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1. Introduction

A smooth family of Riemannian metrics .g.t//t2Œ0;T / is a Ricci flow if it satisfies
the equation

@t g.t/ D �2Ric
�
g.t/

�
for every t 2 Œ0; T /, where Ric.g.t// denotes the Ricci tensor of g.t/ [34]. The Ricci flow
equation is a fundamental partial differential equation in mathematics—it is the natural
analog of the heat equation for Riemannian metrics, just as mean curvature flow and har-
monic map heat flow are the heat equation analogs for submanifolds and mappings, and
the (elliptic) Einstein equation, minimal surface equation, and harmonic map equation are
the respective analogs of Laplace’s equation. Ricci flow may be used to canonically smooth
a metric, and, in favorable situations, deform it into an optimal shape. For this reason, it
has had a profound impact on geometry and topology as a powerful tool for solving many
problems, including many longstanding conjectures which had resisted all other techniques.
Singularity formation has been a great challenge central to the topic, one which has required
a wide range of ingredients from PDE, differential geometry, metric geometry, and topology.
While Ricci flow is fascinating from many points of view, it is especially interesting from
the PDE viewpoint because it has some features in common with other geometric evolution
equations (e.g., mean curvature flow and harmonic map heat flow); in particular, for the last
40 years the treatment of singularities has been a common theme, and has led to important
cross-fertilization.

In his preprints from 2002–2003, Perelman made a series of landmark contributions
to Ricci flow, some specific to flow on 3-manifolds, and some applicable in any dimension.
He introduced a number of new ingredients which opened the way to subsequent progress in
many directions, including (in particular) flow on 3-manifolds, Kähler–Ricci flow, and Ricci
flow under certain curvature assumptions. The aim of this article is to present the advances
in 3D Ricci flow from a bird’s-eye view, for a general mathematical audience. The technical
nature of the subject forces some compromises in the exposition, both in the precision of
statements and in the coverage of accompanying history and conceptual background. Also,
in writing for a broad audience it was unavoidable to make some choices of material and
emphasis which may be unsatisfactory to the experts; I hope that any such readers will be
understanding.

By convention, all 3-manifolds will be orientable.

2. Perelman’s work on 3D Ricci flow

In this section, we briefly review what was known about 3D Ricci flow up through
2003, when Perelman posted his preprints. We refer the interested reader to the introductions
in [21,28,39,50,51] for more detailed overviews.

Hamilton showed that if h is a smooth Riemannian metric on a compact n-mani-
fold M , then there exists a unique solution .g.t//t2Œ0;T / to the Ricci flow equation

@t g D �2Ric
�
g.t/

�
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with initial condition g.0/ D h, andwhich is defined on amaximal time interval Œ0;T /; more-
over, if the time T is finite, then the norm of the curvature tensor Rm becomes unbounded
as t approaches T [34]. When M is a 2-sphere, the behavior of the Ricci flow .g.t//Œ0;T /

is very simple: it blows up in finite time, and as t ! T the volume-renormalized metric
Og.t/ WD .vol.g.t///� 2

n g.t/ converges smoothly as t ! T to a metric of constant curvature
4� [29, 35]. Ricci flow in 3D is more complicated. Consider, for instance, the case when
.M; g.0// is obtained from two compact Riemannian 3-manifolds .M; hM /, .N; hN / by
performing a geometric connected sum, i.e., by choosing r > 0 small, removing r-balls,
and attaching a round cylindrical “neck” (interpolating appropriately near the gluing locus).
Heuristically, one expects that when r is small, the Ricci flow .g.t//t2Œ0;T / will blow up
after a short time due to the large positive Ricci curvature in the neck region, and that away
from the neck region g.t/ will have a smooth limit as t ! T . The occurrence of such local-
ized “neck pinch” singularities leads to the idea of prolonging the evolution by performing
“surgery”, i.e., by removing an open set U diffeomorphic to .0; 1/ � S2 which contains
the set where the metric goes singular as t ! T , gluing approximate hemispherical caps
onto the two 2-sphere boundary components, and restarting the Ricci flow from the result-
ing compact smooth Riemannian manifold. By iterating this procedure, one might hope to
obtain a Ricci flow with surgery defined for all time, allowing for the possibility that the
manifold may be empty from some time onward. Noting that the surgery has the potential to
simplify topology by undoing connected sums, around the time of Hamilton’s original paper
Yau suggested that Ricci flow with surgery might be used to address fundamental questions
in three-dimensional topology—the Poincaré Conjecture and, more generally, Thurston’s
Geometrization Conjecture. Pursuing this idea, Hamilton developed many tools for analyz-
ing singularities, and implemented a version of Ricci flow with surgery in an analogous
4-dimensional setting.

In 2003, Perelman completed the program in a breakthrough result:

Theorem2.1 (Informal statement). For any compact smooth Riemannian 3-manifold .M;h/,
there exists a Ricci flow with surgery with initial condition .M; h/ which is defined for all
time.

In addition to many fresh insights, the proof involved numerous ingredients, includ-
ing most of Hamilton’s prior results on Ricci flow, as well as a variety of other tools from
geometric analysis. We will only touch on a few key points here, treating some aspects dif-
ferently from Perelman.

Perelman’s Ricci flow with surgery consists of a sequence of Ricci flows�
M1;

�
g1.t/

�
t2ŒT0;T1/

�
;

�
M2;

�
g2.t/

��
t2ŒT1;T2/

/;
�
M3;

�
g3.t/

�
t2ŒT2;T3/

�
; : : :

where the time intervals ŒTi�1; Ti / are consecutive and
S

i ŒTi�1; Ti / D Œ0; 1/. For every
0 < Ti < 1, the Ricci flow .gi .t//t2ŒTi�1;Ti / goes singular as t ! Ti and has a smooth limit
Ngi on an open (possibly empty) subset �i � Mi . The initial condition .MiC1; giC1.Ti //

for the next flow is obtained from .�i ; Ngi / by a geometric surgery procedure—cutting
along 2-spheres, capping off boundary components, and throwing away some connected
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components—which generalizes the simple neck removal described above. The cumulative
effect of the surgery process on the topology is easy to describe: for every i > 1, the original
manifold M1 is diffeomorphic to a connected sum

M
diff
' Mi#.#j Nj / (2.2)

where for every j the summand Nj is either a copy of S2 � S1 or a spherical space form;
recall that a spherical space form is a manifold of the form S3=� where � � O.4/ is a finite
subgroup acting freely on S3.

A central issue in Perelman’s argument is controlling the structure of the flow near
singularities. This control is implemented as a set of conditions collectively referred to as the
Canonical Neighborhood Assumption. Informally speaking, the Canonical Neighborhood
Assumption asserts that near points with large curvature the flow has a restricted form, i.e.,
it is well approximated by a flow belonging to a family of model Ricci flows Perelman called
�-solutions; examples include:

(A) A shrinking round metric on S3 or a spherical space form;

(B) A shrinking round cylindrical metric on S2 � R or the quotient .S2 � R/=Z2;

(C) A special Ricci flow solution .gBry.t//t2R on R3 called the Bryant soliton.

In the schematic diagram shown in Figure 1, these provide models near the points A, B,
and C, respectively.

After proving the existence of a Ricci flow with surgery, Perelman analyzed the
behavior as t ! 1, and used the geometry of the flow to deduce a topological conclusion:

Theorem 2.3 ([54]). For every t sufficiently large, if t 2 ŒTi�1; Ti /, there is a finite disjoint
collection ¹Nj º of embedded incompressible tori in Mi such that each connected component
of Mi n

S
j Nj is diffeomorphic to either a complete, finite-volume hyperbolic manifold or

a graph manifold.

A hyperbolic manifold is a Riemannian manifold with universal cover isometric
to hyperbolic 3-space H3. A connected embedded surface N in a 3-manifold X is incom-
pressible if the inclusion map N ! X induces an injective homomorphism of fundamental
groups. A 3-manifold X is a graph manifold if there is a finite disjoint collection ¹Nkº of
embedded tori such that every connected component of X n

S
k Nk is diffeomorphic to (the

total space of) a circle bundle over a surface.
A few years prior to the appearance of Perelman’s preprints, Hamilton proved an

assertion roughly similar to Theorem 2.3, assuming an additional bound on the curvature
tensor [36]. The proof of Theorem 2.3 uses several key contributions from [36] in identifying
the hyperbolic piece, as well as several fundamental new ideas.

The results on Ricci flowwith surgery have many applications to problems in geom-
etry and topology. Combining Theorem 2.3 with well-known results from 3-manifold topol-
ogy, Perelman proved Thurston’s Geometrization Conjecture:
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Figure 1

A Ricci flow with surgery with a neckpinch.
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Theorem 2.4. Every closed 3-manifold is a connected sum of manifolds that can be cut
along embedded, incompressible copies of T 2 into geometrizable pieces.

A connected 3-manifold is geometrizable if it admits a finite-volume Riemannian
metric with universal cover isometric to one of the eight Thurston geometries S3; H 3; R3;

H2 � R; S2 � R;Nil;Solv; CSL.2; R/ [61].
The Poincaré Conjecture is an immediate corollary:

Theorem 2.5. Any closed, simply connected 3-manifold is diffeomorphic to S3.

Perelman and Colding–Minicozzi showed that if the initial manifold M1 of a Ricci
flow with surgery has no aspherical summands in its prime decomposition, then the flow
eventually becomes extinct, i.e., for some i , we have ŒTi�1; Ti / D ŒTi�1; 1/ and Mi D ;

[30,53]; it then follows from (2.2) that M1 is a connected sum of spherical space forms and
copies of S2 � S1. This gives an alternative approach to the Poincaré Conjecture avoiding
Theorem 2.3.

In addition to settling central conjectures in topology, Perelman solved longstanding
problems in geometry:

Theorem 2.6. Let M be a closed 3-manifold, and �.M/ denote the Yamabe invariant of M

[43,55].

• Manifold M admits a Riemannian metric with positive scalar curvature if and
only if it is a connected sum of spherical space forms and copies of S2 � S1

[33,56].

• If M is irreducible and �.M/ � 0, then .� 1
6
�.M//

3
2 is total volume of the hyper-

bolic pieces appearing in the geometric decomposition of M , as in Theorem 2.4
[2,39].

3. Developments based on questions raised by Perelman’s

work

In this section we review the progress on some fundamental questions arising in
Perelman’s papers [52,54].

3.1. Large-time behavior
Let ¹.Mi ; ..gi .t//t2ŒTi�1;Ti /º be a Ricci flow with surgery as constructed by Perel-

man.
One basic question concerns the set of surgery times ¹Ti j 0 < Ti < 1º; in the state-

ment of Theorem 2.1, this set could potentially be infinite. Although Perelman discussed
finiteness of surgeries in his preprints, he did not settle the issue or give any indication
how it might be addressed, because he was able to find an approach to Theorem 2.3 (and
the Geometrization Conjecture) which circumvented the matter altogether. The problem of
finiteness of surgeries was also noted earlier: Hamilton had expressed the hope that it would
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be possible to define a Ricci flow with surgery such that only finitely many surgeries would
be necessary and that the curvature would then remain bounded for large t , after appropriate
normalization [36]. In a tour de force, Bamler was able to confirm this:

Theorem 3.1 ([8–12]). In any Ricci flow with surgery as constructed by Perelman, there are
only finitely many surgery times, and there exist C;T 2 .0;1/ such that the curvature tensor
satisfies the bound jRmg.t/j < C t�1 for all t > T .

In the theorem and in what follows, we let g.t/ WD gi .t/ for t 2 ŒTi�1; Ti /.
It is natural to ask: beyond the assertions in Theorem 3.1, howmuchmore can be said

about the asymptotic behavior of the Ricci flow at t ! 1? First, the results of [30,53] imply
that each connected component of Mi is prime and aspherical when Ti > T . On general
principles, one might expect that Ricci flow improves the geometry, and therefore as t ! 1

the asymptotic behavior should be very simple. For instance, when M is geometrizable,
then one might expect that as t ! 1 the Ricci flow would converge (in some appropriate
sense) to the geometric structure, and when M is not geometrizable, then the Ricci flow
would construct the JSJ decomposition—a system of embedded incompressible tori which
are canonical up to isotopy—as well the geometric structure on the pieces. This speculation
has been confirmed only when M admits a hyperbolic metric, in which case Perelman’s
proof of Theorem 2.3 implies that 1

4
t�1g.t/ converges to a hyperbolic metric as t ! 1. In

other cases there has been progress in this direction. For instance, Lott has shown:

Theorem 3.2 ([48]). Let N be a connected component of Mi , where ŒTi�1; Ti / D ŒTi�1;1/.
If the quantity t� 1

2 diam.N; g.t// remains bounded as t ! 1, then the pullback of the
rescaled metric t�1g.t/ to the universal cover QN converges to a homogeneous expanding
soliton.

Bamler has a number of results covering both geometrizable and nongeometrizable
cases. The simplest case is the torus:

Theorem 3.3 ([12]). If M is diffeomorphic to T 3, then either g.t/ converges to a flat metric
as t ! 1, or the quantity t� 1

2 diam.g.t// is unbounded and for large t the metric g.t/ is well
approximated by another metric g0.t/ with T 2-symmetry and T 2-orbits of diameter � t

1
2 .

A similar alternative holds for 3-manifolds modeled on Thurston’s Nil or Solv
geometries. We refer the reader to [12] for these and other results, as well as a discussion of
open questions.

3.2. Classification of singularity models
As described in Section 2, Perelman’s treatment of Ricci flow with surgery involved

a family of Ricci flows called �-solutions, which model the formation of singularities. Build-
ing on Hamilton’s work on singularity formation, in his first preprint Perelman established
many properties of �-solutions, including:
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(a) (Topological classification) Every �-solution is diffeomorphic to a spherical
space form S3=� , the cylinder S2 � R, the Z2-quotient .S2 � R/=Z2, or R3.

(b) Any �-solution not diffeomorphic to R3, S3, or RP 3 is isometrically covered
by a shrinking round sphere or shrinking round cylinder.

(c) In a quantitative sense, �-solutions are “mostly necklike.” For instance, any
�-solution diffeomorphic to R3 is asymptotically cylindrical near infinity.

In the exceptional cases in (b), Perelman’s work provided both qualitative and quantitative
information, but not a complete classification. In the R3 case, he made the following con-
jecture:

Conjecture 3.4 ([52]). Any �-solution diffeomorphic to R3 is isometric to a Bryant soliton,
up to rescaling.

He also constructed a �-solution on S3 which is O.3/-symmetric, and becomes
more and more elongated as t ! �1; this descends to a �-solution on RP 3.

Recently, in the culmination of a long development in the theory of ancient solutions,
Brendle, Daskalopoulos, and Sesum have completed the classification of �-solutions:

Theorem 3.5 ([25]). Conjecture 3.4 holds.

Theorem 3.6 ([26]). Any compact �-solution is isometrically covered by a shrinking round
metric or a rescaling of the nonround �-solution constructed by Perelman.

3.3. Ricci flow through singularities
Although the construction of Ricci flow with surgery had a spectacular impact on

mathematics, in both of his preprints Perelman indicated that he had a further objective in
mind:

“It is likely that by passing to the limit in this construction [of Ricci flow with
surgery] one would get a canonically defined Ricci flow through singularities,
but at the moment I don’t have a proof of that.” [52, p. 37]

“Our approach …is aimed at eventually constructing a canonical Ricci flow,
defined on a largest possible subset of space-time,—a goal, that has not been
achieved yet in the present work.” [54, p. 1]

From the PDE perspective, one may interpret Perelman’s notion of a “Ricci flow through
singularities” as a kind of generalized solution to the Ricci flow equation; his stated goal
then fits into a long-established theme in PDE—the existence and uniqueness of weak or
generalized solutions. A further motivation for pursuing such a program comes from appli-
cations in geometry and topology involving families of Ricci flows depending continuously
on a parameter, which necessitate well-behaved unique solutions.
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In recent years Perelman’s goal was attained in the papers [16,41]. The first step was a
definition Ricci flow through singularities, which was given in [41]. This is uses the following
spacetime version of Ricci flow:

Definition 3.7 ([41]). A Ricci flow spacetime is a tuple .M; t; @t ; g/, where:

• M is a smooth 4-manifold with boundary.

• t W M ! Œ0; 1/ is a smooth function called the time function; its level sets
Mt WD t�1.t/ are called time-slices.

• @t is a smooth vector field satisfying @t t � 1; it is called the time vector field, and
its trajectories are called worldlines.

• g is a Riemannian metric on the subbundle of the tangent bundle T M defined by
ker d t, and hence induces a Riemannian metric gt on the time slice Mt .

• g satisfies the Ricci flow equation

L@t
g D �2Ric.g/:

• The time slice M0 is the boundary of M.

For brevity, we typically denote the entire spacetime by M.

An ordinary Ricci flow .g.t//t2Œ0;T / on a manifold M gives rise to a Ricci flow
spacetime .M; t; @t ; g/ where M D M � Œ0; T /, the time function t is projection onto the
second factor, the time vector field @t projects to the unit vector field @x on the second factor,
and g induces the metric g.t/ on the time slice Mt D M � ¹tº corresponding to g.t/. Up to
diffeomorphism, a general Ricci flow spacetime looks locally like such a product Ricci flow
spacetime.

A Ricci flow spacetime by itself is too general to be useful; one obtains a good
notion of Ricci flow through singularities by imposing some extra conditions on a Ricci flow
spacetime:

Definition 3.8 ([41]). A singular Ricci flow is a Ricci flow spacetime .M; t; @t; g/ where:

(1) The initial time slice M0 is compact.

(2) M satisfies the Canonical Neighborhood Assumption.

(3) M is 0-complete.

Here condition (2) is similar to the Canonical Neighborhood Assumption in Perel-
man’s Ricci flow with surgery, and asserts that around a point x 2 Mt with large curvature,
the time slice Mt is well approximated by a �-solution. The 0-completeness requirement
in condition (3) is a replacement for the conventional notion of completeness. A generic
neck pinch gives rise to a Ricci flow spacetime exhibiting both spatial and temporal incom-
pleteness: if T is the time at which the pinch occurs, then the time slice MT will be an
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incomplete Riemannian manifold, and the trajectories of the time vector field @t which go
into the singularity are incomplete.

Definition 3.9. A Ricci flow spacetime M is 0-complete if the following holds. Suppose
 W Œ0; s0/ ! M is either an integral curve of ˙@t, or a unit speed curve in some time slice
of M. If sup jRm j..s// < 1, then lims!s0 .s/ exists.

Ricci flow in dimension 3 is globally well posed in the setting of singular Ricci flows
[16,41]:

Theorem 3.10. (1) If .N;h/ is a compact Riemannian 3-manifold, then there exists
a singular Ricci flow M with initial time slice M0 isometric to .N; h/.

(2) A singular Ricci flow is determined uniquely by its initial condition: if M, M0

are singular Ricci flows then any isometry M0 ! M0
0 extends to an isometry of

M ! M0 of Ricci flow spacetimes (i.e., a diffeomorphism respecting the tuples).

The methods of [16] also imply that singular Ricci flows depend continuously on
their initial condition. Perelman’s assertion about convergence of Ricci flow with surgery
also holds:

Theorem 3.11 ([16]). Let .N; h/ be a compact Riemannian 3-manifold, which by Theo-
rem 3.10(1) we may identify with the time 0 sliceM0 of some singular Ricci flowM. Then the
family of Ricci flows with surgery with initial condition M0 converges to M as the surgery
parameter ı tends to zero.

Here ı is a parameter appearing in Perelman’s construction of Ricci flow with
surgery; when ı is small then in particular the surgery process involves cutting along necks
with small cross-section.

The results above show that there is a well-behaved notion of Ricci flow through
singularities in dimension three, for arbitrary smooth initial conditions. It is natural to ask:

Question 3.12. Is there a good notion of Ricci flow through singularities in higher dimen-
sions, for arbitrary initial conditions?

This currently seems to be a significant challenge already in dimension 4; see, how-
ever, [4–6] and the references therein for recent progress in this direction. Note that the
answer to Question 3.12 is “yes” if one imposes restrictions the initial condition (see, for
instance, [37,60]); also, starting in dimension 5 there are examples of Angenent–Knopf show-
ing that one should not expect uniqueness [3]. We remark that the problem of constructing
a well-behaved generalized solutions to a closely related PDE—the mean curvature flow
equation—has been a major topic of research in geometric analysis for more than 40 years
[24].

We now state a few results concerning the structure of singular Ricci flows.

Theorem 3.13 ([15,41,42]). Let M be a singular Ricci flow.
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• If C is a connected component of some time slice, then C is diffeomorphic to a
compact manifold punctured at finitely many points.

• Let OMt be the manifold obtained from some time slice Mt by filling in punctures
and throwing away components diffeomorphic to S3. Then OMt is compact and its
prime decomposition is part of the prime decomposition of M0.

• The set of times t 2 Œ0; 1/ such that the time slice Mt is noncompact has
Minkowski dimension �

1
2
.

At present it is unknown if time slices could have infinitely many connected com-
ponents, or if there could be uncountably many noncompact time slices. In this direction we
have the following conjecture:

Conjecture 3.14. If M is a singular Ricci flow, then the set of times t for which Mt is
noncompact is finite. Moreover, if Mt is noncompact, then as Nt % t each connected compo-
nent of MNt either goes extinct, or experiences finitely many (possibly degenerate) neckpinch
singularities.

4. Further results

We conclude by listing a number of other directions which have seen progress
involving 3D Ricci flow.

• Ricci flow with surgery and/or singular Ricci flow can be extended, or partially
extended, to noncompact manifolds [19,20,22,47].

• There is a large literature on various types of special Ricci flow solutions, includ-
ing shrinking, expanding, and steady solitons, ancient solutions, and eternal solu-
tions. Many of these solutions arise as potential singularity models for finite time
singularities or as blow-up limits of type I, II, or III [36]. There does not seem to be
a good single source covering these developments, so we recommend searching
the internet for “Ricci soliton.”

• Perelman’s results on Ricci flow with surgery (Theorems 2.1 and 2.3) extend to
orbifolds, giving a Ricci flow proof of the Orbifold Theorem, see [23,40].

• Singular Ricci flow may be used to understand the topology of the space Diff.M/

of diffeomorphisms M ! M with the smooth topology, in particular, settling the
Generalized Smale Conjecture, and completing the determination of the topology
of Diff.M/ when M is a prime 3-manifold. See [13, 15, 17, 18], and also [38] for
history and background.

• Ricci flow with surgery and singular Ricci flowmay be used to study the topology
of the space MetPSC.M/ of Riemannian metrics of positive scalar curvature on a
3-manifold M , and the moduli space MetPSC.M/=Diff.M/. It was shown in [49]
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that the moduli space MetPSC.M/=Diff.M/ is empty or path-connected, and [17]

extended this, proving that MetPSC.M/ is empty or contractible. See [17, 49] for
more background and references.

• In [1] Ricci flow with surgery was used to give sharp volume estimates for hyper-
bolic 3-manifolds with minimal surface boundary.

• Although the topics are not specific to dimension 3, we mention that there are a
number of papers studying Ricci flow starting from rough initial conditions [14,31,
44–46,57–59], and papers using Ricci flow to study scalar curvature lower bounds
in a C 0-setting [7,27,32].
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Abstract

In this survey of billiards, I will discuss a variety of topics: rational polygonal billiards,
irrational polygonal billiards, polygonal outer billiards, billiards in smooth ovals, and a bit
about billiards in tables with scatterers.
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1. Introduction

In one popular version of billiards, called eightball, the game is initialized with
a triangular array of 10 polyester balls placed towards the back of a rectangular table that
is about the length of a horse. The first player impacts the white cue ball with a tapered
pool stick. The cue ball slides then rolls across green cloth, striking the other 10 balls and
scattering them. This fateful start, which sets the game of eightball in motion, is called the
break.

There are some who play billiards and there are some who think about billiards.
Those who play care about the quality of the cloth, the weight of the balls, the feel of the stick.
They grind the cushion that covers the front end of their pool stick into a tub of powdered
chalk, trying to get just the right conditions of contact with the cue ball. Those who think
about billiards usually free their minds from these physical properties and contemplate games
of a more abstract nature.

This survey concerns the abstract games of mathematical billiards, henceforth
simply called billiards. In billiards, the table might be a regular pentagon, or an ellipse,
or the planar region bounded by a closed loop that is once but not twice differentiable. The
tables might have obstacles in them, smaller shapes that the balls can bounce off as they
move through the big table. Often there is just one ball in the game, a single point that slides
without friction, but not always. There might be many balls, or charged particles influenced
by magnetic fields. The game might be played on a sphere or in hyperbolic space.

Billiards is a huge, sprawling subject with deep connections to topics such as math-
ematical physics, ergodic theory, surface dynamics, Teichmüller theory, and algebraic geom-
etry. There are many other surveys on billiards, most more comprehensive than this article.
I will point some of these out later on. There would be no way for me to give a comprehensive
survey of the whole business, even if I actually knew more than a little bit of it.

Rather, I will take the point of view that I am the proprietor of a Platonic pool hall.
I built the establishment based on excellent advice but had to work quickly and on a limited
budget. There are some beautiful rooms but also some of the plumbing and wiring is not
quite up to code. Some doors lead nowhere at all. You have come to my establishment and I
will show you around. I may entice you to stick around and play some games, maybe spend
some money... The topics are organized mostly according to table type: square (Section 2),
regular polygons (Section 3), rational polygons (Section 4), irrational polygons (Section 5),
polygonal outer billiards (Section 6), convex ovals (Section 7), and tables with obstacles
(Section 8).

This subdivision does not really cover it all, so sometimes I may drift off topic
or omit important things. Some of the tables here, like rational polygons, are extremely
crowded. You can barely hear yourself think above the shouting and the excitement. Other
tables, like irrational triangles or convex ovals of intermediate differentiability, are much qui-
eter. There are just a few patrons wandering around them and scratching their heads. I will
also march you past the tables I have played on and (like it or not) regale you with tales
of my own exploits from half-remembered “glory days.” My own work is concentrated in
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Sections 5 and 6. If I had more space, I would also discuss magnetic billiards, Minkoswski
billiards, symplectic billiards, polyhedral billiards, and billiards in hyperbolic space.

2. The square

In the most common kind of billiards, a point moves along the table at unit speed
and bounces off the sides according to the usual “angle in equals angle out” rule. The ball is
not allowed to go into the corners. The square is the classic billiards table. I like the square
P D Œ0; 1=2�2 because it is nicely covered by the square torus Y D R2=Z 2. There is a piece-
wise isometric map f W Y ! P , as indicated in Figure 1, which gives a bijection between
geodesics (which miss the corners of the square tiling of Y ) and billiard paths.

Figure 1

The torus covering the square.

2.1. Periodic billiard paths
A periodic billiard path is one that retraces itself. Each periodic billiard path on

P corresponds to a closed geodesic on Y , which in turn corresponds to a line segment in
the plane connecting .0; 0/ to some integer lattice point .m; n/. There are infinitely many
periodic billiard paths, but they come in a discrete set of maximal parallel families and there
is one lattice point per family. The numberN 0.L/ of maximal parallel families consisting of
periodic billiard paths of length at most L satisfies a beautiful asymptotic formula. Number
N 0.L/ counts the nonzero lattice points in the disk of radius L centered at .0; 0/, so

lim
L!1

N 0.L/

L2
D �: (2.1)

How large is the error E 0.L/ D N 0.L/ � �L2? A really crisp answer would be:

lim
L!1

jE 0.L/j

L1=2
D 1; lim

L!1

E 0.L/

L.1=2/C"
D 0; 8" > 0: (2.2)

The first equation is a theorem proved independently by Hardy and Landau. The second
equation is a famous open problem called the Gauss Circle Problem. See [56] for a survey.

The periodic billiard path is primitive if it does not trace several times over a smaller
periodic billiard path. The lattice points .m; n/ corresponding to primitive periodic billiard

2394 R.E. Schwartz



paths are coprime:m and n have no common divisors. LetN.L/ be the same count as above,
but only for the primitive periodic billiard paths. We also ignore the orientation, which cuts
the count in half. Estimating N.L/ recalls a happy exercise in number theory. The chances
that a prime p does not divide .m;n/ is 1� p�2. So, the proportion of coprime lattice points
is asymptotically Y

p

1 � p�2
D

 
1X

nD1

1

n2

!�1

D
1

�.2/
D

6

�2
:

This gives us

lim
L!1

N.L/

L2
D

�

2�.2/
D

c4

area.P /
; c4 D

3

4�
: (2.3)

2.2. Equidistribution
The aperiodic billiard paths on P correspond to geodesics  on Y having irrational

slope. Let n denote the initial portion of  having length n. We say that  is equidistributed
if, for all open U � Y ,

lim
n!1

length.n \ U/

n
D area.U /: (2.4)

The following result establishes a dichotomy for square billiards. A geodesic is either closed
or equidistributed.

Theorem 2.1. Each irrational geodesic is equidistributed and hence dense.

Proof. (Sketch.) The is equivalent to the statement that the orbits of an irrational rotation T
of R=Z are equidistributed in R=Z . That is, the fraction An=n converges to jI j, the length
of I . Here An is the number of the first n orbit points contained in the interval I . Let I be
an interval of length p=q. We can find powers n1; : : : ; nq such that the union

T n1.I / [ � � � [ T nq .I /

covers R=Z a total of p times, up to tiny overlaps and gaps that we can make as small as
we like. Relatively speaking, very few orbit points fall into the tiny overlaps and gaps. So, by
symmetry, An=n ! p=q. The case when jI j is irrational follows from the case when jI j is
rational by a similar kind of limiting argument.

2.3. Connection to hyperbolic geometry
The group SL2.Z / of integer 2 � 2 matrices of determinant 1 acts on R2 in such

a way as to preserve Z 2. Hence SL2.Z / acts as affine automorphisms of Y . These maps
permute the closed geodesics. One can study this action in terms of hyperbolic geometry. Let
H 2 denote the hyperbolic plane, given as the upper half-plane in C . The ideal boundary of
H 2 is the extended real line R [ 1. The group SL2.Z / acts on H 2 by the linear fractional
action, "

a b

c d

#
.z/ D

az C b

cz C d
: (2.5)
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When z D 1, the right-hand side is set to a=c. The modular group, SL2.Z /, is an example
of a lattice: H 2=SL2.Z / has finite hyperbolic area.

A parabolic element of the larger group SL2.R/ of real determinant-one matrices
is one which is conjugate in SL2.R/ to an upper-triangular matrix. Such elements act on H 2

without fixed points and they fix one point on the ideal boundary. The cusps of a subgroup
of SL2.R/ are the fixed points of the parabolics. For SL2.Z /, the set of cusps is Q [ 1.
Thus, the periodic billiard directions are bijective with the cusps of SL2.Z /. The periodic
direction of slope s corresponds to the cusp 1=s.

To see more geometry of the correspondence, let us consider the closed geodesics
on Y whose slopes lie in Œ1;1�. There is a familiar pattern of horodisks in H 2 associated
to the modular group. The horodisk associated to 1 is the half-plane ¹z j Im.z/ � 1º. The
horodisk tangent to the ideal boundary at a=c 2 Œ0;1� is the round disk whose diameter is c�2.
This horodisk corresponds to the primitive closed geodesic whose slope is c=a 2 Œ1;1� and
whose length is

p
a2 C c2 2 Œc; 2c�. Thus, the primitive closed geodesics of length about L

and slope in Œ1;1� correspond to those horodisks in Œ0; 1� of diameter about L�2.

2.4. Symbolic dynamics
Given an aperiodic billiard path in P , we can associate a biinfinite periodic binary

sequence ˇ. We record a 0 every time the path hits the horizontal side and a 1 every time the
path hits the vertical side. Which sequences occur? I will explain the approach taken in [98]

and also discussed in [27,29,100].
Call a biinfinite binary sequence derivable if either 00 never occurs or 11 never

occurs in the sequence. Our sequence ˇ is derivable. When the slope of the billiard path is
less than (respectively greater than) 1, we never see 00 (respectively 11). If 00 does not occur,
we let ˇ0 be the sequence obtained from ˇ by removing a single 1 from every consecutive
run of .1/s. The new derived sequence ˇ0 corresponds to the image of ˇ under the element
of SL2.Z / which is the lower triangular matrix consisting of all 1s. In particular, ˇ0 is also
derivable. We play the same game in the 11 case, with the roles of the digits swapped.

This analysis shows that the derivation process ˇ ! ˇ0 ! ˇ00 ! � � � can be con-
tinued forever, producing an infinite list of derivable sequences. Such sequences are called
Sturmian. With just a few easily classifiable exceptions, every Sturmian sequences arises as
the symbolic sequence for an irrational geodesic on Y . See [98].

3. Regular polygons

Let Pn be the regular n-gon. To avoid exceptional cases, I will take n 6D 3; 4; 6.
W. Veech [108, 109] noticed that many features of billiards on Pn resemble square billiards.
At the end of the section, I will also explain a subtle dynamical difference.

3.1. The covering surface
As with the square, there is a surfaceXn and an isometric map f W Xn ! Pn which

gives a bijection between geodesics on Xn and billiard paths on Pn.
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Figure 2

The octagon surface X8.

The left-hand side of Figure 2 indicates the genus 3 surfaceX8 made from the union
of two octagons by gluing their sides together in the pattern indicated. The pattern is meant
to continue to all 8 pairs of sides, and it is more natural if you think of the two octagons
as stacked on top of each other in space. The white points are all identified and the black
points are all identified. Away from these two special points of X8, the surface is locally
isometric to the plane. At each special cone point, X8 is locally isometric to the space made
by gluing together 8 sectors, each having angle 3�=4. Each cone point has cone angle 6� .
Our surface has a well-defined notion of direction, because the parallel rays pointing in any
given direction in the plane induce a corresponding parallel vector field onX8. TheR-letters
indicate the map f W X8 ! P8.

3.2. Connection to hyperbolic geometry
Let A.Xn/ denote the group of affine automorphisms of Xn. Such maps preserve

the cone points and are locally affine away from them. There is a homomorphism

� W A.Xn/ ! Isom.H 2/: (3.1)

Here �.f / is defined to be the action of df , when df is interpreted as acting onH 2. Because
there is a well-defined notion of direction on Xn, there is a canonical identification of all the
tangent spaces of Xn (away from the cone points). So, we can interpret df as acting on the
same copy of R2 and then we get the hyperbolic action as above. Let

�.Xn/ D �
�
A.Xn/

�
: (3.2)

This group is often called the Veech group, though sometimes one restricts to the orientation-
preserving subgroup. Nontrivial affine maps of Xn which preserve the cusps cannot be too
close to the identity, so �.Xn/ is a discrete group.

Theorem 3.1. The group �.Xn/ is generated by reflections in the sides of a hyperbolic
triangle with angles 0; 0; 2�=n when n is even and with angles 0; �=2; �=n when n is odd.

Proof. (Sketch.) Consider the case n D 8. Simultaneous reflection in the vertical bisectors
of our two octagons induces an affine automorphism corresponding to the hyperbolic reflec-
tion I1 in the hyperbolic geodesic 1 connecting 0 to1. Likewise, simultaneous reflection in
the bisector markedL on the right side of Figure 2 corresponds to an affine automorphism �2
and I2 D �.�2/ reflects in a geodesic 2 which makes an angle of 2�=8 with 1.
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The right-hand side of Figure 2 shows a decomposition of X8 into 4 cylinders, all
of the same modulus. On each of the big cylinders, there is an affine transformation, called a
Dehn twist, which is the identity on the boundary and maps the vertex marked x to the same
colored vertex marked y. The grey arrows show the motion of points near L. Thanks to the
same-modulus condition, these maps extend to all of X8, giving an affine automorphism of
X8 which restricts to Dehn twists on each cylinder. Call this map ˇ. Let �3 D �2 ı ˇ and
I3 D �.�3/. Note that �3 has order 2 and preserves the directions parallel to the vertical
and also parallel to L. So, I3 is the reflection in the geodesic 3 connecting the appropriate
endpoints of 1 and 2. The three geodesics bound the desired triangle.

The group � 0 generated by I1; I2; I3 is the triangle group, and it is a subgroup of
�.Xn/. The only discrete subgroup of Isom.H 2/ properly containing � 0 is the one generated
by � 0 and the reflection in the bisector of our hyperbolic triangle. In the even case, this is
not in �.X8/, so � 0 D �.X8/. In the odd case this extra element would be in the Veech
group.

3.3. The Veech dichotomy
The Veech dichotomy [109] establishes the same kind of periodic/equistributed

dichotomy for regular polygons that we saw for the square in Section 2.2.

Theorem 3.2. (1) In each direction ofXn corresponding to a cusp of �.Xn/, there is a par-
tition of Xn into metric cylinders foliated by parallel closed geodesics. (2) Conversely, any
direction containing a closed geodesic corresponds to a cusp of �.Xn/. (3) Every geodesic
in a noncusp direction is equidistributed.

Proof. (First statement.) Let X D Xn. Let h be the parabolic affine automorphism of X
corresponding to the cusp. Replacing h by h2 if necessary we can assume that h fixes both
cone points. Consider a geodesic ray  emanating from one of the cone points in the direction
fixed by h. Then h is the identity on  . If  does not return to a cone point then some small
Euclidean disk D � X intersect  in at least 2 parallel strands. Inside D the map h acts
as a shear and therefore shifts one strand of  \D with respect to the other in a nontrivial
way. But h is the identity on both strands. This is a contradiction. Hence all geodesic rays
emanating from the cone points return to cone points. The union of these saddle connections
divides X into open cylinders foliated by parallel closed geodesics.

In the next section I will prove the second statement and a weak version of the third.

3.4. Periodic billiard paths
The Veech dichotomy relates the count of the periodic billiard paths to the enu-

meration of cusps in the Veech group. Veech [108, 109] makes this enumeration and proves
that equation (2.3) holds for all regular polygons Pn with some constant cn in place of c4.
The Siegel–Veech constant cn in general is complicated, but here is the nice formula when
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respectively p is an odd prime and n is a power of 2:

cp D
p.p � 1/.p2 C 1/

48.p � 2/�
; cn D

n2.n � 1/

16.n � 2/�
: (3.3)

Veech’s argument is a subtle mix of number theory and dynamics, but the horodisk
picture discussed in Section 2.3 gives some geometric intuition. Rotate so that the horizontal
direction is periodic. As with the modular group, consider a �.X/-invariant pattern of dis-
joint horodisks in H 2, one per cusp. The primitive periodic directions of slope in Œ1;1� and
having length at most L essentially correspond to horodisks of diameter larger than about
L�2 that are based at points in Œ0; 1�. There are certainly at most O.L2/ of these horodisks,
and it is at least plausible (and not too hard to prove) that there are at least O.L2/ of them.

3.5. Symbolic dynamics and cusps
In [100], J. Smillie and C. Ulcigrai use the Veech group to show that the symbolic

sequences for billiards on P8 follow a derivation rule much like that for Sturmian sequences
discussed above. Subsequently D. Davis [27] worked this out for all Pn.

In [73], A. Leutbecher proves the following result:

Theorem 3.3. A point of the ideal boundary of the hyperbolic plane is a cusp of �.X5/ if
and only if it lies in Q.cos.2�=5// [ 1.

Similar results cover n D 3; 4; 5; 6; 8. Compare Theorem 1.5 in [80]. Is it an open
problem to characterize the cusps of �.Xn/ for the cases other than these. The case n D 7

is the first unknown case. See [80] for a discussion of all this.
In [28], D. Davis and S. Lelièvre obtain many additional results about coding the

billiards in P5 and the cusps of �.X5/.

3.6. Mixing
Here is one way billiards in Pn different from billiards in the square. On the square,

the billiards map (which keeps track of the billiard paths at the bounce points) typically
equidistributes the points, but it does not mix them up. A transformation T of a measure
space .X;�/ is called respectively mixing and weak mixing if

lim
n!1

ˇ̌
�
�
U \ T n.V /

�
� �.U /�.V /

ˇ̌
D 0; lim

n!1

1

n

n�1X
j D0

ˇ̌
�
�
U \ T j .V /

�
� �.U /�.V /

ˇ̌
D 0:

(3.4)
A weak mixing transformation is “mixing at most times.” On the square, the billiards map
(see Section 7.1) is not weak mixing, but A. Avila and V. Delecroix [4] show that with respect
to a typical aperiodic direction on Pn, the billiards map is weak mixing (but never mixing).

4. Rational polygons

A rational polygon is a polygon whose angles are all rational multiples of � . It
is difficult to overstate (and to adequately survey) the spectacular development of rational
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billiards, the study of billiards in rational polygons and more generally the straight line flow
in translation surfaces. For additional sources, see [46,77,115,118,119].

4.1. Translation surfaces
A translation surface is any oriented surface made by gluing together a finite collec-

tion of disjoint polygons in such a way that the side identifications are given by translations.
As above, such a surface is locally Euclidean and has a well-defined sense of direction away
from a finite number of cone points whose angle is an integer multiple of 2� . The geodesics
on a translation surface are locally straight lines and they avoid the cone points. Here are 3
basic definitions.

Strata. The set of all translation surfaces with a fixed topological type and a fixed list of
cone angles is called a stratum.

Veech group. The affine automorphism groupA.X/ and theVeech group�.X/D �.A.X//

are defined for a general translation surface X just as in Section 3.2. We let AC.X/ and
�C.X/ denote the respective orientation preserving subgroups. We sometimes think of
�C.X/ as a subgroup of SL2.R/ rather than as a subgroup of Isom.H 2/.

Lattice property. Group �.X/ need not be a lattice in Isom.H 2/, but when it is a lattice
we say that X has the lattice property.

Lemma 4.1 (Katok–Zemylakov construction). Let P be rational polygon. Then there is a
translation surfaceXP and a piecewise isometric map f WXP ! P which carries geodesics
on XP to billiard paths on P .

Proof. For each edge e ofP there is a reflectionRe in the line through the origin parallel to e.
The groupG generated by these reflections is finite, thanks to the rationality assumption. For
each g 2 G, define Pg D g.P /C Vg . Here Vg is a vector included so that all the polygons
¹Pg j g 2 Gº are disjoint. The final answer is independent of these auxiliary vectors.

We form an identification space on the union of these polygons by gluing together
every pair of edges of the form

e1 D g.e/C Vg ; e2 D gr.e/C Vgr ; r D Re (4.1)

by a translation. By construction, XP is a translation surface. The map XP ! P is defined
to be the inverse of the map g C Vg on the piece Pg .

This all-purpose construction is not necessarily the most efficient one in special
situations. For instance, when applied to the regular n-gon it produces a cyclic cover of the
surface Xn considered in the previous chapter.

4.2. Affine action
Each stratum has an action of GL2.R/ on it. If we have a translation surface Y made

by gluing together a finite list P1; : : : ; Pk of polygons and an element g 2 GL2.R/, we get
a new translation surface g.Y / by gluing together g.P1/; : : : ; g.Pk/ in the same pattern.
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When Y is the square torus, and g 2 SL2.Z /, the surface g.Y / is obtained by gluing
the opposite sides of an area 1 parallelogram whose vertices have integer coordinates. This
is just Y again, presented differently. More generally, if g 2 AC.Y / then dg.Y / is the same
surface as Y . Conversely, g 2 SL2.R/ and g.Y / D Y then g 2 �C.Y /. This lets us identity
the orbit SL2.R/ � Y with SL2.R/=�C.Y /. We may identify this latter space with the (orb-
ifold) unit tangent bundle of H 2=�C.X/. Equipped with this point of view, let us prove the
second statement of the Veech dichotomy theorem.

Lemma 4.2. Suppose that X is a translation surface and �C.X/ is a lattice in SL2.R/. If
X has a closed geodesic with direction ı, then ı corresponds to a cusp of �.X/.

Proof. For ease of exposition, assume that elements of �C.X/ act on H 2 without fixed
points, so that the quotient†D H 2=�C.X/ is a finite-area hyperbolic surface. In the general
case, we would pass to a finite-index subgroup. A geodesic ray in † either goes to a cusp or
else recurs infinitely often to a compact subset. We rotate X so that ı is horizontal. Let

gt D

"
e�t 0

0 et

#
: (4.2)

Since gt .X/ has a closed loop whose length tends to 0 as t ! 1, the surface gt .X/ exits
every compact subset of SL2.R/=�C.X/ as t ! 1. But the set ¹gt .X/ j t � 0º projects to
a geodesic ray on †. If 1 (the point on the ideal boundary corresponding to the horizontal
direction) is not a cusp of † then this ray recurs infinitely often to a compact subset of †.
But this is a contradiction.

Here is a weaker version of the third statement. The reason that the aperiodic direc-
tions are dense is that the boundary of the complement of a nondense geodesic would have
a closed loop, and then Lemma 4.2 would say that the direction corresponds to a cusp. The
equidistribution statement follows from Theorem 1.1 in H. Masur’s paper [76] and the fact
that a geodesic which does not exit the cusp of H 2=�.C / is recurrent.

4.3. Connection to Teichmüller space
The space M g is the space of Riemann surfaces of genus g. The universal orbifold

cover ofM g is called Teichmüller space and denoted T g . To define T g , we fix a background
genus g surface †0. A point in T g is then an equivalence class of pairs .†; /, where † is
a genus g Riemann surface and  W †0 ! † is a homeomorphism. Two pairs .†1;  1/ and
.†2;  2/ are equivalent if there is a biholomorphic map f W †1 ! †2 such that f ı 1 and
 2 are homotopic maps. The map  is often called the marking of †.

One can think of a genus g translation surface as a Riemann surface equipped with
a holomorphic 1-form, an expression which looks like f .z/dz in local coordinates. These
objects are also called abelian differentials. Thus a translation surface Y naturally gives rise
to a point in the “vector bundle” of abelian differentials over moduli space. I put “vector
bundle” in quotes just because M g is an orbifold rather than a manifold. More simply, each
marked translation surface corresponds to a point in the vector bundle of abelian differentials
over Teichmüller space.
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We can interpret the SL2.R/ action as giving a group action on the abelian dif-
ferential bundle over Teichmüller space. For any translation surface Y , the orbit SL2.R/ � Y

projects to the hyperbolic plane in T g . When Y has the lattice property, this hyperbolic plane
further projects to an isometric copy of H 2=�C.Y / in M g called a Teichmüller curve.

4.4. Structure of strata
The following lemma gives the basic structure of the strata.

Lemma 4.3. A stratum having genus g and v cone points is a complex orbifold of (complex)
dimension n D 2g C v � 1. The manifold cover of the orbifold has an atlas of coordinate
charts with transition functions in GLn.C /.

Proof. (Sketch.) Let † be the stratum and let X 2 † be a translation surface. We construct
local coordinates called period coordinates to describe a neighborhood of X in †. Trian-
gulate X so that the v vertices of the triangulation are the cone points. This realizes X as
the quotient of a union of f triangles with e pairs of edges glued together by translations.
Orient each pair of edges and pick one edge from each pair and record the complex number
that describes its direction and magnitude.

A nearby assignment of e complex numbers gives a recipe for a new collection of
triangles provided that, around each triangle, the corresponding sum of the complex numbers
(perhapswith signs in front) is 0. This gives f relations, but one relation is redundant because
the closing conditions on all but one triangle determine the last closing condition. So, the
space of valid choices has dimension n D d � f C 1 D 2g � v C 1.

These coordinates might not give a local homeomorphism into C n because (thanks
to symmetries) different assignments can give rise to the same translation surface. By consid-
ering the same marking trick as with the definition of Teichmüller space, you can construct a
cover of the stratumwhich is a manifold and for which the above coordinates are a coordinate
chart in the usual sense. If X is triangulated in a different way then the transition functions
between the coordinate charts are complex linear.

Lemma 4.3 has a kinship with W. Thurston’s paper [105], in which he considers the
moduli space of flat cone metrics on the sphere with n C 2 � 4 prescribed cone angles.
He constructs “period coordinates” in which these spaces are orbifolds whose transitions
functions lie in PU.1; n � 1/ � GLn.C /. Under certain arithmetic conditions on the cone
points, Thurston shows that the subset of unit area structures is open dense in a complex
hyperbolic orbifold coming from a Deligne–Mostow [31] lattice.

4.5. Periodic billiard paths
M. Boshernitzan, G. Galperin, T. Krüger, and S. Troubetzkoy [14] prove that the

periodic billiard positions and directions are dense in a rational polygon.

Theorem 4.4. For any rational polygon P , the set of periodic billiard paths lifts to a dense
subset of the unit tangent bundle of P .
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The closed geodesics on a translation surface Y come in parallel families and sweep
out maximal metric cylinders. Let N.L; Y / denote the number of these maximal cylinders
of length less than L. Here is a result of H. Masur’s [74,75]:

0 < AY � lim inf
L!1

N.L; Y /

L2
� lim sup

L!1

N.L; Y /

L2
� BY < 1: (4.3)

This result implies a similar-looking result for periodic billiard paths on rational polygons.
Here is one of the main open problems in the field.

Conjecture 4.5. AY D BY for all translation surfaces Y .

A. Eskin and Masur [42] prove Conjecture 4.5 for almost all surfaces within each
stratum, and they show that the common value, called the Siegel–Veech constant, just
depends on the stratum. One application of the main result in [43, 44] (discussed below)
is that Conjecture 4.5 is true in an average sense,

lim
L!1

1

L

Z L

0

N.Y; et /e�2t dt D CY ; (4.4)

for all surfaces Y . The constant depends on the surface.
These strong asymptotic counting results rely on powerful dynamical results about

the action of SL2.R/ and its subgroups on the bundle of abelian differentials on Teichmuller
space. This survey does not really touch on these ideas. See [115] for details.

4.6. Classification problem
Which polygons and translation surfaces have the lattice property? Which Teich-

müller curves arise? How does the Teichmüller curve depend on the translation surface (with
the lattice property)? Here is some progress on these questions.

Genus 2. In the genus 2 stratum with 2 cone points, only the regular decagon with opposite
sides identified has the lattice property. See [79]. In the genus 2 stratum with 1 cone point,
there is an infinite family, all coming from L-shaped polygons in which a rectangle is cut
out the corner of the square. The corresponding Veech groups are classified by an invariant
.˙1/, called the spin, and square-free integerD congruent to 0 or 1mod 4 called the discrim-
inant. The corresponding quotient†D D H 2=�.XD/ embeds in a Hilbert modular surface
.H 2

� H 2/=PSL2.OD/. Here OD is the ring of algebraic integers in Q.
p
D/. See [78] and

[20]. The topological features of†D , namely its Euler characteristic (M. Bainbridge [6]) and
orbifold points (R. Mukamel [85]), are known.

Genus 3 and 4. C. McMullen, R. Mukamel, and A. Wright [81] recently discovered new
infinite families of primitive translation surfaces, i.e., not covers of other translation surfaces
in lower genus, in genus 3 and 4 which have the lattice property. These surfaces correspond
to certain dart-shaped quadrilaterals. One family corresponds to darts of the form .1; 1; 1; 9/,
and the other corresponds to darts of the form .1;1;2;8/. These numbers describe the relative
proportions of the interior angles of the darts.
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Triangle groups. The Veech groups all have cusps. With Theorem 3.1 in mind, one can
ask whether every triangle group with a cusp arises as a Veech group. Subject to certain
congruence conditions and an index 2 ambiguity, this turns out to be true. I. Bouw and
M.Möller [15] discovered translation surfaces with this property and defined them in terms of
algebraic geometry. Later,W. Hooper gave concrete combinatorial descriptions for them [61].
Compare also [29] and [116].

Computation. J. Athreya, D. Aulicino, and W. Hooper [3] explicitly compute the quotient
H 2=�.X/ where X is the translation surface associated to the regular dodecahedron. This
canonical object has genus 131, 19 cone singularities, and 362 cusps. Relatedly, the authors
show that modulo the action ofA.X/ there are exactly 31 closed geodesics onX which con-
tain just a single cone point. The point of these results is not just the surprising complexity,
but also their vital reliance on software. In this case, the results use Sage-based software
written by Hooper and V. Delacroix [30]. See [16] and [41] for computational Veech group
algorithms.

4.7. Orbit closures
Let gt be as in equation (4.2). When Y has the lattice property, the flow t ! gt .Y /

traces out the lift of a geodesic to the unit tangent bundle U of H 2=�.Y /. The closure of
this set could be the lift to U1 of a geodesic lamination, a set which looks locally like the
product of a geodesic and a Cantor set. When Y does not have the lattice property, the orbit
closure could be even wilder. A huge breakthrough in rational billiards rules out this kind of
wildness for the closure of GL2.R/ � Y . The following result is a combination of results in
A. Eskin and M. Mirzakhani [43] and Eskin–Mirzakhani–A. Mohammadi [44].

Theorem 4.6. For any translation surface Y , the closure of GL2.R/ � Y is a locally affine
orbifold (possibly with self-intersections). The support of any ergodic SL2.R/-invariant
measure on the orbit closure has the same structure, and the measure is affine.

Theorem 4.6, which A. Zorich [119] calls the Magic Wand Theorem, has spurred a
huge amount of activity. I have already mentioned equation (4.4) as an application. Here are
three more developments.

Algebraic structure. The bundle of abelian differentials over moduli space has an algebraic
structure, but the Magic Wand Theorem only says that the orbit closures are real analytic
in this structure. (The periodic coordinates are transcendental.) In [45], S. Filip shows that
nonetheless the orbit closures are algebraic.

The illumination problem. Given a billiard table P and two points x; y 2 P , one says that
x illuminates y if there is a billiard path starting at x and containing y. In [72], S. Lelièvre,
T. Monteil, and B.Weiss use the MagicWand Theorem to prove that for any rational polygon
P and for any point x 2 P , there are at most finitely many y 2 P such that x does not
illuminate y. Compare also [1]. In a recent refinement [114], A. Wolecki shows that there are
at most finitely many pairs in any rational polygon P such that x does not illuminate y.
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Wild horocyclic closures. Let P be the parabolic subgroup consisting of the upper-trian-
gular matrices. J. Chaika, J. Smillie, and B. Weiss [22] prove that the closure of P � Y can
be wild. For instance, it can have fractional Hausdorff dimension. The surprise here is that
when Y has the lattice property, the closure P � Y is either a single curve or all of U .

5. Irrational polygons

Now we leave the excitement of rational billiards and consider the case of billiards
on irrational polygons, those whose angles are not all rational multiples of � . Given the
incredible depth and precision of the results about rational billiards, it is remarkable that we
do not even know if every obtuse triangle has a periodic billiard path! We also do not know
if every acute triangle has a periodic billiard path that is not of the kind shown in Figure 3
below. Are there polygons without periodic billiard paths? Nobody knows. Problems such
as the illumination problem discussed above are wide open.

5.1. Easy examples
Figure 3 shows periodic billiard paths which exist on all acute triangles and all right

triangles, respectively. The periodic path with 6 bounces shown on the left-hand side of
Figure 3 is part of an infinite parallel family of such paths. This family degenerates to the
periodic billiard path having 3 bounces. This special periodic billiard path, called the Fag-
nano path, is the inscribed triangle of minimum length. The billiard path on the right starts
and ends perpendicular to the side. Call such periodic billiard paths orthogonal.

Figure 3

Periodic billiard paths on acute and right triangles.

5.2. Right triangles
When applied to irrational polygons, Lemma 4.1 produces an infinite translation

surface. When P is a right triangle, the resulting surface XP is really neat. Let Q denote
the rhombus that is tiled by 4 copies of P . Now glue a countable collection of copies of Q
around a single vertex, in a kind of spiral pattern, as indicated in Figure 4.

Finally, glue together the remaining sides of the infinite union in the pattern indi-
cated. This surface is constructed in the abstract so that the different rhombi do not really lie
in the plane and overlap. Surface XP has 4 infinite cone points, all of which have the same
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Figure 4

The translation surface associated to an irrational right triangle.

structure. The construction above favors one of the cone points, and so you have to stare at
the picture for a while to see the other three.

In [107], S. Troubetzkoy analyzes these surfaces and proves the following result:

Theorem 5.1. Any irrational right triangle has a side such that all but countably many
points in that side are the start points of orthogonal periodic billiard paths.

Compare the work of B. Cipra, R. Hanson, and A. Kolan [26]. A quick corollary of
Theorem 5.1 is that periodic billiard paths on a right triangle are dense, as in Theorem 4.4.

A periodic billiard path on a triangle is called stable if a periodic billiard path of
the same combinatorial type exists on all nearby triangles. W. Hooper [58, 60] proved the
following result:

Theorem 5.2. No combinatorial type of periodic billiard path exists on both acute and
obtuse triangles. In particular, periodic billiard paths on right triangles are unstable.

There are still lots of open problems about right triangular billiards. For instance,

Question 5.3. Does the number of maximal families of periodic billiard paths in a right
triangle have quadratic growth, as in Masur’s theorem?

5.3. Existence results for obtuse triangles
In [49], G. A. Galperin, A.M. Stepin, and Y. B. Vorobets construct some infinite

families of periodic billiard paths in irrational polygons. In [57], L. Halbeisen and N. Hunger-
buhler construct additional infinite families of periodic billiard paths in obtuse triangles. The
examples in [49] and [57] are stable.

Here is one of my results, proved in a series of two papers [92,94].

Theorem 5.4. An obtuse triangle has a stable periodic billiard path provided all its angles
are at most 100 degrees.
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Proof. (Rough sketch.) Let P denote the parameter space of similarity classes of obtuse
triangles. Then P itself is a triangle. Let P100 denote the subset corresponding to triangles
having less than 100 degrees.

Suppose that w is some finite word that corresponds to a stable periodic billiard
path on some triangle. LetO.w/ � P be the set corresponding to triangles which support a
periodic billiard path with sequence w. We call O.w/ the orbit tile. To estimate O.w/, we
successively reflect the initial triangle according to the digits of the word, as in Figure 5. The
result is called the unfolding. The stability condition guarantees that the first and last sides
of the unfolding are parallel, no matter which triangle we use for the construction. Rotate so
that the translation carrying the first side to the last side is horizontal.

Figure 5

An unfolding and a corridor.

There is a maximal strip, with horizontal sides, such that any horizontal line in the
strip corresponds to a periodic billiard path. We call this a corridor. As the triangle changes
shape, the corridor widens or narrows according to how the vertices move. The billiard path
disappears when the height of one of the vertices along the top of the unfolding has the same
height as one of the vertices along the bottom. This condition is given by the vanishing of a
finite trigonometric sum. Using some mixture of analytic and numerical methods, one can
approximate O.w/ in a rigorous way.

Showing that a given region in P consists entirely of triangles with stable periodic
billiard paths amounts to proving that one can cover this region with orbit tiles. First, I found
some nice infinite families of orbit tiles which in a systematic way cover certain regions of
P100, trouble spots, which have no finite cover. (See the discussion and also Theorem 5.8
below.) Then I do repeated depth-first searches through the tree of words, up to a suitable
depth, in order to cover the remainder P100 with about 200 more orbit tiles.

W. Hooper and I wrote a computer program, called McBilliards, which does these
searches and also plots the orbit tiles to a high degree of accuracy. The search looks like it
is exponential in the depth—which would be very bad—but in fact it is much faster. Given
a triangle and a word, McBilliards performs the unfolding until it appears that the unfolding
is so crooked that no continuation of the word would produce a nonempty corridor. This
pruning vastly increases the speed.
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Recently, in a preprint [106], J. Garber, B. Marinov, K. Moore, and G. Tokarsky
improved my 100-degree result to 112:3 degrees, though they do not have the stability con-
clusion. They discovered that certain special triangles are quite difficult to cover with stable
orbit tiles, but nonetheless have unstable periodic billiard paths. As I mentioned above, my
dataset involved several infinite families of words and about 200 additional “sporadic” words.
The dataset in [106] involved bazillions of sporadic words. I do not know the number, but it
took me several hours just to download the dataset from the internet!

One serious difficulty in using the orbit tile approach to prove that every triangle has
a periodic billiard path is that regions near the boundary of the parameter space, correspond-
ing to thin triangles, are extremely hard to cover with orbit tiles. In my 100-degree theorem,
I got lucky and found an infinite family of periodic billiard paths which cover a neighborhood
of the boundary, up to 5�=8. Beyond this, there is no known point on the boundary which
has a neighborhood covered by orbit tiles. Note that 5�=8 radians is 112:5 degrees, so the
112:3 result of [106] cannot be much improved without more luck at the boundary.

Here are a few more existence results. In [62], Hooper and I used similar ideas to
prove the following result.

Theorem 5.5. If ¹Pnº is any sequence of triangles converging to an isosceles triangle, then
Pn has a periodic billiard path once n is sufficiently large.

There is only one counting result, due to Hooper [59], which even vaguely resembles
equation (2.3).

Theorem 5.6. There exists an open subset of obtuse triangles such that for each triangle in
the set the number N.L/ of primitive periodic billiard paths has the property that

lim
L!1

N.L/

L log.L/k
D 1

for any k.

Numerical experiments with McBilliards lead to the following conjecture:

Conjecture 5.7. Orbit tiles are connected and simply connected.

It would also be interesting to know how the area of the orbit tile depends on the
length of the word. One approach to showing that some triangles do not have any periodic
billiard paths would be to show that in general the area decays very rapidly and the number of
words does not grow quickly. See the result of D. Scheglov discussed below in Section 5.6.

5.4. Recalcitrance
Call a triangle T recalcitrant if for any " > 0 there are triangles within " of T (in

terms of angle differences) supporting no periodic billiard paths of length less than 1=". The
corresponding point in the parameter space has no neighborhood covered by finitely many
orbit tiles. In [92] I proved the following result:

Theorem 5.8. The .2; 3; 6/ right triangle is recalcitrant.
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Theorems 5.8 and 5.4 complement each other. Basically, Theorem 5.8 says that a
result like Theorem 5.4 is intrinsically hard. A neighborhood of the .2; 3; 6/ triangle, on
the obtuse side of the parameter space, is one of the trouble spots I mentioned above in
connection with the proof of Theorem 5.4.

Numerical experiments with McBilliards lead to the following conjectures:

Conjecture 5.9. Every obtuse Veech triangle is recalcitrant.

Conjecture 5.10. Once the Fagnano orbit tile is removed, the acute triangle parameter
space is not covered by any finite union of orbit tiles.

Conjecture 5.11. For anyN there is some "> 0 so that no triangle within " of the equilateral
triangle has an orthogonal periodic billiard path of length less than N .

5.5. Bounce rigidity
One of the few sweeping geometric results about billiards in any polygon is bounce

rigidity. Every polygon P gives rise to a collection B.P / of biinfinite words corresponding
to biinfinite billiard paths. These billiard paths may or may not be periodic. The set B.P / is
called the bounce spectrum. In [40],M.Duchin, V. Erlandsson, C. Leininger, andC. Sadanand
prove that the bounce spectrum essentially determines the shape of P .

Theorem 5.12. If two polygonsP1;P2 are such thatB.P1/DB.P2/, then eitherP1 andP2

are related by a similarity or elseP1 andP2 have all right angles and are affinely equivalent.

A very similar result is proved independently by A. Calderon, S. Coles, D. Davis,
J. Lanier, and A. Oliveira in [19]. These results are the culmination of many works on this
topic. See [40] and [19] for further references.

5.6. Ergodicity and complexity
A. Katok [68] has called the ergodicity and orbit growth for irrational polygonal

billiards one of the five most resistent problems in dynamics. Here are two subproblems of
Problem 3 on Katok’s list.

Question 5.13. Is the billiard flow ergodic with respect to almost every polygon?What about
with respect to almost every triangle?

Conjecture 5.14. With respect to any polygon the number S.L/ of saddle connections of
length less than L is eventually less than L2C" for any " > 0.

The work of S. Kerkhoff, H. Masur, and J. Smillie [69] gives a Gı -set of ergodic
tables. Recently, J. Chaika and G. Forni [21] proved a similar result about weak mixing. Com-
pare [5]. Ya. Vorobets [112] gives an explicit (but crazily impractical) criterion for ergodicity:

Theorem 5.15. If the polygonQ admits approximation by rational polygons at the rate

�.N / D
�
2222N ��1

:

Then the billiard flow is ergodic onQ.
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See [77] for many other references about ergodicity of the billiard flow.
In [67], Katok proves that S.L/ grows subexponentially. D. Scheglov [91] has the

best refinement on this result to date:

Theorem 5.16. With respect to almost every irrational triangle T , the following estimate on
S.L/ holds:

lim
L!1

S.L/

exp.L"/
D 0 8" > 0:

6. Polygonal outer billiards

B.H. Neumann [86] introduced outer billiards in the late 1950s and then J. Moser
[83,84] popularized it in the 1970s as a toy model for planetary motion. Outer billiards is a
game that is played on the outside of a billiard table. Given a compact convex set K � R2

and a point x0 2 R2
�K, one defines x1 to be the point such that the segment x0x1 is tangent

to K at its midpoint and K lies to the right of the ray ���!x0x1. See Figure 6 for an example.

Figure 6

Polygonal outer billiards.

The iteration x0 ! x1 ! x2 ! � � � is called the forward outer billiards orbit of x0.
The backward orbit is defined similarly. When K is a polygon, this map is well defined in
the complement of finitely many rays which extend the sides of K.

6.1. Periodic orbits
WhenK is a polygon, the second iterate  of the outer billiards map is a piecewise

translation. The translation vectors all have the form 2.vi � vj /, where vi and vj are vertices.
Every finite power of  is defined in the complement of finitely many lines. In particular, if
 has a periodic orbit, then there is a maximal open convex set containing this point, often
called a periodic island, which consists entirely of periodic points of the same period. This is
somewhat akin to the phenomenon that periodic billiard paths on polygons come in infinite
parallel families.

Periodic orbits are easier to come by in polygonal outer billiards. C. Culter proved
the following pretty easy result. See [104].
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Theorem 6.1. Outer billiards with respect to any convex polygon has infinitely many peri-
odic islands.

Three teams of authors, namely Vivaldi–Shaidenko [110], Kolodziej [70], and
Gutkin–Simanyi [55] proved the following result:

Theorem 6.2. If K is a convex polygon with rational vertices then all outer billiards orbits
on K are bounded. Hence all orbits are periodic.

Proof. (Sketch of both results.) Let P be a convex polygon. Scale so that P has integer
vertices. For simplicity, assume that P has no parallel sides. For each edge e of P , consider
the strip†e with the following description. One side of†e contains e, and the unique vertex
of P farthest from e lies on the centerline of the strip. This†e is twice as wide as P in some
sense. Let e1; : : : ; en be the edges of P ordered according to their slopes. Let †1; : : : ; †n

be the corresponding strips.
There are partitions of each strip †j into parallelograms translation equivalent to

†j \†j C1 such that, for p far away from P , some power of  maps each parallelogram in
†j isometrically into †j C1. Figure 7 shows this.

Figure 7

The strip map.

Let fj be the map which maps the nth parallelogram in†j to the nth parallelogram
in†j C1, as indicated by Figure 7. Let‰ denote the first return map to the strip†1. Outside a
large compact set,‰ agrees with fn ı � � � ı f1. In particular,‰ (and hence  ) has a periodic
orbit provided that, far away from P , there are parallelograms Rij � †j such that

H.i1; : : : ; in/ D R1 \ f �1
1 .R2/ \ � � � \ f �1

1 ı � � � ı f �1
n .Rn/ 6D ;: (6.1)

I like to think of these as “resonances.”
If P has integer vertices, then for certain lists of integers i1; : : : ; in, the set

H.i1; : : : ; in/ is convex set that completely spans †1, like a tennis ball in a can, so that
†1 �H is disconnected. The corresponding periodic island separates P from infinity, like
a necklace. These special integer lists recur periodically, so there is an infinite sequence
of these necklace barriers marching out to 1. The other orbits are trapped between these
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barriers. Hence all orbits are bounded. But since  is locally a translation by integer vectors,
all orbits are periodic by the pidgeonhole principle.

When P is arbitrary, these exact resonances do not occur, but infinitely often they
nearly occur. Hence there are infinitely many periodic islands which very nearly span the
strip †1.

Question 6.3. Does outer billiards have a dense set of periodic islands with respect to almost
every polygon?

6.2. Aperiodic orbits
Let us examine the proof sketch just given more carefully. The existence of the

resonances producing the necklace orbits just discussed does not really depend on the poly-
gon P having integer vertices. The important thing is that the consecutive parallelograms
†j \†j C1 have commensurable areas. A polygon which has this property is called quasi-
rational. Thus, the stronger version of Theorem 6.2 is that every quasirational polygon has
all orbits bounded.

The regular polygons certainly are quasirational. Hence all the outer billiards orbits
are bounded for regular polygons. In [102], S. Tabachnikov proved the following result:

Theorem 6.4. Outer billiards orbits on the regular pentagon has some aperiodic orbits.

Figure 8 shows the pattern of periodic islands for the regular pentagon. The outer
5 periodic islands, not entirely shown, form the first necklace. Theorem 6.4 is proved by
establishing that the first return map to a certain triangular region T in the plane is a renor-
malizable polygon exchange map. In this case, this means that the first return map to some
smaller triangle T 0 � T is conjugate, via a similarity, to the first return map to T .

Figure 8

Periodic islands for the regular pentagon.

The cases n D 8; 10; 12 also have a self-similar structure. Without having a refer-
ence, I have the sense that the case n D 7 is somewhat understood in the sense that there
are some regions of renormalization. I think that the cases n D 9; 11 are not understood at
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all. G. Hughes [63] has made beautiful and detailed pictures of outer billiards on regular
polygons. These pictures (and earlier ones) suggest

Conjecture 6.5. Outer billiards on the regular n-gon has an aperiodic orbit if n 6D 3; 4; 6.

I think that this is not known aside from n D 5; 8; 10; 12, and perhaps n D 7.
D. Genin [50] made a thorough study of outer billiards on trapezoids, and found

examples of open subsets of aperiodic orbits.

6.3. Unbounded orbits
One central problem in the subject is theMoser–Neumann Problem: Do there exist

any outer billiards systems with unbounded orbits? In [84] and [83], Moser discussed this
problem in terms of the stability of a toy problem for planetary motion.

Figure 9

The Penrose kite (left) and the kite Ka (right).

In [93] I answered this question by showing that outer billiards with respect to the
Penrose kite has an unbounded orbit. The left side of Figure 9 shows the Penrose kite and
a point x with an unbounded orbit. The auxiliary lines are just scaffolding to show the con-
struction.

Later, I proved a more general theorem in [95] which I will now describe. A kite is a
convex quadrilateral with a line of symmetry that is a diagonal. The other diagonal divides
K into two triangles, and the kite is irrational if these areas are irrationally related. Call an
outer billiards orbit with respect to K erratic if it exits every compact subset of the plane
and enters every open neighborhood of K.

Theorem 6.6. There exist erratic orbits with respect to any irrational kite.

Proof. (Very rough sketch.) Outer billiards is affinely natural, so it suffices to consider the
kiteKa shown on the right side of Figure 9. Letƒ denote the two rays Œ0;1/� ¹�1; 1º. Let
‰ denote the first return map to ƒ. It suffices to prove that ‰ has unbounded orbits. Much
like the continued fraction approximation, there is a canonical sequence of odd/odd rationals
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¹pn=qnº ! a such that

jpnqnC1 � pnC1qnj D 2: (6.2)

Let Kn D Kpn=qn
. Let ‰n be the corresponding first return map to ƒ.

We partitionƒ into intervals of length 2=qn having centers .1=qn;˙1/, .3=qn;˙1/,
etc. The map ‰n permutes these infinitely many intervals. We encode the combinatorial
structure of this permutation as follows. There is a map from Z 2 to our intervals defined as
follows:

ˆ.m; n/ D

�
2mpn

qn

C 2n; .�1/mCnC1

�
:

I discovered that for each ‰n orbit there is an embedded nearest neighbor path on Z 2 such
that ˆ maps consecutive vertices of the path to consecutive points of the orbit. I call this
path the arithmetic graph of the orbit.

Figure 10

The arithmetic graphs �.1=3/ and �.3=7/ and �.13=31/.

Let �n D �.pn=qn/ be the arithmetic graph of the orbit of .1=qn; 1/. It is useful
to think of �n as a biinfinite path. One period of �n connects .0; 0/ to .qn;�pn/. (This
statement requires pn; qn both to be odd.) The distance that �n rises up above the line Ln of
slope �pn=qn through .0; 0/ is comparable to the excursion distance of the corresponding
‰n orbit. Figure 10 shows one period of three of these graphs. Each pair of rationals satisfies
equation (6.2). Notice that each graph copies at least one period of the previous one. Let us
call this property coherence.

There are two main steps in the proof. The first one is to establish the coherence.
The second step involves showing that the graph �n rises up at least qn=2 above the line Ln.
Once we have these properties, we can take a limit as n ! 1 and get an unbounded orbit.
The fact that these graphs copy each other makes them oscillate away and back to Ln on the
order of n times, with some of the oscillations being very large. This is the mechanism for
the erratic orbits.

For each parameter b 2 .0; 1/ there is a 3-dimensional polyhedron exchange trans-
formation .bƒb;b‰b/ and a locally affine map ‡b W ƒ ! bƒb such thatb‰b ı ‡b D ‡b ı‰:
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In other words, ‡b is a semiconjugacy between a 1-dimensional noncompact dynamical
system and a 3-dimensional compact dynamical system. For almost every b, the image of‡b

is dense. Thus, the 3-dimensional system is typically a kind of a dynamical compactification
of the 1-dimensional system. Each dynamical system .bƒb; ‰b/ in turn sits as a slice of a
4-dimensional integral affine polytope exchange transformation.

Step 1: For two parameters b D pn=qn and b0 D pnC1=qnC1 satisfying equation (6.2), the
corresponding polyhedron exchangemaps and semiconjugacies are close in the sense needed
for the coherence phenomenon.

Step 2: The polyhedron exchange map .bƒpn=qn
;b‰pn=qn

/ is determined by some partition ofbƒpn=qn
into smaller polyhedra, and the walls of this partition give rise to two infinite grids

Hn andH 0
n in R2. It turns out that �n can only cross lines ofHn near points whereHn and

H 0
n intersect. In particular, some line fromHn separates the endpoints of (one period of) �n,

and the only point of this line onH 0
n is at least qn=2 from the line Ln.

It turns out that the grid phenomenon in Step 2 above was just the tip of the iceberg.
I eventually found a kind of combinatorial model for the arithmetic graphs discussed in the
proof above. See [96].

Question 6.7. Does outer billiards have unbounded orbits with respect to almost every poly-
gon?

6.4. Nonpolygonal domains
Let me say a few words about nonpolygonal outer billiards. D. Dolgopyat and

B. Fayad [34] prove the following result:

Theorem 6.8. Outer billiards has unbounded orbits with respect to the domain obtained by
cutting a disk in half.

There is some stability to the argument. Dolgopyat and Fayad more generally prove
their result for domains obtained by nearly cutting a disk in half. The unbounded orbits
look much different from my erratic orbits: there is just an open set of them which escapes
straight to infinity. Kites and (near) semidisks are (up to affine transformations) the only
known examples of shapes with respect to which outer billiards has unbounded orbits.

Question 6.9. Is there a strictly convex domain or a C 1-domain with respect to which outer
billiards has unbounded orbits?

Using KAM theory (in an argument outlined by J. Moser), R. Douady [35] proved
the following result:

Theorem 6.10. Outer billiards has all bounded orbits with respect to C 6-oval of positive
curvature.
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In a different direction, P. Boyland [17] gives examples of C 1-domains which have
orbits that enter every open neighborhood of the domain. These orbits crash into the domain,
in an asymptotic sense. The domains are not C 2.

One other kind of domain I got curious about is a closed convex domain in the pro-
jective plane that is invariant with respect to a surface group of projective automorphisms.
The interiors of such domains are universal covers of the so-called convex projective sur-
faces. Typically, such curves are C 1 with a Hölder-continuous derivative.

7. Ovals

I will start by describing billiards inside an ellipse and related topics. See [36] for a
comprehensive reference. Following this, I will move on to more exotic kinds of tables.

7.1. Billiards in an ellipse
Let E1 be a noncircular ellipse. There are 2 special billiard paths on E1 having

period 2 and then a third special one which goes through the foci of E in-between bounces.
Every other orbit is tangent to a confocal conic section E2, either an ellipse or a hyperbola,
called a caustic. The phase portrait nicely organizes all the billiard paths. The phase spaceˆ
is the open cylinder of pairs .p;`/wherep 2E1 and ` is a line throughp which is not tangent
to E1 at p. The billiards map carries .p1; `1/ to .p2; `2/, where ¹p1; p2º are the two points
of l1 \E2 and ¹l1; l2º are the two lines making the same angle with (the tangent line to) E1

at p1.
The left-hand side of Figure 11 shows the phase portrait and indicates both the spe-

cial and generic orbits by letters. The right-hand side shows what the corresponding billiard
paths look like. Note that the billiards map preserves the curves corresponding to orbits with
ellipse caustic and the square of the billiards map preserves the curves corresponding to
orbits with hyperbola caustic.

Figure 11

The phase portrait for elliptical billiards.

One well-known fact is that periodic billiard paths in an ellipse having the same
caustic have the same perimeter. Experimenting with the computer recently, Dan Reznik has
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discovering an avalanche of related results. For instance, within a family of periodic billiard
paths corresponding to the same caustic, the product of the cosines of the interior angles is
constant. See [89] for an exposition of some of these results.

7.2. Poncelet and Cayley
The next result is a special case of the Poncelet Porism, which (when suitably

phrased to avoid mentioning billiards) works for any pair of conics, confocal or not.

Theorem 7.1. Let � be one of the smooth curves of the billiards phase space. If � corre-
sponds to an ellipse caustic then the restriction of f to� is a rotation in suitable coordinates.

Proof. (Sketch.) Let E1.C / and E2.C / denote the spheres which are extensions of E1 and
E2 to the complex projective plane. Let�.C / denote the set of pairs .p;`/wherep 2 E1.C /

and ` is a complex line through p tangent to E2.C /. The map .p; `/ ! p is a 2-fold holo-
morphic branched cover, branched over the 4 intersection points of the two spheres. Like all
complex tori,�.C / is biholomorphic to a flat torus. The billiardsmap is an isometric rotation
in these coordinates because it is the product of 2 holomorphic involutions, .p; `//! .p; `0/

and .p; `//! .p0; `/. Here `0 is the other line through p tangent toE2.C / and p0 is the other
point where ` intersects E1.C /. See [53] for more details.

There is another approach to Theorem 7.1 which works specifically in the case when
E1;E2 are confocal. LetE�

1 be the region bounded byE1. There is a uniformizing change of
coordinates [36,38] somewhat akin to the Schwarz–Christoffel transform, which carries the
relevant component of E�

1 �E2 to either a flat cylinder or a rectangle. In these coordinates,
the billiard paths with caustic E2 transform to ordinary billiards which move parallel to the
directions .˙1;˙1/. Changing the caustic E2 changes the rectangle/cylinder.

Which caustics give rise to periodic billiard paths? Cayley’s amazing answer works
for any pair .E1;E2/ of conics, confocal or not. Say that .E1;E2/ supports a Poncelet n-gon
if there exists a closed n-gon whose vertices are inE1 and whose edges are contained in lines
tangent toE2. In homogeneous coordinates,Ek is the zero-set of an equation

P
dijxixj D 0

encoded by a 3 � 3 matrixDk D ¹dij º. Take the Taylor series expansionp
det.tD1 CD2/ D A0 C A1t C A2t

2
C � � � : (7.1)

Theorem 7.2. Let �n to be the left (respectively right) determinant when n D 2m C 1

(respectively n D 2m)ˇ̌̌̌
ˇ̌̌̌ A2 : : : AmC1

:::
: : :

:::

AmC1 � � � A2m

ˇ̌̌̌
ˇ̌̌̌ ;

ˇ̌̌̌
ˇ̌̌̌ A3 : : : AmC1

:::
: : :

:::

AmC1 � � � A2m

ˇ̌̌̌
ˇ̌̌̌ : (7.2)

Then .E1; E2/ supports a Poncelet n-gon if and only if �n D 0.

See [54] for a modern proof of Cayley’s Theorem. In [39], V. Dragović and M. Rad-
nović give the complete analogue of Theorem 7.2 for billiards in a higher-dimensional ellip-
soid.
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7.3. Piecewise elliptical tables
In [37,38] Dragović and Radnović use the transformation mentioned in connection

with the Poncelet Porism to study a more exotic situation in which the table is made from
pieces of two confocal ellipses, as in Figure 12. They term this kind of billiards pseudo-
integrable. (This term also refers to rational billiards in the physics literature.)

Figure 12

A pseudointegrable table.

Since the pieces are confocal, the billiard paths still have caustics. For each choice
of caustic, the uniformizing map carries the domain which is either a right-angled polygon
or a topological cylinder with a right-angled boundary. The billiard paths on these tables
move parallel to .˙1;˙1/ as above. (My picture is just a cartoon; I did not compute the
uniformizing map.) These systems exhibit a wider variety of behavior than integrable bil-
liards [39], such as orbits which are dense but not equidistributed. See [48] and [47] for further
developments.

7.4. The stadium
Figure 13 shows the Bunimovich stadium, another billiard table that has been

intensely studied. This domain is convex but not strictly convex, and only C 1. The bound-
ary of the stadium is a union of two semicircles and two line segments. This is really a
1-parameter family of examples. The parameter is the ratio of the line segment length to the
semicircle length.

Figure 13

A Bunimovich stadium.

Here is a version of the theorem of Bunimovich which is easy to state:

Theorem 7.3. Billiards in any stadium is ergodic. In particular, almost every billiard path
is dense.
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This result is quite surprising because billiards in the disk is completely integrable.
Once you introduce even the tiniest line segment, the billiard map changes completely. The
full theorem of Bunimovich has more conclusions. See the paper of Misiurewicz and Zhang
[82] for recent results about stadium billiards, and many other references.

7.5. Periodic orbits
Now I will talk about billiards in a general oval. From now on, by an oval I mean

an infinitely differentiable and strictly convex closed curve. Many authors care about the
exact level of differentiability. I am going to sweep this under the rug; you should consult
the original sources for the precise generality needed for the results.

When C is an oval, we can define the phase space just as in the ellipse case. There
is always an invariant area form on the phase space. It is given locally by sin.�/d�ds, where
� is the angle that the relevant line ` in the pair .p; `/ makes with C , and ds is arc length.
The following theorem of Birkhoff [13] vitally uses the area-preserving nature of the billiard
map on phase space.

Theorem 7.4. IfC is an oval then, for every n> 1 and every integer rotation number jr j<n,
there are at least 2 periodic billiard paths in C having period n and rotation number r .

Area-preserving maps are special cases of symplectic maps. Sometimes one can use
symplectic geometry to get results about billiards which seem (to me) impossible to get in
a different way. Let me discuss one striking result along these lines, due to Y. Ostrover and
S. Artstein-Avidan [2]. Let �.K/ denote the length of the shortest periodic billiard path in
K. Given two setsK1;K2, defineK1 CK2 to be the set of sums v1 C v2 with v1 2 K1 and
v2 2 K2.

Theorem 7.5. For any ovals K1; K2, we have �.K1 CK2/ � �.K1/C �.K2/.

The result in [2] is stated and proved for smooth convex domains in all dimensions.

7.6. Two guiding conjectures
Here I will discuss two geometric conjectures about billiards in convex ovals. Moti-

vated by his theorem about the asymptotics of the eigenvalues of the Laplacian in a convex
domain, V.Ya. Ivrii [64] made the following conjecture:

Conjecture 7.6. Almost every billiard path in an oval is aperiodic.

Ivrii’s conjecture is wide open, but here is some partial progress. Y. Baryshnikov
and V. Zharniksky [9] prove that there cannot exist an open set of 3-periodic orbits for an
oval. M. Rychlik [90] proves the following result with the assistance of the computer:

Theorem 7.7. The set of 3-periodic billiard paths in any oval has measure 0.

L. Stojanov [101] removes the computer dependence, then M. Wojtkowski [113] and
Ya. B. Vorobets [111] give different and independent proofs for more general domains.

In [52], A. Glutsyuk and Y. Kudryashov prove the following result:
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Theorem 7.8. No oval has an open set of 4-periodic billiard paths.

In [71], V. F. Lazutkin proves that for any strictly convex and sufficiently smooth
oval, there is a positive Lebesgue measure union of caustics for billiard paths in the oval.
However, there are generally gaps between the caustics. The Birkhoff–Poritsky Conjecture
is a rigidity conjecture which says essentially that if there are no gaps between the caustics
then the table is an ellipse. Let ˆ denote the phase space for billiards on the oval C .

Conjecture 7.9. Let C be an oval. Suppose that some neighborhood of @ˆ is foliated by
invariant curves. Then C is an ellipse.

The first progress is due to M. Bialy [10]:

Theorem 7.10. If ˆ is completely foliated by invariant curves then C is a circle.

Say that an invariant curve inˆ is a q-curve if every orbit in the curve has period q.
Recently, M. Bialy and A. Mironov [12] proved the following result:

Theorem 7.11. Suppose C is centrally symmetric and there is a neighborhood N of @ˆ,
foliated by invariant curves, such that @N is a union of two 4-curves. Then C is an ellipse.

The smaller the neighborhood of the boundary, the higher the period of the orbit,
so the neighborhood needed for this theorem is sort of medium-sized. One really neat fact
proved along the way is that, given the hypotheses of the theorem, the billiard paths corre-
sponding to points on the 4-curves are all parallelograms.

In another direction, A. Glutsyuk [51], extending work in Bialy–Mironov [11], has
given a solution to the conjecture in a restricted case where the objects are not just smooth
but algebraic. See [103] for a related result in the outer billiards case.

In [66], V. Kaloshin and A. Sorrentino have proved a completely general version of
the Birkhoff Conjecture for ovals which are perturbations of ellipses. The main result in [66]

pays careful attention to the level of differentiability; here is a corollary.

Theorem 7.12. Suppose that C is sufficiently close to an ellipse in the C1-sense and also
ˆ has a q-curve for each q D 3; 4; 5; 6; : : : Then C is an ellipse.

Referring to the discussion about Lazutkin’s theorem, this last result allows there
to be gaps between the caustics, but it still supposes a very particular kind of structure to
certain of them.

7.7. The pentagram rigidity conjecture
I cannot resist bringing up a question I have been curious about for 30 years. The

question intertwines the Poncelet Porism and the so-called deep diagonal pentagram maps.
To me it seems like a discrete variant of the Birkhoff–Poritsky Conjecture. I will state the
conjecture for the pair .3; 8/ just for simplicity. Figure 14 shows two 8-gons O1 and O2

related by a construction involving the 3-diagonals ofO1. The right-hand side indicates how
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O2 might not be convex even ifO1 is convex. This operation is best defined in the projective
plane. (Convexity still makes sense there.)

