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TAMENESS IN GEOMETRY
AND ARITHMETIC:
BEYOND O-MINIMALITY

GAL BINYAMINI AND DMITRY NOVIKOV

ABSTRACT

The theory of o-minimal structures provides a powerful framework for the study of geo-
metrically tame structures. In the past couple of decades a deep link connecting o-minima-
lity to algebraic and arithmetic geometry has been developing. It has been clear, however,
that the axioms of o-minimality do not fully capture some algebro-arithmetic aspects of
tameness that one may expect in structures arising from geometry. We propose a notion

of sharply o-minimal structures refining the standard axioms of o-minimality, and outline
through conjectures and various partial results the potential development of this theory in
parallel to the standard one.

We illustrate some applications of this emerging theory in two main directions. First, we
show how it can be used to deduce Galois orbit lower bounds—notably including in non-
abelian contexts where the standard franscendence methods do not apply. Second, we show
how it can be used to derive effectivity and (polynomial-time) computability results for
various problems of unlikely intersection around the Manin—-Mumford, André—Oort, and
Zilber—Pink conjectures.
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1. TAME GEOMETRY AND ARITHMETIC

1.1. O-minimal structures

The theory of o-minimal structures was introduced by van den Dries as an attempt
to provide a framework of tame topology in the spirit of Grothendieck’s “Esquisse d’un
Programme” [42]. We refer the reader to this book for a general introduction to the subject
and its history. For us, an o-minimal structure will always be an expansion of the ordered real
field ]Ra]g = {R, +, -, <}. Briefly, such an expansion is o-minimal if all definable subsets of
R consist of finite unions of points and intervals.

Despite their apparent simplicity, it turns out that the axioms of o-minimality pro-
vide a broad framework of tame topology. In particular, one has good notions of dimension,
smooth stratification, triangulation, and cell-decomposition for every definable set in an
o-minimal structure. On the other hand, several natural and important structures turn out
to be o-minimal. A few examples of particular importance for us in the present paper are
Raig, Ran, Ran,exp, and Rpgasr. We will say a bit more on these in later sections.

1.2. Pila—Wilkie counting theorem

In [37], Pila and Wilkie discovered a “counting theorem” that would later find deep
applications in arithmetic geometry. The theorem concerns the asymptotic density of rational
(or algebraic) points in a definable set—as a function of height. We introduce this first, to
motivate a broader discussion of the connection between tame geometry and arithmetic.

For x € QQ, we denote by H (x) the standard height of x. For a vector x € Q", we
denote by H(x) the maximum among the heights of the coordinates of x. Fora set A C R”,
we denote the set of Q-points of 4 by A(Q) = A N Q" and denote

AQ.H):={x € AQ): H(x) < H}. (1.1)

For a set A C R”, we define the algebraic part A¥¢ of A to be the union of all connected
semialgebraic subsets of A of positive dimension. We define the transcendental part A"
of Atobe A\ A%,

Theorem 1 (Pila and Wilkie [37]). Let A C R™ be a set definable in an o-minimal structure.
Then for every € > 0 there exists a constant C (A, €) such that for every H = 1,

#4"(Q, H) = C(A, €)HE. (1.2)

1.3. Transcendence methods, auxiliary polynomials

The use of transcendental (as opposed to algebraic) methods in the study of arith-
metic questions has a long history. A common theme in these methods, running through the
work of Schneider, Lang, Baker, Masser, and Wiistholz to name a few, is the use of auxiliary
polynomials. We refer to [28] for a broad treatment of this subject.

The usefulness of polynomials in this context stems from their dual algebraic/ana-
lytic role. Suppose one is interested in the set A(Q, H) for some analytic set A. On the one
hand, if a polynomial P, say, with integer coeflicients, is evaluated at x € A(Q, H) then
P (x) is again rational, and one can estimate its height in terms of H and the height of P. On
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the other hand, polynomials are extremely well-behaved analytic functions, and a variety of
analytic methods may be used to prove upper bounds on the restriction of P to an analytic
set A assuming it is appropriately constructed (say to vanish to high order at some points
of A). One concludes from such an argument that P must vanish at every point in A(Q, H),
for otherwise the height bound would contradict the upper bound.

The proof of the Pila—Wilkie counting theorem follows this classical line. However,
it is fairly unique in the realm of transcendence methods in that the degrees of the auxil-
iary polynomials P are independent of the height, depending in fact only on &. It is this
unusual feature that makes it possible to prove the Pila—Wilkie theorem in the vast general-
ity of o-minimal structures: polynomials of a given degree form a definable family, and the
general machinery of o-minimality gives various finiteness statements uniformly for all such
polynomials.

1.4. Beyond Pila—Wilkie theorem: the Wilkie conjecture

By contrast with the Pila—Wilkie theorem, most transcendence methods require
the degrees of the auxiliary polynomials to depend on the height H of the points being
considered—sometimes logarithmically and in some cases, such as the Schneider—Lang
theorem, even linearly. A famous conjecture that seems to fall within this category is due
to Wilkie.

Conjecture 2 (Wilkie [37]). Let A C R™ be a set definable in Rexp. Then there exist constants
C(A),«(A) such that for all H = 3,

#A"S(Q, H) = C(A)(log H)*. (1.3)

The conclusion of the Wilkie conjecture is known to fail for general o-minimal struc-
tures, for instance, in R, [4e]. To achieve such asymptotics, it seems one would have to use
auxiliary polynomials of degrees d = (log H)?, and o-minimality places no restrictions on
the geometric complexity as a function of d.

In formulating his conjecture, Wilkie was probably influenced by Khovanskii’s
theory of fewnomials [25]. The latter implies fairly sharp bounds for the number of con-
nected components of sets defined using algebraic and exponential functions (and more
generally Pfaffian functions) as a function of the degrees of the equations involved. Below
we attempt to axiomatize what it would mean for an arbitrary o-minimal structure to satisfy
such sharp complexity bounds.

2. SHARPLY O-MINIMAL STRUCTURES

In this section we introduce sharply o-minimal structures, which are meant to endow
a standard o-minimal structure with an appropriate notions comparable to dimension and
degree in the algebraic case, and provide suitable control over these parameters under the
basic logical operations. We first introduce the notion of a format-degree filtration (abbrevi-
ated FD-filtration) on a structure §. This is a collection @ = {Q# p}# pen such that each
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Qg p is a collection of definable sets (possibly of different ambient dimensions), with
Qe p CQyFy1,p NQe py1 YF,DeN 2.1

and |z p € is the collection of all definable sets in §. We call the sets in Qg p sets of
Sformat ¥ and degree D. However, note that the format and degree of a set are not uniquely
defined since €2 is a filtration rather than a partition.

We now come to the notion of a sharply o-minimal structure.

Definition 3 (Sharply o-minimal structure). A sharply o-minimal structure is a pair
Y = (8, Q) consisting of an o-minimal expansion of the real field § and an FD-filtration
; and for each ¥ € N, a polynomial Pg (-) such that the following holds:

If A € Qg p then

(1) if A C R, it has at most Pg (D) connected components,

(2) if A C R then ¥ = ¢,

(3) A%, my—1(A),AxR,and R x A liein Q% 4+1,p.
Similarly if Ay, ..., Ax C R® with A; € Qg, p, then

@ J4ieQrp. (6 [4i€Qsri1p.
i i

where ¥ := max; ¥; and D = 3 _; D;. Finally,
(6) if P € R[xq,...,x¢]then {P =0} € Qp geep-

Given a collection { A4} of sets generating a structure §, and associated formats and
degrees ¥, Dy one can consider the minimal FD-filtration €2 satisfying the axioms (2)—(6)
above. We call this the FD-filtration generated by {(Aq, ¥4, Dy)}. This will be sharply o-
minimal if and only if axiom (1) is satisfied.

Definition 4 (Reduction of FD-filtrations). Let 2, Q’ be two FD-filtrations on a structure .
We say that Q is reducible to Q' and write Q < Q' if there exist functions a : N — N and
b : N — N|[D] such that

Qb C Uy psgoy VFD €N 2.2)
We say that 2, Q' are equivalent if 2 < Q' < Q.

We will usually try to prove that certain measures of complexity of definable sets
depend polynomially on the degree, thinking of the format as constant. If one can prove such
a statement for Q’-degrees, and Q < Q’, then the same statement holds for Q-degrees and
in this sense Q is reducible to .

Remark 5 (Effectivity). One can require further that a sharply o-minimal structure is effec-
tive, in the sense that the polynomial Pg (D) in Definition 3 is given by some explicit
primitive recursive function of %. Similarly, one may require a reduction Q < Q' to be
effective. Unless otherwise stated, all constructions in this paper are effective in this sense.
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2.1. Examples and nonexamples

2.1.1. The semialgebraic structure

Consider the structure R, with the FD-filtration £2 generated by all algebraic hyper-
surfaces { P = 0} with the format given by the ambient dimension and the degree given by
deg P. Then (Ryyg, €2) is a sharply o-minimal structure. This is not an immediate statement:
it follows from the results on effective cell decomposition, or elimination of quantifiers, in
semialgebraic geometry [3].

Perhaps a more natural notion of format and degree in the semialgebraic category is
as follows. Define Q’y,- p to be the subsets of R withe < & , that can be written as a union
of basic sets

{Pr=-+=P,=0, 01>0,...,0; >0} (2.3)

with the sum of the degrees of the P; and Q;, over all basic sets, bounded by D. This is
not sharply o-minimal according to our definition because it does not satisfy axiom (3), for
instance. However, it is equivalent to 2 defined above.

2.1.2. The analytic structure R,,

Not surprisingly, R,, is not sharply o-minimal with respect to any FD-filtration.
Assume the contrary. Let w; = 1 and w,+1 = 297, and let I’ = {y = f(z)} C C? denote
the graph of the holomorphic function f(z) = Z,oi1 z% restricted to the disc of radius 1/2
(which is definable in R,;). Then by axioms (1), (5) and (6), the number of points in

n
Fﬂ{yze—l—Zz‘”f} (2.4)
j=1
should be polynomial in wj,, with the exact polynomial depending on the format and degree
of I". But it is, in fact, w,+1 = 2" for 0 < ¢ < 1, and we have a contradiction for n > 1.

2.1.3. Pfaffian structures

Let B C R* be a domain, which for simplicity we take to be a product of (possibly
infinite) intervals. A tuple f1,..., fm : B — R of analytic functions is called a Pfaffian chain
if they satisfy a triangular system of algebraic differential equations of the form

dfi .
i=P()cl,...,)q;,fl,...,fi), Vi, J. (2.5)
ij
They are called restricted if B is bounded and f, ..., f;, extend as real analytic functions
to B. A Pfaffian function is a polynomial Q(x1,...,X¢, fi...., fm). We denote the structure

generated by the Pfaffian functions by Rpy.¢r, and its restricted analog by R pe,sy.

Khovanskii [25] proved upper bounds for the number of connected components of
systems of Pfaffian equations. This was later extended by Gabrielov and Vorobjov to sets
defined using inequalities and quantifiers [21]. However, their results fall short of establishing
the sharp o-minimality of R;pg,y. The problem is that for Gabrielov—Vorobjov’s notion of
format and degree, if A € Q¢ p then they are only able to show that A° € Qp. (p),Ps (D)
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rather than A¢ € Q# 1 p, (p) as required by our axioms. This is a fundamental difficulty,
as it is essential in our setup that the format never becomes dependent on the degree.

In [13] the first author and Vorobjov introduce a modified notion of format and degree
and prove the following.

Theorem 6. There is an FD-filtration Q2 on R pgg that makes it into a sharply o-minimal

structure. Moreover, Gabrielov—Vorobjov’s standard filtration is reducible to 2.

We conjecture that this theorem extends to the structure Rpy,g, and this is the sub-
ject of work in progress by the first author and Vorobjov utilizing some additional ideas of
Gabrielov [19].

2.2. Cell decomposition in sharply o-minimal structures

We recall the notion of a cell in an o-minimal structure. A cell C C R is either a point
or an open interval (possibly infinite). A cell C € R¢*! is either the graph of a definable
continuous function f : C’ — R where C’ C R* is a cell, or the area strictly between two
graphs of such definable continuous functions f, g : C’ — R satisfying f < g identically
on C’. One can also take f = —oo and g = oo in this definition.

We say that a cell C C R is compatible with X C R¥ if it is either strictly contained,
or strictly disjoint from X. The following cell decomposition theorem can be viewed as the
raison d’étre of the axioms of o-minimality.

Theorem 7 (Cell decomposition). Let X, ..., Xy C R¢ be definable sets. Then there
is a decomposition of R into pairwise disjoint cells that are pairwise compatible with
X1, Xk

Given the importance of cell decomposition in the theory of o-minimality, it is nat-
ural to pose the following question.

Question 8. If § is sharply o-minimal and X1, ..., Xz have format ¥ and degree D, can
one find a cell-decomposition where each cell has format const(¥"), and the number of cells
and their degrees are bounded by poly & (k, D)?

We suspect the answer to this question may be negative. Since cell decomposition
is perhaps the most crucial construction in o-minimality, this is a fundamental problem. The
following result rectifies the situation.

Theorem 9. Let (S, Q) be sharply o-minimal. Then there exists another FD-filtration Q'
with (8, Q") sharply o-minimal such that Q < Q', and in Q' the following holds.

Let Xq1,..., Xy € Q/'F,D’ all subsets ofIRé. Then there exists a cell decomposition
of Rt compatible with each X i such that each cell has format const(¥"), the number of cells
is poly & (k, D), and the degree of each cell is poly ¢ (D).

In the structure Ripgr, Theorem 9 is one of the main results of [13]. The general
case is obtained by generalizing the proof to the general sharply o-minimal case, and is part
of the PhD thesis of Binyamin Zack-Kutuzov.
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2.3. Yomdin—-Gromov algebraic lemma in sharply o-minimal structures
Let I := (0,1).For f : I" — R™ a C"-smooth map, we denote

£ i= sup max | £@(0)]. 26)
xeln lalsr

The Yomdin—Gromov algebraic lemma is a result about C”-smooth parametrizations of
bounded norm for definable subsets of /”. A sharply o-minimal version of this lemma is
as follows.

Lemma 10. Let (S, 2) be sharply o-minimal. Then there is a polynomial Pg ,(-) depending
on the pair (¥ ,r), such that for every A € Qg p the following holds. There exist a collection
of maps { fo : 1" — A} of size at most Pg (D) such that\ ), fo(I"*) = A; and | fo|r <1
and ny < dim A for every a.

In the algebraic case, this result is due to Gromov [23], based on a similar but slightly
more technically involved statement by Yomdin [44]. In the general o-minimal case, but with-
out complexity bounds, the result is due to Pila and Wilkie [37]. In the restricted Pfaffian case,
this result is due to the first author with Jones, Schmidt, and Thomas [6] using Theorem 9 in
the R prir case. The general case follows in the same way.

The following conjecture seems plausible, though we presently do not have an
approach to proving it in this generality.

Conjecture 11. In Lemma 10, one can replace P# (D) by a Pg (D, r), i.e., by a polyno-
mial in both D and r, depending only on ¥ .

In the structure Ry, this was conjectured by Yomdin (unpublished) and by Burguet
[14], in relation to a conjecture of Yomdin [45, CONJECTURE 6.1] concerning the rate of decay
of the tail entropy for real-analytic mappings. The conjecture was proved in [9] by complex-
analytic methods. We will say more about the possible generalization of these methods to
more general sharply o-minimal structures in Section 3.

2.4. Pila—Wilkie theorem in sharply o-minimal structures
We now state a form of the Pila—Wilkie counting theorem, Theorem 1, with explicit
control over the asymptotic constant.

Theorem 12. Let (S, 2) be sharply o-minimal. Then for every € > 0 and ¥ there is a
polynomial Pg ¢(-) depending on (S, S2), such that for every A € Qg p and H = 2,

#A"(Q,H) = Pg (D) - HE. 2.7)

This result is based on Lemma 10, in the same way as the classical Pila—Wilkie
theorem is based on the o-minimal reparametrization lemma. This reduction is carried out
in [6] using Theorem 9 in the R;pg,¢r case. The general case follows in the same way.
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2.5. Polylog counting in sharply o-minimal structures
We state a conjectural sharpening of the Pila—Wilkie theorem, in line with the Wilkie
conjecture, in the context of sharply o-minimal structures. For A C R¥, let

A(g.h) = {x e AnQ": [QW): Q] < g.h(x) < h, 2.8)
where /(-) denotes the logarithmic Weil height.

Conjecture 13. Let (S, 2) be sharply o-minimal. Then there is a polynomial Py (-, -, ")
depending only on (S, 2) and ¥, such that for every A € Q& p and g, h = 2,

#A"" (g, h) < Py (D, g, h). (2.9)

The conjecture sharpens Pila—Wilkie in two ways. First, we replace the subpolyno-
mial term H ¢ by a polynomial in & ~ log H. Second, we count algebraic points of arbitrary
degree, and stipulate polynomial growth with respect to the degree as well.

Conjecture 13 is currently known only for the structure of restricted elementary
functions RRE := (R, +, -, <,exp |[o,1]. 8in |o,~]) Where it is due to [8] (with a minor technical
improvement in [5]).

Combining the various known techniques in the literature, it is not hard to see that
Conjecture 11 implies Conjecture 13 in a general sharply o-minimal structure. In Section 5
we will see that Conjecture 13 has numerous applications in arithmetic geometry, going
beyond the standard applications of the Pila—Wilkie theorem. We also discuss some partial
results in the direction of Conjecture 13 in Section 4.4.

3. COMPLEX ANALYTIC THEORY

In this section we consider holomorphic analogs of the standard cell decomposition
of o-minimality. We fix a sharply o-minimal structure (§, 2) throughout. We also assume
that § admits cell-decomposition in the sense of Theorem 9, as we may always reduce to this
case.

3.1. Complex cells
We start be defining the notion of a complex cell. This is a complex analog of the
cells used in o-minimal geometry.

3.1.1. Basic fibers and their extensions
For r € C (resp. r1, rp € C) with |r| > 0 (resp. |r2| > |r1| > 0), we denote
D(r) = {|Z| < |r|} Do(r) := {0 <lz| < |r|} Doo(r) = {|r| <|z| < oo}

A(ry.rp) i={Ir1] < |z| < Ir2l}. % :={0}.
3.1

For any 0 < § < 1, we define the §-extensions by
Di(r):= D(7'r), Di(r):=Ds(67'r), D (r):= Duos(6r),

3.2
As(rl, 72) = A(5r1,5_1r2), *8 = %, ( )
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For any 0 < p < oo, we define the {p}-extension ¥ of ¥ to be F¢ where §
satisfies the equations

278
p=1 f(gz for ¥ of type D,
3 (3.3)
o= m for ¥ of type Do, Do, A.

The motivation for this notation comes from the following fact, describing the
hyperbolic-metric properties of a domain ¥ within its {p}-extension.

Fact14. Let ¥ be a domain of type A, D, Do, Doo and let S be a component of the boundary
of ¥ in '}, Then the length of S in '} is at most p.

3.1.2. The definition of a complex cell
Let X, ¥ be sets and F : X — 2¥ be a map taking points of X to subsets of ¥.
Then we denote
XO0F = {(x,y):xex,ye?(x)}. (3.4)

If r : X — C \ {0} then for the purpose of this notation we understand D(r) as the map
assigning to each x € X the disc D(r(x)), and similarly for Do, Do, A.

We now introduce the notion of a complex cell of length £ € Z>¢. If U C C" isa
definable domain, we denote by O, (U) the space of definable holomorphic functions on U .
As a shorthand we denote z; ¢ = (21, ..., 2Zg).

Definition 15 (Complex cells). A complex cell € of length zero is the point C°. A com-
plex cell of length £ + 1 has the form €,y © ¥ where the base €;_; is a cell of length £,
and the fiber ¥ is one of x, D(r), Do(r), Doo(r), A(r1, r2) where r € O4(€; ) satisfies
Ir(z1.0)| > 0forz; ¢ € €1 g;and ri,r2 € Oq(Cy ¢) satisfy 0 < [r1(z1.¢)| < [r2(21..¢)| for
210 € Cry.

Next, we define the notion of a §-extension (resp. {p}-extension).

Definition 16. The cell of length zero is defined to be its own §-extension. A cell € of
length £ + 1 admits a §-extension el .= ‘Gf__ (OF § if €, , admits a §-extension, and if the
function r (resp. rq, r3) involved in ¥ admits holomorphic continuation to ‘E’f” , and satisfies
|7 (z1.¢)| > 0 (resp. 0 < |r1(z1.¢)| < |r2(z1.¢)|) in this larger domain. The {p}-extension €@}
is defined in an analogous manner.

As a shorthand, when say that €% is a complex cell (resp. €{#}) we mean that € is
a complex cell admitting a § (resp {p}) extension.

3.1.3. The real setting

We introduce the notion of a real complex cell €, which we refer to simply as real
cells (but note that these are subsets of C%). We also define the notion of real part of areal
cell € (which lies in RY), and of a real holomorphic function on a real cell. Below we let
R denote the set of positive real numbers.
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Definition 17 (Real complex cells). The cell of length zero is real and equals its real part.
Acell € ;=€ ¢ © F isreal if €, 4 is real and the radii involved in ¥ can be chosen to
be real holomorphic functions on €;_g; The real part R€ (resp. positive real part R, €)
of € is defined to be R€; y © RF (resp. R+ €y ¢ © R4+ F) where RF := F N R (resp.
R4 F := F NR;) except the case F = *, where we set R« = R * = *; A holomorphic
function on € is said to be real if it is real on R€.

3.2. Cellular parametrization
We now state a result that can be viewed as a complex analog of the cell decompo-
sition theorem. We start by introducing the notion of prepared maps.

Definition 18 (Prepared maps). Let €, € be two cells of length £. We say that a holomorphic
map [ : € — € is prepared if it takes the form w; = z;l-‘" + ¢ (z1..j—1) where ¢; € 04 (€. )
forj=1,...,¢

Since our cells are always centered at the origin, it is the images of cellular maps
that should be viewed as analogous to the cells of o-minimality. The additional exponent g;
in Definition 18 is needed to handle ramification issues that are not visible in the real context.

Definition 19. For a complex cell € and F € O;(€) we say that F is compatible with € if
F vanishes either identically or nowhere on €. For a cellular map f : € — €, we say that
f is compatible with F if f*F is compatible with €.

We will be interested in covering (real) cells by prepared images of (real) cells.

Definition 20. Let €} be a cell and { fi: f’;a} — €1P}) be a finite collection of cellular
maps. We say that this collection is a cellular cover of € if € C (J;(f;(€;)). Similarly, we
say it is a real cellular cover if R4 € C Uj (fi(R4E))).

Finally, we can state our main conjecture on complex cellular parametrizations.

Conjecture 21 (Cellular Parametrization Theorem, CPT). Let p, o € (0, oo). Let €1#}
be a (real) cell and Fi, ..., Fy € Og(€%Y) (real) holomorphic functions, with €}
and each F; having format ¥ and degree D. Then there exists a (real) cellular cover
{fi: ‘C’;O} — €} such that each [ is prepared and compatible with each Fy. The number
of cells is polygz(D, M, p, 1/0), and each of them has format const(¥) and degree

poly (D).

The main result of [9] is that Conjecture 21 holds in the structure R,e (we assume
there for technical convenience that the functions are bounded rather than just definable, but
this does not seem to be a serious obstacle). We remark that there are significant difficulties
with extending this proof to the general sharply o-minimal case.

3.3. Analytically generated structures
We say that a sharply o-minimal structure (§, 2) is analytically generated if there

is a collection of complex cells {€,} admitting a 1/2-extension, and associated formats and
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degrees (Fo, Dy) such that § is generated by {€,} and 2 is generated by {(€y, Fo, Dy)}-
We fix such a structure § below. Assuming the CPT, one can prove the following analog of
Theorem 9 giving a cell decomposition by real parts of complex analytic cells.

Theorem 22. Let (S, 2) be sharply o-minimal and assume that it satisfies the CPT. Then
there exists another FD-filtration Q' with (S, Q') sharply o-minimal such that Q < Q', and
in Q' the following holds.

Let Xq,..., X} € Q’?’D, all subsets of RE. Then there exists a real cellular cover
{fi: ‘C’]{a} — C*Y such that each J; is prepared, and each fj(R+‘€;U}) is compatible with
each X;. The number of cells is poly (D, k, 1/0), and each of them has format const(¥")
and degree poly (D).

In particular, the cells f; (R4+€;) C R¢ form a cell-decomposition of R¢ compatible
with X1, ..., Xx. In addition, each cell admits “analytic continuation” to a complex cell €;
with a {0 }-extension.

In [9]it is shown that from a parametrization of the type provided by Theorem 22 one
can produce C"-smooth parametrizations, with the number of maps depending polynomially
on both D and r. In particular, the conclusion of Theorem 22 implies Conjectures 11 and 13.
It therefore seems that proving the CPT in a general analytically-generated sharply o-minimal
structure provides a plausible approach to these two conjectures.

We remark that a different complex analytic approach, based on the notion of Weier-
strass polydiscs, was employed in [8] to prove the Wilkie conjecture in the structure RRE. This
may also give an approach to proving Conjecture 13 in general, but it does not seem to be
applicable to Conjecture 11.

3.4. Complex cells, hyperbolic geometry, and preparation theorems

The main motivation for introduction the notion of {p}-extensions of complex cells
is that one can use the hyperbolic geometry of € inside €{#} to control the geometry of
holomorphic functions defined on complex cells. This is used extensively in the proof of the
algebraic CPT in [9], but also gives statements of independent interest. We illustrate two of
the main statements.

For any hyperbolic Riemann surface X, we denote by dist(-, -; X) the hyperbolic
distance on X. We use the same notation when X = C and X = R to denote the usual
Euclidean distance, and when X = C P! to denote the Fubini—Study metric normalized to
have diameter 1. For x € X and r > 0, we denote by B(x, r; X) the open r-ball centered at
x in X.For A C X, we denote by B(A, r; X) the union of r-balls centered at all points of A.

Lemma 23 (Fundamental lemma for C \ {0, 1}). Let €%} be a complex cell and let
f et 5 €\ {0, 1} be holomorphic. Then one of the following holds:

f(€) C B({0, 1,00}, ™22, CPY)  or diam(f(€);C \{0,1}) = O¢(p). (3.5

The fundamental lemma for C \ {0, 1} implies the Great Picard Theorem: indeed,
taking € to be a small punctured disc D, around the origin, it implies that any function
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f : Do — C \ {0, 1} has an image of small diameter in C P!, hence is bounded away from
some w € C P!, and it follows elementarily that f is meromorphic at the origin.

If £ :¢€ - C\ {0} is a bounded holomorphic map then we may decompose it
as f = 2%) . U(z), where U : €#} — C \ {0} is a holomorphic map and the branches of
log U : €%} — C are univalued. The following lemma shows that U enjoys strong bound-
edness properties when restricted to €.

Lemma 24 (Monomialization lemma). Ler 0 < p < oo and let f : €} — C \ {0} be
a holomorphic map. If €°}, f € Q #.D then there exists a polynomial Pg (-) such that
le(f)| < Py (D) and

diam(log U(€); C) < Pg(D)-p, diam(Imlog U(€):R) < Py (D). (3.6)

The monomialization lemma is proved in this form for the structure R, in [9], but
the proof extends to the general sharply o-minimal case. It is also shown in [9] that the mono-
mialization lemma in combination with the CPT gives an effective version of the subanalytic
preparation theorem of Parusinski [33] and Lion—Rolin [26], which is a key technical tool in
the theory of the structure R,,,.

