transform
which is related to the regularity property of f . We believe that the probabilistic setup is the
right direction to go and this is partly confirmed by subsequent results on continuous ResNets
(see below) and multilayer neural networks. To avoid further confusion, we propose to call
quantities 2 and the like Barron’s spectral norm. For further results in this direction, as well
as some interesting analysis on the relationship between these spaces, we refer to [88,89].

An interesting structural theorem about Barron functions is proved in [35].

Theorem 5. Let f be in Barron space. Then f D
P1

iD1 fi where fi 2 C 1.X n Vi / where
Vi is a k-dimensional affine subspace of X for some 0 � k � d � 1.

As an immediate corollary, we see that the distance to the unit sphere is not a Barron
function.
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The claim that Barron space is the natural space associated with two-layer networks
is justified by the following series of results [30].

Theorem 6 (Direct Approximation Theorem). For any f 2 B and m 2 NC, there exists a
two-layer neural network fm with m neurons ¹.ai ; wi /º such that

kf � fmkL2.P / .
kf kB
p

m
:

Theorem 7 (Inverse Approximation Theorem). Let

NC
def
D

´
1

m

mX
kD1

ak�
�
wT

k x
�

W
1

m

mX
kD1

jakjkwkk1 � C; m 2 NC

µ
:

Let f � be a continuous function. Assume there exist a constantC and a sequence of functions
¹fmº � NC such that

fm.x/ ! f �.x/

for all x 2 X , then there exists a probability distribution �� on � such that

f �.x/ D

Z
a�.wT x/��.da; dw/;

for all x 2 X . Moreover, kf �kB � C .

3.5. Approximation theory for residual neural networks
Consider a residual network model

z0.x/ D Vx;

zlC1.x/ D zl .x/ C
1

L
Ul� ı

�
Wlzl .x/

�
; l D 0; 1; : : :; L � 1;

f .x; �/ D ˛ � zL.x/;

where x 2 Rd is the input, V 2 RD�d , D � d , Wl 2 Rm�D , Ul 2 RD�m, ˛ 2 RD and we
use ‚ WD ¹V ; U1; : : : ; UL; Wl ; : : : ; WL; ˛º to denote all the parameters to be learned from
data. Without loss of generality, we will fix V to be

V D

"
Id�d

0.D�d/�d

#
: (3.6)

To look for the appropriate associated function space, let us consider the following flow-
based representation of functions (see next section):

z.x; 0/ D Vx;

Pz.x; t / D E.U ;W /��t
U �

�
Wz.x; t /

�
;

f˛;¹�t º.x/ D ˛T z.x; 1/:

For p � 1, consider the following linear ODEs associated with the representation above:

Np.0/ D e;
PNp.t/ D

�
E�t

�
jU jjW j

�p�1=p
Np.t/;
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where e is a column vector with every component equal to 1, jAj and Aq are elementwise
operations for the matrix A and a positive number q. The following function spaces and
“norms” were introduced in [33].

Definition 8. Let f be a function that satisfies f D f˛;¹�t º for a pair of (˛; ¹�t º). Define

kf kDp.˛;¹�t º/ D j˛j
T Np.1/ (3.7)

to be theDp norm of f with respect to the pair (˛, ¹�t º), where j˛j is a vector obtained from
˛ by taking elementwise absolute values. We define

kf kDp
D inf

f Df˛;¹�t º

j˛j
T Np.1/ (3.8)

to be the Dp norm of f , and let Dp D ¹f W kf kDp
< 1º.

Definition 9. Let f be a function that satisfies f D f˛;¹�t º for a pair of (˛; ¹�t º). Define

kf k QDp.˛;¹�t º/
D j˛j

T Np.1/ C
Np.1/


1

� D (3.9)

to be the QDp norm of f with respect to the pair (˛, ¹�t º). We define

kf k QDp
D inf

f Df˛;¹�t º

j˛j
T Np.1/ C

Np.1/


1
� D (3.10)

to be the QDp norm of f . The space QDp is defined as the set of functions that admit the
representation f˛;¹�t º with finite QDp norm.

These two kinds of “norms” appear to be similar but different. These function spaces
were introduced in [33] and are named flow-induced function spaces.

For the approximation theorems, we will make use of the following “Lipschitz con-
tinuity” condition for ¹�t º.

Definition 10. Given a family of probability distributions ¹�t ; t 2 Œ0; 1�º, the “Lipschitz
coefficient” of ¹�t º, denoted by Lip¹�t º, is defined as the infimum of all the numbers that
satisfy ˇ̌

E�t U �.Wz/ � E�s U �.Wz/
ˇ̌

� Lip¹�t ºjt � sjjzj (3.11)

and ˇ̌E�t jU jjW j


1;1
�

E�s jU jjW j


1;1

ˇ̌
� Lip¹�t ºjt � sj; (3.12)

for any t; s 2 Œ0; 1�, where k � k1;1 is the sum of the absolute values of all the entries in a
matrix. The “Lipschitz norm” of ¹�t º is defined as¹�t º


Lip D

E�0 jU jjW j


1;1
C Lip¹�t º: (3.13)

Finally, we define a discrete “path norm” for residual networks.

Definition 11. For a residual network defined by (3.6) with parameters ‚ D ¹˛; Ul ; Wl ; l D

0; 1; : : : ; L � 1º, we define the l1 path norm of ‚ to be

k‚kP D j˛j
T

LY
lD1

�
I C

1

L
jUl jjWl j

�
e: (3.14)
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With the definitions above, we are ready to state the direct and inverse approximation
theorems in the flow-induced function spaces [33].

Theorem 12 (Direct Approximation Theorem). Let f 2 QD2, ı 2 .0; 1/. Assume there exists
a constant l0 such that, for any " > 0, there exists .˛; ¹�t º/ that satisfies f D f˛;¹�t º and
kf k QD1.˛;¹�t º/

< kf k QD1
C ", k¹�t ºkLip � l0. Then there exists an L0, depending polynomi-

ally on D, m, l0, and kf k QD1
, such that for any L � L0, there exists an L-layer residual

network fL.�I ‚/ that satisfies f � fL.�I ‚/
2

�

3kf k2
QD1

L1�ı
(3.15)

and
k‚kP � 9kf k QD1

: (3.16)

Theorem 13 (Inverse Approximation Theorem). Let f � be a function defined on X D

Œ0; 1�d . Assume that there exists a sequence of residual networks ¹fL.�I ‚L/º1
LD1 such that

kf �.x/ � fL.xI ‚/k ! 0 as L ! 1 for all x 2 X . Assume further that the parameters
in ¹fL.�I ‚/º1

LD1 are (entrywise) bounded by c0. Then, we have f � 2 D1 and kf �kD1
�

2e
m.c2

0 C1/
D2c0

m
. Moreover, if there exists a constant c1 such that kfLkD1

� c1 holds for any
L > 0, then we have kf �kD1

� c1.

A natural question is how big the flow-induced norms are compared with the Barron
norm. In this direction, we have [33]

Theorem 14. For any function f 2 B, and D � d C 2, m � 1, we have f 2 QD1 and

kf k QD1
� 2kf kB : (3.17)

In this sense, going from two-layer neural networks to ResNets is like variance
reduction in Monte Carlo methods.

3.6. The generalization gap
The second main issue in theoretical machine learning is the difference between

training and test accuracy, in other words, the difference between the empirical and popula-
tion risk. Estimating the difference between these two quantities is complicated by the fact
that the parameters obtained from the training process are highly correlated with the data.
There are many ways to bypass this difficulty. The simplest idea is to use the trivial boundˇ̌

R. Of / � Rn. Of /
ˇ̌

� sup
f 2Hm

ˇ̌
R.f / � Rn.f /

ˇ̌
D sup

f 2Hm

ˇ̌
I.g/ � In.g/

ˇ̌
; (3.18)

where Of 2 Hm is the function in the hypothesis space obtained from training, g D .f �

f �/2. One of the most effective ways of estimating the right-hand side is to use the notion
of Rademacher complexity.
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Definition 15. Let H be a set of functions, and S D .x1; x2; : : : ; xn/ be a set of data points.
The Rademacher complexity of H with respect to S is defined as

RadS .H / D
1

n
E�

"
sup
h2H

nX
iD1

�i h.xi /

#
; (3.19)

where ¹�i º
n
iD1 are i.i.d. random variables taking values ˙1 with equal probability.

Rademacher complexity is useful since it bounds the quantity of interest,
suph2H jI.h/ � In.h/j, from above and below.

Theorem 16 ([86, Theorem 26.5]). For any ı 2 .0; 1/, with probability at least 1 � ı over the
random samples S D .x1; : : : ; xn/, we have

sup
h2H

ˇ̌̌̌
ˇEx

�
h.x/

�
�

1

n

nX
iD1

h.xi /

ˇ̌̌̌
ˇ � 2RadS .H / C sup

h2H

khk1

r
log.2=ı/

2n
;

sup
h2H

ˇ̌̌̌
ˇEx

�
h.x/

�
�

1

n

nX
iD1

h.xi /

ˇ̌̌̌
ˇ �

1

2
RadS .H / � sup

h2H

khk1

r
log.2=ı/

2n
:

Roughly speaking, Rademacher complexity quantifies the degree to which functions
in the hypothesis space can approximate random noise on a given dataset. The larger the
hypothesis space, the larger the Rademacher complexity.

As example, if H is the unit ball in the space of continuous functions, then we
obviously have RadS .H / D O.1/. If ifH is the unit ball in the space of Lipschitz continuous
functions, then it can be shown that [96]

RadS .H / D O.n�1=d /:

This signals another potential source of CoD, namely that the training sample size needed
grows exponentially as d grows.

Fortunately, for the function spaces we identified earlier, their Rademacher com-
plexity has roughly the optimal scaling. For Barron space, we have

Theorem 17 ([6]). Let FQ D ¹f 2 B;kf kB � Qº and let S D .x1; : : : ;xn/. Then we have

RadS .FQ/ � 2Q

r
2 ln.2d/

n
:

The n�1=2 scaling at the right-hand side is consistent with the Monte Carlo scaling
that one would expect at a first sight.

The Rademacher complexity estimate is only established for a family of modified
flow-induced function norms k � k ODp

(note the factor 2 in the definition below). It is not clear
at this stage whether this is only a technical issue.

Let

kf k ODp
D inf

f Df˛;¹�t º

j˛j
T ONp.1/ C

 ONp.1/


1
� D C

¹�t º

Lip; (3.20)
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where ONp.t/ is given by

ONp.0/ D 2e;

PONp.t/ D 2
�
E�t

�
jU jjW j

�p�1=p ONp.t/:

Denote by ODp the space of functions with finite ODp norm. Then, we have

Theorem 18 ([33]). Let OD
Q
p D ¹f 2 ODp W kf k ODp

� Qº and let S D .x1; : : : ; xn/. Then
we have

RadS

�
OD

Q
2

�
� 18Q

r
2 log.2d/

n
: (3.21)

3.7. A priori estimates of the population risk for regularized models
Our objective is to show that one can find accurate approximations of the target

function using a finite training sample. Ideally, we would like to have the following kind of
results:

R. Of / .
�1.f �/

m
C

�2.f �/
p

n
: (3.22)

For appropriately regularized models, results of this kind have been established for the
random feature model, the two-layer neural network model, and ResNets.

For the random feature model, consider the regularized model

Ln;�.a/ D Rn.a/ C
�

p
n

kak
p

m
;

and define the regularized estimator

Oan;� D argminLn;�.a/:

Theorem 19. Fix any � > 0. For any ı 2 .0; 1/, with probability 1 � ı, we have

R. Oan;�/ �
1

m

�
log.n=ı/

f �
2

Hk
C

log2.n=ı/

m

a�
2

1

�
C

1
p

n

�f �


Hk
C

�
log.1=ı/

m

�1=4a�


1
C

p
log.2=ı/

�
: (3.23)

Such results should be standard. But a complete proof seems to be only found in [34].
In the same way, for the two-layer neural network model, one can consider the reg-

ularized model

Ln.�/ D Rn.�/ C �

r
log.2d/

n
k�kP ; O�n;� D argminLn.�/;

where the path norm is defined by

k�kP D
1

m

mX
j D1

jaj jkwj k1;

and let O�n D argminLn.�/.
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Theorem 20 ([30]). Assume f � W X 7! Œ0; 1� 2 B. There exists an absolute constant C0

such that if � � C0 then for any ı > 0, with probability at least 1 � ı over the choice of the
training set, we have

R. O�n/ .
kf �k2

B

m
C �

f �


B

r
log.2d/

n
C

r
log.n=ı/

n
:

For ResNets, instead of the path norm (3.14), we have to consider a weighted path
norm

k‚kWP D j˛j
T

LY
lD1

�
I C

2

L
jUl jjWl j

�
e; (3.24)

which assigns larger weights to paths that pass through more nonlinearities. Consider the
regularized model

min
‚

J.‚/ D OR.‚/ C 3�k‚kWP

r
2 log.2d/

n
: (3.25)

Theorem 21 ([29]). Let f � W X ! Œ0; 1�. Assume that b‚ is an optimal solution of the regu-
larized model (3.25). Let � � 4 C 2=Œ3

p
2 log.2d/�. Then for any ı 2 .0; 1/, with probability

at least 1 � ı over the random training samples, the population risk satisfies

R.b‚/ �
3kf k2

B

LD
C

�
4kf kB C 1

�3.4 C �/
p

2 log.2d/ C 2
p

n
C 4

r
2 log.14=ı/

n
: (3.26)

One unsatisfactory aspect of this result is that it is proved for a Barron function, not
functions in the flow-induced space.

3.8. The loss function and the loss landscape
The a priori estimates for the regularized models establish the existence of accurate

approximations to the target function in the hypothesis space. The next question is how to
find them. At this point, there is a vast amount of experience suggesting that one can find
accurate solutions using simple gradient-based algorithms, without any explicit regulariza-
tion, but the result may depend sensitively on the choice of the hyperparameters, such as the
network parameters, the initialization of the training algorithms, the learning rate, etc. Sen-
sitive dependence on the network parameters suggests that the landscape of the loss function
changes qualitatively as these parameters change.

At a first sight, it is quite surprising that simple gradient-based algorithms such as
the gradient descent can work at all. After all, the loss function, say the empirical risk, is a
nonconvex function of many variables with potentially very complicated landscape. In the
case of molecular structural optimization such as protein folding, gradient descent would
get stuck very quickly at a bad local minima. In the case of training neural network models,
one can often avoid this by tuning the hyperparameters in the training algorithm. Obviously,
this means that the landscape of the molecular structural optimization and the landscape
for training neural network models are qualitatively very different. Therefore one first issue
might be to understand how the landscape looks. In this direction, one important result is
that of Cooper who considered overparametrized neural networks with a smooth activation
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function and characterized the structure of the set of global minima [17]. Cooper proved that
the locus of the global minima is generically (i.e., possibly after an arbitrarily small change
to the data set) a smooth .m � n/-dimensional submanifold of Rm where m is the number
of free parameters in the neural network model and n is the training data size.

3.9. Training dynamics
Two-layer neural networks with mean-field scaling. “Mean-field” is a notion in statistical
physics that describes a particular form of the interaction between particles. In the mean-field
situation, particles interact with each other only through a mean-field formed through the
collective effort of all the particles. The most elegant mean-field picture in machine learning
is found in the case of two-layer neural networks: If one views the neurons as interacting
particles, then these particles only interact with each other through the function represented
by the neural network, which is the mean-field in this case. This observation was first made in
[15,75,84,92]. By taking the hydrodynamic limit for the gradient flow of finite neuron systems,
these authors obtained a continuous integral differential equation that describes the evolution
of the probability measure for the weights associated with the neurons.

Given the two-layer neural network model

fm.x/ D
1

m

X
j

aj �
�
wT

j x
�
;

let
I.u1; : : : ; um/ D R.fm/; uj D .aj ; wj /:

Consider the gradient descent dynamics
duj

dt
D �mruj

I.u1; : : : ; um/; uj .0/ D u0
j ; j 2 Œm�: (3.27)

Lemma 22. Let
�.du; t / D

1

m

X
j

ıuj .t/:

Then the gradient descent dynamics (3.27) can be expressed equivalently as

@t � D r.�rV /; V D
ıRn

ı�
: (3.28)

Equation (3.28) is the mean-field equation that describes the evolution of the prob-
ability distribution for the weights associated with each neuron. The lemma above simply
states that (3.28) is satisfied for the finite neuron system without the need to take the infinite
particle limit.

It is well known that (3.28) is the gradient flow of R under the Wasserstein metric.
This brings the hope that the mathematical tools developed in the theory of optimal transport
can be brought to bear for the analysis of (3.28) [95]. In particular, we would like to use these
tools to study the qualitative behavior of the solutions of (3.28) as t ! 1. Unfortunately,
straightforward application of the results from optimal transport theory requires that the risk
functional be displacement convex [74], a property that rarely holds in ML. As a result, less
than expected has been achieved using the optimal transport theory.
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The one important result, due originally to Chizat and Bach [15], is the following.We
will state the result for the population risk. Again we consider the ReLU activation function.

Theorem 23 ([15,16,99]). Let ¹�t º be a solution of the Wasserstein gradient flow such that

� �0 is a probability distribution on the cone ‚ WD ¹jaj2 � jwj2º.

� Every open cone in ‚ has positive measure with respect to �0.

Then the following are equivalent:

� The velocity potentials ıR
ı�

.�t ; �/ converge to a unique limit as t ! 1.

� R.�t / decays to the global infimum value as t ! 1.

If either condition is met, the unique limit ofR.�t / is zero. If �t also converges in theWasser-
stein metric, then the limit �1 is a minimizer.

A few remarks are in order:

� There are further technical conditions for the theorem to hold.

� Convergence of subsequences of ıR
ı�

.�t ; �/ is guaranteed by compactness.

� The first assumption on �0 is a smoothness assumption needed for the existence
of the gradient flow.

� The second assumption on �0 is called omnidirectionality. It ensures that � can
shift mass in any direction which reduces risk. The requirement that the support
of the initial distribution be sufficiently large seems to be confirmed by practical
experience.

Two-layer neural networks with conventional scaling. In practice, people often use the
scaling (instead of the mean-field scaling)

fm.xI a; W / D

mX
j D1

aj �
�
wT

j x
�

D aT �.Wx/:

A popular initialization [48,63] is as follows:

aj .0/ � N .0; ˇ2/; wj .0/ � N .0; I=d/;

where ˇ D 0 or 1=
p

m. We define the Gram matrix K D .Kij / 2 Rn�n as

Ki;j D
1

n
Ew��0

�
�.wT xi /�.wT xj /

�
:

In this case, a lot is known in the so-called highly overparametrized regime. In this
part, for simplicity, we will assume that the domain of interest is the unit ball Sd�1 instead
of the unit cube.

There is both good and bad news. The good news is that one can prove exponential
convergence to global minima of the empirical risk.
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Theorem 24 ([21]). Let �n D �min.K/ and assume ˇ D 0. For any ı 2 .0; 1/, assume that
m & n2��4

n ı�1 ln.n2ı�1/. Then with probability at least 1 � 6ı, we have

Rn

�
a.t/; W .t/

�
� e�m�nt Rn

�
a.0/; W .0/

�
: (3.29)

Now the bad news: the generalization property of the converged solution is no better
than that of the associated random feature model, defined by freezing ¹wj º D ¹wj .0/º and
only training ¹ai º.

The first piece of insight that the underlying dynamics in this regime is effectively
linear is given in [19]. Jacot et al. [53] termed the effective kernel the “neural tangent kernel”
and this terminology has got a lot of popularity. Later it was proved rigorously that in this
regime, the entire gradient descent path for the two-layer neural network model is uniformly
close to that of the associated random feature model [3,31].

Theorem 25 ([31]). Let W0 D W .0/. Denote by fm.�I Qa; W0/ the solution of the gradient
descent dynamics for the random feature model. Under the same setting as in Theorem 24,
we have

sup
x2Sd�1

ˇ̌
fm

�
xI a.t/; W .t/

�
� fm

�
xI Qa.t/; W0

�ˇ̌
.

.1 C
p
ln.1=ı//2��1

n
p

m
: (3.30)

This can also be seen from the .m; n/ hyperparameter space. Shown in Figure 3 are
the heat maps of the test errors under the conventional and mean-field scaling, respectively.
We see that the test error changes smoothly as m changes for the mean-field scaling. In
contrast, there is a clear “phase transition” in the heat map for the conventional scaling where
we see the coexistence of a good (darker region) phase with small test error and a bad (lighter

Figure 3

How the network width affects the test error of gradient descent solutions. The test errors are given in logarithmic
scale. These experiments are conducted for the single-neuron target function with d D 20 and learning rate
� D 0:0005. The two dashed lines correspond to m D n=.d C 1/ (left) and m D n (right), respectively. (Left)
Conventional scaling. (Right) Mean-field scaling. For more details, see [72].
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region) phase where the test error is much larger. This means that, in practice, one has to tune
the network parameters so that they fall into the good phase. For the details of this study, we
refer to [72].

From this, it is natural to speculate that the sensitive dependence of the performance
on the hyperparameters is a consequence of this kinds of phase transition. For two layer
neural networks, the phase diagram in the hyperparameter space is relatively simple. For
more complicated neural network models, the phase diagram should be more complicated
and tuning the parameters becomes a much harder task.

Hardness of training. In high dimensions, a “dynamic curse of dimensionality” may affect
gradient descent training if the target function is not in Barron space.

Theorem 26 ([100]). There exists f � with Lipschitz constant and L1-norm bounded by 1

such that the parameter measures ¹�t º defined by the 2-Wasserstein gradient flow of either
Rn or R satisfy

lim sup
t!1

�
t R.�t /

�
D 1

for all  > 4
d�2

.

What makes matters worse is that even for functions in the Barron space, a dynamic
CoD might also happen. Livni et al. [67] show that learning Barron functions is equivalent to
solving some well-known hard problems in cryptography. This means that learning Barron
functions is computationally as hard as breaking a cryptosystem. Such results are powerful
but abstract. In the following, we provide an explicit understanding from the perspective of
learning orthonormal classes, which is a reinterpretation of the results in [73,87].

Consider a subset of the Barron space overX D Œ0; 1�d :F D ¹fw D 2 sin.2�wT �/ WPd
iD1 wi � d; wi 2 NCº. Note that the following statements hold: (1) jF j � exp.d/; (2)

hfw; fw0i D ıw;w0 ; (3) kf kB � Cd 2, 8f 2 F . Statements (1) and (2) are quite obvious
and a proof can be found in [7]. Statement (3) directly follows from Theorem 3. Consider
learning the function in F using the parametric model h.�I �/ that includes, but is not lim-
ited to, the two-layer neural network model. Let Rf .�/ D ExŒ.h.xI �/ � f .x//2�. Notice
that r� Rf .�/ D 2ExŒ.h.xI �/ � f .x//r� h.xI �/� D C.�/ � 2hr� h.�I �/; f i. Let � be the
uniform distribution over F . Then,

varf ��

�
rRf .�/

�
� 4Ef ��

˝
r� h.�I �/; f

˛2
D

4

jF j

X
f 2F

˝
r� h.�I �/; f

˛2
�

4Exkr� h.xI �/k2

jF j
; (3.31)

where the last inequality uses the fact that the functions in F are orthonormal.
Since jF j D exp.d/, the variance of the gradient with respect to different target

function is exponentially small as d increases. This means that the gradient can barely dis-
tinguish different target functions. As a result, gradient-based optimizations algorithms are
unlikely to succeed.

937 Mathematical machine learning



These hardness results suggest that the Barron space is likely to be too large for
studying the training of two-layer neural networks. It is an important open problem to identify
the right function space, in which the functions can be learned in polynomial time by two-
layer neural networks.

3.10. Other results
Classification problems. Abinary classification problem can be approached as a regression
problem with the additional knowledge that the target function only takes the values ˙1.
This a priori knowledge gives us different mathematical means, and we commonly choose to
interpret ¹f > 0º as ¹f � 1º and similarly for negative values. It is therefore not necessary
that f should take a particular value, but only that f have the correct sign (and possibly
be bounded away from zero). This is encoded in the common hinge loss and logistic loss
functions

`hinge.h; y/ D max¹0; 1 � hyº; `log.h; y/ D
log.1 C exp.�hy//

log 2
;

which primarily force alignment between the classifier h and the label y 2 ¹�1; 1º. Both the
hinge loss and the logistic loss differ from the `2-loss geometrically from the optimization
perspective: While the `2-loss vanishes at exactly one point, hinge-loss vanishes whenever
the classifier has the correct sign andmagnitude� 1, whereas the logistic loss never vanishes.
The risk functional therefore has a much larger set of minimizers or none at all in typical
classification problems.

Another key difference is the fact that we are minimizing a surrogate loss. While
our goal is to minimize the measure of the misclassified set E.x;y/��Œ1¹f .x/�y�0º�, we use
convex loss functions ` which bound the zero–one loss function from above:

`.h; y/ � 1¹h�y�0º:

The bounds on the true risk functional to minimize are therefore coarser by nature.
The nonexistence of minimizers for logistic loss has interesting implications from

the optimization perspective. It was shown in [16] that as the risk decays to zero along a
gradient flow trajectory, the geometry of a two-layer neural network adapts not only to correct
classification, but also a higher-order optimality condition (maximummargin classification),
where the “confidence” (or margin)

min
.x;y/2 spt.�/

h.x/ � y

becomes as large as possible. The notion of margin is easiest to interpret for linear classifiers,
where it corresponds to the distance to the decision boundary, and harder to interpret in
classes of nonlinear functions such as neural networks.

In multiclass classification, a similar philosophy holds, but the classifier has to align
with the vectors e1; : : : ; ek corresponding to the k classes, rather than the directions ˙1.
The most popular loss functional in this case is the cross-entropy loss, which generalizes
the logistic loss. Just as the logistic loss, the cross-entropy loss function does not admit
minimizers either.
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The frequency principle. One of the most interesting observations for training dynamics is
the so-called “frequency principle”: During training, the low frequency components in the
target function tend to be recovered earlier than the high ones [103]. This is opposite to the
situation we usually see in numerical analysis, for example, the numerical solution of elliptic
PDEs. It is well known that when using iterative algorithms to solve the algebraic equations
obtained from the numerical discretization of elliptic PDEs, it takes longer to remove the low
frequency errors than the high frequency errors. This is why multi-grid methods are useful
there. In ML, the opposite seems to be true.

The reason behind this is as follows. Roughly speaking, when solving PDEs, the high
frequency components correspond roughly to large eigenvalues of the underlying algebraic
system. As we have seen earlier, the training dynamics in machine learning is more like
solving some integral equation, therefore the high frequency components correspond roughly
to small eigenvalues. This should be an important avenue for understanding the training
dynamics.

Generative models. Generative models are ways of approximating probability distributions
using finite samples. One of the most well-known generative models is the generative adver-
sarial network, or GAN. Given a sample set S , the empirical distribution formed from S ,
ıS , can be considered as an approximation to the underlying probability distribution. This
approximation is unsatisfactory since it cannot provide any new samples. However, it can
be shown, or at least argued, that without any explicit regularization, generative models will
always converge to the empirical distribution (see, for example, [39,104]). Therefore the merit
of a generative model must be that during training, it can produce better approximations to
the underlying probability distribution before ultimately converges to the empirical distribu-
tion. Theoretically, this means that one has to study the situation with “early stopping,” not
the ultimate convergence, and analyze whether the statement above really holds.

Results of this type have been proved for the so-called “bias potential” model [104].
However, it is fair to say that there are more open questions for the theoretical understanding
of generative models than for the case of supervised learning. One of the difficulty is that
generative models are not variational problems but rather game theory problems.

Machine learning of dynamical systems. Given a sample of time series, one would like
to learn the underlying dynamical system that produced the time series. For these problems,
besides CoD, there is also the issue of curse of memory [65]: The cost increases exponen-
tially as memory increases. For linear dynamical systems, this issue has been analyzed quite
thoroughly in [65].

Reinforcement learning. Reinforcement learning (RL) is an area of machine learning that
is concerned with how an agent should interact with an unknown environment in order to
maximize the expected cumulative reward [93]. To deal with practical problems that involve
a large number of states or in high dimensions, one needs to introduce function approxi-
mation for the value or policy functions. Indeed, RL has had remarkable success in Atari
games [76], Go [90], and robotics [61] using deep neural network approximations. Despite the
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practical success of RL with function approximation, most existing theoretical results is only
applicable to the tabular setting [4,5,55], in which both the state and action spaces are finite
and no function approximation is involved. Relatively simple function approximation meth-
ods, such as the linear model [56, 105], have been studied recently. RL with kernel function
approximation has been studied in [37,68,69,106], and RL with neural network approximation
has been studied in [36,69,97]. These results require the existence of a reference distribution
such that all possible state–action distributions under the admissible policies are close to in
a certain sense, and [68] shows the necessity of this type of assumptions.

In a way, the mathematical issues for RL are a lot like those for supervised learning,
but more complicated. Specifically,

� For the approximation error: Analyze the conditions on the reward function and
transition probability under which the value or policy functions can be effi-
ciently approximated by neural networks. Since the value and policy functions are
obtained from the Bellman equation, this question is related to the new regularity
theory for PDEs discussed below.

� For the generalization error: This is the sample complexity problem. It is similar
in spirit to the Rademacher complexity except that there is an additional dynamic
component.

� For the optimization error: Again the dynamic component complicates things.
This is dynamics within dynamics: The optimization algorithm involves dynam-
ics. Within that there is the dynamics of the underlying problem such as the
dynamics of the Go game.

New regularity theory of PDEs. The approximation theory discussed earlier suggests that
in high dimension, the classical smoothness-based function spaces such as Sobolev spaces
should be replaced by new spaces such as the Barron space or Barron’s spectral space. It is
natural to ask whether the solutions of prototypical PDEs lies in these new spaces or whether
one can develop a regularity theory for the relevant PDEs in these new spaces. This issue is
of practical significance because of the success of ML-based algorithms for solving PDEs
in high dimension (see Section 2). In this direction, [101] considered the simplest PDEs such
as the Poisson equation, heat equation, and Hamilton–Jacobi equation, and studied whether
the solutions lie in Barron space if the data does. Lu et al. [71] carried out a more thorough
analysis and developed a regularity theory for Barron’s spectral space. Also of relevance is
the work in [40,52].

4. Machine learning from a continuous viewpoint

To define a machine learning model, one only needs two things: A way of represent-
ing functions and a way of finding the parameters in the representation. The latter is usually
formulated as an optimization problem. Neural networks are special classes of functions. In
contrast to piecewise polynomials, they can be defined without using a mesh. This “contin-
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uous” nature is quite helpful when constructing numerical algorithms. One is naturally led
to ask: Can we push this continuous nature further?

One interesting idea proposed in [23,41] is to use the solutions of ordinary differential
equations (ODEs) to represent trial functions. This proposal is now made popular through
the name of neural ODEs [14]. ResNets can be viewed as discretizations of neural ODEs,
and the back-propagation algorithm can be viewed as a particular way of solving the adjoint
equation for the gradients of the solutions [14,23].

A more systematic presentation of the continuous formulation is found in [32]. The
framework suggested there consists of the following main components:

� representation of functions;

� the variational problem for minimizing the population risk;

� gradient flow for the variational problem.

Sincewe are aiming at high-dimensional problems, the function representation should be of a
probabilistic nature. E et al. [32] suggested two classes of representations, integral transform-
based and flow-based.

Once we have a continuous formulation, one can then discretize the continuous for-
mulation to obtain concrete algorithms. Again, since we are aiming at high dimension, the
particle method is the most natural algorithm for discretizing the dynamic equations. We
will see that some of the most popular neural network-based ML algorithms can be derived
this way. At the same time, one can also come up with new algorithms.

4.1. Integral transform-based representation
Consider the (parametric) representation

f .xI a; �/ D

Z
Rd

a.w/�.wT x/�.dw/ D Ew��a.w/�.wT x/; (4.1)

or
f .xI �/ D E.a;w/��a�.wT x/: (4.2)

Given a target function f �, the variational problem for minimizing the population
risk is given by

min
�

R.�/; R.�/ D Ex��

�
f .xI �/ � f �.x/

�2
;

where � denotes abstract parameters. For (4.1), � D .a;�/; for (4.2), � D �. These two ingre-
dients together form the variational problem we are interested in. We can either discretize
this variational problem and then solve the resulted discretized optimization problem, or for-
mulate an optimization problem at the continuous level and then discretize. We will discuss
the latter approach.

To define the gradient flow, we borrow ideas from nonequilibrium statistical physics
[51]. We regard the population risk as the free energy, and the parameter � as the “order
parameter”. As in [51], we can divide the order parameters into two different classes, the
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conserved and nonconserved ones. For example, as a probability measure, � and � are con-
served order parameters. In contrast, the coefficient a is nonconserved.

For nonconserved order parameters, we use the so-called “model A” gradient flow,
e.g.,

@a

@t
D �

ıR

ıa
:

For conserved order parameters, we use “model B” gradient flow, e.g.,
@�

@t
C r � J D 0;

where
J D �v; v D �rV; V D

ıR

ı�
:

It is instructive to look at some specific examples. For the first example, we use the
representation (4.1). We fix � and optimize over a. The gradient flow in this case is given by

@t a.w; t / D �
ıR

ıa
.w; t / D �

Z
a. Qw; t /K.w; Qw/�.d Qw/ C Qf .w/; (4.3)

where
K.w; Qw/ D Ex

�
�.wT x/�. QwT x/

�
; Qf .w/ D Ex

�
f �.x/�.wT x/

�
:

This is an integral equation with a symmetric positive definite kernel.
As an example of the conservative gradient flow, let us consider the representation

f .x/ D Eu���.x; u/;

where � is some general feature function. One example is u D .a; w/, �.x; u/ D a�.wT x/.
Let

V.u/ D
ıR

ı�
.u/ D Ex

��
f .x/ � f �.x/

�
�.x; u/

�
D

Z
QK.u; Qu/�.d Qu/ � Qf .u/

be the potential with a kernel QK defined similarly to K, then the model B gradient flow
dynamics is given by

@t � D r.�rV /: (4.4)

This is the same as the mean-field equation derived in [75,84,92]. For an interesting modifi-
cation of this model to improve convergence, we refer to [83].

Next, we turn to the discretization of the continuous formulation. There are several
levels of discretization to consider:

� Discretizing the variational problem. In the current setting, this is straightforward:
By using data, we discretize the population risk into the empirical risk.

� Discretizing the function representation and the gradient flow. This can be done
using a number of different numerical methods. In low dimensions, the spectral
method can be a powerful tool. In high dimensions, the most obvious choice is
the particle method since this is the dynamic version of Monte Carlo. One can
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also use the smoothed particle method which has shown better performance at
least on low dimensional problems.

As an example, consider (4.1). If we use

�.dw/ �
1

m

X
j

ıwj
; a.wj ; t / � aj .t/

to discretize (4.3), we obtain
d

dt
aj .t/ D �

1

m

X
k

K.wj ; wk/ak.t/ C Qf .wj /:

This is exactly the gradient descent dynamics for the random feature model.
Next, consider the integral differential equation (4.4). If we use the particle method

discretization, we have

�.da; dw; t / �
1

m

X
j

ı.aj .t/;wj .t// D
1

m

X
j

ıuj .t/

and the discretized problem becomes
duj

dt
D �ruj

I.u1; : : : ; um/;

where

I.u1; : : : ; um/ D R.fm/; uj D .aj ; wj /; fm.x/ D
1

m

X
j

aj �
�
wT

j x
�
:

This is exactly the gradient descent dynamics for two-layer neural networks under the mean-
field scaling.

4.2. Flow-based representation
Consider the following flow-based representation:

zx
0 D V x;

dzx
�

d�
D Ew��� �.z; w/; 8� 2 Œ0; 1�;

f .xI �/ D 1T zx
1 ;

(4.5)

where w 2 � and � W RD � � 7! RD , V is a D � d matrix. For simplicity, we will fix V .
The parameters are then � D � D .�� /�2Œ0;1�, a sequence of probability measures.

The form of the right-hand side in (4.5) is chosen because of the following two
considerations. The first is that it is an integral transformation-based representation that we
just discussed. More importantly, it arises as the natural continuum limit of a suitable ResNet
model with random parameters [33].

Minimizing the population risk using this flow-based representation is then a control
problem where the population risk serves as the objective function, and the parameters � D

.�� /�2Œ0;1� serve as the control. One useful tool from the control perspective is Pontryagin’s
maximum principle. To state this maximum principle, denote by † WD ¹� W Œ0; 1� 7! P2.�/º,

943 Mathematical machine learning



the space of all feasible controls, and define the Hamiltonian H W Rd � Rd � P2.�/ W7! R

as
H.z; p; �/ D Eu��

�
pT �.z; u/

�
:

Here z; p 2 RD and � 2 P2.�/. p is the costate that corresponds to the state z.
Pontryagin’s maximum principle states that the solutions of this control problem

must satisfy

��
� D argmax� Ex

�
H

�
zx

� ; px
� ; �

��
; 8� 2 Œ0; 1�; (4.6)

and for each x, .zx
� ; px

� / are defined by the forward/backward equations:

dzx
�

d�
D rpH D Eu���

�

�
�

�
zx

� ; u
��

;

dpx
�

d�
D �rzH D Eu���

�

�
r

T
z �

�
zx

� ; u
�
px

�

�
;

(4.7)

with the boundary conditions:

zx
0 D x; (4.8)

px
1 D 2f

�
xI ��

1 � f �.x/
�
1: (4.9)

With this, one can then construct maximum principle-based algorithms. This was
first done in [64] and it was based on an extension of themethod of successive approximation
(MSA). This is an iterative algorithm that alternates between solving the Hamiltonian system
for the states and costates and finding the optimal parameters at each step. Symbolically, one
can write it as, at the step k:

� Solve
dzk

�

d�
D rpH

�
zk

� ; pk
� ; �k

�

�
; zk

0 D V x:

� Solve
dpk

�

d�
D �rzH

�
zk

� ; pk
� ; �k

�

�
; pk

1 D 2
�
f .xI �k/ � f �.x/

�
1:

� Set �kC1
� D argmax�2‚ H.zk

� ; pk
� ; �/, for each � 2 Œ0; 1�.

Compared with the usual gradient descent-based algorithms, the advantage is that the opti-
mization problems are decoupled for different values of � . Li et al. [64] presented numerical
evidence which suggests that an extended version of this algorithm is quite competitive,
compared with several different versions of SGD.

The gradient flow for this model was derived in [32]. For any �1; �2 2 X , consider
the following metric:

D2.�1; �2/ WD

Z 1

0

W 2
2

�
�1

� ; �2
�

�
d�;

where W2.�; �/ is the 2-Wasserstein distance.
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Proposition 27. The gradient flow in the metric space .†; D/ for the population risk is
given by

@t �� .w; t / D rw �
�
�� Ex

�
v
�
zx

� ; px
� ; w

���
; 8� 2 Œ0; 1�; (4.10)

where
v.z; p; w/ D rw

ıH

ı�
D r

T
w�.z; w/p;

and for each x, .zx
� ; px

� / satisfies (4.7) and (4.8) with �� replaced by � at time t .

This is a one parameter family of coupled flows. For this flow, the energy dissipation
relation is given by

dR

dt
D �

Z 1

0

Ew��� .�It/

�Exr
T
w�

�
zx

� ; w
�
px

�

2�
d�: (4.11)

Consider now the discretization of the flow using the particle method. Letting
�� .�; t / D

1
m

Pm
j D1 ı.w

j
� .t/ � �/, the discretized gradient flow is given by

dzx
�

d�
D

1

m

mX
j D1

�
�
zx

� ; wj
�

�
; � 2 Œ0; 1�;

dpx
�

d�
D �

1

m

mX
j D1

rz�
�
zx

� ; wj
�

�
px

� ; � 2 Œ0; 1�;

dw
j
�

dt
D �Ex

�
r

T
w�

�
zx

� ; wj
�

�T
px

�

�
; j D 1; : : : ; m:

(4.12)

Upon further discretizing the flow-based representation, one essentially recovers the gradient
descent algorithm for ResNets together with back-propagation (for more details, see [32]).

The gradient descent-based algorithm and themaximum principle-based algorithms
are two representative classes of training algorithms for deep neural networks. There are two
major components in these algorithms: the propagation and back-propagation of the states
and the costates, and the optimization of the parameters. In gradient-descent algorithms,
for each iteration of the gradient descent, one performs a full cycle of forward and backward
propagation. Inmaximumprinciple-based algorithms, for each cycle of the forward and back-
ward propagation, one performs the full optimization. These two classes of algorithms stand
at the opposite extreme as far as the balance of these two components are concerned. Obvi-
ously, the most efficient algorithm should lie somewhere in-between.

Another interesting question is the comparison between the mean field and the con-
tinuous philosophies. In the simplest setting, the mean-field and the continuous formulation
give rise to the same continuous model. However, one should note that their starting point is
quite different:

� For the mean field approach: discrete ! continuous by taking the hydrodynamic
limit, as in the study of interacting particle systems in statistical physics.

� For the continuous formulation: continuous ! discrete by discretization. This
viewpoint is more like the one in classical numerical analysis where one starts
from continuous problems and then discretize.
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Continuous formulation allows us to think about machine learning “outside the box”
of neural network models. It also seems to be a “double-sided sword”: While the continu-
ous formulation seems to be quite attractive, it is difficult to initialize. In practice, it seems
that initializing using i.i.d. random samples under the conventional scaling leads to better
performance. This is still a puzzle that needs to be resolved.

5. Some perspectives and concluding remarks

What have we really learned? Perhaps the single most important thing is that neural
network-based machine learning is a very powerful tool for overcoming the CoD, or for
discrete problems, the combinatorial explosion. This should be the most important guiding
principle for designing new algorithms, trying new applications, or developing the theory.
Neural networks might also be useful for problems with very few degrees of freedom, but at
the moment, we still lack convincing evidence in this regard.

One of the most exciting recent development is the application of machine learn-
ing to science. AlphaFold2 and DeePMP are two of the most representative examples. The
former is a powerful solution of a fundamental problem in science using data-driven meth-
ods. The latter is a powerful extension of a classical theoretical tool, namely molecular
dynamics, that substantially advanced its realm of applicability. As we discussed in Section
2, machine learning seems to provide the missing tool for realizing the goals put forward in
the multiscale modeling program. In addition, using machine learning to improve the effi-
ciency of experimental work is also an area with a lot of promise. Indeed, one can argue
that AI for Science has been the most exciting development in AI or science during the last
couple of years, and it is changing the paradigm with which we do science.

On the theoretical side, even though we are still quite far from having a satisfactory
theory for neural network-based machine learning, the roadmap to such a theory is emerg-
ing. This roadmap includes understanding the approximation theory, generalization gap, the
landscape for the training problem, dynamical path during training, the difference between
the landscape for the empirical and population risks, and so on. Perhaps more importantly, a
consensus is starting to emerge regarding what the right questions are. One such consensus is
that what is important is not the specific values of the neural network parameters, but rather
their probability distribution. This underlies most of the theoretical advances discussed here.

Besides these abstract studies, there is also the need to study in more detail the struc-
ture of practical datasets. The fact that one can perform classification of images using neural
network models suggests that the task itself is not so complicated, at least when represented
using multilayer neural networks. It is worthwhile to look into the details of the structures
of such a representation.

In addition to supervised learning, there is also the need to build some theoretical
understanding of unsupervised learning, learning dynamical systems, reinforcement learn-
ing, as well as the new tasks that have emerged in the application of machine learning to
scientific computing. The efforts to develop such an understanding is likely going to lead us
to a new subject in mathematics, namely high-dimensional analysis.
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Regarding the impact that machine learning will have on applied mathematics as a
whole, we refer the readers to the article [24].

Finally, machine learning is not the ultimate solution of AI. It has a lot of problems,
including the difficulties with interpretability, the need for a large training dataset, the vul-
nerability to adversarial attacks, and so on. Traditional rule-based methods are much better
on these issues. Naturally one should ask whether it is possible to combine rule-based and
learning-based approaches to build better AI algorithms.
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Homomorphic
encryption:
a mathematical survey
Craig Gentry

Abstract

If the first thing that comes to mind when you hear the word “encryption” is the Enigma
machine, you might think that encryption is complicated and mathematically uninter-
esting. In fact, many modern encryption systems are quite simple from a mathematical
point of view, especially encryption systems that are homomorphic. In these systems, the
starting point is a homomorphism that respects some binary operation(s), such asC or �.
Depicting this homomorphism with a rectangular commutative diagram, the objects on
the top level of the diagram are called ciphertexts, and the objects on the bottom level
are called messages or plaintexts. The downward arrows in the diagram are the homo-
morphism, which we call decryption. The rightward arrows are the operation(s). Decryp-
tion commutes with the operations. To the commutative diagram we add one extra ingre-
dient, computational complexity. Specifically, we need for it to be easy (in the sense of
polynomial-time) for anyone to compute the rightward arrows in the diagram, but hard
to learn how to compute the downward (decryption) arrows except with some special
information that we will call a “secret key.” In short, homomorphic encryption is simply
a homomorphism that has been “hardened” in the complexity-theoretic sense.
Homomorphic encryption allows anyone to compute on encrypted data, without needing
(or being able) to decrypt, has many exciting applications. Fully homomorphic encryption
(FHE) systems, which allow a rich (functionally complete) set of operations, were finally
discovered in 2009. But all of the FHE systems that we have discovered so far follow the
same blueprint, and we still wonder whether there are other ways to build FHE.
This survey presents homomorphic encryption from a mathematical point of view, illus-
trating with several examples how to start from a homomorphism and harden it to make it
suitable for cryptography, pointing out pitfalls and attacks to avoid, laying out the current
blueprint for FHE, and (I hope) serving as an inspiration and useful guide in the develop-
ment of new approaches to FHE.
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1. Introduction

Let me sketch homomorphic encryption in two different ways, a cryptographic way
and a mathematical way.

Cryptographically, homomorphic encryption has the usual 3 algorithms of encryp-
tion—namely, key generation K, encryption E, and decryption D. Key generation K generates
a random key pair .ek; sk/, an encryption key and a secret decryption key. In a “symmet-
ric” encryption system, ek D sk; in an “asymmetric” encryption system, ek is public (not
secret) and does not equal sk. Encryption E is a randomized algorithm that maps a message
m 2M and some randomness to a ciphertext, c D E.ek; m; r/. Decryption D is a determin-
istic algorithm that recovers a message from a ciphertext, m D D.sk; c/. It should hold that
m D D.sk; E.ek; m; r// for all key pairs in the image of K, all m 2M, and all randomness
r . For the encryption system to be secure, for any two messages m0; m1 2 M chosen by
an adversary, it should be computationally “hard” for the adversary to distinguish encryp-
tions of m0 from encryptions of m1, even after seeing many encryptions of these and other
values. Homomorphic encryption also has a fourth procedure, V, for evaluation. This proce-
dure uses an additional evaluation key evk, which is public. Evaluation V allows anyone to
process encrypted data while it remains encrypted, without using the secret decryption key.
For example, one might be able to apply some binary operation � to two ciphertexts to pro-
duce a new ciphertext that encrypts the sum of the original two messages. Formally, for some
set of binary operations F associated to the system, the following is true: for any correctly
generated key tuple .ek; sk; evk/, and for any ciphertexts c1; c2 in the image of E under the
key tuple, as well as for any f 2 F , we have D.V.evk; f; c1; c2//D f .D.sk; c1/; D.sk; c2//,
that is, running Vwith the function f on two ciphertexts that happen to decrypt tom1 andm2

produces a new ciphertext that decrypts to f .m1; m2/. We say the system is “unbounded”
if operations can be applied repeatedly, indefinitely, not only on ciphertexts in the image
of E but also ciphertexts in the image of V. The set of ciphertexts should be finite. (Actually,
ciphertexts should be compactly expressible, for efficiency). Thus, homomorphic encryp-
tion, via the algorithm V, allows the processing of data without giving away access to the
data. The applications are numerous. For example, if the system is unbounded for operations
C and � (i.e., is fully homomorphic), you could give your encrypted financial information to
an online service, which could prepare a (encrypted) completed tax form for you (which you
could then decrypt), without the online service learning any of your private information.

The cryptographicway also emphasizes an approach called provable security. In this
approach, one invokes a well-established computational assumption, such as the assumption
that it is hard to factor large integers.1 Then, one constructs a cryptosystem, and proves that it
is secure if your computational assumption is true. Specifically, one shows that if there is an
efficient adversary that violates the security of the cryptosystem, then from that adversary one

1 We will discuss computational complexity and security in more detail later, but as a first
approximation one can view the notion of computational “hardness” here as requiring at
least that P¤ NP, i.e., that there exist problems for which one can verify a solution effi-
ciently if given a witness, but not find a solution efficiently.
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can build an efficient algorithm to solve the assumedly hard problem. Provable security is an
elegant and necessary approach that puts cryptography on a firm and rigorous foundation:
anyway, about as firm as possible, given that we are not even certain that P ¤ NP. The
provable security approach performs the essential function of discouraging and weeding out
unproven cryptosystems that might look hard to break at first glance, but are usually broken
eventually.

Mathematically, the essence of unbounded homomorphic encryption is captured by
a commutative diagram

C2 C

M2 M:

�;�

D.sk;�;�/ D.sk;�/

C;�

In the diagram, M is the set of valid messages and C is the set of valid ciphertexts. The
downward arrows are decryption, which I have drawn as dashed since the arrows should be
“hard” to compute without the secret decryption key sk. The rightward arrows are binary
operations over M and C , which anyone can compute easily. To make the diagram cleaner,
I simply assumed that the binary operations over M areC and � (though other possibilities
are interesting), and I used � and �, instead of the more ponderous V.evk;C; �; �/ and
V.evk;�; �; �/. The diagram displays how decryption commutes with the binary operations:
starting from 2 ciphertexts in the upper-left corner, applying componentwise decryption and
thenC (for example) produces the same result as first applying � and then decryption. With
the dashed arrows, the diagram depicts homomorphic encryption as a rather straightforward
marriage of homomorphism and computational complexity.

The mathematical way does not avoid provable security (nor would we wish it to).
Also, the commutative diagram does not refer explicitly to K (key generation) or E (encryp-
tion). But the diagram, implicit in the dashed arrow, has a lot to say about provable security,
K and E. Ciphertexts are preimages of messages under the decryption map. For the system
to be secure, for any two messages m0; m1 2M chosen by an adversary, it should be com-
putationally “hard” for the adversary to distinguish preimages of m0 from preimages of m1,
even after seeing many (image, preimage) pairs. In particular, it should be hard to distinguish
samples from the kernel of the decryption map versus samples from all of C . Typically, one
proves the security of a homomorphic encryption system by reducing security to precisely
that assumption, namely that C and ker.D.sk; �// are hard to distinguish from samples. Sim-
ilarly, encryption of m, that is, sampling a random preimage of m, often proceeds by picking
some preimage c1 of m and then randomizing it by sampling random c2 ker.D.sk; �// and
setting c D c1 � c2.

There are already many surveys of homomorphic encryption that follow the cryp-
tographic way [1, 2, 7, 11,22,42,43,48,62,72, 74].2 This survey is aimed at mathematicians. So,

2 Silverberg’s survey [72] is aimed at mathematicians, but in a different way than I intend
here.
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our journey will follow the mathematical way, starting always with a homomorphism (rather
than a well-established cryptographic assumption), and then seeking ways to “harden” the
homomorphism to make it suitable for cryptography. My ulterior motive for following this
way is that I want to encourage mathematicians to be creative, to try to introduce new useful
algebraic structures into cryptography’s limited repertoire, and to invent new homomorphic
encryption systems (subject, eventually, to the constraints of provable security).

Accordingly, the plan of the survey is to be maximally accessible, useful and inspir-
ing to mathematicians, by presenting:

• Several examples of simple homomorphic encryption systems, starting from their
homomorphisms, showing how their homomorphisms are “hardened,” and giving
their proofs of security (after defining security);

• General results about homomorphic encryption—including “fully” homomorphic
encryption (FHE), which allows arbitrary computations to be performed on data
while it remains encrypted—most of which follow directly from the commutative
diagram defining the system’s correctness;

• Some discussion of why ring homomorphisms do not seem to give secure FHE
systems;

• A clear exposition of an actual FHE system, including how we start with a ring
homomorphism, how we harden the ring homomorphism by adding “noise,” and
how to base the security of the system on a “hard” problem over integer lattices;

• Some discussion of failed attempts to use different algebraic structures to build
fully homomorphic encryption systems in a way that falls outside of the current
blueprint;

• A mercifully concise discussion of practical matters, such as the performance
characteristics of FHE.

By the end, we will see that the algebraic structures underlying current fully homo-
morphic encryption (FHE) systems are rather bizarre. In known FHE systems, the set of
messages M is a ring with natural C and �. The set of ciphertexts C has analogous binary
operations � and �, but is not a ring, but rather a commutative “double magma”—in partic-
ular, the binary operations are not even associative. As an algebraic structure, the ciphertexts
are very unstructured. It is an intriguing question whether FHE can be built with a set of
ciphertexts that is more structured, e.g., a nonsolvable group.

In the next section, we review some simple early homomorphic encryption sys-
tems, their commutative diagrams, and their proofs of security. After these examples, we
present some general definitions and results about homomorphic encryption in Section 3,
most notably the bootstrapping theorems, which demonstrate that to get a homomorphic
encryption system capable of correctly evaluating any function on encrypted data (that is, an
FHE system), it is enough to get a homomorphic encryption system that can correctly eval-

959 Homomorphic encryption: a mathematical survey



uate a single special function. In Section 4, we describe in detail the construction of an FHE
system. The construction starts with a homomorphism that respects a rich set of operations—
such as a ring homomorphism—and hardens it by adding “noise” to it. The noise turns the
unbounded homomorphism into a bounded one, but the bounded homomorphism is “boot-
strappable,” as needed to obtain FHE.We show how to base the security of different versions
of the FHE system on different versions of the learning with errors (LWE) problem, whose
hardness in turn can be based on hard problems over integer lattices. Finally, in Section 5,
we suggest directions for future research.

2. Some simple homomorphic encryption systems

Here, as a (safely skippable) warm-up, we present some simple homomorphic
encryption systems, starting from their homomorphisms, showing how their homomor-
phisms are “hardened,” and giving their proofs of security (after defining security).

First, some history. Rivest, Adleman, and Dertouzos [67] proposed the notion of
homomorphic encryption in 1978—calling it a “privacy homomorphism.” They were in-
spired by a homomorphic property of the RSA encryption system, which Rivest, Shamir,
and Adleman [68] had proposed the previous year—namely, that if you multiply two cipher-
texts encrypted under the same key, it has the effect of multiplying the messages encrypted
inside. They wondered whether it was possible to take this further: to construct a privacy
homomorphism capable of general computation on encrypted data, not just multiplications
modulo an integer. In [67], they proposed several systems allowing general computation.
They knew these systems were insecure against realistic attacks—for example, in some of
the systems, if you obtain a few encryptions of 0, it becomes trivial to recover the secret
key. These systems were inspiring to later researchers, who eventually found ways to modify
them to make them secure—in particular, with “noise”—to construct the fully homomorphic
encryption systems that we have today.

Fortunately, for the purposes of this survey, we have some simple homomorphic
encryption systems that are also provably secure, based on natural computational assump-
tions, under the “right” model of security for an encryption system. For these examples, we
can start with a homomorphism, show how to “harden” it, and provide a proper proof of
security in the “right” model of security. In these examples, the proof of security in this
model makes heavy use of the homomorphism. In fact, the assumption used in the proof of
security is simply that it is computationally hard to distinguish samples from the kernel of
the homomorphism from random samples.

Our first example is the Goldwasser–Micali encryption system, described in 1982
[47]. Goldwasser and Micali were the first to prove an encryption system secure under a
natural computational assumption using the “right” model of security. Granted, they had an
advantage here, because they also defined the model of security. But, to their credit, this
model has stood the test of time and is still considered the right one.

960 C. Gentry



2.1. Goldwasser–Micali: HE starting from the Legendre symbol
For a fixed prime p, the Legendre symbol

�
�

p

�
W .Z=pZ/�!¹˙1º is a group homo-

morphism, mapping an element of .Z=pZ/� to 1 if it is a quadratic residue (square) modulo
p, and to �1 if it is a nonresidue. We have the following commutative diagram:

.Z=pZ/� � .Z=pZ/� .Z=pZ/�

¹˙1º � ¹˙1º ¹˙1º;

�

�
�
p

�
;
�
�
p

� �
�
p

�
�

where � denotes multiplication in ¹˙1º, and � denotes multiplication in .Z=pZ/�.
How can we “harden” the Legendre symbol homomorphism to build a homomor-

phic encryption system? The downward arrow, which will eventually become decryption,
currently requires only knowledge of p, so we must hide p in some way. A natural way to
hide p is to reveal only a composite integer N D p � q, where p and q are both large prime
integers; N hides p only if it is “hard” to recover p from N via factorization, so we will
at least need to assume that factorization is hard. We now have the following commutative
diagram:

.Z=N Z/� � .Z=N Z/� .Z=N Z/�

¹˙1º � ¹˙1º ¹˙1º;

�

�
�
p

�
;
�
�
p

� �
�
p

�
�

where now� is multiplication moduloN , and the downward arrows are dashed because (we
hope) it is hard to learn how to compute the Legendre symbol

�
�

p

�
without the secret p, even

after seeing many (image, preimage pairs).
For several reasons, it makes sense to use the subgroup of .Z=N Z/�, which we will

denote by JN , of elements with Jacobi symbol 1. First, the fact that the Jacobi symbol
�
�

N

�
is

efficiently computable even without the factorization of N makes cryptographers nervous.
We can make the Jacobi symbol useless to an attacker by using only elements that have
the same Jacobi symbol. Second, restricting to JN makes the system cleaner by removing
unneeded cosets from .Z=N Z/�. Third, using JN will make the computational assumption
easier to state. We now have the following commutative diagram:

JN � JN JN

¹˙1º � ¹˙1º ¹˙1º:

�

�
�
p

�
;
�
�
p

� �
�
p

�
�

The downward arrows are still surjective. Half of the elements ofJN are squares in .Z=N Z/�

with Legendre symbol 1 for both p and q, and half are nonsquares with Legendre symbol
�1 for both p and q.
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Now, let us build a homomorphic encryption system from the commutative diagram.
Our diagram indicates that our set of ciphertexts is JN , and that we decrypt a ciphertext c by
computing

�
c
p

�
. The diagram also depicts the homomorphism of our system—namely, that

by multiplying ciphertexts (modulo N ), we implicitly multiply the underlying messages (in
¹˙1º). So, we have already built the decryption function D (which maps a ciphertext to a
message) and the evaluation function V (which uses the binary relation(s) over ciphertexts
to implicitly apply the analogous binary relation(s) to the messages that are encrypted).

All what remains is to build key generation K (which generates a random key pair
.ek; sk/, an encryption key and a secret decryption key) and encryption E (which maps a
message from M and some randomness to a ciphertext using the encryption key ek, i.e.,
c D E.ek; m; r/.) What do we need to put in the public encryption key to allow a user to
generate a random encryption of either ¹˙1º? Notice that the encryptions of 1, i.e., the subset
of JN that has Legendre symbol 1 for p, are precisely the quadratic residues (squares) in
.Z=N Z/�. So, given N , anybody can generate a random encryption of 1 easily by taking a
random element of .Z=N Z/� and squaring it. To generate a random encryption of �1, the
user needs some encryption u of�1, namely, a nonsquare in JN , which it can then randomize
via multiplication with a random square. Hence, it suffices to provide .N; u/ as the public
encryption key.3

Below is a cleaner presentation of the Goldwasser–Micali encryption system. Let
CompositeGen.�; r/ be a function that takes a security parameter � and some randomness r

as input, and which outputs integer primes p; q of size determined by � (they have a number
of bits polynomial in �) and their product N D p � q.

Goldwasser–Micali encryption system.

• Key Generation: K.�; r/ takes a security parameter � and some randomness r as
input. It outputs .p; q; N / CompositeGen.�; r/. Also, it uses the randomness
to generate random u 2 JN that is a nonsquare. The secret key sk is p. The public
encryption ek is .N;u/. The message setM is ¹�1;1º. The ciphertext setC is JN .

• Encryption: E.ek;m; r/ takes the encryption key ek, a message m 2M and some
randomness r as input. It generates random t 2 .Z=N Z/�. If m D 1, it outputs
ciphertext c  t2 mod N , else it outputs c  u � t2 mod N .

• Decryption: D.sk; c/ takes the secret key sk and a ciphertext c 2 C as input. It
outputs m 

�
c
p

�
2M.

• Homomorphic multiplication: it takes two ciphertexts c1; c2 2 C and outputs
c  c1 � c2.

3 See Section 3.2 for a more generally applicable approach to key generation and encryption,
in which key generation involves populating the public key with encryptions (preimages
under the decryption map) of several known values, and encryption involves applying the
binary relation to the ciphertexts (preimages) in the public key to generate a random encryp-
tion (preimage) of the desired value.
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Now, let us turn to security. Goldwasser and Micali defined the security of an
encryption system using the following game [15,47].

Definition 1 (IND-CPA game). The IND-CPA game between a “challenger” and an “adver-
sary” is as follows:

• Key Generation: The challenger uses K and � to generate a key pair .sk; ek/. If
the encryption system is asymmetric (public-key), it sends ek to the adversary. It
keeps sk secret. The challenger samples a random bit b 2 ¹0; 1º.

• Training and Challenges: Repeatedly, the adversary selects some messages
mi;0; mi;1 2 M that it sends to the challenger. The challenger generates ran-
domness ri and sends ci  E.ek; mi;b; ri / to the adversary. (If the adversary is
free to set mi;0 D mi;1 if it wants an encryption of a known message.)

• Guess: The adversary guesses a bit b0 2 ¹0; 1º. It wins if b0 D b.

Definition 2 (Adversary’s advantage). In a game against system E with security parameter �

in which an adversary is trying to guess a random bit b 2 ¹0; 1º, we define the adversary’s
advantage AdvE

A.�/ to be jPrŒA guesses b correctly� � 1
2
j.

Definition 3 (IND-CPA security of encryption). We say that an encryption system E is
IND-CPA-secure if, for all probabilistic polynomial time adversaries A (i.e., that run in time
polynomial in �), the adversary’s advantage AdvE

A.�/ in the IND-CPA game is negligible
(i.e., o.1=�c/ for all constants c).

See Appendix A for a discussion of why, for most settings, IND-CPA is a minimal
viable notion of security for encryption; here, we just make a few comments about it. In our
presentation of the IND-CPA game, we consider only fixed-length messages from the set M;
if queries with variable-length messages are allowed, the game requires mi;0; mi;1 to be the
same length.

In its attack, the adversary is, of course, free to use E.ek; �/ and/or V to produce
ciphertexts on its own if the system is asymmetric and/or homomorphic.

An encryption system can be secure under the IND-CPA game only if it is proba-
bilistic—that is, there are many ciphertexts for each message. If the system were determin-
istic, the adversary could easily win by obtaining an encryption of a known message m, and
then querying .mi;0 D m; mi;1/ for some mi;1 ¤ m.

The IND-CPA game and our commutative diagram imply that, in a secure encryp-
tion system, it is hard to distinguish samples of ker.D.sk; �// from samples of C . Making
the kernel of the decryption homomorphism indistinguishable from the entire set of cipher-
texts is the essence, and hardest part, of hardening a homomorphism to make it suitable for
cryptography.

It only remains to define a clear computational assumption, and prove the security
of Goldwasser–Micali based on the assumption. The computational assumption is that it is
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hard to distinguish whether a randomly sampled element of JN is a square modulo N . This
assumption is formalized as follows:

Definition 4 (Quadratic Residuosity (QR) assumption). For security parameter � and ran-
domness r , compute .p; q; N / CompositeGen.�; r/. Sample v uniformly from JN . The
QR assumption is that given .N; v/ (but not p; q; r), all probabilistic polynomial time
(in �) adversaries A have negligible advantage in guessing whether v is a quadratic residue
modulo N . (The probability in the assumption is taken not just over the sampling of JN , but
also over the choice of N .)

In other words, the QR assumption is that samples from JN are indistinguishable
from samples from the subset of JN that is in ker

��
�

p

��
.

Note that the assumption (like all of the computational assumptions that we will
make) depends on how elements are presented. For example, if our presentation of an element
j 2 JN is “too revealing” in that we give j not just as element of .Z=N Z/� but also give
the value

�
j
p

�
, then clearly the assumption becomes false. Generally speaking, it will be clear

what “hardened” presentation the assumption is using.
How hard is the QR problem?We do not know of any algorithm for the QR problem

that is faster than factoring N . The fastest algorithm for integer factorization is currently the
number field sieve [57], which runs in time exp.O.logN /

1
3 .log logN /

2
3 /, i.e., subexponential

(but superpolynomial) time.
For fixed N , Goldwasser and Micali show how to amplify the success probabil-

ity of an QR algorithm—given an algorithm that guesses correctly with probability 1
2
C ",

one can construct an algorithm that uses about O."�1/ times the computation and guesses
with probability very close to 1. This follows from the fact that the QR problem is random
self-reducible, given a particular j 2 JN , we can run the initial algorithm on many random
j � r , where r is a random square, and aggregate the results. In other words, random self-
reducibility exploits the homomorphism to generate many samples that have the same preim-
age by multiplying an initial sample with many elements of the kernel.

Now, let us prove the security of the Goldwasser–Micali encryption system. The
proof is quite simple. Nonetheless, it is useful because it reduces the security of a com-
plex system (that allows the IND-CPA adversary to “train” and adapt by making interactive
dynamically-chosen queries) to a crisp and concise computational assumption.

Theorem 1. The Goldwasser–Micali encryption system is IND-CPA-secure based on the
QR assumption.

Proof. Suppose that there exists an efficient adversary A that wins the IND-CPA game with
probability 1

2
C ". Then, we claim that there exists an efficient algorithmB, running in about

the same time asA, that solves the QR problemwith probability 1
2
C

"
2
. The theorem follows

from this claim.
Here is how algorithm B works: B is given an instance of the QR problem, namely

.N; v/ such that N is a composite number chosen according to the specified distribution and
v is sampled uniformly from JN . Here B’s task is to distinguish whether v is a quadratic
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residue modulo N . To solve its task, B assumes the role of the challenger in the IND-CPA
game with A. Then B gives ek  .N; v/ to A as the public encryption key, and B sam-
ples a random b 2 ¹0; 1º. When A sends query .mi;0; mi;1/, B samples randomness ri for
encryption, sets ci  E.ek; mi;b; ri /, and sends ci to A. Also A outputs a guess b0 2 ¹0; 1º.
If b0 D b, then B guesses that v is a quadratic nonresidue; otherwise, it guesses that u is
quadratic residue.

Now, we have two cases: either v is a nonresidue (as it should be in the real system),
or it is a residue. Each case happens with probability 1

2
. In the former case, the public key

ek and all of the ciphertexts generated by B have the same distribution as in the IND-CPA
game. Therefore, in this case, the adversary guesses correctly (b0D b) with probability 1

2
C "

by assumption. In the latter case (if v is a quadratic residue), then v and all of the ciphertexts
generated by B are uniformly random quadratic residues. In particular, the ciphertexts are
independent of the messages they are supposed to encrypt, and hence independent of b. In
this case, the adversary’s guess b0 is also independent of b. Thus, A’s success (or lack of it)
gives B a clue about whether or not v is a quadratic nonresidue (or residue). In detail, using
QR and QNR to denote the events that v is a quadratic residue or nonresidue, respectively,
we have:

PrŒB correct� D PrŒB correctjQR and A correct� � PrŒQR and A correct�

C PrŒB correctjQR and A incorrect� � PrŒQR and A incorrect�

C PrŒB correctjQNR and A correct� � PrŒQNR and A correct�

C PrŒB correctjQNR and A incorrect� � PrŒQNR and A incorrect�

D 0C 1 �
1

2
�

1

2
C 1 �

1

2

�
1

2
C "

�
C 0

D
1

2
C

"

2
:

2.2. ElGamal: HE starting from a linear homomorphism
We provide one more example of a simple homomorphic encryption system. The

ElGamal cryptosystem [35] was probably directly inspired by the Diffie–Hellman protocol
[31], but it could have been invented by starting from a linear homomorphism, and then
hardening the homomorphism, as follows.

Let q be a prime integer. For Es 2 .Z=qZ/n, the inner product hEs; �i W .Z=qZ/n !

Z=qZ is a linear homomorphism. We have the following commutative diagram:

.Z=qZ/n � .Z=qZ/n .Z=qZ/n

Z=qZ � Z=qZ Z=qZ;

�

hEs;�i;hEs;�i hEs;�i

C

where � is vector addition.
How canwe “harden” the linear homomorphism to build a homomorphic encryption

system? The IND-CPA game (see Definition 1) allows an adversary to obtainmany (message,
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ciphertext) pairs. If such pairs have the form .m; Ec/ 2 .Z=qZ/nC1 such that m D hEs; Eci, the
adversary can efficiently solve for Es using linear algebra. One countermeasure to this linear
algebra attack is to put the elements of Z=qZ “in the exponent.” That is, let G be a cyclic
group of prime order q whose binary operation we denote multiplicatively. For example,
G could be a subgroup of the multiplicative group of a finite field, or of the group of points
of an elliptic curve group over a finite field. Let g be a generator ofG. In such groups, givenG

and g, recovering a 2 Z=qZ from ga is called the discrete logarithm (DL) problem, which
is believed to be hard for appropriate groups.4 We now have the following commutative
diagram:

Gn �Gn Gn

G �G G;

�

hEs;�i;hEs;�i hEs;�i

�

where now hEs; �i is applied “in the exponent,” i.e., for .g1; : : : ; gn/ 2 Gn, we have˝
Es; .g1; : : : ; gn/

˛
D

nY
iD1

g
si

i ;

and � is componentwise multiplication.
Now, let us build the Elgamal encryption system from the commutative diagram.

Elgamal uses a 2-dimensional secret key Es with the special form .�s; 1/. So, ciphertexts and
messages live in G2 and G, respectively. As depicted by the commutative diagram, decryp-
tion involves applying hEs; �i “in the exponent.” The diagram also specifies the multiplicative
homomorphism. Now, what do we need to put in the public key to allow anyone to gener-
ate a random encryption of any element of G? A random encryption of m 2 G is simply
some encryption of m multiplied (via �) by a random encryption of g0. Anybody can easily
compute some encryption of m as Ec D .g0; m/, since hEs; Eci D .g0/�s �m1 D m. A random
encryption of g0 has the form .gr ; gr �s/ for r sampled uniformly fromZ=qZ. To enable gen-
eration of a random encryption of g0, the public encryption key needs only a some nontrivial
encryption of g0, in particular, .g; gs/ suffices.

ElGamal encryption system.

• Key Generation: K.�; r/ takes a security parameter � and some randomness r as
input. It uses � and the randomness to generate .G; g/, a group and generator of
order q D q.�/. (Alternatively, the group may be preset and common to many
users.) It generates a random s 2 Z=qZ and sets h gs . The secret key sk is s.
The public encryption ek is .G; g; h/. The message set M is G. The ciphertext
set C is G2.

4 The reverse problem of computing ga from g for a 2 Z=qZ can be solved efficiently using
only O.log q/ multiplications in G using the technique of “repeated squaring.”
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• Encryption: E.ek; m; r/ takes the encryption key ek, a message m 2 M and
some randomness as input. It generates random t 2 .Z=qZ/. It outputs
c  .gt ; m � ht /.

• Decryption: D.sk; c/ takes the secret key sk and a ciphertext c D .c0; c1/ 2 C as
input. It outputs m c�s

0 � c1 2M.

• Homomorphic multiplication: it takes two ciphertexts c.1/; c.2/ 2 C and outputs
c  c1 � c2.

The computational assumption underlying ElGamal is called the Diffie–Hellman assump-
tion.

Definition 5 (Diffie–Hellman (DH) assumption). Let G be a fixed group of order q (deter-
mined by security parameter �) with generator g. Sample a random bit ˇ 2 ¹0; 1º. If ˇ D 0,
sample x and y randomly from Z=qZ and set z D x � y. If ˇ D 1, sample x, y, and z ran-
domly from Z=qZ. Output .G; g; gx ; gy ; gz/. The DH assumption is that all probabilistic
polynomial time (in �) adversaries A have negligible advantage in guessing the bit ˇ.

Note that is easy to determine whether the discrete logarithms of a tuple satisfy a
given linear equation. The DH assumption is basically that it is hard to distinguish whether
the discrete logarithms satisfy a degree-2 equation. For some elliptic curve groups over
finite fields, the fastest algorithm for distinguishing Diffie–Hellman is to solve the discrete
logarithm problem by using the “baby-step giant-step” method, which takes roughly pq

computational steps.
Now, we prove the security of ElGamal based on the Diffie–Hellman (DH) assump-

tion.

Theorem 2. The Elgamal encryption system is IND-CPA secure under the DH assumption.

Proof. LetB be an algorithm that is given an instance of the DH problem, namely, .G;g;gx ;

gy ; gz/ such that if ˇ D 0 then z D x � y, but if ˇ D 1 then z is sampled uniformly and
independently modulo q. Here B’s task is to distinguish the bit ˇ while B and A play the
roles of the challenger and adversary in the IND-CPA game. Algorithm B gives .G; g; gx/

to A as the public encryption key. Then B chooses a random bit b 2 ¹0; 1º. When A

queries messages .mi;0; mi;1/, B samples randomness ri 2 Z=qZ, and sends the cipher-
text .g0; mi;b/ � ..gy/ri ; .gz/ri /. Adversary A outputs a guess b0 2 ¹0; 1º. If b0 D b, then
B guesses that ˇ D 0; otherwise it guesses that ˇ D 1.

One can check that B’s advantage in the DH game is "
2
, where " is A’s advantage in

the IND-CPA game. The idea, as in the security proof for Goldwasser–Micali system, is that
everything—namely the public key and ciphertexts—is distributed properly when ˇ D 0 and
z D x � y, and so A should have advantage " in that case. In particular, ..gy/ri ; .gz/ri / is a
random encryption of g0, and so the i th ciphertext is indeed a random encryption of mi;b .
However, when ˇ D 1, with high probability ..gy/ri ; .gz/ri / is an encryption of a random
value. Therefore the ciphertexts generated by B encrypt random values independent of b,
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and A has no advantage in guessing b. So, A’s success (or lack of it) gives B a clue about
the value of ˇ.

3. General results about homomorphic encryption

Now that we have in mind some simple examples of homomorphic encryption
systems, let us provide a general definition of homomorphic encryption and some general
results.

3.1. Formal definition of HE
A homomorphic encryption system is, first of all, an encryption system:

Definition 6 (Encryption (syntax)). An encryption system consists of 3 functions: key gen-
eration K, encryption E, and decryption D:

• .sk;ek;params/ K.�;r/ takes the security parameter� and some randomness r

and outputs a secret decryption key sk, an encryption key ek, some parameters
params of the system, such as the message set M. In a symmetric system, the
encryption key ek equals sk and is kept secret. In an asymmetric (or public-key)
system, ek is public and does not equal sk. We omit mentioning params as an
input to the other functions.

• c  E.ek; m; r/ takes the encryption key ek, a message m 2M, and some ran-
domness r and outputs a ciphertext. Encryption is probabilistic: new random-
ness r is sampled for each encryption.

• m D.sk; c/ takes a secret key and ciphertext and returns a message m 2M.

We write Ec  E.ek; Em; Er/ and Em D.sk; Ec/ for vectors of messages and ciphertexts; K, E,
and D all can be computed in time polynomial in the security parameter �.

Definition 7 (Correctness of encryption). It must hold that m D D.sk; E.ek; m; r// for all
key tuples .sk; ek/ in the image of K, all m 2M, and all randomness r .

The IND-CPA security of encryption system is as described in Definition 3.
A homomorphic encryption system also has a fourth function V (evaluation). The

homomorphic property requires some tweaks to K as well. (The functions E and D are as
before.)

Definition 8 (Homomorphic encryption (syntax)). A homomorphic encryption system con-
sists of 4 functions: key generation K, encryption E, decryption D, and evaluation V:

• K: As in an encryption system, except that K also outputs a public evaluation key
evk, and params includes some description of a setF of functions, with input and
output over M, that the homomorphic encryption system is capable of evaluating
correctly (see below).
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• E: As in an encryption system.

• D: As in an encryption system.

• c V.evk;f;c1; : : : ; ct / takes evk, a function f 2F , and t ciphertexts c1; : : : ; ct ,
where t is the number of inputs to f . It outputs a ciphertext c.

The above K, E, D, and V all can be computed in time polynomial in the security parameter �,
though V’s complexity necessarily also depends (polynomially) on the complexity of the
function f being evaluated.

The security notion of homomorphic encryption remains IND-CPA security, with-
out reference to V. This is because V is a public function with no secrets. The adversary is,
of course, free to try to use V in its attack.

A homomorphic encryption system must satisfy not only the basic correctness of
encryption, but also correctness of evaluation. We will define the correctness of evaluation
with commutative diagrams. First, note that the images of E and of V need not be the same
in general (though they were the same for the simple homomorphic encryption systems we
presented in Section 2).

Definition 9 (Fresh and evaluated ciphertexts). We differentiate between two types of
ciphertexts:

• “Fresh ciphertexts” (denoted by CE): ciphertexts in the image of E,

• “Evaluated ciphertexts” (denoted by CV): a superset of CE that also includes
ciphertexts in the image of V when evaluated on a function f 2 F and cipher-
texts from CE.

Though the notation suppresses it, these sets depend on the particular encryption key ek and
evaluation evk being used.

Definition 10 (Correctness of evaluation (bounded homomorphic encryption)). A homo-
morphic encryption system correctly evaluates a set of functions F , and is called F -
homomorphic, if

D
�
sk; V.evk; f; c1; : : : ; ct /

�
D f

�
D.sk; c1/; : : : ; D.sk; ct /

�
for all .sk; ek; evk/ in the image of K, all fresh ciphertexts ¹ciº in CE (for key ek), and all
f 2 F . This correctness requirement is depicted by the commutative diagram for bounded
homomorphic encryption in Figure 1a.

Unless otherwise specified, a homomorphic encryption system is bounded, as
depicted in Figure 1a, since correctness of evaluation is a priori guaranteed to hold only
when the inputs are fresh ciphertexts come from CE, not necessarily from CV. Bounded
homomorphic encryption systems can be trivial and uninteresting—for example, when V
does nothing but output f and its input ciphertexts c1; : : : ; ct , leaving it to the decryption
function D to decrypt the ci ’s and apply f to the messages.
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C�E CV

M� M

V.evk;f;�;:::;�/

D.sk;�;:::;�/ D.sk;�/

f

(a) Bounded HE.

C
.i/
V
�

C
.i�1/
V

M� M

V.evk.i�1/;f;�;:::;�/

D.sk.i/;�;:::;�/ D.sk.i�1/;�/

f

(b) Leveled HE.

C� C

M� M

V.evk;f;�;:::;�/

D.sk;�;:::;�/ D.sk;�/

f

(c) Unbounded HE.

Figure 1

Bounded, leveled, and unbounded systems with f 2 F for function set F . The notation M� indicates that the
number of copies of M depends on the number of inputs to f .

One property that can make a homomorphic encryption system nontrivial is if it is
unbounded.

Definition 11 (Unbounded homomorphic encryption). We say a homomorphic encryption
system is unbounded F -homomorphic if, for some set of ciphertexts C , the commutative
diagram in Figure 1c holds.

For an unbounded system, the functions in F can be applied repeatedly, indefi-
nitely. The size of the ciphertexts, and the cost of their decryption, does not depend on how
many homomorphic operations were performed. The simple homomorphic encryption sys-
tems discussed in Section 2 are unbounded with respect to a single binary operation.

In-between bounded and unbounded, we have a notion of leveled homomorphic
encryption.

Definition 12 (Leveled homomorphic encryption). We say a homomorphic encryption
system is leveled F -homomorphic if, for any number n 2 N (a parameter to be included in
params that indicates the number of levels), the commutative diagram in Figure 1b holds for
all i 2 ¹1; : : : ; nº. The functions K; E; D; V are required to be independent of n, aside from
the fact that K generates a key-tuple .sk.i/; ek.i/; evk.i// for each level.

Our definition of leveled homomorphic encryption here is strict; sometimes the def-
inition allows the complexity of the functions to grow polynomially in n. Note that, in the
leveled system, V converts ciphertexts under key ek.i/ to the next key ek.i�1/.

Now what about the set F ? The set F can be limited or powerful. The systems
considered in Section 2 are unbounded, but can perform only a single binary operation that
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is insufficient to perform arbitrary computations. In contrast, we say that F is functionally
complete if it contains a functionally complete (or universal) set of operations or “gates.”
Examples of a universal set of gates are ¹AND;NOTº and ¹NANDº. Boolean circuits composed
of a universal set of Boolean gates are very powerful: any problem that can be computed in
polynomial time by a deterministic Turing machine can also be computed by a polynomial-
size Boolean circuit family. That is, Boolean circuits can efficiently perform general efficient
computation (as classically defined with respect to Turing machines). Our ultimate goal is a
homomorphic encryption system that is unbounded for universal gates.

Definition 13 (Fully homomorphic encryption (FHE)). A homomorphic encryption system
is called fully homomorphic (resp. leveled fully homomorphic) if it is unbounded (resp.
leveled) and its F contains a functionally complete set of gates.

With a fully homomorphic encryption (FHE) system, we can do arbitrary computa-
tions on data while it remains encrypted. Most of the rest of this survey focuses on building
FHE.

3.2. General approach to key generation and encryption
Decryption D and evaluation V are the stars of our commutative diagrams, but let us

focus on key generation K and encryption E for a moment.
Encryption E is simply the inverse of D. Given m 2M, we encrypt m by sampling

from the preimage of m under the decryption map D.sk; �/. In an asymmetric (public-key)
system, such sampling must be possible only with the public encryption key ek, without
sk. Also, for the system to be IND-CPA secure, this sampling must be probabilistic. Can
we devise a simple, natural, secure way to encrypt, that is, to sample randomly from the
decryption-map preimage of a message?

For a homomorphic encryption system, a possible answer immediately presents
itself. Populate the encryption key ek with (image, preimage) pairs ¹.mi ; ci /º. Then, the
encrypter uses the homomorphism of the system to generate a random preimage of itsm from
the given preimages of ¹miº in ek. That is, the encrypter finds a random function f 2 F

such that f .m1; : : : ; mt / D m, and then outputs the ciphertext c D V.ek; f; c1; : : : ; ct / as
its encryption of m.

But we need to be careful here. The ciphertext c certainly decrypts to the correct
message m. But how can we be sure that c does not retain some detectable residue of its
history? A homomorphic encryption system may be IND-CPA secure, yet still allow an
adversary to distinguish that a ciphertext c was produced by evaluating a particular func-
tion f on c1; : : : ; ct , which in this case would allow the adversary to recover m. In fact, the
“trivial” bounded HE system mentioned after Definition 10 (in Section 3.1) has exactly this
property. For the encryption procedure to be secure, we need to ensure that the encrypter’s
ciphertext c “forgets” how it was made.

Suppose that an evaluated ciphertext c is at most ` bits, i.e., c only “remembers” `

bits. And also suppose that we generate c as (say) a random linear combination of the ci ’s in
ek, subject to the same random linear combination of the mi ’s equaling m. If t (the number
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of ciphertexts in ek) is very large, such that the entropy of the random linear combination
is much greater than `, then indeed (whp) c’s precise history will be very ambiguous given
only c itself.

Rothblum [69] formalizes this intuition for homomorphic encryption systems that
have sufficiently compact ciphertexts and a � operation that is additively homomorphic over
M D Z=2Z. Precisely, he proves:

Theorem 3 (Rothblum). Let Esym be an IND-CPA secure symmetric encryption system that
is homomorphic with respect to addition modulo 2. Suppose that there is a polynomial t

such that homomorphically adding t .�/ fresh ciphertexts results in a ciphertext of at most
t .�/=10 bits. Then from Esym one can build an IND-CPA secure asymmetric system Easym.

Rothblum presents the result somewhat differently as constructing asymmetric
encryption from homomorphic symmetric encryption. But the bottom line is the same:
the encryption algorithm practically writes itself as long as there is an efficient procedure
(using sk) to sample a handful of random (image, preimage) pairs of the decryption map to
put in ek, and we can evaluate homomorphic addition modulo 2 compactly.

In detail, Rothblum builds the asymmetric system as follows:

Rothblum’s asymmetric system Easym.

• Easym:K: Compute Esym:K to obtain sk. Use Esym:E.sk; �; �/ to generate X .0/ D

.X
.0/
1 ; : : : ; X

.0/
t / and X .1/ D .X

.1/
1 ; : : : ; X

.1/
t /, which are t D t .�/ encryptions

of 0 and t encryptions of 1, respectively. The secret decryption key is sk. The
public encryption key ek is .X .0/; X .1//.

• Easym:E: Let � denote Esym’s homomorphic addition mod 2 operation. To encrypt
m 2 ¹0;1º, sample a random vector r 2 ¹0;1ºt such that r1C � � � C rt Dm mod 2

and output the ciphertext c D X
.r1/
1 � � � �� X

.rt /

`
.

• Easym:D: Identical to Esym:D.

Correctness follows easily from the properties of Esym.
Rothblum’s proof of IND-CPA security comes in two parts. First, he proves that

if Esym is indeed IND-CPA secure, a polynomial-time adversary will not notice if X .1/ is
replaced by t more encryptions of 0. This follows immediately from the definition of IND-
CPA security (see Definition 3).

Second, assuming now that X .0/ and X .1/ are now 2t i.i.d. encryptions of 0, Roth-
blum shows that a ciphertext generated as c D X

.r1/
1 � � � � � X

.rt /
t “forgets” the value

r1 C � � � C rt mod 2 (the value that is supposed to be encrypted). Specifically, the possi-
ble preimages .r1; : : : ; rt / for c satisfy r1 C � � � C rt D 0 mod 2 with probability at most
1
2
C 2�0:2tC`C1, where ` is the number of bits in c (and similarly for the case of 1 mod 2).

As ` < t=10, this probability is negligibly close to 1
2
.
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3.3. Getting to functional completeness
Now, let us return to our main goal, which is constructing FHE. Suppose we have

an unbounded system E that is correct for a non-functionally-complete set F . Can we use E

to get an FHE system EFHE?
In some cases, yes. Here is a silly example. The arithmetic gates ¹C; �º are not

functionally complete over GF(2). In particular, any circuit composed of ¹C;�º gates can
only output 0 when the inputs are all 0 (and so such circuits cannot express functions that
output 1 when the inputs are all 0). But this technicality is not a real obstacle to constructing
FHE. As long as E is capable of producing a single encryption of 1 (e.g., via encryption) it
can evaluate NOT.x/ as 1C x. (And it can emulate AND.x; y/ as x � y.)

Here is a less trivial example. The gates ¹AND; ORº are not functionally complete.
Circuits composed of ¹AND; ORº gates can only compute monotone functions (not general
functions), where a function f is called monotone if f .x/� f .y/whenever xi � yi for all i .
However, via DeMorgan’s law, we can reexpress anyBoolean circuit as a circuit that is mono-
tone except at the input level, which is allowed to haveNOT gates. ApplyingDeMorgan’s law,
given an unbounded ¹AND; ORº-homomorphic system E , we can construct an FHE system
EFHE as follows. An EFHE ciphertext encrypting “1” consists of an ordered pair of two E

ciphertexts encrypting 1 and 0, respectively. An EFHE ciphertext encrypting “0” consists of
an ordered pair of two E ciphertexts encrypting 0 and 1, respectively. Performing a NOT gate
in EFHE is simple: just swap the E ciphertexts in the ordered pair. To perform an AND gate
in EFHE, take the E-AND of the first E ciphertexts in each pair, and the E-OR of the second
E ciphertexts in each pair.

3.4. Homomorphic encryption unbound: Recryption and bootstrapping
Suppose we have a bounded system E that is F -homomorphic. Can we use E to get

an FHE system EFHE? Is there some “special” function f such that, if f 2 F , we automat-
ically get FHE?

Here is a crazy idea for the “special” function f : the system’s own decryption func-
tion D! D is a function, expressible as a circuit, that takes a secret key sk and ciphertext c as
input, and outputs a message m. So, can D be in F ? Does this sort of self-embedding lead to
impossibilities, as in Gödel’s Incompleteness Theorem and Turing’s Halting Problem? Or,
does the self-embedding actually work, and what are the consequences? We will see that, if
a homomorphic encryption system can evaluate its own decryption function, plus “a little
bit more,” we can bootstrap the system to obtain a fully homomorphic system.

First, let us work out what happens when D 2 F , and we evaluate D “inside” V. We
start with the commutative diagram in Figure 1a for a bounded homomorphic encryption
system. In the diagram, CE denotes the image of the encryption algorithm E—i.e., “fresh”
ciphertexts—and CV denotes the superset of CE of “evaluated” ciphertexts. The commuta-
tive diagram captures the correctness requirement on V with respect to functions from F .
Assuming D 2 F , we are interested in what happens when we start with some value in the
upper-left corner, and apply D homomorphically (inside V). Since the diagram is commuta-
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Figure 2

Recryption: Evaluating decryption homomorphically.

tive, we can gain useful information about what happens by also considering the lower path
through the diagram.

Accordingly, now let us assign the bottom rightward arrow f to be D.�; �/ and see
what happens as we complete the diagram. Follow along in Figure 2. Though the input to
f D D.�; �/ could be arbitrary, the natural input to D is a pair .sk0; c0/ such that sk0 is a
secret key and c0 is a ciphertext with m D D.sk0; c0/. (Note that sk0 might, or might not,
equal the key sk that is already in the diagram.) We put those values in the lower-left and
lower-right. For this to make sense in the diagram, sk0 and c0 must be expressible as strings
over the message set M. So, suppose that they can be expressed as strings in Mk and M`,
respectively, and let us write them as vectors, Esk0 and Ec0. (This reexpression is especially
straightforward when M is simply Z=2Z, i.e., when messages are bits.) We abuse notation
by using D even when the domain is MkC`. Continuing to complete the diagram, for the left
downward arrow to hold, we need the upper-left to be fresh encryptions of the secret key and
ciphertext “bits.” So, we will assume for now that ek is public, and we set ES D E.ek; Esk0/ and
EX D E.ek; Ec0/. (We have omitted the randomness of encryption.) Finally, in the top right-
ward arrow, we apply Vwith f D D.�; �/ to the freshly encrypted bits of the secret key sk0 and
ciphertext c0, to obtain a ciphertext c in the upper-right corner. Recall that D 2 F by assump-
tion, so V is guaranteed to satisfy the correctness requirement. So, what does c encrypt? By
the commutativity of the diagram, it must encrypt m, just like the original ciphertext c0! If
D 2 F , then given an initial ciphertext c0 that encrypts m under sk0, we can produce a new
ciphertext c that encrypts m under sk, by running decryption homomorphically (inside V)
using encryptions of bits of the secret key sk0 and the ciphertext c0. This process is called
recryption.

Interestingly, EX D E.ek; Ec0/ is a “double encryption” ofm, with the inner encryption
under ek0, and the outer encryption under ek. Starting with EX and then taking the down-then-
right path through the diagram, we remove the outer encryption first (as you would expect),
then the inner encryption, to recover m. Taking the right-then-down path, we remove the
inner encryption under ek0 first, then the outer encryption!

974 C. Gentry



Figure 3

Recryption-then-NAND and Bootstrappable Homomorphic Encryption.

You may be underwhelmed. What have we gained by recryption? The homomor-
phic encryption system probably already provides us with much simpler ways to obtain an
encryption of the same message, such as applying homomorphic addition � with an encryp-
tion of 0, or homomorphic multiplication � with an encryption of 1. Why bother with the
more complex process?

First, notice that we do not have any guarantee that c0 can participate correctly in
even simple operations such as � and �. The ciphertext c0 is not necessarily a fresh encryp-
tion. On the other hand, recryption does not perform additional operations on c0. Instead,
it performs operations on fresh encryptions from CE that encrypt the bits of sk0 and c0.
Recryption is guaranteed to work correctly assuming D 2 F .

Second, as hinted above, a good motivation for getting a new encryption of the
same message would be if the new ciphertext is “refreshed,” i.e., it can participate correctly
inmore operations, guaranteed. Trivially, we could refresh c0 by decrypting it then applying E
to obtain a fresh encryption of the same message. But this process requires sk0, which we
want to keep secret. So we arrive at the real motivation for considering recryption: maybe
it can refresh a ciphertext by decrypting it homomorphically, requiring only an encrypted
secret key.

If a recrypted ciphertext c is indeed refreshed, it means we should be able to apply
some additional operation after recryption, such as aNAND gate (if themessages are bits). So,
assume that the messages are bits and that the function f D NAND.D.�; �/; D.�; �// is in F .
This function f takes as input a secret key sk0 and two ciphertexts c0

.1/
; c0

.2/, decrypts
the two ciphertexts with the secret key, and applies the NAND gate to the two messages.
Since this f is in F by assumption, we have the guarantee that if m.1/ D D.sk0; c0

.1/
/ and

m.2/ D D.sk0; c0
.2/

/, then going clockwise through the commutative diagram in Figure 3
gives us a ciphertext c such that NAND.m.1/; m.2// D D.sk; c/. By using this process for
every NAND gate, we can evaluate an arbitrary circuit of NAND gates. Recall that NAND is,
by itself, a functionally complete gate, enabling general computation. Therefore, we obtain
a fully homomorphic encryption system.
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Figure 4

Recryption variant: Evaluating decryption homomorphically with ciphertext prewired.

To get FHE, all we need is a bounded homomorphic encryption system such that
this weird function NAND.D.�; �/; D.�; �// is in F ! We call such a bounded homomorphic
encryption system bootstrappable, and call this process bootstrapping.

In retrospect, bootstrapping seems like the almost inevitable answer for how to
refresh a ciphertext generically. Generically, if all we are given is the commutative diagram of
a bounded homomorphic encryption system (with its function setF ) and a ciphertext c inCV

but notCE that we want to refresh, the only possible way to refresh it is to somehow use V. We
cannot input c as a ciphertext directly into V, since it is not in CE. Yet, we must give V some
inputs that retain the information in c, and that V can operate on correctly. We have only two
choices: either c must be embedded in fresh ciphertexts input to V (e.g., encrypted bitwise,
as above) or c must be embedded in the function f that we give to V to evaluate. In either
case, since the only useful thing we know about c is that it is in CV and encrypts some m, it
seems that the only meaningful functions we can evaluate on c are functions that first decrypt
c (and thereafter perform some operations on m). And so we arrive at bootstrapping. (This
reasoning does not preclude nongeneric techniques for refreshing ciphertexts.)

Embedding the ciphertext(s) to be refreshed in the function to be evaluated—as
opposed to encrypting the bits of these ciphertexts—is actually preferable. If we do not
encrypt the bits of ciphertext(s), we do not need ek to be public (the encryption system
can be symmetric). Also, we do not need to reexpress ciphertexts in terms of message
“bits.” In detail, in this approach, instead of evaluating D.�; �/, we can evaluate the function
Dc0 D D.�; c0/, where c0 comes “prewired.” Similarly, we can replace NAND.D.�; �/; D.�; �//

with NAND ı D
c0.1/;c0.2/.�/, a function that when given sk0 as input, decrypts ciphertexts c0

.1/

and c0
.2/ and then NANDs their respective messages. We provide revised versions of recryp-

tion and recrypt-then-NAND in Figures 4 and 5.
Now, let us state our FHE result a bit more formally.

Definition 14 (Bootstrappable homomorphic encryption). A (possibly bounded) homomor-
phic encryption system E with function set F is bootstrappable if there is a functionally
complete set of binary gates � , such that for all g 2 � , and all ciphertexts c.1/; c.2/ 2 CV,
g ı Dc.1/;c.2/.�/ 2 F .
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Figure 5

Recryption-then-NAND and Bootstrappable Homomorphic Encryption, with two ciphertexts prewired;
NAND ı D

c0.1/;c0.2/ .�/ is a function that, when given sk0 as input, decrypts ciphertexts c0
.1/ and c0

.2/ and then
NANDs their respective messages.

We limited the above definition to binary gates for convenience, and because it usu-
ally seems to suffice in practice. Figure 5 depicts a bootstrappable homomorphic encryption
system where � includes NAND, which is functionally complete by itself.

Theorem 4 (Bootstrapping to leveled FHE [40, 41]). If E is a bootstrappable system that
is IND-CPA secure, then it can be transformed into a leveled FHE system ELFHE that is
IND-CPA secure.

Theorem 4 gives us leveled FHE, not unbounded FHE. For unbounded FHE, there
is an issue in the proof of IND-CPA security. Specifically, to obtain unbounded FHE, we
need for it to be secure to encrypt E’s secret key sk under its companion encryption key ek.
We call this property circular security. (For leveled FHE, we can avoid the circular security
issue by encrypting each sk.i/ under the next encryption key ek.i�1/, so that the encrypted
secret keys form an acyclic chain.)

Definition 15 (Circular security). A encryption system E is circular secure if it is IND-CPA
secure even when ¹ ES D E.ek; Esk/º is public, where Esk 2 Mk are the “bits” of the secret
key sk.

Theorem 5 (Bootstrapping to unbounded FHE [40,41]). If E is a bootstrappable system that
is circular secure, then it can be transformed into an unbounded FHE system EFHE that is
circular secure.

Let us prove Theorem 5 first, because it is simpler.

Proof of Theorem 5. The construction of EFHE is given below; EFHE is unbounded, since
EFHE:V outputs a ciphertext in CV (the set of evaluated ciphertexts of E) whenever the input
ciphertexts are in CV. It correctly evaluates any gate g in the functionally complete set � (in
time polynomial in the security parameter). Therefore, it is fully homomorphic.
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The circular security of EFHE follows directly from that of E , since the K, E, and D
functions of the two systems are the same, the IND-CPA game makes no reference to the V
function, and the encrypted secret key ES is the same in the two systems.

Unbounded FHE construction. Let E D .E:K; E:E; E:D; E:V/ be a circular-secure boot-
strappable homomorphic encryption system. We construct a circular-secure FHE system
EFHE D .EFHE:K; EFHE:E; EFHE:D; EFHE:V/ as follows. (Below, we will omit the randomness
of the encryptions.)

• EFHE:K: Identical to E:K. Note that E publishes ES D E.ek; Esk/, which we call part
of the evaluation key evk.

• EFHE:E: Identical to E:E.

• EFHE:D: Identical to E:D.

• EFHE:V.evk; g; c.1/; c.2//: output E:V.evk; g ı Dc.1/;c.2/.�/; ES/.

So, we have a very clean construction of unbounded circular-secure FHE from
circular-secure bootstrappable encryption. Unfortunately, we do not understand circular
security very well. Indeed, we can construct encryption systems that are IND-CPA secure
(under natural assumptions), but which break completely when an encryption of the secret
key is published. These systems tend to be contrived (specifically designed to break), but
still these counterexamples are sobering. Also, encryption systems that are provably circu-
lar secure (based on natural assumptions) are rare compared to provably IND-CPA secure
systems. More to the point, and looking ahead, we know how to build IND-CPA secure
bootstrappable encryption based on well-studied assumptions about the hardness of compu-
tational problems over integer lattices, while the assumptions underlying current unbounded
FHE systems are less well-understood.

With that motivation, let us now prove Theorem 4, which says that we can get IND-
CPA secure leveled FHE from IND-CPA secure bootstrappable encryption.

The proof uses a common technique in cryptographic security proofs called a hybrid
argument. In a hybrid argument, in each step we change what one ciphertext encrypts—e.g.,
from encrypting a secret key to encrypting 0—and prove that if E is IND-CPA secure then an
adversary should not notice the difference. By the end of the hybrid argument, all purported
encrypted secret keys are in fact encryptions of 0, and are therefore useless to the adversary.
The hybrid argument works for a leveled system because the encrypted secret keys ES .i/ form
an acyclic chain: the secret key at level i is encrypted under the encryption key at level
i � 1. If the encrypted secret keys form a loop, the hybrid argument does not go through.
In particular, the first time we replace an encrypted secret key with an encryption of 0, we
break the key loop, and this change may be efficiently distinguishable if the system is not
circular secure.

Proof of Theorem 4. The construction of ELFHE is given below. By Lemma 1, ELFHE is a
leveled FHE system. The IND-CPA security of ELFHE follows from Lemma 7, which says
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that if there is an adversary A in the IND-CPA game against ELFHE with n levels that has
advantage ", then there is an adversaryB in the IND-CPA game against E that has advantage
at least "=2.nC 1/, and runs in about the same time as A.

Leveled FHE construction. Let E D .E:K; E:E; E:D; E:V/ be the bootstrappable system
with function set F including functionally complete gates � . We construct a leveled FHE
system

ELFHE D .ELFHE:K; ELFHE:E; ELFHE:D; ELFHE:V/

as follows. (Below, we will omit the randomness of the key generations and encryptions.)

• ELFHE:K: Let n2N be the number of levels specified in params. For i 2 ¹0; : : : ;nº,
compute key tuples .sk.i/; ek.i/; evk.i//  E:K.�; i/. For i 2 ¹1; : : : ; nº, set
ES .i/ D E.ek.i�1/; Esk

.i/
/. For i 2 ¹1; : : : ; nº, set evk0

.i�1/
D .evk.i�1/; ES .i//.

• ELFHE:E: Identical to E:E using ek.n/ and attaching the label n to the ciphertext.

• ELFHE:D: The ciphertext c comes with a label in i 2 ¹0; : : : ; nº. Output
E:D.sk.i/; c/.

• ELFHE:V: Given gate g and two ciphertexts c.1/; c.2/ with label i , output

ELFHE:V.evk0
.i�1/

; g; c.1/; c.2// D E:V
�
evk.i�1/; g ı Dc.1/;c.2/.�/; ES

.i/
�
;

and set the label of the ciphertext to i � 1.

Lemma 1. If E is bootstrappable, the system ELFHE described above is leveled fully homo-
morphic.

Proof of Lemma 1. Recall that C
.i/
E is the image of E:E with encryption key ek.i/ and C

.i/
V

is the superset of C
.i/
E that also includes ciphertexts in the image of E:V under evk.i/ with

functions fromF and ciphertexts from C
.i/
E . ELFHE is leveled, as depicted in Figure 1b, since

ELFHE:V outputs a ciphertext in C
.i�1/
V whenever the input ciphertexts are in C

.i/
V .

Moreover, ELFHE:V correctly evaluates any gate g in the functionally complete set �

(in time polynomial in the security parameter). So, it is a leveled FHE system. (Note that the
system must perform some bookkeeping relating to the labels of the ciphertexts, but this
is not part of the actual functions ELFHE:K, ELFHE:E, ELFHE:D, and ELFHE:V, and does not
contribute to their complexity.)

We provide Lemma 7 and its proof in Appendix B.

3.5. Computational hardness, cryptanalysis, and learning
The aspect of homomorphic encryption (and cryptography in general) that is prob-

ably hardest to understand is computational hardness.
Computational hardness is often described in terms of the P vs. NP question.

Roughly speaking, P consists of problems that can be solved (on a Turing machine) in time
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polynomial in the size of the problem instance. For example, two � bit numbers can be mul-
tiplied together in time O.�2/ using grade-school multiplication, or even time O.� � log�/

using more sophisticated techniques [49]. NP consists of problems for which a solution
(together with a “witness” or proof) can be verified in polynomial time. For example, integer
factorization is in NP, since given a nontrivial factorization .p; q/ of integer N , one can
verify in polynomial time that N D p � q via multiplication (which is polynomial time).
On the other hand, integer factorization is not known to be in P, since there are no known
polynomial-time algorithms for finding p and q.

We have no proof that P¤ NP, and therefore nobody knows whether computational
hardness (of the type needed for the security of public-key encryption systems) even exists.
Certainly if P D NP, public-key encryption systems are insecure. In this case, one could
efficiently find the randomness r used in key generation, since one can efficiently verify
running K with randomness r indeed generates the targeted key pair. Even if we assume P¤
NP, this assumption provides little support for public-key encryption systems, which rely on
the hardness of problems that are unlikely to be NP-complete.

In the absence of helpful lower bounds, we are forced to turn to upper bounds.
That is, we consider well-studied problems—such as integer factorization, the discrete log-
arithm problem, and finding short vectors in integer lattices—for which the fastest known
algorithms run in time superpolynomial (preferably exponential) in the size of the prob-
lem instance. Then, we assume that the best known algorithms are not much worse than
the best possible algorithms, and base the security of our cryptosystem on the assumed
hardness of the well-studied problem. Even for well-studied problems, this approach can
be precarious. For example, although the integer factorization problem has been consid-
ered for centuries, a dramatic algorithmic improvement came in 1990 with the inven-
tion of the number field sieve [57], which factors �-bit integers in subexponential time
exp.O.log N /

1
3 .log log N /

2
3 /, considerably faster than the previous quadratic sieve algo-

rithm, which takes time exp.O.logN /
1
2 .log logN /

1
2 /.

Another surprise has been quantum computation. In 1994, Shor [71] made quantum
computation famous by discovering an efficient quantum algorithm for problems includ-
ing integer factorization and discrete logarithm. More generally, we now have the following
result by Watrous [78]:

Theorem 6 (Watrous). Let G be a solvable (e.g., abelian) group, given by generators. There
is a polynomial-time quantum algorithm to compute jGj (with small error probability).

Corollary 1 (Armknecht et al. [10]). Group homomorphic encryption systems in which the
ciphertext set is a finite solvable group and decryption is a group homomorphism cannot be
IND-CPA secure against a quantum adversary.

The corollary follows becauseWatrous’ algorithm allows one to distinguish between
the entire group G of ciphertexts and the proper subgroup H of encryptions of 1 (the kernel
of the decryption map). The attack also applies when the ciphertext set is a finite ring and
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decryption is a ring homomorphism, since the encryptions of 0 form an ideal that is an
abelian additive subgroup of the ciphertext set.

There are also efficient quantum attacks [77] (and subexponential classical attacks
[18]) on FHE systems that have a zero oracle—that is, an efficient method to distinguish when
a ciphertext encrypts 0. But we are anyway only interested in IND-CPA secure systems, for
which no such oracle can exist.

Currently there are no general attacks on homomorphic encryption systems based
on nonsolvable groups, but there are also no known plausibly-secure constructions. Again,
for the construction to be secure, one must ensure that the ciphertext group G and the proper
subgroup H of encryptions of 1 are hard to distinguish. A homomorphic encryption system
using nonsolvable groups must avoid at least the following attacks:

• Solvability of H : If H is solvable and G is not, they can be distinguished easily
by computing their respective derived series.

• Watrous’ order finding algorithm: Even ifG andH are both nonsolvable,Watrous’
algorithm can distinguish them if the cyclic subgroups generated by randomly
sampled elements g  G and h  H have distinguishably different distribu-
tions of orders.

• Linear representations: If one can efficiently compute (or one is given) linear rep-
resentations of G and H , one may be able to distinguish G and H using linear
algebra.

It may seem obvious, but it is an essential point: in a secure encryption system, the
decryption function cannot be linear, since linear decryption leads to a trivial linear algebra
attack (e.g., Gaussian elimination).5

More generally, the decryption function cannot be learnable, in the sense ofValiant’s
“probabilistically approximately correct” (PAC) learning model [75].6 In the PAC learning
model, one is given samples .x; f .x// with x coming from a training set X , and the goal is
to learn f well-enough to output f .x/ with high probability on a new sample x. This model
is nearly identical to the IND-CPA game, where we use f D D.sk; �/.

Since the models are so similar, we can look to learning theory to help us design a
decryption function for an IND-CPA secure system [16]. For example, Linial, Mansour, and
Nisan [58] give an algorithm to learn a function expressible as anAC circuit of size s, depth d ,
and n inputs with accuracy parameter " in time nO.log s="/d . (AC circuits are Boolean circuits
that have AND and OR gates with arbitrarily many inputs, as well as NOT gates.) So, we
cannot have decryption be a constant depth AC circuit if we want (as we usually do) it to take
time exponential (or at least subexponential) in the security parameter � for an adversary to
break our system.

5 There are a surprising number of FHE proposals without proofs of security, and they are
almost always insecure for the simple reason that decryption is linear.

6 Interestingly, the decryption function of a secure bootstrappable encryption system must
satisfy an interesting dichotomy: it must be simultaneously unlearnable (complex) and
evaluatable (not too complex).
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On the other hand, learning theory suggests that it can be difficult to learn functions
from samples that are noisy, i.e., from samples .x; f .x/ C e/, where e is some error or
noise. Accordingly, two learning problems that have become useful to cryptography are the
learning with errors (LWE) problem [65], and the learning parity with noise (LPN) problem,
where one is tasked with distinguishing whether given samples are completely random or
have the form . Eai ; h Eai ; Esi C ei /, where Es is a secret vector and the ei ’s are random noise
values. In LWE the vectors are over Z=qZ and jei j � q, while in LPN the vectors are over
Z=2Z and the ei ’s are Bernoulli random variables that are usually 0 but sometimes 1. While
the inner product is linear, the noise introduces nonlinearity, in particular, it defeats linear
algebra. As far as we know, these learning problems are hard even for quantum adversaries.
The security of all current FHE constructions relies on the hardness of such learning with
noise problems.

4. Noisy constructions of fully homomorphic encryption

The simple FHE systems in Section 2 are unbounded, but only for a single operation
that is not functionally complete. How can we construct an unbounded system capable of
evaluating, say, ¹C;�º?

For evaluating ¹C;�º, a natural approach to try is a ring homomorphism. However,
as we saw in Section 3.5, a system in which decryption is a ring homomorphism can be
broken efficiently by a quantum adversary. Moreover, ring homomorphisms have a linearity
that may be exploited even by classical adversaries.

How can we defeat linear algebra attacks? As we saw in Section 2.2, one answer
is to put values “in the exponent.” Unfortunately, in groups for which the Diffie–Hellman
assumption holds, values in the exponent can be added efficiently but not multiplied.7

As we saw in Section 3.5, another way to defeat linear algebra is to add “noise” or
“errors” to the linear equations. Linear algebra is notoriously brittle against noise. As we will
see, while adding noise “hardens” the homomorphism, this security comes at a cost: the noise
turns our unbounded ring homomorphism into a bounded one. Fortunately, by calibrating the
noise level, we can make the bounded homomorphism bootstrappable to achieve FHE while
basing security on reasonable hardness assumptions.

4.1. Overview of the noisy approach
Virtually all known constructions of FHE follow essentially the same blueprint:8

(1) construct bootstrappable encryption by (perhaps implicitly) starting from an insecure

7 Some groups for which the discrete logarithm is hard feature a bilinear map—such as a Weil
or Tate pairing—that effectively allows one multiplication “in the exponent” (see [17,54]).
Cryptographically-secure multilinear maps are an ongoing area of research [19,38].

8 Some constructions avoid this blueprint by constructing FHE from cryptographic program
obfuscation [14,26,31,39,53]. While much progress has been made on basing obfuscation
systems on well-established computational assumptions [53], all current constructions of
obfuscation still rely on the hardness of learning with noise problems, and are less efficient
and more complicated than more “direct” constructions of FHE.
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unbounded homomorphism that respects some functionally complete set of gates and then
“hardening” the homomorphismwith noise, and (2) invoke the bootstrapping theorems (The-
orems 4 and 5) to get FHE from bootstrappable encryption. Here we sketch a fairly general
technique for hardening a homomorphism with noise.

For convenience, let us fix our message space toMDZ=2Z and our gates to ¹C;�º.
We start with an unbounded homomorphism that respects ¹C;�º:

C � C C

Z=2Z � Z=2Z Z=2Z:

�;�

ısk.�/;ısk.�/ ısk.�/

C;�

For example, C might be ZŒx�, and ısk.�/ could be evaluation of the ciphertext polynomial
at the secret key sk 2 ¹0; 1ºn modulo 2. As another example, C could be a set of integer
matrices that all have sk as an eigenvector with integer eigenvalue, � and � could be matrix
addition and multiplication, and decryption could be recovering the eigenvalue modulo 2.

In these examples, the homomorphism is unbounded but unsuitable for cryptog-
raphy. For the polynomial evaluation homomorphism, one problem is that as we apply �,
the degree increases and the number of monomials can increase exponentially.9 To con-
trol the number of monomials, one approach is to publish a Gröbner basis G for the ideal
I.sk/ D ¹p.x/ W p.sk/ D 0º of polynomials that evaluate to 0 at sk. But while keeping the
monomial basis small helps efficiency, it opens up a trivial linear algebra attack to recover
sk. The matrix-based system is also breakable via linear algebra.

To harden these homomorphisms, we add noise. Here is one way to do it. First,
we make a trivial observation: if we replace ısk with bıske in the above diagram, nothing
changes since ısk is already integral over C . But now let us expand the set of ciphertexts
so that ısk.c/ is not necessarily integral. Rather we let ciphertexts be noisy. We refer to the
value ısk.c/ � bısk.c/e as the noise of the ciphertext c. Now decryption involves applying
ısk.c/, removing the noise to obtain bısk.c/e, and then reducing modulo 2. But nowwemust
ask: do the �; � operations “play well” with the noise? Starting from fresh ciphertexts in
CE, which presumably have a small amount of noise, how many (possibly modified) �; �
operations can we apply with the guarantee that the following diagram commutes?

C�E CV

Z=2Z � Z=2Z Z=2Z

bounded number of tweaked �;�

bısk.�/e;bısk.�/e bısk.�/e

bounded number ofC;�

9 Fellows and Koblitz [37] described an encryption system where decryption involves eval-
uating a ciphertext polynomial at a secret point Es. However, it is not practically usable as a
homomorphic encryption system due to this explosion of monomials.
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The diagram will commute for function f if evaluating f on fresh ciphertexts—say, cipher-
texts of noise at most some "0—always results in ciphertexts with noise bounded comfortably
below 1/2 that is, the noise is guaranteed not to wrapmodulo 1 and result in a possible decryp-
tion error. The hope is that �; �, or tweaked versions of them, play well with the noise and
do not amplify it too much, so that if we choose "0 well, we can get the diagram to commute
for (say) the recrypt-then-NAND function while achieving IND-CPA security based on a
reasonable hardness assumption.

Below, we will discuss an instantiation of this framework in detail. Before we
describe this construction, we introduce some hardness assumptions related to learning
with noise, and show how to construct a symmetric encryption system from one of these
assumptions.

4.2. Learning with noise problems
Suppose that p is a large integer. Whenever you press a button, you get an approxi-

mate multiple of p, that is, a random integer of the form xi D qi �pC ri . Can you recover p?
If ri is always 0, then you can recover p efficiently using the Euclidean algorithm (as soon
as you have samples for which the qi ’s are relatively prime). But if the “noise” ri (and other
values) are sampled from well-chosen distributions, this problem, called the approximate
GCD problem, appears hard.

Definition 16 (Approximate GCD problem [52,76]). Let � be a security parameter. Let ˛ D

˛.�/, ˇ D ˇ.�/, and  D .�/ be parameters. Fix integer p, sampled as a random integer of
ˇ bits. Given arbitrarily many samples xi D qi � p C ri , sampled as random  -bit integers
subject to the constraint that xi � pbxi =pe is at most ˛ bits, output p.

Another learning with noise problem is learning parity with noise.

Definition 17 (Learning Parity with Noise (LPN) problem). Let � be a security parameter.
Let nD n.�/ be an integer, and �D �.�/ a Bernoulli distribution. Fix a vector Es 2 .Z=2Z/n

sampled according to �n. Given arbitrarily many samples . Eai ; bi / where Eai is sampled uni-
formly from .Z=2Z/n, ei is sampled from �, and bi  h Eai ; Esi C ei mod 2, output Es.

(There is some abuse of terms in this description—with mixing of Z, Z=2Z, and
mod 2—but it will be understood that we are really working overZ and then reducingmodulo
2 to representatives of Z=2Z.)

The LPN problem is easy if the noise ei is always 0, in which case we can solve
for Es using linear algebra, but the problem appears to be hard for an appropriate choice of
parameters. In the normal formulation of LPN, Es is sampled uniformly from ¹0; 1ºn, but
Applebaum et al. [9] showed that the problem is just as hard when Es is sampled from the
noise distribution �.

Finally, we come to the learning with errors problem.

Definition 18 (Learning with Errors (LWE) problem [65]). Let � be a security parameter.
Let n D n.�/ and q D q.�/ be integers, and � D �.�/ a distribution over Z. Fix a vector
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Es 2Zn sampled according to�n. Given arbitrarily many samples . Eai ; bi /where Eai is sampled
uniformly from .Z=qZ/n, ei is sampled from �, and bi  h Eai ; Esi C ei mod q, output Es.

Again, if the noise ei is always 0, we can solve for Es using linear algebra given enough
samples, but the presence of appropriate noise seems to make the problem hard. Typically,
� is taken to be a discrete Gaussian distribution over Z, with deviation � � q. Note that Es
is chosen according to �, as Applebaum et al.’s result [9] (mentioned above) applies in this
context as well. Rather than referring explicitly to the noise distribution �, sometimes it is
convenient to refer to a bound " on the size of the noise.

Definition 19 ("-bounded distributions). A distribution ensemble ¹�nºn2N , supported over
the integers, is called "-bounded if Pre �n Œjej > "� is negligible in n.

All of these learning with noise problems are useful for cryptography. As far as we
know, they are hard even for quantum adversaries. We have constructions of leveled FHE
based on approximate GCD [28,46,76] and LWE [23,24,46], while constructing FHE based on
LPN appears to be more difficult (see [21,53]). In this paper, we will focus mainly on LWE,
and describe a construction of leveled FHE based on LWE.

Since IND-CPA security is about distinguishing between two distributions, it is
helpful to define a decision version of LWE which is also about distinguishing between two
distributions.

Definition 20 (Decision LWE). As in Definition 18, except that the challenger sets a random
bit ˇ 2 ¹0; 1º, and outputs samples according to one of two distributions:

(1) If ˇ D 0, it outputs . Eai ; bi / as uniform samples from .Z=qZ/nC1.

(2) If ˇ D 1, it samples them according to the distribution in Definition 18.

The problem is to guess ˇ (with nonnegligible advantage). The LWEn;q;� assumption is that
this decision LWEn;q;� problem is hard.

What do we know about the hardness of LWE? For n and q that are polynomial
in �, Regev gave a polynomial-time reduction from search LWE to decision LWE. When
the noise is extremely small or has some structure, there are subexponential algorithms to
solve LWE [12]. For example, when ei 2 ¹0; 1º for all i , solving LWE is easy given O.n2/

samples, since one can compute Es � Es as the solution to the O.n2/-dimensional system of
linear equations given by the equalities h Eai ; Esi � .h Eai ; Esi � 1/. However, for discrete Gaussian
error distributions with � polynomial in n, the hardness of LWE appears to depend solely
on the ratio q=".

In particular, the LWE problem has been shown to be as hard on average (for random
instances) as certain lattice problems in the worst-case (the hardest instances) [3, 4, 65]. An
n-dimensional lattice is a (full-rank) additive subgroup of Rn. For lattice dimension param-
eter n and number d , the shortest vector problem GapSVP is the problem of distinguishing
whether an n-dimensional lattice has a nonzero vector of Euclidean norm less than d or no
nonzero vector shorter than .n/ � d . The gist of the theorem below is that if there is a quan-
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tum algorithm for average-case n-dimensional LWE for ratio q=", then there is a quantum
algorithm for worst-case n-dimensional GAPSVP for  just a little larger than q=".

Theorem 7 (Regev [65]). Let n;q be integers and ˛ 2 .0;q/ be such that ˛ > 2
p

n. Let � be a
discrete Gaussian distribution over Z with deviation ˛. If there exists an efficient algorithm
that solves LWEn;q;�, then there exists an efficient quantum algorithm that approximates
the decision version of the shortest vector problem (GAPSVP) and the shortest independent
vectors problem (SIVP) to within QO.n � q

˛
/ in the worst case.

A discrete Gaussian with deviation ˛ will be "-bounded for " D ˛ � QO.
p

n/. Again,
as long as the deviation of discrete Gaussian noise exceeds a certain lower bound, the hard-
ness of LWE appears to depend only on the ratio between q and the size of the noise.

GAPSVP is NP-hard for any constant  , but, unfortunately, in cryptography we
need  to be larger (at least n in the theorem above). For  D poly.n/, the fastest algorithm
to solve GAPSVP takes time 2O.n/. As a crude rule of thumb, the fastest known algorithm to
solveGAPSVP2k takes roughly 2n=k time [70]. Interestingly, there are no quantum algorithms
for GAPSVP that perform significantly better than classical algorithms.

Looking ahead to the construction of FHE, some reformulations and variants of
LWE will be useful. Sometimes, we prefer to view LWE samples as polynomials.

Fact 1. A sample .Ea; b/ such that b D hEa; Esi C e can be viewed as a degree-1 polynomial
c.Ex/ D b �

P
j aj � xj such that c.Es/ D e.

Homomorphic multiplication of ciphertexts related to LWE samples becomes more
natural when the ciphertexts are viewed as polynomials. The reformulation in Fact 1 suggests
a generalization of LWE to higher-degree polynomials.

Definition 21 (LWE with higher degree polynomials). The values �; n; �; Es are as in Def-
inition 18. There is also a poly.�/-size set of polynomials P � ZŒx1; : : : ; xn� that is fixed
independently of Es. As in LWE (as reformulated in Fact 1), we are given an arbitrary number
of degree-1 polynomials c.Ex/ such that c.Es/ mod q has distribution �. In addition, for each
p.Ex/ 2 P , we are given a degree-1 polynomial c.Ex/ such that c.Es/� p.Es/ mod q has distri-
bution �.

That is, instead of getting just degree-1 polynomials c.Ex/ that always evaluate
to something small at Es, we can now also obtain potentially higher-degree polynomials
c.Ex/ � p.Ex/ that always evaluate to something small at Es. This problem is related to the
circular security of some LWE-based systems.

4.3. Encryption based on LWE
Regev [65] built an IND-CPA asymmetric encryption system based on decision

LWE. Below, we describe a symmetric version of Regev’s encryption system. Since the sym-
metric system is additively homomorphic modulo 2 (and satisfies other conditions), we can
apply Rothblum’s theorem (Theorem 3) to get an asymmetric system that looks similar to
Regev’s.
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The idea of the system is simple. Suppose that we want to encrypt m 2 ¹0; 1º under
secret Es 2 .Z=qZ/n. Generate an LWE sample .Ea; b/ such that b D hEa; Esi C e. The LWE
assumption says that it is hard, without Es, to tell whether b � hEa; Esi is actually distributed
according to � (with small deviation) or uniformly. In the latter case, b is like a one-time pad,
even given Ea. Accordingly, to encrypt m, we mask it with b—specifically, we encrypt m as
.Ea; bCm � bq=2e/. The key-holder knows a good approximation of b—namely, hEa; Esi—and
therefore can remove b, up to small “noise.” Thereafter, it can recover m, whose value is
preserved (despite the small noise) in the most significant bit by multiplying it bq=2e.

More formally, the LWE-based encryption system is as follows.

Symmetric encryption system ELWE.

• K: takes security parameter � and randomness r and generates parameters
n D n.�/, q D q.�/, and � D �.�/. It generates secret key sk D ek D Es  �n.

• E: takes ek, a message m 2 ¹0; 1º, and randomness r . It generates a random
LWE sample .Ea; b/. (That is, it generates random Ea 2 .Z=qZ/n, e  � and sets
bD hEa; EsiC e.) It outputs ciphertext cD .Ea;u/, where uD bCm � bq=2e mod q.

• D: takes sk and a ciphertext c. It computes m0  u � hEa; Esi mod q. Depending
on whether m0 is close to 0 or bq=2e, output m D 0 or m D 1.

Regarding correctness, for a well-formed ciphertext we have m0 D bCm � bq=2e � hEa; Esi D

e Cm � bq=2e, which is close to 0 when m D 0, and to bq=2e when m D 1.

Theorem 8. ELWE is IND-CPA secure based on LWE.

The proof of security follows the usual format of having an IND-CPA adversary A,
an LWE adversary B who plays the role of the challenger in the IND-CPA game, and an
LWE challenger, with B mostly forwarding slightly modified transmissions between A and
the challenger. If the LWE samples are uniform, the ciphertexts thatB sends toAwill also be
uniform, and A can have no advantage guessing which bit is encrypted. If the LWE samples
are well formed, the ciphertexts that B sends to A are well formed and A should have
its assumed advantage ". B guesses that the LWE samples are well formed if A guesses
correctly, and B wins with advantage at least "=2. (The calculation is as in the proof of
Theorem 1.)

4.4. Bootstrappable encryption construction
Herewe present a bootstrappable encryption system. Historically, the first bootstrap-

pable system was rather complex [41]. But after a sequence of works [6,20,23,24], bootstrap-
pable encryption became simple enough to describe in a blog post [13]. We mostly follow
Barak and Brakerski’s excellent exposition [13] here.

We start with the LWE-based encryption system ELWE of Section 4.3, but we make
some cosmetic changes. First, we view ciphertexts as degree-1 polynomials (see Fact 1).
This viewpoint will make multiplication of ciphertexts somewhat more natural than if we
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viewed them as vectors. Second, we basically divide ciphertexts by q=2, allowing them to
be fractional. Recall that in ELWE, a ciphertext c (which we will view now as a polynomial)
has the property that c.Es/ is close to m � bq=2cmodulo q. If we divide the ciphertext by q=2,
we get something more natural—namely, c.Es/ is close to m modulo 2, or in other words
bc.Es/e Dm mod 2. This change allows for a simple description of decryption. It also allows
for a simple definition of the “noise” of a ciphertext—namely c.Es/� bc.Es/e, the distance of
c.Es/ to the nearest integer. We write

c.Es/ D" m mod 2

to indicate that ciphertext c has noise of magnitude at most " � 0 and bc.Es/e D m mod 2.
This notation will simplify the tracking and bounding of ciphertext noise as we apply homo-
morphic operations �; �. We will use "0 to denote the noise bound on fresh ciphertexts
output by E. We write the system Eboot below.

Bootstrappable encryption system Eboot.

• K: As in ELWE, except that we calibrate the parameters q D q.�/ and �D �.�/ to
achieve bootstrapping, and we set q D 2�C1 for some �. Also, we set evaluation
key evk as described below.

• E: Generate c as in ELWE. Write c as a polynomial c.Ex/ 2 ZŒx1; : : : ; xn� (as
described in Fact 1). Divide c by 2� , i.e., c.Ex/  c.Ex/=2� , a polynomial in
RŒx1; : : : ; xn�. Output c.Ex/.

• D: Remove as much precision as possible in the coefficients of c.Ex/ while main-
taining correctness before “actual” decryption. Then output bc.Es/e mod 2.

• V: Apply homomorphic operations ¹�; �º for ¹C; �º modulo 2, as described
below.

Notice that we have split decryption into two phases, namely a preprocessing phase where
we drop unneeded precision, and a second phase where we do the “actual” decryption. The
purpose of the preprocessing is to facilitate bootstrapping: it is important to minimize the
complexity of “actual” decryption as much as possible to get recrypt-then-NAND function
inside the function set F that the system can correctly evaluate.

Before we consider �; �, it will be useful to specify the proper form of ciphertext
polynomials in this system, an invariant that we will maintain while performing homomor-
phic operations.

Definition 22 (Proper form of ciphertexts in Eboot ). A ciphertext c.Ex/ is in proper form if
it is a degree-1 polynomial with coefficients that are in .�1; 1� with � bits of precision.

Toward maintaining the proper form invariant, observe that reducing a ciphertext
polynomial c modulo 2, that is, adjusting c’s coefficients by even integers into the range
.�1;1�, does not change the ciphertext’s noise or the bit that it decrypts to, since Es is integral.
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So, after we add or multiply ciphertext polynomials, we will always reduce the coefficients
modulo 2 back into the range .�1; 1�, perhaps without mentioning this explicitly.

Now, let us add and multiply ciphertext polynomials! Suppose we add ciphertexts:

c D
X

i

c.i/:

Then,

c.i/.Es/ D"i
m.i/ mod 2 H) c.Es/ DP

i "i
m mod 2;

where m D
P

i m.i/. If the original ciphertexts are in the proper form, then so is c. The
ciphertext c has noise bounded by the sum of the noises of the original ciphertexts. It will
decrypt to the “right” value—in particular, the noise will not “wrap” and overwhelm the
“signal”—as long as

P
i "i < 1=2.

Lemma 2 (Addition �). Let c.i/.Es/ D"i
m.i/ mod 2 for all i . Let c D

P
i c.i/ mod 2 and

m D
P

i m.i/ mod 2. Then c.Es/ DP
i "i

m mod 2.

Suppose we multiply two ciphertexts over RŒEx�:

c D c.1/
� c.2/:

Then, c is a degree-2 polynomial. Regarding the noise, we have:

c.i/.Es/ D"i
m.i/ mod 2

D m.i/
C 2k.i/

C e.i/; m.i/
2 ¹0; 1º; k.i/

2 Z;
ˇ̌
e.i/

ˇ̌
� "i :

And so
c.1/.Es/ � c.2/.Es/

D .m.1/
C 2k.1/

C e.1// � .m.2/
C 2k.2/

C e.2//

D m.1/
�m.2/

C 2k C e.1/.m.2/
C 2k.2//C e.2/.m.1/

C 2k.1//C e.1/
� e.2/; k 2 Z

D" m.1/
�m.2/ mod 2; " D ."1 C "2/ � .jEsj1 C 1/;

where jEsj1 is the `1 norm of Es. The new noise is bounded by ", because if we let B be an
upper bound on jc.i/.Es/j, then " is at most ."1 C "2/ � B , and B is at most jEsj1 C 1 since the
coefficients of c.i/ are in .�1; 1�.

But c D c.1/ � c.2/ is not in the proper form. We can easily reduce its coefficients
modulo 2 into the range .�1; 1� and drop precision beyond � bits. Dropping precision costs
us an addition noise term of at most 2�� � jEsj21. But the biggest issue is that c is degree-2. We
need to somehow relinearize c so that it is degree-1, as required.

To relinearize, we publish some polynomials in the evaluation key evk that will help
us reduce the degree. You can think of these relinearization polynomials as a “noisy Gröbner
basis” (using the term loosely): they allow us to reduce degree-2 polynomials to degree-1,
but this reduction introduces additional noise.