Figure 14

The 8-gons O1 and O2.

Starting withO0 we can construct the biinfinite sequence ¹Onº of 8-gons, in which
successive ones are related by the construction. IfO0 is a convex Poncelet polygon, thenOk

is a projectively equivalent convex Poncelet polygon for all k 2 Z .

Conjecture 7.13. If Ok is convex for all k then O0 is a Poncelet polygon.

A. Izosimov [65] has made a bit of general progress related to this conjecture by
showing that if n is odd and two convex polygons related by the .2; n/ construction are
projectively equivalent then they both are Poncelet polygons. I recently [97] established the
very special case when the octagons have 4-fold rotational symmetry.

8. Tables with obstacles

The subject of dispersive billiards is an enormous one and this small chapter just
gives you a taste. See [24] for a survey. One of the main themes in the subject is understanding
the mixing properties of the system. Another main theme is the attempt to give rigorous
mathematical foundations for physical processes like Brownian motion and the transfer of
mass and heat in a gas.

8.1. Mixing
To build some intuition for dispersive billiards, consider how some given element

T 2 SL2.Z /, with an eigenvalue � > 1, acts on the square torus Y D R2=Z 2. Let us show
that T is mixing in the sense given by the left-hand side of equation (3.4).

Lemma 8.1. T is mixing.

Proof. (Sketch). I will just consider the case when U is a parallelogram with sides parallel
to the eigenvectors of T . Let jU j be the side length of U . Corresponding to � there is an
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irrational invariant geodesic foliation of Y . For large n, the set T n.U / is a long thin paral-
lelogram smeared out along this foliation. The long side of T n.U / is about jU j�n in length
and the short side is about jU j��n in length. So, T n.U / is essentially a really thin strip that
closely follows an irrational geodesic for a really long time. We have already seen that the
irrational geodesics in Y are equidistributed. Given this property, T n.U / spends about�.U /
percent of the time in V .

Given the exponential growth of the length of T n.U /, the quantity on the left-hand
side of equation (3.4) decays exponentially in n. That is, at least when U and V are nice sets
like rectangles or disks the quantity on the left side of equation (3.4) is of the order of e�C n

for someC >0. This kind of decay, suitably generalized and formalized, is called exponential
mixing. See [88] for a definition. Mixing is stronger than ergodicity, and exponential mixing
is even stronger than that.

8.2. The Lorentz gas
The classic Lorentz gas, also known as a Sinai billiard [99], is a billiard ball bouncing

around on the table you get by removing a round diskD from the center of a square.

Theorem 8.2. The billiard map on Œ0; 1�2 nD is mixing.

Proof. (Very rough sketch.) Ignoring the measure zero set of billiard paths which avoidD,
we can define the phase spaceˆ of the system to be the cylinder of pairs .p;`/where p 2 @D

and ` is a line through p not tangent to @D. The same measure as for smooth ovals is an
invariant one for the system.

Figure 15

Scattering property in action.

Each billiard path that leaves @D bounces some number of times on the square and
then returns to @D. Someword records the intermediate bounces. Partitionˆ by the elements
that correspond to the same word. Consider an arc of elements of the same partition which
leave @D at the same angle, as shown in Figure 15. These elements spread out before return-
ing to @D. Since the billiards map is area preserving, it stretches each partition piece in one
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direction and compresses it in the other. The longer the word, the more dramatic the effect.
So, the local behavior is like that considered for the map T considered in Lemma 8.1.

More generally, you could remove finitely many disjoint strictly convex scatterers
from the interior of the unit square or from a flat torus. The table has finite horizon if all
billiard paths hit the scatterers. The mixing properties of billiards on these tables—or at
least when the properties were established—depend on the finite horizon property and also
on whether one considers the billiards map or the billiards flow on the unit tangent bundle.
Here is a rundown of the results:

(1) Y. Young [117] shows that the billiard map is exponentially mixing in the finite
horizon case, and then N. Chernov [23] establishes this in the infinite horizon
case.

(2) V. Baladi, M. Demers, and C. Liverani [7] establish the exponential mixing
for the flow in the finite horizon case and P. Bálint, O. Butterley, and I. Mel-
bourne [8] establish polynomial mixing in the infinite horizon case.

A more complicated situation arises when the scatterers are allowed to touch.
J. de Simoi and P. Toth [32] prove that the billiards map is exponentially mixing in the
finite horizon case when no scatterers are tangent. In [25], N. Chernov and H.-K. Zhang
show that the billiard map is polynomially mixing in the finite horizon case when tangencies
are allowed.

Here are some poorly understood situations in this area. One thing you can do is play
billiards in the plane, after removing an infinite number of scatterers but not in a periodic
pattern. (The periodic case is the universal cover of the kind of the example considered
above.) Another thing you can do is replace a single bouncing point with several or many
bouncing disks of finite size. D. Dolgopyat and P. Nándori [33] make some recent progress
in the case of 2 disks.

8.3. Breakout
Let me close this survey with some whimsical questions. Inspired by the video game

Breakout [18,87], one could imagine a ball bouncing around an infinite periodic array of disk
scatterers but with the twist that a scatterer disappears as soon as it is hit.

Question 8.3. Does a typical billiard path erase all the scatters eventually?

Here is one thing I noticed about the breakout game when it is played on the 1-
skeleton of the infinite square tiling. (Again, a reflector disappears as soon as it is hit.)

Conjecture 8.4. If you start the ball moving with slope
p
2, the billiard path eventually

erases all the reflectors.

These systems remind me a little bit of Langton’s ant, and the questions about them
seem to verge on the territory of cellular automata.
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In this article we survey some of the recent developments in Ricci flow. We present a new
theory of weak, 3-dimensional Ricci flows “through singularities,” which can be viewed as
an improvement of Perelman’s Ricci flow with surgery. We point out two topological appli-
cations: the resolution of the Generalized Smale Conjecture regarding the diffeomorphism
groups of 3-manifolds and the resolution of a conjecture regarding the space of positive
scalar curvature metrics on 3-manifolds. We also describe ongoing research on the forma-
tion of singularities in higher dimensions, which may yield further interesting applications
in the future.
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1. Introduction

The Ricci flow has proven to be a powerful tool, as it was used by Perelman in the
early 2000s to resolve two of the most important conjectures in 3-manifold topology: the
Poincaré Conjecture and the Geometrization Conjecture [46–48]. These applications were
far from coincidental, as they provide a new perspective on 3-manifold topology using the
geometric-analytic language of Ricci flow. Since then there have been further advances in the
study of Ricci flow, which have led to new topological applications in dimension 3. In addi-
tion, more applications in higher dimensions may be forthcoming. The goal of this article is
to survey some of these developments, particularly those relating to questions in (geometric)
topology.

This article1 is structured as follows. We will first provide a brief introduction to
Ricci flow, review some of the earlier results in dimension 2 and Perelman’s work in dimen-
sion 3. Next, we will discuss more recent results in dimension 3 regarding singular “Ricci
flows through singularities,” their uniqueness and continuous dependence on the initial data
and describe their topological applications. Lastly, we present a new approach towards the
study of Ricci flows in higher dimensions and point out potential future directions and appli-
cations.

2. Ricci flow

A Ricci flow (introduced by Hamilton [31]) on a manifold M is given by a smooth
family g.t/, t 2 Œ0; T /, of Riemannian metrics satisfying the evolution equation

@t g.t/ D �2Ricg.t/; (2.1)

where Ricg.t/ denotes the Ricci curvature of themetric g.t/, i.e., the trace of its Riemann cur-
vature tensor Rmg.t/. Equation (2.1) is weakly parabolic and it implies an evolution equation
for the curvature tensor Rmg.t/ of the form

@t Rmg.t/ D �Rmg.t/ CQ.Rmg.t//; (2.2)

where the last term denotes a quadratic term; its exact form will not be important for this
survey. Equation (2.2) suggests that the metric g.t/ becomes “smoother” or “more homoge-
neous” as time moves on, similar to solutions of heat equations. On the other hand, the last
term in (2.2) seems to indicate that – possibly at larger scales or in regions of large curvature
– this diffusion property may be outweighed by some other nonlinear effects, which could
lead to singularities.

If M is compact, then for any initial metric g0 the Ricci flow equation (2.1) has
a unique solution g.t/, t 2 Œ0; T /, with initial condition g.t/ D g0 and for some maximal
T 2 .0; 1� [31]. If T < 1, then the flow g.t/ must develop a singularity at time T and the
curvature must blow up: maxM jRmg.t/j ���!

t%T
1.

1 This article has appeared in a modified form in the Notices of the AMS [8].
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The most basic examples of Ricci flows are those in which g0 is Einstein, i.e.,
Ricg0 D �g0. In this case the flow evolves by rescaling,

g.t/ D .1 � 2�t/g0: (2.3)

So, for example, a round sphere (� > 0) shrinks under the flow, develops a singularity in
finite time, and its diameter goes to 0. On the other hand, if we start with a hyperbolic metric
(� < 0), then the flow is immortal (i.e., T D 1) and the metric expands linearly. In the
following we will consider more general initial metrics g0 and hope that – at least in some
cases – the flow is asymptotic to a solution of the form (2.3). This will then allow us to
understand the topology of the underlying manifold in terms of the limiting geometry.

3. Dimension 2

In dimension 2, Ricci flows are very well understood [24,26,32]:

Theorem 3.1. Any Ricci flow on a compact 2-dimensional manifold converges, modulo
rescaling, to a metric of constant curvature.

In addition, one can show that the flow in dimension 2 preserves the conformal class,
i.e., for all times t we have g.t/ D f .t/g0 for some smooth positive function f .t/ onM . This
observation, combined with Theorem 3.1, can in fact be used to reprove the Uniformization
Theorem:2

Theorem 3.2. Each compact surface M admits a metric of constant curvature in each con-
formal class.

In order to obtain new applications, however, we will need to study the flow in higher
dimensions.

4. Dimension 3

In dimension 3, the behavior of the flow – and its singularity formation – becomes
far more complicated. In the following, we will first review prior work on Ricci flow in
dimension 3, which is mostly due to Hamilton and Perelman and which led to the resolution
of the Poincaré and Geometrization Conjectures. We will keep this part short and only focus
on aspects that will become important later; for a more in-depth discussion see, for example,
[1]. Next, we will focus on more recent work by Kleiner, Lott, and the author on singular
Ricci flows and their uniqueness and continuous dependence, which led to the resolution of
several longstanding topological conjectures.

2 The original proof of Theorem 3.1 relied on the Uniformization Theorem. This dependence
was later removed by Chen, Lu, and Tian.
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4.1. Singularity formation – an example
To get an idea of the possible singularity formation of 3-dimensional Ricci flows,

it is useful to consider the famous dumbbell example [2, 3] (see Figure 1). In this example,
the initial manifold .M; g0/ is the result of connecting two round spheres of radii r1; r3 by
a certain type of rotationally symmetric neck of radius r2 (see Figure 1). So M � S3 and
g0 D f 2.s/gS2 C ds2 is a warped product away from the two endpoints.

Figure 1

Different singularity formations in the rotationally symmetric case, depending on the choice of the radii r1; r2; r3.
The flows depicted on the top are the corresponding singularity models. These turn out to be the only singularity
models, even in the nonrotationally symmetric case (see Section 4.3).

It can be shown that any flow starting from a metric of this form must develop a
singularity in finite time. The singularity type, however, depends on the choice of the radii
r1; r2; r3. More specifically, if the radii r1; r2; r3 are comparable (Figure 1, left), then the
diameter of the manifold converges to zero and, after rescaling, the flow becomes asymptot-
ically round – just as in Theorem 3.1. This case is called extinction. On the other hand, if
r2 � r1; r3 (Figure 1, right), then the flow develops a neck singularity, which looks like a
round cylinder (S2 � R) at small scales. Note that in this case the singularity only occurs in
a certain region of the manifold, while the metric converges to a smooth limit everywhere
else. Lastly, there is also an intermediate case (Figure 1, center), in which the flow develops a
singularity that is modeled on the Bryant soliton – a one-ended paraboloid-like model [16].3

3 We have omitted a less important nongeneric case, called the peanut solution. In this case
the diameter converges to zero in finite time. However, after rescaling, the metric looks like
a long cylinder with a slight indentation that is capped off on each side by regions whose
geometry is close to Bryant soliton. See [2] for more details.
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4.2. Blow-up analysis
Perelman’s work implied that the previous example is in fact prototypical for the sin-

gularity formation of general (not necessarily rotationally symmetric) 3-dimensional Ricci
flow. In order to make this statement more precise, let us first recall a method called blow-up
analysis, which is used frequently to study singularities in geometric analysis.

Suppose that .M; .g.t//t2Œ0;T // is a Ricci flow that develops a singularity at time
T < 1 (see Figure 2). Then we can find a sequence of spacetime points .xi ; ti / 2 M � Œ0;T /

such that �i WD jRmj.xi ; ti / ! 1 and ti % T . Our goal will be to understand the local
geometry at small scales near .xi ; ti /, for large i . For this purpose, we consider the sequence
of pointed, parabolically rescaled flows�

M;
�
g0

i .t/ WD �i g
�
��1

i t C ti
��

t2Œ��i ti ;0�
; .xi ; 0/

�
:

Geometrically, the flows .g0
i .t// are the result of rescaling distances by �

1=2
i , times by �i

and an application of a time-shift such that the points .xi ; 0/ in the new flows corresponds to
the points .xi ; ti / in the old flows. The new flows .g0

i .t// still satisfy the Ricci flow equation
and are defined on larger and larger backwards time-intervals of size �i ti ! 1. Moreover,
we have jRmj.xi ; 0/ D 1 on these new flows. Observe also that the geometry of the original
flows near .xi ; ti / at scale �

�1=2
i � 1 is a rescaling of the geometry of .g0

i .t// near .xi ; 0/

at scale 1.

Figure 2

A Ricci flow M � Œ0; T / that develops a singularity at time T and a sequence of points .xi ; ti / that “run into a
singularity.” The geometry in the parabolic neighborhoods around .xi ; ti / (rectangles) is close to the singularity
model modulo rescaling if i � 1.

Under certain additional assumptions, we may now apply a compactness theorem
(à la Arzela–Ascoli) such that, after passing to a subsequence, we have convergence�

M;
�
g0

i .t/
�

t2Œ��2
i ti ;0�

; .xi ; 0/
�

���!
i!1

�
M1;

�
g1.t/

�
t�0

; .x1; 0/
�
: (4.1)

The limit is called a blow-up or singularity model, as it gives valuable information on the
singularity formation near the points .xi ; ti /. This model is a Ricci flow that is defined for
all times t � 0; it is therefore called ancient. So in summary, a blow-up analysis reduces the
study of singularity formation to the classification of ancient singularity models.

The notion of the convergence in (4.1) is a generalization of Cheeger–Gromov con-
vergence to Ricci flows; it is due to Hamilton [33]. Instead of demanding global convergence

2436 R. Bamler



of the metric tensors, as in Theorem 3.1, we only require convergence up to diffeomorphisms
here. More specifically, we roughly require that we have convergence

��
i g0

i .t/
C 1
loc

���!
i!1

g1 (4.2)

on M1 � .�1; 0� of the pullbacks of g0
i .t/ via (time-independent) diffeomorphisms �i W

Ui ! Vi � M that are defined over larger and larger subsetsUi � M1 and satisfy �i .x1/ D

xi . We will see later (in Section 5) that this notion of convergence is too strong to capture
the more subtle singularity formation of higher dimensional Ricci flows and we will discuss
necessary refinements. Luckily, in dimension 3 the current notion is still sufficient for our
purposes, though.

4.3. Singularity models and canonical neighborhoods
One of key discoveries of Perelman’s work was the classification of singularity

models of 3-dimensional Ricci flows and the resulting structural description of the flow near
a singularity. The following theorem4 summarizes this classification.

Theorem 4.1. Any singularity model .M1; .g1.t//t�0/ obtained as in (4.1) is isometric,
modulo rescaling, to one the following:

(1) a quotient of the round shrinking sphere .S3; .1 � 4t/gS3/,

(2) the Bryant soliton .MBry; .gBry.t///,

(3) the round shrinking cylinder .S2 � R; .1 � 2t/gS2 C gR/ or its quotient .S2 �

R/=Z2.

Note that these three models correspond to the three cases in the rotationally sym-
metric dumbbell example from Section 4.1 (see Figure 1). The Bryant soliton in (2) is a
rotationally symmetric solution to the Ricci flow on R3 with the property that all its time-
slices are isometric to a metric of the form

gBry D f 2.r/gS2 C dr2; f .r/ �
p

r:

The name soliton refers to the fact that all time-slices of the flow are isometric, so the flow
merely evolves by pullbacks of a family of diffeomorphisms.

The next theorem describes the structure of the flow near any point of the flow that
is close to a singularity – not just along a single blow-up sequence. In order to state this
result efficiently, we will need to consider the class of �-solutions. This class consists of
all solutions listed in Theorem 4.1, plus an additional compact, ellipsoidal solution [15] (the
details of this solution won’t be important here5). Then we have:

4 Perelman proved a version of Theorem 4.1 that contained a more qualitative characterization
in Case (2), which was sufficient for most applications. Later, Brendle [14] showed that the
only possibility in Case (2) is the Bryant soliton.

5 This solution does not occur as a singularity of a single flow, but can be observed as a tran-
sitional model in families of flows that interpolate between two different singularity models.
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Theorem 4.2 (Canonical neighborhood theorem). If .M; .g.t//t2Œ0;T //, T < 1, is a 3-
dimensional Ricci flow and " > 0, then there is a constant rcan.g.0/; T; "/ > 0 such that for
any .x; t/ 2 M � Œ0; T / with the property that

r WD jRmj
�1=2.x; t/ � rcan

the geometry of the metric g.t/ restricted to the ball Bg.t/.x; "�1r/ is "-close6 to a time-slice
of a �-solution.

4.4. Ricci flow with surgery
Our understanding of the structure of the flow near a singularity allows us to

carry out a so-called surgery construction. Under this construction, (almost) singularities
of the flow are removed, resulting in a “less singular” geometry, from which the flow can be
restarted. This leads to a new type of flow that is defined beyond its singularities and which
will provide important information on the underlying manifold.

Let us be more precise. A (3-dimensional) Ricci flow with surgery (see Figure 3)
consists of a sequence of Ricci flows�

M1;
�
g1.t/

�
t2Œ0;T1�

�
;

�
M2;

�
g2.t/

�
t2ŒT1;T2�

�
;

�
M3;

�
g3.t/

�
t2ŒT2;T3�

�
; : : : ;

which live on manifolds M1; M2; : : : of possibly different topology and are parameterized
by consecutive time-intervals of the form Œ0; T1�; ŒT1; T2�; : : : whose union equals Œ0; 1/.

Figure 3

A schematic depiction of a Ricci flow with surgery. The almost-singular parts Malmost-sing, i.e., the parts that are
discarded under each surgery construction, are hatched.

6 Similar to the definition of (4.2), this roughly means that there is a diffeomorphism between
an "�1-ball in a �-solution and this ball such that the pullback of r�2g.t/ is "-close in the
C Œ"�1�-sense to the metric on the �-solution.
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The time-slices .Mi ; gi .Ti // and .MiC1; giC1.Ti // are related by a surgery process, which
can be roughly summarized as follows. Consider the set Malmost-sing � Mi of all points of
high enough curvature, such that they have a canonical neighborhood as in Theorem 4.2.
Cut Mi open along approximate cross-sectional 2-spheres of diameter rsurg.Ti / � 1 near
the cylindrical ends of Malmost-sing, discard most of the high-curvature components (includ-
ing the closed, spherical components of Malmost-sing), and glue in cap-shaped 3-disks to the
cutting surfaces. In doing so we have constructed a new, “less singular,” Riemannian man-
ifold .MiC1; giC1.Ti //, from which we can restart the flow. Stop at some time TiC1 > Ti ,
shortly before another singularity occurs and repeat the process.

The precise surgery construction is quite technical and more delicate than presented
here. The main difficulty in this construction is to ensure that the surgery times Ti do not
accumulate, i.e., that the flow can be extended for all times. It was shown by Perelman that
this and other difficulties can, indeed, be overcome:

Theorem 4.3. Let .M; g/ be a closed, 3-dimensional Riemannian manifold. If the surgery
scales rsurg.Ti / > 0 are chosen sufficiently small (depending on .M; g/ and Ti ), then a Ricci
flow with surgery with initial condition .M1; g1.0// D .M; g/ can be constructed.

Note that the topology of the underlying manifold Mi may change in the course of
a surgery, but only in a controlled way. In particular, it is possible to show that for any i the
initial manifold M1 is diffeomorphic to a connected sum of components of Mi and copies of
spherical space forms S3=� and S2 � S1. So if the flow goes extinct in finite time, meaning
that Mi D ; for some large i , then

M1 � #k
j D1.S3=�j /#m.S2

� S1/: (4.3)

Perelman, moreover, showed that if M1 is simply connected, then the flow must go extinct
and therefore M1 must be of the form (4.3). This implies the Poincaré Conjecture:

Theorem 4.4 (Poincaré Conjecture). Any simply connected, closed 3-manifold is diffeomor-
phic to S3.

On the other hand, Perelman showed that if the Ricci flow with surgery does not go
extinct, meaning if it exists for all times, then for large times t � 1 the flow decomposes the
manifold (at time t ) into a thick and a thin part:

Mthick.t/ �[ Mthin.t/; (4.4)

such that the metric on Mthick.t/ is asymptotic to a hyperbolic metric, the metric on Mthin.t/

is locally collapsed and the boundary ofMthick.t/ consists of incompressible 2-tori. A further
topological analysis of this collapse implied the Geometrization Conjecture:

Theorem 4.5 (Geometrization Conjecture). Every closed 3-manifold is a connected sum of
manifolds that can be cut along embedded, incompressible copies of T 2 into pieces which
each admit a locally homogeneous geometry.

2439 Some recent developments in Ricci flow



4.5. Ricci flows through singularities
Despite their spectacular applications, Ricci flows with surgery have one major

drawback: their construction is not canonical. In other words, each surgery step depends on
a number of auxiliary parameters, for which there does not seem to be a canonical choice,
such as:

• The surgery scales rsurg.Ti /, i.e., the diameters of the cross-sectional spheres along
which the manifold is cut open. These scales need to be positive and small.

• The precise locations of these surgery spheres.

Different choices of these parameters may influence the future development of the flow sig-
nificantly (as well as the space of future surgery parameters). Hence a Ricci flowwith surgery
is not uniquely determined by its initial metric.

This disadvantagewas already recognized in Perelman’s work, where he conjectured
that there should be another flow, in which surgeries are effectively carried out automatically
at an infinitesimal scale (think “rsurg D 0”), or which, in other words, “flows through singu-
larities.”

Perelman’s conjecture was recently resolved by Kleiner, Lott, and the author (see
[39] for the “Existence” and [10] for the “Uniqueness” part; part (2) of Theorem 4.6 follows
from a combination of both papers):

Theorem 4.6. There is a notion of singular Ricci flow (through singularities) such that:

(1) For any compact, 3-dimensional Riemannian manifold .M;g/, there is a unique
singular Ricci flow M whose initial time-slice .M0; g0/ is .M; g/.

(2) Any Ricci flow with surgery starting from .M; g/ can be viewed as an approx-
imation of M. More specifically, if we consider a sequence of Ricci flows with
surgery starting from .M; g/ with surgery scales maxt rsurg.t/ ! 0, then these
flows converge to M in the local C 1-sense. (More details on this convergence
will be given in the end of this subsection.)

Before continuing, let us compare this result with past work on the mean curvature
flow – a close cousin of the Ricci flow. There are two important weak formulations of the
mean curvature flow, namely Brakke and level set flows. Existence theories [13,25,28,38] rely
heavily on the fact that a mean curvature flow concerns embedded submanifold in an ambi-
ent space. Uniqueness of these flows, on the other hand, is false in general [50], but true in
the mean convex case [51]; so the analogous statement to Part (1) holds in this case. More-
over, under the more restrictive condition of 2-convexity, which guarantees the existence of
a surgery procedure, an equivalent of Part (2) holds as well [35,41].

The concept of a singular Ricci flow is less technical than that of a Ricci flow with
surgery—in fact, we will be able to state its full definition here. To do this, we will first define
the concept of a Ricci flow spacetime. In short, this is a smooth 4-manifold that locally looks
like a Ricci flow, but which may have non-trivial global topology (see Figure 4).
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Figure 4

Illustration of a singular Ricci flow given by a Ricci flow spacetime. The arrows indicate the time-vector field @t.

Definition 4.7. A Ricci flow spacetime consists of:

(1) a smooth 4-dimensional manifold M with boundary, called spacetime;

(2) a time-function t W M ! Œ0;1/; its level setsMt WD t�1.t/ are called time-slices
and we require that M0 D @M;

(3) a time-vector field @t on M with @t � t � 1; trajectories of @t are called world-
lines;

(4) a family g of inner products on ker d t � T M, which induce a Riemannian
metric gt on each time-slice Mt ; we require that the Ricci flow equation holds:

L@t
gt D �2Ricgt :

By abuse of notation, we will often write M instead of .M; t; @t; g/.

A classical, 3-dimensional Ricci flow .M; .g.t//t2Œ0;T // can be converted into a
Ricci flow spacetime by setting M WD M � Œ0; T /, letting t; @t be the projection onto the
second factor and the pullback of the unit vector field on the second factor, respectively,
and letting gt be the metric corresponding to g.t/ on M � ¹tº � M . Hence worldlines
correspond to curves of the form t 7! .x; t/.

Likewise, a Ricci flow with surgery, given by flows�
M1;

�
g1.t/

�
t2Œ0;T1�

�
;

�
M2;

�
g2.t/

�
t2ŒT1;T2�

�
; : : : ;

can be converted into a Ricci flow spacetime as follows. Consider first the Ricci flow space-
times M1 � Œ0; T1�; M2 � ŒT1; T2�; : : : arising from each single flow. We can now glue these
flows together by identifying the set of points U �

i � Mi � ¹Ti º and U C

i � MiC1 � ¹Ti º that

2441 Some recent developments in Ricci flow



survive each surgery step via maps �i W U �
i ! U C

i . The resulting space has a boundary that
consists of the time-0-slice M1 � ¹0º and the points

�i D
�
Mi � ¹Ti º n U �

i

�
[

�
MiC1 � ¹Ti º n U C

i

�
;

which were removed and added during each surgery step. After removing these points, we
obtain a Ricci flow spacetime of the form:

M D
�
M1 � Œ0; T1� [�1 M2 � ŒT1; T2� [�2 � � �

�
n .�1 [ �2 [ � � � /: (4.5)

Note that, for any regular time t 2 .Ti�1; Ti /, the time-slice Mt is isometric to .Mi ; gi .t//.
On the other hand, the time-slices MTi

corresponding to surgery times are incomplete; they
have cylindrical open ends of scale � rsurg.Ti /.

The following definition captures this incompleteness:

Definition 4.8. ARicci flow spacetime is r-complete, for some r � 0, if the following holds.
Consider a smooth path  W Œ0; s0/ ! M with the property that

inf
s2Œ0;s0/

jRmj
�1=2

�
.s/

�
> r

and:

(1) .Œ0; l// � Mt is contained in a single time-slice and its length measured with
respect to the metric gt is finite, or

(2)  is a worldline, i.e., a trajectory of ˙@t.

Then the limit lims%s0
.s/ exists.

So M being r-complete roughly means that it has only “holes” of scale . r . For
example, the flow from (4.5) is C maxt rsurg.t/-complete for some universal C < 1.

In addition, Theorem 4.2 motivates the following definition:

Definition 4.9. A Ricci flow spacetime is said to satisfy the "-canonical neighborhood
assumption at scales .r1; r2/ if for any point x 2 Mt with r WD jRmj�1=2.x/ 2 .r1; r2/ the
metric gt restricted to the ball Bgt .x; "�1r/ is "-close, after rescaling by r�2, to a time-slice
of a �-solution.

We can finally define singular Ricci flows (through singularities), as used in Theo-
rem 4.6:

Definition 4.10. A singular Ricci flow is a Ricci flow spacetime M with the following two
properties:

(1) It is 0-complete.

(2) For any " > 0 and T < 1, there is an r.";T / > 0 such that the flowM restricted
to Œ0; T / satisfies the "-canonical neighborhood assumption at scales .0; r/.

See again Figure 4 for a depiction of a singular Ricci flow. The time-slices Mt for
t < Tsing develop a cylindrical region, which collapses to some sort of topological double
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cone singularity in MTsing at time Tsing. This singularity is immediately resolved and the flow
is smooth for some t > Tsing.

Let us digest the definition of a singular Ricci flow a bit more. It is tempting to think
of the time function t as aMorse function and compare critical points with infinitesimal surg-
eries. However, this comparison is flawed: First, by definition t cannot have critical points
since @t t D 1. In fact, a singular Ricci flow is a completely smooth object. The “singular
points” of the flow are not part of M, but can be obtained after metrically completing each
time-slice by adding a discrete set of points. Second, it is currently unknown whether the
set of singular times, i.e., the set of times whose time-slices are incomplete, is discrete. In
addition, the approach taken in the definition of singular Ricci flows is different from that of
weak solutions to the mean curvature flow. While the Brakke and level set flows characterize
the flow equation at singular points via integral or barrier conditions, a singular Ricci flow
only characterizes the flow on its regular part. In lieu of a weak formulation of the Ricci flow
equation on the singular set, we have to impose the canonical neighborhood assumption,
which serves as an asymptotic characterization near the incomplete ends.

Finally, let us briefly explain how singular Ricci flows are constructed and convey
the meaning of Part (2) of Theorem 4.6. Fix an initial time-slice .M; g/ and consider a
sequence of Ricci flow spacetimes Mj that correspond to Ricci flows with surgery starting
from .M; g/, with surgery scale maxt rsurg;j .t/ ! 0. It can be shown that these flows are
C maxt rsurg;j .t/-complete and satisfy the "-canonical neighborhood assumption at scales
.C" maxt rsurg;j .t/; r"/, where C;C"; r" do not depend on j . A compactness theorem implies
that a subsequence of the spacetimes Mj converges to a spacetime M, which is a singular
Ricci flow. This implies the existence of M; the proof of uniqueness uses other techniques,
which are outside the scope of this article.

4.6. Continuous dependence
The proof of the uniqueness property in Theorem 4.6, due to Kleiner and the author,

implies an important continuity property, which leads to further topological applications. To
state this property, let M be a compact 3-manifold and for every Riemannian metric g on M

let Mg be the singular Ricci flow with initial condition .M
g
0 ; g/ D .M; g/.

Theorem 4.11 ([11]). The flow Mg depends continuously on g.

Together with Theorem 4.6, this implies that the Ricci flow equation in dimension 3
is well-posed within the class of singular Ricci flows.

Note that the topology of the flow Mg may change as we vary g and the conti-
nuity holds for the entire flows – past potential singularities. We therefore have to choose
an appropriate sense of continuity in Theorem 4.11 that allows such a topological change.
This is roughly done via a topology and lamination structure on the disjoint union

F
g Mg ,

transverse to which the variation of the flow can be studied locally.
Instead of elaborating on these technicalities, let us discuss the example illustrated

in Figure 5. In this example .gs/s2Œ0;1� denotes a continuous family of metrics on S3 such
that the corresponding flows Ms WD Mgs interpolate between a round and a cylindrical sin-
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Figure 5

A family of singular Ricci flows starting from a continuous family of initial conditions.

gularity. For s 2 Œ0; 1
2
/, the flowMs can be described in terms of a conventional, nonsingular

Ricci flow .gs
t / on M and the continuity statement in Theorem 4.11 is equivalent to contin-

uous dependence of this flow on s. Likewise, the flows Ms restricted to Œ0; Tsing/ can again
be described by a continuous family of conventional Ricci flows. The question is now what
happens at the critical parameter s D

1
2
, where the type of singularity changes. The unique-

ness property guarantees that the flows Ms for s %
1
2
and s &

1
2
must limit to the same

flow M
1
2 . The convergence is locally smooth, but the topology of the spacetime manifold

Ms may still change.

4.7. Topological applications
Theorem 4.11 provides us a tool to deduce the first topological applications of Ricci

flow since Perelman’s work. Before stating these, let us make the following definitions. We
denote by Met.M/ the space of all Riemannian metrics on a manifold M , equipped with
the C 1-topology. Let MetK�k.M/; MetPSC.M/ � Met.M/ be the subsets of metrics of
constant sectional curvature k and of positive scalar curvature, respectively. Furthermore, we
denote by Diff.M/ the group of diffeomorphisms � W M ! M , again equippedwith theC 1-
topology, and for a Riemannian metric g 2 Met.M/ we denote by Isom.M; g/ � Diff.M/

the isometry group of .M; g/.

Theorem 4.12 ([11]). For any closed 3-manifold M , the space MetPSC.M/ is either con-
tractible or empty.

Theorem 4.13 (Generalized Smale Conjecture, [9, 11]). Suppose that .M 3; g/ is a closed
manifold of constant curvature K � ˙1. Then the inclusion map Isom.M; g/ ,! Diff.M/

is a homotopy equivalence.

The study of the spaces MetPSC.M/ was initiated by Hitchin in the 1970s and has
led to many interesting results – based on index theory – which show that these spaces have
nontrivial topology when M is high dimensional. Theorem 4.12 provides the first examples
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of manifolds of dimension � 3 for which the homotopy type of MetPSC.M/ is completely
understood; see also prior work by Marques [42].

The Generalized Smale Conjecture has had a long history and many interesting spe-
cial cases have been established using topological methods, including the case M D S3 by
Hatcher [34] and the hyperbolic case by Gabai [30]. However, the full conjecture remained
open until recently. For more background, see the first chapter of [37]. The proof of Theo-
rem 4.13 is independent of Hatcher’s andGabai’s proof, so it provides an alternative approach
to the S3 and hyperbolic case. In addition, it provides a uniform treatment of all topological
cases and the same method can also be used characterize the homotopy type of other prime
3-manifolds (see, for example, [11] for the case S2 � S1). For many of these manifolds, this
was already accomplished using topological methods; however, the following result is new:

Theorem 4.14 ([12]). Let g be a compact, orientable, non-Haken 3-manifold modeled on the
Thurston geometry Nil and let g be a Nil-metric on M . Then the inclusion Isom.M; g/ ,!

Diff.M/ is a homotopy equivalence.

Combining Theorems 4.13, 4.14 with the previously known characterization of
Diff.M/ in all other cases, this completes the project of understanding the topology of
Diff.M/ when M is a closed 3-manifold.

There are two proofs for Theorem 4.13: a short proof and a long proof. The short
proof [9] requires the additional assumption thatM 6� RP 3 and relies onHatcher’s resolution
of the Smale Conjecture. The long proof [11] establishes both Theorems 4.12, 4.13 in their
full form.

Both proofs rely on two basic observations:

• The positive scalar curvature condition is preserved by the flow.

• Theorem 4.13 is equivalent to the contractibility of the space MetK�˙1.M/ of
constant curvature metrics. This can be seen via a standard argument involving
the long-exact homotopy sequence for the fiber bundle Isom.M/ ! Diff.M/ !

MetK�˙1.M/.

Let us simplify our setting for a moment and suppose that M was the 2-dimensional
sphere. Then by Theorem 3.1, Ricci flow can be seen as a deformation retraction of Met.M/

or MetPSC.M/ to MetK�˙1.M/ – modulo rescaling and reparameterization. This shows that
the spaces Met.M/, MetPSC.M/ and MetK�˙1.M/ are homotopy equivalent, and since the
first space is contractible (it is a convex subset of a vector space), we obtain that all spaces
are contractible.

Unfortunately, the strategy in the 2-dimensional case does not readily generalize to
dimension 3, because singular flows cannot be viewed as trajectories in Met.M/ as they are
defined by metrics on different time-slices – possibly of different topology. Therefore, the
proofs of Theorems 4.12, 4.13 have to follow a different strategy, which we will outline now.
To this end we first observe that, since Met.M/ is contractible, it is enough to show that

�k.Met.M/;MetX .M// is trivial, where X may stand for “PSC” or “K � ˙1.”
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Let us now fix a representative g W DkC1 ! Met.M/ of this relative homotopy group, i.e.,
g.s/ 2 MetX .M/ for all s 2 @DkC1. Our goal will be to construct a null-homotopy Og W

DkC1 � Œ0; 1� ! Met.M/, where Og.�; 0/ D g and Og.s; t/ 2 MetX .M/ if s 2 @DkC1 or
t D 1.

If all the Ricci flows starting from each metric g.s/ were to converge to a round
metric (modulo rescaling), then Og.s; �/ could simply be constructed using these flows (as we
did in dimension 2). In general, however, the family g only induces a continuous family of
singular Ricci flows .Ms WD Mg.s//s2DkC1 . In a second step, this family of flows has to be
converted to the desired null-homotopy Og within Met.M/. In the long proof, this is achieved
via a new notion called partial homotopy. This notion is a hybrid between a null-homotopy
in Met.M/ and a continuous family of Ricci flows, which permits variation of underlying
topology. A partial homotopy allows the construction of a null-homotopy via backwards
induction in time via certain modification moves that roughly correspond to the singularities
of the flows Ms . The short proof, on the other hand, uses the flow of the time-vector field @t

on each Ms to push forward the metrics gs
t to its initial time-slice Ms

0 D M . This flow is not
defined everywhere and thus such a construction only offers a continuous family of metrics
Qgs defined on open subsets U s � M , where M n U s can be covered by pairwise disjoint
3-disks. These metrics then have to be extended onto all of M via an obstruction theoretic
argument, which relies on Hatcher’s resultion of the S3-case.

5. Dimensions n � 4

For a long time, most of the known results of Ricci flows in higher dimensions
concerned special cases, such as Kähler–Ricci flows or flows that satisfy certain preserved
curvature conditions. General flows, on the other hand, were relatively poorly understood.
Recently, however, there has been somemovement on this topic – in part, thanks to a different
geometric perspective on Ricci flows [5–7]. The goal of this section is to convey some of these
new ideas and to provide an outlook on possible geometric and topological applications.

5.1. Gradient shrinking solitons
Gradient shrinking solitons (GSSs) comprise an important class of singularity

models in Ricci flow, especially in higher dimensions. The GSS equation concerns Rie-
mannian manifolds .M; g/ equipped with a potential function f 2 C 1.M/ and reads

RicCr
2f �

1

2
g D 0:

This generalization of the Einstein equation gives rise to an associated self-similar Ricci flow

g.t/ WD jt j��
t g; t < 0;

where .�t W M ! M/t<0 is the flow of the vector field jt jrf .
A basic class of examples for GSSs are the round cylinders Sk�2 � Rn�k , where

g D 2.k � 1/gSk C gRn�k ; f D
1

4

nX
iDkC1

x2
i :
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In this case, jt jrf generates a family of dilations on the Rn�k factor and

g.t/ D 2.k � 1/jt jgSk C gRn�k ;

which is isometric to jt jg. A special case of this is the round shrinking sphere (k D n). In
dimensions n � 3, all nontrivial7 GSSs are quotients of round spheres or cylinders. However,
more complicated GSSs exist in dimensions n � 4 (see, for example, [29]).

By construction, GSSs (or their associated flows, to be precise) are invariant under
parabolic rescaling. So the blow-up singularity model of the singularity at time 0 (taken
along an appropriately chosen sequence of basepoints) is equal to the flow itself. Therefore
every GSS does indeed occur as a singularity model, at least of its own flow.

Vice versa, the following conjecture, which will be kept vague for now, predicts that
the converse should also be true in a certain sense.

Conjecture 5.1. For any Ricci flow, “most” singularity models are gradient shrinking soli-
tons.

This conjecture has been implicit in Hamilton’s work from the 1990s, and a similar
result is known to be true for mean curvature flow. In the remainder of this section, we will
present a resolution of a version of this conjecture.

5.2. Examples of singularity formation
Let us first discuss an example in order to adjust our expectations in regards to

Conjecture 5.1. In [4], Appleton constructs a class of 4-dimensional Ricci flows8 that develop
a singularity in finite time, which can be studied via the blow-up technique from Section 4.2
– this time we even allow the rescaling factors to be any sequence of numbers �i ! 1,
not just �i D jRmj1=2.xi ; ti /. Appleton obtains the following classification of all nontrivial
blow-up singularity models:

(1) the Eguchi–Hansonmetric, which is Ricci flat and asymptotic to the flat orbifold
R4=Z2,

(2) the flat orbifold R4=Z2,

(3) the quotient MBry=Z2 of the Bryant soliton, which has an isolated orbifold sin-
gularity at its tip,

(4) the cylinder RP 3 � R.

Here the models (1) and (2) have to occur as singularity models, and it is unknown whether
themodels (3) and (4) actually do show up. The onlyGSSs in this list are (2) and (4). Note that
the flow on R4=Z2 is constant, but each time-slice is a metric cone, and therefore invariant

7 Euclidean space Rn equipped with f D
1
4 r2 is called a trivial GSS.

8 The flows are defined on noncompact manifolds, but the geometry at infinity is well con-
trolled.

2447 Some recent developments in Ricci flow



under rescaling. So we may also view this model as a (degenerate) gradient shrinking soliton
(in this case f D

1
4
r2).

It is conceivable that there are Ricci flow singularities whose only blow-up models
are of type (1) or (2). In addition, there are further examples in higher dimensions [49]whose
only blow-up models that are GSSs must be singular and possibly degenerate. This motivates
the following revision of Conjecture 5.1.

Conjecture 5.2. For any Ricci flow, “most” singularity models are gradient shrinking soli-
tons. These may be degenerate and may have a singular set of codimension � 4.

5.3. A compactness and partial regularity theory for Ricci flows
The previous example suggests that in higher dimensions we may need to consider

nonsmooth blow-up limits. The usual convergence and compactness theory of Ricci flows due
to Hamilton (see Section 4.2) is too restrictive for such purposes, as it relies on curvature
bounds and only produces smooth limits. Instead, we need a fundamentally new compactness
and partial regularity theory for Ricci flows, which will enable us to take limits of arbitrary
Ricci flows and study their structural properties. This theory was recently found by the author
[5–7] and will lie at the heart of a resolution of Conjecture 5.2.

An important related compactness and partial regularity theory is that for Einstein
metrics due to Cheeger, Colding, Gromov, Naber, and Tian [17–23,27]. This theory roughly
states that any noncollapsed sequence of pointed Einstein metrics subsequentially converges
in the pointed Gromov–Hausdorff sense to a metric space whose singular set has Minkowski
dimension � n � 4. Similar theories also exist for other geometric equations (e.g., minimal
surfaces, harmonic maps, mean curvature flow). What these theories have in common is that
their proofs all rely on only a few basic ingredients (e.g., a monotonicity formula, an almost
cone rigidity theorem, and an "-regularity theorem), which can be verified in each setting.
A similar theory for Ricci flows, however, is more complicated, mainly due to two reasons:

• The basic ingredients mentioned above are – at least a priori – not available for
Ricci flows. This necessitates a different approach for proving partial regularity.

• Parabolic versions of notions like “metric space”, “Gromov–Hausdorff conver-
gence”, etc., did not exist until recently. So these – and a theory surrounding them
– first had to be developed.

Let us now state the main compactness and partial regularity results for Ricci flows.
We will remain somewhat vague on the new terminologies for now and defer a more detailed
discussion to Section 5.5. Consider a sequence of pointed, n-dimensional Ricci flows�

Mi ;
�
gi .t/

�
t2.�Ti ;0�

; .xi ; 0/
�
;

where we imagine the basepoints .xi ; 0/ to live in the final time-slices, and suppose that
T1 WD limi!1 Ti > 0. Then we have:
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Theorem 5.3. After passing to a subsequence, these flows F -converge to a pointed metric
flow �

Mi ;
�
gi .t/

�
; .xi ; 0/

� F
���!
i!1

�
X; .�x1It /

�
:

Here the terms “metric flow” and “F -convergence” can be thought as a parabolic
versions of “metric space” and “Gromov–Hausdorff convergence,” respectively.

Next, we impose the following noncollapsing condition:

Nxi ;0

�
r2

�

�
� �Y�: (5.1)

Here Nx;t .r
2/ is the pointed Nash-entropy, which is a natural quantity in Ricci flow and

related to Perelman’s W -functional and rediscovered by work of Hein and Naber [36]. It and
can be thought of as the parabolic analogue of the normalized volume of a ball.

Theorem 5.4. Assuming (5.1), we have a regular–singular decomposition

X D R �[ �

such that:

(1) The flow on R can be described by a smooth Ricci flow spacetime structure (see
Definition 4.7). The entire flow X is uniquely determined by this structure.

(2) We have the following dimensional estimate on the singular set:

dimM� � � .n C 2/ � 4:

(3) Tangent flows (i.e., blow-ups based at a fixed point of X) are (possibly singular)
gradient shrinking solitons.

(4) There is a filtration �0 � � � � � �n�2 D � such that dimH� �k � k and such
that every x 2 �k n �k�1 has a tangent cone that either splits off an Rk-factor
or it splits off an Rk�2-factor and is static.

Let us make a few remarks. First, note that the fact that X is uniquely determined
by the smooth Ricci flow spacetime structure on R is comparable to what we have observed
in dimension 3 (see Section 4.5), where we did not even consider the entire flow X.

Second, property (2) involves a parabolic version of the Minkowski dimension that
is natural for Ricci flows; a precise definition would be beyond the scope of this article.
Note that the time direction accounts for 2 dimensions, which is natural. In dimension 3, this
implies that the set of singular times has dimension �

1
2
; this what was previously known in

this dimension [40]. In Appleton’s 4-dimensional example, the singular set � may consist of
an isolated orbifold point in every time-slice; so its parabolic dimension is 2 D .4 C 2/ � 4.
On the other hand, a flow on S2 � T 2 develops a singularity at a single time and collapses
to the 2-torus T 2, which again has parabolic dimension 2. This shows that the dimensional
bounds in Theorem 5.4 are optimal.

Lastly, the “tangent flows” in property (3) can be viewed as parabolic versions of
“tangent cones,” as both are invariant under rescaling.
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5.4. Applications
Theorems 5.3 and 5.4 enable us to study the finite-time singularity formation and

long-time behavior of Ricci flows in higher dimensions.
Regarding Conjecture 5.2, we roughly obtain:

Theorem 5.5. Suppose that .M; .g.t//t2Œ0;T // develops a singularity at time T < 1. Then
we can extend this flow by a “singular time-T -slice” .MT ; dT / such that the tangent flows
at any .x; T / 2 MT are (possibly singular) gradient shrinking solitons.

Regarding the long-time asymptotics, we obtain the following picture, which closely
resembles that in dimension 3; compare with (4.4) in Section 4.4:

Theorem 5.6. Suppose that .M;.g.t//t�0/ is immortal. Then for t � 1we have a thick–thin
decomposition

M D Mthick.t/ �[ Mthin.t/

such that the flow on Mthick.t/ converges, after rescaling, to a singular Einstein metric
.Ricg1

D �g1) and the flow on Mthin.t/ is collapsed in the opposite sense of (5.1).

In dimension 3, these theorems essentially recover Perelman’s results; so they can
be seen as generalizations to higher dimensions.

5.5. Metric flows
The definition of a metric flow and associated concepts require a new perspective

on the geometry of Ricci flows. In the following we will briefly convey some of the rough
ideas behind this perspective.

Let us first imitate the process of passing from a (smooth) Riemannian mani-
fold .M; g/ to its metric length space .M; dg/. So our goal will be to turn a Ricci flow
.M; .g.t//t2I / into a synthetic object, which we call “metric flow.” To do this, we consider
the spacetime X WD X � I and the time-slices Xt WD X � ¹tº equipped with the length
metrics dt WD dg.t/. It may be tempting to retain the product structure X � I on X, i.e., to
record the set of worldlines t 7! .x; t/. However, this turns out to be unnatural. Instead, we
will view the time-slices .Xt ; dt / as separate metric spaces whose points may not even be
in 1–1 correspondence to some given space X .

It remains to record some relation between these metric spaces .Xt ; dt /. This will
be done via the conjugate heat kernel K.x; t Iy; s/ – an important object in the study of Ricci
flows. For fixed .x; t/ 2 M � I and s < t , this kernel satisfies the backwards conjugate9 heat
equation on a Ricci flow background,

.�@s � 4g.s/ C Rg.s//K.x; t I �; s/ D 0; (5.2)

9 Equation (5.2) is the L2-conjugate of the standard (forward) heat equation and K.�; �I y; t/ is
a heat kernel centered at .y; t/.
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centered at .x; t/. This kernel has the property that, for any .x; t/ and s < t ,Z
M

K.x; t I �; s/dg.s/ D 1;

which motivates the definition of the following probability measures:

d�.x;t/Is WD K.x; t I �; s/dg.s/; �.x;t/It D ıx :

This is the additional information that we will record. So we define:

Definition 5.7. A metric flow is (essentially10) given by a pair�
.Xt ; dt /t2I ; .�xIs/x2Xt ;s<t;s2I

�
consisting of a family of metric spaces .Xt ; dt / and probability measures �xIs on Xs , which
satisfy certain (basic) compatibility relations.

So given points x 2 Xt , y 2 Xs at two times s < t , it is not possible to saywhether “y
corresponds to x.” Instead, we only know that “y belongs to the past of x with a probability
density of d�xIs.y/.” This definition is surprisingly fruitful. For example, it is possible to
use the measures �xIs to define a natural topology on X and to understand when and in what
sense the geometry of time-slices Xt depends continuously on t .

The concept of metric flows also allows the definition of a natural notion of geo-
metric convergence – F -convergence – which is similar to Gromov–Hausdorff convergence.
Even better, this notion can be phrased on terms of a certain dF -distance, which is similar
to the Gromov–Hausdorff distance, and the Compactness Theorem 5.3 can be expressed as
a statement on the compactness of a certain subset of metric flow (pairs),11 similar to the
definition of Gromov–Hausdorff compactness.

Lastly, we sketch an example that illustrates why it was so important that we have
divorced ourselves from the concept of worldlines. Consider the Bryant soliton .MBry;

.gBry.t//t�0/ (see Figure 6). Recall that every time-slice .MBry; gBry.t// is isometric to
the same rotationally symmetric model with center xBry. By Theorems 5.3 and 5.4, any
pointed sequence of blow-downs (�i ! 0),�

MBry;
�
�2

i gBry
�
��2

i t
��

t�0
; .xBry; 0/

�
;

F -converges to a pointed metric flow X that is regular on a large set. What is this F -
limit X? For any fixed time t < 0, the sequence of pointed Riemannian manifolds .MBry;

�2
i gBry.�

�2
i t /; xBry/ converges to a pointed ray of the form .Œ0; 1/; 0/. This seems to contra-

dict Theorem 5.4. However, here we have implicitly used the concept of worldlines, because
we have used the point .xBry; t / corresponding to the “official” basepoint .xBry; 0/ at time t .
Instead, we have to focus on the “past” of .xBry; 0/, i.e., the region of .MBry; �2

i gBry.�
�2
i t //

where the conjugate heat kernel �.xBry;0/I��2
i t is concentrated. This region is cylindrical of

10 This is a simplified definition.
11 Strictly speaking, F -convergence and dF -distance concern metric flow pairs, .X; .�xIt //,

where the second entry serves as some kind of substitute of a basedpoint.
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Figure 6

The Bryant soliton (green) and a conjugate (backward) heat kernel (orange) starting at the point xBry at time 0.

scale �
p

jt j, because the conjugate heat kernel “drifts away from the tip” at an approximate
linear rate. In fact, one can show that the blow-down limit X is isometric to a round shrink-
ing cylinder that develops a singularity at time 0. While this may seem slightly less intuitive
at first, it turns out to be a much more natural way of looking at it.

5.6. Outlook
Our new theory of higher-dimensional Ricci flows demonstrates that, at least on an

analytical level, Ricci flows behave similarly in higher dimension as they do in dimension 3.
However, while there are only a handful of possible singularity models in dimension 3, gain-
ing a full understanding of all such models in higher dimensions (e.g., classifying gradient
shrinking solitons) may be impossible. Some past work in dimension 4 (e.g., by Munteanu
and Wang [43–45]) has demonstrated that most noncompact gradient shrinking solitons have
ends that are either cylindrical or conical. This motivates the following conjecture:

Conjecture 5.8. Given a closed Riemannian 4-manifold .M; g/, there is a “Ricci flow
through singularities” in which topological change occurs along cylinders or cones and in
which time-slices are allowed to have isolated orbifold singularities.

The term “Ricci flow through singularities” is still left somewhat vague. Most likely,
it should denote an object that is similar to a metric flow and that has the same partial reg-
ularity properties as described in Theorem 5.4, but with the exception that time-slices may
consist of several components (i.e., we allow distances to be infinite). It may also be useful to
require some sort of topological monotonicity property, meaning that the topology becomes
“simpler” after the resolution of a singularity.

The existence of such a flow may have interesting consequences. For example, it
may be used to decompose 4-manifolds with positive scalar curvature into certain build-
ing blocks. It may also offer an approach to proving the 11

8
-Conjecture. Note here that this
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conjecture holds for both important asymptotic models – gradient shrinking solitons and
Einstein metrics – due to Lichnerowicz’ Theorem and the Hitchin–Thorpe inequality. Lastly,
there also seems to be potential applications in Kähler geometry, for example towards the
Minimal Model Program and the Abundance Conjecture, assuming a similar flow could be
constructed in higher dimensions.
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from a canonical random point process on X – and the variational approach to the Yau–
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1. Introduction

A recurrent theme in geometry is the quest for canonical metrics on a given mani-
fold X . The prototypical case is when X is a compact orientable two-dimensional surface,
which can be endowed with a metric of constant scalar curvature, essentially uniquely deter-
mined by a complex structure J on X . On the other hand, from a physical point of view,
geometrical shapes – as we know them from everyday experience – are, of course, not fun-
damental physical entities. Theymerely arise asmacroscopic emergent features of ensembles
of microscopic point particles in the limit as the number N of particles tends to infinity. In
mathematical terms such microscopical ensembles are random point processes, i.e., they
are represented by a probability measure on the configuration space of N points on X

or, equivalently, a symmetric probability measure �.N / on the N -fold product XN . One
is thus led to ask whether a given manifold X may be endowed with a canonical random
point process – defined without reference to any metric – from which a canonical metric
g emerges as N ! 1? Here we shall focus on Kähler metrics with constant Ricci curva-
ture. From the physics perspective, these arise as solutions to Einstein’s equations in vacuum
(with Euclidean signature). The Kähler condition means that X is compatible with an inte-
grable complex structure J on X (in that parallel translation preserves the complex structure
J /. Such metrics – known as Kähler–Einstein metrics – play a central role in current com-
plex geometry and the study of complex algebraic varieties, in particular in the context of
the Yau–Tian–Donaldson conjecture [38] and theMinimalModel Program in birational alge-
braic geometry [45]. When a projective algebraic varietyX admits a Kähler–Einstein metric,
it is essentially unique, i.e., canonically attached to X and can thus be leveraged to probe
X using differential-geometric techniques (as, for example, in the construction of moduli
spaces [61]).

One virtue of the probabilistic approach is that it leads to essentially explicit period
type integral formulas for canonical Kähler metrics converging towards the Kähler–Einstein
metric as N ! 1 (see formula (2.7)). These formulas are reminiscent of the few explicit
formulas for Kähler–Einstein metrics that are available on special complex curves, involving
hypergeometric integrals (notably themodular curve, the Klein curve, and Fermat curves; see
[6, Section 2.1]). The probabilistic approach also generates new connections between Kähler
geometry and algebraic geometry in the context of the Yau–Tian–Donaldson conjecture on
Fano varieties, through the concept of Gibbs stability and the related stability threshold .ı-
invariant) [19,41]. The present contribution to the 2022 ICM proceedings attempts a double
exposure of the probabilistic approach in [2, 4, 5] and the variational approach to the Yau–
Tian–Donaldson conjecture in [14], highlighting their connections. For more details and
background, the reader is referred to the survey [6]. See also [15] for connections between
the present probabilistic approach to Kähler geometry and quantum gravity in the context
of the AdS/CFT correspondence, and [7, 39] for connections to polynomial approximation
theory and pluripotential theory in Cn.
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2. Emergent Kähler geometry

Let X be a compact complex manifold, whose dimension over C will be denoted
by n. The existence of a Kähler–Einstein metric!KE onX , i.e., a Kähler metric with constant
Ricci curvature,

Ric! D �ˇ!; (2.1)

implies that the canonical line bundle KX of X (the top exterior power of the cotangent
bundle of X ) has a definite sign, when ˇ ¤ 0,

sign.KX / D sign.ˇ/: (2.2)

Wewill be using the standard terminology of positivity in complex geometry: a line bundle is
said to be positive, L > 0, ifL carries some Hermitian metric with strictly positive curvature
(or, equivalently, L is ample in the algebro-geometric sense). The standard additive notation
for tensor products of line bundles will be adopted. Accordingly, the dual of L is expressed
as �L, and L is thus said be negative, L < 0, if �L > 0. In general, when ˇ ¤ 0, the
manifold X is automatically a complex projective algebraic manifold, and after a rescaling
of the Kähler–Einstein metric we may as well assume that ˇ D ˙1. For example, in the
case when X is a hypersurface in P nC1

C , cut out by a homogeneous polynomial of degree d ,
KX > 0 when d > n C 2, and �KX > 0 when d < n C 2.

Remark 2.1. In the more general “logarithmic” setup, X is replaced by a log pair .X; �/

consisting of a Q-divisor � on a normal variety X and KX is replaced by KX C �, assumed
to be a Q-line bundle. The corresponding log Kähler–Einstein equation (2.1) is obtained by
replacing Ric! with Ric! � Œ��, where Œ�� denotes the current of integration corresponding
to �. For simplicity we will stick to the case when X is nonsingular and � is trivial (but all
the results surveyed in this and the following section generalize to the logarithmic setting,
assuming that .X; �/ is klt (Kawamata log terminal) [5,8,13]).

Coming back to the question of emergence of geometry, discussed in the introduc-
tion, a Kähler–Einstein metric gKE has the crucial property that it can be readily recovered
from its volume form dVKE, in the case ˇ ¤ 0. Indeed, in local terms gKE is proportional to
the complex Hessian of the logarithm of the local density of dVKE (see formula (3.4)). Thus
in order to probalistically construct the Kähler–Einstein metric, one just needs to construct
a random point process on X with N particles such that the empirical measure

ıN WD
1

N

NX
iD1

ıxi
; (2.3)

viewed as a random discrete probability measure on X , converges in probability to dVKE,
as N ! 1.

2.1. The case KX > 0 .ˇ D 1/

The starting point for the probabilistic approach is the observation that there is a
canonical symmetric probability measure �.N / on the N -fold product XN of X . More pre-
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cisely, the integers N are taken to be of the special form

N D Nk WD dimC H 0.X; kKX /;

where H 0.X; kKX / denotes the complex vector space of all holomorphic section of the
kth tensor power of the canonical line bundle KX ! X . Recall that the elements s.k/ of
H 0.X; kKX / are called pluricanonical forms and may be represented by local holomorphic
functions transforming as dz˝k , in terms of local holomorphic coordinates z 2 Cn on X .
As a consequence, js.k/.z/j2=k transforms as a local density on X and thus defines a global
measure on X . Replacing X with XNk , the canonical symmetric probability measure �.Nk/

on XNk is now defined by

�.Nk/
D

1

ZNk

ˇ̌
detS .k/

ˇ̌2=k
; ZNk

WD

Z
XNk

ˇ̌
detS .k/

ˇ̌2=k
; (2.4)

where detS .k/ is the holomorphic section of the line bundle .kKXNk / ! XNk , expressed as
the Slater determinant �

detS .k/
�
.x1; x2; : : : ; xN / WD det

�
s

.k/
i .xj /

�
; (2.5)

in terms of a given basis s
.k/
i in H 0.X; kKX /. Under a change of bases, the section detS .k/

only changes by a multiplicative complex constant (the determinant of the change of bases
matrix on H 0.X; kKX /). As a consequence, �.Nk/ is independent of the choice of bases
in H 0.X; kKX / and, since det S .k/ is antisymmetric, this means that the probability mea-
sure �.Nk/ indeed defines a canonical symmetric probability measure on XNk . Moreover,
it is completely encoded by algebro-geometric data in the following sense: realizing X as a
projective algebraic subvariety, the section det S .k/ can be identified with a homogeneous
polynomial, determined by the coordinate ring of X .

The assumption thatKX > 0 ensures thatNk ! 1 as k ! 1. To simplify the nota-
tion, we will often drop the subindex k on Nk and consider the large-N limit. The following
convergence result was shown in [4]:

Theorem2.2. LetX be a compact complexmanifold with positive canonical line bundleKX .
Then the empirical measures ıN of the corresponding canonical random point processes on
X (formula (2.3)) converge in probability, as N ! 1, towards the normalized volume form
dVKE of the unique Kähler–Einstein metric !KE on X .

In fact, the proof shows that the convergence holds at an exponential rate, in the
sense of large deviation theory: for any given " > 0, there exists a positive constant C" such
that

Prob

 
d

 
1

N

NX
iD1

ıxi
; dVKE

!
> "

!
� C"e�N"; (2.6)

where d denotes any metric on the space P .X/ of probability measures on X compatible
with the weak topology. The convergence in probability in the previous theorem implies, in
particular, that the measures dVk on X , defined by the expectations E.ıNk

/ of the empirical
measure ıNk

, converge to dVKE in the weak topology of measures on X . Concretely, dVk
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is obtained by integrating �.Nk/ over the fibers of the projection from XNk onto the first
factor X , that is,

dVk WD

Z
XNk �1

�.Nk/
! dVKE; k ! 1:

For k sufficiently large (ensuring that kKX is very ample), the measures dVk are, in fact,
volume forms onX and induce a sequence of canonical Kähler metrics!k onX [5, Prop. 5.3]:

!k WD
i

2�
@N@ log dVk D

i

2�
@N@ log

Z
XNk �1

ˇ̌
detS .k/

ˇ̌2=k
: (2.7)

The convergence above also implies that the canonical Kähler metrics !k converge, as
k ! 1, towards the Kähler–Einstein metric !KE on X , in the weak topology. More gener-
ally, as shown in [5], the convergence holds on any variety X of positive Kodaira dimension
(i.e., such that Nk ! 1, as k ! 1) if dVKE and !KE are replaced by the canonical measure
and current on X , respectively, introduced by Song-Tian and Tsuji in different geometric
contexts [5] (in the case when X is singular it is assumed that X is klt and k is assumed to
be sufficently divisible to ensure that kKX is a bona fide line bundle).

2.2. The Fano case, KX < 0 (ˇ D �1)
When�KX is positive, whichmeans thatX is a Fanomanifold, anyKähler–Einstein

metric on X has positive Ricci curvature. However, not all Fano manifolds X carry Kähler–
Einstein metrics; according to the Yau–Tian–Donaldson conjecture (discussed in Section 4)
a Fano manifold admits a Kähler–Einstein-metric if and only if X is K-polystable. In the
probabilistic approach, a new type of stability assumption naturally appears, as is explained
next. First note that when �KX > 0 the spaces dimH 0.X; kKX / are trivial for all positive
integers k. On the other hand, the dimensions tend to infinity as k ! �1. Thus it is natural
to replace k with �k in the previous constructions. In particular, given a positive integer k,
we set

Nk WD dimH 0.X; �kKX /

and attempt to define a probability measure on XNk as

�.Nk/
WD

j detS .k/j�2=k

ZNk

; ZNk
WD

Z
XNk

ˇ̌
detS .k/

ˇ̌�2=k
;

where the numerator defines a measure on the complement in XNk of the zero-locus of
det S .k/. However, it may happen that the normalizing constant ZNk

diverges, since the
integrand of ZNk

blows-up along the zero-locus in XNk of det S .k/. Accordingly, a Fano
manifold X is called Gibbs stable at level k if ZNk

< 1 and Gibbs stable if it is Gibbs
stable at level k for k sufficiently large. We thus arrive at the following probabilistic analog
of the Yau–Tian–Donaldson conjecture posed in [5]:

Conjecture 2.3. Let X be Fano manifold. Then

• X admits a unique Kähler–Einstein metric !KE if and only if X is Gibbs stable.

• If X is Gibbs stable, the empirical measures ıN of the corresponding canonical
point processes converge in probability to the normalized volume form of !KE.
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It should be stressed that the Gibbs stability of X implies that the group Aut.X/

of automorphisms of X is finite [5, Prop. 6.5]. Accordingly, when comparing Conjecture 2.3
with the Yau–Tian–Donaldson conjecture, one should view Gibbs stability as the analog
of K-stability. There is also a natural analog of the stronger notion of uniform K-stability
[24, 36]. To see this, first note that Gibbs stability can be given a purely algebro-geometric
formulation, saying that theQ-divisorDNk

inXNk cut out by the (multivalued) holomorphic
section .det S .k//1=k of �KXNk has mild singularities in the sense of the Minimal Model
Program [44]. More precisely, X is Gibbs stable at level k iff DNk

is klt (Kawamata log
terminal). This means that the log canonical threshold (lct) of DNk

satisfies lct.DNk
/ > 1,

as follows directly from the standard analytic representation of the log canonical threshold
of a Q-divisor as an integrability threshold [44]. Accordingly, X is called uniformly Gibbs
stable if the there exists " > 0 such that, for k sufficiently large, lct.DNk

/ > 1 C ". One is
thus led to pose the following purely algebro-geometric conjecture:

Conjecture 2.4. Let X be a Fano manifold. Then X is (uniformly) K-stable iff X is (uni-
formly) Gibbs stable.

One direction of the uniform version of the previous conjecture was established in
[40,41], using techniques from the Minimal Model Program:

Theorem 2.5 ([41]). Uniform Gibbs stability implies uniform K-stability.

Let us briefly recall the elegant argument in [41], introducing the invariant ı.X/,
which has come to play a key role in recent developments around the Yau–Tian–Donaldson
conjecture. First, by [41, Thm. 2.5],

lct.DNk
/ � ık.X/ WD inf

�k

lct.�k/; (2.8)

where the inf is taken over all anticanonical Q-divisors �k on X of k-basis type, i.e., �k is
the normalized sum of the Nk zero-divisors on X defined by the members of a given basis
in H 0.X; �kKX /. Finally, by [41, Thm. 0.3], if the invariant ı.X/ defined as

ı.X/ WD lim sup
k!1

ık.X/ (2.9)

satisfies ı.X/ > 1, then X is uniformly K-stable [40] and thus admits a unique Kähler–
Einstein metric by the solution of the (uniform) Yau–Tian–Donaldson conjecture recalled
in Section 4.2. In particular, this means that uniform Gibbs stability implies the existence of
a Kähler–Einstein metrics (in line with Conjecture 2.3). For a direct analytic proof of this
implication see [9]. However, the converse implication, that we shall come back to in Sec-
tion 5, is still open. Anyhow, even if confirmed, it is a separate analytic problem to prove the
convergence in Conjecture 2.3. “Tropicalized” analogs of Conjecture 2.3 are established on
toric varieties in [18] and on tori in [43].

In [6] a variational approach to the convergence problem was introduced, further
developed in [8], where the convergence was settled on log Fano curves. In the general case
the approach yields, in particular, the following conditional convergence result:
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Theorem 2.6 ([6,8]). LetX be a Fanomanifold and assume thatX admits a Kähler–Einstein
metric !KE. Take the basis s

.k/
i in formula (2.5) to be orthonormal with respect to the Her-

mitian metric on H 0.X; �kKX / induced by !KE and assume that

lim
N !1

1

N
logZN D 0: (2.10)

Then Aut.X/ is finite and the empirical measures ıN converge in probability to the normal-
ized volume form dVKE of the unique Kähler–Einstein-metric !KE on X .

In [6] two different types of hypotheses were put forth, ensuring that the conver-
gence (2.10) holds, one of which will be recalled in Section 2.3.1. The other assumes, in
particular, that the partition function ZN .ˇ/, discussed in the following section, is zero-
free in some N -independent neighborhood � of ��1; 0� in C (when ZN .ˇ/ is analytically
continued to a holomorphic function on �). This allows one to “analytically continue” the
convergence when ˇ > 0 to ˇ < 0. This is discussed in detail in [8], where some intrigu-
ing connections between this zero-free hypothesis and the zero-free property of the local
L-functions appearing in the Langlands program are also pointed out.

2.3. The statistical mechanical formalism and outlines of the proofs
Theorem 2.2 (or more precisely, the exponential convergence in formula (2.6)) is

deduced from a large deviation principle (LDP), which may be symbolically expressed as

Prob

 
1

N

NX
iD1

ıxi
2 B".�/

!
� e�NR.�/; N ! 1; " ! 0; (2.11)

where B".�/ denotes the ball of radius " centered at a given � in the space P .X/ of all
probability measures on X , endowed with a metric d compatible with the weak topology.
In probabilistic terminology, the functional R.�/ is called the rate functional. By general
principles, any rate functional of an LDP is lower-semicontinuous and its infimum vanishes.
In the present setup, the volume form dVKE of the Kähler–Einstein metric is the unique
minimizer of R.�/, which yields the exponential convergence in formula (2.6).

As next explained, the proof of the LDP is inspired by statistical mechanics. Fix a
Kähler metric on X . It induces a volume form dV on X and a Hermitian metric k � k on KX .
The canonical probability measure (2.4) may then be decomposed as

�.N /
D

1

ZNk

detS .k/
2=k

dV ˝N ;

where the basis s
.k/
i in formula (2.5) is taken to be orthonormal with respect to the Hermitian

metric on H 0.X; kKX / induced by dV and k � k. Introducing the energy per particle as

E.N /.x1; : : : ; xN / WD �
1

kN
log
detS .k/.x1; : : : ; xNk

/
2

; (2.12)

we can thus express �.N / as the following Gibbs measure, at inverse temperature ˇ D 1:

�
.N /

ˇ
D

e�ˇNE .N /

ZN .ˇ/
dV ˝N ; ZN .ˇ/ WD

Z
WXN

e�ˇNE .N /

dV ˝N : (2.13)

2462 R. J. Berman



In statistical mechanical terms, the Gibbs measures represent the microscopic thermal equi-
librium state of N interacting identical particles on X . The normalizing constant ZN .ˇ/ is
called the partition function.

The starting point of the proof of the LDP (2.11) is a classical result of Sanov in
probability, going back to Boltzmann, saying that in the “noninteracting case” ˇ D 0 (where
the positions xi define independent random variables on X ) the LDP holds with rate func-
tional given by the entropy Ent.�/ of � relative to dV , i.e., the functional on P .X/ defined
by

Ent.�/ WD

Z
X

log
�

�

dV

�
�;

if � is absolutely continuous with respect to dV , and otherwise Ent.�/ WD C1.1 The strat-
egy to handle the “interacting case” ˇ ¤ 0 is to first show that there exists a functional E.�/

on P .X/ such that the energy per particle, E.N /.x1; : : : ; xN /, may be approximated as

E.N /.x1; : : : ; xN / ! E.�/; (2.14)

when 1
N

PN
iD1 ıxi

! �, in an appropriate sense, asN ! 1. Formally combining this result
with Sanov’s LDP suggests that, for any ˇ > 0, the corresponding rate functional is given by

Rˇ .�/ D Fˇ .�/ � inf
P .X/

Fˇ ; Fˇ .�/ D ˇE.�/ C Ent.�/ 2 �0; 1�; (2.15)

In thermodynamical terms, the functional Fˇ .�/ is the free energy, at inverse tem-
perature ˇ (strictly speaking, it is ˇ�1Fˇ which is the free energy, i.e., the energy that is free
to do work once the disordered thermal energy has been subtracted). In the present setting
the role of the “macroscopic” energy E.�/ is played by the pluricomplex energy of the mea-
sure � (introduced in [12] and discussed in Section 3). Briefly, it is first shown in [4] that the
convergence (2.14) holds in the sense of Gamma-convergence. This means that

1

Nj

NjX
iD1

ıxi
! � H) lim inf

Nj !1
E.Nj /.x1; : : : ; xNj

/ � E.�/ (2.16)

and, for any �, there exists some sequence of configurations in XN saturating the previous
inequality. TheGamma-convergence is deduced from the convergence ofweighted transfinite
diameters established in [11] using a duality argument (where E.�/ arises as a Legendre–
Fenchel transform; compare formula (3.12)). The combination with Sanov’s theorem is then
made rigorous using an effective submean inequality on small balls in the Riemannian orb-
ifold XN =SN , established using geometric analysis.

The free energy functional Fˇ has a unique minimizer �ˇ in P .X/ for any ˇ > 0

(as discussed in Section 3.3). As a consequence, the empirical measures ıN converge in
probability to �ˇ , as N ! 1. The LDP proved in [4] also implies that for ˇ > 0,

lim
N !1

�
1

N
logZN .ˇ/ D inf

P .X/
Fˇ : (2.17)

Incidentally, the free energy functional Fˇ on P .X/ may be identified with the (twisted)
Mabuchi functional in Kähler geometry, as explained in Section 3.4.

1 In the physics literature, the opposite sign convention for Ent.�/ is used.
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2.3.1. The case ˇ < 0

The Gibbs measure �
.N /

ˇ
can, alternatively, be viewed as a Gibbs measure at unit

temperature, if E.N / is replaced with with the rescaled energy ˇE.N / (thus treating ˇ as a
coupling constant). For ˇ > 0, this energy is repulsive, since it tends to1 as any two particle
positions merge (due to the vanishing of the determinant detS .k/.x1; : : : ; xNk

/). However,
when ˇ changes sign, the rescaled energy ˇE.N / becomes attractive; it tends to �1 as any
two points merge, which leads to subtle concentration phenomena and various new technical
difficulties. For example, one reason that the proof of the LDP does not generalize to ˇ < 0

is that the Gamma-convergence in formula (2.14) is not preserved when E.N / is replaced by
�E.N /. In order to bypass this difficulty, a variational approach was introduced in [6]. The
starting point is the classical Gibbs variational principle, which yields

�
1

N
logZN .ˇ/ D inf

P .XN /
F

.N /

ˇ
; F

.N /

ˇ
.�/ WD ˇ

˝
E.N /; �

˛
C N �1Ent.�/; (2.18)

where the functional F
.N /

ˇ
on P .XN / is called the N -particle mean free energy and Ent.�/

denotes the entropy relative to dV ˝N . When its infimum is finite, it is uniquely attained at
the corresponding Gibbs measure �

.N /

ˇ
. In [6,8] this variational formulation is leveraged to

show that, if X admits a Kähler–Einstein metric dVKE, then ıN converge in probability to
dVKE, under the assumption that the convergence of the partition functions (2.17) holds at
ˇ D �1. In particular, when the fixed metric on X is taken to be a Kähler–Einstein metric,
this proves Theorem 2.6, since F�1.dVKE/ D 0. Moreover, the convergence (2.17) of the
partition functions at ˇ D �1 is shown to be implied by the following hypothesis:

lim
Nj !1

.ıNj
/��

.Nj /

�1 D � 2 P
�
P .X/

�
H) lim sup

Nj !1

˝
E.Nj /; �

.Nj /

�1

˛
� hE; �i; (2.19)

where .ıN /��
.N /
�1 is the probability measure on the infinite-dimensional P .X/, defined as

the pushforward of the canonical probability measure �
.N /
�1 on XN to P .X/ under the

map ıN (the reversed inequality holds for any sequence �N in P .XN /, as follows from
the inequality (2.16)). If the hypothesis holds, then it follows that � is the Dirac mass at
dVKE, which is equivalent to the convergence in Theorem 2.6. In fact, as shown in [8], the
previous hypothesis is “almost” equivalent to the convergence in Conjecture 2.3.

Finally, we note that the conjectural extension of formula (2.17) to any ˇ < 0 also
suggests the following conjecture posed in [4] (the definition of the log canonical threshold
lct.DN / was discussed after Conjecture 2.3):

Conjecture 2.7. For any Fano manifold X ,

lim
N !1

lct.DN / D �.X/; �.X/ WD sup
ˇ<0

°
�ˇ W inf

P .X/
Fˇ > �1

±
: (2.20)

3. The thermodynamical formalism and pluripotential

theory

The pluricomplex energy E.�/, appearing as the “energy part” of the free energy
functional Fˇ .�/ in formula (2.15), may be defined as the greatest lower semicontinuous
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extension to the spaceP .X/ of the functional whose first variation on the subspace of volume
forms is given by

dE.�/ D �u�; (3.1)

with u� 2 C 1.X/ denoting the solution to the following complexMonge–Ampère equation
(known as the Calabi–Yau equation)

MA.u/ D �; (3.2)

expressed in terms of the complex Monge–Ampère measure MA.u/, whose definition we
next recall.

3.1. Kähler geometry recap
Assume that we are given a line bundle L endowed with a Hermitian metric k � k

(in the present setup, L D ˙KX and k � k is the metric on L induced by a fixed Kähler
metric on X ). Then any smooth function u on X induces a metric k � ke�u=2 on L, whose
curvature form, multiplied by i=2� , will be denoted by !u; it is a real closed two-form onX ,
representing the first Chern class c1.L/ 2 H 2.X; Z/ of L. Concretely,

!u D !0 C
i

2�
@N@uˇ ; @N@u WD

X
i;j �n

@2u

@zi @ Nzi

dzi ^ d Nzj ; (3.3)

in terms of local holomorphic coordinates, where !0 is the normalized curvature form of
the fixed metric k � k on L. The complex Monge–Ampère measure MA.u/ is the normalized
volume form on X defined by

MA.u/ WD !n
u=V; V WD

Z
X

!n
u D

Z
X

!n
0 :

By the Calabi–Yau theorem, there exists a smooth solution u� to the Calabi–Yau equa-
tion (3.2), uniquely determined up to an additive constant. It has the property that !u� is
a Kähler form. Recall that a J -invariant closed real form ! on X is said to be Kähler if
! > 0 in the sense that the corresponding symmetric two-tensor

g WD !.�; J �/

is positive definite, i.e., defines a Riemannian metric (where J denotes the complex structure
on X ). In practice, one then identifies the Kähler form ! with the corresponding Kähler
metric g. Likewise, the Ricci curvature of a Kähler metric ! may be identified with the
two-form

Ric! D �
i

2�
@N@ log dV ; (3.4)

where dV denotes the volume form of !. In other words, Ric! is the curvature of the metric
on �KX induced by !. If the Kähler form ! is of the form !u (as in formula (3.3)), then u

is said to be a Kähler potential for ! (relative to !0). We will denote by H .X; !0/ the space
of all Kähler potentials relative to !0, and by H .X; !0/0 the subspace of all sup-normalized
u, supX u D 0. The map

u 7! !u; H .X; !0/0 ,! c1.L/
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yields a one-to-one correspondence betweenH .X;!0/0 and the space of all Kähler forms in
the first Chern class c1.L/ of L. Similarly, the Calabi–Yau theorem yields the “Calabi–Yau
correspondence”

u 7! MA.u/; H .X; !0/0 ,! P .X/ (3.5)

between H .X; !0/0 and the space of all volume forms in P .X/, where u corresponds to the
normalized volume form of the Kähler metric !u. The one-form on H .X; !0/ induced by
MA is exact, i.e., there exists a functional E on H .X; !0/ such that

dE D MA; i.e.,
dE.u C t Pu/

dt

ˇ̌̌̌
tD0

D
˝
MA.u/; Pu

˛
:

(this functional is often denoted by E in the literature [22], but here we shall reserve capital
letters for functionals defined on P .X/). The functional E.u/ is uniquely determined up to
an additive a constant and may be explicitly defined by

E.u/ WD
1

V.n C 1/

nX
j D0

Z
X

u!j
u ^ !

n�j
0 : (3.6)

3.2. Pluripotential theory recap
The analysis of the minimizers of Fˇ involves some pluripotential theory that we

briefly recall. The space PSH.X; !/ of all !0-psh functions on X may be defined as the
closure of H .X; !0/ in L1.X/ (more precisely, any u 2 PSH.X; !/ is the decreasing limit
of elements uk 2 H .X; !0/). The corresponding sup-normalized subspace PSH.X; !0/0 is
compact in L1.X; !0/. By [12], the “Calabi–Yau correspondence” (3.5) extends to a corre-
spondence between the subspace of probability measures�with finite energy and a subspace
of PSH.X; !0/ denoted by E1.X; !0/, that is,

MA W E1.X; !0/0 $ ¹� 2 P .X/ W E.�/ < 1º; (3.7)

whereMA.u/ is defined on E1.X;!0/ using the notion of nonpluripolar products introduced
in [22]. The space E1.X; !0/ was originally introduced in [42], but, as shown in [12], it may
also be defined as the space of all u 2 PSH.X; !0/ such that E.u/ > �1, where E denotes
the smallest upper semicontinuous extension of E to PSH.X; !0/.

3.3. Back to the free energy functional Fˇ

The free energy functionalFˇ , defined in formula (2.15),Fˇ D ˇE CEnt, is lsc and
convex onP .X/whenˇ > 0 (since both terms are). In the case whenˇ < 0, we defineFˇ .�/

by the same expression whenE!0.�/ < 1 and otherwise we setFˇ .�/ D 1. The definition
is made so that we still have F�.�/ 2 ��1; 1� with F�.�/ < 1 iff both E.�/ < 1 and
Ent.�/ < 1.

The following lemma follows readily from the first variation (3.1) and formula (3.4)
for Ricci curvature of a Kähler metric.

Lemma 3.1. A volume form � on X is a critical point of the functional Fˇ on P .X/ iff the
function

uˇ WD
1

ˇ
log

�

dV
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solves the complex Monge–Ampère equation

MA.u/ D eˇudV (3.8)

iff !ˇ WD !uˇ
is a Kähler form solving the twisted Kähler–Einstein equation

Ric! C ˇ! D �; � WD .ˇ � 1/!0: (3.9)

In the Fano case, the previous equation coincides with Aubin’s continuity equation
with “time-parameter” t WD �ˇ. When ˇ > 0, it follows directly from the lower semiconti-
nuity of Fˇ on the compact space P .X/ that Fˇ admits a minimizer.

Theorem 3.2 ([2]). The following are true:

(regularity) Any minimizer �ˇ of the functional Fˇ on P .X/ is a volume form and
thus of the form in Lemma 3.1.

(existence) If Fˇ0
is bounded from below for some ˇ0 < 0, then for any ˇ > ˇ0 the

functional Fˇ on P .X/ admits a minimizer. In other words, if Fˇ is coercive
(with respect to E) in the sense that there exists " > 0 and C > 0 such that

Fˇ � "E C C; (3.10)

then Fˇ admits a minimizer.

Moreover, by the Bando–Mabuchi theorem, if ˇ > �1, the minimizer is uniquely
determined and, if ˇ D �1, it is uniquely determined iff the automorphism group Aut.X/

of X is finite (see [10] for generalizations). The proof of the previous theorem employs a
duality argument, which fits naturally into the thermodynamical formalism, when combined
with pluripotential theory and the variational approach to complexMonge–Ampère equation
developed in [12]. The strategy is to show that any minimizer satisfies the Monge–Ampère
equation (3.8) in the weak sense of pluripotential theory, so that the regularity theory for
Monge–Ampère equations (going back to Aubin and Yau) can be invoked. In the case when
ˇ > 0, the proof of Theorem 3.2 follows from the strict convexity of Fˇ , resulting from the
convexity of E.�/ and the strict convexity of Ent.�/ on P .X/, combined with the Aubin–
Yau theorem [1, 69] (showing that there exists a unique smooth solution to equation (3.8)).
The proof in the case when ˇ < 0 exploits the Legendre–Fenchel transform. Recall that, in
general, this transform yields a correspondence between lsc convex functions on a locally
convex topological vector space V and its dual V �. In order to facilitate the comparison
to the standard functionals in Kähler geometry (discussed in the following section), it will,
however, be convenient to use a slightly nonstandard sign convention where an lsc convex
function f on V corresponds to the usc concave function f � on V � defined by

f �.w/ WD inf
v2V

�
hv; wi C f .v/

�
: (3.11)

Conversely, if ƒ is a functional on V �, we define ƒ�.v/ as the lsc convex function

ƒ�.v/ D sup
w2V �

�
�hv; wi C f .w/

�
:
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We take V to be the space of all signed measures � on X , so that V � D C 0.X/. We can then
view E and Ent as convex lsc functions on V , which, by definition, are equal to 1 on the
complement of P .X/ in V . Under the Legendre–Fenchel transform, these correspond to the
usc convex functions E� and Ent�, respectively, on C 0.X/, which turn out to be Gateaux
differentiable. Indeed, by a classical result (which follows from Jensen’s inequality),

Ent�.u/ D � log
Z

e�udV:

Moreover, as shown in [11,12], the functional E� on C 0.X/ is Gateaux differentiable and

E�.u/ D E.u/; dE�
ju D MA.u/; for u 2 H .X; !0/. (3.12)

Now consider, for simplicity, the case ˇ D �1 (the general case is obtained by a
simple scaling). It follows directly from the fact that the Legendre–Fenchel transform is
increasing and involutive that

inf
P .X/

F�1 WD inf
P .X/

.�E C Ent/ D inf
C 0.X/

.�E�
C Ent�/: (3.13)

Moreover, it readily from the definitions that

F�1

�
MA.u/

�
D .�E C Ent/

�
dE�

ju

�
� .�E�

C Ent�/.u/:

Hence, if � minimizes F�1 and we express � D MA.u�/, then u� minimizes the functional
�E� C Ent� on C 0.X/. However, in the present setup u� is not, a priori, in C 0.X/, but
only in E1.X; !0/. This problem is circumvented using a simple approximation argument
to deduce that u� minimizes the extension of the functional .�E� C Ent�/ to E1.X; !0/.
Finally, by the Gateaux differentiability of the functional �E� C Ent� on C 0.X/ (or more
precisely, on ¹uº C C 0.X/ for any given u 2 E1.X; !0/), it then follows that u� is a critical
point of the functional �E� C Ent�. Thus, after perhaps adding a constant to u�, it satisfies
the complex Monge–Ampère equation (3.8) in the weak sense of pluripotential theory.