3.5. Unrestricted exponentials

One of the milestones in the development of o-minimality is Wilkie’s theorem on the
model-completeness of Ry, [43], which, together with Khovanskii’s theory of fewnomials,
established the o-minimality of R.,. Wilkie’s methods were later used by van den Dries and
Miller to establish the o-minimality of R, exp. This latter structure plays a key role in many of
the applications of o-minimality to arithmetic geometry, since it contains the uniformizing
maps of (mixed) Shimura varieties restricted to an appropriate fundamental domain. We
conjecture a sharply o-minimal version of the theorems of Wilkie and van den Dries, Miller
as follows.

Conjecture 25. Let (S, 2) be an analytically generated sharply o-minimal structure. Let
Sexp denote the structure generated by S and the unrestricted exponential, and let Qcx, be
the FD-filtration of Scy, generated by Q2 and by the graph of the unrestricted exponential
(say with format and degree 1). Then (Sexp, Qexp) is sharply o-minimal.

It is perhaps plausible to make the same conjecture even without the assumption
of analytic generation. However, the analytic case appears to be sufficient for all (currently
known) applications, and the availability of the tools discussed in this section make the con-
jecture seem somewhat more amenable in this case. In particular, Lion—Rolin [26] have a
geometric approach to the o-minimality of Ry exp using the subanalytic preparation theorem
as a basic tool. The CPT provides a sharp version of the subanalytic preparation theorem,
thus suggesting a possible path to the proof of Conjecture 25.
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4. SHARPLY 0-MINIMAL STRUCTURES ARISING FROM GEOMETRY

The fundamental motivation for introducing the notion of sharply o-minimal struc-
tures is the expectation that structures arising naturally from geometry should indeed be tame
in this stronger sense. We start by motivating the discussion with the example of Abel-Jacobi
maps, and then state some general conjectures.

4.1. Abel-Jacobi maps

Recall that for C a compact Riemann surface of genus g and wy, ..., @, a basis of
holomorphic one-forms on C, there is an associated lattice of periods A C C&, a principally
polarized abelian variety Jac(C) ~ C& /A and, for any choice of base point py € C, an
Abel-Jacobi map

p
uc : C —Jac(C), uc(p) =/ (w1,...,wg) mod A. 4.1
Po

To discuss definability properties of uc, we choose a semi-algebraic (or even semi-linear)
fundamental domain A C C# for the A-action and consider u¢c asamap uc : C — A.

Proposition 26. There is an analytically generated sharply o-minimal structure where every
uc is definable.

Indeed, after covering C by finitely many charts ¢; : D — C, where ¢; are algebraic
maps extending to some neighborhood of D, it is enough to show that the structure generated
by these ¢]’."uc is sharply o-minimal. Moreover, it is enough to show instead that the lifts

z
tic,j : D — Cé, ﬂc,j(z)z/ " (w1,...,0g) 4.2)
0

are definable. Indeed, tic,; (D) being compact meets finitely many translates of A, and the
further projection C& — A restricted to some ball containing iic, ; (D) is thus definable
in any sharply o-minimal structures (even in Ryjg). The sharp o-minimality of the structure
generated by all these iic,; follows from Theorem 6, since these functions, as indefinite
integrals of algebraic one-forms, are restricted-Pfaffian (see, e.g., [27] for the elliptic case).

The construction above, however, is not uniform over C of a given genus. More
precisely, while we do have ii; c € Qg p for some uniform ¥, D, the number of algebraic
charts ¢; : D — C may tend to infinity as C approaches the boundary of the moduli space
M, of compact genus g curves. However, we do have the following.

Proposition 27. There is a sharply o-minimal structure where every uc € Qg p for some
uniform ¥ = ¥ (g) and D = D(g).

To prove this, we replace the covering ¢; : D — C by a covering ¢; : E’jl/ 2., C,
where each €; is a one-dimensional complex cell and ¢; (€;) covers C. By the removable
singularity theorem, we may assume each €; is either a disc or an annulus. Moreover, #{¢, }
and their degrees are polyg (g) by the algebraic CPT. Here we use the fact that a genus

g curve can always be realized as an algebraic curve of degree d = poly(g). The same
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construction as above now shows thateach iic ; : € — C&, if univalued, is restricted Pfaffian
of format ¥ = ¥ (g) and degree D = poly, (D). In general, we have

iic,j(z) = uc ;(2) + (ac,ji, ... ac,jg)logz 4.3)

where u’c j is univalued and ac,j k is the residue of ¢j’."a)k around the annulus. Since log z,
understood for instance as having a branch cut in the negative real line, is restricted Pfaffian
with uniform format and degree over every annulus, this proves the general case.

Finally, one should check that the projection C& — A, restricted to qgj (€;) is defin-
able (say in Ry) with format and degree depending only on g. Equivalently, one should
check that ¢ 7 (€;) meets finitely many translates of A, with the number of translates depend-
ing only on g (if ¢  (€;) is multivalued then one should take one of its branches). This indeed
holds, provided that the fundamental domains A are chosen appropriately. It can be deduced,
albeit ineffectively, from the definability of theta functions (in both 7 and z) on an appropri-
ate fundamental domain [34]. In the case g = 1, an explicit upper bound for these constants
is given in [24].

The appearance of logarithmic factors in (4.3) is the reason that the structure we
obtain is not analytically generated. However, the construction does prove the following.

Proposition 28. There is an analytically generated sharply o-minimal structure (S, Q)
where every uc € (Qexp) 7 ,D for some uniform ¥ = ¥ (g) and D = D(g).

According to Conjecture 25 the structure .y, is indeed sharply o-minimal as well,
but this remains open.

4.2, Uniformizing maps of abelian varieties

One can essentially repeat the construction above replacing Jac(C) by an arbi-
trary (say principally polarized) abelian variety A of genus g. We similarly have a map
u: A — A where A C C¢ is a semilinear fundamental domain for the period lattice of A4,
corresponding to some fixed basis of the holomorphic ones-forms w;, ..., s on A. Propo-
sitions 26, 27, and 28 extend to this more general context with essentially the same proof.

4.3. Noetherian functions

We have seen in Sections 4.1 and 4.2 that Abel-Jacobi maps and uniformizing maps
of abelian varieties live in a sharply o-minimal structure (in fact, uniformly over all curves
or abelian varieties of a given genus). This eventually boils down to the fact that the relevant
maps are definable in R ppr. However, we do not believe that all functions arising from
geometry are definable in this structure. For instance, we conjecture that the graph of the
modular invariant j(7) restricted to any nonempty domain is not definable in Rper. We do
not know how to prove this fact, but Freitag [17] has recently at least shown that j(7) it not
itself Pfaffian, on any nonempty domain, as a consequence of the strong minimality of the
differential equation satisfied by j(t) [18].

One natural extension of the notion of Pfaffian functions are the Noetherian func-
tions. Let B C R be a product of finite intervals. A tuple f1,..., fin : B — R of analytic
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functions is called a restricted Noetherian chain if they satisfy a system of algebraic differ-
ential equations of the form

afi .
i=P(xl,...,)qg,fl,...,fm), Vi, j. “4.4)
ax j

We denote the structure generated by the restricted Noetherian functions by R noether- Since

all restricted Noetherian functions are restricted analytic, R Noether iS 0-minimal.

Conjecture 29. The structure RNoether IS Sharply o-minimal with respect to some FD-
filtration.

Gabrielov and Khovanskii have considered some local analogs of the theory of
fewnomials for nondegenerate systems of Noetherian equations in [2e], and made some (still
local) conjectures about the general case. These conjectures are proved in [7] under a tech-
nical condition. However, these results are all local, bounding the number of zeros in some
sufficiently small ball.

Despite the general Conjecture 29 being open, an effective Pila—Wilkie counting
theorem was obtained in [4] for semi-Noetherian sets.

Theorem 30. Let A be defined by finitely many restricted Noetherian equalities and inequal-
ities. Then for every ¢ > 0, we have

#A"(g, H) < Cg 4H® 4.5)

where Cq 4 can be computed explicitly from the data defining A.

Of course, provided Conjecture 29 an effective Pila—Wilkie theorem with better
bounds (for instance, polynomial in the degree of A) would follow from Theorem 12. More
generally, as a consequence of Conjecture 13 we would expect sharper polylogarithmic
bounds as well. Some results in this direction are discussed in the following section.

4.4. Bezout-type theorems and point counting with foliations

One can think of the graphs of Noetherian functions equivalently as leafs of alge-
braic foliations. Partial results in the direction of Conjecture 29 have been obtained in [5] in
this language. To state the result we consider an ambient quasi-projective variety M and a
nonsingular m-dimensional foliation ¥ of M, both defined over Q. For p € M denote by
&£, the germ of the leaf passing through p. For a pure-dimensional variety V' C M, denote

Sy = {p e M : dim(V N £,) > m — codimpg V}. 4.6)
If V is defined over Q, we denote by 8y the sum of the degree deg V, the log-height (),
and the degree of the field of definition of V over Q. Here the log-height is taken, for instance,

to be the log-height of the point representing V' in an appropriate Chow variety. In terms of
this data we have the following Bezout-type theorem.

Theorem 31 ([5, THEOREM 1]). Let V C M be defined over a number field and suppose
codimys V = m. Let K be a compact subset of a leaf of ¥ . Then

#(K NV) < polyg (v, logdist ' (K, Zy)). %))
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In fact, the bound in Theorem 31 can be made more explicit giving the precise
dependence on ¥ and on K, and this is important in some applications, but we omit the
details for brevity. The same bound without the dependence on (V') and log dist™! (K, Zy/)
would be a consequence of Conjecture 29, and establishing such a bound is probably the
main step toward proving the conjecture.

As a consequence of Theorem 31 one can deduce some polylogarithmic point-
counting results in the spirit of Conjecture 13. We state the simplest result of this type for
illustration below.

Theorem 32 ([5, COROLLARY 6]). Suppose &£, contains no germs of algebraic curves, for any
p € M. Let K be a compact subset of a leaf of . Then

#K(g.h) = polyg(g.h). (4.8)

Once again, the dependence on K can be made explicit in terms of the foliation ¥
and this plays a role in some applications. In practice, Theorem 32 and its more refined forms
can be used to deduce the conclusion of Conjecture 13 in most arithmetic applications, since
the sets appearing in such applications are always defined in terms of leafs of some highly
symmetric foliations.

4.5. Q-functions

Many important functions arising from geometry, such as period integrals, are
Noetherian. Indeed, such functions arise as horizontal sections of the Gauss—Manin con-
nection and can thus be viewed as solutions of a linear systems of differential equations.
However, the structure R noemer Only contains the restrictions of such maps to compact
domains. If we consider general Noetherian functions on noncompact domains, the result
would not even be o-minimal (as illustrated by the sine and cosine functions, for instance).
If one is to obtain an o-minimal structure, one must restrict singularities at the boundary.

One candidate class is provided by the notion of Q-functions considered in [1e,11].
Let P C C" be a polydisc, ¥ C C” a union of coordinate hyperplanes, and V the connection
on P x C* given by

Vv=dv—4-v “4.9)

where A is a matrix of one-forms holomorphic in P \ X. Suppose that the entries of A
are algebraic and defined over Q, that V has regular singularities along ¥, and that the
monodromy of V is quasiunipotent. Finally, let P° be a simply-connected domain obtained
by removing from P \ ¥ abranch cut {Arg x; = ¢; } for each of the components {x; = 0} of
and for some choice of o; € R mod 2. Every solution of Vv = 0 extends as a holomorphic
vector-valued function in P°. We call each component of such a function a Q-function.
Denote by Rqr the structure generated by all such Q-functions. This structure contains, as
sections of the Gauss—Manin connection, all period integrals of algebraic families.

By the classical theory of regular—singular linear equations, every Q-function is
definable in Ry exp, and Rqr is thus o-minimal.

1455 TAMENESS IN GEOMETRY AND ARITHMETIC: BEYOND O-MINIMALITY



Conjecture 33. The structure Rq is sharply o-minimal with respect to some FD-filtration.

Some initial motivation for Conjecture 33 is provided by the results of [1e], which
give effective bounds for the number of zeros of Q-functions restricted to any algebraic curve
in P. However, treating systems of equations in several variables, and obtaining sharp bounds
with respect to degrees, is still widely open.

5. APPLICATIONS IN ARITHMETIC GEOMETRY

In this section we describe some applications of sharply o-minimal structures in
arithmetic geometry. For some of these, Theorem 12 suffices, while for others Conjecture 13
is necessary—in some suitable sharply o-minimal structure, such as the one conjectured to
exist in Conjecture 33. However, in all cases discussed below one can actually carry out the
strategy using known results, mostly Theorem 32 and its generalizations, in place of these
general conjectures (though various technical difficulties must be resolved in each case). We
thus hope to convince the reader that the strategy laid out below is feasible, on the one hand,
and fits coherently into the general framework of sharply o-minimal structures, on the other.

5.1. Geometry governs arithmetic

Geometry governs arithmetic describes a general phenomenon in the interaction
between geometry (for instance, algebraic geometry) and arithmetic: namely, that arithmetic
problems often admit finitely many solutions unless there is an underlying geometric reason
to expect infinitely many. Perhaps the most famous example is given by Mordell’s conjecture,
now Falting’s theorem [16]: an algebraic curve C C IP? contains finitely many rational points,
unless it is rational or elliptic. The two exceptions in Falting’s theorem may be viewed as
geometric obstructions to the finitude of rational solutions: the rational parametrization in the
former, and the group law in the latter, are geometric mechanisms that can produce infinitely
many rational points on the curve.

The Pila—Wilkie theorem itself may be viewed as an instance where geometry
(namely the existence of an algebraic part) controls arithmetic (namely the occurrence of
many rational points, as a function of height). A general strategy by Pila and Zannier [38]
reduces many unlikely intersection questions to the Pila—Wilkie theorem. This has been used
to prove the finiteness of solutions, under natural geometric hypotheses, to a large number
of Diophantine problems. For instance, the finiteness of torsion points on a subvariety of an
abelian variety (Manin—-Mumford) [38]; the finiteness of maximal special points on subvari-
ety of a Shimura variety (André—Oort) [35,41]; the finiteness of “torsion values” for sections
of families of abelian surfaces (relative Manin—Mumford) [3e]; the finiteness of the set of
t € C for which a Pell equation P? — DQ? = 1 with given D € Q¥2[X, ] is solvable in
P, Q € C[X][2,31,32]; the finiteness of the set of values t € C where an algebraic one-form
fr = f(¢, x)dx is integrable in elementary terms [32]; and various other examples.
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5.2. The Pila—Zannier strategy

Below we briefly explain the Pila—Zannier strategy in the Manin—Mumford case. Let
A be an abelian variety and V' C A an algebraic subvariety containing no cosets of abelian
subvarieties, both defined over a number field K.

Let 7 : [0, 1]?86 — A be the universal covering map of A written in period coor-
dinates, so that rational points with common denominator N in [0, 1]>¢ correspond to N-
torsion points in A. One checks that under our assumptions, X := 7~ !(V) has no algebraic
part (this can be done with the help of the Pila—Wilkie theorem as well, following a strategy
of Pila in [35]). The Pila—Wilkie theorem then implies that the number of torsion points in
V is at most C(X, ) N¢ where C(X, ¢) is the Pila—Wilkie constant.

On the other hand, there is ¢ > 0 such that if p € A is an N-torsion point then
[Q(p) : Q] >4 NF€ by aresult of David [15]. Here the implied constant depends effectively
on A. This is an example of a Galois lower bound, which in the Pila—Zannier strategy plays
the yin to Pila—Wilkie’s yang.

Choose ¢ = ¢/2 and suppose that IV contains an N -torsion point p. Then it contains
a fraction of [K : Q]™! of its Galois conjugates, and we obtain a contradiction as soon as
N >4v C(X, e/ 2)2/¢. We thus proved a bound for the order of any torsion point in V', and
in particular the finiteness of the set of torsion points.

5.3. Point counting and Galois lower bounds

Traditionally in the Pila—Zannier strategy, the Pila—Wilkie theorem is used to obtain
an upper bound on the number of special points, while the competing Galois lower bounds
are obtained using other methods—usually involving a combination of height estimates and
transcendence methods, such as the results of David [15] or Masser—Wiistholz [29].

In [39] Schmidt suggested an alternative approach to proving Galois lower bounds,
replacing the more traditional transcendence methods by polylogarithmic counting results
as in Conjecture 13. We illustrate again in the Manin—-Mumford setting. Let A be an abelian
variety over a number field K and let p € A be a torsion point. Consider now X given
by the graph of the map & defined in the previous section, which is easily seen to contain
no algebraic part. The points p,2p, ..., Np correspond to N points xy, ..., X, on this
graph. Recall that the height of a torsion point in A is O4(1) (since the Neron-Tate height
is zero), and the height of the corresponding point in [0, 1]?¢ is at most N. It follows that
h(xj) <4 log N. On the other hand, the field of definition of each x; is, by the product law
of A, contained in K(p). We thus have

N < #X ([K(p) : Q].log N) = poly,([K(p) : Q].log N) (5.1)

by Conjecture 13, and this readily implies [Q(p) : Q] >4 N€ for some ¢ > 0, giving a new
proof of the Galois lower bound for torsion points—and with it a “purely point-counting”
proof of Manin—Mumford. This has been carried out in [5] using Theorem 32.

The main novelty of this strategy is that it applies in contexts where we have polylog
counting result, and where the more traditional transcendence techniques are not available.
In [12] this idea was applied in the context of a general Shimura variety S. It is shown that if
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the special points p € S satisfy a discriminant-negligible height bound
h(p) s disc(p)®, Ve>0 (5.2)

where disc(p) is an appropriately defined discriminant, then they also satisfy a Galois bound
[Q(p) : Q] > disc(p)€ for some ¢ > 0. Further, it was already known by the work of many
authors based on the strategy of Pila [35] that this implies the André—Oort conjecture for S.

In the case of the Siegel modular variety S = #Ag, the height bound (5.2) was
proved by Tsimerman [41] as a simple consequence of the recently proven averaged Colmez
formula [1,46]. Tsimerman deduces the corresponding Galois bound from this using Masser—
Wiistholz’ isogeny estimates [29]. However, these estimates are proved using transcendence
methods applied to abelian functions, and have no known counterpart applicable when the
Shimura variety S does not parameterize abelian varieties (i.e., is not of abelian type). The
result of [12] removes this obstruction.

A few months after [12] appeared on the arXiv, Pila—Shankar-Tsimerman have
posted a paper [36] (with an appendix by Esnault, Groechenig) establishing the conjec-
ture (5.2) for arbitrary Shimura varieties (by a highly sophisticated reduction to the # case
where averaged Colmez applies). In combination with [12] this establishes the André—Oort
conjecture for general Shimura varieties (as well as for mixed Shimura varieties by the work
of Gao [22]). It is interesting to note that the proof of André—Oort now involves three distinct
applications of point-pointing: for functional transcendence, for Galois lower bounds, and
for the Pila—Zannier strategy.

5.4. Effectivity and polynomial time computability

In each of the problems listed at the end of Section 5.1, it is natural to ask, when the
data defining the problem is given over Q, whether one can effectively determine the finite
set of solutions; and whether one can compute the set in polynomial time (say, in the degrees
and the log-heights of the algebraic data involved, for a fixed dimension). In most cases
mentioned above, the use of the Pila—Wilkie theorem is the only source of ineffectivity in
the proofs. In fact, for all examples above excluding the André—Oort conjecture, definability
of the relevant transcendental sets in an (effective) sharply o-minimal structure is expected to
imply the (effective) polynomial time computability of these finite sets. This has been carried
out using Theorem 12 for Manin—-Mumford [6] and using Theorem 32 for a case of relative
Manin—Mumford [5], giving effective polynomial time decidability of these problems. We
see no obstacles in similarly applying [5] to the other problems listed above, though this is
yet to be verified in each specific case.

In the André—Oort conjecture Siegel’s class number bound introduces another
source of ineffectivity in the finiteness result. Nevertheless, in [5] Theorem 32 is used to
prove the polynomial time decidability of André—Oort for subvarieties of C” (i.e., by a
polynomial-time algorithm involving a universal, undetermined Siegel constant). This is
expected to extend to arbitrary Shimura varieties.
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1. INTRODUCTION

Ramsey theory is a beautiful subject which interrelates with a multitude of mathe-
matical fields. In particular, since its inception, developments in Ramsey theory have often
been motivated by problems in logic; in turn, Ramsey theory has instigated some seminal
developments in logic. The intent of this article is to provide the general mathematician
with an introduction to the intriguing subject of Ramsey theory on homogeneous structures
while being detailed enough to describe the state-of-the-art and the main ideas at play. We
present historical highlights and discuss why solutions to problems on homogeneous struc-
tures require more than just straightforward applications of finite structural Ramsey theory.
In the following sections, we map out collections of recent results and methods which were
developed to overcome obstacles associated with forbidden substructures. These new meth-
ods involve applications from logic (especially forcing but also ideas from model theory),
topological Ramsey spaces, and category theory.

The subject of Ramsey theory on infinite structures begins with this lovely theorem.

Theorem 1.1 (Ramsey, [58]). Given positive integers k and r and a coloring of the k-element
subsets of the natural numbers N into r colors, there is an infinite set of natural numbers
N C N such that all k-element subsets of N have the same color.

There are two natural interpretations of Ramsey’s theorem in terms of infinite struc-
tures. First, letting < denote the standard linear order on N, Ramsey’s theorem shows that
given any finite coloring of all linearly ordered substructures of (N, <) of size k, there is
an isomorphic substructure (N, <) of (N, <) such that all linearly ordered substructures
of (N, <) of size k have the same color. Second, one may think of the k-element subsets
of N as k-hyperedges. Then Ramsey’s theorem yields that, given any finite coloring of the
k-hyperedges of the complete k-regular hypergraph on infinitely many vertices, there is an
isomorphic subgraph in which all k-hyperedges have the same color.

Given this, one might naturally wonder about other structures.

Question 1.2. Which infinite structures carry an analogue of Ramsey’s theorem?

The rational numbers (Q, <) as a dense linearly ordered structure (without end-
points) was the earliest test case. It is a fun exercise to show that given any coloring of the
rational numbers into finitely many colors, there is one color-class which contains a dense
linear order, that is, an isomorphic subcopy of the rationals in one color. Thus, the rationals
satisfy a structural pigeonhole principle known as indivisibility.

The direct analogy with Ramsey’s theorem ends, however, when we consider pairs
of rationals. It follows from the work of Sierpinski in [65] that there is a coloring of the
pairs of rationals into two colors so that both colors persist in every isomorphic subcopy of
the rationals. Sierpinski’s coloring provides a clear understanding of one of the fundamen-
tal issues arising in partition theory of infinite structures not occurring in finite structural
Ramsey theory. Let {g; : i € N} be a listing of the rational numbers, without repetition, and
for i < j define c({g;,q;}) = blue if ¢; < qj, and c({g;,q,}) = red if g; < g;. Then in
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each subset O C Q forming a dense linear order, both color classes persist; that is, there are
pairs of rationals in Q colored red and also pairs of rationals in Q colored blue. Since it is
impossible to find an isomorphic subcopy of the rationals in which all pairsets have the same
color, a direct analogue of Ramsey’s theorem does not hold for the rationals.

The failure of the straightforward analogue of Ramsey’s theorem is not the end,
but rather just the beginning of the story. Galvin (unpublished) showed a few decades later
that there is a bound on the number of unavoidable colors: Given any coloring of the pairs
of rationals into finitely many colors, there is a subcopy of the rationals in which all pairs
belong to the union of two color classes. Now one sees that Question 1.2 ought to be refined.

Question 1.3. For which infinite structures S is there a Ramsey-analogue in the following
sense: Let A be a finite substructure of S. Is there a positive integer 7' such that for any
coloring of the copies of A into finitely many colors, there is a subcopy S’ of S in which
there are no more than 7" many colors for the copies of A?

The least such integer 7', when it exists, is denoted 7' (A) and called the big Ramsey
degree of A in S, a term coined in Kechris—Pestov—Todorcevic (2005). The “big” refers to
the fact that we require an isomorphic subcopy of an infinite structure in which the number
of colors is as small as possible (in contrast to the concept of small Ramsey degree in finite
structural Ramsey theory).

Notice how Sierpiniski played the enumeration {g; : i € N} of the rationals against
the dense linear order to construct a coloring of pairsets of rationals into two colors, each of
which persists in every subcopy of the rationals. This simple, but deep idea sheds light on
a fundamental difference between finite and infinite structural Ramsey theory. The interplay
between the enumeration and the relations on an infinite structure has bearing on the number
of colors that must persist in any subcopy of that structure. We will see examples of this at
work throughout this article and explain the general principles which have been found for
certain classes of structures with relations of arity at most two, even as the subject aims
towards a future overarching theory of big Ramsey degrees.

2. THE QUESTIONS

Given a finite relational language £ = {R; : i < k} with each relation symbol R;
of some finite arity, say, n;, an £-structure is a tuple A = (A, RS‘, e, R£_1 ), where A # @
is the universe of A and for each i < k, R;‘ C A™ . For L-structures A and B, an embed-
ding from A into B is an injection e : A — B such that for all i < k, R;‘(al, ceesdp) ©
R?(e(al), ...,e(ay,;)). The e-image of A is a copy of A in B. If e is the identity map, then A
is a substructure of B. An isomorphism is an embedding which is onto its image. We write
A < B exactly when there is an embedding of A into B, and A = B exactly when A and B
are isomorphic.

A class X of finite structures for a relational language £ is called a Fraissé class
if it is hereditary, satisfies the joint embedding and amalgamation properties, contains (up
to isomorphism) only countably many structures, and contains structures of arbitrarily large
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finite cardinality. Class K is hereditary if whenever B € K and A < B, then also A € X;
K satisfies the joint embedding property if for any A, B € X, there is a C € K such that
A < CandB < C; X satisfies the amalgamation property if for any embeddings f : A — B
and g : A — C, with A, B, C € X, there is a D € KX and there are embeddings r : B — D
and s : C — Dsuchthatr o f = s o g. A Fraissé class KX satisfies the strong amalgamation
property (SAP) if given A, B, C € X and embeddings ¢ : A — B and f : A — C, there
is some D € K and embeddings ¢/ : B — D and f’: C — D such thate’ ce = f'o f,
and ¢'[B] N f'[C] = €' o e[A] = f' o f[A]. We say that K satisfies the free amalgamation
property (FAP) if it satisfies the SAP and, moreover, D can be chosen so that D has no
additional relations other than those inherited from B and C.

Let A, B, C be £-structures such that A < B < C. We use (E) to denote the set of all
copies of A in B. The Erd§s—Rado arrow notation C — (B)z means that for each coloring of
(2) into k colors, thereisaB’ € (C

/ B) such that (i) is monochromatic, meaning every member
of (]Z) has the same color.

Definition 2.1. A Fraissé class K has the Ramsey property if for any two structures A < B
in K and any k > 2, there is a C € KX with B < C such that C — (B)z.

Many Fraissé classes, such as the class of finite graphs, do not have the Ramsey
property. However, by allowing a finite expansion of the language, often by just a linear order,
the Ramsey property becomes more feasible. Letting < be a binary relation symbol not in
the language £ of K, an £ U {<}-structure is in K = if and only if its universe is linearly
ordered by < and its £-reduct is a member of J. A highlight is the work of NeSetfil and
Radl in [51] and [52], proving that for any Fraissé class K with FAP, its ordered version X =
has the Ramsey property. The recent paper [4e] by Hubicka and NeSetfil presents the state-
of-the-art in finite structural Ramsey theory. Examples of Fraissé classes with the Ramsey
property include the class of finite linear orders, and the classes of finite ordered versions
of graphs, digraphs, tournaments, triangle-free graphs, posets, metric spaces, hypergraphs,
hypergraphs omitting some irreducible substructures, and many more.