Definition 23 (Evaluation key for Eboot (version 1)). As evk, publish polynomials
P D ¹pi;j;k.Ex/º that are:
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• “Pseudoencryptions” of 0: We have pi;j;k.Es/ D"0 0 mod 2, where "0 is the noise
of fresh ciphertexts,

• Slightly quadratic: We have pi;j;k.Ex/ D 2�k � xi � xj C `i;j;k.Ex/ where
k 2 ¹0; : : : ; �º for precision parameter �, and `i;j;k.Ex/ is a degree-1 polyno-
mial.

With this evaluation key evk in hand to facilitate relinearization, here is the entire
� procedure.

� for Eboot.

• Compute c D c.1/ � c.2/ over RŒx�.

• Reduce c modulo 2 into the range .�1; 1�.

• Drop precision beyond � bits.

• Relinearize using polynomials P : Call the polynomial so far c.Ex/. Write each
coefficient ci;j (of monomial xi xj ) in terms of its binary decomposition:
ci;j D

P�
kD0 ci;j;k2�k with each ci;j;k 2 ¹0; 1º. Next, subtract off a subset sum

of the pi;j;k’s to obtain a linear polynomial

relinearizeP

�
c.Ex/

�
D c.Ex/ �

X
i�j;k

ci;j;k � pi;j;k.Ex/:

• Reduce the resulting polynomial modulo 2 into the range .�1; 1�.

The ciphertext polynomial output by � is in the proper form. Relinearization introduces
noise of magnitude at most n2 � .� C 1/ � "0. Now, let us bound how � affects the noise
overall.

Lemma 3 (Multiplication�). Let c.1/.Es/D"1 m.1/ mod 2 for i 2 ¹1;2º. Let c D c.1/ � c.2/

andmDm.1/ �m.2/. Then c.Es/D"�
m mod 2, for "�D ."1C "2/ � .jEsj1C 1/C 2�� � jEsj21C

n2 � .�C 1/ � "0. For reasonable parameter settings,�multiplies the noise by anO.poly.n//

factor.

Proof. The exact expression for the noise comes from the bounds above on the noise added
by individual steps of �. Now, take " to be the maximum of "1; "2, both of which are at
least "0, the latter being the noise of fresh ciphertexts. Recall that we can choose Es from
the noise distribution (except that, unlike the noise and ciphertexts, we have not divided Es
by 2�). So, the coefficients of Es are bounded by 2� � "0, and the middle term 2�� � jEsj21 is at
most n � jEsj1 � "0. We satisfy the conditions of Theorem 7 as long as the noise distribution
(according to which the coefficients of Es are also chosen) has deviation 2

p
n, so we can take

jEsj1 D poly.n/. We will also take � D poly.n/. Then, we have that the new noise is bounded
by " � poly.n/.
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We have established that (for reasonable parameter settings), a single � or � oper-
ation increases the noise by at most a factor of p.n/ for some polynomial p. (See Lemmas 2
and 3.) This result gives us the following commutative diagram:

C" � C" C"�p.n/

Z=2Z � Z=2Z Z=2Z;

�;�

bevEs.�/e mod 2 bevEs.�/e mod 2

C;�

where C" denotes ciphertexts with noise bounded by ", and evEs.�/ denotes evaluation of a
polynomial at Es.

Now, let us extend this observation to evaluation of an arithmetic circuitC of ¹C;�º

gates. Recall that the depth d of the circuit C is the length of the longest path from an input
gate to the output gate, considering the circuit as a directed acyclic graph.

Lemma 4. Let p.x/ be a polynomial such that � and � multiply the noise of input cipher-
texts by at most p.n/. Given input ciphertexts of noise at most "0, the above system can
evaluate any arithmetic circuit of depth d with noise at most "0 � p.n/d .

For example, if we want to evaluate a d -depth circuit so that the noise of the final
ciphertext is at most (say) 1=4, it suffices to take "0 � .1=4/ � p.n/�d .

As we are aiming for a bootstrappable encryption system, we are especially inter-
ested in the depth of the decryption circuit (and the recrypt-then-NAND circuit, which has
depth 2 more than the decryption circuit). Recall that we drop unneeded precision before
“actual” decryption. Importantly, after dropping precision, the complexity of decryption
does not depend on "0 at all. Indeed, "0 becomes a free parameter that we can eventually
set as small as needed to allow us to evaluate the decryption circuit.

Lemma 5. Let c be a ciphertext such that c.Es/D1=4 m mod 2. For any �0 such that 2�0 > 4 �

.jEsj1C 1/, we can drop to �0 bits of precision in c while preserving correctness of decryption
(to the message m).

Proof. Dropping to �0 bits of precision adds at most 2��0 � .jEsj1C 1/ to the noise. By assump-
tion, 2��0 � .jEsj1 C 1/ < 1=4, so that the total noise remains < 1=2, and correctness of
decryption is preserved.

Now we bound the arithmetic circuit depth of “actual” decryption (after dropping
to dlog.4 � .jEsj1 C 1//e bits of precision in c).

Lemma 6. For reasonable parameters, the decryption circuit has depth

O.lognC log log jEsj1/ D O.logn/:

Proof. The computation of the inner product of two vectors—represented in the natural way,
with coefficients in binary representation—is in NC1 (see Section 4 of [56]), meaning that
it can be computed in circuit depth proportional to the logarithm of the description length
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of the vectors. Decryption is an inner product of vectors of dimension n with coefficients of
O.log kEs1k/ bits. Therefore, it can be computed in depth O.lognC log log jEsj1/. Regarding
kEs1k, we can satisfy the conditions of Theorem 7 as long as the noise distribution (accord-
ing to which the coefficients of Es are also chosen) has deviation 2

p
n, and so we can take

jEsj1 D poly.n/. The result follows.

Theorem 9. Eboot is bootstrappable for some "0 (the noise bound of fresh ciphertexts) that
is n�O.logn/.

Proof. By Lemma 6, the “actual” decryption circuit (hence recrypt-then-NAND) applied
to ciphertexts with dropped precision has depth O.log n/. By Lemmas 4 and 5, for some
"0 D n�O.logn/, we can apply recrypt-then-NAND and drop precision while keeping the
noise below 1=2.

Theorem 10. Eboot is IND-CPA secure based on the LWE with higher degree polynomials
assumption (Definition 21) for some q D nO.logn/ and some poly.n/-bounded distribution �.

Proof. The proof is similar to the proof of IND-CPA security for the basic symmetric encryp-
tion system based on LWE (see Theorem 8), except that we use LWE with higher degree
polynomials (versus regular LWE) to sample the “slightly quadratic” polynomials P used
for relinearization in �.

By Theorem 4, we get leveled FHE based on this assumption. In fact, we can get
circular-secure FHE based on variants of the LWE with higher degree polynomials assump-
tion, e.g., where we still only use linear and “slightly quadratic” polynomials, but allow the
secret Es to come from ¹0; 1ºn rather than �n. We elaborate on this observation in Section 4.5.

But our underlying encryption system ELWE is based on the LWE assumption. How
can we get a bootstrappable encryption system also based on LWE assumption, rather than
the less well-established LWEwith higher degree polynomials assumption? Clearly, the issue
originates with the current version ofEboot, which requires publication of “slightly quadratic”
polynomials that are used in relinearization. Can we publish a different set of polynomials
to facilitate relinearization, and somehow base security on LWE?

The trick to get security based on LWE is similar to the trick that we used to get
IND-CPA secure leveled FHE from IND-CPA secure bootstrappable encryption—namely, to
avoid a circular security issue, we use an acyclic chain of encrypted secret keys. The slightly
quadratic relinearization polynomials used in the above version of Eboot can be viewed as an
encryption of the secret key under itself. Specifically, we have:

p
.`/

i;j;k
.Es/ D 2�k

� xi � xj C `i;j;k.Es/ D"0 0 mod 2

H) `i;j;k.Es/ D"0 �2�k
� si � sj :

That is, the linear polynomial `i;j;k.Ex/, which has the proper form of a ciphertext, encrypts
(in some sense) the value �2�k � si � sj , a quadratic monomial of the secret key itself. In
version 2 of Eboot, we modify the relinearization polynomials so that each one is, in effect,

992 C. Gentry



an encryption of a quadratic monomial over some Es.`/ under the next secret Es.`�1/, so that
we have an acyclic chain of encrypted secret keys. In detail:

Definition 24 (Evaluation key forEboot (version 2)). Publish polynomialsP D¹p
.`/

i;j;k
.Ex; Ey/º

that are:

• “Pseudoencryptions” of 0: We have p
.`/

i;j;k
.Es.`/; Es.`�1// D"0 0 mod 2, where "0 is

the noise of fresh ciphertexts,

• Slightly quadratic (and some linear): We have

p
.`/

i;j;k
.Ex; Ey/ D 2�k

� xi � xj C `i;j;k. Ey/

where k 2 ¹0; : : : ; �º for precision parameter �, and `i;j;k. Ey/ is a degree-1 poly-
nomial. For i D 0, we have linear polynomials p

.`/

i;j;k
.Ex; Ey/D 2�k � xj C `i;j;k. Ey/.

Unlike version 1, we need linear polynomials in addition to the slightly quadratic
ones, because we are using the polynomials not only to relinearize but simultaneously to
transfer the ciphertexts from one key (Es.`/) to the next (Es.`�1/). In the system, we can apply
� or� to two ciphertexts under Es.`/, with the result under� being under the next key Es.`�1/.
The noise analysis is identical to version 1.

Theorem 11. Eboot (version 2) is IND-CPA secure based on the LWE assumption (Defini-
tion 18) for some q D nO.logn/ and some poly.n/-bounded distribution �.

Proof. (Sketch) The proof is similar to that of Lemma 7, where we proved the IND-CPA
security of a leveled FHE system that uses an acyclic chain of encrypted secret keys, using
a so-called hybrid argument where in a sequence of steps we replace encrypted secret keys
with encryptions of 0. The main idea in this proof is that each relinearization polynomial
p

.`/

i;j;k
.Ex; Ey/, whose special property is that it evaluates to a small value at .Es.`/; Es.`�1//,

looks indistinguishable from random to an adversary that does not know Es.`�1/, even if it
knows Es.`/.

Recall from Section 4.2 that, as far as we know, LWE is hard even if the ratio of q

to the noise is subexponential in n, so Theorem 11 provides a strong security guarantee. It
is possible to base the security of leveled FHE on LWE even for factors that are polynomial
in n [25].

4.5. Reflections on the overall FHE system
Now that we have completed our modular description of the FHE system, it is inter-

esting to demodularize the system to see what is happening overall. To simplify the overall
picture for the moment, let us imagine that the secret Es is in ¹0; 1ºn, so that the “bits” of Es are
in fact the coefficients of Es. We operate on linear ciphertext polynomials c.Ex/ that have small
noise when evaluated at Es. When we multiply polynomials, we use a noisy partial Gröbner
basis to reduce the resulting polynomial back to linear while changing the evaluation at Es
by only small noise. As we apply � and �, the noisiness increases until we have a c.Ex/
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whose noise at Es is nearly 1/2, so that it can no longer participate safely in operations. But
now imagine that the underlying polynomial that we are evaluating with these �’s and �’s
is f .Ex/D Dc.Ex/. It holds that f .Es/Dm, the message encrypted by c, but we do not know Es.
Instead, we start evaluating f .Ex/ as a formal polynomial, except that we reduce the degree
using our noisy Gröbner basis. This noisy basis allows us to reduce the degree to linear,
while preserving (up to small noise) the evaluation at Es (which is what we care about). At the
end, we get a linear polynomial whose evaluation at Es equals (up to small noise) the value
f .Es/ D m. Hence, this linear polynomial is a new encryption of m. This new encryption
has noise that depends only on the complexity of Dc and the noisiness of our noisy Gröbner
basis, not on the noisiness of c as a ciphertext, and therefore it can (if we calibrate our noise
appropriately) participate in more operations.

It is also interesting to consider what our ciphertext set looks like as an algebraic
structure. Our unbounded system has a clean commutative diagram

C � C C

Z=2Z � Z=2Z Z=2Z;

�;�

bevEs.�/e mod 2 bevEs.�/e mod 2

C;�

but now � and � hide a lot of complexity, e.g., � is in fact � ı Dc.1/;c.2/.�/. The operations
�; � are not even associative: C is a magma under both operations. In fact, these operations
are so unstructured that it is almost as if they select a pseudorandom ciphertext that encrypts
the appropriate value. While this intuition may not be entirely accurate, Ducas and Stehlé
[34] show that starting with any c that encrypts m, successive alternations of recryption and
small injections of noise converge to a canonical distribution over ciphertexts that encrypt
m, effectively erasing the ciphertext’s history.

5. New directions in homomorphic encryption

Many questions about FHE remain unresolved. Below, we discuss a few of these
questions—in particular, questions about improving efficiency, handling the circular security
issue, avoiding bootstrapping, building noise-free FHE, and exploring quantum FHE.

Some of these questions can be answered (not entirely satisfactorily) with the ulti-
mate cryptographic hammer: cryptographic program obfuscation [14, 31, 39, 53]. Informally,
program obfuscation takes a program P and produces an obfuscated program O.P / that
has the same input/output functionality, but where O.P / is otherwise “unintelligible.” Pro-
gram obfuscation was proven impossible to achieve for a certain “virtual black box” notion of
unintelligibility [14]. However, there are now constructions of program obfuscation [39], even
based on well-established computational assumptions [53], for a notion of unintelligibility
based on indistinguishability.10 Namely, an indistinguishability obfuscator iO offers the fol-

10 Say it 10 times fast!
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lowing guarantee: if there are two circuitsC0;C1 of the same size and equivalent input/output
functionality and iO obfuscates one of them (Cb for random b 2 ¹0; 1º/ to produce O.Cb/,
it is computationally hard to distinguish b. (Notice the similarity to IND-CPA security for
encryption.) Obfuscation is even more powerful than FHE—in particular, you can build FHE
from versions of it [26]—but it is currently also computationally much more expensive than
FHE. A crucial difference between an obfuscated program and an FHE-encrypted program
is that the obfuscated program has unencrypted output.

How practical can we make the current noisy FHE systems? Since the first construction
of FHE in 2009 [40,41] there have been four generations of FHE systems, with the second,
third, and fourth generations each offering significant performance gains. Currently, efforts
are underway to standardize homomorphic encryption systems [51].

The second generation of FHE systems simultaneously improved security and effi-
ciency by basing security on LWE [24], and then using variants of LWE over polynomial
rings, such as ring-LWE [60] and the NTRU problem [50,59]. Polynomial rings naturally facil-
itate batching or SIMD operations on encrypted data [73]—that is, via the Chinese Remainder
Theorem, they allow many individual messages to be packed in single ciphertexts, and for
many messages to be (implicitly) operated on through a single ciphertext operation. Auto-
morphisms of the polynomial rings allow message slots to be permuted within a ciphertext.
These optimizations, together with better techniques to control the growth of the noise in
ciphertexts [23], reduced the overhead of FHE—that is, multiplicative factor of how much
processing it takes to operated on FHE-encrypted data versus unencrypted data—to only
polylogarithmic in the security parameter � [45].

The third generation [8,25,29,30,33,46] introduced techniques for fast bootstrapping,
reducing bootstrapping time to tens of milliseconds. However, so far, these techniques are
incompatible with the batching techniques of the second generation.

The fourth generation systems [27] are optimized for operating on floating-point
data, making it more friendly for real-world applications such as logistic regression and
neural nets. Current estimates are that, depending on the type of computation, the over-
head of fourth generation systems is as low as 10000�, and this overhead can be further
reduced with customized hardware [36,55,64].

An inherent limitation of FHE systems is that they do not support certain types of
computation, such as RAM (random access model) computations. FHE computations are
inherently input-oblivious, i.e., the structure of the computation cannot depend on the input,
since IND-CPA security implies no information about the input is disclosed. This limita-
tion can be overcome by using heavier machinery—in particular, cryptographic program
obfuscation [44]—since obfuscated programs can disclose unencrypted information.

Can we base unbounded FHE on a well-established computational hardness assump-
tion? Current unbounded (versus leveled) FHE systems require a circular security assump-
tion—namely, that it is secure to encrypt the secret decryption key under its companion
encryption key. For the noisy FHE system presented in Section 4, the encryption of the
secret key manifests as a collection of nonlinear polynomials that evaluate to some small
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(noise) value at the secret key Es. Can we reduce the LWE with higher degree polynomi-
als assumption to a more well-established assumption, such as the hardness of problems
over integer lattices? Can we somehow avoid nonlinear polynomials altogether, and build
unbounded FHE based on LWE?

Can we get unbounded FHE without bootstrapping or recryption? In Section 3.4, we
saw that bootstrapping seems unavoidable as a generic technique to convert a bounded homo-
morphic encryption system to an unbounded one. The one FHE system based on well-
established assumptions that does not use bootstrapping [53] instead uses program obfus-
cation, which currently is less practical than more direct constructions of FHE. Moreover,
the technique to build FHE [26] from obfuscation uses obfuscation to decrypt ciphertexts,
perform an operation on them, and then encrypt the result—a process that (like bootstrap-
ping) still involves computing the decryption function. Can we get unbounded FHE while
avoiding expensive repeated computation of the decryption function? Note that we can get
leveled FHE without bootstrapping [23] for a relaxed definition of leveled that allows the
parameters to grow with the number of levels. (Our Definition 12 for leveled systems is not
relaxed.)

Can we build “noise-free” FHE?. So far, all constructions of FHE use “noise,” even the
obfuscation-based solution [53]. For building bootstrappable encryption, noise has the nice
feature that we can calibrate the noise level, decreasing it until the system becomes bootstrap-
pable. For the system in Section 4.4, this calibration was especially easy because adjusting
the noise level did not affect decryption complexity at all (though it affects the computational
assumption). While noise has these nice features, it also introduces complexities, and one
wonders whether it is possible to construct noise-free FHE.

Mathematically, perhaps the cleanest approach to noise-free FHE would be to con-
struct a multilinear map with suitable cryptographic properties [19]. We have cryptographic
bilinear maps from Weil and Tate pairings over abelian varieties, which have proven to be
enormously useful. We can obtain FHE (and obfuscation) from cryptographic multilinear
maps of higher degree, but so far we have no viable noise-free constructions.

Nuida [63] proposed a construction of noise-free FHE using nonsolvable groups
with certain properties, but groups with these properties are not known to exist. As discussed
in Section 3.5, there are many obstacles to constructing a secure homomorphic encryption
based on nonsolvable groups.

Are fundamentally new constructions possible in the quantum setting? The FHE system
presented here works for a computation expressible as a polynomial-size circuit with clas-
sical gates, like ¹C;�º. What if we want to privately delegate a computation not known to
be in P, but which is easy for a quantum computer, like factoring an encrypted integer? For
that, we need an FHE system capable of evaluating quantum gates. Mahadev [61] resolved the
question of quantum (leveled) FHE, showing that a classical client can privately outsource
a quantum computation to a quantum server, under the surprisingly minimal assumption
that LWE is hard for quantum computers. One wonders whether this result, and the sugges-
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tive similarities between quantum error correction and managing ciphertext noise in FHE
systems, will lead to new techniques even for classical FHE systems. The question of quan-
tum obfuscation is not resolved. While preliminary results [5] indicate that virtual black box
obfuscation of quantum circuits is impossible, they leave open the question of indistinguisha-
bility obfuscation for quantum circuits.
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A. What does it mean for an encryption system to be

secure?

This section provides informal philosophical discussion about what it means for an
encryption system to be secure—in particular, about why IND-CPA security (see Defini-
tions 1 through 3) is the “right” minimal notion of security for an encryption system.

To see why, let us try to reinvent the security model ourselves. We have an “adver-
sary” that is trying to “break” the encryption system. In general, we can model the security
of encryption as a game between a “challenger” and the adversary that the adversary is trying
to “win.” To specify the game, there are 3 aspects to consider:

(1) Adversary’s power inside the system: How can the adversary interact with the
encryption system? Does the adversary know how the algorithms (key gener-
ation, encryption, decryption) work, is it allowed to see many ciphertexts, on
messages of its choice, can it ask for ciphertexts to be decrypted, can it see how
transmitted and decrypted messages affect peoples’ “behavior,” can it ask for
bits of the secret key or functions of the secret key?

(2) Adversary’s power outside the system: Is the adversary limited to running poly-
nomial time algorithms, polynomial time quantum computation, polynomial
time nondeterministic computation, is its computational power unbounded?

(3) Object of the game: Is the object to recover the secret key, to recover the mes-
sage encrypted by a ciphertext, to merely distinguish which of two messages a
ciphertext encrypts, to produce a new ciphertext that encrypts a message related
to a message encrypted by a given ciphertext?

Now, let us start to prune the numerous possibilities given above.
First, as a theoretical matter, we can assume without loss of generality that adver-

sary knows how the system works. We simply label what the adversary does not know as the
secret key. The secret key may include hidden aspects of how key generation, encryption,
and decryption operate, but really this is just a matter of semantics, and these algorithms
can always be redefined so that secret information is localized to the secret key, and the
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algorithms themselves are public. Also, as a practical matter, we have Kerckhoff’s princi-
ple, which (as reformulated by Claude Shannon) simply states that “the enemy knows the
system.” The practical justification for this principle is that “security by obscurity” rarely
works. Rather, empirically, one is more likely to obtain a secure system by making it com-
prehensible to friendly cryptanalysts. (Provable security, à la Goldwasser and Micali, is an
extreme version of Kerckhoff’s principle, in which we proudly display a concise clearly-
specified mathematical problem on which the cryptosystem’s security is based.) So, we take
the algorithms of encryption—key generation K, encryption E, decryption D, and evalua-
tion V (if applicable)—as known.

Object of the game. The purpose of an encryption system is to hide a message. Clearly, we
should not require the adversary to recover the secret key, since it might be able to recover
information about an encrypted message without it. From a ciphertext, the adversary will
trivially know an upper bound on the message length, but it should not be able to determine
anything else. (Lacking a general way to characterize what is important in a message, we
should require that the adversary cannot distinguish anything nontrivial.) Goldwasser and
Micali capture this intuition with their definition of semantic security: “Informally, a system
is semantically secure if whatever an eavesdropper can compute about the cleartext given the
cyphertext, he can also compute without the cyphertext” [47]. In particular, given a ciphertext
encrypting a message, the a priori and a posteriori distributions of the message should be
identical (up to a negligible factor) from the perspective of the adversary. Goldwasser and
Micali proved that this notion of semantic security is modeled well by the IND-CPA game,
which allows the adversary to choose message pairs ¹mi;0;mi;1ºwhose encryptions it thinks
it is most able to distinguish.

To make things even easier on the adversary, we could require only that it produce a
new ciphertext (not given to it by the challenger) that encrypts a message related to (e.g., the
same as) in the challenge ciphertext. A system that prevents this attack is called nonmalleable
[32]. We do not consider nonmalleability to be part of a minimal viable notion of security
for encryption for two reasons. First, we are considering homomorphic encryption, which
is inherently malleable; the whole point is to produce new ciphertexts that encrypt values
meaningfully related to those of previous ciphertexts. Second, there are general techniques
(that we will not review here) that prevent malleability. To a large extent, nonmalleability
can be “added on” to an IND-CPA secure encryption system after the fact.

Adversary’s power outside the system. Aside from interacting with the system, the adver-
sary’s power (outside of the system) comes down to its computational power. Claude Shan-
non resolved the case of a computationally unbounded adversary. He showed that one can
perfectly hide a message (except for an upper bound on its length) by encrypting it with a
one-time pad (a perfectly random key as long as the message). In some settings, such as mili-
tary or diplomatic settings that demand absolute eternal secrecy, a one-time pad might be the
right solution. However, we are also interested in many other (most) settings, where distribut-
ing a one-time pad is not practical. Accordingly, to allow more practical systems, we permit
computational assumptions—that is, we only require our encryption systems to be secure
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against probabilistic polynomial-time adversaries, and assume that some problems in NP
are hard to solve in probabilistic polynomial time. (Of course, even this seemingly minimal
assumption may turn out to be false, as currently we are not even certain that P¤ NP.)

Adversary’s power inside the system. As mentioned before, we must allow the adversary
to “know the system.” Moreover, as we are not in the setting of the one-time-pad, the adver-
sary should be able to see many ciphertexts encrypted under the same key. Furthermore,
since the adversary in real life might be able to influence what the encrypter encrypts, the
game should allow the adversary to choose what messages are encrypted, or even have all
of the messages depend on some bit that it is trying to guess. The IND-CPA game gives the
adversary this power.

But why not give the adversary even more power in our minimal notion of secu-
rity? For example, why not allow the adversary to choose ciphertexts to be decrypted by
the challenger, or to receive some (not-completely-revealing) function of the secret key?
Indeed, these forms of security are important. The IND-CCA (indistinguishability of cipher-
texts against a chosen ciphertext attack) game allows the adversary to query the decryption
of ciphertexts, a model that is actually quite realistic in real life, because adversaries can
potentially break cryptosystems by observing how keyholders react after decrypting their
ciphertexts, even (or perhaps especially) if those ciphertexts are malformed. Key “leakage”
and “side channel” attacks, in which the adversary obtains some limited information about
the secret key, are also quite realistic, because (unless special care is taken) even the amount
of time the keyholder takes to decrypt can leak information about the secret key.

The reason whywe consider IND-CPA still to be acceptable minimal notion of secu-
rity is that there are techniques for achieving IND-CCA and security against side channel
attacks that are mostly orthogonal to IND-CPA security—that is, they can, to a large extent,
be applied to an IND-CPA secure system after the fact. Even for homomorphic encryption,
which is inherently malleable, one can use so-called noninteractive zero-knowledge argu-
ments to ensure that the keyholder decrypts only after verifying a cryptographic proof that
the ciphertext is well formed and resulted from a “permitted” evaluation over valid cipher-
texts. In the real world, combining homomorphic encryption systems with proof systems in
this way is actually important for preventing devastating attacks. But, again, these consider-
ations are largely orthogonal to the security of the underlying homomorphic system, and we
therefore do not consider them to be part of the minimal notion of security.

Conclusion. Out of many possible security notions, we pruned the possibilities to land on
IND-CPA security as the “right” minimal notion of security for a homomorphic encryp-
tion system. Weaker notions may not provide much security at all in realistic contexts, and
stronger notions typically can be achieved by using an IND-CPA-secure system in combina-
tion with orthogonal techniques.
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B. Hybrid argument for leveled FHE

Lemma 7. Let E be an IND-CPA secure encryption system such that any secret key sk can
be expressed as a vector Esk 2 Mk , where M is the message set of the system. Let ELFHE

be a system in which we publish encrypted secret keys ES .i/ D E:E.ek.i�1/; Esk
.i/

/, where
.sk.i/; ek.i// for i 2 ¹0; : : : ; nº is an E key pair. Suppose that ELFHE:E is the same as E:E,
using encryption key ek.n/. Then ELFHE is also IND-CPA secure in the following sense. Sup-
pose that there is an adversary A in the IND-CPA game against ELFHE that has advantage ".
Then there is an adversary B in the IND-CPA game against E that has advantage at least
"=2.nC 1/, and that runs in about the same time as A.

Proof of Lemma 7. We consider A’s behavior in a sequence of games: Game 0, Game 1,
: : : ; Game n. Game 0 is identical to the IND-CPA game for ELFHE. Game i is identical,
except that the values ES .iC1/; : : : ; ES .n/ are constructed correctly (as in the system), but the
values ES .1/; : : : ; ES .i/ are all encryptions of 0. Whatever game we are in, the ELFHE-IND-
CPA-challenger samples a random bit b 2 ¹0; 1º. When A queries messages .mj;0; mj;1/,
the challenger encrypts mj;b under ek.n/.

Let "i beA’s advantage in guessing b in Game i . Since Game 0 is the true IND-CPA
game for ELFHE as given in Definition 3, we have "0 D ". Therefore either "n or "i � "iC1 for
some i 2 ¹0; : : : ; n � 1º must exceed "=.nC 1/ in magnitude. Set i� so that the magnitude
of "i� � "i�C1 is maximized (or set i� D n if "n it is the biggest contributor).

Then B attacks E by using A as follows: B participates in an IND-CPA game with
an E-challenger who flips a bit ˇ 2 ¹0; 1º. This game is associated to some key pair, which
B will label formally as .sk.i�/; ek.i�//. If the system is asymmetric, it will receive ek.i�/

from the challenger. Also B assumes the role of the challenger in the ELFHE game and flips
a bit b 2 ¹0; 1º.

Then B uses E:K to generate key tuples .sk.i/; ek.i// for all i ¤ i�. Here is how
B generates the ES .i/ values for i 2 ¹1; : : : ; nº. For all i � i� C 2, it generates each ES .i/

correctly (as in the system) as an encryption of Esk
.i/

under ek.i�1/. For i � i�, it generates
each ES .i/ as an encryption of 0 under ek.i�1/.

If i� D n, then this is a complete set of ES .i/’s, and B sends the complete ELFHE

public key toA.WhenA queriesmessages .mj;0;mj;1/,B forwards thesemessages to theE-
challenger as queries. The E-challenger encrypts mj;ˇ under ek.n/, and sends the ciphertext
toB, which forwards the ciphertext toA. ThenA submits a guess andB forwards that guess
to the E-challenger. Now B’s advantage is the same as A’s. Since the distribution seen by
A is precisely as in Game n, A’s advantage is "n.

If i� ¤ n, then B generates ES .i�C1/ as follows. It submits E0 and Esk
.i�C1/

to the E-
challenger. If ˇ D 0, the challenger sends to B the ciphertexts E:E.ek.i�/; E0/, else it sends
the ciphertexts E:E.ek.i�/; Esk

.i�C1/
/. Then B labels the ciphertext from the E-challenger

as ES .i�C1/ and sends the complete ELFHE public key to A. When A queries messages
.mj;0; mj;1/, B encrypts mj;b under ek.n/. Notice that from A’s perspective, if ˇ D 0

then its view is as in Game i� C 1, and if ˇ D 1 its view is as in Game i�. Therefore, A’s
advantage is "i�C1 if ˇ D 0 and "i� if ˇ D 1. Also B guesses that ˇ D 1 if A guesses b
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correctly, otherwise it guesses that ˇ D 0. Now B’s success probability is

PrŒB correct� D PrŒB correctjˇ D 0 and A correct� � PrŒˇ D 0 and A correct�

C PrŒB correctjˇ D 0 and A incorrect� � PrŒˇ D 0 and A incorrect�

C PrŒB correctjˇ D 1 and A correct� � PrŒˇ D 1 and A correct�

C PrŒB correctjˇ D 1 and A incorrect� � PrŒˇ D 1 and A incorrect�

D 0 �
�
.1=2/.1=2C "i�C1/

�
C 1 �

�
.1=2/.1=2 � "i�C1/

�
C 1 �

�
.1=2/.1=2C "i�/

�
C 0 �

�
.1=2/.1=2 � "i�/

�
D 1=2C ."i� � "i�C1/=2:
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The uses of random matrix models have spread in many domains of mathematics, physics
and computer science. As a consequence, the theory of large random matrices has grown
into a diverse and mature field during the last 40 years, yielding answers to increasingly
sophisticated questions. In these proceedings, we discuss the applications of large devia-
tions techniques in random matrix theory.
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1. Introduction

Large random matrices appear in a wide variety of domains. They were first intro-
duced in statistics in the work of Wishart [183] to analyze a large array of noisy data, a point
of view that turns out to be particularly relevant and useful nowadays in principal component
analysis and statistical learning. Goldstine and von Neumann considered randommatrices to
model the inevitable errors made in measurements [180]. Wigner [182] and Dyson [79] later
conjectured that the statistics of their eigenvalues model very well those of high energy levels
in heavy nuclei. Even more surprisingly, Montgomery [154] showed that randommatrices are
intimately related to the zeroes of Riemann Zeta function, a conjecture which nowadays pro-
vides a great intuition for manymathematical results, see, e.g., [5,135]. Randommatrices also
play a central role in operator algebra theory since Voiculescu [175,177] proved that they are
asymptotically free. Randommatrices are, moreover, intimately related to integrable systems
to which they furnish key examples. The computation of the joint law of the eigenvalues of
invariant matrices goes back to Weyl [181] and Cartan [55]. They showed that this distribu-
tion is characterized by a density proportional to a power of the Vandermonde determinant
of the eigenvalues. As a consequence, the eigenvalues of random matrices furnish an exam-
ple of a strongly interacting particles system, in connection with many other models such as
Coulomb gases or random tilings. For all these reasons, the study of large random matrices
(LRM) has grown into a diverse and mature field during the last 40 years, yielding answers to
increasingly sophisticated questions. The most basic questions often involve the distribution
of the eigenvalues as the size of thematrix goes to infinity. Such a question was first tackled in
the breakthrough paper ofWigner [182]who showed that the distribution of the spectrum of a
self-adjoint matrix with independent entries (modulo the symmetry constraint) is described
by the semicircle law when the dimension goes to infinity. This article discusses how to esti-
mate the probability that the spectrum follows a different distribution in large dimensions.
More generally, we will investigate the probability of rare events, that is, of large deviations,
in the context of randommatrices. In this introduction, we will first outline some of the main
results of randommatrix theory for the famous Gaussian ensembles, placing the questions on
large deviations in the wider context of this theory. We will then motivate the study of large
deviations for large random matrices. An important aspect of random matrix theory lies in
its connection with the so-called Beta-ensembles, and we will sketch a few applications of
large deviations for Beta-ensembles beyond randommatrix theory. This introduction is short
and therefore unfortunately bypasses many beautiful aspects of large random matrix theory:
we refer the interested reader to the introductory books [2,3,14,93,94,153,157] for more.

1.1. Introduction to random matrix theory
1.1.1. The Gaussian ensembles
The most famous model of random matrices is given by the Gaussian ensembles,

the Gaussian orthogonal ensemble (GOE) and the Gaussian unitary ensemble (GUE). We
say that Gn follows the law of the GUE (resp. the GOE) if it is an n � n self-adjoint matrix
with independent centered complex (resp. real) Gaussian entries above the diagonal with
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independent real and imaginary parts with variance 1=.2n/ (resp. with variance 1=n), the
entries on the diagonal being centered real Gaussians with variance 1=n (resp. 2=n). Their
distribution is given by

dP n
ˇ .Gn/ D

1

Zn
ˇ

e�
ˇn
4 Tr..Gn/2/dGn; (1.1)

where ˇ D 1 for the GOE and ˇ D 2 for the GUE. The measure dGn denotes the Lebesgue
measure over the corresponding set of matrices (symmetric if ˇ D 1, Hermitian if ˇ D 2),
which is simply the product of the Lebesgue measure on the entries dGn D

Q
i�j dGn

ij if
ˇ D 1 and dGn D

Q
i�j d<.Gn

ij /
Q

i<j d=.Gn
ij / if ˇ D 2. The constant Zn

ˇ
is the normal-

izing constant such that P n
ˇ
is a probability measure. These ensembles have a remarkable

property: their distribution is invariant under conjugation Gn ! UGnU� by unitary (resp.
orthogonal) matrices if ˇ D 2 (resp. ˇ D 1). Because of this invariance, the eigenvectors
of Gn are uniformly distributed on the sphere and hence delocalized in the sense that their
entries are typically of order of the inverse of the square root of the dimension. Moreover,
a change of variables shows that the eigenvalues ofGn, E� D .�1; : : : ; �n/; �1 � �2 � � � � �n,
are distributed according to

dP n
ˇ .E�/ D

1

Zn
ˇ

�.E�/ˇ e�
ˇn
4

Pn
iD1.�i /2

Y
d�i ; (1.2)

where�.E�/ D
Q

i<j j�i � �j j is the modulus of the Vandermonde determinant. There exists
a third Gaussian ensemble, the Gaussian symplectic ensemble (GSE), with quaternionic
entries and which is invariant under conjugation by symplectic matrices. Its eigenvalues
are distributed according to P n

4 . However, we shall not highlight this case in the sequel. The
Gaussian ensembles are also called the GˇE’s with ˇ D 1; 2; 4 for the GOE, GUE, and
GSE, respectively. Remarkably, for any ˇ > 0, P n

ˇ
was shown [77] to describe the law of

the eigenvalues of the n � n self-adjoint tridiagonal matrix
p

ˇn
�1

Xn
ˇ
where the diagonal

entries ¹Xn
ˇ

.i; i/; 1 � i � nº are independent centered Gaussian variables with variance 2,
independent of the off-diagonal entries ¹Xn

ˇ
.i; i C 1/; 1 � i � n � 1ºwhich are independent

and such that Xn
ˇ

.i; i C 1/ is a chi-distributed variable with ˇ.n � i/ degrees of freedom for
i 2 ¹1; : : : ; n � 1º. Thanks to formula (1.2), the Gaussian ensembles were studied in detail.
We next review a few classical results involving these random matrices. We will see in the
core of the text that some of these results generalize to other random matrices, for instance,
theWigner matrices which are similar to the Gaussian ensembles but with entries that are not
necessarily Gaussian, namely symmetric or Hermitian matrices with independent centered
entries and with variance 1=n.

1.1.2. Typical events
The celebrated law of large numbers states that the sum of independent identically

distributed variables, once properly renormalized, converges almost surely towards its mean.
More precisely, if x D .x1; : : : ; xn; : : :/ is a sequence of independent real random variables
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Figure 1

The semicircle law and the asymptotic distribution of the spectrum

with the same distribution � such that
R

jxjd�.x/ is finite, the empirical mean

mn.x/ WD
1

n

nX
iD1

xi (1.3)

converges almost surely towards the mean when n goes to infinity:

lim
n!1

mn.x/ D

Z
xd�.x/ a.s.

Historically the first, and particularly simple, application of this theorem applied to coin
tossing. The distribution of one toss can be modeled by the Bernoulli law � D �p D pı1 C

.1 � p/ı0 if the coin has probability p to show heads, which is represented by the value ¹1º.
The law of large numbers shows that if one flips a coin many times independently, one should
see heads approximately a proportion p of the times. There are many proofs of the law of
large numbers, and in simple cases like coin tossing, it follows from counting the number of
ways to see a given number of heads out of n flips.

The emergence of an almost sure deterministic phenomenon from many indepen-
dent random events is a usual feature in probability theory or statistical mechanics. In the
latter, many random particles collaborate to give a deterministic macroscopic behavior. In
random matrix theory (RMT), Wigner [182] showed that the distribution of the eigenvalues
of Gaussian ensembles converges almost surely towards a deterministic limit given by the
semicircle law.

Theorem 1.1 ([182]). Let �1 � �2 � � � � � �n be the eigenvalues of the GˇE for ˇ D 1; 2,
or 4. Then, for any a < b,

lim
n!1

1

n
#
®
i W �i 2 Œa; b�

¯
D �

�
Œa; b�

�
almost surely; (1.4)

where � is the semicircle law,

�.dx/ D
1

2�

p

4 � x21jxj�2dx: (1.5)

Equation (1.4) can be seen as the almost sure weak convergence of the empirical
measure O�n D

1
n

Pn
iD1 ı�i

of the eigenvalues in the sense that it is equivalent to the conver-
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gence, for any bounded continuous function f , of

lim
n!1

1

n

nX
iD1

f .�i / D

Z
f .x/d�.x/ a.s. (1.6)

This result was proved byWigner for matricesXn with independent centered entries (modulo
the symmetry constraint) with variance 1=n and finite moments and not only for Gaussian
entries. However, the proof of Wigner’s theorem is much less obvious than that of the clas-
sical law of large numbers because the spectrum is a complicated function of the entries of
the matrix. The key point of Wigner was to observe that moments of the empirical measure
of the eigenvalues are more explicit functions of the entries than indicator functions since,
for any integer number k,

1

n

nX
iD1

�k
i D

1

n
Tr
�
.Gn/k

�
D

1

n

nX
i1;:::;ikD1

Gn
i1i2

� � �Gn
ik i1

: (1.7)

The expectation and variance of the right-hand side of (1.7) can be estimated, yielding by
Borel–Cantelli’s lemma the almost sure convergence of traces of moments. Moreover, by
the Weierstrass approximation theorem, the almost sure convergence of the moments (1.7)
implies (1.6) and then (1.4) because the semicircle law is compactly supported and has no
atoms.

We are also interested in more detailed convergence of the spectrum, for instance,
convergence of the largest eigenvalue �1. Fűredi and Komlós [95] show that it sticks to the
bulk in the sense that the largest eigenvalue converges almost surely towards 2, the bound-
ary of the support of the semicircle law (strictly speaking, [95] assumes that the entries are
bounded, but the proof easily generalizes to sub-Gaussian entries, see, e.g., [3]). This is anal-
ogous to the statement from classical probability theory that the supremum of independent
variables with law � converges almost surely towards the upper boundary of the support
of �, except that this is infinite if the variables are unbounded like the Gaussians.

1.1.3. Fluctuations
The probability to make a small error in the law of large numbers is specified by the

well-known central limit theorem. It asserts that errors are of the order of the square root of
the dimension and fluctuations are Gaussian. More precisely, coming back to the example of
the empirical mean (1.3) of independent variables, it states that, if

R
jxj2d�.x/ is finite and

we set �.�/ D .
R

x2d�.x/ � .
R

xd�.x//2/1=2, then
p

n.mn.x/ �
R

xd�.x// converges in
distribution towards a centered Gaussian variable with variance �.�/, so that for every real
number t ,

lim
n!1

P

�
p

n

�
mn.x/ �

Z
xd�.x/

�
� t�.�/

�
D

Z t

�1

e� x2

2
dx

p
2�

:

In the context of random matrices, the fluctuations of the eigenvalues are much smaller,
see Figure 2. The fluctuations of the empirical measure were first studied in [134, 137]. We
describe below the result obtained by Johansson [131] in the case of the Gaussian ensembles.
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Figure 2

Fluctuations of the spectrum. Courtesy of D. Coulette

He showed that for every sufficiently smooth test function f ,
nX

iD1

f .�i / � n

Z
f .x/d�.x/ (1.8)

converges in distribution towards a Gaussian variable. This Gaussian variable is not centered
in general when ˇ ¤ 2, but both its mean and variance are explicit. The original proof [131]
relies on the explicit joint law of the eigenvalues (1.2) and is far from obvious because of the
strong correlations between the eigenvalues due to the Vandermonde determinant. This result
was generalized to the case of Wigner matrices by using moment estimates [4,146], resulting
in the universality of the fluctuations within the class of entries with four first moments equal
to the Gaussian ones.

Remarkably, the fluctuations are of order 1 over the dimension (since the conver-
gence of (1.8) holds without any normalization): this indicates that the eigenvalues fluctuate
much less than independent variables. This phenomenonwas quantified by the so-called local
law [84,85] which asserts that the convergence in Wigner’s theorem (1.4) can be refined into
a quantitative estimate to showing that the number of eigenvalues in a set Œa; b� � .�2; 2/

such that b � a � 1=n is still of the order of n�.Œa; b�/. This can often be improved to get
the rigidity property [88], namely that the eigenvalues in the bulk stay at a distance of order
n�1Co.1/ from their deterministic limit.

Fluctuations are not always described by the Gaussian distribution: for instance,
the maximum of independent variables with fast decaying tails follows a limiting Gumbel
distribution. In a breakthrough paper [170], the largest eigenvalue of Gaussian ensembles was
shown to fluctuate on the scale n�2=3 and the fluctuations to be distributed according to the
Tracy–Widom laws. The fluctuations of the eigenvalues inside the bulk are also known and
are in the scale n�1 (see [151] for ˇ D 1; 2). These remarkable results were derived thanks to
the explicit joint distribution of the eigenvalues (1.2). In particular, the case where ˇ D 2was
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analyzed thanks to the fact that the density is the square of a determinant, allowing for the use
of orthogonal polynomials and integrable system theory. In a series of major contributions,
these results were shown to hold for Wigner matrices with entries with finite second and
fourth moments, respectively [86, 87, 169]. The proofs of these results are sophisticated and
build on comparison with the Gaussian case.

1.1.4. Rare events
The interest in estimating the probability of rare events goes back to Boltzmann,

Gibbs, and Shannonwho defined the entropy as the logarithm of the volume of configurations
(or microstates) achieving a given macrostate. Going back to the coin tossing example, with
a probability p to show heads, a macrostate was defined as the set of configurations such that
n tosses give approximately �n heads, namely the event that mn.x/ is approximately equal
to � for independent equidistributed xi with law �p . The volume, or probability, of such a
macrostate is easily seen to be given by

lim
ı#0

lim
n!1

1

n
lnP

�
x W
ˇ̌
mn.x/ � �

ˇ̌
� ı

�
D �Sp.�/ D �� ln.�=p/ � .1 � �/ ln

�
1 � �

1 � p

�
;

(1.9)

where �Sp.�/ is the entropy of �. This result can be inferred from counting the configura-
tions and using Stirling’s formula. Large deviations theory is the art of estimating such rare
events in a general framework [73, 75, 78, 174] by proving large deviation principles (LDPs)
that we now define. We will hereafter consider a sequence of probability measures .�n/n�0

on a Polish space E. In this article, we will mainly consider the case where E is the real
line or the set of probability measures on the real line equipped with its weak topology. Let
.an/n2N be a sequence of nonnegative real numbers going to infinity as n goes to infinity.
We say that .�n/n�0 satisfies an LDP with speed an and good rate function I , denoted in
short by LDP.an; I /, if and only if

• I W E ! RC has compact level sets ¹x 2 E W I.x/ � M º for every M 2 RC,

• For each Borel measurable set B � E,

� inf
VB

I � lim inf
n!1

1

an

ln�n.B/ � lim sup
n!1

1

an

ln�n.B/ � � inf
NB

I: (1.10)

Taking B to be a small ball B D B.�; ı/ for some � 2 E and ı > 0 as small as wished (but
independent of n) shows that the LDP allows estimating the probability of small balls as

�n

�
B.�; ı/

�
' e�anI.�/

in the sense that for any � 2 E,

lim
ı#0

lim inf
n!1

1

an

ln�n

�
B.�; ı/

�
D lim

ı#0
lim sup

n!1

1

an

ln�n

�
B.�; ı/

�
D �I.�/: (1.11)

Such an estimate is called a weak large deviation principle. By a covering argument, (1.11)
can be shown to be equivalent to the LDP if E is compact or if �n satisfies a property called
exponential tightness [73, (1.2.17)]. An important consequence of the LDP.an; I / is that if the
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rate function I vanishes at a single point x� 2 E, then �n converges weakly towards a Dirac
mass at this point.

The two most well-known results from the large deviations theory are Cramèr’s and
Sanov’s theorems. Cramèr’s theorem [73] asserts that the distribution of the empirical mean
mn.x/ satisfies an LDP with speed n when the .xi /i�0 are independent equidistributed real-
valued random variables with distribution � with a finite Laplace transform in a vicinity of
the origin, see (1.9) in the case � D �p . Sanov’s theorem shows that the law of the empir-
ical measure 1

n

Pn
iD1 ıxi

satisfies as well an LDP.n; H.�j�/), so that for any probability
measure �,

P

 
d

 
1

n

nX
iD1

ıxi
; �

!
< ı

!
' e�nH.�j�/ (1.12)

if d is the distance on the set P .R/ of probability measures on the real line defined by

d.�; �/ D sup
kf kL�1

j

Z
f .x/d�.x/ �

Z
f .x/d�.x/j;

where kf kL D supx¤y jx � yj�1jf .x/ � f .y/j C supx jf .x/j. Here,H.�j�/ is the relative
entropy: it is infinite unless � is absolutely continuous with respect to � and then equalsR
ln d�

d�
d�. The proofs of such theorems are more sophisticated than in the coin tossing

example since they cannot rely on direct combinatorial arguments. They often rather follow
from clever changes of measures (also called tilts) that reveal how the distributions should
be changed to make a given rare event typical. These arguments are very much based on
the independence of the variables .xi /i�0. Large deviations theory was mainly developed to
tackle the distribution of sums of independent random variables, or of “weakly” dependent
variables such as Markov chains, or probability measures obtained either by a push-forward
or a nice density from the latter, see the work of Cramèr, Varadhan, and many others [73,75,

81]. This classical theory does not apply to large random matrices in general. Indeed, even if
the random matrices are chosen with independent entries, the spectrum or the eigenvectors
are complicated functions of these entries. We can take the example of the trace of a power
of a matrix, see (1.7): as soon as the power k is higher or equal to 3, it cannot be written
as a sum of independent entries and understanding the large deviations of such functionals
for Wigner matrices is still open in general, see [9, 10] for entries with sharp sub-Gaussian
tails or without Gaussian tails. The case of the Gaussian ensembles is simpler because of the
explicit law of the eigenvalues (1.2). Even if the classical large deviations theory does not
apply to the distribution of the eigenvalues (1.2) because of the strong interaction due to the
Vandermonde determinant term in its density, LDPs were derived in this case to estimate the
probability that the empirical measure of the eigenvalues or the largest eigenvalue deviates
from their typical behavior, see Figure 3.

Theorem 1.2. Let �1 � �2 � � � � �n be distributed according to (1.2) for some ˇ > 0. Then

• ([25]) For � 2 P .R/, set

E.�/ D
1

2

Z Z �
x2

4
C

y2

4
� ln jx � yj

�
d�.x/d�.y/
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Figure 3

Large deviations of the spectrum with exponentially small probability. Courtesy of D. Coulette

and E.�/ D E � infE. Then E is a good rate function. The distribution of the
empirical measure of the eigenvalues O�n D

1
n

Pn
iD1 ı�i

under P n
ˇ
satisfies an

LDP.ˇn2; E/, that is, for every closed set F ,

lim sup
n!1

1

ˇn2
lnP n

ˇ . O�n 2 F / � � inf
F

E;

whereas for any open set O ,

lim sup
n!1

1

ˇn2
lnP n

ˇ . O�n 2 O/ � � inf
O

E:

• ([24, Theorem 6.2]) Let IGOE.x/ D
1
2

R x

2

p
y2 � 4dy for x � 2 and IGOE.x/ D C1

for x < 2. Then the distribution of �1 satisfies an LDP.ˇn; IGOE/.

Notice that the speed of the LDP for the empirical measure is n2, in contrast with
the speed n in Sanov’s theorem, showing again that the eigenvalues of Gaussian ensembles
are much less random than independent variables. Moreover, it can be seen that E vanishes
only at the semicircle law, implying Theorem 1.1 (see Section 2.1 for more detail). Similarly,
IGOE vanishes at 2 only, ensuring the convergence of the largest eigenvalue towards 2. The
proof of this theorem relies on Laplace’s principle. Indeed, the distribution of the empirical
measure of the eigenvalues and of the largest eigenvalue can be seen to have approximately
the density e�ˇn2E. O�n/=Zn and e�ˇnIGOE.�1/=zn, respectively, where Zn; zn are appropriate
normalizing constants. The theorem would follow by the Laplace principle if E and IGOE

were continuous. The main point is to make the above approximations precise and to show
that, even though E is not continuous (because the logarithm is not bounded), the result is
still valid.

One of the main goals of this article is to discuss how to generalize this theorem. For
instance, how can it be extended to generalWigner matrices? In this case, no explicit formula
for the law of the eigenvalues such as (1.2) is known. On the other hand, the LDP a priori
depends on the whole distribution of the entries as in the case of Sanov’s theorem, contrarily
to fluctuations which often depend mainly on a finite number of moments. Such universal
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classes are not expected in large deviations theory. Even conjecturing the rate functions for
such LDPs is not clear. LDPs were also obtained for other invariant models such as Wishart
or unitary matrices [125], or non-Hermitian Gaussian matrices [28], but the distributions of
their eigenvalues all enjoy a rather explicit form. LDPs for Gaussian random matrices with
independent centered entries but variance different from those of the Gaussian ensembles
are also still open, see [105] for large deviation upper bounds. We will see that other invari-
ant matrix models, such as models involving several matrices, remain very challenging as
well.

Large deviations theory is key to study laws of dependent variables such as Boltz-
mann–Gibbs distributions in statistical mechanics. They are probability measures of the form

d�n
ˇ .x/ D

1

Zn
ˇ

e�ˇnEn.x/d�0
n.x/; (1.13)

where En is a function from the space of states (for instance, Rn) into R, often called the
energy or the Hamiltonian, ˇ is a real parameter proportional to the inverse of the tempera-
ture,�0

n.x/ is some reference probability measure, andZn
ˇ
is the so-called partition function,

namely the constant which turns �n
ˇ
into a probability measure. The properties of such mea-

sures when the dimension n goes to infinity are better understood when the distribution of
En.x/ under �0

n.x/ satisfies an LDP.n; I /. The typical values of the energy can then be
inferred from the fact that for every y 2 R,

�n
ˇ

�
x W
ˇ̌
En.x/ � y

ˇ̌
< ı

�
'

1

Zn
ˇ

e�ˇny�nI.y/CnO.ı/;

from which it is clear that En.x/ concentrates in a neighborhood of the minimizers of
Iˇ .y/ D ˇy C I.y/ with large probability when n goes to infinity. Varadhan’s integral
lemma [73, Theorem 4.3.1] states more precisely that the distribution of En under �n

ˇ
satis-

fies an LDP.n; Iˇ � inf Iˇ ). This type of analysis often holds for the so-called mean field
interacting systems that are distributions such that all variables interact in the same way, for
instance, where the energy En.x/ is a function of the empirical mean mn or of the empirical
measure. A celebrated example is the Curie–Weiss model, where En is a quadratic poly-
nomial in the empirical mean mn and d�0

n D
Qn

iD1 d�p . The LDP for this model can be
proven as above, as well as the convergence of the empirical mean towards the minimizers
of the rate function. It can be shown that this minimizer is unique, equals zero for small
enough ˇ, but takes a nonzero value after some critical ˇc . This provides a simple exam-
ple of a phase transition known as spontaneous magnetization. Such applications are also
important in RMT when studying matrix models, see Section 1.2.4.

We present in the rest of this introduction a few additional motivations for the study
of large deviations for large random matrices, as well as extensions to related fields. We will
then review the main results of this emerging field, focusing first on large deviations for the
spectrum of one random matrix, and then on multimatrix models where noncommutativity
raises new challenges. Along the way, we highlight a few open problems.
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1.2. Motivations
In this section, we discuss a few additional motivations to establish large deviation

principles in random matrix theory.

1.2.1. Bernoulli matrices
Matrices with entries equal to zero or one can be interpreted as the adjacency matri-

ces of random graphs where the entry at .ij / is equal to one iff there is an edge between the
vertices i and j . In particular, random matrices with independent Bernoulli entries are the
adjacency matrices of Erdős–Rényi graphs. The spectrum of the adjacency matrix of a graph
is intimately related to the graph’s geometric properties, such as being an expander. More-
over, traces of moments count particular subgraphs, for instance, the trace of the adjacency
matrix to the third power counts the number of triangles in the graph. Understanding how a
random graph looks like when a rare event happens is a natural question [60]. As we will see,
studying the large deviations for the spectrum of matrices with non-Gaussian entries such as
Bernoulli’s is far more difficult, basically because the law of the eigenvalues is not given by
an explicit distribution as in (1.2). In particular, one needs to understand more precisely the
best scheme to perform a given large deviation event.

1.2.2. The BBP transition
The largest eigenvalue is often used to test whether an array of data contains infor-

mation, just by comparing it with the largest eigenvalue of an array taken at random. Even
though such applications involve usually asymmetric matrices and their singular values, the
famous Wishart matrices in RMT [183], we stick to Wigner matrices in this article for con-
sistency. The renowned BBP transition [15] asserts that the largest eigenvalue of a random
matrix perturbed by a finite-rank signal pops out of the bulk at a critical value of the intensity
of the signal (more precisely, of its largest eigenvalue), above which the weak recovery of the
signal u from the observation of the perturbed signal is possible [30]. The large deviations
for the largest eigenvalue have then been used in statistics to assert the risk of statistical tests
[34]. In the related problem of estimating a low-rank tensor in Gaussian noise [27] requires
large deviations for the largest eigenvalue of a rank-one perturbation of a Gaussian matrix,
which were derived in [111,147].

1.2.3. The complexity of random functions
The interest in optimizing random functions grew in the last ten years from its rel-

evance to deep learning, building on its importance in spin glass theory. However, random
functions in high dimensions are complex in the sense that they have many local minima
and finding their global minima may be a complicated task, in fact, an NP-hard problem. In
the last ten years, the study of the complexity of random functions grew into a field on its
own, for instance, allowing to estimate the expectation of the number of local minima of a
random function with a given index and level. Such estimates are based on Kac–Rice for-
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Figure 4

Gluing of 4 triangles and 1 square. Corners of the same color belong to the same vertex of the map in the final
surface. Courtesy of G. Miermont

mula. Because the Hessian of a random function can be seen as a random matrix, the large
deviations for the latter are crucial to getting such estimates [6,7,23,27,61,96,167].

1.2.4. Random matrices and the enumeration of maps
The relation between random matrices and the enumeration of maps goes back to

[50,123,168] where it was proved that if Gn follows the GUE, then for every integer k,

E

�
1

n
Tr
�
.Gn/2k

��
D

X
g�0

1

n2g
Mg.k/;

where Mg.k/ is the number of ways to glue the sides of a 2k-polygon in pairs such that the
resulting surface has genus g. The counting is made after labeling the sides clockwise, or,
equivalently, after drawing the polygon on an orientable surface with a distinguished root
side. Maps are the same only if all the matchings occur between sides with the same labels.

This relation between maps and random matrices extends to several polygons, see
Figure 4, if one considers the distribution

dP n
V;2.Xn/ D

1

Zn
V;2

e�nTr.V.Xn//dP n
2 .Xn/ (1.14)

for some potential V . Here, V.Xn/ is defined as the matrix with the same eigenvectors asXn

and eigenvalues given by the image by V of the eigenvalues of Xn. The measure P n
2 denotes

the law of the GUE (1.1) and the constant Zn
V;2 is the normalizing constant so that P n

V;2 is a
probability measure. We will assume that V is a polynomial, V.x/ D �

Pp
iD3 ti x

i , with p

even and tp < 0, so that (1.14) makes sense. It was shown [50,168] that

F n
V;2 D

1

n2
lnZn

V;2 D

X
g�0

1

n2g

1X
k1;:::;kpD0

Y
1�i�p

t
ki

i

ki Š
Mg

�
.ki ; i/1�i�p

�
; (1.15)

where Mg..ki ; i/1�i�p/ denotes the number of ways to glue pairwise the sides of ki poly-
gons with i sides, 1 � i � p, and get a connected two-dimensional surface of genus g. The
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counting is done with labeled sides. Equivalently, we can think of a polygon with i sides as
a vertex with i half-edges drawn on an orientable surface. The number Mg..ki ; i/1�i�p/

then counts the maps, that is, the connected graphs drawn on a surface, built by matching
the half-edges of ki vertices with i half-edges, 1 � i � p. Half-edges are labeled. The genus
of the map is the genus of the surface in which the graph can be properly embedded, which
is such that the faces, obtained by cutting the surface along the edges of the map, are home-
omorphic to disks. It can be computed from the fact that the Euler characteristic 2 � 2g is
equal to the number of vertices minus the number of edges plus the number of faces.

Observe also that making a small change V !V C ıx` in (1.14), and identifying
the linear term in ı, shows thatZ

1

n
Tr
�
.Xn/`

�
dP n

V;2.Xn/ D

X
g�0

1

n2g

1X
k1;:::;kpD0

Y t
ki

i

ki Š
Mg

�
.ki ; i/1�i�p; .1; `/

�
; (1.16)

where .1; `/ means that the maps contain an additional polygon with ` sides, also called
external face. A priori, (1.15) and (1.16) are equalities of formal series. They are obtained by
expanding all the terms depending on V and using Wick formula (or, equivalently, Feynman
diagrams) to compute the resulting Gaussian expectations. These equalities can be turned
into an asymptotic expansion up to errors of order n�2k for any integer number k as soon as
the parameters ti ; 1 � i � p, are small enough, p is even and with tp > 0 [83]. Therefore,
computing the large n limit of the free energy F n

V;2 or the limit of the empirical measure
of the spectral measure of the eigenvalues allows effectively enumerating planar maps. This
route was followed in [50] where random triangulations and quadrangulations were studied,
corresponding to cubic and quartic polynomials. Note that in the first case p is odd and Zn

V;2

a priori infinite, but the above relations can be generalized by restricting the integration to
matrices with spectral radius bounded by a large enough constant. Such computations can
be done more generally by using large deviations theory [106,113].

1.2.5. Beta-ensembles
A change of variables shows that the eigenvalues E� D .�1; : : : ; �n/ of Xn following

P n
V;2 of (1.14) are distributed according to the distribution P n

1
2 x2CV;ˇ

where

dP n
V;ˇ .E�/ D

1

Zn
V;ˇ

�.E�/ˇ e�
ˇn
2

Pn
iD1 V.�i /

Y
d�i ; (1.17)

and ˇ D 2. The case ˇ D 1 corresponds to symmetric matrices and ˇ D 4 to quaternionic
entries. We only considered the case ˇ D 2 in the previous section because the combinatorial
interpretation of the other cases is less clear in general, see, e.g., [56,104,141] forˇ D 1. In fact,
P n

V;ˇ
makes sense for any ˇ > 0 and is called a Beta-ensemble. Equation (1.17) furnishes

a classical example of particles in strong interaction belonging to the family of Coulomb
gases in dimension 1, see, e.g., [28,161] for higher dimensions. Large deviations are useful in
analyzing the limiting distribution of the particles.

Equation (1.17) also provides another route to estimate the asymptotics of the free
energyF n

V;2 or of the empirical measure of the matrix models (1.14) and hence study the enu-
meration of maps, as proposed in [50] to complement Tutte’s combinatorial approach [172].
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1.2.6. Multimatrix models and the enumeration of maps
Equation (1.15) generalizes to colored maps for matrix models of the form

dP n
V;2.Xn

1; : : : ;Xn
d / D

1

Zn
V;2

e�nTr.V.Xn
1 ;:::;Xn

d
//� n

2 Tr.
P

.Xn
i /2/dXn

1 � � � dXn
d ; (1.18)

where V is a self-adjoint polynomial going to infinity fast enough. If V.a1; : : : ; ad / D

�
Pp

iD1 tj qj .a1; : : : ; ad / with monomials qj , then the authors of [50,168] show that

1

n2
logZn

V;2 D

X
g�0

1

n2g

1X
k1;:::;kpD0

Y
1�i�p

.ti /
ki

ki Š
Mg

�
.ki ; qi /1�i�p

�
(1.19)

where Mg..ki ; qi /1�i�p/ counts maps with genus g built over ki colored polygons of
type qi . A colored polygon of type q D ai1 � � � aik is a polygon drawn on an orientable
surface so that its first side has color i1 2 ¹1; : : : ; mº (the root), second has color i2, and
so on until the last one which has color ik . Maps are constructed by matching sides with
the same color and counting is done with labeled sides. Note that a colored polygon is in
bijection with a rooted vertex with ordered colored half-edges and maps are then obtained by
matching half-edges of the same color. Even though this equality holds a priori at the level
of formal power series, it can be turned into an asymptotic expansion [113]. This equality
allows representing many physical models in terms of random matrices, such as the Ising
model or the Potts model on random maps [45,89]. Multimatrix integrals turn out to be much
more difficult to estimate than one matrix integrals, basically because noncommutativity
kicks in. This fact is not surprising given the complicated combinatorial questions that they
eventually represent. We will see in Section 3 that the case of the so-called AB interaction
is better understood than the general case discussed in Section 4.

1.2.7. Multimatrix models and Voiculescu’s entropy
One of the most challenging goals in studying large deviations for random matrices

was provided by Voiculescu [176,178] in the 1990s when he defined notions of entropy in the
context of free probability. Free probability is a probability theory where random variables
do not commute and the notion of independence is replaced by freeness. A central point
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in free probability theory is that Gaussian random matrices are free variables in the limit
where their size goes to infinity [175]. Free probability is intimately related to von Neumann
algebras, and Voiculescu’s hope was to define an invariant for von Neumann algebras to
classify them. His ideas were inspired by Minkowski content and entropy in classical prob-
ability theory. Voiculescu microstates entropy can be seen as a generalization of Shannon’s
entropy as it measures the volume of matrices which approximate in a weak sense a given set
of noncommutative random variables. In the case of a single variable, the noncommutative
entropy is roughly speaking given by the rate function of the large deviation principle for
the law of the empirical measure of the eigenvalues of Gaussian ensembles in Theorem 1.2
[178]. Understanding better Voiculescu’s entropies would have groundbreaking applications
in the theory of von Neumann algebras. Moreover, random matrices can serve to construct
interesting noncommutative laws, see, e.g., [110]. We discuss these issues in Section 4.

1.3. Extensions
Beta-ensembles and random matrices are connected with many other fields, of

which we describe briefly a few below, see, e.g., [2,93] for more.

1.3.1. Beta-ensembles and quantum physics
Beta-ensembles and Coulomb gases arise in many domains of physics, including

condensed matter physics, statistical physics, and quantum mechanics, we refer to [161] for
a survey including higher dimensional generalization. Variants of Beta-ensembles involving
hyperbolic Vandermonde determinants appear in quantum integrable models solvable by the
quantum separation of variables method, such as the Toda chain [136] or the lattice Sinh-
Gordon model [144]. Such integrals then correspond to normalizations of the n-particles
wave functions and, more generally, to matrix elements of local operators. Some of their
large-n properties were investigated in [42]. Furthermore, integrals similar to Beta-ensembles
but having more general interactions with the same singularity arise in the form factor expan-
sions ofWightman functions inmassive integrable quantumfield theories in 1 C 1 dimension
[164]. The large deviation techniques discussed in this article allow estimating such integrals.

1.3.2. Random tilings
Beta-ensembles extend to the discrete case. They then model the distribution of hor-

izontal lozenge tiles in a lozenge tiling taken at random. Indeed, consider discrete ensembles
given for a weight function w by

P n
w. È/ D

1

Z!
n

Y
i<j

j j̀ � `i j
2
Y

i

w.`i ; n/: (1.20)

The coordinates `1; : : : ; `n are discrete and such that `iC1 � `i 2 N�. This probability
measure arises in the setting of lozenge tilings of domains such as the hexagon. In fact,
considering an hexagon with sides of size A; B; C , along the vertical line at distance t of the
vertical side of size A (see Figure 5), the distribution of horizontal lozenges corresponds to
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Figure 5

Tiling of the hexagon. Courtesy of L. Petrov and V. Gorin

a potential of the form

w.`; n/ D
�
.A C B C C C 1 � t � `/t�B.`/t�C

�
; (1.21)

where .a/k D a.a C 1/ � � � .a C k � 1/ is the Pochhammer symbol, and n is the total number
of horizontal lozenges. Large deviations can be used to describe the limiting surface of the
tiling when n goes to infinity, for instance, recovering the limiting well-known arctic circle,
see, e.g., [62,162] for large deviations of the whole surface. Themeasure in (1.20) corresponds
to ˇ D 2 ensembles, but can be generalized to all ˇ > 0, see [40].

1.3.3. Zeroes of random polynomials
The distribution of zeroes of random polynomials also follows a kind of Beta-

ensembles distribution: this connection was used in [185] to study large deviations for the
distribution of such zeroes. In the same direction, [102] studies the topology of a random
real hypersurface in a given smooth real projective manifold by estimating the mean of their
Betti numbers thanks to large deviation principles. Such questions are closely related to the
study of the complexity of random functions discussed in Section 1.2.3.

1.3.4. Longest increasing subsequence and discrete polynuclear growth
Beta-ensembles also describe the distribution of the discrete polynuclear growth

and the length of the longest increasing subsequence of a permutation taken at random,
a relation which allowed to study precisely the fluctuations and the large deviations of these
models. It was shown in [130] that the distribution of the length of the longest increasing sub-
sequence of a permutation of n elements taken uniformly at random is closely related with
Beta-ensembles. This formed the basis for the evaluation of the fluctuations of the longest
increasing subsequence in [16]. In [132], the distribution of the discrete polynuclear growth
given by

G.M; N / D max
�

X
.i;j /2�

w.i; j /;
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where � is a up-right path from .0; 1/ to .M; N /, was shown to be intimately related with
a discrete Beta-ensemble when the w are independent equidistributed geometric variables.
These connections with randommatrices allowed studying large deviations [18,19,74,133,160].

1.3.5. Sum rules
Gamboa et al. [97, 98] found out that equating large deviations rate functions in

random matrix theory was also fruitful in getting a deep understanding of the sum rules
of Killip and Simon [138], also called GEM relations in spectral theory. The latter states
highly nontrivial equalities between different functionals on the space of measures. [97, 98]
interpreted both sides of the equalities as rate functions for the large deviations for the spectral
measure given by O�n

e .f / D he; f .Gn/ei for a deterministic unit vector e (and a GOE/GUE
matrix Gn). Indeed, one can take two different routes to compute the probability of devia-
tions of this spectral measure: either by relating it to the spectrum of Gn or to the recursion
relations of the associated orthogonal polynomials. Equating the resulting rate functions
allows recovering the sum rules of [138] and proving new sum rules. Even the fact that both
sides of these equalities are finite at the same time is surprising, see [48] for a pedagogical
introduction.

1.3.6. Gibbs ensembles for Toda lattice
Recently, the interest in tridiagonal matrices was revived by Spohn [165, 166] who

related them with the Toda lattice. The latter is described by the evolution of n particles with
position qj and momentum pj satisfying

@t qj D pj ; @t pj D e�rj � e�rj �1 ;

where rj D qj � qj �1 and the periodic boundary conditions qj Cn D qj C cn. We consider
the LaxmatrixLn which is the self-adjoint tridiagonal matrix with entriespj on the diagonal
and Ln.j; j C 1/ D Ln.j C 1; j / D e�rj =2 with periodic boundary condition. It is easy to
see that for any function V , Tr.V .Ln// and

P
rj are left invariant under the dynamics so

that natural invariant measures, called generalized Gibbs measures for the Toda lattice, are
given by

dT n
V;P .p; r/ D

1

Zn;T
V;P

exp
®
�Tr

�
V.Ln/

�¯ nY
iD1

e�P ri dri dpi ; (1.22)

where Zn;T
V;P is the partition function of the Toda Gibbs measure,

Zn;T
V;P D

Z
exp

®
�Tr

�
V.Ln/

�¯ nY
iD1

e�P ri dri dpi : (1.23)

The goal is then to characterize the limiting spectrum of the Lax matrix under T n
V;P . Spohn

related this problem with the Beta-ensembles, hence allowing to describe rather explicitly
the equilibrium measure of this model. When V.x/ D x2, we see that Ln is a tridiagonal
matrix with standard independent Gaussian variables on the diagonal and independent chi-
distributed variables with a fixed degree on the off-diagonal, allowing comparisons with the
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Beta-ensembles thanks to [77]. This also led to LDPs [113] and convergence for a wider set
of potentials V .

2. One matrix models

In this section, we discuss the main large deviations results encompassing only one
matrix. We start with the invariant ensembles and more generally Beta-ensembles. We then
discuss Wigner matrices.

2.1. Beta-ensembles
The Beta-ensembles are defined in (1.17). As in the Gaussian case of Theorem 1.2,

they are amenable to a large deviation analysis and we have the following more general
statement.

Theorem 2.1 ([25]). Let V be a continuous function going to infinity at infinity faster than
ln jxj. For a probability measure � on R, set

EV .�/ D
1

2

Z Z �
V.x/ C V.y/ � ln jx � yj

�
d�.x/d�.y/

and EV .�/ D EV .�/ � infEV . Then EV is a good rate function and the distribution of the
empirical measure of the eigenvalues under P n

V;ˇ
satisfies an LDP with rate function EV and

speed ˇn2. In particular, the free energy 1
ˇn2 lnZn

V;ˇ
converges towards � infEV .

This theorem implies the almost sure convergence of the empirical measure of the
eigenvalues asEV vanishes at a unique probabilitymeasure�V . Indeed,EV is strictly convex
on the space of probability measures [158] because it is equal to the sum of a linear functional
� !

R
Vd� and a strictly convex function since, for any probability measures �; �0 on the

real line,

�

Z
ln jx � yjd.� � �0/.x/d.� � �0/.y/ D

Z 1

0

1

t

ˇ̌̌̌Z
eitxd.� � �0/.x/

ˇ̌̌̌2
dt � 0:

This ensures the uniqueness of the minimizers of EV and hence the following corollary.

Corollary 2.2 ([25, 158]). Let V be a continuous function going to infinity at infinity faster
than ln jxj. Then, O�n converges almost surely towards a distribution �V which is the unique
probability measure � such that there exists a constant C such that for every x 2 R,

Veff.x/ WD V.x/ �

Z
ln jx � yjd�.y/ � C � 0

with equality � almost surely.

It is easy to see that Veff goes to infinity under our assumptions and hence �V has
compact support. The case when the potential satisfies a weaker growth assumption is dif-
ferent [122]. An LDP can also be proven for the extreme eigenvalues in the sense that the
probability that some eigenvalue goes away from the support of the equilibrium measure
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decays exponentially fast if Veff is positive there [3, 24, 39, 41]. It was shown [91] that, con-
versely, if the effective potential is not strictly positive outside of the support of the limiting
measure, eigenvalues may deviate towards the points where it vanishes.

Theorem 2.3. Let S be the support of �V . Assume that Veff is positive outside S and V is
C 2. Then, for any closed set F in Sc ,

lim sup
n!1

1

ˇn
lnP n

V;ˇ

�
9i 2 ¹1; nº W �i 2 F

�
� � inf

F
Veff;

whereas for any open set O � Sc ,

lim inf
n!1

1

ˇn
lnP n

V;ˇ

�
9i 2 ¹1; nº W �i 2 O

�
� � inf

O
Veff:

An important question, both in physics and for the applications to map enumera-
tions, is to understand the phase transitions for these models. It can be seen that this often
occurs when the support of the equilibrium measure changes (or its density vanishes).

Remark. Theorem 2.1 can be extended to the case where ˇ goes to zero with n [101]. If ˇn

goes to a finite constant P > 0, the speed of the LDP is n and the rate function contains a
new entropy term coming from Sanov’s theorem.

But what can we say about the large deviations for the traces of moments? Because
polynomials are unbounded functions, this is not implied by Theorem 2.1. In fact, such large
deviations are mainly due to the deviations of the extreme eigenvalues [97,98] and their speed
depends on the moment. The following result was obtained in [10].

Theorem 2.4. Let V.x/ D cjxj˛ C v.x/ where ˛ � 2, c > 0, v is convex and v.x/=jxj˛

goes to zero at infinity. Then, for any ˇ > 0, any p > ˛, the law of n�1
Pn

iD1 j�i j
p under

P n
V;ˇ

satisfies an LDP.n
1C ˛

p ; Ip;˛/ where Ip;˛ is infinite if x < �V .yp/ and otherwise is
given by

Ip;˛.x/ D
ˇ

2
c
�
x � �V .yp/

�˛
:

In Section 1.3.5, we have seen that LDPs for the spectral measure, given for a deter-
ministic vector e as the probability measure O�e

n such that

O�e
n.f / D

˝
e; f .Gn/e

˛
D

X
f .�i /he; vi i

2;

are also interesting. They depend a priori on the large deviations of the whole spectrum and
of the scalar products .he; vi i

2/1�i�n, while the empirical measure of the eigenvalues stays
close to the semicircle law with overwhelming probability. BecauseGn follows the Gaussian
ensembles, the distribution of by the spectral measure does not depend on e. Interestingly,
the rate function depends on the “reverse relative entropy,” see [100, 145] for related works.
This yields the following result, see [99] for general Beta-ensembles.

Theorem 2.5 ([97]). The distribution of O�e
n satisfies an LDP.ˇn; J/ where J.�/ is infinite

unless there exists a nonnegative measure � and countably many atoms ¹Ei ºi2N such that
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� D � C
P

i>0 ˛i ıEi
, ˛i > 0, and then

J.�/ D H.� j�/ C

X
i>0

IGOE.jEi j/

where H.� j�/ is the relative entropy of the semicircle law � with respect to � and IGOE is
the rate function for the largest eigenvalue of the GOE, see Theorem 1.2.

We have also seen in Sections 1.2.3 and 1.2.2 that large deviations for rank-one
perturbations of Gaussian matrices appear naturally in statistics. It is not hard to see that the
law of the eigenvalues of the perturbed matrix Yn D Gn C �eeT is absolutely continuous
with respect to the law ofGn and with density given by the spherical integral. The spherical
integral evaluated at an n � n self-adjoint matrix An and a real parameter � is given by

I n
ˇ .An; �/ WD Ee

�
e

nˇ
2 �he;Anei

�
; (2.1)

where the expectation holds over the vector e which follows the uniform measure on the
sphere in Cn if ˇ D 2 and Rn if ˇ D 1. The spherical integral An ! I n

ˇ
.An; �/ is an eigen-

function of the Laplacianwhich only depends on the eigenvalues ofAn. It appears as a natural
Laplace transform in RMT and, as such, plays a key role in many large deviations questions.
In particular, large deviations for the extreme eigenvalues of Yn are based on asymptotic
estimates for these integrals. We discuss spherical integrals for matrices with higher rank in
Section 3.

Theorem 2.6. • ([111]) Let An be a sequence of n � n self-adjoint deterministic
matrices whose largest eigenvalues converge towards � whereas the empirical
measures of their eigenvalues converge weakly towards �A. Then, for any � � 0,
there exists a finite constant J.�A; �; �/ such that

lim
n!1

1

ˇn
ln I n

ˇ .An; �/ D J.�A; �; �/: (2.2)

• ([147]) For any unit vector u and if Gn follows the GUE or GOE, the law of the
largest eigenvalue ofGn C �uu� satisfies an LDPwith speedˇn and rate function
x ! IGOE.x/ � J.�; x; �/ � inf¹IGOE � J.�; �; �/º.

Idea of proof 2.1. Again, the density of the eigenvalues of a rank-one deformation of a
Gaussianmatrix is given by the spherical integral in (2.2) so that Laplace’s principle and (2.2)
gives the result. The estimation of spherical integrals can itself use the representation of the
uniform law on the sphere by Gaussian variables [111], or in terms of Dirichlet laws [109] or
in terms of Schur functions [103]. The limit J.�A; �; �/ is explicit and depends on � only for
� large enough.

Open Problems 2.7. Theorems 2.6 and 2.5 are restricted to invariant ensembles: generalize
them to noninvariant matrix ensembles such as random matrices with bounded entries.

In the last part of this section we outline the relation of LDPs with the local fluctu-
ations of the spectrum. As we stressed in the introduction, fluctuations and large deviations
are a priori different concepts. However, they were shown to be associated in RMT in two
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different ways. First, the tails of Tracy–Widom laws were demonstrated to be intimately
related to the rate function of the largest eigenvalue [43, 72] (where the probability that the
largest eigenvalue takes a value strictly smaller than two is given by the large deviations for
the empirical measure, which then cannot converge to the semicircle law). The fluctuations
of the eigenvalues inside the bulk could also be described by an LDP in [140]. To do so,
the authors considered the finite configuration around E given by the nonnegative measure
on R,

EXn.E/ D

nX
iD1

ın.�i �E/:

From [173], we know that the finite configuration converges vaguely almost surely inside the
bulk when V is quadratic (see [20,21,46,47] for extensions to general V ). In other words, for
any integer number p and any compactly supported bounded continuous function f ,

1

2s

Z s

�s

du

Z
f .x1; : : : ; xp/d EXn.E C u/.x1/d EXn.E C u/.x2/ � � � d EXn.E C u/.xp/

converges almost surely as n goes to infinity and s goes to zero with n slowly enough for any
E � .�2; 2/. To state large deviations, [140] considers the tagged empirical field given for
† � R by the following probability measure on the space of nonnegative measures,

Empn. EXn/.†/ WD
1

j†j

Z
†

ı
E; EXn.E/

dE:

Such Empn. EXn/.†/ converges vaguely almost surely towards the so-called Sine-Beta pro-
cess if † has size going to zero, but j†j is much bigger than 1=n. Leblé and Serfaty [140]

prove the following LDP.

Theorem 2.8 ([140]). The distribution ofEmpn. EXn/ satisfies a large deviation principle with
speed n for the vague topology.

The rate function is the sum of the relative entropy with respect to the Poisson law
and a complicated term coming from the Coulomb interaction. Even though it is not very
explicit, it was proved in [82] that it achieves its minimal value at a unique point for every
ˇ > 0, hence providing another characterization of the Sine-Beta process.

Open Problems 2.9. • In higher dimensions, Theorem 2.8 also holds for Coulomb
and Riesz gases [140], but the uniqueness of the minimizers of the rate function is
still unknown.

• It would be interesting to characterize as well the Airy process describing the
fluctuations at the boundary by an LDP, for which one should first understand how
to generalize the notion of tagged empirical field. It would also be interesting to
relate the large deviations for the KPZ equation [143,171] with large deviations of
the eigenvalues, see [69] for heuristics.

1028 A. Guionnet



2.2. Wigner matrices
We recall that a Wigner matrix Xn is an n � n matrix with independent centered

entries above the diagonal with variance 1=n. Wigner’s theorem [182] and Kómlos–Füredi’s
theorem [95] apply in great generality.

Theorem 2.10 ([13, 142]). Assume that the family ..
p

nXn
ij /2/i�j is uniformly integrable.

Then, almost surely, for any a < b,

lim
n!1

1

n
#
®
i W �i 2 Œa; b�

¯
D �

�
Œa; b�

�
Moreover, if there exists � > 0 such that

B� WD sup
n2N

sup
.i;j /2¹1;:::;nº2

E
�
j
p

nXn
ij j

4C�
�

< 1; (2.3)

then the largest eigenvalue of Xn converges to 2 almost surely.

When the entries do not have a finite variance, for instance, have ˛-stable dis-
tribution, the limiting distribution of the spectrum differs [26, 29, 44, 184] and the extreme
eigenvalues go to infinity because of the presence of large entries in the matrix [8].

The large deviations of the spectrum of Wigner matrices are still poorly understood
in many cases, for instance, when the entries

p
nXn

ij of the matrix are bounded. In this case
we expect the large deviations for the empirical measure to have the same speed n2 as for
Gaussian matrices because of concentration results [118], but no LDP was derived. These
large deviations question are related to a new large deviations theory called nonlinear large
deviations [11,59,67,80]which allows one to analyze large deviations for functions of indepen-
dent variables whose gradients have low complexity (in a certain sense). Understanding large
deviations for Wigner matrices remains a challenge because, as we will see, large deviations
are often created both by events that have low entropy (like a few large entries in the matrix)
coupled with high entropy events (like changing all entries a little), a combination that so
far resisted a systematic approach. We start our journey in the LDPs for Wigner matrices by
mentioning the breakthrough paper [36] which tackled the case when the tail of the entries
decays slower than the Gaussian. Assume that for some ˛ 2 .0; 2/, there exists a > 0 so that
for every i; j ,

lim
t!1

2�1iDj t�˛ lnP
�ˇ̌p

nXn
ij

ˇ̌
� t

�
D �a:

Theorem 2.11. • ([36]) The law of the empirical measure satisfies an LDP with
speed n1C ˛

2 and rate function E˛ which is infinite except at probability measures
given by the free convolution � � � of the semicircle law and a probability mea-
sure �. It is then equal to a

R
jxj˛d�.x/.

• ([9]) The law of the largest eigenvalue satisfies an LDP.n
˛
2 ;C.˛/.

R
d�.y/

��y
/�˛/.

Above, � � � denotes the free convolution of � and �, see Section 4.3.

Idea of proof 2.2. Large deviations are here created by making a few large entries of order
one to create a large eigenvalue and O.n/ large entries to change the empirical measure, the
rest of the matrix behaving like a typical Wigner matrix.
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The large deviations for sparse matrices are also partly understood, in particular if
one considers the eigenvalues of the adjacency matrix of Erdős–Rényi graphs where an entry
is equal to one with probability p=n, and to zero otherwise. In this case, [37] gives an LDP for
the empirical measure with speed n. Moreover, the largest eigenvalues go to infinity. When
ln.1=np/ � ln n and np �

p
lnn= ln lnn, [33] proves an LDP with respect to the typical

behavior.

Open Problems 2.12. Prove LDPs for Wigner matrices with heavy tails (such as ˛-stable
laws). We expect the LDPs for the empirical measure to have speed n, following the concen-
tration of measures estimates of [38].

Recently, there was some progress in understanding the large deviations proper-
ties of the largest eigenvalue of Wigner matrices with compactly supported or sub-Gaussian
entries. Surprisingly, it turns out that they are universal for the so-called sharp sub-Gaussian
entries, that is, entries whose laws Pij satisfy, for every real number t ,

ln
Z

etxdPij .x/ �
t2

2
(2.4)

if the entries are real (and if they are complex, we assume the real and imaginary parts
independent and the bound (2.4) holds for both real and imaginary parts. This is the case of
Rademacher entries Pij D

1
2
ı�1 C

1
2
ıC1 and the uniform measure on Œ�

p
3;

p
3�. We tune

the variances of the entries so that they are the same as in the Gaussian ensembles. We then
have, see [108]:

Theorem 2.13. Let Xn be a Wigner matrix with sharp sub-Gaussian entries. Then the law
of the largest eigenvalue satisfies an LDP with speed ˇn and the same rate function IGOE

than in the Gaussian case.

More generally, assume that the entries are sub-Gaussian,

A WD sup
ij

sup
t2R

2

t2
ln
Z

etxdPij .x/ 2 Œ1; C1/:

Then there is a transition in the LDP if A > 1:

Theorem 2.14 ([12]). Under some technical hypothesis, there exist 2 � x1 � x2 < 1 and
a good rate function I� such that for x 2 Œ2; x1� [ Œx2; 1/,

lim
ı#0

lim inf
n!1

1

n
lnP .j�1 � xj � ı/ D lim

ı#0
lim sup

n!1

1

n
lnP .j�1 � xj � ı/ D �ˇI�.x/:

Moreover, I�.x/ '
x2

4A
when x goes to infinity, whereas I�.x/ D IGOE.x/ when x � x1.

Furthermore, for A 2 .1; 2/ we can take x1 D .A � 1/1=2 C .A � 1/�1=2 > 2.

This result shows a transition where the “heavy tails” created by A > 1 kick in. It
is related to the optimal way to create these large deviations: for small enough values, the
best way to create large deviations is delocalized, meaning that one better changes a bit all
the entries of the matrix, whereas for very large deviations one better changes one or o.n/

entries. This is also related to a transition between a localized or a delocalized eigenvector.
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Unfortunately, the same kind of universality does not hold for the empirical measure and we
do not expect to have a universal rate function. For instance, the probability that the empirical
measure of the eigenvalues of a Wigner matrix with Rademacher entries is close to a Dirac
mass at 0 is bounded below by .1=2/n2 , the probability that all entries equalC1, whereas the
Gaussian rate function is infinite at any Dirac mass. This nonuniversal behavior persists also
in examples with entries possessing a density, and thus contrasts with the large deviations
for the empirical measure of the zeroes of random polynomials [51].

Open Problems 2.15. • Prove an LDP for the empirical measure of the eigenval-
ues of a Wigner matrix with Rademacher entries, or, more generally, any Wigner
matrix with sub-Gaussian tails (which is not Gaussian).

• Complete the LDP for the extreme eigenvalues of Wigner matrices with sub-
Gaussian entries and understand the localization of the eigenvectors for the ex-
treme eigenvalues conditionally to their large deviations.

Large deviations for traces of moments are also interesting, see [11] for LDPs of
traces of moments ofWigner matrices with sharp sub-Gaussian tails such as Rademachers. It
can also be relevant in combinatorics to consider traces of moments of randommatrices with
Bernoulli entries. If one considers the matrixBn with Bernoulli entries of meanp, Tr..Bn/3/

is the number Tn;p of triangles in the Erdős–Rényi graph. Observe that its expectation is of
order p3n3. In [60], the following theorem was proved:

Theorem 2.16. Let

Ip.f / D sup
h

´Z 1

0

Z 1

0

f .x; y/h.x; y/dxdy �
1

2

Z Z
log
�
pe2h.x;y/

C .1 � p/
�
dxdy

µ
and set '.p; t/ D inf¹Ip.f /;

R
f .x; y/f .y; v/f .v; x/dxdydv � 6tº. Then for each p 2

.0; 1/,
lim

n!1

1

n2
logP .Tn;p � tn3/ D �'.p; t/:

Wigner matrices assume that all entries are taken at random, but it is in many cases
more relevant to consider band matrices, for instance, to reflect the notion of neighbors and
the geometry of the underlying space. Themost commonmodel under consideration is that of
matrices with independent centered entries but with nontrivial variance profile .�i;j /1�i;j �n,
for instance, �ij D 1ji�j j�W W �1 with W going to infinity with the dimension. In this set-
ting, the convergence of the empirical measure [163] and of the largest eigenvalue towards
the boundary of the support (when W goes to infinity fast enough with the dimension) are
also known [1, 4]. But very little is known about large deviations even when the entries are
Gaussian because the law of the eigenvalues is not explicit. There are, however, LDPs proved
for the largest eigenvalue for nice variance profile [126] and a large deviation upper bound
for the empirical measure [105].

Open Problems 2.17. • Obtain LDPs for the empirical measure of Wigner matri-
ces with a variance profile.
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• Obtain the optimal assumptions on the profile to prove an LDP for the law of the
largest eigenvalue.

• Derive a local LDP similar to Theorem 2.8 for matrices with a variance profile.

A more tractable setting for large deviations is a band matrix with finite width W ,
independent of the dimension. Indeed, in this case, we can see that the trace of polynomials in
thematrix is a sum of functions on the entries which only depend on 2W entries of thematrix,
hence making the use of Markov chains’ approach or the so-called 2W dependent large devi-
ations applicable [186]. However, even in this case the rate function is not very explicit and
the analysis of associated Boltzmann distributions quite difficult in general. A remarkable
special case is when W D 1 and the entries are chosen independent centered Gaussian vari-
ables with variance ˇ on the diagonal and independent chi distributed variables with .n � i/

degrees of freedom for i 2 ¹1; : : : ; nº. Indeed, it was then shown [77] that the eigenvalues of
such a matrix follows the Beta-ensemble (1.17) and therefore large deviations can be derived
with an explicit good rate function, see Section 2.1.

3. Matrix models with an external field

In this section we shall start our journey towards noncommutative matrix models
by considering n � n self-adjoint random matrices following the distribution

dP n
V;ƒ;ˇ .Xn/ D

1

Zn
V;ƒ;ˇ

en
ˇ
2 Tr.X

nƒ/�nTr.V.Xn//dXn;

where ƒ is a deterministic self-adjoint matrix. We can integrate either on Hermitian (ˇ D 2)
or symmetric (ˇ D 1) matrices. We could also consider ƒ random and study two random
matrices with AB interaction such as

dP n
V1;V2;ˇ .Xn;Yn/ D

1

Zn
V1;V2;ˇ

ecnTr.XnYn/�nTr.V1.Xn//�nTr.V2.Yn//dXndYn:

The latter includes the Ising model on random graphs as it is intimately connected with
their combinatorics, see (1.19). If one takes, for instance, Vi .x/ D

1
2
x2 C ti x

4 and ˇ D 2,
then the limiting free energy was computed [152], hence providing the first formula for the
enumeration of the Ising model on planar maps (see, e.g., [90] for generalizations). We refer
to [49] for numerous other motivations. Clearly, diagonalizing the matrices Xn and Yn, we
see that the main new ingredient to analyze such probability measures is again a spherical
integral, the famous Harish-Chandra–Itzykson–Zuber integral given by

I ˇ
n .An;Bn/ D

Z
e

ˇ
2 nTr.AnUnBn.Un/�/dUn;

where dUn denotes the Haar measure over the orthogonal (resp. unitary and symplectic)
group when ˇ D 1 (resp. 2 and 4). When ˇ D 2, this integral was shown by Harish-Chandra
[124] and then Itzykson and Zuber [127] to be equal to a determinant

I 2
n .An;Bn/ D cn

detŒenai bj �1�i;j �nQ
i<j .ai � aj /.bi � bj /

; (3.1)

1032 A. Guionnet



where aD .a1;a2; : : : ;an/ and bD .b1;b2; : : : ;bn/ are the eigenvalues ofAn andBn, respec-
tively. This formula allows showing that Schur functions are intimately related to spherical
integrals. Note, however, that Harish-Chandra–Itzykson–Zuber formula does not help to esti-
mate it asymptotically as it expresses the integral as a large signed sum of termswithmodulus
going to infinity. These asymptotics were first studied in [149], and made rigorous in [106,119]

for ˇ D 1; 2, and finally for ˇ D 4 in [107], where the result is also extended to rectangular
spherical integrals, by computing the Laplace transform of the real part of Tr.AUBV / for
rectangular matrices A; B and independent unitary matrices U; V .

Theorem 3.1. Let An;Bn 2 Rn�n (resp. An;Bn 2 Cn�n) be self-adjoint and Un 2 O.n/

(resp. U.n/) following the Haar distribution over orthogonal group (resp. unitary group) for
ˇ D 1 (resp. ˇ D 2). We assume that the empirical measure of the eigenvalues O�n

A and O�n
B

of An and Bn converge weakly to �A and �B , respectively. We, moreover, assume that for
C D A orB , we have supn O�n

C .x2/ < 1 and†.�C / WD
R
ln jx � yjd�C .x/d�C .y/ > �1.

Then, the following limit of spherical integral exists:

lim
n!1

1

n2
log In.An;Bn/ D

ˇ

2
I.�A; �B/:

It is given explicitly by

I.�A; �B/ D � inf
¹�t º0�t�1

´Z 1

0

Z
u2

s �sdxds C
�2

3

Z 1

0

Z
�3

s dxds

µ
C �A.x2/ C �B.x2/ �

�
†.�A/ C †.�B/

�
C c; (3.2)

where c is a constant. The infimum is taken over continuous measure-valued processes
.�t .x/dx/0<t<1 such that

lim
t!0

�t .x/dx D �A; lim
t!1

�t .x/dx D �B : (3.3)

Moreover, u is given as the weak solution of the following conservation of mass equation:

@s�s C @x.�sus/ D 0:

Idea of proof 3.1. The proof follows from the fact that the density of the law of the matrix
Gn C An is given by the spherical integral. As a consequence, it is enough to prove an LDP
for the empirical measure of the eigenvalues of Gn C An to derive the limit of the spherical
integral. On the other hand, we can think ofGn CAn asHn

1 CAn whereHn is a symmetric or
an Hermitian Brownianmotion, that is, aWigner matrix whose Gaussian entries are replaced
by Brownian motions, see Figure 6. The interest of this point of view is that the eigenvalues
of Hn

t C An follow a Dyson Brownian motion: �i
0 D ai and for every t � 0,

d�i
t D

p
2p

ˇn
dW i

t C
1

n

X
j Wj ¤i

1

�i
t � �

j
t

dt; 1 � i � n: (3.4)

The large deviations for the empirical measure-valued process of the .�i
t /1�i�n

would then be standard to derive if the drift was not singular, as (3.4) shows that the eigen-
values of the Hermitian (or symmetric) Brownian motion are simply particles in mean-field
interaction. The whole point is again to show that this singularity does not matter.
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Figure 6

The Dyson Brownian motion between .a1; : : : ; an/ and .b1; : : : ; bn/. Courtesy of D. Coulette

As a consequence, we find again by Laplace’s principle that the two matrix models
with AB interaction converge [106] in the following sense.

Corollary 3.2. Assume that V1 and V2 are polynomials going to C1 at infinity. Then, the
law of the empirical measure of X or Y under P n

V1;V2;ˇ
satisfies an LDP with speed ˇn2. Its

rate function has a unique minimizer towards which the empirical measure converges almost
surely.

Similar statements hold for the matrix model with an external field, provided the
empirical measure of the eigenvalues of ƒ converges.

Open Problems 3.3. • Theorem 3.1 describes the asymptotic of the spherical inte-
gral when Bn has full rank, where Theorem 2.6 deals with the case where it has
rank one. As long as the rank does not go to infinity too fast with n, it can be seen
that spherical integrals factorize [66,109]. It would be interesting to understand the
transition from this factorization phenomenon at low rank and the full rank case.

• Study the corrections to the large n limit of spherical integrals in nonperturbative
situations (see [116] for the perturbative case).

• Study the LDP for Brownianmotions interacting via more singular potentials such
as Riesz’s which corresponds to an interaction of the form

P
h.�i � �j / with h

blowing up at the origin like x=jxjsC2 for some s > 0.

• Study the LDP for the law of the largest particle .�1.t/; t 2 Œ0; 1�/ with general
initial condition, hence generalizing [76].
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4. Multimatrix models

4.1. Setup
We next study the asymptotic of traces of words in several matrices. More precisely,

let .An
1; : : : ;An

d
/ be a family of d self-adjoint matrices of size n � n. Their empirical distri-

bution generalizes the empirical measure of the eigenvalues as follows. We consider the set
of polynomials ChX1; : : : ; Xd i in d noncommutative variables given by the complex linear
span of words in X1; : : : ; Xd and equip it with the involution

.zXi1Xi2 � � � Xik /�
D NzXik � � � Xi1 :

The empirical distribution of An
1; : : : ;An

d
is defined as the linear form on ChX1; : : : ; Xd i

such that, for every P 2 ChX1; : : : ; Xd i,

O�n
A1;:::;Ad

.P / D
1

n
Tr
�
P.An

1; : : : ;An
d /
�
:

We let Md be the set of linear functionals � on the set of polynomials in d noncommutative
variables such that

�.PP �/ � 0; �.1/ D 1; �.PQ/ D �.QP /:

Clearly, O�n
A1;:::;Ad

belongs to Md . We will say that the empirical distribution O�n
A1;:::;Ad

con-
verges weakly as n goes to infinity towards � iff for every P 2 ChX1; : : : ; Xd i,

lim
n!1

O�n
A1;:::;Ad

.P / D �.P /:

If the empirical distribution of An
1; : : : ;An

d
converges weakly towards � , for any self-adjoint

polynomial P , P D P �, the empirical measure of the eigenvalues of the n � n self-adjoint
matrix P.An

1; : : : ;An
d

/ converges towards �P , the probability measure on the real line such
that Z

xkd�P .x/ D �.P k/; 8k 2 N: (4.1)

Also �P is unique as soon as the moments do not grow too fast. Strong convergence requires
additionally that the operator norm of P.An

1; : : : ;An
d

/ converges to the largest point in the
support of �jP j for any polynomial P 2 ChX1; : : : ; Xd i:

lim
n!1

P.An
1; : : : ;An

d /


1
D lim

n!1
lim

k!1
O�n

A1;:::;Ad

�
.PP �/k

� 1
2k D lim

k!1
�
�
.PP �/k

� 1
2k :

We will denote by MR
d
the elements of Md bounded by R (that is, j�.Xi1 � � � Xik /j � Rk for

all choices of indices il 2 ¹1; : : : ; dº).
Another important feature of random matrices is their role in free probability, as a

toy example of matrices whose large dimension limit is free. Free probability is a theory of
noncommutative variables equipped with a notion of freeness. Freeness is a condition on the
joint distribution of noncommutative variables. We say that X1; : : : ; Xd are free under � iff

�
�
P1.Xi1/ � � � P`.Xi`/

�
D 0 (4.2)

as soon as �.Pj .Xij // D 0 for all j and ij ¤ ij C1, 1 � j � ` � 1. The latter property was
introduced by Voiculescu and named freeness, as it is related to the usual notion of free
generators of a group. He also proved the key result [175]:
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Theorem 4.1 ([3, 175]). Let .Xn
1; : : : ; Xn

d
/ be n independent Wigner matrices with entries

with finite moments. Then, for any choice of i1; : : : ; ik 2 ¹1; : : : ; dºk ,

lim
n!1

1

n
Tr.Xn

i1
� � �Xn

ik
/ D �d .Xi1 � � � Xik / a.s.;

where �d is the law of d free semicircular variables. It is uniquely described by the facts
that the moments of a single Xi are given by the Catalan numbers, and their joint moments
satisfy (4.2).

Voiculescu also showed that matricesYj DUjDjU�
j with deterministic matricesDj

and independent Haar distributed orthogonal or unitary matrices are asymptotically free in
the sense that their joint moments satisfy in the large n limit the freeness property (4.2).
Hence, matrices become asymptotically free if the position of their eigenvectors are “suffi-
ciently” independent.

In the groundbreaking article [121], it was shown that independent Gaussianmatrices
are not only asymptotically free, but also strongly asymptotically free in the sense that they
converge strongly to free semicircular variables.

Theorem 4.2. Let .Xn
1; : : : ; Xn

d
/ be n independent GUE matrices, then for any polyno-

mial P ,
lim

n!1

P.Xn
1; : : : ;Xn

d /


1
D lim

k!1
�d
�
.PP �/k

� 1
2k a.s.

This result was generalized to the GOE and GSE [159], to Wigner matrices with
entries satisfying Poincaré inequality [54], to polynomials in GUE matrices and determinis-
tic matrices in [148], to polynomials in deterministic matrices and Haar distributed unitary
matrices in [65]. These results are based on the linearization trick that allows comparing the
spectrum of a polynomial in matrices with the spectrum of a larger matrix obtained by sums
of tensor products of the original matrices. The main drawback of this approach is that the
estimates for this convergence are far from optimal: to remedy this point, an interpolation
trick was introduced [17,64].

4.2. Large deviations and Voiculescu’s entropies
Free entropy was defined by Voiculescu as a generalization of classical entropy to

the noncommutative context. There are several definitions of free entropy; we shall concen-
trate on two of them. The first is the so-called microstates’ entropy that measures a volume
of matrices with empirical distribution approximating a given law. The second, called the
microstates-free entropy, is defined via a noncommutative version of Fisher information.
The classical analog of these definitions is, on the one hand, the definition of the entropy of
a measure � as the volume of points whose empirical distribution approximates �, and, on
the other hand, the well-known entropy �

R
d�
dx

log d�
dx

dx. In this classical setting, Sanov’s
theorem shows that these two entropies are equal. The free analog statement is still open
but we shall give in this section bounds to compare the microstates and the microstates-free
entropies [35,52].
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Definition 4.3. Let R 2 RC and � 2 MR
d
. For " > 0 and k; N 2 N, we define the microstate

as the following subset of the set H d
n of d Hermitian matrices of size n � n:

�n.� I "; k; R/ D
®
An

1; : : : ;An
d 2 H d

n W max
1�i�d

kAi k1 � R;ˇ̌
O�n

A1;:::;Ad
.Xi1 � � � Xip / � �.Xi1 � � � Xip /

ˇ̌
� "

for all ij 2 ¹1; : : : ; dº; all j 2 ¹1; : : : ; pº; p � k
¯

We then define the microstates entropy of � by

�.�/ D lim sup
"!0;L!1

k!1

lim sup
n!1

1

n2
log.P n

2 /˝d
�
�n.� I "; k; L/

�
: (4.3)

Remark 4.4. • The classical analogue is Sanov’s theorem (1.12) which computes
the volume of small balls for the weak topology. Besides noncommutativity, it dif-
fers from the above definition by using bounded continuous test functions, instead
of polynomials, and so do not need the cut-off

T
i ¹kAn

i k1 � Rº.

• It was shown that noncommutative laws with finite entropy have nice properties.
For instance, if P is a self-adjoint noncommutative polynomial, the law �P of
P.a1; : : : ; ad / as defined in (4.1) has no atoms [57].

We denote by @i the noncommutative derivative given on monomials by

@i .Xi1 � � � Xik / D

X
j Wij Di

Xi1 � � � Xij �1
˝ Xij C1

� � � Xik

and Di D m ı @i the cyclic derivative, where m.P ˝ Q/ D QP . Let us now introduce
the microstates-free entropy. Its definition is based on the notion of free Fisher information
which is given, for a tracial state � , by

ˆ�.�/ D 2

dX
iD1

sup
P 2ChX1;:::;Xd i

²
� ˝ �.@i P / �

1

2
�.P 2/

³
:

Then, we define the microstates-free entropy �� by

��.�/ D �
1

2

Z 1

0

ˆ�.�tXC
p

t.1�t/S /dt

with S D .S1; : : : ; Sd / being a d -dimensional free semicircular vector, free from X D

.X1; : : : ; Xd / with law � . An equivalent definition of �� is given by optimizing the entropy
of the distribution of the noncommutative law . O�H1

s ;:::;Hd
s
; s 2 Œ01�/ of independent Hermi-

tian Brownian motions .H1; : : : ;Hd /. We let .�t /t2Œ0;1� be a continuous process with values
in MR

d
. Then we define the dynamical entropy „ W C.Œ0; 1�; MR

d
/!Œ0; 1� to be infinite if

�0 is not the distribution of d operators equal to 0 and to be otherwise given by

„.�:/ D sup
F

´
�1.F1/ � �0.F0/ �

Z 1

0

"
�s.@sFs/ C

1

2

dX
iD1

�s ˝ �s.@i Di Fs/

#
ds

�
1

2

dX
iD1

Z 1

0

�s

�
jDi Fsj

2
�
ds

µ
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where the supremum is taken over smooth noncommutative self-adjoint test functions F .
Such „ is the candidate rate function for the large deviation of s! O�H1

s ;:::;Hd
s
, generalizing to

the noncommutative setting the large deviations of Theorem 3.1. It is easily seen by Riesz’s
theorem that the supremum over F is achieved at K such that

Pd
iD1

R 1

0
�s.jDi Kj2/ds is

finite and such that for every F ,

�1.F1/ � �0.F0/ �

Z 1

0

�s.@sF / �
1

2

Z 1

0

dX
iD1

�s ˝ �s.@i Di Fs/ds

D

dX
iD1

Z 1

0

�s.Di Fs � Di Ks/ds: (4.4)

The entropy is infinite if such a K does not exist. Then taking �0 D ı0, ��.�/ D

inf�1D�¹„.�:/º. We define as well ��� in the same way, but by taking the infimum only
over processes such that the associated field K is smooth (the entropy is �1 if there is no
such process ending near � ). Then [35,52,53] proved that

Theorem 4.5. For every � 2 MR
d
,

���.�/ � �.�/ � ��.�/:

Open Problems 4.6. • Show that the limsup in the definition (4.3) of � can be
replaced by a liminf. The two bounds above still hold if we perform this change.

• Prove that� D �� at least whenever� < 1. In [70,128], it was proven that�.�V / D

��.�V / when �V is the equilibrium measure of matrix models with convex poten-
tials, see Section 4.4.

• Prove that ��� D �� in general. This is already true if � is close to some �1

obtained as the value at time 1 of a process satisfying (4.4) with K smooth.
In particular, �1 can be smoothly constructed from the increments of an Her-
mitian Brownian motions by a smooth differential equation. In a breakthrough
series of papers, it was recently shown that there exist tracial states that cannot
be approximated by a sequence of noncommutative empirical distributions of d

matrices [129]. Hence, the question of estimating noncommutative laws by dif-
ferential equations is far from trivial, in particular because the weak closure of
the set of noncommutative empirical distributions of d matrices is not very well
understood.

• Prove an LDP for the operator norm of polynomials in independent GUEmatrices,
in the line of the topological entropy introduced by Voiculescu [179].

4.3. Free convolution
A long-standing question posed by Weyl was to describe the spectrum of the sum

of two Hermitian matrices. A complete description was conjectured by Horn, and proved by
Knutson and Tao [139]. But what should be the spectrum of the sum of two matrices taken
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at random? This question was tackled [31,32] when the two matrices are asymptotically free.
It was characterized by an analog of the Fourier transform, the so-called R-transform. It is
defined as follows: Let G� be the Stieltjes transform of a probability measure � given for
complex number z by

G�.z/ D

Z
1

z � x
d�.x/:

Then G� is invertible in a neighborhood of infinity, with inverse K� equivalent to 1=z in a
neighborhood of the origin. The R-transform R� is given in a neighborhood of the origin by

R�.z/ D K�.z/ �
1

z
:

It is not hard to see that R� defines uniquely � as it defines uniquely G�.

Theorem 4.7 ([31,32,156]). If the empirical measures O�n
X1

and O�n
X2

of Xn
1 and Xn

2 converge
respectively towards �1 and �2, and X1 and X2 are asymptotically free, then the empirical
measure O�n

X1CX2
of the eigenvalues of Xn

1 C Xn
2 converges weakly in L1 towards the unique

probability measure �1 � �2 defined by

R�1��2
.z/ D R�1.z/ C R�2.z/:

The above result holds in particular for Xn
1 C UnXn

2.Un/� if Xn
1;Xn

2 are two deter-
ministic Hermitian matrices whose spectral measures converge, independent of U which
follows the Haar measure on the unitary or orthogonal group. Theorem 4.7 was shown
then to be a direct consequence of the asymptotics of spherical integrals [111]. But what
can we say about the large deviations of the empirical measure and the largest eigenvalue of
X1 C UnX2.Un/�? The description of the spectrum of the sum of two self-adjoint matrices
is complicated and depicted by Horn’s problem [139]. Understanding which of these pos-
sible spectrum has a finite entropy is a natural question which was attacked in [68, 187] by
noticing that the Fourier transform of the density of the spectrum can be written in terms
of Harish-Chandra–Itzykson–Zuber integrals. Unfortunately, this formula so far has resisted
asymptotic analysis as they require complex matrices and hence oscillatory integrals. We
now, however, have a quite complete series of results on the large deviations for the sum of
two random Hermitian matrices.

Theorem4.8. LetXn
1;Xn

2 be twoHermitianmatrices whose empirical measures of the eigen-
values O�n

X1
and O�n

X2
of Xn

1 and Xn
2 converge respectively towards �1 and �2. Let Un follow

the Haar measure on the orthogonal or unitary group.

• ([112]) Assume that the largest eigenvalues of Xn
1 and Xn

2 stick to the bulk. Then
the largest eigenvalue of Xn

1 C UnXn
2.Un/� satisfies an LDP in the scale ˇn.

• ([22]) The law of N �1
PN

iD1 ı.UnXn
1.Un/�/i i

satisfies an LDP in the scale ˇn2 and
good rate function I D.�/ D sup�¹

1
2

R 1

0
T�.x/T�.x/ � I.�; �1/º where T� is the

inverse of F�.x/ D �..�1; x�/.

• ([22]) The law of O�n
X1CUX2U � satisfies a weak large deviation estimate (1.11) in

the scale ˇn2 and good rate function I X1CX2.�/ D sup�¹I.�; �/ � I.�; �1/ �
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I.�; �2/º at any � so that argmax.I X1CX2.�// ¤ argmax.I X1CX2.�0// for all
�0 ¤ �.

• ([155]) Assume that for j D 1 and 2, the eigenvalues .�
j
i /1�i�n of Xn

j are such
that �j

i D fj . i
n

/with strictly increasing functions fj . Then the law of O�n
X1CUX2U �

satisfies a weak large deviation principle in the scale ˇn2.

It would be interesting to understand how the two last results relate. The first three
results above were obtained by tilting the laws by spherical integrals, and using their limit
I.�; �/ from Theorem 3.1, the last is derived by using large deviations on an interesting object
called random hives, closer to [139].

4.4. Multimatrix models
Recall the definition (1.18) of the multimatrix model, which can be extended to

ˇ D 1:

dP n
V;ˇ .Xn

1; : : : ;Xn
d / D

1

Zn
V;ˇ

e�ˇnTr.V.Xn
1 ;:::;Xn

d
//�

ˇn
4 Tr.

P
.Xn

i /2/dXn
1 � � � dXn

d : (4.5)

Here V is a self-adjoint polynomial that decomposes as V D �
P

ti qi with words (or mono-
mials) qi in d noncommutative letters. We assume either that V is bounded from below
uniformly, or we restrict the integration over

T
i ¹kXn

i k � M º for some M > 2.

Theorem 4.9 ([113, 150]). Let ˇ D 1 or 2. For all g 2 N, there exists "g > 0 such that for
every j"j � "g , every monomial q,Z

O�n
X1;:::;Xd

.q/dP n
"V;ˇ .Xn

1; : : : ;Xn
d /

D

gX
`D0

1

n`

X
k1;:::;kp

Y ."ti /
ki

ki Š
M

ˇ

`

�
.ki ; qi /1�i�p; .1; q/

�
C o

�
1

ng

�
:

Moreover, for every monomial q, O�n
X1;:::;Xd

.q/ converges almost surely towards

�"V .q/ D

X
k1;:::;kp2N

Y ."ti /
ki

ki Š
M 2

0

�
.ki ; qi /1�i�p; .1; q/

�
:

Note that when ˇ D 1, the expansion is in 1=n rather than 1=n2. The first-order
expansion is the same,M 1

0 ..ki ; qi /1�i�p; .1;q// D M 2
0 ..ki ; qi /1�i�p; .1;q//, but the higher

orders differ. M 1
`

..ki ; qi /1�i�p; .1; q// can also be seen to enumerate certain maps, but in
locally orientable surfaces, see, e.g., [104,141].

The proof of this theorem follows by showing that O�n
X1;:::;Xd

.q/ is tight and its
moments satisfy the so-called Dyson–Schwinger equations as a consequence of integration
by parts. Showing the uniqueness of the solutions to the limiting Dyson–Schwinger equa-
tion gives the result for g D 0. A more detailed study of the solution of Dyson–Schwinger
equations allows obtaining the higher-order corrections [114,150].
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Remark 4.10. • Theorem 4.9 was extended to the case where one integrates over
the Haar measure on the unitary or orthogonal groups [63,116] and to SO.n/ lattice
gauge theory [58].

• Distribution �"V extends by linearity to polynomials. It is a priori unclear that �V

is a noncommutative law, in particular that �"V .PP �/ � 0 for all polynomials P .
This is part of the result.

• The noncommutative distribution �"V has finite entropy, and hence the spectral
distribution of polynomials has no atoms by [57]. Much more was proved in [120]:
there exist noncommutative functions given by absolutely converging series such
that �"V is the push-forward of �0 D �d by these functions (and vice versa). This
implies that the C � and von Neumann algebras associated with �"V by the so-
called GNS construction are isomorphic to those of d free semicircular variables.

• The central limit theorem for the empirical distribution can be proven by analyz-
ing the asymptotic of more general moments of the empirical distribution [114],
allowing to derive the next order expansion of the free energy related to maps
with higher genus. The fact that the eigenvalues fluctuate locally like independent
GUE was proven in [92] by constructing approximate transport maps.

It should be expected that the convergence in Theorem 4.9 (which amounts to taking
g D 0) holds for large ", at least till a certain phase transition. In the one-matrix case, this
phase transition is usually related to the point where the support of the equilibrium mea-
sure splits, which is the case, for instance, when the potential has several wells that become
deeper when the parameters vary. This, in particular, does not happen when V is convex.
The same is true for several matrices. Of course, for potentials in several matrices the notion
of convexity itself needs to be clarified, see [70,71,117,128]. The most handy one, in the sense
that it is easier to check, relies on matrices and simply states that, in any dimension n, the
map Xn

1; : : : ;Xn
d

!TrV.Xn
1; : : : ;Xn

d
/ is a convex function of the entries of the self-adjoint

matrices .Xn
1; : : : ;Xn

d
/.

Theorem 4.11 ([70,128]). Assume that the noncommutative function V.X1; : : : ; Xd / C .1 �

ı/ˇ
P

X2
i is convex for some ı > 0. Then the empirical distribution O�n

X1;:::;Xd
converges

P n
V;2-almost surely towards �V . Moreover, ��.�V / D �.�V / is the limit of the classical

entropy of P n
V;2.

This result uses again the dynamics of the Hermitian Brownian motions and the fact
that they converge uniformly to their invariant measures P n

V;2 thanks to convexity. In this case
it is also seen that ��.�V / D ���.�V /. Unfortunately, except for multimatrix models whose
interaction is related to spherical integrals, even the convergence of the matrix models is
unknown in general (such a convergence will result in the possibility of changing the lim sup
by a lim inf in the definition of � which would have important consequences). Recently, [115]
undertook the study of matrix models at “low temperature” in the sense that the constant
� in Theorem 4.9 is now very large. In this case, we can give sufficient conditions on the
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potential V so that the matrices stay bounded in norm with high probability. The limit point
of the empirical distribution then satisfies the Dyson–Schwinger equations. Unfortunately,
the uniqueness of the solutions to these equations is in general not true and convergence is
unclear. We can, however, study more in detail special situations when the case � D 1 is
simple. We detail below a few results that hold under P n

V;ˇ
for T small enough.

• Assume V D
1
T

V0 C W where V0 is uniformly strictly convex. Let .˛i /1�i�d

be the unique minimizer of V0 in Rd . Then, the matrices will concentrate near
.˛i I /1�i�d when n goes to infinity and then T to zero. Moreover, the empiri-
cal distribution O�n

X1;:::;Xd
converges almost surely towards a noncommutative law

which can be obtained as a smooth push-forward of d free semicircular variables.

• Assume V.X1; : : : ; Xd / D
1
T

V1.X1/ C V1.X1/W.X1; : : : ; Xd / with V1 nonneg-
ative and vanishing at .˛i /1�j �m. Then, the spectrum of X1 will asymptotically
belong to a neighborhood of the minimizers of V1. Moreover, the empirical distri-
bution O�X1;:::;Xd

converges almost surely towards a noncommutative law which
can be obtained as a smooth push-forward of free semicircular variables and a
projection.

• If V.X1; X2/ D �
1
T

ŒX1; X2�2 C W1.X1/ C W2.X2/, then the matrices will
asymptotically commute and their respective spectrum will converge towards
the minimizers of W1 and W2 with nontrivial masses.

The last result is interesting because we see that the matrices asymptotically commute but
are not a multiple of the identity in general. Indeed, the case where we have 3 matrices and
the strong interaction presents two commutators ŒX1; X2�2 C ŒX1; X3�2, it is easy to see by
an entropy argument that X1 will be forced to be a multiple of the identity, regardless of
the rest of the potential of order one. It was therefore tempting to think that all such limit
laws would asymptotically commute because they are trivial, which is not the case. This is
only the beginning of the journey towards the understanding of multimatrix models at low
temperature and large dimension.
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monic analysis, PDEs, and number theory. We survey some applications of decoupling
and some of the ideas in the proof.
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1. Introduction

Decoupling is a recent development in Fourier analysis, which has applications in
harmonic analysis, PDEs, and number theory. To put it in context, let us start by recalling
some basic ideas of Fourier analysis. In Fourier analysis, we represent a function as a Fourier
series or Fourier integral. For instance, if f W Rn ! C is a reasonably nice function, then
we can write it as a Fourier integral

f .x/ D

Z n

R

Of .!/e2�i!�xdx: (1.1)

Here ! � x is the dot product of ! and x, which we will also abbreviate as just !x.
Here are a couple reasons that it is useful to represent a function f using a Fourier

series or integral. First, the functions e2�i!x are eigenfunctions for the partial derivative
operators @xj . This makes the Fourier representation interact well with partial derivatives,
and it helps to study PDEs. Second, the functions e2�i!�x are eigenfunctions of the translation
operator Tv defined by Tvf .x/ D f .x C v/. This makes the Fourier representation useful in
problems involving the translation structure of Rn, including problems in additive number
theory.

But there is also a serious downside to representing a function f as a Fourier
series/integral. To evaluate f .x/, we have to compute an integral or a sum with many terms.
It often happens that the terms have various phases in the complex plane, and it is difficult
to tell what happens when we add them all up. In general, given some information about Of ,
it can be difficult to determine what that information it has to say about f . We will see some
longstanding open questions of this flavor below.

Decoupling is helpful for estimating kf kLp in terms of information about Of . Now
kf kL2 is directly related to Of because of orthogonality: Plancherel’s theorem states that

kf kL2 D k Of kL2 : (1.2)

But for other values of p, it is much harder to connect kf kLp with information about Of .
Estimates for kf kLp for p 6D 2 occur often in harmonic analysis, PDEs, and analytic

number theory. You may wonder, if we have a good understanding of kf kL2 , what more do
we learn by understanding kf kLp for other values of p. I like to think of this question in
terms of superlevel sets. Define the superlevel set U�.f / by

U�.f / WD
®
x W

ˇ̌
f .x/

ˇ̌
> �

¯
: (1.3)

We denote the volume of a set U by jU j. If we know kf kLp for every p, we typically
get accurate estimates for jU�.f /j for every �, which gives us basically all the possible
information about how “big” the function f is. But if we only know kf kL2 , we get only
limited information about jU�.f /j.

Other motivations for studying kf kLp come from applications in PDE and analytic
number theory. In nonlinear PDEs, bounds involving kf kLp are important for understanding
how close a solution to a nonlinear PDE is to a solution of a corresponding linear PDE. In
analytic number theory, the number of solutions to certain diophantine systems is equal to
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R
jf jp for a well-chosen function f and exponent p. These are just a couple samples among

many applications for estimating kf kLp .
Decoupling is a new tool for estimating kf kLp in terms of Fourier-analytic infor-

mation about f . It was first formulated by Wolff in [56], where he was able to prove sharp
estimates for large values of p. In [14], Bourgain and Demeter proved sharp decoupling esti-
mates for all p. This breakthrough has led to solutions to problems in harmonic analysis that
had seemed far out of reach a decade ago.

In the next two subsections, we will introduce two main areas where decoupling has
had an impact. We will give examples of hard open problems and also examples of problems
that were solved using decoupling.

1.1. Restriction theory
The Fourier representation of a function f W Rn ! C is

f .x/ D

Z
Rn

Of .!/e2�i!�xd!:

There are two basic estimates connecting the Lp-norms of f and the Lp-norms
of Of :

• (Orthogonality) kf kL2 D k Of kL2 ;

• (Triangle inequality) kf kL1 � k Of kL1 .

Interpolating between these gives the Hausdorff–Young inequality

kf kLp � k Of kLq if 1 � p � 2 and
1

q
D 1 �

1

p
: (1.4)

These are all of the Lp-type estimates for the Fourier transform operator.
If Of is supported in a subset � � Rn, we can write

f .x/ D

Z
�

Of .!/e2�i!�xd!:

Restriction theory studies how the geometry of � relates to properties of f such as kf kLp .
One of the most interesting cases is when Of is supported in a compact submanifold S � Rn.
In this case, the Fourier representation of f has the form

f .x/ D

Z
S

a.!/e2�i!xd�S .!/; (1.5)

where d�S is the surface area measure of S .
Stein proposed studying Lp-estimates of the form

kf kLp.Rn/ � C kakLq.S/ (1.6)

and made the remarkable discovery that the estimates for the operator ES depend on the
geometry of S . If S is a flat disk, then the only estimate of the form (1.6) is the triangle
inequality kf kL1 � kakL1.S/. But if S is a curved surface, then there are more inequalities.
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One central problem in the field is to understand all the Lp-inequalities of form (1.6) when
S is a curved hypersurface, like a paraboloid. Let us write P for the truncated paraboloid

P WD

´
! 2 Rn

j !n D

n�1X
j D1

!2
j and

n�1X
j D1

!2
j � 1

µ
: (1.7)

In this case, the Fourier representation of f is

f .x/ D

Z
P

a.!/e2�i!xd�P .!/: (1.8)

Example 1.1. Suppose a.!/ D 1 on P , and f is given by (1.8).
First note that f .0/ D

R
P

d�P is equal to the area of P , which is � 1. When x is
large, there is a lot of cancellation in the integral (1.8) coming from rapid oscillation of the
function e2�i!x as ! varies over P . This effect can be estimated accurately using stationary
phase, and one finds that ˇ̌

f .x/
ˇ̌

. jxj
� n�1

2 :

This bound is sharp for most x. Therefore kf kLp.Rn/ < 1 if and only if p > 2n
n�1

.

Stein conjectured that the same Lp-bounds hold whenever ja.!/j � 1 for all !.

Conjecture 1.2 (Restriction conjecture [49]). Suppose that f has the form (1.8) and that
ja.!/j � 1 for all ! 2 P . If p > 2n

n�1
, then

kf kLp.Rn/ � C.p; n/:

Notice that the hypothesis that f has the form (1.8) with ja.!/j � 1 for all ! is a
hypothesis about Of . The restriction conjecture asks what this information about Of tells us
about kf kLp . The 2-dimensional case of Conjecture 1.2 was proven by Fefferman in [26].
But for dimension n � 3, the conjecture remains open after intensive work by many people.
In Section 5, we will some reasons the problem is so difficult.

In Conjecture 1.2, we considered the bound ka.!/kL1 � 1. Bounds of the form
kakLq.P / are also interesting for other q. The case q D 2 is the most important, and it was
completely worked out by Strichartz [51] following work by Tomas and Stein. It has turned
out to be important in PDEs. It reads as follows.

Theorem 1.3 (Strichartz inequality [51]). Suppose that f has the form (1.8). If p �
2.nC1/

n�1
,

then
kf kLp.Rn/ � C.n/

a.!/


L2.P /
:

This theorem plays an important role in the study of the Schrödinger equation. Recall
that the linear Schödinger equation for a function u.x; t/ with x 2 Rd and t 2 R is

@t u D i

dX
j D1

@2
xj

u: (1.9)
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If u obeys the linear Schrödinger equation, then Ou is a distribution supported on
the paraboloid, and so the Strichartz estimate can be used to understand kukLp . Theo-
rem 1.3 tells us that for any solution of the linear Schrödinger equation (1.9) with initial data
u.x; 0/ D u0.x/,

kuk
L

2.dC2/
d .Rd �R/

� C ku0kL2.Rd /: (1.10)

This theorem has played a central role in PDEs, especially in nonlinear PDEs. The
L2-norm on the right-hand side is important in PDEs because ku0kL2 D k Ou0kL2 and also
ku0kL2 D ku.y; t/kL2

y
for every t . In nonlinear PDEs, it leads to sharp estimates about when

the solution to a nonlinear PDE is close to the solution of the corresponding linear PDE.
The Strichartz estimate describes a spreading-out effect. To get a sense of it, first

suppose that u0 is a smooth bump concentrated on a ball in spacetime. As t increases, the
function u.x; t/ spreads out and gets smaller. As it does so,

R
Rd ju.x; t/j2dx remains con-

stant, and
R

Rd ju.x; t/jpdx gets smaller for any p > 2. Because of this spreading out effect,R
Rd �R ju.x; t/j

2.dC2/
d dxdt is finite.

The exponent 2.dC2/
d

is the only exponent for which (1.10) holds. To see what is
special about this exponent, it helps me to translate the Strichartz estimate into an estimate
for superlevel sets. LetU�.u/ WD ¹.x; t/ 2 Rd � R W ju.x; t/j > �º. The Strichartz inequality
implies that if ku0kL2.Rd / D 1, thenˇ̌

U�.u/
ˇ̌

� C ��
2.dC2/

d :

This estimate is sharp: for any choice of �, we can find initial data u0 with ku0kL2.Rd / D 1

so that the solution of the Schrödinger equation has jU�.u/j � c��
2.dC2/

d .
It is also worth mentioning that the choice of the paraboloid in this discussion is

just one interesting example. There are similar theorems and conjectures for other surfaces,
such as the sphere and the cone, and these help to study other PDEs, such as the Laplace
eigenfunction equation 4u D �u and the wave equation.

One striking application of decoupling involves Strichartz estimates on flat tori. The
Schrödinger equation makes sense on any Riemannian manifold, and for each manifold we
can ask for the best inequality in the spirit of (1.10). Understanding the Strichartz estimates
on closed manifolds is extremely difficult. It is known that different closed manifolds behave
quite differently from each other—for example, round spheres behave differently from flat
tori. But very few examples are understood. Before decoupling, sharp Strichartz estimates
were only known for S1 and S1 � S1 (by Bourgain in the 1990s [8]) and S3 (by Burq–
Gerard–Tzvetkov [19]). In all these examples, the value of the exponent p is an even integer,
and we will discuss in Section 1.2 why this is important.

The simplest flat torus in the unit cube torus Rd =Zd . A solution to the Schrödinger
equation on the unit cube torus is just a solution u.x; t/ on Rd � R which is Zd -periodic in
the x variable. Any such solution can be written in the form

u.x; t/ D

X
n2Zd

ane2�i.n�xCjnj2t/: (1.11)
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Notice that this Fourier representation is analogous to (1.8), except that the integral in (1.8)
is replaced by a sum. We say that u has “frequency at most N ” if the coefficients an are
supported in the cube QN WD ¹.n1; : : : ; nd / 2 Zd W jnj j � N for all j º.

Example 1.4. Suppose that u is given by (1.11) where an D 1 if n 2 QN and an D 0 oth-
erwise. In other words,

u.x; t/ D

X
n2QN

e2�i.n�xCjnj2t/:

First note that u.0; 0/ D jQN j � N d . We have ju.x; t/j � N d when jxj �
1

10dN

and jt j �
1

10dN 2 , because then each term in the sum is almost 1. As x and t increase, we get
cancellation in the sum coming from oscillations in e2�i.n�xCjnj2t/. So far this behavior is
similar to Example 1.1.

However, in the torus case, ju.x; t/j is also large when .x; t/ lies near to a ratio-
nal point of the form . p1

q
; : : : ;

pd

q
; pt

q
/. Taking account of all these peaks near rational

points, it turns out that U�.u/ \ Œ0; 1�dC1 has volume � N dC2��
2.dC2/

d for all � in the
range N d=2 � � � N d . (This range includes all interesting values of �.)

A natural analogue of the restriction conjecture in the periodic setting would say

Conjecture 1.5. Suppose that u is given by (1.11) and that janj � 1 for all n 2 QN and
an D 0 for n … QN . Then jU�.u/ \ Œ0; 1�dC1j � C.d; "/N dC2C"��

2.dC2/
d for all � in the

range N d=2 � � � N d .

This conjecture used to sound to me just as hard as the restriction conjecture or
maybe harder. The setup is similar. And Example 1.4 in this periodic setting is more intricate
and complex than Example 1.1 in the setting of the original restriction conjecture. However,
Bourgain and Demeter proved this conjecture as a corollary of their sharp Strichartz estimate
on tori. This theorem is one of the first applications of decoupling.

Theorem 1.6 (Bourgain and Demeter [14]). Suppose that u is given by (1.11) and that an is
supported in QN . Then

kuk
L

2.dC2/
d .Œ0;1�dC1/

� C.d; "/N "
kank`2 : (1.12)

Notice that if u0.x/ D u.x; 0/, then kank`2 D ku0kL2.Œ0;1�d /, so this inequality is
very similar to the Strichartz inequality for the Schrödinger equation on Rd recorded in
(1.10).