The proof of the first point in Theorem 3.2 can now be concluded by invoking the
regularity results for pluripotential solutions to Monge–Ampère equations (which, by [13,

Appendix B], hold in the general setup of log Fano varieties). As for the second point, it is
shown in [2] by proving that any minimizing sequence �j in P .X/ (i.e., a sequence �j

such that Fˇ .�j / converges to the infimum of Fˇ ) converges (after perhaps passing to a
subsequence) to a minimizer of Fˇ . This is shown using a duality argument, as above. Alter-
natively, as shown in [13] in a more general singular context (including singular log Fano
varieties), the existence of a minimizer for Fˇ .�/ follows from the following result in [13]:

Theorem 3.3 (energy/entropy compactness). The functionalE.�/ is continuous on any sub-
level set ¹Ent � C º � P .X/. As a consequence, if Fˇ is coercive on P .X/, then it is lower
semicontinuous and thus admits a minimizer.

This result has come to play a prominent role in recent developments in Kähler
geometry, as discussed in Section 4.1.1.
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3.4. The Mabuchi and Ding functionals
Under the “Calabi–Yau correspondence” (3.5), the free energy functional Fˇ on

P .X/ corresponds to a functional Mˇ .u/ on E1.X; !0/ defined by

Mˇ .u/ WD Fˇ

�
MA.u/

�
: (3.14)

Also, the functionalE.�/ onP .X/ corresponds to the functionalE.MA.u// on PSH.X;!0/

which induces an exhaustion function on E1.X; !0/0, comparable to �E.u/, defining a
notion of coercivity on E1.X; !0/ (in terms of the standard functionals I and J in Kähler
geometry E.MA.u// D .I � J /.u/).

As is turns out, when restricted to H .X; !0/ the functional Mˇ .u/ coincides with
the (twisted) Mabuchi functional. The Mabuchi functional M associated to a general polar-
ized manifold .X; L/ was originally defined (up to normalization) by the property that its
first variation is proportional to the scalar curvature of the Kähler metric !u minus the aver-
age scalar curvature [53]. An “energy+entropy” formula for M, similar to formula (3.14),
holds for a general polarized manifold, as first discovered in [29,64]. Likewise, the functional
on E1.X; !0/ induced by �E� C Ent� coincides with the Ding functional D.u/ in Kähler
geometry, extended to E1.X; !0/ in [12]. For a general ˇ, the corresponding twisted Ding
functional Dˇ on E1.X; !0/ is given by

Dˇ .u/ WD �E.u/ C
1

ˇ
log

Z
eˇudV:

An extension of the argument used to prove formula (3.13) (concerning the boundedness
statement) now gives

Theorem 3.4 ([2]). The functional Mˇ is bounded from below (coercive) on E1.X; !0/0

iff Dˇ is bounded from below (coercive) on E1.X; !0/0. Moreover, by the regularization
result in [16], these properties are equivalent to the corresponding boundedness/coercivity
properties on the dense subspace H .X; !0/0 of E1.X; !0/0.

For ˇ D �1, the first statement was first established in [46, 57]. The proof in [46]

shows that the differenceMˇ � Dˇ is bounded along the Kähler–Ricci flow, thanks to Perel-
man’s estimates, while the proof in [57] utilizes the Ricci iteration. In the case ˇ D �1, the
coercivity of Mˇ is, in fact, equivalent to the existence of unique Kähler–Einstein metric,
as first shown in [65], using Aubin’s method of continuity (discussed above in connection
to Lemma 3.1). More recently, this result has been given a new proof using the notion of
geodesics in E1.X/ and extended in various directions, as discussed in Section 4.1.1.

4. The Yau–Tian–Donaldson conjecture

4.1. The Yau–Tian–Donaldson conjecture for polarized manifolds .X; L/

Let .X; L/ be a polarized projective algebraic manifold, i.e., L is a holomorphic
line bundle over X whose first Chern class c1.L/ contains some Kähler form.

Conjecture 4.1 (Yau–Tian–Donaldson, YTD). There exists a Kähler metric in c1.L/ with
constant scalar curvature iff .X; L/ is K-polystable.
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We will briefly recall the notion of K-polystability (see the survey [38] for more
background on the Yau–Tian–Donaldson conjecture and its relation to geometric invariant
theory (GIT)). The notion of K-polystability can be viewed as a “large-Nk limit” of the
classical notion of Chow polystability in GIT with respect to the action of complex reduc-
tive group GL.Nk ; C/ on the Chow variety, induced from the action of GL.Nk ; C/ on the
Nk-dimensional complex vector space H 0.X; kL/. Recall that in GIT the stability in ques-
tion is equivalent to the positivity of the GIT-weight of all one-parameter subgroups (by the
Mumford–Hilbert criterion). In the definition of K-polystability, the role of a one-parameter
subgroup �k of GL.Nk ; C/ is played by a test configuration � for .X; L/. In a nutshell, this
is a C�-equivariant embedding

� W .X � C�; L/ ,! .X; L/

of the polarized trivial fibration .X � C�; L/ over C� into a normal variety X fibered over
C endowed with a relatively ample Q-line bundle L. To any test configuration � is attached
an invariant, called the Donaldson–Futaki invariant DF.�/ 2 R, and .X; L/ is said to be K-
semistable if DF.�/ � 0 for any test configuration, K-polystable if, moreover, equality only
holds when X is biholomorphic to X � C, and K-stable if the equality only holds when X is
equivariantly biholomorphic toX � C. The Donaldson–Futaki invariant of � may be defined
as a limit of the GIT-weights of a sequence of one-parameter subgroups �k of GL.Nk ; C/

induced by �. But it may also be expressed directly as an intersection number [54,66]:

DF.�/ D
1

Ln.n C 1/

�
aLnC1

C .n C 1/KX=P1 � Ln
�
; a WD �nKX � Ln�1=Ln;

where we have identified a test configuration .X; L/ with its C�-equivariant compactifica-
tion over P 1 (obtained by replacing the base C of X with P 1) and the intersection numbers
are computed on the compactification X of the total space X.

4.1.1. The uniform YTD and geodesic stability
The “only if” direction of the YTD conjecture was established in [60] in the case

when the group Aut.X; L/ of all automorphisms of X that lift to L is finite and in [16], in
general. However, for the converse implication, there are indications that the notion of K-
polystability needs to be strengthened, in general. Here we will, for simplicity, focus on the
case when Aut.X; L/ is finite. Then K-polystability is equivalent to K-stability and, more-
over, if c1.L/ contains a Kähler metric with constant curvature then it is uniquely determined
[10,37]. Following [24,36], .X; L/ is said to be uniformly K-stable (in the L1-sense) if there
exists " > 0 such that

DF.�/ � "k�kL1 ; (4.1)

where the L1-norm k�kL1 is defined as the normalized limit of the l1-norms of the weights
of the C�-action on the central fiber of .X; L/. The “only if” direction of the “uniform YTD
conjecture” – where K-stability is replaced by uniform K-stability (in the L1-sense) – was
established in [24], by leveraging the connection to the “metric space analog” of the uniform
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YTD conjecture, to which we next turn. Denote by d1 the metric on H .X; !0/ induced by
the intrinsic L1-Finsler metricZ

X

j Puj
1!n

u0
; Pu WD

du

dt

ˇ̌̌̌
tD0

; u0 2 H :

As shown in [32], the metric space completion .H .X; !0/0; d1/ may be identified with the
space E1.X; !0/0 (discussed in Section 3.2) and d1.u; 0/ is comparable to �E.u/, which,
equivalently, means that there exists a constant c such that

� c C c�1d1.u; 0/ � E
�
MA.u/

�
� cd1.u; 0/ C c: (4.2)

The relevant constant speed geodesics ut in the metric space .E1.X; !0/0; d1/ have the
property that

U.x; �/ WD u� log j� j.x/ 2 PSH.X � D�; !0/; (4.3)

where we are using the same notation !0 for the pullback of !0 to the product X � D� of
X with the punctured unit-disc D� in C. In fact, ut may be characterized by a maximality
property of the corresponding !0-psh function U [14]. Any test configuration � induces a
geodesic ray ut in E1.X; !0/0, emanating from 0 2 H .X; !0/ (such that U extends, after
removing divisorial singularities, to a bounded function on X) [32,55]. Moreover,

k�kL1 D
d

dt
d1.ut ; 0/ D t�1d.ut ; 0/

for any t > 0. As conjectured in [29], and confirmed in [10], the Mabuchi functional M (Sec-
tion 3.4) is convex along geodesic ut such that !U 2 L1

loc. More generally, the extension of
M to E1.X; !0/ is also convex along geodesics ut [16]. In particular, its (asymptotic) slope

PM.ut / WD lim
t!1

t�1M.t/ 2 ��1; 1�

is well defined. In the case when ut is the geodesic ray attached to a test configuration �

the slope PM.ut / is closely related to DF.�/ (the two invariants coincide after a base change
[49,59]).

Theorem 4.2 ([17,30,33]). Let .X;L/ be a polarized manifold. The following are equivalent:

(1) .X; L/ admits a unique Kähler metric with constant scalar curvature.

(2) .X; L/ is geodesically stable, i.e., PM.ut / > 0 for any nontrivial geodesic ray
ut in E1.X; !0/0.

(3) M is coercive on E1.X; !0/0 (or, equivalently, on H .X; !0/0 � E1.X; !0/0).

The equivalence “2 ” 3” is implicit in [33] (see [14, Thm. 2.16] for a generaliza-
tion). It can be seen as an analog of the classical fact that a convex function on Euclidean
Rn is comparable to the distance to the origin iff all its slopes are positive. In the proof of
“2 ” 3” a substitute for the compactness of the unit-sphere in Rn (parametrizing all
unit speed geodesics) is provided by the energy–entropy compactness in Theorem 3.3. The
implication “1 H) 3” follows directly from the convexity of M combined with the weak-
strong uniqueness result in [17], showing, in particular, that if .X; L/ admits a unique Kähler
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metric with constant scalar curvature !, then any minimizer of M in E1 coincides with the
Kähler potential of !. The final implication “3 H) 1” was recently settled in [30], using a
new a priori estimate for a generalization of Aubin’s continuity method for constant scalar
curvature metrics (bounding the C 0-norm of the solutions by the entropy of the correspond-
ing Monge–Ampère measures, which, in turn, is uniformly bounded under the coercivity
assumption).

4.2. The variational approach to the uniform YTD conjecture in the “Fano
case”
The “Fano case” of theYTD conjecture, i.e., the casewhenX is Fano andL D �KX ,

was settled in [31], by establishing Tian’s partial C 0-estimate [63] along a singular version of
Aubin’s continuity method. Here we will focus on the variational proof of the uniform YTD
conjecture on Fanomanifolds in [14], which, in particular, exploits the notion of Ding stability
originating in [3] (as further developed in [14,24]; see the survey [20] for more background).

Theorem 4.3 ([14]). Let X be a Fano manifold. The following are equivalent:

(1) X admits a unique Kähler–Einstein metric.

(2) X is uniformly Ding stable.

(3) X is uniformly K-stable.

The implication “1 H) 2” follows from the convexity of the Ding functional along
geodesics, as in [3] – here we shall focus on the converse implication. By Theorem 4.2, it
is enough to show that if X is uniformly Ding stable, then X it geodesically stable. This is
achieved in [14], using a valuative (non-Archimedean) language. For simplicity, it may be
helpful to briefly first describe the argument with the non-Archimedean language stripped
away. The starting point is the observation that the function U on X � D� corresponding to
a geodesic ut in E1.X; !0/0 (formula (4.3)) extends to a sup-normalized !0-psh function U

on X � D, which, however, is highly singular on X � ¹0º, unless ut is trivial. But employ-
ing Demailly’s approximation procedure [35] (involving the multiplier ideal sheaves J .kU /,
whose definition is recalled in the following section) the function U may be expressed as a
decreasing limit of S1-invariant !0-psh functions Uk with analytic (algebraic) singularities,
which define C�-invariant ideals Jk supported in X � ¹0º. Accordingly, by the standard
resolution of singularities, there exists a C�-equivariant holomorphic surjection �k from a
nonsingular variety Xk to X � C such that Ek WD ��

k
Jk is a principal ideal, i.e., defines a

divisor onXk . This procedure yields a sequence of test configurations �k D .Xk ;Lk/where
Lk is the pullback to Xk of L ! X with an appropriate multiple of O.Ek/ subtracted. To
show that “3 H) 1,” it would, essentially, be enough show that the slope M.ut / dominates
the Donaldson–Futaki invariants DF.�k/. However, this leads to technical problems that are
bypassed by exploiting that M � D , where D is the Ding functional on H0 (discussed in
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Section 3.4) which behaves better under the approximation procedure above, giving

PD.ut / � lim inf
k!1

D.�k/; (4.4)

where D.�k/ is the “Ding invariant” originating in [3] (that we shall come back to in Sec-
tion 4.3.2). Assuming that X is uniformly Ding stable this shows that “2 H) 1” (after a
twist of the argument which amounts to replacing D with Dˇ for ˇ D �.1 C "/).

Finally, the equivalence “2 ” 3” is shown in the first preprint version of [14],
using techniques from the Minimal Model Program, inspired by [51] (the proof can, loosely
speaking, be interpreted as a non-Archimedean analog of the Kähler–Ricci flow argument in
[46] mentioned in connection to Theorem 3.4). The equivalence “2 ” 3” in the general
setup of log Fano varieties is established in [40].

4.2.1. Twisted Kähler–Einstein metrics
The results in [14] apply more generally to Kähler–Einstein metrics twisted by a

positive klt current � , showing that such a metric exists iff ı� .X/ > 1, where ı� .X/ is a
twisted generalization of the invariant ı.X/ appearing in formula (2.9). This part of the proof
does not need any results from the Minimal Model Program (as discussed in the following
section). As a corollary, it is also shown that

min
®
1; ı.X/

¯
D min

®
1; �.X/

¯
D R.X/; (4.5)

where�.X/ is the invariant appearing in Conjecture 2.7 andR.X/ denotes the greatest lower
bound on the Ricci curvature (independently shown in [28]).

4.3. Non-Archimedean pluripotential theory and the variational formula
for ı.X/

The only properties of the geodesic ut that actually entered into the proof outlined
above concerned the multiplier ideal sheaves J .kU / of the !0-psh function U on X � D,
whose stalks consist of all germs of holomorphic functions f such that jf j2e�2kU is locally
integrable. In turn, themultiplier ideal sheavesJ .kU / only depend on the Lelong numbers of
U on all modifications (blow-ups) of X � C (see [23, Thm. A] and [14, Thm. B.5]). The Lelong
numbers in question can be packaged into a function U.v/ on the space ŒX � C�div of all
divisorial valuations v on X � C, as follows. First recall that, by definition, a divisorial
valuation v on variety Y is encoded by a positive number c and a prime divisor Ev over Y ,
i.e., a prime divisor on some blow-up of Y (which may be assumed to be a nonsingular
hypersurface). Such a valuation v acts on rational (meromorphic) function f 2 C.Y / by
v.f / WD c ordEv .f / 2 R, where ordEv .f / denotes the order of vanishing at a generic point
of Ev of the pullback of f . Now, if U is, locally, of the form U D log jf j C O.1/ for a
holomorphic function, one defines

U.v/ WD �v.f / WD �c ordEv .f /:

In the general definition of U.v/, one replaces ordEv .f / with the Lelong number of U at
a generic point p of Ev (i.e., the sup of all � 2 Œ0; 1Œ such that f � � log jzj C O.1/
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with respect to local holomorphic coordinates z centered at p). In this context, Demailly’s
approximation procedure yields

Uk.v/ WD k�1 max
i

�
�ordEv

�
f

.k/
i

��
! U.v/; (4.6)

where f
.k/

i denote local generators of the multiplier ideal sheaf J .kU /. In fact, after pass-
ing to a subsequence (replacing k with 2k), the sequence Uk is decreasing in k (by the
subaditivity of multiplier ideals).

4.3.1. Pluripotential theory on the Berkovich space XNA

In the present setup, the valuative procedure above is initially applied to Y D X � C.
However, exploiting that we are only interested in the value U.w/ at a divisorial valuation w

on X � C which is C�-invariant, we can identify ŒU �.w/ with the function on u.v/ on Xdiv,
defined by

u.v/ WD U.w/; v 2 Xdiv; w 2 .X � C/div;

where w is the Gauss extension of v, defining a C�-equivariant valuation over X � C nor-
malized by w.�/ D 1 (where � denotes the coordinate on the factor C) [24, Section 4.1].
Next, by identifying a valuation v on X with the corresponding non-Archimedean absolute
value on C.X/, i.e., with j � jv WD e�v.�/, the space Xdiv injects as a dense subspace of the
Berkovich analytification XNA of the projective variety X over the field C, induced by the
trivially valued absolute value on the ground field C (locally consisting of all multiplica-
tive seminorms extending the trivially valued absolute value, j � jv � 1, on the field C). The
notation XNA (with NA a shorthand for non-Archimedean) is used here to distinguish XNA

from X which is the Berkovich analytification in the “Archimedean case,” i.e., the case of
the standard absolute value j � j on the ground field C.

The topological space XNA has the virtue of being both compact and connected.
Moreover, the function u.v/ on Xdiv extends to a plurisubharmonic (psh) function on XNA

in the sense of [25], denoted by uNA. Indeed, in analogy to the Archimedean case, one can first
define H .XNA/0 to be the space of all functions uNA on XNA induced by test configurations
� as above, and then define PSH.XNA/ as the space of all functions that can be written as
decreasing nets of functions in H .XNA/0 plus constants (functions in PSH.XNA/ are called
L-psh in [25] to emphasize their global dependence on L). There is a Monge–Ampère oper-
ator MA on H .XNA/ taking values in the space of probability measures on XNA [24, 25]

(which, in a very general setup can be defined in terms of the non-Archimedean general-
ization of exterior products of curvature forms introduced in [27]). Concretely, MA.uNA/

is a discrete probability measure supported on the valuations vi 2 Xdiv induced by irre-
ducible components of the central fiber of the test configuration corresponding to uNA [24,

Section 6.7]. Anyhow, in the present setup, one may directly define MA on H .XNA/ as the
differential of the functional

ENA.uNA/ WD
LnC1

.n C 1/Ln
;

2474 R. J. Berman



whose definition mimics formula (3.6) (with !0 D 0); this analogy becomes more clear
when both E and ENA are expressed in terms of Deligne pairings [21]. As in the usual
Archimedean setup (Section 3.2), the function ENA on H .XNA/ has a unique smallest usc
extension to PSH.XNA/; the subspace ¹ENA > �1º of PSH.XNA/ is denoted by E1.XNA/

and MA extends to E1.XNA/, as the differential of the functional E1
NA.

Remark 4.4. The map ut 7! uNA from geodesic rays in E1.X;!0/0 to the space E1.XNA/0,
described above, has the property that PE.ut / � E.uNA/ and is, in general, not injective. The
geodesic rays satisfying PE.ut / D E.uNA/ are precise those calledmaximal in [14, Section 6.4]

and they are in one-to-one correspondence with E1.XNA/.

4.3.2. The thermodynamical formalism
The non-Archimedean formalism naturally ties in with the thermodynamical for-

malism (discussed in Section 3). For example, as shown in [24–26], up to a base change
of �,2

DF.�/ D MNA.UNA/ WD FNA
�
MA.UNA/

�
; (4.7)

where FNA is the non-Archimedean analog on P .XNA/ of the free energy functional F on
P .X/ defined by

FNA.�/ D �ENA.�/ C EntNA.�/;

where the non-Archimedean energy ENA.�/ may be defined as a Legendre–Fenchel trans-
form of the functional ENA and the non-Archimedean entropy EntNA.�/ is defined by

EntNA.�/ WD

Z
XNA

A.v/�; A.v/ WD c
�
1 C ordEv .KYv=X /

�
v 2 Xdiv

whereA.v/ is the log discrepancy, defined as the greatest lsc extension toXNA of the function
on Xdiv defined above. Thus, in contrast to the usual entropy functional on P .X/, the non-
Archimedean entropy is a linear functional. Likewise, the “Ding invariant” appearing in
formula (4.4) may be expressed as follows in terms of the Legendre–Fenchel transform

D.�/ D DNA.uNA/ WD �E�
NA.uNA/ C Ent�NA.uNA/

in analogy with the usual Archimedean setup in Section 3.4. Inequality (4.4) is then obtained
by showing that the slope PD.ut / is bounded from below by D.uNA/, which, in turn, equals
the limit of D.�k/ (where �k is the test configuration corresponding to Uk defined by for-
mula (4.6)).

As shown in [26] (and [14] in the general twisted setting) the thermodynamical for-
malism can be leveraged to prove the following theorem (“1 ” 3” is shown in [40] using
the Minimal Model Program):

2 The base change is needed as the righ-hand side in formula (4.7) is one-homogeneous under
the natural action of R>0 on XNA, corresponding to a base change of �.
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Theorem 4.5 ([26]). Let X be a Fano manifold. The following are equivalent:

(1) ı.X/ > 1.

(2) X is uniformly K-stable onE1.XNA/ (i.e., inequality (4.1) extends fromH .XNA/

to E1.XNA/).

(3) X is uniformly Ding stable.

The starting point of the proof of ``1 ” 2” is the following variational formula
for ı.X/ established in [19, 26], realizing ı.X/ as a “stability threshold” (where ıv denotes
the Dirac measure at a point v in XNA):

ı.X/ D inf
v2Xdiv

EntNA.ıv/

ENA.ıv/
D inf

v2XNA

EntNA.ıv/

ENA.ıv/
D inf

�2P .XNA/

EntNA.�/

ENA.�/
(4.8)

using, in the second equality, that Xdiv is dense in XNA (together with a semicontinuity argu-
ment) and in the last equality (shown in [26]) that EntNA.�/ and ENA.�/ are linear and
convex, respectively, onP .XNA/. The function v 7! ENA.ıv/ is usually denoted by S.v/ and
can be shown to coincide with the “expected order of vanishing along v” [19]. In terms of the
non-Archimedean version of the free energy functional at inverse temperature ˇ, denoted by
FNA;ˇ .�/, formula (4.8) yields

ı.X/ � 1 C " ” inf
�2P .XNA/

FNA;�1�".�/ � 0 ” inf
�2P .XNA/

FNA.�/

ENA.�/
� ":

Finally, expressing � D MA.UNA/ for UNA 2 E1.XNA/, using the non-Archimedean version
of the “Calabi–Yau correspondence” (3.5), and invoking the non-Archimedean version of
inequalities (4.2) (established in [24]) proves the equivalence ``1 ” 2”. Next, using the
Legendre–Fenchel transform, just as in the proof of Theorem 3.4, one sees that uniform K-
stability on E1.XNA/ is equivalent to uniform Ding stability on E1.XNA/. Finally, ``2 ”

3” follows from the fact that DNA is continuous under approximation of UNA 2 E1.XNA/ by
a decreasing sequence in H .XNA/ (e.g., using multiplier ideal sheaves as in formula (4.6)).

In order to deduce the equivalence ``2 ” 3” in Theorem 4.3 from the previ-
ous theorem, it would be enough to prove the following non-Archimedean analog of the
regularization property shown in [16, Section 3].

Conjecture 4.6 ([26]). Given any u 2 E1.XNA/, there exists a sequence of uj 2 H .XNA/

converging weakly to u such that ENA.MA.uj // and EntNA.MA.uj // converge to
ENA.MA.u// and EntNA.MA.u//, respectively.

Remark 4.7. Combining Theorem 4.3 and Theorem 4.5 reveals that a Fano manifold X is
uniformlyK-stable iff ı.X/ > 1, as first shown in [19,40,41]. More precisely, the “if statement”
was shown in [41], where the “only if” statement was also conjectured. The conjecture was
then settled in [19]. It should also be pointed out that if one defines ı(X) as a stability threshold
(see the first equality in formula (4.8)), then the equivalence between the uniform K-stability
ofX and the criterion ı.X/ > 1 is essentially equivalent to the valuative criterion for uniform
K-stability established in [40]. A closely related valuative criterion for K-semistability was
established in [47].
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4.4. Recent developments
Recently there has been an explosion of exciting further developments. In [48, 50],

Theorem 4.3 and its variational proof were extended to general singular (log) Fano vari-
eties using, in particular, the singular version of Theorem 3.2 established in [13]. Moreover,
very recently it was shown in [52], using techniques from the Minimal Model Program, that
the infimum over Xdiv in formula (4.8) is (when ı.X/ � 1) attained at some v 2 Xdiv. More-
over, any such minimizing divisorial valuation v has the property that associated graded ring
is finitely generated and defines a special test configuration � for .X; �KX /. In particular,
the central fiber of � is irreducible (the relation between test configurations, filtrations, and
finitely graded rings originates in [62,67]). In non-Archimedean terms, the result in [52] can
be formulated as a regularity result for the minimizer in question, saying that ıv DMA.UNA/

for someUNA 2 H .XNA/ (in analogy to the regularity result in Theorem 3.2; cf. the appendix
in [40]). As a corollary it is shown in [52] that uniform K-stability is equivalent to K-stability.
In fact, these results are shown to hold in the general setup of (log) Fano varieties. When
combined with the aforementioned results in [48, 50] this settles the YTD conjecture in the
general setting of (log) Fano varieties (the “only if” implication was previously shown in [3]).
In another direction, a new variational proof of the uniform YTD conjecture in the nonsin-
gular Fano case is given in [70], using the quantized Ding-functional (leveraging the result
in [58] saying that the algebro-geometric invariant ık.X/ in formula (2.8) coincides with
coercivity threshold of the quantized Ding-functional). More generally, the results in [70]

imply that the first equality in formula (4.5) holds without taking the minimum with 1 (by
combining [70] with Theorem 3.4)

The variational/non-Archimedean approach is extended to polarized manifolds
.X; L/ in [49] to show that, if X is uniformly K-stable on E1.XNA/ (as in Theorem 4.5), then
X is geodesically stable and thus by Theorem 4.2 (i.e., by [30]) .X;L/ admits a Kähler metric
with constant scalar curvature. The converse statement is, however, still open. The complete
solution of the uniform YTD conjecture for .X; L/ is thus reduced to Conjecture 4.6. An
important ingredient in [49] is the notion of maximal geodesic rays ut introduced in [14]

(see Remark 4.4). The theory of maximal geodesic rays is further developed in in [34] and
related to singularity types of quasi-psh functions and the Legendre transform construc-
tion of geodesic rays introduced in [56]. In [68], analytic variants of stability thresholds are
introduced, expressed in terms of singularity types of quasi-psh functions.

5. A non-Archimedean approach to Gibbs stability

This final section is a report on joint work in progress with Sébastien Boucksom
and Mattias Jonsson to prove the converse of Theorem 2.5 or, more generally, to prove that

lim
N !1

lct.DN / D ı.X/ (5.1)

(which, when combined with results in [70], would also settle Conjecture 2.7). The strat-
egy is to adapt the variational approach to the convergence in Conjecture 2.3, discussed
in Section 2.3.1, to the non-Archimedean setup. The starting point is the standard valua-
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tive expression for the log canonical threshold of a divisor that yields (using the notation in
Section 4.3)

lct .DN / D inf
v.N /2ŒXN �div

A.v.N //

k�1.v.N /.detS .k///
WD

N �1A.v.N //

E
.N /
NA .v.N //

; (5.2)

wherewe have introduced the non-Archimedean energy per particle as the following function
on ŒXN �div:

E
.N /
NA .v.N // WD N �1k�1

�
v.N /.detS .k//

�
DW �N �1k�1 log

ˇ̌
detS .k/

ˇ̌
v.N /

(which is proportional to the negative of the psh function on ŒXN �NA induced by the quasi-
psh function logkdetS .k/k2 on XN ). In this notation, formula (5.2) can be viewed as a non-
Archimedean analog of Gibbs variational principle (2.18) (since lct .DN / � 1 is equal to the
one-homogeneous non-Archimedean “N -particle free energy”�E

.N /
NA C N �1A, normalized

by E
.N /
NA ). There are standard inclusions iN and surjections �N ,

iN W .XNA/N ,!
�
XN

�
NA; �N W

�
XN

�
NA � .XNA/N :

(the map iN is, however, not surjective). The non-Archimedean version of the empirical mea-
sure ıN mapping .XNA/N to P .XNA/ (obtained by replacing X with XNA in formula (2.3))
thus induces a map

��
N ıN W

�
XN

�
div ! P .XNA/; v.N /

7! N �1

NX
iD1

ı.�N .v.N ///i
:

It follows from the results in [70] (which are non-Archimedean versions of results in [11]) that
the restriction of E

.N /
NA to .XNA/N Gamma-converges towards ENA.�/ (in analogy with the

convergence (2.14)). In particular,

lim
N !1

ıN .v1; : : : ; vN / D � 2 P
�
ŒX�NA

�
H) lim inf

N !1
E

.N /
NA

�
iN .v1; : : : ; vN /

�
� ENA.�/:

(5.3)
Moreover, N �1A.iN .v1; : : : ; vN // D

R
XNA

A.v/ıN .v1; : : : ; vN /, as follows readily from the
definitions. Hence, restricting the inf in formula (5.2) to vN of the form vN D iN .v; : : : ; v/

for c 2 Xdiv reveals that the lim sup of lct .DN / is bounded from above by A.v/=E.ıv/,
proving the upper bound in formula (5.1). This proof essentially amounts to a reformulation
of the proof of Theorem 2.5 in [41] into a non-Archimedean language. But the main point of
the non-Archimedean formulation is that it opens the door for a non-Archimedean approach
to the missing lower bound. Indeed, it can be shown that

lim
Nj !1

�
��

Nj
ıNj

��
v.Nj /

�
D � 2 P

�
ŒX�NA

�
H) lim inf

Nj !1
N �1

j A.vNj
/ � EntNA.�/:

Hence, all that remains is to establish the following hypothesis for any valuation v
.N /
� realiz-

ing the infimum in formula (5.2) (which is a non-Archimedean analog of hypothesis (2.19)):

lim
Nj !1

�
��

Nj
ıNj

��
v

.Nj /
�

�
D �� 2 P .XNA/ H) lim sup

Nj !1

E
.Nj /

NA
�
v

.Nj /
�

�
� ENA.��/; (5.4)
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(by (5.3) the opposite inequality holds). Indeed, if the hypothesis holds then we get

inf
�2P .ŒX�NA/

EntNA.�/

ENA.�/
� lim inf

N !1
lct .DN / � lim sup

N !1

lct .DN / � inf
v2ŒX�div

EntNA.ıv/

ENA.ıv/
; (5.5)

which, when combined with identity (4.8), yields the desired formula (5.1).
It remains to verify the inequality in the hypothesis above. It would be enough to

establish the following “restriction hypothesis”: the minimizer v
.N /
� can, asymptotically, be

taken to be of the form iN .v�; v�; : : : ; v�/ for a fixed divisorial valuation v� on X :

9v� 2 Xdiv such that lim inf
N !1

lct .DN / D lim inf
N !1

N �1A.iN .v�; v�; : : : ; v�//

E
.N /
NA .iN .v�; v�; : : : ; v�//

:

Indeed, it follows from the convergence of Fekete points on XNA in [21] that

lim
N !1

E
.N /
NA

�
iN .v; v; : : : ; v/

�
D E.ıv/ (5.6)

for any divisorial valuation v on X (or, more generally, for any nonpluripolar point v in
XNA). In particular, it then follows that any v� satisfying the “restriction hypothesis” above
computes ı.X/. For instance, it can be verified that the “restriction hypothesis” does hold for
log Fano curves .X; �/. Anyhow, for any given divisorial valuation v on X , formula (5.6)
yields a “microscopic” formula for the non-Archimedean free-energy FNA.ıv/ (coinciding
with the invariant ˇ.v/ introduced in [40]) of independent interest:

FNA.ıv/ WD �E.ıv/ C A.ıv/ D lim
N !1

�
�E

.N /
NA

�
iN .v;v; : : : ; v/

�
C N �1A

�
iN .v;v; : : : ; v/

��
:

In particular, if � is a given test configuration, whose central fiber X0 is irreducible, this
gives a new formula for the Donaldson–Futaki invariant DF.�/, using that DF.�/ D FNA.ıv/,
where v is the divisorial valuation on X corresponding to X0. Comparing with the formula
for DF.�/ in terms of Chowweights thus suggests that the divisorial valuation iN .v;v; : : : ;v/

on XN , attached to v, plays the role of the one-parameter subgroup of GL.N; C/ attached
to �. Accordingly, the “restriction hypothesis” is an analog of the Hilbert–Mumford criterion
for stability in Geometric Invariant Theory.

Finally, coming back to the statistical mechanical point of view discussed in Sec-
tion 2.3, it may be illuminating to point out that the “restriction hypothesis” essentially
amounts to a concentration phenomenon which may be pictured as follows. Let us decrease
the inverse temperature ˇ from a given positive value towards the critical negative inverse
temperature ˇN where ZN .ˇ/ D 1. As ˇ changes sign from positive to negative, all the
particles start to mutually attract each other and, as ˇ ! ˇN , a large number of particles
concentrate along the subvariety of X defined by the center of the valuation v�.
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Sausages
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Abstract

The shift locus is the space of normalized polynomials in one complex variable for which
every critical point is in the attracting basin of infinity. The method of sausages gives a
(canonical) decomposition of the shift locus in each degree into (countably many) codi-
mension 0 submanifolds, each of which is homeomorphic to a complex algebraic variety.
In this paper we explain the method of sausages, and some of its consequences.
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1. Sausages

For each integer q � 2, the shift locus Sq is the set of degree q polynomials f in
one complex variable of the form

f .z/ WD zq
C a2zq�2

C a3zq�3
C � � � C aq;

for which every critical point of f is in the attracting basin of 1. One can think of Sq

as a open submanifold of Cq�1; understanding its topology is a fundamental problem in
complex dynamics. For example, when q D 2, the complement of S2 in C is the Mandelbrot
set. Knowing that S2 is homeomorphic to a cylinder implies the famous theorem of Douady–
Hubbard that the Mandelbrot set is connected.

Although the Sq are highly transcendental spaces, themethod of sausages (whichwe
explain in this section) shows that each Sq has a canonical decomposition into codimension
0 submanifolds whose interiors are homeomorphic to certain explicit algebraic varieties.
From this one can deduce a considerable amount about the topology of Sq , especially in low
degree.

The construction of sausages has several steps, and goes via an intermediate con-
struction that associates, to each polynomial f in Sq , a certain combinatorial object called
a dynamical elamination.

1.1. Green’s function
Let K be a compact subset of C with connected complement �K WD C � K. If K

has positive logarithmic capacity (for example, if the Hausdorff dimension is positive) then
there is a canonical Green’s function g W �K ! RC satisfying

(1) g is harmonic;

(2) g extends continuously to 0 on K; and

(3) g is asymptotic to log jzj near infinity (in the sense that g.z/ � log jzj is har-
monic near infinity).

There is a unique germ near infinity of a holomorphic function �, tangent to the
identity at 1, for which g D log j�.z/j.

1.2. Filled Julia set
Let f be a degree q complex polynomial. After conjugacy by a complex affine

transformation z ! ˛z C ˇ, we may assume that f is normalized; i.e., of the form

f .z/ WD zq
C a2zq�2

C a3zq�3
C � � � C aq :

The filled Julia set K.f / is the set of complex numbers z for which the iterates f n.z/ are
(uniformly) bounded. It is a fact thatK.f / is compact, and its complement�f WD C � K.f /

is connected. The union b�f WD �f [ 1 is the attracting basin of 1.
Böttcher’s Theorem (see, e.g., [20, Thm. 9.1]) says that f is holomorphically conjugate

near infinity to the map z ! zq . For normalized f , the germ of the conjugating map � (i.e.,
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� so that �.f .z// D �.z/q) is uniquely determined by requiring that � is tangent to the
identity at infinity. The (real-valued) function g.z/ WD log j�.z/j is harmonic, and satisfies
the functional equation g.f .z// D q � g.z/. We may extend g via this functional equation
to all of �f and observe that g so defined is the Green’s function of K.f /.

1.3. Maximal domain of ��1

Let D � C denote the closed unit disk, and E WD C � D the exterior. We will use
logarithmic coordinates h D log.jzj/ and � D arg.z/ onE and on Riemann surfaces obtained
from E by cut and paste. Note that g D h� where g and � are as in Section 1.1.

For any K with Green’s function g and associated �, we can analytically continue
��1 from infinity along radial lines of E. The image of these radial lines under ��1 are
the descending gradient flowlines of g (i.e., the integral curves of �grad.g/), and we can
analytically continue ��1 until the gradient flowlines run into critical points of g. Figure 1
shows some gradient flowlines of g for a Cantor set K.

Figure 1

Gradient flowlines of g for a Cantor set K.

Note that some critical points of g might havemultiplicity greater than one; however,
because g is harmonic, the multiplicity of every critical point is finite, and the critical points
of g are isolated and can accumulate (in bC) only on K. With this proviso about multiplicity,
we want to do a sort of “Morse theory” for the function g.

Let L0 be the union of the segments of the gradient flowlines of g descending from
all the critical points of g; in Figure 1 these are in red (gray, for black andwhite reproduction).
Then �K � L0 is the image of the maximal (radial) analytic extension of ��1. The domain
of this maximal extension ��1 may be described as follows. For w 2 E, define the radial
segment �.w/ � E to be the set of points z with arg.z/ D arg.w/ and jzj � jwj. The height
of � , denoted h.�/, is log.jwj/. The domain of ��1 is E � L where L is the union of a
countable proper (in E) collection of radial segments.
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If K D K.f / for a polynomial f , the critical points of g are the critical points and
critical preimages of f , i.e., points z for which .f n/0.z/ D 0 for some positive n. Thus
L0 is nearly f -invariant: the image f .L0/ is equal to L0 [ `0 where `0 is the (finite!) set of
descending flowlines from the critical values of f in �f (which are themselves not typically
critical).

Likewise, the map z ! zq on E takes L to L [ ` where ` is a finite set of radial
segments mapped by ��1 to `0.

1.4. Cut and paste
Let c be a critical point of g and let L0

c be the union of the gradient flowlines of g

descending from c (and, for simplicity, here and in the sequel let us suppose these flowlines
do not run into another critical point). Then L0

c is the union of n C 1 proper embedded rays
from c toK where n is the multiplicity of c as a critical point (these rays extend continuously
toK when the components ofK are locally connected; otherwise theymay “limit to” a prime
end of a component of K). There is a corresponding collection Lc of n C 1 radial segments
�j WD �.wj / all of the same height, where indices are circularly ordered according to the
arguments of the wj . The map ��1 extends continuously along radial lines from infinity
all the way to the wj : the wj all map to c. But any “extension” of ��1 over Lc will be
multivalued. We can repair this multivaluedness by cut and paste: cut open E along the
segments Lc to create two copies �C

j (resp. ��
j ) for each �j on the “left” (resp. “right”)

in the circular order. Then glue each segment ��
j to �C

j C1 by a homeomorphism respecting
absolute value. Under this operation the collection of segments Lc are reassembled into an
“asterisk” which resembles the cone on n C 1 points; see Figure 2.

Figure 2

Cut and paste over Lc of multiplicity 4.

The result is a new Riemann surface for which the map ��1 now extends (analyt-
ically and single-valuedly) over the (cut-open and reglued) image of Lc , whose image is
exactly L0

c .
If we perform this cut and paste operation simultaneously for all the different Lc

making up L, the Riemann surface E is reassembled into a new Riemann surface � so that
��1 extends to an isomorphism ��1 W � ! �K .
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If K D K.f / for a polynomial f , then the map z ! zq on E descends to a well-
defined degree q holomorphic self-map F W � ! � and ��1 conjugates F j� to f j�f .

1.5. Elaminations
It is useful to keep track of the partition of L0 and L into finite collections L0

c and
Lc associated to the critical points c of g.

For each critical point c of multiplicity n we span the n C 1 segments of Lc by an
ideal hyperbolic .n C 1/-gon inD. The segments ofLc become the tips and the ideal polygon
becomes the vein of a leaf of multiplicity n in an object called an extended lamination—or
elamination for short. When every critical point has multiplicity 1, we say the elamination
is simple. See Figures 3 and 7 for examples of simple elaminations. The key topological
property of elaminations is that the veins associated to different leaves do not cross. This is
equivalent to the fact that the result � of cut and paste along L is a planar surface (because
it is isomorphic to �X � C).

Elaminations are introduced and studied in [11]. The setEL of elaminations becomes
a space with respect to a certain topology (the collision topology), and can be given the
structure of a disjoint union of (countable dimensional) complex manifolds. For example, the
space of elaminations with n � 1 leaves (counted with multiplicity) is homeomorphic (but
not biholomorphic) to the space of degree n normalized polynomials with no multiple roots.

1.6. Dynamical elaminations
Figure 3 depicts the elamination associated to K.f / for a degree 3 polynomial f .

The critical leaves, i.e., the leaves with tips Lc associated to c a critical point of f , are in
red. Every other leaf corresponds to a precritical point of f (which are critical points of the
Green’s function). This elamination is simple: every leaf has exactly two tips.

Figure 3

Simple dynamical elamination of degree 3; critical leaves are in red.
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Let ƒ denote the elamination associated to L. Note that ƒ depends not just on L as
a set of segments, but also on their partition into subsets Lc .

The map z ! zq on E acts on segments and therefore also on leaves, with the
following exception. If ` is a leaf whose tips have arguments that all differ by integermultiples
of 2�=q then these segments will have the same image under z ! zq . Since leaves should
have at least two tips (by convention), if ` is a leaf all of whose tips have arguments that
differ by integer multiples of 2�=q then the image of ` under z ! zq is undefined.

Suppose K D K.f / for a degree q polynomial. Let C denote the critical leaves of
L (those associated to critical points of f ). The map z ! zq takes leaves to leaves in the
obvious sense, and takes ƒ � C to ƒ.

We say an elamination ƒ is a degree q dynamical elamination if

(1) it has finitelymany leavesC each of whose arguments differ by integermultiples
of 2�=q (the critical leaves);

(2) the map z ! zq takes ƒ � C to ƒ; and

(3) every leaf has exactly q preimages.

A degree q dynamical elamination ismaximal if there are q � 1 critical leaves, counted with
multiplicity.

The elamination ƒ associated to a degree q polynomial f is a degree q dynamical
elamination. It is maximal if and only if all the critical points of f are in �f .

A set of (noncrossing) leaves C , each with arguments that differ by integer multi-
ples of 2�=q is called a degree q critical set. A critical set is maximal if there are q � 1

leaves counted with multiplicity. It turns out that every maximal degree q critical set C is
exactly the set of critical leaves of a unique (maximal) degree q dynamical elamination ƒ;
see [11, Prop. 5.3]. The set of maximal degree q dynamical elaminations is denotedDLq . As
a subset of EL, it has the structure of an open complex manifold of dimension q � 1 with
local coordinates coming from the (endpoints of) segments of C (at least at a generic ƒ).

1.7. The shift locus
For each degree q, the shift locus Sq is the space of degree q normalized polynomials

f .z/ WD zq C a2zq�2 C a3zq�3 C � � � C aq for which every critical point is in the basin of
infinity �f . The coefficients a2; : : : ; aq are coordinates on Sq realizing it as an open subset
of Cq�1.

A polynomial f is in Sq if and only if the Julia set of f is a Cantor set on which
f is uniformly expanding (for some metric). Thus for such polynomials, J.f / D K.f / and
�f is the entire Fatou set (i.e., the maximal domain of normality of f and its iterates; see,
e.g., [20]).

Suppose f 2 Sq with associated dynamical elamination ƒ. Since all critical points
of f are in �f , it follows that ƒ is maximal; thus there is a map Sq ! DLq called the
Böttcher map. Conversely, if ƒ is any maximal degree q dynamical elamination, and � is
obtained from E by cut and paste along ƒ, then F j� extends (topologically) over the space
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of ends of� to define a degree q self-map NF of a topological sphere� Š S2. It turns out that
there is a canonical conformal structure on � extending that on � so that NF is holomorphic.
After choosing suitable coordinates on� near1, the map NF becomes a degree q normalized
polynomial, which is contained in Sq . The analytic content of this theorem is essentially due
to de Marco–McMullen; see, e.g., [16, Thm. 7.1] or [11, Thm. 5.4] for a different proof.

Thus the Böttcher map Sq ! DLq is a homeomorphism (and, in fact, an isomor-
phism of complex manifolds).

1.8. Stretching and spinning
There is a (multiplicative) RC action on EL called stretching where t 2 RC acts

on ƒ by multiplying the h coordinate of every leaf by t . This action is free and proper. It
preserves DLq for each q, and shows that DLq (and therefore also Sq) is homeomorphic
to the product of R with a manifold of (real) dimension 2q � 3. It is convenient for what
follows to defineDL0

q to be the open subspace ofDLq for which the highest critical leaf has
logq.h/ 2 .�1=2; 1=2/. By suitably “compressing” orbits of the RC action, we see there is
a homeomorphism DLq ! DL0

q .
There is also an R action on EL called spinningwhere t 2 R simultaneously rotates

the arguments of leaves of height h by th. This makes literal sense for the (finitely many)
leaves of greatest height. When leaves of lesser height are collided by those of greater height
the shorter leaf is “pushed over” the taller one; the precise details are explained in [11, § 3.2].
This R action also preserves each DLq . The closure of the R-orbits in each DLq are real
tori, and the R-orbits sit in these tori as parallel lines of constant slope. A typical R-orbit has
closure which is a torus of real dimension q � 1, but if some critical leaves have multiplicity
> 1 or if distinct critical leaves have rationally related heights, the closure will be a torus of
lower dimension.

Stretching and spinning combine to give an action of the (oriented) affine group
R Ì RC of the line on EL and on each individual DLq .

1.9. Sausages
Suppose K D K.f / for a degree q polynomial. The map f is algebraic, but the

domain �f is transcendental. When we move to the elamination side, the map z ! zq and
the domainE are (semi)algebraic, but the combinatorics ofL is hard to understand. Sausages
are a way to find a substitute for .f; �f / for which both the map and domain are algebraic
and more comprehensible.

The idea of sausages is to find a dynamically-invariant way to cut up the domain �

into a tree of Riemann spheres, so that F induces polynomial maps between these spheres.
The sausage map is not holomorphic, but it induces homeomorphisms between certain codi-
mension 0 submanifolds of DL0

q and certain explicit algebraic varieties whose topology is
in some ways much easier to understand.

Now let us discuss the details of the construction. First, consider the map z ! zq on
E alone. Let h WD log.jzj/ and � D arg.z/ be cylindrical coordinates onE, so thatE becomes
the half-open cylinder S1 � RC in .�; h/-coordinates, and z ! zq becomes the map which
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is multiplication by q which we denote�q. For each integer n, let In denote the open interval
.qn�1=2; qnC1=2/ and let An be the annulus in E where h 2 In and let A D

S
n An � E; the

complement of A is the countable set of circles with logq.h/ 2 1=2 C Z. Then �q takes An

to AnC1.
This data is holomorphic but not algebraic. So let us choose (rather arbitrarily) an

orientation-preserving diffeomorphism �0 W I0 ! R and for each n define �n W In ! R by
�n.h/ D qn�0.q�nh/ (so that by induction the �n satisfy �nC1.qh/ D q�n.h/ for all n and
h 2 In), and define� W A ! S1 � R to be themap that sends .�;h/ to .�;�n.h// if .�;h/ 2 An.
By construction, � commutes with multiplication by q:

�.q�; qh/ D
�
q�; �nC1.qh/

�
D
�
q�; q�n.h/

�
D q�.�; h/:

In other words, � semiconjugates �q on A to �q on S1 � R, which (by exponentiating)
becomes the map z ! zq on C�, an algebraic map on an algebraic domain. Actually, it is
better to keep a separate copy C�

n WD �.An/ of C� for each n, so that � conjugates �q on
A to the self-map of

S
n C�

n which sends each C�
n to C�

nC1 by z ! zq .

1.10. Sausages and dynamics
Now suppose we have a dynamical elamination ƒ with critical leaves C invariant

under z ! zq . For each An, the tips of ƒ intersect An in a finite collection of vertical seg-
mentsLn (some of whichwill pass all the way throughAn) andwe can perform cut-and-paste
separately on eachAn to produce a (typically disconnected) surfaceBn. Furthermore, we can
perform cut-and-paste on C�

n along the image �.Ln/ which, by construction, is compatible
with the Riemann surface structure. The result is to cut and paste C�

n into a finite collection
of algebraic Riemann surfaces, each individually isomorphic toC minus a finite set of points
and which can be canonically completed to Riemann spheres in such a way that the map F

on � descends to a map f from this union of Riemann spheres to itself; see Figure 4.

Figure 4

An is cut and paste into Bn which in turn maps to a disjoint union of Riemann spheres.

Denote the individual Riemann spheres by Xv and, by abuse of notation, write fv W

Xv ! Xf.v/ for the restriction of f to the component Xv . By the previous discussion, each
map fv is holomorphic, so that if we choose suitable coordinates onXv andXf.v/, the map fv

becomes a polynomial. There is almost a canonical choice of coordinates, which we explain
in the next two sections.
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Each Xv corresponds to a component Bv of some Bn, and gets a canonical finite
set of marked points Z0

v which correspond to the “boundary circles” of Bv . The unique
boundary circle with the greatest h coordinate picks out a point that we can identify with
1 2 Xv; we denote by Zv the set consisting of the rest of the marked points. The collection
of individual Riemann spheres Xv can be glued up along their marked points into an infinite
genus-zero nodal Riemann surface so that the indices v are parameterized by the vertices v

of the tree of gluings T . This tree is oriented, so that an edge v goes to w ifXv is glued along
1 to one of the (finite) marked points of Xw . We call w the parent of v and v one of the
children of w. If we make the assumption that no boundary component of any Bv contains
a critical point (this is the generic case) then each � 2 Zw � Xw is attached to a unique Xv

for v some child of w. If v is a child of w, and Xv is glued to Xw at the point � 2 Zw , then if
� is a critical point of fw of multiplicity m, the degree of fv is m C 1. By abuse of notation,
we denote the induced (simplicial, orientation-preserving) map on T also by f .

If ƒ is empty, then T is just a line, and each vertex has a unique child. If ƒ is
nonempty, then since there are only finitely many leaves of greatest height, there is a unique
highest vertex v of T with more than one child. Let w be the parent of v. The uppermost
boundary components of Bv and Bw are canonically identified with the unit circle S1 WD

R=2�Z. By identifying these circles with the unit tangent circles at 1 in Xv and Xw , we
can choose coordinates on these Riemann spheres so that the tangent to the positive real axis
corresponds to the angle 0 2 S1. In these coordinates Xv and Xw are identified with copiesbCv and bCw of the Riemann sphere bC, and after precomposing with a suitable complex affine
translation, fv becomes a normalized degree q polynomial map fv W z ! zq C b2zq�2 C

� � � C bq , and the (finite) marked points of Xv become the roots of fv in bCv .
Vertices of T above v and the maps between their respective Riemann surfaces do

not carry any information. Let w1 WD w denote the parent of v, and inductively let wn be the
parent of wn�1. Then each Xwn has exactly two marked points, which we can canonically
identify with 1 and 0, and the map fwn�1 W bCwn�1 ! bCwn is canonically normalized as
z ! zq .

Since these vertices carry no information, we discard them. Thus we make the con-
vention that T is the rooted tree consisting of v together with its (iterated) children, and we
let X denote the nodal Riemann surface corresponding to the union of Xw with w in T . We
record the data of the polynomial fv associated to the root v, though we do not interpret this
any more as a map between Riemann spheres, so that f is now a map from X � Xv to X and
fv is a polynomial function on Xv Š bC.

1.11. Tags and sausage polynomials
The choice of a distinguished point on a boundary S1 component of some Bu is

called a tag. Tags are the data we need to choose coordinates on X so that every fu becomes
a polynomial. We may identify this boundary circle with the unit tangent circle at a marked
point on Xu, and think of the tag as data on Xu. By induction, we can choose tags on Xu

in the preimage of the tags of Xf.u/ under the map fu W Xu ! Xf.u/ and inductively define
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coordinates bCu on Xu for which fu is represented by a normalized polynomial map (in
general of degree � q).

Suppose u has parent u0, and 1 in bCu is attached at some point � 2 Zu0 2 bCu0 .
Suppose � is a critical point of fu0 with multiplicity m. Then fu has degree m C 1. There
are m C 1 different choices of tag at � that map to the tag at fu0.�/, and the different choices
affect the normalization of fu by precomposing with multiplication by an .m C 1/st root of
unity.

The endpoint of this discussion is that we can recover X; f from the data of a rooted
tree T , and a set of equivalence classes of pair .tag; normalized polynomial fu/. Call this
data a (degree q) sausage polynomial.

A dynamical elamination ƒ is generic if the critical points of F are all contained
in A, i.e., if no critical (or by induction, precritical) point has h coordinate with log.h/ 2

1=2 C Z. The sausage map is the map that associates a sausage polynomial to a degree q

dynamical elamination. A sausage polynomial is generic (resp.maximal) if it is in the image
of a generic (resp. maximal) dynamical elamination.

A polynomial fw associated to a (generic) sausage polynomial has two kinds of
critical points. The genuine critical points are those inbCw � Z0

w (recall thatZ0
w isZw [ 1).

The fake critical points are those inZ0
w (D 1 [ Zw ) which correspond to circle components

of Bw mapping with degree > 1. For a generic dynamical elamination, the genuine critical
points of the associated sausage polynomial are exactly the images of the critical points of
the elamination (i.e., the endpoints of the critical leaves) under the sausage map. Thus for
a generic maximal sausage polynomial of degree q, there are exactly q � 1 genuine critical
points, counted with multiplicity.

For a generic, maximal sausage polynomial, all but finitelymany fv have degree one.
A degree-one map uniquely pulls back tags, and has only one possible normalized poly-
nomial representative, namely the identity map z ! z. Thus a generic, maximal sausage
polynomial is described by a finite amount of combinatorial data, together with a finite col-
lection of normalized polynomials. The reader who wants to see some examples should look
ahead to Sections 2.1 and 2.3.

Let Xq denote the space of generic maximal degree q sausage polynomials. Then
Xq is the disjoint union of countably infinitely many components, indexed by the combina-
torics of T and the degrees of the normalized polynomials between the associated Riemann
spheres. Each component of Xq is a quasiprojective complex variety of complex dimension
q � 1. In fact, each component is an iterated fiber bundle whose base and fibers are certain
affine (complex) varieties called Hurwitz varieties, which we shall describe in more detail
in Section 2.6.

1.12. Sausage space
Recall that DL0

q � DLq denotes the set of maximal degree q dynamical elamina-
tions for which the highest critical point has logq.h/ 2 .�1=2;1=2/. LetDL00

q � DL0
q denote

the subspace of generic maximal degree q dynamical elaminations. Then the construction
of the previous few sections defines a map DL00

q ! Xq .
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In fact, this map is invertible. Given a sausage polynomial X; f over a tree T with
root v, we can inductively construct (singular) vertical (resp. horizontal) foliations on eachbCw as follows. On bCv we pull back the foliations of C� by lines (resp. circles) of con-
stant argument (resp. absolute value) under the polynomial fv . Then on every other w, we
inductively pull back these foliations under fw W bCw ! bCf.w/. These foliations all carry
coordinates pulled back from C�, and bCw minus infinity and its marked points become
isomorphic to a branched Euclidean Riemann surface with ends isomorphic to the ends of
(infinite) Euclidean cylinders. We can reparameterize the vertical coordinates on each of
these Riemann surfaces by the inverses of the maps �n, and then glue together the result by
matching up boundary circles using tags. This defines an inverse to the mapDL00

q ! Xq and
shows that this map is a homeomorphism; see [11, Thm. 9.20] for details.

1.13. Decomposition of the shift locus
Putting together the various constructions we have discussed so far, we obtain the

following summary:

(1) Section 1.7 describes the map that associates to f 2 Sq a maximal degree q

dynamical elamination ƒ gives an isomorphism of complex manifolds
Sq ! DLq .

(2) Section 1.8 elaborates on how, by compressing orbits of the free RC action on
DLq , we obtain a homeomorphismDLq ! DL0

q to the subspace whose largest
critical leaf has log-height logq.h/ 2 .�1=2; 1=2/.

(3) Section 1.12 discusses how the open dense subset DL00
q � DL0

q of generic
dynamical elaminations maps homeomorphically by the sausage map
DL00

q ! Xq .

(4) Section 1.11 tells that the space Xq is the disjoint union of countably many
quasiprojective complex varieties, each of which has the structure of an iterated
bundle of affine (Hurwitz) varieties.

In words, the shift locus Sq of degree q has a canonical decomposition into codimen-
sion 0 submanifolds whose interiors are homeomorphic to certain explicit algebraic varieties.
It is a fact that we do not explain here (see [11, § 8 especially Thm. 8.11]) that the abstract cell
complex which combinatorially parameterizes the decomposition of Sq into these pieces is
contractible, so that all the interesting topology of Sq is localized in the components of Xq .

In the remainder of the paper we give examples, and explore some of the conse-
quences of this structure.

2. Sausage moduli

Each component Y ofXq parameterizes sausages of a fixed combinatorial type. The
combinatorial type determines finitely many vertices u for which the (normalized) poly-
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nomial fu has degree > 1. The combinatorics constrains these polynomials by imposing
conditions on their critical values, for instance, that the critical values are required to lie
outside a certain (finite) set. Thus, each component has the structure of an algebraic variety
which is an iterated fiber bundle, and so that the base and each fiber is something called a
Hurwitz variety.

For this and other reasons, the spaces Sq and the components Y of which they are
built bear a close family resemblance to the kinds of discriminant complements that arise in
the study of classical braid groups. The full extent of this resemblance is an open question,
partially summarized in Table 2.

2.1. Degree 2
LetX; f be a generic maximal sausage polynomial of degree 2. The root polynomial

fv is quadratic and normalized. It has one critical point, necessarily genuine. Thus fv.z/ WD

z2 C c for some c ¤ 0. Every other vertex w has a polynomial fw of degree one; since
polynomials are normalized, fw.z/ WD z. Thus all the information is contained in the choice
of the (nonzero) constant coefficient c of fv , so thatX2 D C�. The tree T is an infinite dyadic
rooted tree, where every vertex is attached to its parent at the points ˙

p
�c; see Figure 5.

Figure 5

A degree 2 sausage; each vertex is attached to its parent at the points ˙
p

�c.

Furthermore, in this case DL0
2 D DL00

2 so that S2 is homeomorphic (but not holo-
morphically isomorphic) toC�. As a corollary, one deduces the famous theorem of Douady–
Hubbard [17] that the Mandelbrot setM (i.e., C � S2) is connected.

2.2. Discriminant locus
In any degree q, there is a unique component of Xq for which all the (genuine)

critical points are in the root vertex. Thus fv is a degree q normalized polynomial with no
fake critical points. Since the marked points Zv of the root vertex are exactly the roots of fv ,
this means that fv is a normalized polynomial with no critical roots. Equivalently, fv has q

distinct roots, so that fv is in Yq WD Cq�1 � �q where �q is the discriminant locus. As is
well known, Yq is a K.Bq; 1/ where Bq denotes the braid group on q strands.
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2.3. Degree 3
Let X; f be a generic maximal sausage polynomial of degree 3. If the root polyno-

mial fv has two genuine critical points, we are in the case discussed in Section 2.2 and the
corresponding component of X3 is a K.B3; 1/. Otherwise, since the root polynomial must
have at least one genuine critical point, if it does not have two, it must have exactly one and
fv is of the form z ! .z � c/2.z C 2c/ for some c 2 C�.

The (finite) marked points Zv of bCv are c and �2c, and the root vertex corre-
spondingly has two children w1; w2 where bCw1 is attached at c and bCw2 is attached at �2c.
Because c is a double root, the polynomial fw1 has degree 2; because �2c is a simple root,
the polynomial fw2 has degree 1.

Write fw1 W z ! z2 C d . If d ¤ c; �2c then Zw1 has four (noncritical) points (the
distinct square roots of c � d and �2c � d ) and every other fu is degree 1. See Figure 6.
Thus c and d are moduli parameterizing a single component of X3, and topologically this
component is a bundle over C� whose fiber is homeomorphic to C � ¹c; �2cº.

Figure 6

A degree 3 sausage; the root v has Zv WD ¹c; �2cº. The child w1 has Zw1 WD ¹˙
p

c � d; ˙
p

�2c � dº.

If d D c or d D �2c then 0 is a fake critical point for fw1 , and if u is the child of
w1 for which bCu is attached at 0 then fu has degree 2. Since f is maximal, there is always
some vertex u0 at finite combinatorial distance from the root for which fu0 has degree 2 and
for which the critical point 0 of fu0 is genuine. Thus each component of X3 is a bundle over
C� with fiber homeomorphic to C minus finitely many points.

2.4. The tautological elamination
The combinatorics of the components of X3 is quite complicated. Each component

of X3 (other than the discriminant complement, cf. Section 2.2) is a punctured plane bundle
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over the curve C� with parameter c, and these components glue together in S3 to form a
bundle over C� whose fiber �T is homeomorphic to a plane minus a Cantor set.

Actually, there is another description of �T in terms of elaminations. For each
degree 3 critical leaf C , there is a certain elamination ƒT .C / called the tautological elam-
ination which can be defined as follows. Let us suppose that we have a maximal degree 3

dynamical elamination with two critical leaves C and C 0, and that C has the greater height.
If we fix C , then �T parameterizes the space of configurations of C 0.

The elamination ƒT .C / is defined as follows. With C fixed, each choice of (non-
crossing)C 0 determines a dynamical elaminationƒ. By hypothesis, h.C 0/ < h.C / and there
are only finitely many (perhaps zero) precritical leaves P of C with h.P / > h.C 0/. As we
vary C 0, the laminations ƒ also vary (in rather a complicated way), but while h.P / > h.C 0/

the leaves P stay fixed under continuous variations of C 0. It might happen that, as we vary
the leaf C 0, it collides with a leaf P with h.P / > h.C 0/; the elamination ƒT .C / consists
of the cubes P 3 of all such P (there is a similar, though more complicated construction in
higher degrees). The fact that ƒT .C / is an elamination is not obvious from this definition.

The result of cut and paste (as in Section 1.4) on the annulus 1 < jzj < jC j (thought
of as a subset of E) along ƒT .C / is a Riemann surface �T .C / holomorphically isomorphic
to the moduli space of degree 3 maximal dynamical elaminations for which C is the unique
critical leaf of greatest height. Figure 7 depicts the elamination ƒT .C / for a particular value
of C whose tips have angles ˙�=3.

Figure 7

The tautological elamination ƒT .C / for arg.C / D ˙�=6.

These �T .C / are the leaves of a (singular) one complex dimensional holomorphic
foliation of S3.

Although it is not a dynamical elamination, the tautological elamination ƒT .C / is
in a natural way the increasing union of finite elaminationsƒn, namely the leaves of the form
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P 3 as above where P is a depth n preimage of C . Let E denote the closure of E in C so that
E D E [ S1, the union of E with the unit circle. The result �n of cut and pasting E along
ƒn is partially compactified by a finite set of circles, obtained from S1. By abuse of notation,
we denote this finite set of circles by S1 mod ƒn. It turns out that the the components of
X3 \ �T corresponding to sausage polynomials with fixed c 2 C� and for which the second
genuine critical point is in a vertex at depth n C 1 are in bijection with the set of components
of S1 mod ƒn. In fact, more is true.

For each combinatorial type X; f , let u be the vertex containing the second genuine
critical point (the first, by hypothesis, is contained in the root). We define the depth n of
X; f to be the combinatorial distance of u to the root. There is another invariant of X; f: the
`-value, defined as follows. Under iteration of f (acting on the tree), the vertex u has a length
n orbit terminating in the root (note that f.u/ is not typically equal to the parent of u, but
it does have the same depth as the parent). The point 1 in bCu is mapped to 1 in bCf.u/

and so on. The product of the degrees of the polynomials ff i .u/ up to but not including the
root is some power of 2; by definition, ` is this number divided by 2. The invariants n and
`, taking discrete values, are really invariants of the components of X3 and ipso facto of the
components of X3 \ �T .

Here is the relation to ƒT .C /. Components of X3 \ �T of depth n C 1 are in
bijective correspondence with components of S1 mod ƒn, and a component of X3 \ �T

with `-value ` corresponds to a component of S1 mod ƒn of length 2�` � 3�n.

2.5. Combinatorics
Let N3.n; m/ denote the number of components of S1 mod ƒn with depth n C 1

and ` D 2m. We do not know a simple closed form for N3.n; m/ and perhaps none exists—
one subtle issue is that there are several combinatorially different ways that a component can
have a particular `-value. However, an `-value of 1 is special, since it corresponds to an f

for which ff i .u/ has degree 1 for all positive i . Correspondingly, there is an explicit formula
for N3.n; 0/ that we now give; see [10, Thm. 3.6] for a proof.

First of all, N3.n; 0/ satisfies the recursion N3.0; 0/ D 1, N3.1; 0/ D 1, and

N3.2n; 0/ D 3N3.2n � 1; 0/ and N3.2n C 1; 0/ D 3N3.2n; 0/ � 2N3.n; 0/:

Knowing this, one canwrite down an explicit generating function forN3.n;0/; the generating
function is .ˇ.t/ � 1/=3t where

ˇ.t/ D

 
1X

nD0

h.n/tn

!
1Y

j D0

1

.1 � 3t2j
/

and where the numbers h.n/ are defined by

h.0/ D 1 and h.n/ D .�3/s.n/
�
1 � .�2/k.n/

�
with 2k.n/ being the biggest power of 2 dividing n, and s.n/ the sum of the binary digits of n.

Table 1 gives values of N3.n; m/ for 0 � n; m � 12. Note that N3.n; m/ D 0 for
n=2 < m < n; see [10, Thm 5.9].
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n `

1 2 22 23 24 25 26 27 28 29 210 211 212

0 1
1 1 1
2 3 1 1
3 7 6 0 1
4 21 16 3 0 1
5 57 51 13 0 0 1
6 171 149 39 5 0 0 1
7 499 454 117 23 0 0 0 1
8 1497 1348 360 66 9 0 0 0 1
9 4449 4083 1061 207 41 0 0 0 0 1
10 13347 12191 3252 591 126 17 0 0 0 0 1
11 39927 36658 9738 1799 370 81 0 0 0 0 0 1
12 119781 109898 29292 5351 1125 240 33 0 0 0 0 0 1

Table 1

Number of components of length `=3n at depth n.

2.6. Hurwitz varieties
Let X be a component of Xq parameterizing sausage polynomials of a fixed combi-

natorial type. Then X is an iterated bundle whose base and fibers Y are all of the following
sort. There are specific vertices u; w with f.u/ D w. The set Zw � bCw is fixed, as is the
degree p of fu W bCu ! bCw . Furthermore, for each � 2 Zw the ramification data of fu at � is
specified, i.e., the monodromy of f�1

u in a small loop around each �, thought of as a conju-
gacy class in the symmetric group on p letters. Then Y is the space of normalized degree p

polynomials with the specified ramification data. We call Y a Hurwitz variety, and observe
that eachX is an iterated bundle with total (complex) dimension q � 1whose base and fibers
are all Hurwitz varieties.

The generic case is that the monodromy of f�1
u in a small loop around each � 2 Zw

is trivial, i.e., each � is a regular value. In that case, Y is a Zariski open subset of Cp�1.
In fact, we can say something more precise. Let �p � Cp�1 be the discriminant variety,
i.e., the set of normalized degree p polynomials with a multiple root. For each � 2 Zw , let
�p;� WD �p C � be the translate of �p which parameterizes the set of normalized degree p

polynomials f for which � is a critical value. Then

Y D Cp�1
�

[
�2Zw

�p;� :

It turns out that the topology of Y depends only on the cardinality of Zw ; see [11, Prop. 9.14].
This is not obvious, since the �p;� are singular, and they do not intersect in general position.
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2.7. K.�; 1/s
For a finite set Z � C and degree p, let Yp.Z/ denote the Hurwitz variety of nor-

malized degree p polynomials for which no element of Z is a critical value.
As we remarked already in Section 2.2, when jZj D 1 the space Yp.Z/ is aK.Bp; 1/

where Bp denotes the braid group on p strands. Furthermore, when p D 2 the space Y2.Z/

may be identified with C � Z in the obvious way, so that Y2.Z/ is a K.Fn; 1/ where Fn is
the free group on n elements, and n D jZj.

It turns out (see [11, Thm. 9.17]) that Y3.Z/ is a K.�; 1/ for any finite set Z. This is
proved by exhibiting an explicit CAT.0/ 2-complex with the homotopy type of each Y3.Z/.
One component ofX4 is aK.B4; 1/ and all the others are nontrivial iterated fibrations where
the fibers are Y2.Z/ or Y3.Z/s. It follows that every component of X4 is a K.�; 1/, and, in
fact, so is the shift locus S4 itself (the same is true for simpler reasons of S3 and S2).

One knows few examples of algebraic varieties which areK.�;1/s, and fewer meth-
ods to construct or certify them (one of the few general methods, which applies to certain
complements of hyperplane arrangements, is due to Deligne [15]). Is Yp.Z/ a K.�; 1/ for all
p and all Z?

2.8. Monodromy
For each p and jZj, there is a natural representation (well defined up to conjugacy)

�1.Yp.Z// ! BpjZj defined by the braiding of the pjZj points f �1.Z/ in C as f varies in
Yp.Z/. This map is evidently injective when p D 2 or when jZj D 1. Is it injective in any
other case? I do not know the answer even when p D 3 and jZj D 2.

Here is one reason to be interested. There is a monodromy representation of �1.Sq/

into the “Cantor braid group”, i.e., the mapping class group of a disk minus a Cantor set,
defined by the braiding of the (Cantor) Julia set Jf in C as f varies in Sq . A priori this
representation lands in the mapping class group of the plane minus a Cantor set, but it lifts
canonically to the Cantor braid group (which is a central extension) because every f 2 Sq

acts in a standard way at infinity. If one forgets the braiding and only considers the permu-
tation action on the Cantor set itself, the image in Aut.Cantor set/ is known to be precisely
equal to the automorphism group of the full (one-sided) shift on a q element alphabet, by a
celebrated theorem of Blanchard–Devaney–Keen [5]. However, this action of �1.Sq/ on the
Cantor set alone is very far from faithful.

The automorphism group of the Cantor set is to the Cantor braid group as a finite
symmetric group is to a (finite) braid group. It is natural to ask: Is the monodromy repre-
sentation from �1.Sq/ to the Cantor braid group injective? It turns out that the restriction
of the monodromy representation to the image of �1.Yp.Z// in �1.Sq/ factors through the
representation to BpjZj. So a precondition for the monodromy representation to the Cantor
braid group to be injective is that each �1.Yp.Z// ! BpjZj should be injective.

When q D 2, we have �1.S2/ D Z and the monodromy representation is evidently
injective, since the Cantor braid group is torsion-free.With YanMaryHe and Juliette Bavard,
we have shown that themonodromy representation is injective in degree 3 (work in progress).
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2.9. Big mapping class groups
The Cantor braid group and the (closely related) mapping class group of the plane

minus a Cantor set are quintessential examples of what are colloquially known as big map-
ping class groups. The study of these groups is an extremely active area of current research;
for an excellent recent survey, seeAramayona–Vlamis [1]. There are connections to the theory
of finite-type mapping class groups (particularly to stability and uniformity phenomena in
such groups); to taut foliations of 3-manifolds; to pruning theory and the de-Carvalho–Hall
theory of endomorphisms of planar trees; to Artinizations of Thompson-like groups and
universal algebra, etc. (see [1] for references).

One major goal of this theory – largely unrealized as of yet – is to develop new
tools for applications to dynamics in 2 real and 1 complex dimension. Cantor sets appear
in surfaces as attractors of hyperbolic systems (e.g., in Katok–Pesin theory [18]), and big
mapping class groups (and some closely related objects) are relevant to the study of their
moduli. The paper [11] and the theory of sausages is an explicit attempt to work out some of
these connections in a particular case.

2.10. Rays
Let� denote themapping class group of the plane (which we identify withC) minus

a Cantor setK. The Cantor braid groupb� is the universal central extension of � . Some of the
tools discussed in this paper may be used to study b� and its subgroups in some generality;
for instance, components of EL are classifying spaces for subgroups of b� .

The group � acts in a natural way on the set R of isotopy classes of proper simple
rays in C � K from 1 to a point in K. Associated to this action are two natural geometric
actions of �:

(1) there is a natural circular order onR, so that� acts faithfully by order-preserving
homeomorphisms on a certain completion of R, the simple circle; see [3,7,12];
and

(2) the elements of R are the vertices of a (connected) graph (the ray graph) whose
edges correspond to pairs of rays that may be realized disjointly; this graph is
connected, has infinite diameter, and is Gromov-hyperbolic; see [2,9].

(Landing) Rays are also a critical tool in complex dynamics, and in the picture devel-
oped in the previous two sections. ForK a Cantor Julia set, nonsingular gradient flowlines of
the Green’s function extend continuously to K; the set of distinct isotopy classes of nonsin-
gular flowlines associated to single K form a clique in the ray graph. Because the ray graph
is Gromov-hyperbolic, there is (up to bounded ambiguity) a canonical path in the ray graph
between any two such cliques; one can ask whether such paths are coarsely realized by paths
in Sq , and if so what geometric properties such paths have, and how this geometry manifests
itself in algebraic properties of �1.Sq/. For example, does �1.Sq/ admit a (bi)automatic
structure? (To make sense of this, one should work with a locally finite groupoid presenta-
tion for �1.Sq/.) One piece of evidence in favor of this is that S3 (and, for trivial reasons, S2)
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is homotopy equivalent to a locally CAT.0/ complex, and it is plausible that the same holds
for all Sq . Although there are known examples of groups which are locally CAT.0/ but not
biautomatic [19], nevertheless in practice these two properties often go hand in hand.

2.11. Left orderability
A group is left-orderable if it admits a total order that is preserved under left multi-

plication. The left-orderability of braid groups (see [14]) is key to some of their most impor-
tant properties (e.g., faithfulness of the Lawrence–Kraamer–Bigelow representations [4]).
Left-orderability of 3-manifold groups is also conjecturally ([6]) related to both symplectic
topology (via Heegaard Floer homology) and to big mapping class groups via the theory of
taut foliations and universal circles; see, e.g., [8,13]. The Cantor braid group is left-orderable
(via the faithful action of � on the simple circle) so, to show that �1.Sq/ is left-orderable, it
would suffice to prove injectivity of the monodromy representation as in Section 2.8.

2.12. Comparison with finite braids
Define Yq WD Cq�1 � �q , the space of normalized degree q polynomials without

multiple roots. Our study of Sq has been guided by a heuristic that one should think of Sq

as a sort of “dynamical cousin” to Yq , and that they ought to share many key algebraic and
geometric properties. Table 2 compares some of what is known about the topology of Yq

and Sq .

Yq S2; S3 S4 Sq; q > 4

locally CAT.0/ yes for q � 6 yes unknown unknown
K.�; 1/ yes yes yes unknown
H� vanishes below middle dimension yes yes yes yes
�1 is mapping class group yes yes unknown unknown
�1 is left-orderable yes yes unknown unknown
�1 is biautomatic yes yes yes unknown

Table 2

Comparison of Sq with discriminant complements Yq .

Acknowledgments

I would like to thank Lvzhou Chen, Toby Hall, Sarah Koch, Curt McMullen, Sandra
Tilmon, Alden Walker, and Amie Wilkinson for useful feedback on early drafts of this
paper.

References

[1] J. Aramayona and N. Vlamis, Big mapping class groups: an overview.
arXiv:2003.07950.

2502 D. Calegari

https://arxiv.org/abs/2003.07950


[2] J. Bavard, Hyperbolicité du graphe des rayons et quasi-morphismes sur un gros
groupe modulaire. Geom. Topol. 20 (2016), 491–535.

[3] J. Bavard and A. Walker, The Gromov boundary of the ray graph. Trans. Amer.
Math. Soc. 370 (2018), no. 11, 7647–7678.

[4] S. Bigelow, Braid groups are linear. J. Amer. Math. Soc. 14 (2000), no. 2,
471–486.

[5] P. Blanchard, L. Devaney, and L. Keen, The dynamics of complex polynomials
and automorphisms of the shift. Invent. Math. 104 (1991), 545–580.

[6] S. Boyer, C. Gordon, and L. Watson, On L-spaces and left-orderable fundamental
groups. Math. Ann. 356 (2013), no. 4, 1213–1245.

[7] D. Calegari, Circular groups, planar groups and the Euler class. In Proceedings
of the Casson fest, pp. 431–491, Geom. Topol. Monogr. 7, Geom. Topol. Publ.,
Coventry, 2004.

[8] D. Calegari, Foliations and the geometry of 3-manifolds. Oxford Math. Monogr.,
Oxford University Press, Oxford, 2007.

[9] D. Calegari, Big mapping class groups and dynamics, blog post, 2009, https://
lamington.wordpress.com/2009/06/22/big-mapping-class-groups-and-dynamics/

[10] D. Calegari, Combinatorics of the tautological lamination. arXiv:2106.00578.
[11] D. Calegari, Sausages and Butcher paper. arXiv:2105.11265.
[12] D. Calegari and L. Chen, Big mapping class groups and rigidity of the simple

circle. Ergodic Theory Dynam. Systems 41 (2021), no. 7, 1961–1987.
[13] D. Calegari and N. Dunfield, Laminations and groups of homeomorphisms of the

circle. Invent. Math. 152 (2003), no. 1, 149–204
[14] P. Dehornoy, I. Dynnikov, D. Rolfsen and B. Wiest, Ordering braids. Math. Sur-

veys Monogr. 148, AMS, Providence, RI, 2008.
[15] P. Deligne, Les immeubles des groupes de tresses généralisés, Invent. Math. 17

(1972), 273–302.
[16] L. DeMarco and C. McMullen, Trees and the dynamics of polynomials. Ann. Sci.

Éc. Norm. Supér. (4) 41 (2008), no. 3, 337–382.
[17] A. Douady and J. Hubbard, Itération des polynômes quadratiques complexes. C.

R. Acad. Sci. Paris Sér. I Math. 294 (1982), no. 3, 123–126.
[18] A. Katok, Lyapunov exponents, entropy and periodic orbits for diffeomorphisms.

Publ. Math. Inst. Hautes Études Sci. 51 (1980), 137–173.
[19] I. Leary and A. Minasyan, Commensurating HNN-extensions: non-positive curva-

ture and biautomaticity. arXiv:1907.03515.
[20] J. Milnor, Dynamics in one complex variable. Third edition, Ann. of Math. Stud.

160, Princeton University Press, Princeton NJ, 2006.

Danny Calegari

University of Chicago, Department of Mathematics, Eckhart Hall, 5734 S University Ave,
Chicago IL, 60637, USA, dannyc@math.uchicago.edu

2503 Sausages

https://lamington.wordpress.com/2009/06/22/big-mapping-class-groups-and-dynamics/
https://lamington.wordpress.com/2009/06/22/big-mapping-class-groups-and-dynamics/
https://arxiv.org/abs/2106.00578
https://arxiv.org/abs/2105.11265
https://arxiv.org/abs/1907.03515
mailto:dannyc@math.uchicago.edu


Lagrange multiplier
functionals and their
applications in
symplectic geometry
and string topology
Kai Cieliebak

Abstract

This note discusses the role of Lagrange multiplier functionals in mathematics and physics.
The main focus is on Rabinowitz’ action functional and its usage in symplectic geometry,
as well as recent applications in string topology and the study of closed geodesics.

Mathematics Subject Classification 2020

Primary 53D40; Secondary 55N45, 55P35, 57R17, 57R19

©2022 International Mathematical Union
Proc. Int. Cong.Math. 2022, Vol. 4, pp. 2504–2528
DOI 10.4171/ICM2022/46

Published by EMS Press
and licensed under
a CC BY 4.0 license

https://creativecommons.org/licenses/by/4.0/


1. Introduction

The purpose of this note is to tell the story of how an old and simple idea—Lagrange
multipliers—has led to new insights in symplectic geometry and loop space topology.

The beginning of our story is the observation by Joseph-Louis Lagrange in 1804 [58]

that critical points of a functional f .x/ subject to a constraint h.x/D 0 correspond to uncon-
strained critical points of the function F.x; �/ D f .x/ � �h.x/ depending on a Lagrange
multiplier �. In modern terms, f W X ! R and h W X ! V should be sufficiently smooth
maps, where X is a Banach manifold and V a Banach space. Denoting by h�; �i the canon-
ical pairing between V and its topological dual V �, we consider the Lagrange multiplier
functional

F W X � V �
! R; F .x; �/ D f .x/ �

˝
�; h.x/

˛
:

Then .x; �/ is a critical point of F if and only if

df .x/ D
˝
�; dh.x/

˛
and h.x/ D 0:

Assuming that 0 is a regular value of h, so that Z D h�1.0/ � X is a Banach submanifold,
this is equivalent to x being a critical point of the restriction f jZ . The Lagrange multiplier �
at x is uniquely determined by the first equation. Although it was introduced as an auxiliary
parameter, the Lagrange multiplier often has mathematical or physical meaning.

Example 1.1 (Eigenvalues). LetX be a complex Hilbert space andA WX!X a self-adjoint
bounded linear operator. Consider the functions

f; h W X ! R; f .x/ D hx;Axi; h.x/ D kxk2 � 1:

Then the critical points of the restriction of f to the unit sphere S D h�1.0/ correspond to
solutions .x;�/ 2X �R of the equations kxk D 1 andAx D �x, so the Lagrange multiplier
� 2 R is an eigenvalue of A with eigenvector x. If A is compact (e.g., if X is finite dimen-
sional), then f attains its maximum and minimum on S and it follows that kAk or �kAk is
an eigenvalue.

The Hessian of F at a critical point .x; �/ is given by

HessF.x; �/ D

 
Hessf .x/ dh.x/�

dh.x/ 0

!
:

IfX and V are finite dimensional, it follows that the Hessians HessF.x;�/ and Hessf jZ.x/
have the same nullity and signature (the number of positive minus the number of negative
eigenvalues). These relations also hold in some infinite-dimensional cases where nullity and
signature can be defined; one such case arises for Hamiltonian systems where the role of the
signature is played by the Conley–Zehnder index, see Section 2.

We see in particular that the Hessian of F is never positive or negative definite,
so its critical points cannot be detected by direct maximization or minimization methods
and one needs to resort to indirect variational methods. Of particular relevance for this note
will be Morse homology (see, e.g., [70, 77]). This is the homology of the chain complex
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whose generators are critical points of F and whose differential counts gradient trajecto-
ries .x; �/ W R! X � V � between critical points. Based on the preceding discussion, we
expect that the Morse homology of F equals the Morse homology of f jZ if both are graded
by the signature rather than the Morse index. However, even in finite dimensions it is not
obvious that both Morse homologies are defined, and in addition equal, due to the possible
escape of gradient trajectories to infinity. This issue will be a recurring theme in this note,
which is structured as follows.

Section 2 focuses on a specific Lagrange multiplier functional, the Rabinowitz
action functional, and its applications in symplectic geometry. Section 3 presents some
recent applications of the ideas from Section 2 in string topology. Section 4 discusses some
further occurrences of Lagrange multiplier functionals in mathematics and physics. Besides
established results, I will also discuss some work in progress, as well as open questions.

2. Rabinowitz Floer homology

In this section we will focus on one particular Lagrange multiplier functional, the
Rabinowitz action functional, and discuss properties and applications of the corresponding
Floer homology. For more details and background, see the original references or the survey
by P. Albers and U. Frauenfelder [9].

2.1. Definition and basic properties
Let .W;�/ be a Liouville manifold of dimension 2n, i.e., a connected manifold with

a 1-form such that ! D d� is symplectic and W is exhausted by compact sets Wk with
smooth boundary such that �j@Wk

is a positive contact form. Examples of Liouville manifolds
includeCn, cotangent bundles, and, more generally, Stein andWeinsteinmanifolds (see [18]).

To a 1-periodic time-dependent Hamilton functionH W S1 �W ! R, we associate
its Hamiltonian vector fieldXHt by dHt D !.�;XHt /, whereHt DH.t; �/. Then 1-periodic
solutions x W S1 ! W of the Hamiltonian system Px D XHt .x/ are the critical points of the
Hamiltonian action

AH W C
1.S1;W /! R; AH .x/ D

Z
x

� �

Z 1

0

H.t; x/dt:

Assume now that H W W ! R is time-independent. Then we have conservation of energy
and it is natural to look for solutions of prescribed energy rather than prescribed period. For
this, suppose that 0 is a regular value ofH and consider the Rabinowitz action functional

AH
W C1.S1;W / �R! R; AH .x; �/ D

Z
x

� � �

Z 1

0

H.x/dt:

Its critical points satisfy the equations

Px D �XH .x/;

Z 1

0

H.x/dt D 0:

By the first equation, H.x.t// is constant and, by the second equation, this constant equals
zero, so the critical point equations become

Px D �XH .x/; H
�
x.t/

�
� 0:
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Critical points of AH thus correspond to orbits t 7! x.t=�/ of XH of period � and energy
0 (if � > 0), such orbits run backwards (if � < 0), or to constant loops on H�1.0/ (if � D
0). As we will see in Section 3, the appearance of solutions with negative � is responsible
for an additional symmetry of the corresponding Floer homology.1 In 1978, P. Rabinowitz
used this functional to prove existence of periodic orbits on star-shaped energy hypersurfaces
in Cn [66].2

To define the Floer homology of AH , we pick an !-compatible almost complex
structure J on W and equip C1.S1;W / �R with the metric

m.x;�/

�
. Ox1; O�1/; . Ox2; O�2/

�
D

Z 1

0

!. Ox1; J Ox2/dt C O�1 O�2:

Then gradient flow lines of AH are maps .u; �/ W R! C1.S1;W / �R, satisfying

@suC J.u/
�
@tu � �XH .u/

�
D 0; @s�C

Z 1

0

H.u/dt D 0; (2.1)

where .s; t/ are the coordinates on R � S1. This is a coupled system of an elliptic PDE and
a nonlocal ODE. Its solutions exhibit three potential sources of noncompactness: explosion
of the gradient of u, which is excluded by exactness of !; escape of u to infinity, which can
be prevented by suitable conditions on J ; and escape of the Lagrange multiplier � to ˙1.
To prevent the latter, we need to impose some geometric condition on the hypersurface†D
H�1.0/.

A hypersurface † � W is of restricted contact type if it admits a contact form ˛

such that ˛ � �j† is exact (for H 1.†IR/ D 0 this agrees with A. Weinstein’s contact type
condition [78]). We also assume that † is connected and bounds a compact subset. Then it
admits a (nonunique) defining Hamiltonian, i.e., a smooth function H W W ! R which is
constant outside a compact set such that H�1.0/ D † and XH D R along †, where R is
the Reeb vector field of ˛.