A structure K is called universal for a class of structures K if each member of
K embeds into K. A structure K is homogeneous if each isomorphism between finite sub-
structures of K extends to an automorphism of K. Unless otherwise specified, we will write
homogeneous to mean countably infinite homogeneous, such structures being the focus of
this paper. The age of an infinite structure K, denoted Age(K), is the collection of all finite
structures which embed into K. A fundamental theorem of Fraissé from [31] shows that each
Fraissé class gives rise to a homogeneous structure via a construction called the Fraissé limit.
Conversely, given any countable homogeneous structure K, Age(K) is a Fraissé class and,
moreover, the Fraissé limit of Age(K) is isomorphic to K. The Kechris—Pestov—Todorcevic
correspondence between the Ramsey property of a Fraissé class and extreme amenability of
the automorphism group of its Fraissé limit in [41] propelled a burst of discoveries of more
Fraissé classes with the Ramsey property.

First we state an esoteric but driving question in the area.
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Question 2.2. What is a big Ramsey degree?

What is the essential nature of a big Ramsey degree? Why is it that given a Fraissé
class K satisfying the Ramsey property, its Fraissé limit usually fails to carry the full ana-
logue of Ramsey’s Theorem 1.1 (i.e., all big Ramsey degrees being one)? A theorem of
Hjorth in [37] showed that for any homogeneous structure K with |Aut(K)| > 1, there is a
structure in Age(K) with big Ramsey degree at least two. While much remains open, we now
have an answer to Question 2.2 for FAP and some SAP homogeneous structures with finitely
many relations of arity at most two, and these results will be discussed in the following
sections.

We say that S has finite big Ramsey degrees if T (A) exists for each finite substructure
A of S. We say that exact big Ramsey degrees are known if there is either a computation of
the degrees or a characterization from which they can be computed. Indivisibility holds if
T(A) = 1 for each one-element substructure A of S. The following questions progress in
order of strength: A positive answer to (3) implies a positive answer to (2), which in turn
implies a positive answer to (1).

Question 2.3. Given a homogeneous structure K,

(1) Does K have finite big Ramsey degrees? That is, can one find upper bounds
ensuring that big Ramsey degrees exist?

(2) If K has finite big Ramsey degrees, is there a characterization of the exact big
Ramsey degrees via canonical partitions? If yes, calculate or find an algorithm
to calculate them.

(3) Does K carry a big Ramsey structure?
Part (2) of this question involves finding canonical partitions.

Definition 2.4 (Canonical Partition, [44]). Given a Fraissé class X with Fraissé limit K, and
given A € K, apartition {P; :i <n}of (ﬁ) is canonical if the following hold: For each finite
coloring of (E), there is a subcopy K’ of K such that for each i < n, all members of P; N (Ii)
have the same color; and persistence: For every subcopy K’ of K and each i < n, P; N (I:)
is nonempty.

Canonical partitions recover an exact analogue of Ramsey’s theorem for each piece
of the partition. In practice such partitions are characterized by adding extra structure to K,
including the enumeration of the universe of K and a tree-like structure capturing the rela-
tions of K against the enumeration.

Part (3) of Question 2.3 has to do with a connection between big Ramsey degrees
and topological dynamics, in the spirit of the Kechris—Pestov—Todorcevic correspondence,
proved by Zucker in [76]. A big Ramsey structure is essentially a finite expansion K* of K so
that each finite substructure of K* has big Ramsey degree one, and, moreover, the unavoid-
able colorings cohere in that for A, B € Age(K) with A embedding into B, the canonical
partition for copies of B when restricted to copies of A recovers the canonical partition for
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copies of A. Big Ramsey structures imply canonical partitions. The reverse is not known
in general, but certain types of canonical partitions are known to imply big Ramsey struc-
tures (Theorem 6.10 in [8]), and it seems reasonable to the author to expect that (1)—(3) are
equivalent.

Canonical partitions and big Ramsey structures are really getting at the question
of whether we can find an optimal finite expansion K* of a given homogeneous structure
K so that K* carries an exact analogue of Ramsey’s theorem. In this sense, big Ramsey
degrees are not quite so mysterious, but are rather saying that an exact analogue of Ramsey’s
theorem holds for an appropriately expanded structure. The question then becomes: What is
the appropriate expansion?

3. CASE STUDY: THE RATIONALS

The big Ramsey degrees for the rationals were determined by 1979. Laver in 1969
(unpublished, see [1e]) utilized a Ramsey theorem for trees due to Milliken [5e] (Theorem 3.2)
to find upper bounds. Devlin completed the picture in his PhD thesis [1e], calculating the
big Ramsey degrees of the rationals. These surprisingly turn out to be related to the odd
coefficients in the Taylor series of the tangent function: The big Ramsey degree for n-element
subsets of the rationals is 7'(n) = (2n — 1)!c2,—1, Where ¢ is the kth coefficient in the Taylor
series for the tangent function, tan(x) = Y 7o, cxx¥. As Todorcevic states, the big Ramsey
degrees for the rationals “characterize the Ramsey theoretic properties of the countable dense
linear ordering (Q, <) in a very precise sense. The numbers 7 (1) are some sort of Ramsey
degrees that measure the complexity of an arbitrary finite coloring of the n-element subsets
of Q modulo, of course, restricting to the n-element subsets of X for some appropriately
chosen dense linear subordering X of Q.” (page 143, [66], notation modified)

We present Devlin’s characterization of the big Ramsey degrees of the rationals and
the four main steps in his proof. (A detailed proof appears in Section 6.3 of [66].) Then we
will present a method from [8] using coding trees of 1-types which bypasses nonessential
constructs, providing what we see as a satisfactory answer to Question 2.2 for the rationals.

We use some standard mathematical logic notation, providing definitions as needed
for the general mathematician. The set of all natural numbers {0, 1, 2, ...} is denoted by
. Each natural number k € o is equated with the set {0, ...,k — 1} and its natural linear
ordering. For us k € w and k < w are synonymous. For k € w, k=% denotes the tree of
all finite sequences with entries in {0, ...,k — 1}, and ©=® denotes the tree of all finite
sequences of natural numbers. Finite sequences with any sort of entries are thought of as
functions with domain some natural number. Thus, for a finite sequence ¢ the length of t,
denoted |¢[, is the domain of the function ¢, and for i € dom(t), #(i) denotes the ith entry
of the sequence ¢. For £ € w, we write ¢ | £ to denote the initial segment of ¢ of length £ if
£ < |t|, and ¢ otherwise. For two finite sequences s and ¢, we write s T ¢ when s is an initial
segment of ¢, and we write s ¢ when s is a proper initial segment of 7, meaning that s C ¢
and s # t. We write s A t to denote the meet of s and ¢, that is, the longest sequence which
is an initial segment of both s and . Given a subset S of a tree of finite sequences, the meet
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closure of S, denoted cl(.5), is the set of all nodes in S along with the set of all meets s Az,
fors,t € S.

A Ramsey theorem for trees, due to Milliken, played a central role in Devlin’s work
and has informed subsequent approaches to finding upper bounds for big Ramsey degrees.
In this area, a subset T C w=? is called a tree if there is a subset LT C w such that T =
{t M:t €T, e Lt} Thus,atreeis closed under initial segments of lengths in L, but not
necessarily closed under all initial segments in w=%. The height of a node ¢ in T, denoted
htr (¢), is the order-type of the set {s € T : s C t}, linearly ordered by C. We write T'(n) to
denote {t € T : hty(t) = n}.Fort € T,letSucer(t) ={s | (|t| +1):s € T and ¢ C s},
noting that Succr(#) € T only if |[t| + 1 € L7.

A subtree S C T is a strong subtree of T if Ls C L1 and each node s in S branches
as widely as T will allow, meaning that for s € S, for each ¢ € Succy (s) there is an extension
s’ € S such that ¢ C s’. For the next theorem, define ]_[i <g Ti (n) to be the set of sequences

(to,...,tq—1) where t; € T;(n), the product of the nth levels of the trees 7;. Then let
Q1= J]]rm. 3.1
i<d n<wi<d

The following is the strong tree version of the Halpern—L&uchli theorem.

Theorem 3.1 (Halpern—Lauchli, [34]). Let d be a positive integer, T; C w=® (i < d) be
finitely branching trees with no terminal nodes, and r > 2. Given a coloring ¢ : @, ., T; =,
there is an increasing sequence (my : n < w) and strong subtrees S; < T; such that for all
i <dandn <o, Sj(n) C T;(my,), and c is constant on Q; _; Si.

The Halpern—Lauchli theorem has a particularly strong connection with logic. It
was isolated by Halpern and Lévy as a key juncture in their work to prove that the Boolean
Prime Ideal Theorem is strictly weaker than the Axiom of Choice over the Zermelo—Fraenkel
Axioms of set theory. Once proved by Halpern and Liuchli, Halpern and Lévy completed
their proof in [35].

Harrington (unpublished) devised an innovative proof of the Halpern—L&uchli theo-
rem which used Cohen forcing. The forcing helps find good nodes in the trees 7; from which
to start building the subtrees S;. From then on, the forcing is used @ many times, each time
running an unbounded search for finite sets S; (n) which satisfy that level of the Halpern—
Liuchli theorem. Being finite, each S;(n) is in the ground model. The proof entails neither
passing to a generic extension nor any use of Shoenfield’s Absoluteness Theorem.

A k-strong subtree is a strong subtree with k many levels. The following theorem
is proved inductively using Theorem 3.1.

Theorem 3.2 (Milliken, [50]). Ler T C w=% be a finitely branching tree with no terminal
nodes, k > 1, and r > 2. Given a coloring of all k-strong subtrees of T into r colors, there
is an infinite strong subtree S C T such that all k-strong subtrees of S have the same color.

For more on the Halpern—Lauchli and Milliken theorems, see [21, 46, 66]. Now we
look at Devlin’s proof of the exact big Ramsey degrees of the rationals, as it has bearing on
many current approaches to big Ramsey degrees.
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The rationals can be represented by the tree 2<% of binary sequences with the lexi-
cographic order < defined as follows: Given s,¢ € 2=® with s # ¢, and letting u denote s Az,
define s < ¢ to hold if and only if (Ju| < |s| and s(|u]) = 0) or (Ju| < |¢t] and ¢(Ju]) = 1).
Then (2<%, <) is a dense linear order. The following is Definition 6.11 in [66], using the
terminology of [62]. For |s| < |¢|, the number ¢ (|s]) is called the passing number of t at s.

Definition 3.3. For A, B C w=®, we say that A and B are similar if there is a bijection
f :cl(A) — cl(B) such that for all 5, ¢ € cl(A4),

(a) (preserves end-extension) s C ¢ < f(s) CE f(¢),

(b) (preserves relative lengths) |s| < |t| < | f(s)| < |f ()],

(c) s€ A& f(s) e B,

(d) (preserves passing numbers) 1(|s|) = f(¢)(| f(s)]) whenever |s| < |].

Similarity is an equivalence relation; a similarity equivalence class is called a sim-
ilarity type. We now outline the four main steps to Devlin’s characterization of big Ramsey
degrees in the rationals. Fix n > 1.

I. (Envelopes) Given a subset A C 2<% of size n, let k be the number of levels in
cl(A). An envelope of A is a k-strong subtree E(A) of 2<% such that A C E(A). Given any
k-strong subtree S of 2=, there is exactly one subset B C S which is similar to 4. This
makes it possible to transfer a coloring of the similarity copies of A in 2= to the k-strong

2<% in a well-defined manner.

subtrees of

II. (Finite Big Ramsey Degrees) Apply Milliken’s theorem to obtain an infinite
strong subtree 7 C 2<% such that every similarity copy of A in T has the same color. As
there are only finitely many similarity types of sets of size n, finitely many applications
of Milliken’s theorem results in an infinite strong subtree S C 2<% such that the color-
ing is monochromatic on each similarity type of size n. This achieves finite big Ramsey
degrees.

III. (Diagonal Antichain for Better Upper Bounds) To obtain the exact big Ramsey
degrees, Devlin constructed a particular antichain of nodes D C 2=¢ such that (D, <) is a
dense linear order and no two nodes in the meet closure of D have the same length, a property
called diagonal. He also required (x): All passing numbers at the level of a terminal node
or a meet node in cl(D) are 0, except of course the rightmost extension of the meet node.
Diagonal antichains turn out to be essential to characterizing big Ramsey degrees, whereas
the additional requirement () is now seen to be nonessential when viewed through the lens
of coding trees of 1-types.

IV. (Exact Big Ramsey Degrees) To characterize the big Ramsey degrees, Devlin
proved that the similarity type of each subset of D of size n persists in every subset D’ C D
such that (D’, <) is a dense linear order. The similarity types of antichains in D thus form
a canonical partition for linear orders of size n. By calculating the number of different
similarity types of subsets of D of size n, Devlin found the big Ramsey degrees for the
rationals.
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FIGURE 1
Coding tree S(Q) of 1-types for (Q, <) and the linear order represented by its coding nodes.

Now we present the characterization of the big Ramsey degrees for the rationals
using coding trees of 1-types. Coding trees on 2<% were first developed in [13] to solve
the problem of whether or not the triangle-free homogeneous graph has finite big Ramsey
degrees. The presentation given here is from [8], where the notion of coding trees was honed
using model-theoretic ideas. We hope that presenting this view here will set the stage for a
concrete understanding of big Ramsey degree characterizations discussed in Section 5.

Fix an enumeration {qq,q1, - ..} of Q. Forn < w, we let Q ' n denote the substruc-
ture ({q; : i € n}, <) of (Q, <), which we refer to as an initial substructure. One can think of
Q | n as a finite approximation in a construction of the rationals. The definition of a coding
tree of 1-types in [8] uses complete realizable quantifier-free 1-types over initial substruc-
tures. Here, we shall retain the terminology of [8] but (with apologies to model-theorists)
will use sets of literals instead, since this will convey the important aspects of the construc-
tions while being more accessible to a general readership. For now, we call a set of formulas
sC{(gi<x):ientU{(x <gq;):i en}al-typeover Q | nif (a)foreachi < n exactly
one of the formulas (¢; < x) or (x < g;) is in s, and (b) there is some (and hence infinitely
many) j > n such that g; satisfies s, meaning that replacing the variable x by the rational
number ¢; in each formula in s results in a true statement. In other words, s is a 1-type if s
prescribes a legitimate way to extend Q | n to a linear order of size n + 1.

Definition 3.4 (Coding Tree of 1-Types for Q, [8]). For a fixed enumeration {qo, ¢1, ...} of
the rationals, the coding tree of 1-types S(Q) is the set of all 1-types over initial substructures
along with a function ¢ : @ — S(Q) such that ¢(n) is the 1-type of g, over Q | n. The tree-
ordering is simply inclusion.
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Given s € S(Q) let |s| = j + 1 where j is maximal such that one of (x < ¢;) or
(gj < x)isins. Foreachi < [s|, we let s(i) denote the formula from among (x < g;) or
(gi < x) which is in s. The coding nodes c(n), in practice usually denoted by ¢, are special
distinguished nodes representing the rational numbers; ¢, represents the rational g, , because
¢y is the 1-type with parameters from among {¢; : i € n} that ¢, satisfies. Notice that this
tree S(Q) has at most one splitting node per level. The effect is that any antichain of coding
nodes in S(Q) will automatically be diagonal. (See Figure 1, reproduced from [8].)

Fix an ordering <jx on the literals: For i < j, define (x < q;) <iex (¢i < X) <lex
(x < g;). Extend <jex to S(Q) by declaring for s, € S(Q), s <iex ¢ if and only if s and ¢
are incomparable and fori = [s A t], (i) <iex 1(i).

Definition 3.5. For A, B sets of coding nodes in S(Q), we say that A and B are similar if
there is a bijection f : cl(4) — cl(B) such that for all s, ¢ € cl(A), f satisfies (a)—(c) of
Definition 3.3 and (d') s <jex ¢ <= f(5) <iex f(1),

When B is similar to A, we call B a similarity copy of A. Condition (d) in Defini-
tion 3.3 implies that the lexicographic order on 2<% is preserved, and, moreover, that passing
numbers at meet nodes and at terminal nodes are preserved. In (d’) we only need to preserve
lexicographic order.

Extending Harrington’s method, forcing is utilized to obtain a pigeonhole principle
for coding trees of 1-types in the vein of the Halpern—Lauchli Theorem 3.1, but for colorings
of finite sets of coding nodes, rather than antichains. Via an inductive argument using this
pigeonhole principle, we obtain the following Ramsey theorem on coding trees.

Theorem 3.6 ([8]). Let S(Q) be a coding tree of 1-types for the rationals. Given a finite set
A of coding nodes in S(Q) and a finite coloring of all similarity copies of A in S(Q), there
is a coding subtree S of S(Q) similar to S(Q) such that all similarity copies of A in S have
the same color.

Fix n > 1. By applying Theorem 3.6 once for each similarity type of coding nodes
of size n, we prove finite big Ramsey degrees, accomplishing step II while bypassing step I in
Devlin’s proof. Upon taking any antichain D of coding nodes in S(Q) representing a dense
linear order, we obtain better upper bounds which are then proved to be exact, accomplishing
steps III and IV.

Big Ramsey degrees of the rationals. In [8], we show that given n > 1, the big Ramsey
degree T'(n) for linear orders of size n in the rationals is the number of similarity types of
antichains of coding nodes in S(Q).

What then is the big Ramsey degree T (1) in the rationals? It is the number of differ-
ent ways to order the indexes of an increasing sequence of rationals {g;, < ¢;, <+ <¢i,_,}
with incomparable 1-types along with the number of ways to order the first differences of
their 1-types over initial substructures of Q. The first difference between the 1-types of the
rationals ¢; and ¢; occurs at the least k such that g; < gz and gx < g, or vice versa.
This means that ¢; and g; are in the same interval of Q | k but in different intervals of
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Q ! (k 4 1). Concretely, T'(n) is the number of <-isomorphism classes of (2n — 1)-tuples of
integers (ip, .. .,in—1,ko, ..., kn—2) with the following properties: {gi, <qi, <+ <¢i,_,}
is a set of rationals in increasing order, and for each j <n — 1, gi; < qk; < qi;,, Where
k; < min(ij, ij41) and is the least integer satisfying this relation.

4. HISTORICAL HIGHLIGHTS, RECENT RESULTS, AND METHODS

We now highlight some historical achievements, and present recent results and
the main ideas of their methods. For an overview of results up to the year 2000, see the
appendix by Sauer in Fraissé’s book [32]; for an overview up to the year 2013, see Nguyen
Van Thé’s habilitation thesis [54]. Those interested in open problems intended for under-
graduate research may enjoy [18].

The Rado graph is the second example of a homogeneous structure with nontrivial
big Ramsey degrees which has been fully understood in terms of its partition theory. The
Rado graph R is up to isomorphism the homogeneous graph on countably many vertices
which is universal for all countable graphs. It was known to Erdds and other Hungarian
mathematicians in the 1960s, though possibly earlier, that the Rado graph is indivisible. In
their 1975 paper [3e], ErdGs, Hajnal, and Pésa constructed a coloring of the edges in R into
two colors such that both colors persist in each subcopy of R. Pouzet and Sauer later showed
in [57] that the big Ramsey degree for edge colorings in the Rado graph is exactly two. The
complete characterization of the big Ramsey degrees of the Rado graph was achieved in a
pair of papers by Sauer [62] and by Laflamme, Sauer, and Vuksanovic [44], both appearing
in 2006, and the degrees were calculated by Larson in [45]. The two papers [62] and [44]
in fact characterized exact big Ramsey degrees for all unrestricted homogeneous structures
with finitely many binary relations, including the homogeneous digraph, homogeneous tour-
nament, and random graph with finitely many edges of different colors. Milliken’s theorem
was used to prove existence of upper bounds, alluding to a deep connection between big
Ramsey degrees and Ramsey theorems for trees. These results are discussed in Section 5.1.

In [43], for each n > 2, Laflamme, Nguyen Van Thé, and Sauer calculated the big
Ramsey degrees of QQ,,, the rationals with an equivalence relation with n many equivalence
classes each of which is dense in Q. This hinged on proving a “colored version” of Milliken’s
theorem, where the levels of the trees are colored, to achieve upper bounds. Applying their
result for Q», they calculated the big Ramsey degrees of the dense local order, denoted S(2).
In his PhD thesis [38], Howe proved finite big Ramsey degrees for the generic bipartite graph
and the Fraissé limit of the class of finite linear orders with a convex equivalence relation.

A robust and streamlined approach applicable to a large class of homogeneous struc-
tures, and recovering the previously mentioned examples (except for S(2)), was developed
by Coulson, Patel, and the author in [8], building on ideas in [13] and [12]. In [8], it was shown
that homogeneous structures with relations of arity at most two satisfying a strengthening
of SAP, called SDAP™, have big Ramsey structures which are characterized in a simple
manner, and therefore their big Ramsey degrees are easy to compute. The proof proceeds
via a Ramsey theorem for colorings of finite antichains of coding nodes on diagonal coding
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trees of 1-types. This approach bypasses any need for envelopes, the theorem producing of
its own accord exact upper bounds. Moreover, the Halpern-Lauchli-style theorem, which is
proved via forcing arguments to achieve a ZFC result and used as the pigeonhole principle in
the Ramsey theorem, immediately yields indivisibility for all homogeneous structures satis-
fying SDAP™, with relations of any arity. These results and their methods are discussed in
Section 5.1.

The k-clique-free homogeneous graphs, denoted Gg, k > 3, were constructed by
Henson in his 1971 paper [36], where he proved these graphs to be weakly indivisible. In
their 1986 paper [42], Komjath and R6dl proved that G3 is indivisible, answering a question
of Hajnal. A few years later, El-Zahar and Sauer gave a systematic approach in [24], proving
that for each k > 3, the k-clique-free homogeneous graph Gy, is indivisible. In 1998, Sauer
proved in [6e] that the big Ramsey degree for edges in G3 is two. Further progress on big
Ramsey degrees of G3, however, needed a new approach. This was achieved by the author
in [13], where the method of coding trees was first developed. In [12], the author extended
this work, proving that Gy has finite big Ramsey degrees, for each k > 3. In [13] and [12],
the author proved a Ramsey theorem for colorings of finite antichains of coding nodes in
diagonal coding trees. These diagonal coding trees were designed to achieve very good upper
bounds and directly recover the indivisibility results in [42] and [24], discovering much of
the essential structure involved in characterizing their exact big Ramsey degrees. (Milliken-
style theorems on nondiagonal coding trees which fully branch at each level do not directly
prove indivisibility results, and produce looser upper bounds.) In particular, after a minor
modification, the trees in [13] produced exact big Ramsey degrees for G3, as shown in [14].
Around the same time, exact big Ramsey degrees for G3 were independently proved by
Balko, Chodounsky, Hubicka, Konec¢ny, Vena, and Zucker, instigating the collaboration of
this group with the author.

Given a finite relational language £, an £-structure A is called irreducible if each
pair of its vertices are in some relation of A. Given a set ¥ of finite irreducible &£-structures,
Forb(¥') denotes the class of all finite &£-structures into which no member of ¥ embeds.
Fraissé classes of the form Forb(¥') are exactly those with free amalgamation. Zucker in
[71] proved that for any Fraissé class of the form Forb(¥'), where ¥ is a finite set of irre-
ducible substructures and all relations have arity at most two, its Fraissé limit has finite
big Ramsey degrees. His proof used coding trees which branch at each level and a forcing
argument to obtain a Halpern—Lauchli-style theorem which formed the pigeonhole prin-
ciple for a Milliken-esque theorem for these coding trees. An important advance in this
paper is Zucker’s abstract, top-down approach, providing simplified and relatively short
proof of finite big Ramsey degrees for this large class of homogeneous structures. On the
other hand, his Milliken-style theorem does not directly recover indivisibility (more work is
needed afterwards to show this), and the upper bounds in [71] did not recover those in [13]
or [12] for the homogeneous k-clique-free graphs. However, by further work done in [6], by
Balko, Chodounsky, Hubicka, Kone¢ny, Vena, Zucker, and the author, indivisibility results
are proved and exact big Ramsey degrees are characterized. Thus, the picture for FAP classes
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with finitely many relations of arity at most two is now clear. These results will be discussed
in Section 5.2.

Next, we look at homogeneous structures with relations of arity at most two which
do not satisfy SDAP' and whose ages have strong (but not free) amalgamation. Nguyen
Van Thé made a significant contribution in his 2008 paper [53], in which he proved that
the ultrametric Urysohn space Qg has finite big Ramsey degrees if and only if S is a finite
distance set. In the case that S is finite, he calculated the big Ramsey degrees. Moreover, he
showed that for an infinite countable distance set S, Qg is indivisible if and only if S’ with
the reverse order as a subset of the reals is well ordered. His proof used infinitely wide trees
of finite height and his pigeonhole principle was actually Ramsey’s theorem. All countable
Urysohn metric spaces with finite distance set were proved to be indivisible by Sauer in [63],
completing the work that was initiated in [55] in relation to the celebrated distortion problem
from Banach space theory and its solution by Odell and Schlumprecht in [56].

Masulovi¢ instigated the use of category theory to prove transport principles show-
ing that finite big Ramsey degrees can be inferred from one category to another. After proving
a general transport principle in [47], he applied it to prove finite big Ramsey degrees for many
universal structures and also for homogenous metric spaces with finite distance sets with a
certain property which he calls compact with one nontrivial block. MaSulovi¢ proved in [48]
that in categories satisfying certain mild conditions, small Ramsey degrees are minima of big
Ramsey degrees. In the paper [49] with Sobot (not using category theory), finite big Ramsey
degrees for finite chains in countable ordinals were shown to exist if and only if the ordinal
is smaller than w®. Dasilva Barbosa in [9] proved that categorical precompact expansions
grant upper bounds for big and small Ramsey degrees. As an application, he calculated the
big Ramsey degrees of the circular directed graphs S(n) for all n > 2, extending the work in
[43] for S(2).

Hubicka recently developed a new method to handle forbidden substructures utiliz-
ing topological Ramsey spaces of parameter words due to Carlson and Simpson [7]. In [39],
he applied his method to prove that the homogeneous partial order and Urysohn S-metric
spaces (where S is a set of nonnegative reals with 0 € S satisfying the 4-values condition)
have finite big Ramsey degrees. He also showed that this method is quite broad and can be
applied to yield a short proof of finite big Ramsey degrees in G3. Beginning with the upper
bounds in [39], the exact big Ramsey degrees of the generic partial order have been charac-
terized in [5] by Balko, Chodounsky, Hubicka, Kone¢ny, Vena, Zucker, and the author. Also
utilizing techniques from [39], Balko, Chodounsky, Hubicka, Kone¢ny, NeSettil, and Vena in
[2] have found a condition which guarantees finite big Ramsey degrees for binary relational
homogeneous structures with strong amalgamation. Examples of structures satisfying this
condition include the S-Urysohn space for finite distance sets .S, A-ultrametric spaces for a
finite distributive lattice, and metric spaces associated to metrically homogeneous graphs of
a finite diameter from Cherlin’s list with no Henson constraints.

For homogeneous structures with free amalgamation, a recent breakthrough of
Sauer proving indivisibility in [64] culminates a long line of work in [25-28, 61]. Comple-
mentary work appeared in [8], where it was proved that for finitely many relations of any
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arity, SDAP™ implies indivisibility. On the other hand, big Ramsey degrees of structures
with relations of arity greater than two has only recently seen progress, beginning with
[3] and [4], where Balko, Chodounsky, Hubic¢ka, Kone¢ny, and Vena found upper bounds
for the big Ramsey degrees of the generic 3-hypergraph. Work in this area is ongoing and
promising.

5. EXACT BIG RAMSEY DEGREES

This section presents characterizations of exact big Ramsey degrees known at the
time of writing. These hold for homogeneous structures with finitely many relations of arity
at most two. Two general classes have been completely understood: Structures satisfying a
certain strengthening of strong amalgamation called SDAP™ (Section 5.1) and structures
whose ages have free amalgamation (Section 5.2). Lying outside of these two classes, the
generic partial order has been completely understood in terms of exact big Ramsey degrees
and will be briefly discussed at the end of Section 5.2. These characterizations all involve the
notion of a diagonal antichain, in various trees or spaces of parameter words, representing a
copy of an enumerated homogeneous structure. Here, we present these notions in terms of
structures, as they are independent of the representation.