To finish this section, let us try to roughly indicate why the Strichartz inequality
on the torus is much harder than the Strichartz inequality on Rd . Recall that the Strichartz
inequality encodes a spreading-out effect. First, imagine a solution u.x; t/ on a Euclidean
space, and suppose that the initial data u0 is concentrated in a very small ball. As time
increases, the solution u.x; t/ spreads out. At a small time t0, the solution is spread over a
unit ball. In the Euclidean space, it can continue to spread out in all directions indefinitely.
The proof of Strichartz estimates this effect in a quantitative way.
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Now let uP be the solution on the torus with the same initial data u0. The function
uP is given by periodizing u:

uP .x; t/ D

X
z2Zd

u.x C z; t/: (1.13)

For times up to t0, u.x; t/ is supported on a unit ball in the x variable, and so
uP .x; t/ D u.x; t/. But beyond this time, u.x; t/ is spread over a much bigger ball, and
there are many nonzero terms in the sum (1.13). If we visualize uP .x; t/, the solution starts
to wrap around the torus. Different pieces of the solution, which have traveled around the
torus in different ways, get added up, and we have to prove that there is a lot of cancellation
in that sum.

Before decoupling, Theorem 1.6 was known for d D 1; 2 only because of a connec-
tion with number theory. In the next section, we describe some connections between Fourier
analysis and number theory, and we will flesh this out.

1.2. Analytic number theory
When p is an even integer, Lp-estimates have a special interpretation which con-

nects them with problems in additive number theory.
Suppose that A � Zd is a finite set. We define Es.A/ (the additive s-energy of A)

by

Es.A/ WD #
®
.a1; : : : ; as; b1; : : : ; bs/ 2 A2s

W a1 C � � � C as D b1 C � � � C bs

¯
: (1.14)

For each A, we can also define a function fA.x/ with Fourier series

fA.x/ D

X
a2A

e2�ia�x : (1.15)

The function fA W Rd ! C is Zd -periodic because A � Zd , and so each function
e2�ia�x is Zd -periodic.

Lemma 1.7. For any finite set A � Zd ,Z
Œ0;1�d

ˇ̌
fA.x/

ˇ̌2s
dx D Es.A/:

Proof sketch. We expand the integral on the left-hand side:Z
Œ0;1�d

ˇ̌
fA.x/

ˇ̌2s
dx D

Z
Œ0;1�d

f s
A

Nf s
A dx

D

Z
Œ0;1�d

X
a1;:::;as ;b1;:::;bs2A

e2�i.a1C���Cas�b1�����bs/xdx:

Now ifm 2 Zd , then
R

Œ0;1�d
e2�im�xdx is 1 ifm D 0 and 0 otherwise. And so the only

terms that contribute to the integral above are terms where a1 C � � � C as � b1 � � � � � bs D 0.
So the last integral is Es.A/.
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For instance, if Ak;N WD ¹1k ; 2k ; : : : ; N kº � Z then

Es.Ak;N / D # of solutions to ak
1 C � � � C ak

s D bk
1 C � � � C bk

s ;

with aj ; bj 2 Z, 1 � aj , bj � N : (1.16)

In this case, the relevant function f is

fk;N .x/ D

NX
aD1

e2�iakx ; (1.17)

and Lemma 1.7 tells us that Z 1

0

ˇ̌
fk;N .x/

ˇ̌2s
dx D Es.Ak;N /: (1.18)

Lemma 1.7 tells us that a certain Lp-norm is equal to the number of solutions to a
certain diophantine equation. The lemma is useful in both directions. If we know something
about the number of solutions to the diophantine equation, then we can get information about
the Lp-norm. If we know something about the Lp-norm, then we can get information about
the number of solutions to the diophantine equation.

For instance, consider the diophantine equation a2
1 C a2

2 D b2
1 C b2

2 , with ai ; bi

between 1 and N . First let us estimate the number of solution directly. Rearranging we get
a2

1 � b2
1 D b2

2 � a2
2, and factoring one side we see that

.a1 C b1/.a1 � b1/ D b2
2 � a2

2:

If we fix a2; b2, then the number of .a1; b1/ solving this equation depends on the number
of factors of b2

2 � a2
2. Because of unique factorization, the number of different factors of an

integer M is fairly small, at most C"M " for any " > 0. Using this, we see that the number of
integer solutions to a2

1 C a2
2 D b2

1 C b2
2 with 1 � aj , bj � N is at most C"N 2C". Lemma 1.7

tells us that the number of solutions is equal to
R 1

0
jf2;N .x/j4dx, and so we conclude that

this integral is bounded by C"N 2C".
On the other hand, Weyl used the differencing method to give pointwise estimates

for the function f2;N . These estimates imply that
R 1

0
jf2;N .x/j4dx � C"N 2C" which then

gives an analytic proof that the number of integer solutions to a2
1 C a2

2 D b2
1 C b2

2 with
1 � aj , bj � N is at most C"N 2C".

Hardy and Littlewood made a conjecture that generalizes these estimates from
squares to higher powers.

Conjecture 1.8 (Hardy and Littlewood). For any k � 2, Ek.Ak;N / � C"N kC". Equiva-
lently, Z 1

0

ˇ̌
fk;N .x/

ˇ̌2k
dx � C"N kC":

This conjecture is open for all k � 3. The Fourier series of f3;N is fairly simple
to write down. But it is very difficult to determine good bounds for the Lp-norms of f3;N ,
or for the size of superlevel sets U�.f3;N /. This is a classical and striking example of how
difficult it is to read off information about f .x/ from information about its Fourier series.
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On the other hand, there are cases when we can use Fourier analysis to estimate
an Lp-norm and then use Lemma 1.7 to get a new estimate for the number of solutions to
a diophantine equation. One of the most interesting examples of this kind concerns Vino-
gradov’s mean value theorem, which is a multivariable generalization of the functions we
just considered.

Define

Fk;N .x1; : : : ; xk/ D

NX
aD1

e2�i.ax1Ca2x2C���Cakxk/:

By Lemma 1.7,
R

Œ0;1�k
jFk;N .x/j2sdx is equal to the number of solutions to the

following diophantine system of equations:

a
j
1 C � � � C aj

s D b
j
1 C � � � C bj

s for all 1 � j � k; with ai ; bi 2 Z; 1 � ai ; bi � N:

Vinogradov [52] studied the Lp-norms of Fk;N in the 1930s. He was able to prove
sharp estimates for kFk;N kLp for sufficiently large p. He used these bounds to greatly
improve the estimates for Weyl sums and Waring’s problem in large degree, and also to
improve the bounds on the zero-free region of the Riemann zeta function. Vinogradov’s
argument cleverly exploited both sides of equation (1.7): some parts of the argument directly
count the number of solutions to some diophantine systems in the variables ai ; bi , and other
parts of the argument estimate integrals in the x variable. Some important ideas in the
proof of decoupling are related to Vinogradov’s argument, and we will discuss this more in
Section 4.5.

In the last decade, mathematicians have proven estimates for kFk;N kLp that are
sharp up to factors of C.k; "/N " for every k and p. As a corollary, we get estimates for the
number of solutions to the Vinogradov system that are sharp up to a factor C.k; "/N ".

Theorem 1.9 ([16,58,59]).

kFk;N kLp.Œ0;1�k/ � C.k; "/N "
�
N 1=2

C N
1�

k.kC1/
2p

�
:

The proof in [16] uses decoupling and the proof in [59] uses the method of efficient
congruencing. (Historically, Wooley developed efficient congruencing starting in the 1990s,
cf. [57]. He improved Vinogradov’s estimates and gave sharp estimates for k D 3 in [58]. Then
[16] used decoupling to prove Theorem 1.9 and immediately afterwards, [59] used efficient
congruencing to give a different proof of Theorem 1.9.)

Both [16] and [59] are quite technical. Recently, Guo–Li–Yung–Zorin-Kranich [28]

gave a dramatically simpler proof of Theorem 1.9, combining some of the features of [16]

and [59] with some new clarifying ideas. Their paper is ten pages long and essentially self-
contained.

Lemma 1.7 is a special trick for understanding Lp-norms when p is an even inte-
ger. This even integer trick also plays an important role in the problems we discussed in
Section 1.1. In [26], Fefferman used a version of the even integer trick to prove Conjec-
ture 1.2 in dimension n D 2. The Lp-exponent in Conjecture 1.2 is p D

2n
n�1

, which is an
even integer when n D 2 but not for any n � 3. In the early 1990s, in [8], Bourgain used
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the even integer trick to prove sharp periodic Strichartz estimates when d D 1; 2 (the cases
d D 1;2 in Theorem 1.6). The exponent in the Strichartz estimate is 2.dC2/

d
, which is an even

integer when d D 1; 2, but not for any d > 2. Another important problem in this circle is
Montgomery’s conjecture about the Lp-norms of Dirichlet polynomials. When p is an even
integer, Montgomery gave sharp estimates for the relevant Lp-norms in just a page (cf. [42]).
But giving a sharp estimate for any other value of p is a major open problem. This might
help explain why, even though Theorem 1.6 was already known in dimensions d D 1; 2, it
still seemed far out of reach to prove it for any other d .

Before decoupling, the situation concerning periodic Strichartz estimates in dimen-
sions 1; 2 was rather curious. The periodic Strichartz estimate can be considered as a result
in PDEs, resolving a problem of mathematical physics. But the proof depended on number
theory facts, such as unique factorization. The decoupling proof of Theorem 1.6 is purely
analytic—with no input from number theory. The argument can then recover some of the
number theory that went into the original proof. The relevant number theory estimates are
not that difficult, but proving them by analysis is still interesting. Building on this, Bourgain
and Demeter began to work on Vinogradov’s mean value theorem in [15], eventually leading
to Theorem 1.9 and new results in number theory.

Theorem 1.9 leads to improved bounds for Waring’s problem on the number of
ways to write an integer as a sum of kth powers and the related problem of Weyl sums. Other
applications of decoupling have led to incremental improvements in very classical problems
of analytic number theory such as the Lindelof hypothesis [13] and the Gauss circle prob-
lem and [18]. Guo–Zhang [29] and Guo–Zorin-Kranich [30] have extended Theorem 1.9 to
more complex systems of diophantine equations, introduced in number theory by Arkhipov–
Chubarikov–Karatsuba [1].

1.3. Influence of the proof
Besides the new results, the method of proof of decoupling has had a big influence

on the field. There is a classical toolbox in harmonic analysis with tools like orthogonal-
ity, integration by parts, and Hölder’s inequality. For hard problems in this area, such as the
restriction conjecture, people who have worked a lot on them generally feel that this set of
classical tools is not sufficient to understand the problem. Over the last 25 years, mathemati-
cians have brought into play ideas from other areas in order to attack some of these hard
problems. For instance, Wolff ([54] and [56]) brought in ideas from combinatorial geome-
try and topology, Bourgain [9] brought in ideas from combinatorial number theory, and Dvir
[24] brought in ideas from error-correcting codes and algebraic geometry. In contrast to these
developments, the proof of decoupling is based on the classical toolbox. The most important
idea in the proof is to take advantage of estimates at many different scales. Using many differ-
ent scales is also a classical idea in harmonic analysis. But it is really striking how powerful
it turns out to be in the context of decoupling. I personally was shocked that it is possible
to prove Theorem 1.6 using only these tools. The main goal of the article is to explore how
combining information at many scales helps to prove theorems like Theorems 1.6 and 1.9.
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1.4. Outline of the rest of the article
In Section 2, we will introduce the statement of decoupling. In Section 3, we will

begin to discuss multiscale arguments, and we will see how the statement of decoupling was
carefully crafted to work well in such arguments. In Section 4, we will discuss some ideas
of the proof of decoupling.

In Section 5, we will discuss the connection between the restriction problem and
the Kakeya problem, and try to explain why the restriction problem seems to be so difficult.
Then we will discuss why decoupling turns out to be easier than restriction.

In Section 6, we will survey some other applications of decoupling in harmonic
analysis.

In Section 7, we will discuss some limitations of the method, some frustrating
aspects of the proof, and some open problems.

2. The statement of decoupling

Now that we have seen some applications of decoupling, we turn to the actual state-
ment of decoupling. The statement of decoupling was crafted carefully, and after we state it
we will spend two sections digesting it and discussing some of the choices involved in the
statement.

Suppose that � � Rn and that � is a disjoint union of subsets � , � D t� . If
f W Rn ! C is a function, and Of is supported in �, then we can decompose f D

P
� f�

where f� is defined by
f� D

Z
�

Of .!/e2�i!xd!:

Decoupling has to do with the relationship between Lp-norm of f and the Lp-norms of f�

for the different � in the decomposition � D t� .

Definition 2.1. Suppose that � � Rn and � is a disjoint union of subsets � , � D t� . For
each exponent p, we define the decoupling constantDp.� D t�/ to be the smallest constant
so that for every function f with Of supported in �,

kf k
2
Lp.Rn/ � Dp.� D t�/2

X
�

kf� k
2
Lp.Rn/: (2.1)

If p D 2, then orthogonality gives kf k2
L2 D

P
� kf� k2

L2 , and so D2.� D t�/ D 1

for any decomposition � D t� . Decoupling theorems for higher p are a kind of strengthen-
ing of orthogonality. For p > 2, the value of Dp.� D t�/ depends on the geometry of the
decomposition.

As an example of a decomposition, first let P denote the truncated parabola:

P D
®
.!1; !2/ 2 R2

W !2 D !2
1 ; �1 � !1 � 1

¯
:

Definition 2.2. For a large parameter N , we let � be the N �2-neighborhood of P . For
j D �N; : : : ; N , we define

�j WD � \

²
j

N
�

1

2N
� !1 �

j

N
C

1

2N

³
:
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Each �j is approximately a rectangular box of dimensions N �2 � N �1.
We have � D

FN
j D1 �j , and we abbreviate this whole decomposition as PN .

We can now state our first decoupling theorem.

Theorem 2.3 ([14]). For each " > 0, for each 2 � p � 6, Dp.PN / � C"N ".
In other words, if 2 � p � 6, and if Of is supported in the N �2-neighborhood of P ,

then

kf k
2
Lp.R2/

� C"N "

NX
j D1

kf�j
k

2
Lp.R2/

: (2.2)

This decoupling theorem can be applied to exponential sums, and it implies Theo-
rem 1.6 in the case d D 1 and Theorem 1.9 in the case k D 2. Theorem 1.6 for a
d -dimensional torus follows from a decoupling theorem for the paraboloid in RdC1, and
Theorem 1.9 for higher k follows from a decoupling theorem for the moment curve in Rk .

Let us see how this decoupling theorem leads toLp-estimates for exponential sums.
This will help a little to digest the definition ofDp . Suppose we start with an exponential sum
using frequencies on the truncated parabola. For j D �N; : : : ; N , we define the frequency
!j D . j

N
; j 2

N 2 / 2 P , and we let f be the exponential sum

f .x/ D

NX
j D�N

aj e2�i!j x :

If the aj were chosen randomly, then with high probability, we would have
jf .x/j � .

P
j jaj j2/1=2 for most x. In this random case, we would have kf kLp.BR/ �

.
P

j jaj j2/1=2jBRj1=p . So the best possible bound we could hope for has the form

kf kLp.BR/ �

�X
j

jaj j
2

�1=2

jBRj
1=p:

Decoupling achieves such a bound up to a factor of N " when 2 � p � 6 and R is
large enough. This bound in turn implies Theorem 1.6 for d D 1 and Theorem 1.9 for k D 2.

Here is how to apply decoupling. Note that the frequency !j lies in �j . In fact, if we
write f D

P
j f�j

, then f�j
D aj e2�i!j x . Directly applying Theorem 2.3 does not tell us

anything because kf�j
kLp.R2/ is infinite. But with a little technical work, one can prove that

a similar estimate holds with Lp-norms on large balls instead of Lp-norms on the whole
plane. In particular, if R � N 2, then

kf k
2
Lp.BR/ � 100Dp.PN /2

NX
j D�N

aj e2�i!j x
2

Lp.BR/
:

(The extra factor 100 comes from the technical work of passing from R2 to BR.) If p D 6,
then we can plug in D6.PN / � C"N " and simplify everything to get

kf kL6.BR/ � C"N "

 
NX

j D1

jaj j
2

!1=2

jBRj
1=6:
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This bound matches the random example above up to the factor C"N ", and so in particular
it is tight up to this factor. This estimate is the periodic Strichartz estimate for d D 1 and the
Vinogradov mean value theorem for k D 2.

The definition of the decoupling constant Dp was crafted partly to make this com-
putation work. This explains the squares in Definition 2.1.

3. Induction on scales

The definition of decoupling was crafted by Thomas Wolff in his work on local
smoothing [56]. He noticed that this definition is well suited for combining information from
many scales. The whole field of decoupling leans on this observation. The first example of
combining scales is the following lemma, which essentially appears in [56].

Lemma 3.1. Dp.PN1N2/ � Dp.PN1/Dp.PN2/.

Let us first discuss why this is significant, and then we will sketch the proof. If we
iterate this lemma k times, we get

Dp.PN k
1

/ � Dp.PN1/k : (3.1)

Suppose that we are able to find a single number N1 for which we can prove
Dp.PN1/ � N

1
1000

1 . Then equation (3.1) implies that Dp.PN / � N
1

1000 when N is any
power of N1. This implies the decoupling theorem, Theorem 2.3, with " D

1
1000

. For any
particular N1, the decoupling constant Dp.N1/ can be approximated to a given accuracy by
a finite computation. This is not immediately obvious from the definition, but it is not that
difficult to show. So, in principle, there exists a brute force proof of Theorem 2.3 with p D 6

(the most interesting p) and " D
1

1000
, where the proof is a giant finite computation to check

that D6.PN1/ � N
1

1000
1 for a particular N1 together with Lemma 3.1.

This situation is very different from the periodic Strichartz estimate, Theorem 1.6,
or Vinogradov’s mean value theorem, Theorem 1.9. For instance, suppose we somehow
knew that Theorem 1.6 holds when d D 3 and N D 1010. Recall that Theorem 1.6 is an
Lp-estimate for periodic solutions to the Schrödinger equation with frequencies at most N .
If we somehow knew optimal bounds for periodic solutions with frequency at most 1010,
I do not see how we could use that information to say anything about solutions with much
larger frequencies, like 101000.

By switching our point of view from the original problem of periodic Strichartz
estimates to the decoupling problem, we make it easier to combine information from dif-
ferent scales. The real proof of the decoupling theorem does not involve a giant brute force
computation like we described above. It combines the multiscale idea from Lemma 3.1 with
other ideas from the field, and we will discuss it more in the next section.

Next let us talk about the proof of Lemma 3.1. The proof is very short, and it illus-
trates how the statement of decoupling was crafted to combine information from different
scales.
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The first observation is that decoupling behaves in a nice way under translations and
under linear changes of variable. Suppose that L W Rn ! Rn is a linear change of variables,
or a translation, or a composition of those. If we start with a decomposition� D t� , then we
get a new decomposition L� D tL� . The first observation is that the new decomposition
has the same decoupling constant as the original one:

Dp.L� D tL�/ D Dp.� D t�/: (3.2)

If g has Fourier support in � and g D
P

g� , then we can perform a change of a variables
to get a new function Qg with Fourier support in L� . Since the Fourier transform behaves in
a nice way with respect to linear changes of variables and to translations, it is easy to track
how the decoupling constant behaves and check (3.2).

Now we start the proof sketch of Lemma 3.1. Suppose that Of is supported in �,
the .N1N2/�2-neighborhood of P . This neighborhood is divided into blocks � of length
.N1N2/�1, and we need to prove that

kf k
2
Lp � Dp.PN1/2Dp.PN2/2

X
�

kf� k
2
Lp :

Weprove this bound in two steps. Note that� is contained in theN �2
1 -neighborhood

of P , which we can divide into blocks � of length N �1
1 . By definition of Dp.PN1/, we have

kf k
2
Lp � Dp.PN1/2

X
�

kf� k
2
Lp : (Step 1)

The support of Of� is contained in � \ � , which we can decompose as
� \ � D

F
��� � .

By the definition of Dp ,

kf� k
2
Lp � Dp

�
� \ � D

G
���

�

�2 X
���

kf� k
2
Lp :

Notice that there are N2 different � in each � . In fact, there is a linear change of
variables that takes � \ � to the N �1

2 -neighborhood of P and takes each � to a block of
length N �1

2 . Therefore, Dp.� \ � D
F

��� �/ D Dp.PN2/. Plugging in to the last indented
equation, we get

kf� k
2
Lp � Dp.N2/2

X
���

kf� k
2
Lp : (Step 2)

Now if we combine Steps 1 and 2, we get the desired inequality:

kf k
2
Lp � Dp.PN1/2

X
�

kf� k
2
Lp � Dp.N1/2Dp.N2/2

X
�

kf� k
2
Lp :

4. Ideas of the proof

In this section, we discuss some of the ideas in the proof of the decoupling theorem
for the parabola, Theorem 2.3. By now there are actually several proofs of Theorem 2.3 (cf.
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[14,32,38]). Each proof has some advantages. We will focus on the original proof in [14], but
as we go we will try to highlight certain ideas that appear in all of the proofs.

Recall that P is the truncated parabola in R2. We let � be the N �2-neighborhood
of P , and we decompose � into N pieces � , which are each approximately rectangles of
dimensions N �2 � N �1. Suppose Of is supported on � and decompose f D

P
� f� . To

help illustrate the ideas, we focus on the following corollary of Theorem 2.3.

Corollary 4.1. If f D
P

� f� as in the last paragraph, and kf� kL1.R2/ � 1 for every � ,
then ˇ̌

UN=10.f / \ BN 2

ˇ̌
� C"N 1C":

First, let us give a little context for the numbers that appear in this bound. By the
triangle inequality, jf .x/j �

P
� jf� .x/j � N . So UN=10.f / is the region where jf .x/j is

biggest. The bound in Corollary 4.1 is sharp, as we can see from the following example.

Example 4.2. Let f .x/ be the exponential sum

f .x/ D

NX
nD1

e
2�i. n

N x1C n2

N 2 x2/
:

Each f� is a single term in the sum, and so kf� kL1 D 1.
We can check directly that f .mN; 0/ D N for any integer m because each term

in the sum is 1. Also if x lies in a ball of radius 1=100 around .mN; 0/, then each term in
the sum has real part more than 1=2, and so jf .x/j � N=2. Therefore, UN=10.f / \ BN 2

contains � N balls of measure � 1 and so itself has measure & N .

We will give a rough sketch of the proof of Corollary 4.1. The proof of Corollary 4.1
is simpler than the whole proof of Theorem 2.3, but it shows most of the main ideas.

4.1. Orthogonality
Under the hypotheses of Corollary 4.1, it may well happen that jf� .x/j � 1 for

every x and � . To prove Corollary 4.1, we need to show that for most points x 2 BN 2 , there
is a lot of cancellation in the sum f .x/ D

P
� f� .x/. The most fundamental tool for proving

cancellation in Fourier analysis is orthogonality. Since the sets � are disjoint, the functions
f� are orthogonal, and so Z

R2

jf j
2

D

X
�

Z
R2

jf� j
2:

The functions f� are exactly orthogonal on R2. They are also approximately orthogonal
over any sufficiently large set. Since the distance between any two (nonadjacent) � ’s is at
least 1=N , the functions f� are morally orthogonal on any ball of radius N . The rough
reason for this approximate orthogonality is the following. Suppose !1 2 �1 and !2 2 �2.
We have to check that the functions e2�i!1x and e2�i!2x are approximately orthogonal on a
ball BN .x0/. The inner product of e2�i!1x and e2�i!2x on BN .x0/ isZ

BN .x0/

e2�i!1xe2�i!2xdx D

Z
BN .x0/

e2�i.!1�!2/xdx:
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Since j!1 � !2j � 1=N , the function e2�i.!1�!2/x oscillates significantly onBN .x0/, which
causes some cancellation in that integral. This approximate argument suggests the following
heuristic.

Heuristic 4.3 (Approximate orthogonality). If B is a square box of side length at least N ,
then Z

B

jf j
2dx �

X
�

Z
B

jf� j
2dx:

As written, this heuristic is not quite true, but there are more technical substitutes
for it. It is morally true, and it helps to imagine it in our proof sketch.

By approximate orthogonality,Z
BN 2

jf j
2dx �

X
�

Z
BN 2

jf� j
2dx � CN jBN 2 j D CN 5:

This gives an upper boundˇ̌
UN=10.f / \ BN 2

ˇ̌
� CN 3: (4.1)

To prove Corollary 4.1, we will have to improve the bound N 3 to N 1C".
So far, we have only used that the rectangles � are disjoint (and separated by at least

1=N ). We will have to use more information about the � in order to do better. In fact, if the
rectangles � were laid out along a straight line, then bound (4.1) would be best possible. (We
can see that by considering the exponential sum f .x/ D

PN
nD1 e2�i n

N x1 .) To do better, we
will have to take advantage of the way the rectangles � follow the curve of the parabola. In
the next two subsections we set up some basic tools that will allow us to take advantage of
the curvature of the parabola.

4.2. Multiple scales
We want to study f D

P
� f� . We can divide this sum into pieces in various ways.

If M < N , then we can cover � by M rectangles � of dimensions M �1 � M �2. Imagine
that M divides N so that each � is contained in exactly one � . Then we can write

f� D

X
���

f� and f D

X
�

f� :

In order to get better bounds for f , we will consider the functions f� at many dif-
ferent intermediate scales (many different choices of M ).

The number of � � � is N
M
, and so jf� .x/j �

N
M
. We define N� D

N
M
, which is the

number of � in � .
Since jf .x/j �

P
� jf� .x/j, we see that if jf .x/j � N=10, then jf� .x/j �

N�

20
for at

least M=20 different � . This suggests studying UN� =20.f� / for each � .
We can use orthogonality (Lemma 4.3) to bound jU�.f� /j. By itself, this will not

lead to any new bounds. In addition to that, we will study the shape of U�.f� /. Because of
their shapes, the sets UN� =20.f� / cannot overlap too much. This geometric input will lead to
improvement on the bound for UN=10.f /.
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4.3. Wave packets
Suppose that � � R2 is a rectangle. Suppose that Of� is supported in � . Then f� itself

has a special geometric structure, which is called a wave packet decomposition.
This wave packet decomposition is based on a tiling of R2 which is in some sense

dual to � . First, let �� be the dual rectangle. If � has dimensionsM �1 � M �2, then �� would
have dimensions M � M 2. The axis of �� with length M 2 corresponds to the axis of � with
length M �2. Next, let T� be a tiling of R2 by rectangles congruent to ��.

Heuristic 4.4 (Locally constant heuristic). If Of� is supported on a rectangle � with center!� ,
then for each rectangle T 2 T� ,

f� .x/ � aT e2�i!� x ;

where aT 2 C is a constant. In particular,ˇ̌
f� .x/

ˇ̌
is approximately constant on each rectangle T 2 T� :

According to this heuristic, we can describe f� on all of R2 in the form

f� .x/ �

X
T 2T�

aT e2�i!� x�T : (4.2)

Here �T is the characteristic function of T (or a smoothed out version of it). Each term
on the right-hand side is called a wave packet, and equation (4.2) is called the wave packet
decomposition of f� .

This heuristic is again not quite literally true, but it can be replaced bymore technical
statements that are true. It is morally true.

One origin of wave packet decompositions is particle–wave duality in quantum
mechanics. If Of is supported in the parabola P , then f satisfies the Schrödinger equa-
tion, which describes a quantum mechanical particle moving in a vacuum. (Here we have
f .x1; x2/, and we think of x2 as the time variable t .) Quantum mechanical particles can
behave almost like classical particles for significant time periods. A classical particle in a
vacuummoves with constant velocity, tracing out a straight line in space time. A single wave
packet describes a quantum mechanical particle behaving almost classically.

Let us try to give some idea why the locally constant heuristic makes sense. The
Fourier transformation behaves in a nice way with respect to linear changes of variables and
translations. Because of this, it actually suffices to understand the wave packet decomposi-
tion when � is the square Œ�1; 1�2. Also the wave packet decomposition makes sense in any
dimension, and the proofs are basically the same. For simplicity, let us consider dimension 1.
Now we have a function f W R ! C with Of supported in Œ�1; 1�. The wave packet decom-
position, equation (4.2), says that f .x/ is roughly constant on each unit interval. This vague
statement is closely related to the the Whittaker–Shannon–Nyquist interpolation theorem,
which says that if Of is supported in Œ�1; 1�, then the whole function f .x/ can be recovered
from the values f .n=2/, with n 2 Z. Informally, this suggests that “nothing significant is
happening on length scales smaller than 1/2.” Here is another way to think about it. Since Of
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is supported in Œ�1; 1�,

f .x/ D

Z 1

�1

Of .!/e2�i!xdx:

For j!j � 1, each function e2�i!x varies slowly, and looks roughly constant on any scale
significantly smaller than 1. The function f itself is a linear combination of these slowly
varying functions, and so we may hope that f also looks roughly constant at scales smaller
than 1.

4.4. Transversality
Weare now ready to return to the proof sketch of Corollary 4.1. By bringing into play

the wave packet structure of f� , we will see how to improve on the bound from Section 4.1,
which only used orthogonality. At this point, the curvature of the parabola will come into
play.

Recall that each � is an N �2 � N �1 rectangle in the N �2-neighborhood of the
truncated parabola P . By the hypotheses of Corollary 4.1, we know that kf� kL1.R2/ � 1.
We want to bound UN=10.f / \ BN 2 .

As in Section 4.2, set M D N 1=2, and cover the parabola with M rectangles � of
dimensions M �1 � M �2. Set N� D N=M D N 1=2, and let us try to understand UN� =20.f� /

for each � . We know that jf� j is locally constant on translates of ��, which have dimen-
sions M � M 2 D N 1=2 � N . We can also use orthogonality to estimate

R
BN

jf� j2dx for
each ball BN of radius N . Putting together this information, we conclude that for each BN ,
UN� =10.f� / \ BN is contained in . 1 translates of ��. In other words, on each BN , each f�

has only around 1 wave packet of amplitude � N� .
Now we are ready to take advantage of the curvature of the parabola. Because of

the curvature of P , the rectangles � are oriented in different directions, and so the dual rect-
angles �� point in different directions. On each BN , UN� =10.f� / is essentially one translate
of ��. Because all these rectangles point in different directions, they do not overlap very
much. The set UN=10.f / should lie in UN� =20.f� / for most � , and so UN=10.f / \ BN has
to lie in a constant number of balls of radius N 1=2. This geometric observation allows us to
improve the bound for UN=10.f / beyond what we got from orthogonality alone.

The most effective way to study UN=10.f / on each of these balls of radius N 1=2 is
to repeat the same method, using larger � ’s with M D N 1=4. Continuing in this way through
many scales, we eventually see thatUN=10.f / \ BN has to lie in at mostN " balls of radius 1.
This gives an upper bound ˇ̌

UN=10.f / \ BN 2

ˇ̌
� C"N 2C": (4.3)

We will call the argument in this section the orthogonality/transversality method,
because those are the two main tools that go into it. This argument is essentially due to
Bennett–Carbery–Tao [3]. We will discuss their work more in Section 5.1 below. The orthog-
onality/transversality method improves on just orthogonality, but to prove Corollary 4.1, we
will have to improve the bound N 2C" to N 1C".
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4.5. Induction on scales and transversality together
To get the sharp bound in Corollary 4.1, Bourgain and Demeter combined the ideas

from the last subsection with induction on scales (as in Section 3). As in the last subsection,
we set M D N 1=2 and cover the parabola with M rectangles � of dimensions M �1 � M �2.
In the orthogonality/transversality argument, we had to understand UN� =20.f� /, and we con-
trolled it with the following observation:

(1) Local orthogonality gives an upper bound on jUN� =20.f� / \ BN j for each
box BN of side length N .

We can also bring into play induction on scales. After a change of variables, estimating
jUN� .f� /j is equivalent to our original problem, Corollary 4.1, but with N 1=2 rectangular
tiles instead of N tiles. So we can also use induction on scales to bound jUN� .f� /j.

(2) Induction on scales gives an upper bound on jUN� .f� / \ BN 2 j.

The proof of decoupling in [14] uses (1) and (2) together. Combining them leads to
the sharp bound in Corollary 4.1

When I was first reading the proof of decoupling, I was surprised and even troubled
that combining induction on scales with orthogonality/transversality is so powerful. The
orthogonality/transversality method gives an interesting but suboptimal bound. Induction
on scales by itself does not give any bound. Why do these ingredients become so much
stronger when we mix them together?

Initially, the argument even felt fishy to me. Let us look back at points (1) and (2)
above. Why should we combine them? If (2) is stronger than (1), then why not just use (2)?
If (1) is stronger than (2), then why not just use (1)? I gradually realized that (1) and (2) give
different types of information about UN� =20.f� /. Neither one is stronger than the other. They
are different and give complementary information.

Induction on scales gives information about the total measure ofUN� =20.f� / inBN 2 .
Local orthogonality also implies a bound on the total measure of UN� =20.f� / in BN 2 . The
bound on the total measure coming from induction is stronger than the bound coming from
orthogonality. But (1) is a local bound: it bounds jUN� =20.f� / \ BN j for each box of side N .
For a small box BN of side length N , the bound on jUN� =20.f� / \ BN j coming from (1) is
stronger than the bound coming from (2). Induction on scales controls the total measure of
UN� =20.f� /, and local orthogonality forces UN� =20.f� / to be rather spread out.

To summarize, the bound (2) from induction gives the best information about the
measure ofUN� =20.f� /. But the bound (1) from local orthogonality gives us additional infor-
mation about the shape of UN� =20.f� /: in particular, for any box BN of side length N ,
UN� =20.f� / \ BN consists of at most a constant number of N 1=2 � N rectangles.

Now we have digested the information that (1) and (2) give us about f� , for each � .
The reader may wonder why information about the shape of UN� =20.f� / helps bound the
measure of UN=10.f /. The point is that it is difficult for different functions f�1 and f�2 to
be large in the same place. Notice that if jf .x/j D j

P
� f� .x/j is large, then we must have

1072 L. Guth



jf� .x/j large for many different � at the same point x. If we knew (2) but not (1), it would
be possible for UN� =20.f�1/ and UN� =20.f�2/ to be equal to each other. But if we use (1)
and (2) together, then we get a much stronger estimate for the measure of the intersection
UN� =20.f�1/ \ UN� =20.f�2/.

Here is another way to think about the leverage we get by adding induction on scales
to the transversality/orthogonality argument from Section 4.4. Recall that we covered our
original tiles � with M rectangles � with dimensions M �1 � M �2, and we considered f� .
In the argument from Section 4.4, we started by picking M D N 1=2. Continuing through the
argument, we then used M D N 1=4, then M D N 1=8, and so on. At each of these scales,
we used the wave packet structure of the f� and we took advantage of transversality between
the wave packets of the different f� ’s.

When we add in induction on scales, we are implicitly considering many different
scales. We started as before by using the scale M D N 1=2. When we apply induction to
a given f� , and we unwind the induction, then we are really applying the same argument
to f� . When we apply the argument to f� , it gets decomposed as f� D

P
 f , where each 

containsN 1=4 of the � in � . The total number of  covering all the different � ’s isM D N 3=4,
a scale that we never used in Section 4.4. If we fully unwind the inductive argument, it brings
into play wave packets at every scale. And it takes advantage of transversality between wave
packets at every scale. In some sense, the extra power comes from using transversality at
every scale instead of just the special scales M D N 1=2; N 1=4; N 1=8; : : : , which were used
in Section 4.4.

4.6. Final comments
As we mentioned earlier, there are a number of different proofs of decoupling. In

[38], Zane Li gave a new proof of Theorem 2.3 based on Wooley’s method of efficient con-
gruencing (cf. [57–59]). In [32], Maldague, Wang, and I gave a new proof of Theorem 2.3
based on ideas from projection theory in geometric measure theory such as Orponen’s work
[43]. One common feature of all these proofs is to bring into play f� with � at every scale,
and to take advantage of some type of transversality at every scale.

Vinogradov’s work on the mean value conjecture [52] already has this key feature:
it uses f� for � of every scale (after unwinding the induction) and takes advantage of some
type of transversality at every scale. Vinogradov’s work [52] is the first work I am aware of
to take advantage of many scales of � in estimating an exponential sum. Within harmonic
analysis, Wolff’s work on local smoothing [56] used this key feature. Bourgain’s work on the
restriction problem [6] took advantage of the transversality of wave packets of f� for a single
scale of � . Wolff’s work [56] introduced a version of induction on scales which allowed him
to take advantage of transversality of wave packets at every scale. Using this method, he
proved a decoupling theorem (for the cone) for large exponents p.

The papers [52] and [56] prove estimates for jU�.f /j, which are sharp when � takes
the largest possible value, but not sharp for smaller �. For instance, the methods of [52] or
[56] could prove Corollary 4.1. The advantage of Theorem 2.3 is to give sharp estimates for
jU�.f /j for every �. For simplicity, we illustrated the method with � D N=10, the largest
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possible value. The same general method works for every value of �, although there are some
extra wrinkles in the argument.

5. The Kakeya conjecture

In this section, we discuss why the restriction conjecture, Conjecture 1.2, remains
out of reach in dimension n � 3. As we saw in the last section, Fourier-analytic estimates
in restriction theory are related to understanding how much rectangles pointing in different
directions can overlap each other. The Kakeya conjecture is a precise question about how
much rectangles pointing in different directions can overlap each other. (Actually, there are
several related conjectures.)

Let us formulate the Kakeya conjecture in a way that connects with our discussion
of wave packets. Recall that P � Rn denotes the truncated paraboloid:

P D

´
! 2 Rn

W !n D

n�1X
j D1

!2
j and 0 � !n � 1

µ
:

Cover P with N n�1 rectangular boxes � of dimensions 1
N

� � � � �
1
N

�
1

N 2 . For
each � , let �� denote the dual box with dimensions N � � � � � N � N 2. The long direction
of �� is equal to the short direction of � . For each � , let T� denote a translate of ��.

The tubes T� are related to wave packets that occur in the restriction problem. In the
restriction problem, we consider a function f of the form

f .x/ D

Z
P

a.!/e2�i!xd�P .!/: (5.1)

The restriction problem asks to estimate kf kLp.Rn/ assuming that ja.!/j � 1 for every !.
We can decompose f as f D

P
� f� where

f� .x/ D

Z
P \�

a.!/e2�i!xd�P .!/: (5.2)

Heuristically, each function f� is organized into wave packets, and in particular
jf� j is locally constant on translates of ��. So the tubes T� correspond to wave packets of f .
Understanding how much the wave packets overlap helps estimate kf kLp .

Now we are ready to formulate one version of the Kakeya conjecture.

Conjecture 5.1 (Kakeya conjecture for volume). Suppose n � 2. For each � in the covering
of P � Rn, let T� be a translate of ��. Then for each " > 0,ˇ̌̌̌[

�

T�

ˇ̌̌̌
� C.n; "/N �"

X
�

jT� j:

An argument of Fefferman [25] shows that the restriction conjecture implies the
Kakeya conjecture. If a set of tubes ¹T� º is a counterexample to the Kakeya conjecture, we
could build a counterexample to the restriction conjecture by choosing f� to concentrate on
a single wave packet supported on T� .
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Around 1920, Besicovitch constructed a remarkable example in 2 dimensions where
j
S

� T� j �
1

logN

P
� jT� j. Fefferman used this construction in [25] to give a counterexample

to a cousin of the restriction conjecture called the ball multiplier problem.
When n D 2, Besicovitch’s construction turns out to be tight: Davies proved that

j
S

� T� j �
c

logN

P
� jT� j. If n � 3, Besicovitch’s construction still works, but we do not

know good bounds in the other direction. For example, if n D 3, then Davies’s method gives
only ˇ̌̌̌[

�

T�

ˇ̌̌̌
�

c

N

X
�

jT� j:

Bourgain [6] improved the c
N
to c

N 2=3 and Wolff [53] improved it further to c

N 1=2 . At
this point, it becomes very difficult to go further. The best current bound isˇ̌̌̌[

�

T�

ˇ̌̌̌
�

c

N 1=2�"0

X
�

jT� j;

where "0 is a small positive constant. The proofs do not make "0 explicit, but the best value
given by current techniques is probably around 1=1000. This estimate was proven under an
extra assumption byKatz–Laba–Tao [35] and then proven in full generality byKatz–Zahl [36].
The arguments of [6] and [53] are fairly short, about five pages each, but the arguments of
[35] and [36] are much more complex, about 50 pages each.

The reason that it is very difficult to improve on c

N 1=2 has to do with an “almost
counterexample” which takes place in C3. This almost counterexample was first described
in [35]. Consider the set

H D
®
.z1; z2; z3/ 2 C3

W jz1j
2

C jz2j
2

� jz3j
2

D 1
¯
:

This set is a 5-dimensional real manifold in C3. Its key feature is that it contains many com-
plex lines. Each point of H lies in infinitely many complex lines contained in H . Using
this set H as a guide, [35] constructed a set of “complex tubes” Tj with “dimensions”
N � N � N 2, where j

S
j Tj j D

c

N 1=2

P
j jTj j. These tubes overlap each other in a very

intricate way. They are complex tubes instead of real tubes, and they do not actually all
point in different directions, but Wolff’s argument from [53] does apply to them. To beat the
Kakeya estimate from [53], one has to introduce into the argument some tool that rules out
this “almost counterexample.” The papers [35] and [36] succeed in doing this, but the tools are
much more complex and the quantitative bounds are rather weak. It would be major progress
in the field to give a good quantitative improvement to the Kakeya bound in [53], let alone
proving the Kakeya conjecture in full.

There is also a stronger version of the Kakeya conjecture which involves Lp-norms.
This version is important for the coming subsection.

Conjecture 5.2 (Kakeya conjecture for Lp-norms). Suppose n � 2. For each � in the cov-
ering of P � Rn, let T� be the characteristic function of translate of ��, and let T�;0 be the
characteristic function of �� itself. The difference is that �� is centered at 0, but T� could
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have any center. Then for any " > 0 and any p,X
�

T�


Lp.Rn/

� C.n; "/N "

X
�

T�;0


Lp.Rn/

:

To digest this formula, notice that
P

� T� .x/ is the number of tubes through x. The
pth power of the left-hand side is

R n

R j
P

� T� .x/jpdx. This is large if many points x lie
in many tubes from our set of tubes. So the Lp Kakeya conjecture says that not too many
points x can lie in many different tubes.

The restriction conjecture implies this stronger version of the Kakeya conjecture,
which in turn implies the Kakeya conjecture for volumes, Conjecture 5.1.

Bourgain and Demeter proved a sharp decoupling theorem for the paraboloid
P � Rn for all n, which they used to give a sharp Strichartz estimate for tori in all dimen-
sions, Theorem 1.6. One reason this result came as a big surprise has to do with the Kakeya
conjecture. The proof of decoupling for the paraboloid involves estimating how much tubes
pointing in different directions overlap. When n D 2, we know a great deal about how rect-
angles in different directions overlap, including the Kakeya conjecture for n D 2. But when
n � 3, we do not know the Kakeya conjecture. Although there was no formal connection
between Kakeya and decoupling for the paraboloid, the Kakeya conjecture still made a sharp
decoupling theorem in high dimensions seem out of reach, especially for an approach which
is heavily based on estimating the overlaps of tubes pointing in different directions.

5.1. Multilinear Kakeya
The Kakeya-type input into the proof of decoupling is called multilinear Kakeya. It

was formulated and proven by Bennett–Carbery–Tao [3]. Multilinear Kakeya is a cousin of
Kakeya. The setup is a little different, and we will explain it below, but it still gets at the idea
that tubes pointing in different directions cannot overlap too much. Remarkably, Bennett–
Carbery–Tao proved sharp multilinear Kakeya estimates in all dimensions. Their proof was
simplified in [31] down to a few pages.

The multilinear Kakeya estimate in Rn is an Lp-type estimate. Suppose that
j̀;a � Rn is a line that makes a small angle with the xj axis (an angle at most 1

100n
will do).

Let Tj;a be the characteristic function of the unit neighborhood of j̀;a—the characteristic
function of a tube. Let BR � Rn denote a cube of side length R.

Theorem 5.3 (Multilinear Kakeya [3]).Z
BR

nY
j D1

 AjX
aD1

Tj;a.x/

! 1
n�1

dx � C.n; "/R"

nY
j D1

A
1

n�1

j :

Let us take a moment to digest this estimate. For a fixed j , think of the tubes
¹Tj;aº

Aj

aD1 as tubes “in direction j .” Now
PAj

aD1 Tj;a.x/ is the number of tubes in direc-
tion j going through x. The integrand is

Qn
j D1.

PAj

aD1 Tj;a.x//
1

n�1 , which is big if x lies in
many tubes from each direction. So the integral on the left-hand side measures how many
points x lie in many tubes from each direction. The multilinear Kakeya inequality says that
there cannot be too many points which lie in many tubes from each direction.
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The exponent 1
n�1

makes the inequality sharp in two natural examples: the example
when all the tubes go through the origin and an example when the tubes are arranged in
a rectangular grid. The exponent 1

n�1
is the most important, and this bound implies sharp

estimates with any other exponent.
It makes sense to compare Theorem 5.3 with the Lp Kakeya conjecture, Conjec-

ture 5.2. The main difference between them is that in the multilinear Kakeya theorem, the
integrand is a product of n factors, and we assume that the n factors are transverse to each
other in a strong sense. The word “multilinear” refers to this product structure.

Theorem 5.3 is also proven by induction on scales. In the case that the tubes Tj;a

are exactly parallel to the xj axis (for all j and a), Theorem 5.3 reduces to the Loomis–
Whitney inequality [39], which we will recall a moment. The general case of multilinear
Kakeya is proven by applying Loomis–Whitney at many scales (cf. [31]). The multilinear
Kakeya inequality grew out of work by Bennett–Carbery–Wright on nonlinear versions of
the Loomis–Whitney inequality [4].

For completeness let us recall the statement of the Loomis–Whitney inequality. One
version is an inequality for integrals that looks reminiscent of Hölder’s inequality. Suppose
that �j W Rn ! Rn�1 are projections onto the coordinate hyperplanes. Then the Loomis–
Whitney inequality saysZ

Rn

nY
j D1

fj

�
�j .x/

� 1
n�1 dx �

nY
j D1

kfj k
1

n�1

L1.Rn�1/
:

There is a geometric corollary of this inequality which may feel more intuitive.
Suppose that U � Rn is an open set, and that the projection of U onto every coordinate
hyperplane has .n � 1/-volume at most A. Then U has n-volume at most A

n
n�1 . The case

n D 2 is straightforward, but the case n D 3 is quite subtle. It is one of my favorite problems
to think through with students studying analysis.

When multilinear Kakeya was first proven, it seemed natural and remarkable, but
it was not clear just how much impact it would have in restriction theory. In [3], Bennett,
Carbery, and Tao [3] formulated and proved an interesting multilinear restriction conjecture.
They proved multilinear restriction by using multilinear Kakeya at many scales. But it was
not clear whether these multilinear estimates would lead to bounds on problems that were
not multilinear, such as the original restriction conjecture.

The paper [17] used these multilinear estimates to prove new partial results about
the restriction problem. It introduced a technique called the broad/narrow method which can
sometimes reduce linear estimates to multilinear estimates.

Remarkably, sharp decoupling theorems follow from multilinear Kakeya, even
though there is nothing obviously multilinear about the statement of decoupling. This was
one of the big surprises in the development of the field. The original Kakeya problem is
much harder than multilinear Kakeya. The original restriction problem is much harder than
multilinear restriction. There is also a multilinear version of decoupling. A key fact that
makes decoupling accessible is that the original decoupling problem is EQUIVALENT to
multilinear decoupling. This equivalence was noticed implicitly by Bourgain in [10], and
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explicitly by Bourgain and Demeter in [14]. Because of this connection between decoupling
and multilinear decoupling, we can prove sharp estimates for the original decoupling prob-
lem using multilinear Kakeya, even though we do not know sharp estimates for the original
Kakeya problem.

The connection between decoupling and multilinear decoupling is another impor-
tant application of induction on scales. It is based on the broad/narrow method. Because of
considerations of space, we do not give a detailed description here.

When multilinear Kakeya first appeared, it seemed like it might not have very many
applications in harmonic analysis compared with the original Kakeya conjecture. But now
the situation has reversed: multilinear Kakeya currently has more applications in harmonic
analysis than the original Kakeya conjecture would have even if we knew it.

6. Applications of decoupling in harmonic analysis

Decoupling theory has led to the solutions of several longstanding problems in har-
monic analysis. We give three examples here. Each of these problems seemed out of reach a
decade ago.

6.1. The helical maximal function
Hardy and Littlewood introduced their maximal function in the early 20th century.

The Hardy–Littlewood maximal function is based on averages over balls. If f W Rn ! R,
then the average value of f on the ball of radius r around x can be written as

1

jBr j

Z
Br

f .x C y/dy:

The Hardy–Littlewood maximal function is defined by taking the supremum over r ,

Mf .x/ D sup
r

1

jBr j

Z
Br

ˇ̌
f .x C y/

ˇ̌
dy:

Hardy and Littlewood proved that kMf kLp � C.p;n/kf kLp for all p > 1 but not for p D 1.
In the 1960s, Stein introduced a spherical maximal function [48]. Suppose

f W Rn ! R. The average value of f on the sphere of radius r around x can be written
as

1

jSn�1j

Z
Sn�1

f .x C r�/d�:

The spherical maximal function is defined by taking the supremum over r ,

MS f .x/ WD sup
r>0

1

jSn�1j

Z
Sn�1

ˇ̌
f .x C r�/

ˇ̌
d�: (6.1)

For n � 3, Stein proved that in Rn, kMS f kLp � C.n; p/kf kLp for all p > n
n�1

, but not
for p �

n
n�1

. He conjectured that the same was true for n D 2. The case n D 2 was proven
by Bourgain in [5].

Stein’s result was striking for the following reason. A function f 2 Lp need only
be defined almost everywhere. It may be undefined or infinite on a lower-dimensional sub-
manifold like a sphere. So for a particular x and r , the integral on the right-hand side of
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(6.1) may be infinite or undefined. Nevertheless, if f 2 Lp for p > n
n�1

, Stein showed that
the spherical maximal function is actually defined for almost every x. The curvature of the
sphere is crucial in this estimate. The spherical maximal function and the restriction conjec-
ture were two fundamental connections between curvature and harmonic analysis that Stein
investigated.

The spherical maximal function can be generalized by replacing the sphere by
other curved submanifolds. Many of the corresponding problems are still open. After the
sphere and circle, the next most fundamental case to look at is the case of the moment
curve in Rn. Here is the definition. Consider the moment curve parametrized by .t/ D

.t; t2; t3; : : : ; tn/. We can build an averaging operator based on the moment curve as fol-
lows. Suppose f W Rn ! R and define

Af .x/ D

Z 1

0

f
�
x C .t/

�
dt:

Geometrically,Af .x/ is the average value of f on the translate of the moment curve starting
at x. Next we can consider different scalings of the moment curve. Define

Arf .x/ D

Z 1

0

f
�
x C r.t/

�
dt:

Geometrically, Arf .x/ is the average value of f on a moment curve which has been scaled
by a factor of r and then translated to start at x. Finally, we can define the helical maximal
function by taking the maximum of these averages over different choices of r ,

Mhelf .x/ WD sup
r>0

Arf .x/:

In analogy with the work of Stein and Bourgain on the circular maximal function, it
is natural to ask when kMhelf kLp.Rn/ . kf kLp.Rn/. In [45], Pramanik and Seeger connected
this problem (when n D 3) to the decoupling problem for the cone, whichWolff had recently
introduced in [56]. In [14], Bourgain and Demeter gave sharp estimates for the decoupling for
the cone, but that by itself is not enough to give sharp estimates for the helical maximal
function. Recently, Ko–Lee–Oh [37] and Beltran–Guo–Hickman–Seeger [2] independently
proved the sharp Lp-estimate for the helical maximal function when n D 3.

Theorem 6.1 ([37] and [2]). For p > 3 kMhelf kLp.R3/ � C.p/kf kLp.R3/.
If p � 3, this estimate does not hold.

The case of higher dimensions remains open, although both groups have proven
interesting estimates on helical averages in other dimensions as well.

6.2. Pointwise convergence for the Schrödinger equation
Consider the initial value problem for the linear Schrödinger equation in Rd � R,

@t u.x; t/ D i4u.x; t/; u.x; 0/ D u0.x/:

We can write down the solution u with the help of the Fourier transform. If the initial data
u0 is rough, then the solution u.x; t/ will be rough also. In this situation, u.x; t/ will solve
the differential equation in a distributional sense, even if u.x; t/ is discontinuous.
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Carleson [20] raised the following problem.

Question 6.2. What is the smallest s so that whenever u0 2 H s.Rd / and u.x; t/ is a dis-
tributional solution to the Schrödinger equation on Rd � R with initial data u0.x/, then
limt!0 u.x; t/ D u0.x/ for almost every x 2 Rd ?

This question helps describe how regular distributional solutions to the Schrodinger
equation are. This question is actually a cousin of the restriction problem and the Strichartz
estimate, although we will have to rewrite it a little bit to see how they are connected.

Because u solves the Schrödinger equation, the spacetime Fourier transform Ou is
supported on the infinite paraboloid. One has to prove some estimates about how badly
u.x; t/ oscillates for small t . After some standard arguments (scaling and Littlewood–Paley),
one can reduce these estimates to the case that Ou is supported on the truncated paraboloid P

and normalize so that ku0kL2.Rd / D 1. Now consider U�.u/ � Rd � R. The Strichartz esti-
mates give sharp bounds for jU�.u/j in terms of �. A small variation gives sharp estimates
for jU�.u/ \ Œ0; R�dC1j in terms of � and R. Now let …Rd .x; t/ D x be the projection from
spacetime to space. Carleson’s pointwise convergence problem is related to the following
question about the size of …Rd .U�.u//:

Question 6.3. Suppose that Ou is supported on the truncated paraboloid P . Let
u0.x/ D u.x; 0/, and suppose that ku0kL2.Rd / D 1. For any given �, R, estimate the maxi-
mum possible size of j…Rd .U�u \ Œ0; R�dC1/j.

The key difference between this problem and the Strichartz inequality is we have to
estimate the d -volume of the projection of U�.u/ instead of the .d C 1/-volume of U�.u/

itself. This general problem is still open. However, we do understand a special case, which
is sufficient to resolve the pointwise convergence problem. Here is the special case:

Question 6.4. Suppose that Ou is supported on the truncated paraboloid P . Let
u0.x/ D u.x;0/, and suppose that ku0kL2.Rd / D 1. Suppose that j…Rd .U�u \ Œ0;R�dC1/j �

cRd . How big can � be?

As a first example, suppose that u0 is a smooth bump function approximating a
constant function on Œ0; R�d . Because ku0kL2 D 1, we have ju0.x/j � R�d=2 on most of
Œ0; R�d . In this case, u.x; t/ is roughly constant on Œ0; R�dC1, and so � is also � R�d=2.

This first example is not the worst case. In case d D 1, the worst case example was
found by Dahlberg–Kenig [21]. It is given when u.x; t/ is a single wave packet, essentially
supported on a tilted rectangle with dimensions R1=2 � R.

In this case, u0.x/ is essentially supported on an interval of length R1=2, and so
ju0.x/j � R�1=4 on this interval. Then ju.x; t/j � R�1=4 on the whole wave packet, and
we get � � R�1=4. Carleson [20] had showed previously that this value of � is optimal. This
settles Carleson’s problem in the case d D 1, but the case of higher dimensions was open
for 30+ years.

In higher dimensions, we can adapt the Dahlberg–Kenig example by taking many
parallel wave packets with disjoint projections onto Rd . This gives � D R� d

2 C 1
4 . For a long
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time, it seemed plausible that this constructionwas sharp in any dimension. In the last decade,
mathematicians found other much more intricate examples. The first was given by Bourgain
[11] and there were several improvements leading up to [12] (cf. also [40]). The last example
gives � D R� d

2 C d
2dC2 .

This last example turns out to be sharp. The case d D 2 was proven in [22] and
the case of all d was proven in [23]. Even for d D 2, the proof in [23] is simpler. The key
ingredient in these proofs is decoupling. Decoupling is applied in a somewhat indirect way.
In particular, the proofs use decoupling many times at different scales.

Theorem 6.5 ([12, 23]). Suppose that s > d
2dC2

. If u0 2 H s.Rd /, and u.x; t/ is a
(distributional) solution to the linear Schrödinger equation with initial data u0. Then
limt!0 u.x; t/ D u0.x/ for almost every x.

Suppose that s < d
2dC2

. There exists a function u0 2 H s.Rd / with the following
bad behavior. Let u.x; t/ be the (distributional) solution to the linear Schrödinger equation
with initial data u0. For this function, lim supt!0 ju.x; t/j D C1 for almost every x 2 Rd .

6.3. The local smoothing problem
Wolff introduced decoupling in his work on the local smoothing problem [56]. This

problem is an estimate about solutions to the wave equation.
Suppose that u.x; t/ solves the wave equation @2

t u D 4u, with x 2 Rd and t 2 R,
and with initial data u.x; 0/ D u0.x/ and @t u.x; 0/ D u1.x/. The local smoothing problem
concerns Sobolev-type bounds for the wave equation: Given bounds on some Sobolev norms
of u0 and u1, what bounds can we prove on the Sobolev norms of u?

To make things simple and concrete, let us suppose that u1 D 0 and that Ou0 is sup-
ported in a ball of radius N in frequency space. Then we would like to find all bounds of the
form u.x; t/


Lp.Rd �Œ0;1�/

� CN ˛
u0.x/


Lp.Rd /

:

Theword “local” in “local smoothing” refers to the time interval Œ0;1�. A global esti-
mate would give a bound on Rd � R, whereas a fixed-time estimate would give a bound for
Rd � ¹t0º for some fixed t0 (such as t0 D 1). Global in time estimates, local in time estimates,
and fixed time estimates are all interesting. Sharp fixed time estimates were established by
Peral [44] and Miyachi [41] around 1980. The word “smoothing” in “local smoothing” is
because the power of ˛ in the local in time estimates is smaller than the power in a fixed time
estimate.

In [47], Sogge formulated the local smoothing conjecture, and he proved the first
local smoothing estimates improving upon the ˛ given by the fixed time estimates.

Conjecture 6.6 ([47]). Suppose d � 2. Suppose that u.x; t/ solves the wave equation in
Rd � R, with initial data u.x; 0/ D u0.x/ and @t u.x; 0/ D 0. Suppose that Ou0 is supported
in the ball of radius N . Then, if 2 � p �

2d
d�1

, thenu.x; t/


Lp.Rd �Œ0;1�/
� C.d; "/N "

ku0kLp.Rd /:
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If p > 2d
d�1

, thenu.x; t/


Lp.Rd �Œ0;1�/
� C.d; "/N

d�1
2 � d

p C"
ku0kLp.Rd /:

The case p D
2d

d�1
is the critical exponent, and it implies all the other estimates for

a given dimension d . In [56], Wolff introduced decoupling and used it to show that Con-
jecture 6.6 holds when d D 2 and p > 74. Wolff also observed that the local smoothing
conjecture in dimension d implies the Kakeya conjecture in dimension d , by adapting Fef-
ferman’s argument from [25]. Therefore, the full conjecture remains out of reach for all d � 3.

In [14], Bourgain and Demeter proved a complete decoupling theorem for the cone.
This implies that Conjecture 6.6 holds in Rd for all p > 2.dC1/

d�1
. In particular, when d D 2,

local smoothing holds for all p > 6. When d D 2, the critical exponent for local smoothing
is p D 4.

In [33], Wang, Zhang, and I proved the local smoothing conjecture when d D 2 for
p D 4 (and hence for all p). The proof of local smoothing does not use decoupling per se,
but it is strongly influenced by the ideas in the proof of decoupling, including induction on
scales.

7. Frustrations, limitations, and open problems

Decoupling and the ideas in the proof of decoupling have led to solutions of many
problems that seemed out of reach a decade ago. The proof is elegant in some ways. In
some ways, it feels like a proof “from the book.” It is essentially self-contained and it is not
that long. But in other ways the proof is frustrating. (Actually, there are now several proofs,
and they have various advantages and disadvantages. The community is actively trying to
understand decoupling from different angles, and in five or ten years, we may have a different
sense of the essential ingredients.)

In this section, I discuss some of my frustrations with the proof of decoupling, some
limitations of the method, and some open problems.

7.1. Too much induction
On the one hand, induction on scales is the central idea in the proof of decoupling.

On the other hand, the heavy reliance on induction makes the proof difficult to read. A lot of
important stuff is happening inside the induction.

For example, as we discussed in Section 4.5, I think that the leverage in the proof
of decoupling comes from taking advantage of the transversality of wave packets of every
scale, not just at a few scales. For instance, suppose we cut the parabola P into M rectangles
� with M D N 5=16. The proof of decoupling takes advantage of the transversality between
the wave packets at this scale, but it is not easy to locate the place in the argument where
this transversality is used because it is a little bit buried in the induction. Even though I have
thought through the proof many times, it took me a good while to locate where wave packets
at this particular scale are used.
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Reading through the full proof of decoupling for the paraboloid, we see many dif-
ferent tricks for taking advantage of induction on scales. Loomis–Whitney is used at many
scales to prove multilinear Kakeya. Multilinear Kakeya is used at many scales in the argu-
ment in Section 4.4. The key induction on scales is described in Section 4.5. Induction on
scales is also used in a different way to go back and forth between multilinear estimates and
the original linear estimates, as we discussed in Section 5.1. Finally, many applications of
decoupling actually use decoupling many times at different scales, as in Section 6.2.

Wemight look at this and feel that using multiple scales is a craft with many aspects.
But we might also start to get the feeling that this is too many different tricks, and that we
should try to take advantage of many scales in a more systematic way.

7.2. What does decoupling say about the shapes of superlevel sets?
Decoupling gives an estimate for kf kLp or for the measure of the superlevel sets

U�.f /. Besides the measure of the sets U�.f /, decoupling also seems to be connected to
the shape of the superlevel sets U�.f /. Looking back through our discussion in Sections 4.4
and 4.5, the shape of U�.f / plays an important role, even though the final estimate only
concerns the measure of U�.f /. In particular, during the argument, we make use of some
information about jU�.f� / \ Bj for various balls B and for various � . This information
roughly describes how much the set U�.f / can concentrate in balls. The shape of U�.f / is
also connected to some applications of decoupling, such as the work on Carleson’s pointwise
convergence problem discussed in Section 6.2.

Perhaps the shape ofU�.f / should be a more central character in decoupling. What
is the full information about the shape of U�.f / which the proof method of decoupling
gives? Unfortunately this question is quite vague. There are many possible ways we could
describe the shape of U�.f /, and it is not clear which language to use. But it is possible that
discussing the shape of U�.f / systematically throughout the whole story might make the
arguments clearer or even stronger…

Here is one question from the harmonic analysis literature that has to do with the
shape of U�.f /. We consider a measure � supported on a large ball BR � Rn which obeys
the Frostman condition

�
�
Br .x/

�
� r˛: (7.1)

Here 0 < ˛ < n is fixed.

Question 7.1. As in the restriction problem or the Strichartz inequality, suppose that
f W Rn ! C is given by

f .x/ D

Z
P

a.!/e2�i!xd�P .!/:

For a given n and ˛, what is the best exponent  in the inequality

kf kL2.d�/ � CR
kakL2.P /;

among all functions f as above and all measures � obeying the Frostman condition (7.1)
with exponent ˛.
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In dimension n D 2, this question is well understood for all ˛ by work of Mattila and
Wolff, cf. [55]. But for n � 3, the problem is far from understood. In [23], Du and Zhang gave a
sharp answer for ˛ D n � 1. No other cases are fully understood. The Du–Zhang estimate for
˛ D n � 1 is closely related to the solution of Carleson’s problem on pointwise convergence
for solutions of the Schrödinger equation. Decoupling and multilinear restriction are the
essential tools in their approach, and they use decoupling at many different scales.

How much can the method of decoupling tell us about other values of ˛? Is there
anything fundamentally special about ˛ D n � 1? Also the Frostman condition (7.1) can
be replaced by other conditions, by replacing the function r˛ by other functions of r . This
would lead to other kinds of estimates about the shape of U�.f /.

7.3. Limitations of the information used in the proof
In the statement of decoupling, we assume that Of is supported in �, and we try to

bound kf kLp in terms of some information about kf� kLp for all the � in the decomposition
of �. If we look through the proof and check where the hypothesis supp. Of / � � is used,
we find that it is used only in fairly simple ways.

In the course of the proof, we consider f� for many different rectangles � . The proof
relies crucially on two facts. The first is the locally constant heuristic:

For each � , jf� j is approximately constant on each translate of ��. (7.2)

The second is the local orthogonality heuristic. If � is a rectangle, and  are smaller
rectangles contained in � , and if nonadjacent  are separated by at least s, thenZ

B

jf� j
2

�

X
��

Z
B

jf j
2; (7.3)

whenever B is a cube whose side length is longer than s�1.
The Fourier support properties of the different functions f , f� , f� are only really

used to justify these two heuristics. These two heuristics are consequences of the Fourier
support hypotheses, but they do not encode all the information given by the Fourier support
hypotheses.

This raises the question: Which theorems of restriction theory can we prove only
using the locally constant heuristic and local orthogonality? Which theorems require us to
use the Fourier support hypothesis in some other way?

The proofs of the different decoupling theorems essentially only use these two prop-
erties. (I say essentially because some of the proofs also involve some pigeonholing of wave
packets.) Also, the strongest current work on the restriction conjecture only uses these two
properties. It is possible that the full restriction conjecture might follow only using these two
properties.

In restriction theory there are currently very few examples of techniques for exploit-
ing the Fourier support of f that use Fourier support information in some other way. (One
example is to use the even integer trick, Lemma 1.7, together with number-theoretic input.
An interesting recent example of this approach is the work on Strichartz-type estimates for
the periodic Airy equation by Hughes–Wooley [34].)
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However, there are a number of problems in restriction theory where I strongly doubt
that these two properties are sufficient to give full answers. One example is the the problem
of estimating the Lp-norms of the functions

fk;N .x/ D

NX
aD1

e2�iakx :

As we discussed in Section 1.2, the Lp-norms of fk;N are well understood for k D 2 and
wide open for k � 3. When k D 2, the different proofs all use some information besides
the locally constant heuristic and local orthogonality. I believe the sharp estimates for k D 2

cannot be proven by an argument using only those two properties.
There is an interesting generalization of thisLp-problemwhich I think is a good test

case for going beyond the locally constant property and local orthogonality. As wementioned
in Section 1.2, kf2;N kL4.Œ0;1�/ � C"N 1=2C".

Question 7.2. We consider a sequence of frequencies !a, with a D 1; : : : ; N , which behave
approximately like the squares a2, in the sense that

!aC1 � !a � a and .!aC1 � !a/ � .!a � !a�1/ � 1:

For such a choice of frequencies !a, define

f .x/ D

NX
aD1

e2�i!ax :

Estimate kf kL4.Œ0;1�/. Is it true that kf kL4.Œ0;1�/ � C"N 1=2C"?

As far as I know, it is possible that kf kL4.Œ0;1�/ � C"N 1=2C" in this much more
general setting. However, the proofs that work for f2;N do not generalize to this setting.
And the method of decoupling can prove only limited things. In [27], Fu, Maldague, and I
explored how much we can say about this question using ideas of decoupling theory. As part
of that investigation, we explain the version of the locally constant property which appears
in this setting, which goes back to Bourgain’s work [7] on Montgomery’s conjecture. The
main theorems of [27] give sharpLp-estimates for much shorter sums, namely sums of length
� N 1=2. For these shorter sums, the locally constant property and the methods of decoupling
are effective. But for longer sums, they seem much less effective, and I believe that some
different tools are needed.

Question 7.2 is also related to a question of Erdős about sumsets of convex sets.
A sequence !a is called convex if .!aC1 � !a/ � .!a � !a�1/ > 0 for all a. Notice that
the set of frequencies in Question 7.2 is a convex sequence. If A is a convex sequence, then
Erdős conjectured that jA C Aj � c"jAj2�". Here A C A denotes all sums of two elements
of A. This conjecture is open. There is interesting recent work on it by Schoen and Shkredov
[46], who proved that jA C Aj � c"jAj1:6�". This beats the previous best estimate jAj1:5,
which had stood for a long time. If A denotes the frequencies in Question 7.2, and if indeed
kf kL4.Œ0;1�/ � C"N 1=2C", then it would follow that jA C Aj � c"jAj2�". The best bound I
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could prove using the methods of decoupling gives jA C Aj � cjAj1:5. Work in combina-
torics such as [46] may give clues on how to go further in problems like Question 7.2.
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of small denominators
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Abstract

Spectral theory of one-dimensional discrete one-frequency Schrödinger operators is a field
with the origins in and strong ongoing ties to physics. It features a fascinating competi-
tion between randomness (ergodicity) and order (periodicity), which is often resolved on
a deep arithmetic level. This leads to an especially rich spectrum of phenomena, many of
which we are only beginning to understand. The corresponding analysis involves, in partic-
ular, dealing with small denominator problems. It has led to the development of non-KAM
methods in this traditionally KAM domain, and to results completely unattainable by the
old techniques, also in a number of other settings. This article accompanies the author’s
lecture at the International Congress of Mathematicians 2022. It covers several related
recent developments.
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One-dimensional discrete one-frequency Schrödinger operators

.HV;˛;xu/n WD un�1 C unC1 C V.x C n˛/un;

u 2 `2.Z/; ˛ 2 T WD RnQ; x 2 T ; V W T ! R; (0.1)

and related questions of the dynamics of quasiperiodic cocycles have not been under-
represented at the ICMs. As I remember, roughlywithin the last 25 years, there were sectional
lectures by H. Eliasson in 1998, myself in 2002, B. Fayad, R. Krikorian, and J. You in 2018,
as well as plenary lectures by A. Avila in 2010 and 2014, devoted either in part or in full to
this topic.

The field itself is not at all new. It may be seen as having been originated in physics
when Peierls [103] and later his student Harper [61] studied the tight-binding two-dimensional
electron in a uniform perpendicular magnetic field (also known as the Harper model) and
derived the by now iconic family H2� cos;˛;x that we now, following Barry Simon [105], call
the almost Mathieu operator. It remains hugely popular in physics, being directly linked to
several remarkable experimental discoveries and Nobel prizes, providing, in particular, the
theoretical underpinning of the Quantum Hall Effect, as proposed by D. J. Thouless in 1983
(see, e.g. [18,19]). A Google search for “Harper’s model physics” leads to many thousands of
hits.

The field may also be seen as having been originated in a numerical experiment,
as the interest was picked after Douglas Hofstadter came up with what we now call the
Hofstadter’s butterfly [64]—a beautiful numerically produced fractal (Figure 1), discovered
even before the word “fractal” was coined by Benoit Mandelbrot. Finally, the field may be
seen as having been originated from the first application of KAM in the spectral theory—a
pioneering work of Dinaburg and Sinai [37], that preceded Hofstadter. The field has consis-
tently attracted top mathematical physicists (e.g., Bellissard, Deift, Simon, Sinai, Spencer),
dynamicists (e.g., Avila, Eliasson, Herman, Krikorian, You), and analysts (e.g., Bourgain,
Eliott, Sarnak, Schlag). Indeed, it turned out to be a fantastic ever-expanding playground
for the analysts and dynamicists alike, leading to strong cross-fertilization of ideas that have
a tendency to later expand to other subjects. Jean Bourgain wrote a book [28] devoted to
analytic, mostly one-dimensional, quasiperiodic operators that summarized significant new
understanding achieved around the turn of the century, where the work of Jean and collabo-
rators was central.

It is therefore all the more surprising that as of the time of this writing it seems that
the field is on the verge of further significant breakthroughs, with our current understanding
covering just the tip of an exciting iceberg. Given the remarkable current momentum, we
will refrain from making an attempt at an overview of the vast past literature, neither even
very recent nor a number of important milestones, and will concentrate instead only on two
selected topics that enjoyed significant recent advances and hold a particular promise to
shape some of the future discourse.

For the review up to about five years ago, see [82], and for various fine issues related
to continuity of the Lyapunov exponents, featuring, in particular, very important work by
M. Goldstein and W. Schlag, see the recent book by P. Duarte and S. Klein [38]. The 2018
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Figure 1

Hofstadter’s butterfly.

ICMproceedings by J. You [117] summarize, among other things, the quantitative reducibility
breakthrough developed in his group, that has led to a number of powerful consequences.
There are also recent expositions [68, 80] that include some further remarkable results of
roughly the last decade that could not make it into this article.

1. Spectral theory meets (dual) dynamics

Quasiperiodic operators (0.1) are, of course, a particular case of one-dimensional
discrete ergodic Schrödinger operators

.Hxu/n WD un�1 C unC1 C V.T nx/un; u 2 `2.Z/; (1.1)

where x 2 X , and .X;�; T / is an ergodic dynamical system. Operators with ergodic poten-
tials (also in the continuum or in a more general multidimensional/covariant setting) always
have spectra and closures of the other spectral components constant for �-a.e. x [95,102]. In
case of the minimal underlying dynamics, such as, e.g., the irrational rotation of the circle in
(0.1), the spectra [21] and absolutely continuous spectra in the one-dimensional case [97] are
constant for all x. In contrast, the point and singular continuous parts (that are constant a.e.)
can depend sensitively on x. It is an interesting problem, usually attributed to B. Simon, and
open even in the setting of (0.1) whether this still holds when they are combined together
(see Problem 6 in [67]).

The spectral theory of one-dimensional ergodic Schrödinger operators (1.1) is
deeply connected to the study of linear cocycles over corresponding underlying dynam-
ics. By an SL.2;R/ cocycle, we mean a pair .T; A/, where T W X ! X is ergodic, A is a
measurable 2 � 2 matrix-valued function on X and detA D 1.
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We can regard it as a dynamical system on X � R2 with

.T; A/ W .x; f / 7!
�
T x;A.x/f

�
; .x; f / 2 X � R2:

A one-parameter family of Schrödinger cocycles over .X; �; T /, indexed by the energy
E 2 C, is given by .T; A/ W .X;R2/ 7! .X;R2/ where .T; A/ W .x; y/ 7! .T x; A.x; E/y/,
and A 2 SL.2;C/ is the transfer-matrix

A.x;E/ WD

 
E � v.x/ �1

1 0

!
;

with x 2 X , y 2 R2, and E 2 C. The eigenvalue equation Hu D Eu can be rewritten
dynamically as  

unC1

un

!
D A

�
T nx;E

�  un

un�1

!
:

The (top) Lyapunov exponent is then defined as L.E/ WD limn!1

R
1
n
ln kAn.x; E/k d�,

where

An.x;E/ WD

0Y
iDn�1

A.T ix;E/: (1.2)

Two classical results link dynamics/Lyapunov exponents to the spectral theory of ergodic
operators:

• (Johnson’s theorem [91]) For minimal .X; �; T /, the spectrum �.H/ (which is
constant in x 2 X ) is given by the set ofE 2 R such that the Schrödinger cocycle
.T; A.�; E// is not uniformly hyperbolic.

• (Kotani theory [94]) The absolutely continuous spectrum �ac.H/ (�- a.e. constant
for any ergodic .X; �; T / and constant for minimal systems [97]) is given by the
essential closure of the set ¹E W L.E/ D 0º.

Therefore, for minimal, and in particular quasiperiodic, underlying dynamics, spec-
trum and absolutely continuous spectrum of Hx are encoded by the dynamics of the one-
parameter family A.x;E/ of transfer-matrix cocycles, indexed by the energy E; but, for the
spectrum, not by any explicit quantity. One recent surprising development is that for analytic
one-frequency quasiperiodic Schrodinger operators, the spectrum (and therefore absence of
uniform hyperbolicity of the corresponding cocycles) can be characterized more directly. In
[47] we introduce a new object, dual Lyapunov exponent OL.E/, and prove

Theorem 1.1 ([47]). For quasiperiodic operators (0.1) with analytic V ,

�.H/ D
®
E W L.E/ OL.E/ D 0

¯
: (1.3)

Exponent OL.E/ is defined as the limit of lowest Lyapunov exponents of dual high-
dimensional cocycles (see Sections 2 and 4) which is proved to exist. There are interesting
questions of varying levels of difficulty on whether this can be appropriately extended to
higher-dimensional analytic one-frequency quasiperiodic Schrodinger cocycles, correspond-
ing to operators on the strips, to multifrequency analytic cocycles, to nonanalytic potentials,
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or even other underlying dynamics. Perhaps the most natural question is whether one can
find an analytic characterization of the absence of uniform hyperbolicity for all analytic one-
frequency quasiperiodic cocycles. For the latter, there is a topological obstruction, but one
can reduce the question, say, to cocycles homotopic to the identity.

2. Aubry duality and higher-dimensional cocycles

The early work of Dinaburg–Sinai [37] notwithstanding, it is fair to say that the study
of the spectral theory of quasiperiodic operators has been largely shaped around and driven
by several explicit models, all coming from physics. The most prominent of those is the
almost Mathieu family H2� cos;˛;x , which can be argued to be the tight-binding analogue of
a harmonic oscillator. Besides being the main model in the related physics studies and that
featured in the Hofstadter’s butterfly, it is also the simplest, in many ways, analytic case,
yet it seems to represent most of the nontrivial properties expected to be encountered in the
more general situation. In some sense, it plays the same role in the theory of quasiperiodic
operators that the Ising model plays in statistical mechanics, and similarly to the latter, it
does have an important additional symmetry.

Namely, we define the Aubry dual of the one-frequency Schrödinger operator (0.1)
as

. OHV;˛;�u/n D

1X
kD�1

VkunCk C 2 cos 2�.� C n˛/un; n 2 Z; (2.1)

where Vk is the kth Fourier coefficient of V .1 It can be useful to view this as a transformation
of the entire family indexed by x for fixed V; ˛. In this regard, this transform can be viewed
as a unitary conjugation on H D L2.T � Z/, via

U .x; n/ D O .n; x C ˛n/; (2.2)

where O W L2.Z � T / ! L2.T � Z/ is the Fourier transform. The almost Mathieu family
is self-dual with respect to this transformation OH2� cos;˛;x D H 2

�
cos;˛;� , and, in particular,

H2 cos;˛;x , that is,H2� cos;˛;x with � D 1; is the self-dual (also called critical) point.
Aubry duality can be explained by the magnetic nature and corresponding gauge

invariance of two-dimensional magnetic Laplacians that lead to HV;˛;x [101]. In particular,
spectra and integrated densities of states of HV;˛;x and OHV;˛;x coincide. However, it is not
the case for the spectral type, and indeed it is natural to expect that a Fourier-type trans-
form would take localized eigenfunctions (point spectrum!) into extended ones (absolutely
continuous spectrum!), and vice versa. That was the basis for several predictions by physi-
cists Aubry and Andre [1] about the almost Mathieu family with irrational ˛, namely that the
spectrum ofH2� cos;˛;x is absolutely continuous for � < 1 (called subcritical) and pure point
for � > 1 (called supercritical). This was described in the paper where transformation (2.1)

1 There is a more general, multidimensional definition, but we stick to the one-dimensional
case for this exposition.
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was introduced in the context of the almost Mathieu family, leading to the name Aubry dual-
ity. This problem, along with a few others related to this family, was heavily popularized by
Barry Simon in [106,108], fueling an increased interest in the mathematics community.

Aubry duality has been formulated and explored on different levels, e.g., [10,55,101].
It has consistently played a central role in the analysis of quasiperiodic operators, in proving
absolutely continuous spectrum and reducibility [10,31], point spectrum [17,24,50,57,70],2 or
its absence [11,69].

In general, operator (2.1) is long-range. If V is a trigonometric polynomial of
degree d , the transfer-matrix A.x; E/ of the eigenvalue equation OHV;˛;x‰ D E‰ gives
rise to a 2d -dimensional cocycle, which has a complex-symplectic structure [60], so we will
view it as an Sp.2d;C/ cocycle .˛; A/; A 2 Sp.2d;C/, a linear skew product

.˛; A/ W

´
T � C2d ! T � C2d

.x; v/ 7! .x C ˛;A.x;E/ � v/

µ
:

The Lyapunov exponentsL1.˛;A/�L2.˛;A/� � � � �L2d .˛;A/, repeated accord-
ing to their multiplicity, are defined by

Lk.˛; A/ D lim
n!1

1

n

Z
T
ln
�
�k

�
An.x/

��
dx;

where for a matrix B 2 Mm.C/, �1.B/ � � � � � �m.B/ denote its singular values (eigen-
values of

p
B�B). Since for real E the transfer-matrix A.x; E/ of the eigenvalue equa-

tion OHV;˛;x‰ D E‰ is symplectic, its Lyapunov exponents come in the opposite pairs
¹˙Li .˛; A/º

d
iD1. We will now denote

OLi D Ld�i .˛; A/; (2.3)

so that 0 � OL1 � OL2 � � � � � OLd .
In general, Lyapunov exponents are not nicely behaved with respect to parameter

changes. They can be (and most likely, typically are) discontinuous in ˛ at ˛ 2 Q (the almost
Mathieu cocycle is one example), are generally discontinuous in A in C 0, and can be dis-
continuous in A even in C1 [35, 81, 113, 114]. It is a remarkable fact, enabling much of the
related theory, that Lyapunov exponents are continuous in the analytic category.

Theorem 2.1 ([12, 29, 31, 73]). The functions R � C!.T ; Mm.C// 3 .˛; A/ 7! Lk.˛; A/ 2

Œ�1;1/ are continuous at any .˛0; A0/ with ˛0 2 RnQ.3

For the almostMathieu operator, it leads to the exact formula for the Lyapunov expo-
nent for energies E in the spectrum ofH2� cos;˛;x . We have L�;˛.E/ D max¹ln j�j; 0º [30].

For Diophantine ˛, this continuity extends to sufficiently smooth Gevrey spaces
[35,92], and it is a remarkable recent result [48] that for certain ˛ the transition in the topology

2 Made possible with the development of recent powerful methods [7,14,65,118] to establish
nonperturbative reducibility directly and independently of localization for the dual model.

3 In dimension one, it extends to the Lyapunov exponents of multifrequency cocycles
R � C!.Tb ;SL2.C// 3 .˛; A/ 7! L.˛;A/ 2 Œ0;1/.
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for continuity of L occurs sharply at the Gevrey space G2. It should be noted that both
the original spectacular counterexample [113] and its refinements [48, 114] require ˛ to be a
fixed irrational of bounded type, i.e., having a continued fraction expansion with bounded
coefficients. This set includes the goldenmean but forms a set of zero Lebesguemeasure. The
authors of all these papers also vary the cocycle, i.e., the potential. This still leaves open the
question whether continuous behavior of the Lyapunov exponents at least for Schrödinger
cocycles with regularity lower than G2 is possible if ˛ is not of bounded type. Another
open question is whether it is true that for a fixed potential of lower than G2 regularity, the
Lyapunov exponent is necessarily a continuous function of energy.

3. Avila’s global theory and classification of analytic

one-frequency cocycles

While many results exist in lower regularity, the analyticity of V in (0.1) brings
on board powerful ideas related to subharmonicity (leading, in particular, to the crucially
important for other developments continuity results) and the technique of semialgebraic sets
introduced to the field by J. Bourgain [28]. As a result, a lot more can be said about analytic
quasiperiodic operators. Particularly, while Kotani theory based its characterization of the
absolutely continuous spectrum on compexifying the energy, for analytic quasiperiodic oper-
ators there is one more natural parameter to complexify, namely the phase. This idea goes
back toM. Herman [63], and has been fruitfully used to prove positivity (and later continuity)
of the Lyapunov exponent in [29,63,110]. Avila [5] discovered a remarkable related structure
that has served as a foundation of his global theory (later extended to the high-dimensional
cocycles in [12]). Define

L�.E/ WD lim
n!1

Z
1

n
ln

 0Y
j Dn�1

Aj .x C j˛ C i�; E/

 d�:
Avila observed that, for a given cocycle, L� is a convex function of �, and proved that it has
quantized derivative in �.

Theorem 3.1 ([5]). For any complex-analytic one-frequency cocycle,

!.A/ D lim
�!0C

L�.A/ � L0.A/

2��
2 Z:

This was enabled through approximation by the rationals due to the continuity of the
Lyapunov exponent in the analytic category [32]. The fact that such continuity does not hold
even for higher Gevrey cocycles [48,113,114] complicates potential nonanalytic extensions.

Theorem 3.1 already enables full analytic computation of the Lyapunov exponents
forE in the spectrum, as well as of their complexificationsL� and further analysis for several
models originating and relevant in physics: the almost Mathieu operator [5], the extended
Harper’s model [81], recently discovered models with mobility edges [112] and unitary almost
Mathieu operator [34], models arising in the study of the quantum graph graphene [23], and
others.
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Avila classified analytic cocycles A.x/ depending on the behavior of the Lyapunov
exponent L� of the complexified cocycle A.x C i�/. Namely, he distinguishes three cases,
with the terminology inspired by the almost Mathieu family:

(Subcritical) L� D 0; � < ı; ı > 0, or, alternatively, L0 D !.A/ D 0.

(Critical) L0 D 0;L� > 0; � > 0, or, alternatively, L0 D 0; !.A/ > 0.

(Supercritical) L0 > 0.

For the almost Mathieu family, these three regimes are uniform over the spectrum,
corresponding to the supercritical (� > 1), subcritical (� < 1), and critical .� D 1) values
of the coupling constant. Spectrally, there is purely absolutely continuous spectrum for all x
and all ˛ 2 RnQ in the subcritical case [3], purely singular continuous spectrum for all x and
all ˛ 2 RnQ in the critical case [69], and pure point spectrum for a.e. x; ˛ with sharp spec-
tral transitions depending on the arithmetics of both ˛ and x between pure point spectrum
and singular continuous spectrum in the supercritical case (see Section 5). Remarkably, the
critical almost Mathieu operators appear at the boundary of the two other regimes.

For general quasiperiodic operators, this classification leads to the corresponding
division of energies in the spectrum, depending on (sub/super)criticality of the cocycle
A.�; E/. For convenience we will call the energy in the spectrum (super/sub)critical accord-
ing to whether the corresponding transfer-matrix cocycle is such. It is expected that the key
spectral properties of spectra in the three above regimes follow those of the corresponding
almost Mathieu operators.

Indeed, pure point spectrum for a.e. x;˛ holds through the supercritical set of ener-
gies, for any analytic potential [30]. It is an important open problem to make this result
arithmetic, and it is expected that certain universal features of the transitions and structure
of the eigenfunctions discovered in [77, 78] will hold globally, throughout the supercritical
regime, see Section 6.3.

The subcritical regime is subject to the almost reducibility conjecture (ARC) which
claims that subcritical cocycles are almost reducible, that is, have constant cocycles in the
closure of their analytic conjugacy class (note that since almost reducibility implies subex-
ponential growth of the iterates of the cocycle that is uniform in the (complexified) phase,
the converse is obviously true). The idea of reducing nonperturbative (global) to perturbative
(local) results originated from an earlier work by Avila and Krikorian [14]. ARC was first for-
mulated in [10], and first established for the almost Mathieu operator [3,10]. It was solved by
Avila for the Liouville case in [4], and the solution for the complementary Diophantine case
has been announced [5] to appear in [2]. Also, L. Ge has recently found a different proof [46].

Almost reducible (and therefore subcritical) cocycles enjoy all the dynamical and
spectral consequences of the Eliasson’s perturbative regime [39]. In particular, there is purely
absolutely continuous spectrum throughout the subcritical regime. Moreover, reducibility
can be made quantitative [117], and even arithmetically so [50], allowing for a wealth of
conclusions. However, it remains true that the absolutely continuous spectrum is fully char-
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acterized by the subcritical regime, with no delicate dependence, as far as the spectral decom-
position goes, on any other parameters.

The critical regime is expected (see [11, 82]) to support only singular continuous
spectrum (again, no dependence on the other parameters, as long as ˛ is irrational) but
fully establishing it even for the critical almost Mathieu operator took decades and was only
accomplished recently [69].

On the other hand, the key result of Avila’s global theory [5] is that operators with
critical energies throughout the spectrum, like the critical almost Mathieu operator, are an
anomaly, that does not happen typically. In fact, for prevalent (in a certain measure-theoretic
sense) potentials, there are no critical energies, and the spectrum is contained in finitelymany
intervals, with either only subcritical or only supercritical regime within each.4 Moreover,
the set of potentials and energies .V; E/ such that E is critical is contained in a countable
union of codimension-one analytic submanifolds of C!.T I R/ � R. Another remarkable
related fact is that Lyapunov exponent enjoys even much stronger regularity when restricted
to potentials and energies with a fixed value of acceleration: it becomes real-analytic on this
(typically rather irregular) set, in both the energy E and any parameter � ranging in a real
analytic manifold ƒ, if V� in C!.T I R/ is a family real-analytic in parameter �.

From the point of view of the global theory, it becomes particularly important to
study the universal features of the two prevalent regimes, subcritical and supercritical. As
mentioned above, the absolutely continuous spectrum is fully characterized by the subcritical
regime, with no delicate dependence, as far as the spectral decomposition goes, on any other
parameters. The picture for the supercritical regime is a lot more interesting, and is in a
certain sense at the beginning of its development.

Going back to the complexified cocycle L� , quantizatization of acceleration means
that as a function of � > 0, L� is convex, piecewise affine, and thus is fully characterized
by LD L0 and monotone increasing sequences of turning points bi and slopes ni 2 2�ZC,
so that the slope of L� between bi and biC1 is ni . Clearly, sequences bi and ni present a
very important intrinsic characterization of the cocycle and the corresponding Schrödinger
operator. What information do they give us?

4. Dual Lyapunov exponents or global theory demystified

It turns out that Aubry duality not only provides a new proof of quantization of
acceleration, but holds key to the mystery of the global theory. We have

Theorem 4.1 ([47]). Assume ˛ 2 RnQ and V 2 C!.T ;R/. Then there exist nonnegative
¹ OLi .E/º such that for any E 2 R,

OLi .E/ D lim
d!1

OLd
i .E/;

4 A part of this picture was previously established in the semiclassical regime in the con-
tinuum in [40].
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Figure 2

The complexified Lyapunov exponent.

where OLd
i .E/; i D 1; : : : ;d , are the Lyapunov exponents, as defined in (2.3), of the Sp.2d;C/

transfer-matrix cocycle of the dual eigenvalue equation OHV d ;˛;x‰ D E‰, with
V d .x/ D Dd ? V andDd being the Dirichlet kernel. Moreover,

L�.E/ D L0.E/ �

X
¹i W OLi .E/<2�j�jº

OLi .E/C 2�
�
#
®
i W OLi .E/ < 2�j�j

¯�
j�j

In fact, the theorem also holds for V 2 C!
h
.T ;R/ and j�j < h, where C!

h
.T ;R/

is the space of bounded analytic functions f defined on a strip ¹j=zj < hº with the norm
kf kh D supj=zj<h jf .z/j. See Fig. 2 for an illustration of the three possible scenarios.

This means that for the trigonometric polynomials V the turning points bi are given
precisely by the Lyapunov exponents OLi .E/ of the dual cocycle, and increases in the slopes
are given by the 2� times their multiplicities; for analytic V , these objects are given by
the limits of those quantities for successive trigonometric polynomial cutoffs of V . We call
OLi .E/ the dual Lyapunov exponents, the objects that play a role similar to that of zeros of
an analytic function in the Jensen’s formula. In particular, the acceleration !.E/ turns out to
be precisely the number of vanishing dual Lyapunov exponents (an analogue of the winding
number for an analytic function on T ).
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Besides unraveling the mystery of the behavior of complexified Lyapunov expo-
nents, this leads to a new understanding of the key statement of Avila’s global theory, namely
that for prevalent operators (0.1), almost all pairs of potentials and energies are acritical.
Indeed, it immediately follows that

Theorem 4.2 ([47]). Assume ˛ 2 RnQ and V is analytic, then the energy E 2 R is

(1) outside the spectrum if L.E/ > 0 and OL1.E/ > 0,

(2) supercritical if L.E/ > 0 and OL1.E/ D 0,

(3) critical if L.E/ D 0 and OL1.E/ D 0,

(4) subcritical if L.E/ D 0 and OL1.E/ > 0.

Thus, in the regimeL.E/D 0, criticality is in the locus of vanishing of an additional
continuous [12] function OL1.E/, implying the prevalence of the acriticality claim. Theo-
rem 4.2, of course, also contains the statement of Theorem 1.1, with OL WD OL1, as well as the
fact that Schrödinger cocycle is subcritical if and only if its dual Lyapunov exponents are all
positive. It also leads to a number of other powerful spectral corollaries, both for the general
analytic case and several particular models [47]. It also has exciting physics applications [100].

5. Precise analysis of small denominators

One of the most fascinating features of the spectral theory of one-frequency quasi-
periodic operators in the supercritical regime is its delicate dependence on the arithmetics,
that can be analyzed to a remarkable depth, and in some cases completely. There were many
exciting recent developments where the arithmetics has played a crucial role (e.g., [9,15,89])
but here we focus only on the analysis of small denominators in the proofs of point spectrum
and related study of the eigenfunctions.

The main difficulty in proving point spectrum (or the phenomenon of Anderson
localization, that is, pure point spectrum with exponentially decaying eigenfunctions) and
analyzing the corresponding eigenfunctions of ergodic operators is in the fact that the eigen-
values are dense in the spectrum. Formal perturbative expansions of eigenfunctions and
eigenvalues include the .V .T nx/ � V.Tmx//�1 terms that, of course, get arbitrarily large.
More generally, when we have resonances, that is, restrictions to boxes that are not too far
away from each other that have eigenvalues that are too close (something that is bound to
happen for ergodic operators), small denominators are created. Thus localization for ergodic
and, in particular, quasiperiodic operators can be viewed as a small denominator problem.

Indeed, it has been traditionally approached in a perturbative way: through KAM-
type schemes for large couplings [39,44,109], which all required Diophantine conditions on
the frequency ˛. Small denominators are not simply a nuisance, but lead to actual change in
the spectral behavior, since in the opposite regime of very Liouville frequencies (too small
denominators), there is no localization even with the positivity of the Lyapunov exponent;
and delocalization (which in this case means singular continuous spectrum) can be proved by
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perturbation of nearby periodic operators [20,54]. At the same time, for exponentially approx-
imated frequencies that are neither far from nor close enough to rationals, there is nothing
left to perturb about or to remove. Tackling those cannot be approached perturbatively, but
requires a precise analysis, giving the problem a strong number-theoretic flavor.

It should be noted that the topology of the one-dimensional line is such that even
occasional barriers make it difficult to pass through, strongly favoring localization in the
presence of even small irregularities. For example, in the one-dimensional random case,
localization holds for all couplings �, when considering a family of potentials �V , and
the same is expected but is apparently difficult to prove even for the underlying dynam-
ics .X; �; T / with very weak chaotic properties, such as a skew shift. It has even been
conjectured by Kotani and Last that absolutely continuous spectrum is impossible for one-
dimensional operators that are not almost periodic, but it has been disproved [6,111], and with
a particularly simple construction in [119]. Those examples notwithstanding, the presence
of metal–insulator transitions (that roughly correspond to transitions between the spectral
types) as couplings change remains a distinctive feature of quasiperiodic operators.

The transitions in coupling between absolutely continuous and singular spectrum
are fully determined by the vanishing/nonvanishing of the Lyapunov exponent. In the super-
critical regime, absolutely continuous spectrum is impossible, but whether the spectrum is
point or singular continuous is resolved in the competition between the depth of the small
denominators—the strength of the resonances—and the Lyapunov growth.

Two types of resonances have played a special role in the spectral theory of quasi-
periodic operators.Frequency resonances, when jV.x/�V.xC k˛/j is small simply because
k.x C k˛/ � x/kR=Z D kk˛kR=Z is small, where kxkR=Z D inf`2Z jx � `j, were first
exploited in [21] based on [54] to prove the absence of eigenvalues (and therefore singular
continuous spectrum in the hyperbolic regime) for quasiperiodic operators with Liouville
frequencies. Their strength is measured by the arithmetic parameter

ˇ.˛/ D lim sup
k!1

�
ln kk˛kR=Z

jkj
(5.1)

that is equal to zero for Diophantine (thus a.e.) ˛. Frequency resonances are ubiquitous for
all quasiperiodic potentials.

Another class of resonances, appearing for all even potentials, was discovered in [83],
where it was shown that the arithmetic properties of the phase also play a role and may
lead to singular continuous spectrum even for the Diophantine frequencies. Indeed, for even
potentials, phases with almost symmetries, when jV.x/� V.xC k˛j is small because k.xC

k˛/ � .�x/kR=Z is small, lead to resonances, regardless of the values of other parameters.
The strength of phase resonances is measured by the arithmetic parameter

ı.˛; �/ D lim sup
k!1

�
ln k2� C k˛kR=Z

jkj
: (5.2)

Phase resonances are symmetry based and exist for all even functions V .
It was conjectured in [66] that for the almost Mathieu family no other resonances

appear and the competition between the Lyapunov growth and combined exponential res-
onance strength resolves in a sharp way: there is a pure point spectrum for L.E/ >
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ˇ.˛/C ı.˛; x/ and a singular continuous spectrum in the regime L.E/ < ˇ.˛/C ı.˛; x/.
We note that for the special case of ˛-rational x, that is, such that 2x 2 Z˛ C Z, we
have ı.˛; x/ D ˇ.˛/ so the resonances “double up” and the conjectured threshold becomes
2ˇ.˛/.

An early nonperturbative localization method was first developed in the 1990s for
the almost Mathieu operator [84] and represented perhaps the first case of solving a tradition-
ally KAMproblem in a direct way, without an inductive procedure. It presented a (simple, but
not sharp) technique to treat the nonresonant case, ˇ.˛/D ı.˛/D 0. Further breakthroughs
came in [85] where the role of the Lyapunov exponents and corresponding deviations was
first understood, allowing to achieve the nonresonant result up to the actual Lyapunov transi-
tion, and then in the work of Bourgain and collaborators [28,30]where robust nonperturbative
methods were developed for general analytic potentials and more, leading to the proofs of
localization for a.e. frequency throughout the supercritical regime. The ideas of [85] hold
more generally, and have, in particular, led to very simple proofs of localization for the one-
dimensional Anderson model [90]. Most importantly, however, their arithmetic nature has
been crucial for further developments. For example, the fact that localization holds for ˛-
rational x,5 enabled Puig’s proof [104] of the ten martini problem (that the spectrum is a
Cantor set) for Diophantine ˛. The solution of the full ten martini problem [8,9] required, in
particular, dealing with intermediate frequencies that are neither Diophantine nor Liouville,
thus with the frequency resonances. A method to treat those has been devised in [9] leading
to the proof of localization for L.E/ > 16

9
ˇ, but failing in the neighborhood of the actual

transition. A sharp method to treat pure frequency resonances was developed in [77], and a
sharp method to treat pure phase resonances in [78].

Therefore, the sharp arithmetic spectral transition conjecture of [66] has been estab-
lished for single-type-resonances: for pure frequency resonances (that is, for the so-called
˛-Diophantine phases for which ı.˛; x/ D 0 so there are no exponential phase resonances)
in [17,52,77],6 and for pure phase resonances (that is, for Diophantine frequencies for which
ˇ.˛/ D 0 so there are no exponential frequency resonances) in [78].

The methods to treat pure frequency and phase resonances in [77,78] are robust in a
sense that weak exponential resonances of the other type can be added easily, but it is still an
open problem to treat combined frequency and phase resonances in a sharp way. However,
there were two very recent breakthroughs.

Namely, W. Liu has developed a way to sharply treat doubled resonances for the
almost Mathieu operator, proving localization up to the conjectured threshold:

5 This was, in fact, established in [72].
6 In [17] the pure frequency part of the conjecture of [66] has been proved by a completely

different method, namely through quantitative reducibility [117] and duality, but in a
measure-theoretic in x sense, i.e., losing the control over the arithmetics of x. A recent
breakthrough by Ge–You [50] where an arithmetic version of quantitative reducibility was
developed has lead to a way to obtain sharp arithmetic in phase results through duality as
well, enabling, in particular, an arithmetic duality-based proof of the frequency part of the
conjecture [52], that works also for all Aubry duals (2.1) of operators (0.1).
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Theorem5.1 ([99]). OperatorH2� cos;˛;x with˛-rational x has Anderson localization when-
ever L.E/ > 2ˇ.˛/ (or equivalently, � > e2ˇ.˛/).

In Liu’s earlier work, this was established for L.E/ > 3ˇ.˛/ [98], but a significant
new understanding of treatment of doubled resonances was necessary to go sharp, and it
was achieved in [99]. Also ˛-rational phases x hold special importance for various ques-
tions because eigenvalues for such x are located at gap edges [104]. Puig’s proof of the ten
martini problem for the Diophantine case [104] was based precisely on localization for ˛-
rational x. The original plan to prove the full tenmartini problemwas to establish localization
for ˛-rational x and L.E/ > ˇ.˛/ [8]. Not surprisingly, it failed, prompting the resonance
doubling-up conjecture in [9] that is now solved [99]. It should be noted that the singular-
continuous part of the conjecture, namely singular-continuous spectrum for ˛-rational x and
L.E/ < 2ˇ.˛/, is still open.

In a different direction, R. Han, F. Yang, and I [58] developed a sharp method to treat
the third type of resonances: high barriers (that effectively play the role of antiresonances),
and, moreover, combinations of frequency resonances and high barriers, in another popular
quasiperiodic family originating in physics, the Maryland model.

Maryland model is a family

.M�;˛;�u/n D unC1 C un�1 C � tan
�
�.� C n˛/

�
un; (5.3)

where � > 0 is the coupling constant, irrational ˛ 2 T D Œ0; 1� is the frequency, and � 2 T

is the phase with � … ‚ D ¹
1
2

C ˛Z C Zº.
It was originally proposed by Grempel, Fishman, and Prange [56] as a linear version

of the quantum kicked rotor and has attracted continuing interest from the physics commu-
nity, see, e.g., [26, 42, 45], due to its exactly solvable nature. It has explicit expression for
the Lyapunov exponent, integrated density of states, and even (a little less explicit) for the
eigenvalues and eigenfunctions. In particular, the Lyapunov exponent L�.E/ is an explicit
function of �; E not dependent on ˛. However, the implicit expressions for the eigenfunc-
tions do not allow for easy conclusions about their behavior, which is expected to be quite
interesting, with transfer matrices satisfying certain exact renormalization [41].

Phase resonances do not exist for the Maryland model, and as a result, for Dio-
phantine (i.e., nonresonant) frequencies it has localization for all phases [87,107]. However,
it does have barriers, when the trajectory of a given phase approaches the singularity too
early. Barriers compensate for the resonances, and therefore serve as what we call in [58]

the antiresonances, providing the reason why for the Maryland model there are phases with
localization even for the most Liouville frequencies [76]. Thus Maryland model features a
combination of frequency resonances and phase antiresonances.

Maryland model was the first one where the spectral decomposition has been
resolved completely, for all values of the parameters [76].7 Let pn=qn be the continued frac-
tion approximants of ˛. We note that the frequency resonance index ˇ.˛/ defined in (5.1)

7 It also remains the only one with spectral transitions where this could be claimed.
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also satisfies ˇ.˛/ D lim supn!1
lnqnC1

qn
. A new index, ıM .˛; �/, was introduced in [76] as

ıM .˛; �/ WD lim sup
n!1

ln qnC1 C ln kqn.� �
1
2
/kT

qn

: (5.4)

We have

Theorem 5.2 ([76]). H�;˛;� has purely singular continuous spectrum on ¹E W L�.E/ <

ıM .˛; �/º, and pure point spectrum on ¹E W L�.E/ > ı
M .˛; �/º.8

This provides complete spectral analysis, for all ˛; � , but was established implic-
itly: through the combination of Cayley and Fourier transforms and the study of a resulting
explicit cohomological equation, making sharp the previous work in [56,107]. The extension
of the analysis from a.e. � in [107] to all � in [76] required accounting for the effect of the
barriers, and Cayley transform allowed to do it, albeit in a highly implicit way. In particular,
this proof did not allow the analysis of the structure of eigenfunctions.

Themethod of [85]was adapted to theMarylandmodel in [87]where the nonresonant
situation was treated and localization for Diophantine ˛ was shown, developing the initial
framework to study the eigenfunctions in the much more difficult resonant situation.

In [58] we show that ı.˛; �/ can be interpreted as the exponential strength of fre-
quency resonances, ˇ.˛/, combined with the (negative) exponential strength of phase anti-
resonances, defined as the positions of exponential smallness of the cos.�.� C k˛//,9 and
develop the approach to sharply treat the “resonance tamed by an antiresonance” situation.
In particular, we give a constructive proof of the localization part of Theorem 5.2 and obtain

Theorem 5.3 ([58]). For any ˛ 2 RnQ and any � , the spectrum on ¹E WL�.E/� ıM .˛; �/º

is pure point and for any eigenvalueE 2 ¹L�.E/> ı
M .˛;�/º and any � > 0, the correspond-

ing eigenfunction �E satisfies j�E .k/j < e
�.L�.E/�ıM .˛;�/��/jkj for sufficiently large jkj.

Theorem 5.3 provides the sharp upper envelope, and develops the key tools to study
the fine behavior of the eigenfunctions, see Section 6.2. In fact, such a study is the most
exciting outcome of the proofs of localization based on sharp analysis of resonances.

There are several other models where sharp arithmetic spectral transitions have been
conjectured and partially established, most notably the extended Harper’s model, where for
the complete analysis one would need to develop tools to study the simultaneous presence
of three different types of resonances: frequency, phase, and singularity-induced antireso-
nances. However, for a.e. phase we expect the arithmetic frequency transition to be universal
in the class of general analytic potentials. As for the arithmetic transitions in phase, we expect
the same results to hold for general even analytic potentials for a.e. frequency. We note that
the singular continuous part up to the conjectured transition is already established, even in a
far greater generality, in [17,71,78].

8 It follows from the explicit formula for L�.E/ that the equality can only happen for two
values of E.

9 So exponential largeness of the tan.
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Finally, there is a question of arithmetic interfaces, e.g., what happens for the almost
Mathieu operators with L.E/D ˇ.˛/C ı.˛; �/? It turns out that (in the pure resonance sit-
uations) both pure point and singular continuous spectra are possible depending on the finer
arithmetic properties of parameters [13, 86, 88]. So far we do not even have a good conjec-
ture on where the arithmetic thresholds within the transition lines lie. Making a significant
progress on this problemwould require a development of polynomial (as contrasted with cur-
rent exponential) methods to tackle resonances, a very important problem in its own right,
as it could lead to universal hierarchical structures (see Section 6) on polynomial scales.

6. Exact asymptotics and universal hierarchical

structure of eigenfunctions

A very captivating question and a longstanding theoretical challenge is to explain
the self-similar hierarchical structure visually obvious in the Hofstadter’s butterfly, as well as
the hierarchical structure of eigenfunctions, as related to the arithmetics of parameters. Such
structure was first predicted for the almost Mathieu operator in the work of Azbel in 1964
[22], some 12 years before Hofstadter [64], and before numerical experimentation was possi-
ble. Such self-similar behavior is present for spectra and eigenfunctions of all quasiperiodic
operators.

While this does not describe or explain the self-similarity, a step in the right direc-
tion is to prove that the spectrum is a Cantor set. Mark Kac offered ten martinis in 1982 for
the proof of the Cantor set part of Azbel’s 1964 conjecture. It was dubbed the Ten Martini
problem by Barry Simon, who advertised it in his lists of 15 mathematical physics problems
[106] and later, mathematical physics problems for the XXI century [108]. Most substantial
partial solutions were made by Bellissard, Simon, Sinai, Helffer, Sjöstrand, Choi, Eliott, Yui,
and Last [25,36,62,96,109], between 1983 and 1993. J. Puig [104] solved it for Diophantine ˛
by noticing that localization at � D 0 [73,85] leads to gaps at corresponding (dense) eigen-
values. The final solution was given in [9]. Cantor spectrum is also prevalent for general
one-frequency operators with analytic potential: in the subcritical regime [10], and, by very
different methods, in the supercritical regime [53] (and it is conjectured [11] also in the crit-
ical regime, which is nongeneric in itself [5]). Moreover, even all gaps predicted by the gap
labeling are open in the noncritical almost Mathieu case [10, 16], the statement that is also
expected to be true in the critical case, and recently claimed in the physics literature [27] to
follow directly from [69].

As for the understanding the hierarchical behavior of the eigenfunctions, despite
significant numerical studies and even a discovery of Bethe Ansatz solutions [116], it has
remained an important open challenge even at the physics level, although some indications
existed in the perturbative regime [33,62,109,120].

Sharp analysis of resonances and small denominators has led to the discovery of
universal self-similar structures of eigenfunctions defined by the type of resonance. The uni-
versal nature of these structures manifests in two ways: there is the same universal function
that depends only on the type of the resonance, that governs the behavior around each expo-
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nential frequency or phase resonance (upon (possibly) reflection and renormalization), and
it is the same structure for all the parameters involved: any (Diophantine) frequency ˛, (any
˛-Diophantine phase �/ with ˇ.˛/ < L .ı.˛; �/ < L/, and any eigenvalue E. It has been
discovered and proved for the almost Mathieu operator [77,78] but is expected to be univer-
sal also throughout the class of analytic potentials, and more,10 that is to hold in the regime
of pure resonances. For example, the same universal structure for frequency resonances has
already been proved for the Maryland model [59], for a.e. phase, namely, phases without the
exponential antiresonances, see also a result on the hierarchical structure in the semiclassical
regime [93]. However, for phases whose trajectories approach the barrier too fast, the hierar-
chical structure of the eigenfunctions is very different, and the complete analysis is extremely
delicate.

Generally, one can identify four types of (anti)resonances that lead to different uni-
versal structures:

• frequency

• phase (only even potentials)

• barriers (antiresonance)

• singularity (antiresonance for Jacobi matrices)

We describe the universal structures for phase and frequency resonances [77, 78] in
the following subsections, and the one for the barrier antiresonances will appear in [59].

We expect that when different types of resonances are present, there will be further
different self-similar structures, universal for all corresponding parameters and different res-
onance positions. Describing these structures for different combinations of resonances is
very challenging but seems to be potentially within reach. In particular, in [58] we developed
the tools to fully describe the universal structures for the Maryland model for all parameters,
that is for combinations of frequency resonances and barrier antiresonances. We expect it to
be done in [59]. We also expect the latter structures to be universal in the class of monotone
potentials with a simple pole.

To give a glimpse into the universality results, we present two of them inmore detail.

6.1. Frequency resonances
In [77] we find explicit universal functions f .k/ and g.k/, depending only on the

Lyapunov exponent and the position of k in the hierarchy defined by the denominators
qn of the continued fraction approximants of the flux ˛, that completely define the expo-
nential behavior of, correspondingly, eigenfunctions and norms of the transfer matrices of
the almost Mathieu operators, for all eigenvalues corresponding to ˛-Diophantine phase,
see Theorem 6.1. This result holds for all frequency and coupling pairs in the frequency-

10 For example, C 2 cos-type potentials have been a popular object of study [43, 49, 51, 109,

115] and there are reasons to believe that they will feature the same structure, at least in the
perturbative regime.
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resonance localization regime. Since the behavior is fully determined by the frequency and
does not depend on the phase, it is the same, eventually, around any starting point, so is also
seen unfolding at different scales when magnified around local eigenfunction maxima, thus
describing the exponential universality in the hierarchical structure.

Since we are interested in exponential growth/decay, the behavior of f and g
becomes most interesting in case of frequencies with exponential rate of approximation
by the rationals.

These functions allow describing precise asymptotics of arbitrary solutions of
H�;˛;�' D E' where E is an eigenvalue. The precise asymptotics of the norms of the
transfer-matrices provides the first example of this sort for nonuniformly hyperbolic dynam-
ics. Since those norms sometimes differ significantly from the reciprocals of the eigenfunc-
tions, this leads to further interesting and unusual consequences, for example, exponential
tangencies between contracted and expanded directions at the resonant sites.

Given ˛ 2 RnQ; we define functions f;g W ZC ! RC in the following way. Let pn

qn

be the continued fraction approximants to ˛. For any qn

2
� k <

qnC1

2
, define f .k/; g.k/ as

follows:

Case 1. q
8
9

nC1 �
qn

2
or k � qn.

If `qn � k < .`C 1/qn with ` � 1, set

f .k/ D e�jk�`qnj ln j�j
Nrn
` C e�jk�.`C1/qnj ln j�j

Nrn
`C1; (6.1)

and
g.k/ D e�jk�`qnj ln j�j qnC1

Nrn
`

C e�jk�.`C1/qnj ln j�j qnC1

Nrn
`C1

; (6.2)

where for ` � 1,
Nrn
` D e

�.ln j�j�
lnqnC1

qn
C ln `

qn
/`qn :

Set also Nrn
0 D 1 for convenience.

If qn

2
� k < qn, set

f .k/ D e�k ln j�j
C e�jk�qnj ln j�j

Nrn
1 ; (6.3)

and
g.k/ D ek ln j�j: (6.4)

Case 2. q
8
9
nC1 <

qn

2
and qn

2
� k � min¹qn;

qnC1

2
º.

Set
f .k/ D e�k ln j�j; (6.5)

and
g.k/ D ek ln j�j: (6.6)

Notice that f; g only depend on ˛ and �, but not on � or E; f .k/ decays and g.k/
grows exponentially, globally, at varying rates that depend on the position of k in the hierar-
chy defined by the continued fraction expansion of ˛, see Figures 3 and 4.
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Nrn
`

Nrn
`C2

Nrn
`C4

`qn .`C 1/qn .`C 2/qn .`C 3/qn .`C 4/qn kqnC1

2
qn

2

f .k/

Figure 3

The universal behavior of eigenfunctions at scale n:

qnC1

Nrn
`

qnC1

Nrn
`C2

qnC1

Nrn
`C4

`qn .`C 1/qn .`C 2/qn .`C 3/qn .`C 4/qn kqnC1

2
qn

2

g.k/

Figure 4

The universal behavior of transfer matrix norms at scale n:

It turns out that, in the entire regime L.E/ > ˇ, the exponential asymptotics of the
eigenfunctions and norms of transfer matrices at the eigenvalues are completely determined
by f .k/; g.k/.

Theorem 6.1. Let ˛ 2 RnQ be such that j�j> eˇ.˛/. Suppose � is Diophantine with respect
to ˛, E is an eigenvalue of H�;˛;� , and � is the eigenfunction. Let U.k/ D

�
�.k/

�.k�1/

�
. Then

for any " > 0, there existsK (depending on �; ˛; OC ; ") such that for any jkj � K, U.k/ and
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Ak
11 satisfy

f .jkj/e�"jkj
� kU.k/k � f .jkj/e"jkj (6.7)

and
g.jkj/e�"jkj

� kAkk � g.jkj/e"jkj: (6.8)

In fact, the theorem is formulated in [77] for generalized eigenfunctions, thus can also
be used to establish pure point spectrum throughout the indicated regime. Certainly, there
is nothing special about k D 0, so the behavior described in Theorem 6.1 happens around
an arbitrary point k D k0. This implies the self-similar nature of the eigenfunctions: U.k/
behave as described at scale qn but, when looked at in windows of size qk ; qk � qn�1, will
demonstrate the same universal behavior around appropriate local maxima/minima.

To further illustrate the above, let � be an eigenfunction and U.k/ D
�

�.k/
�.k�1/

�
.

An immediate corollary of Theorem 6.1 is the universality of behavior at all appropriately
defined nonresonant local maxima. We will say k0 is a local j -maximum of � if kU.k0/k �

kU.k/k for jk � k0j � qj . Then, with an appropriate notion of nonresonance (see [77]), we
have

Theorem 6.2 ([77]). Given " > 0, there exists j."/ < 1 such that if k0 is a nonresonant
local j -maximum for j > j.�/, then

f .jsj/e�"jsj
�

kU.k0 C s/k

kU.k0/k
� f .jsj/e"jsj; (6.9)

for js � koj � qj .

In case ˇ.˛/ > 0, Theorem 6.1 also guarantees an abundance (and a hierarchical
structure) of local maxima of each eigenfunction.

Let k0 be a global maximum. The self-similar hierarchical structure of local maxima
can be described in the followingway.Wewill say that a scalenj0 is exponential if lnqnj0

C1>

cqnj0
. Then there is a constant scale On0, thus a constant C WD q On0C1, such that for any

exponential scale nj and any eigenfunction there are local nj -maxima within distance C
of k0 C sqnj0

for each 0 < jsj < e
cqnj0 . Moreover, these are all the local nj0 -maxima in

Œk0 � e
cqnj0 ; k0 C e

cqnj0 �.
The exponential behavior of the eigenfunction in the local neighborhood (of size of

order qnj0
) of each such local maximum, normalized by the value at the local maximum is

given by f . Note that only exponential behavior at the corresponding scale is determined by
f and fluctuations of much smaller size are invisible.

Now, let nj1 < nj0 be another exponential scale. Denoting “depth 1” local maxi-
mum located near k0 C anj0

qnj0
by banj0

, we then have a similar picture around banj0
: there

are local nj1 -maxima in the vicinity of banj0
C sqnj1

for each 0 < jsj < e
cqnj1 . Again, this

describes all the local qnj1
-maxima within an exponentially large interval. And again, the

exponential (for the nj1 scale) behavior in the local neighborhood (of size of order qnj1
) of

each such local maximum, normalized by the value at the local maximum, is given by f .

11 Products Ak are defined in (1.2).
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Universal hierarchical structure of an eigenfunction

b1 b2b�1b�2 k0

Local maximum of depth 1Local maximum of depth 1

Global maximum

b2;2b2;1

b1;�1

b1;1

b1;2

Window I

Figure 5

Universal self-similar structure of eigenfunctions

Denoting those “depth 2” local maxima located near banj0
C anj1

qnj1
by banj0

;anj1
,

we then get the same picture taking the magnifying glass another level deeper, and so on.
At the end we obtain a complete hierarchical structure of local maxima that we denote by
banj0

;anj1
;:::;anjs

with each “depth s C 1” local maximum banj0
;anj1

;:::;anjs
being in the cor-

responding vicinity of the “depth s” local maximum banj0
;anj1

;:::;anjs�1
, and with universal

behavior at the corresponding scale around each. The quality of the approximation of the
position of the next maximum gets lower with each level of depth, yet the depth of the hierar-
chy that can be so achieved is at least j=2�C , Figure 5 schematically illustrates the structure
of local maxima of depth one and two, and Figure 6 illustrates that the neighborhood of a
local maximum appropriately magnified looks like a picture of the global maximum. See
[77] for the exact statement.

6.2. Phase resonances
In [78] we found another universal structure, this time for phase resonances. Once

again, we found (different) functions f that determine universal asymptotics of the eigen-
functions, also locally around the resonances, which features a self-similar hierarchical struc-
ture. In particular, we have Theorem just like Theorem 6.1 but with new f and for ˇ.˛/D 0

and L > ı.˛; �/ [78]. The behavior described in this theorem happens around an arbitrary
point. This, coupled with effective control of parameters at the local maxima, allows uncover-
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Window I

b1;1 b1;2b1;�1b1;�2 b1

Local maximum of depth 2Local maximum of depth 2

Local maximum of depth 1

b1;2;2b1;2;1

b1;1;�1

b1;1;1

b1;1;2

Figure 6

Universal self-similar structure of eigenfunctions, zoomed in

ing the self-similar nature of the eigenfunctions, but this time one needs not only the rescaling
but also alternating reflections, leading to what we call the reflective-hierarchical structure.

Assume phase � satisfies 0 < ı.˛; �/ < ln�. Fix 0 < & < ı.˛; �/. Let k0 be a global
maximum of eigenfunction �. LetKi be the positions of exponential resonances of the phase
� 0 D � C k0˛ defined by

k2� C .2k0 CKi /˛kR=Z � e�& jKi j: (6.10)

This means that jv.� 0 C `˛/� v.� 0 C .Ki � `/˛/j � Ce�& jKi j, uniformly in `, or,
in other words, the potential vn D v.� C n˛/ is e�& jKi j-almost symmetric with respect to
.k0 CKi /=2.

Since ˛ is Diophantine, we have

jKi j � cecjKi�1j; (6.11)

where c depends on & and ˛ through the Diophantine constants �; � . On the other hand, Ki

is necessarily an infinite sequence. Let � be an eigenfunction, and U.k/D
�

�.k/
�.k�1/

�
. We say

k is a local K-maximum if kU.k/k � kU.k C s/k for all s � k 2 Œ�K;K�.
The informal description of the reflective-hierarchical structure of local maxima is

the following. There exists a constant OK such that there is a local cKj -maximum bj within
distance OK of each resonanceKj . The exponential behavior of the eigenfunction in the local
cKj -neighborhood of each such local maximum, normalized by the value at the local maxi-
mum, is given by the reflection of f .
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reflective self-similarity of an eigenfunction

I II

II0 I0

Global maximum

Kj1

bj1

Kj0

bj0

bj0;j1

0

Kj1

Figure 7

Reflective self-similarity of an eigenfunction.

Moreover, this describes the entire collection of local maxima of depth 1, that is, all
K such thatK is a cK-maximum. Then we have a similar picture in the vicinity of bj : there
are local cKi -maxima bj;i ; i < j , within distance OK2 of eachKj �Ki . The exponential (on
theKi scale) behavior of the eigenfunction in the local cKi -neighborhood of each such local
maximum, normalized by the value at the local maximum, is given by f .

Then we get the next level maxima bj;i;s; s < i in the OK3-neighborhood of
Kj �Ki CKs and reflected behavior around each, and so on, with reflections alternat-
ing with steps. At the end we obtain a complete hierarchical structure of local maxima that
we denote by bj0;j1;:::;js , with each “depth sC 1” local maximum bj0;j1;:::;js being in the cor-
responding vicinity of the “depth s” local maximum bj0;j1;:::;js�1 � k0 C

Ps�1
iD0.�1/

iKji

and with universal behavior at the corresponding scale around each. The quality of the
approximation of the position of the next maximum gets lower with each level of depth, with
bj0;j1;:::;js�1 determined with OKs precision, thus it presents an accurate picture as long as
Kjs � OKs .

Thus the behavior of �.x/ is described by the same universal f in each � Kjs

window around the corresponding local maximum bj0;j1;:::;js after alternating reflections.
The positions of the local maxima in the hierarchy are determined up to errors that at all but
possibly the last step are superlogarithmically small inKjs . We call such a structure reflective
hierarchy.

Figure 7 depicts reflective self-similarity of an eigenfunction with global maximum
at 0. The self-similarity is seen as follows: I0 is obtained from I by scaling the x-axis propor-
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tional to the ratio of the heights of the maxima in I and I0; II0 is obtained from II by scaling
the x-axis proportional to the ratio of the heights of the maxima in II and II0. The behavior
in the regions I0, II0 mirrors the behavior in regions I, II upon reflection and corresponding
dilation.

6.3. Universality and extensions
The hierarchical structures of Sections 6.1 and 6.2 are expected to hold universally

for most in the appropriate sense (albeit not all, as for the almost Mathieu) local maxima for
general analytic potentials. Establishing this fully would require certain new ideas since so far
even an arithmetic version of localization for the Diophantine case has not been established
for the general analytic family, the current state-of-the-art result by Bourgain–Goldstein [30]

being measure-theoretic in ˛.
The universality of the hierarchical structures of Sections 6.1 and 6.2 is twofold:

not only it is the same universal function that governs the behavior around each exponential
frequency or phase resonance (upon reflection and renormalization), it is the same structure
for all the parameters involved: any (Diophantine) frequency ˛ (any ˛-Diophantine phase �/
with ˇ.˛/ < L .ı.˛; �/ < L/, and any eigenvalue E. The universal reflective-hierarchical
structure in Section 6.2 requires the evenness of the function defining the potential and,
moreover, resonances of other types may also be present in general. However, we conjectured
in [78] that for general even analytic potentials for a.e. frequency only finitely many other
exponentially strong resonances will appear, thus the structure described in Section 6.2 will
hold for the corresponding class.

The key elements of the technique developed for the treatment of arithmetic reso-
nances are robust and have made it possible to approach other questions and, in particular,
study delicate properties of the singular continuous regime. Among other things, it has
allowed obtaining upper bounds on fractal dimensions of the spectral measures and quan-
tum dynamics for the singular continuous almost Mathieu operator [79], as well as potentials
defined by general trigonometric analytic functions [75], and determining also the exact expo-
nent of the exponential decay rate in expectation for the two-point function [74], the first result
of this kind for any model. These methods are also expected to be applicable to many other
models.
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Abstract

In this survey of works on a characterization of Jacobians and Prym varieties among inde-
composable principally polarized abelian varieties via the soliton theory, we focus on a
certain circle of ideas and methods which show that the characterization of Jacobians as
ppav whose Kummer variety admits a trisecant line and the Pryms as ppav whose Kummer
variety admits a pair of symmetric quadrisecants can be seen as an abelian version of
pole systems arising in the theory of elliptic solutions to the basic soliton hierarchies. We
present also recent results in this direction on the characterization of Jacobians of curves
with involution, which were motivated by the theory of two-dimensional integrable hierar-
chies with symmetries.
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1. Introduction

Novikov’s conjecture on the Riemann–Schottky problem, namely that the Jaco-
bians of smooth algebraic curves are precisely those indecomposable principally polar-
ized abelian varieties (ppavs) whose theta-functions provide solutions to the Kadomtsev–
Petviashvili (KP) equation, was the first evidence of nowadays well-established fact: con-
nections between the algebraic geometry and the modern theory of integrable systems is
beneficial for both sides. Novikov’ conjecture was proved by T. Shiota in [48].

The first goal of this paper is to present the strongest known characterization of a
Jacobian variety in this direction: an indecomposable ppav X is the Jacobian of a curve if
and only if its Kummer variety K.X/ has a trisecant line, which was proved in [26,27]. This
characterization is called Welters’ (trisecant) conjecture after the work ofWelters [54]which
wasmotivated byNovikov’s conjecture andGunning’s celebrated theorem [22]. The approach
to its solution, proposed in [26], is general enough to be applicable to a variety of Riemann–
Schottky-type problems. In [21,25] it was used for a characterization of principally polarized
Prym varieties. The latter problem is almost as old and famous as the Riemann–Schottky
problem, but is much harder.

Our second goal is to present recent results on characterization of Jacobians of
curves with involution. The curves with involution naturally appear as a part of algebraic-
geometrical data defining solutions to integrable system with symmetries. Numerous exam-
ples of such systems include the Kadomtsev–Petviashvili hierarchies of type B and C (BKP
and CKP hierarhies, respectively) introduced in [11, 12] and the Novikov–Veselov hierarchy
introduced in [51,52].

The existence of an involution of a curve is central in proving that the constructed
solutions have the necessary symmetry. The solutions corresponding to the same curve are
usually parameterized by points of its Prym variety. In other words, the existence of involu-
tion plus some extra constraints on the divisor of the Baker–Akhiezer function are sufficient
conditions ensuring required symmetry. The problem of proving that these conditions are
necessary for two-dimensional integrable hierarchies is much harder and that is the problem
solved in [28].

The third and to some extent our primary objective is to take this opportunity to
elaborate on motivations underlining the proposed solution of the Riemann–Schottky-type
problems and to introduce a certain collection of ideas and methods.

Maybe the most important among them is a mysterious generating property of two-
dimensional linear differential, differential-functional, difference-functional equations. In
fact, we will discuss two sources of generating properties. One of them is local, and it con-
cerns equations withmeromorphic coefficients in one of the variables that havemeromorphic
solutions. The other is global and concerns equations with elliptic coefficients that have solu-
tions that are meromorphic sections of a line bundle over an elliptic curve [24].

The three main examples are:

(i) the differential equation�
@t � @2

x C u.x; t/
�
 .x; t/ D 0; u D �2@2

x�.x; t/; (1.1)
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(ii) the differential-functional equation

@t .x; t/ D  .x C 1; t/C w.x; t/ .x; t/; w.x; t/ D @t ln
�
�.x C 1; t/

�.x; t/

�
;

(1.2)
(iii) the difference-functional equation

 nC1.x/ D  n.x C 1/ � vn.x/ n.x/; vn.x/ D
�n.x/�nC1.x C 1/

�n.x C 1/�nC1.x/

(1.3)
with unknown functions  n.x/, n 2 Z.

Each of these equations (after change of notations for independent variables) is one of two
auxiliary linear problems for the three fundamental equations in the theory of integrable
systems: the Kadomtsev–Petviashvili (KP) equation

3uyy D .4ut � 6uux C uxxx/x ; (1.4)

the 2D Toda equation

@�@�'n D e'n�'n � e'n�'nC1 ; 'n D '.x D n; �; �/; (1.5)

and the Bilinear Discrete Hirota equation (BDHE)

�n.l C 1;m/�n.l;mC 1/ � �n.l;m/�n.l C 1;mC 1/

C �nC1.l C 1;m/�n�1.l;mC 1/ D 0; (1.6)

respectively.
At the first glance, all three nonlinear equations, the KP equation, 2D Toda equation,

and BDHE equation, look very different from each other. But in the theory of integrable
systems, it is well known that these fundamental soliton equations share an intimate relation:
the KP equation is as a continuous limit of the BDHE, and the 2D Toda equation can be
obtained in an intermediate step.

Assume that in the first two cases �.x; t/ is an entire function of the variable x and
a (local) smooth function of the variable t , and in the third case �n.x/ is a sequence of entire
functions of x. It turns out that under some generality assumption for each of the above linear
equations, the answer to the question when it has a meromorphic in x solution is given in
terms of equations describing the evolution of zeros of � in the second variable.

To give an idea of these equations and why I called the very existence of them mys-
terious, as an instructive example, consider equation (1.1).

Let  be a meromorphic solution of (1.1) with u D �2@2
x ln �.x; t/, where � is an

entire function of x and a smooth function of t in some neighborhood of t D 0. The generality
assumption is that generic zeros of � are simple. Consider the Laurent expansions of  and
u in the neighborhood of a simple zero, �.q.t/; t/ D 0, @x�.q.t/; t/ ¤ 0:

u D
2

.x � q/2
C v C w.x � q/C � � � I

 D
˛

x � q
C ˇ C .x � q/C ı.x � q/2 C � � � :

(1.7)
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(The coefficients in these expansions v; w; : : : I ˛; ˇ; : : : are smooth functions of the vari-
able t ). Substituting (1.7) into (1.1) gives an infinite system of equations. The first three of
them are

˛ Pq C 2ˇ D 0I

P̨ C ˛v C 2 D 0I

P̌ C vˇ �  Pq C ˛w D 0:

(1.8)

Taking the t -derivative of the first equation and using the other two, we get the
equation

Rq D 2w; (1.9)

derived first in [6].
We would like to emphasize once again that there is no reason for the fact that the

system (1.8) can be reduced to equations for the potential u only. Even more unexpected for
the author was that, as we will see later, the existence of onemeromorphic solution of equa-
tion (1.1) is sufficient for the existence of a one-parameter family of meromorphic solutions.