Theorem 2.1 ([19]). (a) Given a hypersurface † � W of restricted contact type
and a defining Hamiltonian H , the Floer homology FH�.A

H / is well defined;
it is independent of the defining Hamiltonian and called the Rabinowitz Floer
homology RFH�.†/.

(b) For a smooth family of hypersurfaces †s , s 2 Œ0; 1�, of restricted contact type
there is a canonical isomorphism RFH�.†0/ Š RFH�.†1/.

(c) If a hypersurface † � W of restricted contact type is displaceable from itself
by a Hamiltonian isotopy, then RFH�.†/ D 0.

1 Though of course unrelated, this phenomenon is reminiscent of the appearance of negative
energy solutions in Dirac’s equation.

2 As H. Hofer pointed out, the functional appeared already in a 1976 article by J. Moser [61],
where he concluded that the corresponding variational principle “is certainly not suitable for
an existence proof.”
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Remark 2.2 (Grading and coefficients). (i) For simplicity, we will assume
throughout this note that the first Chern class of T W vanishes and we havemade
choices so that RFH�.†/ and all other Floer homologies below are Z-graded
by their Conley–Zehnder indices.

(ii) Coefficients are in a principal ideal domain R, which will sometimes be spe-
cialized to Z or a field or generalized to twisted coefficients.

(iii) The notation RFH�.†/ is chosen to emphasize the dependence on †, but it a
priori depends also on the ambient Liouville manifold .W; �/; we will return to
this question below.

If† carries no periodic orbits, then the only generators of RFH�.†/ are the constant
loops on † with Lagrange multiplier � D 0 and it follows that RFH�.†/ Š H

n��.†/. In
view of Theorem 2.1(c), such a hypersurface cannot be displaceable. This implies the Wein-
stein conjecture for hypersurfaces of restricted contact type in Liouville manifolds where
all compact sets are displaceable such as Cn, subcritical Stein manifolds, or products of a
Liouville manifold with C (see [76,78]).

2.2. Stability and Mañé’s critical values
Onemay wonder whether Theorem 2.1 can be extended to a larger class of hypersur-

faces†. The preceding discussion shows that some condition on† is needed: for example, it
cannot apply to closed hypersurfaces in Cn without periodic orbits as constructed in [44,46].

In [21], Theorem 2.1 is generalized to the case that .W;!/ is a geometrically bounded
symplectic manifold with !j�2.W / D 0, and the hypersurface† � W and homotopy†s are
tame and stable. Here stability was introduced by Hofer and Zehnder [53] as a condition,
generalizing contact type, under which existence results for periodic orbits continue to hold;
it appeared again in [14,29] as the hypothesis for compactness in symplectic field theory.

An intriguing class of Hamiltonian systems is given by Hamiltonians H.q; p/ D
1
2
jpj2 C U.q/ on a cotangent bundle W D T �M with a twisted symplectic form

! D dp ^ dq C ���;

where � W T �M ! M is the projection and � is a closed 2-form on M whose physical
significance is that of a magnetic field. It has long been known that the dynamics on a level
set †k D H

�1.k/ can change drastically with the level k, even in the case U D 0 where all
level sets are diffeomorphic (see [45] and the references therein). A famous example is that of
a hyperbolic surfaceM with its area form � and U D 0: Here †k is foliated by contractible
periodic orbits for k < 1=2, all periodic orbits on †k are noncontractible for k > 1=2, and
†1=2 (the horocycle flow) does not possess any periodic orbits. The value 1=2 at which the
dynamics changes is theMañé critical value, and at this value also the geometric type of the
hypersurfaces†k changes: above 1=2 they are of contact type, below 1=2 they are stable and
tame but not of contact type, and †1=2 is unstable. The Rabinowitz Floer homology of †k

is well defined and zero for k < 1=2, it is well defined and nonzero for k > 1=2, and it is
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Figure 1

Three shapes of Hamiltonans.

undefined for k D 1=2. Using the generalization of Theorem 2.1, it is shown in [21] that this
picture persists for large classes of magnetic systems in arbitrary dimension.

2.3. Relation to symplectic homology
Let us return to the setup in Section 2.1, so† is a hypersurface of restricted contact

type in a Liouville manifold .W; �/. Recall that, by assumption, † D @V for a compact
subdomain V � W . After modifying � near †, we may assume that �j@V is a contact form,
so that .V; �/ is a Liouville domain. It is shown in [20] that RFH�.@V / depends only on the
completion OV D V [ Œ1;1/ � @V of V (which is a Liouville manifold with the 1-formb�
that equals � on V and r�j@V on Œ1;1/ � @V , with r the coordinate on Œ1;1/). Moreover,
RFH�.@V / is closely related to another invariant of V that we now recall.

Symplectic homologywas introduced in 1994 by A. Floer and H. Hofer [43]. We will
use the version defined by C. Viterbo [76] as the direct limit

SH�.V / D lim
�!

FH�.H/

over HamiltoniansH W OV !R that are zero on V and linearly increasing in r outside a com-
pact set, as shown (up to smoothing) on the left of Figure 1. Dualizing, we obtain symplectic
cohomology as the inverse limit

SH�.V / D lim
 �

FH�.H/ D lim
 �

FH��.�H/:

These groups have refinements where the action is restricted to some interval .a; b/,

SH.a;b/
� .V / D lim

�!
FH.a;b/

� .H/; SH�
.a;b/.V / D lim

 �
FH�

.a;b/.H/ D lim
 �

FH.�b;�a/
�� .�H/:

In [20], a new V-shaped symplectic homology was introduced as the direct–inverse limit

S LH�.V / D lim
�!

b

lim
 �

a

S LH.a;b/
� .V /; S LH.a;b/

� .V / D lim
�!
H

FH.a;b/
� .H/;

where the second direct limit is taken over “V-shaped” HamiltoniansH W OV ! R as shown
(up to smoothing) in the middle of Figure 1. For any given�1< a < b <1 and sufficiently
largeH , the orbits in group I have action outside .a; b/, so S LH�.V / is generated by the orbits
in group II, which are in one-to-one correspondence with generators of RFH�.@V /. This
observation combined with a technical tour de force leads to
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Theorem 2.3 ([20]). For each Liouville domain, we have

S LH�.V / D RFH�.@V /:

Moreover, this group fits into a commuting diagram with exact row

: : : SH��.V /
" //

��

SH�.V /
� // RFH�.@V /

� // SH1��.V / : : :

Hn��.V; @V /
e // Hn��.V /:

OO

(2.2)

In this diagram, e is the canonical map in the long exact sequence of the pair .V;@V /
and the vertical arrows correspond to the action zero (constant loop) part. It allows the
computation of Rabinowitz Floer homology in terms of symplectic homology and singu-
lar cohomology. The following example will play a fundamental role in Section 3.

Example 2.4 (Cotangent bundles). Let T �M be the cotangent bundle of a closed mani-
foldM with its canonical Liouville form � D p dq. Its unit disk bundleD�M D ¹.q; p/ 2

T �M j jpj � 1º with respect to some Riemannian metric is a Liouville domain with bound-
ary S�M D ¹.q; p/ 2 T �M j jpj D 1º. Viterbo’s isomorphism (proved by a joint effort of
many people, see [2,4,55,68,75])

SH�.D
�M/ Š H�.ƒ/ (2.3)

expresses its symplectic homology in terms of the singular homology (with suitably twisted
coefficients) of the loop space ƒ D C1.S1;M/. Hence diagram (2.2) becomes

: : :H��.ƒ/
" //

��

H�.ƒ/
� // RFH�.S

�M/
� // H 1��.ƒ/ : : :

H��.M/
e // Hn��.M/;

OO

(2.4)

where e is the canonical map in the Gysin sequence of the sphere bundle S�M ! M . We
see that the map e (and therefore ") lives only in degree zero and multiplies the class of a
basepoint q0 2M by the Euler characteristic � ofM . So

RFH�.S
�M/ Š H�.ƒ; �q0/˚H

1��.ƒ; �q0/

is the direct sum of “reduced” loop space homologyH�.ƒ;�q0/D coker " (in degrees� 0)
and cohomologyH 1��.ƒ; �q0/ D ker " (in degrees � 1).

2.4. Applications in symplectic topology
Over the past ten years, Rabinowitz Floer homology has found numerous appli-

cations in symplectic topology and Hamiltonian dynamics. One circle of applications was
touched in Section 2.2, and three more are discussed in this subsection. I apologize for the
omission, due to space constraints, of many other beautiful applications, such as [7,10], that
would also have deserved to be included.
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Leafwise intersections. The proof of Theorem 2.1(c) is based on more general action func-
tionals

A
�H
F .x; �/ D

Z
x

� � �

Z 1

0

�.t/H.x/dt �

Z 1

0

F.t; x/dt;

whereH W W ! R is a defining Hamiltonian for a hypersurface † D H�1.0/ of restricted
contact type, � 2 C1.S1;R/ has support in .0; 1=2/ and integral 1, and F W S1 �W ! R

has compact support and vanishes for t 2 Œ0; 1=2�. Critical points of A
�H
F correspond to

leafwise intersections, i.e., points on † whose image under the time-one-map of XF lands
on the same XH -orbit on †. P. Albers and U. Frauenfelder [8] have proved that the Floer
homology of any such functional equals RFH�.†/. Applied to a Hamiltonian F whose time-
one-map displaces † from itself, and which therefore has no leafwise intersections, this
implies Theorem 2.1(c). Conversely, it proves the existence of leafwise intersections for any
F if RFH�.†/ ¤ 0. See [8,9] for further results in this direction.

Exact contact embeddings. We now return to the question of dependence of
RFH�.†/ on the ambient Liouville manifold W . Using neck-stretching from symplectic
field theory, independence of W is proved in [20] if �1.†/ D 0 and all periodic orbits on
† have Conley–Zehnder index > 3 � n. For example, this holds if † is the unit cotangent
bundle S�M of a closed simply connected manifold with dimM > 3 with its standard con-
tact structure. Since RFH�.S

�M/¤ 0 by Example 2.4, it follows that the image of an exact
contact embedding S�M ,! .W; �/ (i.e., an embedding such that the pullback of � defines
the standard contact structure) cannot be displaceable. Thus no such embedding exists if all
compact sets are displaceable inW (e.g., forCn, subcritical Stein manifolds, or products of a
Liouville manifold with C), and ifW is a cotangent bundle the image of such an embedding
must intersect each fiber. Since an exact Lagrangian embedding M ,! W gives rise to an
exact contact embedding S�M ,! W , these results generalize Gromov’s theorem [49] that
there are no closed exact Lagrangian submanifolds M � Cn, under the assumptions that
M is simply connected of dimension > 3. The nonexistence of exact contact embeddings
S�M ,! Cn without these assumptions onM appears to be unknown.

Periodic Reeb flows. In many examples for which symplectic homology has been explicitly
computed, such as Brieskorn manifolds (see, e.g., [42, 56]), it exhibits some kind of peri-
odicity. P. Uebele [74] has found a beautiful explanation of this phenomenon in terms of
Rabinowitz Floer homology. It uses the graded commutative associative products on sym-
plectic homology and Rabinowitz Floer homology that will be discussed in the next section.

Theorem 2.5 (P. Uebele [74]). Let V be a Liouville domain such that @V is simply connected
and all periodic orbits on @V have Conley–Zehnder index > 3 � n. Assume that the Reeb
flow on @V is periodic with minimal common period T > 0. Let s 2RFH�.@V / be the class of
a principal orbit (corresponding to the maximum on the Bott manifold of orbits of period T ).
Its Conley–Zehnder index has the form nC 2b for some b 2 Z. If b ¤ 0, then multiplication
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with s makes RFH�Cn.@V / with coefficients in a field K a free and finitely generated module
over the ring of Laurent polynomials KŒs; s�1�.3

Besides establishing periodicity, this theorem allows the computation of the ring
structure on RFH�.@V / for many such Liouville domains. It also implies that the sym-
plectic homology of such a Liouville domain with K-coefficients is finitely generated as
a K-algebra. This finiteness result does not hold for all Liouville domains, counterexamples
arising, e.g., from unit disk cotangent bundles of closed hyperbolic manifolds of dimension
� 3. It would be interesting to understand for which Liouville domains the finiteness result
holds.

3. Poincaré duality for loop spaces

Let M be a closed connected manifold of dimension n and ƒ D C1.S1; M/ its
free loop space. Let us assume for simplicity thatM is oriented, although everything in this
section remains true in the unoriented case with suitable twisted coefficients. In their 1999
article [17] and its sequels, M. Chas and D. Sullivan introduced a wealth of operations on the
homology of ƒ that gave rise to a whole new research area named string topology. We will
focus on the following two operations:

• the loop product � D � onH�ƒ, which is graded commutative, associative, and
unital of degree �n [17], and

• the loop coproduct � on the homology H�.ƒ; ƒ0/ relative to the subspace
ƒ0 � ƒ of constant loops, which is graded cocommutative and coassociative
of degree 1 � n [73].

The loop coproduct is dual to a product ~ of degree n � 1 on cohomologyH�.ƒ;ƒ0/ that
was extensively studied in [48] and is often referred to as the Goresky–Hingston product.
Subsequent studies of these products led to a number of puzzles, including the following
two (see [25] for more details):

(a) Sullivan [73] has conjectured the following relation which we will refer to as
Sullivan’s relation:

�� D .1˝ �/.�˝ 1/C .�˝ 1/.1˝ �/: (3.1)

How and on which space is this relation to be interpreted and proved?

(b) Many results concerning � and ~ arise in dual pairs. For example, the critical
levels Cr.X/ forX 2H�ƒ and cr.x/ for x 2H�.ƒ;ƒ0/ defined in [48] satisfy

3 In [74], the result is stated with Z2-coefficients, but the extension to an arbitrary field K is
straightforward. The restriction to field coefficients is essential because the proof uses the
fact that KŒs; s�1� is a principal ideal domain.
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the dual inequalities

Cr.X � Y / � Cr.X/C Cr.Y /; cr.x ~ y/ � cr.x/C cr.y/:

Can these phenomena be explained by some kind of “Poincaré duality”?

Wewill see in this section that these puzzles get naturally resolved in terms of the Rabinowitz
Floer homology of the unit sphere cotangent bundle S�M , which we will call the Rabinowitz
loop homology and denote by

LH�ƒ D RFH�.S
�M/ D S LH�.D

�M/:

3.1. Product and coproduct on symplectic homology
We begin by describing the analogues of � and � on symplectic homology of a

Liouville domain V . They are based on topological quantum field theory (TQFT) operations
that were introduced by M. Schwarz [71] on Floer homology over closed symplectic mani-
folds, and extended by P. Seidel [72] to symplectic homology. Let us recall the construction,
following the exposition of A. Ritter [67]. It takes the following inputs: a nonnegative asymp-
totically linear Hamiltonian H W OV ! R�0; a Riemann surface .S; j / with q positive ends
modeled over RC � S

1 and p negative ends modeled over R� � S
1; and a 1-form ˇ on S

with dˇ � 0 which equals Akdt in canonical coordinates s C i t on the negative ends and
B`dt on the positive ends, for some positive weights Ak ; B`. By Stokes’ theorem, such a ˇ
exists if and only if the weights satisfy

pX
kD1

Ak �

qX
`D1

B`: (3.2)

The algebraic count of maps u W S ! OV satisfying .du � ˇ ˝XH /
0;1 D 0 gives a map

 S W

qO
`D1

FH�.B`H/!

pO
kD1

FH�.AkH/:

(Here we need to use field coefficients in order to have a Künneth formula). Applied to
Hamiltonians as on the left of Figure 1, these maps induce maps on symplectic homology

 S W SH�.V /
˝q
! SH�.V /

˝p

which depend only on the topological type of S and satisfy the usual TQFT composition
rules. Note, however, that (3.2) forces p � 1, so we only get a noncompact TQFT structure.
As part of this structure, we get on SH�.V / the unital, graded commutative and associative
pair-of-pants product � of degree �n.

The TQFT structure on SH�.V / also includes a coproduct of degree �n, which is,
however, not very interesting. Namely, by deforming the weight at one of the outputs to 0, we
can force the corresponding output to land in the action zero (constant loop) part SHD0

� .V /,
hence to vanish in the quotient SH>0

� .V /. Since the coproduct vanishes in two different ways,
interpolating the weights at the two outputs gives rise to a secondary pair-of-pants coproduct
� on SH>0

� .V / of degree 1 � n (this was first pointed out by P. Seidel and further explored
by T. Ekholm and A. Oancea [38]).
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The following theorem relates the operations on symplectic homology to those in
string topology. Here the assertion concerning the products is due to A. Abbondandolo and
M. Schwarz [3], and that concerning the coproduct is proved in [24].

Theorem 3.1 (Relation to string topology operations [3, 24]). Viterbo’s isomorphism (2.3)
intertwines the pair-of-pants product with the loop product (both denoted �). It descends to
an isomorphism SH>0

� .D�M/ŠH�.ƒ;ƒ0/ which intertwines the secondary pair-of-pants
coproduct with the loop coproduct (both denoted �).

3.2. Product and coproduct on Rabinowitz Floer homology
It was observed in [30] that applying the arguments of the previous subsection to

Hamiltonians as in the middle of Figure 1 also equips Rabinowitz Floer homology RFH�.V /

with a noncompact TQFT structure. In particular, it carries a unital, graded commutative
and associative product of degree �n which we will denote by �. Moreover, the map � in
diagram (2.2) is a ring homomorphism.

It turns out that Rabinowitz Floer homology also carries a canonical coproduct. To
describe the resulting algebraic structure, let us introduce the degree shifted (co)homology
groups4

SH�.V / D SH�Cn.V /; SH�.V / D SH�Cn.V /; RFH�.@V / D RFH�Cn.@V /:

With respect to the shifted gradings, the products � and � have degree 0. Let us call invo-
lutive infinitesimal bialgebra5 the structure consisting of a graded commutative associative
product and a graded cocommutative coassociative coproduct satisfying �� D 0 and

�� D .1˝ �/.�˝ 1/C .�˝ 1/.1˝ �/ � .�˝ �/.1˝ �.1/˝ 1/: (3.3)

Theorem 3.2 (Involutive infinitesimal bialgebra structure on Rabinowitz Floer homol-
ogy [25]). There exists a degree 1� 2n coproduct� onRFH�.@V /making .RFH�.@V /;�;�/

an involutive infinitesimal bialgebra.

To define �, we modify the construction of the secondary pair-of-pants coproduct �
described above by deforming the weights at the outputs to negative weights�1 rather than 0.
This has the effect of splitting off the chain-level continuation map " W SC��.V /! SC�.V /

at the corresponding output. Since the continuation map is induced bymonotone homotopies
from �H toH as on the left of Figure 1, which factor through the zero Hamiltonian which
has only constant orbits, this shows again that � induces an operation on positive symplectic
homology SH>0

� .V /. Applying the same reasoning on the Rabinowitz Floer complex we are
in for a pleasant surprise: the chain-level continuation map is now induced by monotone
homotopies from �H to H with H as in the middle of Figure 1, which factor through
the Hamiltonian on the right of Figure 1 which has no 1-periodic orbits at all in a given

4 This degree shift is also common in string topology, see [17].
5 The structure has further properties which will not be discussed here. Similar structures

have appeared in the work of Aguiar [6], Joni-Rota [54], Ehrenborg-Readdy [36], and
Loday-Ronco [60].
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action interval! Thus the secondary pair-of-pants coproduct induces an operation � on all of
RFH�.@V /.

Remark 3.3. The operations �;� are defined using the interpretation of Rabinowitz Floer
homology as V-shaped symplectic homology. It would be interesting to find a definition in
terms of the original definition of Rabinowitz Floer homology.

The next result relates the operations on Rabinowitz Floer homology to those on
symplectic homology. Here we denote by �_ the coproduct on SH�.V / dual to �, and by
�_ the product on SH�

>0.V / dual to �.

Theorem 3.4 (Almost splitting [25]). The long exact sequence (2.2) fits into the canonical
commuting diagram

.SH1�2n��
>0 .V /; �_/

i

uu
j

��
" // .SH�.V /; �/

� //

q

��

.RFH�.@V /;�;�/
� //

p

vv

.SH1�2n��.V /; �_/
" //

.SH>0
� .V /; �/

in which the maps � and i intertwine the products �, �, and �_, and the maps p and �
intertwine the coproducts �, �, and �_.

We can interpret this as saying that the long exact sequence (2.2) “almost splits” in
the sense that it splits up to some discrepancy in the action zero part. Note that, while the
map � preserves the products, the corresponding splitting map p preserves the coproducts,
and similarly for � and i .

To apply the preceding discussion to string topology, we introduce the correspond-
ing degree shifted (co)homology groups

H�ƒ D H�Cnƒ; H�ƒ D H�Cnƒ; LH�ƒ D LH�Cnƒ:

Then Theorems 3.2 and 3.4 yield

Corollary 3.5 (Involutive infinitesimal bialgebra structure on Rabinowitz loop homol-
ogy [25]). There exists a degree 1 � 2n coproduct � on LH�ƒ making . LH�ƒ; �; �/ an
involutive infinitesimal bialgebra.Moreover, the long exact sequence (2.4) fits into the canon-
ical commuting diagram

.H1�2n��.ƒ;ƒ0/; �
_ D ~/

i

uu
j

��
" // .H�ƒ;� D �/

� //

q

��

. LH�ƒ;�;�/
� //

p

vv

.H1�2n��ƒ;�_/
" //

.H�.ƒ;ƒ0/; �/
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in which the maps � and i intertwine the products � D �, � and �_ D ~, and the maps p
and � intertwine the coproducts �, � and �_.

In this case the maps i; j are injective and the maps p; q are surjective. The map
� becomes injective after replacing H�ƒ by its “reduced” version H�.ƒ; �q0/ from Exam-
ple 2.4, and the map � becomes surjective after replacingH�ƒ byH�.ƒ; �q0/.

This provides the full solution to puzzle (a): By the left triangle, � and � extend
to operations � and � on the common domain LH�ƒ satisfying the generalized form (3.3)
of Sullivan’s relation. Note that the right triangle gives the same conclusion for the dual
operations �_ D ~ and �_.

On the other hand, the products � and ~ both appear as components of the product
� on LH�ƒ. This provides an unexpected alternative interpretation of Sullivan’s relation for
� and �, as part of associativity for the product � on LH�ƒ! See [27] for further discussion
of this topic.

3.3. Poincaré duality for Rabinowitz Floer homology
The main motivation for introducing Rabinowitz Floer homology into string topol-

ogy was that it satisfies a form of Poincaré duality. This was proved in [30] on the level of
vector spaces, and in [25] with the additional algebraic structure. To formulate it, note that
the operations �_;�_ dual to �;� define again the structure of an involutive infinitesimal
bialgebra on the degree shifted Rabinowitz Floer cohomology RFH�.@V / D RFH�Cn.@V /

(the notion of an involutive infinitesimal bialgebra is “self-dual”).

Theorem 3.6 (Poincaré duality for Rabinowitz Floer homology [25]). With field coefficients,
there exists for each Liouville domain V a canonical isomorphism of involutive infinitesimal
bialgebras

PD W
�
RFH�.@V /;�;�

� '
!
�
RFH1�2n��.@V /;�_;�_

�
:

In the zero action range, the left-hand side isH��.@V /with � the cup product, and
the right-hand side is H2n�1C�.@V / with �_ the intersection product. These are related by
Poincaré duality on @V , and the other two operations are their algebraic duals. Theorem 3.6
thus extends classical Poincaré duality on @V to Rabinowitz Floer homology.

On the level of vector spaces, Poincaré duality is most transparent in the original
definition of Rabinowitz Floer homology via a Lagrange multiplier functional: it arises from
the simple observation that, under the canonical involution

.x; �/ 7! . Nx; N�/; Nx.t/ D x.�t /; N� D ��;

the Rabinowitz action functional changes sign,

AH . Nx; N�/ D �AH .x; �/:

It follows that the involution maps positive gradient lines of AH to negative gradient lines
of AH , and thus induces an isomorphism from Floer homology to Floer cohomology which
implies Poincaré duality on the level of vector spaces. To show compatibility with the invo-
lutive infinitesimal bialgebra structures, one needs to reprove Poincaré duality using the
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description of Rabinowitz Floer homology as V-shaped symplectic homology (which is less
intuitive).

3.4. Applications in Riemannian geometry
Applied to degree shifted Rabinowitz loop homology and cohomology LH�ƒ D

LH�Cnƒ D RFH�Cn.S�M/, Theorem 3.6 becomes

Corollary 3.7 (Poincaré duality for free loop spaces [25]). With field coefficients, there exists
a canonical isomorphism of involutive infinitesimal bialgebras

PD W . LH�ƒ;�;�/
'
!
�
LH1�2n��ƒ;�_;�_

�
:

It is shown in [25] that Corollary 3.7 resolves puzzle (b): each classical pair of the-
orems for the products � and ~ on loop (co)homology extends to a pair of theorems for the
products � and �_ on Rabinowitz loop (co)homology which are related via Poincaré dual-
ity. This leads to unified proofs for each classical pair of theorems. While the original proofs
were topological, the unified proofs are always symplectic. More specifically, the following
applications are discussed in [25,26,28]:

• the behavior of critical levels of the length and action functionals with respect to
products;

• the computation of the Rabinowitz loop homology ring of manifolds all of whose
geodesics are closed using Uebele’s theorem [74], with applications to the question
of string point invertibility of constant rank one symmetric spaces, resonances,
and a conjecture of Viterbo concerning spectral norms;

• a duality between index and indexC nullity for closed geodesics as a consequence
of an iteration formula due to Liu and Long;

• the characterization of level-potent (co)homology classes in terms of symplecti-
cally degenerate maxima and minima, with dynamical implications for the exis-
tence of infinitely many closed geodesics and the Conley conjecture.

The question of homotopy invariance of Rabinowitz loop homologywill be addressed
in upcoming work. This question has become particularly interesting due to the recent dis-
covery by Naef [63] that, in contrast to the loop product, the loop coproduct is not homotopy
invariant.

3.5. Topological descriptions of Rabinowitz loop homology
Rabinowitz loop homology LH�ƒwas defined above as Rabinowitz Floer homology

RFH�.S
�M/ and the operations �; � were constructed Floer theoretically. This subsec-

tion outlines four purely topological constructions of LH�ƒ and its operations which are the
subject of joint work in progress with A. Oancea, N. Hingston, M. Abouzaid, and T. Kragh.

Construction via cones. In [31], Rabinowitz Floer homology RFH�.@V / of a Liouville
domainV is described in terms of the cones of chain-level continuationmaps " WFC�.�H/!
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FC�.H/ for Hamiltonians H as on the left of Figure 1. Moreover, the operations �;� are
derived from an AC

2 -structure on the Floer chain complex FC�.H/, which consists of a
chain-level product and coproduct satisfying suitable compatibility conditions with the con-
tinuation map. This description carries over to the Morse chain complex MC�.S/ of a
Lagrangian action functional of the form S./ D

R 1

0
.j P j2 � V.t; //dt on H 1.S1; M/.

In view of the discussion in Example 2.4, we define the chain-level continuation map
" W MC��.S/ ! MC�.S/ to live only in degree 0 and send the basepoint q0 to �q0. It
is proved in [24] that suitable chain-level versions of the loop product and coproduct give
rise to an AC

2 -structure on MC�.S/, and the homology of the cone of " is isomorphic to
LH�ƒ as an infinitesimal bialgebra.

Construction via spectra. Since Rabinowitz loop homology generally lives in arbitrarily
positive and negative degrees, it cannot be the homology of a topological space. It can, how-
ever, be obtained as the homology of a spectrum (see, e.g., [5] for background on spectra).
The construction uses the Spanier–Whitehead dual and a cone construction on the level of
spectra.

Construction via constant speed loops. It was suggested by N. Hingston that the cohomol-
ogy product~ should correspond to a “Chas–Sullivan product on cochains of constant speed
loops.” This leads to the following conjectural description of LH�ƒ. Let C� � H 1.S1;M/

be the subspace of constant speed loops, i.e., loops parametrized with constant speed. For
an action functional S W C� ! R as above, we consider the chain complex generated by the
stable and unstable manifolds of its critical points, viewed as chains of finite dimension
resp. finite codimension, with a differential such that its homology equals LH�ƒ. Chas–
Sullivan-type products and coproducts between these chains should then recover its infinites-
imal bialgebra structure. One difficulty in making this approach rigorous is that C� does not
appear to be a Hilbert manifold, but only (away from constant loops) an sc-manifold in the
sense of [52] (see [64]).

Construction via a Lagrange multiplier functional. The space of constant speed loops
is defined by the constraint j P.t/j D const. Morse homology with such a constraint can
be described by a Lagrange multiplier functional with an infinite-dimensional space of
Lagrange multipliers. Imitating the construction of Rabinowitz Floer homology, we can
replace this by an integrated constraint with a 1-dimensional Lagrange multiplier. More
precisely, we fix an � > 0 and define the Rabinowitz energy functional

LE W ƒ �R! R; LE.; �/ D �

Z 1

0

j P j2 �
�3

3
C ��2:

Its critical points are pairs .; ˙� / with  a (possibly constant) closed geodesic and
� D .

R 1

0
j P j2 C �2/1=2, so they are in one-to-one correspondence with the generators of

the complex computing LH�ƒ. It should not be too hard to prove that the Morse homology
of LE equals Rabinowitz loop homology, but it remains unclear how to recover its product
and coproduct from this description.
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4. Other Lagrange multiplier functionals

This section is devoted to some further examples of Lagrangemultiplier functionals.

Example 4.1 (Constrained Lagrangian systems). LetM be a Riemannian manifold and L W
TM ! R a smooth Lagrange function. For a < b and A;B 2M , consider the path space

X D
®
x 2 C1

�
Œa; b�;M

�
j x.a/ D A; x.b/ D B

¯
and the Lagrangian action

SL W X ! R; SL.x/ D

Z b

a

L
�
x.t/; Px.t/

�
dt:

Given a smooth function k WM !W to a vector spaceW with 0 as a regular value, consider
the Lagrange multiplier functional

OSL W X � C
1
�
Œa; b�;W �

�
! R; OSL.x; �/ D SL.x/ �

Z b

a

˝
�.t/; k

�
x.t/

�˛
dt:

Its critical points are solutions of the equations

k
�
x.t/

�
� 0;

@L

@x
� rt

@L

@ Px
D
˝
�;rk.x/

˛
:

and correspond to critical points of SL subject to the pointwise constraint k.x.t//� 0. Here
@L
@x
�rt

@L
@ Px

is the familiar term from the Euler–Lagrange equation of L and �h�;rk.x/i is
the constraint force.

Example 4.2 (Euler’s equation for rigid bodies). Let us now specialize Example 4.1 to
the case that M is a Lie group G, and H D k�1.0/ is a subgroup defined by a function
k W G!W satisfying k.gh/D k.g/ for all g 2 G, h 2H . We also specialize the Lagrange
function to L.g; Pg/D 1

2
j Pgj2g for a right-invariant Riemannian metric onG. Then the critical

point equation for .g; �/ 2 C1.Œa; b�; G/ � C1.Œa; b�;W �/ is equivalent to the first-order
equations

v.t/ 2 h; Pv C B.v; v/C
˝
�;rk.e/

˛
D 0 (4.1)

on the Lie algebra g D TeG (see [12, 13]). Here v.t/ D Pg.t/g.t/�1 is the “body angular
velocity,” e 2 G is the unit, h is the Lie algebra ofH , and B W g� g! g is the bilinear form
defined by hB.c; a/; bi D hŒa; b�; ci. In the case G D H D SO.3/, this becomes Euler’s
equation for the motion of a free rigid body [41].

Example 4.3 (Euler’s equations of hydrodynamics). We also owe L. Euler the equations of
motion for the velocity field v and the pressure p of an inviscous incompressible fluid [40],
namely

div v D 0; Pv Crvv Crp D 0: (4.2)

The general setup for these equations is a closed Riemannian manifoldM equipped with a
volume form vol, so that v is a vector field and p a function on M (both time dependent).
In 1966, V. I. Arnold [11] derived these equations by formally applying Example 4.2 to the
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diffeomorphism groupG DDiff.M/ and its subgroupH DDiff.M;vol/ of volume preserv-
ing diffeomorphisms. Here the right-invariant metric on Diff.M/ is defined for g 2Diff.M/

and vector fields v;w 2 g D X.M/ by

hv ı g;w ı gi D

Z
M

hv;wi vol;

and the subgroup Diff.M; vol/ is the zero set of the function

k W Diff.M/! �n.M/; k.g/ D .g�1/� vol� vol :

The Lagrange multiplier �, now denoted by p, is a function from Œa; b� to �n.M/� D

C1.M;R/. Short computations (see [13]) yield B.v; v/ D rvv and hp;rk.e/i D rp, so
that equation (4.1) becomes equation (4.2).

A famous open problem (unfortunately not worth a million dollars) concerns the
existence for all times of smooth solutions of (4.2) with smooth initial conditions. This is
only known in dimension 2 where it was first proved by O. Ladyzhenskaya [57]. In 1970,
D. Ebin and J. Marsden [34] reproved this result using Arnold’s geometric interpretation
of (4.2) as rigid body motion on the group Diff.M;vol/. This interpretation also allows us to
consider Euler equations on other subgroups of Diff.M/. For example, long-time existence
has been proved for the Euler equations on groups of symplectomorphisms (Ebin [33]) and
contactomorphisms (Ebin and Preston [35]). See also [50] for results on the group of diffeo-
morphisms preserving a stable Hamiltonian structure. It would be interesting to investigate
the interaction of the Euler equations with other geometric structures on these groups such
as Hofer’s metric on symplectomorphisms, or partial orders on contactomorphisms.

Example 4.4 (Gauge theories). One often encounters the situation that a function
f W X ! R is invariant under the action of a Lie group G on X , and we are interested
in its critical G-orbits. Suppose there exists a function h W X ! g such that Z D h�1.0/

meets all G-orbits and for each x 2 Z the map

g! g; � 7! dh.x/ �X�.x/

is an isomorphism, where � 7! X�.x/ D
d
dt
jtD0 exp.t�/x denotes the infinitesimal action

of the Lie algebra. Then Z is a slice for the G-action and the critical G-orbits correspond
to critical points of the Lagrange multiplier functional F.x; �/ D f .x/ � h�; h.x/i with
� 2 g�. While such a slice Z usually does not exist globally, it often exists at least locally
near a given G-orbit.

For example, let G be a compact connected simple Lie group and consider the
Chern–Simons action

S.A/ D
1

4�

Z
M

Tr
�
A ^ dAC

2

3
A ^ A ^ A

�
on connections r D d C A, A 2 �1.M; g/ on the trivial principal G-bundle over a closed
3-manifold M . Its critical points are the flat connections, and it is invariant up to integer
multiples of 2� under the action of the gauge group G D C1.M; G/ (see [69, 79]). Let us
fix a flat connection A and consider the complex

�0.M;g/
dA
! �1.M;g/

dA
! �2.M;g/:
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Here the first map is the infinitesimal action of the Lie algebra Lie G D �0.M; g/ and the
second map is the linearization of S atA. Let hD d�

A W�
1.M;g/!�0.M;g/ be the adjoint

of dA with respect to some Riemannian metric on M . This function satisfies the condition
above and thus defines a sliceZ D h�1.0/ for the G -action iff the dA-cohomologyH 0

A.M;g/

vanishes, and the restriction S jZ has a nondegenerate critical point at A iff H 1
A.M; g/ van-

ishes. Writing a general connection as AC ˇ, ˇ 2 �1.M;g/, the Lagrange multiplier func-
tional

F.ˇ; �/ D S.AC ˇ/ �
˝
�; d�

Aˇ
˛
D

1

4�

Z
M

Tr
�
ˇ ^ dAˇ C

2

3
ˇ ^ ˇ ^ ˇ C d�

Aˇ ^ ��

�
corresponds to the first three terms of the Fadeev–Popov action, where � 2 ��.M;g/ is the
gauge fixing boson. With an additional fermionic term, this becomes the relevant functional
for the perturbative expansion of the Chern–Simons partition function at the flat connec-
tion A (see [69,79]).

Example 4.5 (Symplectic vortex equations). This example follows [23]; it was the original
motivation leading to Rabinowitz Floer homology. Consider a Hamiltonian action of a com-
pact connected Lie group G on a symplectic manifold .M; !/ with an equivariant moment
map � WM ! g�. Let ƒ D C1.S1;M/, where S1 D R=Z, and denote by ƒcontr � ƒ the
subspace of contractible loops. Consider the action

A W ƒcontr
! R; A.x/ D

Z
Nx

!;

where Nx W D ! M is an extension of x to the closed unit disk. This is independent of the
choice of Nx if ! vanishes on �2.M/, which we will assume for simplicity. Suppose that 0 is
a regular value of � and consider the Lagrange multiplier functional

A�
W ƒcontr

� C1.S1;g/! R; A�.x; �/ D A.x/ �

Z 1

0

˝
�.x/; �

˛
dt

with a Lagrange multiplier � 2 C1.S1; g/. To describe its gradient flow, we pick a com-
patible almost complex structure J on .M; !/ and an Ad-invariant inner product on g, and
define a metric m on ƒcontr � C1.S1;g/ by

m.x;�/

�
. Ox1; O�1/; . Ox2; O�2/

�
D

Z 1

0

�
!
�
Ox1; J.x/ Ox2

�
C hO�1; O�2i

�
dt:

Then gradient flow lines of A� are maps .u; �/ W R � S1 !M � g, satisfying
@u

@s
C J.u/

�
@u

@t
CX�.u/

�
D 0;

@�

@s
C �.u/ D 0;

where .s; t/ are the coordinates on R� S1 andX�.x/D
d
dt
jtD0 exp.t�/x. To interpret these

equations more geometrically, we view the Lagrange multiplier as a connection

A D �.s; t/dt 2 �1.Z;g/

on the cylinder Z D R � S1. Its curvature is FA D
@�
@s
ds ^ dt , which can be converted to

a function Z ! R using the Hodge � operator �.ds ^ dt/ D 1. Moreover, the connection
induces a covariant derivative

dAu D duCXA.u/ D duCX�.u/dt W TZ ! TM
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and its complex antilinear part

N@J;A.u/ D
1

2

�
dAuC J.u/ ı dAu ı j

�
with respect to the standard complex structure j on R� S1 sending @s to @t . Then the above
equations for gradient flow lines of A� become the symplectic vortex equations

N@J;A.u/ D 0; �FA C �.u/ D 0:

These equations were discovered independently by D. Salamon and I. Mundet i Riera [23,62]

for an arbitrary Riemann surface in place of the cylinder Z. They give rise to invariants of
Hamiltonian group actions and a quantum Kirwan map, with applications to the quantum
cohomology of symplectic quotients [22,32,47,65]. Applied to suitable infinite-dimensional
symplectic manifolds, the symplectic vortex equations comprise other well-known equations
of mathematical physics such as the anti-self-dual Yang–Mills equations and the Seiberg–
Witten equations [23].

The functional A� is still invariant under the action of the gauge group
G D C1.S1; G/. If this action has a global slice, we can remove the gauge symmetry as in
Example 4.4 by introducing another Lagrangemultiplier in the dual Lie algebraC1.S1;g�/.
One situation where such a slice exists is an R-action generated by a single Hamiltonian
� D H such that † D H�1.0/ is of contact type, in which case the functional A� restricts
on the slice to the Rabinowitz action functional [9]. On the other hand, considering the action
A on the loop space C1.S1;†/ and removing the gauge symmetry leads to the equations in
Example 4.6 below. It would be interesting to further explore the various Lagrange multiplier
functionals and their Floer homologies in this situation.

Example 4.6 (Symplectic field theory). Let .!; �/ be a stable Hamiltonian structure on a
closed .2n� 1/-manifoldM with Reeb vector fieldR (see [14]).6 Assume for simplicity that
! D d� is exact, so that we have a well-defined action functional

A W ƒ D C1.S1;M/! R; x 7!

Z
x

�:

This functional is invariant under the group G D DiffC.S1/ of orientation-preserving dif-
feomorphisms of the circle. One can break this symmetry by imposing the gauge fixing
condition �. Px/ D const. (The constant should not be fixed because we cannot expect closed
Reeb orbits of prescribed period). Critical points of A subject to this constraint are critical
points of the Lagrange multiplier functional

OA W ƒ � g0 ! R; OA.x; �/ D A.x/C

Z 1

0

�.t/�
�
Px.t/

�
dt;

with the codimension-one subspace g0 of the Lie algebra of G given by

g0 D

´
� 2 C1.S1;R/ j

Z 1

0

�.t/dt D 0

µ
:

6 Even in the contact case ! D d�, separating the roles of ! and � clarifies the discussion.
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The derivative of OA is given by

d OA.x; �/. Ox; O�/ D

Z 1

0

�
!. Ox; Px/C � d�. Ox; Px/ � P��. Ox/C O��. Px/

�
dt;

so its critical points are solutions of the equations

�. Px/ D T D const; i Px.! C � d�/C P�� D 0;

Z 1

0

� D 0:

Inserting R in the second equation yields P� D 0 and thus � � 0, so critical points are pairs
.x; 0/ where Px D TR.x/ for some T 2 R. Now consider, for an !-compatible complex
structure J on � D ker�, the “metric” on ƒcontr � g0 defined by

m.x;�/

�
. Ox1; O�1/; . Ox2; O�2/

�
D

Z 1

0

�
.! C � d�/.� Ox1; J� Ox2/C �. Ox1/�. Ox2/C O�1 O�2

�
dt;

where � W TM ! � is the projection alongR. Note that in the contact case! D d�, the bilin-
ear formm.x;�/ is symmetric, but it is only positive definite as long as � > �1. Nevertheless,
OA has a well-defined “gradient” with respect to m given by

rm
OA.x; �/ D

�
�J.x/� Px � P�R.x/; �. Px/ �

Z
x

�

�
;

where the term �
R

x
� comes from projecting �. Px/ onto g0. So a gradient flow line

u D .�; f / W R � S1 ! R �M of OA satisfies the equations8̂̂<̂
:̂
@s� � �.@tf /C

R 1

0
f .s; �/�� D 0;

�.@sf /C @t� D 0;

�@sf C J.f /�@tf D 0:

(4.3)

Replacing � by a.s; t/ D �.s; t/C ˛.s/ for a function ˛ W R! R (unique up to a constant)
satisfying ˛0.s/ D

R 1

0
f .s; �/��, we obtain the familiar equations8̂̂<̂

:̂
@sa � �.@tf / D 0;

�.@sf /C @ta D 0;

�@sf C J.f /�@tf D 0;

(4.4)

for OJ -holomorphic curves uD .a;f / WR�S1!R�M with respect to the almost complex
structure OJ restricting to J on � andmapping the unit vector inR toR. On the planeC instead
of the cylinderR� S1, these equations were introduced by H. Hofer in his 1993 paper [51] on
the Weinstein conjecture in dimension three. They make sense for a domain being any punc-
tured Riemann surface, giving rise to symplectic field theory (SFT) [39], a general theory of
punctured holomorphic curves in symplectic cobordisms which has found numerous appli-
cations in contact and symplectic topology.

The description via Lagrange multipliers raises some interesting questions concern-
ing symplectic field theory. Let us begin with a brief comparison of equations (4.3) and (4.4).
Note first that �! 0 as s!˙1, whereas a grows linearly with slope the asymptotic peri-
ods as s!˙1. Moreover, shifting a by a constant yields again a solution, which is not the
case for �. The Floer energy of .�; f / equals the !-energy

R
R�S1 f

�! DA.xC/�A.x�/,
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which in the contact case equals the difference TC � T� of the asymptotic periods.Moreover,
in the contact case the action A.xC/ atC1 is equivalent to the Hofer energy (see [29]).

It would be interesting to give a direct proof of compactness modulo breaking of
solutions of (4.3) (say, in the absence of finite energy planes) without appealing to the SFT
compactness theorem [14,29]. Generalizing this proof to � being replaced by a loop of contact
forms �t may lead to a description of nonequivariant contact homology (see [15,38]) in terms
of such loops, analogous to the definition of Hamiltonian Floer homology in terms of loops
of Hamiltonians. In a different direction, this may also shed some light on the variant of (4.4)
introduced in [1]where the first two equations are replaced by a harmonic 1-form .f ��/ ı j ,
for which the compactness question is still wide open.

Another interesting feature of (4.3) is the fact that the asymptotic periodsT˙ can also
be negative or zero. This parallels the corresponding feature in Rabinowitz Floer homology
(see Section 2) and suggests that suitable counts of solutions of (4.3) (or equivalently (4.4))
compute the equivariant Rabinowitz Floer homology of the symplectization R �M when-
ever the latter is defined. This should lead to an interpretation of algebraic structures on Rabi-
nowitz Floer homology such as its involutive infinitesimal bialgebra structure and Poincaré
duality in terms of symplectic field theory. In the Lagrangian setting, N. Legout has con-
structed an A1-structure on the corresponding SFT-type complex ([59], see also [16, 37]),
whose relation to Rabinowitz Floer homology is still conjectural.
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In this note we survey some of the recent developments in real Gromov–Witten theory.
In particular, we discuss the main difficulties of the construction and important structural
results.
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1. Introduction

The Gromov–Witten invariants can be viewed as a modern counterpart of the classi-
cal enumeration of curves in projective varieties. They arise from integration over the moduli
spaces of pseudoholomorphic maps into a symplectic manifold introduced in the seminal
work of Gromov [21]. An influential perspective proposed by Witten interprets them as the
coefficients of a partition function of a topological string theory. As such they play a cen-
tral role in striking dualities relating them to mathematical objects of completely different
nature. Understanding these relations has and continues to generate substantial amount of
high-level research.

The real Gromov–Witten invariants arise in a similar way from integration over
moduli spaces of pseudoholomorphic maps. In the real case these maps are required to be
equivariant with respect to an antisymplectic involution on the target and one on the domain.
The antisymplectic involution corresponds to an intrinsic symmetry of the theory and is pre-
served under dualities thus providing conjectures relating the real Gromov–Witten invariants
with the dual equivariant objects. In particular, relations with SO/Sp gauge theory and the
Gaussian orthogonal/symplectic ensembles are expected.

In this note we present an overview of the construction of the real Gromov–Witten
invariants, based on a joint work [18] with Aleksey Zinger, and discuss structural results for
the local real Gromov–Witten theory, based on a joint work [16] with Eleny Ionel.

2. Real Gromov–Witten invariants

The foundations of (complex) Gromov–Witten theory, i.e., of counts of J -holo-
morphic curves in symplectic manifolds, were established in the 1990s and have been spec-
tacularly applied ever since. On the other hand, the progress in establishing the foundations of
real GW theory, i.e., of counts of J -holomorphic curves in symplectic manifolds preserved
by antisymplectic involutions, has been much slower. The two main difficulties in develop-
ing real GW theory are the potential nonorientability of the moduli spaceMg;l .X;BIJ /�;� ,
defined in (2.2), and the fact that its virtual boundary strata have real codimension 1. This is
in contrast with the complex GW theory, where the moduli spaces have canonical orienta-
tions and the “boundary” strata have real codimension of at least 2. These two ingredients are
crucial for the construction of a (virtual) fundamental class, integration upon which defines
the invariants.

The difficulty arising from the existence of a real codimension 1 boundary strata can
be resolved by considering the larger moduli space (2.3) that is a union over all topological
types of involutions on the domain. As explained in Section 2.1, inside this space all codi-
mension 1 strata form a hypersurface rather than boundary and the definition of the invariants
becomes a question about the orientability of this moduli space. We introduce the notion of
real orientation on a symplectic manifold in Section 2.2 – these are topological conditions on
the symplectic manifold which ensure the orientability of the real moduli space (2.3). We
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define the primary and descendant real GW invariants in Section 2.3 and give examples of
large collections of real-orientable symplectic manifolds.

Invariant counts of real curves were first constructed by Welschinger [38,39] follow-
ing a different approach. They are defined in genus 0, for real symplectic 4- and 6-folds,
and under certain topological conditions ruling out maps from type (E) nodal symmetric
surfaces (later removed in [13]). In the Gromov–Witten-style approach to these counts devel-
oped in [11, 35], the invariance corresponds to the relevant moduli spaces being orientable
outside of (virtual) hypersurfaces which are shown not to be crossed by the paths of stable
maps induced by paths between two generic almost complex structures and two generic col-
lections of constraints.

Many methods have been developed for the computation of the real invariants,
notably by employing methods from tropical geometry [5–8, 23, 24, 29, 34], establishing
WDVV-type formulas [10, 17, 36], and through localization techniques [19, 30, 33]. In par-
ticular, the result of [33] provides the first instance of a real mirror symmetry phenomenon
and that of [30] the first real enumerative bounds in higher genus.

2.1. Moduli spaces of real maps
A real symplectic manifold is a triple .X; !; �/ consisting of a symplectic mani-

fold .X;!/ and an antisymplectic involution �. For such a triple, denote by J
�
! the space of

!-compatible almost complex structures J on X such that ��J D �J . The fixed locus X�

of � is then a Lagrangian submanifold of .X; !/ which is totally real with respect to any
J 2 J

�
! .

Example 2.1. An example of a real Kähler manifold .X;!; �; J / is the complex projective
space P n�1. The maps

�n W P n�1
! P n�1; Œz1; : : : ; zn� ! Œ Nz1; : : : ; Nzn�;

�2m W P 2m�1
! P 2m�1; Œz1; z2; : : : ; z2m�1; z2m� ! Œ�Nz2; Nz1; : : : ;�Nz2m; Nz2m�1�;

are antisymplectic involutions with respect to the standard Fubini–Study symplectic form!n

onP n�1. Another important example is a real quintic threefoldX5, i.e., a smooth hypersurface
in P 4 cut out by a real equation.

A symmetric surface .†; �/ is a connected oriented, possibly nodal, surface † with
an orientation-reversing involution � . There are b

3gC4
2

c topological types of smooth sym-
metric genus g surfaces; the type is determined by the number of fixed components and the
orientability of the quotient. A symmetric Riemann surface .†; �; j/ is a symmetric surface
.†; �/ with an almost complex structure j on † such that ��j D �j. We denote by J�

† the
space of such complex structures.

A continuous map
u W .†; �/ ! .X; �/

is called real if u ı � D � ı u; see Figure 1. It is said to be of degree B 2 H2.X I Z/ if
u�Œ†� D B . We denote the space of such maps by Bg.X/

�;� , with g denoting the genus of
the domain † of � .
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Figure 1

Here the domain † has 1 fixed circle and 1 cross-cap circle; the quotient †=� is a nonorientable surface with 1
boundary and 1 cross-cap.

For J 2 J
�
! , j 2 J�

†, and u 2 Bg.X/
�;� , let

N@J;ju D
1

2
.duC J ı du ı j/

be the N@J -operator on Bg.X/
�;� .

Let g; l 2 Z�0, .†; �/ be a genus g symmetric surface, B 2 H2.X I Z/ � 0, and
J 2 J

�
! . Let �2l � †2l be the big diagonal, i.e., the subset of 2l-tuples with at least two

coordinates equal. Denote by

Mg;l .X;BIJ /�;�
D
®�
u;
�
zC

1 ; z
�
1

�
; : : : ;

�
zC

l
; z�

l

�
; j
�

2 Bg.X/
�;�

� .†2l
��2l / � J�

† W

z�
i D �

�
zC

i

�
8 i D 1; : : : ; l; u�Œ†�Z D B; N@J;ju D 0

¯
= � (2.1)

the (uncompactified) moduli space of equivalence classes of degree B real J -holomorphic
maps from .†; �/ to .X; �/ with l conjugate pairs of marked points. Two marked J -holo-
morphic .�; �/-real maps determine the same element of this moduli space if they differ by
an orientation-preserving diffeomorphism of † commuting with � . We denote by

Mg;l .X;BIJ /�;�
� Mg;l .X;BIJ /�;� (2.2)

Gromov’s convergence compactification of Mg;l .X; BI J /�;� obtained by including sta-
ble real maps from nodal symmetric surfaces. The (virtually) codimension-one boundary
strata of

Mg;l .X;BIJ /�;�
� Mg;l .X;BIJ /�;�

� Mg;l .X;BIJ /�;�

consist of real J -holomorphic maps from one-nodal symmetric surfaces to .X; �/. Each
stratum is either a (virtual) hypersurface in Mg;l .X; BI J /�;� or a (virtual) boundary. The
existence of boundary is what prevents us from defining invariants for each topological type
of involutions � . However, one-nodal symmetric surfaces can always be smoothed out in
(real) one-parameter family to symmetric surfaces. Thus, each boundary stratum appears in
the compactification of precisely two of the moduli spaces Mg;l .X;BIJ /�;� corresponding
to two different topological types of orientation-reversing involutions � on †. This means
that the union over all topological types of involutions on† forms a space without boundary.
Let

Mg;l .X;BIJ /� D

[
�

Mg;l .X;BIJ /�;� (2.3)
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denote the union of the compactified real moduli spaces taken over all topological types of
orientation-reversing involutions � on †. Furthermore, denote by

RMg;l � Mg;l .pt; 0/id

the Deligne–Mumford moduli space of marked real curves. If g C l � 2, there is a natural
forgetful morphism

f W Mg;l .X;BIJ /� ! RMg;l � Mg;l .pt; 0/id: (2.4)

In order to study the orientability of these spaces, it is crucial to understand their
codimension one strata which consist of maps from one-nodal domains. As described in [27,

Section 3], there are four types of nodes a one-nodal symmetric surfaces .†; �/ may have:

(E) the node is an isolated point of the fixed locus †� � †;

(H) the node is a nonisolated point of the fixed locus †� and

(H1) the topological component of †� containing the node is algebraically
irreducible (its normalization is connected);

(H2) the topological component of †� containing the node is algebraically
reducible, but † is algebraically irreducible;

(H3) † is algebraically reducible.

In the genus 0 case, the degenerations (E) and (H3) are known as the codimension 1
sphere bubbling and disk bubbling, respectively; the degenerations (H1) and (H2) cannot occur
in the genus 0 case.

As a one-nodal symmetric surface is smoothed out in one-parameter family of sym-
metric surfaces, we observe the transition of a smooth symmetric surface through one-nodal
degeneration. A transition through a degeneration (H3) does not change the topological type
of the involution. Thus, each stratum of morphisms from a one-nodal symmetric surface of
type (H3) to .X; �/ is a hypersurface inside of Mg;l .X; BI J /�;� for some genus g involu-
tion � .

A transition through a degeneration (H2) also does not change the number of fixed
components. The transformation of the real locus is the same as in the (H3) case, but an (H2)
transition also inserts or removes two cross-caps. This transition may or may not change the
topological type of the involution. The former occurs when the fixed locus is separating
in which case the transition changes the topological type of the involution and thus each
stratum of morphisms from such one-nodal surfaces to .X; �/ is a boundary of the spaces
Mg;l .X;BI J /�;� for precisely two topological types of genus g involutions � . If the fixed
locus is nonseparating, then the transition does not change the topological type of the involu-
tion and each stratum of morphisms from such one-nodal surfaces to .X;�/ is a hypersurface
inside ofMg;l .X;BIJ /�;� for some genus g involution � . A degeneration (H2) cannot occur
in genus 0 or 1, but does occur in genus 2 and higher.
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A transition through a degeneration (E) or (H1) changes the number of fixed compo-
nents by one. In particular, each stratum of morphisms from a one-nodal symmetric surface
of type (E) or (H1) to .X;�/ is a boundary of the spaces Mg;l .X;BIJ /�;� for precisely two
topological types of genus g involutions � . A degeneration (H1) cannot occur in genus 0,
but does occur in genus 1 and higher.

2.2. Real orientations
Let .X; �/ be a topological space with an involution. A conjugation on a complex

vector bundle V ! X lifting an involution � is a vector bundle homomorphism ' W V ! V

covering � (or equivalently a vector bundle homomorphism ' W V ! ��V covering idX )
such that the restriction of ' to each fiber is anticomplex linear and ' ı ' D idV .

A real bundle .V; '/ ! .X; �/ consists of a complex vector bundle V ! X and a
conjugation ' on V lifting �.

Example 2.2. (1) If X is a smooth manifold with a smooth involution �, then
.TX; d�/ is a real bundle over .X; �/.

(2) IfL!X is a complex vector bundle thenL˚ �� NL!X with the conjugatione� W .x; v; w/ 7! .�.x/; w; v/ is also a real bundle over .X; �/.

For any real bundle .V; '/ over .X; �/, the fixed locus

V '
! X�

of ' is a real vector bundle over X� . We denote by

ƒ
top
C .V; '/ D

�
ƒ

top
C V;ƒ

top
C '

�
the top exterior power of V over C with the induced conjugation. Direct sums, duals, and
tensor products over C of real bundles over .X; �/ are again real bundles over .X; �/.

Definition 2.3 ([15,18]). Let .X; �/ be a topological space with an involution and .V; '/ be
a real bundle over .X; �/. A real orientation on .V; '/ consists of

(RO1) a complex line bundle L ! X such that

w2

�
V '

˚ L�

jX�

�
D 0 and ƒ

top
C .V; '/ � ƒ

top
C .L˚ �� NL;e�/; (2.5)

(RO2) a homotopy class of isomorphisms of real bundles in (2.5), and

(RO3) a spin structure on the real vector bundle V ' ˚L� overX� compatible with
the orientation induced by (RO2).

An isomorphism in (2.5) restricts to an isomorphism ƒ
top
R V ' � ƒ

top
R L of real

line bundles over X� . Since L is a complex vector bundle it is canonically oriented, and
thus (RO2) determines orientations on V ' and V ' ˚ L�. By the first assumption in (2.5),
the real vector bundle V ' ˚ L� over X� admits a spin structure.

A real orientation on a real symplectic manifold .X; !; �/ is a real orientation on the
real bundle .TX;d�/. We call a real symplectic manifold .X;!;�/ real-orientable if it admits
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a real orientation. As established in [18] a real orientation on .X; �/ determines a canoni-
cal orientation of the uncompactified moduli spaces when X is of odd complex dimension.
This orientation extends across the codimension 1 boundary strata of types (H2) and (H3)
and changes across the codimension 1 boundary strata of types (E) and (H1). The parity of
j�0.†

� /j behaves in the same way. This allows us to readjust this canonical orientation by
the parity of the number of fixed components of the domain and thus obtain an orientation
on the compactified moduli space.

Theorem 2.4 ([18, Theorem 1.3]). Let .X;!;�/ be a real-orientable 2n-manifold, g; l 2 Z�0,
B 2 H2.X I Z/, and J 2 J

�
! .

(1) If n 62 2Z, a real orientation on .X; !; �/ orients Mg;l .X;BIJ /� .

(2) If n 2 2Z and g C l � 2, a real orientation on .X; !; �/ orients the real
line bundle

ƒ
top
R

�
TMg;l .X;BIJ /�

�
˝ f�ƒ

top
R .TRMg;l / ! Mg;l .X;BIJ /� :

Examples of real-orientable manifolds include P 2n�1, X5, many other projective
complete intersections, and simply-connected real symplectic Calabi–Yau and real Kähler
Calabi–Yau manifolds with spin fixed locus as described by the following propositions.

Proposition 2.5 ([19, Proposition 1.2]). Let .X; !; �/ be a real symplectic manifold with
w2.X

�/ D 0. If

(1) H1.X I Q/ D 0 and c1.X/ D 2.� � ���/ for some � 2 H 2.X I Z/ or

(2) X is compact Kähler, � is antiholomorphic, and KX D 2.ŒD� C Œ��D�/ for
some divisorD on X ,

then .X; !; �/ is a real-orientable symplectic manifold.

Corollary 2.6 ([19, Corollary 1.3]). Let n 2 ZC and a � .a1; : : : ; an�4/ 2 .ZC/n�4 be
such that

a1 C � � � C an�4 � n mod 4:

IfXnIa � P n�1 is a complete intersection of multidegree a preserved by �n, then .XnIa;!nIa;

�nIa/ is a real-orientable symplectic manifold.

Proposition 2.7 ([19, Proposition 1.4]). Let m; n 2 ZC, k 2 Z�0, and a � .a1; : : : ; ak/ 2

.ZC/k .

(1) If XnIa � P n�1 is a complete intersection of multidegree a preserved by �n,

a1 C � � � C ak � n mod 2; and a2
1 C � � � C a2

k � a1 C � � � C ak mod 4;
(2.6)

then .XnIa; !nIa; �nIa/ is a real-orientable symplectic manifold.
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(2) IfX2mIa � P 2m�1 is a complete intersection of multidegree a preserved by �2m

and
a1 C � � � C ak � 2m mod 4;

then .X2mIa; !2mIa; �2mIa/ is a real-orientable symplectic manifold.

2.3. Real Gromov–Witten theory
The moduli space Mg;l .X; BI J /� is not smooth in general and its tangent bundle

in Theorem 2.4 should be viewed in the usual moduli-theoretic (or virtual) sense. Since the
(virtual) boundary of Mg;l .X; BI J /� is empty, Theorem 2.4(1) implies that this moduli
space carries a virtual fundamental class over Q (determined by the choice of orientation)
and thus gives rise to real GW-invariants in arbitrary genus.

Theorem 2.8 ([18, Theorem 1.4]). Let .X; !; �/ be a compact real-orientable 2n-manifold
with n 62 2Z, g; l 2 Z�0, B 2 H2.X I Z/, and J 2 J

�
! . Then a real orientation on .X;!; �/

endows the moduli space Mg;l .X; BI J /� with a virtual fundamental class and thus gives
rise to genus g real GW-invariants of .X;!;�/ that are independent of the choice of J 2 J

�
! .

If n 2 2Z and g C l � 2, Theorem 2.4 implies that a real orientation on .X; !; �/
induces an orientation on the real line bundle

ƒ
top
R

�
TMg;l .X;BIJ /�

�
˝ f�

�
ƒ

top
R .TRMg;l /

�
! Mg;l .X;BIJ /� ; (2.7)

where f is the forgetful morphism (2.4). This orientation can be used to construct GW invari-
ants of .X; !; �/ with classes twisted by the orientation system of RMg;l .

For each i D 1; : : : ; l , let

evi W Mg;l .X;BIJ /� ! X;
�
u;
�
zC

1 ; z
�
1

�
; : : : ;

�
zC

l
; z�

l

��
! u

�
zC

i

�
;

be the evaluation at the first point in the i th pair of conjugate points. For�1; : : : ;�l 2H�.X/,
the numbers

h�1; : : : ; �li
�
g;B �

Z
ŒMg;l .X;BIJ /� �

ev�
1�1 � � � ev�

l �l 2 Q

are virtual counts of real J -holomorphic curves in X passing through generic cycle rep-
resentatives for the Poincaré duals of �1; : : : ; �l , i.e., real GW invariants of .X; !; �/ with
conjugate pairs of insertions. They are independent of the choices of cycles representatives
and of J .

Moreover, for each i D 1; : : : ; l , let

 i 2 H 2
�
Mg;l .X;BIJ /� I Q

�
be the Chern class of the universal cotangent line bundle for the marked point zC

i . For
a1; : : : ; al 2 Z�0 and �1; : : : ; �l 2 H�.X I Q/, let˝

�a1.�1/; : : : ; �al
.�l /

˛�
g;B

D

Z
ŒMg;l .X;BIJ /� �vir

 
a1

1

�
ev�

1�1

�
� � � 

al

l

�
ev�

l �l

�
(2.8)

be the associated real descendant GW invariant. This number is again independent of the
choices of cycle representatives and of J 2 J

�
! .
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Given the existence of a full descendant theory, there are many natural questions
that arise and that are not well understood at the moment. In particular, they are related to
finding structures governing the invariants. One expects to find a real cohomological field
theory behind them and aGivental–Teleman-type classification result would be very valuable
for reconstruction results, mirror symmetry, and connections to Dubrovin–Zhang-type inte-
grable hierarchies. Further connections to integrable systems that parallel those established
in the classical case for KdV, KP, and Toda [25,31,32,40] are also expected.

3. Structural results

Here we consider the real Gromov–Witten theory of real 3-folds which are the total
space of real bundles over curves with an antisymplectic involution. The motivation for con-
sidering 3-folds of this type comes from the virtual contribution to the real GW invariants
of a real elementary curve in a compact real Calabi–Yau 3-fold, sometimes referred to as
multiple-covers contribution, and the real Gopakumar–Vafa conjecture [37] expressing the
connected real Gromov–Witten invariants in terms of integer invariants.

The invariants associated with this setup are called local real Gromov–Witten
(RGW) invariants and are discussed in Section 3.1. They give rise to a semisimple 2D
Klein TQFT defined on an extension of the category of unorientable surfaces. This structure
allows us to completely solve the theory by providing a closed formula for the local RGW
invariants in terms of representation-theoretic data, extending earlier results of Bryan and
Pandharipande [9]. The local version of the real Gopakumar–Vafa formula is obtained as
a consequence of the structural results. Furthermore, in the case of the resolved conifold,
we find that the partition function of the RGW invariants agrees with that of the SO/Sp
Chern–Simons theory [3].

3.1. Local real Gromov–Witten invariants
Let .†; c/ be a symmetric Riemann surface andL!† a holomorphic line bundle.

Then the total space of

L˚ c� NL ! †; ctw.zIu; v/ D
�
c.z/I v; u

�
(3.1)

is a real manifold with an antiholomorphic involution ctw . AnU.1/-action on the line bundle
L ! † induces an action on the 3-fold (3.1) compatible with the real structure. We define
local (relative) RGW invariants associated to the real 3-fold (3.1) as pairings between theU.1/-
equivariant Euler class of the index bundle Ind N@L (regarded as an element inK-theory) and
the virtual fundamental class of the (relative) real moduli space M

c;�

d;�.†/ discussed below.

Definition 3.1. Let .†; c/ be a marked symmetric surface, with r pairs of conjugate marked
points .xC

1 ; c.x
C
1 //; : : : ; .x

C
r ; c.x

C
r //, and E� D .�1; : : : ; �r / be a collection of r partitions

of d . Denote by

M
�;c

d;�.†/�1;:::;�r (3.2)

the relative real moduli space of degree d stable real maps f W .C; �/ ! .†; c/ such that
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• f has ramification pattern �i over xC

i (and thus also over x�
i D c.xC

i /), for all
i D 1; : : : ; r ;

• the domain C is possibly disconnected and has total Euler characteristic �;

• f is nontrivial on each connected component of C .

The moduli space M
�;c

d;�.†/�1;:::;�r has virtual dimension b, where

b D d�.†/ � � � 2ı.E�/ and ı.E�/ D

rX
iD1

�
d � `.�i /

�
: (3.3)

Here `.�i / is the length of the partition �i , i.e., the cardinality of f �1.xC

i /.
These real moduli spaces are orientable, but a priori the local RGW invariants

depend on the choice of real orientation (cf. Definition 2.3) and on the topological type
of the real structure c on †. We show in [15] that there is a canonical choice of orientation
for the local RGW invariants, compatible with the splitting formula (3.21), and, moreover,
that they do not depend on the real structure c. We therefore omit these choices from the
notation below.

IfL!† is a holomorphic bundle, the operator N@L determines a family of complex
operators over the moduli spaces of maps to †; the fiber at a stable map f W C ! † is
the pullback operator N@f �L. Denote by Ind N@L the index bundle associated to this family of
operators, regarded as an element in K-theory.

Let N@.L˚c� NL;ctw / denote the restriction of N@L˚c� NL to the invariant part of its domain
and target, cf. [18, Section 4.3]. Via the projection onto the first factor, the kernel and cokernel
of N@.L˚c� NL;ctw / are canonically identified with the kernel and cokernel of N@L and

Ind N@.L˚c� NL;ctw / Š Ind N@L: (3.4)

The right-hand side carries a natural complex structure, which pulls back to one on the left-
hand side. An U.1/-action on L induces one on .L˚ c� NL; ctw/, compatible with the real
structure. In turn, these induce U.1/-actions on Ind N@L and Ind N@.L˚c� NL;ctw / and the isomor-
phism (3.4) identifies their equivariant Euler classes.

Definition 3.2. Assume .†; c/ is a symmetric surface with r pairs of marked points. Let
L! † be a holomorphic line bundle and E�D .�1; : : : ; �r / a collection of r partitions of d .
The local real relative GW invariants associated with the real 3-fold .L˚ c� NL; ctw/! .†; c/

are the equivariant pairings

RZc
d;�.†;L/E� D

Z
ŒM

c;�

d;�.†/E�
�vir
eU.1/.�Ind N@L/: (3.5)

We further consider the shifted generating function

RGWd .†;L/E� D

X
�

ud.
�.†/

2 Cc1.L/Œ†�/�
�
2 �ı.E�/RZc

d;�.†;L/E� 2 Q.t/
�
.u/
�
; (3.6)

where ı.E�/ is as in (3.3). It takes values in the localized equivariant cohomology ring of
U.1/ generated by t .
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3.2. TQFT and Klein TQFT
Let 2Cob be the usual (oriented, closed) 2-dimensional cobordism category. It is the

symmetric monoidal category with objects given by compact oriented 1-manifolds (without
boundary) and morphisms given by (diffeomorphism classes of) oriented cobordisms. A 2-
dimensional topological quantum field theory (2D TQFT) with values in a commutative ring R
is a symmetric monoidal functor

F W 2Cob ! Rmod;

where Rmod is the category of R-modules. This is equivalent to a commutative Frobenius
algebra over R; the product and coproduct correspond to the pair of pants while the unit and
counit to the cap and cup, respectively. In [9], Bryan and Pandharipande enlarge the category
2Cob to a category 2CobL1;L2 with the same objects, but with morphisms decorated by
a pair of complex line bundles .L1; L2/ trivialized over the boundary; the Euler numbers
.k1; k2/ of these bundles determine the level of the theory. Restricting the morphisms to
k1 D k2 D 0 defines an embedding

2Cob � 2CobL1;L2 :

Bryan and Pandharipande use the local GW invariants to define a symmetric
monoidal functor

GW W 2CobL1;L2 ! Rmod (3.7)

on this larger category. The functor (3.7) extends the classical 2D TQFT that appeared in
the work of Dijkgraaf–Witten [12] and Freed–Quinn [14], and whose Frobenius algebra is the
center QŒSd �

Sd of the group algebra of the symmetric group Sd . It is used to completely
solve the local Gromov–Witten theory.

A different extension of 2Cob is obtained by allowing unoriented and possibly
unorientable surfaces as cobordisms; see [2,4]. We refer to this category as 2KCob, whereK
stands for Klein (surface). The objects are closed unoriented 1-manifolds and the morphisms
are diffeomorphism classes of unoriented (and possibly unorientable) cobordisms. An equiv-
alent point of view is to consider the orientation double covers of both the objects and the
morphisms: the objects are then closed oriented 1-manifolds with an orientation-reversing
involution (deck transformation) exchanging the sheets of the cover and the morphisms are
compact oriented 2-dimensional manifolds with a fixed-point free orientation-reversing invo-
lution extending the one on the boundary. Such 2-dimensional manifolds are called symmetric
surfaces, and we denote this category by 2SymCob. Moreover,

2KCob � 2SymCob;

where the identification is obtained by passing to the orientation double cover in one direc-
tion and taking the quotient by the involution in the other. Working from the perspective of
2SymCob allows us to construct an extension 2SymCobL of this category related to that of
[9] and completely solve the local real Gromov–Witten theory.
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The category 2Cob can be regarded as a subcategory of 2KCob with the same
objects, but fewer morphisms

2Cob � 2KCob:

Note that even if a cobordism in 2KCob is orientable, there may not be way to orient it in a
way compatible with the boundary identifications.

The generators of 2Cob � 2KCob are the usual cap, cup, tube, twist, and pair of
pants cobordisms, and the corresponding elements of 2SymCob are their orientation double
covers. The category 2KCob has two extra generators, the cross-cap (a Möbius band) and
the involution

(3.8)

respectively. In 2SymCob these correspond to their orientation double covers

(3.9)

Note that in 2SymCob the involution swaps the two outgoing circles – this distinguishes it
from the tube which acts as the identity.

The extra generators satisfy certain relations in 2KCob (see [4, pp. 1840–1841]). For
example, moving a puncture once around the Möbius band changes the orientation of the
puncture, cf. Figure 2; equivalently, the involution acts trivially on the product of the cross-
cap with another element, cf. (3.13). Another relation comes from decomposing the product
of two cross-caps as in Figure 3, cf. (3.14).

Figure 2

Relation in 2KCob: involution acts trivially on products with a cross-cap.

Figure 3

Relation in 2KCob: decomposing the punctured Klein bottle.
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3.2.1. Semisimple Klein TQFT
Definition 3.3. A (closed) 2D Klein TQFT is a symmetric monoidal functor

F W 2KCob ! Rmod : (3.10)

When (3.10) is regarded as a morphism on 2SymCob � 2KCob via the orientation
double cover construction, we denote it by

QF W 2SymCob ! Rmod : (3.11)

In fact, cf. [4, Proposition 1.11], a (closed) 2D Klein TQFT is equivalent to a com-
mutative Frobenius algebraH D F.S1/ together with two extra structures:

(a) an involutive (anti)automorphism � of the Frobenius algebra H , denoted
x 7! x�. This means

.x�/� D x; .xy/� D y�x� and
˝
x�; y�

˛
D hx; yi for all x; y 2 H:

(3.12)

(b) an element U 2 H such that

.aU /� D aU for all a 2 H and (3.13)

U 2
D m.id ˝�/

�
�.1/

�
D

X
˛iˇ

�
i : (3.14)

Here the coproduct is �.1/ D
P
˛i ˝ ˇi . The involution � and the element U

correspond to the cobordisms (3.8). The relations (b) correspond to Figures 2 and 3.

Definition 3.4. A semisimple Klein TQFT is a Klein TQFT whose associated Frobenius
algebra is semisimple.

A semisimple TQFT is determined by the structure constants ¹��º, i.e., the coeffi-
cients of the comultiplication �.v�/ D ��v� ˝ v� in the idempotent basis ¹v�º. Moreover,

Proposition 3.5 ([15, Proposition 7.4]). Assume (3.10) is a semisimple KTQFT with idem-
potent basis ¹v�º and structure constants ¹��º, and assume that the ground ring R has no
zero divisors. Then

(i) � defines an involution on the idempotent basis �.v�/ D v�� .

(ii) If U D
P

� U�v� then U 2
� D �� if � D ��, and U� D 0 if � ¤ ��.

Assume † is a closed symmetric surface, considered as a morphism in 2SymCob
from the ground ring to the ground ring.

Corollary 3.6 ([15, Corollary 7.5]). With the notation of Proposition 3.5, themorphism (3.11)
is given by:

QF .†/ D

X
�D��

U g�1
� ; when † is a connected genus g surface, and

QF .† t†/ D

X
�

�g�1
� ; when † t† is a g-doublet.
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3.2.2. The category 2SymCobL

Consider the category 2SymCobL whose objects are disjoint unions of copies of
� D .S1 t S1; "/, where " swaps the two components, and morphisms correspond to iso-
morphism classes relative boundary of decorated cobordismsW D .†; c;L/, where† is an
oriented cobordism with a fixed-point free orientation-reversing involution c, extending ",
and L is a complex line bundle over †, trivialized along the boundary of †.

The level 0 theory corresponds to a trivial bundle L, and defines embeddings

2Cob � 2KCob � 2SymCob � 2SymCobL: (3.15)

The doubling procedure defines an embedding

2CobL1;L2 � 2SymCobL; .†;L1; L2/ 7! .† t†;L1 t NL2/: (3.16)

The category 2CobL1;L2 has 4 extra generators, the level .˙1;0/; .0;˙1/-caps, besides those
of 2Cob, cf. [9, Section 4.3]. Similarly, the generators of the category 2SymCobL are those
of 2SymCob together with the images of the .˙1; 0/; .0;˙1/-caps under (3.16).

Proposition 3.7 ([15, Proposition 7.6]). A symmetric monoidal functor

F W 2SymCobL
! Rmod (3.17)

is uniquely determined by the level 0 theory and the images � and N� of the level .�1; 0/ and
.0;�1/-caps.

If the restriction of (3.17) to the level 0 theory defines a semisimple KTQFT with
idempotent basis ¹v�º let

� D

X
�

��v� and N� D

X
�

N��v�: (3.18)

As in Corollary 3.6, then the value of F on a closed connected genus g symmetric surface
† at level k D c1.L/Œ†� is equal to

F.†jL/ D

X
�D��

U g�1
� ��k

� : (3.19)

The value of F on a g-doublet † t† with a line bundle L1 t L2 is similarly equal to

F.† t† jL1; L2/ D

X
�

�g�1
� ��k1

� N��k2
� ;

where k1 D c1.L1/Œ†� and k2 D c1.L2/Œ†�.

3.3. Splitting formulas
Let .†0; c0/ be a nodal symmetric surface with a pair of conjugate nodes and r

pairs of conjugate marked points. It has a normalization .e†; Qc/ which has r C 2 pairs of
conjugate marked points. Similarly, .†0; c0/ has a family of smooth deformations .F ; cF /DS

s.†s; cs/, simultaneously smoothing out the conjugate nodes using complex conjugate
gluing parameters. The generic fiber .†s; cs/ of the family is a symmetric surface with r
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pairs of conjugate marked points, and a pair of “splitting circles” (disjoint vanishing cycles)
swapped by the involution; as the gluing parameters converge to 0, these circles pinch to
produce the two complex conjugate nodes of †0; see Figure 4. Any complex line bundle L
over †s can be deformed to the nodal surface and then lifted to its normalization to give a
line bundle QL over e†.

Figure 4

Splitting † along a pair of conjugate circles .C; �/.

In order to state the splitting theorem in a more compact form, we define the raising
of the indices by the formula

RGW.†;L/�
1:::�s

�1:::�r D RGW.†;L/�1:::�r ;�1:::�s

 
sY

iD1

�.�i /t2`.�i /

!
; (3.20)

where �.�/ D
Q
mkŠk

mk for a partition � D .1m1 ; 2m2 ; : : : /.

Theorem 3.8 (RGW splitting theorem, [16]). Assume .†; c/ is a marked symmetric surface
with r pairs of conjugate points and L is a complex line bundle over †. Let .e†; Qc/ denote
the symmetric surface obtained as described above from .†; c/ by splitting it along two
conjugate circles, and let QL be the corresponding line bundle over e†.

Then for any collection E� D .�1; : : : ; �r / of r partitions of d , the RGW invari-
ants (3.6) satisfy

RGWd .†;L/ E� D

X
�`d

RGWd .e†; QL/�
E�;�
: (3.21)

This result is used to show that the local RGW theory gives rise to (an extension of)
a KTQFT; it corresponds to compatibility of cobordism decompositions.

3.4. The RGW Klein TQFT
In this section we use the local RGW invariants (3.6) to define an extension of a

Klein TQFT, i.e., a functor RGW from the category 2SymCobL described in Section 3.2.2.
This extends the Bryan–Pandharipande TQFT constructed from the GW theory for the anti-
diagonal action.
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LetR D C.t/..u// be the ring of Laurent series in uwhose coefficients are rational
functions of t and d be a positive integer. Denote by � D .S1 t S1; "/ the disjoint union of
two copies of a circle with opposite orientations and with the involution " swapping them.
To the object � we associate

RGWd .�/ D H D

M
˛`d

Re˛; (3.22)

the free module with basis ¹e˛º˛`d indexed by partitions ˛ of d . Let

RGWd .� t � � � t �/ D H ˝ � � � ˝H:

To each cobordism W D .†; c; L/ in 2SymCobL from n copies of � to m copies of � ,
associate the R-module homomorphism

RGWd .W / W H˝n
! H˝m (3.23)

defined by

e�1 ˝ � � � ˝ e�n 7!

X
�i `d

RGWd .†W jLW /
�1::�m

�1::�n e�1 ˝ � � � ˝ e�m :

Here †W is a closed marked symmetric Riemann surface whose topological type is that
of † after removing small disks around the pairs of marked points and LW ! †W is a
holomorphic line bundle whose first Chern class corresponds to the Euler class of L ! †.

Theorem 3.9 ([15, Theorem 8.1]). The assignment (3.23) defines a symmetric monoidal func-
tor

RGWd W 2SymCobL
! Rmod : (3.24)

Its restriction to 2KCob under (3.15) is a Klein TQFT, while its restriction to 2CobL1;L2

under (3.16) is

RGWd .† t†jL1 t NL2/.u; t/ D .�1/dk2GWd .†jL1; L2/.iu; i t/: (3.25)

Here ki is the total degree of Li and GWd is the TQFT (3.7) considered by Bryan–
Pandharipande (for the antidiagonal action).

The KTQFT determined by the level 0 local RGW invariants is semisimple, cf [15].
It corresponds in fact to signed counts of degree d real Hurwitz covers. The idempotent basis
is indexed by irreducible representations of the symmetric group Sd and�.v�/D v�0 where
�0 is the conjugate representation. In order to calculate the coefficients ofU in the idempotent
basis, we introduced in [15] the signed Frobenius–Schur indicator (SFS). The SFS takes values
0, ˙1 on irreducible real representations, unlike the standard FS indicator which is C1 on
them. The SFS is 0 if and only if the representation is not self-conjugate and the sign of a self-
conjugate representation is given as a function of its characters. While these considerations
are valid for real representations of any finite group, in the case of the symmetric group we
find a simpler expression for the latter function using the Weyl formula for Bn. In particular,
for an irreducible self-conjugate representation � of Sd ,

SFS.�/ D .�1/.d�r.�//=2;
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where r.�/ is the rank of �, i.e., the length of the main diagonal of the Young diagram
associated to �. This is precisely the sign that appears in the partition function of the SO/Sp
Chern–Simons theory [3, (6.1)]; in the case of the resolved conifold, Theorems 3.12 and 3.13
below recover the partition function [3, (6.3)] and the free energy [3, (3.2)], respectively.

The idempotent basis for the theory is given by

v� D
dim �
dŠ

X
˛

.�t /`.˛/�d��.˛/e˛; (3.26)

indexed by the irreducible representations � of Sd . We then have the following results.

Lemma 3.10 ([15, Lemma 9.2]). In the idempotent basis ¹v�º, the structure constants ¹��º and
the coefficients ¹��º, ¹ N��º of the .�1; 0/ and .0;�1/-caps are given by

�� D t2d

�
dŠ

dim �

�2

; �� D tdQc�=2

�
dimhQ�

dim �

�
; N�� D tdQ�c�=2

�
dimhQ�

dim �

�
:

(3.27)

HereQ D eu, c� is the total content of the Young diagram associated to �, and

dimhQ� D dŠ
Y
�2�

�
2 sinh

h.�/u
2

��1

D dŠ
Y
�2�

�
Q

h.�/
2 �Q�

h.�/
2
��1

; (3.28)

where h.�/ denotes the hooklength of the square � in the Young diagram associated to �.

Proposition 3.11 ([15, Corollary 9.7]). In the idempotent basis, the level 0 cross-cap U is
given by

U D

X
�`d

�D�0

.�1/.d�r.�//=2 td
dŠ

dim �
v�; (3.29)

where r.�/ is the length of the main diagonal of the Young diagram of �.

Combining these results with the results of Section 3.2 we obtain a closed expression
for the local RGW theory of the 3-folds (3.1) in terms of representation theoretic data. The
Calabi–Yau case is given in the following theorem.

Theorem 3.12 ([15, Lemma 9.14] (Local CY)). Let † be a connected genus g symmetric sur-
face and L ! † a holomorphic line bundle with Chern number g � 1. Then the generating
function of the degree d local RGW invariants is equal to

RGWd .†;L/ D

X
�D�0

�
.�1/

d�r.�/
2

Y
�2�

2 sinh
h.�/u
2

�g�1

:

Here the sum is over all self-conjugate partitions � of d , the product is over all boxes � in
the Young diagram of �, h.�/ is the hooklength of �, and r.�/ is the length of the main
diagonal of the Young diagram of �.
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3.5. Real Gopakumar–Vafa formula
The local RGW invariants correspond to possibly disconnected counts. As usual

they can be expressed in terms of more basic invariants. In the real GW theory, these basic
counts come in two flavors, CRGWd .†; L/ and DRGWd .†; L/, corresponding to maps
from connected real domains and respectively from doublet domains, i.e., domains con-
sisting of two copies of a connected surface with opposite complex structures and the real
structure exchanging the two copies. In fact,

1C

1X
dD1

RGWd .†;L/q
d

D exp

 
1X

dD1

CRGWd .†;L/q
d

C

1X
dD1

DRGW2d .†;L/q
2d

!
:

Furthermore, the doublet invariants are related to half of the complex GW invariants when-
ever the target † is connected,

DRGW2d .†;L/.u; t/ D .�1/d.kC1�g/ 1

2
GWconn

d .gjk; k/.iu; i t/;

where g is the genus of †, k D c1.L/Œ†� is the degree of L, and GWconn
d .gjk; k/ are the

connected invariants defined in [9] for the anti-diagonal action.
As a consequence of the structure result provided by Theorem 3.12, we obtain the

local real Gopakumar–Vafa formula (cf. [37, Section 5]). The local GV conjecture in the
classical setting, proved in [22, Proposition 3.4], states that the connected GW invariants
defined in [9] have the following structure:

1X
dD1

GWconn
d .gjg � 1; g � 1/.u/qd

D

1X
dD1

X
h

nC
d;h.g/

1X
kD1

1

k

�
2 sin

�
ku

2

��2h�2

qkd ;

(3.30)

where the coefficients nC
d;h
.g/, called the local BPS states, satisfy (i) nC

d;h
.g/ 2 Z and (ii)

for each d , nC
d;h
.g/ D 0 for large h.

In the real setting, the local real GV formula takes the following form.

Theorem 3.13 ([15, Theorem 10.1] (Local real GV formula)). Fix a genus g symmetric surface
† and consider the local real Calabi–Yau 3-fold .L˚ c� NL; ctw/! †. Then the generating
function for the connected local RGW invariants has the following structure:

1X
dD1

CRGWd .†jL/.u/qd
D

1X
dD1

1X
hD0

nR
d;h.g/

X
k odd
k>0

1

k

�
2 sinh

�
ku

2

��h�1

qkd ; (3.31)

where the coefficients nR
d;h
.g/ satisfy (i) (integrality) nR

d;h
.g/ 2 Z, (ii) (finiteness) for each

d , nR
d;h
.g/ D 0 for large h, and (iii) (parity) nR

d;h
.g/ D nC

d;h
.g/ mod 2. Moreover,

(a) for g D 0, nR
d;h
.0/ D 1 when d D 1 and h D 0 and vanish otherwise.

(b) for g D 1, nR
d;h
.1/ D .�1/d�1 when h D 1 and vanish otherwise.