Let K be an enumerated homogeneous structure with universe {v, : n < w}. Let
A < K be a finite substructure of K, and suppose that the universe of A is {v; : i € I} for
some finite set I € w. We say that A is an antichain if for each pairi < j in I there is a
k(i, j) < i such that the set {k(i, j) :i,j € [ andi < j} is disjoint from 7, and

K Mg £ <k@. /)y Ufvi}) =K} (og: € <k, j)} U}, (6.1
K (Que:€=k@@. )y U{vip) 2K P ({ue: €= k(@ j)}ULv)). (52

An antichain A is called diagonal if {k(i, j) : i < j < m} has cardinality m. We call k(i, )
the meet level of the pair v;, v;.

The notion of diagonal antichain is central to all characterizations of big Ramsey
degrees obtained so far. It seems likely that antichains will be essential to all characteriza-
tions of big Ramsey degrees. However, preliminary work shows that some homogeneous
binary relational structures, such as two or more independent linear orders, will have char-
acterizations in their trees of 1-types involving antichains which are not diagonal, but could
still be characterized via products of finitely many diagonal antichains.

The indexing of the relation symbols { R, : £ < L} in the language £ of K induces a
lexicographic ordering on trees representing relational structures. Here, we present this idea
directly on the structures. For m # n, we declare v, <jex v, if and only if {v,,, v,} is an
antichain and, letting k be the meet level of the pair v,,, v,, and letting £ denote the least
index in L such that v,, and v,, disagree on their Ry-relationship with vy, either Ry (v, vy)
holds while Ry (v, v,,) does not, or else Ry (vy,, vx) holds while Ry (v,,, vi) does not.

Two diagonal antichains A and B in an enumerated homogeneous structure K are
similar if they have the same number of vertices, and the increasing bijection from the uni-
verse A = {vm, :i < p} of A to the universe B = {v,, : i < p} of B induces an isomorphism
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from A to B which preserves <jx and induces a map on the meet levels which, for each
i < j < p,sendsk(m;,m;)tok(n;,nj). This implies that the map sending the coding node
Cm; 10 ¢y; (i < p) in the coding tree of 1-types S(K) (see Definition 3.4) induces a map on
the meet-closures of {¢,, : i < p}and {cp, : i < p} satistying Definition 3.5.

Similarity is an equivalence relation, and an equivalence class is called a similarity
type. We say that K has simply characterized big Ramsey degrees if for A € Age(K), the
big Ramsey degree of A is exactly the number of similarity types of diagonal antichains
representing A. In the next subsection, we will see many homogeneous structures with simply
characterized big Ramsey degrees.

5.1. Exact big Ramsey degrees with a simple characterization

The decades-long investigation of the big Ramsey degrees of the Rado graph cul-
minated in the two papers [62] and [44]. These two papers moreover characterized the big
Ramsey degrees for all unrestricted binary relational homogeneous structures. Unrestricted
binary relational structures are determined by a finite language &£ = { Ry, . . ., R;—; } of binary
relation symbols and a nonempty constraint set € of &£-structures with universe {0, 1} with
the following property: If A and B are two isomorphic &£-structures with universe {0, 1}, then
either both are in € or neither is in €. We let He denote the homogeneous structure such
that each of its substructures with universe of size two is isomorphic to one of the structures
in €. Examples of unrestricted binary relational homogeneous structures include the Rado
graph, the generic directed graph, the generic tournament, and random graphs with more
than one edge relation.

Given a universal constraint set €, letting k = |€|, Sauer showed in [62] how to form
a structure, call it Ug, with nodes in the tree K <® as vertices, such that He embeds into Ue.
Fix a bijection A : € — k. Given two nodes s,¢ € k=% with |s| < |¢|, declare that ¢ (|s|) = j
if and only if the induced substructure of U on universe {s, ¢} is isomorphic to the structure
A(j) in €, where the isomorphism sends s to 0 and ¢ to 1. For two nodes 5,7 € k=% of the
same length, declare that for s lexicographically less than 7, the induced substructure of Ue
on universe {s, ¢} is isomorphic to the structure A(0) in €, where the isomorphism sends s
to 0 and ¢ to 1. As a special case, a universal graph is constructed as follows: Let each node
in 2<% be a vertex. Define an edge relation E between vertices by declaring that, for s # ¢ in
2<% s Et if and only if |s| # |¢t| and (|s| < || = t(]s|) = 1). Then (2<%, E) is universal
for all countable graphs. In particular, the Rado graph embeds into the graph (2<%, E), and
vice versa.

In trees of the form k=%, the notion of similarity is exactly that of Definition 3.3, and
steps I-1V discussed in Section 3 outline the proof of exact big Ramsey degrees contained
in the pair of papers [62] and [44]. Milliken’s theorem was used to prove existence of upper
bounds via strong tree envelopes. For step III, Sauer constructed in [62] a diagonal antichain
D C k=% such that the substructure of U restricted to universe D is isomorphic to He,
achieving upper bounds shown to be exact in [44], finishing step IV. The big Ramsey degree
of a finite substructure A of He is exactly the number of distinct similarity types of subsets
of D whose induced substructure in Ug is isomorphic to A.
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The work in [62] and [44] greatly influenced the author’s development of coding
trees and their Ramsey theorems in [13] and [12] (discussed in Section 5.2). Those papers
along with a suggestion of Sauer to the author during the Banff 2018 Workshop on Unifying
Themes in Ramsey Theory, to try moving the forcing arguments in those papers from coding
trees to structures, informed the approach taken in the paper [8], which is now discussed.

Let K be an enumerated Fraissé structure with vertices {v, : n < w}. Forn < w, we
let K,, denote K | {v; : i < n}, the induced substructure of K on its first n vertices, and call
K, an initial substructure of K. We write 1-type to mean complete realizable quantifier-free
1-type over K, for some n.

Definition 5.1 (Coding Tree of 1-Types, [8]). The coding tree of 1-types S(K) for an enu-
merated Fraissé structure K is the set of all 1-types over initial substructures of K along with
a function ¢ : @ — S(K) such that c¢(n) is the 1-type of v, over K,,. The tree-ordering is
simply inclusion.

A substructure A of K with universe A = {v,, ..., Vy,,} is represented by the set
of coding nodes {c(ny), . ..,c(nm,)} as follows: For each i < m, since c(n;) is the quantifier-
free 1-type of v,, over K,,, substituting v, for the variable x into each formula in ¢ (n;)
which has only parameters from {v,, : j < i} uniquely determines the relations in A on the
vertices {vn; : j < i}. In[8], we formulated the following strengthening of SAP in order to
extract a general property ensuring that big Ramsey degrees have simple characterizations.

Definition 5.2 (SDAP). A Fraissé class K has the Substructure Disjoint Amalgamation
Property (SDAP) if K has strong amalgamation, and the following holds: Given A, C € X,
suppose that A is a substructure of C, where C extends A by two vertices, say v and w. Then
there exist A’, C' € K, where A is a substructure of A’ and C’ is a disjoint amalgamation of
A’ and C over A, such that letting v’, w’ denote the two vertices in C’ \ A’ and assuming (1)
and (2), the conclusion holds:

(1) Suppose B € X is any structure containing A’ as a substructure, and let o and
7 be 1-types over B satisfying o } A’ = tp(v'/A") and 7 } A’ = tp(w’/A’),

(2) Suppose D € K extends B by one vertex, say v”, such that tp(v”’/B) = o.

Then there is an E € K extending D by one vertex, say, w”, such that tp(w”/B) = 7 and
E AU w"}) =C.

This amalgamation property can, of course, be presented in terms of embeddings,
but the form here is indicative of how it is utilized. A free amalgamation version called SFAP
is obtained from SDAP by restricting to FAP classes and requiring A’ = A and C’ = C. Both
of these amalgamation properties are preserved under free superposition. A diagonal subtree
of S(K) is a subtree such that at any level, at most one node branches, the branching degree
is two, and branching and coding nodes never occur on the same level. Diagonal coding
trees are subtrees of S(K) which are diagonal and represent a subcopy of K. The property
SDAP™ holds for a homogeneous structure K if (a) its age satisfies SDAP, (b) there is a
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diagonal coding subtree of S(K), and (c) a technicality called the Extension Property which
in most cases is trivially satisfied. Classes of the form Forb(¥') where ¥ is a finite set of
3-irreducible structures, meaning each triple of vertices is in some relation, satisfy SFAP;
their ordered versions satisfy SDAP™ .

A version of the Halpern—Lauchli theorem for diagonal coding trees was proved in
[8] using the method of forcing to obtain a ZFC result, with the following theorem as an
immediate consequence.

Theorem 5.3 ([8]). Let K be a homogeneous structure satisfying SDAP™, with finitely many
relations of any arity. Then K is indivisible.

For relations of arity at most two, an induction proof then yields a Ramsey theo-
rem for finite colorings of finite antichains of coding nodes in diagonal coding trees. This
accomplishes steps I-III simultaneously and directly, without any need for envelopes, pro-
viding upper bounds which are then proved to be exact, finishing step IV.

Theorem 5.4 ([8]). Let K be a homogeneous structure satisfying SADPT, with finitely many
relations of arity at most two. Then K admits a big Ramsey structure and, moreover, has
simply characterized big Ramsey degrees.

Theorem 5.4 provides new classes of examples of big Ramsey structures while
recovering results in [1e,38,43,44] and special cases of the results in [71]. Theorem 5.3 provides
new classes of examples of indivisible Fraissé structures, in particular for ordered structures
such as the ordered Rado graph, while recovering results in [24,27,42] and certain cases of
Sauer’s results in [64] for FAP classes, while providing new SAP examples with indivisibility.

5.2. Big Ramsey degrees for free amalgamation classes

An obstacle to progress in partition theory of homogeneous structures had been
the fact that Milliken’s theorem is not able to handle forbidden substructures, for instance,
triangle-free graphs. Most results up to 2010 had either utilized Milliken’s theorem or a
variation (as in [43,62]) or else used difficult direct methods (as in [6e]) which did not lend
naturally to generalizations. The idea of coding trees came to the author during the her stay
at the Isaac Newton Institute in 2015 for the programme, Mathematical, Foundational and
Computational Aspects of the Higher Infinite, culminating in the work [13]. The ideas behind
coding trees included the following: Knowing that at the end of the process one will want a
diagonal antichain representing a copy of Gs, starting with a tree where vertices in G3 are
represented by special nodes on different levels should not hurt the results. Further, by using
special nodes to code the vertices of G3 into the trees, one might have a chance to prove
Milliken-style theorems on a collection of trees, each of which codes a subcopy of G3.

The author had made a previous attempt at this problem starting early in 2012. Upon
stating her interest this problem, Todorcevic (2012, at the Fields Institute Thematic Program
on Forcing and Its Applications) and Sauer (2013, at the Erdés Centenary Meeting) each
told the author that a new kind of Milliken theorem would need to be developed in order to
handle triangle-free graphs, which intrigued her even more. Though unknown to her at the
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time, a key piece to this puzzle would be Harrington’s forcing proof of the Halpern—L&uchli
theorem, which Laver was kind enough to outline to her in 2011. (At that time, the author was
unaware of the proof in [67].) While at the INI in 2015, BartoSova reminded the author of her
interest in big Ramsey degrees of G3. Having had time by then to fill out and digest Laver’s
outline, it occurred to the author to try approaching the problem first with the strongest tool
available, namely forcing.

Forcing is a set-theoretic method which is normally used to extend a given universe
satisfying a given set of axioms (often ZFC) to a larger universe in which the same set of
axioms hold while some other statement or property is different than in the original universe.
The beautiful thing about Harrington’s proof is that, while it does involve the method of
forcing, the forcing is only used as a search engine for an object which already exists in the
universe in which one lives. In the context of the Fraissé limit K of a class Forb(¥"), where
F is a finite set of finite irreducible structures, by carefully designing forcings on coding
trees with partial orders ensuring that new levels obtained by the search engine are capable
of extending a given fixed finite coding tree to a subcoding tree representing a copy of K, one
is able to prove Halpern—Liuchli-style theorems for coding trees. These form the pigeonhole
principles of various Milliken-style theorems for coding trees.

As the results and main ideas of the methods in [12,13,71] have been discussed in the
previous section, we now present the characterization of big Ramsey degrees in [6].

Theorem 5.5 ([¢]). Let K be a homogeneous structure with finitely many relations of arity at
most two such that Age(K) = Forb(F") for some finite set ¥ of finite irreducible structures.
Then K admits a big Ramsey structure.

Given a Fraissé class K = Forb(¥') with relations of arity at most two, where ¥
is a finite set of finite irreducible structures, let K denote an enumerated Fraissé limit of K.
Coding trees for K appearing in various papers are all essentially coding trees of 1-types.
The proof of Theorem 5.5 uses the upper bounds of Zucker in [71] as the starting point. It then
proceeds by constructing a diagonal antichain of coding nodes which represent the structure
K, with additional requirements if there are any forbidden irreducible substructures of size
three or more. While the exact characterization in its full generality is not short to state, the
simpler version for the structures Gy include the following: All coding nodes ¢, € A code
an edge with v,, for some m < n and have the following property: If B is any finite graph
which has the same relations over G | |c,| as ¢, does, then B has no edges. Furthermore,
changes in the sets of structures which are allowed to extend a given truncation of A (as a
level set in the coding tree) happen as gradually as possible. From the characterization in [6],
one can make an algorithm to compute the big Ramsey degrees.

As a concrete example, we present the exact characterization for triangle-free
graphs. In Figure 2, on the left is the beginning of G3; with some fixed enumeration of
the vertices as {v, : n < w}. The nth coding node in the tree S = S(G3) C 2<% represents
the nth vertex v, in G3, where passing number O represents a nonedge and passing number 1
represents an edge. Equivalently, S is the coding tree of 1-types for G3, as the left branch at
the level of ¢, represents the literal (x Zv,) and the right branch represents (x Ev,,).
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FIGURE 2
Coding tree S(G3) and the triangle-free graph represented by its coding nodes.

Given an antichain A C K, we say that A is a diagonal substructure if, letting I be
the set of indices of vertices in A, the following hold: (a) For each i € I, v; has an edge with
v for some m < i; let m; denote the least such m. (b) If i < j are in [ with v; Zv; and
mj < i, then there is some n € i such that v; Ev, and v; Ev,, and the least such n, denoted
n(i, j) isnotin 7. (c) For each i, j, k,£ € I (not necessarily distinct) with i < j, k < £,
(i, j) # (k,£),n; <i,and ny < k, we have n(i, j) # n(k,£). Given a finite triangle-free
graph A, the big Ramsey degree 7'(A) in G is the number of different diagonal substructures
representing a copy of A.

We conclude this section by mentioning the exact big Ramsey degrees in the generic
partial order in [5]. This result begins with the upper bounds proved by Hubicka in [39] and
then proceeds by taking a diagonal antichain D representing the generic partial order with
additional structure of interesting levels built into D. A level £ of D is interesting if there
are exactly two nodes, say s, ¢, in that level so that () for exactly one relation p € {<,>, L},
given any s’, ¢’ € D extending s, ¢, respectively, s’ p¢’, while there is no such relation for the
pairs P (£ —1),z | (£ —1). Since an interesting level for a pair of nodes s, t predetermines the
relations between any pair s, ¢’ extending s, ¢, respectively, passing numbers are unnecessary
to the characterization. The big Ramsey degree of a given finite partial order P is then the
number of different diagonal antichains A € D representing P along with the order in which
the interesting levels are interspersed between the splitting levels and the nodes in A.

6. OPEN PROBLEMS AND RELATED DIRECTIONS

Section 2 laid out the guiding questions for big Ramsey degrees. Here we discuss
some of the major open problems in big Ramsey degrees and ongoing research in cognate
areas.
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Problem 6.1. For which SAP Fraissé classes does the Fraissé limit have finite big Ramsey
degrees?

Subquestions are the following: Given an SAP Fraissé class with finitely many rela-
tions and a finite set of forbidden substructures, does its Fraissé limit have finite big Ramsey
degrees? Results in [4e] give evidence for a positive answer to this question. For such classes
with relations of arity at most two, do big Ramsey degrees always exist? We would like a
general condition on SAP classes characterizing those with finite big Ramsey degrees. We
point out that Problem 6.1 in its full generality is still open for small Ramsey degrees

Problem 6.2. For results whose proofs use the method of forcing, find new proofs which
are purely combinatorial.

This has been done for the triangle-free graph by Hubicka in [39], but new methods
will be needed for k-clique-free homogeneous graphs for k > 4 and other such FAP classes.

The next problem has to do with topological dynamics of automorphism groups of
homogeneous structures. The work of Zucker in [7e] has established a connection but not a
complete correspondence yet.

Problem 6.3. Does every homogeneous structure with finite big Ramsey degrees also
carry a big Ramsey structure? Is there an exact correspondence, in the vein of the KPT-
correspondence, between big Ramsey structures and topological dynamics?

The hope in Problem 6.3 is to obtain as complete a dynamical understanding of big
Ramsey degrees as we have for small Ramsey degrees, where a result of [69] shows that given
a Fraissé class K with Fraissé limit K, then X has finite small Ramsey degrees if and only
if the universal minimal flow of Aut(K) is metrizable.

Finally, we mention several areas of ongoing study related to the main focus of this
paper. Computability-theoretic and reverse mathematical aspects have been investigated by
Angles d’Auriac, Cholak, Dzhafarov, Monin, and Patey. In their treatise [1], they show that
the Halpern—Liuchli theorem is computably true and find reverse-mathematical strengths
for various instances of the product Milliken theorem and the big Ramsey structures of the
rationals and the Rado graph. As these structures both have simply characterized big Ramsey
degrees, it will be interesting to see if different reverse mathematical strengths emerge for
structures such as the triangle-free homogeneous graph or the generic partial order.

Extending Harrington’s forcing proof to the uncountable realm, Shelah in [59]
showed that it is consistent, assuming certain large cardinals, that the Halpern—L&uchli
theorem holds for trees 2<%, where k is a measurable cardinal. DZamonja, Larson, and
Mitchell applied a slight modification of his theorem to characterize the big Ramsey degrees
for the k-rationals and the k-Rado graph in [22] and [23]. Their characterizations have as
their basis the characterizations of Devlin and Laflamme—Sauer—Vuksanovic for the ratio-
nals and Rado graph, respectively, but also involve well-orderings of each level of the tree
2=k necessitated by x being uncountable. The field of big Ramsey degrees for uncountable
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homogeneous structures is still quite open, but the fleshing out of the Ramsey theorems on
trees of uncountable height has seen some recent work in [19, 20, 68].
The next problem comes from a general question in [41].

Problem 6.4. Develop infinite-dimensional Ramsey theory on spaces of copies of a homo-
geneous structure.

For a set N C w, let [N]® denote the set of all infinite subsets of N, and note
that [w]® represents the Baire space. The infinite-dimensional Ramsey theorem of Galvin
and Prikry [33] says that given any Borel subset X of the Baire space, there is an infinite
set N such that [N]? is either contained in X or is disjoint from X. Ellentuck’s theorem
in [29] found optimality in terms of sets with the property of Baire with respect to a finer
topology. The question in [41] asks for extensions of these theorems to subspaces of [w]?,
where each infinite set represents a copy of some fixed homogeneous structure. A Galvin—
Prikry-style theorem for spaces of copies of the Rado graph has been proved by the author
in [17]. By a comment of Todorcevic in Luminy in 2019, the infinite-dimensional Ramsey
theorem should ideally also recover exact big Ramsey degrees. Such a theorem is being
written down by the author for structures satisfying SDAP™ with relations of arity at most
two. This is one instance where coding trees are necessitated to be diagonal in order for the
infinite dimensional Ramsey theorem to directly recover exact big Ramsey degrees.

We close by mentioning that structural Ramsey theory has been central in inves-
tigations of ultrafilters which are relaxings of Ramsey ultrafilters in the same way that big
Ramsey degrees are relaxings of Ramsey’s theorem. An exposition of recent work appearing
in [16] will give the reader yet another view of the power of Ramsey theory.
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1. INTRODUCTION

Measurable graph combinatorics focuses on finding measurable solutions to combi-
natorial problems on infinite graphs. This study involves ideas and techniques from combi-
natorics, ergodic theory, probability theory, descriptive set theory, and theoretical computer
science. We survey some recent progress in this area, focusing on the study of locally finite
graphs: graphs where each vertex has finitely many neighbors. We also discuss applications
to the study of hyperfiniteness of Borel actions of groups, and measurable equidecomposi-
tions.

Without any constraints such as measurability conditions, combinatorial problems
on locally finite graphs often simplify to studying their restriction to finite subgraphs. This is
the case with the problem of graph coloring. Recall that if G = (V, E) is a graph, a (proper)
Y -coloring of G is a map c¢: V — Y so that for every two adjacent vertices {x, y} € E,
the colors assigned to these two vertices are distinct, c(x) # ¢(y). The chromatic number
x(G) of G is the smallest cardinality of a set Y so there is a Y -coloring of G. A classical
theorem of De Bruijn and Erdd§s states that for a locally finite graph G, the chromatic number
of G is equal to the supremum of the chromatic number of all finite subgraphs of G. That
is, Y(G) = supgie g ¢ X (H). The proof of this theorem is a straightforward compactness
argument using the Axiom of Choice.

In contrast, many phenomena can influence measurable chromatic numbers beyond
just the constraints imposed by finite subgraphs. We illustrate this change in behavior with
a simple example. Let S 1 e the circle, let T: S — S! be an irrational rotation, and let 7!
be Lebesgue measure on S'. Consider the graph G with vertex set S and where x, y are
adjacent if T'(x) = y or T(y) = x. Every vertex in Gt has degree 2 and every connected
component of G is infinite. Hence, by alternating between two colors, it is easy to see that
the classical chromatic number of Gt is 2. However, there can be no Lebesgue measurable
2-coloring of G7. Suppose ¢: S! — {0, 1} was a Lebesgue measurable coloring of Gr, and
Ao = {x : c(x) =0} and A7 = {x : c(x) = 1} were the two color sets. Then since the
coloring must alternate between the two colors, we must have 7 (A4g) = A1, and since T is
measure preserving and Ao and A; are disjoint and cover S!, we therefore have A(Ag) =
A(Ay) = % However, the transformation 7'2 is also an irrational rotation and hence T2 is
ergodic, meaning any set invariant under 72 must be null or conull. Since T2(4¢) = Ay,
A must be null or conull. Contradiction!

In this paper we focus on the study of combinatorial problems on Borel graphs:
graphs where the set V' of vertices is a standard Borel space and where the edge relation
E is Borel as a subset of V' x V. In the setting where each vertex has at most countably
many neighbors, this is equivalent to saying that there are countably many Borel functions
fo, f1,...:V — V that generate G in the sense that x £ y if and only if f;(x) = y for
some i. The equivalence follows from the Lusin—Novikov theorem [28, 18.15]. An important
example of a Borel graph is the following type of Schreier graph. If a is a Borel action of a
countable group I" on a standard Borel space X and S is a symmetric set of generators for I,
then let G(a, S) be the graph on the vertex set V' = X where x, y € V are adjacent if there
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isay € § such that y - x = y. For example, the graph associated to the irrational rotation
described above is a graph of this form.

For more comprehensive surveys of this area, the reader should consult the papers
[39,44]. A notable recent development we will not discuss is the connections that have been
found between measurable combinatorics and the study of distributed algorithms in theoret-
ical computer science, particularly the LOCAL model. This model of computing takes place
on a large graph where each vertex represents a computer which is assigned a unique iden-
tifier, and each edge is a communication link. These processors execute the same algorithm
in parallel, communicating with their neighbors in rounds to construct a global solution to
some combinatorial problem. Recent work [2, 3, 6,17] has established some precise connec-
tions between measurable combinatorics and LOCAL algorithms which have already led to
new theorems in both areas (see, e.g., [2,4]).

2. MEASURABLE COLORINGS

If G is a Borel graph, we define the Borel chromatic number yp(G) of G to be
the smallest cardinality of a standard Borel space Y so that there is a Borel measurable Y -
coloring of G. We clearly have that y(G) < yp(G) where y(G) is the classical chromatic
number of G. Borel chromatic numbers were first studied in a foundational paper of Kechris,
Solecki, and Todorcevic [32].

Let G = (V, E) be a graph. If x € V is a vertex, we let N(x) = {y : {x,y} € E}
denote the set of neighbors of x. The degree of x is the cardinality of N(x). We say that a
graph is A-regular if every vertex has degree A. A basic result about graph coloring is that,
given any finite graph G of finite maximum degree A, there is a (A + 1)-coloring of G. This
is easy to see by coloring the vertices of G one by one. If we have a partial coloring of G,
then any uncolored vertex x has at most A neighbors so there must be a color from the set
of A + 1 colors we can use to extend this partial coloring to x. The analogous fact remains
true about Borel colorings:

Theorem 2.1 (Kechris, Solecki, Todorcevic [32, PROPOSITION 4.6]). If G is a Borel graph of
finite maximum degree A, then G has a Borel (A + 1)-coloring.

One method of proving this theorem is to adapt the greedy algorithm described
above. Recall that a set of vertices is independent if it does not contain two adjacent vertices.
First, we may find a countable sequence of Borel sets A, such that each A4, is independent,
and their union is all vertices | J, A, = V(G). Then we can iteratively construct a coloring
of G in countably many steps where at step n we color all the elements of 4, the least color
not already used by one of its neighbors. In general, the connection between algorithms for
solving combinatorial problems and measurable combinatorics is deep. Many techniques
for constructing measurable colorings are based on algorithmic ideas, since algorithms for
solving combinatorial problems will often yield an explicitly definable solutions to them.

The upper bound given by Theorem 2.1 is tight; a complete graph on A + 1 vertices
has maximum degree A and chromatic number A + 1. Surprisingly, the upper bound of
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Theorem 2.1 is also optimal even in the case of acyclic Borel graphs. Hence, for bounded
degree Borel graphs, the Borel chromatic number and classical chromatic number may be
very far apart since any acyclic graph has classical chromatic number at most 2.

Theorem 2.2 (Marks [38]). For every finite A, there is an acyclic Borel graph of degree A
with no Borel A-coloring.

The graphs used to establish Theorem 2.2 are quite natural, and arise from Schreier
graphs of actions of free products of A many copies of Z/2Z. Theorem 2.2 is proved using
Martin’s theorem of Borel determinacy [41] which states that in any infinite two-player game
of perfect information with a Borel payoff set, one of the two players has a winning strategy.
The direct use of Borel determinacy to prove this theorem leads to an interesting question
of reverse mathematics since Borel determinacy requires a great deal of set-theoretic power
to prove: the use of uncountably many iterates of the powerset of R [19]. We currently do
not know of any simpler proof of Theorem 2.2 that avoids the use of Borel determinacy or
can be proved in second-order arithmetic (which suffices for most theorems of descriptive
set theory).

Problem 2.3. Is Theorem 2.2 provable in the theory Z, of full second-order arithmetic?

Recently, Brandt, Chang, Grebik, Grunau, Rozhoii, and Vidnydnszky [6] have shown
that characterizing the set of Borel graphs of maximum degree A > 3 that have no Borel
(A + 1)-coloring is as hard as possible in a precise sense: the set of such graphs is Z;
complete. Here Zé completeness is a logical measurement of the complexity of this problem.
The proof of their theorem combines the techniques of [39] with earlier work of Todorcevic
and Vidnydnszky [48] proving Zé completeness for the set of locally finite Borel graphs
generated by a single function that have finite Borel chromatic number. In contrast to the
work of [6] for A > 3, in the case A = 2, a dichotomy theorem of Carroy, Miller, Schrittesser,
and Vidnydnszky [8] characterizes the 2-colorable Borel graphs in a simple way as those
for which there is no Borel homomorphism from a canonical non-Borel-2-colorable graph
known as L.