Formally, if we represent � as an infinite product,

�.x; t/ D c.t/
Y

i

�
x � qi .t/

�
; (1.10)

then equation (1.9) can be written as the infinite system of equations

Rqi D �4
X
j ¤i

1

.qi � qj /3
: (1.11)

Equations (1.11) are purely formal because, even if � has simple zeros at t D 0, in the general
case there is no nontrivial interval of t where the zeros remain simple. One of the reasons to
present (1.11) is that it shows that, when � is a rational, trigonometric, or elliptic polynomial,
equations (1.11) coincide with the equations of motion for the rational, trigonometrical, or
elliptic Calogero–Moser (CM) system, respectively.

In a similar way, one can get that the existence of a meromorphic solution for
equations (1.2) and (1.3) gives equations on zeros of � which in the case when � is an
elliptic polynomial in x turned out to be the equations of motion of the elliptic Ruijsenaars–
Schneider (RS) model and nested Bethe ansatz equations, respectively.

Recall that the elliptic CM system with k particles is a Hamiltonian system with
coordinates q D .q1; : : : ; qk/, momentums pD .p1; : : : ;pk/, the canonical Poisson brackets
¹qi ; pj º D ıij , and the Hamiltonian

H D
1

2

kX
iD1

p2
i C

X
i¤j

}.qi � qj /: (1.12)

The corresponding equations of motion admit the Lax representation PL D ŒM;L� with

Lij D piıij C 2.1 � ıij /ˆ.qi � qj ; z/; (1.13)
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where

ˆ.x; z/ D
�.z � x/

�.z/�.z/
ex�.z/ (1.14)

and �; �; } are classical Weierstrass functions.
The ellliptic RS system is a Hamiltonian system with coordinates q D .q1; : : : ; qk/,

momentumspD .p1; : : : ;pk/, the canonical Poisson brackets ¹qi ;pj º D ıij , and the Hamil-
tonian

H D

kX
iD1

fi ; (1.15)

where

fi WD epi
Y
j ¤i

�
�.qi � qj � 1/�.qi � qj C 1/

�.qi � qj /2

�1=2

: (1.16)

It is a completely integrable Hamiltonian system, whose equations of motion admit the Lax
representation PL D ŒM;L�, where

Lij D fiˆ.qi � qj � 1; z/; i; j D 1; : : : ; k; (1.17)

The elliptic nested Bethe ansatz equations are a system of algebraic equationsY
j

�.qn
i � qnC1

j /�.qn
i � 1 � qn

j /�.q
n
i � qn�1

j C 1/

�.qn
i � qn�1

j /�.qnC1
i � qn

j /�.q
n
i � qnC1

j � 1/
D �1 (1.18)

for k unknown functions qi D ¹qn
i º, i D 1; : : : ; k, of a discrete time variable n 2 Z.

The above systems are usually called elliptic pole systems, since they describe the
dependence of the poles of the elliptic solutions of the KP, 2D Toda, and BDHE equations,
respectively. A correspondence between finite-dimensional integrable systems and the pole
systems of various soliton equations was considered in [7,29,32,33]. In [2] it was generalized
to the case of field analogues of CM type systems.

The most general form of the function � , known to the author so far, for which the
equations for its zeros are not formal, is the case of abelian functions, that is, when � has the
form

� D �.Ux C z; t/; (1.19)

where x; t 2 C and z 2 Cn are independent variables, 0¤ U 2 Cn, and for all t the function
�.�; t / is a holomorphic section of a line bundle L D L.t/ on an abelian varietyX D Cn=ƒ,
i.e., for all � 2 ƒ it satisfies the monodromy relations

�.z C �; t/ D ea��zCb��.z; t/; (1.20)

for some a� 2 Cn, b� D b�.y; t/ 2 C.
It is tempting to call them abelian CM, RS, and nested Bethe ansatz equations. As

we shall see below, they are central for the proof of three particular cases of the Welters
conjecture.
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2. Riemann–Schottky problem

Let Hg WD ¹B 2Mg.C/ j tB D B; Im.B/ > 0º be the Siegel upper half-space. For
B 2 Hg let ƒ WD ƒB WD Zg C BZg and X WD XB WD Cg=ƒB . Riemann’s theta function

�.z/ WD �.z; B/ WD

X
m2Zg

e2�i.m;z/C�i.m;Bm/; .m; z/ D m1z1 C � � � Cmgzg ; (2.1)

is holomorphic and ƒ-quasiperiodic in z 2 Cg .
The factor spaceHg=Sp.2g;Z/' Ag is the moduli space of g-dimensional ppavs.

A ppav .X; Œ‚�/ 2 Ag is said to be indecomposable if the zero-divisor‚ of � is irreducible.
LetMg be the moduli space of nonsingular curves of genus g, and let J W Mg ! Ag

be the Jacobi map defined by the composition of maps Mg ! Hg ! Ag . The first one
requires a choice of a symplectic basis ai , bi (i D 1; : : : ; g) of H1.�;Z/ which defines a
basis !1, …, !g of the space of holomorphic 1-forms on � such that

R
ai
!j D ıij , and then

the period matrix and the Jacobian variety of � by

B WD

�Z
bi

!j

�
2 Hg and J.�/ WD

�
XB ; Œ‚B �

�
2 Ag ;

respectively.
The above J.�/ is indecomposable and the Jacobi map J is injective (Torelli’s the-

orem). The (Riemann–)Schottky problem is the problem of characterizing the Jacobi locus
Jg WD J.Mg/ or its closure Jg in Ag . For g D 2, 3, the dimensions of Mg and Ag coin-
cide, and hence Jg D Ag by Torelli’s theorem. Since J4 is of codimension 1 in A4, the case
g D 4 is the first nontrivial case of the Riemann–Schottky problem.

A nontrivial relation for the Thetanullwerte of a curve of genus 4 was obtained
by F. Schottky [45] in 1888, giving a modular form which vanishes on J4, and hence at
least a local solution of the Riemann–Schottky problem in g D 4, i.e., J4 is an irreducible
component of the zero locus �4 of the Schottky relation. The irreducibility of �4 was proved
by Igusa [23] in 1981, establishing J4 D �4, an effective answer to the Riemann–Schottky
problem in genus 4.

A generalization of the Schottky relation to a curve of higher genus, the so-called
Schottky–Jung relations, formulated as a conjecture by Schottky and Jung [46] in 1909, was
proved by Farkas–Rauch [18] in 1970. Later, van Geemen [50] proved that the Schottky–Jung
relations give a local solution of the Riemann–Schottky problem. They do not give a global
solution when g > 4, since the variety they define has extra components already for g D 5

(Donagi [16]).
Overmore than 120 year-long history of the Riemann–Schottky problem, quite a few

geometric characterizations of the Jacobians have been obtained. None of them provides an
explicit system of equations for the image of the Jacobian locus in the projective space under
the level-two theta imbedding.

Following Mumford’s review with a remark on Fay’s trisecant formula [42], and
the advent of algebraic geometrical integration scheme in the soliton theory [30,31,43] and
Novikov’s conjecture, significant progress wasmade in the 1980s in characterizing Jacobians
and Pryms using Fay-like formulas and KP-like equations.
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Let us first describe the trisecant identity in geometric terms. The Kummer variety
K.X/ of X 2 Ag is the image of the Kummer map

K D KX W X 3 z 7!
�
W ‚Œ"; 0�.z/ W

�
2 CP 2g �1; (2.2)

where ‚Œ"; 0�.z/ D �Œ"; 0�.2z; 2B/ are the level-two theta-functions with half-integer char-
acteristics "2 ..1=2/Z=Z/g , i.e., they equal �.2.zCB"/;2B/ up to some exponential factor
so that we have

�.z C w/�.z � w/ D

X
"2..1=2/Z=Z/g

‚Œ"; 0�.z/‚Œ"; 0�.w/: (2.3)

We have K.�z/ D K.z/ and K.X/ ' X=¹˙1º.
A trisecant of the Kummer variety is a projective line which meets K.X/ at three

points. Fay’s trisecant formula states that ifX D J.�/, thenK.X/ has a family of trisecants
parameterized by 4 points Ai , 1 � i � 4, on � . Gunning proved in [22] that, under cer-
tain nondegeneracy conditions, that the existence of a one-parametric family of trisecants
characterizes the Jacobians.

Gunning’s work was extended by Welters who proved that a Jacobian variety can
be characterized by the existence of a formal one-parameter family of flexes of the Kummer
variety [53]. A flex of the Kummer variety is a projective line which is tangent to K.X/ at
some point up to order 2. It is a limiting case of trisecants when the three intersection points
come together.

In [5] Arbarello and De Concini showed that the assumption in Welters’ character-
ization is equivalent to an infinite sequence of partial differential equations known as the
KP hierarchy, and proved that only a few first equations in the sequence are sufficient, by
giving an explicit bound for the number of equations, N D Œ.3=2/ggŠ�, based on the degree
of K.X/.

An algebraic argument based on earlier results of Burchnall, Chaundy, and the
author [10, 30, 31] characterizes the Jacobians using a commutative ring R of ordinary dif-
ferential operators associated to a solution of the KP hierarchy. A simple counting argument
then shows that only the first 2gC 1 time evolutions in the hierarchy are needed to obtainR.
The 2g C 1 KP flows yield a finite number of differential equations for the Riemann theta
function � ofX , to characterize a Jacobian. As for the number of equations, an easy estimate
shows that 4g2 is enough, although a more careful argument should yield a better bound.

Novikov’s conjecture, namely that just the first equation of the hierarchy (N D 1!)
suffices to characterize the Jacobians, i.e.,

an indecomposable symmetric matrix B with positive definite imaginary part is the
period matrix of a basis of normalized holomorphic differentials on a smooth algebraic curve
� if and only if there are vectors U ¤ 0; V;W , such that the function

u.x; y; t/ D 2@2
x ln �.Ux C Vy CW t CZjB/; (2.4)

satisfies the KP equation (1.4),

for quite some time seemed to be the strongest possible characterization within the reach of
the soliton theory.
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3. Welter’s conjecture

Novikov’s conjecture is equivalent to the statement that the Jacobians are character-
ized by the existence of length 3 formal jet of flexes.

In [54] Welters formulated the question: if the Kummer varietyK.X/ has one trise-
cant, does it follow that X is a Jacobian? In fact, there are three particular cases of the
Welters conjecture, corresponding to three possible configurations of the intersection points
.a; b; c/ of K.X/ and the trisecant:

(i) all three points coincide .a D b D c/;

(ii) two of them coincide .a D b ¤ c/;

(iii) all three intersection points are distinct .a ¤ b ¤ c ¤ a/.

Of course, the first two cases can be regarded as degenerations of the general case (iii).
However, when the existence of only one trisecant is assumed, all three cases are independent
and require their own approaches. The approaches used in [26,27] were based on the theories
of three main soliton hierarchies (see details in [39]): the KP hierarchy for (i), the 2D Toda
hierarchy for (ii) and the Bilinear Discrete Hirota Equations (BDHE) for (iii). Recently, pure
algebraic proofs of the first two cases of the trisecant conjecture were obtained in [4].

Theorem 3.1. An indecomposable principally polarized abelian variety .X; �/ is the Jaco-
bian variety of a smooth algebraic curve of genus g if and only if there exist g-dimensional
vectors U ¤ 0; V;A, and constants p and E such that one of the following three equivalent
conditions is satisfied:

(A) equality (1.1) with � D �.Ux C V t CZ/ and

 D
�.AC Ux C V t CZ/

�.Ux C V t CZ/
epxCEt (3.1)

holds, for an arbitrary vector Z;

(B) for all theta characteristics " 2 .1
2
Z=Z/g ,�

@V � @2
U � 2p@U C .E � p2/

�
‚Œ"; 0�.A=2/ D 0

(here and below @U , @V are the derivatives along the vectors U and V , respec-
tively);

(C) on the theta-divisor ‚ D ¹Z 2 X j �.Z/ D 0º, the equation�
.@V �/

2
� .@2

U �/
2
�
@2

U � C 2
�
@2

U �@
3
U � � @V �@U @V �

�
@U �

C
�
@2

V � � @4
U �
�
.@U �/

2
D 0 (3.2)

holds.

The direct substitution of expression (3.1) into equation (1.1) and the use of the
addition formula for the Riemann theta-functions shows the equivalence of conditions (A)
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and (B) in the theorem. Condition (B) means that the image of the point A=2 under the
Kummer map is an inflection point (case (i) of Welters’ conjecture).

Condition (C), which we call the abelian CM system, is the relation that is really
used in the proof of the theorem. Formally, it is weaker than the other two conditions because
its derivation does not use an explicit form of the solution  of equation (1.1), but requires
only that  is a meromorphic solution. The latter, as we have seen, implies equation (1.9).
Expanding the function � in a neighborhood of a point z 2 ‚ WD ¹z j �.z/ D 0º such that
@U �.z/ ¤ 0, and noting that the latter condition holds on a dense subset of ‚ since B is
indecomposable, it is easy to see that equation (1.9) is equivalent to (3.2).

Equation (1.1) is one of the two auxiliary linear problems for the KP equation. For
the author, the motivation to consider not the whole KP equation but just one of its auxiliary
linear problems was his earlier work [32] on the elliptic Calogero–Moser (CM) system, where
it was observed for the first time that equation (1.1) is all what one needs to construct the
elliptic solutions of the KP equation.

The proof of Welters’ conjecture was completed in [27]. First, here is the theorem
which treats case (ii) of the conjecture:

Theorem 3.2. An indecomposable, principally polarized abelian variety .X; �/ is the Jaco-
bian of a smooth curve of genus g if and only if there exist nonzero g-dimensional vectors
U ¤ A .mod ƒ/, V constants p; E, such that one of the following equivalent conditions
holds:

(A) equation (1.2) with � D �.Ux C V t CZ/ and  as in (3.1) holds for an arbi-
trary Z;

(B) the equations

@V‚Œ";0�
�
.A�U/=2

�
� ep‚Œ";0�

�
.ACU/=2

�
CE‚Œ";0�

�
.A�U/=2

�
D 0;

are satisfied for all " 2 .1
2
Z=Z/g . Here and below @V is the constant vector

field on Cg corresponding to the vector V ;

(C) the equation

@V

�
�.Z C U/�.Z � U/

�
@V �.Z/ D

�
�.Z C U/�.Z � U/

�
@2

V V �.Z/ (3.3)

is valid on the theta-divisor ‚ D ¹Z 2 X j �.Z/ D 0º.

Recall, that equation (1.2) is one of the two auxiliary linear problems for the 2D
Toda lattice equation (1.5). The idea to use it for the characterization of the Jacobians was
motivated by [26] and the author’s earlier work with Zabrodin [33], where a connection of
the theory of elliptic solutions of the 2D Toda lattice equations and the theory of the elliptic
Ruijsenaars–Schneider system was established.

Statement (B) is the second particular case of the trisecant conjecture: the line in
CP 2g �1 passing through the points K..A � U/=2/ and K..A C U/=2/ of the Kummer
variety is tangent to K.X/ at the point K..A � U/=2/.
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Condition (C) is what we call the abelian RS equation.
The affirmative answer to the third particular case, (iii), of Welters’ conjecture is

given by the following statement.

Theorem 3.3. An indecomposable, principally polarized abelian variety .X; �/ is the Jaco-
bian of a smooth curve of genus g if and only if there exist nonzero g-dimensional vectors
U ¤ V ¤ A ¤ U .modƒ/ such that one of the following equivalent conditions holds:

(A) equation (1.3) with �n.x/ D �.xU C nV CZ/ and

 n.x/ D
�.AC xU C nV CZ/

�.xU C nV CZ/
expCnE ; (3.4)

holds for an arbitrary Z;

(B) the equations

‚Œ"; 0�

�
A � U � V

2

�
C ep‚Œ"; 0�

�
AC U � V

2

�
D eE‚Œ"; 0�

�
AC V � U

2

�
;

are satisfied for all " 2 .1
2
Z=Z/g ;

(C) the equation
�.Z C U/�.Z � V /�.Z � U C V /

�.Z � U/�.Z C V / �.Z C U � V /
D �1 .mod �/ (3.5)

is valid on the theta-divisor ‚ D ¹Z 2 X j �.Z/ D 0º.

Under the assumption that the vector U spans an elliptic curve in X , Theorem 3.3
was proved in [29], where the connection of the elliptic solutions of BDHE and the so-called
elliptic nested Bethe ansatz equations was established. Condition (C) is its abelian general-
ization.

4. The problem of characterization of Prym varieties

An involution � W � ! � on a smooth algebraic curve � naturally determines an
involution �� W J.�/ 7! J.�/ on its Jacobian. The odd subspace with respect to this invo-
lution is a sum of an Abelian subvariety of lower dimension, called the Prym variety, and a
finite group. The restriction of the principal polarization of the Jacobian determines a polar-
ization of the Prym variety which is principal if and only if the original involution of the
curve has at most two fixed points. The problem of characterizing the locus Pg of Prym
varieties of dimension g in the space Ag of all principally polarized Abelian varieties is
well known and during its history has attracted considerable interest. This problem is much
harder than the Riemann–Schottky problem and until relatively recently its solution in terms
of a finite system of equations was completely open.

The problem of characterizing Prym varieties in the case of curves with an invo-
lution having two fixed points was solved in [25] in terms of the Schrödinger operators
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integrable with respect to one energy level. The theory of such operators was developed by
Novikov and Veselov in [51, 52], where the authors also introduced the corresponding non-
linear equation, the so-called Novikov–Veselov equation. Curves with an involution having
a pair of fixed points can be regarded as a limit of unramified covers. A characterization of
the Prym varieties in the latter case in terms of the existence of quadrisecants was obtained
the author and Grushevsky in [21].

The existence of families of quadrisecants for curves with an involution having at
most two fixed points was proved in [9,20]. An analogue of Gunning’s theorem asserting that
the existence of a family of secants characterizes Prym varieties was proved by Debarre [13].
We note that the existence of one quadrisecant does not characterize Prym varieties. A coun-
terexample to the naive generalization of Welters’ conjecture was constructed by Beauville
and Debarre in [9].

It was proved in [21] that the existence of a symmetric pair of quadrisecants is a
characteristic property for Prym varieties of unramified covers.

Theorem 4.1 (Geometric characterization of Prym varieties). An indecomposable princi-
pally polarized Abelian variety .X; �/ 2 Ag is in the closure of the locus of Prym vari-
eties of smooth unramified double covers if and only if there exist four distinct points
p1; p2; p3; p4 2 X , none of them of order two, such that the images of the Kummer map
of the eight points p1 ˙ p2 ˙ p3 ˙ p4 lie on two quadrisecants (the corresponding quadru-
ples of points are determined by the number of plus signs).

We should note that the proof of this statement required constructing and developing
the theory of a new integrable equation because before that, in contrast with all other cases, no
nonlinear equations whose algebro-geometric solutions are associated to unramified double
covers were known.

The auxiliary linear equation of the corresponding analogue of theNovikov–Veselov
equation is a discrete analogue of the potential Schrödinger equation considered first in [15].
It has the form

 nC1;mC1 � un;m. nC1;m �  n;mC1/ �  n;m D 0: (4.1)

The analog of condition (C) in the previous theorem which can also be thought as the abelian
generalization of some discrete time integrable system (which has not been studied so far)
is as follows:

(C) There are constants c˙
i ; i D 1; 2; 3 such that two equations (one for the top

choice of signs everywhere, and one for the bottom)

c�2
1 c2

3�.Z C U � V /�.Z � U ˙W /�.Z C V ˙W /

C c�2
2 c2

3�.Z � U C V /�.Z C U ˙W /�.Z � V ˙W /

D c�2
1 c�2

2 �.Z � U � V /�.Z C U ˙W /�.Z C V ˙W /

C �.Z C U C V /�.Z � U ˙W /�.Z � V ˙W / (4.2)

are valid on the theta divisor ¹Z 2 X W �.Z/ D 0º.
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5. Abelian solutions of the soliton equations

The general concept of abelian solutions of soliton equations was introduced by
T. Shiota and the author in [37, 38]. It provides a unifying framework for the theory of the
elliptic solutions of these equations and algebraic-geometrical solutions of rank 1 expressible
in terms of Riemann (or Prym) theta-function. A solution u.x; y; t/ of the KP equation is
called abelian if it is of the form

u D �2@2
x ln �.Ux C z; y; t/; (5.1)

where x, y, t 2 C, and z 2 Cn are independent variables, 0 ¤ U 2 Cn, and for all y, t
the function �.�; y; t/ is a holomorphic section of a line bundle L D L.y; t/ on an abelian
variety X D Cn=ƒ, i.e., for all � 2 ƒ it satisfies the monodromy relations (1.19).

In the case of sections of the canonical line bundle on a principally polarized
Abelian variety the corresponding theta-function is unique up to normalization. Hence the
ansatz (5.1) takes the form u D �2@2

x ln �.Ux C Z.y; t/C z/. Since flows commute with
each other, the dependence of the vector Z.y; t/ must be linear,

u D �2@2
x ln �.Ux C Vy CW t C z/: (5.2)

Therefore, the problem of classification of such Abelian solutions is the same problem as
posed by Novikov.

In the case of one-dimensional Abelian varieties, the problem of classification of
Abelian solutions is the problem of classification of the elliptic solutions. The theory of
elliptic solutions of the KP equation goes back to the remarkable work [1], where it was
found that the dynamics of poles of the elliptic (rational or trigonometric) solutions of the
Korteweg–de Vries equation can be described in terms of the elliptic (rational or trigono-
metric) Calogero–Moser (CM) system with certain constraints. It was observed in [32] that,
when the constraints are removed, this restricted correspondence becomes an isomorphism
when the elliptic solutions of the KP equation are considered. The elliptic solutions of the
KP equation are distinguished amongst the general algebraic-geometric solutions by the con-
dition that the corresponding vector U spans an elliptic curve embedded into the Jacobian of
the curve. Note that, for any vector U , the closure of the group ¹Ux j x 2 Cº; is an Abelian
subvariety X � J.�/. So when this closure does not coincide with the whole Jacobian, we
get nontrivial examples of Abelian solutions. Briefly, the main result on the classification
of Abelian solutions of KP obtained in [37] can be formulated as the statement that all the
Abelian solutions are obtained in this manner. To avoid some technical complications, we
give the formulation of the corresponding theorem in the situation of general position.

Theorem 5.1. Let u.x;y; t/ be an abelian solution of the KP such that the groupCU modƒ
is dense inX . Then there exists a unique algebraic curve� with smooth marked pointP 2 � ,
holomorphic imbedding j0 W X ! J.�/ and a torsion-free rank 1 sheaf F 2 Picg�1.�/

where g D g.�/ is the arithmetic genus of � , such that setting with the notation
j.z/ D j0.z/˝ F

�.Ux C z; y; t/ D �.z; y; t/b��x; y; t; 0; : : : j �;P; j.z/
�
; (5.3)
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whereb�.t1; t2; t3; : : : j �; P;F / is the KP � -function corresponding to the data .�; P;F /,
and �.z; y; t/ 6� 0 satisfies the condition @U � D 0.

Note that if � is smooth then

b��x; t2; t3; : : : j �;P; j.z/
�

D �
�
Ux C

X
Vi ti C j.z/

ˇ̌̌
B.�/

�
eQ.x;t2;t3;:::/; (5.4)

where Vi 2 Cn,Q is a quadratic form, andB.�/ is the period matrix of � . A linearization on
J.�/ of the nonlinear .y; t/-dynamics for �.z; y; t/ indicates the possibility of the existence
of integrable systems on spaces of theta-functions of higher level. ACMsystem is an example
of such a system for n D 1.

6. The Baker–Akhiezer functions—general scheme

The “only if” part of all the theorems above is a corollary of the general algebraic-
geometric construction of solutions of soliton equations based on a concept of the Baker–
Akhiezer function.

Let � be a nonsingular algebraic curve of genus g with N marked points P˛ and
fixed local parameters k�1

˛ .p/ in neighborhoods of the marked points. The basic scalar
multipoint and multivariable Baker–Akhiezer function  .t; p/ is a function of external
parameters

t D .t˛;i /; ˛ D 1; : : : ; N I i D 0; : : : I
X

˛

t˛;0 D 0; (6.1)

only finite number of which is nonzero, and a point p 2 � . For each set of the external
parameters t it is defined by its analytic properties on � .

Remark. For the simplicity we will begin with the assumption that the variables t˛;0

are integers, i.e., t˛;0 2 Z.

Lemma 6.1. For any set of g points 1; : : : ; g in a general position there exists a unique
(up to constant factor c.t/) function  .t; p/, such that:

(i) the function (as a function of the variable p 2 �) is meromorphic everywhere
except for the points P˛ and has at most simple poles at the points 1; : : : ; g

(if all of them are distinct);

(ii) in a neighborhood of the point P˛ the function  has the form

 .t; p/ D k
t˛;0
˛ exp

 
1X

iD1

t˛;ik
i
˛

! 
1X

sD0

�˛;s.t/k
�s
˛

!
; k˛ D k˛.p/: (6.2)

From the uniqueness of the Baker–Akhiezer function, we obtain

Theorem 6.1. For each pair .˛; n > 0/, there exists a unique operator L˛;n of the form

L˛;n D @n
˛;1 C

n�1X
j D0

u
.˛;n/
j .t/@

j
˛;1; (6.3)
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(where @˛;n D @=@t˛;n) such that

.@˛;n � L˛;n/ .t; p/ D 0: (6.4)

The idea of the proof of the theorems of this type proposed in [30,31] is universal.
For any formal series of the form (6.2), their exists a unique operator L˛;n of the

form (6.3) such that

.@˛;n � L˛;n/ .t; p/ D O.k�1
˛ / exp

 
1X

iD1

t˛;ik
i
˛

!
: (6.5)

The coefficients of L˛;n are universal differential polynomials with respect to �s;˛ . They can
be found after substitution of the series (6.2) into (6.5).

It turns out that if the series (6.2) is not formal, but is an expansion of the Baker–
Akhiezer function in the neighborhood of P˛ , the congruence (6.5) becomes an equality.
Indeed, let us consider the function  1,

 1 D .@˛;n � L˛;n/ .t; p/: (6.6)

It has the same analytic properties as  except for one. The expansion of this function in
the neighborhood of P˛ starts from O.k�1

˛ /. From the uniqueness of the Baker–Akhiezer
function it follows that  1 D 0 and the equality (6.4) is proved.

Corollary 6.1. The operators L˛;n satisfy the compatibility conditions

Œ@˛;n � L˛;n; @˛;m � L˛;m� D 0: (6.7)

Equations (6.7) are gauge invariant. For any function c.t/, operators

QL˛;n D cL˛;nc
�1

C .@˛;nc/c
�1 (6.8)

have the same form (6.3) and satisfy the same operator equations (6.7). The gauge transfor-
mation (6.8) corresponds to the gauge transformation of the Baker–Akhiezer functione .t; p/ D c.t/ .t; p/: (6.9)

In addition to differential equations (6.4), the Baker–Akhiezer function satisfies an infinite
system of differential-difference equations. Recall that the discrete variables t˛;0 are subject
to the constraint

P
˛ t˛;0 D 0. Therefore, only the first .N � 1/ of them are independent and

tN;0 D �
PN �1

˛D1 t˛;0. Let us denote by T˛ , ˛ D 1; : : : ; N � 1, the operator that shifts the
arguments t˛;0 ! t˛;0 C 1 and tN;0 ! tN;0 � 1, respectively. For the sake of brevity, in the
formulation of the next theorem we introduce the operator TN D T �1

1 .

Theorem 6.2. For each pair .˛; n > 0/, there exists a unique operator OL˛;n of the form

OL˛;n D T n
˛ C

n�1X
j D0

v
.˛;n/
j .t/T j

˛ ; v
.N;n/
0 .t/ D 0 (6.10)

such that

.@˛;n � OL˛;n/ .t; p/ D 0: (6.11)
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The proof is identical to that in the differential case.

Corollary 6.2. The operators OL˛;n satisfy the compatibility conditions

Œ@˛;n � OL˛;n; @˛;m � OL˛;m� D 0: (6.12)

Theta-functional formulae. It should be emphasized that the algebro-geometric construc-
tion is not a sort of abstract “existence” and “uniqueness” theorems. It provides the explicit
formulae for solutions in terms of the Riemann theta-functions. They are the corollary of the
explicit formula for the Baker–Akhiezer function.

Let ai ; bi 2 H1.�;Z/, i D 1; : : : ; g, be a basis of cycles on � with the canoni-
cal intersection matrix, i.e., ai � aj D bi � bj D 0, ai � bj D ıij , and let !i be the basis of
holomorphic differentials on � normalized by the equations

H
aj
!j D ıij . The matrix B

of their b-periods Bij D
H

bi
!j is indecomposable symmetric matrix with positive definite

imaginary part. By formula (2.1), it defines the Riemann theta-function �.z/ D �.zjB/.

Theorem 6.3. The Baker–Akhiezer function is given by the formula

 .t; p/ D c.t/ exp
�X

t˛;i�˛;i .p/
��.A.p/C

P
U˛;i t˛;i CZ/

�.A.p/CZ/
: (6.13)

Here the sum is taken over all the indices .˛; i > 0/ and over the indices .˛; 0/ with
˛ D 1; : : : ; N � 1, and

(a) �˛;i .p/ is the abelian integral, �˛;i .p/ D
R p

d�˛;i , corresponding to the
unique normalized,

H
ak
d�˛;i D 0, meromorphic differential on � , which for

i > 0 has the only pole of the form d�˛;i D d.ki
˛ CO.1// at the marked point

P˛ and for i D 0 has simple poles at the marked pointP˛ andPN with residues
˙1, respectively;

(b) 2�iU˛;j is the vector of b-periods of the differential d�˛;j , i.e.,

U k
˛;j D

1

2�i

I
bk

d�˛;j I

(c) A.p/ is the Abel transform, i.e., a vector with the coordinatesAi .p/D
R p
d!i ;

(d) Z is an arbitrary vector (it corresponds to the divisor of poles of Baker–
Akhiezer function).

Notice that from the bilinear Riemann relations it follows that the expansion of the
Abel transform near the marked point has the form

A.p/ D A.P˛/ �

1X
iD1

1

i
U˛;ik

�i
˛ : (6.14)

Example 1. One-point Baker–Akhiezer function. KP hierarchy. In the one-point case,
the Baker–Akhiezer function has an exponential singularity at a single point P1 and depends
on a single set of variables ti D t1;i . Note that in this case there is no discrete variable,
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t1;0 � 0. Let us choose the normalization of the Baker–Akhiezer function with the help of
the condition �1;0 D 1, i.e., an expansion of  in the neighborhood of P1 equals

 .t1; t2; : : : ; p/ D exp

 
1X

iD1

tik
i

! 
1C

1X
sD1

�s.t/k
�s

!
: (6.15)

Under this normalization (gauge), the corresponding operator Ln has the form

Ln D @n
1 C

n�2X
iD0

u
.n/
i @i

1: (6.16)

For example, for n D 2; 3, after redefinition x D t1 we have

L2 D @2
x � u; L3 D @3

x �
3

2
u@x � w; (6.17)

with u D 2@x�1, w D 3@x�2 C 3@2
x�1 �

3
2
u�1.

If we define y D t2, t D t3, then from (6.7), with n D 2 and m D 3, it follows that
u.x; y; t; t4; : : :/ satisfies the KP equation (1.4).

The normalization of the leading coefficient in (6.15) defines the function c.t/ in
(6.13). This gives the following formula for the normalized one-point Baker–Akhiezer func-
tion:

 .t; p/ D exp
�X

ti�i .p/
��.A.p/C

P
Ui ti CZ/�.Z/

�.
P
Ui ti CZ/�.A.p/CZ/

; (6.18)

(shifting Z if needed we may assumed that A.P1/ D 0). In order to get the explicit theta-
functional form of the solution of the KP equation, it is enough to take the derivative of the
first coefficient of the expansion at the marked point of the ratio of theta-functions in the
formula (6.18).

Using (6.14), we get the final formula for the algebro-geometric solutions of the KP
hierarchy [31], namely

u.t1; t2; : : :/ D �2@2
1 ln �

 
1X

iD1

Ui ti CZ

!
C const: (6.19)

Example 2. Two-point Baker–Akhiezer function. 2D Toda hierarchy. In the two-point
case, the Baker–Akhiezer function has exponential singularities at two points P˛; ˛ D 1; 2,
and depends on two sets of continuous variables t˛;i>0. In addition, it depends on one discrete
variable n D t1;0 D �t2;0. Let us choose the normalization of the Baker–Akhiezer function
with the help of the condition �1;0 D 1.

According to Theorem 6.1, the function satisfies two sets of differential equations.
The compatibility conditions (6.7) within the each set can be regarded as two copies of
the KP hierarchies. In addition the two-point Baker–Akhiezer function satisfies differential-
difference equations (6.10). The first two of them have the form

.@1;1 � T C u/ D 0; .@2;1 � wT �1/ D 0; (6.20)

where

u D .T � 1/�1;1.n; t/; w D e'n�'n�1 ; e'n.t/
D �2;0.n; t/: (6.21)
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The compatibility condition of these equations is equivalent to the 2D Toda equation with
� D t1;1 and � D t2;1. The explicit formula for the solution 'n.t/ is a direct corollary of the
explicit formula for the Baker–Akhiezer function,

'n.t˛;i>0/ D ln
�..nC 1/U C

P
U˛;i t˛;i CZ/

�.nU C
P
U˛;i t˛;i CZ/

; ˛ D 1; 2: (6.22)

Example 3. Three-point Baker–Akhiezer function. Starting with three-point case, in
which the number of discrete variables is 2, the Baker–Akhiezer function satisfies cer-
tain linear difference equations (in addition to the differential and the differential-difference
equations (6.4), (6.11)). The origin of these equations is easy to explain. Indeed, if all the con-
tinuous variables vanish, t˛;i>0 D 0, then the Baker–Akhiezer function n;m WD  .n;m;p/,
where nD �t1;0,mD �t2;0, is a meromorphic function having a pole of order nCm at P3

and zeros of order n and m at P1 and P2, respectively, i.e.,

 n;m 2 H 0
�
D C n.P3 � P1/Cm.P3 � P2/

�
; D D 1 C � � � C g : (6.23)

The functions  nC1;m;  n;mC1;  n;m are all in the linear spaceH 0.D C .nCmC 1/P3 �

nP1 �mP2/. By Riemann–Roch theorem, for a genericD the latter space is 2-dimensional.
Hence, these functions are linearly dependent, and they can be normalized such their linear
dependence takes the form

 m;nC1 D  mC1;n C um;n m;n (6.24)

with

un;m D
�mC1;nC1�m;n

�m;nC1�mC1;n

; �m;n WD �.mU C nV CZ/: (6.25)

At first glance, it seems that everything here is within the framework of classical algebraic-
geometry. What might be new and brought to this subject by the soliton theory is under-
standing that the discrete variables t˛;0 can be replaced by continuous ones. Of course, if in
the formula (6.13) the variable t˛;0 is not an integer, then  is not a single-valued function
on � . Nevertheless, because the monodromy properties of  do not change if the shift of the
argument by an integer, it satisfies the same type of linear equations with coefficients given
by the same type of formulae. It is necessary to emphasize that in such a form the difference
equation becomes a functional equation.

In the four-point case, there are three discrete variables n,m, and l . For each two of
them the Baker–Akhiezer function satisfies a difference equation. The compatibility of these
equations is expressed by the BDHE equation.

7. Key idea and steps of the proofs

As it was mentioned above, the proof of all the particular cases of Welters’ trisecant
conjecture uses different hierarchies: the KP, the 2D Toda, and the BDHE. In each case, there
are some specific difficulties, but the main ideas and structures of the proof are the same. As
an instructive example, we present in this section the idea and key steps of the proof of the
first particular case of Welters’ conjecture, namely, the proof of Theorem 3.1.
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As it was mentioned above, the implication (A) ! (C) is a direct corollary of (1.9).
Now we are going to show that (1.9), which is satisfied when (1.1) has one meromorphic
solution, is sufficient for the existence of one-parametric family of formal wave solutions
below.

The wave solution of (1.1) is a solution of the form

 .x; y; k/ D ekxC.k2Cb/t

 
1C

1X
sD1

�s.x; t/k
�s

!
: (7.1)

Lemma 7.1. Suppose that equations (1.9) for the zeros of �.x; t/ hold. Then there exist
meromorphic wave solutions of equation (1.1) that have simple poles at zeros q of � and are
holomorphic everywhere else.

Proof. Substitution of (7.1) into (1.1) gives a recurrent system of equations

2� 0
sC1 D @t�s C u�s � � 00

s : (7.2)

We are going to prove by induction that this system has meromorphic solutions with simple
poles at all the zeros q of � .

Let us expand �s at q to get

�s D
rs

x � q
C rs0 C rs1.x � q/C � � � : (7.3)

Suppose that �s is defined and equation (7.2) has a meromorphic solution. Then the right-
hand side of (7.2) has the zero residue at x D q, i.e.,

resq. P�s C u�s � � 00
s / D Prs C virs C 2rs1 D 0: (7.4)

We need to show that the residue of the next equation vanishes also. From (7.2) it follows
that the coefficients of the Laurent expansion for �sC1 are equal to

rsC1 D � Pqrs � 2rs0; 2rsC1;1 D Prs0 � rs1 C wrs C vrs0: (7.5)

These equations imply

PrsC1 C vrsC1 C 2rsC1;1 D �rs. Rq � 2w/ � Pq. Prs C vrs C 2rs1/ D 0; (7.6)

and the lemma is proved.

�-periodic wave solutions. Our next step in the proof is to fix a translation-invariant nor-
malization of �s which defines wave functions uniquely up to an x-independent factor. It is
instructive to consider first the case of the periodic potentials u.x C 1; t/ D u.x; t/ (see the
details in [36]).

Equations (7.2) are solved recursively by the formulae

�sC1.x; t/ D csC1.t/C �0
sC1.x; t/; (7.7)

�0
sC1.x; t/ D

1

2

Z x

x0

. P�s � � 00
s C u�s/dx D 0; (7.8)

where cs.t/ are arbitrary functions of the variable t . Let us show that the periodicity condi-
tion �s.x C 1; t/ D �s.x; t/ defines the functions cs.t/ uniquely up to an additive constant.
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Assume that �s�1 is known and satisfies the condition that the corresponding function �0
s

is periodic. The choice of the function cs.t/ does not affect the periodicity property of �s ,
but it does affect the periodicity in x of the function �0

sC1.x; t/. In order to make �0
sC1.x; t/

periodic, the function cs.t/ should satisfy the linear differential equation

@tcs.t/C B.t/cs.t/C

Z x0C1

x0

�
P�0
s .x; t/C u.x; t/�0

s .x; y/
�
dx; (7.9)

where B.t/ D
R x0C1

x0
udx. This defines cs uniquely up to a constant.

In the general case, when u is quasiperiodic, the normalization of the wave functions
is defined along the same lines.

Let YU D hCU i be the Zariski closure of the group CU D ¹Ux j x 2 Cº in X .
Shifting YU if needed, we may assume, without loss of generality, that YU is not in the
singular locus † defined as the @U -invariant subset of the theta-divisor ‚, i.e., YU 6� †.
Then, for a sufficiently small t , we have YU C V t … † as well. Consider the restriction of
the theta-function onto the affine subspace Cd C V t , where Cd WD .the identity component
of ��1.YU //, and � W Cg ! X D Cg=ƒ is the universal covering map of X :

�.z; t/ D �.z C V t/; z 2 Cd : (7.10)

The function u.z; t/ D �2@2
U ln � is periodic with respect to the latticeƒU D ƒ\ Cd and,

for a fixed t , has a double pole along the divisor ‚U .t/ D .‚ � V t/ \ Cd .

Lemma 7.2. Let equations (1.9) for the zeros of �.Ux C z; t/ hold. Then:

(i) equation (1.1) with the potential u.Ux C z; t/ has a wave solution of the form
 D ekxCk2y�.Ux C z; t; k/ such that the coefficients �s.z; y/ of the formal
series

�.z; t; k/ D ebt .1C

1X
sD1

�s.z; tk
�s/ (7.11)

are meromorphic functions of the variable z 2 Cd with a simple pole at the
divisor ‚U .t/,

�s.z C �; t/ D �s.z; t/ D
�s.z; t/

�.z; t/
I (7.12)

(ii) �.z; t; k/ is quasiperiodic with respect to ƒU , i.e., for � 2 ƒU ,

�.z C �; t; kI z0/ D �.z; t; kI z0/��.k/I (7.13)

(iii) �.z; t; k/ is unique up to a @U -invariant factor which is an exponent of the
linear form,

�1.z; t; k/ D �.z; t; k/e.`.k/;z/;
�
`.k/; U

�
D 0: (7.14)
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The spectral curve. The next goal is to show that �-periodic wave solutions of equation
(1.1) are common eigenfunctions of rings of commuting operators.

Note that a simple shift z ! z C Z, where Z … †, gives �-periodic wave solu-
tions with meromorphic coefficients along the affine subspaces Z C Cd . These �-periodic
wave solutions are related to each other by a @U -invariant factor. Therefore choosing, in a
neighborhood of any Z … †, a hyperplane orthogonal to the vector U and fixing initial data
on this hyperplane at y D 0, we define the corresponding series �.z C Z; t; k/ as a local
meromorphic function of Z and the global meromorphic function of z.

Lemma 7.3. Let the assumptions of Theorem 3.1 hold. Then there is a unique pseudo-
differential operator

L.Z; @x/ D @x C

1X
sD1

ws.Z/@
�s
x (7.15)

such that

L.Ux C Vy CZ; @x/ D k ; (7.16)

where  D ekxCk2y�.Ux C Z; t; k/ is a �-periodic solution of (1.1). The coefficients
ws.Z/ of L are meromorphic functions on the abelian variety X with poles along the divi-
sor ‚.

Proof. Let  be a �-periodic wave solution. The substitution of (7.11) into (7.16) gives a
system of equations that recursively define ws.Z; t/ as differential polynomials in �s.Z; t/.
The coefficients of  are local meromorphic functions of Z, but the coefficients of L are
well-defined global meromorphic functions on Cg n † because different �-periodic wave
solutions are related to each other by a @U -invariant factor, which does not affect L. The
singular locus is of codimension� 2. Then Hartogs’ holomorphic extension theorem implies
that ws.Z; t/ can be extended to a global meromorphic function on Cg .

The translational invariance of u implies the translational invariance of the
�-periodic wave solutions. Indeed, for any constant s, the series �.Vs C Z; t � s; k/ and
�.Z; t; k/ correspond to �-periodic solutions of the same equation. Therefore, they coincide
up to a @U -invariant factor. This factor does not affect L. Hence, ws.Z; t/ D ws.V t CZ/.

The �-periodic wave functions corresponding to Z and Z C �0 for any �0 2 ƒ are
also related to each other by a @U -invariant factor. Hence, ws are periodic with respect toƒ
and therefore are meromorphic functions on the abelian varietyX . The lemma is proved.

Consider now the differential parts of the pseudodifferential operators Lm. Let Lm
C

be the differential operator such that Lm
� D Lm � Lm

C D Fm@
�1 C O.@�2/. The leading

coefficient Fm of Lm
� is the residue of Lm:

Fm D res@ Lm: (7.17)

From the definition of L, it follows that Œ@t � @2
x C u;Ln� D 0. Hence,�

@t � @2
x C u;Lm

C

�
D �

�
@t � @2

x C u;Lm
�

�
D 2@xFm: (7.18)
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The functions Fm are differential polynomials in the coefficients ws of L. Hence,
Fm.Z/ are meromorphic functions on X . The next statement is crucial for the proof of the
existence of commuting differential operators associated with u.

Lemma 7.4 ([26]). The abelian functions Fm have at most second order poles on the divi-
sor ‚.

Let OF be a linear space generated by ¹Fm; m D 0; 1; : : :º, where we set F0 D 1. It
is a subspace of the 2g -dimensional space of the abelian functions that have at most second
order poles at ‚. Therefore, for all but Og D dim OF positive integers n, there exist constants
ci;n such that

Fn.Z/C

n�1X
iD0

ci;nFi .Z/ D 0: (7.19)

Let I denote the subset of integers n for which there are no such constants. We call this
subset the gap sequence.

Lemma 7.5. Let L be the pseudodifferential operator corresponding to a �-periodic wave
function  constructed above. Then, for the differential operators

Ln D Ln
C C

n�1X
iD0

ci;nLn�i
C D 0; n … I; (7.20)

the equations

Ln D an.k/ ; an.k/ D kn
C

1X
sD1

as;nk
n�s; (7.21)

where as;n are constants, hold.

Proof. First note that from (7.18) it follows that�
@t � @2

x C u;Ln

�
D 0: (7.22)

Hence, if  is a �-periodic wave solution of (1.1) corresponding to Z … †, then Ln is
also a formal solution of the same equation. That implies the equation Ln D an.Z; k/ ,
where a is @U -invariant. The ambiguity in the definition of  does not affect an. Therefore,
the coefficients of an are well-defined global meromorphic functions on Cg n †. The @U -
invariance of an implies that an, as a function of Z, is holomorphic outside of the locus.
Hence it has an extension to a holomorphic function on Cg . Equations (7.13) imply that an

is periodic with respect to the lattice ƒ. Hence an is Z-independent. Note that as;n D cs;n,
s � n. The lemma is proved.

The operator Lm can be regarded as a Z … †-parametric family of ordinary differ-
ential operators LZ

m whose coefficients have the form

LZ
m D @n

x C

mX
iD1

ui;m.Ux CZ/@m�i
x ; m … I: (7.23)
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Corollary 7.1. The operators LZ
m commute with each other,�
LZ

n ; L
Z
m

�
D 0; Z … †: (7.24)

From (7.21) it follows that ŒLZ
n ; L

Z
m� D 0. The commutator is an ordinary differ-

ential operator. Hence, the last equation implies (7.24).

Lemma 7.6. Let AZ ; Z … †, be a commutative ring of ordinary differential operators
spanned by the operators LZ

n . Then there is an irreducible algebraic curve � of arithmetic
genus Og D dim OF such that AZ is isomorphic to the ringA.�;P0/ of the meromorphic func-
tions on � with the only pole at a smooth point P0. The correspondence Z ! AZ defines a
holomorphic imbedding of X n† into the space of torsion-free rank 1 sheaves F on �

j W X n† 7! Pic.�/: (7.25)

The statement of the lemma is a corollary of the following fundamental fact from
the theory of commuting differential operators

Theorem 7.1 ([10,30,31,43]). There is a natural correspondence

A $
®
�;P0;

�
k�1

�
1
;F
¯

(7.26)

between regular at x D 0 commutative rings A of ordinary linear differential operators
containing a pair of monic operators of coprime orders, and sets of algebraic-geometrical
data ¹�;P0; Œk

�1�1;F º, where � is an algebraic curve with a fixed first jet Œk�1�1 of a local
coordinate k�1 in the neighborhood of a smooth point P0 2 � and F is a torsion-free rank 1
sheaf on � such that

H 0.�;F / D H 1.�;F / D 0: (7.27)

The correspondence becomes one-to-one if the rings A are considered modulo conjugation
A0 D g.x/Ag�1.x/.

Note that in [10,30,31] the main attention was paid to the generic case of the com-
mutative rings corresponding to smooth algebraic curves. The invariant formulation of the
correspondence given above is due to Mumford [43].

The algebraic curve � is called the spectral curve of A. The ring A is isomorphic
to the ring A.�;P0/ of meromorphic functions on � with the only pole at the point P0. The
isomorphism is defined by the equation

La 0 D a 0; La 2 A; a 2 A.�;P0/: (7.28)

Lemma 7.7 ([26]). The linear space OF generated by the abelian functions ¹F0 D 1;

Fm D res@Lmº is a subspace of the space H generated by F0 and by the abelian func-
tionsHi D @U @zi

ln �.Z/.

The construction of multivariate Baker–Akhiezer functions presented for smooth
curves is a manifestation of a general statement valid for singular spectral curves: flows of the
KP hierarchy define deformations of the commutative rings A of ordinary linear differential
operators. The spectral curve is invariant under these flows. For a given spectral curve � ,
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the orbits of the KP hierarchy are isomorphic to the generalized Jacobian J.�/ D Pic0.�/,
which is the equivalence classes of zero degree divisors on the spectral curve (see the details
in [30, 31, 47, 48]). Hence, for any Z … †, the orbit of the KP flows defines a holomorphic
imbedding

iZ W J.�/ 7! X: (7.29)

From (7.29) it follows that J.�/ is compact.
The generalized Jacobian of an algebraic curve is compact if and only if the curve

is smooth [14]. On a smooth algebraic curve, a torsion-free rank 1 sheaf is a line bundle, i.e.,
Pic.�/ D J.�/. Then (7.25) implies that iZ is an isomorphism. Note that for the Jacobians
of smooth algebraic curves, the bad locus † is empty [48], i.e., the imbedding j in (7.25) is
defined everywhere on X and is inverse to iZ . Theorem 3.1 is proved.

8. Characterizing Jacobian of curves with involution

As it was mentioned in the Introduction, the characterization problem of Jacobians
of curves with involution addressed in [28] was motivated by the construction of solutions
of two-dimensional integrable systems with symmetries. To the best of our knowledge, from
a pure algebraic-geometrical perspective, the characterization problem of curves with invo-
lution in terms of their Jacobians has never been considered in its full generality. The only
known to the author works in this direction are [8,17,44].

Two characterizations which distinguish such Jacobians were obtained in [28]within
the framework of cases (i) and (ii) of Welter’s conjecture. Both of them are limited to the
case of involutions having at least one fixed point, i.e., to two-sheeted ramified covers.

In a certain sense, the setup we consider—the Jacobian and the Prym variety in it—
resembles the setup arising in the famous Schottky–Yung relations, and it is tempting to find
a way to get these relations by means of the soliton theory. Unfortunately, this challenging
problem remains open.

The first characterization, related to the KP theory, is limited to the case of ramified
cover for the obvious reason—a curve with one marked point is used in constructing its
solutions.

Theorem 8.1. An indecomposable principally polarized abelian variety .X; �/ is the Jaco-
bian variety of a smooth algebraic curve � of genus g with involution � W � ! � having
at least one point fixed if and only if there exist g-dimensional vectors U ¤ 0; V; A; � and
constants �1; �2; b1 such that:

Condition (A) of Theorem 3.1 is satisfied and
(B) the intersection of the theta-divisor ‚ D ¹Z 2 X j �.Z/ D 0º with a shifted

abelian subvariety Y � X which is the Zariski closure of �.Ux C �/ � X is reduced and
the equation

@V � j‚\Y D 0 (8.1)

holds.
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Moreover, the locus … of points � 2 X for which equation (8.1) holds is the locus
of points for which the equation � C �.�/ D 2P CK 2 X , where K is the canonical class,
holds.

Condition (B) implies
(C) there is a constant b2 such that the equality

@U @V ln � j OY
D b2 (8.2)

holds on Y .
From the addition theorem (2.3), it follows that (8.2) is equivalent to the condition

that the vector .@U @VK.0/ � b2K.0// is orthogonal to the image under the Kummer map
K.…/ of the shifted abelian subvariety OY :X

"2..1=2/Z=Z/g

�
@U @V‚Œ"; 0�.0/ � b2‚Œ"; 0�.0/

�
‚Œ"; 0�.z/ D 0; z 2 OY ; (8.3)

whence follows the condition of a kind of flatness of the image under the Kummer map of the
shifted Prym subvariety… � X , that is, K.…/ lies in a proper (projective) linear subspace.

The explicit meaning (B) is as follows. As shown in [19,48], the affine line Ux CZ

is not contained in ‚ for any vector Z. Hence, the function �.x; t/ WD �.Ux C V t C z/,
z 2 Y is a nontrivial entire function of x. The statement that ‚ \ Y is reduced means that
the zeros q.t/ of � , considered as a function of x (depending on t ), are generically simple,
�.q.t/; t/ D 0, �x.q.t/; t/ ¤ 0. Then (8.2) is the equation

@tqjtD0 D 0: (8.4)

In the case when U spans an elliptic curve in the Jacobian, the statement that from
(B) it follows that the corresponding curve � admits an involution is obvious. Indeed, in that
case the curve is the normalization of the spectral curve ofN -point elliptic CM systems. The
latter is defined by the characteristic equation

det
�
k � I � L.z/

�
D 0

of the matrix L.z/ defined in (1.13) with qi D qi .0/ and pi D Pqi .0/, where qi .t/ are roots
of the equation �.Ux C V t C z/ D 0. If equation (8.4) holds, i.e., pi D 0, then it is easy
to see that the matrix L.z/ satisfies the equation Lt .z/ D �L.�z/. The latter implies that
the curve is invariant under the involution .k; z/! .�k;�z/. That observation made in [34]

was the main motivation behind [28].
At the heart of the proof in the general case is the statement that if (B) is satisfied

then there is a local coordinate k�1 such that if  .x; t; k/ is the wave solution of (1.1) as in
Lemma 7.2 then  .x; 0;�k/ D  �.x; 0; k/ where  � is a wave solution of the equation

.@t C @2
x � u/ �.x; t; k/ D 0; (8.5)

which is formally adjoint to (1.1).
The second characterization of the Jacobians of curves with involution is related

to the 2D Toda theory. A priori, unlike in the KP case, there is no obvious reason why it
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is not applicable to all types of involution, including unramified covers. It turned out that
there is an obstacle for the case of unramified covers, and our second theorem also gives a
characterization of the Jacobians of curves with involution with fixed points.

Theorem 8.2. An indecomposable, principally polarized abelian variety .X; �/ is the Jaco-
bian of a smooth curve of genus g with involution having fixed points if and only if there exist
nonzero g-dimensional vectors U ¤ A .modƒ/; V; �, constants �0; �1; b1 such that:

Condition (A) of Theorem 3.2 is satisfied and
(B) (i) the intersection of the theta-divisor with the shifted Abelian variety Y , which

is a closure of �.Ux C �/, is reduced and is not invariant under the shift by U , ‚ \ Y ¤

.‚C U/ \ Y , and (ii) the equation��
@V �.z/

�2
C �.z C U/�.z � U/

�ˇ̌
z2‚\Y

D 0 (8.6)

holds.
Moreover, the locus of the points � 2 X for which equation (8.6) holds is the locus

of point for which the equation � C �� D K C P1 C P2 2 J.�/, where .P1; P2/ are points
of the curves permuted by � and such that U D A.P2/ � A.P1/ is satisfied.

Remark 1. In the case when U spans an elliptic curve in the Jacobian, the statement of the
theorem was proved first in [40].

The geometric form of the characterization is the condition that the vector
.2@2

VK.0/ � b2K.U / � b3K.0// is orthogonal to the image under the Kummer map of
the abelian subvariety…:X

"2..1=2/Z=Z/g

�
2@2

V‚Œ"; 0�.0/ � b2‚Œ"; 0�.U / � b3‚Œ"; 0�.0/
��
‚Œ"; 0�.z/ D 0; (8.7)

where z 2 … and b3 is a constant.

9. Nonlocal generating problem

Until now our main focus was on equations that arise from the local generating
properties of two-dimensional linear operators with meromorphic coefficients. The nonlocal
generating properties of the same linear operators do not lead directly to equations of motion
for zeros of the � function. To begin with, they generate the Lax representation of these
equations. That nonlocal perspective is known for the elliptic case. Its abelian generalization
is an open and challenging problem.

Let D be a linear differential or difference operator in two variables .x; t/ with
coefficients which are scalar or matrix elliptic functions of the variable x (i.e., meromor-
phic double-periodic functions with the periods 2!˛; ˛ D 1; 2). We do not assume any
special dependence of the coefficients with respect to the second variable. Then it is natural
to introduce a notion of double-Bloch solutions of the equation

D‰ D 0: (9.1)
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We call a meromorphic vector-function f .x/ that satisfies the following monodromy prop-
erties:

f .x C 2!˛/ D B˛f .x/; ˛ D 1; 2; (9.2)

a double-Bloch function. The complex numbers B˛ are called Bloch multipliers. (In other
words, f is a meromorphic section of a vector bundle over the elliptic curve.)

In the most general form, a problem considered in the framework of elliptic pole sys-
tems is to classify and to construct all the operatorsL such that equation (9.1) has sufficiently
many double-Bloch solutions.

It turns out that the existence of the double-Bloch solutions is so restrictive that only
in exceptional cases such solutions do exist. A simple and general explanation of that is due
to the Riemann–Roch theorem. LetD be a set of points qi , i D 1; : : : ;m, on the elliptic curve
�0 with multiplicities di and let V D V.DIB1; B2/ be a linear space of the double-Bloch
functions with the Bloch multipliers B˛ that have poles at qi of order less than or equal to
di and holomorphic outsideD. Then the dimension ofD is equal to

dimD D degD D

X
i

di :

Now let qi depend on the variable t . Then for f 2D.t/, the function Df is a double-Bloch
function with the same Bloch multipliers, but in general with higher orders of poles because
taking derivatives and multiplication by the elliptic coefficients increase orders. Therefore,
the operator D defines a linear operator

D jD W V
�
D.t/IB1; B2

�
7! V

�
D0.t/IB1; B2

�
; N 0

D degD0 > N D degD;

and (9.1) is always equivalent to an overdetermined linear system of N 0 equations in N
unknown variables which are the coefficients ci D ci .t/ of an expansion of ‰ 2 V.t/ with
respect to a basis of functions fi .t/ 2 V.t/. With some exaggeration, one may say that in the
soliton theory the representation of a system in the form of the compatibility condition of an
overdetermined system of the linear problems is considered as equivalent to integrability.

In all of known examples, N 0 D 2N and the overdetermined system of equations
has the form

LC D kC; @tC D MC; (9.3)

where L and M are N � N matrix functions depending on a point z of the elliptic curve
as a parameter. A compatibility condition of (9.3) has the standard Lax form @tL D ŒM;L�,
and is equivalent to a finite-dimensional integrable system.

The basis in the space of the double-Bloch functions can be written in terms of the
fundamental function ˆ.x; z/ defined by the formula (1.14). Note that ˆ.x; z/ is a solution
of the Lame equation �

d2

dx2
� 2}.x/

�
ˆ.x; z/ D }.z/ˆ.x; z/: (9.4)
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From the monodromy properties, it follows that ˆ, considered as a function of z, is doubly-
periodic,

ˆ.x; z C 2!˛/ D ˆ.x; z/;

though it is not elliptic in the classical sense due to an essential singularity at z D 0 for x ¤ 0.
As a function of x, the function ˆ.x; z/ is a double-Bloch function, i.e.,

ˆ.x C 2!˛; z/ D T˛.z/ˆ.x; z/; T˛.z/ D exp
�
2!˛�.z/ � 2�.!˛/z

�
:

In the fundamental domain of the lattice defined by 2!˛ , the function ˆ.x; z/ has a unique
pole at the point x D 0,

ˆ.x; z/ D x�1
CO.x/: (9.5)

The gauge transformation
f .x/ 7! Qf .x/ D f .x/eax ;

where a is an arbitrary constant, does not change the poles of any function and transforms a
double Bloch-function into a double-Bloch function. If B˛ are Bloch multipliers for f , then
the Bloch multipliers for Qf are equal to

QB1 D B1e
2a!1 ; QB2 D B2e

2a!2 : (9.6)

The two pairs of Bloch multipliers that are connected with each other through the relation
(9.6) for some a are called equivalent. Note that for all equivalent pairs of Bloch multipliers,
the product B!2

1 B
�!1
2 is a constant depending on the equivalence class only.

From (9.5) it follows that a double-Bloch function f .x/ with simple poles qi in the
fundamental domain and with Bloch multipliers B˛ (such that at least one of them is not
equal to 1) may be represented in the form

f .x/ D

NX
iD1

ciˆ.x � qi ; z/e
kx ; (9.7)

where ci is a residue of f at xi and z, k are parameters related by

B˛ D T˛.z/e
2!˛k : (9.8)

(Any pair of Bloch multipliers may be represented in the form (9.8) with an appropriate
choice of the parameters z and k.)

To prove (9.7), it is enough to note that as a function of x the difference of the
left- and right-hand sides is holomorphic in the fundamental domain. It is a double-Bloch
function with the same Bloch multipliers as the function f . But a nontrivial double-Bloch
function with at least one of the Bloch multipliers that is not equal to 1 has at least one pole
in the fundamental domain.
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Example: elliptic CM system. Let us consider equation (1.1) with an elliptic (in x) poten-
tial u.x; t/. Suppose that equation (1.1) has N linearly independent double-Bloch solutions
with equivalent Bloch multipliers andN simple poles qi .t/. The assumption that there exist
N linearly independent double-Bloch solutions with equivalent Bloch multipliers implies
that they can be written in the form

‰ D

NX
iD1

ci .t; k; z/ˆ
�
x � qi .t/; z

�
ekxCk2t ; (9.9)

with the same z but different values of the parameter k.
Let us substitute (9.9) into (1.1). Then (1.1) is satisfied if and if we get a function

holomorphic in the fundamental domain. First of all, we conclude that u has poles at qi only.
The vanishing of the triple poles .x � qi /

�3 implies that u.x; t/ has the form

u.x; t/ D 2

NX
iD1

}
�
x � qi .t/

�
: (9.10)

The vanishing of the double poles .x � qi /
�2 gives the equalities that can be written as a

matrix equation for the vector C D .ci /,�
L.t; z/C kI

�
C D 0; (9.11)

where I is the unit matrix and the Lax matrix L.t; z/ is defined in (1.13). Finally, the van-
ishing of the simple poles gives the equations�

@t �M.t; z/
�
C D 0; (9.12)

where

Mij D

�
}.z/ � 2

X
j ¤i

}.qi � qj /

�
ıij � 2.1 � ıij /ˆ

0.qi � qj ; z/: (9.13)

The existence ofN linearly independent solutions for (1.1) with equivalent Bloch multipliers
implies that (9.11) and (9.12) haveN independent solutions corresponding to different values
of k. Hence, as a compatibility condition, we get the Lax equation PLD ŒM;L� for the elliptic
CM system.
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Semiorthogonal
decompositions
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Abstract

We discuss recent developments in the study of semiorthogonal decompositions of alge-
braic varieties with an emphasis on their behavior in families.
First, we overview new results concerning homological projective duality.
Then we introduce residual categories, discuss their relation to small quantum coho-
mology, and compute Serre dimensions of residual categories of complete intersections.
After that we define simultaneous resolutions of singularities and describe a construction
that works in particular for nodal degenerations of even-dimensional varieties.
Finally, we introduce the concept of absorption of singularities which works under appro-
priate assumptions for nodal degenerations of odd-dimensional varieties.
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1. Introduction

Semiorthogonal decompositions of derived categories of algebraic varieties were
introduced into the realm of algebraic geometry at the turn of the millennium by Bondal and
Orlov [18,19]; since then the theory of semiorthogonal decompositions has become one of its
central topics. Some advances in this theory have been surveyed in [59]; in this sequel paper
we discuss the progress obtained after 2014.

An important point of view in algebraic geometry, explained by Grothendieck, is
that geometry should be studied in a relative situation. Thus, the central object of algebraic
geometry is a morphism X ! B , i.e., a family of schemes ¹Xbºb2B parameterized by the
points b 2 B of a base scheme. Translating this point of view into the context of semiorthog-
onal decompositions, we understand that we should study semiorthogonal decompositions
of schemes X=B , especially B-linear semiorthogonal decompositions.

The first step in this direction has been made in [51], where the notions of
B-linear triangulated categories and semiorthogonal decompositions have been introduced:
an enhanced triangulated category D is B-linear if it is endowed with a monoidal action
of the monoidal category Dperf.B/ of perfect complexes on B . For instance, if f W X ! B

is a scheme over B , the bounded derived category of coherent sheaves Db.X/ is B-linear
(where F 2 Dperf.B/ acts on Db.X/ by G 7! G ˝ f �F for G 2 Db.X/) and a semiorthog-
onal decomposition

Db.X/ D hD1; : : : ; Dni (1)

is B-linear if Di ˝ f �.Dperf.B// � Di for each i .
The next major step in this direction has been performed in [58], where the notion of

base change for B-linear semiorthogonal decompositions has been introduced: given a B-
linear semiorthogonal decomposition (1) and a morphism B 0 ! B , a B 0-linear semiorthog-
onal decomposition

Db�X �B B 0
�

D hD1;B 0 ; : : : ; Dn;B 0i

has been constructed (under appropriate technical assumptions). In particular, for each
point b 2 B of the base scheme B , the base change categories Di;b are defined. This allows
one to consider a B-linear category Di as a family of triangulated categories ¹Di;bºb2B

parameterized by the points b 2 B of the base scheme B .
In this survey we discuss several independent topics, all of which, however, corre-

spond to various semiorthogonal decompositions defined in families.
In Sections 2–3 we discuss some standard material, developing and deepening

results from [59]. First of all, we describe the main advances in the theory of homologi-
cal projective duality (HPD) (see [52], [59, §3]), namely categorical joins and categorical
cones. These categorical constructions provide appropriate homological counterparts of
classical constructions of projective geometry and are compatible with HPD. This theory
itself relies on a “noncommutative” (or rather categorical) version of HPD that was devel-
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oped by Alex Perry in [88], so we start Section 2 with a short survey of noncommutative
HPD; Section 2.1 can also serve as an introduction to HPD.

After that in Section 2.2, we introduce the construction of categorical joins and
explain in what sense it is compatible with HPD, then in Section 2.3 we state the nonlin-
ear HPD theorem, a generalization of the fundamental theorem of HPD in which linear
sections of varieties are replaced by arbitrary intersections, and then in Section 2.4 we intro-
duce the construction of categorical cones (a particular case of categorical joins), and com-
bining it with HPD for smooth quadrics and the nonlinear HPD theorem, we deduce the
quadratic HPD theorem. As an application of these results we deduce the duality conjecture
for Gushel–Mukai varieties. Finally, in Section 2.5 we list a number of important develop-
ments in HPD not covered in this survey.

In Section 3 we introduce residual categories: given a semiorthogonal decomposi-
tion

Db.X/ D
˝
R; B; B.1/; : : : ; B.m � 1/

˛
; (2)

where the line bundle OX .1/ is an mth root of the anticanonical line bundle of a Fano vari-
ety X , i.e., !�1

X Š OX .m/, and B is an admissible subcategory of Db.X/, the leftmost
component R of (2) is called the residual category. In Section 3.2 we explain a mirror sym-
metry interpretation of residual categories, which justifies conjectures relating the structure
of the semiorthogonal decomposition (2) and residual category R to the small quantum
cohomology ring of X , stated in Section 3.3. Further, in Section 3.4 we specify the pre-
dictions of the above conjectures for some homogeneous varieties, namely Grassmannians
and adjoint and coadjoint homogeneous varieties; remarkably, in all these cases the resid-
ual categories have a combinatorial nature: when nonzero they are generated by completely
orthogonal exceptional collections or equivalent to derived categories of Dynkin quivers.
Finally, in Sections 3.5–3.6 we discuss the residual categories of hypersurfaces and com-
plete intersections in projective spaces. In these cases the structure of residual categories is
much more complicated. In the case of hypersurfaces, the residual categories have a frac-
tional Calabi–Yau property, and in the case of complete intersections, they are fractional
Calabi–Yau up to an explicit spherical twist; using this we show that they provide interesting
examples of categories with distinct upper and lower Serre dimensions.

In the last part of this survey (Sections 4–5) we discuss two ways that allow us
to find a nice categorical replacement for a degeneration of schemes, i.e., for a flat proper
morphism f W X ! B to a smooth pointed curve .B; o/ such that

• the morphism f oW D f jXo W Xo ! Bo is smooth, and

• the central fiber X WD Xo of f is singular.

Here and below we denote

Bo
WD B n ¹oº; Xo

WD X �B Bo; Xo WD X �B ¹oº; (3)
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so that we have the following commutative diagram with Cartesian squares:

X D Xo
� � i //

��

X

f

��

Xo? _
joo

f o

��
¹oº
� � // B Bo? _oo

(4)

We show that, in the case where f is projective and the central fiber X D Xo has only
ordinary double points as singularities, under appropriate assumptions, one can find

• a smooth and proper B-linear “modification” D of the derived category Db.X/

of the total space, and

• a smooth and proper “modification” Do of the derived category Db.Xo/ of the
central fiber

such thatDo is the base change ofD along the embedding ¹oº ,! B . The precise meaning of
the word “modification” depends on the parity of dim.X/ and is explained in the following
two theorems. For simplicity, we assume that the central fiber has a single ordinary double
point.

In the case where dim.X/ is even, we construct a simultaneous categorical resolu-
tion of singularities of X, which is a special case of a categorical resolution of singularities
introduced in [55] and [59, §4].

Theorem 1.1 (Theorem 4.5). Assume given a commutative diagram (4) with Cartesian
squares, where f is a flat projective morphism to a smooth pointed curve such that f o is
smooth and the central fiber X has a single ordinary double point xo 2 X .

If dim.X/ is even and X has an ordinary double point at xo, there is a smooth and
proper B-linear triangulated category D and a commutative diagram

Dperf.X/

��
o

��

i� // Dperf.X/

��

��

j �

//
i�

oo Dperf.Xo/

Do

�o�

��

i� //
D

��

��

j �

//
i�

oo DBo

Db.X/
i� // Db.X/

j �

//
i�

oo Db.Xo/

where Do and DBo are the base change categories of D , the functor �� is left adjoint to ��,
��

o is left adjoint to �o�, and

�� ı ��
Š id; �o� ı ��

o Š id :

In particular, D provides a categorical resolution of singularities for X and Do provides a
categorical resolution of singularities for X .

In fact, even more is true—the functors �� and ��
o are also right adjoint functors

of �� and �o�, and the categorical resolutions D and Do of X and X are weakly crepant in
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the sense of [55, Definition 3.4]; this follows easily from the construction and [55, Proposi-

tion 4.5].
The construction in the case where dim.X/ is odd is in some sense opposite to the

above. Note that in this case the exceptional divisor Eo � Blxo.X/ of the blowup Blxo.X/

is a smooth quadric of even dimension, hence it comes with two spinor bundles.

Theorem 1.2 (Corollary 5.19 and Remark 5.20). Assume given a commutative diagram (4)
with Cartesian squares, where f is a flat projective morphism to a smooth pointed curve
such that f o is smooth and the central fiber X has a single ordinary double point xo 2 X .

If dim.X/ is odd, X is smooth at xo, and there is an exceptional vector bundle E

onBlxo.X/ such that the restriction EjEo to the smooth quadric Eo is isomorphic to a spinor
bundle then there is a smooth and proper B-linear triangulated category D and a commu-
tative diagram

hP ; Doi
i� //

hhi�P i; Di
j �

//
i�

oo DBo

Db.X/
i� // Db.X/

j �

//
i�

oo Db.Xo/

where P � Db.X/ is an admissible triangulated subcategory such that the triangulated
subcategory hi�P i � Db.X/ generated by the image of P under i� is admissible, the cat-
egories Do and DBo are base changes of D , the functors i� and i� in the top row are
compatible with the semiorthogonal decompositions, while j � vanishes on hi�P i.

In both cases we obtain a smooth and proper B-linear category D such that for each
point b ¤ o in B the fiber Db is equivalent to Db.Xb/, the derived category of the fiber of
the original family of varieties. Thus, the category Do provides a smooth and proper exten-
sion of the family of categories Db.Xb/ across the point o 2 B . Note, however, that this is
achieved in two “opposite” ways—in the situation described in Theorem 1.1, the categoryDo

is “larger” than Db.X/ (in particular, Db.X/ is a Verdier quotient of Do), while in the situa-
tion described in Theorem 1.2, the category Do is “smaller” than Db.X/ (in particular, Do

is a semiorthogonal component of Db.X/).
The construction described in Theorem 1.2 does not have a direct geometric ana-

logue; it is called absorption of singularities. More precisely, we say that the subcategory
P � Db.X/ absorbs singularities ofX and, moreover, it provides a deformation absorption.
We expect the notions of absorption and deformation absorption of singularities (defined in
the general categorical context in Section 5) to become as important as the notion of resolu-
tion of singularities for the geometry of schemes.

The category P constructed in Theorem 1.2 has a particularly interesting structure.
It is generated by a single object P 2 Db.X/ such that

Ext�.P;P/ Š kŒt �; deg.t/ D 2:

We call such objects CP 1-objects. They can be considered as limiting versions of CP n-
objects of Huybrechts–Thomas [35], but while the latter give rise to autoequivalences of
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categories containing them, the former provide semiorthogonal decompositions with inter-
esting properties. In particular, if P 2Db.X/ is aCP 1-object and f W X ! B is a smoothing
of X , the object i�P 2 Db.X/ is exceptional.

We finish Sections 4 and 5 by sample applications of Theorems 1.1 and 1.2 to geom-
etry of cubic fourfolds (see Section 4.3) and Fano threefolds (see Section 5.4), respectively.
In particular, we show that the nontrivial components of the derived categories of Fano three-
folds of index 2 and degree 1 � d � 5 (with a minor modification in the case d D 1) can
be represented as smooth and proper limits of the nontrivial components of the derived cat-
egories of Fano threefolds of index 1 and genus 2d C 2. This gives a corrected version of a
conjecture from [56].

Other important results. Of course, this survey could not cover all interesting results
related to semiorthogonal decompositions, so we take this opportunity to list here some
important achievements not mentioned in the body of the paper.

In a contrast to dimensions 3 and less, Fano varieties of higher dimensions are not
yet classified. However, there are several lists of interesting Fano varieties (e.g., see [48]);
and, of course, it is interesting to describe their derived categories, especially when they
are expected to have interesting semiorthogonal components. Some results in this direction
can be found in [14, 16, 60, 61]. There is also some progress extending results about derived
categories known over an algebraically closed field to more general fields [4,7,63,64].

An interesting general question, directly related to the subject of this survey, is if it
is possible to extend a semiorthogonal decomposition of a special fiber Xo of a family X=B

to a B-linear semiorthogonal decomposition. In [13] a positive answer is given under the
assumption that Xo is smooth and proper, and after an étale base change.

An intriguing connection between L-equivalence of smooth projective varieties
(recall that X1 is L-equivalent to X2 if the difference of classes ŒX1� � ŒX2� is annihilated
in the Grothendieck ring of varieties by the class ŒAd � of an affine space) and their derived
equivalence was discovered, see [26,75] and references therein.

Two important general results proved recently are Orlov’s gluing theorem [84] and
Efimov’s embeddability theorem [25]. The first says that any gluing of derived categories of
smooth projective varieties can be realized as an admissible subcategory of another smooth
projective variety. The second gives a criterion for realizability of an enhanced triangulated
category as an admissible subcategory in a category generated by exceptional collection. It
shows in particular that any phantom category admits such a realization, thus providing a
negative answer to [59, Conjecture 2.10].

Finally, one of the mostly rapidly developing related areas is the study of Bridgeland
stability conditions on semiorthogonal components. We refer to [8,9] for surveys of this area.

Conventions. In this paper all schemes are separated of finite type over a base field k and
all categories are k-linear. We writeA D hA1; : : : ;Ani for a semiorthogonal decomposition
of a category A with components Ai . We denote by Db.X/ the bounded derived category
of coherent sheaves and by Dperf.X/ the category of perfect complexes on a scheme X . All
pushforward, pullback, and tensor product functors are derived, although we use underived
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notation for them. When we consider enhancements, we usually mean enhancements by dif-
ferential graded categories as in [66], but one can also use infinity categories as in [88]. We
often use the notions of smoothness and properness for enhanced triangulated categories.
Recall that a dg-enhanced triangulated category is smooth if the diagonal bimodule over the
underlying differential graded category is perfect, and proper if for all objects F1, F2 of the
category the graded vector space Ext�.F1; F2/ has finite total dimension.

2. New results in homological projective duality

Homological projective duality studies the family of hyperplane sections of a given
projective variety. It was the main subject of the survey [59] (see also [94] for an alternative
perspective). In this section we review the main advances in HPD obtained after 2014.

2.1. Noncommutative HPD
It has already become standard to consider nice triangulated categories as derived

categories of “noncommutative varieties”. From this point of view, it was clear from the
very beginning that the operation of homological projective duality is very noncommutative
in nature—a manifestation of this is the fact that the result of HPD (even when applied to
a commutative variety) is typically noncommutative. However, it took some time for a firm
foundation [88] for noncommutative HPD to be developed.

The setup of noncommutative HPD is the following. Instead of a smooth proper
variety endowedwith amorphism to a projective spaceP .V / and a Lefschetz decomposition,
one considers a smooth and proper Lefschetz category .A; A0/ over P .V /. By definition this
consists of

• a P .V /-linear category A (in the sense explained in the Introduction), and

• an admissible subcategory A0 � A (called the Lefschetz center of A),

such that A0 extends to right and left Lefschetz (semiorthogonal) decompositions

A D
˝
A0; A1.1/; : : : ; Am�1.m � 1/

˛
and A D

˝
A1�m.1 � m/; : : : ; A�1.�1/; A0

˛
;

respectively, where

Am�1 � � � � � A1 � A0 and A1�m � � � � � A�1 � A0

are two chains of admissible subcategories (called the Lefschetz components ofA). The com-
ponents Ai of both Lefschetz decompositions (if they exist) are determined by A0, and if
one of the Lefschetz decompositions exists then the other exists as well, [55, Lemma 2.18, 2.19]

or [88, Lemma 6.3]. Moreover, the maximal m such that Am�1 ¤ 0 equals the maximal m such
that A1�m ¤ 0; it is called the length of the Lefschetz category and is denoted length.A/.

The length of any Lefschetz category .A; A0/ over P .V / satisfies the inequality

length.A/ � dim.V /;
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and if the equality holds and if m D length.A/, the category A contains

Am�1 ˝ Dperf�P .V /
�

D
˝
Am�1; Am�1.1/; : : : ; Am�1.m � 1/

˛
(5)

as a rectangular Lefschetz subcategory (see [88, Corollary 6.19]) and HPD for A reduces to
HPD for the orthogonal complement of (5) in A (this is the residual category in the sense
of Section 3). Thus, without losing generality, one can always reduce HPD to the case where
the Lefschetz category .A; A0/ is moderate, i.e., length.A/ < dim.V /.

Given a Lefschetz category .A; A0/ over P .V /, one constructs the HPD Lefschetz
category .A\; A

\
0/ by adapting the definition [52, Definition 6.1]. Namely, consider the

embedding of the universal hyperplane

H.P .V //
� � ı // P .V / � P .V _/

and the base change AH.P.V // of the P .V /-linear category A along the natural projec-
tion H.P .V // ! P .V /. Then A\ is defined (see [88, Definition 7.1]) as

A\
WD
®
F 2 AH.P.V // j ı�F 2 A0 � Db�P�V _

��¯
� AH.P.V //;

which is P .V _/-linear category with respect to the P .V _/-linear structure of AH.P.V //

induced by the morphism H.P .V // ! P .V _/. Furthermore, the Lefschetz center

A
\
0 � A\

is defined (see [88, Lemma 7.3] and [69, (2.17)]) as an explicit admissible subcategory in A\.
For a linear subspace L � V , we denote by

L?
WD Ker

�
V _

! L_
�

� V _

its orthogonal subspace and by AP.L/ and A
\

P.L?/
the base change of A and A\ along the

embeddings P .L/ ,! P .V / and P .L?/ ,! P .V _/, respectively.
The fundamental theorem of noncommutative HPD is stated as follows. We denote

by Aj and A
\

k
the Lefschetz components of .A; A0/ and .A\; A

\
0/, respectively.

Theorem 2.1 ([88, Theorem 8.7, 8.9]). Let .A; A0/ be a moderate Lefschetz category over a
projective space P .V /. Then the HPD Lefschetz category .A\; A

\
0/ over the dual projective

space P .V _/ is also moderate and the HP double dual category is Lefschetz equivalent to
the original ��

A\
�\

;
�
A\
�\

0

�
' .A; A0/:

Moreover, if L � V is a linear subspace and L? � V _ is its orthogonal complement with
r D dim.L/ and s D dim.L?/, and if m D length.A/, n D length.A\/, then there are
semiorthogonal decompositions

AP.L/ D
˝
KL; As.1/; : : : ; Am�1.m � s/

˛
;

A
\

P.L?/
D
˝
A

\
1�n.r � n/; : : : ; A\

�r .�1/; K 0

L?

˛
;

and an equivalence of triangulated categories KL ' K 0

L? .

The simplest example is linear HPD (see [52, §8] for a relative version).
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Example 2.2. Let 0 ¨ W ¨ V be a linear subspace; thus P .W / is a scheme over P .V /.
Then Db.P .W // endowed with the Lefschetz center hOP.W /i � Db.P .W // is a moderate
Lefschetz category over P .V /, and the HPD of .P .W /; hOP.W /i/ is given by the Lefschetz
category .P .W ?/; hOP.W ?/i/, where W ? � V _ is the orthogonal complement of W .

See [50–53] for a number of other examples of HPD.
Homological projective duality is related to classical projective duality via critical

loci of morphisms [52, Theorem 7.9] and this connection persists on the noncommutative level:
the classical projective dual of a Lefschetz category .A; A0/ (defined as the set of all hyper-
planes in P .V / such that the corresponding hyperplane section of A is singular) coincides
with the set of critical values ofA\ (defined as the set of points in P .V _/ such that the corre-
sponding fiber of A\ is singular) [88, Proposition 7.19]. When both A and A\ are the derived
categories of subvarieties X � P .V / and Y � P .V _/, this reduces to classical projective
duality X_ D Y (see Theorem 2.10 for an example).

Noncommutative HPD itself does not provide new examples of homologically pro-
jectively dual varieties (or categories) but, as we already pointed above, it provides a firm
background for developing the theory and for proving results like that in the next subsection.

2.2. Categorical joins
The categorical join construction described below provides an appropriate homo-

logical extension of the classical join construction in projective geometry; it is perfectly
compatible with HPD; moreover, it provides new HPD examples and, as a consequence,
new interesting results about derived categories of algebraic varieties.

Recall that the join of two projective varieties X1 � P .V1/ and X2 � P .V2/ is
defined as the subvariety

J.X1; X2/ � P .V1 ˚ V2/

swept out by all lines connecting points of X1 to points of X2, where we consider both X1

and X2 as subvarieties of P .V1 ˚ V2/ via the natural embeddings P .Vi / � P .V1 ˚ V2/.
It is a well-known result in projective geometry that the join construction commutes with
projective duality:

J.X1; X2/_
D J

�
X_

1 ; X_
2

�
� P

�
V _

1 ˚ V _
2

�
:

In [69] we define the categorical join of Lefschetz categories .A1; A1
0/ over P .V1/ and

.A2;A2
0/ over P .V2/, and prove a similar duality relation on the HPD level, see Theorem 2.4

below. The definition is carried out in three steps.
In the first step, the join J.X1; X2/ is replaced by the resolved join

QJ.X1; X2/ WD PX1�X2

�
O.�1; 0/ ˚ O.0; �1/

�
:

The resolved join is smooth (as soon as X1 and X2 are) and provides a natural resolution of
singularities for the join J.X1; X2/, which is typically very singular. In particular, we have
the universal resolved join

QJ
�
P .V1/; P .V2/

�
D PP.V1/�P.V2/

�
O.�1; 0/ ˚ O.0; �1/

�
Š BlP.V1/tP.V2/

�
P .V1 ˚ V2/

�
:
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We denote by "i W P .V1/ � P .V2/ ,! QJ.P .V1/; P .V2// the exceptional divisor of the blowup
lying over P .Vi /, and by pW QJ.P .V1/; P .V2// ! P .V1/ � P .V2/ the P 1-bundle, so that we
have a commutative diagram

P .V1/ � P .V2/
"1 //

id **

QJ.P .V1/; P .V2//

p

��

P .V1/ � P .V2/
"2oo

idtt
P .V1/ � P .V2/:

Note that the compositions p ı "i are isomorphisms.
In the second step we define the resolved join of P .Vi /-linear categories Ai as the

base change
QJ
�
A1; A2

�
WD
�
A1 � A2

�
QJ.P.V1/;P.V2//

of the P .V1/ � P .V2/-linear category A1 � A2 along the P 1-bundle p. The blowup mor-
phism QJ.P .V1/; P .V2// ! P .V1 ˚ V2/ endows QJ.A1; A2/ with a P .V1 ˚ V2/-linear struc-
ture. The morphisms "i and p defined above induce a commutative diagram of functors

A1 � A2 QJ.A1; A2/
"�

1oo "�
2 // A1 � A2

A1 � A2:

id

hh

id

66

p�

OO

Note that the compositions "�
i ı p� are equivalences.

So far, the construction uses the P .Vi /-linear structure of the categories Ai , but is
independent of their Lefschetz centers A1

0 � A1 and A2
0 � A2; they come into play in the

third step of the construction. We define the subcategories of QJ.A1; A2/:

J
�
A1; A2

�
WD
®
F 2 QJ

�
A1; A2

�
j "�

1.F / 2 A1 � A2
0 and "�

2.F / 2 A1
0 � A2

¯
; and

J0 WD p�
�
A1

0 � A2
0

�
:

The isomorphisms "�
i ı p� Š id imply the inclusion J0 � J.A1; A2/, and one can prove

that the subcategory J0 is a Lefschetz center in J.A1; A2/.

Theorem 2.3 ([69, Theorem 3.21]). If .A1; A1
0/ and .A2; A2

0/ are Lefschetz categories
over projective spaces P .V1/ and P .V2/ then .J.A1; A2/; J0/ is a Lefschetz category
over P .V1 ˚ V2/ of length length.A1/ C length.A2/.

The categorical join .J.A1; A2/; J0/ can be thought of as a categorical resolution
of the usual join, see [69, Proposition 3.17 and Remark 3.18]. The most important property of
the categorical join operation is stated in the following

Theorem 2.4 ([69, Theorem 4.1]). If .A1; A1
0/ and .A2; A2

0/ are moderate Lefschetz cate-
gories over projective spaces P .V1/ and P .V2/ then there is a Lefschetz equivalence

J
�
A1; A2

�\
' J

��
A1
�\

;
�
A2
�\�

;

where both sides are considered with their natural Lefschetz structures over P .V _
1 ˚ V _

2 /.
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2.3. Nonlinear HPD theorem
Many (but not all, see [69, §6.2]) geometric applications of categorical joins rely on

a categorical version of the following simple observation about the usual join operation.
As before assume given a pair of projective varietiesX1 � P .V1/ andX2 � P .V2/,

but now assume dim.V1/ D dim.V2/. Assume also given linear isomorphisms

�1W V1
�
�! V and �2W V2

�
�! V;

so that we can consider both X1 and X2 as subvarieties in P .V /. Let

L.�1; �2/ WD Ker
�
V1 ˚ V2

.�1;��2/
������! V

�
be the equalizer of �1 and �2. Then it is easy to check that

J.X1; X2/ \ P
�
L.�1; �2/

�
D X1 \ X2;

where we consider both sides as subvarieties in P .V / using the identifications �1 and �2

and the induced identification L.�1; �2/ Š V . Furthermore, X1 \ X2 can be thought of
as X1 �P.V / X2, and since the fiber product of varieties is categorified by the tensor product
of linear categories (see [88, §2.3] for a definition), the above isomorphism has a categorical
generalization:

Lemma 2.5 ([69, Lemma 5.1]). If .A1; A1
0/ and .A2; A2

0/ are Lefschetz categories over pro-
jective spaces P .V1/ and P .V2/ and �i W Vi

�
�! V , i D 1; 2, are isomorphisms, there is an

equivalence of categories

J
�
A1; A2

�
P.L.�1;�2//

' A1
O

Db.P.V //

A2

between the base change of J.A1; A2/ along the inclusion P .L.�1; �2// ,! P .V1 ˚ V2/

and the tensor product of the P .V /-linear categories A1 and A2 over Db.P .V //.

Combining this observation with Theorems 2.1 and 2.4, we obtain

Theorem 2.6 ([69, Theorem 5.5]). Let .A1; A1
0/ and .A2; A2

0/ be moderate Lefschetz cate-
gories over projective spaces P .V1/ and P .V2/ of equal dimensions. Let

N D dim.V1/ D dim.V2/; m D length
�
J
�
A1; A2

��
; n D length

�
J
��

A1
�\

;
�
A2
�\��

;

and let Jj and J
\

k
denote the Lefschetz components of J.A1; A2/ and J..A1/\; .A2/\/. For

any isomorphisms �i W Vi
�
�! V , i D 1; 2, there are semiorthogonal decompositions

A1
O

Db.P.V //

A2
D
˝
K�1;�2

; JN .1/; : : : ; Jm�1.m � N /
˛
;

�
A1
�\ O

Db.P.V _//

�
A2
�\

D
˝
J

\
1�n.N � n/; : : : ; J

\
�N .�1/; K 0

.�_
1 /�1;.�_

2 /�1

˛
;

and an equivalence of categories K�1;�2
' K 0

.�_
1 /�1;.�_

2 /�1 , where the P .V _/-linear struc-
tures of the HPD categories .Ai /\ are induced by the isomorphisms .�_

i /�1W V _
i

�
�! V _

for i D 1; 2.
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If we consider the special case where one of the Lefschetz categories, say A2, is the
derived category of a linear subspaceP .L/ � P .V2/ Š P .V /with its natural Lefschetz struc-
ture, then, as it was explained in Example 2.2, .A2/\ is Lefschetz equivalent to the derived
category of the orthogonal subspace P .L?/ � P .V _

2 / Š P .V _/, and there are equivalences

A1
O

Db.P.V //

Db�P .L/
�

' A1
P.L/;�

A1
�\ O

Db.P.V _//

Db�P�L?
��

'
�
A1
�\

P.L?/
;

where the right-hand sides are the base change categories. In this case the statement of
Theorem 2.6 is equivalent to the statement of Theorem 2.1; therefore Theorem 2.6 can be
considered as a nonlinear HPD theorem.

Below we give two sample applications of Theorem 2.6. The first is a consequence
of HPD for the Grassmannian Gr.2; 5/.

Corollary 2.7 ([85, Proposition 1.1], [20, Theorem 1.1], [69, Theorem 6.1]). Let V1 and V2 be
vector spaces of dimension 5 and let �i W ^2Vi

�
�! V , i D 1; 2, be linear isomorphisms. Set

X WD Gr.2; V1/ �P.V / Gr.2; V2/ and Y WD Gr
�
2; V _

1

�
�P.V _/ Gr

�
2; V _

2

�
:

If the fiber products X and Y have the expected dimension 3, then there is an equivalence of
triangulated categories Db.X/ ' Db.Y /.

The varieties X and Y are deformation equivalent Calabi–Yau threefolds, and as
the above corollary states they are derived equivalent. However, they are not birational in
general [85, Theorem 1.2], [20, Theorem 1.2], and thus the pairs .X;Y / provide counterexamples
to the so-called birational Torelli problem. See [44] for another similar example.

The second application is a similar consequence of HPD for the connected com-
ponents OGr˙.5; 10/ of the orthogonal isotropic Grassmannian OGr.5; 10/; it provides
examples of deformation and derived equivalent, but not birational Calabi–Yau fivefolds.
Recall that OGr˙.5; 10/ are homogeneous varieties of the simple algebraic group Spin.10/,
and the primitive generators of their Picard groups embed them into the projectivizations of
the two mutually dual 16-dimensional half-spinor representations of Spin.10/.

Corollary 2.8 ([81, Proposition 4.2], [69, Theorem 6.3]). Let V1 and V2 be vector spaces
of dimension 10 endowed with nondegenerate quadratic forms, let S1 and S2 be the 16-
dimensional half-spinor representations of the corresponding groups Spin.Vi /, and let
�i W Si

�
�! V be linear isomorphisms. Set

X WD OGrC.5; V1/ �P.V / OGrC.5; V2/ and Y WD OGr�.5; V1/ �P.V _/ OGr�.5; V2/:

If the fiber products X and Y have the expected dimension 5, then there is an equivalence of
triangulated categories Db.X/ ' Db.Y /.

Quadratic HPD discussed in Section 2.4 is also a special case of nonlinear HPD.
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2.4. Categorical cones and quadratic HPD
As we have seen above, examples of geometrically meaningful Lefschetz categories

for which the HPD categories are also geometrically meaningful and well understood lead
to applications of the nonlinear HPD theorem with interesting geometric consequences. One
nice example of such Lefschetz categories can be obtained from smooth quadrics.

Assume the base fieldk is algebraically closed of characteristic not equal to 2. LetQ
be a smooth quadric, i.e., a smooth proper variety isomorphic to a hypersurface of degree 2

in a projective space. Let OQ.1/ be the ample line bundle that embeds Q as a quadric hyper-
surface. Amorphism f WQ ! P .V / such that f �OP.V /.1/ Š OQ.1/ is called standard: thus
either

• f is a degree 2 embedding into a linear subspace of P .V /, or

• f is a degree 2 covering over a linear subspace of P .V / ramified over a quadric.

We say that f is nondegenerate if the subspace above (i.e., the linear span of f .Q/) is equal
to P .V /. In what follows we always consider Q as a P .V /-linear category by means of a
standard morphism Q ! P .V /.

Let � be a spinor bundle on Q (the only one, if dim.Q/ is odd, or one of the two,
if dim.Q/ is even).

Lemma 2.9 ([70, Lemma 2.4]). The subcategory Q0 WD h� ;Oi � Db.Q/ is a Lefschetz center;
the length of the corresponding Lefschetz structure on Db.Q/ is equal to dim.Q/ and its
Lefschetz components are given by

Qi D

8<: h� ; Oi; if ji j � 1 � p;

hOi; if 1 � p < ji j � dim.Q/ � 1;

where p 2 ¹0; 1º is the parity of dim.Q/.

The Lefschetz structure of Db.Q/ described above is called a standard Lefschetz
structure of Q; note that it depends on the choice of the spinor bundle � (but the Lefschetz
structures associated to different choices of � are noncanonically equivalent).

Recall that if Q � P .V / is a smooth quadric hypersurface, the classical projective
dual of Q is also a smooth quadric hypersurface Q_ � P .V _/. The HPD for a smooth
quadric Q with a standard Lefschetz structure is described in similar terms.

Theorem 2.10 ([70, Theorem 1.1]). Let f W Q ! P .V / be a standard nondegenerate mor-
phism of a smooth quadric Q endowed with a standard Lefschetz structure. Then the HPD
of Q is given by a standard nondegenerate morphism f \W Q\ ! P .V _/ of another smooth
quadric Q\, where:

(1) If f is a divisorial embedding and dim.Q/ is even, then Q\ D Q_ is the clas-
sical projective dual of Q and f \W Q\ ! P .V _/ is its natural embedding.

(2) If f is a divisorial embedding and dim.Q/ is odd, then f \W Q\ ! P .V _/ is
the double covering branched along the classical projective dual of Q.

1166 A. Kuznetsov



(3) If f is a double covering and dim.Q/ is even, thenQ\ is the classical projective
dual of the branch locus of f and f \W Q\ ! P .V _/ is its natural embedding.

(4) If f is a double covering and dim.Q/ is odd, then f \W Q\ ! P .V _/ is the
double covering branched along the classical projective dual of the branch locus
of f .

In all cases the HPD Lefschetz structure of Q\ is a standard Lefschetz structure.

This already allows one to apply the nonlinear HPD theorem, but the application
becomes much more powerful after an extension to singular quadrics (see [71, §1.4] for an
explanation why this is useful). Note that the derived category of a singular quadric is not
smooth and proper, so it does not fit into the framework of HPD adopted in this paper. On
the other hand, every singular quadric Q can be written as a cone CV0. NQ/ over a smooth
quadric NQ, and since a cone is a special case of a join, one can use the formalism of cate-
gorical joins to find a suitable smooth and proper replacement for Db.Q/. This is achieved
by the categorical cone construction.

Let .A; A0/ be a Lefschetz category over P .V / and let V0 ¤ 0 be a vector space.
We define the categorical cone CV0.A/ as the categorical join

CV0.A/ WD J
�
P .V0/; A

�
;

where P .V0/ is endowed with the standard Lefschetz structure from Example 2.2. In fact,
in [71] we use another definition, but it is equivalent to the above by [71, Proposition 3.15].

The categorical cone CV0.A/, being the special case of a categorical join, is a Lef-
schetz category over P .V0 ˚ V /, which is moderate if A is, and can be thought of as a
categorical resolution of the usual cone. Combining Theorem 2.4 with Example 2.2, we
deduce the following

Theorem 2.11 ([71, Theorem 1.1]). Let V D V0 ˚ NV ˚ V1 and let .A; A0/ be a moderate
Lefschetz category over P . NV /. Then there is a Lefschetz equivalence

CV0.A/\
' CV _

1

�
A\
�
;

where both sides are considered as Lefschetz categories over P .V _/.

Here we add the summand V1 to V for higher flexibility of the construction. For
instance, in the next application to smooth quadrics it allows us to work with possibly degen-
erate morphisms of singular quadrics, like the morphism CV0. NQ/ ! P .V / below.

Corollary 2.12 ([71, Theorem 5.20]). Let V D V0 ˚ NV ˚ V1, let NQ ! P . NV / be a standard
nondegeneratemorphism of a smooth quadric NQ and let NQ\ ! P . NV _/ be its HPDmorphism.
There is a Lefschetz equivalence

CV0. NQ/\
' CV _

1

�
NQ\
�
;

where both sides are considered as Lefschetz categories over P .V _/.
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This leads to the following quadratic HPD theorem. In the statement the assumption
that a P .V /-linear category A is supported away from P .V0/ means that the P .V /-linear
structure of A is induced by a .P .V / n P .V0//-linear structure; in this case the linear pro-
jection P .V / n P .V0/ ! P .V=V0/ provides A with a P .V=V0/-linear structure. A similar
convention is applied to A\.

Theorem 2.13 ([71, Theorem 5.21]). Let .A;A0/ be a moderate Lefschetz category overP .V /

and let .A\; A
\
0/ be its HPD. Assume given a direct sum decomposition V D V0 ˚ NV ˚ V1

such that the P .V /-linear category A is supported away from P .V0/ and the P .V _/-linear
category A\ is supported away from P .V _

1/. Let NQ ! P . NV / be a standard nondegener-
ate morphism from a smooth quadric NQ and let NQ\ ! P . NV _/ be its HPD morphism and
denote Q WD CV0. NQ/, Q\ WD CV _

1
. NQ\/. Let

N D dim.V /; m D length.A/; n D length
�
A\
�
; d D dim.Q/; e D dim

�
Q\
�
:

Then there are semiorthogonal decompositions

AQ D
˝
KQ.A/; Ae.1/ ˝ � ; : : : ; Am�1.m � e/ ˝ � ;

AN �d .1/ ˝ O; : : : ; Am�1.m C d � N / ˝ O
˛
:�

A\
�

Q\ D
˝
A

\
1�n.N � e � n/ ˝ O; : : : ; A

\
e�N .�1/ ˝ O;

A
\
1�n.d � n/ ˝ � \; : : : ; A

\

�d
.�1/ ˝ � \; K 0

Q\

�
A\
�˛

;

and an equivalence of triangulated categories KQ.A/ ' K 0

Q\.A
\/, where � and � \ are

spinor bundles on NQ and NQ\, AQ is defined as the base change of A along the mor-
phism Q ! P .V / and .A\/Q\ is defined analogously.

Again, here is a sample application of this result. Recall that a Gushel–Mukai vari-
ety [23] is either a quadratic section of a linear section of Gr.2; 5/, or a double covering of a
linear section of Gr.2; 5/ branched at a quadratic section. In other words, a Gushel–Mukai
variety can be described uniformly as a dimensionally transverse fiber product

X D Gr.2; V / �P.^2V / Q;

where V is a 5-dimensional vector space and Q ! P .^2V / is a standard (possibly degen-
erate) morphism of a (possibly singular) quadric. Note that for each Q as above there is a
direct sum decomposition

^
2 V D V0 ˚ NV ˚ V1 (6)

and a standard nondegenerate morphism NQ ! P . NV / from a smooth quadric NQ such that
one has Q D CV0. NQ/.

Theorem 2.14 ([71, Theorem 6.4]). Let V be a vector space of dimension 5, let (6) be a direct
sum decomposition of ^2V , let NQ ! P . NV / be a standard nondegenerate morphism of a
smooth quadric, and let NQ\ ! P . NV _/ be its HPD morphism. Assume the fiber products

X D Gr.2; V / �P.^2V / CV0. NQ/ and Y D Gr
�
2; V _

�
�P.^2V _/ CV _

1

�
NQ\
�

(7)

are smooth GM varieties of dimensions dX � 2 and dY � 2. Let UX and U0
Y denote the pull-

backs to X and Y of the rank 2 tautological bundles of the corresponding Grassmannians.
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Then there are semiorthogonal decompositions

Db.X/ D
˝
KX ; OX .1/; U_

X .1/; : : : ; OX .dX � 2/; U_
X .dX � 2/

˛
; (8)

Db.Y / D
˝
U0

Y .2 � dY /; OY .2 � dY /; : : : ; U0
Y .�1/; OY .�1/; K 0

Y

˛
; (9)

and an equivalence of triangulated categories KX ' K 0
Y .

With a bit more work [71, Corollary 6.5] this implies the duality conjecture [68,

Conjecture 3.7] for Gushel–Mukai varieties.

2.5. Other results
To finish this section we list briefly other results developing HPD that appeared

after 2014 and have not been mentioned in [59]. First, there are several works establishing
HPD for new classes of varieties. The most interesting among these are:

• The work of Rennemo [89], where the HPD for the symmetric square of a pro-
jective space P n (considered as a stack) is constructed, see also [34] by Hosono–
Takagi for a more geometric description of this HPD for small values of n.

• The work of Rennemo–Segal [90], where a construction that allows to deduce
some consequences of HPD for Gr.2; 2n C 1/ (without proving the HPD itself)
is suggested.

Besides these major advances, the following papers should be mentioned: [15], where the
linear HPD is applied to deduce HPD for determinantal varieties; [6], where a differential
graded algebra providing the HPD for a degree d (with d � 3) Veronese embedding of a
projective space is described; and [63, §D], where HPD for P 1 � P 1 � P 1 is established.

There are also some results contributing to general properties of HPD. Among these
one should mention [22], where the HPD for a morphism f WX ! P .V / is related to the HPD
of the same variety X (blown up if necessary) with respect to a morphism f 0W X ! P .V 0/

obtained from f by composing with a linear projection P .V / Ü P .V 0/ (see [69, §B.1] for a
categorical version of this result). Finally, one should mention the series of papers [36–41],
where an alternative approach to categorical joins is developed and many related results are
obtained.

3. Residual categories

Let C be a triangulated category and let ˛C W C ! C be an autoequivalence. We
say that an admissible subcategory B � C generates a rectangular Lefschetz collection of
length m with respect to ˛C if the collection of subcategories B; ˛C .B/; : : : ; ˛m�1

C
.B/ is

semiorthogonal inC . Admissibility ofB implies that this collection extends to a semiorthog-
onal decomposition

C D
˝
R; B; ˛C .B/; : : : ; ˛m�1

C .B/
˛

(10)

and the component R of this decomposition is called the residual category, see [72,78].
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Residual categories often appear in HPD: if the Lefschetz decomposition of a Lef-
schetz category A is rectangular, i.e., A0 D � � � D Am�1, the nontrivial components KP.L/

appearing in Theorem 2.1 are the residual categories of AP.L/. In particular, residual cate-
gories often appear in families of semiorthogonal decompositions.

3.1. Serre compatibility and rotation functors
The residual category R defined by (10) has especially nice properties if the sub-

category B is Serre compatible in the sense that the condition

SC

�
˛m

C .B/
�

D B (11)

holds. Note that the Serre functor commutes with any autoequivalence, hence (11) implies
that the autoequivalence SC ı ˛m

C
preserves all the components of (10).

One nice consequence of Serre compatibility is the following. First of all, R comes
with a natural autoequivalence, induced by the so-called rotation functor OB . Below we
denote by LB and RB the left and right mutation functors of C with respect to B.

Proposition 3.1 ([78, Theorem 2.8], see also [67, Theorem 7.7] and [62, Corollary 3.18]). If an
admissible subcategory B � C is Serre compatible then the composition

OB WD LB ı ˛C

induces an autoequivalence of the residual category R, with the inverse autoequivalence
induced by the composition ˛�1

C
ı RB .

Second, the relation between the autoequivalence

˛R WD OB jR

and the Serre functor SR of R is analogous to that of ˛C and SC .

Theorem 3.2 ([78, Theorem 2.8, Remark 2.9, Proposition 2.10]). If B � C is Serre compatible
and R is the residual category then

SR ı ˛m
R Š

�
SC ı ˛m

C

�
jR:

Moreover, there is a bijection between

• Lefschetz decompositions of R with respect to ˛R and

• Lefschetz decompositions of C with respect to ˛C containing B in every compo-
nent.

3.2. Mirror symmetry interpretation
Before discussing further properties of residual categories we sketch their interpre-

tation from the point of view of mirror symmetry. This section is mostly speculative, but it
serves as a motivation for precise mathematical conjectures stated in Section 3.3.
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In this subsection, we take C D Db.X/ to be the derived category of a smooth
complex Fano variety X and let

˛C .�/ WD .�/ ˝ L (12)

be the twist autoequivalence given by a line bundle L. Assume also that

!�1
X Š Lm; (13)

so that for any admissible subcategory B � Db.X/ generating a rectangular Lefschetz
decomposition of length m the Serre compatibility condition (11) holds.

Homological mirror symmetry predicts the existence of a pair .Y; w/ (called a
Landau–Ginzburg model) consisting of a proper morphism (called the superpotential)

wW Y ! A1

from a smooth scheme Y endowed with a relative symplectic form, such that there are two
equivalences of triangulated categories

Db.X/ ' FS.Y;w/; (14)

Fuk.X/ ' MF.Y;w/; (15)

where Fuk.X/ is the Fukaya category of X , FS.Y; w/ is the Fukaya–Seidel category
of .Y;w/, andMF.Y;w/ is the category of matrix factorizations for .Y;w/.

A Landau–Ginzburg model for X is very far from being canonically defined. On
the other hand, the equivalence (14) implies that the groups of autoequivalences of Db.X/

and FS.Y;w/ coincide, hence the symmetry of Db.X/ provided by the autoequivalence (12)
should correspond to an autoequivalence ˛FS of FS.Y; w/, i.e., to a symmetry of .Y; w/.
Since the (inverse) Serre functor of FS.Y; w/ corresponds to the 2�-rotation around the
origin of the target plane A1 D C of the superpotential w, the autoequivalence ˛FS should
correspond to the 2�=m-rotation. Therefore, we expect that there exists a �m-equivariant
Landau–Ginzburg model for X , i.e., a Landau–Ginzburg model .Y;w/, where Y is endowed
with a �m-action and the morphism w is �m-equivariant for the standard �m-action on A1.

So, from now on we assume that .Y;w/ is �m-equivariant. The Fukaya–Seidel cat-
egory FS.Y;w/ is localized over the critical values of the superpotential w. Let

Crit.w/ D ¹z0; z1; : : : ; zN º � A1 (16)

be the set of critical values of w. For each 0 � i � N choose a C1-path i in A1 connecting
the point zi to 1 D P 1 n A1 in such a way that the paths do not intersect and their nat-
ural cyclic order corresponding to the way they arrive at 1 is compatible with the linear
ordering of the points zi in (16). By the definition of FS.Y;w/ this gives a semiorthogonal
decomposition (depending on the isotopy class of paths i )

FS.Y;w/ D hB0; B1; : : : ; BN i

such that the component Bi is localized over zi .
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Since w is �m-equivariant, the set (16) is �m-invariant. It may or may not contain
the point 0; in any case it will be convenient to set

z0 WD 0 2 A1

and if this is not a critical value of w, set B0 WD 0. So, let

z1; : : : ; zN 2 A1
n ¹0º

be the nonzero critical values of w. Since the action of �m on A1 n ¹0º is free, m divides N

and reordering the points if necessary we can assume that

ziCN=m D � � zi (17)

for 1 � i � N � N=m, where � D exp.2�
p

�1=m/. Furthermore, we can choose the paths i

in such a way that iCN=m D � � i . Then it follows that

BiCN=m D ˛FS.Bi /;

so gathering the components B1; : : : ; BN=m together and setting

B WD hB1; : : : ; BN=mi; R WD B0;

we see that B is admissible, Serre compatible of length m, and we have a semiorthogonal
decomposition

FS.Y;w/ D
˝
R; B; ˛FS.B/; : : : ; ˛m�1

FS .B/
˛

with residual category R. In particular, if 0 is not a critical value forw, the residual category
vanishes and FS.Y;w/ acquires a rectangular Lefschetz decomposition. In view of (14), the
category Db.X/ should have a decomposition of the same type.

The above speculation shows the importance of understanding the critical values of
the Landau–Ginzburg superpotential for the structure ofDb.X/. It is interesting that one can
find them without describing the Landau–Ginzburg model, purely in terms of X , by using
the second equivalence (15). Indeed, the matrix factorization category by definition has a
direct sum decomposition

MF.Y;w/ D

NM
iD0

MF.Y;w/zi

with components MF.Y;w/zi
supported over the same points zi 2 A1, therefore a similar

direct sum decomposition holds for its Hochschild cohomology

HH�
�
MF.Y;w/

�
D

NM
iD0

HH�
�
MF.Y;w/

�
zi

:

Thus, HH�.MF.Y;w// can be thought of as a finite length coherent sheaf onA1, i.e., a finite-
dimensional module over the ring CŒz� of functions on A1. So, to control the points zi , it is
enough to understand how the generator z of this ring acts on HH�.MF.Y;w//. For this we
use the isomorphism

HH�
�
MF.Y;w/

�
Š HH�

�
Fuk.X/

�
Š QHcan.X/
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(the first isomorphism follows from (15) and the second has been conjectured in [47] and is
proved in [30, Corollary 9]), where QHcan.X/ is the small quantum cohomology ring of X

with the quantum parameters specialized to the anticanonical class (see a more detailed dis-
cussion in the introduction to [79]). The right-hand side QHcan.X/ is isomorphic to H�.X;C/

as a vector space and is endowed with the supercommutative quantum multiplication; in
particular, one can consider the operator of quantum multiplication by the cohomology
class �X 2 QHcan.X/ of the anticanonical line bundle. Note that cohomological degree
(divided by 2) induces a Z=m-grading on the even part QHeven

can .X/ of QHcan.X/ (which
is a commutative ring), i.e., a �m-action on its spectrum

QS.X/ WD Spec
�
QHeven

can .X/
�
; (18)

and the corresponding morphism

�X WQS.X/ ! A1

is �m-equivariant. It is expected that its image coincides with the �m-invariant finite
subset (16) in A1, see [5, Theorem 6.1] for the toric case and a discussion preceeding it.

3.3. The conjectures
Summarizing the above discussion, we suggest the following precise conjectures.

We use the notation introduced in Section 3.2. For a point z 2 A1, denote byQHeven
can .X/��1

X .z/

the quotient ring of QHeven
can .X/ that corresponds to the union of connected components

of QS.X/ supported over z.

Conjecture 3.3. Let X be a complex Fano variety such that (13) holds. Assume the �m-
invariant subset

�X

�
QS.X/

�
\
�
A1

n ¹0º
�

D ¹z1; : : : ; zN º � A1
n ¹0º;

is ordered in such a way that (17) holds. Then there is an Aut.X/-invariant semiorthogonal
decomposition

Db.X/ D
˝
R; B; B ˝ L; : : : ; B ˝ Lm�1

˛
(19)

and the Hochschild homology spaces of its components are given by

HH�.R/ D QHcan.X/
O

QHeven
can .X/

QHeven
can .X/��1

X .0/;

HH�.B/ D

N=mM
iD1

�
QHcan.X/

O
QHeven

can .X/

QHeven
can .X/��1

X .zi /

�
;

where in the right-hand sides we identifyQHcan.X/with the spaceH�.X;C/ DHH�.Db.X//

with the Hochschild homology grading.

The following example illustrates how this conjecture works.
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Example 3.4. Let X � P n be a smooth Fano complete intersection of type .d1; : : : ; dk/

with 3 � dim.X/ � 2.n C 1 �
P

di / � 1. Then, by [11, Theorem], the small quantum coho-
mology ring of X can be written as

QHcan.X/ D CŒh; ˛�˛2Hn�k
prim .X;C/=

˝
hn�kC1

� hı ; h � ˛; ˛1 � ˛2 � .˛1; ˛2/
�
hn�k

� hı�1
�˛

;

where h is the hyperplane class, Hn�k
prim .X; C/ is the primitive cohomology, .�; �/ is the

intersection pairing, and ı D
P

.di � 1/. Since the anticanonical class of X is a multiple
of h, the localization of this ring away from ��1

X .0/ is obtained by inverting h, and so it is
isomorphic to CŒh�=.hn�kC1�ı � 1/. Note that m WD n � k C 1 � ı D n C 1 �

P
di is the

Fano index ofX , henceN D m, z1; : : : ; zN aremth roots of unity, and QHcan.X/��1
X .zi / Š C

for 1 � i � m. Thus, Conjecture 3.3 predicts the existence of semiorthogonal decomposi-
tion (19) with components B such that HH�.B/ D C. Such a decomposition is indeed easy
to construct, it is enough to take B D hOX i, see Section 3.6.

It also makes sense to combine Conjecture 3.3 with Dubrovin’s conjecture [24]

that predicts that generic semisimplicity of the big quantum cohomology ring BQH.X/

is equivalent to the existence of a full exceptional collection in Db.X/. Note that generic
semisimplicity of BQH.X/ implies that Hodd.X; C/ D 0, hence QHcan.X/ D QHeven

can .X/,
see [33, Theorem 1.3]. Recall the finite length scheme QS.X/ defined in (18) and the �m-
equivariant morphism �X . Furthermore, let

QS�.X/ WD ��1
X

�
A1

n ¹0º
�

� QS.X/; QSı.X/ WD QS.X/ n QS�.X/ � QS.X/:

These are finite �m-invariant subschemes of QS.X/ and the action of �m on QS�.X/ is
free. Recall the autoequivalence ˛R defined in §3.1.

Conjecture 3.5 ([79, Conjecture 1.3]). Let X be a complex Fano variety such that (13) holds
and the big quantum cohomology BQH.X/ is generically semisimple. Let N be the length
of the scheme QS�.X/.

(i) There is a semiorthogonal decomposition (19), where the component B is
generated by an Aut.X/-invariant exceptional collection of length N=m.

(ii) The residual category R of (19) has a completely orthogonal Aut.X/-invari-
ant decomposition

R D

M
�2QSı.X/

R�

with components indexed by closed points � 2 QSı.X/; moreover, the com-
ponent R� of R is generated by an exceptional collection of length equal to
the length of the scheme QSı.X/ at �.

(iii) The autoequivalence ˛R permutes the components R� of the residual cate-
gory; more precisely, for each point � 2 QSı.X/ it induces an equivalence

˛RW R�
�
�! Rg.�/;

where g is a generator of �m.
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Most of the predictions in Conjecture 3.5 are specializations of assertions of Con-
jecture 3.3 to the case of a category with an exceptional collection. The only exception is
the complete orthogonality statement in part (ii). A justification for it, based on a com-
parison with the Fukaya–Seidel category FS.Y; w/, can be found in [78] just before [78,

Conjecture 1.12].

Example 3.6. Let X D P m�1 � P m�1. Then by the quantum Künneth formula [46] one has

QH.X/ Š CŒh1; h2�=
�
hm

1 � q1; hm
2 � q2

�
;

QHcan.X/ Š CŒh1; h2�=
�
hm

1 � 1; hm
2 � 1

�
;

and the Z=m-grading is defined by deg.h1/ D deg.h2/ D 1. Therefore,

QS.X/ D �m � �m � A2;

where the embedding is induced by the natural embeddings �m � A1 n ¹0º � A1, and up
to rescaling of A1 the map �X is induced by the summation map A2 ! A1.

If m is odd, QSı.X/ is empty, hence Conjecture 3.5 predicts the existence of
an Aut.X/-invariant rectangular Lefschetz collection with zero residual category. Several
such collections, indeed, have been constructed in [89].

On the other hand, if m is even, QSı.X/ has length m (it consists of all pairs .�;��/

for � 2 �m); consequently, Conjecture 3.5 predicts the existence of anAut.X/-invariant rect-
angular Lefschetz collection with residual category generated by m completely orthogonal
objects. Such collection has been found in [79, Example 1.4].

3.4. Residual categories of homogeneous varieties
In this subsection, we make the predictions of Conjecture 3.5 more explicit for some

homogeneous varieties of reductive algebraic groups and compare them with known results
about their derived categories.

According to an old folklore conjecture homogeneous varieties are expected to have
full exceptional collections (the conjecture is still not proved, see a discussion of known cases
in [73, §1.2] and more recent developments in [12, 29, 31, 79, 93]). Therefore, Conjecture 3.5
should be applicable and we only need to compute the small quantum cohomology ring.
This is pretty easy for Grassmannians.

Example 3.7. The small quantum cohomology ring of X D Gr.k; n/ can be presented as

CŒc1; : : : ; ck ; s1; : : : ; sn�k �=
˝
.1 C c1 C � � � C ck/.1 C s1 C � � � C sn�k/ D 1 C .�1/kq

˛
;

where ci and sj should be thought of as Chern classes of the tautological subbundle and
quotient bundle respectively, and q is the quantum parameter (see [91, Theorem 0.1]). Decom-
posing formally

1 C c1 C � � � C ck D

kY
iD1

.1 � xi /; 1 C s1 C � � � C sn�k D

nY
iDkC1

.1 � xi /;
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where x1; : : : ; xn are the corresponding Chern roots, and specializing the quantum param-
eter q to .�1/kC1, we conclude that ¹x1; : : : ; xnº D �n. Since the canonical class of X is
proportional to the first Chern class of the tautological bundle, we have up to rescaling

QS.X/ D
�
.�n/k

\
�
Ak

n �
��

=Sk ;

where � � Ak is the big diagonal, Sk is the permutation group, and the map �X is induced
by summation of coordinates inAk . Furthermore, the natural action of�n onQS.X/ is given
by simultaneous multiplication of all coordinates by a root of unity. Thus, the �n-action is
free if and only if gcd.k; n/ D 1, and otherwise orbits of length d correspond to subsets of
cardinality k=d in �n=d .

Note that some free orbits may be contained in QSı.X/ (by [92] this happens if
and only if both k and n � k are sums of nontrivial divisors of n, the simplest example
with gcd.k; n/ D 1 being n D 12 and k D 5), so the following conjecture is stronger than
the prediction of Conjecture 3.5.

Conjecture 3.8 ([78, Conjecture 3.10 and Lemma 3.9]). If X D Gr.k; n/ there is a rectangular
Lefschetz collection with residual category generated by

Rk;n D �

X
d j gcd.k;n/; d>1

�.d/

 
n=d

k=d

!
completely orthogonal objects, where

�.d/ WD

8̂̂<̂
:̂

1; if d is square-free with an even number of prime factors;

�1; if d is square-free with an odd number of prime factors;

0; if d has a squared prime factor

is the Möbius function.

By now this conjecture is known for the case gcd.k; n/ D 1, where the residual
category vanishes [28, Theorem 4.3 and Proposition 4.8], as well as for the case where k is a
prime number [78, Theorem 3.13].

For more complicated homogeneous varieties, we can also use the available quan-
tum cohomology computations to formulate a number of precise conjectures. We do this
below for some interesting classes of homogeneous varieties.

Recall that the adjoint (resp. coadjoint) homogeneous variety of a simple algebraic
group G is the orbit of the highest weight vector in the projectivization of an irreducible
representation of G, whose highest weight is the highest long (resp. short) root of G; in
particular, if the group G is simply laced, the adjoint and coadjoint varieties coincide.

The following conjecture is motivated by the results of [87]. For a group Gwe denote
by Dshort.G/ the short roots subdiagram of the Dynkin diagram of G (if the group G is simply
laced, it is the entire Dynkin diagram).

Conjecture 3.9 ([79, Conjecture 1.8]). Let X be the coadjoint variety of a simple complex
algebraic group G. Then Db.X/ has an Aut.X/-invariant rectangular Lefschetz exceptional
collection with residual category R, where
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(1) if the Dynkin type of G is An and n is even, then R D 0;

(2) otherwise,R is equivalent to the derived category of representations of a quiver
of type Dshort.G/.

By now this conjecture is known for all Dynkin types except for the exceptional
types E6, E7, E8, see a discussion and references in [79].

For adjoint varieties (of non simply laced groups) the prediction of Conjecture 3.5
has been shown to be true with the last step recently accomplished in [93].

Theorem 3.10. Let X be the adjoint variety of a non simply laced simple complex alge-
braic group G. Then Db.X/ has a full Aut.X/-invariant rectangular Lefschetz exceptional
collection with zero residual category.

The proof is a combination of [54, Theorem 7.1] for type Bn, [78, Example 1.4] for
type Cn, [93, Theorem 1.1] for type F4, and [51, §6.4] for type G2.

3.5. Residual categories of hypersurfaces
Until nowwe only met examples of residual categories which were of combinatorial

nature (either generated by completely orthogonal exceptional collections or equivalent to
derived categories of Dynkin quivers). In Section 3.5–3.6 we consider more complicated
examples and concentrate on a description of their basic invariants: Serre functors and Serre
dimensions.

Let X � P n be a Fano hypersurface, i.e., a hypersurface of degree d � n. Note that

!�1
X Š OX .n C 1 � d/;

hence (13) holds for L D OX .1/ and

m D n C 1 � d:

Furthermore, the category B WD hOX i is admissible in the derived category of perfect com-
plexes Dperf.X/ (we do not assume X to be smooth and therefore consider Dperf.X/ instead
of Db.X/) and induces a rectangular Lefschetz collection of length m

Dperf.X/ D
˝
RX ; OX ; : : : ; OX .m � 1/

˛
(20)

defining the residual category RX � Dperf.X/. Finally, as X is a Gorenstein scheme, the
category C D Dperf.X/ has a Serre functor given by tensor product with !X and shift
by dim.X/ D n � 1, so if ˛C is defined by (12) then the autoequivalence

SC ı ˛m
C Š Œn � 1�

preserves any triangulated subcategoryB � Dperf.X/; in particular, Serre compatibility (11)
holds for B as above.

One of the most surprising properties of the residual category RX of a Fano hyper-
surface is its fractional Calabi–Yau property (note, however, that the residual categories
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that appeared in Section 3.4 are also fractional Calabi–Yau). This result has already been
explained in [59] for smooth X ; we restate it here for completeness.

Theorem 3.11 ([49, Corollary 4.3]). Let X � P n be a smooth hypersurface of degree d

with 1 � d � n. Set c D gcd.d; n C 1/. Then

Sd=c

RX
Š
�
.n C 1/.d � 2/=c

�
: (21)

Remark 3.12. The result also holds true (trivially) when d D n C 1. Indeed, the defini-
tion (20) in this case implies RX D Dperf.X/ and the formula (21) reads as SRX

Š Œn � 1�,
which is true since X is a Calabi–Yau variety of dimension n � 1.

Actually, the smoothness assumption in the statement of Theorem 3.11 can be
removed; this follows immediately from Theorem 3.14 and Remark 3.15 below.

Example 3.13. If X is a cubic fourfold, one has SRX
Š Œ2�. Thus, the category RX is a

K3 category, see [57].

In [62, Theorem 3.5] Theorem 3.11 was generalized to the situation where X is a
smooth divisor in (or a double covering of) a smooth variety M which admits a rectangular
Lefschetz decomposition (so that the residual category of M is zero). We do not state this
result separately because it is a special case of Theorem 3.14 stated below, see Remark 3.15.
The special case of Theorem 3.11 is obtained by taking M D P n with the rectangular Lef-
schetz decomposition given by the Beilinson exceptional collection

Db�P n
�

D
˝
O; O.1/; : : : ; O.n/

˛
:

There are many other special cases of [62, Theorem 3.5] (see [62, §4] for a list) which explain
most of the currently known examples of fractional Calabi–Yau categories. For instance, it
explains the appearance of K3 categories in derived categories of cubic fourfolds, Gushel–
Mukai varieties of even dimensions, and Debarre–Voisin 20-folds, see [62, §4.4].

3.6. Residual categories of complete intersections
The results of [62] have been significantly generalized in [72]. To explain this gen-

eralization, recall that, for any (enhanced) functor ‰W C ! D between (enhanced) trian-
gulated categories with a right adjoint functor ‰Š (for instance, for a Fourier–Mukai func-
tor between (perfect) derived categories of projective varieties), one can define twist func-
tors T‰;‰Š W D ! D and T‰Š;‰W C ! C by means of distinguished triangles of functors

‰ ı ‰Š "
�! idD ! T‰;‰Š and T‰Š;‰ ! idC

�
�! ‰Š

ı ‰;

where � is the unit and " is the counit of adjunction. The functor ‰ is called spherical if
the twist functors T‰;‰Š and T‰Š;‰ are both autoequivalences (for alternative definitions
and characterizations of spherical functors see [1, 2, 43, 62]); in this case the twist functors
are known as spherical twists. Note that if the functor ‰ is zero (for instance, if the source
or target category of ‰ is zero), it is spherical and the corresponding spherical twists are
isomorphic to the identity.
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The simplest geometric example of a spherical functor is the pullback functor

‰ WD i�
WDperf.M/ ! Dperf.X/

for a divisorial embedding i W X ,! M . Its right adjoint is the pushforward i� and the corre-
sponding spherical twists are given by

Ti�;i�.F / D F ˝ OX .�X/Œ2� and Ti�;i�.G / D G ˝ OM .�X/:

Another interesting example is the pullback functor for a flat double covering f W X ! M

(see [72, Lemma 2.9] for the description of the corresponding spherical twists).
Now assume M is a projective Gorenstein variety such that !M Š L�m

M for a line
bundle LM and with a semiorthogonal decomposition

Dperf.M/ D
˝
RM ; BM ; BM ˝ LM ; : : : ; BM ˝ Lm�1

M

˛
:

Assume furthermore given another projective Gorenstein variety X and a spherical functor

‰WDperf.M/ ! Dperf.X/

such that T‰Š;‰.BM /DBM ˝Ld
M for some 1�d �m�1 and‰.� ˝ LM /Š‰.�/˝LX

for a line bundle LX on X . Under these assumptions the following result is proved.

Theorem 3.14 ([72, Corollary 4.19]). Assume M , BM , LM , X , LX , and ‰ are as above.

(i) The functor‰jBM
is fully faithful, the subcategoryBX WD ‰.BM / �Dperf.X/

is admissible, and there is a semiorthogonal decomposition

Dperf.X/ D
˝
RX ; BX ; BX ˝ LX ; : : : ; BX ˝ Lm�d�1

X

˛
;

where RX � Dperf.X/ is the residual category.

(ii) The restriction ‰R WD ‰jRM
is a spherical functor RM ! RX between the

residual categories.

(iii) If c D gcd.d; m/ then

Sd=c

RM
Š Tm=c

‰Š
R

;‰R
ı

�
d dim.M/

c

�
;

Sd=c

RX
Š T.m�d/=c

‰R;‰Š
R

ı

�
d dim.X/ � 2.m � d/

c

�
; (22)

whereT‰Š
R

;‰R
andT‰R;‰Š

R
are the spherical twists with respect to the spher-

ical functor ‰R.

Remark 3.15. In the special case, where RM D 0, the spherical twist T‰R;‰Š
R

is iso-
morphic to the identity, and we conclude that RX is a fractional Calabi–Yau category of
dimension dim.X/ � 2.m � d/=d .

Example 3.16. Assume the base field is algebraically closed of characteristic not equal to 2.
Let M � P 5 be a smooth quadric, BM D hOM i as in (20), and let X � M be a smooth
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intersection of M with a cubic hypersurface. Then the residual category of M is generated
by two completely orthogonal spinor bundles of rank 2:

RM D h�C; ��i;

their restrictions �CX and ��X to X are contained in RX and form a so-called spherical pair
(i.e., induce a spherical functor from the derived category of a disjoint union of two points
to RX , see [72, §2.2]), and formula (22) gives

S3
RX

Š T�CX ;��X
ı Œ7�;

where T�CX ;��X
W RX ! RX is the spherical twist with respect to the spherical pair, i.e.,

T�CX ;��X
.F / Š Cone

�
Ext�.�CX ; F / ˝ �CX ˚ Ext�.��X ; F / ˝ ��X ! F

�
:

Example 3.17. In the situation of Example 3.16, a similar result can be proved for the refined
residual category AX ofX defined as the orthogonal complement of one of the spinor bundles
in RX , say �CX , which is exceptional, so that there is a semiorthogonal decomposition

RX D hAX ; �CX i:

In this case the projection of the other spinor bundle to AX is a spherical object K 2 AX and
it is proved in [72, Proposition 5.18] that

S3
AX

Š T�1
K ı Œ7�

(where TK is the spherical twist with respect to K), quite similarly to the case of RX .

One can apply Theorem 3.14 in order to compute Serre dimensions of residual cat-
egories of complete intersections. Recall that the upper and lower Serre dimensions Sdim.C/

and Sdim.C/ of a category C admitting a Serre functor SC are defined as the rate of
growth of upper and lower cohomological amplitude of powers of S�1

C
, see [27] or [72,

Definition 6.10] for details. In the case where C D Dperf.X/ for a Gorenstein variety X ,
so that SC .F / Š F ˝ !X ŒdimX�, one obtains from [27, Lemma 5.6] the equalities

Sdim
�
Dperf.X/

�
D Sdim

�
Dperf.X/

�
D dim.X/;

so Serre dimensions provide a categorical interpretation of the geometric (Krull) dimension
of a variety. In this example the upper and lower Serre dimensions coincide, but in general
this is not true, and residual categories of Fano complete intersections provide nice examples
of this sort.