(c) for any g � 0, nR
1;h
.g/ D 1 when h D g and vanish otherwise.

The g D 0 case of Theorems 3.12, 3.13 give the real Gromov–Witten invariants
of the resolved conifold and coincide with the SO/Sp Chern–Simons theory on S3. This is
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an instance of the real analogue of the large N -duality [20, 28]. Developing a mathematical
theory of the real topological vertex [1,26] would allow establishing this correspondence for
any toric real Calabi–Yau 3-fold. Furthermore, a relation betweenKauffman polynomials and
real GW invariants is also expected based on this duality and it would be very interesting to
investigate the potential implications of such a relation.
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Gamma classes and
quantum cohomology
Hiroshi Iritani

Abstract

The b�-class is a characteristic class for complex manifolds with transcendental coeffi-
cients. It defines an integral structure of quantum cohomology, or more precisely, an inte-
gral lattice in the space of flat sections of the quantum connection. We present several
conjectures (the b�-conjectures) about this structure, particularly focusing on the Riemann–
Hilbert problem it poses. We also discuss a conjectural functoriality of quantum coho-
mology under birational transformations.
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1. Gamma-integral structure in quantum cohomology

We briefly review the definition of theb�-integral structure in quantum cohomology
introduced in [42]. The corresponding rational structure was introduced independently by
Katzarkov, Kontsevich, and Pantev [46] in the framework of nc-Hodge structure.

1.1. Gamma class
Let X be an almost complex manifold and let ı1; : : : ; ın (with n D dimC X ) be

the Chern roots of the tangent bundle, so that c.TX/ D .1C ı1/ � � � .1C ın/. The b�-classb�X 2 H�.X I R/ [42,46,52,53] is the characteristic class defined byb�X D �.1C ı1/ � � ��.1C ın/

where �.1C x/ D
R1

0
e�t txdt is Euler’s �-function. The right-hand side is expanded in

symmetric power series in ı1; : : : ; ın and then expressed in terms of the Chern characters
chk.TX/ as follows:

b�X D exp

 
�c1.X/C

1X
kD2

.�1/k�.k/.k � 1/Š chk.TX/

!
;

where �.s/D
P1

nD1 n
�s is the Riemann zeta function and  D limn!1.1C

1
2

C � � � C
1
n

�

log n/ is the Euler constant. This is a characteristic class with transcendental coefficients.1

The identity �.1� x/�.1C x/ D �x= sin.�x/ shows that theb�-class can be thought of as
a “square root” of the OA-class, i.e.,b�X �b��

X D .2�i/deg =2 OAX ; (1.1)

where b��
X WD .�1/deg =2b�X denotes the dual b�-class. We note that OAX depends only on the

underlying topological manifold whereasb�X depends on an almost complex structure on it.
The identity (1.1) suggests a relationship between the b�-class and the Atiyah–Singer index
theorem. In fact, we can interpretb�X as (a regularization of) the inverseS1-equivariant Euler
class of the positive normal bundle NC of the set X of constant loops in the free loop space
LX (see [53], [26, Appendix A]), i.e.,

1

eS1.NC/
D

1Q
i

Q
k>0.ıi C kz/

� .2�/�n=2z.n�deg/=2zc1.X/b�X ; (1.2)

where z is a generator of the S1-equivariant cohomology of a point. This is reminiscent of
the loop space heuristics of the index theorem by Atiyah and Witten [4], where the OA-class
is interpreted as the inverse Euler class eS1.N /�1 of the normal bundle N itself,

1

eS1.N /
D

1

eS1.N�/eS1.NC/
D

1Q
i

Q
k¤0.ıi C kz/

�

�
z

2�i

�n�.deg =2/

OAX :

Since NC corresponds to infinitesimal (pseudo)holomorphic loops, the b�-class can be
thought of as the localization contribution from constant loops in symplectic Floer theory.

1 It is, however, an algebraic (Hodge) class when X is a smooth projective variety.
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1.2. Quantum cohomology D-modules
Let X be a smooth projective variety (or a compact symplectic manifold) and let

H�.X/ denote the cohomology group with complex coefficients. The quantum cohomology
QH�.X/ D .H�.X/; ?� / of X is a family of supercommutative product structures ?� on
H�.X/ parametrized by � 2 H�.X/. The quantum product ?� is defined by

.˛ ?� ˇ; / D

X
d2H2.X;Z/;k�0

h˛; ˇ; ; �; : : : ; �i0;kC3;d

Qd

kŠ

for ˛; ˇ;  2 H�.X/. Here .˛; ˇ/ D
R
X
˛ [ ˇ is the Poincaré pairing and h˛1; : : : ; ˛ki0;k;d

denotes the genus-zero, k-point, degree d Gromov–Witten invariants. Strictly speaking, we
should treat the odd degree part of � as anticommuting variables and view the parameter
spaceH�.X/ as a supermanifold. For the most part of this paper, we shall restrict the param-
eter � and elements of quantum cohomology to the even part of the cohomology group and
writeH�.X/ for the even part (see Remark 1.2 for the odd part).

In the above formula, we introduced the Novikov variable Q to ensure the adic
convergence of ?� . The divisor equation shows that, if we decompose � D � C � 0 with � 2

H 2.X/ and � 0 2 H¤2.X/,

.˛ ?� ˇ; / D

X
d2H2.X;Z/;k�0

˝
˛; ˇ; ; � 0; : : : ; � 0

˛
0;kC3;d

eh�;diQd

kŠ
:

Thus the quantum product can be expanded in a power series in � 0 and e� and approaches
the cup product in the following large-radius limit:

� 0
! 0; eh�;di

! 0 for all effective classes d ¤ 0: (1.3)

Hereafter we shall always specialize the Novikov variable Q to 1 and assume that ?� jQD1

(which we shall write as ?� ) is convergent in a neighborhood U of the large radius limit.
The quantum cohomology defines the structure of a Frobenius manifold [20] on the

convergence domain U � H�.X/. Specifically, it defines a meromorphic flat connection r

on the trivial bundle F D H�.X/ � .U � C/ ! .U � C/, called the quantum connection
or the Dubrovin connection. It is defined by the formulae

r@=@� i D
@

@� i
C
1

z
.�i?� /;

rz@=@z D z
@

@z
�
1

z
.E?� /C �;

where .�; z/ 2 U � C denotes a point on the base and ¹� i º are linear coordinates dual to a
homogeneous basis ¹�i º ofH�.X/ so that � D

P
i �

i�i . The sectionE 2 O.F / is the Euler
vector field given by

E D c1.X/C

X
i

�
1 �

deg�i

2

�
� i�i

and � 2 End.H�.X// is the grading operator defined by �.�i / D .
deg�i

2
�

n
2
/�i . The con-

nectionr has poles of order two along z D 0 and is possibly irregular singular there. On the
other hand, it has logarithmic poles (and is therefore regular singular) along z D 1. The
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connection r is compatible with the Poincaré pairing in the sense that the z-sesquilinear
pairing

.�1/�O.F /˝ O.F / ! O; s1 ˝ s2 7! .s1; s2/ D

Z
X

s1 [ s2 (1.4)

is flat for r, where .�1/WU � C ! U � C is the map sending .�; z/ to .�;�z/.
The quantum (cohomology) D-module is the tuple QDM.X/ D .O.F /; r; .�; �//

consisting of the locally free sheaf O.F / over U � C, the quantum connection r and the
pairing in (1.4). The D-module approach to quantum cohomology has been proposed by
Givental [28] and Guest [34].

1.3. Gamma-integral structure
The b�-integral structure is an integral lattice in the space of flat sections for the

quantum connection r. We have a fundamental solution for r-flat sections of the form
L.�; z/z��zc1.X/ with an End.H�.X//-valued function L.�; z/ uniquely characterized by
the following asymptotic condition at the large radius limit (1.3),

L.�; z/ D
�
idCO.e� ; � 0/

�
e��=z :

Here z��zc1.X/ D exp.�� log z/ exp.c1.X/ log z/ is an End.H�.X//-valued function on
the universal cover of C�. Given a basis ¹�i º ofH�.X/, ¹L.�; z/z��zc1.X/�i º gives a basis
ofr-flat sections. Explicitly,L.�;z/ is given in terms of gravitational descendants as follows
(see [19,29]):

L.�; z/�i D e��=z�i �

X
j

X
.d;k/¤.0;0/

�
e��=z�i

z C  
; � 0; : : : ; � 0; �j

�
0;kC2;d

�j

kŠ
eh�;di; (1.5)

where  denotes the universal cotangent class at the first marking, 1=.z C  / should be
expanded as

P
k�0 z

�k�1.� /k , and ¹�j º, ¹�j º are mutually dual bases of H�.X/ such
that

R
X
�i [ �j D ı

j
i .

Let �.X/ denote the C-vector space of multivalued flat sections of .F; r/ over
U � C�, i.e., flat sections over the universal cover U � fC�. Let K.X/ D K0

top.X/ denote
the K-group of topological complex vector bundles and define a map sWK.X/ ! �.X/ as

s.V /.�; z/ D L.�; z/z��zc1.X/
�
.2�/�n=2b�X .2�i/deg =2 ch.V /

�
: (1.6)

The factor .2�/�n=2z��zc1.X/b�X also appears in (1.2) as a regularization of eS1.NC/
�1.

The b�-integral structure is the integral lattice of �.X/ given as the image of the map s.
By the compatibility between r and the Poincaré pairing, we have a nondegenerate

(not necessarily symmetric or antisymmetric) pairing Œ�; �/W �.X/˝ �.X/ ! C defined by

Œs1; s2/ D
�
s1.�; e

��iz/; s2.�; z/
�

(1.7)

for s1; s2 2 �.X/. The property (1.1) of the b�-class and the Atiyah–Singer index theorem
(or Hirzebruch–Riemann–Roch theorem) show that s respects the pairing

Œs.V1/; s.V2// D �.V1; V2/;
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where �.V1; V2/ 2 Z is the K-theoretic push-forward of V _
1 ˝ V2 to a point (the index of a

Dirac operator; it is
P

i�0.�1/
i dimExti .V1; V2/ if V1, V2 are holomorphic vector bundles).

The b�-integral structure is monodromy-invariant in the sense that
s.V /

�
� � 2�ic1.L/; z

�
D s.V ˝ L/.�; z/;

s.V /.�; e�2�iz/ D s
�
V ˝ !X Œn�

�
.�; z/;

where L is a (topological) line bundle on X and !X Œn� D .�1/n!X is the canonical line
bundle !X shifted by n, corresponding to the Serre functor of the derived category.

Remark 1.1. The b�-integral structure can be defined more generally for orbifolds [42].

Remark 1.2. We can generalize theb�-integral structure including the odd part of the quan-
tum cohomology, using K�.X/ D K0

top.X/˚K1
top.X/ instead of K0

top.X/. We still restrict
the parameter � to lie in the even part, but consider flat sections taking values in the full coho-
mology group. The formula (1.6) makes sense for all V 2 K�.X/ when we choose a square
root

p
2�i and use the Chern character chWK�.X/ ! H�.X/ of Atiyah–Hirzebruch [5].

The resulting map sX WK�.X/=tors ! �.X/ then has the advantage that it is natural with
respect to the Cartesian product, i.e., sX�Y D sX ˝ sY (under the Künneth isomorphism).
Interestingly, we have

Œs.˛1/; s.˛2// D �i�.˛1; ˛2/ 2 iZ for ˛1; ˛2 2 K1.X/,

s.˛/.�; e�2�iz/ D .�1/deg˛s
�
˛ ˝ !X Œn�

�
.�; z/ for ˛ 2 K�.X/,

where �.˛1; ˛2/ 2 Z is theK-theoretic push-forward of ˛_
1 � ˛2 to a point as before; the dual

element ˛_
1 here is defined via the isomorphism K1.X/ Š K�1.X/ Š QK0.S1 ^XC/ (see

[5]) and the usual duality in K0.

Remark 1.3 (Mirror symmetry). The b�-integral structure had (implicitly) appeared for a
long time in the study of mirror symmetry before it was defined in [42, 46]. Under mirror
symmetry of Calabi–Yau manifolds, the quantum differential equation corresponds to the
Picard–Fuchs differential equations satisfied by periods of the mirror family, and we can
partially see theb�-class in the asymptotics of periods near the large-complex structure limit.
Libgober [52] introduced the (inverse)b�-class based on the observation of Hosono et al. [40]
that certain combinations of Chern numbers and � values appear in solutions of the mirror
Picard–Fuchs equations. Hosono [39] stated a conjecture equating periods of mirrors of com-
plete intersections with explicit hypergeometric series and theb�-class is hidden in the series.
We also refer the reader to [9, 38, 59] for related works. It has been checked in a number of
cases that the b�-integral structure corresponds to a natural integral structure on the mirror
side [42, 44]. Regarding the compatibility with mirror symmetry, an approach based on the
SYZ picture and tropical geometry has been proposed in [1] recently.

2. Gamma conjectures

In this section we review theb�-conjectures I, II discussed by Galkin, Golyshev, and
the author [26], and their generalization by Sanda and Shamoto [58]. The b�-conjectures can
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be understood as the compatibility between the Betti (real, rational, or integral) structure
and the Stokes structure, discussed by Hertling and Sevenheck [37] in the context of TERP
structure and by Katzarkov, Kontevich, and Pantev [46] in the context of nc-Hodge structure.
The Gamma conjecture II also refines Dubrovin’s conjecture [20].

2.1. Gamma conjecture I
The b�-conjecture I is specifically about quantum cohomology of Fano manifolds.

It roughly speaking says that we can know the topology (the b�-class) of a Fano manifold
by counting rational curves on it. In view of (1.1), we may view it as a “square root” of the
index theorem.

Let X be a Fano manifold and let JX .�; z/ be the (small) J -function defined as

JX .�; z/ D e�=z

�
1C

X
i

X
d2H2.X;Z/;d¤0

eh�;di

�
�i

z.z �  /

�
0;1;d

�i

�
where � 2H 2.X/. This is a cohomology-valued function which is convergent for all .�; z/ 2

H 2.X/� C� (this follows from the Fano assumption). We can also write this as JX .�; z/D

L.�; z/�11 using the fundamental solution L in (1.5); hence JX .�; z/ gives a solution of the
quantum D-module along the � -direction.

Conjecture 2.1 (b�-conjecture I). For a Fano manifold X , we have the equality

Œb�X � D lim
t!C1

�
JX

�
c1.X/ log t; 1

��
in the projective space P .H�.X// of cohomology.

This has been proved for the projective spaces, type A Grassmannians [26, 30] and
Fano threefolds of Picard rank one [31]. The b�-conjecture I for Fano toric manifolds or
complete intersections in them follows if these spaces satisfy certain conditions related to
Conjecture O [27]. The b�-conjecture I is also compatible with taking hyperplane sections,
i.e., if a Fano manifold X satisfies the b�-conjecture I and if Y � X is a hypersurface in the
linear system jLjwithL proportional to�KX ,Y satisfies theb�-conjecture I [27, Theorem 8.3].

Example 2.2. The J -function of P n is given by

JPn

�
c1.P

n/ log t; z
�

D

1X
dD0

t .nC1/.dCp=z/Qd
kD1.p C kz/nC1

;

wherep is the hyperplane class. Setting zD 1 and fixing t > 0, we find that the d th summand

t .nC1/.dCp/Qd
kD1.p C k/nC1

D

�
td .t=d/p

dŠ

�nC1�
e.logd�.1C 1

2 C���C 1
d

//pQd
kD1..1C

p
k
/e�p=k/

�nC1

has a strong peak approximately when d is close to t . We can guess from this that the limit
of CJPn.c1.P n/ log t; 1/ in the projective space should be the line generated by

lim
d!1

�
e.logd�.1C 1

2 C���C 1
d

//pQd
kD1..1C

p
k
/e�p=k/

�nC1

D �.1C p/nC1
D b�Pn :
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Remark 2.3. In Givental’s heuristic calculation of the J -function [28], the d th summandQd
kD1.p C kz/�n�1 of JPn.�; z/ appears as the localization contribution from constant

loops in the polynomial loop space (quasimaps’ space) of degree d , and hence it can be
viewed as the degree-d truncation of eS1.NC/

�1 appearing in Section 1.1. In view of
the loop space interpretation of the b�-class, this gives a geometric explanation for the b�-
conjecture I in this case. In general, the degree d term of JX .�; z/ arises from a localization
contribution of an integral over the graph space Gd D M 0;0.X � P 1; .d; 1//, the moduli
space of genus-zero stable maps to X � P 1 of degree .d; 1/, equipped with the C�-action
induced by the C�-action on P 1. Let Gı

d
� Gd denote the open subset consisting of stable

maps which are genuine graphs near 1 2 P 1, i.e., do not contain components contained in
X � ¹1º. Then Gı

d
is preserved by the C�-action and has Fd D M 0;1.X; d/ as the fixed

locus. Writing ev1WGı
d

! X for the evaluation map at 1 2 P 1, we haveZ
Gı

d

ev�
1 ˛ D

Z
ŒFd �vir

ev�
1 ˛

z.z �  /
D .degree d term of JX ; ˛/;

where we defined the integral over the improper space Gı
d
using (virtual) equivariant local-

ization. In the case where X D P n, Givental gave a birational morphism from Gı
d
to the

polynomial loop space and justified his heuristic calculation (see [29, Main Lemma]). There-
fore the b�-conjecture I can be viewed as the statement that Gı

d
approximates the (positive)

loop space of X as d ! 1 in a suitable sense.

Remark 2.4. A discrete version of the limit in Conjecture 2.1 had been also studied (before
the formulation of the b�-conjecture) and called Apéry limits, in view of the connection to
Apéry’s proof of the irrationality of �.2/ and �.3/, see Galkin [25] and Golyshev [30].

2.2. Gamma conjecture I in terms of flat sections
We restate b�-conjecture I in terms of r-flat sections over the z-plane, in order to

explain the relationship withb�-conjecture II in the following section. We start with Conjec-
ture O.

Conjecture 2.5 (Conjecture O). Let X be a Fano manifold and let T denote the maximal
norm of the eigenvalues of the quantum multiplication .E?0/ D .c1.X/?0/ at � D 0. Then
T is a simple eigenvalue of .c1.X/?0/, that is, an eigenvalue whose multiplicity in the char-
acteristic polynomial is one.

Here we omitted part (2) of Conjecture O in [26, Definition 3.1.1] since we do not
need it. Conjecture O is a consequence of the Perron–Frobenius theorem if .c1.X/?0/ is
represented by an irreducible nonnegative matrix. Cheong and Li [11] proved Conjecture O

for homogeneous spaces G=P using the Perron–Frobenius theorem.
Eigenvalues of .c1.X/?0/ are closely related to asymptotics of flat sections for

rj�D0 as z ! 0. The flatness equation reads�
z
@

@z
�
1

z
c1.X/ ?0 C�

�
s.z/ D 0:
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For each eigenvector ‰ of .c1.X/?0/ with eigenvalue u, we expect that there should be a
flat section s.z/ with asymptotics � e�u=z‰ as z ! 0. Define a vector space A as

A D

´
sW R>0 ! H�.X/

ˇ̌̌̌
ˇ s.z/ is flat for rz@z

j�D0

eT=zs.z/ is at most of polynomial growth as z ! C0

µ
:

Assuming Conjecture O for X , we can prove that A is one-dimensional and that, for any
s.z/ 2 A, eT=zs.z/ converges to a T -eigenvector of .c1.X/?0/ as z ! C0. The original
formulation of the b�-conjecture I in [26] was as follows.

Conjecture 2.6 (b�-conjecture I: another form). The space A is generated by s.O/j�D0.

It is equivalent to Conjecture 2.1 in Section 2.1 under Conjecture O [26, Corol-

lary 3.6.9] and can be viewed as a dual formulation. We have a gauge equivalence between
the connections rj�D0 and rjzD1;�Dc1.X/ log t , that is, z�.rj�D0/z

�� D rjzD1;�Dc1.X/ log t

under the identification t D z�1. Thus, flat sections over ¹� D 0º � C and the solution
JX .c1.X/ log t; 1/ are dual to each other. While the space A consists of flat sections with
most rapid decay (� e�T=z), the t ! C1 limit of the J -function detects its most rapidly
growing component. In fact, we can show that the J -function has the following asymptotics:

JX

�
c1.X/ log t; 1

�
D Ct�n=2eT t

�b�X CO.t�1/
�

as t ! C1

for some C 2 C, under Conjecture O and b�-conjecture I (see [27, Proposition 3.8]).

2.3. Gamma conjecture II
In this section we assume that the quantum product ?� is semisimple2 at some � D

�0 2 H�.X/, i.e., .H�.X/; ?�0/ is isomorphic to the direct sum of C as a ring. We do
not need to assume that X is Fano. Let  1; : : : ;  N 2 H�.X/ denote an idempotent basis
such that  i ?�  j D ıij i and let u1; : : : ; uN 2 C be the eigenvalues of .E?� / such that
E ?�  i D ui i ; here  i and ui are analytic functions of � defined in a neighborhood
of � D �0. The functions ¹ui º give a local coordinate system near �0 called the canonical
coordinates [19, 21]. We write ‰i D . i ;  i /

�1=2 i for the normalized idempotent basis,
which is unique up to sign. Choose a phase � 2 R such that ei� … R>0.ui;0 � uj;0/ for all
i; j , where ui;0 is the value of ui at �0; such a phase � is said to be admissible. We have a
basis .y�

1 .�; z/; : : : ; y
�
N .�; z// of r-flat sections defined in a neighborhood of � D �0 and

arg z D � with the following property:

eui =zy
�
i .�; z/ ! ‰i as z ! 0 along the angular sector j arg z � �j < � C "

for some " > 0, see [26, Proposition 2.5.1].

Conjecture 2.7 (b�-conjecture II: a topological form). Suppose that the quantum product
?� of X is semisimple at some �0 2 H�.X/ and let � 2 R be an admissible phase for the

2 Under the semisimplicity assumption, X has no odd cohomology classes and, if, more-
over, X is a smooth projective variety,H�.X/ is necessarily of Hodge–Tate type,
i.e.,Hp;q.X/ D 0 for p ¤ q, see [36].
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eigenvalues of .E?�0/. There exist K-classes E
�
1 ; : : : ; E

�
N 2 K.X/ such that y�

i .�; z/ D

s.E
�
i /.�; z/ in a neighborhood of � D �0 and arg z D �.

This refines part (3) of Dubrovin’s conjecture [20, Conjecture 4.2.2] concerning the
central connection matrix. It has been proved for type A Grassmannians [26], Fano toric
manifolds [23] and quadric hypersurfaces [41]. Theb�-conjecture I can be viewed as a special
case of the b�-conjecture II when � D 0 and � D 0.

The flat sections y�
i .�; z/ depend on the choice of a phase � (or, more precisely,

on a chamber of admissible phases) whereas their asymptotic expansions as z ! 0 do
not. This is the so-called Stokes phenomena. The Stokes matrix S D .Sij / is a transi-
tion matrix between the flat sections associated with opposite directions: it is given by
y

�
j .�; z/D

PN
iD1 y

�C�
i .�; z/Sij with arg z D � C

�
2
. It can be given in terms of the bilinear

form in (1.7) and then as the Euler matrix of ¹E
�
i º,

Sij D .y
�
i ; y

�
j � D �

�
E

�
i ;E

�
j

�
:

This corresponds to part (2) of Dubrovin’s conjecture saying that the Stokesmatrix is integral
and is given by the Euler pairing. If follows from the fact that the asymptotics y�

i � e�ui =z‰i

holds over a sector of angle > � that the Stokes matrix is upper-triangular

Sij D �
�
E

�
i ;E

�
j

�
D

8<: 1 if i D j ;

0 if =.e�i�ui / � =.e�i�uj / and i ¤ j .

Remark 2.8. In [26], theb�-conjecture II was stated for Fano manifolds which have semisim-
ple quantum cohomology and full exceptional collections inDb.X/. It is, moreover, conjec-
tured that ¹E

�
i º should lift to a full exceptional collection. We drop these assumptions/con-

clusions to emphasize a topological nature of the b�-conjecture.
Remark 2.9. Dubrovin [22] also formulated a conjecture similar to theb�-conjecture II. See
Cotti, Dubrovin, and Guzzetti [18] for the formulation.

Example 2.10. For X D P n, the corresponding exceptional collection is ¹O;O.1/; : : : ;

O.n/º at some � [26]. The collection at � D 0 is given explicitly in [18].

Remark 2.11. Suppose thatX is Fano and ismirror to a Landau–Ginzburgmodel f WY ! C.
It is expected that the idempotent  i corresponds to a nondegenerate critical point ci of f
such that the corresponding eigenvalue ui equals f .ci /. The critical point ci can associate
a Lefschetz thimble L

�
i extending in the direction of ei� , which gives an exceptional object

in the Fukaya–Seidel category of .Y; f /. The object in Db.X/ corresponding to L
�
i under

homological mirror symmetry should give the class E
�
i .

Remark 2.12. The b�-conjecture II concerns the connection problem between flat sections
y

�
i characterized by the asymptotics at the irregular singular point z D 0 and flat sections

s.V / normalized at the regular singular point z D 1. The connection matrix of flat sections
(with respect to a fixed basis) is called the central connection matrix by Dubrovin [20]; in the
formalism of the b�-integral structure, it corresponds to the basis ¹E

�
i º of the K-group. As
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discussed by Dubrovin, when � and � vary, the basis ¹y
�
i º of flat sections (and hence ¹E

�
i º)

changes discontinuously by the action of the braid group in N strands. Suppose that we
ordered flat sections ¹y

�
i º in such a way that =.e�i�u1/ � =.e�i�u2/ � � � � � =.e�i�uN /.

The braid group action is generated by the following rightmutations and their inverses (which
are the actions of simple braids):

.E1; : : : ;Ei ;EiC1; : : : ;EN / 7!
�
E1; : : : ;EiC1;Ei � �.Ei ;EiC1/EiC1; : : : ;EN

�
;

wherewe suppressed� to simplify the notation. This transformation happenswhen the eigen-
value ui crosses behind uiC1 towards direction ei� . As Dubrovin observed, this is consistent
with mutations of exceptional collections in the derived category [8].

2.4. Conjecture of Sanda and Shamoto
Sanda and Shamoto [58] proposed a generalization of the b�-conjecture II to the

case where quantum cohomology is not necessarily semisimple and called it Dubrovin-type
conjecture. Their formulation involves derived category of coherent sheaves and Hochschild
homology, but here we give a topological formulation that has been proposed by Sergey
Galkin [24]. This formulation makes sense for any compact symplectic manifolds.

We fix a parameter � 2 H�.X/ in the convergence domain of the quantum prod-
uct. We consider the restriction QDM.X/� of the quantum D-module from Section 1.2 to
¹�º � C and write QDM.X/� D QDM.X/�;0 ˝C¹zº CJzK for the restriction to the formal
neighborhood of z D 0, where QDM.X/�;0 denotes the germ of QDM.X/� at z D 0. We
say that the quantum connection at � is of exponential type3 if we have the following formal
decomposition (see [37, Lemma 8.2]):b̂WQDM.X/� Š

M
u2C

.eu=z
˝ Ru/˝C¹zº CJzK; (2.1)

where we disregard the pairing on QDM.X/� momentarily, C denotes the set of distinct
eigenvalues of .E?� /, eu=z denotes the rank-one connection .C¹zº; d C d.u=z// and Ru

is a free C¹zº-module equipped with a regular singular connection (whose pole order at
z D 0 is at most two). In this decomposition, each “regular singular piece” Ru is unique
up to isomorphism. This decomposition is automatically orthogonal with respect to the
Poincaré pairing (1.4) and hence each piece Ru inherits a non-degenerate z-sesquilinear
pairing .�; �/uW .�1/�Ru ˝ Ru ! C¹zº. Hereafter we assume that the quantum connection
is of exponential type: this assumption is natural from a mirror symmetry point of view.

We choose an admissible direction ei� for C, that is, an element ei� 2 S1 satisfying
ei� … R>0.u�u0/ for any u;u0 2 C. By the Hukuhara–Turrittin theorem (see [37, Lemma 8.3]),
the above formal decomposition (2.1) lifts uniquely to an analytic decomposition

ˆI WQDM.X/� jI Š

M
u2C

eu=z
˝ RujI

3 We follow the terminology in [46]; it was called “require no ramification” in [37].
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over a sector of the form I D ¹z 2 C� W j arg z � �j < �
2

C "º for some " > 0. Here we mean
by “lifts” that the map ˆI admits, when expressed in terms of local holomorphic frames of
QDM.X/� and Ru around z D 0, an asymptotic expansion as z ! 0 along the sector I and
that the expansion coincides with b̂.

Let �I denote the space of r-flat sections over the angular sector ¹�º � I : it can be
identified with �.X/ from Section 1.1 once we specify a lift of the sector I to the universal
cover of C�. The analytic decomposition ˆI induces a decomposition of �I ,

�I D

M
u2C

Vu; (2.2)

where Vu can be identified with the space of flat sections of Ru over I . Since the analytic
decomposition ˆI is valid over a sector of angle greater than � , it follows easily that the
decomposition (2.2) is semiorthogonal in the sense that

ŒVu;Vu0/ D 0 if =.e�i�u/ < =.e�i�u0/,

where Œ�; �/ is the pairing on �I Š �.X/ introduced in (1.7). The data of the vector space �I

equipped with the pairing Œ�; �/ and the semiorthogonal decomposition (SOD) (2.2) constitute
a mutation system in the sense of [58, Definition 2.30]. In what follows, we ignore the torsion
part of the K-group and write K.X/ for K.X/=tors.

Conjecture 2.13 ([24, 58]). Suppose that the quantum connection is of exponential type at
� 2 H�.X/. With notation as above, the SOD (2.2) is induced from a decomposition of the
topological K-group lattice, i.e., there exists a decomposition

K.X/ D

M
u2C

V �
u (2.3)

such that Vu D s.V
�

u /˝ C, where we identify �I with �.X/ by choosing a lift � 2 R of the
direction ei� 2 I . (A different choice of the lift � changes V �

u by monodromy, i.e., V �C2�
u D

V
�

u ˝ !X Œn�.)

When this conjecture holds, the lattices ¹V
�

u º are semiorthogonal with respect to the
Euler pairing, i.e.,�.V �

u ;V
�

u0 /D 0 for=.e�i�u/ <=.e�i�u0/ and therefore the Euler pairing
on each V �

u is necessarily unimodular (because the Euler pairing onK.X/ is unimodular by
Poincaré duality). In the semisimple case, we must have V �

u Š Z and a generator E of V �
u

must satisfy �.E; E/ D ˙1; the b�-conjecture II (Conjecture 2.7) additionally asserts that
�.E;E/ D 1 (this point does not follow from Conjecture 2.13).

Remark 2.14. The original formulation in [58] assumes that X is a smooth Fano variety
and claims also that the semiorthogonal decomposition (SOD) (2.3) arises from an SOD
of the derived category of coherent sheaves. We note that an SOD of the derived category
induces an SOD of the topological K-group, since projections to the SOD summands are
given by Fourier–Mukai kernels in Db.X �X/ and these kernels induce projections in the
topological K-group (see the discussion in [33, §4] in the context of algebraic K-theory).
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Example 2.15 ([58]). Sanda and Shamoto proved their conjecture for Fano complete inter-
sections in the projective spaces of Fano index greater than 1. Let X be a degree d Fano
hypersurface in P n, with n � d > 0. The set of eigenvalues of the quantum multiplication
.E?0/ D .c1.X/?0/ is ¹0º [ ¹T � W �nC1�d D 1º where T D .n C 1 � d/ � dd=.nC1�d/.
The multiplicity of T � is one and that of 0 is the dimension of the primitive cohomology
plus d � 1. In this case, the decomposition (2.2) at � D 0 arises from (up to mutation) the
following SOD of the derived category:

Db.X/ D
˝
A;O;O.1/; : : : ;O.n � d/

˛
;

where O; : : : ;O.n� d/ are exceptional objects corresponding to simple eigenvalues T � and
A is the right orthogonal of hO;O.1/; : : : ;O.n � d/i corresponding to the eigenvalue 0.

The following problem naturally arises:

Problem 2.16. Understand a geometric meaning of each regular singular piece Ru and the
corresponding unimodular lattice V �

u predicted in Conjecture 2.13.

In the semisimple case, each regular singular piece is the quantum connection of a
point and theK-class E

�
i in theb�-conjecture II (Conjecture 2.7) corresponds to a generator

ofK0.pt/ Š Z. The subcategory A in Example 2.15 is equivalent to the category of graded
matrix factorizations of a degree d polynomial F.x0; : : : ; xn/ defining the hypersurface [56]:
it is known to be a fractional Calabi–Yau category (in the sense that a power of the Serre
functor equals the shift functor).

2.5. Monodromy data and Riemann–Hilbert problem
Let us assume that X satisfies Conjecture 2.13. In this section we explain how the

SOD (2.3) encodes the irregular monodromy (Stokes) data, following [37, §8] and [58]. We
also formulate a Riemann–Hilbert problem that reconstructs quantum cohomology from the
SOD (2.3), formal data (2.1) and certain additional data.

Monodromy. The monodromy transformation T W s.z/ 7! s.e2�iz/ on �I is determined
from the pairing Œ�; �/ as

ŒT s1; s2/ D
�
s1.e

�iz/; s2.z/
�

D
�
s2.e

��iz/; s1.z/
�

D Œs2; s1/:

The restriction Œ�; �/u of the pairing Œ�; �/ to Vu is nondegenerate and is induced from the
pairing .�; �/u on Ru. The monodromy transformation TuW Vu ! Vu on flat sections of Ru

is likewise determined by ŒTus1; s2/u D Œs2; s1/u.

Stokes data. Let ��I denote the space of r-flat sections over the opposite sector ¹�º �

.�I /. The Poincaré pairing .�; �/W ��I � �I ! C identifies ��I with the dual space of �I

and the decomposition ��I D
L

u2C V 0
u associated with the sector �I is dual to that for I ,

i.e., .V 0
u0 ;Vu/ D 0 for u ¤ u0. The Stokes data are given by the analytic continuation maps

S˙W �I ! ��I , s.z/ 7! s.e˙�iz/. By the very definition of the pairing Œ�; �/, they are deter-
mined from Œ�; �/ as

.SCs1; s2/ D Œs2; s1/; .S�s1; s2/ D Œs1; s2/:
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S�

ei�

Figure 1

The angular sectors ˙I and the paths of analytic continuations used to define the Stokes maps S˙.

Then we have T D .S�/�1SC. The Stokes maps S˙ are upper (or lower) triangular in
the sense that SC.Vu/ �

L
=.e�i�u0/�=.e�i�u/ V 0

u0 and S�.Vu/ �
L

=.e�i�u0/�=.e�i�u/ V 0
u0 .

They can be used to glue the connections over the opposite sectorsM
u2C

eu=z
˝ Ruj�I and

M
u2C

eu=z
˝ RujI

along the two overlapping domains D˙ D I \ .�I / \ ¹˙=.ze�i�/ > 0º (see Figure 1).
Hence the Stokes data reconstruct an analytic germ of the quantum connection at z D 0

from the formal data ¹Ruºu2C.

Riemann–Hilbert problem. The global quantum connection over P 1 can be reconstructed
by gluing the germ of the connection at z D 0 with a connection around z D 1 via the b�-
integral structure. The quantum connection around z D 1 is gauge-equivalent, via L.�; z/,
to the connection

r
.1/

z@z
D z

@

@z
�
c1.X/

z
C �

on the trivial bundleF1 DH�.X/� .P 1 n ¹0º/! P 1 n ¹0º. We identify the space ofr.1/-
flat sections with theK-group via the framing‰1WK.X/!H�.X/˝ OfC� (cf. (1.6)) given
by

‰1.˛/ WD .2�/�n=2z��zc1.X/b�X .2�i/deg =2 ch.˛/: (2.4)

We glue the bundle .F1;r
.1// with the germ around z D 0 by identifying the flat section

‰1.˛/ with ˛ 2 V
�

u with the flat section in Vu Š �.I;Ru/
r corresponding to ˛ (here

we need an identification V �
u Š Vu). This gives us a global vector bundle OF ! P 1 with a

meromorphic connection br. The glued bundle OF must be trivial (although it is not a priori
clear); the trivialization of F1 at z D 1 induces a trivialization OF Š H�.X/ � P 1. The
pair . OF ;br/ is identified with the quantum connection at � .

More explicitly, this reconstruction procedure can be described as the following
Riemann–Hilbert problem for functions Y˙ D .ˆ˙I /

�1 (over the sectors ˙I ) and Y1 D

L.�; z/ (around z D 1). This is an extension of the Riemann–Hilbert problem described by
Dubrovin [19], [21, Lecture 4] in the semisimple case.
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Problem 2.17. Suppose that we are given the following data C, ¹Ruºu2C, ei� , I , �,
.K.X/; �/, K.X/ D

L
u2C Vu, ‰u, ‰1:

• a subset C of C;

• a finite free C¹zº-module Ru with a regular singular connection for each u 2 C;

• an admissible direction ei� for C and a sector I D ¹z 2 C� W jargz � �j< �
2

C "º

centered around it;

• a unimodular lattice .K.X/; �/ of rank dimH�.X/, a lift � 2 R of ei� and an
SOD K.X/ D

L
u2C Vu;

• a framing ‰uW Vu ! �.I;Ru/
r for each u 2 C such that ‰u induces an iso-

morphism over C and intertwines the transformation Tu 2 End.Vu/ given by
�.Tu˛; ˇ/ D �.ˇ; ˛/ with the monodromy s.z/ 7! s.e2�iz/ on �.I;Ru/

r ;

• the “b�-integral” framing ‰1WK.X/ ! H�.X/ ˝ OfC� given in (2.4), which
satisfies ‰1.e

2�iz/ D ‰1.z/ ı T with T 2 End.K.X// given by �.T˛; ˇ/ D

�.ˇ; ˛/.

We define Stokes maps S˙WK.X/ ! K.X/_ by hSC˛;ˇi D �.ˇ; ˛/, hS�˛;ˇi D �.˛; ˇ/

and a framing ‰�;uWV _
u ! �.�I;Ru/

r over the opposite sector �I by

‰�;u

�
�.˛; �/

�
WD clockwise analytic continuation of ‰u.˛/ throughD�

for ˛ 2 Vu. We set

‰ WD

M
u2C

‰uWK.X/ D

M
u2C

Vu !

M
u2C

�.I;Ru/
r ;

‰� WD

M
u2C

‰�;uWK.X/_ D

M
u2C

V _
u !

M
u2C

�.�I;Ru/
r :

The problem is to find (matrix-valued) holomorphic functions

Y1 2 GL
�
H�.X/

�
˝ OP1n¹0º; Y˙W

M
u2C

Ruj˙I ! H�.X/˝ O˙I

such that

Y1jzD1 D id; Y˙ ! Y0 as z ! 0 along the sector ˙I

for an invertible operator Y0W
L

u2C RujzD0 ! H�.X/ and that

YC‰e
�U=z

D Y1‰1 over I ,

Y�‰�e
�U _=zS˙

D YC‰e
�U=z overD˙,

where D˙ is as before, the determination of ‰1 over I is given by j arg z � �j < �
2

C ",
U WD

L
u2C u idVu 2 End.K.X// and U_ WD

L
u2C u idV _

u
2 End.K.X/_/.

A solution .Y˙; Y1/ to this problem is unique if exists. The solution Y1 gives the
fundamental solutionL.�; z/ and hence recovers the quantum connection. It is interesting to
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note that we reconstruct not only the connection but also the fundamental solution L.�; z/
(called calibration in the theory of Frobenius manifolds): this implies that the value of the
parameter � can be reconstructed by the asymptotics L.�; z/�11 D 1C �z�1 CO.z�2/ if
we know the unit class 1.

Remark 2.18. The additional data we need here (other than those we already mentioned)
is the framing ‰u for each regular singular piece. In the semisimple case, we have Ru Š

.C¹zº; d / and Vu Š Z, so there is essentially a unique choice for ‰u. A natural candidate
for ‰u could be given by answering Problem 2.16. See Section 3.3 for the example where
we have a natural candidate for the framing.

Remark 2.19. If we include odd classes, the monodromy transformation T on �I is given
by .�1/deg˛ŒT ˛; ˇ/ D Œˇ; ˛/; the Stokes maps S˙W �I ! ��I are given by .SC˛; ˇ/ D

.�1/deg˛Œˇ; ˛/, .S�˛; ˇ/ D Œ˛; ˇ/. Problem 2.17 can be also modified accordingly, using
the fact that the pairing Œ�; �/ on �I corresponds to �i�.�; �/ on K1.X/ (see Remark 1.2).

3. Functoriality of quantum cohomology

In this section, we discuss a conjectural functoriality of quantum cohomology under
birational transformations. Roughly speaking, we expect that the relationship between quan-
tum cohomology is induced from a natural map betweenK-groups via theb�-integral struc-
ture. Let X1, X2 be smooth projective varieties and let 'WX1 Ü X2 be a birational map.
Suppose that ' fits into the following commutative diagram:

OX

p1

~~

p2

  
X1

' // X2;

(3.1)

wherep1;p2 are projective birational morphisms.We say that ' is crepant (orK-equivalent)
if p�

1KX1 D p�
2KX2 and discrepant otherwise. We allowXi to be smooth Deligne–Mumford

stacks (with projective coarse moduli spaces) so that we can include crepant resolutions of
orbifolds in the following discussion.

3.1. Crepant transformation
Suppose that 'WX1 Ü X2 is crepant. In this case it can be shown thatH�.X1/ Š

H�.X2/ as graded vector spaces by Kontsevich’s motivic integration (see, e.g., [60]). A
famous conjecture of Yongbin Ruan [57] says that the quantum cohomologies of X1 and
X2 become isomorphic after analytic continuation. This problem has been studied by many
people, see, e.g., [10,48,51,54]. We give a version of the conjecture stated in terms of quantum
D-modules and the b�-integral structure following [16, Conjecture 5.1], [42, §5.5], [17,43].

Conjecture 3.1 (Crepant Transformation Conjecture). Let 'WX1 Ü X2 be a crepant bira-
tional map. There exists a map f from an open subset of H�.X1/ to an open subset of
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H�.X2/ such that, after analytic continuation, we have an isomorphism of quantum D-
modules QDM.X1/ Š f � QDM.X2/. Moreover, via the b�-integral structure, the isomor-
phism is induced by an isomorphism .K.X1/; �/ Š .K.X2/; �/ of topological K-group
lattices.

Recall from Section 1.2 that the quantum D-module QDM.Xi / is the tuple of the
cohomology bundleF , the quantum connection and the Poincaré pairing; the isomorphism in
the conjecture is required to respect these structures. Conjecture 3.1 was proved4 for crepant
transformations between complete intersections in toric Deligne–Mumford stacks, which
are induced from variation of GIT quotients [15]. In that case, it is shown that the map
K.X1/ Š K.X2/ between K-groups is given by a Fourier–Mukai transformation that gives
rise to the equivalence of derived categories of X1 and X2. The calculation needed in this
result is an extension of the work of Borisov–Horja [9] that relates analytic continuation of
hypergeometric solutions to the GKZ system and Fourier–Mukai transformations between
toric orbifolds.

Remark 3.2. (1) We can hope that the isomorphism K.X1/ Š K.X2/ is induced by an
equivalence of derived categories. A different derived equivalence can arise from a different
choice of paths of analytic continuation.

(2) When Conjecture 3.1 holds, the map f is necessarily a local isomorphism and
identifies the F -manifold structure [35] of quantum cohomology. In the case of crepant reso-
lutions of orbifolds, it has been observed in [16] that f is not necessarily affine-linear unless
the orbifold satisfies the hard Lefschetz condition.

3.2. Discrepant transformation
We present a conjectural picture in the discrepant case following [45]. In the dis-

crepant case, the ranks of cohomology are different in general and we expect to have an
orthogonal decomposition of formal quantum D-modules and a semiorthogonal decompo-
sition of theb�-integral structure. As in Section 2.4, we write QDM.X/ WD QDM.X/˝OŒz�

OJzK for the quantum D-module formalized along z D 0. Because of the lack of abundant
evidences, we state our picture as problems rather than conjectures.

Problem 3.3 (Formal decomposition). Let 'WX1 Ü X2 be a birational map fitting into the
diagram (3.1) such that p�

1KX1 � p�
2KX2 is an effective divisor. Show that there exists a

map f from an open subset of H�.X1/ to an open subset of H�.X2/ such that we have an
orthogonal decomposition

QDM.X1/ Š f �QDM.X2/˚ D ;

where D is a locally free OJzK-module equipped with a flat meromorphic connection rD

and a rD -flat pairing .�; �/D W .�/�D ˝ D ! OJzK.

4 For complete intersections, we restrict to the ambient part of quantum cohomology in [15].
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Problem 3.3 has been solved for discrepant birational transformations between toric
Deligne–Mumford stacks which arise from a variation of GIT quotients [45]. The proof is
based on mirror symmetry for toric stacks [12,13].

Suppose that Problem 3.3 is solved for some 'WX1 Ü X2, and also suppose (for
simplicity) that QDM.X1/ is of exponential type (see Section 2.4) at some � 2 H�.X1/ in
the domain of the map f . Then QDM.X2/f .�/ and D j� are also of exponential type. We
further assume the following: there exist a phase � 2 R and real numbers l1 > l2 such that

• every eigenvalue u of �rD
z2@z

2 End.D jzD0;� / satisfies either =.e�i�u/ > l1 or
l2 > =.e�i�u/ and

• every eigenvalue u of .EX2?f .�// 2 End.H�.X2// satisfies l1 > =.e�i�u/ > l2.

ThenD j� decomposes asD j� D D1 ˚ D2 so that every eigenvalue of�r
D1

z2@z
onD1jzD0 sat-

isfies=.e�i�u/> l1 and that every eigenvalue of�r
D2

z2@z
onD2jzD0 satisfies=.e�i�u/< l2.

By varying � a little, we may assume that ei� is admissible for the eigenvalues of .EX1?� /.
As discussed in Section 2.4, by the Hukuhara–Turrittin theorem, the formal decomposition
QDM.X1/� Š D1 ˚ QDM.X2/f .�/ ˚ D2 lifts to an analytic decomposition of connections
over a sector of the form I D ¹z 2 C� W j arg z � �j < �

2
C "º for some " > 0

QDM.X1/� jI Š D1;I ˚ QDM.X2/� jI ˚ D2;I (3.2)

where Di;I is an analytic connection over the sector I .

Problem 3.4 (Analytic decomposition). Show that the analytic decomposition (3.2) is
induced, via the b�-integral structures for X1 and X2, by an SOD of topological K-groups:

K.X1/ Š K1 ˚K.X2/˚K2 (3.3)

such that the associated inclusion K.X2/ ! K.X1/ respects the Euler pairing.

Problem 3.4 has been answered affirmatively when X1, X2 are weak-Fano compact
toric Deligne–Mumford stacks (satisfying certainmild technical conditions) and 'WX1 !X2

is a weighted blowup (or a root construction) along a toric substack Z [45]. We also showed
that the decomposition (3.3) at some � and � is given by an Orlov-type SOD [55]. We could
hope that the SOD (3.3) in K-theory arises from an SODDb.X1/ Š hA1;D

b.X2/;A2i of
the derived category; such an SOD in the derived category has been conjectured in [6].

Remark 3.5. There are closely related works by Bayer [7], Acosta–Shoemaker [2, 3] and
González–Woodward [32]. A formal decomposition of quantum D-modules under flips sim-
ilar to our picture has been also proposed by Lee, Lin, and Wang [49,50].

Remark 3.6. In Problem 3.3,f is necessarily a submersion and theF -manifold ofQH�.X1/

locally decomposes into the product of the F -manifold of QH�.X2/ and that correspond-
ing to D . Proof. The map T�H

�.X1/ ! QDM.X1/jzD0;� D H�.X1/ given by v 7! zrv1

is an isomorphism. If the unit section 1 maps to .s; t/ 2 QDM.X2/ ˚ D under the iso-
morphism, it follows that the map df .T�H

�.X1// ! QDM.X2/jzD0;f .�/, w 7! zrws
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is surjective. This can only happen when df W T�H
�.X1/ ! Tf .�/H

�.X2/ is surjective.
The ring homomorphism T�H

�.X1/ ,! End.QDM.X1/jzD0;� /, v 7! zrv factors through
T�H

�.X1/ ! Tf .�/H
�.X2/ ˚ End.D jzD0;� / and this gives a decomposition of the ring

.T�H
�.X1/; ?� /. The flatness of r shows that the decomposition is integrable.

Remark 3.7. For a higher-genus generalization of Conjecture 3.1 and Problem 3.3, we refer
the reader to [14,45].

3.3. Riemann–Hilbert problem for blowups
Let X be a smooth projective variety and let Z � X be a smooth subvariety. Let

'W QX ! X be the blowup of X along Z. The above mentioned results for toric blowups
suggest the following conjectural reconstruction algorithm for quantum cohomology of QX

from quantum cohomology of X and Z. This is similar to the procedure in Section 2.5.

Orlov decomposition. Let c be the codimension ofZ inX . By Orlov [55]we have the SOD
of the K-group:

K. QX/ D '�K.X/˚K.Z/0 ˚ � � � ˚K.Z/c�2 Š K.X/˚K.Z/˚.c�1/;

where K.Z/k D j�.O.k/ ˝ ��K.Z// with j WE ,! X the inclusion of the exceptional
locus and � WE Š P .NZ=X / ! Z a projective bundle. We shall fix this decomposition. The
cohomology of QX is isomorphic to H�.X/ ˚ H��2.Z/ ˚ � � � ˚ H��2cC2.Z/ as graded
vector spaces. The cup product structure onH�. QX/, theb�-class and the Chern character for
QX can be reconstructed from those for X , Z, the push-forward and pull-back maps between
H�.X/,H�.Z/ and the Chern classes ci .NZ=X / 2 H 2i .Z/.

Formal data. We choose parameters � 2 H�.X/ and �0; : : : ; �c�2 2 H�.Z/ and a phase
� 2 R so that=.e�i�v/ > =.e�i�u0/ > � � �> =.e�i�uc�2/ for all eigenvalues v of .EX?� /

and all eigenvalues ui of .EZ?�i
/. We define QDM WD QDM.X/� ˚ QDM.Z/�0 ˚ � � � ˚

QDM.Z/�c�2 . This will be the formal quantum D-module for QX .

Gluing. The given formal decomposition for QDM should lift to analytic decompositions
over the sectors I and �I , with I D ¹z 2 C� W j arg z � �j < �

2
C "º for some " > 0,

ˆ˙I WQDM j˙I Š QDM.X/� ˚ QDM.Z/�0 ˚ � � � ˚ QDM.Z/�c�2 j˙I ;

and the two analytic decompositions should be glued together by the Stokes data induced
from Orlov’s SOD. Finally, we glue it with the connection near z D 1 via the b�-integral
structure to get the quantum D-module for QX .

The reconstruction can be formulated as a Riemann–Hilbert problem for Y˙ D

.ˆ˙I /
�1 and Y1 D L.�; z/ (a fundamental solution for QX , see (1.5)) as follows. Define

S˙WK. QX/ ! K. QX/_ by hSC˛; ˇi D �.ˇ; ˛/, hS�˛; ˇi D �.˛; ˇ/ as before; also define
‰WK. QX/ Š K.X/˚K.Z/˚.c�1/ ! .H�.X/˚H�.Z/˚.c�1//˝ OI as

‰.˛; ˇ0; : : : ; ˇc�2/ D sX .˛/.�; z/˚ sZ.ˇ0/.�0; z/˚ � � � ˚ sZ.ˇc�2/.�c�2; z/;
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where sX , sZ are the maps (1.6) defined forX andZ, respectively, and define‰�WK. QX/_ Š

K.X/_ ˚ .K.Z/_/˚.c�1/ ! .H�.X/˚H�.Z/˚.c�1//˝ O�I as

‰�

�
�.˛; �/; �.ˇ0; �/; : : : ; �.ˇc�2; �/

�
D clockwise analytic continuation of

‰.˛; ˇ0; : : : ; ˇc�2/:

Let ‰1 be the map (2.4) with X there replaced with QX . The problem is to find functions

Y1 2 GL
�
H�. QX/

�
˝ OP1n¹0º; Y˙ 2 Hom

�
H�.X/˚H�.Z/˚.c�1/;H�. QX/

�
˝ O˙I

such that Y1jzD1 D id, Y˙ ! Y0 as z ! 0 along the sector ˙I for an invertible operator
Y0 and that

YC‰ D Y1‰1 over I ,

Y�‰�S
˙

D YC‰ overD˙;

where D˙ is as before. As discussed in Section 2.5, we can reconstruct the value of the
parameter � for the quantum D-module of QX and it becomes a function of �; �0; : : : ; �c�2;
the parameter space locally splits into the product of H�.X/ and .c � 1/ copies of H�.Z/

as an F -manifold.

Remark 3.8. Recently, Katzarkov, Kontsevich, and Pantev [47] formulated a closely related
conjecture for quantum cohomology of blowups and gave a remarkable application to the
problem of rationality.
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1. Introduction

The study of manifolds with a curvature lower bound has a long history in Rieman-
nian geometry. For instance, we have the comparison theorems, Cheeger–Gromoll splitting
theorem [5], Cheng–Yau gradient estimate [18], Li–Yau’s heat kernel estimate [44], and many
other important theorems. These theorems have been the basic tools to study manifolds
with curvature lower bound. In 1981, Gromov proposed a fundamental notion, called the
Gromov–Hausdorff convergence. Later, Cheeger, Colding, Tian, Naber [6–9, 19–22] devel-
oped an important theory studying the limit of under the Gromov–Hausdorff convergence.

In this survey, we shall consider the applications of Gromov–Hausdorff conver-
gence theory to some problems in Kähler geometry. These include: (1) the uniformization
conjecture of Yau, as well as its related problems; (2) compactification of certain noncom-
pact Kähler manifolds of nonnegative curvature; and (3) the structure of Gromov–Hausdorff
limits of Kähler manifolds.

2. Yau’s uniformization conjecture and its related

problems

The classical uniformization theorem states that a simply connected Riemann sur-
face is isomorphic to the Riemann sphere CP 1, the Poincare disk D2, or the complex
plane C. A geometric consequence is that a complete orientable Riemannian surface of
positive curvature is necessarily conformal to CP 1 or C. An orientable Riemannian surface
can be regarded as a Kähler manifold of complex dimension 1. A natural question is to gen-
eralize such result to higher dimensional Kähler manifolds. The curvature we adopt here is
the so-called (holomorphic) bisectional curvature.

Definition 2.1 ([42, 64]). On a Kähler manifold M n, we say the bisectional curvature is
greater than or equal to K (BK � K) if

R.X; X; Y; Y /

kXk2kY k2 C jhX; Y ij2
� K (2.1)

for any two nonzero vectors X; Y 2 T 1;0M .

Observe that the equality holds for complex space forms. The bisectional curvature
lower bound condition is weaker than the sectional curvature lower bound, while stronger
than the Ricci curvature lower bound.

So the question above can be refined as the classification of Kähler manifolds with
positive bisectional curvature. In the compact case, the famous Frankel conjecture, solved by
Mori [47] and Siu–Yau [57] independently, states that a compact Kähler manifold of positive
bisectional curvature is biholomorphic to CP n (in fact, Mori proved a stronger result). The
noncompact analogue was proposed by Yau [66] in the 1970s; he asked whether or not a
complete noncompact Kähler manifold with positive bisectional curvature is biholomorphic
to a complex Euclidean space. For this, Yau further asked in [66] (see also [67, page 117])
whether or not the ring of polynomial growth holomorphic functions is finitely generated,
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and whether or not the dimension of the spaces of holomorphic functions of polynomial
growth is bounded from above by the dimension of the corresponding spaces of polynomials
on Cn.

On a complete Kähler manifold M , we say a holomorphic function f 2 Od .M/

if there exists some C > 0 with jf .x/j � C.1 C d.x; x0//d for all x 2 M . Here x0 is a
fixed point on M . Let OP .M/ D

S
d>0 Od .M/. If one wishes to prove the uniformization

conjecture by considering OP .M/, it is important to know when OP .M/ ¤ C. In [49], Ni
proposed an interesting conjecture in this direction. Let us summarize the problems in the
four conjectures below:

Conjecture 1. Let M n be a complete noncompact Kähler manifold with nonnegative bisec-
tional curvature. Then given any d > 0, dim.Od .M// � dim.Od .Cn//.

Conjecture 2. Let M n be a complete noncompact Kähler manifold with nonnegative bisec-
tional curvature. Assume M has positive bisectional curvature at one point p. Then the
following three conditions are equivalent:

(1) OP .M/ ¤ C;

(2) M has maximal volume growth;

(3) There exists a constant C independent of r so that �
R

B.p;r/
S �

C
r2 . Here S is the

scalar curvature; �
R
means the average.

Conjecture 3. Let M n be a complete noncompact Kähler manifold with nonnegative bisec-
tional curvature. Then the ring OP .M/ is finitely generated.

Conjecture 4. Let M n be a complete noncompact Kähler manifold with positive bisectional
curvature. Then M is biholomorphic to Cn.

Conjecture 1 was confirmed by Ni [49] with the assumption that M has maximal
volume growth. Later, by using Ni’s method, Chen–Fu–Le–Zhu [11] removed the extra con-
dition. The key of Ni’s method is a monotonicity formula for the heat flow on a Kähler
manifold with nonnegative bisectional curvature. In [34], we discovered a logarithmic con-
vexity result on Kähler manifolds with nonnegative holomorphic sectional curvature. This
turns out to be very useful in dealing the problems above.

Definition 2.2. Let M be a complete Kähler manifold. We say that M satisfies the three
circle theorem if, for any point p 2 M , r > 0, any holomorphic function f on B.p; r/,
logMf .r/ is a convex function of log r . In other words, for r1 < r2 < r3,

log
�

r3

r1

�
logMf .r2/ � log

�
r3

r2

�
logMf .r1/ C log

�
r2

r1

�
logMf .r3/: (2.2)

Here Mf .r/ D sup jf .x/j for x 2 B.p; r/.

Theorem 2.1. Let M be a complete Kähler manifold. Then M satisfies the three circle the-
orem if and only if the holomorphic sectional curvature is nonnegative.
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The proof is a simple combination of Hessian comparison and a maximum principle
argument.

Corollary 2.1. Let M be a complete Kähler manifold with nonnegative holomorphic sec-
tional curvature. If f 2 Od .M/, then Mf .r/

rd is nonincreasing.

Proof of the corollary. We need to show that
Mf .r1/

rd
1

�
Mf .r2/

rd
2

for r1 � r2. By rescaling, we may assume r1 D 1. By the assumption, given any " > 0, there
exists a sequence �j ! 1 such that

logMf .�j / � logMf .1/ C .d C "/ log�j :

If we take r3 D �j sufficiently large, then

Mf .r2/ � Mf .r1/rdC"
2 :

The corollary follows letting " ! 0.

Proof of Conjecture 1. Suppose the inequality fails for some d > 0. By linear algebra, at
any point p 2 M , there exists a nonzero holomorphic function f 2 Od .M/ such that the
vanishing order at p is at least Œd � C 1 where Œd � is the greatest integer less than or equal
to d . Therefore

lim
r!0C

Mf .r/

rd
D 0:

Corollary 2.1 says that Mf .r/

rd is nonincreasing. Thus f � 0. This is a contradiction.

Now we come to Conjecture 2. Ni and Tam have made important contributions.
For example, they proved that (1) is equivalent to (3). In [35,36], we were able to prove the
equivalence of (1) and (2).

Theorem 2.2. Let .M n;g/ be a complete Kähler manifold with nonnegative bisectional cur-
vature. Assume the universal cover does not split as a product and there exists a nonconstant
holomorphic function of polynomial growth on M , then M has maximal volume growth.

Theorem 2.3. Let .M n;g/ be a complete Kähler manifold with nonnegative bisectional cur-
vature and maximal volume growth. Then there exists a nonconstant holomorphic function
of polynomial growth on M .

Let us sketch the proof of Theorem 2.2. By a result of Ni and Tam, we have that
dim.Od .M// � cd n, where c is independent of n. Assume M does not have maximal
volume growth. We can look at a tangent cone of M at infinity. According to Cheeger–
Colding, the tangent cone has Hausdorff dimension at most 2n � 1. Then we pick a regular
point on the tangent cone. The tangent cone at that regular point would be Rk , where 1 �

k � 2n � 1. By the three circle theorem, we were able to pass these polynomial growth
holomorphic functions to that Euclidean space without changing the growth rate and the
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linear independence. If k < n, then we obtain a contradiction, by counting the dimension
of harmonic functions. However, if k � n C 1, then this will not work. In this situation, we
managed to find some partial complex structure on Rk . This gave extra restriction, which
sufficed for the proof.

The existence of polynomial growth holomorphic functions is also very interesting.
Usually, this is done by finding plurisubharmonic functions of logarithmic growth. Here we
took a different approach. The idea is to look at a tangent cone of M at infinity. Essentially,
we managed to establish a complex analytic structure on a tangent cone. Then by pulling
back those functions toM , we obtained holomorphic functions on a larger and larger domain.
Then the three circle theorem ensured that we can take a subsequence and obtain a nontrivial
polynomial growth holomorphic function. The tools we used were the Gromov–Hausdorff
convergence theory, Hörmander L2-estimate of N@ [30], heat flow technique by Ni and Tam
[52,53], and the three circle theorem.

Now we come to Conjecture 3. In [45], Mok proved the following:

Theorem 2.4 (Mok). Let M n be a complete noncompact Kähler manifold with positive
bisectional curvature such that for some fixed point p 2 M ,

(1) Scalar curvature �
C0

d.p;x/2 for some C0 > 0;

(2) vol.B.p; r// � C1r2n for some C1 > 0.

Then M n is biholomorphic to an affine algebraic variety.

In Mok’s proof, the biholomorphism was given by holomorphic functions of poly-
nomial growth. Therefore, OP .M/ is finitely generated. In the general case, it was proved
by Ni [49] that the transcendental dimension of OP .M/ over C is at most n. In [36], we
confirmed Conjecture 2:

Theorem 2.5. Let M n be a complete noncompact Kähler manifold with nonnegative bisec-
tional curvature. Then the ring OP .M/ is finitely generated.

During the course of the proof, we obtained a partial result for Conjecture 4:

Theorem 2.6. Let M n be a complete noncompact Kähler manifold with nonnegative bisec-
tional curvature. Assume M is of maximal volume growth, then M is biholomorphic to an
affine algebraic variety.

Our idea is based on the resolution of Conjecture 2. Assume M admits a nontrivial
polynomial growth holomorphic function. If we cheat a little bit, say the universal cover does
not split, then M is necessarily of maximal volume growth. The main point is to prove that
there exist finitely many polynomial growth holomorphic functions .f1; : : : ; fk/ such that
the mapping is proper. Again this heavily uses the convergence theory and the three circle
theorem.
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Nowwe come toConjecture 4. So far, this conjecture is still open. However, there has
been much important progress due to various authors. In earlier works, Mok–Siu–Yau [48]

and Mok [45] considered embedding by using holomorphic functions of polynomial growth.
Later, with the Kähler–Ricci flow (Chern–Ricci flow), results were improved significantly.
See, for example, [23–25,29,31,50,55,56] for related works. In [38], we obtained

Theorem 2.7. Let M n be a complete noncompact Kähler manifold with nonnegative bisec-
tional curvature. Assume M has maximal volume growth, then M is biholomorphic to Cn.
In fact, we can find n polynomial growth holomorphic functions f1; : : : ; fn which serve as
the biholomorphism.

Remark 2.1. Note that Theorem 2.7 was also proved in [43] by M.C. Li and L. F. Tam. The
proof is different from ours.

Let f be a polynomial growth holomorphic function on M . We define the degree
of f be the infimum of d > 0 such that f 2 Od .M/.

Corollary 2.2. Under the same assumption as above, if f is a nonconstant polynomial
growth holomorphic function on M with minimal degree, then df ¤ 0 at any point.

Now let us explain the basic strategy to Theorem 2.7.We follow [26,27,36,37] closely.
Recall under the same assumption of Theorem 2.7, it was proved in [36] that the manifold
is biholomorphic to an affine algebraic variety. How to prove that the affine variety is in
fact Cn? If n D 2, Ramanujam’s result says that an algebraic surface homeomorphic to R4

is necessarily isomorphic to C2. Unfortunately, there is no such criterion in higher dimen-
sions. Moreover, the argument in [36] does not provide information about the topology of the
manifold.

Consider a tangent cone V of M at infinity. That is, there exists ri ! 1 so that the
sequence .Mi ; pi ; di / D .M;p; d

ri
/ converges to V in the pointed Gromov–Hausdorff sense.

Cheeger–Colding theory asserts that V is a metric cone. Let r be the distance to the vertex.
Then the vector field �r @

@r
retracts V to the vertex. A key new idea is to solve N@ equation on

the holomorphic tangent bundle. More precisely, we constructed holomorphic vector fields
Zi on B.pi ; 1/ so that in a natural sense, ReZi converges to �r @

@r
. By using some complex-

analytic techniques, wemanaged to prove that the flow generated byReZi contracts a domain
containing B.pi ;

1
2
/ to a point. Since B.pi ;

1
2
/ exhausts M , we see M is, in fact, exhausted

by topological balls. Then by Stalling’s result, the manifold is diffeomorphic to R2n. As we
see before, if n D 2, the manifold is biholomorphic to C2.

Recall that the domain of Zi exhausts M . However, it seems difficult to glue these
Zi together. A technical reason is that the unique zero point of Zi might diverge to infinity.

There are two possible ways to get around this difficulty. One is to prove that the
tangent cone V is complex-analytically smooth. Eventually, by using results in algebraic
geometry, we can prove that if n � 3, then V is complex-analytically smooth. Then it is rel-
atively easily to prove that M is biholomorphic to Cn. Unfortunately, the algebro-geometric
method fails for higher dimensions.
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Another approach is to construct a nice global holomorphic vector field on M . This
is howwe prove Theorem 2.7. A key point is to study a linear spaceZ consisting of holomor-
phic vector fields onM so that the action (derivative) on any polynomial growth holomorphic
function preserves the degree. It turns out that Z has finite dimension. Arguing by contra-
diction, we managed to prove that in Z there exists a global holomorphic vector field which
contracts M to a point. This gives us the desired biholomorphism from M to Cn. A detailed
analysis also gives “canonical” holomorphic coordinate on M .

Finally, let us mention that there have been important progress of Chen–Zhu on the
uniformization conjecture without assuming maximal volume growth condition. The reader
is referred to [25] for the details.

3. Compactification of certain Kähler manifolds of

nonnegative curvature

In this section, we extend some techniques in [34–37] to study the compactification
of certain complete Kähler manifolds with nonnegative Ricci curvature.

In [39], we proved the following

Theorem 3.1. Let .M n; g/ (n � 2) be a complete noncompact Kähler manifold with non-
negative Ricci curvature and maximal volume growth. Fix a point p 2 M and set r.x/ WD

dg.x; p/, where dg denotes the distance with respect to g. Then

(I) M is biholomorphic to a Zariski open set of a Moishezon manifold if, for some
" > 0, the bisectional curvature BK � �

C
r2C" . In fact, on M , the ring of poly-

nomial growth holomorphic functions is finitely generated;

(II) If BK � �
C
r2 and M has a unique tangent cone at infinity, then M is biholo-

morphic to a Zariski open set of a Moishezon manifold;

(III) M is quasiprojective if the Ricci curvature is positive and jRmj �
C
r2 .

Part (II) states that one can relax the decay assumption on BK in part (I) by assuming
the existence of a unique tangent cone at infinity in order to reach the same conclusion. It is
desirable to remove the uniqueness of the tangent cone in part (II).

Part (I) is a generalization of Theorem 2.6. Part (II) is connected with many previous
results. For instance, Bando–Kasue–Nakajima [2], examples of Tian–Yau [60,61], Tian [59],
and more recent results of Conlon and Hein [12–14]. Part (III) generalizes a theorem of Mok
[46, Main Theorem]. There, the same result was obtained under an additional assumption thatR

M
Ricn < C1. As a consequence of Theorem 3.1, part (II), we obtain

Corollary 3.1. Let M be a complete noncompact Ricci-flat Kähler manifold with maximal
volume growth. Assume the curvature has quadratic decay. Then M is a crepant resolution
of a normal affine algebraic variety. Furthermore, there exists a two-step degeneration from
that affine variety to the unique metric tangent cone of M at infinity.
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For a Ricci-flat Riemannian manifold with maximal volume growth, having
quadratic curvature decay is equivalent to one (and hence all [15]) tangent cone having a
smooth link. Indeed, by [15], the metric on M converges to that on the unique tangent cone
at a logarithmic rate. Corollary 3.1mirrors the result of [27] for tangent cones at a point. In that
case, the two-step degeneration should comprise a degeneration of the normal affine variety
to the “weighted tangent cone” followed by a C�-equivariant degeneration of the weighted
tangent cone to the tangent cone. Intuitively, the weighted tangent cone is obtained by taking
the quotient of the ring of polynomial growth holomorphic functions by the homogeneous
ideal generated by weighted homogeneous polynomial growth holomorphic functions so
that the restriction to the normal affine variety has lower degree (compare the local weighted
tangent cone [27, pp. 354]). For Ricci-flat Kähler manifolds with maximal volume growth
and quadratic curvature decay, the weighted tangent cone is expected to be distinct from the
tangent cone when the metric converges logarithmically to that on the tangent cone, and is
expected to coincide with the tangent cone when the metric converges at a polynomial rate
to that on the tangent cone. Note that no metric information is contained in the weighted
tangent cone.

A conjecture of Yau [67] states that if a complete Ricci-flat Kähler manifold has
finite topological type, then it can be compactified complex analytically. Corollary 2.1 sup-
ports this conjecture, at least in this very special setting. Another conjecture of Yau [68,

Question 71] states that complete noncompact Kähler manifolds with positive Ricci curva-
ture are biholomorphic to a Zariski open set of a compact Kähler manifold. Part (III) of
Theorem 2.2 supports this conjecture.

Now we introduce the strategy of the proof of Theorem 2.2. In parts (I) and (II), we
consider polynomial growth holomorphic functions. The three circle theorem was replaced
by Donaldson–Sun’s three circles theorem [27, Proposition 3.7]. Also note, in the setting
of [36], polynomial growth holomorphic functions separate points and tangents. This is no
longer true in parts (I) and (II), due to the possibility of compact subvarieties. The two step
degeneration in Corollary 3.1 follows from the argument in [17,27].

The statement of part (III) is very similar to parts (I) and (II). However, the argu-
ment is very different. We essentially follow the argument of Mok [46]. The strategy is to
consider plurianticanonical sections with polynomial growth. The key new result is a uni-
form multiplicity estimate for plurianticanonical sections. which provides the dimension
estimate for polynomial growth plurianticanonical sections, without the extra assumptionR

M
Ricn < C1 (compare [46, Theorem 2.2]).

4. Gromov–Hausdorff limits of Kähler manifolds

Recall the seminar work of Cheeger [4]:

Theorem 4.1 (Cheeger, 1970). Given K; v; d; n > 0, consider a class of compact Rieman-
nian n-manifolds with jsecj � K, diam < d , vol > v. Then such class is precompact in
C 1;˛-topology. In other words, given a suquence of manifolds in this class, there exists a sub-
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sequence convergent in Cheeger–Gromov sense to a smooth manifold M (metric is C 1;˛).
As a corollary, this class contains only finite diffeomorphism types.

Later, Anderson [1] generalized Cheeger’s work in the Ricci curvature setting:

Theorem 4.2 (Anderson, 1990). Given C; i; d; n > 0, consider a class of compact Rieman-
nian n-manifolds with jRicj � C , inj > i , diam < d . Then the previous theorem holds for
such class.

Remark 4.1. 1. Anderson’s theorem satisfies the noncollapsing condition; 2. One cannot
replace the injectivity radius bound by noncollapsing condition as in Cheeger’s theorem.
Otherwise, the limit may not be smooth.

In order to obtain precompactness when the limit is not smooth, one has to consider
weaker convergence. An important notion is Gromov–Hausdorff distance. This defines a
distance between two compact metric spaces. We say a sequence of metric spaces converge
in the Gromov–Hausdorff sense, if the Gromov–Hausdorff distance is approaching zero.

Theorem 4.3 (Gromov, [28]). GivenC;d;n > 0, consider a class of compact Riemannian n-
manifolds withRic� �C , diam< d . Then this class is precompact in theGromov–Hausdorff
sense (note that the Gromov–Hausdorff limit may be far from smooth).

For noncompact manifolds, one can consider a manifold with a base pointed. Then
the notion of pointed-Gromov–Hausdorff convergence makes sense, i.e., first consider the
Gromov–Hausdorff convergence in a geodesic ball of fixed radius, then let the radius go to
infinity (diagonal sequence).

A basic problem in metric differential geometry is to study the regularity of the
Gromov–Hausdorff limit of manifolds with Ricci curvature lower bound (noncollapsed).
There are fundamental contributions by Cheeger, Colding, Tian, and Naber. Given a limit
space X and a point p 2 X , we can consider a blow up of X at p. A blow up limit is called
a tangent cone at p (note that the tangent cone at p need not be unique).

Definition 4.1. A point p 2 X is called regular if a tangent cone is isometric to a Euclidean
space Rm. A point is singular, it is not regular.

Theorem 4.4 (Cheeger–Colding, [6–9]). Given n; v > 0, let .X; o/ be the pointed-Gromov–
Hausdorff limit of a sequence of n-manifolds .Mi ; pi / with Ric � �.n � 1/ and
vol.B.pi ; 1// > v. Then

(1) X is metric length space of Hausdorff dimension n. The Hausdorff measure is
equal to the limit of volume element on Mi .

(2) The singular set has Hausdorff codimension at least 2 (sharp).

(3) Any tangent cone is a metric cone.

Note the following: (1) regular points are not so “regular.” For example, consider
a doubled disk. Then all points are regular. Near the boundary of the disk, the metric is
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only Lipschitz. It is a conjecture that near a regular point on X , the metric is bi-Lipschitz
to a Euclidean ball. Currently, the best known regularity is bi-Hölder; (2) Regular set is not
necessarily open. In other words, the singular set need not be closed. In fact, it could be
dense. This already appears in the real two-dimensional case (the singular set in this case is
countable). In higher dimensions, Li–Naber [19] constructed a limit space so that the singular
set is given by a fat Cantor set. In other words, the topology of singular set could be very
complicated.

In the above, we considered the Gromov–Hausdorff limit of Riemannian manifolds
with Ricci curvature lower bound and noncollapsed volume. What if these manifolds are
all Kähler? Can we get extra results? Observe all two-dimensional Riemannian manifolds
(oriented) are Kähler. So we cannot expect too much from the extra Kähler assumption. For
simplicity, let us call the Gromov–Hausdorff limit of Kähler manifolds with Ricci curvature
lower bound Kähler–Ricci limit space. The following is the first important result in this
direction:

Theorem 4.5 (Cheeger–Colding–Tian, [10]). Let X be a noncollapsed Kähler–Ricci limit
space. Then any tangent cone splits even dimensional Euclidean factor. In other words, the
splitting lines must come in pairs.

Below is a breakthrough result of Donaldson–Sun [26] and Tian [62] (for simplicity,
we only listed a part of their result)

Theorem 4.6. Let X be the Gromov–Hausdorff limit of a sequence of polarized Kähler
manifolds Mi with jRicj � C and diam < d , vol > v. Then X is homeomorphic to a normal
projective variety.

Such result is a key to the existence of Kähler–Einstein metrics on Fano manifolds.
In a joint work with G. Szekelyhidi [40], we generalized the result above to the case when
the Ricci curvature has a lower bound:

Theorem 4.7. Let X be the Gromov–Hausdorff limit of a sequence of polarized Kähler
manifolds Mi with Ric � �1 and diam < d , vol > v. Then X is homeomorphic to a normal
projective variety.

The argument follows [26, 62], and a key step is Tian’s partial C 0-estimate [63].
During the proof, we also need a recent deep result of Cheeger–Jiang–Naber [19] on the
Minkowski content of the singular set.

A basic technical ingredient in Theorem 4.7 is a result on the existence of holomor-
phic charts in balls that are Gromov–Hausdorf-close to the Euclidean ball. This is an exten-
sion of Proposition 1:3 of [36], where the bisectional curvature lower bound was assumed.

Theorem 4.8. There exists " > 0, depending on the dimension nwith the following property.
Suppose that B.p; "�1/ is a relatively compact ball in a (not necessarily complete) Kähler
manifold .M n; p; !/, satisfying Ric.!/ > �"!, and

dGH

�
B.p; "�1/; BCn.0; "�1/

�
< ":
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Then there is a holomorphic chart F W B.p; 1/ ! Cn which is a ‰."jn/-Gromov–
Hausdorff approximation to its image. In addition, on B.p; 1/ we can write ! D i@N@� with
j� � r2j < ‰."jn/, where r is the distance from p.

We give two applications of Theorem 4.8. The first shows that under Gromov–
Hausdorff convergence to a smooth Riemannian manifold, the scalar curvature functions
converge as measures. Here we state a simple corollary of this.

Corollary 4.1. Given any " > 0, there is a ı > 0 depending on "; n satisfying the follow-
ing. Let B.p; 1/ be a relatively compact unit ball in a Kähler manifold .M; !/ satisfying
Ric > �1, and dGH .B.p; 1/; BCn.0; 1// < ı. Then j

R
B.p; 1

2 /
S j < ", where S is the scalar

curvature of !.

The other application is the following, which was proved previously under the
assumption of non-negative bisectional curvature.

Proposition 4.1. There exists " > 0 depending on n, so that if M n is a complete noncom-
pact Kähler manifold with Ric � 0 and limr!1 r�2nvol.B.p; r// � !2n � ", then M is
biholomophic to Cn. Here !2n is the volume of the Euclidean unit ball.

Remark 4.2. In the Riemannian setting, Perelman [54] first showed that such a manifold
must be contractible. Cheeger–Colding [7] proved such manifold is diffeomorphic to the
Euclidean space.

Let us briefly mention the strategy to Theorem 4.8. First, we conformally scale the
metric away from a compact domain, in order to make the metric complete (note the metric
is no longer Kähler). Thanks to a result of Cavalletti–Mondino [16], our assumptions imply
that the almost Euclidean isoperimetric inequality holds in some smaller balls. As in [29],
there exists a Ricci flow solution h.t/ for a definite time t 2 Œ0;T �, satisfying jRmj � A=t for
t 2 .0; T �. In short, after a fixed time, the metric becomes almost Euclidean is smooth sense.
The problem is that, the new metric is not Kähler (not even compatible with the complex
structure). Now the observation is that the complex structure J is almost compatible with
the new metric. Therefore, by the approach of Newlander–Nirenberg theorem [51], we can
find a fixed size holomorphic chart near the center.

Now we glue such chart to a a domain of CP n. In this way, we were able to run
the genuine Kähler–Ricci flow. Thanks to a result of Tian–Zhang [65], the flow has a defi-
nite existence time. After a short time, the metric has good regularity near p. The potential
estimate follows by integrating along the time line. Finally, the desired holomorphic chart
followed by solving another N@-problem.

Let us now study the structure of the metric singular set in the Kähler setting.
Assume in addition that the N m

i is a sequence of polarized Kähler manifolds. Then, as we
saw above, the limit Y is naturally identified with a projective variety. When the metrics
along the sequence are Kähler–Einstein, Donaldson–Sun [26] showed that the metric singu-
lar set of Y is the same as the complex analytic singular set of the corresponding projective
variety.
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Let R stand for the metric regular set. For small " > 0, denote by R" the set of
points p so that !m � limr!0

vol.B.p;r//
rm < ". Here !m is the volume of the unit ball in Rm.

Then R D
T

">0 R". Note that R" is an open set, while in general R may not be open. Now
we state the theorem

Theorem 4.9. Let .X; d/ be a Gromov–Hausdorff limit as in Theorem 4.7. Then for any
" > 0, X n R" is contained in a finite union of analytic subvarieties of X . Furthermore, the
singular set X n R is equal to a countable union of subvarieties.

Remark 4.3. Since the singular set could be dense, the countable union in Theorem 4.9
cannot be replaced by a finite union.

Remark 4.4. In view of Li–Naber’s example [19], this result shows that the behavior of
singularities in the Kähler case is in sharp contrast with the Riemannian case (see also The-
orem 4.10 without polarization). On the one hand, the metric singularities in the Kähler case
might seem flexible, since one can perturb Kähler potentials locally. On the other hand, ana-
lytic sets are very rigid, and so in particular Theorem 4.9 implies the following: if we perturb
the Kähler metric inside a holomorphic chart and assume that the geometric conditions are
preserved, then the metric singular set can change by at most a countable set of points.

Let us explain why Theorem 4.9 should be true. The key is the following character-
ization of the metric singular set:

Proposition 4.2. A point p is regular in the metric sense if and only if it is complex-
analytically regular and the Lelong number for Ric vanishes at p.

Here Ric is the positive .1; 1/-current on the limit space, regarded as the limit of
Ricci form on manifolds. With this in hand, the argument goes as follows: If a point is metric
singular, then either it is holomorphic singular point, or the Lelong number of Ric is positive.
In the first case, it belongs to a complex-analytic set; in the second case, according to a
theorem of Siu [58], this set is given by a countable union of analytic sets.

Let us also sketch the argument in Proposition 4.2. If a point is metric regular, then
by Theorem 4.8, we see it is complex-analytically regular. So without loss of generality, we
may assume that the point is complex-analytically regular. We are left to show that a point
is metric regular iff the Lelong number of Ric vanishes. Note the Lelong number for 2�Ric
at p is given by

lim inf
x!p

log jdz1 ^ dz2 ^ � � � ^ dznj2.x/

log jz.x/j
;

where z1; : : : ; zn is a holomorphic chart near p. If the point is metric regular, then by the
estimate of Cheeger–Colding, we can show that the value above vanishes. Now assume the
point is metric singular, the key is the following claim:

Claim 4.1. Assume p is not a regular point in the metric sense. Then there exist " > 0 and
r0 > 0 so that for all r < r0, if nonzero holomorphic functions f1; : : : ; fn onB.p;4r/ satisfy
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fj .p/ D 0 and
R

B.p;r/
fj

Nfk D 0 for j ¤ k, there exists 1 � l � n so that

�
R

B.p;2r/
jfl j

2

�
R

B.p;r/
jfl j

2
� 22C10n":

Given such claim, we can show that for all small r , on B.p; r/,

jdz1 ^ dz2 ^ � � � ^ dznj � 2C r":

Then we obtained the desired lower bound of Lelong number by using the following

Claim 4.2. Let p be a complex-analytically regular point on X . Let .z1; : : : ; zn/ be a holo-
morphic chart near p. Assume zj .p/ D 0 for all j . Then there exists ˛ D ˛.n; v; d/ > 0,
C > 0, c > 0 so that cr.q/˛ � jz.q/j � C r.q/ for all q sufficiently close to p. Here r is the
distance function to p.

Let us also mention a parallel result under the bisectional curvature lower bound.

Theorem 4.10. Let .X;p/ be the pointed Gromov–Hausdorff limit of complete Kähler man-
ifolds .M n

i ;pi / with bisectional curvature lower bound �1 and vol.B.pi ; 1// � v > 0. Then
X is homeomorphic to a normal complex-analytic space. The metric singular set X n R is
exactly given by a countable union of complex-analytic sets, and for any " > 0, each compact
subset of X n R" is contained in a finite union of subvarieties.

Remark 4.5. B. Wilking and R. Bamler [3], M. Lee and L. Tam [32] proved that the limit
space is, in fact, complex-analytically smooth. Also J. Lott [33] has developed some theory
on the limit of Kähler manifolds with bisectional curvature lower bound.

Now we come to tangent cones of noncollapsed Kähler–Ricci limit space. Recall
that, according to Cheeger–Colding, such tangent cones must be metric cones. Also accord-
ing to Cheeger–Colding–Tian, such tangent cones must split off even dimensional lines.
Jointly with G. Szekelyhidi [41], we proved the following:

Theorem 4.11. Every tangent cone of Z is homeomorphic to a normal affine algebraic
variety such that under a suitable embedding into CN , the homothetic action on the tangent
cone extends to a linear torus action.

Theorem 4.11 was shown previously by Donaldson–Sun [27] under the assumptions
that the !i are curvature forms of line bundles Li ! Mi , and jRic.!i /j < 1. An important
application of their result is that in their setting the holomorphic spectrum of the tangent
cones is rigid, which in turn they used to show the uniqueness of tangent cones. While we are
not able to show uniqueness, our result does imply the rigidity of the holomorphic spectrum
under two-sided Ricci curvature bounds, even when the .Mi ; !i / are not polarized.

More precisely, recall that for a Kähler cone C.Y /, possibly with singularities, the
holomorphic spectrum is defined by

� D
®
deg.f / W f is homogeneous and holomorphic on C.Y /

¯
� R:

We then have
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Corollary 4.2. Suppose that we have two sided bounds jRic.!i /j < 1 along the sequence
above. Then for any q 2 Z the holomorphic spectrum of every tangent cone at q is the same.

As in [27], the rigidity of the holomorphic spectrum follows from the fact that the
space of tangent cones at each point is connected, and the holomorphic spectrum consists of
algebraic numbers. Note that these results hold in particular for tangent cones at infinity of
Calabi–Yau manifolds with Euclidean volume growth.

Corollary 4.3. Let M be a complete noncompact Ricci flat Kähler manifold of maximal
volume growth. Then the asymptotic volume ratio is an algebraic number.

Acknowledgments

The author would like to thank his former advisor Jiaping Wang and former mentor John
Lott for guidance and support over the years.

Funding

This work was partially supported by NSFC No. 12071140, Program of Shanghai Aca-
demic/Technology Research Leader 20XD1401500, the Science and Technology Commis-
sion of Shanghai Municipality No. 18dz2271000, as well as the Xplore Prize by Tencent.

References

[1] M. Anderson, Convergence and rigidity of manifolds under Ricci curvature
bounds. Invent. Math. 102 (1990), no. 2, 429–445.

[2] S. Bando, A. Kasue, and H. Nakajima, On a construction of coordinates at infinity
on manifolds with fast curvature decay and maximal volume growth. Invent. Math.
97 (1989), 313-349.

[3] R. Bamler and B. Wilking, The Ricci flow under almost non-negative curvature
conditions. Invent. Math. 217 (2019), no. 1, 95–126.