This type of theorem—proving it is hard to characterize the set of graphs with
some combinatorial property—is familiar in finite graph theory via computational com-
plexity theory. For example, it is a well-known theorem that the set of finite graphs that
are k-colorable for k > 3 is NP-complete. Indeed, there are some surprising newly found
connections between computational complexity theory and complexity in measurable com-
binatorics. Thornton [47] has used techniques adapted from the celebrated CSP (constraint
satisfaction problem) dichotomy theorem [7,51] in theoretical computer science to bootstrap
the results of [6] to show many other natural combinatorial problems on locally finite Borel
graphs are either Z; complete or a II i The CSP dichotomy theorem concerns a certain
class of natural problems in NP: general constraint satisfaction problems like graph color-
ing with k colors, k-SAT, or, more generally, computing the set of finite structures X that
have a homomorphism to a given fixed finite structure D. The CSP dichotomy states that all
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such constraint satisfaction problems are either in P (like 2-coloring or 2-SAT), or they are
NP-complete (like 3-coloring or 3-SAT).

The results in [6] rule out any simple theory for understanding Borel chromatic
number for locally finite Borel graphs in general. In contrast, if we weaken our measur-
ability condition to study pu-measurable colorings with respect to some Borel probability
measure u instead of Borel colorings, the theory of p-measurable colorings appears to have
a much closer connection to finite graph theory. If u is a Borel measure on the vertex set of
a Borel graph G, let y,,(G) be the least size of a set Y so there is a y-measurable coloring
of G. So x(G) < x.(G) < xB(G), since every Borel function is ;-measurable.

For finite graphs of maximum degree A, a theorem of Brooks characterizes those
connected graphs which have chromatic number of A 4 1. They are precisely the complete
graphs on A + 1 vertices, and odd cycles in the case A = 2. Analogously, we have the
following generalization of Brooks’s theorem for p-measurable colorings:

Theorem 2.4 (Conley, Marks, Tucker-Drob [13]). Suppose that G is a Borel graph with
degree bounded by a finite A > 3. Suppose further that G contains no complete graph
on A + 1 vertices. If u is any Borel probability measure on V(G), then G admits a [i-
measurable A-coloring.

Several important open problems in descriptive set theory concern whether there
is a difference between being able to find a Borel solution to a problem versus being able
to find a p-measurable solution with respect to every Borel probability measure u (e.g., the
hyperfiniteness vs measure hyperfiniteness problem [29, PROBLEM 8.29]). Theorems 2.2 and 2.4
are encouraging in this context because they point the way towards tools that may be able to
resolve these types of questions.

The proof of Theorem 2.4 is based on a technique for finding one-ended spanning
subforests in Borel graphs: acyclic subgraphs on the same vertex set where each connected
component has exactly one end. More recently, these techniques for finding one-ended span-
ning subforests were applied to prove new results in the theory of cost: a real valued invariant
of countable groups arising from their ergodic actions [9].

Bernshteyn has substantially strengthened Theorem 2.4 by showing for k within
a factor of +/A of A, there is a u-measurable k-coloring of G if and only if there is any
k-coloring of G.

Theorem 2.5 (Bernshteyn [2]). There is a Ao so that if G is a Borel graph with finite max-
imum degree A > Ag and | is a Borel probability measure on V(G), then if ¢ satisfies
¢ <D —5/2, then G has a (A — ¢)-coloring if and only if G has a p-measurable (A — ¢)-
coloring.

The above results give cases where the p-measurable chromatic number behaves
similarly to the classical chromatic number. These two quantities may still differ by a large
amount, however. Let [F,, be the free group on n generators and let S, € [, be a free sym-
metric generating set. Let a,, be the action of IF,, on the space [0, 1]¥» via the Bernoulli shift:
(y - x)(8) = x(y~'8) restricted to its free part. Let G, = G(ay, Sy) be the Schreier graph
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of this action, and let j,, = AF be the product of Lebesgue measure A on [0, 1]. Since G, is
acyclic, the classical chromatic number is x(G,) = 2. However, x, (Gn) > mg% which can
be shown using results about the size of independent sets in random (2#)-regular graphs and
an ultraproduct argument. This argument was first suggested by [36]; see [3e] for a detailed
proof. Bernshteyn has recently proven an upper bound on y, (G,) which is within a factor
of two of this lower bound [1]. However, it remains an open problem to compute the precise
rate of growth of y,,, (Gn).

Bernshteyn’s Theorem 2.5 and the above upper bound on y,, (G,) are based on an
adaptation of the powerful Lovasz Local Lemma (LLL) to the setting of measurable combi-
natorics. The LLL is a tool of probabilistic combinatorics which can show the existence of
objects which are described by constraints that are local in the sense that each constraint is
independent of all but a small number of other constraints, and each constraint has a high
probability of being satisfied. Precisely, the symmetric LLL states that if Ay, ..., A, are
events in a probability space which each occur with probability at most p, each event A;
is independent of all but at most d of the other events, and ep(d + 1) < 1, then there is a
positive probability none of these events occur.

The LLL is a pure existence result, and since the desired object typically exists
with exponentially small probability, it was a major open problem to find an algorithmic
way to quickly find satisfying assignments where none of the events A4, ..., A, happen.
In particular, a naive attempt to randomly sample from the probability distribution until a
solution is found would take at least exponential time. In a breakthrough result in 2009,
Moser and Tardos [42] gave an efficient randomized algorithm that can quickly compute
satisfying assignments for the LLL.

Adaptations of the Moser—Tardos algorithm and the LLL to the setting of measur-
able combinatorics began with work of Kun [33], who used a version of the Moser—Tardos
algorithm to find spanning subforests to prove a strengthening of the Gaboriau—Lyons [26]
theorem in ergodic theory. More recently, Csoka, Grabowski, Mathe, Pikhurko, and Tyros
[14] have proved a Borel version of the symmetric LLL for Borel graphs of subexponential
growth, and Bernshteyn has proved p-measurable versions for Bernoulli shifts of groups, and
probability measure preserving Borel graphs [1,2]. These results, combined with the large
literature in combinatorics using the LLL to construct colorings of graphs, are the main tool
in the proof of Theorem 2.5.

It is known that there cannot be a Borel version of the symmetric LLL for bounded
degree Borel graphs in general [12]. Indeed, the existence of such a theorem combined with
standard coloring techniques using the LLL would contradict Theorem 2.2. However, an
interesting special case remains open: a Borel version of the symmetric LLL for Borel
Schreier graphs generated by Borel actions of amenable groups, which are defined in the
next section. Such a version of the local lemma could be a useful tool for making progress
on the open problems discussed in the next section.

The theorems we have described above are a small selection of what is now known
about measurable chromatic numbers. We hope they give the reader some sense of the variety
of results and tools of the subject.
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3. CONNECTIONS WITH HYPERFINITENESS

A major research program in modern descriptive set theory has been to understand
the relative complexity of equivalence relations under Borel reducibility. Precisely, if E
and F are equivalence relations on standard Borel spaces X and Y, say that E is Borel
reducible to F if there is a Borel function f: X — Y such that for all x, y € X, we have
xEy < f(x) F f(»).Sucha function induces a definable injection from X/Eto Y/ F.
If we think of E and F as classification problems, this means E is simpler than F in the
sense that any invariants that can be used to classify F can also be used to classify E. In the
study of Borel reducibility of equivalence relations, there has been success both in under-
standing the abstract structure of all Borel equivalence relations under Borel reducibility,
and also in proving particular nonclassification results of interest to working mathemati-
cians. For example, Hjorth’s theory of turbulence [26] gives a precise dichotomy for when an
equivalence relation generated by a Polish group action can be classified by invariants that
are countable structures, and turbulence has been applied to prove nonclassifiability results
in C* algebras [18].

A Borel equivalence relation E is said to be countable if every E-class is countable.
The countable Borel equivalence relations are an important and well-studied subclass of
Borel equivalence relations with rich connections with operator algebras and ergodic theory.
One reason for this is the Feldman—Moore theorem [31, THEOREM 1.3], which states that every
countable Borel equivalence relation is induced by a Borel action of a countable group.
Results proved about the dynamics of measure preserving actions of countable groups have
played a played an important role in our understanding of the theory of countable Borel
equivalence relations.

Understanding how the descriptive-set-theoretic complexity of countable Borel
equivalence relations is related to the dynamics of the group actions that generate them
is a deep problem. An important simplicity notion for Borel reducibility is hyperfiniteness:
a Borel equivalence relation is hyperfinite if it can be written as an increasing union of
Borel equivalence relations whose classes are all finite. The hyperfinite equivalence rela-
tions are the simplest nontrivial class of Borel equivalence relations as made precise by the
Glimm-Effros dichotomy of Harrington, Kechris, and Louveau [25]. Weiss has asked if the
group-theoretic notion of amenability precisely corresponds to hyperfiniteness:

Problem 3.1 (Weiss, [5e]). Suppose E is a Borel equivalence relation generated by a Borel
action of a countable amenable group. Is E hyperfinite?

Amenability was defined by von Neumann in reaction to the Banach—Tarski para-
dox. It is a group-theoretic notion of dynamical tameness. Precisely, a group I' is amenable
if and only if for every ¢ > 0 and every finite S C I there exists some nonempty finite ¥ C T’
suchthat |[SFAF|/|F| < e.Such an F is called an (e, S)-Fglner set. Examples of amenable
groups include finite, abelian, and solvable groups, while the free group on two generators
is nonamenable. If Weiss’s question has a positive answer, then amenability precisely char-
acterizes hyperfiniteness since every nonamenable group has a nonhyperfinite Borel action.
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Evidence that Weiss’s question has a positive answer is given by a theorem in ergodic theory
of Ornstein and Weiss [43] that every measure preserving action of an amenable group on a
standard probability space is hyperfinite modulo a nullset.

Progress on Weiss’s question has grown out of progress on the problem of finding
Borel tilings of group actions by Fglner sets. Precisely, if a: I' ~, X is an action of a finitely
generated group I', and F1, ..., F,, C I are finite subsets of I', a filing of a by the shapes
F,..., F,isacollection of subsets Ay,..., A, C X sothatthe sets Fy - Aq,..., F, - A, are
pairwise disjoint and form a partition of X . Finding tilings of a group action can be thought
of as a generalized coloring problem or constraint satisfaction problem of the type often stud-
ied in measurable combinatorics, and can be approached using many of the same tools. For
example, Jackson, Kechris, and Louveau [27] have shown that Weiss’s question has a posi-
tive answer for groups of polynomial volume growth. Their argument uses Voronoi regions
around Borel maximal independent sets to make Borel tilings with desirable properties. Gao
and Jackson [21] have shown that Weiss’s question has a positive answer for abelian groups.
Their argument centers around a more refined inductive argument to find tilings of Z" by
hyperrectangles. These tilings are found by iteratively adjusting the location of the bound-
aries of hyperrectangular tiles that cover the space until their parallel boundaries are far apart.
Schneider and Seward have extended Gao and Jackson’s machinery to all locally nilpotent
groups [45]. All these tilings are the building blocks out of which witnesses to hyperfiniteness
are constructed.

A positive answer to the following open problem would be progress towards a pos-
itive solution to Weiss’s question:

Problem 3.2. Let I be an amenable group with finite symmetric generating set S and
a:T' ~, X be a free Borel action of a on a standard Borel space X. For every ¢ > 0, do
there exist (g, S)-Fdlner sets Fy, ..., F, C T such that the action a has a Borel tiling with
shapes Fi,..., F,?

The existence of such tilings without any measurability conditions was only recently
established by Downarowicz, Huczek, and Zhang [15]. A key step in their proof is to use
Hall’s matching theorem to match untiled points in a Ornstein—Weiss style quasitiling [43]
to construct an exact tiling. Recall that if G = (V, E) is a graph, a perfect matching of G is
a subset M C E of edges so that each vertex x € V is incident to exactly one edge in M.
Hall’s matching theorem states that a bipartite graph with bipartition A, B C V has a perfect
matching if and only if for every finite set F € Aor F C B,

IN(F)| = |F].

Recently, Problem 3.2 has been shown to have a positive answer modulo a nullset [10]. A
key part of the proof is a measurable matching result proved using an idea of Lyons and
Nazarov [36] that was originally used to find factor of i.i.d. perfect matchings of regular trees.
Lyons and Nazarov’s argument uses the Hungarian matching algorithm (repeatedly flipping
augmenting paths) to show that if a bipartite Borel graph G satisfies a certain measure-
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theoretic expansion condition strengthening Hall’s condition, then it has a measurable perfect
matching.
Conley, Jackson, Marks, Seward, and Tucker-Drob have proven the following:

Theorem 3.3 (Conley, Jackson, Marks, Seward, Tucker-Drob [11]). Let I" be a countable
group admitting a normal series where each quotient of consecutive terms is a finite group
or a torsion-free abelian group with finite Q-rank, except that the top quotient can be any
group of uniform local polynomial volume-growth or the lamplighter group Z, ? Z. Then
every free Borel action of T is hyperfinite.

By combining this with prior work of Seward and Schneider [45, cor. 8.2] they obtain
the following corollary:

Corollary 3.4. Weiss’s question has a positive answer for polycyclic groups.

This is the best partial result on Weiss’s question that is currently known. Sig-
nificantly, Corollary 3.4 applies to groups of exponential volume growth such as certain
semidirect products of Z". All the previous work on Weiss’s question applied only to groups
locally of polynomial volume growth, and this seemed an inherent limitation to previous
methods.

The central idea of [11] is to adapt the machinery of Gromov’s theory of asymptotic
dimension of groups to the setting of descriptive set theory, making a theory of Borel asymp-
totic dimension. These ideas were implicitly hidden in all previous work on Weiss’s question,
but were first made explicit in [11]. Asymptotic dimension was introduced by Gromov as a
quasiisometry invariant of metric spaces, used to study geometric group theory. The asymp-
totic dimension of a metric space (X, p) is the least d such that for every r > O there is a
uniformly bounded cover U of X so that every closed r-ball intersects at most d + 1 sets
in U. Essentially, asymptotic dimension is a “large-scale” analogue of Lebesgue covering
dimension. There are actually several different ways to define asymptotic dimension whose
equivalences are nontrivial to prove. Proving that these different definitions still define the
same notion in the Borel context is one of the keys to the work in [11]. Alternate definitions
allow the conversion between Voronoi cell-type tilings patterned on the work of Jackson,
Kechris, and Louveau, and covers with far apart facial boundaries pioneered by Gao and
Jackson.

Resolving Weiss’s question for all amenable groups appears to be a difficult prob-
lem. In general, we have a poor understanding of the geometry and structure of Fglner sets in
arbitrary amenable groups. Problem 3.1 for arbitrary amenable groups seems to either require
significant advances in our geometric understanding of amenable groups, or completely dif-
ferent descriptive-set theoretic tools for attacking the hyperfiniteness problem. One question
which gets at the heart of this difficulty is the following:

Problem 3.5. Suppose G is a bounded degree Borel graph having uniformly bounded poly-
nomial growth. Is the connectedness relation of G hyperfinite?
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The obstacle in resolving Problem 3.5 is that while polynomial growth groups have
tight both upper and lower bound on their growth, Problem 3.5 only posits an upper bound
on the growth of G, which may consequently have much less uniformity in its growth than
the Schreier graph associated to an action of a polynomial growth group. This lack of a
lower bound on growth means that the techniques of Jackson, Kechris, and Louveau for
proving hyperfiniteness of groups of polynomial growth cannot resolve Problem 3.5 Finding
techniques for resolving Problem 3.5 where there is far less regular geometric structure would
be one way of making progress towards resolving Weiss’s question in general since we know
little about any regular geometric structure in arbitrary amenable groups.

4. MEASURABLE EQUIDECOMPOSITIONS

Ifa:T" ~, X is an action of a group I" on a space X, then we say sets A, B € X
are a-equidecomposable if there are a finite partition {Ay, ..., A, } of A and group elements
Y0, .-, Vn € ' sothat y9Ay, ..., VsA, is a partition of B. For example, in this language,
the Banach—Tarski paradox says that one unit ball is equidecomposable with two unit balls
under the group action of isometries of R3. In the last few years several new results proved
about these types of geometrical paradoxes with the unifying theme that the “paradoxical”
sets in many classical geometrical paradoxes can surprisingly be much nicer than one would
naively expect.

A classical generalization of the Banach—Tarski paradox states that any two bounded
sets A, B C R? with nonempty interior are equidecomposable. Of course, the pieces used
in these equidecompositions must be nonmeasurable in general, since A and B may have
different measure. However, a remarkable theorem of Grabowski, Mathé, and Pikhurko states
that there is always an equidecomposition using measurable sets when A and B have the same
Lebesgue measure.

Theorem 4.1 (Grabowski, Mathé, Pikhurko [24]). If A, B € R3 are bounded sets with
nonempty interior and if additionally A and B are assumed to have the same Lebesgue
measure, then A and B can be equidecomposed using Lebesgue measurable pieces.

It is an open problem whether Theorem 4.1 can be strengthened to yield a Borel
equidecomposition, assuming A and B are Borel.

Key to Theorem 4.1 and other advances in measurable equidecompositions has been
progress made on measurable matching problems. The connection comes from the following
graph-theoretic reformulation of equidecompositions as perfect matchings. Leta: I' ~, X be
a Borel action of a group I" on a space X, let A, B, C X be subsets of X, andlet S C T
be finite. Let G(A, B, S) be the graph whose set of vertices is the disjoint union 4 U B and
where x € A and Y € B are adjacent if there is a y € S so that y - x = y. Then it is easy
to see that A, B are equidecomposable using group elements from S if and only if there is a
perfect matching of the graph G(4, B, S).

Theorem 4.1 and other new results about measurable equidecompositions rely on
combining process made on measurable matching problems with modern results about the
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dynamics of the group actions being studied. For example, Theorem 4.1 uses the local
spectral gap of Boutonnet, loana, and Salehi Golsefidy [5] for certain lattices in the group
SO3(R) of rotations in R3. This result is used to check that the graph G (A4, B, S) satisfies the
expansion condition of Lyons and Nazarov [36] which ensures the existence of a measurable
matching.

Some other recent theorems about measurable equidecompositions concern Tarski’s
famous circle squaring problem from 1925: the question of whether a disk and square of the
same area in R? are equidecomposable by isometries. Tarski’s circle squaring problem arose
from the fact that the analogue of the Banach—Tarski paradox is false in R2. This is because
there are so-called Banach measures in R?: finitely additive isometry-invariant measures that
extend Lebesgue measure. Their existence is proved using the amenability of the isometry
group of R2. Hence, if Lebesgue measurable sets A, B C R? are equidecomposable, they
must have the same Lebesgue measure. The real thrust of Tarski’s circle squaring problem is
the converse of this: the general problem of to what extent there is an equivalence between
equidecomposability and having the same measure.

In 1990, Laczkovich [34] (see also [35]) gave a positive answer to Tarski’s circle
squaring problem using the Axiom of Choice. His proof involved sophisticated tools from
Diophantine approximation and discrepancy theory to prove strong quantitative bounds
on the ergodic theorem for translation actions of the torus, as well as the graph-theoretic
approach to equidecomposition described above.

Marks and Unger have shown that there is a Borel solution to Tarski’s circle squaring
problem, building on an earlier result of Grabowski, Mathé, and Pikhurko, [23] that the circle
can be squared using Lebesgue measurable pieces.

Theorem 4.2 (Marks, Unger [4e]). Tarski’s circle squaring problem has a positive solution
using Borel pieces. More generally, for alln > 1, if A, B C R” are bounded Borel sets with
the same positive Lebesgue measure whose boundaries have upper Minkowski dimension
less than n, then A and B are equidecomposable using Borel pieces.

Hence, for Borel sets whose boundaries are not wildly fractal, having the same mea-
sure is actually equivalent to having an explicitly definable Borel equidecomposition.

Theorem 4.2 uses new techniques for constructing Borel perfect matchings in Borel
graphs based on first finding a real-valued Borel flow as an intermediate step. Precisely, if
f:V — Ris a function on the vertices of a graph G, then an f-flow on G is a real-valued
function ¢ on the edges of G such that ¢ (x, y) = —¢(y, x) for every directed edge (x, y)
of G, and such that for every x € V the flow ¢ satisfies Kirchofl’s law,

f@) = Y ¢lx.y).
yEN(x)

Given a circle and square 4, B C [0, 1)2 of the same area, the first step in the proof of The-
orem 4.2 is finding an explicit (14 — 1p)-flow of an appropriate Borel graph whose vertices
are all the elements of [0, 1)? and whose edges are generated by finitely many translations.
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The advantage of working with the generality of flows is twofold. First, a flow can be
constructed in countably many steps, making the error in Kirchoff’s law above continuously
approach 0 whereas the error in a partial matching that makes it imperfect is discrete. Second,
the average of f-flows is an f-flow and so it is possible to integrate families of definable
flows to get another definable flow. Finally, there are well known combinatorial equivalences
between flows and matchings which are used in the last step of the proof of Theorem 4.2 to
“round” areal-valued flow into an integer valued flow and then use it to construct a matching.

Another key ingredient in the proof of Theorem 4.2 is the hyperfiniteness of Borel
actions of abelian groups. In particular, the proof of Theorem 4.2 uses a recent refinement
due to Gao, Jackson, Krohne, and Seward [22] of Gao and Jackson’s [21] theorem that Borel
actions of abelian groups are hyperfinite. These witnesses to hyperfiniteness are used to
ensure that the Ford—Fulkerson algorithm converges when it is used to round the Borel real-
valued flow described above into a Borel integer-valued flow.

This flow approach to equidecomposition problems may be useful for attacking
other open questions such as the Borel-Ruziewicz problem:

Problem 4.3 (Wagon [49]). Suppose n > 2. Is Lebesgue measure the unique finitely additive
rotation invariant probability measure defined on the Borel subsets of the n-sphere S”?

This question is inspired by a theorem of Margulis [37] and Sullivan [46] (n > 4), and
Drinfeld [16] (n = 2, 3), who proved that Lebesgue measure is the unique finitely additive
rotation invariant measure on the Lebesgue measurable subsets of S”. Wagon’s proposed
strengthening would be a more natural result since the Borel sets are the canonical o-algebra
to measure.
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1. INTRODUCTION

To prove a statement about natural numbers, we usually rely explicitly or implicitly
on reasoning by mathematical induction. In the setting of mathematical logic, the axiomatic
system for natural numbers consists of the axioms for discrete ordered semirings and the
scheme of mathematical induction, which is known as Peano Arithmetic (PA). Within PA,
one can prove many theorems in number theory or finite combinatorics, such as the existence
of infinitely many prime numbers or the following finite Ramsey theorem (FRT):

(FRT) Foranyn,k,m,a € N, there exists b € N such thatforany f :[[a,b)N]" — k
there exist H C [a,b)n and ¢ < k such that [H]" € f~'(c¢) and |H| = m.

(Here, [a,b)y ={x e N:a <x <b}and [X]* ={F C X : |F| = n} where | F| denotes
the cardinality of F. We write k for the set [0, k)n.) Thus, the question might arise: can we
prove all true numerical statements within PA?

The answer is known to be negative. The famous incompleteness theorem by Kurt
Godel says that there is a numerical statement which is independent from PA (i.e., cannot be
proved or disproved from PA). Such an independent statement is provided by diagonalization
or self-reference as the liar paradox, and in particular, the numerical statement which intends
to say “PA is consistent” is independent from PA. This leads to another question whether
there is a “mathematical” statement which is independent from PA. The Paris—Harrington
principle (PH) [33] is one of the earliest and most important such examples. It is a variant of
the finite Ramsey theorem which states the following:

(PH) For any n,k,a € N, there exists b € N such that for any f : [[a,b)N]" — k
there exist H C [a,b)y and ¢ < k such that [H]" € f~!(c) and |H| > min H .

Here, a set H is said to be relatively large if |H| > min H, so PH says “for any ¢ € N,
there exists a large enough finite set X above a such that any coloring on X for the Ramsey
theorem has a solution which is relatively large.” By some standard coding of finite sets of
natural numbers as single natural numbers (e.g., by binary expansion), PH can be considered
as a purely numerical statement. By easy combinatorics, one can prove PH from the infinite
Ramsey theorem (RT), thus PH is a frue statement about natural numbers.

So how can we know that PH is not provable from PA? The reason is again provided
by the Gddel incompleteness, namely, PA + PH implies the consistency of PA and thus it
is not provable from PA. Indeed, Paris and Harrington showed that PH is equivalent over
PA to the correctness of PA with respect to Y3-sentences (the statement “any V3-sentence
provable from PA is true”), which is a strengthening of the consistency of PA.

On the other hand, many variants of the infinite Ramsey theorem are widely studied
in the setting of second-order arithmetic. This is one of the central topics in the project named
reverse mathematics whose ultimate goal is to determine the logical strength of mathematical
theorems in various fields and classify them from viewpoints of several fields in logic. Typi-
cally, the strength of variants of the infinite Ramsey theorem is precisely calibrated from the
viewpoints of computability and proof theory. Particularly, precise analyses for variants of
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the Paris—Harrington principle are important approaches to identify the consistency strength
of variants of the infinite Ramsey theorem.

In this article, we will overview the relations between the Paris—Harrington prin-
ciple, the infinite Ramsey theorem and correctness statements (also known as reflection
principles) mainly in the setting of second-order arithmetic. For this purpose, we will work
with nonstandard models of arithmetic and relate the finite and infinite Ramsey theorem
in them. A brief idea here is that if a nonstandard model satisfies some variant of finite
Ramsey theorem with a solution of nonstandard size, then it should include a model for infi-
nite Ramsey theorem. This can be realized by the theory of indicators introduced by Kirby
and Paris [23]. We reformulate their argument and connect variants of PH with the correctness
of the infinite Ramsey theorem.

The structure of this article is the following. In Section 2, we set up basic definitions
and review the studies on the Ramsey theorem in arithmetic. We give several formulations
of the Paris—Harrington principle and their equivalents within second-order arithmetic in
Sections 3 and 4. In Section 5, we see how the Paris—Harrington principle is related to the
infinite Ramsey theorem by means of indicators. Some proofs in Section 5 require basic
knowledge of nonstandard models of arithmetic.

2. FIRST- AND SECOND-ORDER ARITHMETIC AND THE RAMSEY

THEOREM

In this section, we introduce fragments of first- and second-order arithmetic and set
up basic definitions. For precise definitions, basic properties and other information, see, e.g.,
[16,21] for first-order arithmetic and [17,39] for second-order arithmetic.

We write £ for the language of first-order arithmetic, which consists of constants
0, 1, function symbols +, x, and binary relation symbols =, <, and write £, for the lan-
guage of second-order arithmetic which consists of &£; plus another binary relation €. We
use x, y, z, ... for first-order (number) variables and X, Y, Z, ... for second-order (set) vari-
ables. An £,-formula ¢ is said to be bounded or = if it does not contain any second-order
quantifiers and all first-order quantifiers are of the form Vx < ¢ or 3x < ¢, and it is said to
be 22 (resp. Hg) if it is of the form Jx; Vx5 ... Qx,60 (resp. Vx13x; ... Qx,0) where
is 2. An £,-formula g is said to be arithmetical or Z} if it does not contain any second-
order quantifiers, and it is said to be E}, (resp. H,l,) if it is of the form 3X1 VX, ... 0X,0
(resp. VX13X, ... 0X,0) where 6 is E(l). If a Eg-formula (resp. Hg-formula) ¢ does not
contain any set variables (i.e., ¢ is an £;-formula), it is said to be X, (resp. I1,). We can
extend £, with unary relation symbols U= Ui, ..., Uk. Here, we identify U;’s as second-
order (set) constants and consider £; U U -formulas as E(l)—formulas (with extra constants).
Then, an £, U U -formula is said to be E,l? (resp. H,?) if it is 22 (resp. Hg).