Theorem 3.18 ([72, Theorem 1.7]). LetX � P n be a smooth Fano complete intersection inP n

of type .d1; d2; : : : ; dk/, where

d1 � d2 � � � � � dk � 2:

Denote by ind.X/ D n C 1 �
Pk

iD1 di the Fano index of X . Let RX be the residual category
of X defined by (20) with m D ind.X/. Assume there exists a chain of smooth varieties

X D Xk � � � � � X2 � X1 � X0 D P n;
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where Xi is a complete intersection of type .d1; d2; : : : ; di /. Then

Sdim.RX / D dim.X/ � 2
ind.X/

d1

; Sdim.RX / D dim.X/ � 2
ind.X/

dk

:

In particular, if d1 > dk , the upper Serre dimension of RX is strictly bigger than the lower
Serre dimension.

The assumption of the existence of a chain of smooth complete intersections Xi

interpolating between P n and X is of technical nature; it well may be that the result is also
true without this assumption. Note also that this assumption holds when the characteristic of
the base field is zero by Bertini’s Theorem, see [72, Lemma 6.11].

In the situation of Examples 3.16 and 3.17, one deduces from Theorem 3.18 that

Sdim.AX / D Sdim.RX / D 7=3; Sdim.AX / D Sdim.RX / D 2:

In fact, it is easy to describe objects of the categories AX or RX on which the rate of growth
of powers of the inverse Serre functor equals 7=3 and 2, respectively; indeed, the first happens
on the orthogonal complements K? � AX and �?

CX \ �?
�X � RX , respectively, while the

second holds on the subcategories generated by K in AX and �˙X in RX , respectively.

4. Simultaneous categorical resolutions of singularities

The goal of this section is to explain the proof of Theorem 1.1 that provides a simul-
taneous categorical resolution of singularities for a nodal degeneration of even-dimensional
varieties. We start by explaining what we mean by a simultaneous categorical resolution; this
notion is similar to a relative version of the definition of a categorical resolution from [55,66].

Let f W X ! B be a flat proper morphism to a pointed scheme .B; o/. Recall nota-
tion (3) and (4). We usually assume that B is a curve and f is smooth over Bo.

Definition 4.1 ([65, Definition 1.4]). A simultaneous categorical resolution of .X; Xo/ is a
triple .D ; ��; ��/, where

• D is an enhanced B-linear triangulated category, and

• ��WDperf.X/ ! D and ��W D ! Db.X/ is a pair of B-linear triangulated func-
tors,

such that

(i) D is smooth and proper over B ,

(ii) �� is left adjoint to ��,

(iii) �� ı �� Š id.

More precisely, the condition in part (ii) means that there is a functorial isomorphism

Hom
�
��F ; G

�
Š Hom.F ; ��G /
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for all F 2 Dperf.X/, G 2 D , and the condition in part (iii) means that the composi-
tion �� ı �� is isomorphic to the canonical inclusion Dperf.X/ ,! Db.X/. Furthermore,
we usually assume that the base change DBo of the category D along the open embed-
ding Bo ,! B is equivalent to Dperf.Xo/ D Db.Xo/ via the functors induced by �� and ��.

If the scheme X has rational singularities and the morphism f W X ! B admits a
simultaneous resolution � W QX ! X in the geometric sense (i.e., a resolution of singularities
of X such that its central fiber QXo ! Xo is a resolution of singularities of Xo) then the cat-
egory D WD Dperf.X/ D Db.X/ with the derived pullback �� and pushforward �� functors
is a simultaneous categorical resolution.

Geometric simultaneous resolutions of singularities exist for surface degenerations
with rational double points by [21] (see also [95]), but not in higher dimensions.

4.1. General results
In [65]we suggest a construction of a simultaneous categorical resolution, analogous

to the construction of a categorical resolution of a variety X given in [55]. Recall that the
construction of [55] assumes thatX is resolved by a single blowup with exceptional divisorE

and, as an extra input, one needs a Lefschetz decomposition of Db.E/ with respect to the
conormal line bundle of E.

Similarly, to construct a simultaneous categorical resolution we assume that both
the total space X and the central fiber Xo of f are resolved by blowups with the same
centerZ � Xo � X, such that both have smooth exceptional divisorsE andEo, and that an
appropriate Lefschetz decomposition of Db.E/ is given. The precise statement is as follows:

Theorem 4.2 ([65, Theorem 3.11]). Let f W X ! B be a flat projective morphism to a smooth
pointed curve .B; o/ such that X �B Bo is smooth over Bo and let Z � Xo be a smooth
closed subscheme in the central fiber. Assume the scheme X has rational singularities, the
blowups QX WD BlZ.X/, QXo WD BlZ.Xo/, and their exceptional divisors E and Eo are
all smooth, and the central fiber of QX ! B is reduced. Let � W QX ! X, �oW QXo ! Xo,
pW E ! Z, poW Eo ! Z, "W E ! QX, "oW Eo ! QXo, and iE W Eo ! E be the natural mor-
phisms, shown on the diagram

EmM"

{{ p

��

Eo
? _

iEoo
lL"o

yy po

��

QX

�

��

QXo
? _oo

�o

��

ZlL

zz

ZkK

yy
X

f��

Xo
? _oo

��
B ¹oº:? _oo

(23)

Furthermore, assume given a Z-linear left Lefschetz decomposition

Db.E/ D
˝
A1�m ˝ OE

�
.m � 1/E

�
; : : : ; A�2 ˝ OE .2E/; A�1 ˝ OE .E/; A0

˛
(24)
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of Db.E/ such that p�.Db.Z// � A0. Then the category

D WD
®
F 2 Db. QX/ j "�.F / 2 A0

¯
� Db. QX/ (25)

provides a categorical resolution of X and there is a semiorthogonal decomposition

Db. QX/ D
˝
"�

�
A1�m ˝ OE

�
.m � 1/E

��
; : : : ; "�

�
A�1 ˝ OE .E/

�
; D

˛
: (26)

Moreover, if additionally we have A�1 D A0, and the categories A0
k

WD i�
E .Ak/

form a semiorthogonal decomposition

Db.Eo/ D
˝
A0

1�m ˝ OEo

�
.m � 1/Eo

�
; : : : ; A0

�2 ˝ OEo.2Eo/; A0
�1 ˝ OEo.Eo/

˛
(27)

of Db.Eo/ then:

(i) The base change Do of D along the embedding ¹oº ,! B is smooth and
proper over the residue field of the point o, one has

Do '
®
F 2 Db. QXo/ j "�

o.F / 2 A0
�1

¯
; (28)

and there is a semiorthogonal decomposition

Db. QXo/ D
˝
"o�

�
A0

1�m ˝ OEo

�
.m � 2/Eo

��
; : : : ; "o�

�
A0

�2 ˝ OEo.Eo/
�
;Do

˛
:

(ii) The triple .D ; ��; ��/ is a simultaneous categorical resolution of .X; Xo/;
in particular D is smooth and proper over B .

The category D defined by (25) provides a categorical resolution of X and fits into
the semiorthogonal decomposition (26) by [55, Theorem 4.4 and Proposition 4.1]. The crucial
step in the proof of Theorem 4.2 is the identification (28) of the base change Do of the
category D , which a priori is a subcategory of the derived category of the central fiber of
the morphism QX ! B , with a subcategory of QXo. Note that the central fiber is a reduced, but
reducible scheme—the union QXo [ E of the blowup QXo ofXo and the exceptional divisorE

of QX with QXo \ E D Eo. The required identification is achieved in [65, Proposition 3.7],
where a more general result of this sort is established. This proves part (i) of the theorem.

On the other hand, by [55, Proposition 4.1] the right-hand side of (28) is an admissible
subcategory of Db. QXo/; in particular, it is smooth and proper. Therefore, the second part (ii)
of the theorem follows from the following general and very useful result.

Theorem4.3 ([65, Theorem 2.10]). Let gWY ! B be a flat propermorphism of quasiprojective
schemes and let

Db.Y/ D
˝
D ; ?D

˛
be a B-linear semiorthogonal decomposition with admissible components and projection
functors of finite cohomological amplitude. If for each point b 2 B , the categoryDb is smooth
and proper over the residue field of b then the category D is smooth and proper over B .

Remark 4.4. The geometric origin of the category D in Theorem 4.3 is important for the
proof given in [65]. We expect a similar statement for general B-linear categories is not true,
although we do not know any example where it fails.
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Theorem 4.3 applies immediately to the morphism g D f ı � W QX ! B . Indeed,
for b ¤ o the fiber Db is equivalent to the categoryDb. QXb/ D Db.Xb/ which is smooth and
proper becauseX �B Bo is assumed to be smooth and proper overBo, while the categoryDo

is smooth and proper by part (i) of the theorem.

4.2. Nodal singularities
Theorem 4.2 applies easily to nodal degenerations of even-dimensional varieties

under a mild technical assumption that can be satisfied by a simple trick, see Remark 4.6.
We use notation introduced in diagram (23).

Theorem 4.5 ([65, Theorem 3.14]). Assume the base field is algebraically closed of charac-
teristic not equal to 2. Let f W X ! B be a flat projective morphism of relative dimension 2n

to a smooth pointed curve .B; o/ such that X �B Bo is smooth over Bo. Assume the central
fiber Xo and the total space X both have an isolated ordinary double point at xo. Let E

and Eo be the exceptional divisors of the blowups Blxo.X/ and Blxo.Xo/. Then .X; Xo/

has a simultaneous categorical resolution of singularities D fitting into a semiorthogonal
decomposition

Db�Blxo.X/
�

D
˝
"�OE

�
.2n � 1/E

�
; : : : ; "�OE .E/; "��E ; D

˛
;

where �E is a spinor bundle on the smooth quadricE; in particular,D is smooth and proper
overB withDb DDb.Xb/ for b ¤ o, and the central fiberDo ofD fits into a semiorthogonal
decomposition

Db�Blxo.Xo/
�

D
˝
"o�OEo

�
.2n � 2/Eo

�
; : : : ; "o�OEo.Eo/; Do

˛
:

Indeed, in this case taking Z D ¹x0º we see that the exceptional divisor E of the
blowup QX D Blxo.X/ is a smooth quadric of dimension 2n, so we can take (24) to be
the left Lefschetz decomposition from Lemma 2.9. Then A�1 D A0 (here it is important
that dim.X=B/ D dim.E/ is even), and since Eo is a smooth quadric of dimension 2n � 1,
decomposition (27) holds, again by Lemma 2.9. So, Theorem 4.2 gives the desired results.

Remark 4.6. If f 0W X0 ! B 0 is a smoothing of a nodal variety X (i.e., X0
o Š X and X0 is

smooth) applying base change with respect to a double covering B ! B 0 ramified over o,
we obtain a morphism X ! B such that Xo Š X and X has an ordinary double point at xo.
This double covering trick is quite standard, see [3].

Note that the simultaneous categorical resolution D constructed in Theorem 4.5
depends on a choice of one of the two spinor bundles �E ; however, two different choices
result in equivalent categorical resolutions, and the equivalence can be thought of as an
instance of a categorical flop, see [65, Proposition 3.15].

In the case of a degeneration of surfaces (i.e., for n D 1), the categoryD constructed
in Theorem 4.5 is equivalent to the derived category of a small resolution of singularities
of X, a choice of one of the two small resolutions corresponds to a choice of one of the
two spinor bundles �E on the smooth quadric surface E, and the categorical flop mentioned
above reduces to the usual Atiyah flop between the small resolutions.
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It would be very interesting to find generalizations of Theorem 4.5 to other types of
simple singularities.

4.3. Application to nodal degenerations of cubic fourfolds
In this subsection, we provide a simple application of Theorem 4.5 to K3 categories

of cubic fourfolds. Recall that for any cubic fourfold X � P 5 there is a semiorthogonal
decomposition

Dperf.X/ D
˝
RX ; OX ; OX .1/; OX .2/

˛
: (29)

In fact, this is just the special case of decomposition (20), so the category RX above is the
residual category of X . In particular, as we observed in Example 3.13, the Serre functor
of RX is isomorphic to the shift Œ2�, so RX is a K3 category.

In the case where X has a single ordinary double point xo 2 X , the category RX

is not smooth, but it admits a categorical resolution by the derived category of a smooth
K3 surface. In fact, the linear projection out of xo identifies the blowup Blxo.X/ with
the blowup BlS .P 4/ of P 4 along a smooth complete intersection K3 surface S � P 4 of
type .2; 3/ and the derived category of S provides a categorical resolution of singularities
for RX , see [57, Theorem 5.2]. We write S.X; xo/ for this K3 surface.

In the next theorem we show that the category Db.S.X; xo// can be realized as a
limiting category for the K3 categories of smooth cubic fourfolds.

Theorem 4.7 ([65, Corollary 1.8]). Let X be a cubic fourfold with a single ordinary double
point xo 2 X over an algebraically closed field k of characteristic not equal to 2. There is

• a flat proper family X � P 5
B ! B of cubic fourfolds over a smooth pointed

curve .B; o/ with central fiber Xo Š X such that X is smooth over Bo and has
an ordinary double point at xo, and

• a B-linear category R smooth and proper over B such that:

(i) for any point b ¤ o in B one has Rb ' RXb
, i.e., the fiber Rb is

the K3 category of Xb;

(ii) one has Ro ' Db.S.X; xo//.

In particular,Db.S.X;xo// is a smooth and proper extension of the family of categoriesRXb

across the point o 2 B .

The construction of the family X is quite straightforward—we take any smooth
cubic fourfold X 0 � P 5 in the ambient projective space of X in such a way that the singular
point xo 2 X does not lie on X 0. Then, if F and F 0 are the cubic equations of X and X 0, we
consider the hypersurface in P 5 � A1 given by the equation�

1 � t2
�
F C t2F 0

D 0;

where t is a coordinate on A1. Throwing away its singular fibers (except for the fiber X

over 0 2 A1) we obtain the required family X ! B � A1.
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Next, we consider the smooth and properB-linear categoryD �Db.Blxo.X// from
Theorem 4.5 and define the subcategory R � D by the semiorthogonal decomposition

D D
˝
R; Qf �Db.B/; Qf �Db.B/ ˝ OX=B.1/; Qf �Db.B/ ˝ OX=B.2/

˛
; (30)

where Qf W Blxo.X/ ! B is the composition Blxo.X/
�

��! X
f

��! B of the blowup mor-
phism and the natural projection and OX=B.i/ is the pullback to Blxo.X/ of the line
bundle OP5

B =B.i/. Applying the base change of this decomposition to various points of
the base B and using [57, Theorem 5.2] for the point o, we obtain the required identifications
of the categories Rb and Ro.

One possible interpretation of Theorem 4.7 is the following. Let Mcub be the GIT
moduli space of cubic fourfolds [80] and let Mnod

cub � Mcub be the divisor of singular cubic
fourfolds. Then the family of K3 categories of smooth cubic fourfolds (a priori defined over
the open subspaceMcub n Mnod

cub � Mcub) extends to the general point of the boundary divisor

of the root stack
q

Mnod
cub=Mcub (the appearance of the root stack corresponds to the necessity

of the double covering trick of Remark 4.6).

Remark 4.8. It would be interesting to find analogous extensions of K3 categories of smooth
cubic fourfolds to other special loci of the moduli space Mcub. One particularly interesting
point of Mcub corresponds to the so-called “chordal cubic” (see [32, §4.4] and [80, §8.2]),
defined as the secant variety of the Veronese surface �2.P 2/ � P 5. It seems likely that to
make such an extension possible it is necessary to blowup this point on the moduli space.
A general point of the exceptional divisor corresponds to a smooth sextic curve in P 2, and it
is natural to expect the derived category of the double covering of P 2 branched at that curve
to show up in the extension.

5. Absorption of singularities

The goal of this section is to introduce the notion of absorption of singularities, to
explain the proof of Theorem 1.2, and to sketch an application to Fano threefolds.

5.1. Absorption and deformation absorption
We start with the definition of absorption of singularities of a category. For sim-

plicity, we restrict to the case when the category in question is Db.X/ and X is a proper
(singular) variety.

Definition 5.1 ([76]). We say that a subcategoryP � Db.X/ absorbs singularities of X if it is
admissible and the orthogonal complements P ? and ?P in Db.X/ are smooth and proper.

Note that, when P is admissible, the left and right mutation functors with respect
to P induce equivalences of the orthogonal complements P ? ' ?P , so one of them is
smooth and proper if and only if the other is so.

We think of the category P ? ' ?P as a smooth and proper “modification” of
the category Db.X/. There is, of course, a trivial example of absorption with P D Db.X/
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andP ? D ?P D 0; clearly, this example is not interesting, and it shows that it is desirable to
have the absorbing category P as small as possible (hence its orthogonal complements P ?

and ?P as big as possible).
The notion of absorption is “opposite” to that of categorical resolution in the sense

that in the latter we replace Db.X/ by a larger smooth and proper category, while in the
former we replace it by a smaller smooth and proper category.

The following is the simplest example of absorption.

Example 5.2. Let X D X1 [ X2 be a complete curve with two smooth components inter-
secting transversely at a point x0 and with X1 Š P 1. Then

P WD
˝
OX1.�1/

˛
� Db.X/

absorbs singularities ofX ; indeed, the category?P is equivalent toDb.X2/ (via the pullback
functor for the projection X ! X2 contracting X1 to the intersection point x0 2 X2), hence
smooth and proper, and P ? ' ?P because X is Gorenstein.

Other examples of absorption are given by the so-calledKawamata-type semiorthog-
onal decompositions introduced in [42, Definition 4.1] (see [45] for many decompositions of
this type for surfaces).

We will give more examples of absorption in the next subsection, and meanwhile
we introduce a stronger notion. Recall that a smoothing of a proper variety X is a Cartesian
diagram (4) where f is a flat proper morphism to a smooth pointed curve .B; o/ and X is
smooth. Recall that i W X ! X denotes the embedding of central fiber.

Definition 5.3 ([76]). Assume a subcategory P � Db.X/ absorbs singularities of a proper
variety X . We say that P provides a deformation absorption of singularities of X if for any
smoothing f W X ! B of X the idempotent completion hi�.P /i˚ � Db.X/ of the triangu-
lated subcategory generated in Db.X/ by the image of i�W P ! Db.X/ is admissible.

Example 5.4. The absorption of singularities described in Example 5.2 is a deformation
absorption, because for any smoothing X ! B of the reducible curve X D X1 [ X2 we
have

NX1=X Š OX1.X1/ Š OX1.�X2/ Š OX1.�x0/ Š OX1.�1/;

hence X1 � X is a .�1/-curve on a smooth surface X, so i�.OX1.�1// 2 Db.X/ is an
exceptional object, and hence the subcategory hi�.P /i˚ D hi�OX1.�1/i is admissible.

The following result demonstrates how a subcategory providing a deformation
absorption can be used to construct a smooth family of categories.

Theorem 5.5 ([76]). Assume a subcategory P � Db.X/ provides a deformation absorption
of singularities of a proper variety X . Let f W X ! B be a smoothing of X with X quasipro-
jective. Define the subcategory D � Db.X/ from the semiorthogonal decomposition

Db.X/ D
˝˝
i�.P /

˛˚
; D

˛
: (31)
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Then Db D Db.Xb/ for b ¤ o, and Do D ?P � Db.X/. In particular, D is smooth and
proper over B .

The main thing to prove here is the equality˝
i�.P /

˛˚
o

D P

of the base change of the category hi�.P /i˚ withP (as subcategories ofDb.X/). The inclu-
sion P �

˝
i�.P /

˛˚
o
follows from [58, Corollary 5.7]. To prove the other inclusion, consider

the distinguished triangle
i�i�.F / ! F ! F Œ2� (32)

that exists for any F 2 P . It implies that i�.hi�.P /i˚/ � P and using the definition of base
change and admissibility of P the required inclusion easily follows.

Example 5.6. In the setup of Example 5.4, if NX is the surface obtained from a smoothing X

of X by contracting the .�1/-curve X1 then NX is smooth, X is isomorphic to the blowup
of NX at a point, and the orthogonal complement D of hi�.P /i˚ in Db.X/ is equivalent
to Db. NX/.

Following this example it is suggestive to think of the categoryD from Theorem 5.5
as a categorical contraction of Db.X/; this point of view is developed in [76].

5.2. CP 1-objects
In this section we introduce a class of objects that can be used to construct defor-

mation absorptions of singularities.

Definition 5.7 ([76]). We say that P 2 Db.X/ is a CP 1-object if

Ext�.P;P/ Š kŒt �; where deg.t/ D 2:

In other words, the derived endomorphism algebra of P is isomorphic to the cohomology
algebra of the topological space CP 1.

Remark 5.8. In [76] we define a more general notion of P 1;q-objects for an arbitrary posi-
tive integer q by assuming that Ext�.P;P/ Š kŒt � with deg.t/ D q. Such objects can be also
used to absorb singularities (and there are many geometrically meaningful examples of such
absorptions for q D 1, see Remark 5.20), but they never provide deformation absorptions
unless q D 2.

For each CP 1-object we define the canonical self-extension M of P from the canon-
ical distinguished triangle

M ! P
t

�! PŒ2�; (33)

where the second arrow is given by the generator t 2 Ext2.P;P/ of Ext�.P;P/.
The following characterization is useful and easy to prove.

Lemma 5.9 ([76]). If P 2 Db.X/ is a CP 1-object andM is its canonical self-extension then

Ext�.M;P/ Š k: (34)

1188 A. Kuznetsov



Conversely, if objects P;M2Db.X/ satisfy (34) andCone.M! P/ Š PŒ2�, then P is aCP 1-
object.

Example 5.10. Consider the situation described in Example 5.2. Let L0 be the line bundle
on X that restricts to X1 as OX1.�1/ and to X2 as OX2 . Similarly, let L1 be the line bundle
on X that restricts to X2 as OX2.�x0/ and to X1 as OX1 . Then there is an exact sequence

0 ! OX1.�1/ ! L1 ! L0 ! OX1.�1/ ! 0;

where the middle arrow is defined as the composition L1 � OX2.�x0/ ,! L0. It follows
that the objects P WD OX1.�1/ and M WD Cone.L1 ! L0/ fit into a distinguished triangle
of the form (33). It is also easy to check that (34) holds; therefore P is a CP 1-object.

As the next proposition shows, CP 1-objects induce semiorthogonal decomposi-
tions; it is instructive to compare this with the well-known notion of CP n-objects (see [35]),
which rather give autoequivalences of derived categories.

Proposition 5.11 ([76]). If X is a proper Gorenstein scheme, P 2 Db.X/ is a CP 1-object,
and the canonical self-extensionM of P is perfect, i.e.,M 2 Dperf.X/, then the subcategories

P WD hPi � Db.X/ and M WD hMi � Dperf.X/

are admissible in Db.X/ and Dperf.X/, respectively. Moreover,

P ' Db�kŒ��=�2
�

and M ' Dperf�kŒ��=�2
�
; where deg.�/ D �1;

the right-hand sides are the derived categories of DG modules over the DG algebra kŒ��=�2

which are perfect over k and kŒ��=�2, respectively. Finally, P \ Dperf.X/ D M.

For instance, since in the situation of Example 5.10 the curve X is Gorenstein and
the object M is perfect, we conclude that the category P � Db.X/ generated by OX1.�1/

is admissible. A similar computation shows that if X is a tree of rational curves, there is a
semiorthogonal collection of CP 1-objects in Db.X/ absorbing its singularities.

A useful property of CP 1-objects is given by the following

Theorem 5.12 ([76]). Let P1; : : : ; Pn be a semiorthogonal collection of CP 1-objects
in Db.X/. If the category P D hP1; : : : ;Pni absorbs singularities of X , it provides a defor-
mation absorption of singularities.

To prove the theorem, we consider a smoothing f W X ! B of X and check that for
each 1 � j � n the object

Mj WD i�i�.Pj /

is the canonical self-extension of Pj (this follows from the triangle (32) for F D Pj ). Then
using the adjunction isomorphisms

Ext�.i�Pj ; i�Pk/ Š Ext�.Mj ;Pk/;

Lemma 5.9, and the triangles (33), we deduce exceptionality and semiorthogonality of i�Pj ,
which implies admissibility of the subcategory of Db.X/ generated by i�P1; : : : ; i�Pn.
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Combining Theorem 5.12 with Theorem 5.5, we obtain

Corollary 5.13. Let P1; : : : ;Pn be a semiorthogonal collection of CP 1-objects in Db.X/.
If the category P D hP1; : : : ; Pni generated by the Pi absorbs singularities of X , then for
any smoothing f W X ! B of X there is a semiorthogonal decomposition

Db.X/ D hi�P1; : : : ; i�Pn; Di (35)

and the subcategory D defined by (35) is smooth and proper over B with Db D Db.Xb/

for b ¤ o and Do D ?P � Db.X/.

5.3. Absorption of nodal singularities
In this section under appropriate assumptions we show how to construct collections

ofCP 1-objects absorbing singularities of nodal varieties of odd dimension.We concentrate
on the case of threefolds, because this case is technically simpler and the main assumption
has clearer geometric meaning.

Definition 5.14 ([42]). A threefold X with isolated singularities is called maximally nonfac-
torial if the natural morphism from the class group of Weil divisors on X to the sum of local
class groups over all singular points of X

Cl.X/ !

M
x2Sing.X/

Cl.X; x/

is surjective.

For simplicity, consider the case whereX has a single ordinary double point x0 2 X .
In this case Cl.X; x0/ Š Z, and X is nonfactorial if and only if the morphism of the class
groups Cl.X/ ! Cl.X; x0/ is surjective onto a subgroup of finite index. Thus, maximal
nonfactoriality is a strengthening of the usual nonfactoriality property.

Further, if x0 2 X is a nonfactorial ordinary double point of a threefold, there exists
a small resolution � W QX ! X , i.e., a smooth threefold QX with a projective morphism � such
that its exceptional locus

L0 WD ��1.x0/ Š P 1 (36)

is a smooth rational curve. In these terms maximal nonfactoriality is equivalent to the exis-
tence of a line bundle L on X such that

LjL0 Š OL0.�1/: (37)

Theorem 5.15 ([76]). Let X be a maximally nonfactorial proper threefold with a single ordi-
nary double point x0 2 X and assumeH�.X; OX / D k. Let � W QX ! X be a small resolution
with exceptional locus (36). Then for any line bundle L on QX for which (37) holds the object

P WD ��L (38)

is a CP 1-object in Db.X/ providing a deformation absorption of singularities of X .
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To prove the theorem,we first decompose the derived categoryDb. QX/ into two parts:
the first is generated by an exceptional pair and the second is its orthogonal complement. The
pair consists of the line bundle L and the twisted ideal sheaf

L0
WD IL0 ˝ L:

Exceptionality of the pair .L0; L/ follows from the isomorphism (37) and the fact that L0 is
a .�1; �1/-curve. Now we obtain a semiorthogonal decomposition

Db. QX/ D h QP ; QDi; where QP WD
˝
L0; L

˛
and QD WD

?
˝
L0; L

˛
:

Since, by [17, Theorem 2.14], the functor ��WDb. QX/ ! Db.X/ is a Verdier localization with
the kernel generated by OL0.�1/ and since OL0.�1/ Š Cone.L0 ! L/ 2 QP , it follows that
there is a semiorthogonal decomposition

Db.X/ D hP ; Di;

such that QD D ��.D/ andP ' QP =hOL0.�1/i. The categoryD is equivalent to the smooth
and proper category QD , hence P absorbs singularities of X . On the other hand, P is gen-
erated by the object P WD ��.L/ Š ��.L0/, and a simple computation shows that there is a
distinguished triangle

��.M/ ! L0
! LŒ2�

for an objectM2Dperf.X/ such that (34) holds. Pushing forward this triangle, we obtain (33),
hence P is a CP 1-object by Lemma 5.9 (and M is its canonical self-extension).

Remark 5.16. The CP 1-object P defined in (38) is a reflexive sheaf of rank 1 on X and the
image of ŒP� 2 Cl.X/ in Cl.X; x0/ is a generator of the local class group. Note that the line
bundleL satisfying (37) is unique up to twist by a line bundle pulled back fromX , hence the
same is true for the reflexive sheaf P. On the other hand, if QX 0 is the other small resolution
of X and P0 is the reflexive generator of Cl.X; x0/ constructed from it, it follows that P0 is
isomorphic to the underived dual P_ of P up to line bundle twist. Thus, the flop QX Ü QX 0

between the small resolutions corresponds to dualization of the correspondingCP 1-object.

Remark 5.17. Theorem 5.15 shows that maximal nonfactoriality is sufficient for the exis-
tence of an absorption of singularities of a threefold with a single ordinary double point by
aCP 1-object. Using [86, Lemma 1.11] and [42, Corollary 3.8] one can prove that this condition
is also necessary, see [76].

Remark 5.18. Let X be a maximally nonfactorial threefold with n ordinary double points
and let � W QX ! X be a small resolution of singularities with exceptional curves L1; : : : ; Ln.
Assuming there is an exceptional collection .L1; : : : ; Ln/ of line bundles on QX such
that Lj jLk

Š OLk
.�ıjk/ (here ıjk is the Kronecker delta) for all 1 � j , k � n, a simi-

lar argument shows that singularities of X are absorbed by the semiorthogonal collection
of CP 1-objects Pj WD ��Lj , 1 � j � n.

Combining Theorem 5.15 with Theorem 5.12, we obtain
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Corollary 5.19 ([76]). Let X be a maximally nonfactorial projective threefold with a single
ordinary double point x0 2 X and assume H�.X; OX / D k. Let f W X ! B be a smoothing
of X . Then there is a semiorthogonal decomposition

Db.X/ D hi�P; Di;

where P 2 Db.X/ is the CP 1-object defined in Theorem 5.15 and the subcategory D is
smooth and proper over B with Db D Db.Xb/ for b ¤ o and Do D ?P � Db.X/.

Of course, a similar result holds for maximally nonfactorial threefolds with several
ordinary double points if the assumption of Remark 5.18 is satisfied.

Remark 5.20. There is a similar construction of deformation absorption that works in higher
dimensions. LetX be a variety of odd dimension with a single ordinary double point x0 2 X .
Let QX DBlx0.X/; then the exceptional divisorE � QX is a smooth even-dimensional quadric.
Assume there is an exceptional object E 2 Db. QX/ such that

EjE Š �E ;

where �E is a spinor bundle (this condition plays the same role as (37)). Then P WD ��.E/ is
a CP 1-object providing a deformation absorption of singularities of X , see [76]. Of course,
there is also a version of this result for several ordinary double points as in Remark 5.18.

An analogous construction for even-dimensional varieties produces a P 1;1-object
(as defined in Remark 5.8) which also absorbs singularities of X , but it does not give a
deformation absorption.

5.4. Fano threefolds
In this subsection, we apply the above results to clarify and extend the relation

between nontrivial components of derived categories of del Pezzo threefolds and prime Fano
threefolds that was discovered in [56].

Recall that a prime Fano threefold is a Fano threefold X with Pic.X/ D ZKX , and
its genus g.X/ is defined from the equality

.�KX /3
D 2g.X/ � 2:

It is well known that 2 � g.X/ � 12 and g.X/ ¤ 11.
Mukai proved (see [82], [74, §B.1]) that, for any prime Fano threefold X with

g.X/ 2 ¹6; 8; 10; 12º;

there exists a unique exceptional vector bundle UX of rank 2 with c1.UX / D KX such
that .OX ; U_

X / is an exceptional pair; it is called the Mukai bundle. Using this observation,
the nontrivial part AX � Db.X/ was defined in [56] from the semiorthogonal decomposition

Db.X/ D
˝
AX ; OX ; U_

X

˛
: (39)

Remark 5.21. This definition extends to general prime Fano threefolds of genus

g.X/ D 4:
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In fact, any smooth prime Fano threefold of genus 4 is a complete intersection X � P 5 of
type .2; 3/. We will say that X is general if the (unique) quadric passing through X � P 5

is smooth; in this case there are two Mukai bundles (the restrictions of the spinor bundles
from the quadric) and the corresponding nontrivial parts of Db.X/ are equal to the refined
residual categories from Example 3.17.

Similarly, a del Pezzo threefold is a Fano threefold Y with�KY D 2H for a primitive
Cartier divisor class H and its degree d.Y / is defined as

d.Y / D H 3:

It is well known that 1 � d.Y / � 5 for del Pezzo threefolds of Picard rank 1.
If Y is a del Pezzo threefold, the pair of line bundles .OY ; OY .H// is exceptional,

and this time the nontrivial part BY � Db.Y / was defined in [56] from the semiorthogonal
decomposition

Db.Y / D
˝
BY ; OY ; OY .H/

˛
(40)

(so, in this case these are just the residual categories in the sense of Section 3).
It was observed in [56, Proposition 3.9] that when X and Y are as above and

g.X/ D 2d.Y / C 2;

the categories AX and BY have isomorphic numerical Grothendieck groups (and their iso-
morphism is compatible with the Euler pairings). Furthermore, it was proved in [56, The-

orem 3.8] that for each prime Fano threefold X with g.X/ 2 ¹8; 10; 12º there is a unique
del Pezzo threefold Y (with d.Y / D g.X/=2 � 1 2 ¹3; 4; 5º) such that

AX ' BY :

So, it was expected [56, Conjecture 3.7] that the same equivalence takes place for appropriate
pairs .X; Y / with g.X/ 2 ¹4; 6º and d.Y / 2 ¹1; 2º.

However, the conjecture turned out to be false: for g.X/ D 6 and d.Y / D 2, it was
disproved in [10] or [96, Theorem 1.2], and for g.X/ D 4 and d.Y / D 1, it is false for trivial
reasons as in this case dim.HH1.AX // D 21 while dim.HH1.BY // D 20. The next theorem
clarifies the situation in these two cases.

Theorem 5.22 ([77]). For 2 � d � 5 let Y be a del Pezzo threefold of degree d and Picard
rank 1 and for d D 1 let Y be a small resolution of a del Pezzo threefold of degree 1 and
Picard rank 1 with a single ordinary double point. Then there exists a flat projective mor-
phism f W X ! B to a smooth pointed curve .B; o/ such that X is smooth and

(a) for any point b ¤ o in B the fiber Xb is a smooth prime Fano threefold of
genus g D 2d C 2;

(b) the central fiberXo is a prime Fano threefold of genus g D 2d C 2with a single
maximally nonfactorial ordinary double point xo 2 Xo birational to Y .
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Furthermore, there is a B-linear subcategory A � Db.X/ which is smooth and proper
over B and such that:

(i) for any point b ¤ o in B one has Ab D AXb
� Db.Xb/;

(ii) the central fiber Ao is equivalent to the component BY of Db.Y /.

In particular, the nontrivial part BY of Db.Y / is a smooth and proper extension across the
point o 2 B of the family AXb

of the nontrivial parts of Db.Xb/.

Remark 5.23. The case d D 1 in the theorem is somewhat special; in this case we take Y to
be a small resolution Y ! NY of a del Pezzo threefold NY with a single node (such resolution Y

always exists as an algebraic space, but not as a projective variety). Note, however, that the
component BY is still defined for this algebraic space Y by the same formula (40), where
the line bundle OY .H/ is the effective generator of the Picard group of Y . It is remarkable
that in this case all prime Fano threefolds Xb for b ¤ o in the constructed family are general
in the sense of Remark 5.21.

Let us explain how the family X is constructed. Let Y be as in the theorem.
If 2 � d � 5 let C � Y be a general smooth rational curve of degree d � 1 (with respect
to H ), and if d D 1 let C be the exceptional curve of Y (recall that in this case Y is a
small resolution of a nodal del Pezzo threefold NY ). Then one can prove that C has a unique
bisecant line L � Y and there exists a diagram

BlC .Y /

�

||

QX

�

��

L0
? _oo

!!
L
� � // Y X ¹x0º? _oo

where � is the blowup morphism, � is the contraction of the strict transform L0 � QX of L,
and X is a maximally nonfactorial prime Fano threefold of genus g D 2d C 2 with a single
ordinary double point x0 D �.L0/. Now we define the family f W X ! B as a smoothing
of X (it exists by [83]).

Now we explain how the subcategory A � Db.X/ is constructed. First, applying
Corollary 5.19 to the smoothing f W X ! B constructed above we obtain a B-linear subcat-
egory D � Db.X/ smooth and proper over B such that

Db D Db.Xb/ for b ¤ o and Do '
?
˝
IL0.�H/; O QX .�H/

˛
� Db. QX/;

where H is the pullback to QX of the hyperplane class of Y . Next, we consider the sheaf

U0
Y WD Ker

�
OY .H/ ˚ OY .H/ ! OC .d/

�
;

where the morphism is a twist of the evaluation morphism OY ˚ OY ! OC .1/. We check
that there is a vector bundle UX on X such that U0

Y Š ��.��U_
X /, that .OX ; U_

X / is an
exceptional pair in Db.X/, and this pair deforms (possibly after an étale base change) to
the nearby fibers of a family f W X ! B . Therefore, after a possible étale base change we
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can assume that the pair is defined on X, and hence we have a B-linear semiorthogonal
decomposition

D D
˝
A; f �Db.B/; f �Db.B/ ˝ U_

X

˛
Finally, we check that UX jXb

is the Mukai bundle of Xb when b ¤ o, hence Ab D AXb
.

On the other hand, we find a simple sequence of mutations identifying Ao � Do � Db. QX/

with BY . This proves the equivalence Ao Š BY .

Remark 5.24. When 3 � d � 5 the family of threefolds X in Theorem 5.22 can be chosen
in such a way that the family of categories AXb

is isotrivial, i.e., AXb
' BY for all b 2 B .

This is no longer possible for d 2 ¹1; 2º.

Remark 5.25. There are several interesting examples of del Pezzo threefolds with higher
Picard rank: two del Pezzo threefolds of degree 6 (the flag variety Fl.1; 2I 3/ and .P 1/3)
and one del Pezzo threefold of degree 7 (the blowup of P 3 at a point). The construction
of Theorem 5.22 works for these threefolds and relates the nontrivial parts of their derived
categories (still defined by (40)) to the nontrivial parts (still defined by (39)) of the derived
categories of appropriate Fano threefolds with primitive canonical class and genus g D 14

and g D 16, respectively.

There are other interesting maximally nonfactorial nodal Fano threefolds, e.g., some
prime Fano threefolds of odd genus g 2 ¹5; 7; 9º. They also provide geometrically mean-
ingful extensions of (appropriately defined) nontrivial components of derived categories,
see [77] for details.
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What is a random
surface?
Scott Sheffield

Abstract

Given 2n unit equilateral triangles, there are finitely many ways to glue each edge to a
partner. We obtain a random sphere-homeomorphic surface by sampling uniformly from
the gluings that produce a topological sphere. As n ! 1, these random surfaces (appro-
priately scaled) converge in law. The limit is a “canonical” sphere-homeomorphic random
surface, much the way Brownian motion is a canonical random path.
Depending on how the surface space and convergence topology are specified, the limit is
the Brownian sphere, the peanosphere, the pure Liouville quantum gravity sphere, or a
certain conformal field theory. All of these objects have concise definitions, and are all in
some sense equivalent, but the equivalence is highly nontrivial, building on hundreds of
math and physics papers over the past half-century.
More generally, the “continuum random surface embedded in d -dimensional Euclidean
space” makes a kind of sense for d 2 .�1; 25/ even when d is not a positive integer; and
this can be extended to higher genus surfaces, surfaces with boundary, and surfaces with
marked points or other decoration.
These constructions have deep roots in both mathematics and physics, drawing from clas-
sical graph theory, complex analysis, probability, and representation theory, as well as
string theory, planar statistical physics, random matrix theory, and a simple model for two-
dimensional quantum gravity.
We present here an informal, colloquium-level overview of the subject, which we hope will
be accessible to both newcomers and experts. We aim to answer, as cleanly as possible, the
fundamental question. What is a random surface?
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As a random path, Brownian motion is canonical in the sense that it is uniquely
characterized by certain symmetries, and universal in the sense that it is a limit of many
kinds of discrete random walks. This paper will describe a similarly canonical and universal
random surface. This random surface has several different formulations. To tell the story in
a fanciful way, imagine a dialog, first about random paths, then about random surfaces.

INSTRUCTOR: Consider the simple random walk on Z. At each time step, a coin toss
decides whether position goes up or down. If you shrink the graph horizontally by a factor
of C and vertically by a factor of

p
C , then the C ! 1 limit is Brownian motion.

STUDENT: Great! But can you define Brownian motion directly in the continuum?

INSTRUCTOR: Sure! Fix 0D t0 < t1 < � � �< tn. Specify the joint law ofB.t1/; : : : ;B.tn/ by
making increments B.tk/� B.tk�1/ independent normals with mean 0, variance tk � tk�1.
Extend to countable dense set (Kolmogorov extension), then all t (Kolomogorov–Čentsov).

STUDENT: Are there other natural ways to characterize Brownian motion?

INSTRUCTOR: Brownian motion is canonical in that it is the only random path with certain
symmetries (like stationarity/independence of increments). It is universal in that (per central
limit theorem) it is a limit of many discrete walks. It comes up everywhere.

STUDENT: What if I want a random path embedded in Rd ?

INSTRUCTOR: Use a vector .B1.t/; B2.t/; : : : ; Bd .t// of independent Brownian motions.

The student is happy. Now imagine a similar dialog for random surfaces.

INSTRUCTOR: Take a uniformly random triangulation of the sphere with n triangles. The
picture below is an example with 30,000 triangles by Budzinski, using some software to
embed the surface in three dimensions and give us a view. The n ! 1 limit of this object
is a random fractal surface called the Brownian sphere. It is also a peanosphere and a pure
Liouville quantum gravity sphere, and a conformal field theory.
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STUDENT: You just listed four things! Which is the n ! 1 limit of Budzinski’s picture?

INSTRUCTOR: They all are! The difference comes down to the topology of convergence
and the features of the limit presumed to be measurable. Think of them as different aspects
of the same universal object. Four blind mathematicians feel the surface of an elephant and
describe four different things:

• Brownian sphere: a random metric measure space constructed from the so-called
Brownian snake as explained in surveys by Le Gall, Miermont and Baez [27,171,

175,184,186].

• Peanosphere: a mating of continuum random trees that encodes both a surface
and an extra tree and/or collection of loops drawn on top of it, as explained in
surveys by Gwynne, Holden, and Sun, and by Biane [51,128].

• Liouville quantum gravity sphere: a random fractal Riemannian surface in which
areas, lengths, and other measures are given by exponentials of a Gaussian free
field �, as explained in surveys by Berestycki, Ding, Dubédat, Duplantier, Garban,
Gwynne, Miller, Powell, and Werner [33,37,91,101,113,125,188,259].

• Conformal field theory: a collection of multipoint functions representing (regular-
ized) integrals of products of the form

Q
e˛i �.xi / with respect to a certain infinite

measure, as explained mathematically by David, Guillarmou, Kupiainen, Rhodes,
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and Vargas [87, 120, 121, 160, 254] who also survey the physics literature. The infi-
nite measure is the Polyakov measurewhich is the product of an unrestricted-area
measure on LQG spheres (with defining field �) and Haar measure on the Möbius
group PSL.2;C/ (to select an embedding in C).
Technical point: The unit area Brownian/Peano/LQG-sphere is a sample from
a probability measure dS on a space of unit area surfaces. There is a natural
infinite measure on unrestricted-area surfaces (with k � 0 marked points) given
by A�7=2CkdAdS where .A; S/ is the rescaling of S with area A. This is nat-
ural because the number of triangulations (quadrangulations, etc.) with n faces
and k marked points scales like Cˇnn�7=2Ck for model-dependent constants C
and ˇ. Weighting the counting measure by ˇ�n, we obtain a discrete measure that
(appropriately rescaled) converges to the measure above as the area-per-triangle
" goes to zero. If we replace ˇ by the “off-critical” ˇ.1 C "�/ then the limit is
A�7=2Cke��AdAdS , which is finite if � > 0 and k � 3. Polyakov included the
e��A factor and motivated it in a different way, using the Liouville equation as
we explain later.

STUDENT: Do I really have to learn all four viewpoints?

INSTRUCTOR: A lot of good work has been done by people fluent in only one of the four.
But all four have important applications. For example, in the Brownian sphere construction,
distances are easy to define, and you can show that the surface has fractal dimension 4. So to
cover the surface with metric balls of radius 1=n, you need � n4 balls. In the peanosphere
construction, one sees the random trees and loops that naturally live on top of a random sur-
face, andmost easily makes contact with loop-decorated discrete models. The LQG approach
allows one to define Brownian motion on a random surface as well as other conformally
defined objects (like SLE curves). Conformal field theory is a staple of physics. It ties into
quantum field theory (if one analytically continues from Euclidean to Minkowski space and
replaces probability measures with quantum wave functions).

STUDENT: Are these surfaces characterized by simple axioms like Brownian motion is?

INSTRUCTOR: Yes. But each viewpoint comes with its own axioms, its own history, its
own motivation, its own surveys. The proofs that they agree are long and involved.

STUDENT: Can any of the viewpoints describe a random surface embedded in Rd ?

INSTRUCTOR: Sure. You basically weight the law of the surface by the “number of ways” to
embed it inRd . This amounts to weighting by the d th power of a certain “partition function”
and this changes the law of the surface itself (even ignoring the embedding). You can apply
such a weighting even when d is not a positive integer, so there is actually a one parameter
family of random surfaces parameterized by d , with the scaling limit of Budzinski’s picture
corresponding to d D 0. These surfaces are “rougher” when d is large and “smoother” when
d is small, converging to the Euclidean sphere as d ! �1. They are defined as random

1205 What is a random surface?



metric spaces for any d < 25, but are only finite-diameter and finite-volume if d � 1. The
family can equivalently be parameterized by related quantities that come up in LQG theory
like Q > 0 (where d D 25 � 6Q2) or  (where Q D 2= C =2 – note that  is only real
if d � 1 so thatQ � 2) or by the peanosphere correlation coefficient.

STUDENT: I’m getting a bit lost. Can you give me the four definitions you promised?

The remainder of this paper will aim to do just that. We present a narrative-style
introduction to each of the four viewpoints above, emphasizing the distinctive intellectual
heritage behind each approach, as well as the relationships between them and the relevant
recent developments.

Along the way, wewill introduce several other natural objects: random trees (like the
continuum random tree), random distributions (like the Gaussian free field) and random non-
self-crossing curves (like the Schramm–Loewner evolution). We aim to make the exposition
accessible to outsiders and newcomers, as well as to researchers who have expertise in one
or more of the viewpoints but who might appreciate a high-level overview of the others.
Readers interested in a still less technical account might take a look at the recent Quanta
Magazine articles on this subject [143–145].

It is ambitious to try to tell four stories in one article, but we will do our best to
convey at least the main ideas. The style is informal—no proofs—but we provide accurate
definitions and the surveys mentioned above contain more detail. This paper is targeted pri-
marily at a mathematical audience and is meant to be broadly accessible. This subject has
deep roots in physics (especially string theory, quantum field theory, and planar statistical
physics), but we will do our best to avoid any terminology that would be difficult for non-
physicists to understand. Let us also stress that our reference list is long but very far from
complete, biased by both the limits of the author’s knowledge and the narrative focus of the
paper. As such, it is more of a sampling than an exhaustive survey. Many highlights of the
subject are not mentioned here.

For concreteness and simplicity, we will focus mostly on sphere-homeomorphic
random surfaces. But all of the constructions in this paper have analogs that look the same
locally but have different global topology. For example, in addition to the Brownian sphere
one has a Brownian disk, a Brownian plane, a Brownian torus, Brownian surfaces of arbi-
trary genus and/or arbitrarilymany boundary components, etc. [50,65,84,174,187,222]. Variants
like these can be defined within all four viewpoints. One would expect that these definitions
are consistent from one viewpoint to another (so that, e.g., a Brownian three-holed torus is
somehow equivalent to a corresponding LQG three-holed torus or Peano three-holed torus).
Significant work along these lines has been done, but the set of questions one can ask is very
large and the program has not been completed yet.

1. Brownian sphere: a random metric measure space

Our first construction is a random surface called the Brownian sphere (also known
as Brownian map). The Brownian sphere is a random sphere-homeomorphic metric measure
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space. It has been described in longer survey articles by Le Gall and Miermont [171,175,184,
186,187] and in a shorter overview by Baez [27].

Both the peanophere and the Brownian sphere can be constructed by “gluing
together” a pair of “continuum trees” along their outer boundaries, which produces a sphere
decorated by a space-filling curve (that somehow snakes in-between the two trees)—but the
law of the pair of trees is different in the two settings. The idea of gluing together trees to
obtain a sphere may seem counterintuitive, but we will see that it is well motivated by the
discrete models.

Readers familiar with complex dynamics may also recall that the “mating” of two
dendritic Julia sets (these are tree-like sets with empty interior) is a topological sphere, see,
e.g., [25,203,247,261], or look up the online video animations by Arnaud Chéritat. The Brow-
nian sphere and peanosphere constructions are random versions of this phenomenon. Let us
begin by defining continuum random trees which are sometimes also called Brownian trees.

1.1. Continuum random trees (Brownian trees)
Brownian motion is a random function B.t/ defined for t 2 Œ0;1/. But Brownian

motion (like the Brownian sphere) has many variants with similar local behavior. For exam-
ple, the Brownian bridge is a Brownian motion on t 2 Œ0; 1� somehow conditioned on the
(zero probability) event that B.1/ D 0. The Brownian excursion is a Brownian bridge with
B.0/ D B.1/ D 0 that is further conditioned to stay positive on Œ0; 1�.

If one starts with the graph of a Brownian excursion B , and identifies two points
whenever they are connected by a horizontal chord under the graph (see below), one obtains
a random metric space T called the continuum random tree, which was first constructed
by Aldous in 1991 [9–11], and which plays a role in the construction of both the Brownian
sphere and the peanosphere.

Note that the function taking t to the graph point
�
t;B.t/

�
induces a function f from Œ0; 1� to

T that “traces the boundary of the tree clockwise.” The pushforward of Lebesgue measure
on Œ0; 1� endows T with a natural measure. Moreover, one can define the distance between
f .s/ and f .t/ to be �

B.s/ � inf
r2Œs;t�

B.r/
�

C

�
B.t/ � inf

r2Œs;t�
B.r/

�
:

This measures how far “down and up” one has to travel within T to get from f .s/ and f .t/.
Since T comes with a natural measure and a natural metric, we call it a random metric
measure space.
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1.2. Planar map bijections that motivate Brownian sphere and peanosphere
The Brownian sphere has its historical roots in the study of planar maps. A planar

map is a finite graph together with an embedding in the complex sphereC [ ¹1º, where two
embeddings are considered equivalent if there is an orientation-preserving homeomorphism
of C [ ¹1º taking one to the other. For example, the two figures below are isomorphic as
graphs but represent different planar maps, as there is no orientation-preserving homeomor-
phism of C [ ¹1º mapping one to the other.

Combinatorially, a planar map is fully determined by the graph together with the “clock-
wise cyclic ordering” of the edges surrounding each vertex. In particular, the number of
distinct planar maps with n edges is finite. To eliminate the ambiguity that comes from
having nontrivial automorphisms, it is sometimes helpful to specify a “root” by fixing an
oriented edge. If an orientation-preserving homeomorphism of C [ ¹1º takes a planar map
to itself (mapping edges to edges and vertices to vertices) and fixes the oriented edge, one
can show that it must induce the identity map on the whole set of vertices and edges. To
see why, imagine that your car starts driving along the oriented edge. From there you can
describe how to get to any other vertex or edge with a set of directions like “Drive until you
reach a vertex, then take the furthest road to your left, then drive until you reach another
vertex, then take the third road from the left,” and so forth. This method of specifying ver-
tices and edges is preserved by homeomorphisms of C [ ¹1º. In other words, fixing a root
gives us a way to uniquely specify all other vertices (just as a Cartesian coordinate system
gives us a way to uniquely specify points on a planar lattice). This implies that fixing the root
eliminates all non-trivial planar map automorphisms: for example, a triangle has three non-
trivial orientation-preserving automorphisms—corresponding to the three rotations—but if
the triangle is assigned a root, then only the identity automorphism would fix the root.

Perhaps the most famous planar map problem of all is the “4 color conjecture”
(also known as Guthrie’s problem) which captivated mathematicians worldwide from its
formulation in 1852 to its computer-assisted proof by Appel and Haken in 1976. See, e.g.,
[81,112,146,223] for historical accounts. The problem is to show, given any finite planar map,
that it is possible to color each vertex one of four colors in such a way that no two neighbors
have the same color. Note that if one has amap of South America, say, one can create a planar
map by putting a vertex in the center of each country and drawing an edge connecting two
countries wherever they share a nonzero-length border. The four color theorem allows one
to color the countries in such a way that no two countries sharing a nonzero-length border
have the same color. One of the key contributors to research on this problem, and to graph
theory in general, was William Tutte.
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By Tutte’s own account [253] (see also [211]), he was motivated by the four color
theorem when he began thinking about enumerating all planar maps. He wrote his famous
“census of” series in 1962 and 1963 [249–252] which, among other things, included a
remarkable formula for the number of rooted planar maps with n edges, namely 2

nC2
�

3n

nC1

�
2n
n

�
. Using, e.g., Stirling’s formula (or the local central limit theorem), one can show

that
�

2n
n

�
D

4n
p

�n1=2 .1CO. 1
n
//which implies that Tutte’s formula grows asymptotically like

Cˇnn�7=2Ck (which is the formula from the technical point in our introductory dialog) with
C D

2p
�
, ˇ D 12, and k D 1. This is consistent with the formula from the introduction

because the root effectively plays the role of a single marked point, and we recall that k
represents the number of marked points.

These papers were followed by another series by Mullin [206–209] which included
a formula for the number of rooted planar maps decorated by a distinguished spanning tree,
namely .2n/Š.2nC2/Š

nŠŒ.nC1/Š�2.nC2/Š
. This grows asymptotically likeCˇnn�4Ck with k D 1 and ˇ D 16.

The addition of the “spanning-tree decoration” somehow changes the growth rate in a fun-
damental way, changing not only ˇ and C but also the power of n (effectively replacing the
7=2 with 4).

Both of these formulas have interesting bijective proofs: the former, in its first form
due to Cori and Vauquelin in 1981 [80], was later advanced and popularized by Schaef-
fer [226]. The latter was essentially due to Mullin in 1967 [209], see also the explanation
by Bernardi [40], and it reduces the problem of counting spanning-tree-decorated rooted
planar maps to a problem about walks in Z2

C (which can be separately addressed, e.g., with
reflection arguments). These bijections motivate the definition of the Brownian map and the
peanosphere, respectively. For now let us describe the bijections side by side, beginning with
the Mullin bijection.

Suppose that .Xn; Yn/ is a simple walk in Z2
C starting and ending at the origin.

Then if we fix a large enough value of C , the graphs ofXn and C � Yn (linearly interpolated
to R) will not intersect; see the figure below. Draw a vertical red line at each time increment.
Then declare two points in the graph of Xn (resp. C � Yn) to be equivalent if one can draw
a horizontal chord connecting them that does not go above the Xn graph (resp. below the
C � Yn graph). In other words, we “identify” each pair of points connected by a horizontal
(blue, black, or green) line segment. We also glue together the leftmost and rightmost red
lines. After this gluing is done, the region below Xn collapses to become a tree (shown with
black edges and green vertices) as does the region above C � Yn (shown with black edges
and blue vertices) and we are left with a planar map with black/red edges and blue/green
vertices. (The left and right red curves are glued together, which makes the topological disk
they enclose into a sphere.) This planar map is a triangulation in which each triangle contains
two red edges and one black edge.
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If the black edges are erased, one is left with a red quadrangulation Q which is bipartite: the
blue and green vertices are the two partite classes. Each quadrilateral in Q has one blue-to-
blue diagonal. These diagonals together form a planar mapM . Conversely, given the planar
map M , it is not hard to show that one can recover Q (by adding a vertex in the center of
each face ofM and connecting it to all of the boundary vertices of that face). The blue tree
T is a spanning tree ofM . The green-to-green diagonals of Q form the dual graphM �, and
the green tree T � is the dual spanning tree. The story above gives a bijection between:

• Simple walks .Xn; Yn/ in Z2
C of length 2N that start and end at the origin.

• Pairs .M; T / where M is a rooted planar map and T is a spanning tree of M .
Here rooted means that a distinguished vertex ofM and a distinguished incident
vertex ofM � are fixed (to be the roots of T and T �, i.e., the two vertices attached
to the leftmost red line, or the equivalent rightmost red line).

Choosing a uniformly random walk .Xn; Yn/ of the type described above produces a uni-
formly random .M;T / pair. The probability of a given mapM is proportional to the number
of spanning treesM has.

But what if we want to simply count the total number of rooted maps M (or the
total number of quadrangulations Q) instead of the number of .M; T / pairs? This is what
the Cori–Vauquelin–Schaeffer bijection does. It can be seen as similar to theMullin bijection
but with a few key differences. First, instead of requiring .Xn; Yn/ to traverse lattice edges,
we at each step allow Yn to change by ˙1 and Xn by either 0 or ˙1. Second, instead of
perfectly horizontal green chords, we draw chords that are one unit higher on the right than
on the left. We draw one such chord leftward starting at each vertex on the graph of Xn,
which means that we have to add an extra vertex of minimal height as shown.
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Third, we consider only .Xn; Yn/ pairs for which the above picture has a special property:
namely, whenever two red vertical lines are incident to the same blue chord, their lower
endpoints have the same height.

If we glue together the edges on the C � Yn graph connected by blue chords (the same way
as in the Mullin bijection) we obtain a tree, and the third condition above is equivalent to the
condition that if two red lines start at the same blue vertex on that tree then they terminate at
green vertices of the same height. Thus we can label each vertex in the tree by the height of
the green vertex (or vertices) it connects to. We then obtain a planar map by gluing the black
and green trees on the right to one another: precisely, we glue each green vertex in the tree
on the right to the blue vertex it is connected to by a red edge, effectively shrinking each red
edge to a point. (Also, the outermost two green edges are understood to be glued/identified
with each other, so that the topological disk they surround becomes a sphere.)

We can think of the graph on the left above as obtained by starting with the region below
the Xn graph, then gluing together two black edges of the Xn graph whenever the edges of
the C � Yn graph just above them correspond to the same edge of the upper tree. Whenever
two of these black edges are glued together, they are either both horizontal (each part of a
triangle with two green edges) or one increasing and one decreasing (respectively part of a
two-gon with one green edge and a quadrilateral with three green edges). In each case, once
the two black edges are glued together (and erased) we are left with a green quadrilateral.

The construction above yields a bijection between
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• Well-labeled rooted planar trees .T; `/ (here `maps vertices of T to positive inte-
gers, where the root has label one and adjacent vertices differ by 0 or ˙1) and

• Rooted quadrangulations Q.

To prove that the above is a bijection, one has to show that one can reconstruct the green and
black trees given just the green-edge quadrangulationQ. Roughly speaking, one reconstructs
the original green tree as follows. First, we shorten the green edges slightly so that they
are no longer connected to each other at the vertices, but then we reconnect some of them:
precisely, we connect each edge (directed “downward” towards its lower-label endpoint) to
the successor downward-pointing edge that involves “turning maximally to the left.” Once
this is done, the green tree is a tree of “leftmost geodesics” built from the directed green
edges (each directed in the direction of decreasing distance to the root). Given the green
tree, one can construct the Xn in the figure above and it is not too hard to check that one
can reconstruct the upper tree as well (since one knows which green vertices have to be
equivalent—and hence connected by red–blue–red paths).

We remark that once the black and green trees are glued together, they have vertices
(but no edges) in common (this is different from the Mullin bijection) but in a sense the two
trees still do not “cross” each other. To try to see why, it is interesting to imagine a path that
crosses through the red edges in order from left to right (but does not intersect the green or
black trees). Once we take the quotient (with respect to the equivalence class where all points
on the same red edge are considered equivalent) this becomes a path that winds between the
green and black trees, intersecting the trees at vertices but never crossing a branch of either
tree.

This bijection (like the Mullin bijection) constructs a quadrangulation Q by gluing
together a pair of trees. The microscopic details of the gluing are a bit different: in the Mullin
bijection the red edges formQ and in the Cori-Vauquelin-Schaeffer bijection the green edges
form Q. There are many variants and analogs of the CVS bijection, see for instance [8, 12,

44, 49, 55, 226] and the references therein. At the global level, the main difference between
the CVS bijections (and its variants) and the Mullin bijection (and its variants) is this: in the
CVS bijection, one of the trees (the green one) is the so-called leftmost geodesic tree of edges
and is determined by Q itself. The second tree (the black one) is in some sense “dual” to the
geodesic tree (and is also determined by Q itself). By contrast, in the Mullin bijection the
spanning tree is not determined by Q and Q is not uniform among all quadrangulations.

1.3. Unconstrained variant: when Q is both pointed and rooted
There is a variant of the Mullin bijection in which we relax the restriction that Xn

is nonnegative, see below.
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Here we imagine that the left and right sides of the above rectangle are glued to one another
(so that both Xn and Yn then become indexed by a circle). We can then identify points on
the same blue chord or the same green (possibly wrapping around) chord, just as before, and
we obtain a pair of trees with red edges between them. A key difference from the original
construction is that in this construction the root of the lower tree (corresponding to the min-
imum of Xn) and the root of the upper tree (corresponding to the minimum of Yn) are no
longer required to be adjacent. The minima of Xn and Yn may occur at different places, and
we can think of the vertex corresponding to the Xn minimum as an extra marked point. (In
principle, one could allow both Xn and Yn to take negative values, in which case the two
tree roots—and the point described by the leftmost/rightmost red line—would effectively
describe three marked points.)

It turns out that the CVS construction also has a similar variant, which corresponds
to relaxing the constraint that all of the blue labels are positive. If we relax this constraint,
then the corresponding Xn process can be positive and negative, and in particular no longer
has to have a minimum at the same place that Yn does. This means that the root of the
upper tree and the root of the geodesic tree are no longer required to be adjacent. With
this constraint relaxed, the set of possible labeled upper trees is easier to count: one has a
Catalan number 1

nC1

�
2n
n

�
of rooted planar trees, and given the tree, there are exactly 3n ways

to choose the labels if we fix the root label to be zero. (We are free to do this since adding a
constant to the labels does not affect the map construction, and hence only the labels modulo
additive constant are relevant.) The formula 3n

nC1

�
2n
n

�
can also be obtained by starting with

Tutte’s formula and multiplying by nC 2 (there are nC 2 possible to choose an extra marked
vertex) and dividing by a factor of 2 (which is related to the choice of rootorientation—this
is explained in many places, see e.g. [226] or the short explanation in Section 3 of [68]).

There is another way to think about the trajectory .Xn; Yn/ obtained from a labeled
tree. For every point on a labeled tree, there is a labeled path from that point back to the root.
As one traces the tree clockwise, one obtains a corresponding sequence of labeled paths;
the labeled path seen at time n can be drawn as a “snake” (a vertical-to-horizontal function
defined on Œ0; Yn�) with the horizontal coordinate indicating the label.

The figures below (read from left to right) are steps in a Markov process on a space
of “snakes.” Each figure is a sequence of edges, each of which goes up one unit and �1, 0,
or 1 units to the right. To move from one figure to the next, one first tosses a coin to decide
whether to delete the top edge (with probability 1=2) or to add an up-left edge (probability
1=6), up-right edge (probability 1=6) or up edge (probability 1=6).
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If the head of the snake starts at height zero—and we condition on the head height staying
nonnegative and returning to zero at time 2n—then we can let the head height represent
the process Yn and the head horizontal location represent the process Xn, and it is not hard
to see that this corresponds precisely to the .Xn; Yn/ construction from the labeled tree. If
one rescales this process vertically by a factor of C and horizontally by

p
C , one obtains a

continuum Brownian snake model in the limit. The Brownian snake was introduced by Le
Gall in the 1990s (see, e.g., [167]) not long after Aldous introduced the continuum random
tree (also known as Brownian tree). The terms Brownian snake and Markov snake were
coined by Dynkin and Kuznetsov (who credit Le Gall for the construction) in 1995 [106].

Now the law of the continuum pair .Xt ; Yt / can be described as follows: one first samples
Yt as a Brownian excursion on Œ0; 1� and then takes a quotient of the graph of Yt to produce
a Brownian tree T , together with the natural map f taking t to T (which traces around the
boundary of T clockwise as t varies from 0 to 1). One then generates a Brownian motion
� indexed by T (taken to be zero at the root of T ). This in turn determines a process Xt by
Xt D �.f .t//. The minimum of this process corresponds to the location of the root of the
geodesic tree. The picture of the whole snake at time t (viewed as a vertical-to-horizontal
function as above) is described by the restriction of � to the path in T from f .0/ and f .t/.
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1.4. Passing to the continuum
One would expect both the Mullin and the Cori–Vauquelin–Schaeffer bijections to

have limits given by the gluing of two fractal trees defined by continuum processesXt and Yt ,
something like the figure below:

However, we would expect the law of .Xt ; Yt / to be rather different in the two scenarios. In
the Mullin limit, Xt and Yt are independent Brownian excursions, and the picture is a topo-
logical quotient of two independent continuum random trees (with respect to the equivalence
that identifies two points if they are connected by a red curve). The topological sphere con-
structed this way is a special case of the peanosphere that we will discuss in the next section.
In the CVS limit, Xt and Yt correspond to the horizontal and vertical components of the
head location in the Brownian snake process. The Brownian sphere (also known as Brown-
ian map) is defined to be the metric space obtained by starting with the tree generated byXt

(viewed as a metric space) and then taking the metric quotient with respect to the equiva-
lence that identifies points if they are connected (by the red curves) to the same point on the
upper tree defined by Y .

The Brownian map was originally defined a bit differently. Marckert and Mokka-
dem [180], building on Schaeffer’s work [226] (also citing, e.g., the early work of Krikun and
of Angel and Schramm [21,157]), argued that the limit of the discrete models could be defined
in some sense (since the .Xn; Yn) process had a limit) and coined the term Brownian map to
describe the limiting object; however, they did not show convergence in the space of random
metric spaces. Le Gall showed that subsequential limits of random quadrangulations exist
w.r.t. to the topology obtained from the Gromov–Hausdorff metric (a natural “metric on the
space of all compact metric spaces”) and are a.s. homeomorphic to a metric quotient of the
Brownian tree [168]. Le Gall and Paulin subsequently showed that all such subsequential
limits are a.s. homeomorphic to the 2-sphere [177], see also the sphericity proof by Mier-
mont [183]. The term Brownian map was sometimes used (see e.g. [176]) to describe any one
of the subsequential scaling limits of the discrete models, and in this language, the ques-
tion “Do random quadrangulations have a (non-subsequential) Gromov–Hausdorff scaling
limit?” was formulated as the question: “Is the Brownian map unique?” This problem was
solved independently by Le Gall and by Miermont [170,185], who also showed that this limit
exists in law (without passing to a subsequence) and that the limiting random metric space
is indeed the Brownian-snake-based metric quotient defined above.
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Since this foundational work, Brownian surfaces have been the subject of a sizable
literature. Many different kinds of random planar maps (quadrangulations, triangulations,
various variants, etc.) have been shown to have the Brownian sphere as a scaling limit,
strengthening the idea that the Brownian map (like Brownian motion) is something “uni-
versal” [2–7, 31, 49, 69, 181]. There has also been significant work done on the continuum
model. For example, the behavior of the geodesics in the Brownian sphere is quite interesting
(geodesics “merge into” one another in ways that are very unlike what one sees for Euclidean
spheres) and much has been done to understand their behavior [20,48,54,57,58,169,189].

1.5. An axiomatic approach
Like Brownian motion, the Brownian sphere is uniquely characterized by certain

axioms, as shown in a long paper by the author and Miller [196]which draws on related ideas
by Bertoin, Budd, Curien, Kortchemski, Krikun, Le Gall, Miermont and others [21,46,47,83,
85,86,157,172,173]. We won’t give a fully precise description here, but let us summarize the
rough idea. For Brownian motion, there is a Markov property, which states that given B.t/
the conditional laws of B restricted to Œ0; t � and B restricted to Œt;1/ are independent. Now
consider an unrestricted-area Brownian sphere with two marked points x and y. The natural
Markov property in this setting states that given the boundary length of the filled metric
ball of radius r centered at x (here the “filled metric ball” is obtained by starting with the
ordinary metric ball and adding the components of its complement that don’t contain y) the
conditional laws of the ball and its complement are independent and depend on the boundary
length in a scale invariant way. Furthermore, if we cut a filled metric ball into slices—using
geodesics from evenly spaced points around the boundary to the center—then the slices
are conditionally independent of each other given the length of their intersections with the
metric ball boundary. The main result of [196] (very roughly speaking) is that if a measure
on sphere-homeomorphic metric measure spaces satisfies these properties, then it must be
the Brownian sphere.

2. Peanosphere: a random mating of trees

2.1. Basic definition
In Section 1 we saw that the Mullin bijection gives a bijection between lattice walks

in Z2
C (starting and ending at zero) and pairs .M;T / whereM is a rooted planar map and T

is a spanning tree onM . The X and Y coordinates of the walk encode, respectively, a tree
and a dual tree, which are somehow stitched together to createM . This is actually a special
case of a much more general idea. The idea of considering planar maps together with an extra
structure on the map (a spanning tree, a collection of loops, a distinguished edge subset, a
bipolar orientation, etc.) has long been a staple of this subject, both on the mathematics side
and the physics side. The extra structure is sometimes called a decoration or (on the physics
side) a statistical physics model or a matter field.

It turns out that many kinds of planar map decorations can be used to produce a
spanning-tree/dual-spanning-tree pair in someway. And the resulting trees are often encoded
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by some kind of lattice walk conditioned to stay in Z2
C, so that in the fine mesh scaling limit,

one obtains some kind of Brownian motion conditioned to stay in R2
C (starting and ending at

the origin). However, in general, the kind of Brownian motion involved (before imposing the
quadrant constraint) may be one in which Xt and Yt are correlated. That is, the “diffusion
matrix” may be such that Var.Xt / D Var.Yt / D t and Cov.Xt ; Yt / D �t for some possibly
nonzero correlation coefficient �. (There is no loss in assuming Var.Xt / D Var.Yt / D t ,
sincemultiplyingX or Y by a constant does not change the topological surface construction.)

The limit of the Mullin construction corresponds to � D 0, but in general one might
consider any � strictly between �1 (where the Brownian trees are perfectly negatively corre-
lated) and 1 (where the Brownian trees are perfectly correlated). For each � there is a natural
way to make sense of this Brownian motion conditioned to stay in R2

C (starting at the origin
at time 0 and returning there at time 1). One can then use the corresponding .Xt ; Yt / pair to
generate a pair of trees that can be “mated together” in the manner described in the previous
section.

Formally, then, the peanosphere is just a pair of random measure-endowed metric
planar trees that, when glued together along their boundaries, make a topological sphere,
as described in the author’s work with Duplantier and Miller [102, 194] and in more recent
surveys [51,128]. The sphere comes equippedwith a non-self-crossing, space-filling path (also
known as Peano curve) which in some sense traces the interface between the two continuum
trees. (This is the motivation behind the term peanospherewhich was originally proposed by
Richard Kenyon in private communication.) It is also equipped with a measure, which is the
pushforward of Lebesgue measure on the parameterizing interval Œ0; 1�. Note that no matter
the value of �, the law of .Xt ; Yt / is unchanged if we swap the roles ofXt and Yt , which (by
contrast) is very much not the case for the .Xt ; Yt / pair used to define the Brownian map.

Moore in 1925 gave a very general criterion for determiningwhen a topological quo-
tient space is topologically a sphere [205] and as explained in [102,194] one can verify directly
that these criteria are satisfied in our setting, so that the object obtained by “gluing the two
trees together along their outer boundaries” is indeed a topological sphere. The peanosphere
does not a priori come with a simple metric space structure like the Brownian sphere does,
because neither the tree nor the dual tree is a tree of geodesics. On the other hand, both the
tree and the dual tree (as determined by Xt and Yt ) can be viewed as metric measure spaces
themselves, so lengths of arcs within these trees are well defined.

2.2. Percolation and other simple kinds of decoration
A major reason to study the peanosphere is that it helps one understand random

.M;T / pairs, whereM is a random planar map and T is some kind extra decoration onM .
Indeed, most of the scaling limit results known for decorated random planar maps make use
of the peanosphere construction in some way. But before we discuss that topic, let us say a
few words about randomly decorated deterministic planar maps, i.e., let us suppose thatM
is fixed to be a grid or lattice, and we are choosing some way to “decorate”M , e.g., with a
coloring or spanning tree.
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In statistical physics, it is often interesting to try to find the simplest possible models
that exhibit behaviors (phase transitions, correlation decays, fractal patterns, etc.) that one
might see in complicated real world systems. By understanding these models thoroughly
and mathematically, one can hope to get a glimpse of why similar behaviors appear in more
complex systems. We will describe a few of these very simple models here.

First, let us discuss lattice percolation which was introduced to the mathematics
literature byBroadbent andHammersley in [61]. In thismodel, one starts with a set of edges—
or vertices or faces—and tosses an independent coin for each one to decide whether it is
“open” or “closed.” This is easiest to visualize by a computer. For example, the following
Mathemetica code generates the picture below it:

n=40;Graphics[{Table[If[RandomInteger[1]==1,Line[{{i,j},{i,j+1}}]],{i,0,n},{j,0,n-1}],
Table[If[RandomInteger[1]==1,Line[{{i,j},{i+1,j}}]],{i,0,n-1},{j,0,n}]}]

The above is a 40� 40 grid where one tosses a fair coin independently for each edge
to decide whether to display it or not. The displayed edges are the open edges; the edges
not displayed are closed. A connected component of open edges is called a cluster. One
can think of this as a simplistic model for a porous medium—with open edges representing
pathways that current or fluid can flow through, and closed edges representing obstructions.
The figure above is called bond percolation (with parameter p D 1=2) because it is the
edges (“bonds”) that are assigned to be open or closed. An alternative is site percolation
which independently assigns each vertex—or face if one uses the “dual perspective”—to
be open with probability p. By way of illustration, the following code generates the figure
below it:
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n=40; Graphics[Table[{If[(i-n)(j-n)==0,Blue, If[i j==0,Yellow,If[RandomInteger[1]==1,
Yellow,Blue]]],RegularPolygon[i{-Sqrt[3],-1}+j{-Sqrt[3],1},{1,0},6]},{i,0,n},{j,0,n}]]

This figure represents percolation on the faces of a hexagonal grid. For each interior face,
an independent coin toss decides whether it is open (blue) or closed (yellow). Here we have
also imposed some deterministic boundary conditions, fixing the colors to be blue along
one boundary arc and yellow on the complementary arc. The “blue–yellow” edges (i.e., the
edges on the boundary between blue and yellow) form many finite length cycles and one
long path, which starts at the lower corner and ends at the upper corner. The long path is the
boundary between the outermost yellow cluster (which contains half of the boundary) and
the outermost blue cluster (which contains the other half of the boundary). In the fine mesh
limit, it converges in law to a random fractal curve called the chordal Schramm–Loewner
evolution with parameter � D 6 (SLE6) as proved in the breakthrough work of Smirnov
[239] and Camia and Newman [67], see also the expository paper by Sun [243]. We will say
more about SLE curves in Section 2.5.

Both bond percolation and site percolation have natural variants in which the edge
or vertex subsets are sampled from different (nonuniform) probability measures. One of the
simplest such models is the Fortuin–Kasteleyn (FK) random cluster model, which was intro-
duced by Fortuin and Kasteleyn in 1972 [109–111]. It has a “partition function” (defined
below) that is equivalent to the famous Tutte polynomial introduced by Tutte in 1954 [248].
See the historical accounts in [82,108] and the overviews by Bernardi and Welsh [41,256] of
the Tutte polynomial and its (surprisingly numerous) applications.

In the FK random cluster model, one begins with a finite graph G D .V; E/ and
chooses a random T � E (which need not necessarily be a spanning tree). The probabil-
ity of a given T is proportional to a weight given by WG.T / WD qk.T /wjT j where q and w
are positive constants, and k.T / represents the number of clusters (i.e., connected compo-
nents) of the graph .V; T /. Note that k.t/ is maximized and equal to jV j if T is empty. It is
minimized and equal to 1 if .V; T / is connected.
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If q D 1, then the FK random cluster model is just ordinary bond percolation with
p D w=.1Cw/. Generally, a large w gives a bias toward T having more edges, and a small
w gives a bias toward T having fewer edges. If q is very large, then the probability measure
is biased in favor of .V; T / being highly disconnected (i.e., having lots of components).
If w is close to zero, then the bias is in favor of T being more connected (i.e., having few
components). The uniform spanning tree can be obtained as a limiting case of the FK random
cluster model. (Taking w ! 0 quickly forces T to be a.s. connected; taking p ! 0 slowly
makes jT j as small as possible, and the connected T that minimize jT j are spanning trees.)
The partition function of the FK random cluster model is defined to be the sum of theweights,
taken over all T � E,

ZG.q; w/ D

X
T �E

WG.T /;

which again is equivalent to the Tutte polynomial (up to a certain coordinate change). An
important point to stress is that if q D 1, the partition function WG.T / depends only on the
number of edges in G.

For certain parameters, the FK random cluster model is also closely related to the
hugely influential Ising model which was presented by Ising in 1925 but actually introduced
earlier by Lenz in 1920, see, e.g., the historical account at [63]. In the Ising model, not all
of the possible face colorings are equally likely; rather one weights the probability of each
coloring by a constant to the number of adjacent pairs on which the colors disagree.

The decorations we have discussed so far (bond percolation, site percolation, uni-
form spanning tree, FK random cluster model, Ising model) are some of the very simplest
statistical physics models. But there are others. For example, one can decorate a graph G
with a bipolar orientation, which is a way of orienting the edges inG so that only one vertex
v (the sink) has all incident edges oriented toward v, and only one vertex w (the source) has
all incident edges oriented away fromw. The number of bipolar orientations is also encoded
in the Tutte polynomial, see, e.g., Bernardi’s explanation in [41]. One can also decorate G
with a so-called Schnyder wood or an instance of the Gaussian free field or a Brownian loop
soup (all of which will be mentioned below). The list goes on. We will not properly survey
the literature on decorated planar maps here, but a few examples of work in this area include
[39,42,43,52,53,55,56,78].

2.3. Decorated random planar maps
In this section we give some examples of how one can generate a pair of spanning

trees if one starts with another type of decoration. The figures below were used in [236] to
explain how to generate a pair of trees from an instance of the FK random cluster model.
By way of setup, one starts with a planar map M in black, adds a vertex in the center of
each face, and draws a green edge connecting it to each vertex on the boundary of the face,
thereby producing a green quadrangulationQ. The planar mapM � (which is dual toM ) is
obtained by connecting red-to-red within each green quadrilateral of Q, and is shown with
dotted lines. (Here M itself is recovered from Q by connecting blue to blue within each
quadrilateral.)

1220 S. Sheffield



Next, the figures below illustrate an edge subset T in solid black (which happens
to form a spanning tree) with the dual T � shown as dotted black lines. (The dual consists
of a red-to-red dotted line contained within each quadrilateral that does not have a blue-to-
blue solid line.) The interface between the two trees is represented by a red curve that passes
through all of the green edges one at a time, and starts at a location between the root and
dual root (shown as large blue and red vertices).

Finally, the figure below on the left illustrates an example of T (solid black lines)
that is not a spanning tree (it contains cycles and there is one blue vertex that is not connected
to any others). When one draws the red curve (which passes through green lines but never
through black solid/dotted lines) one finds that it is not connected—in fact, it has five different
components. In the figure on the right, four “swaps” have been made, where the edge in a
quadrilateral was changed to a dual edge, or vice versa. The new edges/dual-edges produced
by the swaps are colored in yellow. There is a simple algorithm (due to Bernardi in [41], see
the author’s explanation in [236]) for choosing which edges to swap. (Very roughly speaking,
one tries to form a single red loop that crosses all the green edges one at a time, as above—
but whenever the path is about to “seal off” a region without traversing it, one replaces a
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black blue-to-blue edge with a dotted dual red-to-red edge, or vice versa, to prevent this
from happening.) Each swap reduces the number of red loops by one—and at the end, one
is left with a single red loop, and a tree/spanning-tree pair. This is called the hamburger–
cheeseburger construction because of its relationship to a simple inventory accumulation
model in which two kinds of products (“burgers”) are created and consumed [236].

At the end of the day, [236] uses some algebra (which is too detailed to explain
here) to show that the lattice path encoding this pair of trees converges to a two-dimensional
Brownian motion where the correlation coefficient � depends on the FK-cluster parameter
in a simple way. While the work in [236] was done for infinite graphs, Gwynne, Mao, and
Sun have understood the scaling limits for the FK model on a finite random planar map, and
have given much stronger forms of convergence, which also encode the structure of the loops
themselves in a direct way [131, 141, 142]. See also [35, 77] for more results about critical FK
random maps. Since then, work by Bernardi, Holden, and Sun has explained that a simpler,
tailor-made bijection applies for site-percolation-decorated random triangulations, in which
case � D 0:5.

With site or bond percolation, the partition functions depend only on the number of
vertices or edges, and once one conditions on this the marginal law ofM is the same as in the
undecorated model [45]. This suggests that the peanosphere corresponding to �D 0:5 should
be somehow equivalent to the Brownian map (together with extra randomness encoding the
percolation structure on the Brownian map). And this is indeed the case—see Section 5.

Other bijections have been found for bipolar orientations and Schnyder woods, and
so-called active spanning trees [42,51,130,155,178]. All of thesemodels have different � values.
For an extreme case, note that if we naively set � D 1, then we are effectively gluing two
identical Brownian trees to each other, and we simply obtain the same Brownian tree back.
On the other hand, there is a way of taking the � ! 1 limit that produces a nontrivial object,
as shown in a remarkable paper by Aru, Holden, Powell, and Sun [22], which shows that there
is a nontrivial construction that is far nicer than anyone could have expected, see also [24].
(The � D �1 limit is expected to correspond to an ordinary Euclidean sphere.)
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As a short preview for the experts, let us now note that there is a general relation-
ship between � and the � parameter from SLE theory, a parameter we will say more about
in Section 2.5. Using this relationship, one finds for example that the bipolar orientation
model corresponds to SLE12 and the Schnyder wood model to SLE16. This is because (see
Section 5) there is a natural way to “conformally map” the peanosphere onto the Euclidean
sphere, and when this is done the space-filling Peano curve becomes a space-filling form of
SLE� (see Sections 2.5 and 2.6) with � > 4, where �D �cos.4�=�/ [102]. Here � ranges from
4 to1 as � ranges from 1 to�1. Let us note that the peanosphere surface itself turns out to be
equivalent to an LQG sphere (see Section 3) with relevant parameters satisfying 2 D 16=�

andQ D 2= C =2 and d D 25 � 6Q2. The special value � D 0:5 corresponds to � D 6

(and  D
p
8=3 and d D 0). We will say more about these quantities in subsequent sections.

2.4. Computing the scaling exponent
As mentioned above, it turns out that if we set � D 0:5 then the peanosphere is

a random surface that is equivalent to the Brownian sphere (decorated by a percolation
model that does not change the law of the surface itself) although this is far from obvious at
first glance. In this case, the two continuum trees are somehow midway between perfectly
uncorrelated (as in the Mullin limit) and perfectly correlated. Even before constructing that
bijection, it is not hard to argue heuristically that 0:5 is the only correlation coefficient that
is consistent with the Cˇnn�7=2Ck formula, just as 0 is the only correlation coefficient con-
sistent with Cˇnn�4Ck . In general, one can derive a relationship between � and the b in
Cˇnn�bCk .

We will not give the full details here, but let us sketch the rough idea, just to show
that the relationship between b and � is not something mysterious. What is the probability
that a simple random walk on Z2, started at the origin, remains in the wedge of angle �
until time n, and is back at the origin at time n? By way of illustration, part of a wedge of
angle �=4 is shown below on the left (below the generating Mathematica code) along with
its conformal image under the map z ! z4.

f[z_]=z^4;F[{x_,y_}]={Re[f[x+I y]],Im[f[x+I y]]};n=40;
{ParametricPlot[Table[{{t(1-j/n)+j/n,j/n},{j/n,t j/n}},{j,0,n}],{t,0,1}],
ParametricPlot[Table[{F[{t(1-j/n)+j/n,j/n}],F[{j/n,t j/n}]},{j,0,n}],{t,0,1}]}
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Here is the heuristic. (References to rigorous arguments along these lines are given in [155].)
Suppose one does a simple random walk in a wedge of angle � , with lattice size 1=

p
n, and

we want the probability of the walk starting at the origin and returning in n steps (without
leaving the wedge). Using the fact that the randomwalk approximates Brownian motion, and
Brownian motion is conformally invariant under the map shown above, it appears that the
odds of escaping to amacroscopic distancewithin n=3 steps should be of order .1=

p
n/�=� D

n��=.2�/. The same should hold if one selects the walk increments in reverse (starting at
time n) for order n=3 steps; and then there is an order 1=n chance that the middle third lines
up correctly, so overall one expects a probability of order n��=��1.

The same should also hold if the simple random walk is replaced by another walk
that has Brownian motion as a scaling limit. If � 6D 0 then it is necessary to stretch or squash
the grid by some amount (in the .1;�1/ direction) in order to produce a walk with Brownian
motion as a scaling limit, and one can easily work out the angle � as a function of �.

The formula n��=��1 corresponds to n�bCk where k D 1 and b D �=� C 2 so
that � D �=.b � 2/. If we have b D 4 then � D �=2, which makes sense since the Mullin
bijection corresponds to a simple random walk in a quadrant. More generally, if we have
Xt D QBt C aBt and Yt D QBt � aBt (where Bt and QBt are independent standard one-
dimensional Brownian motions), we have a correlation coefficient � D .1 � a2/=.1C a2/

where a is the factor by which the space is scaled in the .1;�1/ direction. Then � is the angle
obtained when we squash the standard positive quadrant by a factor of a in that direction.
Precisely, 1=a D tan.�=2/ so a D cot.�=2/ and � D .1 � cot.�=2/2/=.1 C cot.�=2//2 D

� cos.�/ D � cos. �
b�2

/. Plotting this relationship, we see that the b value increases from 3

to 1 as � decreases from 1 to �1.

2.5. Schramm–Loewner evolution
Schramm–Loewner evolution is by itself a large subject. It has been the topic of sev-

eral other sets of ICM lecture notes, see, e.g., the ICMnotes byDuplantier, Lawler, Schramm,
Smirnov, andWerner [101,162,229,240,242,258]. Longer expository introductions to the subject
include, e.g., [36,152,161,257].

Here we will briefly explain what SLE curves are. First, let us present the axioms
that motivated the definition. In 1999 [228], Schramm set out to construct—for any simply
connected domain D with boundary points a and b—a random non-self-crossing chordal
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curve � connecting a and b. Schramm insisted that the definition of an SLE curve have
two properties. First, the definition had to be conformally invariant meaning that if  is a
conformal (i.e., analytic and one-to-one) map takingD to a domain  .D/ then the image of
� under  should have the law of an SLE in  .D/ from  .a/ to  .b/ (up to a time change).
Second, the path should be Markovian in the sense that given � up to a stopping time � ,
the conditional law of the rest of � is (up to a time change) that of an SLE in D n �.Œ0; ��/

from �.�/ to b. Schramm showed that there was only a one-parameter family of ways to
define SLE if one insists on these properties. Schramm indexed this family by a parameter
� 2 Œ0;1/.

For completeness, let us now give Schramm’s more explicit definition of SLE
(though we will not say too much more about it here). By conformal invariance, it is enough
to define the law of � for one domain and one pair of boundary points. It turns out to be
convenient to work with the upper half plane H � C with a D 0 and b D 1. For any time t ,
we define the function gt to be the unique conformal map from the unbounded component
of H n �.Œ0; t �/ to H that satisfies

lim
jzj!1

gt .z/ � z D 0:

Schramm defined SLE in a rather indirect way: namely, he constructed the analytic functions
gt , and then used these functions to deduce what � must be. The gt are defined by setting
g0.z/ D z and then requiring that for any fixed z 2 H, the ODE

@tgt .z/ D
2

gt �Wt

is satisfied up until the smallest time t at which z is hit (or cut off from infinity by) the curve
�.Œ0; t �/, where Wt WD B�t is a standard Brownian motion sped up by a factor of �. This
requirement determines the functions gt which in turn determine �.

In some sense, the larger the � (and hence the faster theWt is moving up and down),
the “windier” the curve becomes. In fact, Rohde and Schramm showed in [224] that � is a.s.
a simple curve when � 2 Œ0; 4�, that � a.s. hits (but does not cross) itself when � 2 .4; 8/ and
that � is a.s. a space-filling curve when � � 8. Beffara showed that the Hausdorff dimension
of the range of � is linear in �, a.s. given by min¹1 C �=8; 2º [29]. (Beffara builds on a
related dimension calculation in [224].) In particular, since the scaling limit of the percolation
picture above corresponds to � D 6, the Hausdorff dimension of the curve is almost surely
1C 6=8 D 7=4.

At least on the square lattice, scaling limits of critical Ising model interfaces and
the FK–Ising interfaces (which correspond to the FK cluster model for a particular choice
of parameters) have scaling limits given by SLE3 and SLE16=3, respectively, as shown in a
remarkable series of papers by Smirnov and coauthors including Chelkak, Duminil-Copin,
Hongler, Kemppainen [75, 76, 241]. Loop-erased random walks and uniform spanning tree
boundaries have scaling limits given by forms of SLE2 and SLE8, respectively, as shown
in a remarkable paper by Lawler, Schramm, and Werner [163]. Level lines of the so-called
Gaussian free field are given by SLE4 as shown by Schramm and the author [230,231].
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2.6. Conformal loop ensembles
What happens if we consider a percolation model with all blue boundary conditions,

and then consider the collection of all of the loops that form boundaries between blue and
yellow regions?

Camia and Newman showed in [66] that in the fine-mesh scaling limit, these loops
converge to a random collection of continuum loops, called a conformal loop ensemble
(CLE) with parameter � D 6. Conformal loop ensembles are defined for any � 2 .8=3;8�, see
the CLE construction by the author in [234] and/or the axiomatic characterization of simple
CLE loops by the author and Werner in [238].

We will not give a formal definition of CLE here. But we wish to stress one point.
As explained in [238], it turns out that there is a natural way to use an instance of CLE� for
� 2 .4; 8/ to generate a space-filling version of SLE� (even though ordinary SLE� is not
space-filling for � in this range) which is somehow the continuum version of the procedure
used in Section 2.3 to combine multiple red loops into one loop. One can also reverse the
procedure and recover the loops from the space-filling curve. Very roughly speaking, one
tries to follow the CLE interfaces, but any time the curve separates a region from the target
point, one violates the rules and fills up that region before continuing. The space-filling curve
divides space into a continuum tree-and-dual-tree pair. Although we are not giving details
here, this implies that, at least in the continuum, if one wants to understand loop-decorated
random surfaces one can equivalently try to understand tree-decorated random surfaces. We
remark that these continuum trees also have an interpretation as coalescing rays within a
so-called imaginary geometry [98,190–193]where the dual tree corresponds to the coalescing
tree of rays drawn in the opposite direction.
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3. Liouville quantum gravity sphere: a random Riemannian

geometry

The Liouville quantum gravity sphere is a random sphere-homeomorphic space
whose law depends on the single parameter d (orQ or  ) as mentioned earlier. When d D 0

the LQG sphere is called the pure LQG sphere. The pure LQG sphere differs from the Brow-
nian sphere in that the former a priori comes endowed with a conformal structure but no
metric space structure, while the latter is a priori endowed with a metric space structure but
no conformal structure.

A recent summary of LQG surfaces and the Gaussian free field can be found in the
lecture notes by Berestycki and Powell [33, 37]. See also the Astérisque summary of LQG
surfaces and the KPZ formula by Garban [113], the Notices of the AMS overview article by
Gwynne [125], and the ICM proceedings article by Miller. A more recent set of ICM lecture
notes by Ding, Dubédat and Gwynne gives an overview of recent works that have established
a metric space structure for general values of d < 25 [91].

To summarize the latter point, recently various researchers (such as Ang, Basu,
Bhatia, Ding, Dubédat, Dunlap, Falconet, Ganguly, Gwynne, Holden, Miller, Pfeffer, Remy,
Sepúlveda, and Sun) have contributed to a spectacular international program to show that
LQG spheres with d 6D 0 can also be given a canonical metric measure space structure, and
to prove some basic properties about the resulting random metric spaces [13, 28, 90, 92, 93,

99, 100, 124, 127, 132, 140, 213]. The reader might start by looking at the metric constructions
by Gwynne and Miller or by Ding and Gwynne [92, 133]. Viewed as random metric spaces,
general LQG spheres can thus also be viewed as generalizations of the Brownian map. On
the other hand, we stress that when d 6D 0 there is no reason to believe that the geodesic-
tree/dual-tree pair is described by anything as simple as the Brownian snake. That is, as far
as we know, the simple Brownian map construction given in Section 1 has no simple analog
corresponding to d 6D 0.

3.1. The Gaussian free field
Brownian motion is a natural random function from R to R. A generalization of

Brownian motion called the Gaussian free field (GFF) is a random (generalized) function
from Rd to R for any d . Our use of the term GFF in this paper will be limited to d D 2.

There are many ways to define the Gaussian free field, see the author’s survey [233].
It is a scaling limit of discrete random functions from Z2 to R much as Brownian motion is
the scaling limit of random functions from Z to R. One particularly concise definition is as
follows.

Fix a bounded planar domain D. If f and g are functions on D whose gradients
lie in L2 then we can write .f; g/r D .2�/�1

R
D

rf .z/ � rg.z/dz for the Dirichlet inner
product of f and g. Let H.D/ be the Hilbert space closure of the space of compactly sup-
ported smooth functions with respect to this inner product. Then the Gaussian free field on
D with zero boundary conditions is the sum

P
˛ifi where the fi are an orthonormal basis

for H.D/ and the ˛i are independent standard normal random variables (mean zero, vari-
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ance one). The sum a.s. does not converge pointwise or inH.D/ but it a.s. does converge in
the space of generalized functions (a.k.a. distributions) [233].

The GFF can also be defined as the Gaussian random distribution with covariance
given by Green’s functionG.x;y/. HereG.x; �/ is given by� log jx � �jminus the harmonic
extension of � log jx � �j from @D to D. The symbols h and � are both commonly used to
describe an instance of the Gaussian free field, depending on the context. We will use � in
this paper.

The GFF can also be defined on the whole plane, where one simply has G.x; y/ D

� log jx � yj. In this setting the field � is only defined up to additive constant. But one may
nonetheless write Cov..�; f /; .�; g// D

’
� log jx � yjf .x/g.y/dxdy as long as both f

and g have mean zero. The integration-by-parts identity

.f; g/r D
1

2�

Z
rf .z/ � rg.z/dz D

�1

2�
f .z/�g.z/dz D

�1

2�
.f;��g/

is frequently used.

3.2. Conformal parameterizations
The LQG-sphere has a long history. On the physics side, LQG surfaces come up in

certain formulations of string theory and 2D quantum field theories based on the Einstein
equations (which in two dimensions reduce to the very simple Liouville equation). This lit-
erature is rich and complex, with foundational contributions by Belavin, Brézin, David, Di
Francesco, Distler, Dorn, Duplantier, Eynard, Fateev, Itzykson, Kawai, Kazakov, Knizhnik,
Kostov, Migdal, Otto, Parisi, Polchinski, Polyakov, Segal, Seiberg, Teschner, Witten, the
Zamolodchikov brothers, Zinn-Justin, Zuber, and many others. (This list is far from exhaus-
tive.) We will not attempt to properly survey the physics literature in this paper, but we point
the reader to the long list of references in [105] (or the articles cited in Section 4) as a place
to start.

On the mathematics side, one might begin with Gauss [115] who explained in 1827
how curvature could be understood as an intrinsic property of a two-dimensional surface,
independently of how the surface was “embedded” in a higher-dimensional space. The Rie-
mann mapping theorem (formulated by Riemann in 1851, proved by Osgood in 1900) and
the more general Riemann uniformization theorem (conjectured by Klein in 1893, Poincaré
in 1892, proved by Poincaré in 1907, Koebe in 1907) also play a central role [119,255].

It is standard in differentiable geometry to define a surface (or two-dimensional
manifold) by covering the surface with a “chart” of open sets that can each be diffeomor-
phically mapped to a planar domain. Within one of these open sets, parameterized by pairs
.x; y/, the “metric” can be written A.x; y/dx2 CB.x; y/dxdy C C.x; y/dy2. The param-
eterization is said to be conformal if A D C and B D 0, and the Riemann uniformization
theorem implies that one can always find a conformal parameterization. If we treat the param-
eterizing domain U as a subset of C and write z D x C iy then we can write the metric as
e�.z/.dx2 C dy2/ and the associated area measure as e�.z/dz where dz is Lebesgue mea-
sure on U . (In some conventions the definition of � may differ by a factor of two; the issue
is whether e�.z/ is interpreted as the length multiplier or the area multiplier.)
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The Gaussian curvature is �e��.z/��.z/ so the integral of the Gaussian curvature
over the set parameterized by a region R is equal to the integral of�� over R. In particular,
the Gaussian curvature is zero if and only if �� D 0 so that � is harmonic. A function �
on a bounded domain D is harmonic if and only if it minimizes

R
.r�.z/ � r�.z//dz DR

.��.z/��.z//dz given its boundary conditions. More generally, the Gaussian curvature
is equal to the constantK if and only if��D �Ke�. The latter equation is called Liouville’s
equation and was formulated by Liouville in 1838 [179]. A function with constant curvature
minimizes

R
.r�.z/ � r�.z//CKe�, which is a linear combination of the Dirichlet energy

.�; �/r and the overall surface area. (Polyakov used the latter quantity to define the so-called
Liouville action, see Section 3.5.2.)

If wewant to choose a random perturbation of a flat metric, we need to find a random
function � that is in some sense a random perturbation of a harmonic function. Roughly
speaking, one “randomly perturbs” a harmonic function by replacing the assertion that “the
Dirichlet energy of � is minimal given its boundary values” with “the probability of a given
� is proportional to the exponential of minus the Dirichlet energy of �.” Formally, this means
taking � to be a constant  2 .0; 2/ times the Gaussian free field. The induced area measure
then takes the form �� WD e�.z/dz. This cannot make literal sense (since � is a random
distribution) but there are various ways to make sense of this through regularization.

The first rigorous construction of a random measure with the law of �� is due to
Høegh-Krohn [158]who constructed the object for  2 Œ0;

p
2�. Høegh-Krohn was motivated

by earlier works in the quantum field theory literature that made sense of V.�/ where � was
the Gaussian free field and V was a polynomial. The exponential of the free field (viewed as
a quantum field theory) was studied in several papers over the subsequent decade, and was
cited by prominent quantum field theorists such as Glimm, Jaffe, and Simon.

In the 1980s Kahane derived a similar construction for all  2 Œ0; 2/ and used
the term Gaussian multiplicative chaos to describe the associated random measures [153].
Kahane was motivated by the multiplicative cascades popularized by Mandelbrot. (See, e.g.,
[103] for  D 2.) Neither Høegh-Krohn nor Kahane interpreted these random measures as
the pullback to a planar domain of the area measure on a random surface parameterized by
that domain. The author’s work with Duplantier [105] constructed the measure �� as a weak
limit as " ! 0 of the random measures "2=2e�".z/dz, where �".z/ is the mean value of �
on the ball boundary @B".z/, see also [237]. This construction showed that the measure �� is
a function of the Gaussian free field �.

Computer visualization can help us generate some intuition about what themeasures
�� look like. The following Mathematica code generates the two figures shown below.

K = 8; fieldmultiplier = 1.5; squarefraction = .001;
phi=Re[Fourier[Table[(InverseErf[2 Random[]-1]+I InverseErf[2 Random[]-1])*If[j+k == 2,0,

1/Sqrt[(Sin[(j-1)*Pi/2^K]^2+Sin[(k-1)*Pi/2^K]^2)]],{j,2^K},{k,2^K}]]];
CO = squarefraction Sum[M[[i,j]], {i,1,2^K}, {j,1,2^K}]; M=Exp[fieldmultiplier phi];
{ListPlot3D[phi],Graphics[Table[Table[If[Sum[M[[2^k m+i,2^k n+j]],{i,1,2^k},{j,1,2^k}]<CO,

{Hue[k/8],EdgeForm[Thin],Rectangle[{2^k m, 2^k n},{2^k m+2^k,2^k n+2^k}]}],
{m,0,2^(K-k)-1},{n,0,2^(K-k)-1}], {k,0,K-1}]]}
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The left figure is an instance� of a discrete version of theGaussian free field on the 256� 256

torus (lines 2 and 3 encode the discrete GFF; see the explanation in [233]). The exponential
of fieldmultiplier times � (called M in the code) describes a random measure on the torus.
To obtain the picture on the right one starts with the whole square, then divides it into four
equal squares, then divides each of those into four equal squares and so on, except that one
stops dividing whenever one reaches a square where the area in the square is less than some
constant cutoff (taken in the code to be squarefraction times the total area). The squares are
colored according to their Euclidean size. Each square S shown in the picture above has area
less than the cutoff—but its dyadic parent S 0 must have area greater than the cutoff (as other-
wise S 0 would have been drawn after S , and would have covered S ). In this sense one expects
that all of the squares shown are “about the same size” in the random geometry. The blue
squares correspond to regions where � is smaller on average (and the measure is less dense)
while the orange and red squares correspond to high density areas. One can easily paste the
code above into Mathematica and experiment with different variants: for example, shown
below are the figures obtained by taking a fieldmultiplier of 0:5 (left) and 1 (right) instead of
1:5 above. The measure represented by the left figure is much closer to Euclidean measure.
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3.3. LQG surfaces
We use the term LQG surface broadly to describe any surface whose area measure is

e�.z/dz where � has a law that is locally absolutely continuous with respect to the Gaussian
free field. Formally, an LQG surface is an equivalence class of pairs .D;�/, where .D;�/ and
. QD; Q�/ are equivalent if they are related as in the following diagram withQ D =2C 2= .

Using the definition �� WD lim"!0 "
2=2e�".z/dz, one can show that the � Q� area measure

on QD above must a.s. agree with the pullback of the �� area measure onD. Roughly speak-
ing, this is because exp.Q log j 0j/ D j 0j2j 0j

2=2. The j 0j2 is part of the usual change
of variables formula, and the j 0j

2=2 accounts for the fact that  maps circles of diame-
ter " to (approximate) circles of size diameter j 0j", which affects the "2=2 factor in the
regularization.

In addition to the area measure �� , it is possible to define a boundary length measure
(in the case that � is a GFF with free boundary [105]) or a fractal length associated to a line or
an SLE curve or other fractal set, see [38]. All of these measures, as well as the LQG distance
function discussed above, are preserved by the coordinate change—which makes sense since
.D; �/ and . QD; Q�/ literally represent the same surface. The image under  of the so-called
Liouville Brownian motion inD as defined in [34,114] is a Liouville Brownian motion in QD.

Furthermore, if x1; : : : ;xk are points inD, andwewrite Qxi D .xi /, thenwe say that
.D; �; x1; : : : ; xk/ and . QD; Q�; Qx1; : : : ; Qxk/ represent the same “LQG surface with k marked
points.” Finally, let us stress that the above definition of LQG surface makes sense for any
Q � 0, not only forQ � 2. (The valuesQ � 2 are those that have the formQ D =2C 2=

for some  > 0 or, equivalently, those for which d D 25� 6Q2 < 1.) One just has to accept
that the area measure is not well defined when Q < 2. However, as we mentioned earlier,
the metric space structure (along with the fractal measure of some other sets) continues to
be well defined when Q < 2 (although the diameter of the surface becomes infinite when
Q < 2, which corresponds to d > 1).

3.4. Constructing the LQG sphere
One simple way to define a unit-area LQG sphere is to consider a GFF � on a simply

connected bounded domainD with boundary conditions given by a constant C , and to con-
dition on ��.D/D 1. As C ! �1 this object converges in law to the unit area LQG sphere
(with the boundary somehow shrinking—in themetric sense—to a single marked point in the
limit) as explained in [235]. Another approach involves starting with an infinite cylinder and
two marked points (the cylinder’s endpoints), as described in [102]. Yet another approach
involves starting with the infinite-volume Polyakov measure (see the next subsection) and
“pinning it down” at three points, in a manner described in [87]. The paper by Aru, Huang,
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and Sun [23] established the equivalence of the approaches in [102] and [87]. (See also the
alternate proof in [16] and the disk analog in [70].) A chart, presenting several equivalent
definitions and the relationships between them, is included in [194].

All of these approaches have analogous constructions that produce unrestricted area
LQG spheres (instead of unit area LQG spheres). In the C ! �1 construction above, for
example, instead of conditioning on ��.D/ D 1, one can (for any C value) multiply the
measure by a constant factor to ensure that the measure assigned to � distributions with
��.D/ 2 Œ1; 2� is constant, and then take the vague C ! �1 limit.

3.5. Polyakov’s infinite measure on embedded LQG surfaces
The Polyakovmeasure is an infinitemeasure on the space of unmarked, unrestricted-

area LQG spheres embedded in C. As mentioned in the introduction, it corresponds to an
unrestricted-area LQG sphere embedded in all possible ways (with the embedding chosen
from Haar measure on the Möbius group). The measure is infinite for two reasons: first, we
recall from the introduction that the law of the area for an unrestricted-area LQG sphere has
the form A�bdA (or A�be��AdA for some constant � in the “off-critical” case) which is an
infinite measure for the b values that we will encounter (namely b > 3, recall Section 3.7).
Second, the embedding is chosen from the Haar measure on the Möbius group, which itself
has infinite volume. Also, just to avoid confusion, let us clarify that it is the Polyakovmeasure
on the space of surfaces—not the area measure on any individual surface—that is infinite. In
the Polyakov measure, almost all surfaces have finite area (assuming d � 1; the total area is
not defined if d > 1). Each embedded surface is described by a generalized function �, so the
Polyakov measure can be viewed as an infinite measure on the set of generalized functions.

The Polyakov measure is usually defined in a slightly different way. It is presented
as a way to make sense of the expression “e�S.�/d�” where S is the so-called Liouville
action, which we will discuss below, see the presentation by David, Kupiainen, Rhodes, and
Vargas at [87] or the lecture notes by Kupianen at [159]. The simplest way to describe it (in
the case � D 0) is to say that � is an instance of the zero-mean GFF on the sphere plus an
independent constant C chosen from the infinite measure e�2Qcdc. To obtain the general-�
measure, one simply weights the zero-� measure by e��A, where A is the area of the LQG
surface.

The fact that the Liouville action produces a measure on embedded LQG surfaces
of the form described above (in particular, a measure that is Möbius invariant) is counterin-
tuitive at first glance, but it is carefully explained, e.g., by Ang, Holden, and Sun in [16], see
also the conformal invariance discussion in [159]. There is a certain miracle (related to what
we will call “semi-Gaussian” measures) that makes everything work out. Before we discuss
the specifics, let us present a couple of simpler semi-Gaussian measures as a warmup.

3.5.1. Semi-Gaussian measures
A semi-Gaussian measure is a constant times e�F .v/dv where F is a quadratic

that is strictly convex in all directions except one. For example, 1p
2�
ey�x2

dxdy is semi-
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Gaussian. It is a product of a normal measure 1p
2�
e�x2=2dx and an infinite measure eydy.

If we restrict this measure to any nonvertical line, we obtain a finite measure, which is a
constant times a normal probability measure. If we restrict to any vertical line, we obtain an
infinite measure.

In the figures below, the orange lines are level sets of the function y � x2 (and hence
also the function 1p

2�
ey�x2

dxdy). In each figure, one can imagine “sampling” .X;Y / from
the infinite measure in two steps. First one decides which blue line .X; Y / belongs to. (The
blue lines in the three figures are the lines of slope 0, �1, and 1, respectively. By integrating
the density function along the blue lines, we find that the law of the y-intercept of the blue
line is given by a constant multiple of eydy.) Then given that one chooses the location on the
blue line. The conditional law of the location on the blue line is that of a Gaussian random
variable centered at a point on the vertical green line (which is the point on the blue line
where y � x2 is largest).

n = 4;{ParametricPlot[{Table[{t,j/n},{j,-2n,2n}],Table[{t,t^2+ j/n},{j,-2n,2n}],{0,t}},{t,-2,2},
PlotRange->{{-1,1},{-1,1}}],ParametricPlot[{Table[{t,-t+j/n},{j,-2n,2n}],Table[{t,t^2+j/n},
{j,-2n,2n}],{-.5,t}},{t,-2,2},PlotRange->{{-1,1},{-1,1}}],ParametricPlot[{Table[{t,t+j/n},
{j,-2n,2n}],Table[{t,t^2+j/n},{j,-2n,2n}],{.5,t}},{t,-2,2},PlotRange->{{-1,1},{-1,1}}]}

In the left figure, nomatter what blue line we choose, the conditional expectation ofX is 0. In
the second and third figures, no matter what blue line we choose, the conditional expectation
of X is (respectively) �1=2 or 1=2. Changing the blue-line slope somehow has the effect of
“shifting” the conditional law of X .

This is a bit counterintuitive. For a closely related example (essentially a rotation of
the one above by 45 degrees), suppose

e�.a�b/2=2te.aCb/=2dadb

is the (semi-Gaussian) density function for a pair .A; B/. Then we can formally compute
EŒBjA� D AC t=2 and EŒAjB� D B C t=2. This is because if we restrict to a fixed value
of a, we obtain a multiple of a Gaussian measure on b values centered at a C t=2 (and
similarly with a and b reversed). Checking this fact is an elementary complete-the-square
calculation: if b is fixed then �.a2 � 2ab C b2/=2t C .aC b/=2 is �.a2 � 2a.b C t=2/C

.b C t=2/2/=2t plus a term that does not depend on a.
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At a glance, the above seems to suggest that A is t=2 units bigger than B on aver-
age, and B is t=2 units bigger than A on average, which in turn seems contradictory. This
is somehow reminiscent of “envelope switching” paradoxes, where after one observes the
amount of money in either one of two envelopes, one always expects the other to contain
more, see, e.g., [62]. In fact, this is just the sort of paradox that one encounters when dealing
with infinite measures and/or infinite expectations. We find that the following are equivalent:

• First “sample”A from the infinite measure eada. Then chooseB as a normal with
variance t and mean AC t=2.

• First “sample”B from the infinite measure ebdb. Then chooseA as a normal with
variance t and mean B C t=2.

One can imagine similar constructions in higher dimension. For example, we could replace
the X in the figures above by a vector .X1; X2; : : : ; Xn/ and replace y � x2 with
y �

Pn
iD1 x

2
i , and replace the blue lines by blue hyperplanes. One could then argue in a

similar way that changing the slope of the blue hyperplanes has the effect of shifting the
location of the vertical green line.

By taking a limit of an increasing sequence of finite-dimensional subpaces, we can
also make sense of an infinite dimensional semi-Gaussian—precisely the same way we
make sense of the GFF as an infinite dimensional Gaussian, using the quadratic func-
tion �

1
2
.�; �/r , or the way we define Brownian motion, using the quadratic function

1
2

R 1

�1
. @

@t
B.t//2dt .

Let us give an example. Define a process (whose law is an infinite measure) by
M.t/ D B.t/C jt j=2C Y where Y has density eydy and B.t/ is an independent standard
Brownian motion (defined for all t 2 R, withB.0/D 0). This is an infinite measure on paths
that at first glance seems to be “mostly supported” on paths that have their minima near 0. If
we tried to define an “action” forM.t/ it would have the form

S.M/ D eM.0/
C
1

2

Z 1

�1

�
@

@t

�
M.t/ � jt j=2

�2
�
dt:

On the other hand, some thought reveals that, when t is fixed, the (infinite-measure) law of
B.0/ and B.t/ is equivalent to the law of A and B in the example above, and in fact the law
is symmetric with respect to swapping the roles 0 and t . One can also show that givenM.0/
and M.t/ the conditional law of the rest of the process is given by a Brownian bridge on
.0; t/ and Brownian motions with drift on .t;1/ and (running time backward) on .�1; 0/,
with the given values of M.0/ and M.t/ as endpoints. One can make a similar argument
using �t and 0 in place of 0 and t and use this to show that the the law of M is invariant
w.r.t. to translation by t units (for any t ).

This is a rather remarkable fact. The definition of M.t/ does not look translation
invariant at all—it is clearly centered at 0. But somehow translating the definition by r units
to the right does two things: it effectively weights the law ofM by eM.r/�M.0/ D eB.r/�B.0/

(this puts a bias in favor of functions that increase on the interval Œ0; r�) and it deterministi-
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cally adds the function f .t/ D
jt�rj

2
�

jt j

2
(which decreases on the interval Œ0; r� and is flat

elsewhere). And these two changes magically cancel each other out.
We remark that another way to construct this measure is by considering a

Brownian bridge measure on processes B.t/ indexed by Œ�T; T �, with boundary values
B.T / D B.�T / D T=2, then multiplying the measure by a constant to ensure that the mea-
sure of paths with B.0/ < 0 is some fixed constant, then taking the vague T ! 1 limit.
This construction might make the translation invariance a bit more intuitive.

To extend the story to two dimensions, note that the above construction is still trans-
lation invariant if we take the law of Y to be e�2Qydy and writeM.t/ D B.t/�Qjt j C Y .
This just corresponds to taking B.T / D B.�T / D �QT in the limiting procedure men-
tioned above. On the cylinderC D ¹t C � i W t 2 R; i 2 Œ0;2�/º one can then define �.t C � i/

to beM.t/ plus the projection of the GFF (on the cylinder) onto the space of functions with
mean zero on every fixed-t slice of the cylinder. If restrict toM.t/ that have their maximum
at t D 0 (to eliminate the translation symmetry) we obtain the so -called “˛ D 0 quantum
sphere” [102]. If we don’t restrict in this way, we obtain the Polyakov measure (with � D 0),
an infinite measure on surfaces that turns out to be invariant w.r.t. all Möbius coordinate
changes, not only translations.

To seewhy, note that there are three “mostly flat” surfaces often used to parameterize
an LQG sphere: the Riemann sphere C [ ¹0º, the cylinder C [ ¹˙1º and the gluing D of
two unit disks together their boundaries. There are obvious unit-circle- preserving conformal
maps between these three spaces. If  is the obvious conformal map from C to D then
Q log j 0.t C i�/j D �Qjt j. This is the term that comes up in the change of coordinates
from D to C . If we instead change coordinates from D to C, then this term is replaced by
�2Qmax¹log jzj; 0º. Working in C, the proof that the law of the construction is invariant
under translations and rotations of C (as well as inversions and dilations) is very similar to
the one dimensional argument above, and since these operations generate the Möbius group,
full Möbius invariance follows, see [16,159].

3.5.2. Embedded Polyakov sphere
When building physical field theories it is often natural to define a measure on fields

� by writing formally e�S.�/d� where d� represents some sort of uniform measure on the
space of all functions. In some cases this is hard to make mathematically precise because it
is not clear what the measure d� corresponds to. One might attempt to approximate d� by
something well defined (like Lebesgue measure on a finite-dimensional space of piecewise-
linear functions) but it may be unclear how to normalize the construction to obtain a non-
trivial limit, or how to prove such a limit exists. In the special case of the Liouville action,
however, these concerns can be overcome. Let us tell the story with a playful dialog.

INSTRUCTOR: Consider the measure e�A.�/�B.�/d� where d� is the uniform measure on
the space of all functions.

MATH POLICE: Sorry, there is no such thing as the uniform measure on all functions. Your
object is not defined.
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INSTRUCTOR: But my A is a quadratic function on the space of � for which it is finite. If I
restrictA to a codimension-one subspace thenA is the norm for a Hilbert space. So e�A.�/d�

is just a Gaussian Hilbert space cross an infinite measure that looks something like eydy.
Check out Janson’s book on Gaussian Hilbert spaces [150]. These things are certainly well
defined.

MATH POLICE: Okay fine, but you still need to weight by the e�B.�/ factor.

INSTRUCTOR:My friends proved that (with appropriate normalizing)B.�/ is well-defined
and finite for almost all � taken from the measure e�A.�/d�.

MATH POLICE: So e�B.�/ is the Radon–Nikodym derivative with respect to the semi-
Gaussian measure? And B is obviously measurable?

INSTRUCTOR: That’s right.

MATH POLICE: Okay, you’re free to go.

We can take the S in the above dialog to be the Liouville action defined as follows:

S.�/ D

Z �
1

2
�
1

2�
jr�.z/j2 C

1

4�
QR.z/�.z/C �e�.z/

�
dz;

where R is the Ricci curvature associated to the “reference metric,” see e.g. [87].
For example, we may assume that the reference metric is the ordinary sphere so that R is
constant (with total integral 8� by Gauss-Bonnet—recall that the Ricci curvature is twice the
Gaussian curvature) so that the second term is 2Q times the mean value of �. Alternatively,
if the reference metric is the glued pair of disks D from the previous subsection, then the
second term becomes 2Q times the mean value of � on the unit circle.

The integral of the first two terms is the quadratic part A.�/ while the integral of
the last term is the B.�/. The fact that the latter is defined (providedQ > 2) follows essen-
tially from the ideas of Høegh -Krohn and Kahane—see also the author’s later work with
Duplantier [105] which constructs e�.z/dz as a measure-valued function of the field � and
explains the LQG context. In light of the above dialog, the Polyakov measure e�S.�/d� is
in fact rigorously defined; this is explained in more detail in [87] (see also the higher genus
version in [88]).

Stories like the above, where S has a quadratic term (relatively simple to handle)
and a nonquadratic term (requiring more thought) are relatively common in quantum field
theory, and it is certainly not always the case that the nonquadratic part simply modifies the
Gaussian part in an absolutely continuous way.

The �D 0measure is already rather interesting; for example, it can be easily shown
to be Möbius invariant (following the LQG coordinate change rules), despite appearing at
first glance to be “centered” at a specific location within the Möbius group, a phenomenon
analogous to the example at the end of Section 3.5.1. The miracle is that when one applies a
Möbius transformation  , the Q log j 0j factor one has to add exactly compensates for the
effect of the recentering (swapping the curvature measureR.z/dz for its image under ), see
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[16]. This implies that the Polyakov measure factors as the product of a measure on (unem-
bedded) LQG surfaces and a measure on embeddings (given by the infinite-volume Haar
measure on the Möbius group) see [16]. The same is true if one considers a nonzero �. How-
ever, the Polyakov measure with a nonzero � only makes sense as described above if d � 1

(since otherwise the natural volumemeasure is infinite), while the construction of the zero-�
measure makes sense for anyQ� 0. Changing the choice of reference metric is analogous to
changing the slope of the blue lines/hyperplanes in the previous section and (up to a constant
multiplicative factor) it leaves the measure construction unchanged [87].

On a flat reference metric, the quadratic action is simply the Dirichlet energy of �
while the �e�.z/ term corresponds to the Ke� term associated to the Liouville equation
with a nonzero K. Polyakov was not the first to work with variants of the free field action,
and in [214] and [216] he attributes a closely related “quadratic action” to Douglas, who used
it in his work on Plateau’s problem for minimal surfaces. (Douglas was awarded one of the
first two Fields medals for this work in 1936 [97].) See also [60,89]which introduce the action
now called the Polyakov action, which Polyakov used later in [215].

3.6. More history
The Brownian map and peanosphere constructions were directly motivated by dis-

crete objects—namely random planar mapmodels. The construction of LQG surfaces, on the
other hand, was motivated within physics as a “quantization” based on the Dirichlet energy
or on the Liouville equation. Why would one expect these objects to be equivalent?

The discrete planarmapmodels were well studied in physics due to their relationship
with random matrices and the random particle systems corresponding to random matrix
eigenvalues, see the seminal papers from the 1970s by ’t Hooft and by Breézin, Itzykson,
Parisi, and Zuber [1,59], along with more recent overviews by Eynard, Guionnet, andMaurel-
Segala [107, 122]. However, it took some time for people to be persuaded that the Liouville
theory corresponded to the scaling limit of these models. For example, Polyakov wrote in
a memoir [216] (see also his previous memoir [214]) that he did not become convinced of
the connection between the discrete models and Liouville quantum gravity until the late
1980s after jointly deriving, with Knizhnik and Zamolodchikov, the so-called KPZ formula
for certain Liouville quantum gravity scaling dimensions [156] and comparing them with
known combinatorial results for the discrete models (for a rigorous approach, see also [32,

103,105,113,220]).
At this point the relationship between the planar map models and the continuum

objects is on more solid mathematical ground. We have convergence results of various kinds
and formal equivalence proofs between the different continuum objects, see Section 5. But
these rely on a lot of machinery that was not yet available in the 1980s. The quantum gravity
zipper perhaps gives the cleanest way to rigorously relate the peanosphere construction and
the Liouville quantum gravity construction, as described in [102,235], see also [26].
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3.7. Computing the scaling exponent
On the other hand, just as in the peanosphere case, one can compute the scaling

exponent quite easily. This is already enough to show that if for some  the unrestricted-
area LQG sphere is the scaling limit of the unrestricted-area discrete models, then we must
have  D

p
8=3 in the undecorated case and  D

p
2 in the tree-decorated case.

Say we fix the Gaussian free field up to the mean value X on the unit circle. Then
this mean value is sampled from the infinite measure e�2Qxdx. The total area of e�.z/dz

goes like ex times a constant. So we have to consider the image of the measure e�2Qxdx

under the map  .x/ D ex . By standard change of variables the new measure is (up to a
constant factor)

1

. �1/0.A/
e�2Q��1.A/dA D

1

A
e�2Q log.A/=

D A�1�2Q=dA:

Here 1C 2Q= D .4=2 C 2/ which comes to 7=2 if  D
p
8=3 and 4 if  D

p
2.

3.8. Random surfaces embedded in d-dimensional space
Suppose we accept, based on the previous discussion, that the  D

p
8=3 theory

(which corresponds to 25� 6Q2 D 0) describes the scaling limit of the undecorated d D 0

model. We can call this pure Liouville quantum gravity model. We would then like to argue
that if we weight the law of the pure model by the d th power of the GFF partition function
(or the corresponding and equivalent “loop soup” partition function) we obtain a new LQG
model with aQ parameter that satisfies d D 25 � 6Q2.

This has been explained heuristically in various ways over the years. The author
with Ang, Park, and Pfeffer gave a rigorous version of this statement that applied to a certain
way of regularizing the random surfaces [17]. We won’t gvie details here but we mention
below a few of the ingredients used to make the connection between loop soup weightings
and changes to d D 25 � 6Q2.

On a compact surface with boundary, the heat kernel trace can be written
Z D Z.t/ D sp et� D

P
et�n where �n are the eigenvalues of the Laplace–Beltrami oper-

ator�. By standard Tauberian theory, the asymptotics ofZ (as t ! 0) are closely related to
the asymptotics of �n (as n ! 1). Weyl addressed the latter for bounded planar domains
D in 1911 [260] (see discussion in [182]) by showing ��n �

2�n
area.D/

as n ! 1 which is
equivalent to

Z �
area.D/
4�t

as t ! 0. In 1966 Kac gave higher-order correction terms for Z on domains with piecewise
linear boundaries (accounting for boundary length and corners) in his famously titled “Can
you hear the shape of a drum?” which asks what features of the geometry of D can be
deduced from the �n or, equivalently, from Z [151]. (Short answer is some but not all.)

McKean and Singer (among others) extended these asymptotics from planar domains
to smooth manifolds with nonzero curvature [182] where the constant order correction term
is a certain curvature integral. For two-dimensional surfaces with boundary, the integralR 1

ı
Z.t/=tdt turns out to describe the Brownian loop soup measure of the set of loops
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longer than ı (as developed and explored by Lawler, Werner, Dubédat, and others; see [17]

for further explanation and references). When the metric takes the form e� times a flat
metric, the small ı asymptotics have a constant order correction term that corresponds to
the Dirichlet energy of �. This is the so-called Polyakov–Alvarez formula, also known as the
Polyakov–Ray–Singer or Weyl anomaly formula, and it has played a major role in conformal
field theory. See e.g. the early discussion of Laplacian determinants and this formula by
Osgood, Phillips and Sarnak [212,225].

4. Conformal field theory and multipoint correlations

Conformal field theory is a huge subject. For a broader overview of conformal field
theory, beyond just Liouville theory, the reader might begin with the well-known (and very
long) textbook by Di Francesco, Mathieu, and Sénéchal [95]. Alternatively, the overview at
[221] begins with a list of several conformal field theory textbooks.

Liouville theory is one of many conformal field theories, but it is by itself a large and
highly studied subject. Here one might begin with the 1990 survey by Seiberg [232], the 1993
lecture notes by Ginsparg and Moore [118], the 1995 survey by Di Francesco, Ginsparg, and
Zinn-Justin [94], the 2004 retrospective by Nakayama [210], or the 2014 textbook by Ribault
[221] (which among other things explains why Liouville conformal field theory is uniquely
characterized by certain axioms).

What is a conformal field theory? An internet search for “A conformal field theory
is” reveals several definitions, the first two from Wikipedia:

• a quantum field theory that is invariant under conformal transformations,

• a set of correlation functions that obey a number of axioms,

• a functor [204] between categories satisfying certain “sewing axioms,”

• a Virasoro module [227]

V D

M
iDB1

W.ci ; �i /˝W. Nci ; N�i /

with unitary highest weight modules W.ci ; �i /, W. Nci ; N�i / subject to [certain]
axioms.

The first definition is standard but its precise meaning depends on how one defines a quantum
field theory. The third and fourth definitions represent formalization efforts that would go
somewhat beyond the scope of this note. So let us focus on the second definition, sometimes
called the conformal bootstrap approach to CFT. Here a CFT is no more or less than a set of
correlation functions, and the interpretation of these functions is that they represent (in some
sense) expected products of random generalized functions called fields evaluated at different
points.
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The famous 1984 paper byBelavin, Polyakov, and Zamolodchikov (BPZ) [30] argued
that conformal invariance symmetries should imply certain properties for these correlation
functions, and that this should be sufficient to allow one to explicitly compute the correla-
tion functions for some conformal field theories (the so called minimal models) including
a theory that one would expect to describe the scaling limit of the Ising model. About a
decade later Dorn, Otto, Zamolodchikov, and Zamolodchikov were able to compute cer-
tain three-point correlations for the Liouville theory [96, 262]. Other correlation functions
could then be deduced from these using the BPZ theory [30] and further input proposed by
Teschner [244–246]. These arguments involved mathematically nonrigorous steps, such as
assuming without proof that formulas defined in one setting could be analytically continued
and applied in other settings.

Building on [87], Guillarmou, Kupianen, Rhodes, and Vargas have produced a series
of papers that define and derive the correlation functions for Liouville theorymathematically,
building on earlier derivations from the physics literature that we mentioned above. The
expressions describing the correlation functions are complicated (integrals, special func-
tions, recursive definitions, etc.) but nonetheless explicit. The first work in this series is
a proof of the DOZZ formula [160]. The second paper derives an analog of Plancharel’s
theorem (which states that the Fourier transform preserves L2-norm) along with a certain
“spectrum” relevant to this context [120]. The final paper completes the bootstrap program
[120] with an extension to n-point functions and higher genus surfaces [121]. We recommend
that the reader take a look at the introduction to [120], which summarizes this viewpoint and
situates it within the larger enterprise of quantum field theory. Here we will give a much
shorter overview of this viewpoint, aiming only to give a simple account of the relationship
to the other perspectives in this paper.

The physics literature on conformal field theory can be challenging for mathemati-
cians to follow. It comes with a large and very specialized jargon, and it does not always
proceed in the order a mathematician would expect (where one first produces the measure
space and the � -algebra, then constructs the measure, then begins doing calculations). Partly
this is because (when quantum wave functions are involved) not everything in quantum field
theory can be described in a simple probabilistic way—sometimes “observables” are non-
commuting operators that can only be defined in indirect ways. Fortunately, Liouville theory
does have a simple probabilistic interpretation.

Let us make one more comment on nomenclature. In quantum field theory, a (gener-
alized) function onRnC1 can be interpreted as a path on the space of functions onRn, and the
term integral is often a shorthand for a measure with respect to which one integrates. In this
context, the object we call the Polyakov measure (on the space of surfaces) in Section 3.5 is
also called the Polyakov path integral (with n taken to be 1). This language evokes the Feyn-
man path integral, an integral over particle trajectories that appears in quantum mechanics.
Similar interpretations arise in string theory, where an integral over the space of string tra-
jectories is seen as an integral over the space of embedded surfaces (a.k.a. “worldsheets”).
A very informal overview of this viewpoint (featuring Vargas) appears in an online video
produced by Quantum Magazine (starting at time 7:20) https://youtu.be/9uASADiYe_8.
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4.1. Gaussian case
It is generally instructive to do something easy before doing something hard. So let

us start in the simple setting where � is a whole plane Gaussian field with additive constant
chosen so that the mean value on the unit circle is 0. (This is also the starting point in [120],
for example.) In this case the Green’s function is given by

G.x; y/ D ln
1

jx � yj
C ln jxjC C ln jyjC;

where jxjC D max¹1; jxjº and the construction of “random fields” of the form
V˛.x/ WD e˛�.x/ is relatively straightforward. In some sense it can already be seen in the
work of quantum field theorists of the 1970s, beginning with the work of Høegh-Krohn. As
we have already discussed, one way tomake sense of this is by writing V "

˛ .x/ WD "˛2=2e˛�".z/

and V˛.x/ WD lim"!0 V
"

˛ .x/, where �".z/ is the mean value of � on @B".z/ and the con-
vergence holds locally a.s. in the space of random generalized functions (or in the space of
randommeasures). Then for any sufficiently small " (so that the ballsB".xi / do not overlap),
we have DY

V "
˛i
.xi /

E
D e

P
˛i j̨

QG.xi ;xj /

where

QG.x; y/ D

8<:G.x; y/; x 6D y;

log jxjC C log jyjC; x D y:

This comes up out to beY
i 6Dj

jxi � xj j
˛i j̨

Y
i;j

�
max¹jxi j; 1ºmax¹jxj j; 1º

�˛i j̨
;

and, in the case that all the xi lie inside the unit disc, the expression is simplyY
i 6Dj

jxi � xj j
˛i j̨ :

By starting with V "
˛i
and taking " ! 0, we can give meaning to the multipoint correlation

function (also known as Schwinger function) written asDY
V˛i
.xi /

E
D

Y
i 6Dj

jxi � xj j
˛i j̨ :

This can be interpreted as the density function for a two-dimensional “Coulomb gas” of
particles with charges ˛i . The overall integral over all x D .x1; : : : ; xn/ may be infinite
(depending on the ˛i values), but it is finite if one restricts to a subset of .x1; : : : ; xn/ values
such that the jxi j are bounded above and the jxi � xj j are bounded below. Just to clarify, for
now we are making this Coulomb gas calculation only for the centered GFF �, not for the
full Polyakov measure from Section 3.5.