[4] J. Cheeger, Finiteness theorems for Riemannian manifolds. Amer. J. Math. 92
(1970), 61–74.

[5] J. Cheeger and D. Gromoll, The splitting theorem for manifolds of nonnegative
Ricci curvature. J. Differential Geom. 6 (1971), no. 6, 119–128.

[6] J. Cheeger and T. Colding, Lower bounds on Ricci curvature and the almost
rigidity of warped products. Ann. of Math. (2) 144 (1996), no. 1, 189–237.

[7] J. Cheeger and T. Colding, On the structure of spaces with Ricci curvature
bounded below. I. J. Differential Geom. 46 (1997), no. 3, 406–480.

[8] J. Cheeger and T. Colding, On the structure of spaces with Ricci curvature
bounded below. II. J. Differential Geom. 54 (2000), no. 1, 13–35.

[9] J. Cheeger and T. Colding, On the structure of spaces with Ricci curvature
bounded below. III. J. Differential Geom. 54 (2000), no. 1, 37–74.

[10] J. Cheeger, T. Colding, and G. Tian, On the singularities of spaces with bounded
Ricci curvature. Geom. Funct. Anal. 12 (2002), 873–914.

2589 Kähler manifolds with curvature bounded below



[11] B.-L, Chen, X.-Y. Fu, Y. Le, and X.-P. Zhu, Sharp dimension estimates for
holomorphic function and rigidity. Trans. Amer. Math. Soc. 358 (2006), no. 4,
1435–1454.

[12] R. J. Conlon and H.-J. Hein, Asymptotically conical Calabi–Yau manifolds, I.
Duke Math. J. 162 (2013), 2855–2902.

[13] R. J. Conlon and H.-J. Hein, Asymptotically conical Calabi–Yau metrics on quasi-
projective varieties. Geom. Funct. Anal. 25 (2015), 517–552.

[14] R. J. Conlon and H.-J. Hein, Asymptotically conical Calabi–Yau manifolds III,
arXiv:1405.7140.

[15] T. Colding and B. Minicozzi. On uniqueness of tangent cones for Einstein mani-
folds. Invent. Math. 196 (2014), no. 3, 515–588.

[16] F. Cavelletti and A. Mondino, Almost Euclidean isoperimetric inequalities in
spaces satisfying local Ricci curvature lower bounds. Int. Math. Res. Not. IMRN
2020 (2020), no. 5, 1481–1510.

[17] X. X. Chen, S. Sun, and B. Wang, Kähler Ricci flow, Kähler–Einstein metric and
K-stability. Geom. Topol. 22 (2018), 3145–3173.

[18] S. Y. Cheng and S. T. Yau, Differential equations on Riemannian manifolds and
their geometric applications. Comm. Pure Appl. Math. 28 (1975), no. 3, 333–354.

[19] J. Cheeger, W. Jiang, and A. Naber, Rectifiability of singular sets in spaces with
Ricci curvature bounded below. Ann. of Math. (2) 193 (2021), 407–538.

[20] J. Cheeger and A. Naber, Lower bounds on Ricci curvature and quantitative
behavior of singular sets. Invent. Math. 191 (2013), no. 2, 321–339.

[21] T. Colding and A. Naber, Sharp Hölder continuity of tangent cones for spaces
with a lower Ricci curvature bound and applications. Ann. of Math. (2) 176
(2012), no. 2, 1173–1229.

[22] W. Jiang and A. A. Naber, L2 curvature bounds on manifolds with bounded Ricci
curvature. Ann. of Math. (2) 193 (2021), 107–222.

[23] A. Chau and L.-F. Tam, On the complex structure of Kähler manifolds with non-
negative curvature. J. Differential Geom. 73 (2006), 107–222.

[24] B. L. Chen, S. H. Tang, and X. P. Zhu, A uniformization theorem of complete
noncompact Kähler surfaces with positive bisectional curvature. J. Differential
Geom. 67 (2004), 519–570.

[25] B. L. Chen and X.-P. Zhu, Yau’s uniformization conjecture with nonmaximal
volume growth. Acta Math. Sci. 38B (2018), no. 5, 1468–1484.

[26] S. K. Donaldson and S. Sun, Gromov–Hausdorff limits of Kähler manifolds and
algebraic geometry. Acta Math. 213 (2014), 63–106.

[27] S. K. Donaldson and S. Sun, Gromov–Hausdorff limits of Kähler manifolds and
algebraic geometry, II. J. Differential Geom. 107 (2017), no. 2, 327–371.

[28] M. Gromov, Metric structures for Riemannian and non-Riemannian spaces, Progr.
Math., 152, Birkhäuser Boston, Inc., Boston, MA, xx+585 pp, 1999.

[29] F. He, Existence and applications of Ricci flow via pseudolocality,
arXiv:1610.01735.

2590 G. Liu

https://arxiv.org/abs/1405.7140
https://arxiv.org/abs/1610.01735


[30] L. Hormander, An introduction to complex analysis in several variables, 3rd edi-
tion, North Holland, 1990.

[31] S. C. Huang and L.-F. Tam, Kähler–Ricci flow with unbounded curvature. Amer.
J. Math. 140 (February 2018), no. 1, 189–220.

[32] M.-C. Lee and L.-F. Tam, Kähler manifolds with almost non-negative curvature.
Geom. Topol. 25 (2021) 1979-2015.

[33] J. Lott, Comparison geometry of holomorphic bisectional curvature for Kaehler
manifolds and limit spaces, arXiv:2005.02906.

[34] G. Liu, Three circle theorem and dimension estimate for holomorphic functions
on Kähler manifolds. Duke Math. J. 15 (2016), 2899–2919.

[35] G. Liu, On the volume growth of Kähler manifolds with nonnegative bisectional
curvature. J. Differential Geom. 102 (2016), no 3, 485–500.

[36] G. Liu, Gromov–Hausdorff limits of Kähler manifolds and the finite generation
conjecture. Ann. of Math. (2) 184 (2016), no. 3, 775–815.

[37] G. Liu, Gromov–Hausdorff limits of Kähler manifolds with bisectional curvature
lower bound I. Comm. Pure Appl. Math. 71 (2018), 267–303.

[38] G. Liu, On Yau’s uniformization conjecture. Camb. J. Math. 7 (2019), no. 1–2,
33–70.

[39] G. Liu, Compactification of certain noncompact Kähler manifolds with nonnega-
tive Ricci curvature. Adv. Math. 382 (14 May 2021).

[40] G. Liu and G. Székelyhidi, Gromov–Hausdorff limits of Kähler manifolds with
Ricci curvature bounded below, arXiv:1804.08567.

[41] G. Liu and G. Székelyhidi, Gromov–Hausdorff limits of Kähler manifolds with
Ricci curvature bounded below II. Comm. Pure Appl. Math. 74 (2021), 909–931.

[42] P. Li and J. Wang, Comparison theorem for Kähler manifolds and positivity of
spectrum. J. Differential Geom. 69 (2005), 43–74.

[43] M. C. Lee and L. F. Tam, Chern-Ricci flows on noncompact complex manifolds.
J. Differential Geom. 115 (2020), no. 3, 529-564.

[44] P. Li and S. T. Yau, On the parabolic kernel of the Schrödinger operator. Acta
Math. 156 (1986), 139–168.

[45] N. Mok, An embedding theorem of complete Kähler manifolds with positive
bisectional curvature onto affine algebraic varieties. Bull. Soc. Math. France 112
(1984), 197–258.

[46] N. Mok, An embedding theorem of complete Kähler manifolds of positive Ricci
curvature onto quasi-projective varieties. Math. Ann. 286 (1990), 373–408.

[47] S. Mori, Projective manifolds with ample tangent bundle. Ann. of Math. (2) 110
(1979), 593–606.

[48] N. Mok, Y. T. Siu, and S. T. Yau, The Poincare–Lelong equation on complete
Kähler manifolds. Compos. Math. 44 (1981), 183–281.

[49] L. Ni, A monotonicity formula on complete Kähler manifolds with nonnegative
bisectional curvature. J. Amer. Math. Soc. 17 (2004), no. 4, 909–946.

2591 Kähler manifolds with curvature bounded below

https://arxiv.org/abs/2005.02906
https://arxiv.org/abs/1804.08567


[50] L. Ni, Ancient solutions to Kähler–Ricci flow. Math. Res. Lett. 12 (2005),
633–654.

[51] A. Newlander and L. Nirenberg, Complex analytic coordinates in almost complex
manifolds. Ann. of Math. (2) 65 (1957), 391–404.

[52] L, Ni and L.- F. Tam, Plurisubharmonic functions and the structure of complete
Kähler manifolds with nonnegative curvature. J. Differential Geom. 64 (2003),
457–624.

[53] L, Ni and L.- F. Tam, Poincare–Lelong equation via the Hodge–Laplace heat
equation. Compos. Math. 149 (2013), no. 11, 1856–1870.

[54] G. Perelman, Manifolds of positive Ricci curvature with almost maximal volume.
J. Amer. Math. Soc. 7 (1994), no. 2, 299–305.

[55] W. X. Shi, Ricci deformation of the metric on complete noncompact Kähler mani-
folds, PhD thesis, Harvard University, 1990.

[56] W. X. Shi, Ricci flow and the uniformization on complete noncompact Kähler
manifolds. J. Differential Geom. 45 (1997), 94–220.

[57] Y. T. Siu and S. T. Yau, Compact Kähler manifolds of positive bisectional curva-
ture. Invent. Math. 59 (1980), 189–204.

[58] Y.-T. Siu, Analyticity of sets associated to Lelong numbers and the extension of
closed positive currents. Invent. Math. 27 (1974), 53–156

[59] G. Tian, Compactness theorems for Kähler–Einstein manifolds of dimension 3
and up. J. Differential Geom. 35 (1992), 535–558.

[60] G. Tian and S. T. Yau, Complete Kähler manifolds with zero Ricci curvature. I.
J. Amer. Math. Soc. 3 (1990), 579–609.

[61] G. Tian and S. T. Yau, Complete Kähler manifolds with zero Ricci curvature. II.
Invent. Math. 106 (1991), 27–60.

[62] G. Tian, Partial C 0-estimate for Kähler–Einstein metrics. Commun. Math. Stat. 1
(2013), no. 2, 105–113.

[63] G. Tian, Kähler-Einstein metrics on algebraic manifolds. In Proc. of Int. Congress
of Math. Kyoto, 1990.

[64] L. F. Tam and C. Yu, Some comparison theorems for Kähler manifolds.
Manuscripta Math. 137 (2012), no. 3–4, 483–495.

[65] G. Tian and Z. Zhang, On the Kähler–Ricci flow on projective manifolds of gen-
eral type. Chin. Ann. Math. Ser. B 27 (2006), 179–192.

[66] S. T. Yau, Open problems in geometry. Lectures Differ. Geom., by Schoen and
Yau, 1 (1994), 365–404.

[67] S. T. Yau, Nonlinear analysis and geometry. Enseign. Math. 33 (1987), 109–158.
[68] S. T. Yau, S. S. Chern: A great geometer of the Twentieth Century, International

Press, 1992.

Gang Liu

Department of Mathematics, East China Normal University, No. 500, Dong Chuan Road,
Shanghai, 200241, P.R.China, gliu@math.ecnu.edu.cn

2592 G. Liu

mailto:gliu@math.ecnu.edu.cn




Groups acting
at infinity
Kathryn Mann

Abstract

An action of a group on a topological space is rigid if small perturbations to the action
have little meaningful influence on its global dynamics. Many examples of rigid actions
come from geometric considerations. This introductory survey describes the idea of
“looking to infinity” as a source both of rigid examples and proofs of rigidity, starting
with some early history then passing quickly to recent developments in topological rigidity
of group actions. The examples considered include actions of hyperbolic manifold groups
on the visual boundary of their universal cover, automorphism groups of surface groups,
boundary actions of hyperbolic groups in the sense of Gromov, and group actions derived
from Anosov flows on 3-manifolds.
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Figure 1

A regular tiling of the hyperbolic plane by octagons with geodesic sides. The symmetries of this tiling is a
hyperbolic group with boundary S1. Identifying sides of the octagonal domain by translations indicated on the
figure gives a genus 2 surface with hyperbolic structure.

1. Introduction

The boundary at infinity. This survey concerns some recent developments in topological
rigidity of group actions that come from “looking to infinity.”

To start, let us take a short tour of a familiar object, the Poincaré ball model of the
hyperbolic space. Recall that hyperbolic n-space, Hn, is the unique complete, simply con-
nected manifold of constant curvature �1. We can visualize it via the Poincaré ball model,
the open unit ball in Rn equipped with the Riemannian metric ds2 D

4kdxk2

.1�kxk2/2 . In this
model, infinite geodesics are the Euclidean lines and half-circles that meet the boundary
of the ball orthogonally (see Figure 1 for an illustration when n D 2). Isometries of Hn

preserve geodesics and totally geodesic half-spaces, from which one can deduce that they
induce homeomorphisms of the sphere bounding the Poincaré ball. But what is this sphere
of “points at infinity”?

Let us try to describe the boundary from the perspective of someone inside Hn.
Standing at a point in Hn, your field of vision is a sphere, each line of sight a geodesic ray
based at your eye. Each ray in this Sn�1-family tends to a unique point on the boundary
sphere. To avoid privileging any one point as the eye of an observer, we might broaden our
definition of the “sphere at infinity” as follows. In a geodesic metric space .X; dX /, define
an equivalence relation on unit speed geodesic rays by declaring that two such rays, say ˛,
 W Œ0;1/ ! X , are equivalent if there exists a constant D such that dX .˛.t/; .t// < D

holds for all t . Applying this to Hn, the equivalence classes of geodesic rays are in a one-
to-one correspondence with points on the boundary sphere of the Poincaré ball, and also to
visual directions based at a given point.

The beauty of this definition, beyond being independent of a basepoint, is that we
did not need to model hyperbolic space as a ball in Rn to compactify it. Thus, it lends itself
to other spaces with negative—or even coarse analogs of negative—curvature. Applying this
definition to any proper geodesic metric spaceX that is ı-hyperbolic in the sense of Gromov
(we will return to this later) gives an “ideal boundary” denoted @1X , which is a compact
space when equipped with the quotient topology induced from the compact-open topology
on all geodesic rays. Informally, two boundary points are close if they can be represented by
rays that stay a bounded distance from each other for a long time. This topology can be natu-
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rally extended toX [ @1X , compactifyingX . The isometries ofX preserve geodesics, and
preserve the equivalence relation of staying a bounded distance apart, so extend to home-
omorphisms of the boundary with this topology. This is the starting point for our story of
groups acting on boundary spaces.

Rigidity. A group � acting on a spaceX is locally rigid if the only possible small deforma-
tions of the action are by trivial procedures—constructions that do not meaningfully change
the global dynamics of the action. Of course, what “trivial procedure” and “meaningfully
change” mean depends on the context, but a standard interpretation is that there should
be either a surjective map, a self-homeomorphism, a diffeomorphism, or an isometry of
X (semi)conjugating the perturbed action of � back to the original. That is, if � W � !

Homeo.X/ is the original action, and �0 a perturbation, then rigid means that there is a map
h W X ! X satisfying h ı �0./ D �./ ı h for all  2 � . If invertible, h is a genuine con-
jugacy; if merely surjective, it is called a semiconjugacy. One can strengthen this notion:
globally rigid means that any deformation, no matter how big or small, is still (semi)con-
jugate to the original; and one can even do away with the idea of deforming continuously:
strong rigidity typically means that any other action of the group is either semiconjugate to
the original or essentially trivial.

The first major examples of local rigidity to attract significant attention were lattices
in linear groups. A lattice in a group G is a discrete subgroup � such that G=� has finite
volume, such as SL.n;Z/ in SL.n;R/; it is cocompact if the quotient is compact. In 1960,
as a means of showing the surprising fact that discrete, cocompact subgroups of SL.n;R/
are conjugate to arithmetic groups, Selberg showed that the inclusion of such a lattice into
SL.n;R/ is locally rigid in the sense that any nearby representation is conjugate by an ele-
ment of SL.n;R/. This, together with concurrent work of Calabi, Weil, Calabi–Vesentini
and others, was the birth of rigidity theory. At the time, the major techniques were alge-
braic (Selberg’s work hinged on traces of group elements) and differential geometric. But an
important new idea of Selberg, picked up by Mostow, was that of escape to infinity, an idea
that would prove extremely fruitful to others. Mostow writes:

“Upon analyzing Selberg’s proof of his rigidity theorem, the key relation shows its
force as the elements [considered here in an abelian subgroup] go to infinity... It
seemed to me desirable to exploit relations at infinity not only on abelian subfami-
lies, but among all elements of � near infinity.” [35]

What does this mean? Mostow’s first success was with lattices in Isom.Hn/ Š

O.n; 1/= ˙ 1, so I will center our discussion here. Given isomorphic cocompact lattices
� and � 0, one can build a map f W Hn ! Hn, equivariant with respect to their actions by
isometries. Mostow’s idea was to ask whether this equivariant map of Hn extends to a map
on the boundary at infinity (the answer is “yes, always”) and to study the regularity of the
extension (a harder answer: “it is necessarily a conformal map, induced by conjugation by
an isometry”). This led to the proof of
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Theorem 1.1 (Mostow rigidity for hyperbolic manifolds [34]). SupposeM and N are com-
pact, hyperbolic manifolds of dimension at least 3. IfM andN are diffeomorphic, then they
are isometric.

Shortly afterwards, Margulis noticed that one needs only assume M and N have
isomorphic fundamental groups.

Theorem 1.2 (Mostow rigidity, algebraic reformulation [30]). Let M and N be compact,
hyperbolic manifolds of dimension at least 3. If �1.M/Š �1.N /, thenM andN are isomet-
ric. Equivalently, any two isomorphic cocompact lattices in O.n; 1/ are conjugate provided
n � 3.

To the reader meeting this theorem for the first time, I wish to emphasize the fol-
lowing dramatic consequence: for hyperbolic manifolds, every metric invariant is actually
a topological invariant. Volume? Length of a shortest closed geodesic? Theorem 1.2 says
these quantities are completely determined by the algebraic structure of the fundamental
group of the manifold.

Mostow later extended his rigidity result to lattices in other semisimple Lie groups,
the first step again being to construct boundary maps. There are many excellent surveys on
these results and their influence in the work of Margulis, Zimmer, and many others; I rec-
ommend those of Fisher and Spatzier [12,36] as a starting point for the curious reader. Here
we will take a different tack, skipping ahead to some very recent developments on rigidity of
boundary actions. These will occur in settings where, for reasons of low dimension or low
regularity, many of the dynamical techniques descended from Mostow and his contempo-
raries fall short, but the essence of the idea to look at the boundary prevails.

2. Surface groups acting on the circle

Hyperbolic structures on surfaces. The attentive reader will have noticed the hypothesis
“dimension at least 3” in Mostow’s theorem. Indeed, this is necessary, as there is a contin-
uum of nonisometric hyperbolic structures on any surface of genus g � 2, a fact that has
been known (depending on how you count) at least since the time of Riemann or Poincaré.
These correspond to the continuum of discrete, faithful representations, called Fuchsian rep-
resentations, of the fundamental group of the surface into Isom.H2/.

The way in which Mostow’s original strategy fails in dimension 2 is quite subtle,
having to do with the fact that there is no perfect analog of a quasiconformal map in dimen-
sion 1. Agard’s survey “Mostow rigidity on the line” [1] contains a nice discussion of what
goes right and wrong.1 That said, for a fixed genus g, each boundary action corresponding to

1 There are many other proofs of Mostow rigidity, all falling short for surfaces in different
ways. A proof using Gromov’s simplicial volume relies on the fact that an ideal simplex
of maximal volume in the hyperbolic n-space is regular—a meaningful distinction when
n � 3, but in H2 all ideal triangles are isometric. Besson–Courtois–Gallot [5] have a
strengthening of Mostow’s theorem with a different endgame to the proof hinging on an
inequality involving the determinant of an n � n derivative matrix, which simply fails for
n D 2.
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a hyperbolic structure on a genus g surface is conjugate by a homeomorphism of the circle.2

This suggests that one might recover a notion of rigidity by weakening the regularity of the
maps in question. Reducing regularity is actually quite a natural consideration: leaving the
realm of hyperbolic structures and instead considering the boundary at infinity of the uni-
versal cover of the surface with an arbitrary Riemannian metric, or on a Cayley graph for the
fundamental group of the surface, one retains only a topological circle with an action of the
fundamental group by homeomorphisms. These actions are all conjugate to each other, and
also all to any Fuchsian action, by a homeomorphism of the circle.

Rigidity at infinity for surfaces. This brings us to a beautiful theorem of Matsumoto on
boundary rigidity for surfaces. To state it, I will first make precise the notion of rigidity
described before. A group action of � on X is a homomorphism � ! Homeo.X/. The
space of actions Hom.�;Homeo.X// is the set of all actions equipped with the compact-
open topology: informally, two actions are close if, for every element  in a large finite subset
of � , the homeomorphisms given by the actions of  are pointwise close on a large compact
subset ofX .Global rigidity is a statement about the homogeneity of a connected component
of Hom.�;Homeo.X//; Matsumoto’s version is as follows:

Theorem 2.1 (Matsumoto’s rigidity [31]). Suppose that † is a surface of genus at least 2,
and � W �1.†/ ! Homeo.S1/ lies in the same connected component as a Fuchsian repre-
sentation �0. Then there is a continuous, monotone, degree 1 map h W S1 ! S1 such that
h ı �./ D �0./ ı h holds for all  2 �1.†/.

“Monotone” here means that hweakly preserves the cyclic ordering of points on S1.
A triple .x1; x2; x3/ of distinct points in S1 has a positive or negative orientation depending
on whether you proceed anticlockwise or clockwise around the circle as your read the points
in order. To weakly preserve this order, a map sends each positively oriented triple either to
a positively oriented triple or to a degenerate one where two or more points coincide. Thus,
h may collapse an interval to a point, but does not double back on itself.

This weakening of the notion of conjugacy in the theorem statement is necessary, as
it is easy to construct small, nonconjugate perturbations of almost any action of a countable
group on the circle using a “blow up” trick. Enumerate your group � , fix a point x and some
small " > 0, and replace the image of x under the action of the nth element of � with a closed
interval of length "

2n . The result is a circle whose circumference is increased by ". Extend
the original action of � over the inserted intervals by declaring that g takes the interval
corresponding to f .x/ to that of gf .x/ by the unique affine map. This procedure gives an
action by homeomorphisms, and the map h W S1 ! S1 collapsing each inserted interval to
a point is a semiconjugacy.

Group cohomology. A remarkable theorem of Ghys [14] says that the equivalence relation
on group actions generated by semiconjugacy, in the sense defined above using a mono-

2 This is again a subtle point: one can show that, if such a conjugating homeomorphism is
differentiable with nonzero derivative at a single point, then it is real analytic, induced from
an isometry of H2, and the surfaces are isometric.
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tone maps, is actually a cohomological phenomenon. As is well known, the inclusion of the
rotation subgroup SO.2/Š S1 into the group HomeoC.S

1/ of orientation-preserving home-
omorphisms of the circle is a homotopy equivalence, thus the cohomology of the classifying
space for HomeoC.S

1/ is generated by an Euler class in degree 2. It is less well known
(following from a deep theorem of Thurston) that the cohomology of HomeoC.S

1/ as a dis-
crete group is also generated by the Euler class: the map from the discrete HomeoC.S

1/ to
HomeoC.S

1/ with the usual topology induces an isomorphism on cohomology.
Given an action � W � ! HomeoC.S

1/ of a group by orientation-preserving home-
omorphisms of the circle, one can pull back the discrete, integral Euler class to an element
of H 2.�I Z/. Typically, remembering only the Euler class and forgetting the action results
in a great loss of information. For instance, if � is a surface group, then H 2.�I Z/ Š Z,
but there are uncountably many distinct actions of � on the circle, even up to semiconju-
gacy. However, the Euler class is a bounded cocycle in the sense of Gromov, and the second
bounded cohomology of a surface group is infinite dimensional. Ghys showed, remarkably,
that this pullback of the Euler class in bounded cohomology determines the action up to
semiconjugay. The rigidity statement of Matsumoto quoted above is, in fact, a consequence
of a stronger theorem, in which he shows that there is a unique, maximal (meaning pairing
maximally with the fundamental class of the surface) bounded second cohomology class,
corresponding to the semiconjugacy class of a Fuchsian representation.

Rigidity of geometric actions. The Fuchsian surface groups acting on the circle in Mat-
sumoto’s rigidity theorem are lattices in PSL.2;R/, the group of orientation-preserving
isometries of H2. With this in mind, we make the following definition:

Definition 2.2. An action of a group � on a manifold X is geometric if it is obtained by the
embedding of � as a cocompact lattice in a connected Lie groupG acting transitively on X .

This definition is modeled after the idea of a geometry from Klein’s Erlangen pro-
gram: a connected Lie group acting transitively on a space with compact point stabilizers.
When X is the circle, we can easily list all geometric actions of groups. The connected Lie
groups acting transitively on S1 are the rotation group SO.2/, the projective linear group
PSL.2;R/ acting on RP 1 D S1, and finite cyclic covers (i.e., central extensions by finite
cyclic groups) of PSL.2;R/, which act naturally on finite covers of S1—conveniently, also
topological circles (see [15]). Any cocompact lattice in one of these groups is, up to finite
index, the fundamental group of a surface of genus g for some g � 2, and these are all
obtained by lifting Fuchsian surface groups to a finite cyclic cover. Provided that the degree
of the cover divides the Euler characteristic of the surface, such a lift exists and gives a lattice
in the corresponding cyclic extension of PSL.2;R/.

Matsumoto’s theorem gives global rigidity for geometric examples where the ambi-
ent Lie group is PSL.2;R/. With Maxime Wolff, we showed this for all geometric surface
groups:

Theorem 2.3 (Rigid , geometric on the circle [24,29]). An action of a surface group on S1

is globally rigid if and only if it is geometric.
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The direction geometric implies rigid consists in a careful study of geometric rep-
resentations using the Poincaré rotation number and techniques of Calegari and Walker; a
detailed expository account is given in [25] and an alternative proof given later byMatsumoto,
using a Markov partition and Maskit combination theorem style of argument, in [32]. The
statement that rigid implies geometric is much more difficult: handed an action of �1.†/

on the circle, with no knowledge about it except that you cannot deform it, you need to
reconstruct the ambient Lie group and lattice surface group.

The proof in [29] is rather technical, but, under a major simplifying assumption one
can produce a much easier proof in which the strategy of “reconstruction” is evident. This
is carried out in the relative short paper [27]. The simplifying assumption eliminates the
possibility that �.�1.†// lies in one of the nontrivial covers of PSL.2;R/. As a consequence
of this assumption, one can deform the representation so that some simple closed curve a on
the surface has its action �.a/ conjugate to the boundary action of a hyperbolic isometry of
PSL.2;R/. This means that the action of �.a/ on the circle has exactly two fixed points, one
attracting and one repelling.

Having found one such simple closed curve, we find many, and then start the recon-
struction: we show that the arrangement of attracting and repelling points of the action
of these simple closed curves on the circle agrees with the intersection pattern of lifts of
geodesic representatives of these curves on the surface. Under a Fuchsian representation, the
axes of translation of elements are exactly such lifts of curves, and this allows us to build
the desired semiconjugacy to the Fuchsian class. Figure 1 gives a representative visual: the
geodesics shown there are all represented by simple closed curves; it is the cyclic order of
their endpoints that we recover.

Open questions. For any real linear algebraic group G and finitely presented group
� D hS j Ri, the space of representations Hom.�; G/ is a real algebraic variety, a sub-
space of GjS j cut out by the finitely many relations from R. Thus Hom.�; G/ has finitely
many connected components. Goldman [17, Theorem A] gives a precise count in the case
where � is the fundamental group of a closed surface, and G the k-fold covering group
of PSL.2;R/. Geometric representations exist precisely when k divides 2g � 2; if k is
larger than 2g � 2, then there is only a single connected component: every representation is
deformable to the trivial representation. Using this, one can show that for a given genus g, up
to deformation, there are only finitely many representations of �1.†g/ into a Lie subgroup
of S1. By contrast, we do not know:

Question 2.4. Does the space Hom.�1.†g/;HomeoC.S
1// have finitely many connected

components?

Question 2.5. Can every action of a surface group on the circle be deformed into one with
image in a Lie group?

In fact, the situation is even messier than this. “Deformation” suggests movement
along a path of representations, while my definition of rigidity referred to homogeneity of
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connected components. Alas, we do not know if path components and connected components
of Hom.�1.†g/;HomeoC.S

1// agree.
At the time of framing Definition 2.2, I was very enthusiastic about pursuing the

theme “rigid $ geometric” to see to what extent it might play out in settings beyond group
actions on the circle. In retrospect, that seems too optimistic: geometric examples are excel-
lent candidates for rigidity, but I do not think they are precisely all the rigid examples of
actions in a general setting. This is not to deter anyone in their attempt to prove such a
theorem—perhaps for the right modification of the definition of geometric (maximal dimen-
sion Lie groupmight be a good start), and the right definition of rigid, such a statement is true.

Our next topic should provide evidence for continued optimism, as we look at the
first obvious generalization of surface groups acting on the circle—the boundary actions of
fundamental groups of hyperbolic manifolds of higher dimension. In fact, one does not need
Hn here (and so we will bid a temporary farewell to lattices) but only a Riemannian metric
of negative curvature.

3. Manifold groups acting on boundary spheres

We described in the introduction how to compactify certain spaces by equivalence
classes of geodesic rays. When the space in question is the universal cover of a closed hyper-
bolic or negatively curved surface, Matusmoto’s Theorem 2.1 says that the induced boundary
action of the fundamental group is rigid. While his proof does not apply for manifolds of
higher dimension (there is no bounded Euler class and no cyclic order of points at infinity
for groups acting on higher dimensional spheres), Bowden and I recently proved an analo-
gous local result in generality:

Theorem 3.1 ([6]). LetM be a compact, orientable n-manifold with negative curvature, and
�0 W �1.M/ ! Homeo.Sn�1/ the boundary action. There exists a neighborhood U of �0 in
Hom.�1.M/;Homeo.Sn�1// consisting of representations which are topological factors of
�0 in the sense of classical dynamics: for each representation � 2 U , there is a continuous,
surjective map h W Sn�1 ! Sn�1 satisfying h ı �./ D �0./ ı h for all  2 �1.M/.

The key idea of the proof is to encode the dynamics of the action �0 and a perturba-
tion � in foliated spaces, and promote topologically stable properties (such as transversality)
to the desired dynamical stability. We describe a few details of the strategy now.

From group actions to foliated spaces. Given an arbitrary manifoldM and an action � of
�1.M/ by homeomorphisms on a space F , the associated foliated F -bundle overM is the
quotient of QM � F by the diagonal action of �1.M/ via deck transformations on QM and via
� on F . This quotient space is an F -bundle over M , and since the action is diagonal, the
“horizontal foliation” of QM � F by leaves of the form QM � ¹�º descends to a topological
foliation on this bundle, topologically transverse to the fibers. If M and F have smooth
structures (which we will always take to be the case) and the action is by diffeomorphisms,
then the result is a smooth bundle with smooth foliation, transverse to the fibers. The idea to
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Figure 2

UT .H2/ is trivialized as H2 � S1, where the point on S1 (height) is given by the endpoint at infinity of a
geodesic ray with given tangent vector. Leaves of the weak-stable foliation are horizontal, weak-unstable leaves
intersect them transversely along geodesics.

encode actions or representations in foliated spaces is not new—for instance, as one example
of a use quite close to our theme, Goldman’s 1980 thesis [16] presents the idea of a geometric
structure as a section of a foliated bundle (following Kulkarni, Sullivan, and Thurston), using
this perspective to understand representations of surface groups into PSL.2;R/.

We are interested in the special case whereM and � are as in Theorem 3.1. When
� D �0 is the action on the boundary at infinity, the associated foliated sphere bundle over
M is isomorphic to the unit tangent bundle ofM . This gives additional structure which we
exploit in the proof.

Foliations on the unit tangent bundle. The unit tangent bundle UT .M/ of a negatively
curved manifoldM has a natural foliation F transverse to its sphere fibers. We can describe
this by looking at the unit tangent bundle of the universal cover QM and using the bound-
ary at infinity. For each point z 2 @1

QM , let Lz � UT QM be the set of all unit tangent
vectors to geodesic rays that represent z. The leaf Lz is homeomorphic to QM (there is
exactly one tangent vector in a given direction at each point), so the sets Lz partition UT QM

into n-dimensional hyperplanes. Following classical work of Anosov, these sets are actually
smooth, embedded submanifolds. The action of �1.M/ on UT QM sends leaves to leaves,
so this foliation descends to one on UT .M/, and the bundle isomorphism between the foli-
ated sphere bundle associated to the boundary action can be chosen to naturally identify
this foliation on UT .M/, called the weak-stable foliation with the “horizontal” foliation
on the foliated bundle. See Figure 2 left for an illustration when QM D H2. Of course, one
could equally well make the opposite choice of considering the set of tangent vectors v that
emmanate from a common point at infinity. This gives the weak-unstable foliation, which is
also transverse to the fibers, and transverse to leaves of the weak-stable foliation.

Maps between bundles. The proof of Theorem 3.1 starts with the construction of a par-
ticularly well behaved map between the foliated bundles associated with nearby actions,
as illustrarted in Figure 3. Given a perturbation � of the standard boundary action �0, one
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Figure 3

An equivariant map locally close to the identity on QM � @G captures a perturbation of the action of G D �1.M/

on @G. The images of horizontal leaves QM � ¹xº intersect the leaves of the stable foliation of geodesic flow (in
red) along quasigeodesics allowing us to use large-scale metric stability to prove dynamical stability. For general
groups, one needs a more complicated space and a substitute for the stable foliation.

builds, by hand, a �1.M/-equivariant map QM � Sn�1 ! UT QM where on the left we have
an action via � on the sphere factor, and on the right the standard action on the unit tangent
bundle. Although � does not act by diffeomorphisms (only homeomorphisms), by sacrificing
injectivity we can design this equivariant map to send each horizontal leaf QM � ¹pº to a C 1-
embedded submanifold of UT QM that stays C 1-close to leaves of the weak-stable foliation
over large compact sets (i.e., its tangent distribution is uniformly close to the weak-stable
distribution). This means that the images of horizontal leaves remain transverse to the leaves
of the weak-unstable foliation on UT QM . We show that any two such leaves that intersect do
so along a path that is uniformly close to a geodesic in UT QM .

Now the boundary at infinity makes another appearance. Using some deep results on
the dynamics of the action of �1.M/ on its boundary (including the remarkable convergence
group property, which we will, alas, not have space to discuss here), we show that the near-
geodesics on the image of each “horizontal” leaf QM � ¹pº cut out by the weak-stable leaves
all share a common endpoint at infinity, depending only on the parameter p. This association
of such a point p to this common endpoint at infinity gives a map Sn�1 ! Sn�1. And this
map, it turns out, gives the desired semiconjugacy of the actions.

4. Coarse hyperbolicity: from spaces to groups

Following Gromov, a geodesic metric space X is called ı-hyperbolic (for some
ı � 0) if every geodesic triangle T inX has the property that each side of T lies in the metric
ı-neighborhood of the union of the other two sides. For example, any tree is 0-hyperbolic,
and it is a pleasant exercise in hyperbolic trigonometry to show that Hn, with its metric of
constant curvature �1, is ı-hyperbolic for the constant ı D ln.1C

p
2/.

This definition also works for groups: a finitely generated group is hyperbolic if
its Cayley graph is ı-hyperbolic for some ı. While the constant ı depends on the gener-
ating set, the notion hyperbolic for some ı does not. Indeed, “ı-hyperbolic for some ı”
is a metric invariant up to quasiisometry, the relation shared between Cayley graphs with

2603 Groups acting at infinity



different generating sets. This concept is the center of Gromov’s highly influential essay
Hyperbolic groups, and the setting in which one can compactify a space by a boundary at
infinity with the method given in the introduction—although Gromov attributes this idea as
“essentially due to Mostow and Margulis” due to its appearance in the theorems we quoted
earlier [18, 0.3B].

A finitely generated group acts naturally on its Cayley graph by auotmorphisms,
hence by isometries when edges are taken to have unit length. Thus, it induces an action by
homeomorphisms on the boundary. One can therefore ask:

Question 4.1. Let� be a finitely generated hyperbolic group. Is the action of� on its bound-
ary (locally) rigid, up to semiconjugacy?

Rather than repeatedly writing “locally rigid up to semiconjugacy,” we borrow ter-
minology from classical dynamics, traditionally applied to actions of Z, but just as valid for
group actions. An action �0 of � on a space X is topologically stable if, for any sufficiently
nearby action �, there is a surjective, continuous map h satisfying h ı �./ D �0./ ı h for
all  2 � . Typically, one requires h to depend continuously on the perturbation, being close
to the identity if � is sufficiently close to �0. Thus, the statement of Theorem 3.1 is simply
an assertion of topological stability for manifold fundamental groups.

Boundaries of groups. While the examples of boundaries at infinity we have looked at so far
have been spheres, the topology of the boundary of a group is typically quite complicated,
both locally and globally (see [20]). In some cases, the topology is so complicated that a
positive answer to Question 4.1 follows from the structure of the boundary itself. Kapovich
and Kleiner [22] have examples of groups where the only automorphisms of their boundary
come from left multiplication. From this one can easily deduce rigidity: the action of the
group on its boundary is an isolated point in Hom.�;Homeo.@1�//. For free groups, whose
boundary is a Cantor set, one can also use the “ping-pong” dynamics of the action to prove
local rigidity using a relatively hands-on argument.

At the other end of the spectrum are groups with sphere boundary. In contrast to
Kapovich–Kleiner’s boundaries, homeomorphisms of the sphere are very easy to perturb,
each having an infinite-dimensional family of deformations, making Question 4.1 partic-
ularly interesting. It is in this context that Manning and I recently proved an analog to
Theorem 3.1:

Theorem 4.2 (Rigidity for sphere boundary actions [26]). For any Gromov hyperbolic group
� with sphere boundary, the natural action of � on @1� is topologically stable.

In proving this, we remove all the differential topological machinery (such as
transversality and the regularity of weak-stable foliations) from the proof of Theorem 3.1,
replacing it with coarse metric machinery. The fundamental starting point is the stability of
quasigeodesics.
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Quasigeodesic stability. A quasigeodesic is a map  from R into a metric space .X; dX /

such that, for some constants K, C , the bounds
1

K
dX

�
.t/; .s/

�
� C � jt � sj � KdX

�
.t/; .s/

�
C C

hold for all t; s 2 R. More generally, a .K; C / quasiisometric embedding of a metric space
.Y; dY / into .X; dX / is a map  W Y ! X that satisfies the above bounds for all points t; s in
Y , with jt � sj replaced by the distance dY .t; s/. Such a map is called a quasiisometry if it
has the additional property of being coarsely surjective, meaning that each point of Y lies a
uniformly bounded distance away from some point in the image.

The idea of quasigeodesic stability comes from work of H.M. Morse in the early
1920s. In [33], he considers the following question: suppose we take a closed surface †
of genus g � 2 equipped with an arbitrary Riemannian metric, and a homeomorphism
f W † ! †hyp identifying it with some fixed hyperbolic genus g surface †hyp. What do
length-minimizing geodesic paths on e† look like under the lifted map Qf W e† ! e†hyp? Do
they share properties with genuine hyperbolic geodesics, such as tending in each direction
to a unique point on the boundary of the disc in the Poincaré model?

Morse’s map Qf is an example of a quasiisometry, and the image of a length-
minimizing geodesic under Qf is a quasigeodesic. In answering the question above, Morse
proves what is now known as the Morse lemma on quasigeodesic stability. In its modern,
more general form, this lemma states:

Lemma 4.3 (Morse lemma). There exists a constant B D B.K; C; ı/ such that for any ı-
hyperbolic metric space X , every .K;C / quasigeodesic  W R ! X lies in the B-neighbor-
hood of a unique geodesic, and hence every quasigeodesic ray defines a unique point on
@1.X/.

In addition, quasigeodesics satisfy a local-to-global principle: a map which is a
.K;C / quasigeodesic embedding when restricted to all sufficiently long segments is, in fact,
globally a quasigeodesic. This allows us to pursue the broad strategy used in proving Theo-
rem 3.1 in this coarse setting. We first translate a perturbation of an action into a nice map
between foliated metric spaces, then show that images of leaves intersect leaves in (a pre-
ferred section of) the target foliated space along quasigeodesics. Of course, having no smooth
manifold or universal cover on hand makes the strategy nontrivial to even set up, and much
harder to execute!

Related results and open questions. Much existing work on the dynamics of groups acting
on their boundaries relies on local expansivity: for each point of the boundary, there is an ele-
ment of the group that contracts this neighborhood a uniform amount (thus, one has uniform
expansion under the inverse, hence the name).3 Sullivan [37] used this property to demon-
strate a structural stability result for Kleinian groups acting on the boundary sphere of H3:
aC 1-small perturbation of such an action has an invariant set onwhich the action is conjugate

3 There are many related definitions of expansivity, here I am roughly following Sullivan.
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to the original action of the group on its limit set. This was recently improved and generalized
by Kapovich–Kim–Lee [21] to prove structural stability for a much broader class of expan-
sive actions, including boundary actions of hyperbolic groups, under perturbations which
preserve a generalized expansivity property. Lipschitz-small perturbations are one exam-
ple to which their theory applies, however, general continuous perturbations do not preserve
local expansivity and so are not covered by this strategy. Sullivan’s method involves a dynam-
ical “coding” of points by sequences of group elements, suggesting a connection to classical
symbolic dynamics. This is no coincidence, and we now know a number of rigidity results
in this direction (see [7]). However, the following general problem remains open:

Question 4.4. Is the action of every hyperbolic group � on its boundary topologically
stable? What techniques apply to intermediate cases between the boundary sphere case and
Kapovich–Kleiner’s rigid examples? Which examples exhibit a rigidity property stronger
than topological stability, and what phenomena are responsible for this behavior?

As mentioned before, group boundaries can be topologically complex. One way the
sphere plays an essential role in the proof of Theorem 4.2 is that its homeomorphism group
is locally contractible, and there is no obvious substitute for this property in other settings.
An interesting first case to attack might be the Menger curve, this being the boundary of a
random group in the standard density model.

We note also that it is unknown which topological spaces occur as boundaries of
groups. Thus, an approach to Question 4.4 either has to be restricted to families of understood
examples, or avoid explicitly describing the boundary altogether.

5. Automorphism groups acting at infinity

An automorphism of a finitely generated group � defines a quasiisometry of the
Cayley graph of � , and therefore extends to a homeomorphism of @1� . The inner auto-
morphism defined by conjugation by  is a bounded distance (with bound given by the word
length of  ) from the map induced by left-multiplication by  , so Inn.�/Š � agrees with the
actions we have already discussed and considering the action of Aut.�/ is a natural next step.

Enlarging � Š Inn.�/ to Aut.�/ is most interesting when the outer automorphism
group of � is large. Many hyperbolic groups have trivial or finite outer automorphism group,
themost basic case where Out.�/ is infinite is when� is the fundamental group of a surface.4

This case is particularly interesting to low dimensional topologists due to its relationship with
mapping class groups.

Mapping class groups. A mapping class is an equivalence class of homeomorphism up
to isotopy. Let MCG˙.†/ WD �0.Homeo.†// denote the group of all mapping classes of

4 Following the work of Paulin and Rips, Levitt showed that one-ended hyperbolic groups
have infinite outer automorphism group if and only if they split, as an HNN extension or an
amalgam of groups with finite center, over a virtually cyclic subgroup with infinite center, so
in some sense resemble the surface groups we will discuss.
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a surface †. One may also consider the subgroup of homeomorphisms fixing a basepoint,
in which case MCG˙.†; x/ denotes the group of homeomorphisms fixing x up to isotopy
preserving x. The subscript˙ here indicates that we consider both orientation preserving and
reversing homeomorphisms, the mapping class groups denoted MCG.†; x/ and MCG.†/,
respectively, are the index two subgroups of orientation-preserving elements.

For a surface † (which we continue to assume is of genus at least two, so that its
fundamental group is hyperbolic), the Dehn–Nielsen–Baer theorem is the statement that the
exact sequence

Inn
�
�1.†/

�
! Aut

�
�1.†/

�
! Out

�
�1.†/

�
is isomorphic, term by term, to the Birman exact sequence

�1.†/ ! MCG˙.†; x/ ! MCG˙.†/:

This isomorphism has a particularly nice geometric description, using boundary
actions and the identification of e† with H2 coming from a choice of hyperbolic structure
on†. Choose a lift Qx of the point x on†, so each f 2Homeo.†/ fixing x has a unique lift Qf

to H2 that fixes Qx. Since† is compact and f is continuous, this lift is a quasiisometry of H2

so induces a continuousmap on the boundary circle. If f and g represent the same element of
MCG˙.†;x/, lifting an isotopy preserving Qx will move all points on e† a uniformly bounded
distance, so will not change boundary homeomorphism. Thus, considering the action of lifts
on the boundary gives a well-defined map from MCG˙.†; x/ to homeomorphisms of S1,
agreeing with the action of Aut.�1.†// under the identification above.

In his problem list on mapping class groups [8, Question 6.2], Farb asks whether
these actions are rigid:

Question 5.1 (Farb). Is every faithful action of MCG.†; x/ on S1 by homeomorphisms
necessarily semiconjugate to the standard action on the boundary?

Question 5.1 asks for a much stronger form of rigidity than exhibited by the action
of the fundamental group �1.†/. There are many distinct semiconjugacy classes of faithful
actions of �1.†/ on the circle; in fact, one can even take these to have image in PSL.2;R/
(see, e.g., [23] for a detailed discussion and references). Despite this, Farb’s question is actu-
ally quite reasonable because of torsion. Themapping class group of a surface group contains
many finite-order elements, and any action of a finite cyclic group on the circle is conjugate
to an action by rotations. Thus, the presence of torsion is suggestive, though no guarantee,
of rigidity.

Unexpectedly, something even stronger thanwhat Farbs asks for is true—the hypoth-
esis “faithful” is not needed, but only nontrivial.

Theorem 5.2 (Mapping class rigidity [28]). For any surface † of genus at least 2, every
nontrivial action of MCG.†; x/ on the circle is (up to choice of orientation) semiconjugate
to the standard boundary action.

The proof, as expected, makes use of torsion, but in a perhaps unexpected way: we
study the action of orbifold fundamental groups that contain �1.†/. The definition of Euler
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number for surface group actions on S1 that we introduced in Section 2 can be extended
to actions of orbifold fundamental groups in a natural way so that it is multiplicative under
covers, like Euler characteristic. We use geometric and topological arguments (relying on
torsion) to show that nontrivial actions of MCG.†; x/ have a maximal Euler number, and
use Matsumoto’s theorem to prove rigidity.

Since torsion plays a critical role in this argument, we do not know if a similar result
holds for all finite-index subgroups of MCG.†; x/. It would be interesting to see another
approach to mapping class rigidity, relying more on group structure and less on the geom-
etry and topology of the surface, perhaps towards a general theory for rigidity of actions of
automorphism groups of other hyperbolic groups.

6. Anosov flows on 3-manifolds

We conclude this survey by describing a different method of producing actions at
infinity, this one coming from the orbit space of an Anosov flows on a 3-manifold. A flow
�t on a Riemannian manifoldM is called Anosov if there is a �t -invariant global splitting
of the tangent bundle TM as a direct sum

TM D X ˚Ess
˚Euu;

where X is the direction of the flow, Ess is the “stable distribution” consisting of vectors
whose length is uniformly contracted by the flow, and Euu is the “unstable distribution”
consisting of vectors that are uniformly expanded (or, more precisely, uniformly contracted
when the direction of the flow is reversed). Contracted has a specific meaning: there are
positive constants c and � > 0 such that the length of the pushforward of a tangent vector
.�t /�.v/ under the time t map of the flow is bounded above by ce��t jjvjj for all t > 0. On a
compact manifold, one may always find a Riemannian metric onM adapted to the flow for
which one may take the multiplicative constant c D 1.

It is a classical result that the two distributionsEs WDX ˚Ess andEu WD X ˚Euu

are integrable, meaning they are everywhere tangent to a foliation. We will restrict our atten-
tion in this section to 3-manifolds, thus Ess; Euu, and X are all one-dimensional, and the
foliations F s and F u tangent to X ˚ Ess and X ˚ Euu are 2-dimensional transverse foli-
ations that meet along the orbits of the flow.

The two most basic examples of Anosov flows in dimension 3, and indeed the start-
ing points for the construction of all other known examples, are suspensions of linear maps
on tori and geodesic flows on surfaces.

Example 6.1 (Linear Anosov maps on tori). Consider a transformation A 2 SL.2;Z/ with
trace.A/ > 2, or equivalently, two distinct, real eigenvalues of norm not equal to 1. Since A
preserves the integer lattice inR2, it descends to a self-diffeomorphism NA of the square torus
T 2 WD R2=Z2. LetM be the mapping torus of NA, the quotient of T 2 � R under the relation
.x; 0/� . NAn.x/;n/ for n 2 Z. The straight line flow .x; s/ 7! .x; sC t / on T 2 � R descends
to a flow �t onM . Each eigendirection of A defines a 1-dimensional NA-invariant line field
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onM , one of which is uniformly contracted by �t flow and one uniformly expanded, giving
the desired Anosov property.

The reason Anosov flows are such interesting examples in dynamics is that they
simultaneously exhibit global stability and local chaos. Local chaosmeans that nearby points
have vastly different trajectories. This is already apparent in Example 6.1, for instance, the
origin on T 2 D R2=Z2 is fixed by NA so is a periodic orbit of �t , but arbitrarily nearby
points have infinite trajectories that intersect the torus T 2 � ¹0º along a dense set. Moreover,
this interspersing of periodic and infinite trajectories happens everywhere: since the induced
action of elements of SL.2;Z/ preserve the finite set of points of the form ¹.p=q; r=q/ W 0 �

p; r < qº (for any fixed q) on the fundamental domain Œ0; 1�2 for R2=Z2, any such point
eventually returns to itself under iterates of NAn, giving a closed orbit for �t .

By contrast, the global picture of the flow is overall stable. Replacing A by a nearby
nonlinear diffeomorphism of T 2 and doing the same construction gives a new flow on the
same topological space, which turns out always to be conjugate to the flow just discussed.
In fact, here one can even replace A by any map with the same action on homology of T 2

[13,19].
The second building block for Anosov flows is geodesic flow in negative curvature.

The simplest such examples come from hyperbolic surfaces.

Example 6.2 (Geodesic flow). Let † be a surface equipped with a metric of constant
curvature �1, and let M D UT .†/ be its unit tangent bundle. Geodesic flow is the map
that, at time t , sends a unit tangent vector v 2 UT .†/ to the vector tangent to the line
¹exp.sv/ W s 2 Rº at the point exp.tv/. One can compute explicitly using the identification
of UT .†/ with PSL.2;R/ that this flow is Anosov. The weak-stable and weak-unstable
foliations from the flow (lifted to e†) are exactly those shown in Figure 2. Leaves of F s

consist of tangent vectors to geodesics with a common forward endpoint, and F u those with
a common negative endpoint at infinity.

Classifying flows. Having given two families of examples, we now embark on the ambi-
tious program to understand all Anosov flows in dimension 3. For this, one must answer
questions of:

• Existence. Which 3-manifolds support an Anosov flow? What techniques can be
used to construct families of examples?

• Abundance. If M 3 supports one Anosov flow, can it support many dynamically
distinct ones?

• Classification.What invariants can be used to distinguish distinct flows?

The existence problem has a long history, but is still not completely solved. Thework
of Palmeira and Verjovsky from the 1970s shows that if M supports an Anosov flow, then
QM is homeomorphic to R3, thusM must be irreducible. An irreducible 3-manifold admits
a decomposition along tori into geometric pieces, so the next question to ask is which kinds
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of piecesM may have. Margulis [2, Appendix] showed that �1.M/ is large in the sense that
it has exponential growth: for any fixed generating set, the number of reduced words of
length r in the group grows exponentially in r . This rules out, for instance, geometric man-
ifolds with a Euclidean structure. There are a number of constructions—Dehn surgery and
other gluing techniques—that produce examples on geometric manifolds with exponential
growth, or manifolds with a nontrivial torus decomposition, and a few other known special
constraints, but we still lack a complete picture.

The approach to classification that I wish to discuss here is the purely topological
one, namely, classifying flows up to orbit equivalence. Two flows �t and t on a manifoldM
are called orbit equivalent if there is a self-homeomorphism ofM taking orbits of �t to orbits
of  t , in other words, the 1-dimensional foliations onM by flowlines are homeomorphic.

The remainder of this survey is devoted to describing a very recent rigidity result
(Theorem 6.3 and its generalization) saying that Anosov flows can be distinguished up to this
equivalence by the set of homotopy classes of loops represented by closed orbits. The proof
of this result comes, again, from looking to a boundary at infinity. This time, the boundary
is that of the orbit space of the flow.

R-covered flows and orbit spaces. A first topological invariant to distinguish flows comes
from the global transverse structure F s . Lifting F s to a foliation QF s on QM gives a foliation
of R3 by planes. Collapsing each plane to a point produces a 1-dimensional manifold called
the leaf space of QF s . The leaf space is either non-Hausdorff, or homeomorphic to R; in the
latter case we say the flow is R-covered. This terminology does not privilege F s , by [3, 10]

the leaf space of QF s is Hausdorff if and only if that of the lifted unstable foliation QF u is as
well. These two cases (R covered and non-Hausdorff leaf space) lend themselves to different
techniques for classification. We discuss the R covered case first.

While being R-covered may seem like a restrictive hypothesis, there are, in fact,
many diverse examples. Both Examples 6.1 and 6.2 are R-covered, and many more can be
produced by modifying these manifolds using Dehn surgery. A given manifold may support
arbitrarily many inequivalentR-covered flows even if geometric; Bowden andMann [6] give
constructions of such on closed hyperbolic manifolds.

Our understanding of R-covered flows is due largely to the work of Barbot and
Fenley, starting with the work in [3, 10]. They consider the orbit space O of the flow, the
quotient of QM obtained by collapsing each flowline to a point. AnyR-covered flow that is not
obtained from a hyperbolic toral automorphism such as in Example 6.1 has the remarkable
property that its orbit space is homeomorphic to an infinite diagonal strip in the plane, as
shown on the left of Figure 4, with QF s and QF u being the vertical and horizontal foliations.
Such flows are called skew. Since the topology of the foliations on this orbit space does
not distinguish flows, any classification theorem must rest on a new algebraic or topological
invariant. In recent work, Barthelmé and I show that the spectrum of periodic orbits (the free
homotopy classes of loops represented by periodic orbits of the flow) does the job:

Theorem 6.3 (Spectral rigidity for flows [4]). Suppose �t and  t are R-covered Anosov
flows on a compact 3-manifoldM . The conjugacy classes in �1.M/ represented by the free
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Figure 4

The orbit space of a skew flow (left) and a schematic of that of a pseudo-Anosov flow (right). Nonseparated stable
and unstable leaves “meeting at infinity” define a shift � commuting with the action of �1.M/ on the skew picture.

homotopy classes of closed orbits for �t and  t agree if and only if the flows are orbit
equivalent via a map isotopic to the identity.

The action on O at infinity. The interesting case in Theorem 6.3 is for skew flows, as
the mapping torus of a linear Anosov map admits only the obvious suspension flow and
its inverse. To solve the problem for skew flows, we look to the boundary at infinity—the
compactification of O by the lines in the diagonal strip model. The action of �1.M/ on
QM descends to O and extends to an action by homeomorphisms on each boundary line,
commuting with a translation of the line that comes from the structure of the lifted foliations.
The dynamics of individual elements acting on the line at infinity are also well understood.
Up to passing to the index-two subgroup of elements preserving orientation, it is an example
of what we call a hyperbolic-like action.

Definition 6.4 ([4]). An action of a groupG on the line is hyperbolic-like if it commutes with
the translation x 7! x C 1, and every nontrivial element either acts freely, or has precisely
two fixed points in each unit interval, one attracting and one repelling.

In the tradition of classical theorems of Hölder and Solodov, which promote infor-
mation about the dynamics of individual homeomorphisms of the line to a global conclusion
about the structure of a group action, we prove a general result on hyperbolic-like actions on
the line.

Theorem 6.5 (Hyperbolic actions are determined by fixed spectra [4]). Given two faithful,
minimal, hyperbolic-like actions of a groupG on R, if the sets of elements acting with fixed
points for each action agree, then the two actions are conjugate by a homeomorphism.

The strategy of the proof for Theorem 6.5 is to recover the linear order of fixed points
of elements (and hence reconstruct a dense subset of the line) from the algebraic data of the
set of elements with fixed points. This is not far in spirit from the “reconstruction” strategies
described in Section 2. Theorem 6.5 is really the heart of the proof of Theorem 6.3, what
remains is to promote the conjugacy of actions at infinity to an honest orbit equivalence,
a technique already used by Barbot.
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Non-R-covered flows and pseudo-Anosov flows. In the case where the leaf spaces of QF s

and QF u are non-Hausdorff, one can leverage the topology of these foliations to get informa-
tion about the flow, a perspective fruitfully exploited by Fenley in [11]. It turns out that the
same family of techniques also applies to a strictly broader class of pseudo-Anosov flows—
topological flows with expanding/contracting behavior as in the Anosov case, but where F s

and F u are allowed to branch in a specified way along a discrete set of periodic orbits.
The orbit space of such a flow is a topological plane with two transverse, 1-dimen-

sional, possibly singular foliations, as cartooned in Figure 4 (right). In [9], Fenley gives a
natural construction of a compactification of the orbit space of any pseudo-Anosov flow by
a boundary circle so that the compactified space is homeomorphic to a disk and the natural
action of the fundamental group of the manifold by homeomorphisms of O extends to the
boundary. In thework in preparationwith Barthelmé and Frankel, we use this boundary circle
and the induced action of �1.M/ to prove spectral rigidity for all transitive, non-R-covered
Anosov and pseudo-Anosov flows on compact 3-manifolds. Combined with Theorem 6.3,
this gives a full spectral rigidity result in the Anosov and pseudo-Anosov setting: provided
the flow is transitive, if the conjugacy classes in �1.M/ represented by the free homotopy
classes of closed orbits for two flows �t and  t agree, then the flows are orbit equivalent via
a map isotopic to the identity.

Although this work gives one answer to the classification problem, many open ques-
tions remain, especially regarding existence and abundance. Of particular interest to me
is the interplay between geometry of a manifold and topology of the leaf spaces of such
flows, hyperbolic manifolds being a particularly interesting example. Which hyperbolic 3-
manifolds admit Anosov flows? Does the complexity of the manifold bound the number of
distinct flows it may admit? May a hyperbolic manifold admit infinitely many inequivalent
Anosov flows?
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Floer cohomology,
singularities, and
birational geometry
Mark McLean

Abstract

We explain a few recent results concerning the application of various Floer theories to
topics in algebraic geometry, including singularity theory and birational geometry. We will
also state conjectures and open problems related to these results. We start out with a purely
dynamical interpretation of the minimal discrepancy of an isolated singularity and explain
how Floer theory fits into this story. Using similar ideas, we show how one can prove part
of the cohomological McKay correspondence by computing a Floer cohomology group in
two different ways. Finally, we illustrate how Hamiltonian Floer cohomology can be used
to prove that birational Calabi–Yau manifolds have the same small quantum cohomology
algebras, and we speculate how this might extend to orbifolds.
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1. Introduction

Objects in algebraic geometry provide a rich source of symplectic and contact man-
ifolds. Smooth projective varieties X � CP N , for instance, have symplectic structures !X

given by restricting the standard Fubini–Study form on CP N . Links of isolated singularities
admit natural contact structures, given by a complex hyperplane distribution.

What can such structures tell us about the underlying algebraic variety? Typically,
a large amount of data is lost when one forgets everything except the symplectic or contact
structure. For instance, if we have a smooth family of projective varieties in CP N , a Moser
argument tells us that they are all symplectomorphic. On the other hand, many properties
are retained such as uniruledness, which is the property that a rational curve passes through
every point. This was shown by Kollár and Ruan in [47, Proposition G].

An important tool in symplectic geometry which can help us understand this ques-
tion better is Floer (co)homology. In order to understand what Floer (co)homology is, it is
best to first understand its finite-dimensional counterpart, namely Morse homology. Let us
suppose that we have a generic Morse function f on a closed Riemannian manifoldM . Such
a function naturally decomposes M into cells, one for each critical point (Figure 1). Hence
one can use f to compute the cellular homology of M . The underlying chain complex is
generated as a Z-module by critical points of f and the differential is a matrix with respect
to this basis of critical points whose .p; q/-entry is the number (counted with sign) of gradi-
ent flowlines of f connecting p and q. The homology of this chain complex is calledMorse
homology.

Floer homology is an infinite-dimensional version of Morse homology. There are
many different kinds of Floer homology groups. For instance, the infinite-dimensional ver-
sion of the manifold M above could be the free loopspace C 1.S1; X/ of a symplectic
manifold .X; !/ with ! D d� satisfying an additional “convexity” condition at infinity. The
infinite-dimensional version of the Morse function f could be an action functional

A W C 1.S1; X/! R; A./ WD �

Z
S1

�� �

Z 2�

0

H
�
#; .e2�i#/

�
d# (1.1)

where H W R=Z � X ! R is a time-dependent Hamiltonian, which also has a particular
form near infinity. The generators of the chain complex for this Floer cohomology group as

f

2 2

1

0

0-cell [ 1-cell [
2-cell [ 2-cell'

' 0-cell

0-cell [
1-cell'

Figure 1

Cell decomposition from Morse function f .
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�

C

‘gradient flowline’

Figure 2

Floer differential.

a Z-module are 1-periodic orbits of H , which are the critical points of A. The differential is
a matrix whose .�; C/-entry is the number of cylinders mapping to X connecting � and
C satisfying a certain PDE which represents the “gradient flowlines” of A (Figure 2). See
[40] for a survey of some of these ideas.

In this article we will demonstrate how certain Floer (co)homology groups can be
used to understand the following things:

(1) The minimal discrepancy of isolated singularities (Section 2);

(2) The Cohomological McKay correspondence (Section 3);

(3) Quantum cohomology of birational Calabi–Yau manifolds (Section 4).

2. Minimal discrepancy of isolated singularities

Let A � CN be an irreducible affine variety of complex dimension n with at most
one singularity at 02CN . In other words,A�CN is cut out by a finite number of polynomial
equations whose Jacobian matrix has constant rank along A � 0. The link of A at 0 is the
manifold given by the intersection ofAwith the "-sphere S" WD ¹jzj D "º �CN where " > 0

is any sufficiently small number. The link admits a contact structure �A WD TLA \ iTLA

where i W T CN ! T CN is multiplication by i D
p
�1 so long as " > 0 is small enough.

Let us give two examples of such links. The first example is the smooth case,
A D Cn. Here the link .LCn ; �Cn/ is contactomorphic to the .2n � 1/-dimensional sphere
S2n�1 with contact structure ker.

Pn
kD1 xkdyk � ykdxk/ where x1C iy1; : : : ; xnC iyn are

the standard complex coordinates on Cn. The second example is the nondegenerate hyper-
surface singularity A D ¹

PnC1
kD1 z2

k
D 0º inside CnC1 whose link is contactomorphic to the

unit cotangent bundle of the n-sphere.
Suppose that A0 � CN 0 is another irreducible affine variety with at most one singu-

larity at 0. If there are neighborhoods U � A, U 0 � A0 of 0 together with a homeomorphism
� W U ! U 0 sending 0 2 A to 0 2 A0 so that � is a biholomorphism from U � 0 to U 0 � 0,
then the links .LA; �A/ and .LA0 ; �A0/ are contactomorphic ([56]).
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Question 2.1. Conversely, suppose that .LA; �A/ is contactomorphic to .LA0 ; �A0/. What
does A and A0 have in common?

The following definition is inspired by a similar notion in Heegaard’s thesis (see
[22, page 89]). We say that A is topologically smooth at 0 if LA is diffeomorphic to a sphere.
Mumford in [39] showed that ifA is of dimension 2, normal, and topologically smooth thenA

is smooth at 0. Such a fact is false in higher dimensions. For instance, the three-dimensional
singularity ¹x2C y2C z2Cw3 D 0º �C4 is not smooth, but it is normal and topologically
smooth (see [7]). However, the link of such a singularity is not contactomorphic to the link
of C3 (see [55] for a direct proof). Seidel in [50] conjectured the following:

Conjecture 2.2. If A is normal and .LA; �A/ is contactomorphic to .LCn ; �Cn/ then A is
smooth at 0.

Theorem 2.3 ([34, Corollay 1.2]). Conjecture 2.2 is true in dimension 3.

In fact, we proved a stronger result, which we will see has some connections with
birational geometry. First of all, we need some definitions. Let .C; �/ be a cooriented contact
manifold. A 1-form ˛ 2 �1.C / is compatible with � if ker.˛/D � and ˛ respects the coori-
entation of � . The restriction d˛j� is a symplectic structure on �. Therefore since the natural
inclusion map from the unitary group to the linear symplectomorphism group is a homotopy
equivalence, we get that the structure group of � naturally lifts to the unitary group and hence
we can define its first Chern class c1.�/. We say that our singularity 0 2 A is numerically
Q-Gorenstein if c1.�A/ vanishes in H 2.LAIQ/.

We will now define the minimal discrepancy of such a singularity. This is an impor-
tant invariant in the minimal model program (see [51]). Let X be a complex n-manifold with
boundary and suppose that the natural map H 2.X; @X IQ/! H 2.X IQ/ is injective. Sup-
pose also that c1.TX j@X / vanishes inside H 2.@X IQ/. Then, we can define the relative first
Chern class c1.X; @X/ 2 H 2.X; @X IQ/ as follows. Consider the long exact sequence

H 1.@X IQ/
0
! H 2.X I @X IQ/! H 2.X IQ/

ˇ
! H 2.@X IQ/: (2.1)

The vanishing condition on c1.TX j@X / implies that ˇ.c1.X// D 0 and so c1.X/ lifts
uniquely to a class c1.X; @X IQ/ 2 H 2.X I @X IQ/ which we call the relative first Chern
class of X .

Now let� W QA! A be a resolution ofA at 0. In other words, a propermorphism from
a smooth variety QA which is an isomorphism onto its image away from 0 2 A so that ��1.0/

is a union of transversally intersecting connected complex hypersurfaces E WD
S

i2S Ei .
The hypersurfaces .Ei /i2S are the irreducible exceptional divisors of our resolution. Reso-
lutions always exist according to Hironaka [23]. If A is smooth at 0 then we require QA ¤ A.
Let B" � CN be the closed "-ball. Then QA" WD ��1.B"/ deformation retracts onto E for "

small enough and so H 2. QA"IQ/ is generated freely by the Poincaré duals PD.Ei /, i 2 S

of .Ei /i2S . Such a fact combined with the negativity lemma can be used to show that the
natural map H 2. QA"I @ QA"IQ/! H 2. QA"IQ/ is injective (see [34, Lemma 3.2]). Also �A ˚ C

is isomorphic to TAjLA
and so c1.�A/ D c1.TAjLA

/.
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Now suppose that our singularity is numerically Q-Gorenstein. Then by the dis-
cussion above, QA" has a relative first Chern class which is a sum

P
i2S aiPD.Ei / for some

unique rational numbers .ai /i2S . The discrepancy of Ei is defined to be ai for each i 2 S .
We define the minimal discrepancy md.A/ 2 Q of 0 2 A to be a WD mini2S ai if a � �1

and �1 otherwise.
We will give a dynamical interpretation of the minimal discrepancy using �A. The

Reeb vector field associated to a contact form ˛ compatible with �A is the unique vector field
R˛ in the kernel of d˛ satisfying ˛.R˛/ D 1. The dynamics of the flow of such a vector
field can change drastically depending on the choice of contact form compatible with �A.
A Reeb orbit of ˛ of period L > 0 is a periodic flowline  W R=LZ! LA of this vector
field. If .LA; �A/ is Q-Gorenstein and satisfies H 1.LAIQ/ D 0, one can associate an index
to this orbit  called the Conley–Zehnder index CZ./ 2 Q (see [34, Definition 4.2]). Very
roughly, this index “counts” the number of times the Reeb flow “wraps” around  . We define
the lower SFT index to be

CZ./ �
1

2
dim ker.D�Lj.�j.0// � id/C .n � 3/; (2.2)

where �t W LA ! LA, t 2 R is the flow of R˛ . We define the minimal SFT index of ˛

to be mi.˛/ WD inf lSFT./ where the infimum is taken over all Reeb orbits  of ˛. We
define the highest minimal SFT index of .LA; �A/ to be hmi.LA; �A/ WD sup˛ mi.˛/ where
the supremum is taken over all contact forms ˛ compatible with �A. By construction, this is
an invariant of .LA; �A/ up to coorientation preserving contactomorphism.

Theorem 2.4 ([34, Theorem 1.1]). Let 0 2 A be normal and numerically Q-Gorenstein. Sup-
pose H 1.LAIQ/ D 0. Then

• if md.A; 0/ � 0 then hmi.LA; �A/ D 2md.A; 0/, and

• if md.A; 0/ < 0 then hmi.LA; �A/ < 0.

Seidel’s conjecture follows immediately from Theorem 2.4 above and the conjecture
below due to the fact that md.Cn; 0/ D n � 1.

Conjecture 2.5 ([52, Conjecture 2]). Suppose A is normal and numerically Q-Gorenstein
with md.A; 0/ D n � 1 then A is smooth at 0.

This conjecture is true when nD 3 by [45, Main Theorem (I)] combined with minimal
discrepancy calculations from [33] and [25], as well as [5, Corollary 5.17]. Therefore we have
a proof of Theorem 2.3.

There are two parts to the proof of Theorem 2.4. The first part gives an upper
bound of md.A; 0/, and the second part gives a lower bound. It is easier to prove the upper
bound since one only needs to find an explicit contact form ˛ compatible with �A satisfying
md.A; 0/ � mi.˛/. In order to construct such a contact form, one starts with a resolution
� W QA! A as above. Since ��1.0/ is a transverse intersection of complex hypersurfaces,
one can deform the link ��1.S"/ through contact hypersurfaces so that it is compatible
with these hypersurfaces in some sense. The periodic orbits of the corresponding Reeb flow
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1 2 3


Number of such holomorphic curves

in the symplectization is
the 1 � 2 � 3 coefficient of @./.

R

C
�

Figure 3

Full contact homology differential.

“wrap” around the divisors .Ei /i2S . One can explicitly compute all of their Conley–Zehnder
indices, giving our result (see [34, Theorem 5.23]).

In the paper [34], we used pseudoholomorphic curve techniques to give the lower
bound for md.A;0/ (see [34, Sections 6,7]). However, this lower bound conjecturally can also
be proven using a Floer homology group, called full contact homology. We will give a brief
sketch of this idea in the case where md.A; 0/ � 0.

Very roughly, full contact homology CH�.C; �/ of a .2n � 1/-contact manifold
.C; �/ is defined in the following way (see [2,14,24,42]). The chain complex is the free super-
commutative algebra over Q generated by Reeb orbits of a generic compatible contact form
� and graded by Conley–Zehnder index plus .n� 3/. We now put an appropriate translation-
invariant almost-complex structure on the symplectization .R � C; d.et �// of .C; �/. The
differential is the unique Q-linear differential on this algebra satisfying the Leibniz rule and
whose .;

Qk
iD1 i / coefficient is a count of genus-zero holomorphic curves in R � C up

to translation “limiting” to the corresponding Reeb orbits  , .i /
k
iD1 of � (Figure 3). Full

contact homology does not depend on the choice of a compatible contact form.
We have the following conjectural spectral sequence computing CH�.LA; �A/. To

set up this spectral sequence, we need some preliminary definitions. For each I � S , let
EI WD

T
i2I Ei where .Ei /i2S are the irreducible exceptional divisors of our resolution as

above. DefineEo
I WDEI �

S
I¨I 0 EI 0 and letNEo

I be its normal bundle in QA for each I � S .
For each tuple .ki /i2I of integers, there is a U.1/ action on NEo

I preserving the fibers so
that ˇ 2 U.1/ sends a point .xi /i2I 2 NEo

I D
L

i2S�I ..TEI�i jEo
I
/=TEo

I / to .ˇki xi /i2I .
LetNE

=.ki /i2I

I be the quotient ofNEo
I �Eo

I by this action. Suppose our resolution QA admits
a Kähler form ! with an integral lift. Then one can construct a line bundle with curvature
a positive multiple of �2�i! together with a meromorphic section s so that the divisor
associated to s is equal to �

P
i2S wi Ei for some positive integers .wi /i2S .

Conjecture 2.6. Define

Ap;q �

M
¹.ki /2NS

�0W
P

i ki wi Dpº

HpCq�2
P

i ki ai

�
NE

=.ki /
I.ki /i2I

IQ
�

(2.3)
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where I.ki / � ¹i 2 S W ki ¤ 0º. Then there is a spectral sequence converging toCH�.LA; �A/

with E1 page equal to the free supercommutative algebra generated by the bigraded vector
space A�;�, i.e.,

E1
�;� D

M
n�0

Symn
Q.A�;�/: (2.4)

This spectral sequence is very similar to those in [19] and [35], and we expect the
method of proof for that above to be similar in spirit.

Now let us continue with the proof of the lower bound for md.A; 0/ in the case
where md.A; 0/ � 0. Consider the smallest value of p for which the entry E1

p;2md.A;0/�p
in

the spectral sequence above is nonzero. Then for degree reasons, this entry cannot be killed.
Hence full contact homology is nonzero in degree 2md.A; 0/. This implies that there is a
Reeb orbit of lower SFT index 2md.A; 0/ for any generic contact form compatible with �A

and hence hmi.LA; �A/ � 2md.A; 0/, giving us our lower bound.
It would be interesting to know if there are other properties of the singularity 0 2 A

captured by full contact homology. Full contact homology is typically very hard to com-
pute since one has to compute the differential by solving a PDE with asymptotic boundary
conditions. However, the following definition and conjecture might be of help.

Definition 2.7. Let Dz.ı/ � C be the closed disk of radius ı > 0 centered at z 2 C. Define
D.ı/ WD D0.ı/ and D WD D.1/. Define the short arc space Arco.A/ to be the space of holo-
morphic maps u WD!Awhose boundary is disjoint from 0 equipped with theC 1 topology
coming from the embedding in A � CN (see [27, Definition 2(2)]). Let Arc�.A/ be the
disjoint union

F
m2N�0

.Arco.A//m. For each w 2 R, we define Arc�
�w.A/ to be the sub-

space of those tuples .ui /
m
iD1 of arcs for which the sum of the degrees of u�

i .
P

j 2S wj Ej /,
i D 1; : : : ; m is � w, as well as the case m D 0.

For each l 2 N, we define fJetl .A/ to be the set of l-jets of holomorphic maps � W

D.ı/! A, ı > 0 satisfying u�1.0/D 0. We let Jetl .A/ WDfJetl .A/=S1 where the S1 action
rotates the arcs. For each l 2 N, define SJetlŠ

.A/ WD ¹;º t
Fl

j D1.JetlŠ=j
.A//j =Sj where

Sj is the permutation group on j elements. For w 2 R and l > w, we define the map �l;w W

Arc�
�w.A/ ! SJetlŠ

.A/ as follows: Let .ui /
m
iD1 be an element of Arc�.A/ and for each

j D 1; : : : ; m let u�1
i .0/ D ¹zi

1; : : : ; zi
ji
º � D, ji 2 N. Let ı > 0 be very small. Then the

collection of arcs �jD
z

j
k

.ı/, k D 1; : : : ; ji , i D 1; : : : ; m defines an element of SJetlŠ
.A/. If

m D 0 then this corresponds to having no arcs, and we map this to ¹;º.
For eachw 2R, l > w, we define SJetlŠ

�w.A/ to be the image of �l;w equipped with
the finest topology making �l;w continuous (this can be different from the usual jet space
topology, [27, Example 4]). For each w 2 R, there is a natural integration map

H �
c

�
SJetlŠ

�w.A/
�
! H ��n.lŠ�kŠ/

c

�
SJetkŠ

�w.A/
�

(2.5)

for each k � l sufficiently large. Define H �
c .SJet.A// to be

lim
�!
w2R

lim
 �

l

H �Cn.lŠC1/
c

�
SJetlŠ.A/

�
:
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Conjecture 2.8. We have a natural isomorphism CH�.LA; �A/ Š H �
c .SJet.A//.

The parameter w should, very roughly, correspond to the natural action filtration
on full contact homology. Note that for many examples these groups can be nontrivial in
both positive and negative degrees. The following conjecture provides evidence for Conjec-
ture 2.8.

Conjecture 2.9. The same spectral sequence from Conjecture 2.6 computes H �
c .SJet.A//.

We hope that the same methods from [8] can be used to prove Conjecture 2.9. The
filtration associated to this spectral sequence should come from the parameter w above. In
order to prove Conjecture 2.8, one needs to write down an enhanced “PSS”map (see [43]) and
show that it respects both spectral sequences (Conjectures 2.6 and 2.9) (or, more precisely,
the action filtration and the filtration coming from w). A simpler version of this map is
described later on in the next section.

3. Cohomological McKay correspondence

Quotient singularities Cn=G, where G � SU.n/ is a finite group, are natural exam-
ples of singularities to study from a Floer-theoretic perspective. One reason for this is that
they are homogeneous, and this ensures that the link has a compatible contact 1-form with
nice Reeb dynamics. In this section, we will show how Floer theory can shed light on the
cohomological McKay correspondence [44].

Definition 3.1. A crepant resolution of Cn=G is a resolution � W Y ! Cn=G satisfying
c1.Y / D 0.

Let us consider the following open problem.

Conjecture 3.2 (Cohomological McKay correspondence over K, [46, Conjecture 1.1]). Let
K be a field. There is a natural basis of H �.Y IK/ consisting of irreducible representations
of G. In particular, its dimension is the number of conjugacy classes jConj.G/j of G.

By blowing up an existing resolution, one can construct new resolutions of the
same singularity whose cohomology has arbitrarily large rank. However, such resolutions
are typically not crepant. In dimension 3 it was shown that crepant resolutions always exist
(see [6, Theorem 1.2]). However, in dimension 4 there are examples which do not admit any
crepant resolution (see [11, Example 2.28]). Batyrev [4] showed that when KDQ, the rank of
H �.Y IK/ is the number of conjugacy classes of G. However, he did not give a natural basis
for this group.

Theorem 3.3 ([37, Theorems 1.4 and 1.5]). Suppose that G acts freely away from 0 2 Cn and
suppose K is a field whose characteristic does not divide jGj. Let Y be a quasiprojective
crepant resolution. Then there is a Floer cohomology group SH�

C.Y IƒK/ defined over a
field ƒK of the same characteristic as K satisfying the following properties:
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(1) SH�
C.Y IƒK/ is naturally isomorphic to H �.Y IƒK/ (up to a shift in degree)

and

(2) SH�
C.Y IƒK/ has rank equal to jConj.G/j.

Corollary 3.4. Let K be a field whose characteristic does not divide jGj. If G acts freely
away from 0 then the rank of H �.Y IK/ is equal to the number of conjugacy classes of G.

The field ƒK is called the Novikov field over K and is defined as the power series
ring

ƒK D

²X
i2N

ai t
ri

ˇ̌̌̌
ai 2 K; ri 2 R; 8 i 2 N; ri !1 as i !1

³
: (3.1)

Let us now explain how the Floer group SH�
C.Y IƒK/, called positive symplectic

cohomology, is constructed. In order to do this, we need to define Hamiltonian Floer coho-
mology first. Let H D .Ht /t2Œ0;1� be a generic time-dependent Hamiltonian on a symplectic
manifold .X; !/ and let us assume c1.X/ D 0. The chain complex for Hamiltonian Floer
cohomology HF�.H IƒK/ is freely generated over ƒK by 1-periodic orbits  W R=Z! X

of H . This is graded by a version of the Conley–Zehnder index. The differential is a matrix
with respect to this basis of 1-periodic orbits whose .�; C/ entry is a count of cylin-
ders u W R � R=Z! X joining � and C satisfying a Cauchy–Riemann-like PDE @suC

Jt .@t uCXHt / D 0 where .Jt /t2R=Z is a family of almost complex structures on X (these
are called Floer trajectories). The count is weighted by energy, which is a particular integral
over this cylinder, and this is whywe need the Novikov ringƒK. If we did not do this, then the
count might be infinite. Hamiltonian Floer cohomology was originally developed by Floer
in [15]. The book [1] provides a very good introduction to Hamiltonian Floer cohomology.

Symplectic cohomology is a Hamiltonian Floer cohomology group that is usually
defined for noncompact symplectic manifolds satisfying certain convexity properties at infin-
ity. Very roughly, these are Hamiltonian Floer groups associated to Hamiltonians that tend
to infinity very rapidly as one travels to infinity in the symplectic manifold. The fact that the
symplectic manifold is noncompact can create problems such as infinite counts or the dif-
ferential not squaring to zero since Floer trajectories can escape to infinity. However, in nice
cases, one can define symplectic cohomology. There are many different versions of symplec-
tic cohomology (e.g., [9, 10, 16,21,57–59]). Two good surveys of symplectic cohomology are
contained in [40] and [49].

Now let us define SH�
C.Y IƒK/ for our crepant resolution Y . Since Y is crepant, we

have that � is an isomorphism onto its image away from the exceptional locus ��1.0/, and
so we have a natural identification Y � ��1.0/ D .Cn � 0/=G. Since Y is quasiprojective,
we can put a natural symplectic structure !Y on Y which coincides with the standard linear
symplectic structure on Cn=G away from a small neighborhood of ��1.0/ (see [37, Sec-

tion 2.5]). We now let H be a Hamiltonian on Y which is equal to jzj4 near infinity (or some
other rapidly increasing function of jzj). Then we define SH�.Y IƒK/ WDHF�.H IƒK/. This
group is a symplectomorphism invariant of .Y; !Y /. There is a natural map H �.Y IƒK/!

SH�.Y IƒK/ and the cone of the corresponding chain map is called the positive symplectic
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cohomology SH�
C.Y IƒK/, which is the key Floer group from Theorem 3.3. Strictly speak-

ing, the HamiltonianH cannot be exactly jzj4 near infinity since it needs to be generic, and so
in reality it is a very small generic perturbation of such a function near infinity. A standard
argument ensures that the definition does not depend on the specific choice of Hamilto-
nian H .

Let us explain very roughly how to prove parts (1) and (2) of Theorem 3.3. Let us
start with part (1), which states that SH�

C.Y IƒK/ Š H �.Y IƒK/. By the definitions above,
it is sufficient to show SH�.Y IƒK/ D 0. Consider the natural U.1/-action on Cn given by
sending a vector z 2 Cn to e2�i#z for each # 2 R=Z. Such an action lifts to a U.1/-action
on Y (see [37, Lemma 3.4]). For appropriate !Y , one can show that this U.1/-action is the flow
of a Hamiltonian K W Y ! R. Now the key point is that we can deform H in a compact
region of Y so that it is equal to a large multiple of K near the exceptional locus and is a
rapidly increasing function of jzj away from this locus, with high derivatives. This forces
the Conley–Zehnder indices of all the orbits to be very large, since the linearized flow near
each orbit “spins” extremely fast. Hence SH�.Y IƒK/ vanishes since the chain complex can
be made to vanish at any given degree.

The proof of part (2) of Theorem 3.3 is a spectral sequence argument. One first
deforms H in a compact region of Y so that it is C 2-small near the exceptional locus and
is a generic perturbation of a function of jzj elsewhere. The generators of HF�.H IƒK/

away from the exceptional locus correspond to Reeb orbits of an appropriate contact form
on the link S2n�1

" =G of Cn=G where S2n�1
" is the sphere of radius " > 0. Since our link

S2n�1
" is simply connected, we have have a natural bijection �0.L.S2n�1=G// Š Conj.G/

where L.S2n�1/=G is the free loop space of our link. Hence the chain complex computing
SH�

C.Y IƒK/ splits as a direct sum of groups indexed by conjugacy classes of G. However,
the Floer differential might not respect this direct sum structure.

The contact form on our link S2n�1
" =G is the radial one ˛ D 1

2

Pn
iD1 r2

i d#i where
.ri ; #i /, i D 1; : : : ; n are polar coordinates on each factor of Cn. The Reeb flow of this
contact form is the same as the flow of the U.1/-action on S2n�1

" =G up to scaling. Hence
one can compute the generators of the chain complex for SH�

C.Y / using this U.1/-action.
The orbits come in families associated to the eigenspaces of each matrix element

g 2 G � SU.n/ and the cohomology of these families give us the E1 page of a spectral
sequence computing SH�

C.Y IƒK/. Now, instead of computing SH�
C.Y IƒK/, one must first

compute a variant SH�

S1;C
.Y IƒK/ since in this case the spectral sequence degenerates. One

can then show that SH�
C.Y IƒK/ has rank jConj.G/j. This ends the sketch of the proof of

Theorem 3.3.
The proof of part (1) of Theorem 3.3 naturally identifies SH�

C.Y I ƒK/ with
H �.Y IƒK/. However, the proof of part (2) does not produce a similar natural identifi-
cation.

Open Problem 3.5. Does the natural grading by conjugacy classes of G of the chain com-
plex computing SH�

C.Y IƒK/ also get respected by the differential?
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If the answer to this problem is yes, then we get a natural basis ofH �.Y IƒK/ by ele-
ments of Conj.G/. Another issue is that we require that the characteristic ofK does not divide
jGj. We do not know how to show that the spectral sequence computing SH�

S1;C
.Y IƒK/

degenerates when the characteristic of K divides jGj.

Open Problem 3.6. What does the spectral sequence look like for SH�

S1;C
.Y IƒK/ when

the characteristic K divides jGj?

Our work [37] was partly inspired by [27, Section 6], which tries to understand the
cohomological McKay correspondence using arc spaces. Recall in Definition 2.7 that, for
an isolated singularity A, we defined the short arc space Arco.A/. Consider the subspace
ShArc.A/ � Arco.A/ of those arcs u W D ! Cn=G satisfying u�1.0/ D ¹0º. Kollár and
Némethi in [27, Corollary 32] show that the “irreducible components” of ShArc.Cn=G/ are
in natural 1–1 correspondence with Conj.G/. This correspondence is given by the boundary
of each short arc u W D ! Cn=G, viewed as an element of

�0

�
L.Cn

� 0/=G
�
D �0

�
L

�
S2n�1

" =G
��
D Conj.G/: (3.2)

One way of connecting ShArc.Cn=G/ with SH�.Y IƒK/ might be through the PSS map
(see [43]). The PSS map is a natural map from SH�

C.Y IƒK/ to H�.ShArc.Cn=G/IƒK/

given by sending an orbit  to a “cycle” swept out by the moduli space of maps u W C ! Y

so that u.re2�i#/ converges to .#/ as r ! 1 and where the “cycle” is swept out by 0

(Figure 4).


u

Cycle of arcs
swept by maps u.