For our discussions, we need to distinguish the actual (“standard”) natural numbers
from natural numbers formalized in axiomatic systems. Here, we use Jt for the set of stan-
dard natural numbers, and N for natural numbers formalized in the system. When we write
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“n=2,3,4,..., itis intended that n ranges over It and n > 2, while “n > 2” means that
n ranges over N and n > 2.

2.1. The Paris—Harrington principle in first-order arithmetic

We adopt the elementary function arithmetic (EFA) for our base system of first-order
arithmetic. It consists of the axioms of discrete ordered semirings, the totality of exponenti-
ation' and the induction axiom (IND) of the form

(IND) ¢(0) A Vx(p(x) = @(x + 1)) > Vxe(x)

for each Xo-formula ¢(x). Then, the system IX,, is defined as EFA plus the induction axioms
for X,,-formulas, and the Peano arithmetic (PA) is defined as PA = |, cq 1Z5. Weﬁmay also
expand EFA with unary predicates. If U=U 1,..., U are unary predicates, EFAU consists
of EFA plus the induction axioms for Ef)} -formulas.

Within EFA, finite sets of natural numbers, finite sequences of natural numbers,
functions on finite sets, or other finite objects on N are coded by numbers. We write [N]<N
for the set of all (codes) of finite subsets of N. For each F € [N]<N, we can define | F| as
the (unique) smallest m € N such that there is a bijection between F' and m = [0, m)N. In
the context of the Ramsey theorem, a function of the form ¢ : [X]" — k is often called a
coloring. (Recall that [X]" = {F € [N|*N :|F| =n A F C N}.) Then, aset H C X is said
to be c-homogeneous if there exists i < k such that [H]" € ¢71(i).

We first define the key notion introduced by Paris [32]. The following definition can
be made within EFA.

Definition 2.1 (Density). Letn > 1 orn = oo and k > 2 or k = oco. For given m € N, we
define m-density for (n, k) as follows:

* afinite set F is said to be 0-dense(n, k) if | | > min F (F is relatively large),

« a finite set F is said to be (m + 1)-dense(n, k) if for any ¢ : [F]" — k' where
n’ < min{n, min F} and k' < min{k, min F}, there exists a c-homogeneous set
H C F such that H is m-dense(n, k). (Here, we set min{oco,a} = a fora € N.)

Although the notion is defined inductively, the statement that F is m-dense(n, k)
is X, in other words, there exists a Xo-formula v (n, k, F,m) such that ¢ (n, k, F, m) holds
if and only if F is m-dense(n, k).

Definition 2.2 (The Paris—Harrington principle). Letn > 1orn = oo,k > 2 or k = oo and
m € N. Then, the Paris—Harrington principle, mPH;, and ItPHy, is defined as follows:

* mPH}: Va3b > a([a, b)N is m-dense(n, k)).

 ItPH} := YmmPHJ.

1 Technically, it is not easy (but possible) to define the exponential function in this setting,
see [16]. Alternatively, one may safely add an extra function symbol exp(x) = 2* and its
recursive definition.
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We simply write PH} for 1PH}. Additionally, we usually omit oo and write PH" for PHZ_,
PH for PHSS, and so on.

It is known that 13 proves PH;Jrl — PH"”. Thus there is a hierarchy of implications
PH' <PH3 <PH3 <--- <PH? <PH} <PH} <-.- <PH?® <PHj <
It is known that this hierarchy is strict above PH? over X, whereas I1X,, proves PHZ+1 for
k =2,3,... On the other hand, calibrating the strength of mPHZ for m > 2 is much harder,
except for the implication mPH} — PHy, , | which directly follows from the definition.

We next formalize the correctness of theories of arithmetic. Within EFA, basic
notions of first-order logic such as (well-formed) formulas, formal proofs (by the Hilbert-
style proof system or other formal systems) are formalizable by means of Gédel numbering.
Typically, we can encode the provability for first- and second-order arithmetic within EFA,
namely, there exists a X1 -formula Prov(7, x) which means that a formula (encoded by) x is
provable from a theory (i.e., a finite or recursive set of sentences) T .2 On the other hand, we
can also formalize the truth on N, but only partially. By formalizing Tarski’s truth definition,
for each tuples of variables Z and Z z, there exists a HO formula zr(Z Z, x) such that for any
unary predicates U and a EU formula ¢(Z), EFAU proves Vz(n(U ,To]) < ¢(Z)) where
[¢] is the Godel number encoding ¢. Then, for n = 1,2, ..., there exists a [19-formula
Trp (Z Z, x) such that for any unary predicates U and a HU-formula o(2), EFAU proves
VZ(Tr, (U ,Z, [@]) <> @(Z)). This formula is called the IT, -truth predicate. The formalized
correctness statements (also known as reflection principles) are defined as follows. (For-
mally, = and Tr, depend on the number of variables, but we may assume that Z and Z
contains all variables which will appear in the entire discussion. We may ignore variables
not appearing in the formula encoded by x by substituting O into them.)

Definition 2.3 (Correctness). Letn = 1,2,...,and let T be an £;- or £;-theory. Then the
I1,-correctness of T (I1,-corr(T)) is the following statement:

Vx(“x is (a Godel number of) a IT,,-sentence” A Prov(7, x) — Tr,(x)).

Note that IT,-corr(T') is a IT,-statement, and it implies the consistency of T since
it implies =(0 = 1) — —Prov(T, [0 = 1]).
Now we are ready to state the theorem by Paris and Harrington.

Theorem 2.1 (Paris and Harrington [32,33]). The following are equivalent over 1Z°:
1. PH.
2. ItPHy (n =3,4,...,k =2,3,... ork = o0).
3. TI,-corr(PA).
2 We encode T, e.g., by its recursive index.

In [32], Paris showed that ItPH% is independent of PA, while his argument implies the
equivalence of statements 2 and 3. See Section 5.2.

[#]
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Here, ItPHg is the original statement independent of PA introduced by Paris [32].
The equivalence of ItPH% and PH can be proved in a combinatorial way, while we see that
both are equivalent to IT,-corr(PA) in Section 5. Moreover, the [1,-correctness of fragments
of PA can be characterized by PH as well.

Theorem 2.2 (Paris, see [16]). Letn = 1,2,.... Then I1,-corr(1X,) is equivalent to pPH”t1

over 127.

There are many other combinatorial or other numerical principles known to be inde-
pendent of PA such as the Kanamori—-McAloon theorem (KM) [2e] and the termination of the
Goodstein sequence [15]. Many of them are equivalent to the IT,-correctness of PA, while
some others are strictly stronger. A typical such example is a finite variant of Kruskal’s tree
theorem introduced by Friedman. See [13,38].

2.2. Second-order arithmetic and the infinite Ramsey theorem

The system of second-order induction 1% ; consists of EFA plus the induction axioms
for X -formulas. It is not difficult to see that IX? is a conservative extension of 1X,,, in other
words, they prove the same £;-sentences. Our base system for second-order arithmetic is
RCA,, which consists of IE(I’ plus the following recursive comprehension axiom (RCA): for
each pair of £9-formulas ¢(x), ¥ (x),

Vx(p(x) < ¥(x)) > IXVx(x € X < ¢(x)).

The next system is WKLy, which consists of RCAq plus weak Kénig’s lemma (WKL). Here,
we define WKL in a slightly stronger form (but still equivalent to the original definition over
RCA,, see [39, LEMMA 1v.1.4]). A tree T is a family of functions of the form p : [0,m)y — N
(m € N) such that forany p € T and £ € N with [[0,{)N]" € dom(p), p MN[0, {)n]" is also
a member of 7. A tree T is said to be bounded if there exists a function 2 : N — N such
that p(i) < h(i) forany p € T andi € dom(p). Then WKL asserts the following:

for any infinite bounded tree T, there exists a function (a path of T') f such that
f MO, m)N € T forany m € N.

Finally, the system ACA, consists of RCAq plus the arithmetical comprehension axiom
(ACA): for each E(l)-formula o(x),

AXVx(x € X < ¢(x)).

The strength of these three systems is precisely known and WKL, is strictly in-
between RCAy and ACAg. On the other hand, the £;-consequences of RCAy and WKL, are
the same and they coincide with those of 13, while the &£-consequences of ACA, coincide
with those of PA.

Over RCA,, the infinite Ramsey theorem is directly formalizable as follows.

Definition 2.4 (The infinite Ramsey theorem). The infinite Ramsey theorem RT}, is defined
as follows:
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* RT}: for any ¢ : [N]" — k, there exists an infinite set # € N such that H is
c-homogeneous (n > 1 and k > 2).

« RTY, := VART!, RT := VnRT",.
We usually omit oo and write RT" for RT%, RT for RTSS.

Within RCA,, it is known that RT} implies RT}  ; and RT2! implies RT". Be
aware that the former does not imply RT} — RT” because of the lack of induction. So, we
have the hierarchy

RT) <RT! <RT5 <RT? <RT; <---.

However, this hierarchy collapses at the level of n = 3.

Theorem 2.3 (Jockusch [19], reformulated by Simpson [39]). Let n = 3,4, ..., and let
k=2,3,... ork = oo. Then, over RCA,, RTZ is equivalent to ACA,.

On the other hand, the full infinite Ramsey theorem RT is strictly stronger than ACA,.
This is unavoidable since RT implies PH over RCAy, and thus it implies the consistency of
PA. To prove RT, we need the system ACA] which consists of ACA, plus the assertion that
for any n € N and any set X, the nth Turing jump of X exists.

Theorem 2.4 (McAloon [29], see also [17]). Over RCAq, RT is equivalent to ACA,.

The situations of RT3 and RT? are complicated. There are many important results
on the reverse mathematical and computability theoretic strength of RT3 or RT? such as
[7,8,30,37]. Typically, RT% and RT? are strictly in between RCA, and ACA,, but still different
from WKL, even with full induction.

Theorem 2.5 (Jockusch [19], Liu [28]). RT% and RT? are incomparable with WKLy over
RCA, + 1T, (where IS = {IZ, : n € M}).

The I1}-consequences (or equivalently, £1-consequences with second-order con-
stants) of RT3 and RT? are also studied precisely. A T1}-formula VX7 ... QX0 is said to
be restricted T}, (rT1}) if 6 is 9 and n is odd or 6 is T13 and » is even, and r=} -formulas
are defined in the dual way.

Theorem 2.6. 1. RCA, + RT% proves BEg and it is H%-conservative over
RCA, + IEg (i.e., any H%-sentences which are provable from RCA, + RT% are
provable from RCAy + IEg ). (Hirst [18]1 and Cholak/Jockusch/Slaman [71)*

2. RCA + RT3 is rT1!-conservative over RCA,. (Patey/Yokoyama [34], see also
Kolodziejczyk/Yokoyama [25])

3. RCA, + RT? proves BEg and it is Hi-conservative over RCAq + BZg. (Hirst
[18] and Slaman/Yokoyama [4e])

4 BES is called a bounding principle, see [16] for the definition.
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The above theorem decides the consistency strength (or proof-theoretic strength)
of RT3 and RT?, and more precise studies have been carried out for RT3 with respect to
the size of proofs [24,25]. However, the exact &£1-consequences of RCAy + RT% are still not
identified. Meanwhile, several hybrid approaches of computability and proof/model-theory
are currently being developed such as [9,18] which may help to calibrate the &£ {-consequences
of various combinatorial principles.

3. THE PARIS—HARRINGTON PRINCIPLE IN SECOND-ORDER

ARITHMETIC

In this section, we consider the Paris—Harrington principle in the setting of second-
order arithmetic. The main difference is that we can now consider the Paris—Harrington
principle within an infinite set. Then, Theorems 2.1 and 2.2 are reformulated as Theo-
rems 3.2-3.6.

3.1. Second-order formulations of PH

Recall that PH} asserts that there exists an arbitrary large finite set which is
1-dense(n, k). Indeed, a 1-dense(n, k) set should exist within any infinite subset of N by
the infinite Ramsey theorem (see the proof of Proposition 3.1 below). We reformulate PH},
based on this idea in second-order arithmetic.

Definition 3.1 (The Paris—Harrington principle, second-order form). Letn > 1 orn = oo,
k > 2 or k = oo and m € N. Then, the Paris—Harrington principle, mﬁz and Itﬁz, is
defined as follows:

o mmZ: for any infinite set X, there exists a finite set ' C Xy such that F is
m-dense(n, k).

. Itﬁz = meﬁg.
Just like for PH, we write PH} for 1PH}, PH” for PHZ, and so on.

We first see that any of these variants of the Paris—Harrington theorem are true
since they are consequences of the infinite Ramsey theorem by the following “compactness”
argument.

For given n > 1 and k > 2, an (n, k)-coloring tree T on a set X is a family of
functions of the form p : [m N X]* — k (m € N) such that for any p € T and £ € N
with [¢ N X]* € dom(p), p ['[£ N X]" is also a member of 7. Then, WKL, proves that any
infinite (n, k)-coloring tree 7 on an infinite set X has a path f : [X]® — k in the sense that
fMmnNX])* eT forany m € N.

Proposition 3.1. Letn > 1orn =00, k > 2o0rk = coandm € N. WKL, + RTZ proves
mﬁz —m + lﬁz. In particular, WKLy + RT} proves PH?, and WKL, + RT; + IE%
proves Itmz.
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Proof. We prove for the case n > 1 and k > 2. Assume that m + lﬁz fails on some infinite
set X. Let T be an (n, k)-coloring tree on X such that p € T if and only if there is no p-
homogeneous set which is m-dense(n, k). Then, T is infinite since any finite subset of X is
not m + 1-dense(n, k), and thus it has a path f : [X]* — k. By RTY, there is an infinite set
H C X whichis f-homogeneous. Then mPHy, fails on H by the definition of f. ]

Proving ﬁz just from the induction is much harder, butif n = 1,2, ..., IZg still
proves ﬁg“ for k = 2,3,... On the other hand, stronger induction does not help with the
absence of the infinite Ramsey theorem. Indeed, RCA, + IEéo does not prove PH or even
PH.’

Within RCA,, the statement of rT1}-correctness of a theory 7 (rT1}-corr(7')) can
be defined like in Definition 2.3, and rI1}-corr(7') is an rT1}-statement. Second-order ver-
sions of the Paris-Harrington principle are closely related to rIT}-correctness of the infinite
Ramsey theorem and other systems, and also related to well-orderedness of ordinals, which
is naturally formalizable within RCA,. Here we summarize the relations between the Paris—
Harrington principles, rI1 { -correctness and well-foundedness of ordinals.

Theorem 3.2. The following are equivalent over RCAy:
1. PH2.
2. ItPH3.
3. rI}-corr(1Z9).
4. rTl}-corr(WKL, + RT?).
5. Well-foundedness of o®.
Theorem 3.3. The following are equivalent over RCAy:
1. PH3.
2. ItPH2.
3. rI}-corr(1Z9).
4. rIl}-corr(WKL, + RT?).
5. Well-foundedness of o®” .
Theorem 3.4. The following are equivalent over RCAq (forn = 1,2,...):
1. PH" L
2. rIj-corr(1X?).

3. Well-foundedness of @y, +1.
5 Indeed, WKLy + IXJ},o isa H}—conservative extension of RCAg + IEgo.
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Theorem 3.5. The following are equivalent over RCAy:
1. PH.
2. ItPH} (n =3,4,..., k =2,3,...,00).
3. rI1}-corr(ACAy).
4. Well-foundedness of g.
Theorem 3.6. Over RCA,, ItPH is equivalent to rT1}-corr(ACA}).

Over ACA,, any IT}-formula is equivalent to a rIT}-formula. Thus, ACA, + PH
implies IT,-corr(PA) for any n € I, in other words, the £1-correctness schema of PA.

Many of the equivalences in the above theorems have been known to experts in one
formulation or another for a long time, although at least some of them are hard to find in the
literature. On the other hand, 3 <> 4 of Theorems 3.2 and 3.3 are more recent, and not easy
since they correspond to the study of the first-order strength of the infinite Ramsey theorem
for pairs, which we have seen in Theorem 2.6. The equivalences between variants of PH
and the well-orderedness of ordinals are obtained by measuring the largeness of finite sets
using ordinals, as presented in the next subsection. In Section 5, we explain how to prove
the equivalences between variants of PH and the correctness statements by the method of
indicators.

3.2. PH and the notion of «-largeness

The Paris—Harrington principle is closely related to a notion of largeness for finite
sets defined using ordinals. In [22], Ketonen and Solovay introduced the notion of a-largeness
for ordinal o < &9 and calibrated how large set is needed for PH.

Definition 3.2 («-largeness, within RCA,°). Fora < g9 andm € N, define a[m] = 0if ¢ =0,
afml = Bifa=p+ 1, aml =B+’ -mifa =p + o', and a[m] = B + o’ if
a = B + w” and y is a limit ordinal. Then a finite set X = {xo <--- < x¢—1} € N ({x;};
is the increasing enumeration of X) is called «-large if a[x¢]. .. [x¢—1] = 0.

The well-foundedness of ordinals and the notion of «-largeness is closely related. Indeed, if
« is well-founded and X = {x¢ < x; < ---} is infinite, then a[x¢][x1] ... should terminate
at 0 within finitely many steps, which means that X contains an «-large set. It is not difficult
to see the converse, and we have the following.

Proposition 3.7. Let o < g¢. The following assertions are equivalent over RCAy:
1. Any infinite set contains an «-large finite subset.

2. « is well-founded.

6 Indeed, this definition still works within EFA with primitive recursive descriptions of ordi-
nals.
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The relations between PH and «-largeness are well-studied and have been the topic

of ordinal analysis; see, e.g., [3-5,22,25,27,41]. Here we list several (digested) results from

1

those papers. Let ©F = o and 02, | = ©®7, and let w, = .

Theorem 3.8. The following are provable within RCAq. Let F C N be a finite set with
min F > 3, and letn,k > 1 and m > 0.

1. If Fis a)k+4-large, then F is 1-dense(2, k). (Ketonen/Solovay [22])
2. If F is 1-dense(2, k + 1), then F is w*-large. (folklore)
3. If F is w®**1.large, then F is 1-dense(n + 1, k). (essentially [22])

4. If F is 1-dense(n + 1, 3"), then F is wy-large. (Kotlarski/Piekart/Weiermann
[271)

5. If F is 3% -large, then F is m-dense(2, 2). (Kotodziejczyk/Yokoyama [25])
6. If F is wsm+2-large, then F is m-dense(3, 2). (Bigorajska/Kotlarski [4])

Many implications of Theorems 3.2-3.5 follow from the above theorem. Indeed,
1 <> 2 <> 5 of Theorem 3.2 follows from statements 1, 2 and 5 of the above, and 5 — 1 of
Theorem 3.3, 3 — 1 of Theorem 3.4, and 1 <> 4 — 2 of Theorem 3.5 follow from statements
3,4, and 6. We see other implications in Section 5.

Well-foundedness of ordinals is also heavily related with correctness statements and
their relations are widely studied. For the recent developments, see, e.g., [1,31].

4. GENERALIZATIONS OF PH

In this section, we see several generalizations of the Paris—Harrington principle by
modifying the relative largeness condition “| H| > min H.” They are still natural strength-
enings of the finite Ramsey theorem and quickly follow from the infinite Ramsey theorem
and a compactness argument of the kind presented in Proposition 3.1. Nonetheless, a strong
enough form of the Paris—Harrington principle recovers the infinite Ramsey theorem (The-
orem 4.5) and its iterations provide the rIT}-correctness of the infinite Ramsey theorem
(Theorems 4.6—4.8).

4.1. Phase transition

A natural generalization of PH}, would be provided by changing the relative large-
ness condition |H| > min H to |H| > f(min H) for some function f. We write PH} r
or PHZ’ r for the statement defined as PHj. or PH} but with |H| > min H replaced by
|H| > f(min H). Unfortunately, this does not make PH stronger in most cases. Indeed,

one can easily prove the following.

Proposition 4.1. 1. Letn =2,3,... orn = oo, and let f be a primitive recursive
function. Then |Zy + PH" proves PHY.
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2. Let f be a provably recursive function of PA. Then 151 + PH proves PHy.

3. Letn =1,2,... orn = ocoandletk =2,3,... ork = oco. Then RCA; + PH}
proves that for any function f, ﬁz f holds.

On the other hand, PHy can be weaker if f is slower growing than the identity
function. Indeed, if f is a constant function, then PHy is just the finite Ramsey theorem,
and thus it is provable within PA. Weiermann [44] revealed the border of the provability and
unprovability in this context as part of his research program called phase transition.

Theorem 4.2 (Weiermann [44]). Let log, be the inverse function of the nth iterated expo-
nential function exp”(x) where exp(x) = 2%, and let log, be the inverse function of the
superexponential (tower) function 2.

1. PHiqg, is not provable from PA for any n > 1.
2. PHyo, is provable from PA.

A sharper border is revealed in [44], and similar analyses have been done for KM
and other principles as well [35].

4.2. PH with generalized largeness

To obtain further generalization of PH, we want to consider some condition of the
form |H| > f(H) where f assigns some “required size” for each finite set. Inspired by
Terrence Tao’s blog [43], Gaspar and Kohlenbach [14] introduced several “finitary” versions
of the infinite pigeonhole principle (RT! in our terminology) which are formulated based on
this idea. Then, Pelupessy generalizes it to the infinite Ramsey theorem as follows.

Definition 4.1 (Gaspar/Kohlenbach [14], Pelupessy [36]). A function f : [N]*N — N is
said to be asymprotically stable if for any increasing sequence of finite sets Fo C F; C ---
{f(Fi)}ien converges. Then, the finitary infinite Ramsey theorem FIRT}, states the follow-

ing:

* FIRT}: for any asymptotically stable function 1 : [N]*N — N, there exists r € N
such that for any ¢ : [[0, r)n]* — k, there exists a homogeneous set H C [0, r)N
such that |H| > f(H).

* FIRT}, = VkFIRT}, FIRT = VnFIRT}.
The finitary infinite pigeonhole principle FIPP; in [14] is the same as FIRTéO.

Gaspar/Kohlenbach and Pelupessy showed that FIRT}, is equivalent to RT} over
WKL, (we will see this in detail later). Thus, FIRT] could be considered as a “finitary”
rephrasing of infinite combinatorics.

Remark 4.3. In [14], another form of the finitary infinite pigeonhole principle FIPP; is also
studied, and the question is raised which is more appropriate as the finitary version of infinite
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pigeonhole principle. However, FIPP; is equivalent to ACA, [45], and it does not fit with the
general form of the Ramsey theorem.

Then, can we consider more general statements? Remember that the original idea
of the finite Ramsey theorem or the Paris—Harrington principle is that if a large enough set
is given, one must find a homogeneous set which is still “large” in some sense. Here, we
consider a general concept of largeness for finite sets as follows.

Definition 4.2 (Largeness notion). A family of finite sets I. C [N]=N is said to be a prelarge-
ness notion if it is upward closed, in other words, Fop € L and Fy C F; implies F; € L.
A prelargeness notion L is said to be a largeness notion if for any infinite set X C N, there
exists a finite set F € X such that F € L.

The idea of the above definition is that an infinite set is always large enough and
thus it should contain a “large finite set” in the sense of L. For example, L, = {F €
[N]=N : |F| > min F} is a largeness notion. Note that “LL is a prelargeness notion” is just a
H]{“-statement and thus it is available within EFAL. On the other hand, “L is a largeness
notion” is an rH%-statement, so it strictly requires the second-order language. Next, we
generalize the density notion. The following definition can be made within EFAL.

Definition 4.3 (Density with respectto ). Letn > 1 orn = oo and k > 2 or k = oo. Let
L be a prelargeness notion. We define the density for (n, k, L) as follows:

« afinite set F is said to be O-dense(n, k,L) if F € L,

« a finite set F is said to be m + 1-dense(n, k, L) if for any ¢ : [F]* — k’ where
n’ < min{n, min F} and k' < min{k, min F}, there exists a c-homogeneous set
H C F such that H is m-dense(n, k,IL).

The statement that F is m-dense(n, k, L) is S5

Now we define the generalized Paris—Harrington principle. The following definition
can be made within RCA,.

Definition 4.4 (Generalized PH). Letn > lorn = 0o,k >2ork = oo and m € N. Then,
the generalized Paris—Harrington principle, mGPH;, and ItGPH}, is defined as follows:

» mGPHY: for any largeness notion IL. and for any infinite set X, there exists a finite
set F' C Xy such that F is m-dense(n, k, IL).

* ItGPH], := VmmGPH}.
Just like for PH, we write GPH};, for IGPH;,, GPH" for GPHZ_ and so on.

Unlike ﬁz, GPHZ is “iterable.” Indeed, GPHZ states that if IL is a largeness notion,
then the family of all 1-dense(n, k, IL) sets is also a largeness notion, and thus GPHZ can
be applied to it again. Furthermore, any infinite subset X C N is “isomorphic to N in the
following sense; if # : N — X is a monotone increasing bijection and LL is a largeness notion,

1516 K. YOKOYAMA



then h~1(IL) is a largeness notion and for any F Cg, N, F is 1-dense(n, k, h~'(IL)) if and
only if h(F) is 1-dense(n, k,IL). Using these ideas, we can get the following.

Proposition 4.4. Letn = 1,2,3,.... The following are equivalent over RCAy:
1. mGPHy (k =2,3,4,...,m=1,2,3,...).

2. GPH} on N: for any largeness notion L, there exists a finite set F € N such
that F is 1-dense(n, 2, 1L).

To give a characterization of GPH, we consider the following variants of the infinite
Ramsey theorem which was originally introduced by Flood [11].

Definition 4.5 (Ramsey-type weak Kénig’s lemma). An infinite homogeneous function for
an infinite (n, k)-coloring tree T on Xy is a function & : [X]" — k such that X € X is
infinite and for any m € N, there exists p € T such that 2 MX Nm]" = p [ X N m]".

We define two forms of the Ramsey-type weak Kénig’s lemma, RWKL} and
RWKL}™, as follows:

* RWKL};™: for any infinite (n, k)-coloring tree T on N, there exists an infinite
homogeneous function for T (n > 1 and k > 2),

« RWKL" = VARWKL?~, RWKLY™ = VnRWKL?S,

. RWKLZ: for any infinite (7, k)-coloring tree T on N, there exists a constant infi-
nite homogeneous function for 7 (n > 1 and k > 2),

« RWKL”, = VKRWKL?, RWKLY = VnRWKL,.

Note that the original definition of Ramsey-type weak Kénig’s lemma by Flood is
our RWKL;.7 Over RCA,, it is strictly in-between WKL and DNR (see [11,12]). Variants of
Ramsey-type weak Kénig’s lemma with homogeneous functions are introduced and studied
by Bienvenu, Patey, and Shafer in [2] and the definition of RWKL}™ is inspired by them.

Theorem 4.5. Letn > 1 orn = oo and k > 2 or k = oo. The following are equivalent over
RCAO

1. GPH.
2. FIRT}.
3. RWKL].
4. RT; +RWKL} ™.
Proof. Ttis enough to show the equivalence for the case n > 1 and k > 2. Equivalence 3 <> 4

is easy from the definition. If £ : [N]<N — N is asymptotically stable, then L = {F : 3G C

7 The original name in [11] was “Ramsey-type Kénig’s lemma”, but “Ramsey-type weak
Kénig’s lemma” turned to be the standard name in the later works.
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F|G| > f(G)} is a largeness notion, which implies 1 — 2. Conversely, if LL is a largeness
notion, then a function f defined as f(F) = min{|G|—1:G C F AG € L} U{|F|} is
asymptotically stable and F € L <> |F| > f(F). This implies 2 — 1. Implication 3 — 1 is
a standard compactness argument which we have seen in Proposition 3.1. To show 1 — 3, let
T be an infinite (1, k)-coloring tree on N with no infinite constant homogeneous function.
Define I as F € L if there is no p € T such that p is constant on [F]". Then, one can
check that [L is a largeness notion, and hence by 1, there exists a finite set Fy € N which is
1-dense(n, k,L). Take some p € T so that dom(p) 2 [Fp]", then there must exist H C Fy
such that H € L and p is constant on [H]"*, which is a contradiction. |

Incasen = 3,4,5,..., any of the statements in the above theorem is just equivalent
to ACA,, so we mostly interested in the case n = 1 and 2. On the other hand, unlike RT; or
PH., the principle GPH] is still not trivial since RWKLJ (which is equivalent to RWKL}™)
is not provable within RCA,. This may be interpreted as saying that the generalized version of
the Paris—Harrington principle cannot be proved without using some compactness argument.
In general, RWKL} ™ is easily implied by WKLo, but we do not know whether it is strictly
weaker than WKL over RCA, or not in case n > 2.