As a formal collection of correlation functions (obtained in the " ! 0 limit) this
expression makes perfect sense for any ˛i 2 C. Differentiation commutes with expectation,
so one can use the same formula to compute expectations of products involving derivatives
like @

@xi
V˛i
.xi /. Expectations of fields involving � itself (or polynomials in �) can also be

defined mathematically.
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4.2. Incorporating the Liouville term or area conditioning
The � used in Section 4.1 (plus a deterministic function) can be obtained by restrict-

ing the Polyakov measure to the set of � whose mean value on the unit circle is zero. But
what if we instead restrict the Polyakov measure to the set of surfaces of total quantum area 1
(or weight by e��A whereA is the surface area)? The answer is that after such a conditioning
or such a weighting, � is no longer Gaussian, and the n-point correlation computation trans-
forms from easy to doable but only barely. On the other hand, in order to understand some
fundamental things like the law of conformal modulus of four points (or n points) sampled
independently from the measure on an LQG sphere, one has to address the harder question,
and this is precisely what is done in [120, 121, 160]. Although these results are rather recent,
they have already inspired a tremendous amount of activity, establishing exact solvability for
many problems that could previously only be addressed more qualitatively.

Papers by Ang and Sun, including some with coauthors Holden and Remy, give
applications of LCFT results to various domains (SLE, CLE, and a variance formula for the
peanosphere) [15,16,18,19]. These remarkable papers combinemating-of-trees and conformal-
welding techniques with LCFT techniques, leading to rigorous proofs of physics results (such
as the FZZ formula and the imaginary DOZZ formula), as well as entirely new results. They
have to extend the welding/mating theory to finite-volume surfaces/trees, which is harder
than the infinite-volume work, since the finite-volume surfaces lack scale invariance. Recent
integrability achievements for the disk include works by Remy and Zhu [218,219] and a proof
of the Fyodorov–Bouchaud formula by Remy [217]. See also the work of Ghosal, Remy, Sun,
and Sun on the torus [117].

5. Relationships

Although all four viewpoints are equivalent in some sense, the relationships are
somewhat involved. The following diagram summarizes a few of the associated keywords,
which we will discuss briefly below.
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Miller and the current author recently showed that the LQG and Brownian spheres
are a posteriori equivalent [195, 197, 198]. That is, we showed that there is a canonical way
to endow each object with the other object’s structure, and that once this is done the two
objects agree in law. This is not all obvious. The papers are long and difficult, and build on
hundreds of pages of prior work. The author’s other joint works on the LQG construction
include [38,103–105,154]. This establishes the upper arrow in the special case of the Brownian
map. The construction of the metric space structure for general LQG surfaces (with d 6D 0)
was discussed earlier.

In [235] the author showed that when two infinite half-plane-homeomorphic  -LQG
surfaces are “conformally welded” to one another along their boundaries—and the new sur-
face is conformally mapped to the half-plane—the interface between these curves becomes
an SLE� curve with � D 2. The sphere version is established in a follow-up work [194], and
a disk version appears in [14]. Establishing the correlation formula for � > 8 was achieved
in [126].

With Duplantier and Miller, the author showed the equivalence of the peanosphere
approach and the SLE-decorated-LQG approach in [102], which draws from the imaginary
geometry results in [190–193] and the quantum zipper construction in [235]. A remarkable
series of papers by Holden and Sun has shown that if one embeds the uniformly random
triangulation in the plane in a natural way (inspired by the conformal coordinates Smirnov
developed for his proof of Cardy’s formula) then the counting measure on the vertices con-
verges (in an appropriate scaling limit) to the Liouville quantum gravity measure, see the
overview at [147,148].

Random planar maps converge to continuum objects in the limit, but there are also
natural ways to generate random planar maps from the continuum constructions by “coarse
graining” in some sense. The Poisson–Voronoi tesselation (constructed from the Brownian
map) and mated-CRTmap (constructed from the peanosphere) have been shown to converge
to LQGwhen they are embedded according to the Tutte embedding. This was done in a series
of four papers with Gwynne and Miller [136–139]. Effectively, this gives a way of putting a
conformal structure on the Brownian map or the matings of trees that is more concrete than
the one guaranteed by [195,197,198]. The heart of all of this is [138] which gives an invariance
principle (i.e., Brownian motion convergence) for random walks in random environments
that are “scale free” in the sense that there is no universally typical length scale. (All of
the most natural discretizations of Liouville quantum gravity measures are scale free in this
sense.)

Gwynne, Holden, and Sun established the joint convergence of random triangula-
tions in the metric and peanosphere sense [129]. (Convergence in one topology coupled with
convergence in another topology does not imply joint convergence in the product of the two
topologies, but it was established in this particular case.) This result builds on earlier con-
vergence work by Gwynne and Miller for percolation-interface-decorated surfaces [134,135].

A series by the author plus Miller and Werner explores conformal loop ensembles
on random surfaces, the surfaces obtained by cutting along the boundaries of these loops,
and so forth [201,202]. These papers extend the conformal welding stories described earlier
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and show that much of the intuition one derives from discrete planar maps is correct in the
continuum as well (e.g., the surfaces inside and outside of a CLE loop are independent given
the interface length) and this leads to a number of interesting computations. These papers
build on another recent paper by the same authors [199] which concerns continuum versions
of the classical Edwards–Sokal couplings involving FK-models and Ising/Potts models and
their variants, see also [200].

6. Gauge theory

Random surfaces are related to many areas of math and physics, including random
matrix theory, two-dimensional statistical physics, string theory, and so on. But we should
also note that Polyakov’s influential 1981 paper began by mentioning an interest in gauge
theory:

“In my opinion at the present time we have to develop an art of handling sums
over random surfaces. These sums replace the old-fashioned (and extremely
useful) sums over random paths. The replacement is necessary, because today
gauge invariance plays the central role in physics. Elementary excitations in
gauge theories are formed by the flux lines (closed in the absence of charges) and
the time development of these lines forms the world surfaces. All transition ampli-
tude[s] are given by the sums over all possible surfaces with fixed boundary.”
(A.M. Polyakov, Moscow, 1981) [215]

Over 40 years later, many fundamental gauge theory problems remain unsolved, including
the famous Clay Millenial Prize Problem, and it is unclear how much random surface theory
will help—see, e.g., the “skeptic vs. enthusiast” dialog in Section 2 of [79], written in 1995.
Nonetheless, there has been some progress on so-called gauge string duality. For more on
these efforts, the reader may consult the literature on the AGT conjecture and the AdS/CFT
correspondence, or see the recent works of Chatterjee and Jafarov on lattice string trajectories
andYang–Mills theory [71,72,74,149]. Good entry points to the subject for probabilists include
Chatterjee’s recent survey [73] and Thierry Lévy’s recent books about continuum Yang–
Mills theory in two dimensions [164–166]. The 1986 article by Bridges, Giffen, Durhuus, and
Fröhlich may also be read as a first step toward realizing Polyakov’s vision [64].
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Abstract

We survey recent progress on understanding the distribution of values of zeta and L-func-
tions. In particular, we discuss the problem of moments of j�.1

2
C i t/j and moments of

central L-values in families, where the last 25 years have seen a conjectural understanding
of the asymptotics of these moments, together with progress in obtaining good upper and
lower bounds in many situations.
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This article concerns the distribution of values of the Riemann zeta-function and
related L-functions. We begin with a brief discussion of L-values at the edge of the critical
strip, which give information on arithmetic invariants such as class numbers. The remainder
of the article is concerned with the value distribution of �.1

2
C i t/ and the distribution of

central values in families ofL-functions. The typical behavior of �.1
2

C i t/ is described by a
fundamental theorem of Selberg (discussed in Section 2) which asserts that log �.1

2
C i t/ is

distributed like a complex Gaussian with prescribed mean and variance. Analogues of Sel-
berg’s theorem for central values in families ofL-functions were conjectured by Keating and
Snaith, and we motivate these conjectures and the progress towards them in Section 3. Sec-
tion 4 begins our treatment of the problem of understanding the moments of j�.1

2
C i t/j and

analogous questions for central L-values. While this is a classical topic, going back to work
of Hardy and Littlewood, it is only in the last 25 years that even a good conjectural under-
standing of the problem has emerged. The Keating–Snaith conjectures for the asymptotics
of moments were first developed by pursuing an analogy between values of the zeta function
and the values of the characteristic polynomial of large random matrices. These conjectures
are described in Section 5, which also shows how the problem of understanding moments is
tied up with understanding the large deviations range in Selberg’s theorem. Progress towards
the moment conjectures (see Section 6) has been of three types: (i) understanding asymp-
totics for small moments in a number of examples, (ii) obtaining lower bounds of the correct
order of magnitude (which are known in many cases), and (iii) obtaining in great gener-
ality upper bounds of the correct order of magnitude assuming the Generalized Riemann
Hypothesis. In Section 7 we discuss what is known about the maximal size of j�.1

2
C i t/j

and central L-values, and speculate on what the truth might be. Finally, in Section 8 we
consider briefly an intriguing problem of Fyodorov–Hiary–Keating on understanding the
“local maximum” of j�.1

2
C i t/j for t in intervals of length 1, which is closely connected to

problems in branching Brownian motion and Gaussian multiplicative chaos.

1. Values at the edge of the critical strip

It was already observed by Gauss and Dirichlet that certain special values of
L-functions encode interesting arithmetic information. Recall that a discriminant is an
integer d � 0; 1 .mod 4/, and d is called a fundamental discriminant if d=m2 is not a dis-
criminant for any divisorm2 of d larger than 1. Fundamental discriminants are in one-to-one
correspondence with discriminants of quadratic fields Q.

p
d/. Associated to a fundamen-

tal discriminant d is the Kronecker–Legendre symbol �d .n/ D .d
n
/, which is a primitive

Dirichlet character .mod jd j/. For example, if p is an odd prime then either p or �p is a
fundamental discriminant (depending on whether p is 1 or 3 .mod 4/), and in either case the
associated quadratic character is the familiar Legendre symbol .mod p/. Associated to the
primitive character �d is the Dirichlet L-function

L.s; �d / D

1X
nD1

�d .n/

ns
D

Y
p

�
1 �

�d .p/

ps

��1

:
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Although d D 1 is permitted in our definition of fundamental discriminants (and corresponds
to the Riemann zeta-function), it is an anomalous case and we shall mainly be interested in
fundamental discriminants d ¤ 1. Like the Riemann zeta-function, the DirichletL-function
L.s;�d / converges absolutely for Re.s/ > 1, extends analytically to the entire complex plane
(unlike �.s/, there is no pole at s D 1 here), and satisfies a functional equation connect-
ing values at s to values at 1 � s. The nontrivial zeros of L.s; �d / lie in the critical strip
0 < Re.s/ < 1, with the Generalized Riemann Hypothesis (GRH) predicting that they lie on
the critical line Re.s/D

1
2
. For background on DirichletL-functions see Davenport [50], and

for a general comprehensive treatment of analytic number theory (including information on
many other families of L-functions that will be considered here) see Iwaniec and Kowalski
[92].

In this family of quadratic Dirichlet L-functions, the values L.1; �d / (lying at
the edge of the critical strip) are of great arithmetical interest. A key step in Dirichlet’s
proof that there are infinitely many primes in arithmetic progressions involves showing that
L.1; �d / ¤ 0. Dirichlet established this by finding a beautiful connection betweenL.1;�d /

and the group of equivalence classes of binary quadratic forms of discriminant d which had
earlier been studied by Gauss. For example, if d is a negative fundamental discriminant,
then Dirichlet’s class number formula states that

L.1; �d / D
2�

w

h.d/p
jd j
;

where h.d/ is a positive integer, namely the class number of the imaginary quadratic
field Q.

p
d/, and w counts the number of roots of unity in Q.

p
d/ (so that w D 2 for

d < �4, and w D 4 for d D �4, and w D 6 for d D �3). The special case d D �4 of the
Dirichlet class number formula is widely familiar as the Madhava–Leibniz–Gregory series
1 � 1=3C 1=5 � 1=7C � � � D �=4. Another classical connection to these special L-values
arises in the Gauss–Legendre three squares theorem. If n is a square-free integer with
n � 3 .mod 8/, then the number of ways of writing n as a sum of three squares, r.n/,
equals 24h.�n/; a result known to Gauss, together with variants when n � 1; 2 .mod 4/.

These connections motivate the study of the distribution of the values L.1; �d /.
Here are some natural questions that arise. If fundamental discriminants d are chosen uni-
formly with jd j � X , (i) what is the statistical distribution of the values L.1; �d /, and
(ii) what are the largest and smallest possible values of L.1; �d /? As we shall see, the prob-
lem of the statistical distribution of L.1;�d / can be understood quite precisely, but there are
still large gaps in our understanding of the extreme values.

Let us begin with the simpler situation of L.2; �d / where both the Dirichlet series
and Euler product in the definition of L.s; �d / converge absolutely. If the values �d .p/ are
known for all primes p � z thenˇ̌̌̌

L.2; �d / �

Y
p�z

�
1 �

�d .p/

p2

��1 ˇ̌̌̌
�

X
n>z

1

n2
D O

�
1

z

�
:

The value �d .p/ D .d
p
/ is determined by d .mod p/ for odd primes p, and for p D 2 the

value of �d .p/ is determined by d .mod 8/. Thus, by the Chinese Remainder Theorem, the
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values of �d .p/ for p � z are determined by d modulo 4
Q

p�z p. One way to view this is
as a kind of almost periodicity: if two fundamental discriminants d1 and d2 are congruent
modulo 4

Q
p�z p then L.2; �d1

/ D L.2; �d2
/CO.1=z/.

If p is an odd prime and X is large, then a little calculation shows that a proportion
1

pC1
of the fundamental discriminants d with jd j � X are multiples of p (this is essentially

the proportion of square-free integers that are multiples of p) and �d .p/ D 0 here. The
remaining proportion p

pC1
of fundamental discriminants are evenly split among the possible

values �d .p/ D 1 or �1. Pleasantly, it turns out that for p D 2 also a proportion 1
3
of the

fundamental discriminants jd j �X satisfy each of the three cases �d .2/D 0, 1 or�1. More-
over, the Chinese Remainder Theorem tells us that for different primes p, the values �d .p/

are distributed “independently” of each other, at least if we restrict to primes p � z withQ
p�z p being small in comparison withX . This motivates us to define for prime numbers p,

independent random variables X.p/ taking the values 0 with probability 1=.p C 1/ and the
values˙1with probability p=.2.pC 1//. Then the distribution of

Q
p�z.1� �d .p/=p

2/�1

is the same as the distribution of the random Euler product
Q

p�z.1� X.p/=p2/�1. Letting
z ! 1, we have described the distribution of L.2; �d / as being precisely the distribution
of
Q

p.1 � X.p/=p2/�1.
The story for extreme values is also clear:

�.4/

�.2/
D

Y
p

�
1C

1

p2

��1

�

Y
p

�
1 �

�d .p/

p2

��1

D L.2; �d / �

Y
p

�
1 �

1

p2

��1

D �.2/:

Moreover, we may find values L.2; �d / arbitrarily close to �.4/=�.2/ by choosing d with
�d .p/D �1 for all primesp� z, andwemay find values arbitrarily close to �.2/ by choosing
d with �d .p/ D 1 for all primes p � z.

Let us now turn to the distribution of L.1; �d / where there is a similar story
but with some added complications since the series and product defining L.s; �d / are
no longer absolutely convergent. For example, one can show that if z � .logX/10 then
L.1; �d / D

Q
p�z.1 � �d .p/=p/

�1 C O.1=z
1
4 / for all but O.X=z 1

4 / of the fundamental
discriminants jd j � X . This again may be viewed as a kind of almost periodicity: allowing
z to tend slowly to infinity with X , for almost all pairs of discriminants d1 and d2 with
d1 � d2 .mod 4

Q
p�z p/ one has L.1; �d1

/ � L.1; �d2
/.

For primes p, let X.p/ denote the random variables described earlier, and extend
X to all integers using (complete) multiplicativity; thus, if n D p

e1
1 � � � p

ek

k
then

X.n/ D X.p1/
e1 � � � X.pk/

ek . This is an example of a random multiplicative function, and
we may correspondingly consider the random L-function

L.s;X/ D

1X
nD1

X.n/

ns
D

Y
p

�
1 �

X.p/

ps

��1

: (1.1)

Both the series and product above converge almost surely provided Re.s/ > 1
2
; this follows

essentially from the fact that the variance of
P

p X.p/=ps is
P

p
p

pC1
1

p2Re.s/ , which is a
convergent sum when Re.s/ > 1

2
. In particular, the random Euler productL.1;X/ converges

almost surely, and the values L.1; �d / are distributed like L.1;X/. We may see this by first
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approximating most L.1; �d / by
Q

p�z.1 � �d .p/=p/
�1, noting that this truncated Euler

product is distributed exactly like
Q

p�z.1 � X.p/=p/�1, and finally letting z ! 1.
Let us state the result discussed above more precisely. Given any � > 0, the pro-

portion of fundamental discriminants jd j � X with L.1; �d / � e� tends as X ! 1 to
Prob.L.1;X/ > e�/. Here  is Euler’s constant, and we have normalized in this fashion in
view of Mertens’s theorem

Q
p�z.1 � 1=p/�1 � e log z. If � is large, and we seek values

of L.1; �d / larger than e� , the most likely way in which such large values arise is when
�d .p/ D 1 for all primes up to about e� . Similarly, the proportion of fundamental discrimi-
nants jd j �X withL.1;�d / < �.2/=.e

�/ tends asX ! 1 to Prob.L.1;X/ < �.2/=.e�//.
The normalization here is made in view of

Q
p�z.1C 1=p/�1 � �.2/=.e log z/. The distri-

bution ofL.1;X/ is continuous—it is more natural to think of the distribution of logL.1;X/
which is smooth—and its tails Prob.L.1;X/ > e�/ and Prob.L.1;X/ < �.2/=.e�// decay
double exponentially, behaving like exp.�.1C o.1//e��C1=�/ for a suitable constantC1 (see
[71]). With high likelihood one has 1=10 � L.1;X/ � 10, although there is a small positive
probability of finding arbitrarily large or arbitrarily small values.

The qualitative results mentioned above were obtained by Chowla and Erdős [39],
and with some uniformity in � by Elliott [58]. The question of uniformity in � is studied in
more detail by Montgomery and Vaughan [126], and Granville and Soundararajan [71], with
the aim of understanding the extreme values of L.1; �d /. By “uniformity in � ,” we mean
the problem of allowing � to depend on X while still guaranteeing that the proportion of
jd j � X with L.1; �d / > e

� is comparable to the tail probability that L.1;X/ > e� (and
similarly for small values of L.1; �d /). In view of the double exponential decay of the tails
of the distribution of L.1;X/ mentioned above, the largest viable range for uniformity in
� is � � �max C ", with �max D log logX C log log logX C C1 and any fixed " > 0—at
this point one has Prob.L.1;X/ > e�max/ < 1=X . The results in [71] show excellent agree-
ment between the distribution of L.1;�d / and the probabilistic model L.1;X/ in almost the
entire viable range. These results suggest the following conjectures on the extreme values of
L.1; �d /:

max
jd j�X

L.1; �d / D e
�
�max C o.1/

�
; and min

jd j�X
L.1; �d / D �.2/=

�
e
�
�max C o.1/

��
:

(1.2)
In [71] it is shown that there are values of L.1; �d / nearly as large as the conjecture in (1.2)
(for example, assuming the truth of GRH one can find values as large as e .�max � C/ for
some constant C ) and values almost as small as in (1.2). However, as we shall discuss next,
there are large gaps in our understanding of why the extreme values cannot be much larger
or smaller.

How large can z be such that for some fundamental discriminant jd j � X one has
�d .p/D 1 for all primes p � z? This problem is intimately related to finding large values of
L.1;�d /. Correspondingly, the problem of finding small values of L.1;�d /may be thought
of as wanting �d .p/ D �1 for all primes p � z. We noted already that the values of �d .p/

for p � z may be determined by knowing d .mod 4
Q

p�z p/. The prime number theorem
gives

Q
p�z p D ez.1Co.1/, so that with z D

1
2
logX (say) we can find jd j � X with any
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given signs �d .p/ for p � z—for example we may make them all 1, or all �1. If we think
of the probabilistic model X which treats �d .p/ as essentially being a “coin toss” we may
expect that the primes up to about z D logX log logX (there are about logX primes below
this z) may take any prescribed signs. This dovetails nicely with the conjectured size of
extreme values in (1.2), since (in the case of large values)

Q
p�z.1 � 1=p/�1 � e log z �

e .log logX C log log logX/. For primes p larger than about logX log logX , we expect
randomness to kick in, and to find an equal number of positive and negative values of �d .p/.

Our current knowledge is very far from these probabilistic considerations. Given
a prime `, Vinogradov conjectured that the least quadratic nonresidue .mod `/ lies below
C."/`" for some constant C."/. That is, there must be a prime p � C."/`" with .p

`
/ D �1,

which is a weak version of the prediction from the randommodel that there exists suchp with
p � C log ` log log ` for some constant C . Toward Vinogradov’s conjecture, we know, as a
consequence of the Burgess bounds for character sums, that the least quadratic nonresidue
lies below `1=.4

p
e/Co.1/ (see [29]), and no improvement over this exponent has been made

in more than 50 years. In terms of L.1;�d /, the work towards Vinogradov’s conjecture may
be used to show that (see [70,168])

L.1; �d / <

�
1

4

�
2 �

2
p
e

�
C o.1/

�
log jd j:

This is far from the conjecture in (1.2), and even an improvement in the constant above would
be significant and lead to an improvement on the bound for the least quadratic nonresidue
(see also [20,72,169] for related work).

Even less is known about the problem of bounding the least prime p such that p
is a quadratic residue .mod `/. To give a sense of the interest of this problem, we note
that if ` � 3 .mod 4/ is a prime, then the imaginary quadratic field Q.

p
�`/ has class

number 1 if and only if .p
`
/ D �1 for all p < .1C `/=4. For such a prime `, the polynomial

n2 C nC .1C `/=4 takes prime values for 0 � n < .` � 3/=4. Euler’s famous polynomial
n2 C nC 41 is the largest example of this phenomenon, corresponding to the prime `D 163

for which the first 12 primes (the primes below 41) are all quadratic nonresidues. Toward
this problem, we know that the least prime quadratic residue .mod `/ lies below C."/` 1

4 C"

for any " > 0 (see [82]), but with a constant C."/ that is ineffective (meaning the proof only
shows the existence of C."/, but without any way to compute it, even in principle). This is
related to Siegel’s ineffective lower bound (see [50]): for any " > 0 there exists C."/ > 0with

L.1; �d / > C."/jd j
�":

Thus our knowledge of small values of L.1;�d / is even further from the conjecture in (1.2).
If we assume the truth of GRH, then much better results are known. On GRH, the

least quadratic nonresidue .mod `/ can be shown to be < .log `/2, and the least prime
quadratic residue also lies below .1 C o.1//.log `/2 (see [114]). Moreover, for any funda-
mental discriminant d , one has

L.1; �d / �

Y
p�.log jd j/2

�
1 �

�d .p/

p

��1

; (1.3)
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so that the extreme values of L.1; �d / over all jd j � X are bounded above by
.2 C o.1//e�max and below by .1

2
C o.1//�.2/=.e�max/. There is still a gap between

these GRH bounds and the probabilistic conjecture in (1.2), but now one is off only by a
factor of 2, corresponding to the expectation based on the random model that in (1.3) we
only need to take the product over primes p � .log jd j/ in order to approximate L.1; �d /.

To summarize our discussion, the values of L.1;�d / have an almost periodic struc-
ture in d , and these values may be accurately modeled by random Euler products. The
random model gives a satisfactory description of the statistical distribution of L.1; �d /.
It also makes predictions on the largest and smallest possible values of L.1; �d /, but there
is a large gap between these predictions and our current unconditional knowledge, and even
assuming GRH there is still a factor of 2 at issue.

Similar results may be established for the distribution at the edge of the critical
strip for values in other families of L-functions. For example, consider the distribution of
�.1 C i t/, where t is chosen uniformly from ŒT; 2T � with T ! 1. These values may be
modeled by the random Euler product

�.s;X/ D

Y
p

�
1 �

X.p/

ps

��1

D

1X
nD1

X.n/

ns
; (1.4)

where the random variables X.p/ are independent for different primes p, and are all chosen
uniformly from the unit circle ¹jzj D 1º, and extended to random variables X.n/ over all
natural numbers n bymultiplicativity. As before, the product and series both converge almost
surely when Re.s/ > 1

2
. Then the statistical distribution of �.1C i t/ is identical to that of

�.1;X/ (equivalently, of �.1 C iy;X/ for any real y). We can also formulate an almost
periodicity result: For any " > 0, we can find a sequence of almost periods �n, with �n ! 1

and j�nC1 � �nj bounded, such that for T sufficiently large (in terms of any fixed almost
period � ) one has j�.1C i t C i�/� �.1C i t/j < " for almost all t 2 ŒT; 2T �. The sequence
of almost periods are found by requiring pi� � 1 for all primes p up to some point. For a
study of the distribution of �.1C i t/, with a focus on uniformity, see Lamzouri [109].

There is an extensive literature concerned with distribution at the edge of the crit-
ical strip, and we end this section with references to some further examples. We motivated
our discussion of L.1; �d / with the class number formula, which (for negative fundamental
discriminants) shows that 2

p
jd jL.1; �d /=.2�/ is quantized to be an integer. This raises

questions on the granularity of the distribution of L.1; �d /, and shows that in very short
scales there must be arithmetic deviations from the random model. These questions are
related to the problem of understanding how many imaginary quadratic fields there are with
any given class number (see [88,111,162]). For positive fundamental discriminants, the class
number formula relates L.1; �d / to the product of the class number and the regulator which
cannot in general be separated from each other. One way to get around this problem is to
order the real quadratic fields by the size of their regulator rather than by discriminant, and
this ordering has a pleasing interpretation in terms of lengths of closed geodesics on the
hyperbolic surface PSL.2;Z/nH. The study of L.1; �d /, or the class number h.d/, when d
is ordered in this way was initiated by Sarnak [152]; it is closely related to specializing dis-
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criminants d in suitable quadratic sequences (for example, of the form 4n2 C 1, or n2 C 4),
and for recent investigations see [49, 110, 145]. For a small sample of investigations in other
families of L-functions, see [40,56,117,118,123].

2. Selberg’s central limit theorem

In the previous section we discussed the distribution of values of L-functions at
the edge of the critical strip. In fact, similar results hold for the value distribution inside
the critical strip, but keeping to the right of the critical line. As an illustration, consider the
problem of the distribution of values of �.� C i t/ where 1

2
< � � 1 is fixed, and t is chosen

uniformly from ŒT; 2T � with T ! 1. The random �.s;X/ defined in (1.4) still converges
when Re.s/ D � > 1

2
, and one can show that �.� C i t/ is distributed like �.�;X/. To give

a very brief indication of the proof, one can show that for any parameter 1 � N � T ,

1

T

Z 2T

T

ˇ̌̌̌
�.� C i t/ �

X
n�N

1

n�Cit

ˇ̌̌̌2
dt D O

�X
n>N

1

n2�

�
D O

�
N 1�2�

�
; (2.1)

which parallels

E

�ˇ̌̌̌
�.�;X/ �

X
n�N

X.n/

n�

ˇ̌̌̌2�
D

X
n>N

1

n2�
D O

�
N 1�2�

�
:

Since � > 1
2
, the termN 1�2� tends to 0 providedN tends to infinity with T , and for suchN it

follows that for most t 2 ŒT; 2T � one has �.� C i t/�
P

n�N n
��Cit . If nowN tends slowly

to infinity with T , then we can show that
P

n�N n
��Cit is distributed like

P
n�N X.n/=n� ,

by matching the moments of both quantities, for example. This is a classical result (see Chap-
ter XI of [170]), and a recent quantitative study has been made in [113].

As with the distribution of �.1 C i t/, there is an almost periodic structure in
the values of �.� C i t/. The partial sums

P
n�N n���it clearly have an almost periodic

structure—if ni� � 1 for all n � N , then � will be an almost period for these partial sums—
and as we noted above �.� C i t/ can often be approximated by such partial sums.

For 1
2
< � � 1, the values �.�;X/ are distributed densely in the complex plane;

indeed, for any given complex number z and any " > 0, with positive probability (depending
on z and ") one has j�.�;X/ � zj < ". This is not hard to show, starting with the fact that
log �.�;X/ is essentially

P
p X.p/=p� . It follows that the set ¹�.� C i t/ W t 2 Rº is dense

inC. A related striking universality result of Voronin [171] states that if f is any nonvanishing
continuous function in jzj � r with 0 < r < 1

4
, then there exist arbitrarily large values t 2 R

such that j�.3
4

C i t C z/ � f .z/j < " for all jzj � r . In other words, the zeta function in a
disc of radius r around 3

4
C i t can be made to mimic any given analytic function that does

not take the value 0. The value 0must be excluded in view of the Riemann Hypothesis! There
are more precise versions of this result, but we do not pursue this direction further, pointing
instead to [10,106,112] for recent related work.

We now turn to the distribution of values of �.1
2

C i t/, which forms the main focus
of this article. The randomEuler product �.s;X/ defined in (1.4) does not converge for sD

1
2
.
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Indeed, there is no almost periodic structure to the values �.1
2

C i t/, and on the critical line
the zeta-function cannot typically be understood simply from a knowledge of pit for small
primes p. Instead, we have the following fundamental result of Selberg.

Theorem 2.1 (Selberg [155,156]). If T is large, and t is chosen uniformly from ŒT; 2T �, then
log �.1

2
C i t/ is distributed like a complex Gaussian with mean 0 and variance log log T .

In particular, Re.log �.1
2

C i t// and Im.log �.1
2

C i t// are distributed like real Gaussians
with mean 0 and variance 1

2
log logT .

To clarify normalizations, we recall that a standard complex Gaussian (of mean 0
and variance 1) has density 1

�
e�jzj2 , and that its real and imaginary part are independent real

Gaussians with mean 0 and variance 1
2
. Selberg’s theorem gives that for any fixed box B in

the complex plane, as T ! 1 one has

1

T
meas

²
T � t � 2T;

log �.1
2

C i t/p
log logT

2 B

³
!

1

�

Z
xCiy2B

e�x2�y2

dxdy:

In Selberg’s theorem we may omit the countably many zeros of �.s/ where the logarithm
is not defined. For t not equalling the ordinate of a zero of �.s/, the argument of �.1

2
C i t/

(that is, Im.log �.1
2

C i t//) is defined by continuous variation along the straight lines from
2 (where the argument is taken to be zero) to 2C i t and thence to 1=2C i t .

Here is a striking illustration of the difference between the value distributions of
�.1

2
C i t/ and �.� C i t/ for 1� � > 1

2
. Typically, j�.� C i t/j is of constant size, for example,

taking values between 1=2 and 2 with positive probability. On the other hand, Selberg’s
theorem implies that for any fixed V and large T ,

1

T
meas

²
T � t � 2T;

log j�.1
2

C i t/jq
1
2
log logT

� V

³
�

1
p
2�

Z 1

V

e�x2=2dx; (2.2)

so that j�.1
2

C i t/j is large (say, > exp."
p
log logT /) nearly half the time, or j�.1

2
C i t/j

is small (below exp.�"
p
log logT /) nearly half the time. We noted earlier that the set

¹�.� C i t/ W t 2 Rº is dense in the complex plane. It is rare to find values of �.1
2

C i t/

of constant size, and whether the set ¹�.1
2

C i t/ W t 2 Rº is dense in C remains an intriguing
open problem. This question was raised first by Ramachandra; for partial progress, see [108].

The argument principle, together with the functional equation for �.s/ and Stirling’s
formula, may be used to show that N.t/, the number of zeros of �.s/ with real part between
0 and 1 and imaginary part between 0 and t , satisfies

N.t/D
t

2�
log

t

2�
�

t

2�
C
7

8
CS.t/CO

�
1

t

�
; where S.t/D

1

�
arg�

�
1

2
C i t

�
: (2.3)

Thus Selberg’s theorem for Im.log �.1
2

C i t// shows that the remainder term in the asymp-
totic formula for N.t/ has Gaussian fluctuations.

We now give a brief, oversimplified, description of the ideas behind Selberg’s theo-
rem; we caution the reader that some statements below should be taken as merely indicative,
and not interpreted as being literally correct. Taking logarithms in the Euler product for �.s/,
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we may write

log �.s/ D

X
p;k

1

kpks
D

1X
nD2

ƒ.n/

logn
1

ns
;

where the sums above are over prime powers pk , and ƒ.n/ is the von Mangoldt function
which equals logp if n D pk and 0 otherwise. The series above converges absolutely when
Re.s/ > 1, and it certainly does not converge on the critical line Re.s/ D

1
2
. Nevertheless,

we might hope that a truncated sum over prime powers might serve as an approximation to
log �.s/ (thinking of s D

1
2

C i t with T � t � 2T ). This forms the first step in Selberg’s
argument, who finds an expression of the form

log �.s/ D

X
2�n�x

ƒ.n/

ns logn
CZx.s/; (2.4)

where Zx.s/ is a remainder term that may be thought of as the contribution from zeros
� of �.s/ with j� � sj � 1= log x. By a complicated argument, Selberg showed how the
sum over zeros may in turn also be bounded in terms of sums over primes, and thus shown
to be small on average. An alternative argument of Bombieri and Hejhal [21] avoids some
of Selberg’s difficulties by bounding the average values of Zx.s/ instead of seeking point-
wise bounds. Nevertheless, these arguments are technically involved; they are simpler if
the Riemann hypothesis is assumed, but can be established unconditionally by relying on
a subtle zero-density estimate for zeros of �.s/ near the critical line (established by Selberg).
Although we have not made the relation (2.4) precise, we give a couple of remarks that may
be helpful in thinking about such relations. Firstly, one can think of such relations as vari-
ants of the explicit formula connecting zeros and primes. Secondly, in addition to the Euler
product, the zeta function possesses a Hadamard product over its zeros

s.s � 1/��s=2�.s=2/�.s/ D eBs
Y

�

�
1 �

s

�

�
es=�; (2.5)

where the product is over all nontrivial zeros of the zeta-function, and B is a constant. The
relation (2.4) has the flavor of a hybrid Euler–Hadamard product (see [69] for work in this
direction), taking some primes and some zeros, and it is natural to expect an inverse rela-
tionship (or uncertainty principle) between the number of primes that one must take versus
the number of zeros that are needed.

Returning to the argument, in the range x � T , the remainder term Zx.s/ in (2.4)
is typically of size O.log T= log x/; this corresponds to the expected number of zeros
of �.s/ within 1= log x of 1

2
C i t . If we choose x D T 1=.log logT /

1
4 , for example, then

logT= log x D .log logT / 1
4 is small in comparison to the typical expected size of log �.s/,

which is
p
log logT , and therefore the remainder term is negligible. In other words, with

this choice of x, the proof of Selberg’s theorem reduces to establishing the Gaussian nature
of X

2�n�x

ƒ.n/

logn
1

ns
D

X
p�x

1

ps
C
1

2

X
p�

p
x

1

p2s
C

X
pk�x
k�3

1

kpks
: (2.6)
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The contribution from prime powers pk with k � 3 isO.1/ and may be omitted. The contri-
bution from the squares of primes is also negligible; it is 1

2

P
p�

p
x 1=p

1C2it which behaves
roughly like 1

2
log �.1C 2it/ and so is of constant size typically. We are left with the contri-

bution of just the primes, which we may understand by computing moments. If k and ` are
any natural numbers then, for large T ,

1

T

Z 2T

T

�X
p�x

1

p1=2Cit

�k�X
p�x

1

p1=2�it

�`

dt D

8<: .1C o.1//kŠ.log logT /k if k D `;

o.T / if k ¤ `:

(2.7)
These moments match asymptotically the moments of a complex Gaussian with mean 0 and
variance log logT , from which Selberg’s theorem would follow.

To give a justification for (2.7), we discuss an orthogonality relation for Dirich-
let polynomials, which we shall find useful in the sequel. Roughly speaking, integrals over
ŒT; 2T � may be thought of as possessing T “harmonics” that can distinguish between the
functions fn.t/ D nit for natural numbers n going up to about T . More precisely, suppose
ˆ is a smooth function approximating the indicator function of Œ1; 2�. Then, if max.M;N /�

T= logT ,Z X
m�M

a.m/mit
X
n�N

b.n/nitˆ

�
t

T

�
dt D

X
mDn

a.m/b.n/T b̂.0/
C

X
m¤n

a.m/b.n/T b̂�T log
n

m

�
� T b̂.0/X

mDn

a.m/b.n/; (2.8)

where the contribution of the “off-diagonal” terms m ¤ n is negligible because
T j log.m=n/j � T jm � nj=jm C nj � T=.M C N/ is large and the Fourier transformb̂ decays rapidly.

Write .
P

p�x 1=p
1=2Cit /k D

P
n�xk ak.n/=n

1=2Cit , so that ak.n/ D 0 unless n
has exactly k prime factors. If n has prime factorization pe1

1 � � �p
er
r with e1 C � � � C er D k

then ak.n/D kŠ=.e1Š � � � er Š/. Then an application of (2.8) shows that the moment in (2.7) is

� T
X

mDn�xk

ak.n/a`.n/

n
:

If k ¤ ` then either ak.n/ or a`.n/ must be zero, and this case of (2.7) follows. If k D `,
then the diagonal terms are dominated by integers with k distinct prime factors, and so the
above is

� T kŠ
X

n�xk

ak.n/

n
D T kŠ

�X
p�x

1

p

�k

� T kŠ.log log x/k ;

and since log log x and log logT are close, the other case in (2.7) follows.
This concludes our sketch of the ideas behind Selberg’s theorem. Two alternative

approaches that work for log j�.1
2

C i t/j are given in [115,142]. These avoid the subtle zero-
density estimates near the critical line, and it would be of interest to extend such approaches
to Im.log �.1

2
C i t//.
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3. Analogues of Selberg’s theorem in families of

L-functions

Selberg’s theorem discussed above applies not only to the Riemann zeta-function,
but more generally to a large class of L-functions. For example, in [156] Selberg intro-
duced what is now known as the Selberg class of L-functions, which formalizes some of the
observed properties of automorphic L-functions and is expected to coincide with this class.
For a primitiveL-function in the Selberg class (or, if one prefers, for a cuspidal automorphic
L-function for GLn.Q/), one expects that logL.1

2
C i t/with T � t � 2T is distributed like

a complex Gaussian with mean 0 and variance log logT . The key ingredient needed to make
this precise is an analogue of the zero-density estimate close to the critical line, and this is
known for GL1 and GL2; in the general case, GRH must be assumed (see [21,156] for more
details).

Interesting differences arise when we consider analogues of Selberg’s theorem for
central values in families of L-functions. There are three categories into which families of
L-functions fall, and we illustrate these with examples. Unlike Selberg’s Theorem, the anal-
ogous central limit theorems that we formulate in these families are still conjectural, and
these conjectures were first formulated by Keating and Snaith [101].

Unitary families. A typical example is the family of all Dirichlet characters
� .mod q/, with q a large prime (for simplicity). The question is to understand the dis-
tribution of logL.1

2
; �/ as � ranges over all primitive characters � .mod q/ (if q is prime,

this is equivalent to � not being the principal character).Wemust discard potential characters
withL.1

2
; �/D 0, but in fact it is conjectured that L.1

2
; �/¤ 0 for all DirichletL-functions.

This situation is expected to be exactly as in Selberg’s theorem, and the Keating–Snaith
conjecture for this family states that for large q the distribution of logL.1

2
; �/ is approxi-

mately a complex Gaussian with mean 0 and variance log log q. In particular, log jL.1
2
; �/j

is (conjecturally) distributed like a real Gaussian with mean 0 and variance 1
2
log log q, so

that (like j�.1
2

C i t/j) roughly half the time jL.1
2
; �/j is as large as exp."

p
log log q/ and

the other half of the time it is as small as exp.�"
p
log log q/.

Another example of this type is the family of twists by Dirichlet characters of a fixed
newform f . The family �.1

2
C i t/ with T � t � 2T may also be thought of as an example

of a unitary family.
Symplectic families. Consider the family of quadratic Dirichlet L-functions

L.s;�d /, where d ranges over fundamental discriminants with jd j �X . The valuesL.1
2
;�d /

are real, and GRH predicts that they are all nonnegative (else there would be a real zero of
L.s; �d / between 1=2 and 1). Further, the values L.1

2
; �d / are all expected to be nonzero

(a conjecture of Chowla, which is a special case of the belief that L.1
2
; �/ ¤ 0 for all

Dirichlet characters �). The Keating–Snaith conjecture for this family predicts that the
values logL.1

2
; �d / are distributed like a real Gaussian with mean 1

2
log logX and vari-

ance log logX . Since the mean is positive, the values of L.1
2
; �d / are (conjecturally) of

typical size .logX/ 1
2 Co.1/.
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Orthogonal families. These families arise naturally in the context of modular forms,
and we give a couple of prototypical examples. Let k be an even integer, and consider the
family Hk of all weight k modular forms for the full modular group SL2.Z/ that are also
eigenfunctions of all Hecke operators. Associated to such a form f is its L-function, which
we normalize so that the functional equation connects values at s to 1 � s:

ƒ.s; f / D .2�/�s�

�
s C

k � 1

2

�
L.s; f / D ikƒ.1 � s; f /:

In the case k � 2 .mod 4/, the sign of this functional equation is �1, and all the central
values L.1

2
; f / are zero. In the case k � 0 .mod 4/, the sign of the functional equation

is C1, and we ask for the distribution of L.1
2
; f / (or, in keeping with Selberg’s theorem,

logL.1
2
; f /). In this situation, a remarkable result of Waldspurger [173] (see also [105] for

an explicit version) relates these central L-values to the squares of Fourier coefficients of a
half-integer weight modular form associated to f (namely its Shimura correspondent). As
a byproduct, we know that L.1

2
; f / is nonnegative, and it is conjectured never to be zero.

The Keating–Snaith conjectures predict that for large k � 0 .mod 4/, the values logL.1
2
; f /

are distributed like a real Gaussian with mean �
1
2
log logk and variance log logk. Since the

mean is negative, the valuesL.1
2
;f / in this family are typically small, of size .logk/� 1

2 Co.1/.
A related example is to fix a newform f , and to consider the family of quadratic

twists of f . Once again normalizing so that the functional equation connects s and 1� s, our
interest is in the central values L.1

2
; f � �d /, where d runs over fundamental discriminants

jd j � X with d coprime to the level of f for simplicity. As in the previous example, half of
these twists will have a functional equation with� sign (where the centralL-value vanishes),
and we restrict attention to the complementary case when the sign isC. AgainWaldspurger’s
formula shows that the central L-values are nonnegative, but it is possible for these values
to be 0. For example, if f corresponds to an elliptic curve, then the Birch–Swinnerton-Dyer
conjectures predict that the central value is zero when the quadratic twist of this elliptic
curve has positive rank (and the rank must also be even when the sign of the functional
equation is C). However, one expects that typically L.1

2
; f � �d / ¤ 0, and the Keating–

Snaith conjectures predict further that the distribution of logL.1
2
; f � �d / (where jd j � X

is coprime to the level of f and the twist has C sign of the functional equation) is that of a
real Gaussian with mean �

1
2
log logX and variance log logX .

The classification of families into unitary, symplectic, and orthogonal is based on
the philosophy of Katz and Sarnak [98] which connects (conjecturally) the distribution of
low lying zeros in these families to the distribution of eigenvalues near 1 of large random
matrices chosen from the corresponding classical groups—we shall discuss these links to
random matrix theory later. We now give heuristic reasons to explain the three different
Keating–Snaith conjectures, point out the obstructions to making these precise, and describe
the partial progress that has been made.

Recall that in (2.4) we considered approximations to log �.1
2

C i t/ by Dirichlet
series over prime powers of a flexible length x. In (2.6) we saw that for �.1

2
C i t/ the contri-

bution of prime powers pk with k � 3 is bounded, and the contribution from prime squares
is also typically small. Finally, the distribution of the sums over primes could be understood
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by computing moments. We now consider analogues of this calculation for the families dis-
cussed above, and the key difference in the orthogonal and symplectic cases will arise in the
contribution of squares of primes.

Let us first look at the unitary family of Dirichlet characters .mod q/ with q a large
prime. Suppose that we have an approximation of the form

logL
�
1

2
; �

�
�

X
n�x

ƒ.n/
p
n logn

�.n/ D

X
p�x

�.p/
p
p

C
1

2

X
p�

p
x

�.p/2

p
CO.1/: (3.1)

A typical character � .mod q/ is not quadratic; �2 is then a nonprincipal character and the
sum over prime squares above is typically of bounded size, behaving a lot like logL.1; �2/.
We are left with the sum over primes, and if x is a small power of q, then we can understand
the moments of this sum (much as in (2.7)) using the orthogonality relation for the charac-
ters .mod q/ (in place of (2.8)). This gives a heuristic justification for the Keating–Snaith
conjectures in this family, and the missing ingredient is the very first step which may fail
badly, for example, if L.1

2
; �/ D 0 for many characters � .mod q/.

Consider next the symplectic example of quadratic Dirichlet L-functions L.s; �d /

with d ranging over fundamental discriminants jd j � X . Suppose that an approximation as
in (3.1) holds. Since �d is a quadratic character, note that the squares of primes in (3.1) have
�d .p/

2 D 1 (ignoring the primes p that divide d ), and so these terms contribute
1

2

X
p�

p
x

1

p
�
1

2
log log x �

1

2
log logX;

if x is a small power ofX . Thus the prime square terms account for the mean of logL.1
2
;�d /

being �
1
2
log logX in the Keating–Snaith conjectures. If x is a small power of X , we may

compute the moments of the sum over primes:X
jd j�X

�X
p�x

�d .p/
p
p

�k

D

X
p1;:::;pk�x

1
p
p1 � � �pk

X
jd j�X

�
d

p1 � � �pk

�
:

The inner sum over d may be viewed as a character sum .mod p1 � � �pk/. This character is
principal if p1 � � � pk is a square, and we get a main term here, while if p1 � � � pk is not a
square we may expect the character sum to cancel out (and this can be justified if xk is small
in comparison to X ). The product p1 � � �pk can be a square only if k is even, and the primes
p1; : : : ; pk can be paired off into k=2 equal pairs. With a little calculation, this shows that
the moments of the sum over primes match the moments of a real Gaussian with mean 0
and variance

P
p�x 1=p � log logX . Taking into account the shift in mean arising from the

prime square terms, this gives a heuristic justification for the Keating–Snaith conjecture.
Finally, let us look at the orthogonal family of quadratic twists of a newform in the

case where the sign of the functional equation is C. The L-function L.s; f � �d / is given
by an Euler product, the pth factor of which (for a prime p not dividing the level of the form)
takes the shape �

1 �
p̨�d .p/

ps

��1�
1 �

p̌�d .p/

ps

��1

;
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where p̨ p̌ D 1 and p̨ C p̌ D �.p/ is the normalized Hecke eigenvalue of f (normalized
so that the Deligne bound gives j�.p/j � 2). The logarithm of this Euler factor is

1X
kD1

.˛k
p C ˇk

p /
�d .p

k/

kpks
;

and in analogy with (2.4), (2.6), (3.1), we may hope to approximate logL.1
2
; f � �d / byX

p�x

. p̨ C p̌/�d .p/
p
p

C
1

2

X
p�

p
x

.˛2
p C ˇ2

p/�d .p/
2

p
CO.1/

D

X
p�x

�.p/�d .p/
p
p

C
1

2

X
p�

p
x

�.p/2 � 2

p
CO.1/: (3.2)

If the discriminants d go up to size X , and x is a small power of X , then the distribution ofP
p�x �.p/�d .p/=

p
p may be determined by computing moments (similarly to the discus-

sion for L.1
2
; �d /). The prime terms in (3.2) are distributed like a real Gaussian with mean

0 and variance X
p�x

�.p/2

p
� log log x � log logX; (3.3)

by Rankin–Selberg theory. In view of (3.3), the prime square terms in (3.2) contribute

1

2

X
p�

p
x

�.p/2 � 2

p
� �

1

2
log log

p
x � �

1

2
log logX:

This justifies the Keating–Snaith conjecture for this family.
In all these heuristics, it is the first step of connecting logL.1

2
/ to sums over prime

powers that is a serious stumbling-block. Indeed, if L.1
2
/ is zero (or if there is a zero very

close to 1
2
) for many elements in the family, then the Keating–Snaith conjectures would not

hold. This problem does not arise in the continuous Selberg theorem, since the points t with
1
2

C i t very close to a zero of �.s/ have small measure and thus do not affect the distribution.
The problem of nonvanishing of L-functions has been investigated extensively, but

in general it remains a challenge to show that almost all elements in a family have nonzero
central value. More often, progress towards this problem focusses on showing that a positive
proportion of L-functions in a family have nonzero central value. To give a few examples:
in the family of Dirichlet characters � .mod q/, Khan and Ngo [103] have shown that at least
3
8
of these characters have L.1

2
; �/ ¤ 0; in the family of quadratic Dirichlet L-functions,

Soundararajan [161] shows that a proportion at least 7
8
of such central values are nonzero; in

the family Hk of all Hecke eigenforms of weight k � 0 .mod 4/ for the full modular group,
with k � K, Iwaniec and Sarnak [93] show that at least 1

2
of the central values are non-zero,

and improving this proportion (in a certain sense) would have consequences for the existence
of Landau–Siegel zeros of Dirichlet L-functions.

There are some situations where, for deep algebraic reasons, one can show that
most central values in a family are nonzero, but these arguments do not appear to control
the size of the central value, or to deal with the possibility that there might be a zero very
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near 1
2
. For example, Chinta [38] (following work of Rohrlich [147]) has shown that if E is

an elliptic curve over Q then for all but O.q 7
8 / of the Dirichlet characters mod q (with q

a large prime) one has L.1
2
; E � �/ ¤ 0. This exploits the fact (established by Shimura)

that if �� is a Galois conjugate of the character �, then the vanishing of L.1
2
; E � �/ is

equivalent to the vanishing ofL.1
2
;E � �� / (the algebraic parts of theseL-values are Galois

conjugate). Another example where algebraic techniques are very successful concerns the
family of quadratic twists of an elliptic curve. In special cases, Smith [160] has shown that
the (algebraic) rank of quadratic twists of elliptic curves is typically 0 (when the sign of the
functional equation is C) or 1 (when the sign is �). The Birch–Swinnerton-Dyer conjecture
(on which there has been a lot of progress in the cases of rank 0 and 1) would then yield
Goldfeld’s conjecture that the central L-values are typically nonzero when the sign of the
functional equation is C.

If there is a zero at or very near 1
2
, we might expect that its effect is to make

jL.1
2
/j unusually small. This observation was made in Soundararajan [164], where it was

shown (assuming GRH) that log jL.1
2
/j can be bounded from above using Dirichlet series

over prime powers of flexible length; we shall discuss this in more detail in Section 6.
It was also observed in [164] that one could (assuming a suitable GRH) establish a one
sided version of the Keating–Snaith conjecture, showing that the frequency with which
log jL.1

2
/j �MeanC�

p
Var is bounded above by the expectedGaussian 1p

2�

R1

�
e�x2=2dx;

here � is a fixed real number, the size of the family is assumed to grow. Further, if one knew
that most elements in the family did not have a zero near 1

2
(which, for example, would follow

from the “one level density” conjectures in Katz and Sarnak [98]) then the Keating–Snaith
conjecture for log jL.1

2
/j would follow.

Such one sided central limit theorems were first made precise (and unconditional)
by Hough [89] in certain families of L-functions. Hough’s approach relies on knowledge
of a zero density estimate putting most low lying zeros of L-functions in the family close
to the critical line—an analogue of Selberg’s zero density estimate for the zeta function,
mentioned in Section 2. For example, Hough’s approach would work for log jL.1

2
; �/j in the

unitary family of Dirichlet characters � .mod q/, or log jL.1
2
; �d /j in the symplectic family

of quadratic Dirichlet L-functions, or in the orthogonal family logL.1
2
; f / where f ranges

over Hecke eigenforms of weight k � 0 .mod 4/ for the full modular group.
An alternative approach to this half of the Keating–Snaith conjectures is developed

in Radziwiłł and Soundararajan [141]. This method is arguably simpler and also more widely
applicable, relying only on knowledge of the first moment “C epsilon” in the family, and
avoiding zero density estimates (which require knowledge of the second moment
“C epsilon”). In [141] the method is illustrated for the family of quadratic twists of an ellip-
tic curve (with positive sign of the functional equation), where the zero density estimates
required in Hough’s approach are not known. Conjecturally, the central values in this family
(when nonzero) measure (after accounting for quantities such as Tamagawa factors that are
relatively easy to understand) the size of the Tate–Shafarevich group for the twisted elliptic
curve. The Keating–Snaith conjecture thus predicts that the sizes of Tate–Shafarevich groups
in the family of quadratic twists have a log normal distribution, with prescribed means and
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variance (see Conjecture 1 in [141]). The method applies to quadratic twists of any newform
(holomorphic or Maass form), and thus (by Waldspurger’s formula) also gives information
on the size of Fourier coefficients of half-integer weight modular forms, establishing that
these are typically a little bit smaller than the conjectured Ramanujan bounds.

Another application where this method works is to the problem of the fluctuations of
a quantum observable for the modular surface. Let denote a fixed even Hecke–Maass form
for the full modular group, and let �j denote an even Hecke–Maass form with eigenvalue �j .
The problem is to understand �j . / D

R
PSL2.Z/nH  .z/j�j .z/j

2 dxdy

y2 for large eigenvalue
�j . For generic hyperbolic surfaces, it has been suggested in the physics literature [57] that
similar quantum fluctuations have a Gaussian distribution. In the case of the modular group,
j�j . /j

2 is related to the central value L.1
2
;  � �j � �j /, so that the Keating–Snaith con-

jectures predict that it is in fact log j�j . /j (rather than �j . / itself) that has a normal
distribution. A one sided central limit theorem for log j�j . /j is obtained in Siu [159], and
in particular it follows that �

1
4

j j�j . /j D o.1/ for almost all eigenfunctions �j .
We have already discussed that the problem of nonvanishing of central L-values

is a barrier to obtaining lower bounds towards the Keating–Snaith conjectures. There are
two analytic techniques that produce a positive proportion of nonzero central values of
L-functions in families: (i) the mollifier method, which is unconditional and relies on knowl-
edge of two moments (“C epsilon”) and (ii) understanding 1-level densities of low lying
zeros, which is conditional on GRH and is not always guaranteed to yield a nonzero propor-
tion. Both of these methods may be refined to permit an understanding of the typical size of
nonzero L-values that are produced [165]. Here are two such sample results. In the family
of quadratic Dirichlet L-functions, where we know [161] that 7

8
of the fundamental discrim-

inants jd j � X satisfy L.1
2
; �d / ¤ 0, we may establish that for any interval .˛; ˇ/ of R and

large X ,

#
²

jd j � X W
log jL.1

2
; �d /j �

1
2
log logXp

log logX
2 .˛; ˇ/

³
�

 
7

8

1
p
2�

Z ˇ

˛

e�x2=2dx C o.1/

!
#
®
jd j � X

¯
:

In the family of quadratic twists of a fixed newform f with positive sign of the functional
equation, on GRH it is known that a proportion �

1
4
of such L-values are nonzero (see [85]),

and we may refine this to yield (with E.X/ denoting the set of fundamental discriminants
jd j � X with the quadratic twist of f has positive sign)

#
²
d 2 E.X/ W

logL.1
2
; f � �d /C

1
2
log logXp

log logX
2 .˛; ˇ/

³
�

 
1

4

1
p
2�

Z ˇ

˛

e�x2=2dx C o.1/

!ˇ̌
E.X/

ˇ̌
:

Finally, we mention recent work of Bui et al. [26] which considers a variant of the Keating–
Snaith conjectures whenL-values are counted with suitable weights (which depend on “mol-
lified L-values”).
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4. Moments of zeta and L-functions

A classical problem, going back to Hardy and Littlewood, asks for an understanding
of the moments of �.1

2
C i t/,

Mk.T / D

Z T

0

ˇ̌̌̌
�

�
1

2
C i t

�ˇ̌̌̌2k

dt; (4.1)

where k is a natural number. Hardy and Littlewood established thatM1.T / � T logT (see
[170]), and this was later refined by Ingham who showed that

M1.T / D

Z T

0

ˇ̌̌̌
�

�
1

2
C i t

�ˇ̌̌̌2
dt D T log

T

2�
C .2 � 1/T CE.T /; (4.2)

with E.T / D O.T
1
2 log T /, with a further refinement in Balasubramanian [13] yielding

E.T / D O.T
1
3 C"/. Ingham also established an asymptotic for the fourth moment:

M2.T / �
1

2�2T .logT /4, which was refined by Heath-Brown [81] to

M2.T / D

Z T

0

ˇ̌̌̌
�

�
1

2
C i t

�ˇ̌̌̌4
dt D TP4.logT /CO

�
T

7
8 C"

�
; (4.3)

for a polynomial P4 of degree 4 with leading coefficient 1=.2�2/.
Despitemuch effort, these remain the only two cases in which an asymptotic formula

forMk.T / is known. To explain why, we recall that Hardy and Littlewood gave an “approxi-
mate functional equation” (in fact, Riemann’s unpublished notes had a more precise version,
known now as the Riemann–Siegel formula)

�

�
1

2
C i t

�
�

X
n�

p
jt j=2�

1

n
1
2 Cit

C ei#.t/
X

n�
p

jt j=2�

1

n
1
2 �it

; (4.4)

where ei#.t/ D � it=2�..1
2

� i t/=2/=.��it=2�..1
2

C i t/=2// is the ratio of �-factors in the
functional equation for �.s/. Thus �.1

2
C i t/ can be approximated by two Dirichlet polyno-

mials of length about
p

jt j. We saw in (2.8) that the mean square of Dirichlet polynomials
of length up to T could be evaluated, with the diagonal terms making the dominant contri-
bution. This permits the evaluation of the second moment (4.2) with Ingham’s bound on the
remainder term E.T / (we have not discussed the cross terms that arise in squaring (4.4) but
these turn out to be negligible). Similarly, we can approximate �.1

2
C i t/2 by two Dirich-

let polynomials of length about jt j=2� , and this leads to Ingham’s asymptotic for M2.T /,
although the more precise form in (4.3) requires further ideas. When k � 3, the complexity
of �.1

2
C i t/k becomes too great; to approximate it, we require Dirichlet polynomials of

length about jt jk=2 (which is now larger than jt j), and (2.8) is no longer sufficient to esti-
mate the mean-square of such long Dirichlet polynomials. Let dk.n/ denote the k-divisor
function, which arises as the Dirichlet series coefficients of �.s/k D

P1

nD1 dk.n/=n
s (valid

for Re.s/ > 1). One new problem that arises when considering higher moments involves the
correlations X

n�x

dk.n/dk.nC h/: (4.5)
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One would like asymptotics for such quantities, uniformly in a range for h, and while this
problem has been solved for k D 2 (and underlies the precise asymptotics given in (4.3)),
when k D 3 or larger, asymptotics for the quantity in (4.5) remain unknown (even in the case
h D 1).

Indeed, until the late 1990s it was not even clear what the conjectural asymptotics
forMk.T / should be. However, in the last 25 years, much progress has been made in under-
standing conjecturally the nature of these moments, obtaining lower bounds of the correct
conjectured value (for all positive real k), and obtaining complementary upper bounds of the
correct order conditional on the Riemann Hypothesis. Similar progress has been made for
moments in a number of different families ofL-functions.We shall discuss these conjectures
and the progress towards them in the following sections, but first give some motivation for
considering such moments.

One motivation for considering the moments of �.s/ is that they capture information
about the large values of j�.1

2
C i t/j. The Lindelöf hypothesis that j�.1

2
C i t/j �" .1C jt j/"

(which is a consequence of RH) is equivalent to the boundMk.T /�k;" T
1C" for all k 2 N.

From the approximate functional equation (4.4) it follows that j�.1
2

C i t/j � .1 C jt j/
1
4 ,

a bound known as the convexity bound. Going beyond the convexity bound involves show-
ing cancelation in the exponential sums in (4.4), and has remained an active problem from
its initiation by Weyl, and Hardy and Littlewood who showed early on that j�.1

2
C i t/j �

.1C jt j/
1
6 C" (see [170] and the best current exponent may be found in [25]). Sharp moment

estimates encode Lindelöf bounds on average, and in some cases can also yield pointwise
subconvexity estimates. For example, we note that Ingham’s bound E.T / � T

1
2 logT (for

the error term in the second moment (4.2)) implies that
R T C1

T
j�.1

2
C i t/j2dt � T

1
2 log T

from which the convexity bound j�.1
2

C i t/j � jt j
1
4 C" may be deduced. Similarly Balasub-

ramanian’s improved estimate for E.T / implies the Hardy–Littlewood–Weyl subconvexity
bound j�.1

2
C i t/j � .1C jt j/

1
6 C". Similarly, Ingham’s asymptotic for the fourth moment

yields the convexity bound, while the more precise result (4.3) of Heath-Brown gives a
subconvexity bound for �.s/. As a third example of bounds for moments that encode good
pointwise bounds, we mention Heath-Brown’s [80] estimate for the 12th momentZ T

0

ˇ̌̌̌
�

�
1

2
C i t

�ˇ̌̌̌12

dt � T 2C";

which again contains the bound j�.1
2

C i t/j � jt j
1
6 C".

Ingham’s work on the fourth moment of �.1
2

C i t/ is also crucial in establishing
“zero density estimates” which are bounds for the number of potential exceptions to the
Riemann hypothesis. These have arithmetic applications, for example, playing a key role in
showing that the prime number theorem holds in short intervals:�.xC h/��.x/� h= logx
provided x 7

12 C" < h � x. A sharp bound for the sixth moment (for instance) would lead to
improvements in zero-density results and in the application to the prime number theorem.
We refer to Chapter 10 of [92] for a discussion of these themes.

There is a large body of work studying analogous problems for moments of central
values in families of L-functions, and in many cases asymptotics for small moments are
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known. We give a few examples here, and discuss some more in Section 6. Two motivations
for studying such questions are (i) the problem of showing that many central values are
nonzero, which can be attacked analytically if we know two moments with a little room to
spare (we gave a few examples of such results in the previous section), and (ii) obtaining sub-
convexity bounds for L-functions (there is a vast literature here, and we content ourselves to
pointing to earlier surveys on this topic [63,94,119,128] and to Nelson [130,132] for very recent
progress).

The unitary family of Dirichlet characters .mod q/ (for a large prime q) is clos-
est in spirit to �.1

2
C i t/, but there are still some differences. It is easy to evaluate the

second moment
P�

� .mod q/ jL.1
2
; �/j2 (where the � indicates that the sum is restricted to

primitive characters) and, in analogy with (4.1), this is, � q log q. The fourth moment can
also be evaluated, and in analogy with Ingham’s result, Heath-Brown [83] established thatP�

� .mod q/ jL.1
2
; �/j4 �

1
2�2 q.logq/4. However, an analogue of (4.3), obtaining lower order

terms in the asymptotic formula with a “power saving” in the error term, proved substantially
more difficult, and was first achieved in the work of Young [174]. Higher moments remain
unknown, although one can make progress by averaging over q (see Section 6). Another nat-
ural unitary family is the twists of a fixed Hecke eigenform by Dirichlet characters .mod q/.
The complexity of the second moment in this family is naively comparable to the fourth
moment of Dirichlet L-functions, but there are further formidable difficulties. An extensive
discussion of this problem, with variants and applications, may be found in the memoir of
Blomer et al. [18].

In the symplectic case of quadratic Dirichlet L-functions, the first three momentsP
jd j�x L.

1
2
; �d /

k are known (see [96,161], and for interesting work on the error term in the
cubic moment see [55,175]), and the asymptotics in these cases (k D 1; 2; 3) take the shape of
xPk.log x/ for a polynomial Pk of degree k.k C 1/=2. We shall explain in the next section
how this ties in with the Keating–Snaith conjecture for the distribution of logL.1

2
; �d /. The

techniques behind evaluating these moments also establish that a proportion at least 7
8
of

these values are nonzero (see [161]).
As an example of an orthogonal family, consider the setHk of Hecke eigenforms for

the full modular groupwith largeweight k� 0 .mod 4/. Here themoments
P

f 2Hk
L.1

2
;f /r

may be evaluated for r D 1, 2, and if an extra averaging over K � k � 2K is taken, then
in the cases r D 3 and 4 also (this follows from the techniques in [93]). The asymptotic
answers here are of the shape jHkjPr .log k/ for a polynomial Pr of degree r.r � 1/=2.
A sharp bound for the third moment (without an average in k) is established in Peng [136];
this permits a subconvexity bound L.1

2
; f / � k

1
3 C", which is comparable in strength to the

Hardy–Littlewood–Weyl subconvexity bound for �.1
2

C i t/. An analogous cubic moment
(with such a subconvexity bound) has been studied in the case of Maass forms by Ivic
[91]; interestingly, these cubic moments are also connected by a beautiful formula of Moto-
hashi [127] to the fourth moment of �.1

2
C i t/. Substantial progress has been made towards

obtaining estimates for the fifth moment for modular forms (in the weight and level aspects)
and in finding “reciprocity relations” among the fourth moments in different families; see
[19,102,104].
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We mention one more striking example: the work of Conrey–Iwaniec [47] gives
sharp estimates for the cubic moment of L.1

2
; f � �/ where f runs over modular forms of

level dividing q (an odd square-free integer) and � denotes the quadratic character .mod q/.
This gives a good Weyl-type subconvexity bound for such L-values, and an analogous
calculation for Maass forms gives Weyl-type subconvexity bounds for quadratic Dirich-
let L-functions (improving upon classical results of Burgess). Further spectacular work in
this direction may be found in Petrow and Young [137], and Nelson [131].

5. Conjectures for the asymptotics of moments

Before discussing in detail the moments on the critical line, let us consider the
moments on the line Re.s/ D � > 1

2
. We mentioned in Section 2 that �.� C i t/ is dis-

tributed like the random object �.�;X/ defined in (1.4). We may therefore expect that for
any k 2 N and as T ! 1,

1

T

Z T

0

ˇ̌
�.� C i t/

ˇ̌2k
dt � E

�ˇ̌
�.�;X/

ˇ̌2k�
D

1X
nD1

dk.n/
2

n2�
; (5.1)

since �.�;X/k D
P1

nD1 dk.n/X.n/=n
� with dk.n/ being the k-divisor function (the series

converges almost surely for � > 1
2
). When � > 1, it is clear that (5.1) holds (indeed, for

any real number k), since the values j�.� C i t/j lie in a compact subset of .0;1/ and the
distributions match. The case � D 1 is more delicate, but with a little more effort one can
justify (5.1) here as well. Moving now into the critical strip, there is no known value of
1
2
< � < 1 where the asymptotic (5.1) is known to hold for all k 2 N. Indeed, such a result

would imply that j�.� C i t/j � jt j", which remains unknown for any 1
2
< � < 1. However, if

one is willing to assume RH, then it is possible to approximate �.� C i t/k by short Dirichlet
polynomials, and then (5.1) follows for all real numbers k.

Returning to moments on the critical line, as mentioned previously, asymptotic for-
mulae for Mk.T / are known only in the cases k D 1 and 2. But, using (5.1) as a guide,
we may guess the order of magnitude ofMk.T /. The series on the right-hand side of (5.1)
diverges when � D

1
2
, but we might consider truncating that sum around size T . It is easy

to show that for any real number k,X
n�T

dk.n/
2

n
�

ak

�.k2 C 1/
.logT /k

2

; (5.2)

where

ak D

Y
p

�
1 �

1

p

�k2
 

1X
aD0

dk.p
a/2

pa

!
: (5.3)

Thus one might guess that for all positive real numbers k, Mk.T / � CkT .log T /k
2 for

some constant Ck . Conrey and Ghosh suggested that it might be instructive to write Ck

as gkak=�.k
2 C 1/, and expected that the unknown factor gk might have nice properties
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(for example, that gk would be a natural number when k is a natural number). The Hardy–
Littlewood asymptotics for the second moment (see (4.2)) is in keeping with this conjecture,
and gives g1 D 1. Similarly, Ingham’s result on the fourth moment (see (4.3)) yields g2 D 2.

Another way to guess at the order of magnitude forMk.T / arises from extrapola-
tions of Selberg’s central limit theorem. IfX is a random variable that is normally distributed
with mean � and variance �2, then for any real number t we have

E
�
etX

�
D

1
p
2��

Z 1

�1

exp
�
tu �

.u � �/2

2�2

�
du

D et�Ct2�2=2 1
p
2��

Z 1

�1

exp
�

�
.u � � � t�2/2

2�2

�
du D et�Ct2�2=2: (5.4)

Further, the dominant contribution above comes from values of X that are about
�C t�2 CO.�/. Selberg’s theorem tells us that log j�.1

2
C i t/j is distributed like a Gaus-

sian with mean 0 and variance �
1
2
log log T . The calculation in (5.4) therefore suggests

that

Mk.T / D

Z T

0

exp
�
2k log

ˇ̌̌̌
�

�
1

2
C i t

�ˇ̌̌̌�
dt D T exp

�
.2k/2

1
2
log logT
2

�
D T .logT /k

2

:

Moreover, the dominant contribution to the .2k/th moment should arise from values of
�.1

2
C i t/ of size .logT /k and the set on which such values are attained has measure about

T=.log T /k2 . We should clarify that Selberg’s theorem is concerned with typical values of
log j�.1

2
C i t/j, which are on the scale of

p
log logT , whereas the moments Mk.T / are

concerned with the large deviations regime where log j�.1
2

C i t/j is of size k log log T . In
this regime Selberg’s result does not immediately apply, and indeed we should expect some
deviations from the Gaussian, which are reflected in the constantCk appearing in the conjec-
ture forMk.T / (see [60,139]). Later we shall discuss a coarse version of Selberg’s theorem
in this large deviations regime [164], conditional on RH, which leads to good (conditional)
upper bounds forMk.T /. To give an analogy, both !.n/ (the number of distinct prime fac-
tors of n) and log d.n/= log 2 (with d.n/ being the divisor function) are additive functions
that are distributed (if n is chosen uniformly in Œ1; N �) like a Poisson random variable with
parameter log logN ; this is the Erdős–Kac theorem (noting that Poisson with large parame-
ter approximates a Gaussian). This suggests that both

P
n�N 2!.n/ and

P
n�N d.n/ are on

the scale of N logN , but the constants involved in the asymptotics are not immediate (and
are different in the two cases).

Neither of the two heuristics given above makes a prediction for the constant
Ck D akgk=�.k

2 C 1/. Indeed, until the 1990s there was no clear conjecture as to the
value of gk for any k ¤ 1, or 2. Then Conrey and Ghosh [44,45], based on an earlier con-
jecture of Balasubramanian, Conrey, and Heath-Brown [15], advanced the conjecture that
g3 D 42. A little later Conrey and Gonek [46], based on conjectures on the asymptotics
of divisor correlation sums (as in (4.5)), arrived again at the conjecture that g3 D 42 (see
Ng [133] for further work on making this precise), while also advancing the conjecture that
g4 D 24024. These methods did not extend to produce conjectures for larger k, and the prob-
lem once again seemed stuck. A great advance was made when Keating and Snaith [100],
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using ideas from random matrix theory, arrived at the following remarkable conjecture for
Mk.T / for all positive real numbers k.

Conjecture 5.1 (Keating and Snaith). For any positive real number k, as T ! 1, we have
Mk.T / � gk

ak

�.k2C1/
T .logT /k2 , with

gk D �.k2
C 1/

G.1C k/2

G.1C 2k/
;

where G is the Barnes G-function. In particular, if k 2 N then

gk D .k2/Š

k�1Y
j D0

j Š

.k C j /Š
;

so that g1 D 1, g2 D 2, g3 D 42, and g4 D 24024.

We recall that the Barnes G-function is an entire function of order 2 which satisfies
the functional equation G.z C 1/ D �.z/G.z/ with the normalization G.1/ D 1. Thus for a
natural number n, one has G.n/ D

Qn�2
j D0 j Š.

The key insight of Keating and Snaith was to quantify and develop in the context of
value distribution problems a conjectural connection between the distribution of zeros of the
Riemann zeta function and the distribution of eigenvalues of large random matrices. Nearly
50 years back, Montgomery [124] initiated a study of the spacings between the ordinates of
zeros of the Riemann zeta function, and a chance conversation with Dyson revealed that
his partial results on this question matched corresponding statistics in the study of spacings
between eigenvalues of large random matrices. Assuming RH for clarity, let 1 � 2 � � � �

denote the sequence of nonnegative ordinates of zeros of �.s/ (written with multiplicity),
so that from (2.3) it follows that n � 2�n= log n. The question then is to determine the
distribution (as n ! 1) of .nC1 � n/.log n/=.2�/, which has been normalized to have
mean spacing 1. For example, with what frequency does this normalized spacing lie in a
given interval .˛; ˇ/ � .0;1/? One way to express the (amazing!) conjectured answer is
as follows. Consider a random element g drawn from the unitary group U.N / with respect
to the Haar measure dg (normalized so that U.N/ has volume 1). Each such g has eigen-
values ei�1 ; : : : ; ei�N with the angles ordered 0 � �1 � �2 � � � � � �N < 2� , and consider
the spacings .�nC1 � �n/N=.2�/ (normalized to have average approximately 1). Average
this spacing distribution over the whole group U.N /, and finally let N ! 1. For example,
we could count the frequency with which .�nC1 � �n/N=.2�/ lies in .˛; ˇ/, average that
frequency over U.N /, and take the limiting frequency as N ! 1. The model that we have
described is known as the Circular Unitary Ensemble (CUE), and the same distribution for
nearest neighbor spacings arises in other models of random matrices such as the Gaussian
Unitary Ensemble (GUE).

Theoretical support for this link between zeros of �.s/ and random matrix theory
arose first with Montgomery’s calculation of the pair correlation of zeros (in certain ranges)
mentioned earlier, and this was generalized to general n-level correlations in thework of Rud-
nick and Sarnak [148]. Experimental support for this link comes from extensive computations
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of Odlyzko [134] who considered the spacing distribution of about 175 million zeros around
the 1020th zero (which occurs at height around 1:5� 1019), and found an astonishingly close
match between the empirical data and the predicted answer. Yet, Odlyzko’s data found that
the numerical data did not match closely some other statistics for �.s/ such as Selberg’s theo-
rem on log �.1

2
C i t/. One might attribute such deviations to the slow growth of the variance

log logT , which even at height 1019 is only about 3:7, but Keating and Snaith [100] suggested
a much more insightful explanation. They posited that properties of �.1

2
C i t/ for t around

a specific height T may be modeled by analogous objects for random matrices of a specific
size N , refining the expectation that the large T and large N limits coincide. The relation
between N and T is suggested by the average spacing between the zeros at height T , which
is about .2�/= log.T=2�/ by (2.3), and the average spacing between eigenvalues, which is
about .2�/=N . Setting these equal, we arrive at the correspondence N � log.T=2�/. The
analogue of the zeta function, which is determined by its zeros, is the characteristic polyno-
mial of a randommatrix, which is determined in a similar fashion by its eigenvalues. Keating
and Snaith determined the distribution of logdet.I � ge�i� / for a randommatrix g 2 U.N /,
and found that in the largeN limit this tends to a complex Gaussian with mean 0 and variance
logN (analogously to Selberg’s theorem), but there are lower order terms that are significant
for finiteN . The range of Odlyzko’s computations, T � 1:5� 1019, corresponds to matrices
of sizeN D 42, and Keating and Snaith found an excellent fit between Odlyzko’s numerical
data for log �.1

2
C i t/ and the distribution of log det.I � ge�i� / for random g 2 U.42/ (see

Figure 1 in [100]).
Returning to the moments, one might now hope to understand the asymptotic behav-

ior ofMk.T / by computing the analogous moments in the context of U.N /: namelyZ
g2U.N /

1

2�

Z 2�

0

ˇ̌
det
�
I � ge�i�

�ˇ̌2k
d�dg D

Z
g2U.N /

ˇ̌
det.I � g/

ˇ̌2k
dg: (5.5)

By the Weyl integration formula expressing the measure dg in terms of the eigenvalues of g,
this equals the multiple integral

1

.2�/NNŠ

Z 2�

0

� � �

Z 2�

0

ˇ̌̌̌
ˇ NY

j D1

�
1 � ei�j

�ˇ̌̌̌ˇ
2k Y

1�j <m�N

ˇ̌
ei�j � ei�m

ˇ̌2
d�1 � � � d�N : (5.6)

It turns out that the integral in (5.6) may be evaluated exactly using a remarkable formula of
Selberg [154] (see [62] for many developments arising from the Selberg integral) and it equals

NY
j D1

�.j /�.2k C j /

.�.j C k//2
� gk

N k2

�.k2 C 1/
; (5.7)

where gk is as in Conjecture 5.1, and the asymptotic holds for large N . The constant gk

has an intriguing combinatorial interpretation as the number of standard Young tableaux of
shape k � k (that is, the number of ways of filling a k � k array with the numbers 1; : : : ; k2

such that the entries along each row and column are in increasing order). See [28,53,99] for
related combinatorial discussions, and [42, 67] for discussions on the divisibility properties
of gk and related constants.
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This calculation motivates Conjecture 5.1, but note that no primes appear in the
randommatrix model, and so the constant ak must be “put in by hand.” Here we note that the
Euler product for ak in (5.3) arises naturally upon considering EŒj.1 � X.p/=

p
p/j�2k � DP1

aD0 dk.p
a/2=pa with X.p/ chosen uniformly from the unit circle. Thus the constant ak

may be thought of as arising from a version of the random Euler product, while the gk

term arises from the local behavior of zeros of the zeta function. For an exploration of Con-
jecture 5.1 along these lines, developing a hybrid Euler–Hadamard product, see the work
of Gonek, Hughes, and Keating [69]. We mentioned earlier the analogy with determining
asymptotics for multiplicative functions such as k!.n/ or dk.n/, and here the known asymp-
totic formulae (going back to Landau, Selberg, and Delange) factor as a “local” product over
primes together with a “global” term determined by the Poisson behavior of !.n/; for an
interesting discussion of this analogy, see [95].

Randommatrix theory also informs our understanding of moments of central values
of L-functions in families. While the distribution of spacings between zeros at large height
for any given L-function is expected to follow the same law that we described for �.s/ (see
[148]), the distribution of the zeros close to the central point 1

2
can vary depending on the

particular family. Based on analogies with the function field case, Katz and Sarnak [98] found
(conjecturally) that the distribution of zeros near 1

2
in families of L-functions fell into the

three categories unitary, symplectic, and orthogonal (which we discussed in Section 3), and
that these distributions matched the distribution of the eigenvalues close to 1 of large random
matrices chosen from U.N /, USp.2N /, or SO.2N / (or SO.2N C 1/ depending on the sign
of the functional equation). To give an illustration of the Katz–Sarnak conjectures, consider
the family of quadratic DirichletL-functionsL.s;�d / as d ranges over fundamental discrim-
inants, which is expected to have symplectic symmetry. The density of zeros ofL.s;�d / near
1
2
is about .log jd j/=.2�/, and a sample question is to understand the distribution of 1

log jd j

2�

where 1 is the least nonnegative ordinate of a zero of L.s; �d /. To describe the conjectured
answer, consider a random matrix g 2 USp.2N / (chosen with respect to Haar measure nor-
malized to have total volume 1) and write its eigenvalues as e˙i�1 , e˙i�2 ; : : : ; e˙i�N with
0 � �1 � � � � � �N � � . Then as d varies over fundamental discriminants jd j � X with
X ! 1, the distribution of 1

log jd j

2�
is identical to the limiting distribution of �1

2N
2�

for
randomly chosen g 2 USp.2N / as N ! 1.

Conrey and Farmer [42] proposed that the moments of central values ofL-functions
in families are also dictated by the symmetry type in the Katz–Sarnak conjectures. In par-
ticular, the analogue of the factor gk should depend only on the symmetry type and not
on the particular family, whereas the analogue of the factor ak will be sensitive to the
particular family (in a straightforward way). This was developed further by Keating and
Snaith [101], who modeled properties of the central L-values by the characteristic polyno-
mial det.I � ge�i� / evaluated at � D 0, with the size parameter N of the random matrix
ensemble chosen to match with the density of zeros in the family. Indeed, it is a consideration
of the behavior of log det.I � g/ in USp.2N / or SO.2N / that informed their conjectures
for the analogues of Selberg’s theorem in symplectic and orthogonal families (discussed in
Section 3).
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Just as extrapolating Selberg’s theorem allows us to guess the order of magnitude of
moments of �.s/, the Keating–Snaith lognormality conjectures, together with the calculation
in (5.4), give an understanding of the order of magnitude of moments in families. For exam-
ple, in the symplectic example of moments of L.1

2
; �d / with jd j � X , since logL.1

2
; �d /

is conjectured to be normal with mean �
1
2
log logX and variance � log logX , the calcu-

lation in (5.4) suggests that
P

jd j�X L.
1
2
; �d /

k is of size X.logX/
k.kC1/

2 . Similarly, in the
orthogonal case of Hecke eigenforms f 2 Hk , since logL.1

2
; f / is expected to be normal

with mean � �
1
2
log logk and variance � log logk, the moments

P
f 2Hk

L.1
2
; f /r may be

expected to be of order k.log k/
r.r�1/

2 .
Further, by considering moments of det.I � g/ in the appropriate matrix group,

Keating and Snaith [101] formulated analogues of Conjecture 5.1 in families of L-functions.
For example, in the family of quadratic Dirichlet L-functions L.s; �d /, the analogue of the
constant gk is predicted by consideringZ

g2USp.2N /

det.I � g/kdg D 22N k

NY
j D1

�.1CN C j /�.1=2C k C j /

�.1=2C j /�.1C k CN C j /

� fk

N k.kC1/=2

�.k.k C 1/=2C 1/
:

This calculation again reduces to the Selberg integral, and the constant fk may be expressed
in terms of the Barnes G-function. If k is a natural number then fk takes the pleasant form
.k.kC 1/=2/Š=

Qk
j D1.2j � 1/ŠŠ. After incorporating an analogue of the constant ak in (5.3),

which here is (with X.p/ denoting the random variables modeling quadratic characters dis-
cussed in Section 1)Y

p

�
1 �

1

p

� k.kC1/
2

E

��
1 �

X.p/
p
p

��k�
D

Y
p

�
1 �

1

p

� k.kC1/
2
�

p

2.p C 1/

��
1C

1
p
p

��k

C

�
1 �

1
p
p

��k�
C

1

p C 1

�
;

we arrive at a conjecture for themoments ofL.1
2
;�d /, whichmatches the known asymptotics

for the first three moments.
The Keating–Snaith conjectures identify the leading order term in the asymptotics

for moments, but there will be lower order terms (just a logarithm smaller) which are not
identified. We may see this already in the asymptotics for the second and fourth moments
of �.1

2
C i t/ (see (4.2) and (4.3)), and other examples in families given in Section 4. Iden-

tifying such lower order terms is of interest because the leading order constant in Conjec-
ture 5.1, akgk=�.k

2 C 1/ tends rapidly to zero as k grows, and so for the ranges of T in
which numerical investigations may be carried out, the lower order terms may dominate
the eventual main term. When k is a positive integer, Conrey et al. [43] conjectured that
Mk.T / D

R T

0
Pk.log t=2�/dt CO.T 1�ı/ (for some ı > 0, and perhaps even any ı < 1

2
is

permissible) for a polynomialPk of degree k2 with leading coefficient akgk=.k
2Š/, and they

gave a “recipe” for determining all the coefficients of Pk . Their recipe predicts the full main
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term for integral moments in many families of L-functions, but it remains open to give an
asymptotic expansion when k is not an integer. The paper [43] also gives numerical evidence
towards the full moment conjecture, and further datamay be found in [86]. A related approach
viamultiple Dirichlet series is described in the work of Diaconu, Goldfeld, and Hoffstein [54]

who develop conjectures for the integral moments of quadratic DirichletL-functions (which
are in agreement with [43]).

We give a brief illustration of the recipe from [43] in the unitary family of Dirichlet
L-functions � .mod q/with q a large prime. For simplicity, we consider only even characters
(thus �.�1/D 1), where the functional equation readsƒ.s;�/D .q=�/s=2�.s=2/L.s;�/D

"�ƒ.1 � s; �/ with "� satisfying j"�j D 1 and "�"� D 1. Let ˛ D .˛1; : : : ; ˛k/, and
ˇ D .ˇ1; : : : ; ˇk/ denote two k-tuples of complex numbers (thought of as small), and we
also find it convenient to write ˛kCj D ǰ and think of .˛;ˇ/ as the 2k-tuple .˛1; : : : ; ˛2k/.
Instead of considering jL.1

2
; �/j2k directly, we work with

ƒ.�I˛; ˇ/ WD

kY
j D1

ƒ

�
1

2
C j̨ ; �

�
ƒ

�
1

2
� ǰ ; �

�
and finally let all the parameters j̨ and ǰ tend to zero (which would then equal jL.1

2
; �/j2k

multiplied by the constant .q=�/k=2�.1=4/2k). Permuting the k entries in ˛ or the k entries
in ˇ does not change ƒ.�I ˛; ˇ/. Less obviously, it turns out that ƒ.�I ˛; ˇ/ is invariant
under any permutation of the 2k-entries in .˛;ˇ/; this is because any such permutation must
change some ` of the ˛’s to ˇ’s and a corresponding number of ˇ’s to ˛’s and 2` applications
of the functional equation (` of themwith a factor "� and `with a factor "�) justify the claim.
Thus any conjecture that we propose for

P
�ƒ.�I˛; ˇ/ must satisfy this S2k symmetry.

Now if Re.s/ is large, expanding the L-functions into their Dirichlet series, we may
write

kY
j D1

ƒ.s C j̨ ; �/ƒ.s � ǰ ; �/ D

kY
j D1

�
q

�

�sC
j̨ � ǰ

2

�

�
s C j̨

2

�
�

�
s � ǰ

2

�
�

1X
m;nD1

�.mI˛/

ms
�.m/

�.nI �ˇ/

ns
�.n/; (5.8)

where �.mI˛/D
P

mDm1���mk
m

�˛1
1 � � �m

�˛k

k
and similarly �.nI�ˇ/D

P
nDn1���nk

n
ˇ1

1 � � �n
ˇk

k
,

so that if ˛i D ˇi D 0 these would simply be the k-divisor function. We average this over
all the even characters mod q (omitting the trivial character), and hypothesize that only the
diagonal terms m D n survive this averaging. This is of course not justified, but is similar
to the first heuristic we gave in this section for the order of magnitude of moments. After a
computation with Euler products, these terms give (for the sum over m; n in (5.8))

1X
nD1

�.nI˛/�.nI �ˇ/

n2s
D A.sI˛; ˇ/

kY
j;`D1

�.2s C j̨ � ˇ`/; (5.9)

where A is given by an Euler product that converges absolutely in Re.s/ > 1
2

� ı if j̨ , ǰ

are small enough. This factor A is similar to the ak appearing in (5.3). Evaluating this at
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s D
1
2
, we arrive at a candidate for the average value of ƒ.�I˛; ˇ/, namely

C.˛; ˇ/ D

kY
j D1

�
q

�

� 1C j̨ � ǰ
2

�

� 1
2

C j̨

2

�
�

� 1
2

� ǰ

2

�
A

�
1

2
I˛; ˇ

� kY
j;`D1

�.1C j̨ � ˇ`/:

(5.10)

The candidate answer C.˛; ˇ/ is invariant when the entries of ˛ are permuted, or
when the entries of ˇ are permuted, but does not have the S2k symmetry we require of being
allowed to permute the 2k-entries of .˛; ˇ/. The beautifully simple answer proposed in [43]

is to symmetrize C.˛; ˇ/ by summing over all
�

2k
k

�
cosets of S2k=.Sk � Sk/,X

�2S2k=Sk�Sk

C
�
�.˛; ˇ/

�
: (5.11)

While the expression in (5.10) has singularities whenever j̨ D ˇ`, the symmetrized expres-
sion in (5.11) turns out to be regular when j j̨ j; j ǰ j are small. Now setting ˛1 D � � � D ˛k D

ˇ1 D � � � D ˇk D 0, we arrive at the conjectured answer for the average of jL.1
2
; �/j2k . The

leading term matches the Keating–Snaith conjecture, but now we also have the full polyno-
mial of degree k2.

To end our discussion of themoment conjectures, wemention recent work of Conrey
and Keating [41] which aims to give a heuristic derivation of the moment conjectures of �.s/
from correlations of divisor functions (as in [46] for the sixth and eighth moments). It would
be of interest to develop their work in other families of L-functions. Sawin [153] develops a
heuristic approach based on representation theory which (conditional on some hypotheses)
recovers the recipe in Conrey et al. [43] in the function field setting (with a fixed field of
constants).

6. Progress towards understanding the moments

In Section 4 we gave a number of examples where asymptotics for low moments
are known, and all of these are in agreement with the conjectures described in the previous
section. A rule of thumb suggests that an asymptotic for a moment may be computed if there
are more elements in the family compared to the complexity of approximating the required
power of theL-value (what we have informally called the complexity can be thought of as the
square-root of the analytic conductor, see [94]). For example, as we saw in (4.4) �.1

2
C i t/

may be approximated by (two) Dirichlet polynomials of length about
p
t , allowing for the

calculation of the second and fourth moments. This rule of thumb is only a rough guide, and
can be difficult to attain. For example, the fourth moment of Dirichlet L-functions mod q
(evaluated in [174]), or the mean square of twists of a modular form by Dirichlet characters
mod q (see [18, 107]) may seem of comparable difficulty to the fourth moment of the zeta
function, but the first two problems turn out to be substantially harder. The largest moment
that may be computed by this rule of thumb recovers the convexity bound for theL-value, and
so there is great interest in going beyond this range, either by shrinking suitably the family
over which we average, or by adding an extra short Dirichlet polynomial to the moment.
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From the viewpoint of verifying the moment conjectures (for example to check the
constants 42 and 24024 appearing in the sixth and eighth moments) one might look for large
families where the complexity is still small. The family of primitive Dirichlet characters
� .mod q/ ranging over all moduli q � Q is a good example, where the size of the family is
aboutQ2 whereas the complexity of suchL.1

2
;�/ is about

p
Q. This suggests the possibility

of evaluating the sixth and eighth moments in this family, and indeed the large sieve gives
a quick upper bound of the correct order of magnitude for these moments (see [90]). By
developing an asymptotic version of the large sieve, Conrey, Iwaniec, and Soundararajan
[48] obtained an asymptotic formula forX

q�Q

[X
�.mod q/

Z 1

�1

ˇ̌̌̌
ƒ

�
1

2
C iy; �

�ˇ̌̌̌6
dy; (6.1)

whereƒ.s; �/ D .q=�/s=2�.s=2/L.s; �/ denotes the completed L-function, and the [ indi-
cates a sum over even primitive characters �. Here the averaging over y is a technical defect,
needed for the proof, which (owing to the rapid decay of the �-function) may be thought of
as an integral over essentially a bounded range of y. This asymptotic formula verified the
predicted constant g3 D 42 in this instance, and, moreover, [48] obtained a similar asymp-
totic formula with shifts .˛1; ˛2; ˛3/ and .ˇ1; ˇ2; ˇ3/which verified the recipe of [43] in this
situation and yielded the full polynomial of degree 9 in logQ for (6.1). Chandee and Li [35]
tackle the analogue of (6.1) for the eighth moment, and obtain an asymptotic formula con-
ditional on the Generalized Riemann Hypothesis. Their work confirmed that g4 D 24024 in
this instance, but they could only verify the leading order term in the asymptotic and not the
full polynomial of degree 16. Forthcoming work of Chandee, Li, Matomäki, and Radziwiłł
(see [138] for an announcement) removes the imperfection of the average over y in (6.1) for
the sixth moment while still obtaining the full asymptotic formula with power saving. They
also obtain the leading order behavior of the eighth moment without invoking GRH, and
without the integral in y.

The family of newforms of a fixed weight k for the group �1.q/ with q a large
prime offers another instance of a large family where the complexity (or analytic conductor)
remains small. These correspond to newforms for �0.q/ with character � .mod q/. This is a
family of about q2 elements, and is unitary since almost all of the characters� .mod q/ are not
real. The complexity of the L-values is about size p

q, and we may hope to address the sixth
and eighth moments. Chandee and Li [34] give an asymptotic for the sixth moment analogous
to (6.1) in this family (confirming again g3 D 42), and obtain in [33] a good upper bound
for the eighth moment. It would be of interest to find further examples of families where
one can compute higher moments, and in particular to obtain such examples of symplectic
and orthogonal families. The recent work of Nelson [130] on subconvexity for automorphic
L-functions raises the hope that one might be able to compute high moments in GL.n/
families for suitably large n.

In addition to examples where asymptotics for moments are known, substantial
progress has been made in obtaining upper and lower bounds of the conjectured order of
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magnitude in a good deal of generality. Summarizing the work of many researchers, here is
our knowledge of such bounds for the moments of �.1

2
C i t/.

Theorem 6.1. Let k > 0 and T � e be real numbers. Then there are positive constants ck

and Ck such that

ckT .logT /k
2

�

Z T

0

ˇ̌̌̌
�

�
1

2
C i t

�ˇ̌̌̌2k

dt � CkT .logT /k
2

:

Here the lower bound holds unconditionally for all k, while the upper bound holds uncondi-
tionally in the range 0 < k � 2, and the upper bound holds assuming the truth of the Riemann
Hypothesis for all k > 2.

We shall now discuss this result and its extensions in families of L-functions. The
discussion splits naturally into three parts (i) lower bounds for moments, (ii) unconditional
upper bounds for moments, and (iii) upper bounds assuming RH or GRH.

The lower bound stated in Theorem 6.1 was first established by Ramachandra [143,

144] in the case when 2k is a natural number. This was then extended by Heath-Brown [84] to
the case when k is any positive rational number, but the constants ck in his result depended
upon the height of the rational number k, so that the method did not extend to irrational k.
Further, the techniques in these works were specific to the “t -aspect” and did not extend
to moments in families of L-functions. Rudnick and Soundararajan [149, 150] developed an
alternative approach, which worked in general families. For example, their method would
show that

P
jd j�X jL.1

2
; �d /j

k � ckX.logX/k.kC1/=2 for all rational k � 1 and a suitable
positive constant ck , which again did not vary continuously with k but depended on the
height of the rational number k. This was further refined by Radziwiłł and Soundararajan
[140], who obtained the lower bounds in Theorem 6.1 for all real k � 1 with e�30k4 being a
permissible value for ck if T is large. A further round of simplification is carried out in Heap
and Soundararajan [79], which also gives the lower bound in Theorem 6.1 for real 0 < k � 1.

The story for lower bounds may be encapsulated in the following broad principle.
Whenever we can compute the mean value of L.1

2
/ multiplied by short Dirichlet polynomi-

als in a family, we can obtain lower bounds of the right order of magnitude for the moments
jL.1

2
/jk for any real k � 1. Of course, in general Hölder’s inequality will give lower bounds

for higher moments in terms of smaller moments, but those would not be of the conjec-
tured order of magnitude since the exponent of the logarithm in the moment conjectures is
quadratic in k. If we can also compute the mean value of jL.1

2
/j2 multiplied by short Dirich-

let polynomials, then we can obtain lower bounds of the right order of magnitude for the
moments jL.1

2
/jk in the range 0 < k � 1 as well. It may seem puzzling why the problem

for small k should require more information than for large k, but in fact this is natural. Con-
sider letting k ! 0C. Then the moments jL.1

2
/jk essentially pick up whether L.1

2
/ is zero

or not, so that lower bounds for the small moments encode lower bounds for non-vanishing.
The analytic methods for producing nonzero values of L.1

2
/ (the mollifier method) rely on

knowledge of the first two moments in the family (with a little room to spare). Thus we may
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establish (using the methods of either [140] or [79]) that for all real k > 0,X
� .mod q/

ˇ̌̌̌
L

�
1

2
; �

�ˇ̌̌̌2k

�k q.log q/k
2

; (6.2)

where q is a large prime, and thatX
jd j�X

ˇ̌̌̌
L

�
1

2
; �

�ˇ̌̌̌k
�k X.logX/

k.kC1/
2 : (6.3)

In the family of quadratic twists of a fixed Hecke eigenform f , we only have access to the
first moment and not the second, and therefore we only know in the range k � 1 thatX

jd j�X

L

�
1

2
; f � �d

�k

�k X.logX/
k.k�1/

2 : (6.4)

We now turn to the unconditional upper bounds in Theorem 6.1, which were estab-
lished in the special cases k D 1=n or k D 1C 1=n (for natural numbers n) by Heath-Brown
[84] and Bettin, Chandee, and Radziwiłł [17], respectively. Then in Heap, Radziwiłł, and
Soundararajan [78] the bound was established for all 0 < k � 2, as an illustration of an upper
bound principle (complementing the one for lower bounds above) enunciated by Radziwiłł
and Soundararajan [141]. Whenever we can compute a moment jL.1

2
/jk (usually with k being

a positive integer) together with flexibility to introduce a short Dirichlet polynomial, we can
obtain upper bounds of the conjectured order of magnitude for the moments jL.1

2
/jr for

all 0 < r � k. Thus one can obtain complementary upper bounds in (6.2) for k � 1 (with
more effort, using Young’s work [174], this could perhaps be extended to the range k � 2),
matching upper bounds in (6.3) in the range k � 2 (if one knew the positivity of L.1

2
; �d /

this would also follow in the range k � 3 and it would be interesting to attain that range
unconditionally), and for the family in (6.3) for k � 1 (this is the example carried out in
[141]).

The conditional bounds in Theorem 6.1 originated fromwork of Soundararajan [164]

who established (assuming RH) the nearly sharp bound Mk.T / �k;" T .log T /k
2C". This

was then refined in the beautiful work of Harper [77] to its present sharp form. The method is
very general and applies in any family where we are able to compute the mean values of short
Dirichlet polynomials. Thus (assuming GRH in the relevant families) one can obtain upper
bounds of the correct order of magnitude for all nonnegative k in the examples (6.2), (6.3),
and (6.4).

The main idea behind the conditional upper bounds in Theorem 6.1 is that on RH
(or GRH) one can obtain an upper bound for log j�.1

2
C i t/j (or more generally the logarithm

of central L-values) just in terms of sums over primes. This is related to the ideas behind
Selberg’s central limit theorem and the one sided versions for L-values that we discussed in
Sections 2 and 3. A barrier to approximating log j�.1

2
C i t/j by a suitable Dirichlet polyno-

mial is the presence of zeros near 1
2

C i t ; the crucial point is that these zeros should only
make j�.1

2
C i t/j smaller, so that such Dirichlet polynomials could serve as an upper bound.
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One way to see this is to note that RH is equivalent to the property that, with s D � C i t ,ˇ̌
�.s/

ˇ̌
D
ˇ̌
s.s � 1/��s=2�.s=2/�.s/

ˇ̌
D

Y
�

ˇ̌̌̌
1 �

s

�

ˇ̌̌̌
is an increasing function of � in � �

1
2
for any fixed t . This permits bounding j�.1

2
C i t/j

in terms of j�.�0 C i t/j for any �0 >
1
2
, and one can adapt Selberg’s ideas to approximate

log j�.�0 C i t/j. In this manner, it was shown in [164] that for T � t � 2T and any 2� x � T 2

one has, assuming RH and with �0 D
1
2

C
1

logx
,

log
ˇ̌̌̌
�

�
1

2
C i t

�ˇ̌̌̌
� Re

X
2�n�x

ƒ.n/

n�0Cit logn
log.x=n/
log x

C
logT
log x

CO

�
1

log x

�
: (6.5)

Analogous bounds hold for log jL.1
2
/j if a corresponding GRH is assumed.

The usefulness of (6.5) lies in its flexibility with choosing the parameter x. If x
is suitably small, then the distribution of the sum (which is essentially Re

P
p�x 1=p

1
2 Cit )

in (6.5) can be understood accurately by studying its moments (as we discussed in Sections 2
and 3), but we lose some information in the logT= log x term. Here it is also useful to split
the sum over p into different ranges (say p � z and z < p � x); for small ranges of p, more
moments may be computed so that a finer understanding of the sum is possible, while for the
larger ranges the slow growth of the variance (which is roughly

P
z�p�x 1=p � log logx

log z
)

permits a good understanding with fewer moments. In this way [164] established a coarse
version of Selberg’s central limit theorem in the large deviations regime, showing that in the
range

p
log logT � V D o.log logT log log logT / one has

meas
²
T � t � 2T W log

ˇ̌̌̌
�

�
1

2
C i t

�ˇ̌̌̌
� V

³
� T exp

�
�

V 2

log logT
�
1C o.1/

��
: (6.6)

As we mentioned in Section 5, the 2k-th moment of zeta should be dominated by values
of j�.1

2
C i t/j of size .log T /k , and the (6.6) shows that this set has measure

� T .logT /�k2Co.1/, which yieldsMk.T / � T .logT /k2C".
Harper’s sharp upper bound for Mk.T / builds on some of these ideas, but deals

directly with the moments rather than going through the intermediary of the large devia-
tions in Selberg’s theorem (6.6). Instead there is an elaborate decomposition of the sum over
primes in (6.5) into many ranges, and then the exponentials of such sums are handled by
approximating these by suitable truncations of their Taylor expansion. Similar ideas were
developed independently around the same time in [141] for bounding small moments uncon-
ditionally, and the recent paper [79] develops these ideas in the context of lower bounds.
Thus the proofs of all three aspects of Theorem 6.1 have a unified feel, and the spirit of
the proofs may be described as thinking in terms of Euler products but performing com-
putations by replacing Euler products by short Dirichlet series obtained from their Taylor
expansions. These proofs were also influenced by ideas from sieve theory. For example, in
analogy with (6.5) wemay note that!.n/ (the number of prime factors of n) may be bounded
above by

P
pjn;p�y 1C .logn/= logy for any y, and this could be used to give upper bounds

for the mean-value of dk.n/ (which is roughly k!.n/) in short intervals.
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The ideas behind obtaining conditional bounds for moments have found diverse
applications. Soundararajan and Young [166] used such bounds for “shifted moments” (see
also [32]) to obtain an asymptotic formula (on GRH) for the second moment of quadratic
twists of an eigenform

P
jd j�X L.

1
2
; f � �d /

2. This is a tantalizing problem, which falls
within the purview of the rule of thumb described at the beginning of this section, but
an unconditional asymptotic has so far been elusive. A similar problem is to compute the
asymptotic for the fourth moment of quadratic Dirichlet L-functions

P
jd j�X L.

1
2
; �d /

4,
and recently Shen [157] has extended the method in [166] to obtain (on GRH) such an asymp-
totic. Analogues of these two problems over function fields have been established in [27,61],
and since GRH is known in this setting, the corresponding results hold unconditionally.

In a very different direction, Lester and Radziwiłł [116] showed on GRH that the
Fourier coefficients of half-integer weight Hecke cusp forms exhibit a positive proportion
of sign changes as we range over fundamental discriminants. Among the many innovations
in their beautiful proof, is an application of the ideas discussed above to obtain sharp upper
bounds for the second mollified moment of quadratic twists of the Shimura correspondent of
the given half-integer weight form. This realization that sharp upper bounds for the second
mollified moment suffice has led to another striking result in the work of David, Florea, and
Lalin [51], who show that a positive proportion ofL-functions attached to cubic characters (in
the function field setting) have nonzero central value. Two other recent applications include
Zenz [176] to bounding the L4 norm of Hecke eigenforms of large weight k for the full
modular group, and Shubin [158] to bounding the variance of lattice points on the sphere in
random small spherical caps. See [66,121,122] for further examples.

7. Extreme values

In Sections 2 and 3 we discussed the typical size of j�.1
2

C i t/j and central values
of L-functions, which are governed by Selberg’s central limit theorem, and the analogous
Keating–Snaith conjectures. In Sections 5 and 6 we discussed how the moment problem
aims for an understanding of the large deviations range of values of j�.1

2
C i t/j (or jL.1

2
/j).

We now discuss the maximal size of j�.1
2

C i t/j (for 0 � t � T ) and analogous problems in
families of L-functions.

As wementioned in Section 4, our unconditional knowledge is far from the Lindelöf
hypothesis that j�.1

2
C i t/j � .1C jt j/", and for generalL-functions already the subconvex-

ity problem poses formidable difficulties. In 1924 Littlewood established that the Riemann
Hypothesis implies the Lindelöf hypothesis in the quantitative formˇ̌̌̌

�

�
1

2
C i t

�ˇ̌̌̌
� exp

�
C log jt j

log log jt j

�
(7.1)

for some constant C . The estimate (6.5) yields such a result, upon taking x D .log t /2 there,
and bounding the sum over prime powers trivially. This strategy was optimized in [36]which
showed that onemay take anyC > log2

2
in (7.1). Apart from this refinement of the constantC ,

no improvement has been made over Littlewood’s estimate. Corresponding results hold for
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generalL-functions, and explicit versions of such bounds (which are useful in computational
applications) may be found in [31].

Complementing (7.1), one may ask for lower bounds on maxT �t�2T j�.1
2

C i t/j.
Recall that in Section 1 we discussed the extreme values of zeta and L-functions at the
edge of the critical strip, and already there was a gap in our knowledge between the extreme
values that may be exhibited and the bounds that follow from GRH (see the discussion sur-
rounding (1.2) and (1.3)). This gap becomes much more pronounced on the critical line. By
using lower bounds for integer moments of �.1

2
C i t/, with attention to the uniformity in k,

Balasubramanian and Ramachandra [16] (optimized in [14]) established that

max
T �t�2T

ˇ̌̌̌
�

�
1

2
C i t

�ˇ̌̌̌
� max

k

 
1

T

Z 2T

T

ˇ̌̌̌
�

�
1

2
C i t

�ˇ̌̌̌2k

dt

! 1
2k

� max
k2N

�X
n�T

dk.n/
2

n

� 1
2k

D exp
��
B C o.1/

� p
logTp

log logT

�
; (7.2)

with B � 0:53. With the development of lower bounds for moments in families of L-func-
tions (discussed in Section 6), such bounds also became available for central L-values.
However, a different resonance method developed in [163] has proved to be still more effi-
cient. The main idea in [163] is to find a Dirichlet polynomial R.t/ D

P
n r.n/n

�it which
“resonates” with �.1

2
C i t/ and picks out its large values. This is based on computing

I1 D

Z 2T

T

ˇ̌
R.t/

ˇ̌2
dt and I2 D

Z 2T

T

�

�
1

2
C i t

�ˇ̌
R.t/

ˇ̌2
dt; (7.3)

and noting that

max
T �t�2T

ˇ̌̌̌
�

�
1

2
C i t

�ˇ̌̌̌
�

jI2j

I1

: (7.4)

If the resonator Dirichlet polynomial R.t/ is short, in the sense that r.n/ D 0 unless
n � T 1�", then I1 and I2 in (7.3) may be evaluated asymptotically, and these quantities
give two quadratic forms in the unknown coefficients r.n/. The ratio of these two quadratic
forms is maximized in [163], yielding

max
T �t�2T

ˇ̌̌̌
�

�
1

2
C i t

�ˇ̌̌̌
� exp

��
1C o.1/

� p
logTp

log logT

�
: (7.5)

While this is only a little bit better than (7.2), the method also yields lower bounds on the
measure of the set on which large values are attained:

meas
²
t 2 ŒT; 2T � W

ˇ̌̌̌
�

�
1

2
C i t

�ˇ̌̌̌
� eV

³
�

T

.logT /4
exp

�
�10

V 2

log logT

8V 2 logV

�
; (7.6)

uniformly for 3 � V �
1
5

p
logT= log logT . There is some scope to improve such bounds,

especially when V is of size C log log T , where one would like to match the upper bound
in (6.6) which would be in keeping with Selberg’s theorem (see [79] for more precise results
when V � .2� "/ log logT ). The estimate (7.6) shows that large values on the scale of (7.5)
occur fairly often (on a set of measure � T 1�C= log logT ) suggesting that still larger values
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might exist. Furthermore, the resonance method extends readily to families of L-functions,
and thus we may show (for example) that

max
X�jd j�2X

L

�
1

2
; �d

�
� exp

��
1

p
5

C o.1/

� p
logXp

log logX

�
; (7.7)

and that, for any Hecke eigenform f ,

max
X�jd j�2X

L

�
1

2
; f � �d

�
� exp

�
c

p
logXp

log logX

�
; (7.8)

for a suitable positive constant c. Indeed, the large values in (7.7) and (7.8) are attained for
more than X1�" discriminants d with X � jd j � 2X . By Waldspurger’s formula, the large
values produced in (7.8) show that fundamental Fourier coefficients of half-integer weight
eigencuspforms must get large, and the resonance method has been adapted in [73] to show
that this holds more generally for half-integer weight cusp forms (not necessarily an eigen-
form). Another application of this resonance method may be found in the work of Milicevic
[120] who obtains large values of Hecke–Maass cusps forms on arithmetic hyperbolic sur-
faces.

Bondarenko and Seip [23] recently made a breakthrough on this problem, by exhibit-
ing still larger values of j�.1

2
C i t/j. The key ingredient is a beautiful result on GCD sums

or Gál sums: The problem is to find

max
jN jDN

X
m;n2N

.m; n/
p
mn

; (7.9)

where the maximum is over all N element subsets of the natural numbers. This elegant
combinatorial problem turns out to be closely related to maximizing the ratio of quadratic
forms (see [2])

max
jN jDN

sup
x2CN ¤0

� X
m;n2N

xmxn

.m; n/
p
mn

�
=

�X
n

jxnj
2

�
: (7.10)

Bondarenko and Seip [22, 23] established that the maximum in (7.9) (and also (7.10)) lies
between

N exp
�
.1 � "/

p
logN log log logNp

log logN

�
and N exp

�
.7C "/

p
logN log log logNp

log logN

�
;

De la Bretèche and Tenenbaum [52] refined this to show that themaximums in (7.9) and (7.10)
equal

N exp
��
2
p
2C o.1/

�plogN log log logNp
log logN

�
: (7.11)

The relevance of the bounds for (related) GCD sums to large values of j�.� C i t/j

was first appreciated by Aistleitner [1] who showed that for fixed � 2 .1
2
; 1/ and T large one

has (for some c� > 0)

max
0<t�T

j�.� C i t/j � exp
�
c� .logT /1��

.log logT /�

�
;
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which improved upon earlier applications of the resonance method (see [87, 172]) but only
matched the results obtained by Montgomery [125] using very different ideas (see also [3] for
large values on the 1-line, and [4] for analogous results for DirichletL-functions). On the crit-
ical line, Bondarenko and Seip [23] obtained a substantial improvement over the previously
known large values of j�.1

2
C i t/j (see (7.5)) by establishing that

max
0<t�T

ˇ̌̌̌
�

�
1

2
C i t

�ˇ̌̌̌
� exp

��
c C o.1/

�plogT log log logTp
log logT

�
; (7.12)

for a positive constant c (in [23] c D 1=
p
2 is permissible, while [52] allows for the improved

c D
p
2). The key insight is that in the resonance method one can choose “long resonators”

where R.t/ is no longer constrained to be a short Dirichlet polynomial (r.n/ D 0 unless
n � T 1�") but instead R.t/ is allowed to have T 1�" nonzero coefficients r.n/ so long as
these are positive. This leads to an optimization problem closely related to the GCD/Gál
sums discussed above, and permits the stronger bound in (7.12). Why is it possible to take
such long resonators? Consider a smooth nonnegative function ˆ whose Fourier transformb̂ is also nonnegative; for example, we could take ˆ.t/ D e�t2=2. In place of I1 and I2

in (7.3) consider the smoothed integralsZ 1

�1

ˇ̌
R.t/

ˇ̌2
ˆ.t=T /dt and

Z 1

�1

�

�
1

2
C i t

�ˇ̌
R.t/

ˇ̌2
ˆ.t=T /dt: (7.13)

Replacing �.1
2

C i t/ with its approximation
P

k�T k
� 1

2 �it , the second quantity above is
approximately X

k�T

1
p
k

X
m;n

r.m/r.n/

Z 1

�1

�
n

mk

�it

ˆ.t=T /dt

D T
X
k�T

1
p
k

X
m;n

r.m/r.n/b̂�T log.n=mk/
�
:

Since m and n may be much larger than T , we are unable to restrict just to the “diagonal
terms” n D mk, but the crucial point is that the positivity of b̂, the resonator coefficients
r.m/, r.n/, and the “coefficients of �” (namely, the function taking 1 on all positive inte-
gers) all allow us to keep any terms that we please on the right side above, and ignore other
contributions. In this way, one can get a satisfactory lower bound for the ratio of the quan-
tities in (7.13), without needing to evaluate each of these integrals. The restriction on the
number of terms allowed in the resonator arises from the fact that

P
k�T k

� 1
2 �it is a poor

approximation to �.1
2

C i t/ if t is small. These small values of t are unavoidable because
the condition that b̂ is nonnegative forces ˆ.0/ to be strictly positive.

Unlike the resonance method which applies in great generality, there are (at present)
limitations on when the Bondarenko–Seip method of using long resonators applies. In the
first place, as we noted above small t must be included, and therefore the maximum in (7.12)
is over t 2 Œ0; T � (this can be refined to the interval ŒT ˇ ; T � for any ˇ < 1 at the cost of
weakening the constant c in (7.12)), rather than the dyadic intervals ŒT; 2T � seen in (7.5).
More significantly, the method requires the positivity of the Dirichlet series coefficients of
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the L-functions in question (analogously to � having coefficients 1), and also the positiv-
ity of the right-hand side of any orthogonality relation or trace formula (analogously to b̂
being nonnegative). Apart from �.s/, there is one other example in which the Bondarenko–
Seip method has been successfully implemented, and this is the work of de la Breteche and
Tenenbaum [52] which produces large values of jL.1

2
; �/j as � varies over Dirichlet char-

acters .mod q/ with q a large prime. To illustrate the subtleties involved, we note that [52]
exhibits large values of jL.1

2
; �/j for even characters �, but the method does not work for

odd character. This is because in the even case the orthogonality relationX
� .mod q/

�even

�.a/ D

8<: �.q/
2

if a � ˙1 .mod q/;

0 otherwise

involves only nonnegative terms on the right-hand side, whereas this is not the situation for
odd characters X

� .mod q/
�odd

�.a/ D

8<:˙
�.q/

2
if a � ˙1 .mod q/;

0 otherwise:

In particular, the results in (7.7) and (7.8) remain the best currently known, and it would be
of great interest to see if the Bondarenko–Seip method could be extended to more general
situations.

There is a vast gulf between the conditional upper bounds for j�.1
2

C i t/j in (7.1)
and the large values exhibited in (7.12), and it is natural to ask which of these is closer to
the truth. Already in Section 1 we saw a gap (of a factor of 2) between the extreme values
of L.1; �d / that may be exhibited (see (1.2)) and the conditional bounds on these extreme
values (see (1.3)). There the probabilistic models suggested that the extreme values exhib-
ited in (1.2) represented the truth, and on the critical line too we expect the large values
exhibited in (7.12) to be closer to the truth than the bounds in (7.1). For example, if we use
Selberg’s central limit theorem as a guide and extrapolate, then the measure of t 2 Œ0;T �with
j�.1

2
C i t/j � eV may be expected to be� T exp.�.1C o.1//V 2= log logT / (confer (6.6)).

If V D .1 C "/
p
logT log logT , this measure becomes � T �", but one can show that if

j�.1
2

C i t/j attains its maximum for t 2 Œ0; T � at t D t0 then in an interval jt � t0j � c= logT
its values are at least of size 1

2
j�.1

2
C i t0/j (see Lemma 2.2 of [59]). This suggests that

max
t2Œ0;T �

ˇ̌̌̌
�

�
1

2
C i t

�ˇ̌̌̌
� exp

��
1C o.1/

�p
logT log logT

�
:

Farmer, Gonek, and Hughes [59] have conjectured that even this overestimates the true size
of the maximum, and that possibly

max
0�t�T

ˇ̌̌̌
�

�
1

2
C i t

�ˇ̌̌̌
D exp

��
1

p
2

C o.1/

�p
logT log logT

�
: (7.14)

To give one indication of why this might hold, consider (6.5) which gives (on RH) an upper
bound for log j�.1

2
C i t/j in terms of essentially a sum over primes going up to x, accepting

an error term of size log T= log x. If we choose x D exp.
p
logT / then this error term is
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negligible, and now Re
P

p�x 1=p
1
2 Cit behaves like a Gaussian with mean 0 and variance

1
2

P
p�x 1=p �

1
2
log log x �

1
4
log log T . Extrapolating this Gaussian behavior, we arrive

at the conjectured behavior in (7.14). The conjecture in [59] is based upon a more care-
ful analysis of the hybrid Euler–Hadamard formula developed in [69], which decomposes
log j�.1

2
C i t/j into terms arising from both primes and zeros in suitable ranges. Probabilis-

tic models for both these terms are analyzed (with the contribution of zeros being modeled
using randommatrix theory), and the conjecture (7.14) is consistent withmany different ways
of splitting into primes and zeros. Similar conjectures may be formulated in other families
of L-functions, and for example [59] conjectures that

max
jd j�X

L

�
1

2
; �d

�
D exp

��
1C o.1/

�p
logX log logX

�
; (7.15)

which again is a little smaller (by a factor
p
2 in the exponent) than what might be guessed

from extrapolating the Keating–Snaith conjectures for logL.1
2
; �d /.

As we discussed in Section 4, one motivation for studying the moments of
j�.1

2
C i t/j is to gain an understanding of its extreme values. In order to do so, one would

need an understanding of howMk.T / behaves with uniformity in k, and a first step might be
to examine the asymptotic behavior of the constants ak and gk appearing in Conjecture 5.1.
One can show that logak � �k2 log.2e logk/, and that loggk � k2 log.k=4

p
e/ (see [46]),

so that it may seem tempting to speculate that for T � 10 (say) and uniformly for all k � 2

one has (for some positive constant c)

T

�
c logT
k log k

�k2

�

Z T

0

ˇ̌̌̌
�

�
1

2
C i t

�ˇ̌̌̌2k

dt � T .logT /k
2

:

But there is a curious paradox, and the upper and lower bounds above are inconsistent! If the
upper bound above holds uniformly, then it follows that

max
0�t�T

ˇ̌̌̌
�

�
1

2
C i t

�ˇ̌̌̌
� exp

��
1C o.1/

�p
logT log logT

�
:

Whereas if the lower bound above holds uniformly, then one must have

max
0�t�T

ˇ̌̌̌
�

�
1

2
C i t

�ˇ̌̌̌
� exp.C logT= log logT /

for some positive constant C . This is an instance where the leading order asymptotic in
the moment conjecture does not capture the full story, and one should look instead at the
recipe in [43] which (for natural numbers k) gives the entire (conjectural) polynomial Pk of
degree k2. An analysis of this full moment conjecture suggests that the uniform upper bound
stated above might hold: thus, for T � 10 and natural numbers k � 1 we conjecture thatZ T

0

ˇ̌̌̌
�

�
1

2
C i t

�ˇ̌̌̌2k

dt � T .logT /k
2

: (7.16)

In other words, we guess that log j�.1
2

C i t/j is sub-Gaussian (when thinking of the fre-
quency of its large values), and this gives a weaker version of the Farmer, Gonek, Hughes
conjecture (7.14).
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While we have confined our discussion above to large values of j�.1
2

C i t/j, or
equivalently Re.log �.1

2
C i t//, similar considerations apply also to Im.log �.1

2
C i t//; see

for example [24,30,68].

8. Fyodorov–Hiary–Keating conjecture

A fascinating set of problems has emerged recently with the work of Fyodorov and
Keating [65], and Fyodorov, Hiary, and Keating [64], who initiated a study of the distribution
of “local maxima” of the Riemann zeta function. More precisely, if t is chosen uniformly
from ŒT; 2T �, what is the distribution of

max
0�h�1

ˇ̌̌̌
�

�
1

2
C i t C ih

�ˇ̌̌̌
‹

Although it does not makemuch of a difference, [64] considers themaximumover intervals of
length 2� instead of 1 since this has a natural analogue in random matrix theory. If a matrix
g is chosen randomly from U.N / (with respect to Haar measure), what is the distribution of

max
�2Œ0;2�/

ˇ̌
det
�
I � ge�i�

�ˇ̌
‹

In the context of �.1
2

C i t/, one initial motivation for considering this problem was that it
might shed new light on the global maximum over the long interval Œ0; T � (discussed in the
previous section). While the distribution of the local maxima leads to striking new and subtle
phenomena involving the local correlations of the zeta function, it does not seem to inform
the behavior of the global maximum.

Conjecture 8.1 (Fyodorov–Hiary–Keating [64]). For any real number y, as T ! 1 one
has

1

T
meas

²
T � t � 2T W max

0�h�1

ˇ̌̌̌
�

�
1

2
C i t C ih

�ˇ̌̌̌
� ey logT

.log logT / 3
4

³
! F.y/; (8.1)

where the cumulative distribution function F satisfies F.y/ ! 0 as y ! �1, and satisfies
1 � F.y/ � Cye�2y as y ! 1 for some constant C > 0. In particular, for any function
g.T / tending to infinity with T , one has

meas
²
T � t � 2T W

ˇ̌̌̌
max

0�h�1
log
ˇ̌̌̌
�

�
1

2
C i t C ih

�ˇ̌̌̌
� log logT C

3

4
log log logT

ˇ̌̌̌
� g.T /

³
� T: (8.2)

Let us first explain what is striking and unexpected about this conjecture. Roughly
speaking, in an interval of length 1we may think of the zeta function as being determined by
about logT values—this is about the number of zeros we expect to find in such an interval,
and we may guess that if jt1 � t2j � 1= logT then log j�.1

2
C i t1/j and log j�.1

2
C i t2/j are

about the same. Selberg’s theorem tells us that the values log j�.1
2

C i t/j are distributed like
a normal variable with mean 0 and variance 1

2
log logT . Thus a first guess for the distribution

of max0�h�1 log j�.1
2

C i t C ih/j might be that it behaves like the maximum of about logT
independently drawn normal random variables with mean 0 and variance 1

2
log log T . The
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maximum of N independent normal variables with mean 0 and variance 1 is very sharply
concentrated around

p
2 logN � .log

p
4� logN/=

p
2 logN (the precise distribution is

known as the Gumbel distribution, and has been extensively studied in view of its enor-
mous significance in practical assessments of the risk of rare events). After scaling by the
standard deviation

q
1
2
log logT in Selberg’s theorem, this naive model would indicate that

max0�h�1 log j�.1
2

C i t C ih/j should typically be around

log logT �
1

4
log log logT CO.1/:

In contrast, Conjecture 8.1 predicts that max0�h�1 j�.1
2

C i t/j is usually a bit smaller, of
size .logT /=.log logT / 3

4 . There is also a subtle difference in the decay of 1� F.y/ in (8.1),
which is predicted to decay like ye�2y , whereas the Gumbel distribution would have pre-
dicted a decay rate of e�2y .

The flaw in the naive heuristic presented above is that nearby values of the zeta
function are not independent, but are correlated. Suppose t is randomly chosen from ŒT; 2T �
and 0 � h � 1, and consider the covariance of log j�.1

2
C i t/j and log j�.1

2
C i t C ih/j.

As in our discussion of Selberg’s theorem in Section 2, we may often approximate these
values by corresponding sums over primes Re

P
p�x 1=p

1
2 Cit and Re

P
p�x 1=p

1
2 CitCih

with x a suitable small power of T . If p is small in comparison to e1=h then pih � 1, and
the corresponding terms in our prime sums are strongly correlated. The terms with p much
larger than e1=h are largely uncorrelated, since as p varies in such large ranges pih will
become equidistributed on the unit circle. Thus one may see that

1

T

Z 2T

T

log
ˇ̌̌̌
�

�
1

2
C i t

�ˇ̌̌̌
log

ˇ̌̌̌
�

�
1

2
C i t C ih

�ˇ̌̌̌
dt �

1

2

X
p�x

cos.h logp/
p

�
1

2
logmin

�
h�1; logT

�
: (8.3)

This correlation structure of nearby values must be taken into account when trying to predict
the behavior of local maxima.

To gain a rough idea of how to model the local behavior of log j�.1
2

C i t/j, put for
each 1 � k � log logT � 1,

Pk.t/ D Re
X

eek�1
�p�eek

1

p1=2Cit
; (8.4)

so that wemay think of log j�.1
2

C i t/j as something like
P

k Pk.t/. EachPk.t/ is distributed
like a normal random variable with mean 0 and variance�

1
2

P
eek�1

�p�eek 1=p �
1
2
. More-

over, for different values of k, the sumsPk.t/ involve primes in disjoint ranges, and therefore
behave independently of each other. Notice further that if jt1 � t2j � e�k then Pk.t1/ and
Pk.t2/ are more or less the same. Thus instead of modeling log j�.1

2
C i t/j in intervals of

length 1 by about logT independent samples of a normal random variable, we are led to the
following more nuanced model. For each k, let Pk denote any one of about ek independent
drawings of a normal random variable with mean 0 and variance 1

2
. Then log j�.1

2
C i t/j in

an interval of length 1 is modeled by all the possibilities for
P

k Pk .
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The model described above has been analyzed in the probability literature surround-
ing branching random walks and branching Brownian motion. Consider a particle starting at
time 0 and moving as a standard Brownian motion. At time t , with probability e�t the par-
ticle might split into two particles, that move according to independent standard Brownian
motions starting from that position. These particles may again split (independently of each
other) at a future time, giving rise to more daughter particles, and so on. After time T , how
is the maximum value of all these particles distributed? This problem was resolved by Bram-
son who established that the maximum is almost surely

p
2.T �

3
4
log T /C O.1/. Notice

the 3
4
term here, which exactly parallels the 3

4
terms appearing in Conjecture 8.1!

In recent years there has been a lot of progress towards understanding Conjec-
ture 8.1. In [7] Arguin, Belius, and Harper considered max0�h�1 Re

P
p�T X.p/=p

1
2 Cih

where the X.p/’s are independent random variables chosen uniformly on the unit circle
(a randomized model for log j�.1

2
C i t C ih/j), and established that almost surely this

is log log T � .3
4

C o.1// log log log T . Najnudel [129] established that on RH the set of
t 2 ŒT; 2T � with max0�h�1 j�.1

2
C i t C ih/j D .log T /1Co.1/ has measure � T . Inde-

pendently this result was also established unconditionally by Arguin, Belius, Bourgade,
Radziwiłł, and Soundararajan [6]. A lovely exposition of Conjecture 8.1 and the results men-
tioned so far may be found in Harper’s Bourbaki seminar [75]. Still more recently, Harper
[76] established that if t is not in an exceptional subset of ŒT; 2T � with measure o.T /, then

max
0�h�1

log
ˇ̌̌̌
�

�
1

2
C i t C ih

�ˇ̌̌̌
� log logT �

3

4
log log logT CO.log log log logT /;

so that at least in one direction, the difference between the naive constant 1
4
and the refined

prediction 3
4
could be established. Independently Arguin, Bourgade, and Radziwiłł [8] estab-

lished the shaper result that for any y � 1,
1

T
meas

²
t 2 ŒT; 2T � W max

0�h�1

ˇ̌̌̌
�

�
1

2
C i t C ih

�ˇ̌̌̌
>

ey logT
.log logT / 3

4

³
� Cye�2y ;

for some constant C . This beautiful result establishes part of Conjecture 8.1, and the decay
in y above matches (up to constants) the conjectured behavior of 1 � F.y/. There has also
been substantial progress toward the analogue of Conjecture 8.1 in random matrix theory;
see [5,37,135].

Instead of considering the maximum of the zeta function in intervals of length 1,
one may also examine other “local moments”

R 1

0
j�.1

2
C i t C ih/jˇdh. This was already

suggested in [64], who conjectured that a transition in the behavior of these local moments
occurs at the critical exponent ˇ D 2—for ˇ < 2 these local moments are typically of size
.logT /ˇ2=4 (the size of the global moment 1

T

R 2T

T
j�.1

2
C i t/jˇdt ), whereas for ˇ > 2 they

are typically of size .log T /ˇ�1 corresponding to the largest value of zeta in that interval
(about size logT ) which might be expected to occur on an interval of length about 1= logT .
For work in this direction see [9, 11, 76]. We mention a lovely result of Harper [76] for the
critical exponent ˇ D 2:

1

T

Z 2T

T

 
1

logT

Z 1

0

ˇ̌̌̌
�

�
1

2
C i t C ih

�ˇ̌̌̌2
dh

! 1
2

dt �
1

.log logT / 1
4

:

1300 K. Soundararajan



A simple application of Cauchy’s inequality together with the second moment of �.1
2

C i t/

shows that the above quantity is � 1, and the fact that it is a little bit smaller is a reflection
of the correlation structure of nearby values of �.s/ that also underlies Conjecture 8.1.

The ideas discussed here are closely connected to what is termed Gaussian multi-
plicative chaos, which was initiated by Kahane [97], and which has been extensively studied
in the probability literature [146]. In number theory, these ideas are closely related to the
study of mean values of random multiplicative functions. We content ourselves with giving
a few pointers to surveys and related work [12,74,151,167].
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Based on different views on the Jones polynomial, we review representation theoretic cate-
gorified link and tangle invariants. We unify them in a common combinatorial framework
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1. Introduction

The study of Topological Quantum Field Theories (TQFTs) is a fruitful interac-
tion between physics and mathematics. The search for interesting TQFTs leads to many
developments in mathematical theories which are interesting on their own and also moti-
vates constructions presented in this report. A first mathematical formulation of TQFTs goes
back to Atiyah [6], influenced by Segal [129] and Witten [143]. A d -(dimensional) TQFT
is a symmetric monoidal functor F from a bordism category with objects being closed
.d � 1/-dimensional manifolds and morphisms d -dimensional bordisms to some symmetric
monoidal category, e.g., categories of vector spaces or chain complexes, or more complicated
categories.