Figure 4

Arc space PSS map.

The Floer-theoretic methods used to prove Theorem 3.3 work very well if G acts
freely away from 0.

Open Problem 3.7. Is there a way of using the Floer-theoretic methods above to deal with
the case where G does not necessarily act freely away from 0?

The ideas of Section 4 belowmight be of use when we are dealing with this problem
(see Open Problem 4.7 below).
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4. Quantum cohomology of birational Calabi–Yau

manifolds

Recall that two algebraic varieties are birational to each other if they have iso-
morphic dense Zariski-open subsets. The minimal model program in algebraic geometry,
very roughly, is concerned with finding the “smallest” varieties in their birational equiva-
lence class (minimal models). These minimal models are not necessarily unique. Calabi–Yau
manifolds are examples of such minimal models. Therefore it is very natural to ask what
properties birational Calabi–Yau manifolds have in common. For our purposes, we will say
that a Calabi–Yau manifold is a smooth projective variety with trivial first Chern class.

Batyrev showed in [3] that any two birational Calabi–Yau manifolds have the same
Betti numbers. In fact, by using ideas in [12,28] combined with [20], or by [61, Corollary 1.6],
they have the same integral cohomology groups. However, the methods used do not produce
an explicit isomorphism between these groups. Also the cup product structures might not
agree (see [17, Example 7.7]).

There is a deformed version of the cup product called the quantum cup product. Let
us define this. We will fix a field K and a Calabi–Yau manifold X with a Kähler form !

admitting an integral lift. We define the Novikov ring

ƒ!
K D

²X
i2N

ai t
ˇi

ˇ̌̌̌
ai 2 K; ˇi 2 H2.X IZ/; !.ˇi /!1 as i !1

³
: (4.1)

LetA;B;C 2H �.X IK/ be cohomology classes whose degrees sum up to 2n, where n is the
complex dimension ofX , and let a;b;c 2C�.X IK/ be cycles representing the corresponding
Poincaré duals of A; B; C . For each ˇ 2H2.X IZ/, we define the Gromov–Witten invariant
GWX;ˇ

0;3 .A; B; C / 2 Z to be the “count” of holomorphic maps u W P 1 ! X representing
ˇ so that u.0/ maps to a, u.1/ maps to b, and u.1/ maps to c. Technically, in order for
this count to make sense, one needs to perturb the complex structure on X to a generic
domain-dependent family of almost complex structures and count these curves with sign.
Now let A1; : : : ; Ak 2H �.X IK/ be a basis of homogeneous elements and let OA1; : : : ; OAk 2

H �.X IK/ be the dual elements with respect to the pairing .�; �/!
R
X

� [ �. We define
small quantum cohomology to be the unique ƒ!

K-algebra QH
�.X Iƒ!

K/ which is isomorphic
as a graded ƒ!

K-module to H �.X Iƒ!
K/ and whose product ?X satisfies

Ai ?X Aj D

X
ˇ2H2.X IZ/

kX
lD1

GWX;ˇ
0;3 .Ai ; Aj ; Al / OAl t

ˇ : (4.2)

One should think of this product as the cup product which has additional “correction” terms
coming from counts of nonconstant holomorphic maps (Figure 5). For instance, if there were
no nonconstant genus zero holomorphic maps (e.g., when X is an abelian variety) then this
would be equal to the cup product.

Big quantum cohomology is also a deformation of the cup product which is more
general than small quantum cohomology. Its definition involves counts of genus-zero curves
passing through arbitrarily many cycles.
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Ai

Aj

Al OAl

Ai

Aj

Al 0

OAl 0

0

1

1

ˇ ¤ 0
ˇ D 0

Figure 5

Terms in small quantum product. Cycles Poincaré dual to their respective cohomology classes are illustrated.

Conjecture 4.1 (Morrison [38] and Ruan [48]). Any two birational Calabi–Yau manifolds
have isomorphic (small or big) quantum cohomology rings up to analytic continuation.

This conjecture was proven in dimension 3 in [32]. It was shown in [29–31] that if
both Calabi–Yau manifolds are related by a sequence of birational transformations called
ordinary flops then the conjecture above is true for big quantum cohomology (and hence
also for small quantum cohomology). Wang in [60, Section 4.3, Conjecture IV] conjectured
that all such Calabi–Yau manifolds, after deformation, are related by these operations, and
so this would imply Conjecture 4.1. The method of proof in the papers [29–32] above is
given by degenerating the Calabi–Yau manifold in a particular way and looking at Gromov–
Witten invariants on this degeneration. We will describe a completely different approach to
Conjecture 4.1 above using Floer theory, and in particular a modified version of symplectic
cohomology.

Let X and LX be birational Calabi–Yau manifolds and let ! and L! be Kähler forms
on X and LX , respectively, admitting integral lifts. We get two Novikov rings ƒ!

K and ƒ L!
K

defined as in equation (4.1). By [26, Lemma 4.2], there are natural identifications H2.X IZ/Š

H2. OX IZ/, due to the fact that the region in which the birational transform is not an isomor-
phism has complex codimension � 2. Hence from now on, we will not distinguish between
these groups, and sowe can define the intersection of both Novikov ringsƒ

!; L!
K WDƒ!

K \ƒ L!
K.

More explicitly,

ƒ
!; L!
K D

²X
i2N

ai t
ˇi

ˇ̌̌̌
ai 2K; ˇi 2H2.X IZ/; min

�
!.ˇi /; L!.ˇi /

�
!1 as i!1

³
: (4.3)

The following theorem essentially proves Conjecture 4.1 for small quantum cohomology
algebras.
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Theorem 4.2 ([36, Theorem 1.2]). There exists a graded ƒ
!; L!
K -algebra Z together with alge-

bra isomorphisms

Z ˝
ƒ

!; L!
K

ƒ!
K Š QH�

�
X Iƒ!

K

�
; Z ˝

ƒ
!; L!
K

ƒ L!
K Š QH�

�
LX Iƒ L!

K

�
: (4.4)

The downside of this theorem is that the algebra Z is unknown in general, as is the
isomorphisms in (4.4).

4.1. Example
We will now illustrate Theorem 4.2 with an example (see [38, Section 7.3]). Suppose

that X and LX are connected Calabi–Yau 3-folds and that there exists a disjoint union of
connected genus 0 curves C1; : : : ; Ck in X and LC1; : : : ; LCk in LX together with a class � 2

H2.X IZ/ so that

• ŒCj � D � 2 H2.X IZ/ and Œ LCj � D �� 2 H2. LX IZ/ for each j and all connected
genus-zero curves mapping to X or LX , representing a multiple of � , have image
equal to one of these curves,

• the normal bundle of Cj and LCj is O.�1/˚O.�1/ for each j , and

• X and LX are related by an Atiyah flop along all of these curves.

Very roughly, an Atiyah flop along Cj removes Cj and glues it back in with the two O.�1/

factors of its normal bundle swapped. One can think of an Atiyah flop as a kind of 0-surgery
along the “knot” Cj . Since H2.X IZ/ is naturally identified with H2. LX IZ/, we have by
Poincaré duality a natural identification H k.X IZ/ D H k. LX IZ/ where k is even. Hence
from now on we will identify these cohomology groups. Let OA0; : : : ; OAl 2 H 4.X IQ/ be
a basis so that OA0 is Poincaré dual to � and let A0; : : : ; Al 2 H 2.X IQ/ be the dual basis
with respect to the pairing .˛; ˇ/!

R
X

˛ [ ˇ. The algebra Z from Theorem 4.2 is equal
to H �.X Iƒ

!; L!
Q / as a ƒ!; L!-module, and its product ?Z is the unique ƒ!; L!-bilinear map

satisfying

Ai ?Z Aj D Ai [X Aj C kı0i ı0j
OA0t�
C

lX
kD0

X
ˇ…Z�

GWX;ˇ
0;3 .Ai ; Aj ; Ak/ OAktˇ (4.5)

for each i; j 2 ¹0; : : : ; lº. By replacing the class A0 in (4.5) with 1
1�t� A0 and � t��

1�t�� A0,
and the class OA0 with .1� t�/ OA0 and �1�t��

t��
OA0, we get the respective isomorphisms (4.4).

4.2. Symplectic cohomology of compact subsets
The main tool in the proof of Theorem 4.2 is a version of symplectic cohomology,

which is very similar to definitions of symplectic cohomology in [21,57,58].

Definition 4.3. Let .M; !/ be a closed symplectic manifold and let K � M be a compact
subset. Then we define symplectic cohomology of K �M to be

SH�.K �M/ WD lim
�!

a

lim
 �

b

lim
�!

H jK<0

HF�
Œa;b�.H/ (4.6)
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u

A�

AC

�

C

Figure 6

Capped Floer trajectory.

where HF�
Œa;b�.H/ is a Hamiltonian Floer cohomology group which is defined in the same

way as in Section 3, with a few differences:

(1) The chain complex is freely generated over K by pairs .; A/, called capped
orbits of action in Œa; b�, where  W R=Z! M is a 1-periodic orbit of H and
A 2 H2.M;  IZ/ is a homology cycle with boundary  (called a capping);

(2) The action of .; A/ is �
R
A

! �
R

R=Z H..t//dt ;

(3) The differential only counts cylinders u connecting .�; A�/ and .C; AC/, so
that when one caps off each end of u by A� and AC, respectively, one gets a
null-homologous sphere (Figure 6).

Also the limits are taken with respect to the ordering �.

The group SH�.K �M/ naturally has a ƒ!
K-module structure induced by the nat-

ural H2.X IZ/-action on capped orbits given by adding these classes to the cappings A.
It also has a natural “pair of pants” product (see [43]) making it a ƒ!

K algebra. The maps
HF�.H1/! HF�.H2/ with H1 �H2 in equation (4.6) above are defined by counting cylin-
ders in a similar way to the differential. As demonstrated in [57], one should really take the
direct and inverse limits in equation (4.6) at the chain level in some appropriate homotopy-
theoretic sense before taking homology, but we will not do this here for simplicity.

Symplectic cohomology seems to be quite useful when K is a Liouville subdomain
of .M;!/. A Liouville subdomain is a codimension-0 submanifoldK �M satisfying!jK D

d� for some 1-form � with the property that the !-dual X� of � points outwards along @K.
One should think of the last condition as a “convexity” condition. Symplectic cohomology
satisfies the following properties:

(1) If c1.M/D 0 andK is a Liouville subdomain satisfying a certain “index bound-
edness” property then SH�.K �M/ only depends on the isotopy class of K. In
other words, if we have a smooth family of index-bounded Liouville domains
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then the corresponding symplectic cohomology groups are naturally isomor-
phic.

(2) IfK �M is stably displaceable then SH�.K �M/D SH�.M �M/ (a setP �
M is stably displaceable if �.P � S1/ \ P � S1 D ; for some Hamiltonian
symplectomorphism � of M � T �S1).

(3) SH�.M �M/ Š QH�.M Iƒ!
K/.

(4) If c1.M/ D 0 and K is a Liouville domain satisfying this “index bounded-
ness” property then SH�.K � M/ can be computed using Hamiltonians that
are constant outside a neighborhood of K and where these constant orbits do
not contribute the chain complex.

4.3. Idea of proof
Here we will give an idea of the proof of Theorem 4.2. Let � W X Ü LX be our

birational isomorphism between Calabi–Yau manifolds X and LX , and let ! and L! be Kähler
forms on X and LX , respectively, which admit integral lifts. Choose Zariski-dense affine
subvarieties A � X and LA � LX so that � maps A isomorphically to LA. We can modify L! so
that !jQ D ��. L!/jQ for an arbitrarily large compact subset Q of A.

Now one of the key observations is that codimension � 1 subvarieties of Kähler
manifolds are stably displaceable (see [36, Section 6.3]). Combining this with the fact that
c1.X/ D c1. LX/ D 0, one can choose L! very carefully so that there exists a smooth family
Dt , t 2 Œ0; 1� of Liouville subdomains in . LA; L!/ satisfying an index boundedness property
so that ��1.D0/ � Q, X � ��1.D0/ is stably displaceable in .X; !/ and LX �D1 is stably
displaceable in . LX; L!/. Strictly speaking, such a family of Liouville subdomains .Dt /t2Œ0;1�

is not constructed in the paper [36], and something slightly more complicated is done instead
(see [36, Section 7]). However, we will assume .Dt /t2Œ0;1� exists for simplicity.

We will now explain how to construct the ƒ
!; L!
K -algebra Z in the statement of Theo-

rem 4.2. By property (4), we can find chain complexes computing SH�.X � ��1.D0/� X/

and SH�. LX � D0/ involving Hamiltonians which are constant outside a small neighbor-
hood of ��1.D0/ (resp. D0) and such that the constant orbits do not contribute to the chain
complex. Now, the regions VX � X , V LX

� X where � and its inverse are ill-defined are of
complex codimension at least 2 and hence, by a genericity argument, one can ensure that the
Floer trajectories map to the domain or image of � only (Figure 7). This means that we can
define these Hamiltonian Floer groups overƒ

!; L!
K giving us a new “symplectic cohomology”

group Z associated to ��1.D0/ � X . As a result, we can show

Z˝
ƒ

!; L!
K

ƒ!
KŠ SH�

�
X ���1.D0/�X

�
; Z˝

ƒ
!; L!
K

ƒ L!
KŠ SH�. LX �D0� LX/: (4.7)

The following two equations also hold:

SH�
�
X � ��1.D0/

� (2)
D SH�.X � X/

(3)
D QH�

�
X Iƒ L!

K

�
; (4.8)

SH�. LX �D0 � LX/
(1)
D SH�. LX �D1 � X/

(2)
D SH�. LX � LX/

(3)
D QH�

�
LX Iƒ!

K

�
: (4.9)

Our result now follows from equations (4.7)–(4.9).

2631 Floer cohomology, singularities and birational geometry



VX

V LX

A LA

��1.D0/

D0
LA

Identical Floer trajectories.

D1

Figure 7

Floer trajectories avoiding VX and V OX
.

4.4. Further directions
One of the problems with Theorem 4.2 is that the isomorphisms are not explicit.

Let � � X � LX be the closure of the graph of the birational isomorphism �. Then we have
a push–pull map

‰� W H
�.X IK/! H �. LX IK/; ‰�.˛/ WD PD

�
.pr LX

/�

�
� \ pr�X ˛

��
(4.10)

where prX and pr LX
are the natural projection maps from X � LX to X and LX , respectively,

and PD is Poincaré duality.

Conjecture 4.4 ([60, Section 4.3, Conjecture I]). IfKDQ, then we can identify the quantum
cohomology groups of X and LX using the equivalence ‰�.

Since the regions VX and V LX
where � and its inverse are ill-defined have complex

codimension 2, it should be possible to show that the above conjecture is true if we restrict
ourselves to the subalgebra ofH �.X Iƒ!

X / andH �. LX Iƒ!
LX
/ generated by elements of degree

0, 1, 2 and 2n� 2, 2n� 1, and 2n. Motivated by the fact that symplectic cohomology could,
in principle, be computed by relative Gromov–Witten invariants ([49, Remark 8.3], [13, 19]),
it would be interesting to investigate (over any field K) whether the equivalences (4.4) can
be realized in some way by counts of curves in X � LX . This leads us to the following very
difficult open problem:

Open Problem 4.5. Can one produce a purely algebraic proof of Theorem 4.2 using relative
Gromov–Witten invariants motivated by themes in [13] or [19]?

Trying to understand what is going on in dimension 3 could be of use here. There
should be a version of symplectic cohomology of M � M which is defined using bulk
deformed Hamiltonian Floer cohomology (see [18, 54]). This is naturally isomorphic to
big quantum cohomology. However, the methods of Section 4.3 do not work using this
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bulk deformed version of Hamiltonian Floer cohomology due to the fact that the definition
involves both cycles and orbits. There should be a version of Hamiltonian Floer cohomology
which only uses orbits and Riemann surfaces satisfying the perturbed Floer equation joining
them so that the associated symplectic cohomology group of M �M is isomorphic to big
quantum cohomology (see [41]). However, such a construction requires an additional choice
of a “trivialization of a circle action.”

Open Problem 4.6. Can one use the techniques above to prove that birational Calabi–Yau
manifolds have the “same” big quantum cohomology groups (maybe, up to some additional
choices).

The article [53] gave a potential definition for Hamiltonian Floer cohomology in the
setting of orbifolds. This leads to the following open problem:

Open Problem 4.7. Suppose that X and LX are birational Calabi–Yau orbifolds. Can one
use the techniques in the previous section to relate the quantum cohomology of X and LX .

An example of such a birational transform is a crepant resolution as in Section 3.
This problem has an additional serious difficulty which is that the birational transform might
be ill-defined on a codimension 1 region. This means that the analogue of equation (4.7)
does not hold. However, there might be additional genus Gromov–Witten invariants counting
curves mapping to the locus where � and ��1 are ill-defined which might correct for this.
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Surfaces via spinors
and soliton equations
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Abstract

This article surveys the Weierstrass representation of surfaces in the three- and four-
dimensional spaces, with an emphasis on its relation to the Willmore functional. We also
describe an application of this representation to constructing a new type of solutions to the
Davey–Stewartson II equation. They have regular initial data, gain one-point singularities
at certain moments of time, and extend to smooth solutions for the remaining times.
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1. The Weierstrass (spinor) representation of surfaces in

the three-space

TheWeierstrass representation for minimal surfaces in the three-space is as follows:
for any pair of holomorphic functions  1 and N 2 defined in a domain U � C in the complex
plane, the formulae

x1.P / D
i

2

Z �
. 21 C N 22 /dz C . N 21 C  22 /d Nz

�
C x1.P0/;

x2.P / D
1

2

Z �
.� 21 C N 22 /dz C .� N 21 C  22 /d Nz

�
C x2.P0/;

x3.P / D

Z
Œ 1 N 2dz C N 1 2d Nz�C x3.P0/

(1.1)

determine a minimal surface in R3. Here we assume that U is simply-connected or the inte-
grals over cycles in U vanish, and the integrals are taken along a path from a fixed point
P0 2 U to P . Moreover, every minimal surface admits such a representation. Weierstrass
used another data, namely f D N 22 and g D

 1
N 2
. However, for the generalization of this rep-

resentation, it is worth to consider  1 and  2 and treat this pair as a solution of the Dirac
equation

D D 0;  D

 
 1

 2

!
; (1.2)

for a two-dimensional Dirac operator of the form

D D

 
0 @

�N@ 0

!
C

 
U 0

0 U

!
; U D NU ;

where a real-valued potential U vanishes for minimal surfaces. Now the Weierstrass repre-
sentation generalizes as follows:

Theorem 1.1 ([16]). For every solution  of (1.2), the formulae (1.1) define a surface in R3

for which z is a conformal parameter, the induced metric takes the form

ds2 D e2˛dzd Nz; e˛ D j 1j
2

C j 2j
2;

and the potential U of the Dirac operator equals

U D
He˛

2
;

whereH is the mean curvature.

Theorem 1.2 ([26]). Every surface in R3 (with a fixed conformal parameter z on it) admits
such a representation even globally. Therewith is a section of a spinor bundle over the sur-
face, the formU 2dx ^ dy is globally defined and its integral over the surface is proportional
to the Willmore functional

W D

Z
H 2d� D 4

Z
U 2dx ^ dy;

where d� is the induced area form of the surface.
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Hence, being considered for the Dirac operators with general real-valued potentials,
the formulae (1.1) define the Weierstrass (spinor) representation of general surfaces in R3.

Theorem 1.1 was derived from the similar formulae in the book by Eisenhart
[9, Problem 35.4] where instead of (1.2) the following condition is used:

L 1 D L N 2 D 0; L D @N@ �
@ logU
U

N@C U 2:

Here D naturally arises as the “square root” of the Schrödinger operator L. The represen-
tation based on the Dirac operator provides many more opportunities because its potential
has no singularities and the operator has good spectral properties. In the advanced problems
of his textbook, Eisenhart frequently proposed to prove results from various articles, and we
cannot exclude that these formulae might be traced to some earlier publication. It appears
that this local representation is equivalent to another one derived in [14], where the Dirac
operator was not used either.

In [16] the Weierstrass representation was used for introducing the deformations of
surfaces admitting such a representation. The operator D generates a hierarchy of solution
equations of the form

@D

@tn
D ŒD;An� � BnD;

where An and Bn are matrix differential operators such that the principal term of An takes
the form

An D

 
@2nC1 C N@2nC1 0

0 @2nC1 C N@2nC1

!
C � � � :

This evolution preserves the zero energy level ofD deforming the corresponding eigenfunc-
tions

@ 

@t
C A D 0 (1.3)

andD 0 D 0 for the initial data  0 D  jtDt0 , thenD D 0 for all t � t0.
For n D 1, we have the modified Novikov–Veselov (mNV) equation [5]

Ut D

�
Uzzz C 3UzV C

3

2
UVz

�
C

�
U Nz Nz Nz C 3U Nz

NV C
3

2
U NV Nz

�
where

V Nz D .U 2/z :

In the case when U jtD0 depends only on x, we have U D U.x; t/ and the mNV equation
reduces to themodified Korteweg–de Vries equationUt D

1
4
Uxxx C 6UxU

2 (here V DU 2).
In the same manner, the original Novikov–Veselov equation

Ut D Uzzz C U Nz Nz Nz C .V U /z C . NV U / Nz ; V Nz D 3Uz

generalizes the Korteweg–de Vries equation.
The mNV deformation introduced in [16] is as follows: let a surface be induced

by  via (1.1) and consider solutions U and  of the mNV equation and (1.3) with
given initial data. Then for any moment of time, we have a spinor  that determines the
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deformed surface. In fact, we have infinitely many deformations defined up to translations
by .x1.P0; t /; x2.P0; t /; x3.P0; t //. This is some family of the mNV deformations of the
surface.

Theorem 1.3 ([26]). The mNV deformations evolve tori into tori and preserve their confor-
mal classes and the values of the Willmore functional.

Theorems 1.2 and 1.3 hint at the relation of this representation to the Willmore
functional. Formulae (1.1) give immersions of the universal covers of surfaces and there are
no compact minimal surfaces without boundary in R3. Hence the infima for the Willmore
functional for various conformal classes of closed surfaces show how much stress must be
applied for converting an immersion of the universal cover into an immersion of a closed
surface. In Section 2 we briefly expose how the Weierstrass representation was applied to
studying the conformal geometry of surfaces.

In Section 4, in contrast to Section 2 where analysis was applied to geometry, we
discuss the recent applications of geometry to analysis. We show how to construct exact
solutions to the Davey–Stewartson II equation. Therewith, geometry of surfaces helps in
finding a new scenario for creating singularities of solutions with regular initial data.

It would be interesting to apply the Weierstrass representation to other problems
of the surface theory (bending, existence of umbilics, etc.). In particular, if some conjec-
ture appears false, then methods of integrable systems can help in constructing an explicit
counterexample (see, for instance, [1]).

2. Spectral characteristics of D and conformal geometry

of surfaces

TheWillmore conjecture which states that the minimum of the Willmore functional
among tori inR3 is attained at the Clifford torus was proved in [19] bymeans of the geometric
measure theory and calculus of variations.

In the mid-1990s we proposed an approach to proving it using Theorem 1.3 and the
integrable systems theory. This approach was not implemented, but we think it is worth to
be briefly exposed here.

It was conjectured in [26] that

a nonstationary torus (with respect to the mNV flow and up to translations) cannot
be a local minimum of the Willmore functional.

Otherwise, by Theorem 1.3, the minimum of the Willmore functional would contain an infi-
nite family of tori invariant under the mNV flow and this would be very unlikely. By the
general philosophy of integrable systems, the stationary solution to the mNV equation has
the simplest possible spectral curve [27].

Since the flow preserves the conformal classes of tori, the same conjecture has to
be valid for tori of every fixed conformal class.
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For two-dimensional differential operators with periodic coefficients, the spectral
curve (on the zero level energy) parameterizes its Floquet eigenfunctions [8]. In our case a
Floquet eigenfunction  of the operatorD with the eigenvalue (or the energy)E is a formal
solution to the equation

D D E 

which satisfies the periodicity conditions

 .q C j / D e2�i.k;j / .z; Nz/; j D 1; 2;

where 1 and 2 generate the lattice of periods ƒ of the potential U and .k; / D

k1
1
j C k2

2
j is the inner product. The quantities k1; k2 2 C are called the quasimomenta

of  and �.j / D e2�i.k;j / are Floquet multipliers. All possible triples .k1; k2; E/ for
which Floquet functions exist form an analytic subsetQ.U / in C3, invariant under the dual
latticeƒ� � R2 � C2 acting on the quasimomenta. We proved that for the two-dimensional
operators�CU and @y � @2x CU in 1985. However, this paper was unpublished, although
referred in [18] and was exposed in [30]. Now we define the spectral curve as the complex
curve

� D
�
Q \ ¹E D 0º

�
=ƒ�

and consider it up to biholomorphic equivalence, making the definition independent on the
choice of a basis for ƒ. The curve is an invariant of the mNV flow, it is naturally completed
by a couple of points at infinity, which compactify it in the case of finite genus. The Floquet
functions are glued into a meromorphic section over � . The above rough definition must be
detailed for singular spectral curves. In general, the space of Floquet functions corresponding
to a point from � is one-dimensional and the multiple points have to be normalized in such
a manner that for the resulting curve � to every point there corresponds a one-dimensional
space, there is a meromorphic section of this bundle, and every Floquet function is a linear
combination of sections at different points (see the definition of � in [30]). The spinor  
generating a torus via (1.1) has the Floquet multipliers equal to ˙1.

The spectral curve defined for D is a particular case of the general spectral curves
which play a fundamental role in integrable systems. They are the first integrals of the system
(that was first showed for the Korteweg–de Vries equation in [22]. The particular case of
them are the spectral curves of constant mean curvature tori which are always of finite genus
[13,25]. In general, this spectral curve is of infinite genus. For finite genera cases, solutions
to the integrable systems are expressed in terms of theta functions on spectral curves. In our
case all Floquet functions are reconstructed from certain data related to � and the value of
the Willmore functional is also determined by them [27]. We conjectured that

for tori in R3, the curve � , i.e., the set of the multipliers �.j /, is conformally
invariant (as is the Willmore functional).

Since this is evident for translations and rotations, one was left to prove the same for the
Möbius inversion, which was accomplished in [12].
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For the Clifford torus parameterized by x; y such that 0 � x, y � 2� , the potential
U of its Weierstrass representation is

U.x/ D
sin x

2
p
2.sin x �

p
2/

and its spectral curve � is CP 1 with two pairs of glued points.
For differential operators on surfaces of higher genera, the analog of Floquet–Bloch

theory is unknown. It would be interesting to find it, if it exists, for the Dirac operatorD.
For spheres, there are no analogs of the Floquet functions and the zero energy level

ofD just consists of the kernel KerD.
We notice that there is an antiinvolution 

 1

 2

!
�
!

 
� N 2

N 1

!
; �2 D �1; (2.1)

acting on KerD. This implies that the dimension of the kernel over C is always even.
We say that a sphere in R3 admits a spinor representation with a one-dimensional

potential if after removing a certain pair of points we obtain the cylinder R � S1 for which
the potential of the representation depends on x only, i.e.,U DU.x/. These are, for instance,
spheres of revolution. By using the inverse scattering transform of one-dimensional Dirac
operators on the line, we proved

Theorem 2.1 ([28]). For spheres with a one-dimensional potential, we have

W D 4

Z
U 2dx ^ dy � 4�N 2; (2.2)

where dimC KerD D 2N , and the equalities are achieved at the soliton potentials

UN .x/ D
N

2 cosh x
:

We call the spheres that correspond to these potentials soliton spheres, and it appears
that they have very interesting geometrical properties [6]. In [28] we conjectured that

inequality (2.2) holds for all spheres.
Soon after the preprint of [28] appeared, Friedrich showed that this conjecture

implies the following statement:
Given an eigenvalue � of the Dirac operatorD on a two-dimensional spin-manifold

homeomorphic to the two-sphere,

�2Area.M/ � �m2.�/; (2.3)

where m.�/ is the multiplicity of �.
For m.�/ D 2, inequality (2.3) was already proved by Bär [2].
The arguments by Friedrich were as follows. On a spin-manifold of dimension 2

with the metric e2˛dzd Nz, the Dirac operator (on the spin-manifold) takes the form

D D 2e�3˛=2

 
0 @

�N@ 0

!
e˛=2;
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and the equation
D' D �'

is rewritten as " 
0 @

�N@ 0

!
�
�e˛

2

#
 D 0;

where D e˛=2', and if � is constant, then (2.2) implies (2.3). Moreover, if �DH , then this
is exactly the Dirac equation (1.2) (the sign of the mean curvature can be changed without
any loss) and, since e˛ D j j2, we have j'j D 1. Therefore the Weierstrass representation is
rewritten in terms of solutions of the Dirac equation

D' D H'

of constant length, j'j D 1 [11, Theorem 13].
This embedding of the Weierstrass representation into the general framework of

Dirac operators on spin-manifolds appears very fruitful: it led to its generalization, the spino-
rial representation of immersions of manifolds, which are not necessarily two-dimensional,
into certain homogeneous spaces (see [3] and references therein).

The Weierstrass representation for surfaces in R3 was generalized for surfaces in
three-dimensional Lie groups with left-invariant metrics in [4]. It helped establish some facts
on constant mean curvature surfaces in these groups.

It would be interesting, at least as a test problem, to find a discretization of the
Weierstrass representation by means of discrete complex analysis. In [36] that was done for
the generalizations of the representation for time-like surfaces in R2;1;R3;1, and R2;2. But
in these cases complex analysis is not involved because the principal term of the Dirac oper-
atorD has the form

� 0 @�
@� 0

�
where � and � are isotropic coordinates.

The conjectured inequality (2.2) was finally proved with its generalizations for sur-
faces of higher genera:

Theorem 2.2 ([10]). For a closed oriented surface of genus g immersed into R3 via (1.1)
and (1.2), we have

Z
U 2dx ^ dy �

8̂̂̂̂
ˆ̂<̂
ˆ̂̂̂̂:

�N 2; for g D 0,8<: �N 2

4
for N even,

�.N 2�1/
4

for N odd,
for g D 1,

�
4g
.N 2 � g2/; for g > 1;

where dimC KerD D 2N .

3. Surfaces in the four-space and the Davey–Stewartson

equation

Theorem 2.2 was derived from the Plücker formula in the quaternionic algebraic
geometry [10].
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The Weierstrass representation allows applying to surface theory other branches
of mathematics. In Section 2 we discuss an approach based on the spectral theory of the
Dirac operator. The quaternionic algebraic geometry applies algebro-geometrical methods
by considering solutions of the Dirac equation as “holomorphic” sections of spinor bundles.
It starts with treating the symmetry (2.1) as a multiplication by an imaginary unit j and
considering KerD as a linear space over quaternions H [24]. Therewith one may consider
the Dirac operator of the more general form

D D

 
0 @

�N@ 0

!
C

 
U 0

0 NU

!
(3.1)

whose kernel is also invariant under (2.1).
For that we identify C2 with H as follows:

.z1; z2/ ! z1 C jz2 D

 
z1 �Nz2

z2 Nz1

!
and consider the two matrix operators

N@ D

 
N@ 0

0 @

!
; jU D j

 
U 0

0 NU

!
D

 
0 � NU

U 0

!
;

where j 2 H is the imaginary unit for which we have j 2 D �1, zj D j Nz, and N@j D j @.
Then the Dirac equationD D 0 takes the form

.N@C jU /. 1 C j 2/ D .N@ 1 � NU 2/C j.@ 2 C U 1/ D 0:

Since  1 and N 2 are sections of the same bundle E, we rewrite the Dirac equation as

.N@C jU /. 1 C N 2j / D 0

and treatE ˚E as a quaternionic line bundle whose sections are of the form 1 C N 2j . The
symmetry (2.1) induces some quaternion linear endomorphism J of E such that J 2 D �1,
 1 C N 2j ! . 1 C N 2j /j D � N 2 C  1j , and this J defines for any quaternion fiber
a canonical splitting into C ˚ C (in our case this is a splitting into  1 and N 2) and such
a bundle is called a “complex quaternionic line bundle.” The kernel of D D N@ C jU is
invariant under the right-side multiplications by constant quaternions and hence is a linear
space over H.

The “quaternionic” analog of the classical the Plücker formula established in [10]

implies (2.2) and (2.3).
By using the analogy with complex algebraic geometry, other interesting results

were obtained, in particular on Bäcklund transformations and special classes of surfaces.
Moreover, this approach offers another opportunity: in its framework the Weierstrass rep-
resentation was also extended to surfaces in R4 and therewith R4 was naturally identified
with H. In the coordinate language, the representation was written down in [17] and is as
follows.
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LetD be of the form (3.1) and introduce the formally conjugate operator

D_
D

 
0 @

�N@ 0

!
C

 
NU 0

0 U

!
:

Theorem 3.1 ([17]). If  and ' satisfy the equations

D D 0; D_' D 0: (3.2)

then the formulae

xk.P / D xk.P0/C

Z
.xkz dz C Nxkz d Nz/; k D 1; 2; 3; 4;

x1z D
i

2
. N'2 N 2 C '1 1/; x2z D

1

2
. N'2 N 2 � '1 1/;

x3z D
1

2
. N'2 1 C '1 N 2/; x4z D

i

2
. N'2 1 � '1 N 2/;

(3.3)

define the surface in R4 for which the induced metric is given by e2˛dzd Nz D

.j 1j
2 C j 2j

2/.j'1j
2 C j'2j

2/dzd Nz and jU j D
jHje˛

2
with H being the mean curvature

vector.

For U D NU and  D ', this representation reduces to (1.1).
The converse is also true but there is a difference with surfaces in R3 for which a

choice of a parameter z defines  uniquely up to multiplication by ˙1.

Theorem 3.2 ([29]). Every oriented surface (with a given conformal parameter) has repre-
sentation (3.3). The spinors  and ' are defined up to the gauge transformations

 1 ! eh 1;  2 ! e
Nh 2; '1 ! e�h'1; '2 ! e� Nh'2; U ! e

Nh�hU;

where h is holomorphic. For every torus, the potential U may be taken doubly periodic.

Let us explain the appearance of these gauge transformations and, at the same time,
why the dimensions 3 and 4 are distinguished by the existence of such spinor representations.

The Grassmannian QGn;2 of oriented two-planes in Rn is diffeomorphic to the
quadricQ:

z21 C � � � C z2n D 0; .z1 W � � � W zn/ 2 Qn � CP n�1:

To every oriented plane with an positively oriented orthonormal basis e1 D .x1; : : : ; xn/,
e2 D .y1; : : : ; yn/ there corresponds the point .z1 W � � � W zn/; zk D xk C iyk , k D 1; : : : ; n,
of this quadric. Given a surface .X1.z; Nz/; : : : ;Xn.z; Nz// inRn with a conformal parameter z,
we define the Gauss map as

z !

�
@X1

@z
W � � � W

@Xn

@z

�
2 Qn:

It is straightforward to derive that the image of the Gauss map lies in the quadric from the
conformality of z. For n D 3, the quadricQ3 is diffeomorphic to C1 and its rational param-
eterization is

z1 D
i

2
.a2 � b2/; z2 D

1

2
.b2 � a2/; z3 D ab; .a W b/ 2 CP 1;
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and the spinor  is reconstructed from the Gauss map as  1 D a, N 2 D b. For n D 4, we
have the diffeomorphic Segre mapping

CP 1 � CP 1 ! Q4

of the form z1 D
i
2
.a1b1 C a2b2/, z2 D

1
2
.a2b2 � a1b1/, z3 D

1
2
.a1b2 � a2b1/,

z4 D
i
2
.a2b1 � a1b2/, .a1 W a2/ 2 CP 1, .b1 W b2/ 2 CP 1, the spinors take the form

' D .a1; Na2/,  D .b1; Nb2/ and are reconstructed up to the gauge transformations. Since
they have to satisfy (3.2), h has to be holomorphic. For n > 4, the quadricsQn have no such
rational parameterizations.

The operators D and D_ enter the representation of the Davey–Stewartson (DS)
equations via compatibility of linear systems. That led to introducing the DS deformations
of surfaces, the four-dimensional analog of the mNV deformations [17].

We consider one of such deformations for which we proved that it transforms tori
into tori and preserves the Willmore functional 4

R
jU j2dx ^ dy [29]. It has the form

Ut D i
�
Uzz C U Nz Nz C .V C NV /U

�
; V Nz D 2

�
jU j

2
�
z

(3.4)

and is the compatibility condition for the linear problems

D D 0; @t D A 

where

A D i

 
�@2 � V NU N@ � NU Nz

U@ � Uz N@2 C NV

!
:

It is also the compatibility condition for the system

D_' D 0; 't D A_';

where

A_
D �i

 
�@2 � V U N@ � U Nz

NU@ � NUz N@2 C NV

!
:

This equation is called the Davey–Stewartson II (DSII) equation.
The evolution of  and ' gives us a deformation of the Gauss map of surfaces (3.3)

which are at every moment of time defined up to a translation depending on the temporal
variable.

4. The Moutard transformation for the Davey–Stewartson

II equation and its applications

TheMoutard transformation was introduced in 1876 in projective differential geom-
etry for the equation

fxy C Uf D 0:

Given a solution f0 of this equation, the transformation constructs another equation of this
form with a different potential QU such that to every solution of the first equation there corre-
sponds a solution of the new one and this is done by an explicit analytical formula. One of the
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problems to which the transformation was applied is an explicit construction of an immer-
sion of the hyperbolic plane into R3 which, by Hilbert’s theorem, appeared to be impossible.
Later, the one-dimensional version, the Darboux transformation, was constructed and has
found many important applications in mathematical physics.

Recently, the version for the elliptic equation fz Nz C Uf D 0 was applied, for
instance, to constructing in terms of explicit analytical formulae

(1) blowing up solutions of the Novikov–Veselov equation with regular and fast
decaying initial data [34],

(2) two-dimensional vonNeumann–Wigner potentials withmultiple positive eigen-
values [21].

We recall that a potential of the Schrödinger operator on Rn is called von Neumann–Wigner
if it has a positive eigenvalue.

Here we construct a Moutard-type transformation for (3.2) and extend it to a trans-
formation of solutions of the DSII equation.

Extend spinors  and ' to H-valued functions, i.e.,

‰ D

 
 1 � N 2

 2 N 1

!
; ˆ D

 
'1 � N'2

'2 N'1

!
and put

!.ˆ;‰/ D �
i

2
.ˆ>�3‰ Cˆ>‰/dz �

i

2
.ˆ>�3‰ �ˆ>‰/d Nz;

where X ! X> is the conjugation of X , and �3 D
�
1 0
0 �1

�
is the Pauli matrix. If ‰ and ˆ

satisfy the Dirac equations (3.2) then !.ˆ; ‰/ and !.‰; ˆ/ are closed forms. Denote, for
brevity, � D

�
0 1

�1 0

�
. The H-valued function

S.ˆ;‰/.z; Nz/ D �

Z
!.ˆ;‰/

D

Z "
i

 
 1 N'2 � N 2 N'2

 1'1 � N 2'1

!
dz C i

 
 2 N'1 N 1 N'1

� 2'2 � N 1'2

!
d Nz

#
D

Z
d

 
ix3 C x4 �x1 � ix2

x1 � ix2 �ix3 C x4

!
defines a surface in R4 D H with z as the conformal parameter (3.3). Hence we identify S
with a surface in R4.

Let us define the H-valued function

K.ˆ;‰/ D ‰S�1.ˆ;‰/�ˆ>��1
D

 
i NW a

�Na �iW

!
: (4.1)

The following theorem gives a Moutard-type transformation forD.

Theorem 4.1 ([20]). Given ‰0 and ˆ0, the solutions of (3.2), for every pair ‰ and ˆ of
solutions of the same equations, the H-valued functionse‰ D ‰ �‰0S

�1.ˆ0; ‰0/S.ˆ0; ‰/; ê D ˆ �ˆ0S
�1.‰0; ˆ0/S.‰0; ˆ/
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satisfy the Dirac equations
QDe‰ D 0; QD_ê D 0

for the Dirac operators with the potential

QU D U CW; (4.2)

whereW is defined by (4.1) forK.ˆ0;‰0/. Here S.‰0;ˆ0/ is normalized by the condition

�S�1.ˆ0; ‰0/� D
�
S�1.‰0; ˆ0/

�>
:

The potential QU is the potential of the Weierstrass representation of the surface S�1

with z being a conformal parameter. The surface S�1 is obtained from S by composition of
the inversion centered at the origin and the reflection .x1;x2;x3;x4/! .�x1;�x2;�x3;x4/.

For U D NU and ‰ D ˆ, this transformation reduces to the transformation of Dirac
operators with real-valued potentials given in [35] in different form. In [32] it was related
to the Weierstrass representation of surfaces in R3 by proving that it corresponds to the
Möbius inversion S ! S�1. This gives another proof of the conformal invariance of the
Floquet multipliers by explicitly describing the transformations of the Floquet functions.
Theorem 4.1 implies its analog for tori in R4. However, in this case the curve � is not
preserved by the Möbius inversions. For instance, for the Clifford torus in the unit sphere
S3 � R4, the spectral curve � of its Möbius inversion centered at some point is CP 1

except for the case when the surface lies in a plane, in which case it is CP 1 with a pair of
double points [20].

Let us replace K.ˆ;‰/ in (4.1) with

S.ˆ;‰/.z; Nz; t/ D �

Z
!.ˆ;‰/C �

Z
!1.ˆ;‰/;

where

!1.ˆ;‰/ D

 "
ˆ>
z

 
1 0

0 0

!
Cˆ>

Nz

 
0 0

0 1

!#
‰

�ˆ>

" 
1 0

0 0

!
‰z C

 
0 0

0 1

!
‰ Nz

#!
dt:

We have

Theorem 4.2 ([33]). IfU solves the Davey–Stewartson II equation (3.4) and‰ andˆ satisfy
the equationsD‰ D 0, ‰t D A‰,D_ˆ D 0, and ˆt D A_ˆ, then the Moutard transfor-
mation (4.2) of U gives the solution QU of the DSII equation

QUt D i
�

QUzz C QU Nz Nz C 2. QV C
NQV / QU

�
; QV Nz D

�
j QU j

2
�
z

with
QV D V C 2iaz

where a is given by (4.1).
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The geometrical meaning of this transformation is as follows: for every fixed t , the
spinors ‰ and ˆ determine some surface S.t/ in R4 and U is the potential of such a repre-
sentation. The surfaces S.t/ evolve via the DSII equation. We invert every such surface and
obtain the t -parameter family of surfaces QS.t/D S�1.t/which evolve via the DSII equation.
Starting with a family of smooth surfaces and the corresponding smooth potentials U , we
may construct singular solutions of the DSII equation: when S.t/ passes through the origin,
the function QU loses continuity or regularity because the origin is mapped into the infinity
by the inversion.

One of the simplest applications of Theorem 4.2 consists in constructing exact solu-
tions from holomorphic functions. In this case we start from the trivial solution U D V D 0

for which ‰ and ˆ are defined by holomorphic data. For instance, we have

Theorem 4.3 ([33]). Let f .z; t/ be a function which is holomorphic in z and satisfies the
equation

@f

@t
D i

@2f

@z2
:

Then
U D

i.zf 0 � f /

jzj2 C jf j2
; V D 2iaz ;

where

a D �
i. Nz C f 0/ Nf

jzj2 C jf j2
;

satisfy the Davey–Stewartson II equation.

Geometrically, we have the deformation of graphs w D f .z; t/ which are minimal
surfaces in R4 D C2. Whenever f .z; t/ vanishes at z D 0, the graph passes through the
origin and the solution QU loses continuity or regularity. Hence theWeierstrass representation
visualizes the creation of singularity and gives a method for finding such solutions.

We already applied this idea to constructing a solution with a one-point singularity
for the modified Novikov–Veselov equation by using the Enneper surface [31]. However, in
contrast to the mNV equation, the DSII has an important physical meaning.

In the variables
X D 2y; Y D 2x:

the Davey–Stewartson II equation takes the form known in mathematical physics, namely

iUt � UXX C UY Y D �4jU j
2U C 8'XU;

�' D
@2'

@X2
C
@2'

@Y 2
D

@

@X
jU j

2;
(4.3)

where ReV D 2jU j2 � 4'X , 'X D
@'
@X

[7]. This version of the DSII equation is called focus-
ing.

Ozawa constructed a blow-up solution to (4.3) with the initial data

U.X; Y; 0/ D
e�ib.4a/�1.X2�Y 2/

a.1C ..X=a/2 C .Y=a/2/=2/
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and showed that, for constants a and b such that ab < 0, we have

kU k
2

! 2� � ı as t ! T D �a=b

in � 0 where kU k2 D
R

R2 jU j2 dx dy is the squared L2-norm of U and ı is the Dirac distri-
bution centered at the origin [23]. We remark that kU k2 D 2� and the solution extends to
T > �a=b and gains regularity. In [15] it is conjectured for this equation that the blow-up
in all cases is self-similar and the time-dependent scaling is as in the Ozawa solution. This
conjecture is based on numerical results.

Let us consider the simplest examples of the solutions given by Theorem 4.3. We
denote by c a constant which may take arbitrary complex values, and by r we denote jzj;

z 2 C.
Next we consider

(1) f D z2 C 2it C c,

U D
i.z2 � 2it � c/

jzj2 C jz2 C 2it C cj2
;

V D
4. Nz2 � 2it C Nc/

jzj2 C jz2 C 2it C cj2
�
2.2z. Nz2 � 2it C Nc/C Nz/2

.jzj2 C jz2 C 2it C cj2/2
;

(4.4)

and jU j D O. 1
r2
/ as r ! 1. If c is not purely imaginary, then the solution is

always smooth. If c D i t� , � 2 R, then for t D �
�
2
, U has singularity at z D 0

of the type
U � ie2i� as r ! 0; where z D rei� :

We remark thatU 2L2.R2/ for all t and c. Since a small variation of c removes
singularities, they are unstable.

(2) f D z4 C 12itz2 � 12t2 C c,

U D
i.3z4 C 12itz2 C 12t2 � c/

jzj2 C jz4 C 12itz2 � 12t2 C cj2
: (4.5)

This solution becomes singular for c D 12t2 which is possible if and only if
c is real-valued and positive. In this case it has singularities U � �12te2i� at
z D 0 for t D ˙

p
c=12.

The solution to the mNV equation constructed in [31] is real-valued and regular except for
the time Tsing when it has singularity at the origin of the form U � � cos 2�.

We remark that kU k2 is the first integral of the system. For (4.4), it is always equal to
2� except for the time Tsing when the solution becomes singular. For t D Tsing, it is equal to� .
Analogously, for (4.5) it is equal to 4� for t such thatU is nonsingular, and is equal to 3� for
t D Tsing. The multiplicity of the value of this functional to � in both cases is explained by
that the surfaces QS are immersed Willmore spheres (with singularities for singular moments
of time).

By taking polynomials of higher degree for f , we can construct such singular solu-
tions for which the regular initial data have any polynomial decay.
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Are there another physically relevant wave equations that admit solutions with such
singularities?
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The entropy of a hypersurface is defined by the supremum over all Gaussian integrals
with varying centers and scales, thus invariant under rigid motions and dilations. It mea-
sures geometric complexity and is motivated by the study of mean curvature flow. We will
survey recent progress on conjectures of Colding–Ilmanen–Minicozzi–White concerning
the sharp lower bound on entropy for hypersurfaces, as well as their extensions.
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1. Introduction

In the trailblazing work [34], Colding and Minicozzi define a notion of entropy for
hypersurfaces which is given by the supremum over all Gaussian integrals with varying cen-
ters and scales (cf. [67]). It is a geometric quantity that measures complexity and is invariant
under rigid motions and dilations. In this survey, we discuss recent results on geometric
properties of hypersurfaces with low entropy.

Entropy ismotivated by the study ofmean curvature flowwhich is a natural analogue
of the heat equation in extrinsic curvature flows. Any hypersurface evolves under mean cur-
vature flow in the direction of steepest descent for area, and the flow in general may become
singular even before its vanishing. By Huisken’s monotonicity formula [53], the entropy is
decreasing under mean curvature flow. Thus, the entropy at all future singularities for the
flow is bounded from above by that of the initial hypersurface.

By the work of Huisken [53] and Ilmanen [57], all possible blowups at a given sin-
gularity for a mean curvature flow are modeled by self-shrinkers which are hypersurfaces
that flow in a self-similarly shrinking manner. Despite the abundance of self-shrinkers (see
[63,70,71,80]), Colding andMinicozzi [34] study the properties of entropy and prove a striking
result that spheres, generalized cylinders, and hyperplanes are the only stable self-shrinkers
under mean curvature flow.

Inspired in part by the dynamic approach to mean curvature flow of [34], Colding,
Ilmanen, Minicozzi, and White [33] employ a perturbative argument and singularity analysis
for mean curvature flow to show that the round sphere minimizes entropy among all closed
(i.e., compact without boundary) self-shrinkers. They further conjecture that in dimension
less than 7, the round sphere indeed minimizes entropy among all nonflat self-shrinkers and
so does it among all closed hypersurfaces.

After reviewing basic properties of entropy in Section 2, we discuss, in Sections 3
and 4, recent progress towards the above conjectures of Colding–Ilmanen–Minicozzi–White,
with an emphasis on joint work with Bernstein [10,11]. We conclude our discussion in Sec-
tion 5 to explain various stability results for round spheres under small perturbation of
entropy.

2. Entropy for hypersurfaces

In this section, we discuss related background on the Colding–Minicozzi entropy
for hypersurfaces, with an emphasis on its connection with mean curvature flow.

2.1. Basic properties for entropy
Follwing Colding and Minicozzi [34] (cf. [67]), define the entropy for a hypersurface

† � RnC1 by

�Œ†� D sup
x02RnC1;t0>0

.4�t0/� n
2

Z
†

e
�

jx�x0 j2

4t0 dH n (2.1)

where H n is the n-dimensional Hausdorff measure on RnC1.
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It is readily checked that �Œ† � Rk � D �Œ†� and, for � > 0 and y 2 RnC1,

�Œ�† C y� D �Œ†�;

where �† C y is a hypersurface given by

�† C y D
®
z 2 RnC1

j z D �x C y for some x 2 †
¯
:

A direct calculation gives �ŒRn� D 1. Moreover, Stone [76] computes:

2 > �
�
S1

�
>

3

2
> �

�
S2

�
> � � � > �

�
Sn

�
> �

�
SnC1

�
> � � � !

p
2: (2.2)

The definition of entropy can be extended in a straightforward manner to measures
and varifolds on a Euclidean space. There are also interesting studies of analogues of the
Colding–Minicozzi entropy in noncompact Riemannian manifolds under certain curvature
and volume conditions by Sun [78] and in hyperbolic space by Bernstein [9] (see also [90]).

2.2. Mean curvature flow
A one-parameter family of hypersurfaces †t � RnC1 is a mean curvature flow if,

for x 2 †t , �
@x
@t

�?

D H†t ; (2.3)

where the superscript ? means the projection to the unit normal n†t on †t , and H†t is the
mean curvature given by

H†t D �H†tn†t D � div†t .n†t /n†t :

Not only is mean curvature flow a beautiful subject in its own right, it also models various
physical phenomena and has potential applications in numerous scientific fields, such as
biology, computer imaging, and material sciences (see, e.g., [31,62,66,68]).

By the avoidance principle (see [21, 6.3] and [45, Chap. 4]), the mean curvature flow
starting from any given closed hypersurface becomes singular in finite time. A central topic
in the study of mean curvature flow is to understand the asymptotic behavior of the flow near
singularities. Namely, suppose ¹†t ºt2Œ0;T / is a mean curvature flow with T > 0 the first
singular time. Let xi 2 †ti with xi ! x0 and ti ! T be such that the second fundamental
form jA†ti

.xi /j ! 1. If we define

�s D
1

p
T � t

†t and s D � log.T � t /;

then the family ¹�sºs�� logT satisfies, for y 2 �s ,�
@y
@s

�?

D H�s C
y?

2
; (2.4)

which is called the rescaled mean curvature flow associated to the flow ¹†t ºt2Œ0;T /. Thus,
characterizing the limits of �s as s ! 1 plays a fundamental role in the study of singularity
formation for mean curvature flow.
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Observe that the rescaled mean curvature flow ¹�sºs�� logT satisfies

d

ds

�
.4�/� n

2

Z
�s

e�
jyj2

4 dH n

�
D �.4�/� n

2

Z
�s

ˇ̌̌̌
H�s C

y?

2

ˇ̌̌̌2

e�
jyj2

4 dH n; (2.5)

so it is the (negative) gradient flow of the Gaussian surface area

F Œ�� D .4�/� n
2

Z
�

e�
jyj2

4 dH n: (2.6)

Notice that rewinding the change of variables in (2.5) gives exactly the monotonicity for-
mula discovered by Huisken [53]. And it follows that the entropy �Œ†t � is decreasing in t .
Moreover, sending s ! 1, up to passing to a subsequence, �s converges weakly to a critical
point, �0, of the functional F that satisfies the Euler–Lagrange equation

H�0 C
y?

2
D 0; (2.7)

and thus �Œ�0� � �Œ†0� (see [53, 57]). A hypersurface satisfying (2.7) is also called a self-
shrinker. Observe that ¹

p
�t �0ºt<0 is a Brakke flow [21] that satisfies (2.3) weakly, and we

call it a tangent flow at .x0; T /. One may also consider a blowup sequence �i .†ti � xi / with
�i ! 1, and, by Brakke’s compactness [21] (see also [55, Sect. 7]), the limit is also a Brakke
flow, called a limit flow at .x0; T /.

There is a wild zoo of examples of self-shrinkers (see [4, 63, 64, 70, 71, 80]). How-
ever, a long-standing conjecture of Huisken [58, #8] (and of Angenent–Chopp–Ilmanen [5]

in R3) asserts that starting with a generic closed hypersurface, the mean curvature flow
develops only spherical and cylindrical singularities. Recently, Colding and Minicozzi have
pioneered a number of innovative techniques about entropy and made important progress
towards Huisken’s conjecture (see [34–41]). Among them, the most relevant to this article is
the following result.

Theorem 2.1 ([34, Theorem 0.12]). The only smooth embedded entropy-stable self-shrinkers
with polynomial volume growth are round spheres, generalized cylinders and hyperplanes.

Here “entropy-stable” means that there are no perturbations of the self-shrinkers to
decrease the entropy. An easy consequence of Theorem 2.1 is that any singularities for mean
curvature flow that are not spheres or generalized cylinders may be perturbed away in an
appropriate sense. Moreover, it is possible to perturb the initial data to avoid certain unstable
singularities for mean curvature flow (see Chodosh–Choi–Mantoulidis–Schulze [27,28], Sun
[77] and Sun–Xue [81,82]).

Without the smoothness assumption, Colding and Minicozzi show that in dimen-
sion less than 7, Theorem 2.1 still holds for oriented F -stationary integral varifolds that
have singular sets with locally finite codimension-2 Hausdorff measure [34, Theorem 0.14].
Furthermore, in [91], Zhu utilizes an ˛-structural hypothesis in minimal surface theory and
extends this result to higher dimensions. Notice that the hypothesis on the size of singular
set is expected to hold for any self-shrinkers arising in mean curvature flow [57, page 8].
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2.3. Conjectures on the sharp lower entropy bound for hypersurfaces
The dynamic perspective of [34] suggests the following two closely related conjec-

tures of Colding, Ilmanen, Minicozzi, and White (cf. [33, Conjectures 0.9 and 0.10]).

Conjecture 2.2. For n � 6, there is an "0 D "0.n/ > 0 so that if † � RnC1 is a nonflat
self-shrinker not equal to the round sphere, then �Œ†� � �ŒSn� C "0.

Conjecture 2.3. For n � 6, if † � RnC1 is a closed hypersurface, then �Œ†� � �ŒSn�.

Both conjectures are known to be true with n D 1. Indeed, Conjecture 2.2 follows
directly from Abresch–Langer’s classification of self-shrinking planar curves [1]. And by
work of Gage–Hamilton [50] and Grayson [51], every closed embedded curve in plane evolves
under mean curvature flow to a round point which, together with the monotonicity of entropy,
proves Conjecture 2.3.

As remarked before, the mean curvature flow starting from any given closed hyper-
surface becomes singular in finite time and the self-shrinker modeling the singularity of the
flow has lower entropy. Thus, Conjecture 2.3 would follow fromConjecture 2.2. Despite The-
orem 2.1, one of the difficulties to prove Conjecture 2.2 is that if one perturbs a noncompact
self-shrinker, a priori it may flow smoothly without developing singularities.

At last, it may be interesting to think of Conjecture 2.2 as an analogue, in the Gaus-
sian setting, of the question on the sharp lower bound on density for minimal cones (see
Ilmanen–White [60] and Marques–Neves [69]).

3. Sharp lower bound on entropy for self-shrinkers

In this section, we discuss recent progress towards Conjecture 2.2. First, Brakke’s
local regularity [21, 6.1] implies that Rn has the least entropy of all self-shrinkers and, more-
over, there is a gap to the next lowest (see also White [88]). As such, Conjecture 2.2 concerns
the sharp lower entropy bound with a gap for all nonflat self-shrinkers.

Observe that if an immersed hypersurface has entropy strictly less than 2, then it
must be embedded. Thus, we always assume embeddedness for the remainder of this section.
Moreover, by the Frankel property (see [85, Theorem 7.4] and [61, Theorem C]), any embedded
self-shrinker is connected.

3.1. Closed self-shrinkers with low entropy
In [33], Colding, Ilmanen, Minicozzi, and White initiate the study of Conjecture 2.2

and prove the following result.

Theorem 3.1 ([33]). Given n, there exists " D ".n/ > 0 so that if † � RnC1 is a closed
self-shrinker not equal to the round sphere, then

�Œ†� � �
�
Sn

�
C ": (3.1)
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Moreover, if

�Œ†� � min
²

�
�
Sn�1

�
;

3

2

³
; (3.2)

then† is diffeomorphic to Sn. (If n > 2, then �ŒSn�1� < 3
2
and the minimum is unnecessary.)

Outline of the proof. By Abresch–Langer [1], the theorem is vacuously true with n D 1;
thus, assume n � 2 below. We also assume �Œ†� � min¹�ŒSn�; 3=2º, as otherwise the the-
orem follows from inequality (2.2). As † is closed and not round, it follows from Colding–
Minicozzi’s classification of stable self-shrinkers, Theorem 2.1, that † is entropy unstable.
Thus, there is a nearby hypersurface Q† with the following properties:

(1) �Œ Q†� < �Œ†�;

(2) Q† is inside of †, i.e., the compact region of RnC1 bounded by † contains Q†;

(3) H Q† �
1
2
x � n Q† > 0 (with a suitable choice of the unit normal of Q†).

(See [34, Corollary 5.15, Theorem 4.30, and Theorem 0.15].)
Next, one may use a Simon-type equation and the parabolic maximum principle

to show that, starting from Q†, the rescaled mean curvature flow, i.e., a family of hypersur-
faces Q†t � RnC1 flowing by equation (2.4), preserves property (2) and bounds the second
fundamental form A Q†t

by

jA Q†t
j
2

� Ce�2t

ˇ̌̌̌
H Q†t

�
1

2
x � n Q†t

ˇ̌̌̌2

(3.3)

for some constant C depending on Q†. As Q†t becomes singular in finite time, a (subse-
quential) limit of blowups of the rescaled flow Q†t at the singularity is given by a (possibly
singular) self-shrinker � . More crucially, estimate (3.3) gives

jAj � CH on the regular part of � . (3.4)

Appealing to the monotonicity of entropy, property (1) and the entropy bound of †

gives that

�Œ�� � �Œ Q†� < �Œ†� � min
²

�
�
Sn�1

�
;

3

2

³
:

Thus, by Allard’s regularity (see [3] or [73]) and estimate (3.4), � is a smooth embed-
ded mean-convex self-shrinker. Thus, the classification of mean-convex self-shrinkers of
Huisken [53] and of Colding–Minicozzi [34, Theorem 0.17] implies � is of the form
Sk � Rn�k . Furthermore, the entropy bound of � ensures � is the round sphere. Thus,
It follows that Q†t flows smoothly until it vanishes in a round point. Hence, as by construc-
tion Q† can be chosen to be sufficiently close, in the C 1 topology, to †, it follows that
�Œ†� > �Œ Q†� � �ŒSn� and † is diffeomorphic to Sn.

Finally, to see that there is a gap, one argues by contradiction. Suppose there is a
sequence of closed self-shrinkers †i that are not round with entropy converging to �ŒSn�.
Like before, perturbing these self-shrinkers and then applying rescaled mean curvature flow
to the perturbations gives a sequence of flows Q†i

t with entropy less than or equal to �Œ†i � and
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developing a spherical singularity in finite time. By the monotonicity of entropy, rescaling
the Q†i

t about the spherical singularity creates a new sequence of rescaled mean curvature
flows converging to the static sphere. This contradicts that, by Huisken [53], for i large †i

has negative curvature at some point.

Remark 3.2. In the proof of Theorem 3.1, the number 3
2
in the minimum of (3.2) is only

used to rule out the possibility of triple junctions arising in the rescaled mean curvature
flow. However, by the orientability and results on mod 2 flat chains [89], the second part of
Theorem 3.1 still holds under the weaker assumption that �Œ†� � �ŒSn�1�.

3.2. Noncompact self-shrinkers with low entropy
The arguments for Theorem 3.1 fail on noncompact self-shrinkers because perturb-

ing a noncompact self-shrinker and applying rescaled mean curvature flow to the perturba-
tion a priori may yield a rescaled mean curvature flow that has no singularities in finite time.
To overcome this issue, it is needed to combine ideas from the proof of Theorem 3.1 and
[11,14].

A starting point is to understand the asymptotic structure of noncompact self-
shrinkers. It is shown in [83] that any noncompact self-shrinker in R3 of finite genus is
smoothly asymptotic (at infinity) to a cone or a cylinder (see also [79, Appendix A]). Assum-
ing the noncompact self-shrinker has entropy bounded by that of the circle instead, a stronger
result is true (cf. [10, Proposition 4.5]).

Lemma 3.3. If † � R3 is a noncompact self-shrinker with �Œ†� � �ŒS1�, then one of the
following is true:

(1) † is isometric to a cylinder.

(2) There is a regular cone C � R3 so that † is smoothly asymptotic to C , i.e., as
� ! 0C, the �† converges to C in C 1

loc .R
3 n ¹0º/. In particular, the curvature

of † is quadratically decaying at infinity.

Here a regular cone is a proper subset of RnC1 that is invariant under dilations and the link
of the cone is a smooth embedded codimension-one submanifold of Sn.

Proof. By definition, there is a cone C � R3 so that as � ! 0C, the �† converges, in the
Hausdorff distance, to C . Fix any y 2 C n ¹0º. Observe that

p
�t †, t < 0, is a mean cur-

vature flow converging to C at time 0. Thus, as �Œ†� � �ŒS1� < 2, it follows from White’s
stratification theorem [87] that any tangent flow at .y; 0/ is a multiplicity-one self-shrinker of
the form � � R. Furthermore, by Abresch–Langer’s classification of self-shrinking planar
curves [1], � D R or S1. If � D S1, then Huisken’s monotonicity gives† splits off a line and,
thus, is isometric to a cylinder. If � D R, then Brakke’s local regularity [21] (see also White
[88]) implies the flow is regular near .y; 0/. As y is arbitrary, the second item follows.
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Next, it is shown in [11] that there is a topological restriction on asymptotically con-
ical self-shrinkers with entropy less than or equal to that of the round cylinder. This is the
key to the proof of Conjecture 2.2 with n D 2.

Theorem 3.4 ([11]). For n � 2, let † � RnC1 be a self-shrinker that is smoothly asymptotic
to a regular cone C . If �Œ†� � �ŒSn�1�, then the link of the asymptotic cone C separates
Sn into two connected components both diffeomorphic to †. As a consequence, the link is
connected.

Outline of the proof. The arguments belowmay be thought of a natural analog, in the asymp-
totically conical setting, of the arguments in the proof of Theorem 3.1. However, there is an
essential difference: while it is exploited there that the flow of a closed hypersurface must
form a singularity in finite time, it is shown below that the flow of an asymptotically conical
hypersurface with small entropy must exist without singularities for long-time and the flow
eventually becomes star-shaped.

As the theorem is trivially true for hyperplanes, without loss of generality assume
† ¤ Rn. By Theorem 2.1, † is entropy unstable, so there are two nearby hypersurfaces
Q†˙ � RnC1 such that

(1) �Œ Q†˙� < �Œ†� � �ŒSn�1� D �ŒSn�1 � R�;

(2) Q†C lies in one side of † while Q†� lies on the other side of †;

(3) H �
1
2
x � n > K.1 C jxj2/� on Q†˙ (with respective to the correct orientation)

for constants K > 0 and � < �1 both depending on †;

(4) Q†˙ are both smoothly asymptotic to the cone C .

In the proof of Theorem 3.1, it is convenient to think of self-shrinkers as static points
for the rescaled mean curvature flow and show the sign of H �

1
2
x � n is preserved under the

flow. Here it is crucial to instead study shrinker mean curvature relative to the space-time
point X0 D .x0; t0/ and at time t (see also [75])

SX0;t
D 2.t0 � t /H � .x � x0/ � n: (3.5)

By the parabolic maximum principle, the sign of shrinker mean curvature is preserved under
the mean curvature flow starting with Q†˙ at time �1. Notice that shrinker mean curvature
makes senses for mean curvature flows which start close to a self-shrinker but that persist up
to (and beyond) the singular time of the self-shrinker, which is the key to this proof.

Arguing similarly as in the proof of Theorem 3.1 and invoking property (1) give that
the flows Q†˙

t starting with Q†˙ at time�1 both exist smoothly for long-time and become star-
shaped at time 0. As Q†�

0 and Q†C
0 lie on different sides ofC and are both smoothly asymptotic

to C , it follows that the link of C divides Sn into two components !C and !� over which
Q†C

0 and Q†�
0 are radial graphs, respectively. Thus, Q†˙

0 and !˙ are diffeomorphic. Hence, by
construction, Q†�

0 and Q†C
0 are both diffeomorphic to † and so are !� and !C.
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Moreover, by the arguments in the proof of Theorem 3.4 and standard topological
facts, Theorem 3.4 can be further refined.

Theorem 3.5 ([14, Theorem 1.2]). For n � 2, let† � RnC1 is a self-shrinker smoothly asymp-
totic to a regular cone C . If �Œ†� � �ŒSn�1�, then † is contractible and the link of the
asymptotic cone C is a homology .n � 1/-sphere.

Immediately, the classification of surfaces and Alexander’s theorem [2] gives the
following consequence.

Corollary 3.6. For 2 � n � 3, let † � RnC1 be a self-shrinker smoothly asymptotic to a
regular cone. If �Œ†� � �ŒSn�1�, then † is diffeomorphic to Rn.

Wenow explainwhyConjecture 2.2 is truewith n D 2. Let† � R3 be a self-shrinker
with �Œ†� � �ŒS1�. If† is closed, then, by Theorem 3.1 and remark (3.2),† is diffeomorphic
to S2. If † is noncompact, then Lemma 3.3 implies that it is either a cylinder or smoothly
asymptotic to a regular cone. In the latter case, Corollary 3.6 implies † is diffeomorphic to
R2. Thus, by Brendle’s classification for genus-zero self-shrinkers [22], † is a round sphere,
a cylinder or a plane. Hence, it follows that the round sphere has the lowest entropy among
all nonflat self-shrinkers in R3 and cylinder has the second lowest. In particular, this proves
Conjecture 2.2 with n D 2 and "0.2/ D �ŒS1� � �ŒS2� > 0.

Furthermore, there is a gap to the third lowest. To see this, suppose there is a
sequence of self-shrinkers †i � R3 so that �ŒS1� < �Œ†i � < �ŒS1� C i�1. Thus, up to pass-
ing to a subsequence, the †i converges smoothly to a self-shrinker †0 with �Œ†0� D �ŒS1�.
By the preceding discussions, †0 is a cylinder. In particular, †0 has positive mean curvature.
The nature of convergence ensures that, for large i , †i also has positive mean curvature
in a large compact set. Hence, by the cylinder rigidity of Colding–Ilmanen–Minicozzi [32],
for i large †i is a cylinder, contradicting the entropy bound of †i . Hence, we arrive at the
following gap result.

Corollary 3.7 ([11, Corollary 1.2]). There is a ı > 0 so that if † � R3 is a self-shrinker not
equal to a round sphere, a cylinder or a plane, then �Œ†� � �ŒS1� C ı.

4. Sharp lower bound on entropy for closed

hypersurfaces

In this section, we discuss a complete resolution of Conjecture 2.3, which asserts
that round spheres have the least entropy of closed hypersurfaces of dimension less than 7.
By definition (see (2.1)) �Œ†� � 1 for any hypersurface † � RnC1. In fact, Chen [25] shows
that �Œ†� D 1 if and only if † is a hyperplane. Though a hyperplane can be approximated
by closed hypersurfaces, Conjecture 2.3 claims that the entropy of any closed hypersurface
is strictly larger than 1.

In [10], Bernstein and the author use a weak mean curvature flow and analyze termi-
nal singularities to confirm Conjecture 2.3 (compare Ketover–Zhou [65]) After that, Zhu [91]
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further elaborates on the Colding–Minicozzi classification of stable self-shrinkers (see The-
orem 2.1) to extend Conjecture 2.3 to all dimensions.

Theorem 4.1 ([10,91]; cf. [65]). If † � RnC1 is a closed hypersurface, then �Œ†� � �ŒSn�

with equality if and only if † is a round sphere.

Despite the discussion of Section 2.3, the proof of Theorem 4.1 that we explain
below is independent of Conjecture 2.2. We give necessary background on some key ingre-
dients that may be of independent interest and then sketch the proof of Theorem 4.1.

4.1. Weak mean curvature flow
Among various notions of weak mean curvature flow, the most relevant to this arti-

cle are the Brakke flow and level set flow. Following Ilmanen [55] (cf. [21]), a Brakke flow is
a one-parameter family of Radon measures onRnC1 which satisfy equation (2.3) in a certain
weak form. The Brakke flow ensures that the mass of the measures decreases along the flow.
A Brakke flow is integral if, at almost all times, the flow is an integer rectifiable Radon mea-
sure. Thinking of hypersurfaces † � RnC1 as measures H nb†, any smooth mean curvature
flow is an integral Brakke flow.

Motivated by work of Osher–Sethian [72] in numerical analysis, the theory of level
set flows has been established independently by Chen–Giga–Goto [26] and Evans–Spruck
[46–49] (cf. [54,55]). A level set flow is a family of hypersurfaces obtained in the following
way. First, embed a hypersurface † � RnC1 as the 0-level set of a Lipschitz function on
RnC1. Then evolving the function in the way that, intuitively, every level set of the function
flows by mean curvature yields a family of Lipschitz functions on RnC1. The level set flow
of † is given by the 0-level set of the family of functions. It is shown, for instance, in [46],
that the level set flow is well defined in the sense that it is independent of the choice of initial
functions and coincides with the smooth mean curvature flow as long as the latter exists.

For the purposes of this article, Brakke flows have two important properties. The
first is that Huisken’s monotonicity formula [53] also holds for Brakke flows (see [57] and
[86]). The second is the powerful regularity of Brakke [21] for such flows. A major technical
difficulty in using Brakke flows is that there is a great deal of nonuniqueness as, by construc-
tion, Brakke flows are allowed to vanish instantaneously. On the other hand, the level set
flow satisfies a strong maximum principle and thus is unique. In [55], Ilmanen uses an ellip-
tic regularization procedure to construct a multiplicity-one Brakke flow that is supported on
any given nonfattening level set flow (cf. Evans–Spruck [49]). Here a level set flow is nonfat-
tening if the flow does not develop nonempty interiors. Observe the nonfattening condition
is generic. Thus, it suffices to consider the closure (under Brakke’s compactness) of the set
of integral Brakke flows constructed by the elliptic regularization procedure.

4.2. Noncollapsed self-shrinkers and Brakke flows
An important notion of being noncollapsed for self-shrinkers and, more generally,

for flows is introduced in [10] and is used to ensure nonvanishing. A self-shrinkingmeasure on
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RnC1 is an integer n-rectifiable Radon measure � on RnC1 such that the associated varifold
is F -stationary.

Definition 4.2. A self-shrinking measure � on RnC1 is noncollapsed if there are y 2 RnC1

and R > 4
p

n so that

(1) spt.�/ is regular (i.e., smooth properly embedded) in the (open) ball BR.y/;

(2) spt.�/ separates BR.y/ � RnC1 into two connected components �C and ��

containing closed balls NB2
p

n.xC/ and NB2
p

n.x�/, respectively.

The measure � is strongly noncollapsed if � � �Rk is noncollapsed for all k � 0, where
�Rk is the k-dimensional Hausdorff measure on Rk .

For instance, if � is a noncompact self-shrinking measure on R3 with �Œ�� < 3=2,
then � is strongly noncollapsed (cf. Lemma 3.3). On the other hand, the avoidance principle
implies compact self-shrinking measures on RnC1 are all collapsed.

In an analogous way, define (strongly) noncollapsed Brakke flows as follows.

Definition 4.3. An integral Brakke flow K D ¹�t ºt�t0 in RnC1 is noncollapsed at time �

if there are .y; s/ 2 RnC1 � .t0; �/, R > 4
p

n.� � t0/, and 0 < " < min¹� � s; s � t0º so
that

(1) K is regular in BR.y/ � .s � "; s C "/;

(2) spt.�s/ separates BR.y/ � RnC1 into two connected components �C and ��

containing closed balls NB2
p

n.��s/.xC/ and NB2
p

n.��s/.x�/, respectively.

The Brakke flow K is strongly noncollapsed at time � if ¹�t � �Rk ºt�t0 is noncollapsed at
time � for all k � 0.

Note that if � is a self-shrinking measure that is (strongly) noncollapsed, then the
associated Brakke flow is (strongly) noncollapsed at time 0. A key observation is that being
(strongly) noncollapsed at a time is an open condition for integral Brakke flows. Thus, given
an integral Brakke flow K with finite entropy, if a tangent flow of K at .y; �/ is (strongly)
noncollapsed at time 0, then K is (strongly) noncollapsed at time � .

There is a general structural result for self-shrinking measures with entropy less
than that of a round sphere. It follows from an inductive argument and White’s stratification
theorem [87].

Proposition 4.4 ([10, Proposition 4.12]). For n � 2, if � is a self-shrinking measure on RnC1

with �Œ�� < �ŒSn�, then one of the following holds:

(1) � has compact support.

(2) � is strongly noncollapsed.

(3) There is a self-shrinking measure � on RnC1 so that �Œ�� � �Œ�� and
� D O� � �Rn�k for O� a compact self-shrinking measure and 1 � k � n � 1.
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4.3. Outline of the proof of Theorem 4.1
By work of Gage–Hamilton [50] and Grayson [51], the claim is true with n D

1. To that end, assume n � 2. Argue by contradiction, then suppose �Œ†� < �ŒSn�. Let
K D ¹�t ºt�0 be the integral Brakke flow in RnC1 with �0 D H nb†. By the spheres
comparison and avoidance principle, the extinction time of K , T0.K/ satisfies

0 < T0.K/ D sup
®
t � 0 j spt.�t / ¤ ;

¯
< 1:

Appealing to Definition 4.3 and the avoidance principle implies that K is collapsed at time
T0.K/. As being noncollapsed is an open condition for Brakke flows, any tangent flow of
K at time T0.K/ is collapsed at time 0. Recall from Section 2.2 that tangent flows are
given by self-shrinking measures. Thus, it is enough to show, for all 1 � k � n, the set,
C�Mk.�ŒSn�/, of all compact self-shrinking measures on RkC1 that have entropy less than
�ŒSn� is an empty set, because it would follow from Proposition 4.4 that all tangent flows
are strongly noncollapsed at time 0, giving a contradiction.

OnR2, all self-shrinkingmeasures with entropy less than 3=2 are smooth embedded
and thus have been classified byAbresch–Langer [1]. Thus, by a direct computation, the claim
is true with k D 1. Suppose, inductively, the claim holds for all 1 � k � l � 1. Assume
l < n C 1, as otherwise we are done. Argue by contradiction, then suppose the claim were
false for k D l . Take an entropy minimizing sequence of compact self-shrinking measures
�i on RlC1 with �Œ�i � < �ŒSn�. Then, up to passing to a subsequence, the �i converges to
a self-shrinking measure �0 with �Œ�0� < �ŒSn�. As any compact self-shrinking measure
is collapsed, the �i are all collapsed. By the openness of being noncollapsed, �0 is also
collapsed. Thus, by the inductive hypothesis and Proposition 4.4, �0 has compact support.
Our construction and the entropy bound ensure �0 is entropy stable and has a singular set of
codimension at least 2. Hence, appealing to Colding–Minicozzi [34, Theorem 0.14]when l � 6

while to Zhu [91, Theorem 1.2] when l � 7 gives �0 D H lbSl , contradicting �Œ�0� < �ŒSl �.
It remains only to characterize the equality case. Suppose �Œ†� D �ŒSn�. If † is

not (modulo translations and dilations) a self-shrinker, then applying mean curvature flow to
† for short time yields a closed hypersurface Q† with �Œ Q†� < �ŒSn�. This contradicts what
we have just shown. Thus, modulo translations and dilations, † is a self-shrinker. Moreover,
† is entropy stable, as otherwise one finds a perturbation of † so that the perturbation is a
closed hypersurface with strictly less entropy, giving a contradiction. Thus, the classification
of entropy stable self-shrinkers, Theorem 2.1, implies † is a round sphere.

5. Stability for the entropy inequality

We continue to discuss a natural follow-up question to Theorem 4.1 that whether
a closed hypersurface with entropy sufficiently close to the lowest is itself close to a round
sphere. There are various perspectives of this question. For instance, Wang [84] proves a
forward analogue of Brakke’s clearing-out lemma [21] and establish an explicit relationship
between a certain normalized Hausdorff distance of a surface to a round sphere and the
difference between their entropy (cf. [12]). It is also interesting to approach this question
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from a topological viewpoint. Indeed, an immediate application of mean curvature flow and
Corollary 3.7 is that any closed surface in R3 with entropy less than or equal to that of a
round cylinder has genus zero. In particular, such a surface is isotopic to S2.

A conditional isotopic stability result is also true in general dimensions. To state
the hypotheses, we follow relevant notions of [14]. For ƒ > 0, let RMC�

n.ƒ/ be the set of
nonflat regular minimal cones C � RnC1 with �ŒC � < ƒ, and let ��

n .ƒ/ be the set of nonflat
self-shrinkers † � RnC1 with �Œ†� < ƒ. The first hypothesis is

RMC�
k.ƒ/ D ; for all 3 � k � n. (?n;ƒ)

As all regular minimal cones in R2 consist of unions of rays, RMC�
1.ƒ/ D ;. Similarly, as

geodesics in S2 are great circles, RMC�
2.ƒ/ D ;. The second hypothesis is

��
n�1.ƒ/ D ;: (??n;ƒ)

As round cylinders are nonflat self-shrinkers, (??n;ƒ) holds only if ƒ � �ŒSn�1�. Bernstein
and the author [17] and Chodosh–Choi–Mantoulidis–Schulze [27] employ different strategies
to prove the following conditional result in general dimensions.

Theorem 5.1 ([17, Theorem 1.3]; cf. [27, Theorem 10.1]). Fix n � 3 and ƒ � �ŒSn�1�. If (?n;ƒ)
and (??n;ƒ) both hold and † is a closed connected hypersurface in RnC1 with �Œ†� � ƒ,
then † is smoothly isotopic to Sn.

Remark 5.2. By Marques–Neves’ proof of the Willmore conjecture (see [69, Theorem B])
RMC�

3.�ŒS2�/ D ;. And Corollary 3.7 ensures ��
2 .�ŒS2�/ D ;. Thus, (?n;ƒ) and (??n;ƒ)

are both fulfilled with n D 3 and ƒ D �ŒS2�.

5.1. Overview of the proof of Theorem 5.1
The basic idea is, again, to apply mean curvature flow to † and then analyze the

behavior of the flow near singularities. Let K be the Brakke flow starting at †. If, modulo
translations and dilations, † is a self-shrinker, then the claim follows from Theorem 3.1.
Otherwise, the entropy is strictly decreasing under the flow. Then it is shown in [14, Sect. 3]

that, by hypotheses (?n;ƒ) and (??n;ƒ), appealing to Allard’s regularity [3] andWhite’s strat-
ification theorem [87] implies that any singularities for K are modeled by smooth embedded
multiplicity-one self-shrinkers, which are either compact and, by Theorem 3.1, smoothly
isotopic to Sn, or noncompact asymptotically conical.

Due to the lack of a classification for self-shrinkers of simple topology in general
dimensions, it seems very difficult to rule out the possibility of these asymptotically conical
singularities for K . However, as suggested by Theorem 2.1, such singularities are unstable
under mean curvature flow and are expected to be perturbed away in an appropriate sense.
This strategy has been carried out in [27]. Namely, it is shown that the ancient mean curvature
flow that lies on one-side of a given asymptotically conical self-shrinker exists uniquely
for long-time. As an application, perturbing † and applying mean curvature flow to the
perturbation gives a mean curvature flow that is smooth until it disappears in a round point.
The claim follows immediately from this.
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The strategy of [17] is distinct from that of [27] and relies on the study of self-
expanding solutions to mean curvature flow [13,15–20]. There are two key ingredients. One is
an application of a forward analogue of Huisken’s monotonicity formula for flows emerging
from a conical singularity [15] (see also Section 5.2) to show that taking a second blowup
gives self-expanding flows. Another is a topological uniqueness for self-expanders asymp-
totic to a given cone with entropy less than that of a round cylinder [16] (see also Section 5.3).
Thus, combining these with a suitable bubble-tree blowup argument implies K is smooth at
almost all times and stay in the same isotopic class whenever it is smooth. Hence, as near its
extinction point K is isotopic to the shrinking spheres, it follows that † is isotopic to Sn.

5.2. Forward monotonicity formula for flows coming out of cones
Huisken’s monotonicity formula implies any tangent flows are backwardly self-

shrinking. On the other hand, it is unknown that whether tangent flows forward in time are
self-expanding or not. Nonetheless, suppose T D ¹�t ºt2R is a tangent flowwith�0 D H nbC

for C a regular cone in RnC1. Let T 0 D ¹�0
t ºt2R be a tangent flow of T at .0; 0/. Thus, T 0

is self-shrinking for negative times and equal to �t for all t � 0. To that end, we explain the
reason for that T 0 is self-expanding for positive times.

Consider the (forward) rescaled flow ¹�sºs2R associated to T bRnC1 � .0;1/ about
.0; 0/. Appealing to [56] and [27, Sect. 8] (cf. [44]) gives, for all s > 0, that spt.�s/ is trapped
between two self-expanders�� and�C, both smoothly asymptotic toC . Here self-expanders
are critical points for the expander energy functional

EŒ�� D

Z
�

e
jxj2

4 dH n: (5.1)

Following a suggestion of Ilmanen [56], define the relative expander entropy of �s relative
to �� by

ErelŒ�s; ��� D lim
R!1

�Z
BR

e
jxj2

4 d�s �

Z
��\BR

e
jxj2

4 dH n

�
: (5.2)

In [15], Bernstein and the author employ calibration type arguments to show the limit in (5.2)
exists and is finite. Prior to that, this relative functional has been studied by Ilmanen–
Neves–Schulze [59] in the curve case. Deruelle and Schulze [43] investigate this relative func-
tional in general dimensions and exploit the convergence rate between two self-expanders
[8] to show it is well defined and finite for pairs of self-expanders asymptotic to the same
cone.

Furthermore, it is shown in [15] that there is a monotonicity formula for the relative
expander entropy for flows emerging from a conical singularity. Applying this formula to
¹�sºs2R yields that, for s1 < s2,

ErelŒ�s2 ; ��� � ErelŒ�s1 ; ��� D �

Z s2

s1

Z ˇ̌̌̌
H �

x?

2

ˇ̌̌̌2

e
jxj2

4 d�s ds: (5.3)

As a consequence, given a sequence si ! �1, there is a subsequence sj so that the �sj

converges to a critical point of the functional E. This implies that T 0 is self-expanding for
positive times.
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5.3. Topological uniqueness for self-expanders with low entropy
It is illustrated by Angenent–Chopp–Ilmanen [5] that there is an open set of regular

cones so that for each cone in the set there are at least two self-expanders asymptotic to the
cone (cf. [13]). However, it is proved in [16] that given a regular cone with sufficiently small
entropy all self-expanders asymptotic to the cone are in the same isotopic class.

Theorem 5.3 ([16]). For 0 < ƒ � �ŒSn�1�, let C � RnC1 be a regular cone with �ŒC � < ƒ

and assume one of the following holds:

(1) 2 � n � 6 and ƒ D �ŒSn�1�.

(2) n � 7 and (?n;ƒ) holds.

If �1; �2 � RnC1 are two self-expanders both smoothly asymptotic to C , then �1 and �2 are
a.c.-isotopic with fixed cone.

Here two asymptotically conical hypersurfaces are said to be a.c.-isotopic with fixed
cone if there is an isotopy of hypersurfaces that respects the asymptotically conical behavior
and fixes the asymptotic cone.

Outline of the proof of Theorem 5.3. It follows from the main result of [20] that the space
of asymptotically conical expanders is an infinite-dimensional smooth Banach manifold.
Thus, invoking Smale’s version [74] of the Sard theorem gives a residual set R of regular
cones so that for each cone in the set any self-expanders smoothly asymptotic to the cone are
nondegenerate in the sense that there are no nontrivial normal Jacobi fields that fix the asymp-
totic cone. In particular, degenerate asymptotically conical self-expanders can be perturbed
with varying asymptotic cones to nondegenerate ones. As such, we focus below on generic
cones C 2 R. Our goal is to construct Morse flow lines joining any two self-expanders both
smoothly asymptotic to C .