4.3. Iterations of generalized PH and correctness statements
The iterated version of GPH can be related to stronger correctness statements.

Theorem 4.6. Letk = 2 ork = oo. Then ItGPHi is equivalent to rT13-corr(WKLo + RT,%)
over WKL,.

Over ACA;, any Hé-formula (of possibly nonstandard length) is equivalent to a
rH%—formula, and thus rT1 %-truth predicate is actually the truth predicate for all Hé-formulas.
Furthermore, It is known that rIT}-corr(ACA,) is equivalent to ACA}.® So we simply write
M }-corr(T) for rITi-corr(T) if T 2 ACA,.

Theorem 4.7. The following are equivalent over RCAy:
1. RT.
2. GPH.
3. tGPHy (n =3,4,...,k =2,3,...,00).
4. T1}-corr(ACAy).
Theorem 4.8. Over RCAq, ItGPH is equivalent to T1}-corr(ACA)).

We will see the proofs of these theorems using indicators in the next section.

The strength of ItGPH3 or ItGPH? is rather unclear. It is not difficult to check that
RCA, + ItGPH% implies RT? and WKL, + RT3 + I=! implies ItGPH? as in the proof of
Proposition 3.1. (Note that even ItGPH does not imply IE% since IE} is never implied from

8 This follows from the proof of [39, THEOREM IX.4.5].
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any true I1}-statement.) In particular, they are true in any w-models of WKL, + RT%. Mean-
while, the following questions are still open.

Question 4.6. 1. Is ItGPH3 equivalent to RT? over WKLy?

2. Does ACA, imply ItGPH? or ItGPH2?

5. INDICATORS AND CORRECTNESS STATEMENTS

The notion of indicators is introduced by Kirby and Paris [23, 32] to show several
independence results from PA, and its theory is organized systematically by Kaye [21]. The
argument of indicators can connect first-order objects with second-order objects by means
of nonstandard models. Recently, indicators have been used to calibrate the proof-theoretic
strength of the infinite Ramsey theorem in the context of reverse mathematics [6, 24, 34, 46].

5.1. Models of first- and second-order arithmetic

To introduce the argument of indicators, we first set up basic model theory of first-
and second-order arithmetic. For the details, see [16,21,26,39]. A structure for £ is a 6-tuple
M = (M;0M 1M M M M) (We often omit the superscript M if it is clear from
the context.) An £1-structure It = (N0, 1, +, X, <) where 0, 1, +, X, < are usual is called
the standard model, and an £1-structure is said to be nonstandard if it is not isomorphic
to . When we consider an expanded language &£; U U where U = Uy, ..., Uy are second-
order constants, an &£ U (7 -structure is a pair (M N (} M ) where M is an £1-structure and
U; € M. We may consider N as a special second-order constant which satisfies Vxx € N, in
other words, NM = M for any M . For second-order arithmetic, we use Henkin semantics.
A structure for £, is a pair (M, S) where M is an £-structure and S € £ (M ). Thus, any
L1 U U -structure can be considered as an é‘iz-sgructure.

Let M be a nonstandard model of EFAY . We write [M]<M for the set of all “finite
sets in M (also called M -finite sets), in other words, [M]<M = (IN]=N)M A nonempty
proper subset / & M is said tobe a cutifa <b Ab € I impliesa € [ foranya,b € M
(denotedby I €, M)anda + 1 € [ foranya € [.If I is acutand ¢(x) is a Eg-formula
suchthat M |= ¢(a) forany a € I (resp.a € M \ I), then there existsa € M \ [ (resp.a € I)
such that M |= @(a). This principle is called overspill (resp. underspill). A cut I C, M is
said to be semiregular if for any F € [M]M with |F| < min F, F N I is bounded in 7.

In our study, models of WKL, play central roles. Here are two important theorems.

Theorem 5.1 (Harrington, see Section IX.2 of [39]).

1. Forany countable model (M, S) = RCA,, there exists S D S such that (M, S) =
WKL,.”

2. WKL, is H%-conservative over RCA,.
9 Model (M, S) is said to be countable if both of M and S are countable.
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Theorem 5.2 (see, e.g., Theorems 7.1.5 and 7.1.7 of [26]). Let M be a model of EFA and
I Ce M be a cut. Then, I is semiregular if and only if (I, Cod(M/I)) = WKLo, where
Cod(M/I)={FNI:F e[M]"M).

5.2. Indicators
Now we give the definition of indicators. Here, we slightly arrange the definition in
[21] so as to fit better with second-order arithmetic.

Definition 5.1 (Indicators). Let U= Ui, ..., Ui be second-order constants, and let 7 2 EFA
be an £;-theory.

1. Let M be a countable nonstandard model of EFAf]. A Eg] -definable function
Y : [M|™™ — M is said to be an indicator for T on M if for each
F.F' e MM Y(F) <max F,Y(F) < Y(F')if F C F’, and

(cut) Y(F) > m for any m € 9t if and only if there exists a cut / &, M and
S € Cod(M/I) such that (1,S) = T, UiM N1 € S foreach U; € U and
F N[ isunbounded in /.

2. A 267 -formula Y (F, m) is said to be an indicator for T if for any countable
nonstandard model M = EFAY with U cVv ((7 is a subtuple of 17), Y defines
an indicator for 7 on M.

For a given indicator Y, we define two statements “Y > m” and “yint > p” ag
follows:

Y >m = VXo(Xp is infinite — IF g Xo Y(F) > m),
Y™ >m= VYa3dbY([a,b)N) > m.
Note that Y > misa rHi-statement while Y™™ > m is a [1,-statement.
Theorem 5.3. Define Xo-formulas Ypyr (F, m), Ypu(F, m), and YItPHZ (F,m) as follows:
e Ypuyr (F,m) < m = max{k’ <max F : F is I-dense(n,k’)} U{0} (n =2,3,...),
e Ypu(F,m) <> m = max{n’ < max F : F is 1-dense(n’, 2)} U {0},

* Yiewy (F.m) <& m =max{m’ <max F : F ism’-dense(n,k)} U{0} (n =2,3,...
orn=occandk =2,3,4,... ork = o).

Then, we have the following:
1. Ypyr is an indicator for RCAq + IZg_l.
2. Ypy is an indicator for ACA,.
3. YhPHZ is an indicator for WKLy + RT}.

In addition, these facts are provable within WKL,.
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Proof. For statements 1 and 2, one can reformulate the discussions of [21, SECTION 14.3]. State-
ment 3 is essentially due to Paris [32, EXAMPLE 2] (see also [6, THEOREM 1] and [34, LEMMA 3.2]).
We sketch the proof for statement 3 for the case n = 2,3,... and k = 2,3,...

It is enough to check the condition (cut) for YhPHZ' The right-to-left direction fol-
lows from Proposition 3.1 and overspill. For the left-to-right direction, let M be a countable
nonstandard model of EFAU and let F ¢ [M]=M be m-dense(n, k) for any m € N. By over-
spill, take d € M \ 9t such that F is d-dense(n, k). We will construct a countable decreasing
sequence of M -finite sets { F; };eqn such that F; is (d — i)-dense(n, k) and

(i) if Ee[M]*M and |E| < E, then E N [min F;, max F;)n = @ for some i € N,
(i) if p e [M]“™ and p : [F]" — k, then for some i € N, F; is p-homogeneous.

Once such a sequence is constructed, put / = {a € M : 3i € N(a < min F;)}. Then, F; N 1
is unbounded in / and UiM N1 € Cod(M/I). By Theorem 5.2, (I,Cod(M/1)) E WKLy
since / is a semiregular cut by (i), and (ii) implies (/, Cod(M/I)) = RT}.

]<M

Finally, we construct { F; };em. Since [M is countable, it is enough to show:

(G if E e [M]™™,|E| <minE and F is £ + 1-dense(n, k) then there exists
F’ C F which is £-dense(n, k) such that E N [min F;, max F;)Ny = @,

(i) if p e [M]M, p:[F]* — k and F is £ + 1-dense(n, k) with £ > 1, then there
exists F' C F which is £-dense(n, k) such that F is p-homogeneous.

Indeed, (ii)’ is trivial from the definition of density. For (i)', define ¢ : [F]?> — 2asc({x,y}) =
0 < [x,y)n N E = @, and take a c-homogeneous set F’ C F such that F is £-dense(n, k).
If[F']? Cc71(1), thenput F” = F’\ {min F’} and we have | F”'| < |E| < min E < min F”,
but F” must be relatively large since it is at least 0-dense(, k). Hence [F']?> € ¢~1(0), which
we are done. |

For the next theorem, we want to formalize model-theoretic arguments within
second-order arithmetic. Within WKL, one can set up basic (countable) model theory for
first-order logic, and then prove Godel’s completeness theorem [39, SECTIONS II.8 AND IV.3].
Standard techniques for countable nonstandard models of arithmetic such as the compact-
ness theorem, over/underspill, back and forth, recursive saturation and forcing are naturally
formalizable once a countable model with a full evaluation function (truth definition) is
provided. On the other hand, it is not possible in general to consider N itself as a model of

10

first-order arithmetic since its truth definition is too complicated, * hence it is not easy to

guarantee that a family of true sentences are consistent. Still, we can deal with the consistency
of T1,-sentences as follows.

10 Some strong enough system such as ACA('," can do this, but WKL, is not enough.
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Lemma 5.4. RCA, proves the following. Let A= A1, ..., Ay be sets, and let T be a set of

true H‘z“—sentences. Then, T is consistent (with considering A as second-order constants)."!

Proof. We work within RCAy and show that N (together with ff) is a weak model of T" in the
sense of [39, DEFINITION 11.8.9]. It is enough to construct a function f : ST — 2 which satisfies
Tarski’s truth definition, where ST is the set of all sqbstitution instances of subformulas of 1:‘
Let S{ be the set of all substitution instances of > 4-subformulas of I'. Since there is a IT4-
formula which defines the truth of all Eé—formulas, one can take a function f : Sg -2
which satisfies the truth definition. Then f can be expanded to § T by putting the truth value
1 for all sentences in ST \ Sg . (They are 2‘1‘1 or 1'[;1 and always true.) |

Theorem 5.5. Let T O RCAq be an £,-theory, and let Y be an indicator for T
1. For any rT1{-sentence ¢, T\ ¢ if and only if RCAg + {Y > m :m € N} I ¢.
2. For any Tly-sentence ¢, T = ¢ ifand only if IZ1 + {Y™ >m :m € N} F ¢."?
If Y is an indicator for T provably in WKLy, we also have the following:
3. Over RCA, rT1}-corr(T) is equivalent to YmY > m.
4. Over %y, Iy-corr(T) is equivalent to YmY™ > m.

Proof. We show statements 1 and 3. (Statements 2 and 4 can be shown similarly.)

The right-to-left direction of statement 1 follows from Theorem 5.1.1 and Tanaka’s
self-embedding theorem [42]. Indeed, if (M, S) is a countable nonstandard model of T,
then there exists a model (M, §) which is isomorphic to (M, S) such that M <, M and
S C Cod(M/M).If X € S is infinite in (M, S) and m € N, then there exists F € [1\;1]<M
such that X = F N M. By the condition (cut), Y(F ) > m, hence there exists a set
F € [M]™M such that F € X and Y(F) > m by underspill.

For the left-to-right direction of statement 1, it is enough to show that if

{VxEIyG(U,x,y)} URCAULY >m:m e N}
is consistent with a second-order constant U and a Eg -formula 6, then
{VxEIyQ(U,x, y)} urt
is consistent. Let (M, S) be a countable nonstandard model of
{Vx3yO(U,x,y)} URCA U{Y =m :m € N}.

Then there exists an infinite set A in (M, S) such that for any a,b € A with a < b,
Vx <ady < bO(U, x, y). By overspill, there exists an M -finite set F € A with Y(F) > m

11 This lemma also follows from (the relativization of) the fact that 12 is equivalent to
I3-corr(EFA). See [1].
12 For statements 1 and 2, the base theories RCAq and |Z can be weakened to RCA; and

EFA 4 BX (the proof still works using recursively saturated models).
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for any m € 9. By (cut), take I S, M and S” € Cod(M/I) suchthat (I,S") =T and F N1
is unbounded in 7. The latter implies (1, S’) = Vx3yO(U, x, y).

For the left-to-right direction of statement 3, we first formalize the right-to-left direc-
tion of statement 1 within WKL,. In other words, “for eachm € N, Y > m is provable in T
is provable within WKLy. Thus it is provable within RCA, by Theorem 5.1.2 since it is a
Hg-statement, and hence rH%-corr(T) implies VmY > m.

For the right-to-left direction, again we first work within WKL,. It is enough to show
thatif Vx3y#(U, x, y) holds for some set U and a =5 -formula 6, then {Vx3y (U, x, y)} UT
is consistent. Take an infinite set 4 such that A is AY-definable and for any a, b € A with
a <b,Vx <ady < bO(U, x, y). Then, by the assumption, for any m € N, there exists
a finite set F C A such that Y(F) > m. Thus, by Lemma 5.4, a set of Hg—sentences
I =EFAY U{Va e FYbe F(a<b— Vx <ady <b8(U,x,y)) U{Y(F)>m :m € N}
is consistent (consider F as a new number constant). Take a countable nonstandard model
of I' and formalize the argument for the left-to-right direction of statement 1, then we see
that {Vx3yO(U, x, y)} U T is consistent.

The above argument actually showed that for any set U, “VYmY > m with respect to
any infinite set A <7 U” implies =¥ -corr(T'). This is a I1}-statement provable in WKLo, so
it is also provable within RCAq by Theorem 5.1.2. Thus RCA, proves that VimY > m implies
rT11-corr(T). ]

Theorems 5.3 and 5.5 directly connect PH and the correctness statements, and The-
orems 2.1 and 2.2 are direct consequences of them. They also imply conservation theorems.
Indeed, Theorem 2.6.2 is a direct consequence of Theorems 5.3 and 5.5 plus Theorem 3.8.5
(see [25]).

Proofs of Theorems 3.2-3.6. By definitions, PH”, PH, and Itmz are equivalent to
VYmYpyr > m, YmYpy > m and Vm thH; > m, respectively. Then, equivalences between
variants of PH and corresponding rI1}-correctness statements (1 <> 3 and 2 <> 4 of Theo-
rems 3.2 and 3.3, 1 <> 2 of Theorem 3.4, 1 <> 2 <> 3 of Theorem 3.5 and Theorem 3.6) follow
from Theorems 5.3 and 5.5. Implications between variants of PH and well-foundedness state-
ments follow from Theorem 3.8 (see the paragraph below Theorem 3.8). Other implications
can be shown as follows: 3 — 5 of Theorem 3.3 and 2 — 3 of Theorem 3.4 are implied
from the formalization of the fact that RCA, + IZ9 proves well-foundedness of @¥ for each
k € M, and 3 < 4 of Theorem 3.3 is implied from the formalization of the conservation
result for WKL, + RT? in [46]. |

5.3. Indicators corresponding to largeness notions

To obtain a characterization of rT1}-correctness, we modify Theorem 5.5 using indi-
cators which can preserve largeness notions.

Given two finite sets Fo = {xo <--- < x¢—1} and F; = {xy <--- < x},_,}, define
Fo < Firas{ </{ and x; > xlf for any i < £. A prelargeness notion L is said to be normal if
Fy e L and Fy < F; implies F; € L. It is not difficult to check that L., is a normal largeness
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notion. For a given prelargeness notion L, put L™ = {F € L : VG C [0,max F]n(G > F —
G € 1L)}. Then L™ is a normal prelargeness notion.

Lemma 5.6. The following is provable within WKL,. For any largeness notion IL, LY is a
largeness notion.

Proof. Assume that IL is a prelargeness notion and there exists an infinite set X = {x¢ <
X1 < ---} such that no finite subset of X is a member of LT.Defineatree T C N<NasogeT
if and only if o is strictly increasing, {o (i) :i < |o|} > {x; :i <|o|}and{o(i):i < |o|} ¢ L.
Then, T is a bounded tree and T is infinite. Take apath & € [T],then Y = {h(i) :i € N} is
an infinite set and any finite subset of Y is not a member of LL. |

Now we generalize the notion of semiregularity with a normal (pre)largeness notion
and consider a variant of Theorem 5.5.

Definition 5.2 (L-semiregularity). Let M be a nonstandard model of EFAL, and let IL be a
normal prelargeness notion in M. Then, acut I S, M is said to be L.-semiregular if for any
finite set F' ¢ I, F N [ is bounded in /, or equivalently, I. N [ is a normal largeness notion
in (1, Cod(M/1)).

A Y -formula YL =Y (L, F,m) (where L € U) s said to be an L-semiregular indi-
cator for an £,-theory T if for any countable nonstandard model M = EFAY with U cVv
such that IL is a normal prelargeness notion in M, Y defines an indicator for 7 on M but
the condition (cut) replaced by

(L-cut) Y(F) > m for any m € 9t if and only if there exists an [L-semiregular cut
I CeMandS CCod(M/I)suchthat (I,S)E=T, UiM NI eSforeachlU; elU
and F N [ is unbounded in /.

Theorem 5.7. Let T O WKLq be an £,-theory, and let Y L be an L-semiregular indicator
for T provably in WKLy. Then the following assertions are equivalent over WKLy

1. rI1i-corr(T).
2. Forany L, if L is a normal largeness notion, then YmY™ > m.

Proof. Implication 1 — 2 follows from the same discussion as the proof for Theorem 5.5.
To show 2 — 1, we reason within WKL, and show that, assuming statement 2 is true, if 6(U)
holds for some set U and an rI1}-formula 6(U), then {#(U)} U T is consistent. By [34,
PROPOSITION 2.5], take a Eg-formula n(G, F) such that WKL, proves

YV(O(V) < YZ(Z is infinite — IF gy, Zn(V N [0, max FN, F))).

Define Lo € [N]*N as G € Ly <> 3F € Gn(U N[0, max F]y, F), and let L = Lg . Since
6(U) holds, LL is a normal largeness notion. By assumption, we have Y™ > m for any m € N.
Thus, by Lemma 5.4, a set of Hg L sentences I' = EFAU'L U {L is a normal prelargeness
notion} U{YG(G € L — 3G'n(U N[0, max G']n,G"))} U{YL(F) > m :m € N} is con-
sistent (consider F' as a new number constant).
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Take a countable nonstandard model M = T'. Then, M = Y™ (FM) > m for any
m € N and thus there exists an L-semiregular cut / &, M and S € Cod(M/I) such that
Ul=UMnNIeS, LI =LMnIeSand(I,S) | T.Since I is LM -semiregular, L7 is
a largeness notion in (1, S). Since M E VG(G € L — 3G'n(U N [0, max G']n, G')), we
have (1,S) = 6(U7). |

Theorem 5.8. Letn =2,3,4... orn =ocoandk = 2,3,4,... or k = cc. Define X-

L .
SJormula YItGPHZ as follows:

Yigery (L, Fym) <> m = max{m’ < max F : F ism’-dense(n,k,L N L)} U{0}.

Then, YI][IE}PHZ is an L-semiregular indicator for WKLy + RT}. Moreover, this fact is provable

within WKL,.

Proof. Essentially the same as the proof for Theorem 5.3.3. We additionally need to show
the following (which is an analogous of (i)'):

If IL is a normal prelargeness notion, F is £ 4+ 1-dense(n, k, L N IL,) with £ > 1
and G is a finite set such that G ¢ 1L, then there exists F’ C F such that F’ is
£-dense(n,k,L NL,) and [min F/,max F')y N G = @.

Given{, L, F and G as above, define ¢ : [F]>? = 2asc({x,y}) =1 < [x,y)n N G # 0. Take
ac-homogeneous set F’ C F such that F' is {-dense(n,k,IL N 1L,).If[F’]> € ¢~ (0), we are
done, so assume [F']> € ¢~ 1(1).Put G’ = G N [min F/,max F')y and F” = F’\ {min F’}.
Then F” is at least O-dense(n, k,IL. N L) and thus F” € IL. On the other hand, G’ > F” by
the definition of ¢, and thus G’ € L. This is a contradiction since G’ C Gand G ¢ L. N

Proofs of Theorems 4.6, 4.7, and 4.8. By Lemma 5.6, ItGPH}_ is equivalent to the statement
that if IL is a normal largeness notion, then Vm YI]EZ;PHZ > m. Then, implications between

ItGPH], and rT1}-corr(WKLy + RT}) follow from Theorems 5.7 and 5.8. [ |
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CONSTRAINT
SATISFACTION PROBLEM:
WHAT MAKES

THE PROBLEM EASY

DMITRIY ZHUK

ABSTRACT

The Constraint Satisfaction Problem is the problem of deciding whether there is an assign-
ment to a set of variables subject to some specified constraints. Systems of linear equa-
tions, graph coloring, and many other combinatorial problems can be expressed as Con-
straint Satisfaction Problems for some constraint language. In 1993 it was conjectured

that for any constraint language the problem is either solvable in polynomial time, or NP-
complete, and for many years this conjecture was the main open question in the area. After
this conjecture was resolved in 2017, we finally can say what makes the problem hard

and what makes the problem easy. In the first part of the paper, we give an elementary
introduction to the area, explaining how the full classification appeared and why it is for-
mulated in terms of polymorphisms. We discuss what makes the problem NP-hard, what
makes the problem solvable by local consistency checking, and explain briefly the main
idea of one of the two proofs of the conjecture. The second part of the paper is devoted to
the extension of the CSP, called Quantified CSP, where we allow using both universal and
existential quantifiers. Finally, we discuss briefly other variants of the CSP, as well as some
open questions related to them.
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1. INTRODUCTION

Probably the main question in theoretical computer science is to understand why
some computational problems are easy (solvable in polynomial time) while others are dif-
ficult (NP-hard, PSpace-hard, and so on). What is the difference between P and NP? Why
a system of linear equations can be solved in polynomial time by the Gaussian elimination
but we cannot check whether a graph is 3-colorable in polynomial time (if we believe that
P # NP). What is the principal difference between these two problems? To work on this
question, first we would like to classify the problems by whether they are solvable in polyno-
mial time (tractable) or NP-complete. Even for very simple decision problems, sometimes
we do not know the answer.

For example, a system of linear equations in Z, can be solved by Gaussian elim-
ination, but if we are allowed to add one linear equation with usual sum for integers then
the problem becomes NP-complete [26]. Surprisingly, the complexity is not known if we can
add one equation modulo 24 to a system of linear equations in Z, (variables are still from
{0, 1}) [17]. In the paper we give a formal definition to such problems and discuss why some
of them can be solved in polynomial time, while others are NP-hard.

2. CONSTRAINT SATISFACTION PROBLEM
The above problems are known as the Constraint Satisfaction Problem (CSP), which
is the problem of deciding whether there is an assignment to a set of variables subject to

some specified constraints. Formally, the Constraint Satisfaction Problem is defined as a
triple (X, D, C), where

e X ={x1,...,x,}is a set of variables,
e D={Dy,...,D,}is aset of the respective domains,
e C={Cy,...,Cy} is aset of constraints,

where each variable x; can take on values in the nonempty domain D;, every constraint
C; e Cis apair (#;, R;) where ¢; is a tuple of variables of length m;, called the constraint
scope, and R; is an mj-ary relation on the corresponding domains, called the constraint
relation.

The question is whether there exists a solution to (X, D, C), that is, a mapping that
assigns a value from D; to every variable x; such that for each constraint C; the image of
the constraint scope is a member of the constraint relation.

To simplify the presentation, we assume that the domain of every variable is a finite
set A. We also assume that all the relations are from a set I', which we call the constraint
language. Then the Constraint Satisfaction Problem over a constraint language I', denoted
CSP(T), is the following decision problem: given a conjunctive formula

Rl(vl,l» ceey Ul,nl) ASRRRAN RS(vS,17 cee Us,ns)’
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where Ry,..., Ry € I',and v; ; € {x1,...,x,} forevery i, j, decide whether this formula
is satisfiable. Note that in the paper we do not distinguish between relations and predicates,
and in the previous formula we write relations meaning predicates.

2.1. Examples

It is well known that many combinatorial problems can be expressed as CSP(I")
for some constraint language I". Moreover, for some I" the corresponding decision problem
can be solved in polynomial time; while for others it is NP-complete. It was conjectured that
CSP(T) is either in P or NP-complete [29]. Let us consider several examples.

System of linear equations. Let A = {0, 1} and
= {alxl +aszxy + - +agxp = ag | ag,ay,....ax € Zz},

i.e., " consists of all linear equations in the field Z,. Then CSP(T") is equivalent to the prob-
lem of solving a system of linear equations, which is solvable by the Gaussian elimination
in polynomial time, thus, CSP(T") is in P.

Graph 2-coloring. To color a graph using two colors, we just need to choose a color of every
vertex so that adjacent vertices have different colors. We assign a variable to each vertex, and
encode the two colors with 0 and 1. For an edge between the ith and jth vertices, we add
the constraint x; # x;. For instance, the 5-cycle is equivalent to the CSP instance

(x1 # x2) A (x2 # x3) A (X3 7# X4) A (Xa # X5) A (X5 # X1).

Hence, the problem of graph 2-coloring is equivalent to CSP(T") for A = {0, 1} and
I' = {#}. This problem can be solved locally. We choose a color of some vertex, then we
color their neighbors with a different color, and so on. Either we will color all the vertices,
or we will find an odd cycle, which means that the graph is not colorable using two colors.
Thus, this problem is solvable in polynomial time.

Graph 3-coloring. Similarly, the problem of coloring a graph using 3 colors is equivalent to
CSP(T") for A = {0, 1,2} and I' = {z#}. Unlike the graph 2-coloring, this problem is known
to be NP-complete [1].

NAE-satisfability and 1IN3-satisfability. Suppose A = {0, 1}. NAE is the ternary not-
all-equal relation, that is, NAE = {0, 1} \ {(0,0,0), (1, 1, 1)}. 1IN3 is the ternary 1-in-3
relation, that is, 1IN3 = {(0,0, 1), (0, 1,0), (1,0,0)}. As it is known [4e], both CSP({NAE})
and CSP({1IN3}) are NP-complete.

The main goal of this paper is to explain why the first two examples are in P, while
the others are NP-hard.

2.2. Reduction from one language to another

To prove the hardness result, we usually reduce a problem to a known NP-hard prob-
lem. Let us show how we can go from one constraint language to another. CSP(I") can be
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viewed as the problem of evaluating a sentence
Elx1 . EIx,,(Rl(vl,l, ey vl,nl) VANRRRIVAN RS(USJ, RPN Us,ns))» (2])

where all variables are existentially quantified. Hence, if we could express one language
using conjunctions and existential quantifiers from another language, then we get a reduction
from one CSP to another. Let us explain how it works on a concrete example.