Representation theory is a good source for TQFTs and monoidal categories. For
example, categories of group representations give Dijkgraaf–Witten TQFTs [38] for any d .
For d D 3, representations of quantum groups, i.e., quantized representations of Lie alge-
bras, provide rich and interesting TQFTs due to Reshetikhin–Turaev [119] and Turaev–Viro
[141]. They are often viewed as mathematical formulations of Chern–Simons theory [144] or
of a form of Ponzano–Regge state sum model from Quantum Gravity [112]. These theories
are closely related to (Laurent-)polynomial invariants of knots and links. In Chern–Simons
theory [144], for instance, the partition function is a 3-manifold invariant, but the expectation
values of nonlocal observables supported on one-dimensional defects, the Wilson lines, give
such an invariant of links. The Jones polynomial J.L/ arises in this way for the gauge group
SU.2/. In our setting J.L/ appears as the special sl2 example of the Reshetikhin–Turaev-
link invariants. While 3-manifolds are rather well-understood, new 4-TQFTs might help to
solve open 4-dimensional (smoothness) problems.

TQFTs provide not only numerical invariants for closed manifolds, but also enjoy
good locality properties. In order to compute their values on a complicated closed manifold,
one usually cuts along lower dimensional submanifolds, assigns data to them and recom-
bines this simpler data in a clever way. A cutting principle is common in representation
theory: representations are described by decomposing into smaller pieces, by finding simple
constituents and their multiplicities in a direct sum decomposition or a Jordan–Hölder filtra-
tion and by studying functors on these pieces. Encoding such information combinatorially as
character formulas, Poincaré polynomials or Kazhdan–Lusztig polynomials, etc., has a long
successful history. We call this process decategorification.

(Re)Combining or gluing conceptually is a rather new focus motivated partially by
TQFTs. In algebraic categorification, combinatorial data gets interpreted categorically by
gluing simple constituents in a predictedway, by realizing (Laurent-)polynomials as Poincaré
polynomials or Euler characteristics, groups as Grothendieck groups of categories and group
homomorphisms as the image of exact functors on a Grothendieck group, etc. Moreover,
functors are considered in families with relations between them described algebraically in
terms of (quantised) Lie algebra or Hecke algebra actions. Classical representation theo-
retic categories are now viewed as higher categories equipped with categorical actions.
As a byproduct, new invariants of links, surfaces or higher-dimensional manifolds emerge.
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We will summarize and bring together known categorifications of (Laurent-)polynomial
link invariants based on the Jones polynomial J.L/ and its colored version Jcol.L/ focusing
on algebraic-representation theoretic constructions around Soergel (bi)modules [131]. The
precise meaning of categorification will depend on the specific construction:

• Section 3.1: L turns into a complex of graded vector spaces with Euler character-
istic J.L/, link cobordisms turn into linear maps;

• Section 3.2: L turns into a complex of bigraded vector spaces whose Euler char-
acteristic is a 2-parameter polynomial which specializes to J.L/;

• Section 3.3: L is viewed as a tangle. Boundaries of tangles turn into graded linear
categories, tangles into functors, tangle cobordisms into natural transformations,
and J.L/ is the value at a specific element of a map betweenGrothendieck groups;

• Section 3.4: boundaries of colored tangles turn into graded linear categories of
possibly infinite global dimension, tangles into functors, and Jcol.L/ is the value
at a specific element of a map between completed Grothendieck groups.

In Section 2 we set up a framework on the decategorified level with different approaches
to the Jones polynomial, all coming from quantum groups and Hecke algebras. It unifies
and also stresses the differences of the later categorifications. The material is known, but
combined from several sources and carefully adapted. An unusual parameter � is introduced
in order to fit all the normalizations and categorified theories into one common setup.

In Section 3 the pioneering Khovanov invariant Kh [75] is described first. Recent
advances in categorified link invariants indicate that this theory has interesting topologi-
cal applications and the chance to provide a 4-TQFT [101]. The second categorification we
deal with is the triply graded Khovanov–Rozansky link invariant KR [78, 81], presented in
representation-theoretic terms. Its values are Laurent series in v over a polynomial ring in
two variables. A three parameter superpolynomial invariant of links was predicted on the
physics side in [39] and constructed for torus links via refined Chern–Simons theory [3].
Connections to double affine Hecke algebras indicated by the appearance of generalized
Verlinde algebras were explored mathematically, e.g., in [30,58]. For torus links, superpoly-
nomials can be matched with the KR invariants by explicit calculations which substantially
use categorified Young projectors. Such projectors were introduced in [33,52,125] in the con-
text of categorifications of colored Reshetikhin–Turaev link invariants [33, 52] and are now
important tools in the categorified representation theory of Hecke algebras. The third cate-
gorification we describe are the Lie theoretic Mazorchuk–Stroppel–Sussan tangle invariants
MSS˙ [105,136,139]which implicitly include the slk Khovanov–Rozansky link invariant [81] via
MSS�. Up to some sign issues which appear when passing from webs to matrix factorizations,
the two constructions are even connected by a functor. This follows from the Uniqueness
Theorem 3.45, Theorem 3.44, and [97]. The two Lie-theoretic constructions MSS˙ (connected
by Koszul duality) go one step further: tensor products of representations of quantum glk

are lifted to categories, the action of quantum glk to functors, and the resulting invariant of
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tangles has values in the homotopy category of some exact functors. Via a categorified q-
skew Howe duality, the action of tangles can again be expressed in terms of a quantum group
action. This allows putting the construction into the setup from [31,123]. This is an axiomatic
definition of categorifications of representations of Lie algebras and provides a conceptual
2-categorical framework, where also uniqueness results are established. Quantum group
representations and their tangle invariants are then, finally, turned into 2-representations
of categorified quantum groups introduced by Khovanov–Lauda [80] and Rouquier [123].

The MSSC-invariant is equivalent to the quantum slk version from [142] which deals
more generally with quantum invariants for any reductive Lie algebra. In comparison, [142]
is defined to fit into and substantially further developed the framework of 2-representations,
whereas MSSC leads naturally to and motivated the framework of 2-representations. In the
MSS-theory one should not expect generalizations to other Lie algebra as in [142], but rather
to braid groups of general type and to categorified representation theory of certain quantum
symmetric pairs via [41] and probably to Khovanov–Rozansky invariants for orthogonal Lie
algebras. Important for us is that MSS˙ directly connects to Soergel bimodules, a possible
source for an intriguing connection between KR and categorified colored tangle invariants
described as the fourth example. This connection and the complicated combinatorics of cat-
egorified colored link and tangle invariants [33,53,138,142] needs still to be explored.

In Section 4 we return to our motivation: we indicate two (partially conjectural)
new approaches towards potentially rich 4-TQFTs, one via categorified representations of
quantum groups, the other via semistrict monoidal 2-categories of Soergel bimodules.

Conventions. We denote N D Z>0, N0 D Z�0. We fix C as ground field. Let Sn be the
symmetric group on n letters with standard generators si D .i; i C 1/, 1 � i � n � 1, and
length function `. For a variable v and a 2 Z; let

Œa� WD
va � v�a

v � v�1
D va�1

C va�3
C � � � C v1�a

2 Z
�
v˙1

�
be the v-quantum number, a Laurent polynomial in v. By graded wemeanZ-graded, and hii
denotes the shift up in the grading, i.e., .M hii/n D .hiiM/n DMn�i . Similarly, we write Œi �

for the shift of complexes by i in the direction of the differential.When displaying complexes,
we indicate the homological degree zero by putting a box around the component. For an
additive category A, we denote by Kb.A/ the homotopy category of bounded complexes
inA.When describingmorphisms or functors diagrammatically, we read from bottom to top,
and composition is vertical stacking, whereas a monoidal product˝ is denoted by horizontal
juxtaposition, and identities are usually displayed by a vertical strand.

2. Four approaches to the Jones polynomial

We summarize four similar, but different, algebraic approaches to knot or link invari-
ants giving rise to the ZŒv˙1�-valued Jones polynomial. These approaches will later be
connected with four theories in the context of categorification. The third and fourth, RT and
wRT, are more involved and cover also tangles (a common generalization of links and braids).

1315 Categorification: tangle invariants and TQFTs



The first is best for computations, but the passage to tangles requires extra adjustments like
the use of skein algebras. The second does not cover tangles at all, but is probably the most
intuitive approach for categorifications. It works with link closures instead of planar projec-
tions of links. In the following, v denotes a (generic) variable.

I. Kauffman bracket of links. We fix an orientation of R3 and consider oriented knots or
links L in R3. Following Kauffman [72], we first ignore the orientation and assign to any
generic, i.e., with no triple intersections, no tangencies and no cusps, planar projection D

ofL, theKauffman bracket JDK 2ZŒv˙1�. It is characterized by themultiplicativity property
JD1 tD2K WD JD1KJD2K, i.e., the bracket of a disjoint union is the product of the brackets,
and the following normalization and local smoothing relation (which removes crossings):

J,K D v C v�1
D Œ2� and

r z
D

r z
� v

r z
; respectively: (2.1)

The assignment D 7! J.D/ WD .�1/n�.D/vnC.D/�2n�.D/JDK 2 ZŒv˙1�, where n˙.D/

denotes the number of positive respectively negative crossings in D, defines then an invari-
ant of oriented links, the Jones polynomial J.D/. It fulfils the following skein relation, with
a D v2 and P.D/ D J.D/,

aP
� �

� a�1P
� �

D .v � v�1/P
� �

: (2.2)

Example 2.1. For the Hopf link diagram D D the Kauffman bracket has the value
t |

� v

t |

� v

t |

C v2

t |

D Œ2�2 � vŒ2� � vŒ2�C v2Œ2�2 D vŒ4�„ ƒ‚ …
) Jones polynomial J.D/Dv3Œ4�

: (2.3)

II. Closures of braids. Due to Alexander’s theorem [4], every oriented link can be realized
as the closure of some upwards oriented braid, i.e., of an element in the usual braid group
Brn D hˇ1; : : : ; ˇn�1i for some n (see the Hopf link above with n D 2). AMarkov trace Tr
with values in some target Inv is a function Tr W

`
n�1 Brn! Inv satisfying the trace condi-

tion Tr.˛˛0/ D Tr.˛0˛/ and Tr.˛/ D Tr.˛ˇ˙1
n / for every ˛; ˛0 2 Brn, n � 1. By Markov’s

theorem (announced in [102], proved in [18]), Tr induces a well-defined map on isomorphism
classes of closures of braids, hence defines an invariant of oriented links. This is a conceptual
method to pass from braid invariants to (families) of link invariants. There is an impor-
tant Markov trace, the Ocneanu trace (3.6). Its link invariant is the HOMFLY-PT polynomial
P.L/.v; a/ 2 C.v/Œa˙1� introduced in [54, 113]. It satisfies (2.2) and P.L/.v; v2/ D J.v/,
see Remark 3.11.

III. Quantum invariants. The Jones polynomial of oriented links can also arise as the
(Witten–)Reshetikhin–Turaev (RT) invariant [118] associated with quantum glk in the special
case k D 2. An oriented link is a special case of an oriented tangle, i.e., a disjoint embed-
ding of finitely many arcs and circles into R2 � Œ0; 1� (sending endpoints of arcs to boundary
points) modulo ambient isotopy fixing the boundary points. The RT invariant assigns to
each generic horizontal cut of a tangle a tensor product of modules for the quantum group
Uv.glk/, and to each tangle a homomorphism in a consistent way, see Overview 1.
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Overview 1

Hopf link: The RT invariant (see Section 2.III) and its web version (see Section 2.IV) with categorifications (see
Section 3.3)

C.v/
Vk W ˝

Vk W OOc
.k;k/

.g2k /OO
.k;k/
c .g2k /

W ˝W � W ˝
Vk W ˝

Vk�1 W OOc
k�1;k;1

.g2k /OO
1;k;k�1
c .g2k /

W ˝W ˝W �˝W � W ˝W ˝
Vk�1 W ˝

Vk�1 W OOc
k�1;k�1;1;1

.g2k /OO
1;1;k�1;k�1
c .g2k /

W ˝W ˝W �˝W � W ˝W ˝ ^k�1 W ˝
Vk�1 W OOc

k�1;k�1;1;1
.g2k /OO

1;1;k�1;k�1
c .g2k /

W ˝W ˝W �˝W � W ˝W ˝
Vk�1 W ˝

Vk�1 W OOc
k�1;k�1;1;1

.g2k /OO
1;1;k�1;k�1
c .g2k /

W ˝W � W ˝
Vk W ˝

Vk�1 W OOc
k�1;k;1

.g2k /OO
1;k;k�1
c .g2k /

C.v/
Vk W ˝

Vk W OOc
.k;k/

.g2k /OO
.k;k/
c .g2k /

coev

id˝ coev˝ id

ˇ

ˇ

id˝ ev˝ id

ev

g
1;k�1
k

id˝g
1;k�1
k

˝ id

ˇ

ˇ

id˝fk
1;k�1

˝ id

fk
1;k�1

Oincl

Oincl

(3.16)

(3.16)

OZ

OZ

RT wRT MSS� MSSC

(ˇ D �vkH �1
1 ) for W D V� W for W D VC W

To make this more precise, we consider a tangle as a morphism in the monoidal
category Tan of oriented tangles with stacking as composition and juxtaposition as tensor
product. The quantum group Uv.glk/ is a deformation of the universal enveloping Hopf
algebra of glk and is often described as the C.v/-algebra with generators Ei ; Fi ; D˙1

j ,
1 � i � k � 1, 1 � j � k “quantizing” the usual matrix units Ei;iC1, EiC1;i ,˙Ei;i , modulo
quantized Serre relations, see, e.g., [24] for a definition. It is still a Hopf algebra, but nowwith
an interesting noncocommutative comultiplication (due to the appearance of some Dj ’s):

�.Ei / D Ei ˝ 1CDi D
�1
iC1 ˝Ei ; �.Fi / D 1˝ Fi C Fi ˝D�1

i DiC1;

�.D˙1
j / D D˙1

j ˝D˙1
j :

(2.4)

Every finite-dimensional representation of glk quantizes to a Uv.glk/-module. As often in
quantum algebra, there are different choices for such a quantization, but for irreducible rep-
resentations they only differ by a one-dimensional twist. We encode the choice by a function
� W ¹1; : : : ; kº ! ¹˙1º such that the spectrum of Dj is contained in �.j /vZ. To capture dif-
ferent normalizations of link invariants, we at least need to consider the additive monoidal
subcategory generated by the irreducibles corresponding to constant � D ˙1. These signs,
although annoying in practice, often have a deeper meaning in categorifications.

Example 2.2. The quantization V˙ D V˙;glk
of the natural representation of glk for the

constant functions � D ˙1 can be realized as the k-dimensional C.v/-vector space with
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basis er , 1 � r � k, and the following Uv.glk/-actions

VC W Ei er D ıi;rerC1; Fi erC1 D ıi;rer ; Dj er D vıj;r er ;

V� W Ei erC1 D ıi;rer ; Fi er D �ıi;rerC1; Dj er D �vıj;r er :
(2.5)

A crucial observation behind the invention of quantum groups was that the permu-
tation action of the symmetric group on tensor products of representations quantizes (i.e.,
lifts) to an action of the braid group. A modern formulation is thatRepk is (non symmetric!)
braided monoidal. In particular, Brn acts on V�

˝n by Uv.glk/-homomorphisms. Explicitly,
ˇi acts on the i th and .i C 1/th tensor factor of V�

˝n for constant � D ˙1 as

Hi W ea ˝ eb 7!

8̂̂<̂
:̂

eb ˝ ea if a > b;

eb ˝ ea C .v�1 � v/ea ˝ eb if a < b;

ea ˝ ea if a D b, with  WD �v��:

(2.6)

These actions factor through C.v/˝ZŒv˙1� Hn, where Hn is the Hecke algebra. We define
Hn as the ZŒv˙1�-algebra quotient of the group algebra ZŒv˙1�ŒBrn� by the following
quadratic relation, and denote the image of ˇi in Hn or C.v/ ˝ZŒv˙1� Hn by abuse of
notation also Hi :

� ˇi C ˇ�1
i D v � v�1; or equivalently; .ˇi C v/.ˇi � v�1/ D 0: (2.7)

Set W D V� . Following [118], the (Witten)–Reshetikhin–Turaev functor associated with W

is now a monoidal functor RT D RTW W T an!Repk . It sends an oriented tangle t with, say,
m endpoints at the bottom and n endpoints at the top to a Uv.glk/-homomorphism

RT.t/ W W "1 ˝ � � � ˝W "m ! W "0
1 ˝ � � � ˝W "0

n ; (2.8)

whereW "i DW orW "i DW �, respectively, depending whether the i th strand on the bottom
of t is oriented up- or downwards, similarly for the top usingW "0

i . Now RTW is determined by
the values on the elementary tangles , , , , , . These are sent
to the corresponding evaluations, coevaluations, and to the morphism �v�kHi from (2.6)
and its inverse �vkH �1

i , respectively. To compute RT.t/; one first reads a chosen generic
tangle projection from bottom to top as a vertical composition of basic tangle diagrams, i.e.,
of those which differ from an elementary one just by adding some strands to the left or right,
see Overview 1. Each basic tangle diagram is sent to the value of the elementary diagram
with identities tensored on the left or right. Finally, RT.t/ is the composition of the values of
the basic tangle diagrams. If t is a link, the result is an endomorphism f ofC.v/. Evaluating
at 1 gives f .1/ 2 C.v/ which equals J.L/ in case k D 2, W D V�. The Hecke relation (2.7)
implies the glk-skein relation (2.2) with a D vk . The RT constructions work for arbitrary
reductive Lie algebras, not only glk , and thus provide several families of tangle invariants.

Remark 2.3. The (unusual) choice of V� over VC has the advantage that the unknot has the
value Œk� 2 NŒv˙1� (with nonnegative coefficients!) instead of .�1/k�1Œk�.

Remark 2.4. The construction also works if we pick an irreducible representation for each
component of t and gives the colored RT tangle invariant of framed tangles from [118] and
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the colored Jones polynomial for links if kD 2. Coloring only with V� makes life easier, e.g.,
one can avoid framings and all constructions are defined over ZŒv˙1�, see Example 3.53.

IV. Webs and spin networks. A fourth way to get the Jones polynomial is via webs or spin
networks and their evaluations. Following Penrose [111], a web is a certain labeled graph
built from trivalent vertices, where a vertex may be interpreted as an event in which either a
single unit splits into two or two units collide and join into a single one. More precisely, let
� 2 ¹˙1º. The universal gl-web category is the monoidalC.v/-linear categoryW� which is
the linear additive closure of the strict monoidal category generated (as monoidal category)
by the set of objects N, and on the level of morphisms by diagrams

a b

aCb

(from aC b to a˝ b),

a b

aCb

(from a˝ b to aC b), (2.9)

modulo the following associativity and coassociativity relations and thin square switches

a b c

aCbCc

D

cba

aCbCc

;

a b c

aCbCc

D

cba

aCbCc

;

a

a

b

b

1

1

�

a

a

b

b

1

1

D .��/a�b�1Œa�b�

a

a

b

b

:

By convention, thin square switches include the digon removals (2.10) as degenerate a D 0

(or b D 0) cases. Together with (co)associativity, one obtains thick square switches express-
ing .a; r; b/ � .a; r; b/ from (2.11) as a sum over thinner squares, see, e.g., [27].

a�1 1

a

a

D .��/a�1Œa�

a

a

D 1 a�1

a

a

(2.10)

.a; r; b/ WD

a

a

b

b

r

.a; r; b/ WD

a

a

b

b

r

: (2.11)

An object inW� is just a finite sequence of nonnegative integers including the empty
sequence as tensor unit; a morphism is a linear combination of webs obtained by gluing hor-
izontally and vertically the generating pieces (2.9) with identities drawn by vertical lines.
For fixed k 2N, let W

�

k
be the quotient of W� by all morphisms factoring through an object

involving a number > k. We will see that this category provides a concrete graphical pre-
sentation of the monoidal category of Uv.glk/-modules generated by quantizations of the
fundamental representations of glk . Thus it continues pioneering works on graphical pre-
sentations, e.g., via spiders [85], spin networks [73], or plane graphs [107].

Remark 2.5. Digon removal is used to evaluate closed webs in W
�

k
, i.e., diagrams with

boundary labels equal to k only can be simplified to a ZŒv˙1�-multiple of identity diagrams.
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Remark 2.6. The category W
�
2 (allowing labels 1 and 2) is a gl2-analogue of the usual

Temperley–Lieb category attached to sl2 (where 2 equals the (empty) unit object).

We connect now W� with (quantized) fundamental representations or (quantized)
exterior powers

Vd
W , d � 1, of the Uv.glk/-modules W D V˙. The latter is zero if d > k

and otherwise defined as the simultaneous .��1/-eigenspace inside W ˝d for the action of
the braid group generators via (2.6). It has the expected explicit basis, namely

ei WD ei1 ^ � � � ^ eid WD

X
w2Sd

.�/�`.w/ew.i1/ ˝ � � � ˝ ew.id / .k � i1 > � � � > id � 1/;

(2.12)

indexed by d -tuples i. For �D˙1; letFund�

k
be the monoidal category generated by all non-

trivial exterior powers ofW , i.e., objects are tensor products of
Vd

W , 1� d � k inclusively
the empty product as monoidal unit. Important morphisms are q-wedging and q-shuffling:

“q-wedging” faCb
a;b
W

â
W ˝

b̂
W �

âCb
W W ga;b

aCb
“q-shuffling.” (2.13)

For example, with � WD ı�;�1vk�1, e WD e.1;:::;k/; and e.s/ the same tuple but with s omitted,

fk
1;k�1

�
es ˝ e.j /

�
D ıs;j .�/s�k�e; g1;k�1

k
.e/ D

kX
sD1

.�/s�1��1es ˝ e.s/;

fk
k�1;1

�
e.j /˝ es

�
D ıs;j .�/1�s�e; gk�1;1

k
.e/ D

kX
sD1

.�/k�s��1e.s/˝ es :

(2.14)

We have (for any k) the smoothing relation g1;1
2 ı f2

1;1 C  idDH1, see (2.6). This directly
implies with quantized Schur–Weyl duality the first part of the following (where � 2 ¹˙1º/:

Proposition 2.7. There is a dense full monoidal functor ˆ� W W
� ! Fund�

k
which sends

a generating object d to
Vd

W and a generating web from (2.9) to the corresponding q-
wedging respectively q-shuffling. It induces a monoidal equivalence W

�

k
' Fund�

k
.

This result provides a purely diagrammatic description of Fund�

k
. It implies in par-

ticular that the asymmetric braiding morphisms can be expressed in terms of webs, e.g.,

ˇa;b W
â

W ˝
b̂

W !
b̂

W ˝
â

W;

8<:
Pa

rD0 a�r .a; r; b/ if a � b,Pb
rD0 b�r .a; r; b/ if a � b:

(2.15)

Proposition 2.7 is a reformulation of results from [27]. The authors work, in fact,
with a larger pivotal version, where in the target category one also includes the duals and
in the source additionally incorporates flow-lines on webs. From the perspective of tangle
invariants, it suffices to work with Fund�

k
by a clever trick. Namely, we can copy the RT

construction above, but replace W � with
Vk�1

W , the trivial representation with
Vk

W and
the cup and cap by the morphisms (2.14). This then provides a monoidal functor wRT� from
oriented tangles toFund�

k
. An advantage of this construction is that it stays completely inside

Fund�

k
and avoids taking duals. This simplifies the situation from a categorification point of

view, see Remark 3.51. The invariant of an oriented linkL is an endomorphism f of a tensor
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product of the kth exterior powers. Evaluation at the tensor product of the top degree wedges
e gives an element in C.v/ which agrees with J.L/ in case of Fund�

k for k D 2.

Example 2.8. To compute f D fHopf for the Hopf link, we first translate nested cups (and
similarly caps) into webs. Each cup gives rise to copies of

Vk
W depending on the size

(indicated by dotted lines). Reading through the webs, see Overview 1, defines the morphism

 

k k

1k�11 k�1

 fHopf W
V2

W ˝
V2

W
d // W ˝4

H �2
1 // W ˝4 e //

V2
W ˝

V2
W

e ˝ e
� // v3Œ4�e ˝ e:

(2.16)

The construction of this invariant and the more general HOMFLY-PT polynomial via
webs and exterior powers is due to [107, 113]. As common in the literature, they work with
quantum slk which produces the same invariant as wRT�. We prefer to use glk , mainly to
make categorifications functorial, see, e.g., [42]. In addition, the weight combinatorics and
branching rules are much easier, but most importantly, skew Howe duality holds.

Skew Howe duality. The crucial observation behind Proposition 2.7 is that a quantum ver-
sion, established in [27, 89], of a classical tool from invariant theory, namely skew Howe
duality, can be used to describe all morphisms in Fund�

k
:

Proposition 2.9 (q-skew Howe duality). There is an isomorphism of Uv.glk/-modules
�̂

.W ˝C.v/m/ Š
M
d2Nm

0

d̂
W with

d̂
W WD

d̂1

W ˝ � � � ˝
d̂m

W: (2.17)

By turningC.v/m into aUv.glm/-module, one gets commuting mutually centralizing actions

Uv.glk/ Õ X˙ WD
�̂

.V˙;glk
˝ V˙;glm

/ Ô Uv.glm/op: (2.18)

Example 2.10. Let k D 3 and m D 2. Then
V3

.V˙;gl3
˝ V˙;gl2

/ is, as Uv.glk/-module,
isomorphic to the following direct sum of modules. Each summand becomes a weight space
for Uv.glm/ with the action of the generators E D E1, F D F1 indicated via webs:

E W

ai

ai C1

aiC1

aiC1�1

1
 [ Ei

P1a

V.0;3/
VC

0

1

3

2

1

&&

˚
V.1;2/

VC

1

2

2

1

1

$$

1

0

2

3

1

bb
˚

V.2;1/
VC

2

3

1

0

1

$$

2

1

1

2

1

bb
˚

V.3;0/
VC

3

2

0

1

1

bb

�F W

ai

ai �1

aiC1

aiC1C1

1

.��/�  [ Fi
P1a:

(2.19)
The labels on the webs encode the glm-weights.
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The bimodules X WD X˙ inherit some nice symmetry. Namely, the weight spaces
for theUv.glm/-action are direct summands for theUv.glk/-action, and vice versa. As label-
ing sets we can use their classical weight, i.e., m-tuples (respectively k-tuples) c of integers.
Such tuples, in fact, also index the summands of X from (2.17) and, indeed, there is an
isomorphism of vectors spaces d˙

Xc Š dX c˙ . Here, the indices at the top encode the sum-
mands and at the bottom the weight space. The left and right position refers to Uv.glk/ and
Uv.glm/; respectively, and d˙ just means we reverse the tuple d if the module is V�.

Remark 2.11. The q-skew Howe duality describes naturally the action of Ei and Fi after
projection 1d onto a weight space. These projections can be encoded conceptually by passing
from Uv.glm/ to Lusztig’s idempotent version PUv.glm/ of Uv.glm/ [94], where idempotent
generators P1d are added such that weight modules of Uv.glm/ correspond to modules for
PUv.glm/. The fundamental problem in invariant theory of determining the kernels of the
actions is easy in terms of PUv.gln/, n 2 ¹k; mº. By [27], the kernels are the ideals Ik and Im

respectively, generated by all P1d, where d falls outside the respective weight support of X .

Altogether, Fund�

k
including its action, braiding, and corresponding wRT-tangle invariants

is completely controlled by actions of (Lusztig’s idempotent version) of quantum groups.

Remark 2.12. There exist variants of q-skewHowe dualities, e.g., versions for .i/ symmetric
powers [121], .ii/ general linear Lie superalgebras [115,140], .iii/ orthogonal and symplectic
Lie algebras [127] (replacing Hn by some Brauer algebra), or .iv/ quantum symmetric pairs
(replacing Hn with a Hecke algebras of Coxeter types BCD) [41]. In (iii) the dual partner is
only a quantum symmetric pair for a fixed point Lie algebra of Langlands dual type inside
gl2m, see [127]; and (iv) involves two quantum symmetric pairs for the fixed point Lie algebras
glk ˚glk � gl2k and glm˚glm� gl2m, [41]. This version sits nicely between the ones from
Proposition 2.9 for .glk ; gl2m/ and .gl2k ; glm/ via restriction/inclusion. It is connected via
Hecke algebras of types BC with invariants of knots in an annulus or a disc with a puncture
[56,57]. A disc with an order-two orbifold point can be treated using type D following [5].

Q1: Can Hecke algebras of complex reflection groups treat orbifold points of any order?

3. Four approaches to categorifications

We now sketch representation theoretic categorifications of link and tangle invari-
ants related to the four different views on the Jones polynomial.

3.1. Ad I: Khovanov homology
The first categorification of link invariants is given in the work of Khovanov [75]

and assigns to an oriented link L a complex Kh.L/ of finite-dimensional graded C-vector
spaces. It realizes the Jones polynomial J.L/ as the graded Euler characteristic �.Kh.L// of
Kh.L/. Thus, Kh.L/ relates to the Jones polynomial of L as a topological space relates to its
Betti numbers. Stipulated by the Kauffman bracket, Kh assigns to the unknot a graded vector
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spaceA, viewed as complex concentrated in homological degree zero, with Poincaré polyno-
mial v C v�1 D Œ2�. Each additional crossing produces a complex one step longer. To make
the assignment well defined, one has to work in the homotopy category Kb.C-modZ.v// of
the category C-modZ.v/ of finite-dimensional Z-graded vector spaces (with grading shift v).

Then the Khovanov invariant is an assignment

Kh W
®
oriented links in R3 up to isotopy

¯
! Kb.C-modZ.v// with �

�
Kh.L/

�
D J.L/:

Its cohomology, the Khovanov (co)homology, and the Khovanov polynomial

PKh.L/ WD
X

d;j 2Z

dimHj
�
Kh.L/

�
d

tj vd
2 Z

�
v˙1; t˙1

�
;

are invariants as well. The definition of Kh relies on a categorified Kauffman bracket D 7!

JDKcat with values in Kb.C-modZ.v// whose Euler characteristic is the Kauffman bracket
from Section 2.I. This bracket is characterized by

(i) the multiplicativity property JD1 tD2Kcat D JD1Kcat ˝C JD2Kcat,

(ii) the normalization
q

,
y
cat D A, and

(iii) the local smoothing complex
s {

cat
D

s {

cat

ı
 

s {

cat
Œ1�h1i.

Local smoothing means that the bracket of a diagram involving a crossing can be expressed
as the total complex of a 2-term complex with entries in Kb.C-modZ.v// given respectively
by the bracket of the first and second smoothing (with the shift suggested by �v D .�1/v1

in (2.1)). Since this decreases the number of crossings, by induction one may reduce to the
case of no crossing (i.e., circles only), where the functor is specified by .i/ and .ii/. For
the construction of the differential ı, Khovanov identifies Ah1i with CŒx�=.x2/ DH.CP 1/

(with x in degree 2), which has additionally a Frobenius algebra structure. The (co)multipli-
cation provide mapsA˝A

m�

 Ah1i,A
m
 A˝Ah1i. Applied locally (with appropriate sign

rules) they define a map ı which is then a differential due to the Frobenius algebra properties
and sign choices. As for the Jones polynomial one obtains from the bracket a link invariant
after incorporating appropriate shifts, i.e., Kh.D/ D JDKŒn��hnC � 2n�i.

Khovanov homology is, as expected, a stronger invariant than the Jones polynomial.
Even more striking, Khovanov [77] and Jacobsson [67] could prove that a surface bounded
by two links induces a chain map between the Khovanov complexes defining an invariant of
the surface, up to signs. The sign issue is fixed in various ways, in [19] via foams, in [32] via
surfaces with disorientation lines, and in [42] via a sign adaption of Khovanov’s construction.
The latter, see also [13], provides an explicit sign adaption of the involved differential.

Theorem 3.1. The sign-adjusted construction of the Khovanov invariant defines a functor

Khsgn W
®
oriented links in R3

¯
! Kb.C-modZ.v// with homology PKhsgn D PKh : (3.1)

This functoriality is crucial for topological applications, e.g., to prove Milnor’s con-
jecture on slice genus of torus knots [116] or unknot detection by Khovanov homology [84].
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Remark 3.2. The (categorified) Kauffman bracket works well for links. For tangles, an
additional direction of composition has to be reflected in the target category of a possi-
ble invariant. Instead of working with the category of vector spaces, one has to pass to, e.g.,
categories of bimodules over (generalized) Khovanov arc algebras [29, 76, 137], operads and
canopolis [11], or various topological incarnations related to foam categories. An analogue,
although not very practical, of the Kauffman bracket for glk , k > 2, can be given via (2.15).

Remark 3.3. In practice one often considers all complete smoothings at once and arranges
their values as vertices in the famous cube of resolutions [10,75], with the differential on the
edges. However, the interpretation of (2.1) in terms of a 2-term complex was chosen to high-
light the important role played by such complexes in algebraic(-geometric) categorifications.
They do not only appear in crucial definitions (like coherent sheaves or other Serre quotient
categories), but also provide technical toolkits for categorical actions, for instance, in form
of spherical twists, spherical functors, or Rickard complexes.

Remark 3.4. Although odd Khovanov homology and Lee homology are often called vari-
ants of Kh, they are rather different theories from our point of view. Instead of gl2, they are
connected with the Lie (super) algebras osp.1j2/ [49] and gl1 � gl1 [122], respectively.

Q2: Which surfaces are distinguished by Khovanov homology? Does it provide a 4-TQFT?

3.2. Ad II: Triply graded link homology
A categorification of link invariants using braid closures and traces is the triply

graded Khovanov–Rozansky homology. It was originally constructed using matrix factoriza-
tions [81] and then reinterpreted [78] in representation theoretic terms via Soergel bimodules.
To sketch the construction, we viewˇ 2Brn as a special tangle with n bottom and n top points
or as a “map” from n inputs to n outputs. We associate variables x1; : : : ; xn to the inputs
and consider the categoryRn-mod of modules over the polynomial ringRnDCŒx1; : : : ; xn�.
To ˇ we assign a certain (complex of) Rn-bimodule(s) X.ˇ/ which defines a “map”
X.ˇ/ ˝Rn _ W Rn-mod ! Rn-mod. Taking the closure Ǒ of ˇ connects or identifies the
points at the bottom with those at the top, see Example 2.1. Categorically this corresponds
to identifying the left with the right action of Rn on X.ˇ/. Algebraically one takes (derived)
coinvariants, i.e., Hochschild homology of X.ˇ/. This Hochschild homology is a bigraded
vector space with gradings coming from the Hochschild and homological grading. It is even
triply graded if one works with graded Rn-modules.

To be more rigorous, consider R WD Rn as a graded ring with deg.xi / D 2 and let
Sn act on R by permuting the variables. Given any subset I � Sn of simple transpositions,
let RI D RWI � R be the ring of invariants under the action of I or, equivalently, under the
parabolic subgroup WI generated by I inside W D Sn.

Example 3.5. Obviously, RW is the ring of symmetric polynomials and R; D R. In case
I D ¹siº; we obtain Rsi WD R¹si º D CŒx1; : : : ; xi�1; xi C xiC1; xi xiC1; xiC2; : : : ; xn�.
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To any word Rw D si1si2 : : : sir in simple transpositions from Sn, there is an associ-
ated Soergel bimodule BS. Rw/ D R ˝R

si1 R ˝R
si2 � � � ˝R

sir Rh�`. Rw/i which is the Bott–
Samelson bimodule for Rw, see Remark 3.18. We have in particular, BS.si /DR˝Rsi Rh�1i

and BS.;/ D R.
The category of Soergel bimodules �Bimn [131, 132] is defined as the Karoubian

closure of the additive category generated byBott–Samelson bimodules and its grading shifts
(inside the category of all graded bimodules with degree zeromaps). It is an additive category
and closed under _ ˝R _, i.e., it is monoidal with unit R. Next, the generating Rouquier
complexes associated with ˇi and ˇ�1

i 2 Brn are

X.ˇi / W
�
Rh1i ! BS.si /

�
; and X.ˇ�1

i / W
�
BS.si / ! Rh�1i

�
with differentials given by 1 7! .xi � xiC1/˝ 1C 1˝ .xi � xiC1/ and 1˝ 1 7! 1; respec-
tively.

To an element ˇ 2 Brn written as a word Ř D ˇ
"1

i1
� � � ˇ

"r

ir
in the ˇ˙1

i , Rouquier
[124] attaches the corresponding tensor product X. Ř/ WD X.ˇ

"1

i1
/˝R � � � ˝R X.ˇ

"r

ir
/ (with

the convention that the identity braid in Brn is sent to R) in Kb.�Bimn/. He then proves the
following important result which allows one to use the notation X.ˇ/.

Theorem 3.6. If two words Ř and Ř0 represent the same element in Brn, then the Rouquier
complexes X. Ř/ and X. Ř0/ are canonically isomorphic in Kb.�Bimn/.

Remark 3.7. Rouquier [124] in fact constructed a genuine braid group action onKb.�Bimn/

by these Rouquier complexes. Explicit rigidity maps (even over Z) were determined in [46].

To categorify braid closures and traces, consider the Hochschild homology functor

HH. _ / WD
M
i2N0

HHi .R ; _ / WD
M
i2N0

Tori .R ; _ /

from the category of Z-graded R-bimodules to the category of .N0 �Z/-graded (viewed as
Z � Z-graded) vector spaces. For a complex C of finitely generated graded R-bimodules,
let HH.C / denote the complex of bigraded abelian groups obtained by applying the functor
HH to the components and differentials of C . Set HHH.C / WD H�.HH.C //. This is an object
in the category C-modZ.t;v;h/ of triply graded vector spaces with t , v and h referring to the
homological, internal and Hochschild degree, respectively (with shift functors Œ��, h�i, ¹�º).
Its (3-parameter) Poincaré series is a Laurent series in v with coefficients in ZŒh˙1; t˙1�:

P
�
HHH.C /

�
WD

X
d;i;j 2Z

dim
�
Hj

�
HHi .C /

�
d

�
tj hi vd

2 Z
�
h˙1; t˙1

��
.v/

�
: (3.2)

We have to work here with Laurent series in v, indicated by ..v//, since R is infinite-dimen-
sional, but the expression makes sense since the components are finite in each fixed triple
degree. Evaluating t D �1 gives the graded Euler characteristic �.HHH.C // 2 ZŒh˙�..v//.

Khovanov showed in [78] that (3.2) gives, up to some rescaling, an invariant of ori-
ented links (here ". Ř/ denotes the sum of the exponents of the ˇi appearing in Ř):
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Theorem 3.8. For a braid word Ř in Brn, the normalized Poincaré series

KR. Ǒ/ WD .th/
1
2 .". Ř/�n/v". Ř/ P

�
HHH

�
X. Ř/

��
(3.3)

only depends on the braid closure Ǒ. Thus there is a well-defined assignment

KR W
®
oriented links in R3 up to isotopy

¯
! Z

�
h˙ 1

2 ; t˙ 1
2
��

.v/
�
; Ǒ 7! KR. Ǒ/: (3.4)

The invariant KR. Ǒ/ is called the triply graded Khovanov–Rozansky homology of Ǒ.

Example 3.9. We calculate KR.,/, i.e., ˇ is for n D 1 the identity braid in Brn with
X.ˇ/DRnDRDCŒx1�. TheHochschild homology can easily be computed asHH0.R/DR,
HH1.R/ D Rh2i, HH�2.R/ D ¹0º from the Koszul resolution CŒy� ˝ CŒy0�

.y�y0/�
!

CŒy� ˝ CŒy0� of R D CŒx1� (with y; y0 7! x1). Since the Poincaré series of R equals
P.R/ D 1

1�v2 , we obtain

KR.,/ D t� 1
2 h� 1

2 P
�
HHH.R/

�
D t� 1

2 h� 1
2

1C hv2

1 � v2
2 ZŒh˙; t˙�

�
.v/

�
: (3.5)

For general n, HH.Rn/ Š Rn ˝
V�

.�1; : : : ; �n/, where each �i is of v-degree 2 and h-
degree 1, and HHH.Rn/ D HH.Rn/. As expected, the identity braid gives with (3.3), KR.,/n.

Crucial for the proof of Theorem 3.8 are isomorphisms HHH.X.˛/ ˝R X.ˇn// Š

HHH.X.˛//h�1i, HHH.X.˛/ ˝ X.ˇ�1
n // Š HHH.X.˛//h1iŒ1�¹1º and the trace property

HHH.X.˛/ ˝R X.˛0// Š HHH.X.˛0/ ˝R X.˛// for ˛; ˛0 2 Brn � BrnC1. The latter follows
directly from the canonical isomorphism HH.M ˝R N / D HH.N ˝R M/ noting that for
Soergel bimodules one does not need to derive the tensor product, since they are by stan-
dard invariant theory free as one-sided modules. The formulas imply that Ǒ ! �.HHH.X.ˇ///

factors through a ZŒv˙1�-linear trace function � W
`

n�1 Hn ! ZŒh˙1�..v// such that

�.1/ D
1C hv2

1 � v2
; �.xH ˙1

n / D z˙�.x/ 8x 2 Hn with zC D v�1 and z� D �hv; (3.6)

where Hi is the image of ˇi in Hn. With the normalization (3.3), � becomes a Markov trace.
By introducing a homological 1

2
Z-grading, even HHH can be turned into an invariant, see [124].

Remark 3.10. Since trace functions � on
`

n�1 Hn are classified by the pair .�.1/; zC/

as in (3.6), one can identify � from (3.6), up to normalization of �.1/ with the (Jones–)-
Ocneanu trace [69]. In [86] it is proved that for any finitely generated Coxeter group, with
the more general definition of Soergel bimodules and Hecke algebra from Theorem 3.19, the
Euler characteristic of the KR-homology provides a Markov trace on the Hecke algebra.

Remark 3.11. To get nicer formulas, we make a change of variables by setting aD v.ht/
1
2 .

Then KR. Ǒ/ 2 ZŒa˙1; t˙1�..v//. For example, KR.,/ D v a�1Cat�1

1�v2 D
a�1Cat�1

v�1�v
. Setting t D

�1 gives a�a�1

v�v�1 and the characterizing skein relation (2.2) of the HOMFLY-PT polynomial holds.
With aD v2, we obtain the Jones polynomial, e.g., vC v�1 here and v3Œ4� in Example 3.13.

Theorem 3.12. KR. Ǒ/2ZŒa˙1; t˙1�..v// specializes for t D�1 to the HOMFLY-PT polynomial
associated with Ǒ.
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Example 3.13. For L the Hopf link from (2.1), we get �.KR.L// D v2�.H 2
1 /. By (2.7),

�.H 2
1 / D �.1/C .v�1 � v/�.H1/ D �2 C .v�1 � v/v�1� with � WD �.1/.

Remark 3.14. The appearance of Hn here is not surprising because Soergel originally
invented his bimodules to understand the Kazhdan–Lusztig basis in the Hecke algebra Hn.
To formulate this more precisely, let K˚

0 .�Bimn/ be the split Grothendieck ring of the
additive category of Soergel bimodules. That is the free ZŒv˙1�-module generated by iso-
morphism classes ŒM � of objects M in �Bimn modulo relations ŒM ˚ N � D ŒM �C ŒN �,
vŒM�D ŒM h1i�; and multiplication ŒM �ŒN �D ŒM ˝R N �. In [131], Soergel proved an influ-
ential categorification theorem which is crucial for all representation theoretic constructions
of categorified link invariants: there is an isomorphism of ZŒv˙1�-algebras

‡n W Hn ! K˚
0 .�Bimn/; Hi C v 7�!

�
B.i/

�
: (3.7)

which moreover identifies the Kazhdan–Lusztig basis with classes of indecomposables
bimodules. We observe that Hi corresponds hereby to a virtual object only. This can be
fixed by identifying K˚

0 .�Bimn/ with the Grothendieck group of the triangulated cate-
gory Kb.�Bimn/, since then ŒX.ˇi /� D ‡.Hi /. This shows that Rouquier’s braid group
action, despite its faithfulness [82], is honestly a categorical Hecke algebra action which also
descends to aHecke algebra action on theGrothendieck group. The relations (2.1), (2.2), (2.7)
indicate that the presented invariants should be rather connected with the Hecke algebra
instead of the braid group.

In contrast to Kh, computing KR is usually hard, although the resulting values might
be more conceptual and expressible using generating series. Important progress was how-
ever made recently for the torus links t.p;q/ which are the closure of . p̌�1 � � � ˇ2ˇ1/q

(with the Hopf link as special case .p; q/ D .2; 2/). An important first step is done in
[65] with the observation that KR.t.n;q// stabilizes for q ! 1 to a limit isomorphic to
CŒu1; : : : ; un�˝

V�
Œ�1; : : : �n� with ui in h-degree zero and �i in h-degree 1 (cf. HH.Rn/ in

Example 3.9). This limit is identified in [65]with the derived endomorphism ring of a certain
categorified Young idempotent in the Hecke algebra Hn. This idempotent provides a bridge
to categorified colored RT -invariants, Remark 3.54 and Conjecture 3.58, since it acts on
.V�;gl2

/˝n as a projector, the V�;gl2
-version of the Jones-Wenzl projector (3.21) below.

In [44], KR.t.p;q// is determined via a beautiful recursive formula in case p D q,
and extended to general .p; q/ in [66]. They both use categorifications of idempotents in
Hn which are interesting tools on their own, e.g., for developing a categorified representa-
tion theory of Hn. For general links, computing KR seems still to be out of reach. Instead
of studying the invariant via its original definitions [78, 81], alternative constructions were
proposed, e.g., the following involving Hilbert schemes and Cherednik algebras with their
underlying combinatorics of symmetric functions and Macdonald polynomials.

Remark 3.15. The approach of [108, 109] starts by viewing a torus link L D t.p;q/ as an
algebraic link, i.e., as the intersection of a planar curve C WD Cp;q � C2 (defined by the
polynomial f D xp � yq 2CŒx;y�) with a sufficiently large sphere around the origin inC2.
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Attached toC is theHilbert schemeC Œr� of r points onC which, as a set, is given by all ideals
I � CŒx; y� of codimension r containing f . In [109] it is proved for coprime p, q that the
Euler characteristic of KR.t.p;q//, i.e., the HOMFLY-PT polynomial, equals up to a normalization
the Euler characteristic of the disjoint union of all nested Hilbert schemes

C Œd;dCi�
WD

®
.I; J / j I � .x; y/ � J � I

¯
� C Œd�

� C ŒdCi�

with d and i encoding the v- respectively a-degree. For a generalization to algebraic links,
see [103]. In [108] it is conjectured that replacing the Euler characteristic with the virtual
Poincaré polynomial (see [108] for the definition) provides the triply graded Khovanov
homology. For torus links, this is proved in [110]. In general, this conjecture is still open.

Remark 3.16. As indicated in the introduction, KR is related to double affine Hecke algebras
(DAHAs) and their rational degenerations from [50]. The rational DAHA Hc D Hc.Sn/ with
parameter c 2 C is the quotient of Chxi ; yi j 1 � i � ni Ì Sn modulo

Œxi ; xj � D 0 D Œyi ; yj �; Œxi ; yj � D c � .i; j /; Œxi ; yi � D 1 � c
X
j 6Di

.i; j /

for any i 6D j with .i; j / 2 Sn. It is a flat deformation of H0 D D Ì Sn, where D is the
algebra of differential operators on Cn. If c D p

q
with .p; q/ 2 Z2 coprime, there is a unique

irreducible finite-dimensional H p
q
-module Lp;q [15]. When restricting the Hc-action to Sn,

this module decomposes into direct summands. Let 1i Lp;q be the isotypic component ofVi Cn�1 using the reflection representation Cn�1. The internal grading on Hc realised by
the eigenvalues of the Euler operator eu D

Pn
iD1 xi yi (and encoding the difference of the

polynomial degree in the x’s and the y’s) induces a grading on Lp;q and 1i Lp;q . In [60], the
Poincaré polynomial P.M/ of M WD

L
i 1i Lp;q is identified with the HOMFLY-PT polynomial

of t.p;q/ up to renormalization. Here, i contributes to the a-degree and eu to the v-degree.
The identification is achieved by matching known formulas for the HOMFLY-PT polynomial
with the character formula for Lp;q from [15]. In [60], a filtration on M is predicted such that
KR.t.p;q// arises as P.grM/ for the associated graded grM . This is verified in [110] in terms
of a geometric perverse filtration, after realizing 1i Lp;q (with the action of the spherical
Hecke algebra 1i H p

q
1i ) as

L
d H.C Œd;dCi�/ (with the action of certain Hecke–Nakajima

operators). The comparison and identification of P.grM/ with KR.t.p;q// is again done by
matching explicit formulas from [44,66].

Q3: Is there a combinatorial model to compute KR? For which cobordisms is KR functorial?

3.2.1. Interlude: Hecke categories
The quantum glk-invariants and the construction of the fundamental representa-

tions (2.12) use heavily the monoidal structure of Repk . By (2.7), the action of the braid
group on .V˙/˝n factors through an Hn-action preserving the weight spaces of .V˙/˝n. To
get categorified tangle invariants, one might therefore categorify these Hecke algebra actions
in terms of a monoidal category acting via functors on a category, ideally with an extension
to categorified quantum group actions and q-skew Howe duality (2.18). To motivate the
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Overview 2

The geometric, algebraic, and Lie-theoretic Hecke categories

Hecke algebra  Hecke category
Theorem 3.19
' Soergel bimodules

Remark 3.24
' Projective functors

Hn; Hn.q/ H
geo
n �Bimn Pn

origin of such actions we go back to the original definition of Hecke algebras arising from
split reductive groups G defined over a finite field Fq with a choice T � B � G of a max-
imal torus and Borel subgroup and the finite group G.Fq/ of Fq-points. Most finite simple
groups, in particular of Lie type, arise in this way. For us the case of G D GLn suffices with
the choice of diagonal matrices inside the upper triangular matrices and their correspond-
ing finite groups Gq WD GLn.Fq/ � Bq � Tq . The Weyl group W D NGq .Tq/=Tq can be
identified with the group Sn � Gq of permutation matrices.

The associated Iwahori–Hecke algebra Hn.q/ is the vector space FuncBq�Bq .Gq;C/

of complex valued functions f onGq invariant under both the left and the right action ofBq ,
i.e., f .bg/D f .g/D f .gb/ for all g 2 Gq , b 2 Bq , equipped with the convolution product

.f ? g/.x/ D
1

jBqj

X
y2Gq

f .xy�1/g.y/: (3.8)

The indicator functions hw , w 2 W , for the double cosets BqwBq form a basis of Hn.q/ by
the Bruhat decomposition (or just Gauss elimination) Gq D

F
w2W BqwBq . In this basis,

the structure constants of the multiplication are polynomial in q D jFqj and thus one can
replace q by a generic variable and “treat all q at once.” Then the resulting algebra Hn.q/

becomes isomorphic to Hn via q 7! v�2, hsi
7! v�1Hi after adjoining a square root of q.

Remark 3.17. The construction allows vast generalizations, e.g., by replacing Fq by a local
field with finite residue field (to get Iwahori–Hecke algebras arising in number theory), by
working with topological groups, or with convolution products in homology theories.

The usual Grothendieck function–sheaf correspondence, see, e.g., [88], indicates
that a categorification is given by a certain category of .B�B/-equivariant sheaves on G.
Since .B�B/-equivariant functions on G can be identified with B-equivariant functions on
G =B, a categorification might therefore work with B-equivariant sheaves on G =B.

For a first categorification, see Overview 2, we use the related geometry overC with
G WD GLn.C/, B WD B.C/, T WD T.C/; and the algebraic variety F D G=B of all full flags
¹F1 � � � � � Fn D Cn j dim.Fi / D iº of vector subspaces in Cn. The bounded equivariant
derived category Db

B.F ; C/ of sheaves of C-vector spaces [17], is a monoidal category with
a convolution product ?, [133].

The geometric Hecke category H
geo
n is defined as the full subcategory ofDb

B.F ;C/

generated by the constant sheavesCPi
onPi DBsi BDBsi B [B �G under convolution?,

homological shifts Œ1�, finite direct sums and direct summands. Concretely, the objects in
H

geo
n are shifts of objects BSgeo. Rw/ D CPi1

? � � � ? CPir
Œ�r� for any word Rw D si1 : : : sir in
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simple transpositions, and finite direct sums and summands of those. The shift functors Œi �

turn H
geo
n into a graded category. Note the similarity to �Bimn with shift functors hii.

Remark 3.18. The objects BSgeo. Rw/ have a nice alternative description in terms of the Bott–
Samelson varieties Z. Rw/ D Pi1 � � � � � PirC1=Br , where y D .y1; : : : ; yr / 2 Br acts as
y:.p1; : : : ; pr /D .p1y�1

1 ; y1p2y�1
2 ; : : : ; yrprC1/. If Rw is a reduced expression for w 2W ,

then the multiplication map � W Z. Rw/! G=B , .p1; : : : ; pr / 7! p1 � � �pr is known to be a
resolution of singularities for the Schubert variety BwB=B , first studied in the context of
compact Lie groups byBott and Samelson. It is not hard to see that BSgeo. Rw/Š��CZ. Rw/ and
that the Bott–Samelson bimodules arise as T -equivariant cohomologyHT .Z. Rw//ŠBS. Rw/.

Soergel’s categorification result, Remark 3.14, arises now naturally:

Theorem 3.19. There is an equivalence H
geo
n ' �Bimn of graded monoidal categories

sending BSgeo. Rw/ to BS. Rw/. In particular, K˚
0 .H

geo
n / Š Hn as ZŒv˙1�-algebras.

Remark 3.20. Theorem 3.19 can be proved by identifying both, H geo
n [120] and �Bimn [48],

with the Karoubian closure DBimn of a diagrammatic monoidal category DBim0
n invented

in [45, 48] and proved to be equivalent to the full subcategory of �Bimn given by Bott–
Samelson bimodules. Strikingly, this category DBim0

n has a presentation with generators
and relations. Prominently applied is this in the proof of the long outstanding positivity con-
jecture for Kazhdan–Lusztig polynomials of an arbitrary Coxeter system and an algebraic
proof of the Kazhdan–Lusztig conjectures for reductive complex Lie algebras in [47].

3.3. Ad IV: Categorification of the web calculus and its tangle invariant
We reverse the order from Section 2 and pass to categorifications for wRT˙ which are

further developed than for RT. A categorification of the quantum gln tangle invariant wRT˙ is
constructed by Mazorchuk and the author [105, 136] and Sussan [139], using highest weight
categories of infinite-dimensional representations of the (again, but now in a different role!)
general linear Lie algebras glN .C/. It categorifies Fund˙ and even skew Howe duality:
objects

Vd
V˙ as in (2.17) are realized as Grothendieck groups of categories, and actions and

morphisms are lifted to functors with relations realized by specific natural transformations.
This construction is part of a major change of perspective in representation theory in recent
years. The starting point goes back to Crane and Frenkel [34], who proposed the idea ofHopf
categories to construct 4-TQFTs based on categorified quantum groups and canonical bases.
Categorified quantum groups were then defined in [80,123] as certain 2-categories. We will
indicate later how they arise naturally in the context of categorified tangle invariants.

Let h � b � g D gN WD glN .C/ be the Cartan and Borel subalgebra given by all
diagonal respectively upper triangular matrices. Equip h� with the standard basis ı1; : : : ; ıN ,
such that ıi picks out the i th diagonal matrix entry, and with the symmetric bilinear form
.ıi ; ıj / D ıi;j . We identify the lattice hint WD Zı1 ˚ � � � ˚Zın of integral weights with ZN

via �$ .�1; : : : ; �N /, where �i D .�C �; ıi / with � D
PN

j D1.N � j C 1/ıj . The group
SN acts on ZN D hint by permuting components and defines the Bruhat ordering generated
by � < � if � differs from � by swapping a pair �i ; �j such that �i < �j and i < j .
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We set up now a dictionary between standard basis vectors Ee 2
Vd

V˙ of
Vd

V˙ (for
fixed ˙) and a subset ƒd � ZN of gN -weights (with N D

Pm
iD1 di ). Each tensor product

Ee of basis vectors (2.12) is identified with an element wt.Ee/ 2 ¹1; 2; : : : ; kºN � ZN via

Ee D e
.1/
i ˝ � � � ˝ e

.m/
i 7! wt.Ee/ WD .i

.1/
1 ; : : : ; i

.1/

d1
; i

.2/
1 ; : : : ; i

.m/

dm
/ 2 ƒd: (3.9)

Let ƒd be the image. Note that a weight space in
Vd

V˙ corresponds to an SN -orbit c in ƒd.
Now we construct a category Od whose Grothendieck group has a basis naturally

labeled by ƒd. For this consider the BGG category O of all finitely generated g-modules
M which are locally finite over b and have a weight space decomposition with only inte-
gral weights � 2 hint. This is an abelian finite length category, where the irreducible objects
are exactly the irreducible highest weight modules L.�/ of highest weight � 2 hint, i.e., the
irreducible quotients of the Verma modules �.�/ for � 2 hint. Objects in O which have a
�-flag, i.e., a finite filtration with subquotients isomorphic to Verma modules, form an exact
additive subcategory O� which is closed under direct summands and contains all projec-
tive objects. Even more, category O is a highest weight category, see, e.g., [26], for the set
hint D ZN viewed as poset with standard objects the �.�/. Technically this means that the
projective cover ofL.�/ surjects onto�.�/, and�.�/ surjects ontoL.�/, and the kernel has
a �-flag with subquotients some �.�/ where � > �, respectively a Jordan–Hölder filtration
with subquotients L.�/’s with � < �. As a consequence, the canonical maps induce iso-
morphisms between Grothendieck groups for (i) the additive category of projectives, (ii) the
exact category O�, (iii) the abelian category O; and (iv) the triangulated bounded derived
category Db.O/:

K˚
0

�
Proj.O/

�
D K0.O�/ D K0.O/ D K0

�
Db.O/

�
: (3.10)

To ƒd we associate simply the Serre subcategory Od of O generated by all L.�/

with � 2 ƒd. More concretely, this is just a direct summand, specified by k, of the full
subcategory Opd of O of all modules which are locally finite over the standard parabolic
subalgebra pd with Levi factor gld1

˚ � � � ˚ gldm
. Sending Ee 2

Vd
V˙ from (3.9) to the class

of the pd-parabolic Verma module �pd.wt.Ee// (a standard object for the induced highest
weight structure onOd) with highest weight wt.Ee/ defines an isomorphism of abelian groups� d̂

V Z
˙

�
˝ZŒv˙1� Z Š K0.Od/ D K0

�
Db.Od/

�
; Ee 7!

�
�pd

�
wt.Ee/

��
: (3.11)

Here Z is a ZŒv˙1�-module via v 7! 1 2 Z and V Z
˙

denotes the ZŒv˙1�-module in V˙

spanned by the vectors ei . We like to find functors realizing the Uv.glk/-action and also
incorporate v.

Tensoring with finite-dimensional representations of g provides exact endofunctors
ofO. These functors and their direct summands form themonoidal categoryPN of projective
functors. Describing their effect on Verma modules is easy (but hard on other objects):

Example 3.21. If U is a finite-dimensional representation of g, then �.�/ ˝ U 2 O�.
The subquotients in a �-flag are the �.� C �/, where � runs through the multiset P.U /

of weights � of U with multiplicity dim U� . Thus, Œ�.�/ ˝ U � D
P

�2P.U /Œ�.� C �/�
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in K0.O�/. Important examples are U D CN with Œ�.�/ ˝ U � D
PN

iD1Œ�.� C ıi /� or
U D .CN /� with Œ�.�/˝ U � D

PN
iD1Œ�.� � ıi /�.

Lemma 3.22. The functors E;F W O 7! O; M 7!M ˝ U with U D CN and U D .CN /�,
respectively, decompose into direct summands E D

L
i2Z Ei , F D

L
i2Z Fi with�

Ei �.�/
�
D

X
¹j j�j Diº

�
�.�C ıj /

�
;

�
Fi �.�/

�
D

X
¹j j�j DiC1º

�
�.� � ıj /

�
: (3.12)

This is an easy consequence of Example 3.21 and the fact that O decomposes into
summands Oc labeled by SN -orbits c in ZN . Here Oc denotes the Serre subcategory of O

generated by L.�/ with � 2 c. Under (3.11), Od \ Oc corresponds to a weight space. By
definition, the functors Ei and Fi preserve Opd , even Od if 1 � i � k � 1. Formulas (3.12)
resemble Lie algebra actions. Generalized formulas from Example 3.21 for Od imply that
the induced action on K0.Od/ agrees via (3.11) with the (v 7! 1) specialized Uv.glk/-action
on

Vd
V Z

C . (Note the positive signC here!)

Remark 3.23. Inside PN , the Hecke category appears naturally: It is known that PN is the
Karoubian closure of the additive monoidal category generated by Ei , Fi . The proof relies
on a monoidal equivalence PN ' HCN with a certain category HCN of Harish-Chandra
bimodules. Via Soergel’s functor V from [131] and its extension in [135], PN is equivalent to
a category of singular Soergel bimodules. By restriction to endofunctors of O0 WD Oc with
0 2 c, one gets f.�BimN / ' f.HN

geo/ as a full monoidal subcategory, where f means that
we forget the grading. Remarkably, a classification of indecomposable projective functors for
the categories Od was only recently obtained [83], based on advances in the 2-representation
theory of Hecke algebras, i.e., the representation theory of categorified Hecke algebras.

To incorporate v, we work with a graded version OO of O and its Serre subcategories
as defined in [12], i.e., with graded modules over the endomorphism ring A of a minimal
projective generator of O equipped with the Koszul grading from [12].

Remark 3.24. The origin of the grading is an equivalence of additive categories between
Proj.O0/ and the full subcategory of Rn-mod of Soergel modules C ˝RW M for M 2

f.�BimN / which has an obvious graded lift. We get a graded version of Proj.O0/ and then
also of O0. Note that �BimN obviously acts on this category by tensoring over R from the
right. With some extra work, all Lie theoretic categories and functors used here can be lifted
to a graded version. A general approach to lift modules (e.g., (parabolic) Verma modules)
and the above functors to the graded setting is developed in [134].

Lemma 3.25. Any choice of graded lift O�pd.wt.Ee// of �pd.wt.Ee// lifts (3.11) to an isomor-
phism of ZŒv˙1�-modules (V Z

˙
denotes the ZŒv˙�-submodule of V˙ spanned by the ei ):

‰ W
d̂

V Z
˙ Š K0. OOd/ D K0

�
Db. OOd/

�
; Ee 7!

�
O�pd

�
wt.Ee/

��
: (3.13)

We realized now
Vd

V Z
˙

as the Grothendieck group of a category and want to lift
morphisms and the Uv.glm/-action from (2.19) to functors. We first consider

Vd
V Z

C . If
pd0 � pd are two standard parabolic subalgebras in glN , then there is the exact inclusion
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functor incl and its left adjoint Zuckerman functor Z of taking the largest quotient in the target
category, incl W Od � Od0

W Z. Now incl and the derived functor LZ induce morphisms on
K0 which we connect to (2.14). Recall Proposition 2.7 and observe that WC is generated as
category by basic webs which look like a generator from (2.9) with identities to the left and
right. To each basic web t we associate a functor MSSC.t/, which is, up to an overall shift, the
obvious graded lift Oincl or L OZ of the inclusion respectively the derived Zuckerman functor
(with hopefully self-explanatory notation)

bd0

d WD
OinclŒ�ab�h�abi W Db. OOd/

..
Db. OOd0

/nn W L OZ DW
cd

d0 : (3.14)

To each composition t of basic web diagrams assign the composition MSSC.t/ of functors.

Example 3.26. Let k D 2 and consider the webs (2.9) for a D b D 1 with induced mor-
phismsf.1;1/

.2;0/
W
V.2;0/

V Z
C �

V.1;1/
V Z

C W f
.2;0/

.1;1/
. To e2 ^ e1 we associate�p.2;0/..2;1//which

is just the trivial gl2-module C. The BGG resolution �p.1;1/..1; 2//! �p.1;1/..2; 1// of
C implies that inclŒ�1� induces the linear map e2 ^ e1 7! �v�1.e2 ˝ e1 � ve1 ˝ e2/ with
vD 1 on the Grothendieck group. On the other hand,LZ�p.1;1/..2;1//D Z�p.1;1/..2;1//D

�p.2;0/..2; 1// and LZ �.1;1/..1; 2// D �p.1;1/..2; 1//Œ�1� induce e2 ˝ e1 7! e2 ^ e1;

e1˝ e2 7! �v with vD 1. We can obtain now formulas (2.14) by picking appropriate graded
lifts O�p.2;0/..2; 1//, O�p.1;1/..1; 2//, O�p.1;1/..2; 1// with a morphism O�p.1;1/..1; 2//h1i !

O�p.1;1/..2; 1// lifting the BGG resolution.

The following summarizes results from [41,105,139] and categorifies q-skew Howe
duality from Proposition 2.9:

Theorem 3.27. Let t be a basic web from d0 to d with corresponding homomorphism ˆC.t/

from Proposition 2.7. Then there are choices of graded lifts in (3.13) and of (3.12) such that
the following diagram commutes for 1 � i � k � 1 (also for Ei replaced by Fi ):

Vd0

V Z
C

‰

,,

ˆC.t/

//

Ei

��

Vd
V Z

C

Ei

��

‰
// K0. OOd/

Œ OEi �

��

D K0

�
Db. OOd/

�
oo

ŒMSSC.t/�

Œ OEi �

��

K0

�
Db. OOd0

/
�

Œ OEi �

��

D K0. OOd0

/

Œ OEi �

��Vd0

V Z
C

ˆC.t/
//

‰

33

Vd
V Z

C

‰ // K0. OOd/ D K0

�
Db. OOd/

�
oo

ŒMSSC.t/�
K0

�
Db. OOd0

/
�
D K0. OOd0

/:

Moreover, the family of functors OEi , OFi naturally commutes with the functors MSSC.t/

associated with webs. On the Grothendieck group they induce skew Howe duality (2.18)

U Z
v .glk/ Õ X WD

�̂�
V Z

C .k/˝ V Z
� .m/

�
Ô

�
U Z

v .glm/
�op (3.15)

(with Z referring to Lusztig’s integral version of the quantum group). The action of Dj is
hereby categorified by an appropriate grading shift on each categorified weight space.
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Example 3.28. We turned each summand from (2.19) into a category Dd WD Db. OOd/, the
Uv.glk/-action into functors OEi , OFi and the action by E and �F into functors from (3.14):

D.2;1;0/

L OZDid
��

D.1;1;1/

L OZ
��

D.0;1;2/

L OZ
��

D.3;0/
++

inclŒ�2�h�2i

55

˚ D.2;1/
++

inclŒ�1�h�1i

55

incl
uu

kk ˚ D.1;2/
++

incl
55

inclŒ�1�h�1i

uu

kk ˚ D.0;3/:kk

inclŒ�2�h�2i

uu
D.2;1;0/

L OZ

\\

D.1;1;1/
L OZ

\\

D.0;1;2/
L OZ

\\

In this categorified q-skew Howe duality, the two sides seem to be asymmetric. The
action of U Z

v .glk/ is given by exact functors on the abelian categories, whereas U Z
v .glm/

acts by derived functors (note VC versus V�). This asymmetry is explained nicely via Koszul
(self-)duality [12,104]. This directly gives an analogue of the theorem for V� instead of VC.

Remark 3.29. Koszul dualitymeans an equivalence Db. OO
pd
c /'Db. OO

pc
d / which swaps the

two types of functors [104]. Passing to the Grothendieck groups, it induces an isomorphism
of groups

V�
.V Z

C .k/˝ V Z
� .m//Š

V�
.V Z

� .k/˝ V Z
C .m//. The parameters v; ; � from Sec-

tion 2.III reflect important properties of this duality: it does not commute with grading shifts
(v 7! �v encoded by �) nor preserves the standard t -structures [104] (encoded by  ).

Under Koszul duality, the derived functors MSSC.t/ from (3.14) turn into exact projec-
tive functors MSS�.t/ between the corresponding abelian categories. We use now these easier
functors to construct tangle invariants with values in the homotopy categories Kb. OOd; OOd0

/

of exact functors from OOd to OOd0 . From [105] it follows that the relations in W� can be inter-
preted in terms of isomorphisms of functors MSS�.t/. Thus we have (cf. (2.8)) an exact functor
assigned to any basic tangle diagram except the crossings to which we assign the following
complexes (possibly with identity strands added) given by canonical adjunction morphisms:

MSS�
� �

W
�
idh1i ! MSS�. /

�
h�ki; MSS�

� �
W

�
MSS�. /! idh�1i

�
hki: (3.16)

The following is proved in [105] and the Koszul dual version in [139]:

Theorem 3.30. Let t be an oriented tangle with a planar projection t1 � � � tr written in terms
of basic tangle diagrams. Let wRT�.t1 � � � tr / W

Vd
V Z

� !
Vd0

V Z
� . Then the composition

MSS�.t1/ � � � MSS�.tr / 2 Kb. OOd; OOd0

/ (3.17)

is independent of the chosen projection. Thus, t 7! MSS�.t/ provides an invariant of oriented
tangles. The induced morphismK0.Db.Od//!K0.Db.Od0

// agrees via (3.13)with appro-
priate graded lifts with wRT�.t/. Analogously for wRTC.t/ using the Koszul dual functors.

Corollary 3.31. In case t is a link, the categories OOd, OOd0 in (3.17) can be identified cano-
nically with the category of graded vector spaces. Thus we obtain a bigraded link homology.

Remark 3.32. Let k D 2. Then the invariant MSS� was first defined in [136] based on [16],
where it was observed that for nonquantized gl2, the action of the Temperley–Lieb algebra on
.C2/˝n can be categorified using categoryO. In [137] it is shown that the Khovanov complex
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for an oriented link agrees with the value of MSS� by an explicit description of the involved
categories asmodules over (an extension of)Khovanov’s arc algebra. Using [24], one can also
match MSS� with Khovanov’s tangle invariant [76] via an equivalence of categories. Via [1,98]

which realizes the extended arc algebra from [137] in terms of Fukaya–Seidel categories, a
rigorous categorical equivalence from MSS� to the symplectic Khovanov invariant from [130]

holds. A weaker combinatorial identification, the equality of the bigraded homology groups,
is established (in fact, for all known algebraic-geometric link homologies) in [96].

Remark 3.33. For k D 2, functoriality (as in (3.1)) of MSS˙ is reduced to that of Khsgn. For
general k; we expect functoriality to follow from the functoriality results in [43].

Remark 3.34. We focused here on defining the involved functors and describing their action
on the Grothendieck group, although all defining relations in the quantum group or web
category can, in fact, be turned into actual relations, i.e., isomorphisms, between functors.

Remark 3.35. Formula (2.15) is implicitly categorified via MSS�.ˇa;b/: For a D b D 1; this
holds by (3.16). A composition of those, cf. illustration in (4.1), gives the braiding morphism
for W ˝a ˝W ˝b and restriction to OO.a;b/ then MSS�.ˇa;b/. One can verify purely combinato-
rially based on [105] that the complex MSS�.ˇa;b/ of exact functors can be written with entries
encoded by (2.15). Lie-theoretically MSS�.ˇa;b/ is easy to describe as the derived functor of
a classical shuffling functor [105,136] which gets reinterpreted in terms of the explicit com-
plexes. This is opposite to most categorifications, where the braiding is defined by explicit
complexes indicated by (2.15), e.g., [114, 145]. The construction of categorified braid group
actions from categorified Lie algebra actions using Rickard complexes goes back to [31].

Remark 3.36. Categorifications of (parts of) q-skew Howe duality were obtained and used
in many ways in recent years. The significance of the above construction is the fact that
both quantum group actions are visible. This is in particular not the case in diagrammatic or
foam based categorifications, since a (diagrammatic) replacement of the derived functors is
missing. It would be nice to find a general theory towards categorifications of dualities, in
particular for those in Remark 2.12 where a categorification so far only exists for (iv) [41].

Q4: Are there other interesting Koszul self-dual categories? What do they categorify?

3.3.1. Towards 2-representation theory: categorical actions
Two basic questions arise from the above construction: is there a conceptual source

for isomorphisms specifying the desired relations between the functors (topologically speak-
ing the values for tangle cobordisms)? To which extent are such categorifications unique?
Both questions are addressed with the concept of categorical Lie algebra actions [31, 123],
which we try to motivate based on our example. The categorified quantum groups due to
Khovanov–Lauda [80] and Rouquier [123] occur in this context naturally. Adjunction mor-
phisms between functors are used to specify commutation relations (e.g., for Ei and Fi ) and
most tangle cobordisms. More involved are the Serre relations between the Ei which arise
from endomorphisms (D natural transformations) of (powers of) ED _˝CN whichwe con-
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struct below. In the general construction [80, 123], such morphisms constitute 2-morphisms
of a 2-category.

An obvious choice for s 2 End.E2/ is the flip morphism given on g-modules M by
sM WM ˝CN ˝CN !M ˝CN ˝CN , m˝ u1˝ u2 7!m˝ u2˝ u1. The action maps
xM WM ˝CN !M ˝CN of the Casimir element �D

PN
i;j D1 Ei;j ˝ Ej;i 2 g˝ g define

an endomorphism x 2 End.E/. More generally, define endomorphisms xj , sj of En, n � 0,
via

.xj /M WD En�j .xEj �1.M// and .sj /M WD En�j �1.sEj �1.M//: (3.18)

One easily verifies that these endomorphisms satisfy the defining relations of a
degenerate affine Hecke algebra Hdaff

n . This means that the xi commute (defining a subal-
gebra CŒx1; : : : ; xn�), the si satisfy the Coxeter relations of the symmetric groups (defining
a subalgebra CŒSn�), and the two sets of generators interact via the degenerate semidirect
product relations sj xj C1 D xj sj C 1 and sj xl D xlsj for l 6D j; j C 1.

Amazingly (although easy to verify with Example 3.21), Ei from (3.12) equals the
(generalized) i -eigenspace subfunctor for x of E, i.e., Ei .M/ D

P
l�0 ker..xM � i/l /. To

(re)define Fi consistently, we use that F is right adjoint to E. With a fixed counit c W EF! id
and unit c� W id! FE; we define elements x0 2 End.F/ and s0 2 End.F2/ following [123]:

x0
WD F.c/ ı F.x/F ı c�

F; s0
WD F2.c/ ı F2 E.c/F ı F2.s/F2 ı E.c�/EF2f ı cF2 : (3.19)

Then F inherits a decomposition into i -eigenspace functors Fi , 1 � i � k, for x0. By [123],
the biadjointness of Ei and Fi follows. Thus, these functors are exact, send projectives to
projectives, and provide a based categorification, i.e., induce on the Grothendieck group
K˚

0 .Proj.Od//˝Z C the structure of an integrable slk-module
Vd

V C, where the classes
of the indecomposable projectives are (a basis of) weight vectors. We work here with slk to
agree with the existing literature.

These ingredients and properties listed here were axiomatized in [123]:

Definition 3.37. Let C be a C-linear abelian finite length category with enough projectives.
Then, a categorical slk-action on C (categorifying C ) consists of

• an endofunctor E with a right adjoint F specified by a counit c and a unit c�, and

• an element s 2 End.E2/ and an endomorphism x 2 End.E/

which satisfy E D
Lk

iD1 Ei , where Ei is the i -eigenspace subfunctor for x, the endomor-
phisms sj , xj defined via (3.18) satisfy the relations of Hdaff

n , the functor F is right adjoint
to E, and finally with the definition of Fi as i -eigenspace functor for x0 as in (3.19), the
functors Ei and Fi define a based categorification of an integrable slk-module C .

We get categorifications of the tensor products
Vd

V C of slk exterior powers:

Theorem 3.38. The constructions (3.18) and (3.11) define a categorical slk-action on Od.

Remark 3.39. Definition 3.37 is the easiest example from the theory of categorical actions
of Kac–Moody Lie algebras gKM [80,123]. The degenerate affine Hecke algebra gets replaced

1336 C. Stroppel



by a more general quiver Hecke algebra (or KLR algebra) which is used to define a certain
graded 2-category 2 PUv.gKM/ categorifying PUv.gKM/; cf. Remark 2.11. The definition is via
generators and relations, algebraically [123] or diagrammatically [80], and matched in [21].

Application 3.40. A nice situation occurs when the morphisms (3.18) generate the endo-
morphism ring of an object En.M/ and the kernel is controlled by a cyclotomic quotient
of Hdaff

n . Then this ring can be determined explicitly. If, moreover, every indecomposable
projective object in C arises as a summand of En.M/ for n � 0, one might construct
equivalences by determining and matching endomorphism rings of projective generators
instead of providing a functor. This idea is applied, e.g., in [25] to the category F .ajb/ of
finite-dimensional representations of the linear supergroup GL.ajb/: F .ajb/ is equivalent
to the category of modules for an infinite-dimensional analogue of Khovanov’s arc algebra,
Remarks 3.2, 3.32. The notion higher Schur–Weyl duality [22] formalizes such nice Lie-
theoretic situations.

Definition 3.37 significantly rigidifies the involved category C. If C is finite-dimen-
sional irreducible of highest weight �, its weight space decomposition implies a decomposi-
tion ofC into direct summandsC� (cf. withOd) and theUniqueness Theorem, a very special
case of Rouquier’sUniversality Theorem, holds [31,123]: aminimal (i.e.,C� 'Vect) categori-
fication of such C is unique up to strong equivalence,meaning an equivalence of categories
� W C! C0 with an isomorphism � W � EŠ E� satisfying the expected compatibilities with
x, s. Uniqueness allows establishing abstractly equivalences of categories.

Application 3.41. The Uniqueness Theorem is powerful even for sl2-modules. It is used in
[31] to prove Broué’s abelian defect group conjecture for symmetric groups, one of the most
famous conjectures in modular representation theory of finite groups.

Application 3.42. By the Universality Theorem, the k � 3 generalizations [95,97] of Kho-
vanov’s arc algebras are Morita equivalent to certain cyclotomic quotients of Hdaff

n . These
algebras should provide an algebraic construction of the MSS� invariants as in Remark 3.32.

3.3.2. Tensor product categorifications
The Uniqueness Theorem heavily relies on the fact that finite-dimensional irre-

ducible modules are generated by their highest weight vectors and thus does not directly
apply to tensor products as in Theorem 3.38. A general theory for the process of taking
tensor products of categorifications is still missing. The naive outer tensor product of cat-
egorical slk-actions has the desired K0, but only a categorical action of slk ˚ slk instead
of slk . For a given tensor product, an axiomatic definition of a categorification was first
formulated by Losev and Webster in [91].

Their definition uses the reverse dominance ordering on weights in a tensor product.
Concretely, consider again the slk-module

Vd
V C with d D .d1; : : : ; dm/. View its weights

as tuples � D .�1; : : : ; �m/ of slk-weights, and � � � if �1C � � � C�m D �1C � � � C�m

and �1 C � � � C �i � �1 C � � � C �i (in the usual ordering on slk-weights) for each i < m.
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Via (3.9), this ordering translates into the Bruhat ordering on ƒd. The following is a refor-
mulation of the original definition [91] following closely [23].

Definition 3.43. A tensor product categorification of the slk-module
Vd

V C is the same
data as in Definition 3.37, but with the last property on based categorification replaced by

• C is a highest weight category with respect to the poset ƒd,

• the exact functors Ei and Fi send objects with �-flags to objects with �-flags,

• under the isomorphism
Vd

V C Š K0.C/˝Z C, Ee 7! Œ�C.wt.Ee//� as in (3.11),
the actions of Ei and Fi correspond to the actions of ŒEi � and ŒFi �, respectively.

Theorem 3.44. The highest weight category Od defines with the data from Theorem 3.38,
the poset ƒd, (3.12) and (3.11) a tensor product categorification of the slk-module

Vd
V C.

By the following result from [91] this is the only one up to strong equivalence:

Theorem 3.45. A tensor product categorification of the slk-module
Vd

V C is unique.

Remark 3.46. Definition 3.43 is again a special case of a more general definition [91]which
works for any Kac–Moody Lie algebra gKM instead of slk and any integrable highest weight
module of gKM for each tensor factor. It requires the following adjustments. On the one hand,
the action of the degenerate affine Hecke algebra gets replaced by a quiver Hecke algebra
from Remark 3.39 or an even more general Webster algebra [142]. On the other hand, the
highest weight category gets replaced by a fully stratified category. For the general theory of
such generalisations of highest weight categories see [26].

Remark 3.47. Let us return to the graded setting to obtain categorifications of the Uv.glk/-
modules

Vd
VC. One can turn OOd into a graded additive C-linear 2-category. For this, note

that HomOd.M; N / D
L

j 2Z Hom OOd. OM; ON hj i/ for M , N 2 Od which have graded lifts
OM , ON 2 OOd; similarly for functors. Objects in this 2-category are weights c of

Vd
VC, but

thought of as the corresponding summands in OOd via (3.13). Morphisms are generated by .i/

the functors 1c which are the identity on c and zero otherwise, .ii/ the functors OEi 1c viewed
as morphisms from c to cC ˛i where ˛i is the corresponding simple root for glk , and .iii/
fixed right adjoints of .ii/ which are the 1c OFi up to shifts. The 2-morphisms are generated
by the homogeneous components of the natural transformations (3.18). From [123] it follows
that this data defines a (strong) 2-representation of slk . By [28], it extends to an action of
2 PUv.q/, called a 2-representation of PUv.q/, for qD slk and also for glk by adding a grading
shifting operator.

Remark 3.48. The original definition in [91] connects Theorem 3.44 with naive outer tensor
products: For � 2 ƒd , there are Serre subcategories OdŒ< �� � OdŒ� �� in Od generated
by all L.�/ with � < � respectively � � �. The associated graded

L
� OdŒ� ��=OdŒ< ��

of Od formed from the subquotients can be identified with the naive tensor product of the
categorifications of the factors

Vdi V C, see [126] for an explicit identification. The highest
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weight structure, explicitly the posetƒd, creates a desired asymmetry, namely the asymmetry
in the tensor factors (2.4) when passing to the graded/quantized setting as in Remark 3.47.

Application 3.49. Categorical actions are often used in (specifically modular and super)
representation theory to create interesting gradings or to determine decomposition numbers.
We sketch an example directly connected to our framework. In [23], tensor product categorifi-
cations were defined for the limit Lie algebra slZ and constructed forM WD V

˝a

1 ˝ .V
�

1/˝b ,
very similar to above, using category O for the Lie superalgebra glajb . Here, V 1 D CZ is
the natural representation of slZ and V

�

1 its restricted dual. The basis vectors in CZ labeled
by a length k interval in Z span an slk-module V

˝a

C ˝ .
Vk�1

V C/˝b . Theorems 3.44
and 3.45 allow translating properties from O.glaC.k�1/b/ to the super side [23]. This finally
implies that the (integral blocks of) categoryO for gl.ajb/ and the categoryF .ajb/ of finite-
dimensional representation of GL.ajb/ can be equipped with a Koszul grading. Moreover,
the graded decomposition numbers are given by parabolic Kazhdan–Lusztig polynomials.
In case of F .ajb/; this grading agrees with the explicit construction in [25] from Applica-
tion 3.40. For a generalization to the more involved orthosymplectic supergroups, see [40].

3.4. Ad III: Categorified colored tangle invariants and projectors
The colored framed tangle invariant RT from Remark 2.4 involves ultimately tensor

products of arbitrary finite-dimensional irreducible Uv.glk/-modules, not only exterior
powers. A categorification of all such tensor products exists for slk andUv.slk/ [52,126,142],
and by [142] even for any simple complex Lie algebra gs. Webster [142] also ensures the exis-
tence of tensor product categorifications for gs. He uses categories of graded modules over
graded algebras which generalize quiver Hecke and quiver Schur algebras. These algebras
are defined diagrammatically, so that all calculations are elementary, but usually not easy.
The grading allows to get categorifications of Uv.gs/-modules as in Remark 3.47 [142] with
a direct generalization of Theorem 3.30 to arbitrary gs. Instead of formulating this in detail,
we indicate phenomena which occur, even for gs D slk , when passing from tensor products
of fundamental representations to arbitrary irreducible ones. On the way we construct tensor
product categorifications for slk using the results from the previous section. The slk-action
extends by construction to a glk-action, even to a 2-representation of PUv.glk/when invoking
gradings. However, not all irreducible glk-modules occur in this way as tensor factors.

Any irreducible finite-dimensional slk-module is a quotient of some
Vd

V C as in
Section 3.3.2 such that its highest weight is the sum of the highest weights of the tensor fac-
tors. Taking tensor products

Vd.1/ V C ˝ � � � ˝
Vd.r/ V C � V .�1/˝ � � � ˝ V .�r / DW V .�/

realizes finite tensor products V .�/ also as quotients of some
Vd

V C which we consider
now. Via (3.11), the irreducible objects in Od give rise to a special basis (in fact, the v D 1-
specialized Lusztig dual canonical basis) of

Vd
V C. It turns out that the kernel of the quotient

to V .�/ is spanned by a subset of these special basis vectors. Fix 1 � j � r . Combinato-
rially, one can label standard basis vectors (2.12) in

Vd.j / V C canonically by column strict
tableaux and then basis vectors in V .�j / by the set Ij of semistandard tableaux, i.e., those
which are additionally weakly row strict. The shape is determined by d.j / or, equivalently,
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�j and fillings are from ¹1; : : : ; kº. Consider now the standard basis vectors Ee as in (3.9)
which correspond to m-tuples not in I1 � � � � � Ir . They define (by taking the irreducible
quotient of the corresponding parabolic Verma module in (3.13)) a set of irreducible objects
L.wt.Ee// 2 Od, thus a Serre subcategory �� in Od.

We obtain a categorification of V .�/ as constructed in [126] and implicitly in [142]:

Theorem 3.50. The Serre quotient Od=�� inherits a categorical slk-action from Od. This
is a tensor product categorification in the sense of [91] categorifying V .�/ with the ordering
on the labeling set of irreducible objects induced from ƒd. From OOd as in Remark 3.47, the
graded version OOd= O�� inherits an action of 2 PUv.glk/.

The quotient functors �� W
OOd ! OOd= O�� are exact and induce ZŒv˙1�-linear mor-

phism on the Grothendieck groups (which, however, usually do not split over ZŒv˙1�):

OOd ��
// //

_

K0

��

OOd= O��_

K0

��Vd
V Z

C

Œ�� �
// // V.�/Z

(3.20)

This categorifies in particular for kD 2 any V .�/with � Dm!1 where!1 is the fundamental
weight and m 2 Z�0, by realising it as a categorification of the Jones-Wenzl quotient

.V Z
C;gl2

/˝m

Œ�m�WDŒ�� �
-- --
V Z

C .�/:split ?ll
(3.21)

with categorificaton of the quotient map. Note that this quotient map splits over C.v/.

Remark 3.51. Theorem 3.50 requires a more general version of Definition 3.43 from [91],
see Remark 3.46, as the quotient category Od=�� might not be highest weight, but only
fully stratified. Combinatorially, this is reflected in higher-dimensional weight spaces of the
tensor factors of V .�/. Using only fundamental representations avoids this problem as they
are minuscule, and also avoids taking duals or inverses of determinant representations.

In contrast to OOd, the quotients Od=�� usually have infinite global dimension. Thus,
the computation of a derived left adjoint L�� to the quotient functor �� requires infinite
resolutions and unbounded derived categories. This becomes relevant in categorifications of
colored tangle invariants following the knot-theoretic coloring via cabling and projectors.
The idempotent functor pr� WD L�� �� is a categorified projector.

Remark 3.52. Working with infinite complexes is delicate, in particular when Grothendieck
groups or Euler characteristics are involved. To avoid an Eilenberg swindle and the collapse
of the Grothendieck groups, wework in the graded setting with certain subcategoriesDr. OO/

of the unbounded derived category such that K0.Dr. OO//Š K0. OO/˝ZŒv˙1� Z..v//, see [2]

for a precise definition. The functors �� , L�� induce then Z..v//-linear maps

Œ�� � W .V Z
C /˝m

˝ZŒv˙1� Z
�
.v/

�
� V.�/Z

˝ZŒv˙1� Z..v// W ŒL�� �: (3.22)
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Example 3.53. In case of Uv.gl2/, there is the quotient map Œ�2� from (3.21) to the biggest
irreducible quotient. Explicitly for m D 2 we have a basis of the quotient:

b1 WD Œ�2�.e1 ˝ e1/; b WD Œ�2�.e1 ˝ e2/ D v�1Œ�2�.e2 ˝ e1/; b2 WD Œ�2�.e2 ˝ e2/:

A split of Œ�2� overC.v/ is given by bi 7! ei ˝ ei and b 7! 1
Œ2�

.e2˝ e1C v�1e1˝ e2/. Inter-
preting the latter as .ve2 ˝ e1 C e1 ˝ e2/.1 � v2 C v4 � � � � / 2 .V Z

C /˝2 ˝ZŒv˙1� Z..v//,
we obtain the morphism ŒL�2� induced via (3.22) from L�2 (in fact without explicitly con-
structing L�2). Over Z

�
.v/

�
, a split (3.21) exists with a categorification. The functor pr2

then categorifies Œpr2�, which is the easiest example of a Jones-Wenzl projector.

Remark 3.54. In case of Uv.gl2/, the projector (3.21) from V ˝m
C;gl2

onto the biggest irre-
ducible summand is the famous Jones–Wenzl projector JWm. This was categorified the first
time in [52] using a Serre quotient functor, and independently in its Koszul dual V�;gl2

-
version in [33] using Bar-Natan’s approach to Khovanov homology, and in [125] using iterated
categorified full twists.

As a special case, the RT value of the unknot colored by the Uv.glk/-module V Z.�/

as in (3.20) can be categorified by taking the MSSC-value of
P

i di nested cups (viewed as a
derived functor) followed by pr� and followed by the value of

P
i di nested caps (the projector

pr� is displayed on the left and the categorified value of the colored unknot on the right):

L��

��

L��

��

� � �

� � �

� � �

� � �

: (3.23)

Example 3.55. In case k D 2 and V.�/ is 3-dimensional, the value of (3.23) can be realized
as a complex in the unbounded homotopy category K�.C-modZ.v//. A lengthy calculation
gives the graded Poincaré polynomial v2t2 C 1C v�2 C

v�6t�2.1Ct�1/

1�t�2v�4 2 ZŒt˙1�..v// [138].
Its Euler characteristic equals v2 C 1C v�2 D Œ3�; which is indeed the RTV.�/-value of the
unknot. By a uniqueness result of categorified Jones–Wenzl projectors from [33], the value of
the unknot from (3.23) or from Theorem 3.56 agrees with the Cooper–Krushkal categorified
value [33] of the colored unknot up to Koszul duality (i.e., a transformation v 7! t�1v�1).

Let L be an oriented link with planar projection D and coloring col assigning some
V .�c/ to each components c ofD. Assume .V Z

C /˝mc� V Z.�c/ as in (3.20). ToD we attach
its color-cabled version Dcc: we first replace each strand in a component c by its cabling, i.e.,
bymc parallel strands oriented as before. Then wewrite the result as a composition t1 � � � tr of
basic tangle diagrams, and finally place for one upwards pointing original strand in D a pro-
jector (3.23) on its cabling. Let MSSC.Dcc/ be the associated composition of derived functors
given by MSSC with additionally pr� included when the projector occurs. Using the identifi-
cation from Corollary 3.31, we can apply this functor to the vector space C concentrated in
bidegree zero to get an object MSSC.Dcc/.C/ in DO.C-modZ.v// � K�.C-modZ.v//.
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The categorification [138] of the colored framed oriented tangle invariant with colors
irreducible Uv.slk/-modules (or their Uv.glk/-versions (3.20)) implies for links:

Theorem 3.56. The assignment D 7! MSSC.Dcc/.C/ defines an invariant MSSCcol of colored
framed oriented links. It induces on K0 the colored RT-invariant from Remark 2.4 for slk .

Remark 3.57. The colored knot invariants from Theorem 3.56 are usually infinite com-
plexes, even for the unknot. The Poincaré series of MSSC.Dcc/.C/ has values in ZŒt˙1�..v//.
This is similar to the HHH-invariant, but we believe it is even harder to compute. For k D 2,
these invariants should be directly connected to the invariants constructed in [30], where
impressive explicit examples are computed. The occurring infinite series are secretly rewrit-
ing quotients Œa�

Œb�
of quantum numbers, see Example 3.53. A realization of such quotients as

Euler characteristic of an infinite complex is called fractional Euler characteristic in [53].

Recall from Section 2 that the HOMFLY-PT polynomial recovers the quantum glk link
invariants RTV�

by specialization of a to vk . One might expect a similar connection for the
categorifications, i.e., between the triply graded KR link homologywhich, by Theorem 3.12, is
a categorification of the HOMFLY-PT-polynomial and MSS�. Naive specialization does not work,
but there is a spectral sequence connecting the two theories, predicted in [39] and established
in [117]. Also, recall from Section 3.2 that the approach to compute KR.t.n;q// and its limit
KR.t.n;1// for torus links uses categorified projectors. On the other hand, MSSC.,cc/.C/, or its
Koszul dual version MSS�.,cc/.C/, can be seen as a categorification of the closure of a pro-
jector. One again might expect a connection between KR.,/n from Example 3.9, KR.t.n;1//,
and MSS˙.,cc/.C/. The following reformulates conjectures from [59]:

Conjecture 3.58. The algebra B D CŒu1; : : : ; un� ˝
V�

Œ�1; : : : �n� can be turned into a
differential bigraded algebra .B; dk;˙/ with homology isomorphic to MSS˙.,cc/.C/ where
col D V˙.n!1/. The grading on B and the differential dk;˙ depends on k and the sign˙.

Remark 3.59. A conjectural grading and differential is formulated in [59] for �. In case
k D n D 2, Conjecture 3.58 follows up to an overall grading shift by a comparison of [33]

with the formulas in [59], see [138] for a precise statement. In general, the conjecture is still
open.

Q5: Is there a conceptual method to compute the categorified colored invariants?
Q6: To which extent is MSS˙col and its extension to framed tangles functorial?

Motivated by and based on constructions of link homologies in physics, invariants
of 3-manifolds are developed in, e.g., [61, 62]. On the mathematical side, first steps in this
direction are done in [53] by constructing categorified 3j - and 6j -symbols via fractional
Euler characteristics.
Q7: Do these colored slk-invariants give rise to some invariant of 3-manifolds?
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4. Two proposals toward 4-TQFTs

We sketch two promising routes towards 4-TQFT based on Soergel bimodules. The
first one is based on tensor product categorifications, the second one on the categorification
of Hecke algebras and braid groups using Soergel bimodules and Rouquier complexes.

Braided monoidal structure on 2-representations. Recall the starting point of algebraic
categorification: the proposal [34] for constructing a 4-dimensional TQFT via Hopf cate-
gories. We like to interpret this as the wish of constructing, via categorified representation
theory of quantum groups, a 0–1–2–3–4-theory [51], i.e., a theory for d D 4 which not only
evaluates at d - and .d � 1/-, but also at .d � 2/-; : : : ; 1- and 0-dimensional manifolds. To
express the gluing laws between these levels, one has to work [8], [92] in general with an
n-category of bordisms (viewed as .1; n/-category) and define a fully extended n-TQFT as
a functor from this symmetric monoidal category into some symmetric monoidal n- (respec-
tively .1; n/)-category. According to the cobordism hypothesis [8,92] such a fully extended
TQFT F is determined by the value F.pt/ at a point, see [7,92,128] for partial proofs.

Already the question what Chern–Simons theory attaches to a point is subtle and
depends on the perspective. Following [51,144], Chern–Simons theory or the related Witten–
Reshetikhin–Turaev theory can be viewed as an anomalous 0–1–2–3 theory of oriented
4-manifolds, i.e., a morphism from the trivial theory to an invertible fully extended 4-TQFT
F defined on oriented manifolds. A similar interpretation was proposed by Walker, and the
related invariant of a 4-manifold was combinatorially described in [35]. These interpretations
propose attaching a certain braided monoidal category F.pt/ to a point [51]. Coming back
to our setting, this suggests that a categorification of the braided monoidal category of rep-
resentations of a quantum group might arise as the value Fcat.pt/ of a point of an anomaly
Fcat, some fully extended (possibly partial) 5-TQFT with an anomalous 0–1–2–3–4-theory.

Remark 4.1. Some relevance [101] for 4-dimensional topology is already visible in Kh and
MSS�, i.e., in categorified intertwiners of Fund�

2 as in Remark 3.32, in particular via tangle
cobordisms for surfaces in dimension 4 [67,77] and for invariants of 4-manifolds [106].

Concretely, one seeks a monoidal structure on the 2-category of 2-representations
ofUv.q/ as in Remark 3.47 for qD glk or slk and say �D 1. Sections 3.3 and 3.4 presented
tensor product categorifications and indicated categorifications of the duals and the braiding
morphisms. The process of taking tensor products, i.e., the construction of a tensor product
or an inner hom for 2-representations is, however, more involved. Inspired by (bordered)
Heegard Floer theory, Manion and Rouquier [99, 100] give such a construction in case q is
the positive part gl.1j1/C of the Lie superalgebra gl.1j1/ (for the analogue of Remark 3.47
see [79]). The passage to gl.1j1/C surprisingly simplifies the situation. In contrast to qD gl2

or sl2, homotopical complications disappear. The result of [100] is supposed to connect (as
the value at an interval) to a slightly different type of TQFT and the theory predicted in [62].

Remark 4.2. This seemingly very different gl.1j1/C-theory is still related to Section 3.3 via
an interpretation in terms of subquotients of category O [87]. Only gl.1j1/C appears, since
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categorical actions of gl.1j1/ have not yet been defined. This might be connected with the
nonsemisimplicity of the finite-dimensional representation theory of gl.1j1/, see, e.g., [25].

Rouquier, however, announced (in an appropriate A1-setting) the existence of a
monoidal structure on the 2-category of 2-representations of Uv.q/ for an arbitrary Kac–
Moody Lie algebra q and a candidate for a braiding.

This result should provide the desired value Fcat.pt/. In the spirit of [34], we propose
to call the resulting 2-category with its braided monoidal structure the Hopf category of q

and reformulate ideas from [34] as:

Prediction 4.3. The Hopf category of q is the value Fcat.pt/ for an anomaly fully extended
(partially defined at the top) 5-TQFT with an anomalous 0–1–2–3–4-theory.

Soergel bimodules, braided monoidal 2-categories, and TQFT. We finish by proposing
another approach towards 4-TQFTs using more directly categories of Soergel bimodules.
This is again motivated by the idea that a braided monoidal category might occur as the
value F.pt/ at a point [51] in a 0–1–2–3-theory. We seek to increase the dimensions to a
0–1–2–3–4-theory with a braided monoidal bicategory as the value F.pt/ of some fully
extended 5-TQFT F . We sketch some first steps. This is current work with Paul Wedrich.

Remark 4.4. The first definition of a semistrict monoidal and a semistrict braided monoidal
2-category is due to [70,71]. It was then improved and put into a more concise definition in
[9] with a technical adjustment in [36]. The concepts also appear as (braided) Gray monoids
in [37]. By a braided monoidal bicategory we mean the less strict version from [63].

In the following let m; n 2 N0. Recall the category �Bimn of Soergel bimodules
from Section 3.2 with R0 WD C and �Bim0 finite-dimensional graded vector spaces. We
view �Bimn as a graded monoidal category with tensor product ı1 W .M; N / 7!M ˝Rn N .
If now M 2 �Bimm, N 2 �Bimn, then M � N WD M ˝C N is an Rm ˝C Rn D RmCn-
bimodule and by construction an object in �BimmCn. For morphisms f and g in �Bimm

and �Bimn, respectively, we define then f � g in the obvious way and set m� nDmC n.
To get the desired semistrictness we use the monoidal category DBimn ' �Bimn

[45,48] from Remark 3.20. We omit giving the definition of DBimn (it would not even fit on
a page) and just recall that DBimn is the Karoubian closure of a graded monoidal category
DBim0

n [48]. The definition of DBim0
n is via generators and relations in terms of diagrams

(similar to the usual string diagrams for higher categories). The morphism spaces come with
distinguished bases, often called light leaves bases. A picked basis allows one to mimic the
concept of coordinatized vector spaces from [70] and (semi)strictify the setup. Implicitly
we assume this now, not altering the notation. We obtain categories enriched in C-linear
categories (we use bicategories as in [14] and monoidal bicategories as, e.g., in [128]):

Theorem 4.5. There is a bicategory �Bim.2/ with objects N0 and nontrivial C-linear mor-
phism categories .2/�Bim.m;n/ only in case mD n, in which case �Bim.2/ .n;n/D �Bimn

with composition ı1. Similarly for DBim.2/ , but with �Bimn replaced by DBimn.
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Moreover, �Bim.2/ and DBim.2/ can be turned into monoidal bicategories with tensor func-
tor�, even into a semistrict monoidal 2-category in the sense of [9,36] in case of DBim.2/ .

Remark 4.6. An analogue of �Bim.2/ for singular Soergel bimodules as in Remark 3.23
exists as well (with the expected definition). For simplicity, we do not discuss this here.

The proof is done by explicitly constructing the required data and checking the
coherence relations. Replacing �Bimn with the graded dg-categoryC b.�Bimn/ of bounded
chain complexes of Soergel bimodules we get a category enriched in graded C-linear dg-
categories, similarly withC b.DBimn/ instead ofDBimn. Theorem 4.5 directly extends and
provides bicategories, denoted �Bim2 and DBim2 , now realized as categories enriched [55]

in the monoidal category of C-linear dg-categories [74].
We consider from now on only the stricter version DBim2 . To define a braiding, we

need in particular an adjoint equivalenceB W�)�op [9,63]. This data includes a braiding 1-
morphism B..a; b// in DBim2 .a� b D aC b; b� aD bC a/ for any a; b 2N0. Thinking
intuitively about this braiding 1-morphism gives us a candidate:

ˇD : : :

: : :: : :

: : :

a b

 
Rouquier complex X.ˇ/ with

Ř D .ˇb � � �ˇ1/ � � � .ˇiCb�1 � � �ˇi / � � � .ˇaCb�1 � � �ˇa/; (4.1)

namely the Rouquier complex X. Ř/ 2 C b.�BimaCb/ from Section 3.2 with Ř as in (4.1)
translated via the above equivalence to an object B..a; b// in C b.DBimaCb/.

Theorem 4.7. The proposed adjoint equivalence B satisfies the required naturality condi-
tions [90] for the generating 1- and 2-morphisms of DBim up to canonical homotopy.

To obtain an honest braiding, however, one has to pass to the homotopy categories
which loses quite a lot of information or to a category DBim2

1 enriched in1-categories
[55]. We construct such a category DBim2

1 by applying a (rather technical and not standard)
dg-nerve construction to the morphism categories. We expect this construction to satisfy:

Conjecture 4.8. DBim2
1 is a braided monoidal bicategory.

Remark 4.9. Braided monoidal 2-categories with linear hom-categories and finiteness con-
ditions should be objects in some symmetric monoidal 5-category which arises as next step
in the ladder of symmetric monoidal n-categories (made explicit in [20]: objects are certain
monoidal categories for n D 3 and certain braided monoidal categories for n D 4).

Remark 4.10. We can view DBim2
1 as a category object in1-categoriesCat1. We expect

this to be anE2-algebra in the1-category of .1;2/-categories [64,93]. HigherMorita theory
of En-algebras [68] provides a possible ambient .1; 5/-category for our hoped for TQFT.

Because of lacking finiteness conditions one should not expect n-dualisability [92]

of DBim2
1 for n > 3, but we hope it holds for nD 3; 4 for quotients arising from actions on

the glk-theories MSS� for fixed k 2N: An analogue of DBim2
1 defined using singular Soergel

bimodules, Remark 4.6, acts by Remark 3.24 on the 2-categories OOd from Remark 3.47 for
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any fixed k. We conjecture that the largest quotient DBim2
1 .k/ which still acts (for fixed k)

has the desired finiteness properties to provide a fully extended (partial) 5-TQFT:

Conjecture 4.11. Soergel bimodules give rise to a braided monoidal bicategory
DBim2

1 .k/, k 2 N, which is the value at a point of an anomaly with an anomalous
0–1–2–3–4-theory.
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1. Introduction

In this paper we will give an introduction to noncommutative crepant resolutions
with some emphasis on our joint work with Špela Špenko about quotient singularities of
reductive groups. Other surveys are [96,115,131].

1.1. Notation and conventions
We fix a few notations and definitions which are mostly self explanatory. For sim-

plicity, we assume throughout that k is an algebraically closed field of characteristic zero,
although this is often not necessary. In Section 5 we put k D C when invoking Hodge theory.
For us an algebraic variety is a possibly singular integral separated scheme of finite type
over k.

Modules over rings or sheaves of rings are left modules. Right modules are indi-
cated by .�/ı. If ƒ is a ring then we denote by D.ƒ/ the unbounded derived category of
complexes of ƒ-modules and by Perf.ƒ/ its full subcategory of perfect ƒ-complexes. If ƒ

is noetherian then we write mod.ƒ/ for the category of finitely generated ƒ-modules. We
also put D.ƒ/ D Db.mod.ƒ//. We use similar notations in the geometric context. If X is
an Artin stack and ƒ is a quasicoherent sheaf of rings on X then DQch.ƒ/ is the unbounded
derived category of complexes of left ƒ-modules with quasicoherent cohomology. The cat-
egory of perfect ƒ-complexes is denoted by Perf.ƒ/, and we also put D.ƒ/ D Db.coh.ƒ//

when ƒ is noetherian. If ƒ D OX then we replace ƒ in the notations by X.
A finitely generated R-module M over a normal noetherian domain is said to be

reflexive if the canonical map M 7! M __ is an isomorphism where M _ D HomR.M; R/.
This implies in particular that M is torsion free. If R a commutative noetherian domain then
amaximal Cohen–MacaulayR-module is anR-moduleM such thatMm is maximal Cohen–
Macaulay as Rm-module for every maximal ideal m. If R is has finite injective dimension
then we say that R is Gorenstein. This implies that R is maximal Cohen–Macaulay.

1.2. Crepant resolutions and derived equivalences
Let X be a normal algebraic variety with Gorenstein singularities. A resolution of

singularities � W Y ! X is said to be crepant if ��!X D !Y . In some sense, a crepant
resolution is the tightest possible smooth approximation of an algebraic variety. Such crepant
resolutions need not exist, however. For starters, their existence implies that X has rational
singularities [89, Corollary 5.24] and this already strong restriction is far from sufficient. For
example, the three-dimensional hypersurface singularities

x2
C y2

C z2
C wn

D 0 .n � 2/ (1.1)

have crepant resolutions if and only if n is even [111, Corollary 1.16]. When crepant resolu-
tions do exist they are generally not unique. For example,

xy � zw D 0; (1.2)

which corresponds to n D 2 in (1.1), has two distinct crepant resolutions given by blowing
up .x; z/ and .x; w/. This is the so-called “Atiyah flop.”
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Nonetheless, experience has shown that such different crepant resolutions are
strongly related. In particular, we have the following result:

Theorem 1.1 ([6, 90], see also Section 5 below). Assume that X has canonical Gorenstein
singularities. Then the Hodge numbers of Y for a crepant resolution Y ! X are independent
of Y .

Kawamata and independently Bondal and Orlov in their lecture at ICM2002 con-
jectured an analogous categorical result, a variant1 of which we state below.

Conjecture 1.2 ([22, Conjecture 4.4], [76, Conjecture 1.2]). Assume X is a normal algebraic
variety with Gorenstein singularities and �i W Yi ! X for i D 1; 2 are two crepant resolu-
tions (by schemes or DM-stacks). Then there is an equivalence of triangulated categories
F W D.Y1/ Š D.Y2/, linear over X (cf. Remark 1.5 below).

The conjecture is known (under some probably unnecessary projectivity hypothe-
ses) in dimension � 3, by the work of Bridgeland [27] (see Section 1.4 below), and for toric
varieties, by the work of Kawamata [79]. For symplectic singularities [10], it is true, up to an
étale covering of X , by [72, Theorem 1.6]. Furthermore, it is known for many specific crepant
resolutions, e.g., those related by variation of GIT [5,59,60] (see also Section 4.2 below).

Remark 1.3. Conjecture 1.2 makes no statement about the nature of the equivalence
D.Y1/ Š D.Y2/. In the case of the Atiyah flop, one possible equivalence is given by the
Fourier–Mukai functor for the “fiber product kernel” OY1�X Y2 [21, Theorem 3.6] (see also
[18]) but this is far from the only possibility. Furthermore, OY1�X Y2 does not always work as
Example 1.4 below shows.

It is now understood, thanks to intuition from mirror symmetry, that the equiva-
lences in Conjecture 1.2 should be canonically associated to paths connecting two points
in a topological space called the “stringy Kähler moduli space” (SKMS). In the case of the
Atiyah flop, the SKMS is given byP 1 � ¹0;1;1º [48,59]. See also [63] and Section 4.3 below.
The fact that the asserted equivalence in Conjecture 1.2 is expected to be noncanonical by
itself might be the reason that the conjecture seems difficult to prove.

Below Gr.d; n/ is the Grassmannian of d -dimensional subspaces of the n-dimen-
sional vector space kn.

Example 1.4. The cotangent bundles T � Gr.d; n/ and T � Gr.n � d; n/, for complementary
Grassmannians with d � n=2 are crepant resolutions of B.d/ WD ¹X 2 Mn.k/ j

X2 D 0; rk X � dº (e.g., [37, §6.1]). According to [37, §6], there is an equivalence
F W D.T � Gr.d; n// ! D.T � Gr.n � d; n//, but it is not given by the fiber product kernel
(see [77,103] for the case .k; n/ D .2; 4/).

1 We have omitted the projectivity hypotheses which appear in the original context and
extended the conjecture to DM-stacks which is the natural context as will become clear
below.
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Remark 1.5. As said, one requires the derived equivalence F in Conjecture 1.2 to be linear
over X . On the most basic level, this means the following: let Perf.X/ be the category of
perfect complexes on X . Then D.Y1/, D.Y2/ are Perf.X/-modules, where A 2 Perf.X/

acts as L��
i A

L
˝Yi

�, for i D 1; 2, and we want natural isomorphisms F.L��
1 A

L
˝Y1 �/ Š

L��
2 A

L
˝Y2 F.�/ satisfying the appropriate compatibilities. To simplify the exposition, we

will implicitly assume in the rest of this paper that all constructions satisfy the appropriate
linearity hypotheses.

1.3. Noncommutative rings
Most of the results below will be based on the interplay between algebraic geom-

etry and noncommutative rings. The relation between those subjects was first observed by
Beilinson [11]. The connection is via tilting complexes.

Definition 1.6. Let Y be a noetherian scheme. A partial tilting complex T on Y is a perfect
complex such that ExtiY .T ; T / D 0 for i ¤ 0. A tilting complex is a partial tilting complex
that generates DQch.Y / in the sense that its right orthogonal is zero, i.e., RHomY .T ;F / D 0

implies F D 0. A (partial) tilting bundle is a (partial) tilting complex which is a vector
bundle.

Below we will also use tilting complexes in slightly more general contexts (e.g.,
DM-stacks). Very general results concerning tilting complexes are [82, Theorems 1,2]. For
simplicity, we state a slightly dumbed down version of them, although below we will some-
times silently rely on the stronger results in [82]. See also [19,114].

Theorem 1.7 ([82, Theorems 1,2]). If T is a tilting complex on a noetherian scheme Y then
RHomY .T ; �/ defines an equivalence of categories between DQch.Y / and D.ƒı/ for
ƒ D EndY .T /. Moreover, if Y is regular then ƒ has finite global dimension. If, further-
more, ƒ is right noetherian then RHomY .T ; �/ restricts to an equivalence of categories
D.Y / Š D.ƒı/.

So a tilting complex reduces the homological algebra of Y to the usually non-
commutative ring ƒ D EndY .T /. In the case of projective space P n, one can take
T D O ˚ O.1/ ˚ � � � ˚ O.n/ [11].

1.4. Bridgeland’s result
1.4.1. Flops
Let us return to Conjecture 1.2. In the absence of any specific conjectural construc-

tion of the asserted derived equivalence (see Remark 1.3), one may try to use the fact that
if �1, �2 are projective then Y1, Y2 are connected by a sequence of “flops” [78, Theorem 1],
so that it is then sufficient to prove the conjecture for flops. Recall that crepant resolutions
�1 W Y1 ! X , �2 W Y2 ! X form a flop if X has terminal singularities [89, Definition 2.12]
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and there is a line bundle L on Y1, relatively ample for �1, such that the corresponding2 line
bundle L0 on Y2 is antiample.

In [27] Bridgeland proves that Conjecture 1.2 is true for three-dimensional flops (see
also [38]). The key point is that the fibers of �1, �2 have dimension � 1. In the next section
we explain a reinterpretation of Bridgeland’s proof, following [129].

1.4.2. Maps with fibers of dimension � 1

Assume that � W Y ! X is a projective map between noetherian schemes. We
impose the following conditions:

(1) R��OY D OX .

(2) The fibers of � have dimension � 1.

To simplify the discussion, we will restrict ourselves, furthermore, to the case that
X D SpecR is affine.3 It turns out that in this case coh.Y / contains a tilting bundle which
is of the form T WD OY ˚ T0 where T0 is obtained as an extension

0 ! Or
Y ! T0 ! L ! 0; (1.3)

where L is an ample line bundle on OY generated by global sections and (1.3) is associated
to an arbitrary finite set of generators of H 1.Y; L�1/ as R-module (see [129, (3.1)]).

Remark 1.8. Note that by hypothesis (1), OX , L are partial tilting bundles on Y such that
OX ˚ L generates DQch.Y / [129, Lemma 3.2.2]. Moreover, (2) and the fact that L is generated
by global sections imply Ext>0

Y .OY ; L/ D 0. Likewise, (2) implies Ext>1
Y .L; OY / D 0. The

construction of the tilting bundle T is based on the principle of “killing the remaining back-
ward Ext1” in the sequence .OX ;L/ by a so-called “semiuniversal extension.” This principle
extends to longer sequences. See, e.g., [61, Lemma 2.4], [62, Lemma 3.1]. See also Section 3.4
below for another application.

So if we put ƒ D EndY .T /, then we have EndY .T _/ D ƒı, and from Theorem 1.7
we obtain equivalences4

RHomY .T ; �/ W D.Y / Š D.ƒı/; RHomY .T _; �/ W D.Y / Š D.ƒ/: (1.4)

To understand (1.4), we can ask what ƒ looks like.

Example 1.9. Consider again the Atiyah flop (1.2). In this case R D kŒx; y; z; w�=

.xy � zw/. This is a toric singularity, and one can check that its class group is Z with

2 This makes sense since Y1 and Y2 are isomorphic in codimension one.
3 In [129] X is assumed to be quasiprojective.
4 It is a fact that T is tilting if and only if T _ is tilting. The only nontrivial part is the gen-

eration property. To this end one may use that T generates DQch.Y / if and only if Perf.Y /

is the smallest épaisse subcategory of DQch.Y / containing T [105, Lemma 2.2], together
with the fact that .�/_ is an autoequivalence of Perf.Y /.
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generator I D .x; z/. The inverse of I is the fractional ideal I �1 D x�1.x; w/. The ring ƒ

turns out to be the same (up to isomorphism) for both crepant resolutions of SpecR,

ƒ D

 
R I

I �1 R

!
: (1.5)

Interestingly,ƒ is built up from the three indecomposable gradedmaximal Cohen–Macaulay
R-modules:R, I , and I �1. In particular,ƒ is itself Cohen–Macaulay asR-module. This last
fact turns out to be true more generally.

Theorem 1.10. Assume that X D SpecR is a normal Gorenstein variety. Assume that there
exists a projective crepant resolution of singularities � W Y ! X such that the dimensions
of the fibers of � are � 1. Let T be the tilting bundle defined above5 and put T D �.Y; T /.
Then ƒ D EndY .T / D EndR.T /. Furthermore, ƒ and T are maximal Cohen–Macaulay
R-modules.

Proof. The fact that ƒ D EndY .T / is maximal Cohen–Macaulay follows from [129, Lemma

3.2.9] (see also [70, Theorem 1.5], stated as Theorem 2.6 below). Now T is maximal Cohen–
Macaulay because it is a direct summand of ƒ as R-modules. Functoriality yields a map
i W ƒ ! EndR.T / which is an isomorphism in codimension one (since the singular locus
of X has codimension � 2, as X is normal). Since ƒ is maximal Cohen–Macaulay, it is
reflexive and hence i must be an isomorphism.

This result applies in particular if X has dimension 2 or if it is of dimension 3 with
terminal singularities since then the condition on the dimension of the fibers is automatic.

Let us now assume thatX in Conjecture 1.2 is 3-dimensional and �1, �2 form a flop
(see Section 1.4.1). We will still be assuming that X D SpecR is affine for simplicity. For
i D 1;2, we then have tilting bundles Ti on Yi defined via (1.3), usingL on Y1 and .L0/�1 on
Y2 (see Section 1.4.1 for L; L0). Let .ƒi /iD1;2 be the corresponding endomorphism rings.
In this case Conjecture 1.2 follows from

D.Y1/
(1.4)
Š D.ƒı

1/; D.Y2/
(1.4)
Š D.ƒ2/; ƒı

1

Morita
Š ƒ2:

The asserted Morita equivalence is obtained in [129, §4.4] using the local structure of
3-dimensional terminal singularities (see [88, Example 2.3]). Nowadays wemay use [67, Corol-

lary 8.8] (see also [68, Theorem 1.5]) combined with [70, Theorem 1.5] (stated as Theorem 2.6
below) to obtain that in any case ƒ1, ƒı

2 are derived equivalent.
At the end of the day, we find that the two crepant resolutions Y1, Y2 ofX are derived

equivalent to the same noncommutative ring (either ƒı
1 or ƒ2). It turns out to be fruitful to

think of this intermediate noncommutative ring as a third crepant resolution of X , or of R,
namely a noncommutative crepant resolution.

5 As we have stated in Section 1.2, the fact that X has a crepant resolution implies that it has
rational singularities by [89, Corollary 5.24]. Thus in particular R��OY D OX .
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2. Noncommutative (crepant) resolutions

2.1. Generalities
Below R is a normal noetherian domain with quotient field K. We denote by ref.R/

the category of reflexive R-modules and if ƒ is a reflexive R-algebra then ref.ƒ/ is the cate-
gory of ƒ-modules which are reflexive as R-modules. A reflexive Azumaya algebra [98] ƒ is
a reflexiveR-algebra which is Azumaya in codimension one. A reflexive Azumaya algebraƒ

is said to be trivial if it is of the form EndR.M/ for M a reflexive R-module. In that case
ref.R/ and ref.ƒ/ are equivalent. This is a particular case of “reflexive Morita equivalence”
which is defined in the obvious way.

Definition 2.1. A twisted noncommutative resolution of R is a reflexive Azumaya algebra
ƒ over R such that gl dimƒ < 1. If ƒ is trivial then ƒ is said to be a noncommutative
resolution (NCR) of R.

Definition 2.2. Assume that R is Gorenstein. A twisted noncommutative crepant resolu-
tion ƒ of R is a twisted NCR of R which is in addition a Cohen–Macaulay R-module. If ƒ

is an NCR then such a ƒ is said to be a noncommutative crepant resolution (NCCR) of R.

The point of these definitions is that they provide reasonable noncommutative sub-
stitutes for “regularity,” “birationality,” and “crepancy.” This is explained in more detail in
[129, §4].

Remark 2.3. We will sometimes use the concepts introduced in Definitions 2.1, 2.2 for
schemes, possibly nonaffine. It is then understood that they reduce to the affine concepts,
when restricting to open affine subschemes.

Remark 2.4. In the sequel we will be mostly concerned with NCCRs and thus the other
definitions are mainly provided for context. Twisted NCCRs are natural generalizations of
NCCRs, but the good properties of NCCRs (sometimes conjectural) are usually not shared
by twisted NCCRs. See, e.g., Example 5.11 below. The definition of a (twisted) NCR is more
tentative. In particular, the normality and reflexivity hypotheses do not seem very relevant.
For example, there is a nice theory of noncommutative resolutions of nonnormal singularities
in dimension one [96].

Example 2.5. It follows from Theorem 1.10 and Theorem 1.7 that if there exists a projective
crepant resolution of singularities � W Y ! X such that the dimensions of the fibers of � are
� 1 then R has an NCCR.

Wemention the following theoremwhich gives another indication that the definition
of an NCCR is the “correct one.”

Theorem 2.6 ([70, Theorem 1.5]). Let f W Y ! SpecR be a projective birational morphism
between Gorenstein varieties. Suppose that Y is derived equivalent to some ring ƒ, then f

is a crepant resolution if and only if ƒ is an NCCR of R.

The following conjecture is a natural extension of Conjecture 1.2.
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Conjecture 2.7 ([128, Conjecture 4.6]). All crepant resolutions of X (commutative as well
as noncommutative) are derived equivalent.

We have the following result which is proved in the same way as the 3-dimensional
McKay correspondence [28].

Proposition 2.8 ([128, Theorem 6.3.1, Proposition 6.2.1]). If X has three-dimensional Goren-
stein singularities and it has an NCCR ƒ, then it has a projective crepant resolution Y ! X

such that ƒ and Y are derived equivalent.

Proposition 2.9. Conjecture 2.7 is true if X has dimension three, if we restrict to projective
crepant resolutions.

Proof. If X has an NCCR ƒ then by Proposition 2.8 ƒ is derived equivalent to a crepant
resolution. Hence we are reduced to Bridgeland’s result (see Section 1.4.1). Alternatively, to
have a very nice direct argument that any two NCCRs are derived equivalent in dimension
three, we may use [67, Corollary 8.8] (see also [68, Theorem 1.5]).

Proposition 2.8 is false for arbitrary three-dimensional Gorenstein singularities as
was shown by Dao [41].

Proposition 2.10 ([41, Theorem 3.1, Remark 3.2]). Assume S is a regular local ring which is
equicharacteristic or unramified, 0 ¤ f 2 S and R D S=.f / is normal. If dimR D 3 and
R is factorial then R has no NCCR.

Example 2.11. It turns out that there are 3-dimensional factorial hypersurface singularities
that admit a crepant resolution. A concrete example is given by R D kŒŒx0; x1; x2; x3��=

.x4
0 C x3

1 C x3
2 C x3

3/ [100, Theorem A,B]. In particular, a crepant resolution of such R does
not admit a tilting complex by Theorem 2.6.

If X is a normal Gorenstein algebraic variety with a crepant resolution then it has
rational singularities [89, Corollary 5.24]. A similar result is true for NCCRs.

Theorem 2.12 ([122, Theorem 1.1]). Let R be a normal finitely generated Gorenstein k-alge-
bra. If R has a twisted NCCR then it has rational singularities.

The actual result proved in [122] applies in a more general context and this has been
further exploited in [64,65] (see also [42, Corollary 1.7]).

Remark 2.13. In order to deal with singularities with a singular minimal model, Iyama and
Wemyss generalize the definition of an NCCR [69,70,132] to certain rings, of possibly infinite
global dimension, calledmaximal modification algebras (MMAs). Remarkably, many of the
results about NCCRs extend to MMAs. However, in this overview we will restrict ourselves
for simplicity to NCCRs.
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2.2. Relation with crepant categorical resolutions
We conjecture that noncommutative crepant resolutions are examples of “strongly

crepant categorical resolutions” as introduced by Kuznetsov in [93]. However, we can only
prove this in special cases.

Let X be an algebraic variety. A categorical resolution [93] of D.X/ is a “smooth”
triangulated category QD together with functors

�� W QD ! D.X/; ��
W Perf.X/ ! QD

which are adjoint (i.e., Hom QD
.��A; B/ Š HomD.X/.A; ��B/ for A 2 Perf.X/, B 2 QD)

such that the natural transformation idPerf.X/ ! ����, obtained by putting B D ��A, is
an isomorphism. This implies in particular that �� is fully faithful. There is some variation
possible in the definition of smoothness. For us it means that QD is equivalent to the derived
category of perfect modules over a smooth DG-algebra [75, Definition 2.23].

Remark 2.14. If � W Y ! X is a resolution of singularities of X then .D.Y /; R��; L��/

is a categorical resolution of D.X/ if and only if X has rational singularities. Remarkably,
however, it has been shown in [94] that D.Y / can be suitably enlarged to yield a categorical
resolution. On the other hand, this result cannot be extended to more general dg-categories
[54].

Following [93], we say that a categorical resolution . QD ; ��; ��/ of D.X/ is weakly
crepant if �� is both a left and a right adjoint to ��.

There is also a notion of a strongly crepant categorical resolution for which we need
the notion of a relative Serre functor. To define this, assume that X is Gorenstein and that QE

is a smooth triangulated category which is a Perf.X/-module. We will denote the action of
A 2 Perf.X/ onB 2 QE asA ˝X B and we assume that� ˝ � is exact in both arguments. We
also assume that the functor Perf.X/ ! QE W A 7! A ˝X B has a right adjoint QE ! D.X/

which we denote by RHom QE=X
.B; �/. That is, for C 2 QE we have functorial isomorphisms

Hom QE
.A ˝X B; C / Š HomX

�
A;RHom QE=X

.B; C /
�
:

An autoequivalence S QE=X
W QE ! QE is said to be a relative Serre functor for QE=X if there are

functorial isomorphisms

RHomX

�
RHom QE=X

.B; C /; OX

�
Š RHom QE=X

.C; S QE=X
B/

for B; C 2 QE . We say that QE=X is strongly crepant if the identity functor QE ! QE is a relative
Serre functor.

A strongly crepant categorical resolution ofX is a quadruple . QD ;��;��;˝X / such
that . QD ; ��; ��/ is a categorical resolution of X , � ˝X � is a Perf.X/-module structure
on QD such that QD=X is strongly crepant and �� is ˝X -linear. The last condition means that
for A;B 2 Perf.X/ we have functorial isomorphisms A ˝X ��B Š ��.A ˝X B/ satisfying
the appropriate compatibilities.

It is shown in [93, §3] that a strongly crepant categorical resolution is weakly
crepant, and, moreover, that if � W Y ! X is a crepant resolution in the usual sense then
.D.Y /; R��; L��; L��.�/ ˝Y �/ is a strongly crepant categorical resolution of X .
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The following easy lemma, which is an extension of [102, Example 5.3], shows that,
under suitable conditions, rings of the form EndR.M/ form crepant categorical resolutions.
If M is an R-module then add.M/ is the category spanned by modules which are direct
summands of some M ˚n.

Lemma 2.2.1. Assume that X D Spec R is an algebraic variety and let M be a finitely
generated R-module such that ƒ D EndR.M/ has finite global dimension. Then D.ƒ/ is
smooth. Assume in addition that R 2 add.M/. Then

Perf.R/ ! D.ƒ/ W N 7! M
L
˝R N (2.1)

yields a categorical resolution of singularities of X (since Perf.R/ Š Perf.X/). Moreover,
assuming furthermore that R is normal Gorenstein:

(1) if M is maximal Cohen–Macaulay then this categorical resolution is weakly
crepant;

(2) if ƒ is an NCCR then this categorical resolution is strongly crepant.

Note that if (2) holds then M is maximal Cohen–Macaulay since we have assumed
that R 2 add.M/.

The hypotheses of Lemma 2.2.1 are actually too strong. For example, an NCCR is
always a strongly crepant categorical resolution in dimension � 3. This follows from Propo-
sition 2.15 below which can be proved using the methods of [67,68].

Proposition 2.15. Assume that ƒ D EndR.M/ is an NCCR and dimR � 3 then

Extiƒ.M; M/ D 0 for i > 0: (2.2)

Proof. For the benefit of the reader, we give a proof. We may assume that R is local of
dimension 3 (the case dim � 2 is easy). By the Auslander–Buchsbaum formula [67, Propo-

sition 2.3] ƒ has global dimension 3. Since M is reflexive, it has depth � 2, and hence,
again by the Auslander–Buchsbaum formula, it has projective dimension � 1 over ƒ and,
moreover, it is projective over ƒ in codimension 2.

Hence we have a projective resolution of M as ƒ-module

0 ! P1 ! P0 ! M ! 0:

Applying Homƒ.�; M/, we get a long exact sequence of R-modules

0 ! R ! Homƒ.P0; M/ ! Homƒ.P1; M/ ! Ext1ƒ.M; M/ ! 0: (2.3)

Assume Ext1ƒ.M; M/ ¤ 0. Since M is projective over ƒ in codimension two, Ext1ƒ.M; M/

is finite dimensional and hence it has depth 0 as R-module. On the other hand, since
Homƒ.Pi ;M/ is reflexive as R-module, it has depth � 2. Finally, R being maximal Cohen–
Macaulay has depth 3. One may verify that these depth restrictions are incompatible with
(2.3).
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It seems too much to hope for that (2.2) would always be true, but the lack of time
has prevented us from seriously looking for a counterexample. On the other hand, we are
sufficiently optimistic to make the following conjecture.

Conjecture 2.16. If X D SpecR is a normal algebraic variety with Gorenstein singularities
then an NCCR of R always yields a strongly crepant categorical resolution of X .

To prove this conjecture, one would have to construct for an NCCR ƒ of R a partial
tiling complex P � of ƒ-modules such that RHomƒ.P �; P �/ D R.

Remark 2.17. The strongly crepantness of E=X as defined above is independent of the
resolution property. One may check that if ƒ=R is a twisted NCCR then D.ƒ/ is strongly
crepant over SpecR. But one may also check that it is not a categorical resolution.

3. Constructions of noncommutative crepant resolutions

3.1. Quotient singularities
Here we will restrict ourselves to quotient singularities for finite groups. Quotient

singularities for (infinite) reductive groups will be covered in Section 4.
If G is a finite group and W is a faithful finite-dimensional unimodular (i.e.,

detW D k) representation of G then the skew group ring

Sym.W /#G D EndSym.W /G

�
Sym.W /

�
is an NCCR for R D Sym.W /G (which is Gorenstein because of the unimodularity hypoth-
esis).