Let NA1 = {0, 1}3\ {(1,1, 1)}, that is, a ternary relation that holds whenever not
all elements are 1. Let A = {0, 1}, 'y = {NAI, #}, and I, = {1IN3}. Let us show that
CSP(I'y) and CSP(I';) are (polynomially) equivalent. We may check that

(x # y) = Ju3v 1IN3(x, y,u) A 1IN3(u, u, v). 2.2)
If fact, from 1IN3(u, u, v) we derive that u = 0, hence x # y. Similarly, we have

NAl(x,y,z) = 3x'3y'3z'Ax"3y"3z" 1IN3(x', y', 2")
A 1IN3(x, x", x") A 1IN3(y, y', ¥") A 1IN3(z, 2/, 2). (2.3)

If x =y =z=1,then x’ = y' = z/ = 0, which contradicts 1IN3(x’, y’, z). In all other
cases, we can find an appropriate assignment.

Any instance of CSP(I";) can be reduced to an instance of CSP(I",) in the following
way. We replace each constraint (x; # x;) by the right-hand side of (2.2) introducing two new
variables. Also, we replace each constraint NA1(x;, x;, xx) by the right-hand side of (2.3)
introducing six new variables. This reduction is obviously polynomial (and even log-space).
Similarly, we have

1IN3(x, y, z) = 3x'3y'3z’(NA1(x, y, y) ANAL(y,z,z) ANAL(z, x, x)
NG #E ) A G # ) A #2) ANALKE, Y. 2),

which implies a polynomial reduction from CSP(I'y) to CSP(I';).

Let us give a formal definition for the above reduction. A formula of the form
dy;...3y, P, where ® is a conjunction of relations from I' is called a positive primitive
SJormula (pp-formula) over T'. If R(x1,...,Xx,) = 3y1...3y, P, then we say that R is pp-
defined by this formula, and Jy; ... 3y, ® is called its pp-definition.

Theorem 2.1 ([35]). Suppose 'y and 'y are finite constraint languages such that each
relation from Ty is pp-definable over T'. Then CSP(I'y) is polynomial time reducible to
CSP(T).

2.3. Polymorphisms as invariants

If we can pp-define a relation R from a constraint language I' and CSP({R}) is
NP-hard, then CSP(T") is also NP-hard. How to show that such a relation cannot be pp-
defined? To prove that something cannot be done, we usually find some fundamental property
(invariant) that is satisfied by anything we can obtain. For the relations, the operations play
the role of invariants.
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We say that an operation f : A" — A preserves a relation R of arity m if for any
tuples (@1,1,.--,a1,m)s---(@n,1s--.,an,m) € R the tuple

(fary. .. an)s. oo f@ims - anm))

is in R. In this case we also say that f is a polymorphism of R, and R is an invariant of f.
We say that an operation preserves a set of relations T if it preserves every relation in I". In
this case we also write f is a polymorphism of T or f € Pol(T"). It can be easily checked
that if f preserves I', then f preserves any relation R pp-definable from I'. Moreover, we
can show [15, 31] that Pol(I";) € Pol(I';) if and only if I'; is pp-definable over I'y, which
means that the complexity of CSP(I") depends only on Pol(T").

Example 1. Let R be the linear order relation on {0, 1, 2}, i.e.,
R— 0 001 1 2 ’
o1 21 2 2

where columns are tuples from the relation. Then “an n-ary operation f preserves R” means
that for all
a a
.17 er,
bl bn
that is, a; < b;, we have

ay ax ... ap\ . ([ flai,....an)
f(bl by ... b,,) = (f(bl,...,b,,))eR’

that is, f(ay,...,ay) < f(b1,...,by). In other words, f is monotonic. For instance, the
operations max and min are monotonic. By the above observation, we know that any relation
pp-definable from R is also preserved by min and max.

Example 2. Let A = {0, 1}. Let us show that 1IN3 cannot be pp-defined from NA1 and
x < y. We can check that the conjunction x A y (an operation on {0, 1}) preserves both
NAT and x < y. However, x A y does not preserve 1IN3 as we have

1 0 0
olal1|=|0]¢1N3.
0 0 0

For more information on polymorphisms and how they can be used to study the
complexity of the CSP, see [6].

2.4. Local consistency

The first step of almost any algorithm solving a CSP instance is checking local
consistency. For instance, if a constraint forces a variable to be equal to 0, then we could
substitute 0 and remove this variable.

Suppose we have a CSP instance

Rl(vl,l, ey 1)1’"1) VANRERIVAN RS(US’I, ey Us,ns)~ (24)
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This instance is called I-consistent (also known as arc-consistent), if for any variable x any
two constraints R; (vi,1, ..., Vi) and R;j(vj1, ..., jx;) having this variable in the scope
have the same projection onto this variable. This means that for every variable x there exists
D, C A, called the domain of x, such that the projection of any constraint on x is D.
Sometimes we need a stronger consistency (similar to singleton-arc-consistency in

[36]). We say that z; — Cy — zp —--- — Cj—; — z; is a path in a CSP instance d if z;, zj 4
are in the scope of the constraint C; for every i € {1,2,...,] — 1}. We say that a path
z1 —Cy — 2y —-+--— Cj_1 — z; connects b and c if there exist ay, a,, ...,a; € A such that

ay = b, a; = c, and the projection of each C; onto z;, z; +1 contains the tuple (a;, aj+1).
A CSP instance d is called cycle-consistent if it is 1-consistent and for every variable z and
a € D, any path starting and ending with z in d connects a and a.

It is not hard to find a polynomial procedure making the instance 1-consistent or
cycle-consistent. For 1-consistency, the idea is to find a variable where the consistency is vio-
lated, then reduce the domain D of this variable and reduce the corresponding relations. We
repeat this while some constraints violate consistency. Finally, we either get a 1-consistent
instance, or we get a contradiction (derive that D, = &). For cycle-consistency, we should
go deeper. For every variable x and every value a € D, we reduce the domain of x to {a}
and check whether the remaining instance can be made 1-consistent. If not, then x cannot
be equal to a, and a can be excluded from the domain D.

Later we will show that in some cases 1-consistency and cycle-consistency are
enough to solve a CSP instance, that is, any consistent instance has a solution. See [5, 36]
for more information about local consistency conditions.

2.5. CSP over a 2-element domain
The complexity of CSP(I") for each constraint language I" on {0, 1} was described
in 1978 [4e]. This classification can be formulated nicely using polymorphisms.

Theorem 2.2 ([34,40]). Suppose A = {0, 1}, T is a constraint language on A. Then CSP(T")
is solvable in polynomial time if

(1) O preserves I, or

(2) 1 preserves I, or

(3) x Vv y preserves I, or

(4) x Ay preserves T, or

(5) xy v yz Vv xz preserves T, or
(6) x + y + z preserves I

CSP(I') is NP-complete otherwise.
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Let us consider each case and explain how the polymorphisms make the problem
easy. Note that the cases (1) and (2), (3) and (4) are dual to each other, that is why we consider
only one in each pair in detail.

0 preserves I'. This case is almost trivial. “The constant O preserves a relation R € I'”
means that R(0,0, ..., 0) holds. If 0 preserves all relations from I, then (0,0, ..., 0) is
always a solution of a CSP instance, which makes the problem CSP(T") trivial.

x Vv y preserves I'. Let us show how to solve an instance of CSP(T") if x v y € Pol(T").
First, we make our instance 1-consistent. Then, unless we get a contradiction, every variable
x has its domain D, which is either {0}, or {1}, or {0, 1}. We claim that if we send the
variables with domain {0} to 0, and the variables with the domain {1} and {0, 1} to 1, then
we get a solution. In fact, if we apply x V y to all the tuples of some constraint, we obtain a
tuple consistent with the solution. Thus, 1-consistency guarantees the existence of a solution
in this case.

xy Vv yz v xz preserves I'. The operation xy V yz Vv xz returns the most popular value
and is known as a majority operation. It is not hard to check [2] that any relation preserved
by a majority operation can be represented as a conjunction of binary relations, and we may
assume that I" consists of only binary relations. As it is shown in Section 2.8, for a 2-element
domain this gives a polynomial algorithm for CSP(I"). Additionally, we can show [36, 47]
that any cycle-consistent instance of CSP(I") has a solution. Hence to solve an instance, it is
sufficient to make it cycle-consistent, and unless we obtain an empty domain (contradiction)
the instance has a solution.

x + y + z preserves I'. It is known (see Lemma 2.8) that x 4+ y + z preserves a relation
R if and only if the relation R can be represented as a conjunction of linear equations. Thus,
CSP(I') is equivalent to the problem of solving of a system of linear equations in the field
7.5, which is tractable.

2.6. CSP solvable by local consistency checking

As we see in the previous section all tractable CSPs on a 2-element domain can be
solved by two algorithms. The first algorithm just checks some local consistency
(1-consistency, cycle-consistency) and, if a sufficient level of consistency achieved, we
know that the instance has a solution. The second algorithm is the Gaussian elimination
applied to a system of linear equations. In this section we discuss when the first algorithm
is sufficient and why some instances can be solved by a local consistency checking, while
others require something else.

To simplify the presentation in this section, we assume that all constant relations
X = a are in the constraint language. In this case any polymorphism f of T is idempotent, that
is, f(x,x,...,x) = x. This restriction does not affect the generality of the results because
we can always consider the core of the constraint language and then add all constant relations
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(see [34]). Consider the following system of linear equations in Z:

X1+ x2 = x3 +0,

X3+ 0=x4 + x5,
3 4 5 @.5)
X4 +0=Xx1 + Xe,

X5 + x¢ = X2 + 1.

If we calculate the sum of all equations, we will get 0 = 1, which means that the system does
not have a solution. Nevertheless, we may check that the system is cycle-consistent, which
means that the cycle-consistency does not guarantee the existence of a solution for linear
equations. In fact, we can show that there does not exist a local consistency condition that
guarantees the existence of a solution of a system of linear equations (see [5]).

As it was shown in [5,47] if CSP(I") cannot be solved by cycle-consistency checking
then we can express a linear equation modulo p using I". Since our constraint language is on a
domain A, we could not expect to pp-define the relation x; 4+ x, = x3 + x4 (mod p). Instead,
we claim that there exist S € A and a surjective mapping ¢ : A — Z, such that the relation

{(a1.a2.a3,a4} | a1, a2,a3,a4 € S, p(a1) + ¢(az2) = ¢(az) + ¢(as)} (2.6)

is pp-definable. This means that the linear equation is defined on some S modulo some
equivalence relation defined by ¢. To avoid such a transformation, we could introduce the
notion of pp-constructability and say that x; 4+ x, = x3 4+ x4 (mod p) is pp-constructable
from I'. To keep everything simple, we do not define pp-constructability and use it infor-
mally hoping that the idea of this notion is clear from our example. For more details about
pp-constructability, see [7].

If such a linear equation cannot be pp-defined (pp-constructed) then there should
be some operation that preserves I" but not the linear equation modulo p. An operation f is
called a Weak Near Unanimity Operation (WNU) if it satisfies the following identity:

F,x,x,....,x) = f(x,y,x,...,x) == f(x,x,...,x,¥).

It is not hard to check that an idempotent WNU of arity p does not preserve a nontrivial
linear equation modulo p (see Lemma 4.9 in [47]). Thus, the existence of an idempotent
p-ary WNU polymorphism of I guarantees that a linear equation modulo p cannot be pp-
defined (pp-constructed). That is why a relation satisfying (2.6) is called p-WNU-blocker.
Hence, if I has WNU polymorphisms of all arities then no linear equations can appear. The
following theorem confirms that nothing but linear equations could be an obstacle for the
local consistency checking.

Theorem 2.3 ([47]). Suppose I is a constraint language containing all constant relations.
The following conditions are equivalent:

(1) every cycle-consistent instance of CSP(I) has a solution,
(2) T has a WNU polymorphisms of all arities n > 3;

(3) there does not exist a p-WNU-blocker pp-definable from I.
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Thus, the fact that we cannot express (pp-define, pp-construct) a nontrivial linear
equation makes the problem solvable by the cycle-consistency checking.

2.7. CSP Dichotomy Conjecture

In this subsection, we formulate a criterion for CSP(I") to be solvable in polynomial
time. This criterion is known as the CSP Dichotomy Conjecture, it was formulated almost
30 years ago [28,29] but was an open question until 2017 [19, 2e, 42, 44].

Theorem 2.4 ([19,20,42,44]). Suppose I is a constraint language on a finite set A. Then
(1) CSP(T) is solvable in polynomial time if T is preserved by a WNU,;
(2) CSP(T") is NP-complete otherwise.

The reason why the existence of a WNU polymorphism makes the problem easy
is the fact that we cannot pp-define a strong relation giving us NP-hardness. A relation
R = (ByU B;)3\ (Bg U Bf’), where By, By C A, By # @, B1 # @,and By N B; = @,
is called a WNU-blocker. Such relations are similar to the not-all-equal (NAE) relation
on {0, 1}, where By means 0 and B; means 1. Instead of the existence of a pp-definable
WNU-blocker, we could say that the relation NAE is pp-constructable from I'. Note that
CSP({NAE}) and CSP({R}) for a WNU-blocker R are NP-complete problems.

We can check (see Lemma 4.8 in [47]) that a WNU operation does not preserve a
WNU-blocker. Moreover, we have the following criterion.

Lemma 2.5 ([47]). A constraint language T containing all constant relations is preserved
by a WNU if and only if there is no WNU-blocker pp-definable from T'.

Thus, CSP(I") is solvable in polynomial time if and only if a WNU-blocker cannot
be pp-defined. Hence, the fact that we cannot pp-construct the not-all-equal relation makes
the problem easy, and a WNU is an operation that guarantees that this relation cannot be
pp-constructed.

2.8. How to solve CSP if pp-definable relations are simple

Below we discuss how the fact that only simple relations can be pp-defined from
I" can help to solve CSP(I") in polynomial time. In this case we can calculate the sentence
explicitly eliminating existential quantifiers one by one. I believe that a similar idea should
work for any I' preserved by a WNU, which will give us a simple algorithm for CSP(I").

CSP(I") can be viewed as the following problem. Given a sentence

g A (Ri(its o Vi) A A Rg(Usy1s vy Vo))
we need to check whether it holds. To do this, let us remove the quantifiers one by one. Let
Ap—1(X1, ..., Xp—1) = EIx,,(Rl(vl,l, e Vi) A AR (Us,1s - vs,ns)).
In general, A, _; could be any relation of arity n — 1, and even to write this relation we need

| A"~ bits. Nevertheless, we believe that if CSP(T") is tractable then the relation A,_; (or
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the important part of it) has a compact representation and can be efficiently computed. Then
we calculate A, 5, Ay—3,...,Ag, where A;_1(x1,...,x;—1) = Ax; Aj (x1,...,x;), and the
value of A is the answer we need.

We may check that on a 2-element domain we have

Hx,,(Rl(vl,l, ey vl,nl) VANREEIVAN Rs(vs,l, ey vs,ns))

= /\ (Elan,-(v,-,l,...,vi,ni)/\Rj(vjyl,...,vj,nj)). (2.7)
i,j€{1,2,...,s}

The implication = is obvious. To prove <= assume that the left-hand side does not hold. Then

the conjunctive part does not hold on both (x1,...,x,—1,0) and (xq,...,x,—1, 1). Hence,
there exist i and j such that R;(v; 1, ..., v; ;) does not hold on (x1, x2, ..., x,—1,0) and
R;(vj1,..., vj,,,j) does not hold on (x1, x2,...,X,—1, 1). Hence, the (7, j)-part of the right-

hand side does not hold.

There are two problems if we use (2.7) to solve the CSP. First, as we mentioned
above, the relation R; ;(...) = 3x, R; (Vi1, ..., Vin,) AR ()1, ..., vj’,,j) probably does
not have a compact representation. Second, if we remove the quantifiers 3x;,, 3x,—1,...,3x;
one by one, potentially we could get an exponential number of relations in the formula. Let
us show how these problem are solved for concrete examples on a 2-element domain.

2.9. System of linear equations in Z,
Let A = {0, 1} and let I" consist of linear equations in Z,. Suppose that for every i
we have

i i i i
Ri(ig,...,Vipn) = (aixy +ayxs + -+ + a,x, = ag).
For a), = aj =1, we have

Rij(...)
= EIx,,(Ri (v,"l, ey v,-,,,i) N R_,-(vj,l, Ceey v_,-,,,j))

i i i i ] J J J
= (alxl +asxo+--+a, Xp—1+ag=ayx1+ayx2+---+a,_Xn-1+ ao).

If afl = 0 then the constraint R; (v; 1, ..., V; ;) does not depend on x,, so we keep it as it is
when remove the quantifier. Hence, in every case we have a compact representation of A,_;.
To avoid the exponential growth of the number of the constraints, we use the idea from the
Gaussian elimination. Choose k such that a,’f = 1, then calculate only Ry i, ..., Rg s and
ignore all the other relations. Thus, in this case we have

Ap—1(X1, ..o Xpm1) = I (R, - oo V1) Ao A Re(Vg 1, Usiny)
= N\ @R k) AR W1 vjmy)). (28)
je{1,2,....5}
Proceeding this way, we calculate A,_», A,_3,..., Ag. Note that (2.8) holds not

only for linear equations but whenever a variable x;, is uniquely determined by the other
variables in R (Vk,1,. .., Vkn,)-
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2.10. 2-satisfability

Let A = {0, 1} and let I" consist of all binary relations. In this case R; ; is also
binary, which means that we do not have a problem with a compact representation. Also,
every time we eliminate a quantifier and caclulate A;, we remove the repetitive constraints.
Therefore, in each A; we cannot have more than 7 -7 - 22% constraints because we have i
different variables and 22” different binary relations on {0, 1}.

As we see, the main question in both examples is the existence of a compact repre-
sentation. In the first example we represent any relation as a conjunction of linear equations,
in the second we represent as a conjunction of binary relations. We could ask when such a
compact representation exists. Let sp () be the number of pp-definable from I relations of
arity n. If log, sr () grows exponentially then we need exponential space to encode relations
of arity n and we cannot expect a compact representation. We say that I" has few subpowers
if log, st(n) < p(n) for a polynomial p(n). It turns out that there is a simple criterion for
the constraint language to have few subpowers. An operation ¢ is called an edge operation it
it satisfies the following identities:

XX, 0,9, 0, 0,0, Y) =,
LY, X, 0,0, YY) =,
LY,y Y. XY, 0. Y) =),
LY. Y. 0.0 % ..y, ) =),

LY Y Y Veeen X, ¥) =,
t(y,%y,y,y,...,y,x) :y

Theorem 2.6 ([9]). A constraint language I" containing all constant relations has few sub-
powers if and only if it has an edge polymorphism.

We can show that if I" has few subpowers then the pp-definable relations have a
natural compact representation, which gives a polynomial algorithm for CSP(I") [33]. Note
that two examples of an edge operation were given earlier in this paper. The first example
is a majority operation satisfying m(y, y, x) = m(y, x, y) = m(x, y, y) = y. By adding
3 dummy variables in the beginning, we get the required properties of an edge operation.
Another example is x + y + z on {0, 1}. By adding dummy variables at the end, we can
easily satisfy all the identities. Very roughly speaking, any few subpowers case is just a
combination (probably very complicated) of the majority case and the linear case.

2.11. Strong subuniverses and a proof of the CSP Dichotomy Conjecture

In this subsection, we consider another simple idea that can solve the CSP in poly-
nomial time. This idea is one of the two main ingredients of the proof of the CSP Dichotomy
Conjecture in [42,44].

Assume that for every variable x whose domain is Dy, |Dy| > 1, we can choose a
subset B, & D, such that if the instance has a solution, then it has a solution with x € B,.

-
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In this case we can reduce the domains iteratively until the moment when each domain has
exactly one element, which usually gives us a solution.

As we saw in Section 2.5, if T is preserved by x V y and the instance is 1-consistent
then we can safely reduce the domain of a variable to {1}. Similarly, if " is preserved by
the majority operation xy Vv yz V xz and the instance is cycle-consistent, then we can safely
reduce the domain {0, 1} to {0} and {1} [47]. It turns out that this idea can be generalized for
any constraint language preserved by a WNU operation.

A unary relation B C A is called a subuniverse if B is pp-definable over I'. It can
be easily checked that all the domains D, that appear while checking consistency (see Sec-
tion 2.4) are subuniverses. Let us define three types of strong subuniverses:

Binary absorbing subuniverse. We say that B’ is a binary absorbing subuniverse of B if
there exists a binary operation f* € Pol(T") such that f(B’, B) € B" and f(B, B") C B’. For
example, if the operation x Vv y preserves I then {1} is a binary absorbing subuniverse of
{0, 1} and x V y is a binary absorbing operation.

Ternary absorbing subuniverse. We say that B is a ternary absorbing subuniverse of B if
there exists a ternary operation f € Pol(T") such that f(B’, B’,B) C B, f(B’,B,B’) C B/,
and f(B, B’, B') C B’. For example, if the majority operation xy V yz V xz preserves I,
then both {0} and {1} are ternary absorbing subuniverses of {0, 1}. Since we can always add
a dummy variable to a binary absorbing operation, any binary absorbing subuniverse is also
a ternary absorbing subuniverse.

To define the last type of strong subalgebras we need some understanding of the
Universal Algebra. We do not think a concrete definition is important here, that is why if a
reader thinks the definition is too complicated, we recommend to skip it and think about the
last type as something similar to the first two.

PC subuniverse. A set F of operations is called Polynomially Complete (PC) if any oper-
ation can be derived from F and constants using composition. We say that B’ is a PC
subuniverse of B if there exists a pp-definable equivalence relation 0 € B x B such that
Pol(T") /o is PC.

A subset B’ of B is called a strong subuniverse if B’ is a ternary absorbing subuni-
verse or a PC subuniverse.

Theorem 2.7 ([47]). Suppose I" contains all constant relations and is preserved by a WNU
operation, B C A is a subuniverse. Then

(1) there exists a strong subuniverse B’ € B, or

(2) there exists a pp-definable nontrivial equivalence relation ¢ on B and
f € Pol(T) such that (B; f)/o = (Z*:x — y + z).

As it follows from the next lemma, the second condition implies that any pp-
definable relation (modulo o) can be viewed as a system of linear equations in a field.
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Lemma 2.8 ([32]). Suppose R C Z;, preserved by x — y + z. Then R can be represented
as a conjunction of relations of the form a1 x1 + -+ + apx, = ag (mod p).

For CSPs solvable by the local consistency checking, strong subuniverses have the
following property.

Theorem 2.9 ([47]). Suppose
(1) T is a constraint language containing all constant relations;
(2) T is preserved by a WNU of each arityn > 3;
(3) d is a cycle-consistent instance of CSP(I");
(4) Dy is the domain of a variable x;
(5) B is a strong subalgebra of D.
Then d has a solution with x € B.

Thus, strong subuniverses have the required property that we cannot loose all the
solutions when we restrict a variable to it. As it was proved in [44], a similar theorem holds
for any constraint language preserved by a WNU operation (with additional consistency con-
ditions on the instance). We skip this result because it would require too many additional
definitions.

As we see from Theorem 2.7, for every domain D, either we have a strong subuni-
verse and can reduce the domain of some variable, or, modulo some equivalence relation,
we have a system of linear equations in a field. If I" has a WNU polymorphism of each arity
n > 3, then we always have the first case; hence, we can iteratively reduce the domains until
the moment when all the domains have just one element, which gives us a solution. That
is why any cycle-consistent instance in this situation has a solution. If we always have the
second case then this situation is similar to a system of linear equations, but different linear
equations can be mixed which makes it impossible to apply usual Gaussian elimination.
Nevertheless, the few subpowers algorithm solves the problem [33].

For many years the main obstacle was that these two situations can be mixed and
at the moment we do not know an elegant way how to split them. Nevertheless, the general
algorithm for tractable CSP presented in [44] is just a smart combination of these two ideas:

« if there exists a strong subalgebra, reduce
« if there exists a system of linear equations, solve it.
For more information about this approach as well as its connection with the second

general algorithm see [3].

2.12. Conclusions
Even though we still do not have a simple algorithm that solves all tractable Con-
straint Satisfaction Problems, we understand what makes the problem hard, and what makes
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the problem easy. First, we know that in all the hard cases we can pp-construct (pp-define) the
not-all-equal relation, which means that all the NP-hard cases have the same nature. Second,
if the CSP is not solvable locally then we can pp-construct (pp-define) a linear equation in
a field. Moreover, any domain of a tractable CSP either has a strong subalgebra and we can
(almost) safely reduce the domain, or there exists a system of linear equations on this domain.
This implies that any tractable CSP can be solved by a smart combination of the Gaussian
elimination and local consistency checking, and emphasizes the exclusive role of the linear
case in Universal Algebra and Computational Complexity.

Note that both CSP algorithms in [2e, 44] depend exponentially on the size of the
domain, and we could ask whether there exists a universal polynomial algorithm that works
for any constraint language I' admitting a WNU polymorphism.

Problem 1. Does there exist a polynomial algorithm for the following decision problem:
given a conjunctive formula Ry (v1,1,...,V1,4,) A+ A Rg(vs,1, - - ., Vg, ), Where all rela-
tions Ry, ..., Ry are preserved by a WNU, decide whether this formula is satisfiable.

If the domain is fixed then the above problem can be solved by the algorithms from
[19,42]. In fact, we know from [4, THEOREM 4.2] that from a WNU on a domain of size k we can
always derive a WNU (and also a cyclic operation) of any prime arity greater than k. Thus,
we can find finitely many WNU operations on a domain of size k such that any constraint
language preserved by a WNU is preserved by one of them. It remains to apply the algorithm
for each WNU and return a solution if one of them gave a solution.

3. QUANTIFIED CSP

A natural generalization of the CSP is the Quantified Constraint Satisfaction Prob-
lem (QCSP), where we allow to use both existential and universal quantifiers. Formally, for
a constraint language I", QCSP(I") is the problem to evaluate a sentence of the form

V)C]Elyl . VanIy,, Rl(vl,lv RN Ul,nl) VARERIVAN Rs(vs,l, ey Us,ns),

where Ry,...,Ry e ',and v; j € {x1,...,Xp, Y1...., yn} forevery i, j (see[16,23,24,37]).
Unlike the CSP, the problem QCSP(I") can be PSpace-hard if the constraint language I' is
powerful enough. For example, QCSP({NAE}) and QCSP({1IN3}) on the domain A = {0, 1}
are PSpace-hard [25,27], and QCSP({#}) for | A| > 2 is also PSpace-hard [16]. Nevertheless, if
I" consists of linear equations modulo p then QCSP(I") is tractable [16]. It was conjectured by
Hubie Chen [22,24] that for any constraint language I" the problem QCSP(T") is either solvable
in polynomial time, or NP-complete, or PSpace-complete. Recently, this conjecture was dis-
proved in [48], where the authors found constraint languages I" such that QCSP(I") is coNP-
complete (on a 3-element domain), DP-complete (on a 4-element domain), @5 -complete
(on a 10-element domain). Despite the whole zoo of the complexity classes, we still hope to
obtain a full classification of the complexity for each constraint language I".
Below we consider the main idea that makes the problem easier than PSpace.
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3.1. PGP reduction for II, restrictions
For simplicity let us consider the IT,-restriction of QCSP(T"), denoted QCSP?(T"),
in which the input is of the form

Vx1...Vx,3yr o 3y RGO A ARG(-. ). 3.1

Such an instance holds whenever the conjunctive formula Ry (...) A--- A Rg(...) is solvable
for any evaluation of x1, ..., x,, which gives us a reduction of the instance to | A|" instances
of CSP(I'*), where by I'* we denote I' U {(x = a) | a € A}. If we need to check |A|” tuples,
which is exponentially many, this does not make the problem easier. Nevertheless, sometimes
it is sufficient to check only polynomially many tuples. Let us consider a concrete example.

System of linear equations. Suppose A = {0, 1} and I" consists of linear equations in Z,.
Let us check that the instance (3.1) holds for (x1,...,x,) = (0,...,0), and (x1,...,x,) =
0,...,0,1,0,...,0) for any position of 1. To do this, we solve the CSP instance R (...) A
AR A /\:’zl(x,- = 0), and for every j € {1,2,...,n} we solve the instance
Ri(..)