In dimension� 3 such quotient singularities always have a crepant resolution by the
celebrated BKR-theorem [28]. In higher dimension this is not so. The simplest counterexam-
ple is given by Z2 acting with weights .�1; �1; �1; �1/ on W D k4 because in that case R

is Q-factorial and terminal. See, e.g., [1].

3.2. Crepant resolutions with tilting complexes
In case R is a normal Gorenstein domain and Y ! SpecR is a crepant resolution

and T is a tilting complex on Y then EndY .T / is an NCCR of R by Theorem 2.6. Con-
versely, assuming a crepant resolution exists, any NCCR has to be of this form if we accept
Conjecture 2.7 (T is the dual of the image of ƒ under the asserted derived equivalence
D.ƒ/ Š D.Y /).

This is a very general method for constructing NCCRs. Note, however, that even in
dimension three there may be crepant resolutions without tilting complex. See Example 2.11.
Furthermore, as indicated in Section 3.1, there are normal Gorenstein singularities that admit
an NCCR but not a crepant resolution.

Example 3.1. A textbook example where this method works very well is the case of deter-
minantal varieties [34,36]. Let n � 1 and 0 � l < n. Let Xl;n D SpecR be the varieties of
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matrices in Homk.kn; kn/ D Mn�n.k/ which have rank � l . It is a classical result that X is
Gorenstein. It is also well known that X has a crepant Springer type resolution given by

Y D
®
.�; V / j V 2 Gr.l; n/; � 2 Homk.kn; V /

¯
;

where � W Y ! X sends .�; V / to the composition of � with the inclusion V ,! kn. If R

denotes the universal subbundle on Gr.l; n/ then Y is the vector bundle Hom.kn; R/ (i.e.,
Y D Spec Sym..R˚n/_/). Using Bott’s theorem, one computes that the Kapranov tilting
bundle on Gr.l; n/ [73] (see also [35][53] for the case of finite characteristic) pulls back to a
tilting bundle on Y , which then gives an NCCR of R. For other approaches to this example,
see [49] and Theorem 4.10 below.

Alas, things are often more complicated. For determinantal varieties associated to
symmetric of skew-symmetric matrices, the Springer type resolutions are not crepant so a
tilting bundle on them only gives an NCR (see [136]). NCCRs of such generalized determi-
nantal varieties will be obtained in Section 4 using a different approach.

Example 3.2. Another beautiful and much deeper example [13, 16] is given by cotangent
bundles of (partial) flag varieties T �.G=P /. If P is a Borel subgroup of G then this is a
crepant resolution of the nilpotent cone in Lie.G/. In general, they are crepant resolutions of
closures of Richardson orbits [104]. It is shown in [13,16] that T �.G=P / has a tilting bundle
but it is not obtained as the pullback of a tilting bundle on G=P . In fact, the construction
of the tilting bundle is highly nontrivial. To explain the construction, it is useful to exhibit a
slightly different point of view on tilting bundles.

Let Y be a noetherian scheme. If A is a quasicoherent sheaf of algebras on Y and
A D �.Y; A/ then we say that A is derived affine if A D R�.Y; A/ and the right orthog-
onal to A in DQch.A/ is zero. In that case R�.Y; �/ defines an equivalence of categories
between DQch.A/ and D.A/. It is not difficult to see that a vector bundle T on Y which has
everywhere nonzero rank is a tilting bundle, provided EndY .T / is derived affine.

We say that Y is derived D-affine if DY is derived affine where DY is the sheaf of
differential operators on Y . In characteristic> 0wemean byDY the sheaf of crystalline dif-
ferential operators, i.e., differential operators whichmay be expressed in terms of derivations,
without using divided powers.

Now let Z D G=P . The Bernstein–Beilinson theorem [12], valid in characteristic
zero, states that Z is even “D-affine” meaning that the equivalence R�.Z; �/ is also com-
patible with the natural t-structures. This is false in characteristic > 0. However, Z is still
derived D-affine [16, Theorem 3.2] whenever p is strictly bigger than the Coxeter number,
which we will assume now.

We will give a rough sketch how this is used in [13,16] to construct a tilting bundle
on Y D T �Z. Let us first assume that the characteristic of k is p > 0. To indicate this,
we will adorn our notations with .�/p . In that case DZp is coherent as a module over its
center which is equal to .SymZp

Ep/.1/ where .�/.1/ denotes the Frobenius twist, and Ep is
the tangent bundle on Zp . Hence we may view DZp as a sheaf of coherent algebras QD on
Spec.SymZp

Ep/.1/ D Y
.1/

p where Yp D T �Zp . The sheaf QD is still derived affine.
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Now QD is not of the form End
Y

.1/
p

.T
.1/

p /. However, if we let OYp be the formal com-

pletion of Yp at the zero section then it turns out that the restriction OD of QDp to OY
.1/

p is of the
form End OYp

. OTp/.1/ for a vector bundle OTp on OYp . Moreover, OD is still derived affine and so
OTp is a tilting bundle on OYp . Then one uses deformation theory6 to lift OTp to a tilting bundle
OT in characteristic zero. Finally, one may use the fact that Y D T �Z (as a vector bundle)
admits a nice Gm action to conclude by [72, Theorem 1.8] that OT is actually the completion of
a tilting bundle T on Y .

Hidden behind this construction is the fact that DZ is, in some sense, a canonical
noncommutative deformation of the symplectic variety T �Z. If Y is a general symplectic
variety then one may try to construct a noncommutative deformation using Fedosov quanti-
zation. This general idea has been used by Bezrukavnikov and Kaledin to prove an analogue
of the BKR theorem [28] for crepant resolutions of symplectic quotient singularities [14] and
by Kaledin to prove a suitable version of Conjecture 1.2 [72] for general symplectic sin-
gularities. To apply the method, one needs to be able to do Fedosov quantization in finite
characteristic, a problem which has been solved to some extent in [15].

3.3. Resolutions with partial tilting complexes
Assume R is a normal Gorenstein domain with rational singularities and

Y ! SpecR is a resolution which is not crepant. A strengthening of Conjecture 2.7 inspired
by [93] is that NCCRs are minimal in a categorical sense, i.e., their derived category embeds
inside D.Y /. This means that they are obtained as EndY .T / for a partial tilting complex T

on Y . For a very general result in this direction, see [93, Theorem 2]. We will restrict ourselves
to a special case which will be useful in Section 5 and which can be easily proved directly.

Proposition 3.3 ([93]). Let Z be a smooth projective variety with ample line bundle OZ.1/

and let X D SpecR be the corresponding cone. Assume !Z D OZ.�n/ for n � 1. Then R

is Gorenstein. Moreover, a resolution of singularities � W Y ! X of X is given by the line
bundle over Z associated to OZ.1/. Assume E 2 D.Z/ is such that:

(1) ExtiZ.E; E.m// D 0 for i > 0 and m � 0;

(2) ExtiZ.E; E.m// D 0 for i � 0 and m 2 ¹�1; : : : ; �n C 1º;

(3) E ˚ E.1/ ˚ � � � ˚ E.n � 1/ is a generator for DQch.Z/.

Let  W Y ! Z be the projection map and put T D �E . Then EndY .T / is an NCCR of R.

Proof. We write T .m/ D �.E.m//. Then we have

RHomY

�
T ; T .m/

�
D

M
l�0

RHomZ

�
E; E.m C l/

�
: (3.1)

6 Tilting bundles have in particular vanishing Ext1;2. Hence by classical deformation theory
they are unobstructed and rigid.
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Using (1) and (2), we deduce in particular that NT WD T ˚ � � � ˚ T .�n C 1/ is partial tilting
(and hence this is also the case for T ). Furthermore, from (3) we obtain NT ? D 0. So NT

is in fact tilting. Put ƒ D EndY .T /, Nƒ D EndY . NT /. By Theorem 1.7, Nƒ has finite global
dimension.

Via the decomposition (3.1) ƒ is an N-graded ring. Put ƒ�u D
L

m�u ƒm. Then
(as ungraded rings) we have

Nƒ D

0BBBBBB@
ƒ ƒ�1 : : : ƒ�n�1

ƒ ƒ : : : ƒ�n�2

:::
:::

: : :
:::

ƒ ƒ : : : ƒ�1

ƒ ƒ : : : ƒ

1CCCCCCA :

If we put � D Mn.ƒ/ then Nƒ � � and, moreover, � is (left and right) projective over Nƒ

and in addition the multiplication map � ˝ Nƒ � ! � is an isomorphism (it is a surjective
map between projective �-modules of the same rank). We claim that � (and hence ƒ) has
finite global dimension. Indeed, if M is a right �-module and P � ! M is a finite projective
resolution of M as Nƒ-module (which exists since gl dim Nƒ < 1) then � ˝ Nƒ P � is a finite
�-projective resolution of � ˝ Nƒ M D � ˝ Nƒ � ˝� M Š M .

Moreover, for i > 0,

ExtiR
�
EndY .T /; !R

�
D ExtiX

�
�� EndY .T /; !X

�
D ExtiY

�
EndY .T /; !Y

�
D ExtiY

�
T ; T .�n C 1/

�
D 0;

where in the second line we have used Grothendieck duality, in the third line the easily
verified fact that !Y D �.!Z.1//, and in the fourth line (3.1) and (1)–(2). It follows that
EndY .T / is maximal Cohen–Macaulay over R.

3.4. Three-dimensional affine toric varieties
For simplicity, we define an affine toric variety as X D Spec R where

R D kŒ�_ \ M� where M is a lattice and �_ is a strongly convex full dimensional lat-
tice cone in MR. Such an R is Gorenstein if there exists m 2 M such that � (the dual cone
of �_) is spanned by lattice vectors x 2 M _ satisfying hx; mi D 1. The lattice polytope
associated to R is defined as P D � \ hm; �i.

In this case there is the following beautiful result by Broomhead [32, Theorem 8.6].

Theorem 3.4. The coordinate ring of a 3-dimensional Gorenstein affine toric variety admits
a toric NCCR.

By a toric NCCR we mean that the reflexive module defining the NCCR is isomor-
phic to a sum of ideals. Broomhead’s proof uses the theory of “dimer models” which is
possible thanks to the combinatorics [57,66]. A proof not using dimer models but using this
combinatorics directly was given in [120].
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A different method for constructing NCCRs for affine Gorenstein toric varieties was
given in [119] and is based on a standard fact from toric geometry:

Lemma 3.5. A subdivision of � obtained by a regular triangulation of P with no extra
vertices yields a projective crepant resolution of SpecR by a toric Deligne–Mumford stack
[24]. If dimX � 3 then such a crepant resolution has fibers of dimension � 1.

In dimension� 3 one may then, starting from a sequence of generating line bundles,
construct a tilting bundle using the principle of “killing backward Ext1’s” (see Remark 1.8).

While this method yields an NCCR, it generally does not yield a toric one. On the
other hand, it is also applicable to some higher dimensional toric singularities which do not
have a toric NCCR.

Example 3.6 ([116, §9.1], [119, Example 6.4]). Let T D G2
m be the two-dimensional torus and

(after the identifying the character group X.T / of T with Z2) consider the vector space
W with weights .3; 0/, .1; 1/, .0; 3/, .�1; 0/, .�3; �3/, .0; �1/. Put R WD Sym.W /T D

kŒx1; x2; x3; x4; x5; x6�T D kŒx2x4x6; x1x3x5; x1x3
4 ; x3x3

6 ; x3
2x5� Š kŒa; b; c; d; e�=

.a3b � cde/. Clearly, R is the coordinate ring of a 4-dimensional affine toric variety, but it
was shown in [116, §9.1] that R does not have a toric NCCR.

On the other hand, by [119, Proposition 6.1], R does have a nontoric NCCR. In [119,

Example 6.4] an explicit NCCR is constructed which is given by a reflexive module which is
the direct sum of 12 modules of rank 1 and 1 module of rank 2.

We conjecture:

Conjecture 3.7. An affine Gorenstein toric variety always has an NCCR.

Besides Theorem 3.4 this conjecture is also true for “quasisymmetric GIT quotients”
for tori. See Corollary 4.7 below.

By [119, Theorem A.1], the Grothendieck group of the DM-stack exhibited in Lem-
ma 3.5 has rank Vol.P /. This suggests the following conjecture:

Conjecture 3.8. The number of indecomposable summands in the reflexivemodule defining
an NCCR of R is equal to Vol.P /.

3.5. Mutations
It follows from the minimal model program that the number of crepant resolutions

of an algebraic variety is finite.7 On the other hand, NCCRs can be modified by a process
called “mutation” which is closely related to flopping of crepant resolutions. The difference
is that the mutation process generally leads to an infinite number of different NCCRs (see,
however, Example 3.12 below).

The following definitions and results are taken from [69]. Let R be a normal Goren-
stein ring. Let M be a reflexive R-module such that ƒ D EndR.M/ is an NCCR and let

7 I thank Shinnosuke Okawa for explaining to me how this follows from [17].
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0 ¤ N 2 add.M/. Let K0 be defined by the short exact sequence

0 ! K0 ! N0 ! M;

where N0 2 add.N / is a right approximation of M , i.e., any other map N 0
0 ! M with

N 0
0 2 add.N / factors throughN0. One defines the right mutation ofM atN to be�C

N .M/ WD

N ˚ K0. The left mutation of M at N is defined via duality as ��
N .M/ D .�C

N _.M _//_.
We also put �˙

N .ƒ/ D EndR.�˙
N .M//. Note, however, that the passage from �˙

N .M/ to
�˙

N .ƒ/ loses some information.

Remark 3.9. Needless to say that �˙
N .M/ is only determined up to additive closure (i.e.,

up to taking add.�/). However, if R is complete local then we can make a minimal choice
for �C

N .M/ which we will do silently.

Theorem 3.10 ([69, Theorems 1.22, 1.23]). Let M; N; ƒ be as above.

(1) �˙
N .M/ define NCCRs.

(2) ƒ, �C

N .ƒ/ and ��
N .ƒ/ are all derived equivalent.

(3) �C

N and ��
N are mutually inverse operations (this statement makes sense since

N 2 add.�˙
N .M//).

If R is complete local of dimension 3, things simplify. Let us call a reflexive
R-module basic if every indecomposable summand appears occurs only once.

Theorem 3.11 ([69, Theorems 1.25]). Assume that R is complete local of dimension 3.
Let M be a basic reflexive R-module defining an NCCR, having at least two nonisomor-
phic indecomposable summands and let Mi be such an indecomposable summand. Then
�C

M=Mi
.M/ Š ��

M=Mi
.M/.

Example 3.12 ([63,71,133]). IfR is complete local ringwith a 3-dimensional terminal Goren-
stein singularity then the basic reflexive modules yielding an NCCR correspond to the max-
imal cells in an affine hyperplane arrangement of dimension rk Cl.R/ with mutations at
indecomposable summands corresponding to wall crossings [133, Theorem 4.4]. The group
Cl.R/ acts by translation on this hyperplane arrangement and the quotient consists of a finite
number of cells which correspond to the NCCRs of R. The number of such NCCRs is gen-
erally higher than the number of crepant resolutions.

It is an interesting problem to understand this for other types of 3-dimensional sin-
gularities.

Remark 3.13. If ƒ D EndR.M/ is an NCCR then because of the reflexive Morita equiva-
lence ref.ƒ/ D ref.R/ the mutation procedure may also be defined on the level of reflexive
ƒ-modules (see [67, §5]). The resulting procedure also works for twisted NCCRs, where there
is no reflexive Morita equivalence.

We now describe a different point of view on mutations, taken from [47]. For Q

a quiver with n vertices let bkQ be the completion of the path algebra of Q at path length.
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A potential w 2 bkQ is a convergent sum of cycles considered up to rotation (or, equivalently,
w 2 bkQ=ŒbkQ;bkQ�O). If w is a potential then .@w/ denotes the (completed) two sided ideal
generated by the cyclic derivatives @xw of w with respect to the arrows in Q, where for a
cyclic path m we have @xm WD

P
mDuxv vu (note that this is invariant under path rotation).

The completed Jacobi algebra associated to .Q; w/ is defined as OJ .Q; w/ WD bkQ=.@w/.
We say that w is reduced if it only contains cycles of length � 3. We can also consider the
uncompleted version J.Q;w/ WD kQ=.@w/, in casew is a finite sum.We have the following
result.

Theorem 3.14 ([130, Theorems A&B]). If ƒ is a basic (i.e., ƒ= radƒ Š k˚n) twisted NCCR
of a 3-dimensional normal Gorenstein complete local ring then ƒ is a completed Jacobi
algebra OJ .Q; w/ with w reduced.

If Q does not have loops or 2-cycles then the mutations of ƒ WD OJ .Q; w/ can be
obtained by an alternative procedure described in [47]. The procedure to mutate at a vertex i

of Q yields a new Jacobi algebra OJ .Q0; w0/ defined as follows (see [83, §2.4]).

(1) For each arrow ˇ with target i and each arrow ˛ with source i , add a new arrow
Œ˛ˇ� from the source of ˇ to the target of ˛.

(2) Replace each arrow ˛ with source or target i with an arrow ˛� in the opposite
direction.

The new potential w0 is the sum of two potentials w0
1 and w0

2. The potential w0
1 is obtained

from w by replacing each composition ˛ˇ (up to cyclic rotation) by Œ˛ˇ�, where ˇ is an
arrow with target i . The potential w0

2 is given by

w0
2 D

X
˛;ˇ

Œ˛ˇ�ˇ�˛�;

where the sum ranges over all pairs of arrows ˛ and ˇ such that ˇ ends at i and ˛ starts at i .
It follows from [83, Theorem 3.2] that this mutation coincides with the mutation defined in
[69] and described above.

It may be thatw0 is not reduced, i.e., it contains 2-cycles. In that case the correspond-
ing relations allow one to eliminate some arrows in Q0. By doing this, we find that the Jacobi
algebra OJ .Q0; w0/ can be more economically written as J..Q0/red; .w0/red/ where .w0/red is
reduced.

If we are lucky that .Q0/red does not contain any 2-cycles (it cannot contain loops)
then we can repeat the mutation procedure at arbitrary vertices. If we can keep doing this
forever then we call the original potential w nondegenerate.

Note that if .Q0/red does not contain 2-cycles, it can be obtained from Q0 by simply
deleting all 2-cycles, so that the mutation procedure becomes to some extent combinato-
rial [81]. For a nondegenerate potential, this nice property persists under iterated mutations.
The catch, however, is that in general it is not clear how to check that a potential is nonde-
generate. A useful criterion, based on the theory of graded mutations [2], is given in [44].
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Theorem 3.15 ([44, Corollary 1.3]). Assume:

(1) Q is a Z-graded quiver such that .kQ/�0 is finite dimensional.

(2) Q has at least three vertices.

(3) w is a homogeneous reduced potential of degree r (in particular, it is a finite
sum).

(4) ƒ D J.Q;w/ is a twisted NCCRwhose center is 3-dimensional with an isolated
singularity.

(5) ƒ=Œƒ;ƒ� does not contain any elements whose degree is in the interval Œ1; r=2�.

Then w is nondegenerate.

Note that (5) is automatic if r D 1. This gives an alternative proof why the poten-
tials associated to “rolled up helix algebras” of Del Pezzo surfaces are nondegenerate (see
[30, Theorem 1.7], [44, Theorem 4.2.1]). Theorem 3.15 also applies to many skew group rings
ƒ D kŒx; y; z�#.Z=nZ/. For example, n D 5 and N1 acting with weights .1=5; 2=5; 2=5/ (see
[67, §7]).

4. Quotient singularities for reductive groups

4.1. NCCRs via modules of covariants
In this section we discuss some results from [116]. Also G will always be a reductive

group. Let S be the coordinate ring of a smooth affine G-variety X . Then SG is the coor-
dinate ring of the categorical quotient X==G. We will be interested in constructing (twisted)
NCCRs for SG . In the particular case when G is finite and X is a faithful unimodular
G-representation, this was discussed in Section 3.1. An NCCR for SG is given by the skew
group ring ƒ D S#G. However, ƒ can be described in a different way. For U a finite dimen-
sional G-representation, put M.U / WD .U ˝ S/G . Then M.U / is a reflexive SG module (in
fact, it is maximal Cohen–Macaulay). If every irreducible representation of G occurs at least
once in U then ƒ is Morita equivalent to EndSG .M.U //. Hence M.U / defines an NCCR
of SG .

The modules M.U / we introduced are the so-called modules of covariants [31] and
they make perfect sense for general reductive groups. A mild obstacle is that modules of
covariants do not have to be reflexive in general [31]. This is not a serious problem, but if
we want to avoid it anyway, we can restrict the pairs .G; X/ we consider. We will say that G

acts generically on a smooth affine variety if the locus of points with closed orbit and trivial
stabilizer is nonempty and its complement has codimension � 2. If W is a G-representation
then we will say that .G; W / is generic if G acts generically on Spec SymW Š W �. We
then have in particular

EndSG

�
M.U /

�
D M

�
End.U /

�
: (4.1)
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It is reasonable to search for NC(C)Rs of the form EndSG .M.U //. However, if G

is not finite there are nontrivial obstacles:

(1) There are an infinite number irreducible representations so we cannot just take
the sum of all of them. We need to make a careful selection.

(2) Modules of covariants are usually not Cohen–Macaulay and so demanding
that EndSG .M.U // D M.End.U // (cf. (4.1)) is Cohen–Macaualay is a severe
restriction on U .

The first issue is handled in [116, §10] where we construct certain nice complexes relating
different modules of covariants (see also [135, Chapter 5]). The second issue is handled using
results from [124] (see also [123,125–127]).

Before we discuss NCCRs let us give a result on NCRs.

Proposition 4.1 ([116, Corollary 1.3.5]). Assume that .G; W / is generic. Then there exists
a finite dimensional G-representation U containing the trivial representation such that
ƒ D EndSG .M.U // is an NCR for SG .

Remark 4.2. The fact that U contains the trivial representation implies that ƒ defines a
categorical resolution by Lemma 2.2.1. It turns out that NCRs are easier to construct than
NCCRs since it is sufficient to take U big enough, in a suitable sense.

To state our results about (twisted) NCCRs, we need to introduce some notation.
Let G be a connected8 reductive group. Let T � B � G be respectively a maximal torus
and a Borel subgroup of G, with W D N.T /=T being the corresponding Weyl group. Put
X.T / D Hom.T; Gm/ and let ˆ � X.T / be the roots of G. By convention the roots of B are
the negative roots ˆ� and ˆC D ˆ � ˆ� is the set of positive roots. We write N� 2 X.T /R

for half the sum of the positive roots. Let X.T /C

R be the dominant cone in X.T /R and let
X.T /C D X.T /C

R \ X.T / be the set of dominant weights. For � 2 X.T /C, we denote the
simple G-representation with highest weight � by V.�/.

Let W be a finite-dimensional G-representation of dimension d and put
S D Sym.W /, X D Spec Sym.W / D W �. Let .ˇi /

d
iD1 2 X.T / be the T -weights of W .

Put

† D

²X
i

ai ˇi j ai 2 ��1; 0�

³
� X.T /R:

The elements of the intersectionX.T /C \ .�2 N� C †/ are called strongly critical (dominant)
weights for G.

Theorem 4.3 ([116, Theorem 3.4.3][124]). Assume that X contains a point with closed orbit
and finite stabilizer. Let � 2 X.T /C be a strongly critical weight and U D V.�/. Then
M.U �/ is a Cohen–Macaulay SG-module.

8 In [116] we also consider the nonconnected case.
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If we look at (4.1) and observe that the weights of End.U / are very roughly speaking
about twice those of U , then Theorem 4.3 suggests that to construct an NCCR we should
restrict ourselves to representations whose highest weights are approximately contained in
� N� C .1=2/†. This idea works for the class of “quasisymmetric” representations, which
includes the class of self dual representations.

We say that W is quasisymmetric if for every line ` � X.T /R through the origin
we have

P
ˇi 2` ˇi D 0. This implies in particular that W is unimodular and hence SG is

Gorenstein if W is generic by a result of Knop [87].
From now onwe assume that .G;W / is generic andW is quasisymmetric. Deviating

slightly from [116], following [59], we introduce a certain affine hyperplane arrangement on
X.T /W

R . Let NH be the collection of affine hyperplanes spanned by the facets of� N� C .1=2/ N†.
We consider the hyperplane arrangement in9 X.T /W

R given by

H D

[
H2 NH

�
�H C X.T /

�
\ X.T /W

R : (4.2)

Remark 4.4. The hyperplane arrangement (4.2) may be degenerate in the sense that
X.T /W

R � �H C � for some � 2 X.T /.

Example 4.5. We give a simple example where degeneration occurs. LetG D SL.2/. If V is
the standard representation andW D V n with n even, then .1=2/† is the interval ��n=2;n=2Œ

(identifying X.T / Š Z). Moreover, N� D 1. Hence the “hyperplanes” �H C X.T / are given
by the integers. Furthermore, X.T /W

R D 0. Thus the induced hyperplane arrangement in
X.T /W

R is indeed degenerate. If n is odd, on the other hand, then it is nondegenerate. See
[116, Theorem 1.4.5] for a complete treatment of the case G D SL.2/.

This hyperplane arrangement is such that if ı is the complement of H then

.� N� C ı C 1=2@ N†/ \ X.T / D ;:

The following result is a slight variation on [116, Theorem 1.6.4].

Theorem 4.6. Let .G; W / be generic and assume that W is quasisymmetric. Let ı be an
element of the complement of H . Put

Lı D X.T /C
\
�
� N� C ı C .1=2/ N†

�
; (4.3)

Uı D

M
�2Lı

V.�/; (4.4)

ƒı D EndSG

�
M.Uı/

�
: (4.5)

If Lı ¤ ; then ƒ is an NCCR for Sym.W /G .

It is easy to see that Lı and hence Uı depend only on the connected component of
the complement of H to which ı belongs.

9 Note that X.T /W is just the character group X.G/ of G.
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We obtain some evidence for Conjecture 3.7.10

Corollary 4.7 ([116, Theorem 1.6.2]). If G D T is a torus and W is quasisymmetric then
Sym.W /T has a (toric) NCCR.

Remark 4.8. For reference we note that there is extension of Theorem 4.6 that may allow
one to construct twisted NCCRs [116, Theorem 1.6.4].

We now state some consequences of these results for determinantal varieties.

Theorem 4.9 ([116, Theorem 1.4.1]). For l < n, let Xl;n be the variety of n � n-matrices of
rank � l . Then kŒXl;n� has an NCCR.

The variety Xl;n was already discussed in Example 3.1 and the NCCR obtained in
[116] is the same as that we obtain in Theorem 4.9. To prove Theorem 4.9, we use the classical
description of kŒXl;n� as an invariant ring [134]. Put G D GL.l/ and let V be the standard
representation ofG. PutW D V n ˚ .V �/n. Then kŒXl;n� D Sym.W /G , and we show in [116]

that Theorem 4.9 follows from Theorem 4.6. For the benefit of the reader, we describe the
actual module of covariants that gives the NCCR. Let Bl;n�l be the set of partitions that fit
in a rectangle of size l � .n � l/. In [116] it is shown that the following module of covariants
defines an NCCR for R:

M D

M
�2Bl;n�l

M.S�V /; (4.6)

where S�V denotes the Schur functor indexed by � applied to V .

Theorem 4.10. For 2l < n, let X�
2l;n

be the variety of skew-symmetric n � n matrices of
rank � 2l . If n is odd then kŒX�

2l;n
� has an NCCR.

This time we put G D Sp.2l/ and W D V n where V is the standard representation
of G.

Theorem 4.11 ([116, Theorem 1.4.1]). For l < n, let XC

l;n
be the variety of symmetric n � n

matrices of rank � l . If l and n have opposite parity then kŒXC

l;n
� has an NCCR. If l and n

have the same parity then kŒXC

l;n
� has a twisted NCCR.

Here we put G D O.l/ and again W D V n where V is the standard representa-
tion of G. A complication arises since O.l/ is not connected, so we cannot directly apply
Theorem 4.6. So we have to perform a more refined analysis which is carried out in [116,

§6]. Twisted NCCRs appear because SO.l/, the connected component of O.l/, is not simply
connected.

The NCCRs given in Theorems 4.10, 4.11 have been crucial for establishing homo-
logical projective duality [91] for determinantal varieties of skew-symmetric matrices by
Rennemo and Segal [113]. The corresponding results for symmetric matrices are work in
progress by the same authors [112].

10 This is stated in [116] for W generic. However, one easily reduces to this case.
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Even ifW is not quasisymmetric then it is still possible that Sym.W /G has anNCCR
given by a module of covariants but we are unaware of a general rule like Theorem 4.6 for
constructing them. Three-dimensional affine toric varieties (see Section 3.4) are an example
of this, since they can be written as Sym.W /G where W is generally not quasisymmetric.
Another example is given by the recent work of Doyle:

Example 4.12 ([51, Theorem 3.11]). Let 0 < l < n be integers such that gcd.l; n/ D 1. Let V

be the standard representation of G D SL.l/ and put W D V n.
Then R WD Sym.W /G is the homogeneous coordinate ring of the Grassmannian

Gr.l; n/ for the Plücker embedding. Let Pl;n�l be the set of partitions whose young tableaux
are above the diagonal in a rectangle of size l � .n � l/. In [51] it is shown that the following
module of covariants defines an NCCR for R:

M D

M
�2Pl;n�l

M.S�V /

(compare with (4.6)).

We reiterate that even if an NCCR exists, there does not have to be one given by a
module of covariants. See Example 3.6.

4.2. NCCRs via crepant resolutions obtained by GIT
Here we discuss some results from [59] that shows that in certain cases the NCCRs

for the categorical quotients X==G that we constructed in Section 4 can be obtained as the
endomorphisms of a tilting bundle on a crepant resolution, i.e., the method of Section 3.2.
This crepant resolution is constructed using a geometric invariant theory. It turns out that we
have to allow crepant resolutions by Deligne–Mumford stacks. This occurred already before
in Lemma 3.5 and Example 3.6.

Remark 4.13. To construct a resolution of X==G using geometric invariant theory, one
needs a linearized line bundle onX . Since hereX is a representation, the onlyG-equivariant
line bundles on X are those obtained from characters of G. If G is semisimple then there
are no (nontrivial) characters so we cannot proceed. Thus we can, for example, not deal
with determinantal varieties of symmetric and skew-symmetric matrices (see Theorems 4.10
and 4.11). In those cases the relevant groups were respectively Sp.2l/ and the connected
component SO.l/ of O.l/, both of which are semisimple. On the other hand, ordinary deter-
minantal varieties are fine since in that case G D GL.l/ which has a nontrivial character
given by the determinant, which may be used to construct a crepant resolution.

Remark 4.14. Geometric invariant theory is still helpful for constructing a resolution of
X==G via a procedure invented by Kirwan [52,85,110]. However, these resolutions are usually
not crepant. Consistent with expected minimality of NCCRs (see Section 3.3), we are able
to show that some NCCRs embed inside them [118].

We retain the notations and assumptions of the previous section. We assume that W

is a quasisymmetric representation of G and X D Spec Sym.W / D W �. Recall that for a
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character � 2 X.G/ D X.T /W we may define a G-invariant open subset of X as

X ss;�
D
®
x 2 X j 9k > 0 and s 2 �.OX ˝ �k/G such that s.x/ ¤ 0

¯
:

The variety X ss;� admits a good quotient11 X ss;�==G which is proper over X==G. For
U a representation of G, we write M.U / for the vector bundle on X ss;�=G given by
U ˝ OXss;�=G . The global sections of M.U / are equal to M.U /.

Below we let H0 be the central hyperplane arrangement on X.G/R D X.T /W
R cor-

responding to the affine hyperplane arrangementH introduced in (4.2). Thus the hyperplanes
in H0 are the hyperplanes which are induced from central hyperplanes in X.T /R which are
parallel to the facets of N†.

Proposition 4.15 ([59, Proposition 2.1]). Assume that the action of T on X has generically
finite stabilizers and let � 2 X.G/ be in the complement of H0. Then X ss;�=G is a Deligne–
Mumford stack.

Lemma 4.16. Assume that .G; W / is generic. Then the canonical map X ss;�=G ! X==G

is crepant.

Proof. This is proved in [119, Lemma 4.5] in the case that G is a torus, but this assumption is
not relevant for the proof.

The following is one of the main results of [59]. It is proved using similar combina-
torics as in [116].

Theorem 4.17 ([59]). Assume that the action of T on X has generically finite stabilizers and
let � 2 X.G/ be in the complement of H0. Let Uı be as in the statement of Theorem 4.6.
Then M.Uı/ is a tilting bundle on X ss;�=G such that EndXss;�=G.M.Uı// D M.End.Uı//.

Proof. This follows from combining [59, Theorem 1.2] with [59, Lemma 2.9].

In this way we obtain more evidence for Conjecture 1.2.

Corollary 4.18 ([59, Corollary 1.3]). Under the hypotheses of Theorem 4.17, if�;�0 2 X.G/

are in the complement ofH0 and the complement ofH is nonempty (i.e.,H is nondegenerate)
then D.X ss;�=G/ Š D.X ss;�0

=G/.

We also obtained the promised description of NCCRs via resolutions.

Corollary 4.19. Assume that .G; W / is generic and let ƒ be an NCCR constructed via
Theorem 4.6. Let � be in the complement of H0. Then ƒ is the endomorphism ring of a
tilting bundle on the DM stack X ss;�=G.

Remark 4.20. Hidden behind what is discussed in Sections 4.1 and 4.2 is the idea of win-
dows, pioneered in [49]. This is based on the fact that we have a restriction map

Res W D.X=G/ ! D.X ss;�=G/:

11 A G-equivariant map Z ! Y is a good quotient if locally on Y it is of the form U ! U==G

for U affine.
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It is then natural to try to find a full subcategory D � D.X=G/ such that the restriction of
Res to D yields an equivalence D Š D.X ss;�=G/. A very general result in this direction
is [58, Theorem 1.1], see also [5].

In concrete cases one may hope to define D as the full subcategory of D.X=G/

which is split generated by U ˝ OX=G for a suitable G-representation U whose highest
weights are restricted to a certain subset L of X.T /C (a “window”). This is precisely what
happens in Theorem 4.17, where we take L D Lı . The resulting category D is a concrete
realization of [58, Theorem 1.1], see [59, Lemma 3.5].

One does not actually need to have nontrivial X ss;�=G to apply the window prin-
ciple. The proof of Theorem 4.6, is based on the fact that mod.ƒı/ embeds in coh.X=G/ as
the abelian category with a projective generator Uı ˝ OX=G .

4.3. Local systems, the SKMS, and schobers
In this slightly informal section we assume that the hypotheses of Theorem 4.17

hold. While Corollary 4.18 implies that two different D.X ss;�=G/, D.X ss;�0

=G/ are
derived equivalent, the actual derived equivalence depends on the choice of ı in the com-
plement of H . Moreover, by considering compositions D.X ss;�=G/

ı
�! D.X ss;�00

=G/
ı 0

�!

D.X ss;�0

=G/, we may produce more derived equivalences. This is consistent with the asser-
tion in Remark 1.3 that there is no “god-given” derived equivalence between different crepant
resolutions. A different way of saying this is that a crepant resolution may have a large group
of derived autoequivalences.

If M is a Calabi–Yau variety then homological mirror symmetry predicts the exis-
tence of a space S (the “stringy Kähler moduli space,” or SKMS) such that �1.S/ acts on
D.M/. More precisely, S is the moduli space of complex structures on the mirror dual M _

of M . In many cases there are good heuristic descriptions of M _ and S .
Even without access to the full mirror symmetric context, which may be technically

challenging or even only heuristic, it turns out to be very illuminating to represent the derived
autoequivalences of an algebraic variety (or stack) as elements of �1.S/ for a suitable topo-
logical space S . Alternatively, we may think of such a representation as a local system of
triangulated categories on S . Understanding this for D.X ss;�=G/ was, according to the
authors, one of the main motivations for writing [59]. Indeed, when X is a quasisymmetric
representation, under hypotheses of Theorem 4.17, one may take

S D
�
X.G/C � HC

�
=X.G/;

where HC denotes the complexification of the real hyperplane arrangement H [59, Proposi-

tion 6.6].
In this case there is a nice way to understand that action of �1.S/ on D.X ss=G/

[59, §6], [117]. Using Theorem 4.17 again, we may just as well describe the action of �1.S/

on D.ƒı/ for ı contained in the complement of H and ƒı D M.End.Uı//.
For ı 2 X.G/R, define Uı as in (4.4) and put Dı D D.ƒı/. Now H defines a cell

decomposition of X.G/R and it is easy to see that Uı only depends on the cell to which ı

belongs. Hence for a cell C let us write ƒC WD ƒı , DC WD Dı for ı 2 C . We will refer to
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the cells of maximal dimension as chambers. These are also the connected components of
the complement of H .

If C 0 is a face of C then there is an idempotent eC;C 0 2 ƒC 0 such that ƒC D

eC;C 0ƒC 0eC;C 0 . If C ¤ C 00 are distinct adjacent chambers, sharing a codimension one face

C 0 then the functor eC 00;C 0ƒC 0eC;C 0

L
˝ƒC

� defines an equivalence of categories �C;C 00 W

DC ! DC 00 .
Put QS D X.G/C � HC and let …1. QS/ be the groupoid whose objects are the cham-

bers and whose morphisms are given by the homotopy classes of paths in X.G/C � HC

connecting the chambers. Then …1. QS/ is equivalent to the fundamental groupoid of
X.G/C � HC . If C , C 00 are adjacent chambers separated by a hyperplane H 2 H such that
H.C 00/ > 0 then there is a canonical (up to homotopy) minimal path �C;C 00 in X.G/C � HC

going from C to C 00 and passing through ¹ImHC > 0º. Sending C to DC and �C;C 00 to
�C;C 00 defines a representation of the groupoid …1. QS/ in triangulated categories.

If � 2 X.G/ then tensoring by � defines an equivalence DC ! DC C� and in this
way the representation of …1. QS/ may be extended to a representation of …1. QS/ Ì X.G/ and
the latter is equivalent to the fundamental groupoid …1.S/ of S D QS=X.G/ [33, Chapter 11],
[59, §6]. Hence, fixing a “base chamber” C , we get an action of �1;C .S/ on DC .

Remark 4.21. It is shown in [117] that the family of triangulated categories .DC /C for all
cells C is a so-called X.G/-equivariant perverse schober. This is a categorification of a
perverse sheaf on X.G/C=X.G/ [74] (see also [20, 48]). Note that X.G/C=X.G/ is a torus
and S is the complement of a “toric hyperplane arrangement.” If G is itself a torus T then
X.T /C=X.T / may be identified with the dual torus T _.

Remark 4.22. The X.G/-equivariant hyperplane arrangement constructed by Halpern–
Leistner and Sam in [59] is very similar to the Cl.R/-equivariant hyperplane arrangement
associated to a 3-dimensional terminal complete Gorenstein ring R constructed by Iyama
and Wemyss (see Example 4.12). One would expect there to be an associated equivariant
schober also in this case. In the case of a single curve flop this is essentially contained in
[50, §3].

Remark 4.23. As explained we have an action of �1.S/ on DC for a chamber C and hence
also an action of �1.S/ on K0.DC /C . In other words, we have a local system L on S . It
is then a natural question if this local system occurs as the solutions of a natural system of
differential equations. In the case that G is a torus we show in [121] that a generic “equiv-
ariant” deformation of L is obtained as the solution of a well-known system of differential
equations introduced by Gel’fand, Kapranov, and Zelevinsky [55]. This starts from a com-
putation by Kite [86] which shows that the hyperplane arrangement constructed in [59] is up
to translation defined by the so-called “principal A-determinant,” an important ingredient in
the theory developed Gel’fand, Kapranov, and Zelevinsky. For more information, see [115].

Remark 4.24. The themes touched upon in this section occur in many different contexts.
See, e.g., [3,23,29].
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5. NCCRs and stringy E-functions

In this section we discuss some ongoing work of Timothy De Deyn (see [43]). Let X
be an algebraic variety over C. The cohomology groups H i

c .X; C/ carry a natural mixed
Hodge structure. We denote by hp;q.H i

c .X;C// the dimension of the .p;q/-type component
of H i

c .X; C/. The Hodge polynomial of X is defined by

E.X; u; v/ D

X
p;q;i

.�1/i hp;q
�
H i

c .X; C/
�
upvp:

The Hodge polynomial defines a ring homomorphism from the Grothendieck ring of alge-
braic varieties K0.Var =C/ to ZŒu; v�.

We put e.X/ D E.X; 1; 1/, i.e.,

e.X/ D

X
i

.�1/i
X
p;q

hp;q
�
H i

c .X; C/
�

D

X
i

.�1/i dimH i
c .X; C/:

In other words, e.X/ is the Euler characteristic (with compact support12) of X . It defines a
ring homomorphism from K0.Var =C/ to Z.

Definition 5.1 ([6, Definition 3.1]). Assume that X is a normal Q-Gorenstein algebraic
variety=C with at most log-terminal singularities and let � W Y ! X be a resolution of
singularities whose exceptional locus is a normal crossing divisor. Let D1; : : : ; Dr be the
irreducible components of the exceptional locus and put I D ¹1; : : : ; rº. For any subset J � I

we set DJ D
T

j 2J Dj , Dı
J WD DJ n

S
j 2InJ Dj . The stringy E-function of X is defined

as
Est .X; u; v/ WD

X
J �I

E.Dı
J ; u; v/

Y
j 2J

uv � 1

.uv/aj C1 � 1
; (5.1)

where the numbers aj 2 Q \ ��1; 1Œ are defined by

KY D ��KX C

rX
j D1

aj Dj :

Putting est .X/ D limu;v!1 Est .X; u; v/ defines the stringy Euler characteristic
of X , with the formula

est .X/ D

X
J �I

e.Dı
J /
Y
j 2J

1

aj C 1
:

It follows from the theory of motivic integration (see, e.g., [8, 40, 45, 90, 95]) that
Est .X; u; v/ is independent of the chosen resolution Y [6, Theorem 3.4]. Indeed, Est .X; u; v/

may be obtained by integrating over the arc space associated to X [45]. In a similar vein,
Est .X; u; v/ D Est .Y; u; v/ holds for birational maps � W Y ! X satisfying ��KX D KY

[6, Theorem 3.12].
If X is smooth then the stringy E-function coincides with the Hodge polynomial.

Hence one has

12 If X is smooth then, by Poincaré duality, the Euler characteristic with compact support
coincides with the usual Euler characteristic

P
i .�1/i dimH i .X; C/.
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Theorem 5.2 ([6, Theorem 3.12]). IfX has a crepant resolution Y then the stringyE-function
of X coincides with the Hodge polynomial of Y . In particular, it is a polynomial. Similarly,
the stringy Euler characteristic of X coincides with the usual Euler characteristic of Y and
hence it is an integer.

The following conjecture seems natural:

Conjecture 5.3 ([43]). IfX is a normal Gorenstein variety=C with an NCCR then its stringy
E-function is a polynomial.

We give some evidence for this conjecture below, but at this point it is probably
safer to regard it as a question. We illustrate below in Remark 5.8 and Example 5.11 that
reasonable extensions of this conjecture are false.

Example 5.4. Quotient varieties of the form Cn==G for G � SL.n/ finite always have a
stringy E-function which is a polynomial by [9], [46, Theorem 3.6]. They also have an NCCR
by Section 3.1. So in this case Conjecture 5.3 is true.

Example 5.5. Batyrev proves in [8, Proposition 4.4] that the stringy E-function of any toric
variety with Gorenstein singularities is a polynomial. Hence Conjecture 5.3 is compatible
with Conjecture 3.7.

A good test for Conjecture 5.3 is given by cones over Fano varieties.

Proposition 5.6 ([43]). Let Z be a smooth projective variety=C with ample line bundle
OZ.1/ and let X D SpecR be the corresponding cone. Assume !Z D OZ.�n/ for n � 1.
Then R is Gorenstein and

Est .X; u; v/ D E.Z; u; v/
.q � 1/qn

qn � 1
(5.2)

with q D uv. In particular,
est .X/ D

e.Z/

n
: (5.3)

Example 5.7. Consider the Grassmannian Z WD Gr.d; n/. Then (e.g., [25, Proposition A.4])

Est .Z; u; v/ D

 
n

d

!
q

; (5.4)

where  
n

d

!
q

D
.qn � 1/.qn�1 � 1/ � � � .qn�dC1 � 1/

.q � 1/.q2 � 1/ � � � .qd � 1/
:

Hence

est .Z/ D

 
n

d

!
: (5.5)

Let X be the cone over Z with respect to the Plucker embedding and let R be the coordi-
nate ring of X . Using (5.2) and (5.4), it is shown in [43] that in this case Est .X; u; v/ is
a polynomial precisely when gcd.d; n/ D 1. On the other hand, by [51, Theorem 3.11] (see
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Example 4.12 above), R has an NCCR when gcd.d; n/ D 1. So Conjecture 5.3 is true in this
case.

Remark 5.8. It is shown in [43, §4.2] that the cone over an arbitrary Grassmannian Gr.d; n/

always has a weakly crepant categorical resolution (see Section 2.2). Hence it follows that
Conjecture 5.3 is false for weakly crepant categorical resolutions. On the other hand, it seems
reasonable to extend Conjecture 5.3 to strongly crepant categorical resolutions.

Remark 5.9. In view of Theorem 5.2, onemay naively ask if it is true thatEst .X;u;v/ being
a polynomial implies that X has a crepant resolution. Not unexpectedly, this fails drastically.
Finite group quotients and affine toric varieties have a polynomial stringy E-function, as we
have seen above, but they need not have a crepant resolution. In fact, the example C4==Z2

given in Section 3.1 of a Gorenstein singularity with an NCCR but without a crepant resolu-
tion, lives in both classes. On the other hand, these classes of counterexamples are not very
convincing since they admit crepant resolutions by smooth Deligne–Mumford stacks, which
is just as good. In the case of finite quotient singularities this is clear, and for toric varieties
it follows from Lemma 3.5.

In contrast, one may show that forX as in Example 5.7 there is no crepant resolution
by a smooth DM-stack (this is mainly becauseR is factorial). So in some sense it is a “better”
counterexample (when gcd.d; n/ ¤ 1).

GIT quotients form an important class of toric varieties (see [39, Corollary 14.2.16]).
So in view of Example 5.5, as well as Example 5.4, the following question by Batyrev sug-
gests itself:

Question 5.10 ([6, Question 5.5]). Does aGIT quotient ofCn for a linear action ofG � SL.n/

always have a stringy E-function that is a polynomial?

Alas, the answer is negative. Indeed, Example 5.7 for gcd.d; n/ ¤ 1 gives a simple
counterexample since the cone over a Grassmannian is a GIT quotient for SL.d/ acting on
n copies of its standard representation.

The first counterexample, however, was constructed much earlier in [84].

Example 5.11. Let W be given by three copies of the adjoint representation of G D SL.2/.
Then by a quite involved computation it is shown in [84, Corollary 1.2] that the stringy E-
function of SpecR forR D Sym.W /G is not a polynomial. This example is interesting since,
by [116, Theorem 1.4.5], R has a twisted NCCR. In other words, Conjecture 5.3 is also false
for twisted NCCRs.

As a side remark, we note that this twisted NCCR is a rather classical object. It is
the trace ring generated by 3 generic traceless 2 � 2 matrices [4,97,99,107–109].

In the setting of Theorem 5.2, the Euler characteristic of Y can be computed
using periodic cyclic homology, thanks to the Hochschild–Kostant–Rosenberg theorem.
Below we define the Euler characteristic e.ƒ/ of an algebra ƒ or a sheaf of algebras as
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dim HPeven.ƒ/ � dim HPodd.ƒ/. If ƒ is a quasicoherent sheaf of algebras then we use
HP�.ƒ/ WD HP�.Perfdg ƒ/ (where Perfdg.ƒ/ is a standard dg-enhancement of Perf.ƒ/).
The following conjecture appears plausible.

Conjecture 5.12. The stringy Euler characteristic of a normal Gorenstein variety can be
computed as the Euler characteristic of an NCCR, computed via periodic cyclic homology.

Remark 5.13. One can again not expect this conjecture to hold for twisted NCCRs. An
interesting example is given in [26]. It was shown by [22,92] that for a generic complete inter-
section Y of n quadrics in P 2n�1 one has a derived equivalence between Y and .P n�1; B0/

where B0 is the even part of the universal Clifford algebra corresponding to the quadrics
defining Y . Because of the derived equivalence, we then have e.Y / D e.B0/ [80]. One may
show that B0 is a twisted NCCR of its center which is a double cover Z of P n�1 [26, §1]. It is
shown in [26] that in general e.Y / ¤ est .Z/ and hence e.B0/ ¤ est .Z/. So Conjecture 5.12
does not extend to twisted NCCRs.

In suitable “local” contexts (e.g., [130, Theorem 9.1]) Conjecture 5.12 leads to a more
concrete conjecture:13

Conjecture 5.14 ([43]). Let R a normal Gorenstein ring which is either a complete local
ring, or else connected N-graded (i.e., R0 D C). Assume that R has an NCCR EndR.M/.
Then the number of nonisomorphic indecomposable summands of M is equal to est .X/ for
X D SpecR.

Example 5.15. If X D SpecR is an affine toric variety as in Section 3.4, with Gorenstein
singularities, then Batyrev [6, Proposition 4.10] proves that est .X/ is equal to the volume of
the associated polytope P (see Section 3.4). So Conjecture 5.14 is compatible with Conjec-
ture 3.8.

Example 5.16. For varieties of the form X D W==G D SpecCŒW �G for G � SL.n/ finite
and W a finite dimensional representation of G, it follows from [7, Theorem 8.4] that est .X/

is equal to the number of conjugacy classes in G. This number is in turn equal to the number
of irreducible representations of G and hence equal to the number of nonisomorphic inde-
composable summands of the reflective CŒW �G-module CŒW � which defines an NCCR for
CŒW �G by Section 3.1. So Conjecture 5.14 is true in this specific example.

Example 5.17. Let X be the cone over Gr.d; n/ as in Example 5.7. Then by (5.3) and (5.5)
we have

est .X/ D
1

n

 
n

d

!
:

13 To handle the complete case, one has to use a “completed” version of periodic cyclic
homology. See [130].
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We check that Conjecture 5.14 is compatible with the NCCR constructed by Doyle in [51,

Theorem 3.11] (see Example 4.12 above). Conjecture 5.14 amounts to

jPd;n�d j D
1

n

 
n

d

!
;

which is indeed true by [101, §12.1].

Example 5.17 can be put in a more general context. Let us first state a lemma.

Lemma 5.18. Let Z be a smooth projective variety with a tilting complex. Then one has
e.Z/ D rkK0.Z/.

Proof. Let T be the tilting complex and put A D EndZ.T /. We have:

(1) Euler characteristics may be computed with periodic cyclic homology.

(2) Periodic cyclic homology is invariant under derived equivalence [80], and so are
Grothendieck groups;

(3) HP�.A/ D HP�.A= radA/ by Goodwillie’s theorem [56, Theorem II.5.1], and the
standard fact that K0.A/ D K0.A= radA/.

So we conclude
e.Z/

.1;2/
D e.A/

.3/
D rkK0.A/

.2/
D rkK0.Z/:

Let us go back to the setting of Proposition 5.6 but assume now in addition that Z

has a tilting complex. Then by (5.3) combined with Lemma 5.18, we get

est .X/ D
rkK0.Z/

n
:

Assuming that R has a graded NCCR ƒ, Conjecture 5.14 implies

rkK0.ƒ/ D
rkK0.Z/

n
: (5.6)

Example 5.19. This formula holds for the NCCRs constructed via Proposition 3.3. Indeed,
rkK0.ƒ/ is given by the number u of nonisomorphic indecomposable summands of E . On
the other hand, D.Z/ has a semiorthogonal decomposition consisting of n parts whose K0

also has rank u. So (5.6) does indeed hold, and we obtain again some evidence for Conjec-
ture 5.14.

Remark 5.20. One way to think of this example as the realization of the (conjectured)
“motivic” identity (5.6) via semiorthogonal decompositions of derived categories. See [106]

for another (deeper) instance of this principle.
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Abstract

[This paper is a (modified, self contained) chapter in my recent book on computational
complexity theory [176], called Mathematics and Computation, available online at https://
www.math.ias.edu/avi/book].
We survey some concrete interaction areas between computational complexity theory
and different fields of mathematics. We hope to demonstrate here that hardly any area of
modern mathematics is untouched by the computational connection (which in some cases
is completely natural and in others may seem quite surprising). In my view, the breadth,
depth, beauty, and novelty of these connections is inspiring, and speaks to a great poten-
tial of future interactions (which indeed, are quickly expanding). We aim for variety. We
give short, simple descriptions (without proofs or much technical detail) of ideas, moti-
vations, results, and connections; this will hopefully entice the reader to dig deeper. Each
vignette focuses only on a single topic within a large mathematical field, and is meant to be
illustrative rather that comprehensive. We cover the following:

• Number Theory: Primality testing
• Combinatorial Geometry: Point-line incidences
• Operator Theory: The Kadison–Singer problem
• Metric Geometry: Distortion of embeddings
• Group Theory: Generation and random generation
• Statistical Physics: Monte Carlo Markov chains
• Analysis and Probability: Noise stability
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1. Introduction

The Theory of Computation (ToC) lays out the mathematical foundations of com-
puter science. I am often asked if ToC is a branch of Mathematics, or of Computer Science.
The answer is easy: it is clearly both (and in fact, much more). Ever since Turing’s 1936
definition of the Turing machine, we have had a formal mathematical model of computation
that enables the rigorous mathematical study of computational tasks, algorithms to solve
them, and the resources these require. At the same time, the simple description of the Turing
machine allowed its simple logical structure to be implemented in hardware, and its universal
applicability fueled the rapid development of computer technology, which now dominates
our life.

Computation was part mathematics from its origins, and motivated many of its
developments. Algorithmic questions have occupied mathematicians throughout history (as
elaborated in the introduction to the book [176]), and this naturally grew considerably when
computers arrived. However, the advent of computational complexity theory over the past
few decades has greatly expanded and deepened these connections. The study of new diverse
models generated and studied in complexity theory broadened the nature of mathematical
problems it encountered and formulated, and the mathematical areas and tools which bear
upon these problems. This expansion has led to numerous new interactions that enrich both
disciplines. This survey tells the stories of some of these interactions with different mathe-
matical fields, illustrating their diversity.

We note in passing that a similar explosion of connections and interactions is under-
way between ToC and practically all sciences. These stem from computational aspects of
diverse natural processes, which beg for algorithmic modeling and analysis. As with mathe-
matics, these interactions of ToC with the sciences enrich both sides, expose computation as
a central notion of intellectual thought, and highlight its study as an independent discipline,
whose mission and goals expand way beyond those emanating from its parent fields of Math
and CS. But this is the subject of a different survey (which I partly provide in the last chapter
of [176]).

Back to the interactions of computational complexity theory and different areas of
math. I have chosen to focus on essentially one problem or development within each mathe-
matical field. Typically, this touches only a small subarea, and does not do justice to a wealth
of other connections. Thus each vignette should be viewed as a demonstration of a larger
body of work and even bigger potential. Indeed, while in some areas the collaborations are
quite well established, in others they are just budding, with lots of exciting problems waiting
to be solved and theories to be developed. Furthermore, the connections to algorithms and
complexity (which I explain in each) are quite natural in some areas, but quite surprising
in others. While the descriptions of each topic are relatively short, they include background
and intuition, as well as further reading material. Indeed, I hope these vignettes will tempt
the reader to explore further.

We note that new connections are discovered at a rapid pace. A strong case in point
is the recent complexity-theoretic breakthrough of MIP �

D RE [100], establishing the sur-

1393 Interactions of computational complexity theory and mathematics



prising power of quantum, multiprover interactive proof systems. This paper had already
discussed several surprising applications resolving key conjectures in different mathemati-
cal areas, including operator algebras, quantum information theory, and group theory, and
now more implications of the techniques and results are being pursued.

The sections below can be read in any order. The selection of fields and foci was
affected by my personal taste and limited knowledge. More connections to other fields like
Combinatorics, Optimization, Logic, Topology, Coding Theory, and Information Theory
appear in parts of the book [176].

2. Number theory

As mentioned, the need to efficiently compute mathematical objects has been cen-
tral to mathematicians and scientists throughout history, and, of course, the earliest subject is
arithmetic. Perhaps the most radical demonstration is the place value system we use to repre-
sent integers, which is in place for millenia precisely due to the fact that it supports extremely
efficient manipulation of arithmetic operations. The next computational challenge in arith-
metic, since antiquity, was accessing the multiplicative structure of integers represented this
way.

Here is an except from C. F. Gauss’ appeal1 to the mathematics community of his
time (in article 329 of Disquisitiones Arithmeticae (1801)), regarding the computational
complexity of testing primality and integer factorization. The importance Gauss assigns to
this computational challenge, his frustration of the state-of-the-art, and his imploring the
mathematical community to resolve it shine through!

The problem of distinguishing prime numbers from composite numbers, and of
resolving the latter into their prime factors is known to be one of the most important
and useful in arithmetic. It has engaged the industry and wisdom of ancient and modern
geometers to such an extent that it would be superfluous to discuss the problem at length.
Nevertheless, we must confess that all methods that have been proposed thus far are either
restricted to very special cases or are so laborious and difficult that even for numbers that
do not exceed the limits of tables constructed by estimable men, they try the patience of even
the practiced calculator. And these methods do not apply at all to larger numbers … the
dignity of the science itself seems to require that every possible means be explored for the
solution of a problem so elegant and so celebrated.

We briefly recount the state-of-the-art of these two basic algorithmic problems in
number theory. A remarkable response to Gauss’ first question, efficiently deciding primality,
was found in 2002 by Agrawal, Kayal, and Saxena [8]. The use of symbolic polynomials for
this problem is completely novel. Here is their elegant characterization of prime numbers.

Theorem 2.1 ([8]). An integer N � 2 is prime if and only if

1 Which is, of course, in Latin. I copied this English translation from a wonderful survey of
Granville [82] on the subject matter of this section.
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• N is not a perfect power,

• N does not have any prime factor � .logN /4,

• For every r; a < .logN /4, we have the following equivalence of polynomials over
ZN ŒX�:

.X C a/N
� XN

C a mod .X r
� 1/:

It is not hard to see that this characterization gives rise to a simple algorithm for
testing primality that is deterministic, and runs in time that is polynomial in the binary
description length of N . Previous deterministic algorithms either assumed the generalize
Riemann hypothesis [133] or required slightly superpolynomial time [5]. The AKS deter-
ministic algorithm came after a sequence of efficient probabilistic algorithms [4,80,150,163],
some elementary and some requiring sophisticated use and development of number-theoretic
techniques. These probabilistic and deterministic algorithms were partly motivated by and
are important to the field of cryptography.

What is not so well-known, even for those who did read the beautiful, ingenious
proof in [8], is that AKS developed their deterministic algorithm by carefully “derandomiz-
ing” a previous probabilistic algorithm for primality of [7] (which uses polynomials).We note
that derandomization, the conversion of probabilistic algorithms into deterministic ones, is
by now a major area in computational complexity with a rich theory, and many other simi-
lar successes as well as challenges. The stunning possibility that every efficient probabilistic
algorithm has a deterministic counterpart is one of the major problems of computational
complexity, and there is strong evidence supporting it (see [94]). Much more on this can be
found in the randomness chapters of [176].

Gauss’ second challenge, of whether efficiently factoring integers is possible, re-
mains open. But this very challenge has enriched computer science, both practical and the-
oretical, in several major ways. Indeed, the assumed hardness of factoring is the main guar-
antee of security in almost all cryptographic and e-commerce systems around the world
(showing that difficult problems can be useful!). More generally, cryptography is an avid
consumer of number theoretic notions, including elliptic curves, Weil pairings, and more,
which are critical to a variety of cryptographic primitives and applications. These develop-
ments shatter Hardy’s view of number theory as a completely useless intellectual endeavor.

There are several problems on integers whose natural definitions depend on factor-
ization, but can, nevertheless, be solved efficiently, bypassing the seeming need to factor.
Perhaps the earliest algorithm ever formally described is Euclid’s algorithm for computing
the GCD (greatest common divisor) of two given integers2 m and n. Another famous such
algorithm is for computing the Legendre–Jacobi symbol . m

n
/ via Gauss’ law of quadratic

reciprocity.
A fast algorithm for factoring may come out of left-field with the new development

of quantum computing, the study of computers based on quantum-mechanical principles,

2 It extends to polynomials, and allows for an efficient way of computing multiplicative
inverses in quotient rings of Z and F Œx�.
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which we discussed in the quantum chapter of the book [176]. Shor has shown in [158] that
such computers are capable of factoring integers in polynomial time. This result led gov-
ernments, companies, and academia to invest billions in developing technologies which will
enable building large-scale quantum computers, and the jury is still out on the feasibility
of this project. There is no known theoretical impediment for doing so, but one possible
reason for failure of this project is the existence of yet-undiscovered principles of quantum
mechanics.

Other central computational problems include solving polynomial equations in finite
fields, for which one of the earliest efficient (probabilistic) algorithms was developed by
Berlekamp [32] (it remains a great challenge to derandomize this algorithm!). Many other
examples can be found in the Algorithmic Number Theory book [26].

3. Combinatorial geometry

What is the smallest area of a planar region which contains a unit length segment
in every direction? This is the Kakeya needle problem (and such sets are called Kakeya
sets), which was solved surprisingly by Besicovich [33] who showed that this area can be
arbitrarily close to zero! Slight variation on his method produces a Kakeya set of Lebesque
measure zero. It makes sense to replace “area” (namely, Lesbegue measure) by the more
robust measures, such as the Hausdorff andMinkowski dimensions. This changes the picture:
Davies [48] proved that a Kakeya set in the plane must have full dimension (D 2) in both
measures, despite being so sparse in Lebesgue measure.

It is natural to extend this problem to higher dimensions. However, obtaining anal-
ogous results (namely, that the Hausdorff and Minkowski dimensions are full) turns out to
be extremely difficult. Despite the seemingly recreational flavor, this problem has significant
importance in a number of mathematical areas (Fourier analysis, wave equations, analytic
number theory, and randomness extraction), and has been attacked through a considerable
diversity of mathematical ideas (see [169]).

The following finite field analogue of the above Euclidean problem was suggested
by Wolff [177]. Let F denote a finite field of size q. A set K � Fn is called Kakeya if it
contains a line in every direction. More precisely, for every direction b 2 Fn there is a point
a 2 Fn such that the line ¹a C bt W t 2 Fº is contained in K. As above, we would like to
show that any such K must be large (think of the dimension n as a large constant, and the
field size q as going to infinity).

Conjecture 3.1. Let K � Fn be a Kakeya set. Then jKj � Cnqn, where Cn is a constant
depending only on the dimension n.

The best exponent of q in such a lower bound intuitively corresponds to the Haus-
dorff and Minkowski dimensions in the Euclidean setting. Using sophisticated techniques
from arithmetic combinatorics, Bourgain, Tao, and others improved the trivial bound of n=2

to about 4n=7.
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Curiously, the exact same conjecture arose, completely independently, within ToC,
from the work [122] on randomness extractors, an area which studies the “purification” of
“weak random sources” (see, e.g., the survey [171] on this important notion). In [122]Wolff’s
conjecture takes a probabilistic form, asking about the (min)-entropy of a random point
on a random line in a Kakeya set. With this motivation, Dvir [61] brilliantly proved the
Wolff conjecture (sometimes called the Finite Field Kakeya conjecture), using the (algebraic-
geometric) “polynomial method” (which is inspired by techniques in decoding algebraic
error-correcting codes). Many other applications of this technique to other geometric prob-
lems quickly followed, including the Guth–Katz [87] resolution of the famous Erdős distance
problem, as well as for optimal randomness extraction and more (some are listed in Dvir’s
survey [62]).

Subsequent work determined the exact value of the constantCn above (up to a factor
of 2) [63].

Theorem 3.2 ([63]). Let K � Fn be a Kakeya set. Then jKj � .q=2/n. On the other hand,
there exist Kakeya sets of size � 2 � .q=2/n.

Many other problems regarding incidences of points and lines (and higher-dimen-
sional geometric objects) have been the source of much activity and collaboration between
geometers, algebraists, combinatorialists, and computer scientists. The motivation for these
questions in the computer science side come from various sources, e.g., problems on local
correction of errors [27] and derandomization [64, 105]. Other incidence theorems, e.g.,
Szemerédi–Trotter [168] and its finite field version of Bourgain–Katz–Tao [37] have been
used, e.g., in randomness extraction [28] and compressed sensing [85].

4. Operator theory

The following basic mathematical problem of Kadison and Singer from 1959 [102]

was intended to formalize a basic question of Dirac concerning the “universality” of mea-
surements in quantum mechanics. We need a few definitions. Consider B.H /, the algebra of
continuous linear operators on a Hilbert space H . Define a state to be a linear functional f

on B.H /, normalized to f .I / D 1, which takes nonnegative values on positive semidefinite
operators. The states form a convex set, and a state is called pure if it is not a convex com-
bination of other states. Finally, let D be the subalgebra of B.H / consisting of all diagonal
operators (after fixing some basis).

Kadison and Singer asked if every pure state on D has a unique extension to B.H /.
This problem on infinite-dimensional operators found a host of equivalent formulations in
finite dimensions, with motivations and intuitions from operator theory, discrepancy theory,
Banach space theory, signal processing, and probability. All of them were solved affirma-
tively in recent work of Marcus, Spielman, and Srivastava [127] (which also surveys the many
related conjectures). Here is one statement they prove, which implies the others.
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Theorem 4.1 ([127]). For every " > 0, there is an integer k D k."/ so that the following
holds. Fix any n and any n � n matrix A with zeros on the diagonal and of spectral norm 1.
Then there is a partition of ¹1; 2; : : : ; nº into k subsets, S1; S2; : : : ; Sk , so that each of the
principal minors Ai (namely A restricted to rows and columns in Si ) has spectral norm at
most ".

This statement clearly implies that one of the minors has linear size, at least n=k.
This consequence is known as the Restricted Invertibility Theorem of Bourgain and Tzafriri
[38], itself an important result in operator theory.

How did computer scientists get interested in this problem? Without getting into
too many details, here is a sketchy description of the meandering path which led to this
spectacular result.

A central computational problem, at the heart of numerous applications, is solv-
ing a linear system of equations. While Gaussian elimination does the job quite efficiently
(the number of arithmetic operations is about n3 for n � n matrices), for large n this is
still inefficient. Thus faster methods are sought, hopefully nearly linear in the number of
nonzero entries of the given matrix. For Laplacian3 linear systems (arising in many graph
theory applications, such as computing electrical flows and random walks), Spielman and
Teng [165] achieved precisely that! A major notion they introduced was spectral sparsifiers
of matrices (or equivalently, weighted graphs).

A sparsifier of a given matrix is another matrix, with far fewer (indeed, linear)
nonzero entries, which, nevertheless, has essentially the same (normalized) spectrum as the
original (it is not even obvious that such a sparse matrix exists). We note that a very special
case of sparsifiers of complete graphs are by definition expander graphs4 (see much more
about this central concept of expanders in [93, 176]). The algorithmic applications led to a
quest for optimal constructions of sparsifiers for arbitrary Laplacian matrices (in terms of
trade-off between sparsity and approximation), and these were beautifully achieved in [29]

(who also provided a deterministic polynomial time algorithm to construct such sparsifiers).
This in turn has led [164] to a new proof, with better analysis, of the Restricted Invertibility
theorem mentioned above, making the connection to the Kadison–Singer problem.

However, the solution to Kadison–Singer seemed to require another detour. The
same team [126] first resolved a bold conjecture of Bilu and Linial [34] on the spectrum
of “signings” of matrices.5 This conjecture was part of a plan for a simple, iterative con-
struction of Ramanujan graphs, the best6 possible expander graphs. Ramanujan graphs were
introduced and constructed in [124,128], but rely on deep results in number theory and alge-

3 Simply, symmetric PSD matrices with zero row sum.
4 All nontrivial eigenvalues of the complete graph (or constant matrix) are 0, and an expander

is a sparse graph in which all nontrivial eigenvalues are tiny.
5 Simply, this beautiful conjecture states that for every d -regular graph, there exist ¹�1; 1º

signs of the edges which make all eigenvalues of the resulting signed adjacency matrix lie in
the “Ramanujan interval” Œ�2

p
d � 1; 2

p
d � 1�.

6 With respect to the spectral gap. This is one of a few important expansion parameters to
optimize.
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braic geometry (believed by some to be essential for any such construction). Bilu and Linial
sought instead an elementary construction, and made progress on their conjecture, show-
ing how their iterative approach gives yet another way to construct “close to” Ramanujan
expanders.

To prove the Bilu–Linial conjecture (and indeed produce bipartite Ramanujan
graphs of every possible degree—something the algebraic constructions could not provide),
[126] developed a theory of interlacing polynomials that turned out to be the key technical
tool for resolving Kadison–Singer in [127]. In both cases, the novel view is to think of these
conjectures probabilistically, and analyze the norm of a random operator by analyzing the
average characteristic polynomial. That this method makes sense and actually works is deep
and mysterious. Moreover, it provides a new kind of existence proofs for which no efficient
algorithm (even probabilistic) of finding the desired objects is known. The analysis makes
heavy use of the theory of real stable polynomials, and the inductive process underlying
it is reminiscent (and inspired by) Gurvits’ [86] remarkable proof of the van der Waerden
conjecture and its generalizations.7

5. Metric geometry

How close one metric space is to another is captured by the notion of distortion,
measuring how distorted distances of one become when embedded into the other. More pre-
cisely,

Definition 5.1. Let .X; d/ and .X 0; d 0/ be two metric spaces. An embedding f W X ! X 0

has distortion � c if for every pair of points x; y 2 X we have

d.x; y/ � d 0
�
f .x/; f .y/

�
� c � d.x; y/:

When X is finite and of size n, we allow c D c.n/ to depend on n.

Understanding the best embeddings between various metric and normed spaces has
been a long endeavor in Banach space theory and metric geometry. An example of one major
result in this area is Bourgain’s embedding theorem [36].

Theorem 5.2 ([36]). Every metric space of size n can be embedded into Euclidean space L2

with distortion O.logn/.

The first connection between these structural questions and computational com-
plexity was made in the important paper of Linial, London, and Rabinovich [120]. They
asked for efficient algorithms for actually finding embeddings of low distortion, and noticed
that for some such problems it is natural to use semidefinite programming. They applied

7 This is yet another example of a structural result (on doubly stochastic matrices) whose
proof was partly motivated by algorithmic ideas. The connection is the use of hyper-
bolic polynomials in optimization (more specifically, as barrier functions in interior point
methods.
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this geometric connection to get old and new results for algorithmic problems on graphs
(in particular, the sparsest cut problem we will soon discuss. Another motivation they dis-
cuss (which quickly developed into a major direction in approximation algorithms) is that
some computations (e.g., finding nearest neighbors) are more efficient in some spaces than
others, and so efficient, low-distortion embeddingmay provide useful reductions from harder
to easier space. They describe such an efficient algorithm implementing Bourgain’s Theo-
rem 5.2 above, and also prove that his bound is best possible (the metric proving it is simply
the distance between points in any constant-degree expander graph8).

The next shift in the evolution of this field, and in the level of interactions between
geometers and ToC researchers, came from trying to prove “hardness of approximation”
results. One example is the Goemans–Linial conjecture [78, 119], studying the sparsest cut
problem, about the relation between L1 and the “negative type” metric space L2

2 (a general
class of metrics which arise naturally in several contexts). Roughly, these are metrics on Rn

in which Euclidean distances are squared. More precisely, a metric .X;d/ is of negative type
(namely, in L2

2), if .X;
p

d/, is isometric (has no distortion) to a subset of L2.

Conjecture 5.3. Every L2
2 metric can be embedded into L1 with constant distortion.

This conjecture was proved false by Khot and Vishnoi [110]:

Theorem 5.4 ([110]). For every n, there are n-point subsets ofL2
2 for which every embedding

to L1 requires distortion �.log logn/1=6.

Far more interesting than the result itself is its origin. Khot and Vishnoi were trying
to prove that the (weighted) “sparsest cut” problem is hard to approximate. They man-
aged to do so under a computational assumption, known as the Unique Games conjecture
of Khot [107] via a so-called PCP-reduction (see also [108, 176]). The elimination of this
computational assumption is the magical part that demonstrates the power and versatility
of reductions between computational problems. They apply their PCP reduction to a par-
ticular, carefully chosen unique games instance, which cannot be well approximated by
a certain semidefinite program. The outcome was an instance of the sparsest cut problem
which the same reduction ensures is hard to approximate by a semidefinite program. As dis-
cussed above, that outcome instance could be understood as a metric space, and the hardness
of approximation translates to the required distortion bound!

The exact distortion of embedding L2
2 into L1 has been determined precisely to

be
p
logn (up to lower order factors) in two beautiful sequences of works developing new

algorithmic and geometric tools; we mention only the final word for each, as these papers
contain a detailed history. On the upper bound side, the efficient algorithm approximating
nonuniform sparsest cut to a factor

p
logn log logn, which yields the same distortion bound,

was obtained by Arora, Lee, and Naor [20] via a combination of the so-called “chaining
argument” of [21] and the “measured descent” embedding method of [112]. A lower bound

8 The presence of such graphs in different sections illustrate how fundamental they are in
diverse mathematical areas, and the same holds for algorithms and complexity theory.
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of
p
logn on the distortion was very recently proved by Naor and Young [144] using a new

isoperimetric inequality on the Heisenberg group.
Another powerful connection between such questions and ToC is through (again)

expander graphs. A basic example is that the graph metric of any constant-degree expander
proves that Bourgain’s embedding theorem above is optimal!Muchmore sophisticated exam-
ples arise from trying to understand (and perhaps disprove) the Novikov and the Baum–
Connes conjectures (see [104]). This program relies on another, muchweaker notion of coarse
embedding.

Definition 5.5. .X; d/ has a coarse embedding into .X 0; d 0/ if there is a map f W X ! X 0

and two increasing, unbounded real functions ˛; ˇ such that for every two points x; y 2 X ,

˛
�
d.x; y/

�
� d 0

�
f .x/; f .y/

�
� ˇ

�
d.x; y/

�
:

Gromov [83] was the first to construct a metric (the word metric of a group) which
cannot be coarsely embedded into a Hilbert space. His construction uses an infinite family
of Cayley expanders (graphs defined by groups). This result was greatly generalized by Laf-
forgue [114] and Mendel–Naor [130], who constructed graph metrics that cannot be coarsely
embedded into any uniformly convex space. It is interesting that while Lafforgue’s method
is algebraic, the Mendel–Naor construction follows the combinatorial zigzag construction of
expanders [155] from computational complexity.

Many other interaction projects regarding metric embeddings and distortion we did
not touch on include their use in numerous algorithmic and data structure problems like clus-
tering, distance oracles the k-server problem, as well as the fundamental interplay between
distortion and dimension reduction relevant to both geometry and CS, where so many basic
problems are open.

6. Group theory

Group theorists, much like number theorists, have been intrinsically interested in
computational problems since the origin of the field. For example, theword problem (given a
word in the generators of some group, does it evaluate to the trivial element?) is so fundamen-
tal to understanding any group one studies, that as soon as language was created to formally
discuss the computational complexity of this problem, hosts of results followed trying to
pinpoint that complexity. These include decidability and undecidability results once Turing
set up the theory of computation and provided the first undecidable problems, and these
were followed with N P -completeness results and efficient algorithms once P and N P

were introduced around 1970. Needless to say, these algorithmic results inform of structural
complexity of the groups at hand. And the word problem is but the first example. Another
demonstration is the beautiful interplay between algorithmic and structural advances over
decades, on the graph isomorphism problem, recently leading to breakthrough of Babai [24]!
A huge body of work is devoted to finding efficient algorithms for computing commuta-
tor subgroups, Sylow subgroups, centralizers, bases, representations, characters, and a host
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of other important substructures of a group from some natural description of it. Excellent
textbooks include [92,157].

Here we focus on two related problems, the generation and random generation
problems, and new conceptual notions borrowed from computational complexity which are
essential for studying them. Before defining them formally (below), let us consider an exam-
ple. Assume I hand you 10 invertible matrices, say 100 � 100 in size, over the field of size 3.
Can you tell me if they generate another such given matrix? Can you even produce con-
vincing evidence of this before we both perish? How about generating a random matrix in
the subgroup spanned by these generators? The problem, of course, is that this subgroup will
have size far larger than the number of atoms in the known universe, so its elements cannot be
listed, and typical words generating elements in the group may need to be prohibitively long.
Indeed, even the extremely special cases, for elements in Z�

p (namely one, 1 � 1 matrix), the
first question is related to the discrete logarithm problem, and for Z�

p�q it is related to the
integer factoring problem, both currently requiring exponential time to solve (as a function
of the description length).

Let us consider any finite group G and let n � log jGj be roughly the length of a
description of an element of G. Assume we are given k elements in G, S D ¹s1; s2; : : : ; skº.
It would be ideal if the procedures we describe would work in time polynomial in n and k

(which prohibits enumerating the elements of G, whose size is exponential in n).
The generation problem asks if a given element g 2 G is generated by S . How does

one prove such a fact? A standard certificate for a positive answer is a word in the elements
of S (and their inverses) which evaluates to g. However, even if G is cyclic, the shortest such
word may be exponential in n. An alternative, computationally motivated description, is to
give a program for g. Its definition shows that the term “program” suits it perfectly, as it has
the same structure as usual computer programs, only that instead of applying some standard
Boolean or arithmetic operations, we use the group operations of multiplication and inverse.

Definition 6.1. A program (over S ) is a finite sequence of elements g1; g2; : : : ; gm, where
every element gi is either in S , or is the inverse of a previous gj , or is the product of previous
gj ; g`. We say that it computes g simply if g D gm.

In the cyclic case, programs afford exponential savings over words in description
length, as a program allows us to write large powers by repeatedly squaring elements. What
is remarkable is that such savings are possible for every group. This discovery of Babai and
Szemerédi [25] says that every element of every group has an extremely succinct description
in terms of any set of elements generating it.

Theorem 6.2 ([25]). For every group G, if a subset of elements S generates another element
g, then there is a program of length at most n2 � .log jGj/2 which computes g from S.

It is interesting to note that the proof uses a structure which is very combinatorial and
counterintuitive for group theorists, namely that of a cube, which we will see again later. For
a sequence .h1; h2; : : : ; ht / of elements from G, the cube C.h1; h2; : : : ; ht / is the (multi)set
of 2t elements ¹h

"1
1 ; h

"2
2 ; : : : ; h

"t
t º, with "i 2 ¹0; 1º. Another important feature of the proof
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is that it works in a very general setting of “black-box” groups—it never needs an explicit
description of the host group, only the ability to multiply elements and take their inverses.
This is a very important paradigm for arguing about groups, and will be used again below.

How does one prove that an element g is not generated by S? It is possible that
there is no short “classical” proof! This question motivated Babai to define Arthur–Merlin
games—a new notion of probabilistic, interactive proofs (simultaneously with Goldwasser,
Micali, and Rackoff [81], who proposed a similar notion for cryptographic reasons), and
showed how nonmembership can be certified in this new framework. The impact of the defi-
nition of interactive proofs on the theory of computation has been immense, and is discussed
in, e.g., in the books [19,79,176].

Returning to the generation problem, let us now consider the problem of random
generation. Here we are given S , and would like a randomized procedure which will quickly
output an (almost) uniform distribution on the subgroup H of G generated by S . This prob-
lem, besides its natural appeal, is often faced by computational group theorists, being a
subroutine in many group-theoretic algorithms. In practice often heuristics are used, like
the famous “product replacement algorithm” and its variants, which often work well in prac-
tice (see, e.g., the recent [22] and references). We will discuss here provable bounds.

It is clear that sufficiently long random words in the elements of S and its inverses
will do the job, but just as with certificates, sufficiently long is often prohibitively long. In a
beautiful paper, Babai [23] describes a certain process generating a random program which
computes a nearly-uniform element of H , and runs in time n5 � .log jGj/5 steps. It again
uses cubes, and works in the full generality of black-box groups. This paper was followed
by even faster algorithms with simpler analysis by Cooperman and by Dixon [45,58], and the
state-of-the-art is an algorithm whose number of steps is remarkably the same as the length
of proofs of generation above—in other words, randomness roughly achieves the efficiency
of nondeterminism for this problem. Summarizing:

Theorem 6.3 ([23, 45, 58]). For every group G, there is a probabilistic program of length
poly.n/ � poly.log jGj/ that, given any generating set S for G, produces with high proba-
bility a (nearly) uniformly random element of G.

7. Statistical physics

The field of statistical physics is huge, and we focus here mainly on connections of
statistical mechanics with the theory of computation. Numerous mathematical models exist
of various physical and chemical systems, designed to understand basic properties of differ-
ent materials and the dynamics of basic processes. These include such familiar models as
Ising, Potts, monomer–dimer, spin-glass, percolation, etc. A typical example explaining the
connection of such mathematical models to physics and chemistry, and the basic problems
studied is the seminal paper of Heilmann and Lieb [90].

Many of the problems studied can be viewed in the following general setting. We
have a huge (exponential) space of objects called � (these objects may be viewed as the
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different configurations of a system). Each object is assigned a nonnegative weight (which
may be viewed as the “energy” of that state). Scaling these weights gives rise to a probability
distribution (often called the Gibbs distribution) on �, and to study its properties (phase
transitions, critical temperatures, free energy, etc.) one attempts to generate samples from
this distribution. Note that if the description of a state takes n bits, then brute-force listing
of all probabilities in question is exponentially prohibitive. Thus efficiency of the sampling
procedure is essential to this study.

As�may be highly unstructured, themost common approach to this sampling prob-
lem is known as “Monte Carlo Markov Chain” (or “MCMC”) method. The idea is to build
a graph on the objects of �, with a pair of objects connected by an edge if they are similar
in some sense (e.g., sequences which differ only in a few coordinates). Next, one starts from
any object, and performs a biased random walk on this graph for some time, and the object
reached is the sample produced. In many settings it is not hard to set up the random walk
(often called Glauber dynamics or the Metropolis algorithm) so that the limiting distribution
of the Markov chain is indeed the desired distribution. The main question in this approach
is when to stop the walk and output a sample; when are we close enough to the limit? In
other words, how long does it take the chain to converge to the limit? In most cases, these
decisions were taken on intuitive, heuristic grounds, without rigorous analysis of conver-
gence time. The exceptions where rigorous bounds were known were typically structured,
e.g., where the chain was a Cayley graph of a group (e.g., [11,56]).

This state of affairs has changed considerably since the interaction in the past couple
of decades with the theory of computation. Before describing it, let us see where computa-
tional problems even arise in this field. The twomajor sources are optimization and counting.
That the setting above suits many instances of optimization problems is easy to see. Think of
� as the set of solutions to a given optimization problem (e.g., the values of certain param-
eters designed to satisfy a set of constraints), and the weights representing the quality of a
solution (e.g., the number of constraints satisfied). So, picking at random from the associated
distribution favors high-quality solutions. The counting connection is more subtle. Here �

represents a set of combinatorial objects one wants to count or approximate (e.g., the set of
perfect matchings in a graph, or satisfying assignments to a set of constraints). It turns out
that for very general situations of this type, sampling an object (approximately) at random is
tightly connected to counting their number; it often allows a recursive procedure to approx-
imate the size of the set [99]. An additional observation is that viewing a finite set as a fine
discretization of a continuous object (e.g., fine lattice points in a convex set) allows one to
compute volumes and more generally integrate functions over such domains.

Around 1990, rigorous techniques were introduced [12, 39, 65, 161] to analyze the
convergence rates of such general Markov chains arising from different approximation algo-
rithms. They establish conductance bounds on the Markov chains, mainly via canonical
paths or coupling arguments (a survey of this early work is [96]). Collaborative work was
soon able to formally justify the physical intuition behind some of the suggested heuris-
tics for many models, and, moreover, drew physicists to suggest such ingenious chains for
optimization problems. The field drew in probabilists and geometers as well, and by now is
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highly active and diverse. We mention two results to illustrate rigorous convergence bounds
for important problems of this type.

Theorem 7.1 ([97]). The permanent of any nonnegative n � n matrix can be approximated,
to any multiplicative factor .1 C "/, in polynomial time in n=".

The importance of this approximation algorithm stems from the seminal result of
Valiant [173] about the permanent polynomial (that notorious sibling of the determinant poly-
nomial, that looks identical except that the permanent has no signs; for more see [159,176]).
Valiant proved that the permanent is universal, capturing (via efficient reductions) essentially
all natural counting problems, including those arising in the statistical physics models and
optimization and counting problems above. So, unlike determinant, computing the perma-
nent exactly is extremely difficult (harder than N P -complete).

Theorem 7.2 ([65]). The volume of any convex set in n dimensions can be approximated, to
any multiplicative factor .1 C "/, in polynomial time in n=".

The volume, besides its intrinsic interest, captures as well natural counting prob-
lems, e.g., the number of linear extensions of a given partially ordered set. The analysis
of this algorithm, as well as its many subsequent improvements, has used and developed
purely structural results of independent interest in differential and convex geometry. It also
led to generalizations, like efficiently sampling from any log-concave distribution (see the
survey [174]).

Another consequence of this collaboration was a deeper understanding of the rela-
tion between spacial properties (such as phase transitions, and long-range correlations
between distant sites in the Gibbs distribution) and temporal properties (such as speed of
convergence of the sampling or approximately counting algorithms, like Glauber dynamics).
This connection (surveyed, e.g., in [66]) was established by physicists for spin systems since
the 1970s. The breakthrough work of Weitz [175] on the hard core model gave an determin-
istic algorithm which is efficient up to the phase transition, and this was complemented by
a hardness result of Sly [162] beyond the phase transition. These phase transition of compu-
tational complexity, at the same point as the phase transition of the Gibbs distribution are
striking, and the generality of this phenomenon is still investigated.

More generally, the close similarity between statistical physicsmodels and optimiza-
tion problems, especially on random instances, is benefitting both sides. Let us mention a
few exciting developments. It has unraveled the fine geometric structure of the space of solu-
tions at the phase transition, pinpointing it, e.g., for k-SAT in [1]. At the same time, physics
intuition based on such ideas as renormalization, annealing, and replica symmetry breaking
has led to new algorithms for optimization problems, some of them now rigorously analyzed,
e.g., as in [98]. Others, like one of the fastest (yet unproven) heuristics for such problems as
Boolean Satisfiability (which is N P -complete in general) are based on the physics method
of “survey propagation” of [131]. Finally, new algorithmic techniques for similar physics
and optimization problems, originate from an unexpected source, the Lovasz Local Lemma
(LLL). The LLL is a probabilistic proof technique for the existence rare events in a proba-
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bility space. Its efficient versions, formulating it algorithmically as a directed, nonreversible
Markov chains, starting with the works of Moser [136,137], have led to approximate counting
and sampling versions for such events (see, e.g., [84]). A completely different, deterministic
algorithm of Moitra [135] for the LLL regime (of rare events) promises many more appli-
cations: it works even when the solution space (and hence the natural Markov chain) is not
connected!

We conclude this story with the recent breakthrough connection between high-
dimensional expanders and the analysis of MCMC of Anari, Liu, Gharan, and Vinzant [18].
The theory of high-dimensional expanders (generalizing that of expander graphs to higher
dimensional complexes – see the survey [123]), which easily merits a separate vignette, has
been rapidly developing in the past decade within combinatorics and complexity theory, fol-
lowing deep roots in the theory of Bruhat–Tits buildings, connections with several areas of
math, and new applications. Anari et al. realized that the local-to-global principle underlying
high-dimensional expansion can be used for an inductive analysis of the convergence rate of
many families of Markov chain-based algorithms. Their first application resolves a 30-year
old conjecture, proving

Theorem7.3 ([18]). The number of bases of anymatroid on n elements can be approximated,
to any multiplicative factor .1 C "/, in polynomial time in n=".

The revolutionary impact and future potential of this connection (and further ideas),
in just a couple of years, to problems of approximate counting and random sampling in opti-
mization and statistical physics, can be appreciated, e.g., from these papers and the references
therein [16,17,121].

8. Analysis and probability

This section gives a taste of a growing number of families of inequalities—large
deviation inequalities, isoperimetric inequalities, etc.—that have been generalized beyond
their classical origins due to a variety of motivations in the theory of computing and discrete
mathematics. Further, the applications sometimes call for stability versions of these inequali-
ties, namely an understanding of the structures which make an inequality nearly sharp. Here
too these motivations pushed for generalizations of classical results and many new ones.
Most of the material below, and much more on the motivations, applications, and develop-
ments in this exciting area of the analysis of Boolean functions, can be found in the book [145]

by O’Donnell.
The following story can be told from several angles. One is the noise sensitivity of

functions. We restrict ourselves to the Boolean cube endowed with the uniform probability
measure, but many of the questions and results extend to arbitrary product probability spaces.
Let f W ¹�1; 1ºn ! R, which we assume is balanced, namely EŒf � D 0. When the image
of f is ¹�1; 1º, we can think of f as a voting scheme, translating the binary votes of n

individuals into a binary outcome. One natural desire from such a voting scheme may be
noise stability—that typically very similar inputs (vote vectors) will yield the same outcome.
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While natural in this social science setting, such questions also arise in statistical physics
settings, where natural functions such as bond percolation turn out to be extremely sensitive
to noise [31]. Let us formally define noise stability.

Definition 8.1. Let � 2 Œ0; 1� be a correlation parameter. We say two vectors x;y 2 ¹�1; 1ºn

are �-correlated if they are distributed as follows. The vector x is drawn uniformly at random,
and y is obtained from x by flipping each bit xi independently with probability .1 � �/=2.
Note that for every i the correlation EŒxi yi � D �. The noise sensitivity of f at �, S�.f /, is
simply defined as the correlation of the outputs, EŒf .x/f .y/�.

It is not hard to see that the function maximizing noise stability is any dictatorship
function, e.g., f .x/ D x1, for which S�.f / D �. But another natural social scientific con-
cern is the influence of players in voting schemes [30], which prohibits such solutions (in
democratic environments). The influence of a single voter9 is the probability with which it
can change the outcome given that all other votes are uniformly random (so, in a dictatorship
it is 1 for the dictator and 0 for all others). A fair voting scheme should have no voter with
high influence. As we define influence for real-valued functions, we will use the (conditional)
variance to measure a player’s potential effect given all other (random) votes.

Definition 8.2. A function f W ¹�1; 1ºn ! R has influence � if for every i , VarŒxi jx�i � � �

for all i (where x�i denotes the vector x without the i th coordinate).

For example, the majority function has influence O.1=
p

n). The question of how
small the influence of a balanced function can be is extremely interesting, and leads to a
highly relevant inequality for our story (both in content and techniques). As it turns out,
ultimate fairness (influence 1=n per player) is impossible— the authors of [103] show that
every function has a player with nonproportional influence, at least �.logn=n/. At any rate,
one can ask which of the functions with small influence is most stable, and it is natural to
guess that majority should be the best.10

The conjecture that this is the case, called theMajority is Stablest conjecture, arose
from a completely different and surprising angle—the field of optimization, specifically
“hardness of approximation.” A remarkable paper [109] has shown that this conjecture
implies11 the optimality of a certain natural algorithm for approximating themaximum cut of
a graph (i.e., the partition of vertices that maximizes the number of edges between them).12

This connection is highly nontrivial, but by now we have many examples showing how the
analysis of certain (semidefinite programming-based) approximation algorithms for a vari-

9 This seminal paper [30] also studies the influences of coalitions of players, extremely
natural in game theory, which arises in and contributes to other areas of computational
complexity (including circuit complexity, learning and pseudorandomness), and raises other
analytic questions which we will not discuss here.

10 This noise sensitivity tends, as n grows, to S�.Majorityn/ D
2
� arcsin �.

11 Assuming another, complexity-theoretic, conjecture called the “Unique Games” conjecture
of [107] (discussed already in the metric geometry section above; see also [108,176]).

12 Maximum Cut is a basic optimization problem whose exact complexity is N P -complete.
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ety of optimization problems raise many new isoperimetric questions,13 greatly enriching
this field.

TheMajority is Stablest conjecture was proved in a strong form by [138] shortly after
it was posed. Here is a formal statement (which actually works for bounded functions).

Theorem 8.3 ([138]). For every (positive correlation parameter) � � 0 and " > 0, there exists
(an influence bound) � D �.�; "/ such that for every n and every f W ¹�1; 1ºn ! Œ�1; 1� of
influence at most � , S�.f / � S�.Majorityn/ C ".

The proof reveals another angle on the story—large deviation inequalities and
invariance principles. To see the connection, recall the Berry–Esseen theorem [70], gen-
eralizing the standard central limit theorem to weighted sums of independent random signs.
In this theorem, influences arise very naturally. Consider

Pn
iD1 ci xi . If we normalize the

weights ci to satisfy
P

i c2
i D 1, then ci is the influence of the i th voter, and � D maxi jci j.

The quality of this central limit theorem deteriorates linearly with the influence � . Linde-
berg’s proof of Berry–Esseen uses an invariance principle, showing that for linear functions,
the cumulative probability distribution PrŒ

Pn
iD1 ci xi � t � (for every t ) is unchanged (up

to � ), regardless of the distribution of the variables xi , as long as they are independent and
have expectation 0 and variance 1. Thus, in particular, they can be taken to be standard
Gaussian, which trivializes the problem, as the weighted sum is a Gaussian as well!

To prove their theorem, [138] first observed that also in the noise stability problem,
the Gaussian case is simple. If the xi ; yi are standard Gaussians with correlation �, the sta-
bility problem reduces to a classical result of Borell [35]: that noise stability is maximized by
any hyperplane through the origin. Note that here the rotational symmetry of multidimen-
sional Gaussians, which also aids the proof, does not distinguish “dictator” functions from
majority—both are such hyperplanes. Given this theorem, an invariance principle whose
quality depends on � would do the job. They next show that it is sufficient to prove the prin-
ciple only for low degree multilinear polynomials (as the effect of noise decays with the
degree). Finally, they prove this nonlinear extension of Berry–Esseen for such polynomials,
a form of which we state below. They also use their invariance principle to prove other con-
jectures, and since the publication of their paper, quite a number of further generalizations
and applications were found.

Theorem 8.4 ([138]). Let xi be any n independent random variables with mean 0, vari-
ance 1, and bounded 3rd moments. Let gi be n independent standard Gaussians. Let Q be
any degree d multilinear n-variate polynomial of influence � . Then for any t ,ˇ̌

Pr
�
Q.x/ � t

�
� Pr

�
Q.g/ � t

�ˇ̌
� O.d�1=d /:

We now only seem to be switching gears… To conclude this section, let me give
one more, very different demonstration of the surprising questions (and answers) regarding

13 Many over continuous domains, like the unit cube or Gaussian space, where the connection
between noise stability and isoperimetry may be even clearer.
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noise stability and isoperimetry, arising from the very same computational considerations of
optimization of hardness of approximation. Here is the question:What is the smallest surface
area of a (volume 1) body which tiles Rd periodically along the integer lattice Zd? Namely,
we seek a d -dimensional volume 1 subset B � Rd such that B C Zd D Rd , such that its
boundary has minimal .d � 1/-dimensional volume.14 Let us denote this infimum by s.d/.
The curious reader can stop here a bit and test your intuition, what do you expect the answer
to be, asymptotically in d?

Such questions originate from the late 19th century study by Thomson (later Lord
Kelvin) of foams in 3 dimensions [170], further studied, generalized, and applied in mathe-
matics, physics, chemistry, material science, and even architecture. However, for this very
basic question, where periodicity is defined by the simplest integer lattice, it seems that, for
large d , the trivial upper and lower bounds on s.d/ were not improved on for over a century.
The trivial upper bound on s.d/ is provided by the unit cube, which has surface area 2d .
The trivial lower bound on s.d/ comes from ignoring the tiling restriction, and considering
only the volume – here the unit volume ball has the smallest surface area,

p
2�ed . Where

in this quadratic range does s.d/ lie? In particular, can there be “spherical cubes,” with
s.d/ D O.

p
d/?

The last question became a central issue for complexity theorists when [69] related
it directly to the important Unique Games conjecture, and optimal inapproximability proofs
of combinatorial problems (in particular, the maximum cut problem) discussed above. The
nontrivial connection, which the paper elaborates and motivates, goes through attempts to
find the tightest version of Raz’ [151] celebrated parallel repetition theorem.15 A limit on how
“strong” a parallel repetition theorem can get was again provided by Raz [152]. Extending his
techniques [111] to the geometric setting, resolved the question above, proving that “spherical
cubes” do exist!

Theorem 8.5 ([111]). For all d , s.d/ �
p

4�d .

A simple proof, and various extensions of this result were given subsequently in [14].
We note that all known proofs are probabilistic. Giving an explicit construction, that might
better illustrate how a “spherical cube” (even with much worse parameters) looks like, seems
a challenging problem.

9. Lattice theory

Lattices in Euclidean space are among the most “universal” objects in mathematics,
in that besides being natural (e.g., arising in crystalline structures) and worthy of study in
their own right, they capture a variety of problems in different fields such as number theory,

14 Note that the volume of B ensures that the interiors of B C v and B C u are disjoint for any
two distinct integer vectors u; v 2 Zd , so this gives a tiling.

15 A fundamental information theoretic inequality of central importance to “amplification” of
Probabilistically Checkable Proofs (PCPs).
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analysis, approximation theory, Lie algebras, convex geometry, and more. Many of the basic
results in lattice theory, as we shall see, are existential (namely supply no efficient means for
obtaining the objects whose existence is proved), which in some cases has limited progress
on these applications.

This section tells the story of one algorithm, of Lenstra, Lenstra, and Lovász [117],
often called the LLL algorithm, and some of its implications on these classical applications
as well as modern ones in cryptography, optimization, number theory, symbolic algebra, and
more. But we had better define a lattice16 first.

Let B D ¹b1; b2; : : : ; bnº be a basis of Rn. Then the lattice L.B/ denotes the set
(indeed, Abelian group) of all integer linear combinations of these vectors, i.e., L.B/ D

¹
P

i zi bi W zi 2 Zº; B is also called a basis of the lattice. Naturally, a given lattice can
have many different bases, e.g., the standard integer lattice in the plane, generated by
¹.0; 1/; .1; 0/º, is equally well generated by ¹.999; 1/; .1000; 1/º. A basic invariant asso-
ciated with a lattice L is its determinant d.L/, which is the absolute value of det.B/ for any
basis B of L (this is also the volume of the fundamental parallelpiped of the lattice). For
simplicity and without loss of generality, we will assume that B is normalized so that we
only consider lattices L of d.L/ D 1.

The most basic result about lattices, namely that they must contain short vectors (in
any norm)was proved byMinkowski (who initiated Lattice Theory, andwith it, the Geometry
of Numbers) [134].

Theorem 9.1 ([134]). Consider an arbitrary convex set K in Rn which is centrally symmet-
ric17 and has volume > 2n. Then, every lattice L (of determinant 1) has a nonzero point
in K.

This innocent theorem, which has a simple, but existential (pigeonhole) proof, turns
out to have numerous fundamental applications in geometry, algebra, and number theory.
Among famous examples this theorem yields with appropriate choice of norms and lattices,
results like Dirichlet’s Diophantine approximation theorem and Lagrange’s four-squares the-
orem, and (with much more work) the finiteness of class numbers of number fields (see, e.g.,
[148]).

From now on we will focus on short vectors in the (most natural) Euclidean norm.
A direct corollary ofMinkowski’s theoremwhen applying it to the cubeK D Œ�1;1�n yields:

Corollary 9.2. Every lattice L of determinant 1 has a nonzero point of Euclidean norm at
most

p
n.

Digressing a bit, we note that very recently, a century after Minkowski, a strong con-
verse of the above corollary18 conjectured by Dadush (see [47]) for computationalmotivation
has been proved in [154]. This converse has many structural consequences, on the covering

16 We only define full-rank lattices here, which suffice for this exposition.
17 Namely, x 2 K implies that also �x 2 K. Such sets are precisely balls of arbitrary norms.
18 Which has to be precisely formulated.
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radius of lattices, arithmetic combinatorics, Brownian motion, and others. We will not elab-
orate here on this new interaction of computational complexity and optimization with lattice
theory and convex geometry. The papers above beautifully motivate these connections and
applications, and the history of ideas and technical work needed for this complex proof.

Returning to Minkowski’s corollary for the Euclidean norm, the proof is still exis-
tential, and the obvious algorithm for finding such a short vector requires exponential time in
n. The breakthrough paper [117] describe the LLL algorithm, an efficient, polynomial-time
algorithm, which approximates the length of the shortest vector in any n-dimensional lattice
by a 2n factor.

Theorem 9.3 ([117]). There is a polynomial time algorithm, which, given any lattice L, pro-
duces a vector in L of Euclidean length at most 2n factor longer than the shortest vector
in L.

This exponential bound may seem excessive at first, but the number and diversity of
applications is staggering. First, in many problems, the dimension n is a small constant (so
the actual input length arises from the bit-size of the given basis). This leads, for instance, to
Lenstra’s algorithm for (exactly solving) Integer Programming [118] in constant dimensions.
It also leads to Odlyzko and Riele’s refutation [146] of Mertens’ conjecture about cancella-
tions in the Möbius function, and to the long list of number-theoretic examples in [160]. But
it turns out that even when n is arbitrarily large, many problems can be solved in poly.n/-
time as well. Here is a list of examples of old and new problems representing this variety,
some going back to the original paper [117]. In all, it suffices that real number inputs are
approximated to poly(n) digits in dimension n.

• Diophantine approximation. While the best possible approximation of one real
number by rationals with bounded denominator is readily solved by its (efficiently
computable) continued fraction expansion, no such procedure is known for simul-
taneous approximation. Formally, given a set of real numbers, say ¹r1; r2; : : : ; rnº,
a bound Q and " > 0, find integers q � Q and p1; : : : ; pn such that all
jri � pi =qj � ". Existentially (using Minkowski), the Dirichlet “box-principle”
shows that " < Q1=n is possible. Using LLL, one efficiently obtains " < 2n2

Q1=n

which is meaningful for Q described by poly.n/ many bits.

• Minimal polynomials of algebraic numbers. Here we are given a single real
number r and a degree bound n, and are asked if there is a polynomial g.x/

with integer coefficients, of degree at most n of which r is a root (and also to pro-
duce such a polynomial g if it exists). Indeed, this is a special case of the problem
above with ri D r i . While the algorithm only outputs g for which g.r/ � 0, it is
often easy to check that it actually vanishes. Note that by varying n we can find
the minimal such polynomial.

• Polynomial factorization over rationals. Here the input is an integer polynomial h

of degree n, and we want to factor it over Q. The high level idea is to first find an
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(approximate) root r of h (e.g., using Newton’s method), feed it to the problem
above, which will return a minimal g having r as a root, and thus divides h. We
stress that this algorithm produces the exact factorization, not an approximate one!

• Small integer relations between reals. Given reals r1; r2; : : : ; rn, and a bound Q,
determine if there exist integers jzi j < Q such that

P
i zi ri D 0 (and if so, find

these integers). As a famous example, LLL can find an integer relation among
arctan.1/ � 0:785398, arctan.1=5/ � 0:197395, and arctan.1=239/ � 0:004184,
yielding Machin’s formula

arctan.1/ � 4 arctan.1=5/ C arctan.1=239/ D 0:

• Cryptanalysis. Note that a very special case of the problem above (in which the
coefficients zi must be Boolean) is the “Knapsack problem,” a famous N P -com-
plete problem. The point here is that in the early days of cryptography, some
systems were based on the assumed “average case” hardness of Knapsack. Many
such systems were broken by using LLL, e.g., [115]. LLL was also used to break
some versions of the RSA cryptosystem (with “small public exponents”).

It is perhaps a fitting epilogue to the last item that lattices cannot only destroy cryp-
tosystems, but also create them. The problem of efficiently approximating short vectors up to
polynomial (as opposed to exponential, as LLL produces) factors is believed to be computa-
tionally hard. Here are some major consequences of this assumption. First, Ajtai showed in
a remarkable paper [9] that such hardness is preserved “on average”, over a cleverly-chosen
distribution of random lattices. This led to a new public-key encryption scheme by Ajtai and
Dwork [10] based on this hardness, which is arguably the only one known that can poten-
tially sustain quantum attacks (Shor’s efficient quantum algorithms can factor integers and
compute discrete logarithms [158]). In another breakthrough work of Gentry [77], this hard-
ness assumption is used to devise fully homomorphic encryption, a scheme which allows not
only to encrypt data, but to perform arbitrary computations directly with encrypted data. See
more in this excellent survey [147].

10. Invariant theory (and more)

This section is somewhat longer than the rest. One reason is that much of it has been
a primary research interest of mine in recent years, and indeed is the subject of my ICM lec-
ture. Another reason is that the connections revealed here are considerably richer. On the
one hand, several different areas within the theory of computation play a role, including
algebraic complexity theory, derandomization, and optimization. On the other, while invari-
ant theory is central in these developments, connections and implications are revealed to and
between other mathematical areas, including noncommutative algebra, analysis, represen-
tation theory, quantum information theory, statistics, and operator theory. We will explore
some of these here.
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Invariant theory, born in an 1845 paper of Cayley [43], is major branch of algebra,
with important natural connections to algebraic geometry and representation theory, but also
to many other areas of mathematics. We will see some here, as well as some new connec-
tions with computational complexity, leading to new questions and results in this field. We
note that computational efficiency was always important in invariant theory, which is rife
with ingenious algorithms (starting with Cayley’s Omega process), as is evident from the
books [46,49,167].

Invariants are familiar enough, from examples like the following:

• In high school physicswe learn that energy andmomentum are conserved (namely,
are invariants) in the dynamics of general physical systems.

• In chemical reactions the number of atoms of each element is preserved as one
mixture of molecules is transformed to yield another (e.g., as combining sodium
hydroxide (NaOH) and hydrochloric acid (HCl) yields the common salt sodium
chloride (NaCl) and water (H2O)).

• In geometry, a classical puzzle asks when can a plane polygon be “cut and pasted”
along straight lines to another polygon. Here the obvious invariant, area, is the
only one!19 However, in generalizing this puzzle to 3-dimensional polyhedra, it
turns out that besides the obvious invariant, volume, there is another invariant,
discovered by Dehn.20

More generally, questions about the “topological equivalence” of two topological objects
(e.g., knots), whether two groups are isomorphic, or whether two points are in the same orbit
of a dynamical system, etc., all give rise to similar questions and treatment. A canonical way
to give negative answers to such questions is through invariants, namely quantities preserved
under some action on an underlying space.

We will focus on invariants of linear groups acting linearly on vector spaces. Let
us present some notation. Fix a field F (while problems are interesting in every field, results
mostly work for infinite fields only, and sometimes just for characteristic zero or algebraically
closed ones). We will also suppress some technicalities. Let G be a group, and V a repre-
sentation of G, namely an F -vector space on which G acts: for every g; h 2 G and v 2 V ,
we have gv 2 V and g.hv/ D .gh/v.

The orbit under G of a vector (or point) v 2 V , denoted Gv, is the set of all other
points that v can be moved to by this action, namely ¹gv W g 2 Gº. Understanding the orbits
of a group objects is a central task of this field. A basic question capturing many of the
examples above is, given two points u; v 2 V , do they lie in the same G-orbit, namely if
u 2 Gv. A related basic question, which is even more natural in algebraic geometry (when

19 And so, every two polygons of the same area can be cut to produce an identical (multi)sets
of triangles.

20 So there are pairs of 3-dimensional polyhedra of the same volume, which cannot be cut to
identical (multi)sets of tetrahedra.
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the field F is algebraically closed of characteristic zero) is whether the closures21 of the two
orbits intersect, namely if some point in V can be approximated arbitrarily well by points in
both Gu and Gv. We will return to specific incarnations of these questions.

When G acts on V , it also acts on F ŒV �, the polynomial functions on V , also called
the coordinate ring of V . In our setting V will have finite dimension (say m), and so F ŒV �

is simply F Œx1; x2; : : : ; xm� D F ŒX�, the polynomial ring over F in m variables. We will
denote by gp the action of a group element g 2 G on a polynomial p 2 F ŒV �.

A polynomial p.X/ 2 F ŒX� is invariant if it is unchanged by this action, namely
for every g 2 G we have gp D p. All invariant polynomials clearly form a subring of F ŒX�,
denoted F ŒX�G , called the ring of invariants of this action. Understanding the invariants of
group actions is the main subject of Invariant Theory. A fundamental result of Hilbert [91]
shows that in our linear setting,22 all invariant rings will be finitely generated as an algebra.23

Finding the “simplest” such generating set of invariants is our main concern here.
Two familiar examples of perfect solutions to this problem follow:

• In the first, G D Sm, the symmetric group on m letters, is acting on the set of
m formal variables X (and hence the vector space they generate) by simply per-
muting them. Then the ring of invariants is simply all symmetric polynomials,
and a (minimal) set of generating invariants is the first m elementary symmetric
polynomials in X .

• In the second, G D SLn.F/, the special linear group of matrices with determi-
nant 1, is acting on the vector spaceMn.F/ of n � nmatrices (som D n2), simply
by left matrix multiplication. In this case all polynomial invariants are generated
by a single polynomial, the determinant of this m-variable matrix X .

In these two cases, which really supply a complete understanding of the invariant ringF ŒX�G ,
the generating sets are good in several senses. There are few generating invariants, they all
have low degree, and they are easy to compute24—all these quantities are bounded by a
polynomial in m, the dimension of the vector space.25 In such good cases, one has efficient
algorithms for the basic problems regarding orbits of group actions. For example, a funda-
mental duality theorem ofGeometric Invariant Theory [143] (see TheoremA.1.1), shows how
generating sets of the invariant ring can be used for the orbit closure intersection problem.

21 One can take closure in either the Euclidean or the Zariski topology (the equivalence in this
setting was proved by Mumford [142]).

22 The full generality under which this result holds is actions of reductive groups, which we
will not define here, but includes all examples we discuss.

23 This means that there is a finite set of polynomials ¹q1; q2; : : : ; qt º in F ŒX�G so
that for every polynomial p 2 F ŒX�G there is a t -variate polynomial r over F so that
p D r.q1; q2; : : : ; qt /.

24 For example, have small arithmetic circuits or formulae.
25 There are additional desirable structural qualities of generating sets that we will not dis-

cuss, e.g., completely understanding algebraic relations between these polynomials (called
syzygies).
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Theorem 10.1 ([143]). For an algebraically closed field F of characteristic 0, the following
are equivalent for any two u; v 2 V and generating set P of the invariant ring F ŒX�G:

• The orbit closures of u and v intersect.

• For every polynomial p 2 P , p.v/ D p.u/.

10.1. Geometric complexity theory
We now briefly explain one direction fromwhich computational complexity became

interested in these algebraic problems, in work that has generated many new questions and
collaboration between the fields. First, some quick background on the main problem of
arithmetic complexity theory (see that chapter in [176] for definitions and more discussion).
In [173], Valiant defined arithmetic analogs VP and VN P of the complexity classes P

and N P , respectively, and conjectured that these two arithmetic classes are different. He
further proved (via surprising completeness results) that to separate these classes it is suf-
ficient to prove that the permanent polynomial on n � n matrices does not project to the
determinant polynomial on m � m matrices for any m D poly.n/. Note that this is a pure
and concrete algebraic formulation of a central computational conjecture.

In a series of papers, Mulmuley and Sohoni introduced Geometric Complexity
Theory (GCT) to tackle this major open problem.26 This program is surveyed by Mul-
muley here [139,140], as well as in Landsberg’s book [116]. Very concisely, the GCT program
starts off as follows. First, a simple “padding” of the n � n permanent polynomial makes it
have degree m and act on the entries of an m � m matrix. Consider the linear group SLm2

action on all entries of such m � m matrices. This action extends to polynomials in those
variables, and so in particular the two we care about: determinant and modified permanent.
The main connection is that the permanent projects to the determinant (in Valiant’s sense)
if and only if the orbit closures of these two polynomials intersect. Establishing that they do
not intersect (for m D poly.n/) naturally leads to questions about finding representation-
theoretic obstructions to such intersection (and hence, to the required computational lower
bound). This is where things get very complicated, and describing them is beyond the scope
of this survey. We note that to date, the tools of algebraic geometry and representation theory
were not sufficient even to improve the quadratic bound on m of Mignon and Ressayre [132].
Indeed, some recent developments show severe limitations to the original GCT approach
(and perhaps guiding it in more fruitful directions); see [42] and its historical account. Nev-
ertheless, this line of attack (among others in computational complexity) has lead to many
new questions in computational commutative algebra and to growing collaborations between
algebraists and complexity theorists—we will describe some of these now.

To do so, we will focus on two natural actions of linear groups on tuples of matri-
ces, simultaneous conjugation and the left–right action. Both are special cases of quiver

26 Origins of using invariant theory to argue computational difficulty via similar techniques go
back to Strassen [166].
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representations (see [55, 74]).27 For these two group actions, we will discuss, respectively
in Sections 10.2, 10.3, the classical questions and results on the rings of invariants, and
recent advances motivated by computational considerations. Section 10.4 will be devoted
to significant extensions of the algorithmic technique developed for the left–right action.
And in Section 10.5 we will close full circle and discuss yet another central problem on
matrix tuples, namely the Symbolic Determinant Identity Testing (SDIT) problem, which
ties together many aspects we have seen and suggest further interesting challenges in the
interface of computational complexity with invariant theory and algebraic geometry.

10.2. Simultaneous conjugation
Consider the following action of SLn.F/ on d -tuples of n � n matrices. We have

m D dn2 variables arranged as d n � n matrices X D .X1; X2; : : : ; Xd /. The action of a
matrix Z 2 SLn.F/ on this tuple is by simultaneous conjugation, by transforming it to the
tuple .Z�1X1Z;Z�1X2Z; : : : ;Z�1Xd Z/. Now, the general question above, for this action,
is which polynomials in the variables X are invariant under this action?

The work of Procesi, Formanek, Razmyslov, and Donkin [60,72,149,153] provides a
good set (in most aspects discussed above) of generating invariants (over algebraically closed
fields of characteristic zero). The generators are simply the traces of products of length at
most n2 of the given matrices,28 namely the set®

Tr.Xi1Xi2 � � � Xit / W t � n2; ij 2 Œd �
¯
:

These polynomials are explicit, have small degree, and are easily computable. The one short-
coming is the exponential size of this generating set. For example, using it to decide the
intersection of orbit closures will only lead to an exponential time algorithm.

By Hilbert’s so-called “Noether’s normalization lemma” [91],29 we know that the
size of this set of generating invariants can, in principle (as the proof is existential), be
reduced to dn2 C 1. Indeed, when the group action is on a vector space of dimension m,
taking m C 1 “random” linear combinations of any finite generating set will result (with
probability 1) in a small generating set. However, as we start with an exponential number of
generators above, this procedure is both inefficient and also not explicit (it is not clear how
to make it deterministic). One can get an explicit generating set of minimal size determinis-
tically using the Gröbner basis algorithm (see [129] for the best known complexity bounds)
but this will take doubly exponential time in n.

27 We will not elaborate on the theory of quiver representations here, but only remark that
reductions and completeness occur in this study as well! The left–right quiver is com-
plete in a well defined sense (see [50, Section 5]). Informally, this means understanding
its (semi)invariants implies the same understanding of the (semi)invariants of all acyclic
quivers.

28 Convince yourself that such polynomials are indeed invariant.
29 We remark that this is the same foundational paper which proved the finite basis and Null-

stellensatz theorems. It is interesting that Hilbert’s initial motivation to formulate and prove
these cornerstones of commutative algebra was the search for invariants of linear actions.
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The works above [71,141] reduce this complexity to polynomial time! This happened
in two stages. First, Mulmuley [141] gave a probabilistic polynomial time algorithm, by clev-
erly using the structure of the exponentially many invariants above (using which one can
obtain sufficiently random linear combinations using only polynomially many random bits
and in polynomial time). He then argues that using conditional derandomization results (dis-
cussed in the chapter on randomness in [176]), one can derive a deterministic polynomial time
algorithm under natural computational hardness assumptions. Shortly afterwards, Forbes
and Shpilka [71] derandomized a variant of Mulmuley’s algorithm without any unproven
assumption, yielding an unconditional deterministic polynomial time algorithm for the prob-
lem! Their algorithm uses the derandomization methodology: very roughly speaking, they
first notice that Mulmuley’s probabilistic algorithm can be implemented by a very restricted
computational model (a certain read-once branching program), and then use an efficient
pseudorandom generator for this computational model. Here is one important algorithmic
corollary (which can be extended to other quivers).

Theorem 10.2 ([71, 141]). There is a deterministic polynomial time algorithm to solve the
following problem: given two tuples of rationalmatrices .A1;A2; : : : ;Ad /; .B1;B2; : : : ;Bd /,
determine if the closure of their orbits under simultaneous conjugation intersect.

It is interesting to remark that if we only consider the orbits themselves (as opposed
to their closure), namely ask if there is Z 2 SLn.F/ such that for all i 2 Œd � we have
Z�1Ai Z D Bi , this becomes the module isomorphism problem over F . For this impor-
tant problem, there is a deterministic algorithm (of a very different nature than above, using
other algebraic tools) that can solve the problem over any field F using only a polynomial
number of arithmetic operations over F [40].

10.3. Left–right action
Consider now the following action of two copies, SLn.F/ � SLn.F/ on d -tuples of

n � n matrices. We still have m D dn2 variables arranged as d n � n matrices
X D .X1; X2; : : : ; Xd /. The action of a pair of matrices .Z; W / 2 SLn.F/ � SLn.F/ on
this tuple is by left–right action, transforming it to the tuple .Z�1X1W; Z�1X2W; : : : ;

Z�1Xd W /. Again, for this action, which polynomials in the variables X are invariant
under this action? Despite the superficial similarity to the to simultaneous conjugation, the
invariants here have entirely different structure, and bounding their size required different
arguments.

The works of [6, 54, 59, 156] provides an infinite set of generating invariants. The
generators (again, over algebraically closed fields) are determinants of linear forms of the
d matrices, with matrix coefficients Ci of arbitrary dimension. Namely the following set
generates all invariants:®

det.C1 ˝ X1 C C2 ˝ X2 C � � � C Cd ˝ Xd / W Ci 2 Mk.F/; k 2 N
¯
:

These generators, while concisely described, fall short on most goodness aspects
above, and we now discuss improvements. First, by Hilbert’s finite generation, we know
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in particular that some finite bound k on the dimension of the matrix coefficients Ci exist.
A quest to find explicit bounds on k ensued. A quadratic upper bound k � n2 was obtained by
Derksen and Makam [50] after a long sequence of improvements described there. Still, there
is an exponential number30 of possible matrix coefficients of this size exist. However, it is
easy to see that picking the Ci at random leads to a probabilistic polynomial time algorithm
for the orbit closure intersection for this left–right action. A sequence of developments which
we describe below and in the next subsection, eventually led to a deterministic polytime
algorithm for this problem over the complex numbers by Allen-Zhu, Garg, Li, Oliveira, and
Wigderson [13]. A different, simpler algorithm which works for all fields was later found by
Derksen and Makam [51]).

Theorem 10.3 ([13,51]). There is a deterministic polynomial time algorithm to solve the fol-
lowing problem: given two tuples of matrices .A1;A2; : : : ;Ad /; .B1;B2; : : : ;Bd /, determine
if the closure of their orbits under the left–right action intersect.

In the remainder we discuss an important special case of this problem, namely when
all Bi D 0, for which deterministic polynomial time algorithms were found first, which were
key to the general result above. While this problem is in commutative algebra, this algorithm
surprisingly has implications in analysis, noncommutative algebra, computational complex-
ity, quantum information theory, and other areas. We will mention some of these, but let us
start by defining the problem.

For an action of a linear group G on a vector space V , define the nullcone of the
action to be the set of all points v 2 V such that the closure of the orbit Gv contains 0.
The points in the nullcone are sometimes called unstable. The nullcone is of fundamental
importance in invariant theory! Some examples of nullcones for actions we have discussed
are the following. For the action of SLn.C/ on Mn.C/ by left multiplication, it is the set
of singular matrices. For the action of SLn.C/ on Mn.C/ by conjugation, it is the set of
nilpotent matrices. As you would guess (and follows from Theorem 10.1), the nullcone is
precisely the set of points in V which vanish under all invariant polynomials. Thus if we
have a good generating set, one can use them to efficiently test membership in the nullcone.
However, we are not in this situation for the left–right action. Despite that, deterministic
polynomial-time algorithms were obtained, independently, by Garg, Gurvits, Oliveira, and
Wigderson [75] (which is analytic in nature) over the complex numbers, and by Ivanyos,
Qiao, and Subrahmanyam [95] (which is algebraic in nature) and works for all fields. These
two algorithms have different properties, and use in different ways the upper bounds on the
dimension of matrix coefficients in the invariants.31

Theorem 10.4 ([75,95]). There is a deterministic polynomial time algorithm that, on a given
tuple of matrices .A1; A2; : : : ; Ad / in Mn.F/, determines if it is in the nullcone of the left–
right action.

30 Well, a possibly infinite number, but it can be reduced to exponential.
31 Yet a third algorithm, quite different than the two above, was very recently developed by

Hamada and Hirai [88].
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Wewill focus in what follows on the first algorithm.We discuss its broad extensions
in the next subsection. Here we discuss some of its diverse consequences to basic problems
in different fields (reflecting the many different mathematical objects that can be represented
by matrix tuples). All the precise definitions of the notions below, as well as the proofs,
interconnections and the meandering story leading to it can be found in [75,76].

Theorem 10.5 ([75, 76]). There are deterministic polynomial-time algorithms to solve the
following problems:

• (Analysis) The feasibility problem for Brascamp–Lieb inequalities, and more gen-
erally, computing the optimal constant for each one.

• (Noncommutative algebra) The word problem over the free skew field (of rational
functions in noncommuting variables).

• (Quantum information theory) Testing if a completely positive quantum operator
is rank-decreasing.

• (Arithmetic complexity) Approximating the commutative rank of a symbolic
matrix to within a factor of two.32

We note that this algorithm also inspired purely structural results, both in the areas
mentioned above, but also in others. In frame theory, it led to the complete resolution of the
central Paulsen problem [89,113]. In statistics, it has led to complete understanding of when
Maximum Likelihood Estimates (MLE) exist, and when they are unique, first for matrix
random models [15,52] and then for tensor random models [53].

10.4. Nullcones, moment polytopes, geodesic convexity, and noncommutative
optimization
Reflecting on the algorithm of [75] from the previous section marked several features

which merited further investigation. For one, it is an analytic/numerical algorithm, very dif-
ferent that the typical algebraic/symbolic algorithms so common for problems of invariant
theory and algebraic geometry, and in the applications above. This algorithm is a special
case of a general heuristic called alternate minimization, common in optimization, statistics,
and machine learning, where the input evolves via a sequence of local, greedy steps. In gen-
eral, convergence of such algorithms, let alone fast convergence, may not be guaranteed or
is hard to establish, whereas here it always converges, and in polynomial time! The analysis
uses the fact that the evolution above happens along the orbit of the input by the left–right
group action, and tracks a measure called capacity which this evolution minimizes. And fast
convergence to a unique optimum occurs despite the fact that both the domain (a pair of
continuous linear groups) and the optimized function are patently nonconvex.

Understanding the power of such continuous optimization algorithms for a larger
and larger classes of nullcone problems (capturing other problems, in discrete optimization,

32 Computing this rank exactly is the central PIT problem, discussed at the last subsection.
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quantum information, representation theory, and other areas) progressed in a series of papers,
culminating in a general theory, that applies in principle to any linear (reductive) group
action [41]. The paper contains a detailed account of the history, background, theory, and
applications, and we relate below just the highlights, partly explaining the mysteries above.

First, nullcone problems may be viewed as optimization problems for general group
actions, where the capacity being minimized is simply the minimum norm of any element in
the orbit of the input. This viewpoint then benefits from a beautiful noncommutative duality
theory (the Kempf–Ness theorem [106], which greatly expends linear programming duality in
the commutative case). Underlying this theorem are notions of geodesic convexity (extending
the Euclidean one) andmoment maps (extending the Euclidean gradient). Thus, the seeming
nonconvexity of these problems mentioned above only stems from the wrong representation:
viewed with the correct metric on the Riemannian manifold which is the acting group makes
both the domain and optimization goal (geodesically) convex, explaining convergence to a
unique optimal point, which determines membership in the nullcone.

Using these tools, it turns out that the most basic tools of convex optimization in
Euclidean space extend to the far more general setting of Riemannian manifolds that arise
from the symmetries of noncommutative groups. The paper develops “geodesic” first- and
second-order algorithms in this setting, and analyzes their performance in general. Prov-
ing convergence bounds requires making quantitative the duality theory above, which uses
significant algebraic and analytic machinery. However, the bounds themselves depend in
an elegant way on few natural geometric “smoothness” parameters (arising from the given
group action), in analogy with the Euclidean (commutative) case.

These algorithms can actually bemodified to solve a significant generalization of the
nullcone membership problem, namely computing membership in so-called moment poly-
topes, implicitly defined polyhedral bodies associated with any linear group action. These
capture a variety of “scaling problems,” such as marginal problems in classical and quantum
information theory, as well as basic combinatorial optimization problem such as the matroid
intersection problem.

10.5. Symbolic determinants, varieties, and circuit lower bounds
We now return to a another basic computational question on matrix tuples, the Sym-

bolic Determinant Identity Testing (SDIT) problem (of interest over any field F ): Given a
tuple of n � n matrices .A1; A2; : : : ; Ad /, determine if the symbolic determinant
det.

P
i xi Ai / vanishes as a polynomial in the variables xi . This problem has a several

different formulations, and has arisen independently in different fields. We mention a few.
One equivalent formulation comes from considering the linear space

¹
P

i ci Ai W ci 2 Fº arising from all possible evaluations of the variables xi . Then SDIT
asks if this matrix space contains only singular matrices. In algebraic geometry, it arises in
close connection with certain sheaves on projective space [68]. In topology, it arises naturally
in connection to linearly independent vector fields on spheres, which led to the development
of the Adams operations on topological K-theory [2,3]. In invariant theory, they were used
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by Dieudonné [57] to classify the symmetries of the determinant, recovering a result of
Frobenius [73].

Another equivalent formulation brings up beautiful connections between the
cases of commuting and noncommuting variables xi . Consider the symbolic matrix
A.x/ D

P
i xi Ai . In this terminology SDIT becomes the question of the invertibility of

this symbolic matrix A.x/ over the field F.x/ of rational functions in the (commuting) vari-
ables xi . In his seminal work on the (noncommutative) free skew field, Cohn [44] proved
that the elements of this field can be described as inverses of such symbolic matrices in non-
commuting variables xi . Thus the noncommutative analog of SDIT is the word problem for
this field.33 Another connection mentioned in Section 10.3 above is that the noncommutative
SDIT problem is equivalent to the nullcone problem for the left–right action! Recalling the
generating invariants for this group action from Section 10.3, one observes that (commuta-
tive) SDIT is the question of vanishing of the lowest possible invariant, k D 1.

SDIT played a crucial role in algorithms and computational complexity. It was ini-
tially raised by Edmonds [67] in the context of combinatorial optimization. Another interpre-
tation of Valiant’s completeness result is that SDIT captures the general Polynomial Identity
Testing (PIT) problem (see the survey [159]). Noting that SDIT has a simple fast probabilistic
algorithm over large fields (namely, assign random values to the variables and evaluate the
resulting numeric determinant), finding an efficient deterministic algorithm became one of
the most basic derandomization challenges, which has been under attack now for half a cen-
tury. The difficulty (and importance) of finding such a deterministic algorithm was clarified
(bigtime) by the following remarkable result of Kabanets and Impagliazzo [101].

Theorem 10.6 ([101]). If there is a deterministic polynomial time algorithm for SDIT, then
either VP ¤ VN P , or N EXP has no polynomial size Boolean circuits.

In simpler words, such a derandomization will result in a major breakthrough in
computational complexity, providing explicit lower bounds either in arithmetic or Boolean
complexity, each in the ballpark of provingP ¤ N P . Even the logical nature of this theorem
statement demands attention: it states that an efficient algorithm for one problem (SDIT) will
mean that host of other natural problems have no efficient algorithm!

On the other hand, this theorem suggests a concrete algorithmic attack on these
lower bound questions (and in particular,VP vs.VN P ) discussed in Section 10.1—simply
design a deterministic algorithm for SDIT. The past decades have seen much progress on
designing such algorithms for a variety of special cases of SDIT (and the more general PIT),
which is far too large to survey here. We conclude here with the possibility of finding such
an algorithm via the new algorithmic techniques described in Section 10.4 above. This is
explored in [125], and we only summarize what is currently known.

First, let us note that the set of singular matrices is an algebraic variety. Thus SDIT
is a special case of a very large class of natural problems. Fix an algebraic variety inU � Fm

33 Valiant’s completeness result [172], mentioned in Section 10.1, analogously makes SDIT
the word problem for the commutative field F.x/.
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(e.g., for SDIT, m D dn2). Given a point u 2 Fm (e.g., for SDIT u is a matrix tuple), deter-
mine if u 2 U . Of course, it is natural to work here with algebraically closed fields, e.g.,
F D C.

Suchmembership problems in algebraic varieties obviously arise naturally in numer-
ous settings. One way to view the developments of the previous section is that if the variety
U is actually the nullcone of a (nice) group action, then continuous, convex optimization
methods (extended to the geodesic setting), such a gradient descent, may be far more efficient
than symbolic, algebraic algorithms, and indeed in some cases may have polynomial-time
convergence. Thus, a first question to ask is whether SDIT itself is the nullcone of some
group action. Unfortunately, it is not (unless d � 2 or n � 2), again possibly helping to
understand its difficulty.

Theorem 10.7 ([125]). For d;n � 3, SDIT for a d -tuple of n � n matrices is not the nullcone
of any linear group action.

A central part of the proof of this theorem is the characterization the symmetries
of the SDIT variety, extending to d -tuples for any d the aforementioned theorem of Frobe-
nuis [73] for the case d D 1. Among some of the natural directions suggested by this work we
name three basic ones: (1) Find methods of determining the symmetries of naturally given
algebraic varieties; (2) Find methods to determine if a given algebraic variety is the null-
cone of a linear group action; (3) Extend the convex optimization methods of Section 10.4
to prove membership in other algebraic varieties, beside nullcones.
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