Denote byACH n.C/ the space of hypersurfaces inRnC1 that are smoothly asymp-
totic to the cone C . It is convenient to define an order on ACH n.C/ as follows. First fix a
choice of unit normals nL on the link L of C . We then let !C � Sn be the open set so
that @!C D L and nL points into !C. For † 2 ACH n.C/, let �C.†/ � RnC1 be the
open set so that @�C.†/ D † and the blowdowns of �C in Sn converge as sets to !C. For
†1; †2 2 ACH n.C/, we say †1 � †2 provided �C.†2/ � �C.†1/.

Let ACEn.C/ � ACH n.C/ be the subset consisting of self-expanders. If
� 2 ACEn.C/ is unstable, then there are two eternal rescaled mean curvature flows that
deform � to two stable elements �˙ 2 ACEn.C/ with �� � � � �C. Moreover, if
� 0 2 ACEn.C/ is stable and � 0 � � (respectively, � � � 0), then � 0 � �� � � (respectively,
� � �C � � 0). The hypotheses ensure that the eternal flows are smooth. On the other hand,
if �0; �1 2 ACEn.C/ are (strictly) stable and �0 � �1, then appealing to a min–max con-
struction for relative expander entropy [18] yields an element �2 2 ACEn.C/ with �2 ¤ �i

for i 2 ¹0; 1º and �0 � �2 � �1. Again, the hypotheses guarantee the smoothness of the
min–max self-expander. Hence, arguing by induction on the cardinality of the subset con-
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sisting of stable elements of ACEn.C/ (see [19]), it follows that every element of ACEn.C/

can be deformed via rescaled mean curvature flows through a finite number of intermediate
elements of ACEn.C/ to the lowest (with respect to the order �), implying the claim.

6. Further discussions

Instead of assuming low entropy, Hershkovits and White prove a sharp relation
between the entropy and topology of closed self-shrinkers for all dimensions [52]. This may
be thought of as an extension of Theorem 3.1. Thinking of self-shrinkers as a special class of
ancient the mean curvature flow, combining with work of Angenent–Daskalopoulos–Sesum
[6,7], Bernstein–Wang [11], and Brendle–Choi [23,24], Choi, Haslhofer. and Hershkovits [29]

classify the ancient mean curvature flow in R3 with entropy less than or equal to that of
a cylinder. There is an analogous classification for ancient mean curvature flows in higher
dimensions under the assumption that the flows are smoothly asymptotic at time �1 to a
round cylinder [30].

In general, Conjecture 2.2 is wide open, in part because it is unknown whether there
is a complete classification for self-shrinkers of dimension at least 3 with simple topology
(compare Brendle [22]) It would be also interesting to study analogous questions in higher
codimensions. We refer the interested reader to [41] and references therein.

Very recently, Daniels–Holgate [42] combines [29] and [30] with suitable barriers to
construct smooth mean curvature flows with surgery that approximate weak mean curvature
flows with only spherical and neck-pinch singularities. Together with [28], this implies that
any closed hypersurface in R4 that has entropy less than or equal to �ŒS1 � R2� is smoothly
isotopic toS3, which, together with Theorem 5.1, sheds some light on the smooth Schoenflies
conjecture for R4.
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Composing and
decomposing surfaces
and functions
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Abstract

In mathematics, we are often drawn to the simple or elegant, but what lies at the other end
of the spectrum? How can we build and study complex objects? How can we break them
down? In this note, we will describe some tools for building functions and surfaces with
structure at many different scales and, conversely, tools for decomposing complex objects
into simple pieces. These methods are based on ideas from geometric measure theory and
harmonic analysis, and we will give some applications to quantitative and metric geometry.
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What makes one object more complex than another? For instance, what makes a
high-genus surface more complex than a sphere, or what makes a random graph with n2

vertices more complex than an n� n grid? A rough definition of complexity is that complex
objects are hard to describe concisely. The Kolmogorov complexity of a string of 0’s and 1’s,
for instance, measures the number of bits it takes to describe an algorithm that outputs that bit
string. Then, on the one hand, the 1000-bit sequence 0; 1; 0; 1; : : : ; 0; 1 has low Kolmogorov
complexity, since it is the output of a simple algorithm. On the other hand, there are at most
2kC1 � 1 possible algorithms that can be described in at most k bits, so a generic string has
large complexity: over 99% of the 1000-bit strings have complexity of at least 990 bits.

This highlights one of the properties of complex objects: while nearly all n-bit
strings have complexity of at least 0:99n bits, it is impossible to construct an example of
such a string without using randomness—any explicit deterministic construction of an n-bit
string is an algorithm, so its complexity is bounded by the length of the algorithm. Situa-
tions like this are not uncommon in combinatorics. Erdős [7], for instance, famously bounded
the Ramsey numbers by showing that a random 2

s
2 -vertex graph is overwhelmingly likely

to have no s-vertex cliques or s-vertex independent sets. Nevertheless, no specific graph is
known to have this property, and there is no known way to construct such graphs for large s
without using randomness.

This is one reason that random graphs, surfaces, and complexes can behave in
strange and unexpected ways. All the familiar examples of graphs, surfaces, and complexes
can be constructed algorithmically, so they are simple in the sense of Kolmogorov. Complex
objects may be generic, but complex objects can be strange and unexpected to an intuition
trained on familiar examples.

One may hope, however, that objects in Rn may behave in more familiar ways. In
this note, we will confirm this intuition by constructing objects in Rn that are as complex
as possible and bounding the complexity of such objects by decomposing them into simpler
pieces. In Section 1, wewill construct Lipschitz functions, and in Section 2, wewill construct
closed surfaces.

In both cases, we find that the complexity of these objects is bounded by geometric
quantities. A Lipschitz function on the unit interval, for instance, has a graph which is a curve
inRn. One can construct a Lipschitz function by starting with a linear function, then perturb-
ing it repeatedly, but each perturbation increases the length of the graph, so the complexity
of the function is ultimately bounded by the length of the graph. Likewise, a surface in Rn

may be complex, but it can often be decomposed into a sum of several pieces. If the pieces of
the decomposition are simple and their size is bounded, the decomposition gives an efficient
description of the surface and bounds its complexity. Finally, in Section 3, we describe some
applications of these techniques to geometric measure theory and metric geometry.

1. How to build a function

We start with a simple example. What does a generic 1-Lipschitz function of a
single variable look like? (Most of these ideas can be generalized to higher dimensions,
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but we stick to one dimension for simplicity.) This question turns out to be surprisingly
tricky. For example, one possible approach is to discretize; one can construct a Lipschitz
function f W Œ0; 1� ! R by choosing some n 2 N and a sequence of bounded i.i.d. random
variables y1; : : : ; yn and defining

f

�
k

n

�
D

kX
iD1

yi

n
:

Weextend to all of Œ0;1� by linear interpolation; as long as jyi j � 1 for all i , this is 1-Lipschitz.
For any finite n, this produces potentially interesting 1-Lipschitz functions, but the central
limit theorem implies that as n ! 1, these functions tend toward g.x/ D mx, where m is
the mean of the distribution that the yi are drawn from.

The problem is that there are no nontrivial scale-invariant models of random 1-
Lipschitz functions. By Rademacher’s theorem, any Lipschitz function is differentiable
almost everywhere, and the same is true for random 1-Lipschitz functions; if f W Œ0; 1�! R is
a random 1-Lipschitz function drawn from some distribution, then for almost every x 2 Œ0;1�,
there exists a random variable f 0.x/ with jf 0.x/j � 1 such that

P
�
lim
h!0

f .x C h/ � f .x/

h
D f 0.x/

�
D 1: (1.1)

For any r > 0, we can rescale f around x by letting fr .h/ D r�1.f .x C rh/ � f .x//.
Then (1.1) implies that fr converges almost surely to the random linear function h 7! f 0.x/h.
It follows that any scale-invariant distribution on the space of 1-Lipschitz functions must be
supported on the space of affine functions.

Instead, we can construct complex Lipschitz functions by combining functions
with different scales. The simplest example is a Weierstrass-type construction; if �k.x/ D

10�k sin.10kx/, then f .x/ D
1
L

PL�1
kD0 �k.x/ is a 1-Lipschitz function whose graph has

bumps at the L different scales 1; 10�1; : : : ; 10�LC1. The bumps at scale 10�k have height
roughly 1

L
times their width, so we say that f is 1

L
-bumpy at L different scales. (One can

construct a random 1-Lipschitz function with similar complexity by replacing the �k’s by
random 1-Lipschitz functions that oscillate with amplitude and wavelength roughly 10�k .)

With a little more care, we can make this function more complex. The key is that

f 0.x/ D

L�1X
kD0

1

L
cos.10kx/

and there’s little correlation between cos.10kx/ and cos.10lx/ when k ¤ l . That is, f 0.x/

is a sum ofL values between �
1
L
and 1

L
. At x D 0, all these values are 1

L
, so f 0.x/D 1, but

for a typical x 2 R, these values are close to independent, so f 0.x/ is typically of order
p

L
L
,

which much smaller than 1. In fact, by the central limit theorem, if L is large and

g.x/ D
1

L

L2X
kD0

10�k sin.10kx/;

then g is 1
L
-bumpy at L2 different scales and the distribution of g0.x/ is close to a Gaussian

with variance less than 1. While g is not 1-Lipschitz, it is almost Lipschitz in the sense that
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jg0.x/j < 5 for all but a tiny fraction of points, and we can make it 5-Lipschitz by changing
it on a tiny fraction of its domain. This produces a Lipschitz function that is 1

L
-bumpy at L2

different scales.
This is just about the bumpiest a Lipschitz function can be. One way to see this is a

theorem of Dorronsoro [5]. Let f W R ! R be differentiable. For x 2 R and r > 0, we define
a quantity f̌ .x; r/ that measures how close f is to affine on .x � r; x C r/ by

f̌ .x; r/ D
1

r2
min

�

Z xCr

x�r

ˇ̌
f .y/ � �.y/

ˇ̌
dy;

where � ranges over all affine functions. This is normalized to be scale invariant; if g.x/ D

cf .c�1x/, then ˇg.x; r/D f̌ .c
�1x; c�1r/, and Dorronsoro’s Theorem implies that if f is

supported on Œ0; 1� and satisfies kf 0k2 < 1, then
1X

nD0

Z 1

0
f̌ .x; 2

�n/2 dx
dr
r

.
f 0

2

2
: (1.2)

It can help to interpret this inequality as an expectation. Let x be a uniformly distributed
random point in Œ0; 1�. Then

Ex

"
1X

nD0

f̌ .x; 2
�n/2

#
.

f 0
2

2
: (1.3)

In particular, for anyL > 0, the expected number of n’s such that f̌ .x; 2
�n/ > 1

L
is at most

a constant times L2, meaning that a 1-Lipschitz function is, for the most part, 1
L
-bumpy at a

maximum of roughly L2 different scales.
The exponent 2 in these bounds comes from the Pythagorean Theorem: adding a

bump of height r
L
to a segment of length r multiplies the length by roughly a factor of 1

L2 ,
so covering a curve by such bumps (making it 1

L
-bumpy at scale r) increases its length by

roughly a factor of 1
L2 . If f W Œ0; 1� ! R is a 1-Lipschitz function, its graph is a curve of

length between 1 and
p
2. The length is minimized when f is constant, and is larger when

f is bumpier. Making f to be 1
L
-bumpy at a scale increases the length of the graph by

roughly 1
L2 , so the bound on the length of the graph implies that f can be 1

L
-bumpy at no

more than roughly L2 different scales. Going further in this direction leads to similar results
for rectifiable curves, like Jones’s Traveling Salesman Theorem [13].

2. How to build a surface

Now we turn our attention to surfaces. There are many ways to construct com-
plicated closed surfaces embedded or immersed in Rn. One can, for instance, construct
codimension-1 surfaces by embedding a k-complex X in Rn and letting † be the boundary
of a regular neighborhood of X ; one can construct self-similar surfaces inductively, like the
Koch snowflake or the Menger sponge; or one can use general position arguments or the
Whitney Embedding Theorem to embed arbitrary k-manifolds in Rn.

Although these surfaces can be complex, they can still be decomposed into simple
pieces. For example, ifX � Rn is an embedded simplicial complex, then its regular neighbor-
hoodR can be decomposed into neighborhoods of individual simplicesRı . The fundamental
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Figure 1

A stage in the construction of the Koch snowflake can be decomposed into triangles, and the total length of the
triangles is bounded by the length of the original curve.

class ŒR� of R is the sum ŒR� D
P

ı ŒRı � of the fundamental classes of the pieces, and the
boundaryAD Œ@R�D @ŒR� can be writtenAD

P
ı @ŒRı �. Likewise, any step in the construc-

tion of the Koch snowflake or the Menger sponge can be written as a sum of the boundaries
of equilateral triangles or cubes, as in Figure 1. These decompositions are efficient in the
sense that the total area of the pieces is bounded by a multiple of the area of the original
surface.

In this section, we will argue that arbitrary surfaces in RN cannot be too much
more complex than Lipschitz functions. That is, given a surface † � RN , written as a k-
cycleM D Œ†� 2 Ck.R

nIZ2/with coefficients inZ2, we can writeM as a sumM D
P

i Ai

of k-cycles such that each of the Ai ’s can be approximated by graphs of Lipschitz functions
(Lipschitz graphs) with bounded total volume. Furthermore, this decomposition is efficient,
i.e., the total area of the Ai ’s is bounded by a multiple of the area of †.

In the following, we take Ck.X I A/ to be the set of singular Lipschitz k-chains
in X with coefficient group A, i.e., formal sums M D

P
i ai Œıi � where ai 2 A n ¹0º and

ıi W�
k ! X are distinct Lipschitz k-simplices. When A D Z or R, we define massM DP

i jai j volk ıi , where volk ıi is the k-dimensional Hausdorff measure of ıi , counted with
multiplicity. When A D Z2, we define massM D

P
i vol

k ıi .

2.1. Decomposing into cubes
We first use cellular approximation and the Federer–Fleming Deformation Theorem

to decompose cycles into sums of boundaries of cubes.
Let 0 < t < 1 and let �t be the grid of side length t inRn. By cellular approximation,

any chain in Rn can be approximated by a cellular chain in �t . The following special case of
the Federer–Fleming Deformation Theorem makes this approximation quantitative.

Theorem 2.1 ([6, 8]). There is a cn > 0 with the following property. Let t > 0. Let T 2

Ck.R
nI A/ be a singular Lipschitz k-chain over a coefficient group A D Z; R, or Z�
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(i.e., a formal sum of Lipschitz maps �k ! Rn such that @T D 0). Suppose that @T 2

Ck�1.�t IA/ is a cellular chain. Then there are a cellular k-chain P 2 Ck.�t IA/ and a
singular Lipschitz .k C 1/-chainQ such that:

(1) massP � cn massT ,

(2) massQ � cnt massT , and

(3) @Q D P � T .

In particular, @P � @T D @2Q D 0, so P and T have the same boundary.
Furthermore, if T is supported in a subcomplexK � �t , then P is supported in the

same subcomplex.

Let T 2 Ck.�1/ be a cellular k-cycle and letM D mass T . We will decompose T
by constructing a sequence of approximations of T . Let P0 D T , and for each i � 1, let
Pi 2 Ck.�2i / be a cellular approximation of T in �2i as in Theorem 2.1.

On the one hand,Pi is a sum of k-cells of �2i , so massPi is a multiple of 2ki . On the
other hand, massPi � cn massT for all i . Therefore, if 2ki > cn massT , then Pi D 0. Let
i0 be the smallest integer such that 2ki0 > cn mass T . Then Pi0 D 0, so we can decompose
T as

T D

i0�1X
iD0

.Pi � PiC1/:

For each i , Pi � PiC1 is a cellular cycle in �2i , so there is some cellular chain
Ri 2 CkC1.�2i / such that @Ri D Pi � PiC1. We can use Theorem 2.1 to find Ri . LetQi be
a .k C 1/-chain as in Theorem 2.1 so that @Qi D Pi � T and massQi � 2icn massT . Then
@.Qi �QiC1/ D Pi � PiC1 2 Ck.�2i /. That is, Qi �QiC1 has cellular boundary, so we
can apply Theorem 2.1 again to approximate it by a cellular chain Ri 2 CkC1.�2i / such that

massRi � cn.massQi C massQiC1/ � cn.2
icn massT C 2iC1cn massT / . 2i massT

and
@Ri D @.Qi �QiC1/ D Pi � PiC1:

We write Ri as a sum Ri D
P

j ai;jRi;j , where the Ri;j ’s are .k C 1/-cells of �2i and
massRi D

P
j jai;j j2.kC1/i . Then

T D

i0�1X
iD0

@Ri D

i0�1X
iD0

X
j

ai;j @Ri;j ;

decomposes T as a sum of boundaries of cubes.
The number and size of the pieces of the decomposition is bounded in terms of the

mass of T . For each 0 � i � i0, the total mass of the boundaries of the cubes is bounded byX
j

jai;j jmass @Ri;j �

X
j

jai;j j2ik
D 2�i massRi . massT;
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so, since 2ki0 � cn massT , we have
i0�1X
iD0

X
j

jai;j jmass.@Ri;j / . i0 mass.T / . mass.T / logmass.T /:

This decomposition and similar decompositions are useful for studying isoperimet-
ric inequalities. Recall that the isoperimetric inequality in Rn implies that for any k-cycle T ,
there is a .k C 1/-chain S such that @S D T and massS . .massT /

kC1
k . If Ri are as above,

then S D
Pi0�1

iD0 Ri satisfies @S D T , and since 2ki0 � cn massT ,

mass.S/ �

i0�1X
iD0

massRi .
i0�1X
iD0

2i massT � 2i0 mass.T / . mass.T /
kC1

k :

More generally, this decomposition is useful for studying higher-dimensional ver-
sions of the Dehn function of a group or space, which measure the difficulty of filling a
k-cycle in a space by a .k C 1/-chain. In many cases (see, for instance, [20]), one can use a
version of the Federer–Fleming Deformation Theorem to decompose an arbitrary k-cycle T
into a sum of scalings of simple pieces T D

P
i Si and construct a filling of T by adding

together fillings of the Si ’s.

2.2. An inductive strategy
One difficulty with this decomposition is that the total volume of the pieces grows

when �1 is replaced by a finer grid. That is, the decomposition above writes a cycle T 2

Ck.�1/ as a sum of boundaries of cubes T D
PM �1

iD0

P
j @Ri;j , where 2kM � mass T andP

j mass.@Ri;j / � massT for all i ; the total mass of the @Ri;j ’s is at mostM massT .
Letm< 0 and let T 2 Ck.�2m/. By applying the same decomposition to a rescaling

of T , we can write T D
PM�1

iDm

P
j @Ri;j , where each Ri;j is a cube of side length 2i and

2kM � massT . Unfortunately, the total mass now satisfies
M �1X
iDm

X
j

@Ri;j . .M �m/massT;

and even if massT is fixed, this will get larger as m ! �1.
Ideally, given m < 0 and a cycle T 2 Ck.�2m/, we would like a decomposition

T D
P

i Ki such that
P

i massKi .massT , with constant independent ofm; such a decom-
position opens up applications in geometric measure theory. In the rest of this section, we
will pursue such decompositions.

One such decomposition appears in Wenger’s proof of Gromov’s Filling Inequal-
ity [19]. Gromov’s Filling Inequality states the following.

Theorem 2.2 ([12]). Let k > 0. There is a c > 0 such that for any Banach space X and
any k-cycle A 2 Ck.X/, there is a .k C 1/-chain D 2 CkC1.X/ such that @D D A and
massD � c.massA/

kC1
k .

The methods used in the previous section cannot be used to prove Theorem 2.2,
because the constants in the Federer–Fleming Deformation Theorem depend on the dimen-
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sion of the ambient space. Nevertheless, it is straightforward to prove Theorem 2.2 when A
is round, i.e., when diam suppA . .massA/

1
k .

Lemma 2.3 (Cone-type inequality). Let k > 0. There is a c > 0 such that for any Banach
space X and any k-cycle A 2 Ck.X/, there is a .k C 1/-chain D 2 CkC1.X/ such that
@D D A and massD � c.massA/.diam suppA/.

Proof. We translate so that 0 2 suppA. Suppose that A D
P

i ai Œıi � for some ai 2 Z and
some Lipschitz simplices ıi W�

k ! X . Let ıi W�
k � Œ0; 1� ! X , ıi .x; t/ D tıi .x/. Then

D D
P

i ai Œıi � satisfies the desired properties.

Difficulties arise, however, when A is not round, for example, when A is a long
skinny cylinder. Wenger proves Theorem 2.2 by decomposing an arbitrary cycle A into a
sum of round cycles and applying the cone-type inequality to each piece, and in this section,
we will describe a version of his strategy, with some details simplified for the sake of brevity.
Any inaccuracies and oversimplifications are entirely our fault.

We say that a k-chain T is c-round if massT � c.diamsuppT /k . Let c > 0 be small.
The key idea ofWenger’s decomposition is that ifA is not c-round, then we can “cut” an open
ball B out of A so that the cut-off piece is round. That is, we can decompose A D A0 CM

so thatM is a round cycle with suppM � NB and suppA0 � X n B .
We find B by noting that since A is not c-round, there are x 2 suppA and 0 < r <

diam suppA such that mass.A \ B.x; r// 2 Œ c
2
rk ; crk �. We let B D B.x; r/ and let K D

A nB be the restriction of A toX nB , so that suppK D .suppA/ nB and @K 2 Ck�1.@B/.
Let L 2 Ck.@B/ be a chain such that @L D @K and let A0 D K � L so that A0 is a cycle.

If c is sufficiently small and if x and r are chosen carefully, we can arrange that
massL �

c
4
rk ,

massA0
D massA � mass.A \ B/C massL � massA �

c

4
rk ;

and
mass.A � A0/ D mass.A \ B/C massL � 2crk :

LetM D A � A0. Then

diam supp.M/ � diamB � 2r � 2c� 1
k .massM/

1
k ;

soM is .2�kc/-round. Furthermore,

massM . massA � massA0: (2.1)

Equation (2.1) is important because it lets us use this construction in an inductive
argument. Let c > 0 be as in the argument above and let A0 D A. If we have constructed Ai

and Ai is not c-round, then there is a ball Bi and a decomposition Ai D AiC1 CMi where
Mi is a round cycle with suppMi � NBi and massMi . massAi � massAiC1. Otherwise,
if Ai is c-round, we terminate the construction, letting AiC1 D 0 andMi D Ai .
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If this construction terminates with some An D 0, we have A D
Pn�1

iD0 Mi and
n�1X
iD0

massMi .
n�1X
iD0

.massAi � massAiC1/ D massA0 � massAn D massA:

Otherwise, for any n > 0, A D An C
Pn�1

iD0 Mi , and

massAn C

n�1X
iD0

massMi . massAn C

n�1X
iD0

.massAi � massAiC1/ D massA:

In general, we cannot guarantee termination, but we can choose the Bi ’s so that
limi massAi D 0 and diam suppAi < 2 diam suppA for all i . Consequently, for any " > 0,
there is an efficient decomposition A D

Pn�1
iD0 Mi or A D An C

Pn�1
iD0 Mi such that each

of the Mi ’s is round and massAn < " (if the decomposition has an An term). By apply-
ing Lemma 2.3 to each summand, one constructs D0; : : : ; Dn such that @Di D Mi and
@Dn D An. LetD D

P
Di . Then

massD . " diam suppAC

n�1X
iD0

.massMi /
kC1

k ;

and if " is sufficiently small,
massD . .massA/

kC1
k ;

as desired.

2.3. Quasiminimizers and uniform rectifiability
Wenger’s proof of Gromov’s Filling Inequality suggests a general strategy for con-

structing efficient decompositions inductively:

(1) Let A 2 Ck.R
n/ be a k-cycle. Let A0 D A.

(2) Suppose by induction that we have constructed a cycle Ai . Find a region
Ui � Rn and a cycle AiC1 such that Ai and AiC1 are the same outside Ui

and
mass.Ai � AiC1/ . massAi � massAiC1:

LetMi D Ai � AiC1.

(3) Repeat this process until there is some m such that Am D 0 or massAm is as
small as desired.

(4) Then A D Am C
Pm

iD0Mi , and

massAm C

mX
iD0

massMi . massAm C

mX
iD0

.massAi � massAiC1/ . massA:

In fact, this is the strategy behind the following theorem, which efficiently decom-
poses an arbitrary cellular mod-2 cycle as a sum of uniformly rectifiable pieces.
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Theorem 2.4 ([21]). Let n > 0. There is a c > 0 with the following property. Let t > 0 and
let �t be the grid of side length t in Rn. Any mod-2 cycle A 2 Cd .�t I Z2/ can be written as a
sumAD

Pm
iD0Mi of mod-2 d -cyclesMi 2 Cd .Ei IZ2/, where eachEi is a d -dimensional,

c-uniformly rectifiable subcomplex of �t and
P

jEi j . massA.

Uniform rectifiability is a property defined and studied by David and Semmes [3]. It
has many definitions; we will present a definition that uses a function ˇE .x; r/ that measures
the “bumpiness” of a set E � Rn, similar to the function f̌ .x; r/ in Section 1. Let c > 1,
let d > 0 be an integer, and let j � j denote Hausdorff d -measure. A set E � Rn is Ahlfors
c-regular if

c�1rd <
ˇ̌
E \ B.x; r/

ˇ̌
< crd for all x 2 E and 0 < r < diamE: (2.2)

For x 2 E and r > 0, let

ˇE .x; r/ D
1

rdC1
min

P

Z
E\B.x;r/

d.y; P / dy;

where P ranges over all d -planes in Rn and dy represents Hausdorff d -measure. Then
ˇE .x;r/measures howwellE \B.x;r/ can be approximated by a plane. It is scale-invariant
in the sense that if cE D ¹cy j y 2 Eº, then ˇE .x; r/ D ˇcE .cx; cr/.

For any c > 1, we say thatE � Rn is c-uniformly rectifiable ifE is Ahlfors c-regular
and if it satisfies the following inequality based on (1.2). For every x 2 E and r > 0,

1

rd

Z
E\B.x;r/

Z s

0

ˇE .y; s/
2 ds
s
dy � c: (2.3)

That is, a uniformly rectifiable set is an Ahlfors regular set which is no bumpier than a
Lipschitz function. The prototypical example of a uniformly rectifiable set is the graph of a
Lipschitz function, or a Lipschitz graph.

The power of uniform rectifiability is that this condition is equivalent to a variety of
other conditions onE. The work discussed in the next section, for instance, uses the fact that
a uniformly rectifiable set admits a corona decomposition. Defining such a decomposition
rigorously is rather technical, and we point interested readers to [3], but briefly, if E admits
a corona decomposition, then there is a collection C of Lipschitz graphs with uniformly
bounded Lipschitz constants that approximates E efficiently at most points and most scales.
That is, on the one hand, for almost every x 2 E, there is a finite set of “bad scales” Sx � Z

such that for all i 2 Z n Sx , either 2�i > diamE or the intersection B.x; 2�i / \ E can be
approximated by an element of C . Furthermore, as x ranges over E, the average size of Sx

is bounded. On the other hand, the set C is not too big; in particular, the total measure of the
elements of C is comparable to the measure of E.

Conversely, if a set is not uniformly rectifiable, then it must be complex—it must be
far from a plane at many scales. Fractals are typical examples; if E is self-similar but not a
plane, then ˇE .x; r/ > " for most x’s and r’s, so

P1

iD0 ˇE .x; r2
�i /2 is typically infinite.

Fractals also provide examples of sets that are rectifiable but not uniformly rectifi-
able. One such set is based on the four-corners Cantor set. For each i � 0, let Ki be the i th
step in the construction of the four-corners Cantor set, so thatK0 D @Œ0; 1�2 is the boundary
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Figure 2

Three stages in the construction of the four-corners Cantor set. The stages of the construction are uniformly
Ahlfors regular, but there is no c such that they are all c-uniformly rectifiable.

of the unit square, and each set KiC1 is obtained by replacing each square in Ki by four
squares of one fourth the side length (Figure 2). Then for any x 2 Ki and any j � i , the
intersectionKi \B.x; 4�j / is not close to a line, so ˇKi

.x; 4�j C1/ & 1. Therefore, for any
y 2 Ki , we have Z 1

4�i

ˇK1.y; s/
2 ds
s

� i:

That is, the increasing complexity of the Ki ’s implies that there is no c > 0 such that all of
theKi ’s are c-uniformly rectifiable. Nevertheless, for each i , the fundamental class ofKi is
a cellular cycle in �4�i , so Theorem 2.4 implies that it can be written as a sum of uniformly
rectifiable pieces. In this case,Ki is a sum of the fundamental classes of 4i disjoint squares,
each of side length 4�i .

The key tools for constructing the decomposition in Theorem 2.4 are the induc-
tive strategy in Section 2.2 and a result of David and Semmes [4], which states that quasi-
minimizing sets are uniformly rectifiable. A set is quasiminimizing if compactly-supported
deformations cannot decrease its area by too much. To state this rigorously, let U � Rn

be a bounded open set. We say that a continuous map f W Rn ! Rn is a deformation sup-
ported in U if f .U / � U and f .x/ D x for all x 62 U . Let k > 1. A set S � Rn such that
jS \ B.0; �/j < 1 for all � > 0 is said to be .k; r/-quasiminimizing if for every open set
U � Rn with diamU < r , every deformation f supported in U satisfiesˇ̌

f .S \ U/
ˇ̌

�
1

k
jS \ U j:

For example, Lipschitz graphs are quasiminimizing sets. Let ˛W Rn�1 ! R be a
1-Lipschitz function, let  W Rn�1 ! Rn,  .x/ D .x; ˛.x//, and let S D  .Rn/ be the
graph of ˛. Let � W Rn�1 � R ! Rn�1 be the projection �.x; y/ D x. On the one hand, � is
distance-decreasing, so j�.E/j � jEj for allE � Rn. On the other hand, for anyE � S , we
have E D  .�.E//, and since  is 2-Lipschitz, we haveˇ̌

�.E/
ˇ̌

� jEj � 2n
ˇ̌
�.E/

ˇ̌
:

For any deformation f supported in U , we have �.f .U \ S// � �.U \ S/, soˇ̌
f .U \ S/

ˇ̌
�

ˇ̌
�

�
f .U \ S/

�ˇ̌
�

ˇ̌
�.U \ S/

ˇ̌
�
1

2n
jU \ S j:

That is, S is .2n;1/-quasiminimizing.
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David and Semmes proved the following theorem.

Theorem 2.5 ([4]). Let n; d > 0 and k > 1. There is a c > 0 such that if S � Rn, r �

1
10

diamS , and S is .k; r/-quasiminimizing, then S is c-uniformly rectifiable.

The proof of Theorem 2.4 uses Theorem 2.5 to implement the inductive strategy. Let
k > 10 and let c be as in Theorem 2.5. LetA0 D A 2 Cd .R

nI Z2/ be a mod-2 cycle. If i � 0

and the support Si D suppAi is c-uniformly rectifiable, we let AiC1 D 0 and terminate the
construction. Otherwise, Theorem 2.5 implies that Si is not a quasiminimizer. That is, there
is a deformation fi WRn ! Rn, supported on some bounded setUi with diamUi <

1
10
diamSi

such that jfi .Si \Ui /j <
1
k

jSi \Ui j. If we choose the deformation carefully, we can ensure
that fi .Si / is a union of d -cells of �t , so that the push-forwardAiC1 D .fi /].Ai / is a cellular
chain. We letMi D Ai � AiC1.

Since each Ai is a mod-2 cellular chain, we have massAi D j suppAi j D jSi j. Each
step of this construction decreases the measure of Si and thus decreases the mass of Ai . In
fact,

massAi � massAiC1 D jSi \ Ui j �
ˇ̌
fi .Si \ Ui /

ˇ̌
�
9

10
jSi \ Ui j > 0

and

massMi � jSi \ Ui j C
ˇ̌
fi .Si \ Ui /

ˇ̌
� 2jSi \ Ui j � 3.massAi � massAiC1/:

The number of cells in Ai is an integer and decreases with i , so this guarantees that the
process terminates, i.e., Am D 0 for some m. Then A D

Pm�1
iD0 Mi and

m�1X
iD0

massMi �

m�1X
iD0

3.massAi � massAiC1/ � 3massA:

That is, this is an efficient decomposition ofA. Choosing the fi so that theMi ’s are supported
on uniformly rectifiable sets, however, is more difficult, and we point interested readers to
the full proof in [21].

Thus, while surfaces in Rn can be complex, their complexity is bounded by their
volume, and complex surfaces can be efficiently decomposed into pieces that are not too
much bumpier than Lipschitz graphs.

3. Applications

In this section, we will describe some ways to apply the decompositions described
in the previous section to bound the topology of cycles and currents in Rn and to bound
embeddings of nilpotent groups into Banach spaces.

3.1. Geometric measure theory and quantifying the topology of embedded
submanifolds
Theorem 2.4 can be used to bound the topological complexity of an arbitrary cycle

in Rn. Specifically, it can be used to quantify how difficult it is to orient a mod-2 cycle, that
is, to lift it to a cycle with integer coefficients.
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Given a cycle A 2 Cd .R
nI Z2/, a pseudoorientation of A is a cycle P 2 Cd .R

n/

such that P � A .mod 2/. In general, a cycle A has many pseudoorientations. We define
the nonorientability of A to be the infimal mass of a pseudoorientation, i.e.,

NO.A/ D inf¹massP j P is a pseudoorientation of Aº:

The nonorientability of a surface measures how difficult it is to cut that surface
into orientable pieces. That is, let † � R4 be an arbitrary nonorientable surface and let
A D Œ†�. Let � be a graph (a 1-dimensional simplicial complex) embedded in † such that
each connected component of † n � is orientable. (For instance, let † be a Klein bottle
and let � be a simple closed curve that cuts † into a cylinder.) Let C1; : : : ; Ck be these
components. Orient them arbitrarily and let C D

Pk
iD1ŒCi �. Let G D @C D

Pk
iD1 @ŒCi �.

Each edge e of � is in the boundary of two components Ci and Cj , so e occurs
exactly twice in the sum

Pk
iD1 @ŒCi �. If the orientations of Ci and Cj agree on e, then the

occurrences of e cancel out and it has coefficient 0 in G. If the orientations disagree, then
e has coefficient ˙2. Since all coefficients of G are even, G=2 is a 1-cycle with integer
coefficients, so there is some D such that @D D G=2. By the isoperimetric inequality, we
can chooseD such that massD � .massG/2 � `.�/2, where `.�/ is the total length of the
edges of � . Let P D C � 2D; then P � C � A .mod 2/, so P is a pseudoorientation of
A and

NO.A/ � massP � massAC 2`.�/2:

In [21], Theorem 2.4 was used to prove the following.

Theorem 3.1 ([21]). Let n > 0 and 0 < d < n. There is a c > 0 with the following prop-
erty. Let t > 0 and let �t be the grid of side length t in Rn. Then for any mod-2 cycle
A 2 Cd .�t I Z2/, NO.A/ � cmassA.

By Theorem 2.4, A D
P

i Mi where eachMi is a cycle supported on a uniformly
rectifiable set Ei . Nonorientability is subadditive, so it suffices to use the uniform rectifia-
bility of the Ei ’s to bound NO.Mi /.

The proof relies on approximating the uniformly rectifiable set Ei by Lipschitz
graphs. To give a brief sketch, since Ei is uniformly rectifiable, it has a corona decom-
position, i.e., a collection of Lipschitz graphs C such that for most points x 2 Ei and most
scales 0 < r < diamEi , the intersection B.x; r/\Ei is close to one of the Lipschitz graphs
ƒ 2 C . Then the restriction ofMi toB.x; r/ can be approximated by a chain inƒ, and since
ƒ is orientable, that chain inherits an orientation fromƒ. If every intersection B.x; r/\Ei

could be approximated by oriented surfaces and all of the orientations agreed, then it would
be easy to lift Mi to a cycle with integer coefficients. Difficulties only arise where Ei is
complex—from choices of x and r such that B.x; r/ \ Ei cannot be approximated by a
Lipschitz graph or when elements of C don’t have consistent orientations—but the uniform
rectifiability of Ei bounds how much complexity it can have.
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3.2. Metric geometry and embeddings of nilpotent groups
In a more recent work, these tools have been applied to study embeddings into

Banach spaces, especially the Heisenberg groups. The Heisenberg groups are the simplest
family of nonabelian nilpotent groups, and their noncommutativity makes them difficult to
embed into Banach spaces in a way that preserves their metrics.

An introduction to theHeisenberg group can be found, for instance, in [1], but briefly,
the integer Heisenberg groupHZ

n is the group generated by X1; : : : ; Xn; Y1; : : : ; Yn, and Z
such that ŒXi ; Yi � D XiYiX

�1
i Y �1

i D Z and all other pairs of generators commute. This is
isomorphic to a group of upper-triangular .nC 2/ � .nC 2/ matrices of the form0BBBBBBBB@

1 x1 � � � xn z

: : : y1

: : :
:::

: : : yn

1

1CCCCCCCCA
(3.1)

where the xi ’s, yi ’s, and z are all integers. Here, Xi 2 Hn is identified with the matrix of
form (3.1) with all coefficients zero except that xi D 1 and likewise for Yi andZ. The integer
Heisenberg group is a lattice in the nilpotent Lie group obtained by taking the matrices of
the form (3.1) with real coefficients; we call this Lie groupHn and write elements ofHn as
points .x1; : : : ; xn; y1; : : : ; yn; z/ 2 R2nC1.

A key feature of the Heisenberg group is the difference between the vertical direction
Z and the horizontal directionsXi and Yi . For any n, one can calculate that ŒXn

i ; Y
n

i � D Zn2 .
That is, quadratically large powers of Z can be written as products of linearly many Xi ’s
and Yi ’s. Let hZi be the z-axis inHn; in the terminology of geometric group theory, hZi is
a quadratically distorted subgroup. Left-invariant metrics on Hn inherit this quadratic dis-
tortion; we will equipHn with the left-invariant metric such that

d
�
0; .x1; : : : ; xn; y1; : : : ; yn; z/

�
D max

®
jxi j; jyi j;

p
jzj

¯
:

Then, for t ¤ 0, the map

st .x1; : : : ; xn; y1; : : : ; yn; z/ D .tx1; : : : ; txn; ty1; : : : ; tyn; t
2z/;

which scales horizontal directions by t and scales the vertical direction by t2, is an automor-
phism ofHn that scales the metric by a factor of t .

A natural question is howwellHn can be embedded into different spaces, especially
Banach spaces. This has applications in theoretical computer science, where the accuracy of
some algorithms depends on how well certain metric spaces embed in L1 (see, for instance,
[11,15]). In this section, we will consider embeddings ofHn into Lp spaces.

For any n> 1 and anyp 2 Œ1;1/,Hn, equippedwith its subriemannianmetric, does
not embed in Lp by a bi-Lipschitz map. When p > 1, this follows from a version of Pansu’s
differentiability theorem [18], which states that Lipschitz maps fromHn toLp can be locally
approximated by homomorphisms fromHn toLp . SinceLp is abelian andZD ŒX1;Y1�, any
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such homomorphism must send each vertical line (coset of hZi) to a point; thus, Lipschitz
maps fromHn to Lp cannot be bi-Lipschitz.

This differentiability fails, however, for maps to L1; Lipschitz maps need not be
differentiable anywhere. Instead, Cheeger and Kleiner [2] proved thatHn does not embed in
L1 by showing that the behavior of maps fromHn toL1 depends on the structure of surfaces
inHn.

To give a rough idea of this argument, suppose thatM is a measure space and that
f WHn ! L1.M/ is a Lipschitz function. We claim that f is not bi-Lipschitz. For almost
everym 2M , the coordinate function fmWHn ! R has bounded variation [2]. Almost every
sublevel set of a BV function has finite perimeter. (A finite perimeter set is a set that can
be approximated by sets whose boundary has uniformly bounded Hausdorff measure.) If
E D f �1

m ..�1; t �/ is such a sublevel set, then an analogue of De Giorgi’s theorem in Hn

implies that the reduced boundary @�E has a approximate tangent plane at almost every
x 2 @�E [9]. Furthermore, this tangent plane is a vertical plane (a union of vertical lines);
vertical planes are the only scale-invariant codimension-1 subgroups of Hn. Thus, when
r > 0 is small, the intersection B.x; r/ \ E is close to the intersection of B.x; r/ with a
half-space bounded by a vertical plane.

In fact, for almost every m 2 M and x 2 Hn, there is an r > 0 such that fmjB.x;r/

is close to a function Nfm whose sublevel sets are half-spaces bounded by vertical planes. We
call Nfm a vertical function. By Fubini’s theorem, there is some x 2Hn and some r > 0 such
that fmjB.x;r/ is close to a vertical function Nfm for all but a small fraction of m 2 M ; then
f jB.x;r/ is close to a map Nf such that every coordinate function of Nf is vertical. Then Nf

sends vertical lines in B.x; r/ to a point, so f is not bi-Lipschitz on B.x; r/.
This argument links the metric properties of f to the shape of the sublevel sets

Em;y D f �1
m ..�1; y�/. For example, if the Em;y’s are all smooth at some scale � (i.e., if

B.x;�/\Em;y is close to a vertical half-space for allm; t , and x 2 @Em;y), then f collapses
vertical line segments at scale �. Conversely, if f is c-bi-Lipschitz at scales betweenR andR0

(i.e., there are c, R, and R0 such that

cd.p; q/ �
f .p/ � f .q/


1

� d.p; q/

for all p; q 2 Hn such that d.p; q/ 2 ŒR; R0�), then the Em;y’s must be bumpy at scales
betweenR andR0; in the language of Sections 1 and 2, theEm;y’s must be roughly c-bumpy
at roughly log R0

R
different scales.

The techniques of Sections 1 and 2, however, bound how bumpy a surface can be.
Given a set U � Rn of finite perimeter, we can approximate U by a set U t which is a
union of cells of �t . As t ! 0, this approximation converges to U , and since U has finite
perimeter, the .n� 1/-volume of the boundary j@U t j stays bounded. The boundary @U t can
be viewed as an .n � 1/-cycle, so by Theorem 2.4, @U t is a sum of cycles supported on
uniformly rectifiable sets. Each of these pieces is no bumpier than a Lipschitz function; they
all satisfy (2.3).

The results of [16] extend this to the Heisenberg groupHn and prove that the bound-
ary @U of a set U �Hn of finite perimeter can be decomposed as a sum of cycles supported
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on sets E � Hn. Uniform rectifiability is not as well studied in Hn as in Rn, and it is not
knownwhich definitions of uniform rectifiability generalize toHn, but [16] shows that theE’s
admit intrinsic corona decompositions. These are collections of intrinsic Lipschitz graphs
that approximate E at most points and scales. (Intrinsic Lipschitz graphs were introduced
in [10] as an analogue of Lipschitz graphs.) When n � 2, intrinsic Lipschitz graphs in Hn

are about as bumpy as Lipschitz graphs in Rn. That is, like Lipschitz graphs, an intrinsic
Lipschitz graph can be 1

L
-bumpy at no more than roughlyL2 scales. This corresponds to the

following bound:

Theorem 3.2 ([16]). For any n� 2 there is a c > 0 such that for sufficiently largeR>1, there
are no 1-Lipschitz maps f WHn ! L1 that are c.logR/� 1

2 -bi-Lipschitz at scales between 1
and R. Furthermore, this is sharp; there is a c0 > 0 such that for every sufficiently large R,
there is a 1-Lipschitz map f WHn ! L1 that is c0.logR/� 1

2 -bi-Lipschitz at scales between 1
and R.

Intrinsic Lipschitz graphs in H1, however, can be much bumpier than Lipschitz
graphs in Rn. In [17], it is shown that intrinsic Lipschitz graphs in H1 can be 1

L
-bumpy at

up to roughly L4 scales, but no more than that. This matches the bound for Lipschitz curves
proved in [14] and corresponds to the following bound.

Theorem 3.3 ([17]). There is a c > 0 such that for sufficiently large R > 1, there are no
1-Lipschitz maps f WH1 ! L1 that are c.logR/� 1

4 -bi-Lipschitz at scales between 1 and R.
Furthermore, there is a c0 > 0 such that for every sufficiently large R, there is a 1-Lipschitz
map f WH1 ! L1 that is c0.logR/� 1

4 -bi-Lipschitz at scales between 1 and R.

This leads to the following consequence:

Theorem 3.4 ([17]). There is a metric spaceM that has a bi-Lipschitz embedding into L1

and L4, but not Lp for 1 < p < 4.

In short, the extent to which f preserves the metric on Hn depends on the bumpi-
ness/complexity of the sublevel setsEm;y , and the maximum possible complexity of a finite-
perimeter subset E � Hn depends on the ambient dimension n.

4. Conclusion

Some possible next questions include:

• How can other topological properties of a manifold be quantified? How do they
depend on the complexity of the manifold?

• These decompositions bound the complexity of manifolds embedded in Rn, sug-
gesting that manifolds embedded in Rn are less complex than abstract manifolds.
How does that affect their geometry?
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• Howdoes themaximumpossible complexity of amanifold embedded in a spaceX
depend on the geometry of X?

More generally, these tools suggest a link between complexity and geometry. If a
manifold is simple in the sense that it embeds in Rn, then it is simple in the sense that it
can be decomposed into simple pieces. In a way, any object that can be drawn on a piece
of paper embeds, more or less, in a low-dimensional Euclidean space; conversely, a key
property of very complex objects like random graphs and arithmetic manifolds is that they
are hard to embed, hard to decompose, and hard to visualize. Perhaps the objects whose
shapes we can imagine are the objects simple enough to fit in our imagination. How can we
better understand the shape of objects on the far end of the complexity spectrum?
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1. Introduction

In geometry, a large class of canonical objects are submanifolds which are station-
ary with respect to variations of length, area, or volume, possibly under various constraints.
The condition of being stationary is tightly linked to a geometric quantity called the mean
curvature function. The most notable examples are minimal surfaces, constant mean curva-
ture surfaces, and more generally surfaces with prescribed mean curvature (PMC), where
the mean curvature function respectively vanishes, is equal to a constant, or is prescribed by
an ambient function. Such objects have been studied extensively by mathematicians for more
than two centuries since the work of Lagrange on minimal surfaces in 1762, and various dif-
ferent methods have been developed, including but not limited to complex analysis, calculus
of variations, partial differential equations, and geometric measure theory. In addition to their
intrinsic beauty, profound applications of such canonical submanifolds have been found and
led to solutions of many fundamental problems in other fields like topology, analysis, and
physics. We refer to [15,63,67] for more discussions on historical backgrounds.

In the calculus of variations or variational theory, which we will focus on in this arti-
cle, such surfaces are viewed as critical points of certain area- or volume-related functionals.
In the past ten years, the variational-theoretic approach has enjoyed spectacular development,
and deep new results have been proved on the existence of minimal, CMC, and PMC sur-
faces. In particular, the famous Yau’s conjecture on the existence of infinitely many closed
minimal surfaces was confirmed by combining the works of Marques–Neves [58] and Song
[79], and general existence of closed CMC and PMC hypersurfaces was established by the
author with Zhu [95,96], and with Cheng [12]. Moreover, surprising new connections between
these surfaces have been discovered, leading to the resolution of the Multiplicity One Con-
jecture for minimal hypersurfaces by the author [94]. In this article, we will provide a survey
of these results, as well as some discussion of open problems along this direction.

1.1. Minimal surfaces
We start with a discussion of variational constructions of minimal surfaces in 3-

dimensional spaces and, more generally, minimal hypersurfaces when the ambient space has
dimension higher than 3.Minimal surfaces are mathematical models of soap films, where the
surface tension tends to minimize the area. By the first variation formula of area, the mean
curvature of such surfaces has to vanish. In general, minimal surfaces are defined as surfaces
with vanishing mean curvature or, equivalently, stationary points of the area functional. The
problem of finding area-minimizing surfaces with a given boundary in the 3-dimensional
Euclidean space was raised by Lagrange, and later named after Joseph Plateau who system-
atically experimented with soap films in the 19th century. The Plateau’s problem was solved
independently by Douglas and Radó in 1930 using mapping methods. Since then, there have
been various attempts to generalize this existence result to the case of higher-dimensional
submanifolds and in Euclidean or Riemannian spaces of higher co-dimensions. In particular,
this led to the development of geometric measure theory (GMT) by many outstanding math-
ematicians. By combining the works of Federer, Fleming, De Giorgi, Almgren, and Simons
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[5,21,25,26,77], it is known that an area-minimizing current of codimension one is smoothly
embedded outside a singular set of codimension 7. (We also refer to the work of De Lellis,
particularly the survey [22], for the regularity of higher-codimensional area-minimizing cur-
rents.)

Besides the Plateau’s problem, it is also natural to consider the existence of closed
minimal surfaces in closed Riemannian manifolds. When the ambient space has rich topol-
ogy, area-minimizing surfaces can be produced using either the mapping approach or geo-
metric measure theory. For instance, when the ambient spaceM n contains an incompressible
surface f W Sg ! M where Sg is a genus-g surface, Schoen–Yau [75] and Sacks–Uhlenbeck
[72] proved the existence of an area-minimizing surface in its conjugacy class, by minimiz-
ing first the Dirichlet energy E.f / D

R
Sg

jrf j2 and then within the Teichmüller space of
conformal structures. In [62], Meeks–Simon–Yau proved the existence of embedded minimal
surfaces by minimizing area within a nontrivial isotopy class in 3-manifolds. More generally,
if there exists a nontrivial element c ¤ 0 in the homology group Hn�1.M n; Z/, by GMT
there always exists an area-minimizing integral current † 2 c, whose support is smoothly
embedded outside a codimension 7 singular set.

The problem of finding closed minimal surfaces in general is more interesting and
significantly harder. Inspired by earlier works on finding closed geodesics (one-dimensional
minimal submanifolds) on 2-dimensional spheres [9,53], Almgren [2,3] initiated a program
aiming at finding closed minimal submanifolds in closed Riemannian manifolds of any
dimension and codimension. He designed a very general min–max theory applicable to
families of integral cycles and showed the existence of a nontrivial stationary integral k-
dimensional varifold in any closed M n for 1 � k � n. Later on, in a seminal work [68], Pitts
further improved Almgren’s theory and proved that the support of a min–max varifold is
smoothly embedded in the codimension-one case (k D n � 1) when 3 � n � 6, by using the
famous curvature estimates for stable minimal hypersurfaces by Schoen–Simon–Yau [74].
Schoen–Simon [73] then extended the curvature estimates and hence obtained the regularity
for codimension-one min–max varifolds in higher dimensions n � 7, allowing singular sets
of codimension 7. Combining all the results above, the first general existence theorem is:

Theorem 1.1. Every closed Riemannian manifold .M n; g/ of dimension n � 3 contains a
nontrivial integral .n � 1/-dimensional stationary varifold V whose support is a smoothly
embedded minimal hypersurface outside a singular set of codimension 7. If 3 � n � 7, the
support of V is a smooth, closed, embedded, minimal hypersurface †.

We also note that when M n has nontrivial higher homotopy groups, Sacks–Uhlen-
beck [72] produced branched, immersed, minimal 2-spheres by developing another min–
max theory using perturbation arguments and classical Morse theory on Banach manifolds.
Recently, in their proof of the finite-time extinction of the Ricci flow, Colding–Minicozzi
[17] found a new proof of Sacks–Uhlenbeck’s result by their harmonic replacements method.
See also for the works of the author [92,93] and Rivière [69] for min–max constructions for
higher genus minimal surfaces.
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Motivated by the these results and the existence theory of closed geodesics, S. T. Yau
formulated a famous conjecture in [90] asserting that every closed 3-manifold admits infinitely
many distinct smooth, closed, immersed minimal surfaces. One peak of the recent develop-
ments on minimal hypersurface theory is the resolution of this conjecture byMarques–Neves
[58] and Song [79]. Around the same time, a Morse theory for the area functional has been
established [55, 57, 59, 94], and several striking results concerning the spatial distribution of
these minimal hypersurfaces were proved [40, 60, 81]. All of these results were obtained by
applying the Almgren–Pitts min–max theory to families of cycles of multiple parameters
(deeply influenced by the solution of the Willmore Conjecture by Marques–Neves [56]). We
will postpone detailed discussions to Sections 2 and 3.

A central difficulty in obtaining the aforementioned results is the a priori existence
of integer multiplicity of the min–max varifolds. That is, the min–max varifolds may be
represented by integer multiples of embedded minimal hypersurfaces. Therefore, applica-
tions of the min–max theory to higher-parameter families of integral cycles may just result
in multiple covers of the minimal hypersurfaces associated with lower-parameter families.
Motivated by classical Morse theory, Marques–Neves [59] formulated the Multiplicity One
Conjecture:

Conjecture 1.2. For smooth generic metrics on M n when 3 � n � 7, min–max varifolds
are represented by multiplicity-one embedded minimal hypersurfaces.

This conjecture was confirmed by the author in [94] using new ideas which were
inspired by the investigation of the existence theory of CMC/PMC hypersurfaces [95,96], to
be discussed below.We will provide a sketch of proof of this conjecture in Section 2. Finally,
we also note that the counterpart of the Multiplicity One Conjecture in the phase transition
setting was proved by Chodosh–Mantoulidis [14] in 3 dimensions; see also [30,35].

1.2. CMC and PMC surfaces
Surfaces with constant mean curvature (CMC) are mathematical models of soap

bubbles. In the ideal situation, surface tension tends to minimize the surface area while the
volume of enclosed air is fixed. Such surfaces must then be stationary points of the area
subject to a volume constraint, and hence must have constant mean curvature by the first
variation formula. CMC surfaces form a classical topic in differential geometry, and play an
essential role in many areas, such as isoperimetric problems, interface theory for polymers,
and general relativity. The classification of CMC surfaces in R3 and other homogeneous 3-
manifolds has been a classical problem since the seminal work of Aleksandrov [1], and we
refer to the survey paper [64] for this direction. In this article, we will focus on the existence
theory of CMC surfaces in general manifolds.

We start with a brief and nonexhaustive review of several previous existence results
that are closely related to our main results. The existence of CMC surfaces in R3 with pre-
scribed mean curvature and Plateau boundary conditions was initiated by Heinz [38] and
Hildebrandt [39]. The Rellich conjecture, which asserts the existence of at least two solutions
to the CMC Plateau problem, was solved later by Brezis–Coron [11] and Struwe [83]. For the
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existence of closed CMC hypersurfaces, it is well known that the boundaries of isoperimet-
ric regions are smoothly embedded CMC hypersurfaces (up to a singular set of codimen-
sion 7); see [4, 66]. By perturbation arguments, one can generate foliations by closed CMC
hypersurfaces from a given nondegenerate closed minimal hypersurface, or near minimal
submanifolds of strictly lower dimensions (see, for instance, the works of Ye, Mahmoudi–
Mazzeo–Pacard [54,91]). The gluing constructions pioneered by Kapouleas produced many
important examples of complete or compact CMC surfaces in Euclidean spaces [10,43]. In
addition, there is the degree theory approach by Rosenberg–Smith [70]. However, these works
left open the fundamental problem of finding closed hypersurfaces with arbitrary prescribed
constant mean curvature in general manifolds.

In [95], Zhu and the author settled this problem by establishing the following general
existence theory.

Theorem 1.3 ([95]). Let M n be a closed Riemannian manifold of dimension 3 � n � 7.
Given any c 2 R, there exists a nontrivial, smooth, closed, almost embedded hypersurface
† of constant mean curvature c.

Remark 1.4. A smooth almost embedded hypersurface is a smooth immersion where near
any self-intersection point, the hypersurface decomposes into sheets which may touch but
not cross. Such hypersurfaces are Alexandrov embedded.

We proved this result by establishing a min–max theory for the area functional with
a volume term added, extending the Almgren–Pitts theory to the more general CMC setting.
A sketch of proof will be provided in Section 4.

We note that no control on topology of the CMC hypersurfaces in Theorem 1.3 was
known due to the use of integral currents as the total variation space. In contrast, we note
that using a variant of the Almgren–Pitts theory, Simon–Smith [78] proved the existence of an
embeddedminimal 2-sphere in anyRiemannian 3-sphere. Their work has been generalized to
an arbitrary closed 3-manifoldM by Colding–De Lellis [16] using sweepouts associated with
Heegaard splittings, and the genus of the min–max surface is known to be bounded by the
Heegaard genus ofM [23,44]. On the other hand, the min–max theory based on the harmonic
mapping approach [17,69,72,92,93] naturally produces branched immersed minimal surfaces
with controlled genus. With these contrasts in mind, it is tempting to search for closed CMC
surfaces with both prescribed mean curvature and controlled genus (bounded by the Hee-
gaard genus) in 3-manifolds. In particular, we note a conjecture by Rosenberg–Smith [70,

page 3]: “for any H � 0 and any metric g on S3 of positive sectional curvature, there exists
an embedding ofS2 toS3 of constant mean curvatureH”. However, by theworks of Torralbo
[85] and Meeks–Mira–Pérez–Ros [65], it is known that in certain positively curved homoge-
nous 3-spheres, there are mean curvature values for which the associated immersed CMC
2-spheres must have self-intersections. Motivated by the mapping approach for minimal sur-
faces, it is natural to modify embedding to branched immersion in the Rosenberg–Smith
conjecture.
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In [12], Cheng and the author solved this modified conjecture with a newly devised
min–max theory using the mapping approach.

Theorem 1.5 ([12]). Given a Riemannian 3-sphere .S3;g/with nonnegative Ricci curvature,
for every constant H , there exists a nontrivial branched immersed 2-sphere with constant
mean curvature H .

Remark 1.6. In [12], we also proved that a branched immersed H -CMC 2-sphere exists in
.S3; g/whenever Ricg > �

H 2

2
g, or for almost allH (with respect to the Lebesgue measure)

without curvature assumptions on g.

A hypersurface †n�1 in M n has prescribed mean curvature (PMC) by some func-
tion h W M ! R if its mean curvature is everywhere identical to the value of h. PMC
hypersurfaces are natural generalizations of CMC hypersurfaces and are models for cap-
illary surfaces; see [27, §1.6]. The local existence theory for PMC hypersurfaces is quite well
understood in the case of Plateau boundary conditions and in the graphical case; see [96] for
references. On the other hand, the global theory or the existence for closed PMC hypersur-
faces had been largely open except for constant prescription functions. The global existence
problem for closed PMC surfaces in closed three manifolds is a conjecture of Yau in the
1980s (by personal communication, see also [90, Problem 59] for a version of his conjecture
in R3).

In [96], Zhu and the author extended our CMC min–max theory developed in [95] to
nonconstant prescription functions. In particular, we solved the existence problem for closed
PMC hypersurfaces for a generic class of smooth prescription functions.

Theorem 1.7 ([96]). Let M n be a closed Riemannian manifold of dimension 3 � n � 7.
There is an open dense set (in the smooth topology) � � C 1.M/ of prescription functions
h for which there exists a nontrivial, smooth, closed, almost embedded hypersurface † of
prescribed mean curvature h. That is, H† D hj†.

In both Theorems 1.3 and 1.7, the min–max theory was devised only for one-
parameter families. These results were later generalized to multiparameter min–max con-
structions together with Morse index upper bounds by the author in [94]. The PMCmin–max
Theorem 1.7 and its generalizations in [94] had played an essential role in the proof of the
Multiplicity One Conjecture by the author in [94].

Finally, we also note the phase transition approach to the PMC existence problem
by Bellettini–Wickramasekera [8] for nonnegative Lipschitz prescribing functions.

2. Variational theory for area and the Multiplicity One

Conjecture

In this part, we introduce the recently developedMorse theory for the area functional
and a sketch of proof of the Multiplicity One Conjecture. For simplicity, in what follows, we
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will denote by n the dimension of a hypersurface †n, and by .n C 1/ the dimension of the
ambient manifold M nC1.

The principle behind Morse theory is to relate the topology of a given total space
to all the critical points of a functional defined therein in a generic scenario. We choose the
total space for the area functional to be the space of mod-2 n-cycles, denoted by Zn.M; Z2/,
which can roughly be regarded as the boundaries of open sets with finite n-dimensional
Hausdorff measure. In [2], Almgren calculated all the homotopy groups of Zn.M; Z2/, and
proved the following:

Theorem 2.1. Zn.M; Z2/ is weakly homotopic to RP 1.

Here RP 1 denotes the infinite-dimensional real projective space. This fact implies
that the Z2-cohomological ring of Zn.M; Z2/ is a polynomial ring whose generator we
denote by N�. That is,H �.Zn.M;Z2/;Z2/ D Z2Œ N��. Motivated by the topological structures,
Gromov [31,32], Guth [36], andMarques–Neves [58] introduced the notion of the volume spec-
trum for the area functional in Zn.M; Z2/ as a nonlinear version of the Laplacian spectrum.
Below, we let X be any finite-dimensional parameter space, for instance, a cubical complex.

Definition 2.2 (Volume spectrum). Given k 2 N, a continuous map ˆ W X ! Zn.M;Z2/ is
called a k-sweepout if ˆ�. N�k/ ¤ 0 in H k.X;Z2/. The kth volume spectrum, or the k-width,
is just the min–max value

!k.M/ D inf
ˆWk-sweepout

sup
x2dmn.ˆ/

Area
�
ˆ.x/

�
;

where dmn.ˆ/ stands for the domain of ˆ.

It was proved that the sequence ¹!k.M/º grows sublinearly at the rate of k
1

nC1 as
k ! 1 [31,32,36,58]. Moreover, the sequence satisfies a Weyl Law.

Theorem 2.3 (Liokumovich–Marques–Neves [52]). There exists a universal constant
a.n/ > 0 such that for any compact Riemannian manifold M nC1,

lim
k!1

!k.M/k� 1
nC1 D a.n/Vol.M/

n
nC1 :

Note that the Almgren–Pitts min–max theory works for families of cycles within
a homotopy class, while the definition of the volume spectrum concerns all families via
the cohomological condition. To link them together, Marques–Neves systematically studied
the Morse index for minimal hypersurfaces produced by the Almgren–Pitts theory [57]. In
particular, they proved the following version of the min–max theorem.

Theorem 2.4. Let M nC1 be a closed Riemannian manifold with 3 � n C 1 � 7. For each
k 2 N, there exists a disjoint collection of connected, closed, smoothly embedded minimal
hypersurfaces ¹†k

i W i D 1; : : : ; lkº with integer multiplicities ¹mk
i W i D 1; : : : ; lkº � N such

that

!k.M/ D

lkX
iD1

mk
i � Area

�
†k

i

�
and

lkX
iD1

Ind
�
†k

i

�
� k:
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Here Ind.†/ stands for the Morse index of †, which is the number of negative eigenvalues
of the second variation of area.

The possible existence of multiplicities greater than 1 formed a major obstacle in
applications of the Almgren–Pitts theory since the 1980s. In addition to the possible repeated
occurrence ofminimal hypersurfaceswhen applying Theorem 2.4 to ¹!kºk2N , min–max var-
ifolds with higher multiplicities cannot fit into the program of Marques–Neves [59] to obtain
Morse index lower bounds; (see also [55]). The following famous conjecture was formulated
by Marques–Neves [59].

Conjecture 2.5 (Multiplicity One Conjecture). For a bumpy metric on M nC1, 3 �

n C 1 � 7, there exists a collection ¹†k
i º as in Theorem 2.4 such that every component

†k
i is two-sided and of multiplicity one.

Remark 2.6. A hypersurface is two-sided if its normal bundle is trivial. A Riemannian
metric is bumpy if every closed immersed minimal hypersurface is a nondegenerate criti-
cal point of the area functional. White proved that the set of bumpy metrics is generic in the
sense of Baire [88,89].

This conjecture was confirmed by the author in [94].

Theorem 2.7. Conjecture 2.5 is true.

Theorem 2.7, together with the program on Morse index lower bounds devel-
oped by Marques–Neves [59], implies that for bumpy metrics, there exists a closed min-
imal hypersurface of Morse index k and area !k.M/ for each k 2 N. The above works
together established a satisfactory global Morse theory for the area functional. Recently,
Marques–Montezuma–Neves proved Morse inequalities for the area functional [55], and
hence established a local Morse theory as well.

By the convergence theorems for minimal hypersurfaces of Sharp [76], the same
conclusions in Theorem 2.7 hold true for metrics with a positive Ricci curvature, as well
as the following results concerning the multiplicity and Morse index of min–max minimal
hypersurfaces for general metrics.

Theorem 2.8 ([94]). In Theorem 2.4, every component †k
j which is not weakly stable is

two-sided with mk
j D 1; and

P
†k

j W two-sided Ind.†k
j / � k.

Remark 2.9. A closed minimal hypersurface † is weakly stable if the second variation of
area at † is nonnegative definite with a nontrivial kernel. The results in Theorem 2.8 have
been partially generalized to dimensions n C 1 > 7 by Li [50].

Sketch of proof of Theorem 2.7. The key idea of our proof in [94] is to approximate the area
functional by the weighted Ah-functional used in the PMC min–max theory [96]. Here Ah

is defined for Caccioppoli sets � by Ah.�/ D Area.@�/ �
R

�
hdM , where h 2 C 1.M/.

A smooth critical point of Ah is a Caccioppoli set � whose boundary is a smooth hypersur-
face † D @� and has mean curvature (with respect to the outward unit normal) given by h
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restricted to †. There are two crucial parts in the proof. First, we show that, given a bumpy
metric, the volume spectrum !k.M/ can be realized by the area of some minimal hypersur-
faces coming from relative min–max constructions using sweepouts of boundaries. Next, we
observe that, still assuming bumpiness, if one approximates Area by a sequence ¹A"khºk2N

where "k ! 0, and if h W M ! R is carefully chosen, then the limit min–max minimal hyper-
surfaces (of min–max PMC hypersurfaces associated with A"kh) are all two-sided and have
multiplicity one.

Part 1. Given a bumpy metric, for each k 2 N, by [57] there exists a free homotopy class …

of maps ˆ W X ! Zn.M; Z2/, where X is a fixed k-dimensional parameter space such that
the min–max valueL D infˆ2…maxx2X Area.ˆ.x// equals!k.M/. Chooseˆ0 2 … so that
maxx2X Area.ˆ0.x// is very close to L. Since the space of Caccioppoli sets C.M/ forms a
double cover of Zn.M; Z2/ via the boundary map @ W � ! Œ@�� (see [59]), we can lift ˆ0

to ê
0 W QX ! C.M/, where � W QX ! X is also a double cover. Next let Y be the subset of

x 2 X whereˆ0.x/ is "-close to the set � of closed embeddedminimal hypersurfaces†with
Area � L C 1 and Ind � k, and let Z D X n Y . As � is a finite set by [76], Y is topologically
trivial, and hence QY D ��1.Y / is a disjoint union of two homeomorphic copies of Y , that is,
QY D Y C

F
Y � with Y ' Y C ' Y �. On the other hand, since no element in ˆ0.Z/ is close

to being regular, we can deform ˆ0jZ based on Pitts’s combinatorial argument [68, 4.10], so
that

max
x2Z

Area
�
ˆ0.x/

�
< L: (2.1)

Now consider the . QX; QZ/-relative homotopy class of maps generated by ê
0: e… D ¹‰ W QX !

C.M/ W ‰j QZ D ê
0j QZº.

Lemma 2.10 ([94, Lemma 5.8]). The min–max value QL of e… satisfies

QL WD inf
‰2e…max

x2 QX

Area
�
@‰.x/

�
� L D !k.M/:

Hence by (2.1), we have the nontriviality condition QL > maxx2Z Area.ˆ0.x//.

Proof. If the conclusion were false, then since

max
x2 QZ

Area.@ê
0.x// D max

x2Z
Area.ˆ0.x// < L;

one could deform ê
0 on QY so that the maximum area is less than L. However, as Y C and Y �

are disjoint, the deformations on Y C (or on Y �) can be passed to the quotient to give defor-
mations of ˆ0jY in Zn.M;Z2/. As all the maps are fixed on Z, we then obtain deformations
of ˆ0 after which the maximum area is less than L, which is a contradiction.

Part 2: The main conclusion follows from the result below.

Theorem 2.11 ([94, Theorem 4.1]). In the above notation, if g is bumpy, QL can be realized as
the area of a multiplicity one, closed, embedded, two-sided, minimal hypersurface.
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To derive Theorem 2.7, first note that by the choice of ˆ0, we know that QL is very
close to L. By the bumpiness of g, the values of QL should stabilize to L when they are close
enough.

Proof of Theorem 2.11. To simplify notions, we will drop all the tildes in this part. Given a
smooth function h W M ! R and " > 0, we can approximate L by the min–max values for
the A"h-functional, L"h D inf‰2… maxx2X A"h.@‰.x//, that is, L"h ! L as " ! 0. Note
that we require ‰jZ D ˆ0jZ for all ‰ 2 …. By the fact L > maxx2Z Area.@ˆ0.x//, and
that the term "

R
�

hdM in A"h.�/ is uniformly small, we have, for " small enough,

L"h > max
x2Z

A"h
�
‰.x/

�
: (2.2)

For a generic choice of h, applying the multiparameter PMC min–max theory [94, Theo-

rem 1.7] (based on the one-parameter version in [96]), we obtain some �" 2 C.M/ such that:
(1) †" D @�" is an almost embedded hypersurface; (2) the mean curvature (with respect
to outward unit normal) H†" D "hj†" ; (3) A"h.�"/ D L"h; and (4) the Morse index (with
respect to A"h) Ind.†"/ � k.

Letting " ! 0, by (2)–(4) and [94, Theorem 2.6], up to taking a subsequence, †" con-
verge locally smoothly away from a finite set W to a closed embedded minimal hypersur-
face †0 (assumed to be connected without loss of generality) with an integer multiplicity
m 2 N. Therefore, L D mArea.†0/, and it suffices to prove that †0 is two-sided (which we
skip here) and m D 1.

The convergence implies that †" locally decomposes as an m-sheeted graph over
†0 n W , with graphing functions: u1

" � u2
" � � � � � um

" . And by (1), the outward unit
normal of �" will alternate orientations along these sheets. The proof proceeds depend-
ing on whether m is odd or even.

Claim 1. If m � 3 is odd, then † is degenerate, hence a contradiction.

Proof. Sincem is odd, the top and bottom sheets have the same orientation, so by subtracting
the PMC equations of the two sheets, we have L.um

" � u1
"/ C o.um

" � u1
"/ D ".h.x; um

" / �

h.x;u1
"// D o.um

" � u1
"/, whereL is the Jacobi operator associated with the second variation

of †. After renormalizations, the height differences um
" � u1

" will converge subsequentially
to a positive Jacobi field of † n W , which extends to † by a standard trick.

Claim 2. If m is even, there exists a solution of L' D 2hj†0 which does not change sign.

Proof. Now the top and bottom sheets have opposite orientations. Thus L.um
" � u1

"/ C

o.um
" � u1

"/ D ˙".h.x; u1
"/ C h.x; um

" //. Using the renormalization procedure again and
noting that um

" � u1
" > 0, we get either a positive Jacobi field (which cannot happen) or a

positive function ' satisfying L' D 2hj†0 or L' D �2hj†0 .

The following key lemma says that Claim 2 cannot hold for a suitably chosen h.
Hence the proof of Theorem 2.11 is complete.
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Lemma 2.12. For a suitably chosen h, the solutions of L' D 2hj† on a closed embedded
minimal hypersurface † with Area � C and Ind � k must change sign.

Proof. By [76], the set of minimal hypersurfaces with Area� C and Ind� k is finite,
which we denote by ¹†1; †2; : : : ; †N º. Take pairwise disjoint neighborhoods U ˙

j � †j

and a smooth function f defined on
S

U ˙
j with compact support such that (1) f jU C

j
is

nonnegative and is positive at some point; (2) f jU �
j
is nonpositive and is negative at some

point. Next extend Lf to some h0 2 C 1.M/ and take a generic h as close to h0 as we want.
Then any solution ' of L' D 2hj†j

would be close to 2f for each †j , and hence must
change sign.

3. Generic denseness, equidistribution, and scarring

En route to the proof of Yau’s conjecture and the establishment of a Morse theory
for the area functional, we have also observed several striking results on the spatial distri-
bution of closed minimal hypersurfaces for generic smooth metrics, which we introduce in
this part. There is an intimate analog between closed minimal hypersurfaces and L2-density
of Laplace eigenfunctions regarding their spatial distributions. For instance, both exhibit
equidistribution and scarring phenomena. We refer to [81] for a survey of this analogy.

Using the Weyl Law for the volume spectrum (Theorem 2.3), Irie–Marques–Neves
[40] obtained a very surprising generic density result for closed minimal hypersurfaces, and
hence settled Yau’s conjecture in generic case. (See [49] by Li for the generalization to higher
dimensions.)

Theorem 3.1 (Irie–Marques–Neves [40]). Let M nC1 be a closed manifold with 3 �

n C 1 � 7. Then for a C 1-generic Riemannian metric, the union of all closed, smoothly
embedded minimal hypersurfaces is dense in M .

This result was later quantified by Marques–Neves–Song [60] to prove the following
generic equidistribution result for closed minimal hypersurfaces.

Theorem 3.2 (Marques–Neves–Song [60]). Let M nC1 be a closed manifold with 3 � n C

1 � 7. Then for aC 1-generic Riemannianmetric, there exists a sequence of closed, smoothly
embedded minimal hypersurfaces ¹†j ºj 2N that is equidistributed in M . That is, 8f 2

C 1.M/,

lim
q!1

1Pq
j D1 Area.†j /

qX
j D1

Z
†j

fd†j D
1

Vol.M; g/

Z
M

fdM:

The key idea behind these results is that, after bumping up the metric in a neigh-
borhood U of a point p 2 M (for instance, by conformal changes), the min–max theory
necessarily yields a closed minimal hypersurface passing through U according to the Weyl
Law.

In his proof of Yau’s conjecture for general nongeneric metrics, Song [79] introduced
a localized version of the volume spectrum ¹e!kºk2N , called the cylindrical volume spectrum
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and defined as the volume spectrum of certain noncompact manifolds with Lipschitz metrics
obtained by gluing infinite cylinders to compact manifolds with stable minimal boundaries.
In contrast to the sublinear growth of the standard volume spectrum, ¹e!kºk2N grows linearly
by [79]. By extending the ideas in [60] to the cylindrical volume spectrum, Song and the
author [81] obtained a generic scarring result. Namely, we showed that generically there exist
closed embeddedminimal hypersurfaces with large area andMorse index, which accumulate
surrounding any stable minimal hypersurface in a quantitative way. Such a phenomenon is
called scarring.

Theorem 3.3 (Generic scarring, [81]). Let M nC1 be a closed manifold with 3 � n C 1 � 7.
For a C 1-generic metric, we have: for any connected, closed, embedded, 2-sided, minimal
hypersurface S inM which is stable, there is a sequence ¹†kº of closed, embedded, minimal
hypersurfaces, such that

.1/ †k \ S D ;I .2/ lim
k!1

k†kk D 1I .3/ lim
k!1

Ind.†k/k†kk
�1

D kSk
�1

I

.4/F
�

ŒS�

kSk
;

Œ†k �

k†kk

�
� 1= log

�
k†kk

�
:

Here Œ†� is the varifold associated to †, k†k is its area, and F is the varifold distance.

In dimension n C 1 D 3, we also explored the 3-manifold topology to find stable
minimal surfaces and showed that generic scarring happens for all closed 3-manifolds but
the spherical quotients.

4. Min–max theory for CMC surfaces

In this part, we present a sketch of the proof of the CMC existence Theorem 1.3,
focusing for simplicity on the one-parameter min–max construction. The proof of the PMC
Theorem 1.7, which we omit here, shared several key ideas with the CMC case, with addi-
tional challenges including the correct choice of prescribing functions [96, Proposition 0.2],
and a more complicated gluing scheme.

Sketch of proof of Theorem 1.3. Fixing a closed manifold .M nC1; g/ and a number c > 0,
a given Morse function f W M ! Œ0; 1� generates a continuous map ˆ0 W Œ0; 1� ! C.M/

by ˆ0.x/ D ¹f .p/ < xº with ˆ0.0/ D ; and ˆ0.1/ D ŒM �. The min–max value of Ac

associated with the relative homotopy class … D ¹ˆ W Œ0; 1� ! C.M/; ˆj¹0;1º D ˆ0j¹0;1ºº

is
Lc

D inf
ˆ2…

max
x2Œ0;1�

Ac
�
ˆ.x/

�
;

where
Ac.�/ D Area.@�/ � c Volg.�/:

Using the isoperimetric inequalities for small volumes, we have

Theorem 4.1 ([95, Theorem 3.9]). Lc > 0.
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Note that max¹Ac.;/; Ac.M/º D 0. This directly implies that Lc can be realized
by some nontrivial weak limit. In the multiparameter cases, one needs to assume that Lc is
strictly greater than the values assumed on the relative boundary; see (2.2).

For an arbitrary critical sequence ¹ˆi º � …, that is, if maxx2Œ0;1� Ac.ˆi .x// ! Lc ,
we define the critical set as the collection of all varifold limits:

C
�
¹ˆi º

�
D

°
V W V D lim

ij !1

ˇ̌
@ˆij .x/

ˇ̌
as varifolds, where Ac

�
ˆij .xj /

�
D Lc

±
:

By a tightening argument adapted from that of Almgren–Pitts, we can homotopically deform
¹ˆi º to a new critical sequence [95, §4], denoted still by ¹ˆi º by abuse of notation, such that

Lemma 4.2. Every element in C.¹ˆi º/ has c-bounded first variation.

Note that this is the first key novel idea in comparison with the minimal case [68]: the
Ac-functional is not defined for general varifolds, so we cannot show that every element in
C.¹ˆi º/ is a stationary point of Ac as in [68]. Nevertheless, having c-bounded first variation
provides enough control on elements of C.¹ˆi º/ to proceed.

We can then adapt the Almgren–Pitts combinatorial argument to show that at least
one element V 2 C.¹ˆi º/ satisfies an “almost-minimizing” property. Heuristically, V is
almost-minimizing in an open set U � M if it can be approximated by the boundaries of a
sequence ¹�i º � C.M/ such that, if we deform �i in U without increasing the Ac-value
by ıi in the process, then we are not allowed to decrease the Ac-value by "i at the end. Here
ıi ; "i ! 0 as i ! 1. That is, writing the deformation as ¹�t

i ºt2Œ0;1�,

Ac
�
�t

i

�
� Ac.�i / C ıi ; 8t 2 Œ0; 1� ) Ac

�
�1

i

�
� Ac.�i / � "i :

Using this property, we can construct replacements V � of V inside anyK �� U , satisfying:

Proposition 4.3 ([95, Proposition 5.8]). (1) V � is the same as V outsideK; (2)�cVol.K/ �

kV �k � kV k � cVol.K/; (3) V � is the limit of boundaries @��
i which locally minimize Ac

in the interior of K.

Note that (2) and (3) form two main differences of the CMC case compared to the
minimal case [68]. In (2), the mass may change due to the volume term in Ac , but luckily
the errors for mass change converge to zero in any blowup procedure. Moreover, in (3) we
gain more regularity. In fact, @��

i are stable CMC hypersurfaces, and hence form a compact
family in the smooth topology by curvature estimates, and the limit can still be represented
as a boundary due to the one-sided maximum principle satisfied by CMC [95, Lemma 2.7].
That is, two embedded CMC hypersurfaces which do not cross each other and have oppo-
site orientations must either be disjoint or touch on at most a codimension-one subset. We
point out that in the minimal case, the replacement V � is smoothly embedded inside K, but
may have integer multiplicities. This phenomenon forms the key mechanism for separating
minimal sheets in the PMC approximation used in [94].

To obtain the regularity of V , we showed, heuristically, that V coincides with V �.
One key step is to prove that two such replacements V � and V �� glue together as a smooth
almost embedded CMC hypersurface along a particularly chosen interface. This amounts
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to showing that the unit normal vectors match modulo standard regularity theory of elliptic
PDEs. Since the CMC equation is not homogeneous, we need to make sure that the ori-
entations of V � and V �� match at a gluing point. Fortunately, this can be justified using
the boundary structures. Another challenge is to glue near a self-touching point of V � and
V ��. We observed that a blowup of V � satisfies all the requirements for the existence of
good replacements in the minimal case, and hence must be an embedded minimal hypersur-
face. This fact, together with our particular gluing configurations, implies that all blowups
appearing in the gluing procedure are planes. The matching of normal vectors then follows
in a standard way.

5. Minimal surfaces with free boundary and applications

All the aforementioned results have their counterparts in compact manifoldsM with
smooth boundary @M . The variational problem in .M; @M/ concerns submanifolds † � M

with boundary @† (possibly empty) constrained to lie in @M , that is, @† � @M . Critical
points of the area functional for this type of variational problems are minimal submanifolds
† with boundary @† meeting @M orthogonally, usually called minimal submanifolds with
free boundary. Other than earlier works of Gergonne in 1816 and H.A. Schwarz in 1890,
Courant was the first mathematician who studied systematically the free boundary problems
for minimal surfaces; see [19, Chapter VI]. We refer to [48] for a brief historical account of
this topic. The study of free boundary minimal surfaces was recently revived by the seminal
work of Fraser–Schoen [29], where they revealed a deep connection between extremal Steklov
eigenvalue problems and free boundary minimal surface theory in the unit ball. We refer to
[47] for a nice survey on this connection and on various constructions of examples in the unit
ball.

In this part, we will focus on the codimension-one case, namely minimal hypersur-
faces with free boundary, abbreviated as FBMHs, in general compact manifolds. We refer to
[28,51] for higher-codimensional cases. Parallel to the proof of Yau’s conjecture and the devel-
opment of Morse theory in closed manifolds, we have also witnessed fruitful results in the
free boundary setting. In his original proposal, Almgren [2] already included compact man-
ifolds with boundary .M; @M/. He considered the space of relative cycles Zrel.M; @M; G/,
whereG D Z orZ2. (Those are integral currents or flat chains inM with boundary supported
on @M .) The min–max procedure was expected to produce smoothly embedded FBMHs in
dimensions between 3 and 7. The works by Grüter, Jost [33,41] in the 1980s and by De Lellis–
Ramic [24] recently confirmed this regularity result with an additional convexity assumption
on @M . Without assuming any boundary convexity, Li [46] first attempted this problem in
dimension 3, and a general existence and regularity result was later completely established
by Li and the author [48] in dimensions between 3 and 7, hence finishing the first step of
Almgren’s program in the free boundary setting.

A subtle difficulty present in the nonconvex boundary case is the possible touching
of the interior of an FBMH with @M , usually called the touching phenomenon. In [48], we
proved that the min–max varifold is smoothly embedded even if it has nontrivial support on
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@M . That is, the min–max FBMHmay touch @M along an arbitrary set. This has been further
developed by Guang, Li, Wang, and the author [34] to obtain Morse index upper bounds, as
well as a generic density result. Very recently, Wang [86] solved the free boundary version
of Yau’s conjecture based on ideas in [79], thereby proving the existence of infinitely many
FBMHs in an arbitrary compact .M; @M/. With Sun and Wang, we [84] proved the free
boundary version of the Multiplicity One Conjecture based on [94]. As an essential tool, we
also established the free boundary min–max theory for CMC/PMC hypersurfaces in [84].

Variational theory in ambient manifolds with boundary has potential applications to
constructing minimal hypersurfaces in noncompact or singular spaces. The idea is to exhaust
those spaces by compact domains with smooth boundary and then take the limit of the free
boundary FBMHs constructed therein. In [84], we found one such application to Gaussian
spaces, and constructed minimal surfaces in such spaces with arbitrarily large Gaussian area;
see also [45]. Note that those minimal surfaces are self-shrinking solutions of the mean cur-
vature flow; see [18]. We hope to see more applications of this idea in the future, for instance,
in compact spaces with singularities.

6. Further discussions

We have seen many celebrated results of the min–max theory in closed manifolds
with bumpy metrics or with metrics of positive Ricci curvature. However, there still remain
many interesting open problems for general metrics, besides those that can be proved by
approximations. The solution of Yau’s conjecture by Song [79] is almost the only general
result about an arbitrary metric in this field. Since contradiction arguments were used in [79]

(see also the refined proof in [80] using the notion of saddle point minimal hypersurfaces),
it is tempting to find a direct construction of infinitely many closed minimal hypersurfaces
by variational methods. This would require a better understanding of multiplicities for non-
bumpy metrics. In particular, it would be interesting to know for a general metric whether
there exist infinitely many k 2 N such that the min–max minimal hypersurfaces associ-
ated with !k have multiplicity one. On the other hand, in an ongoing work joint with Wang
[87], we exhibit the first nontrivial examples of nonbumpy metrics on S3 under which the
min–max varifolds associated with the second width !2 must have multiplicity two. We
conjecture that for any k 2 N, there exist nonbumpy metrics under which the k-width must
be realized by minimal hypersurfaces with higher multiplicity. Upon finishing this survey,
we learned that in an ongoing work [82], Stevens and Sun proved a nice dichotomy result for
a closed manifold with an arbitrary metric, that is, there exist either closed minimal hyper-
surfaces with arbitrarily large area, or uncountably many closed minimal hypersurfaces. It
would be interesting to know when the second situation happens. It is also natural to ask to
what extent equidistribution and scarring of closed minimal hypersurfaces hold for general
metrics, where one may first search for a sequence of closed minimal hypersurfaces whose
average measures converge to a limit measure with positive density everywhere. Enlightened
by the Quantum Unique Ergodicity Conjecture [71], it would be desirable to show that for
generic metrics the sequence of min–maxminimal hypersurfaces associated with the volume
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spectrum individually equidistribute (or even just to find a sequence of closedminimal hyper-
surfaces which individually equidistribute); see [60]. Another interesting question is whether
the generic scarring phenomenon can occur surrounding unstable (for instance, index-one)
minimal hypersurfaces in general; see [81]. Finally, it would be very interesting to know to
what extent the volume spectrum reflects the ambient geometry.

Compared to minimal (hyper)surfaces, the existence theory of CMC (hyper)sur-
faces, particularly for multiple solutions, is still largely open. For instance, it would be very
interesting to knowwhether the Simon–Smith [78]min–max constructions work for the CMC
setting with small prescribedmean curvatures in an arbitrary 3-sphere. If so, the multiplicity-
one result for the Simon–Smith min–max could be proved using the ideas in [94], and this
will shed light on another famous conjecture of Yau which asserts the existence of four dis-
tinct minimal spheres [90, Problem 89]; see also [37, 42]. The existence of multiple closed
CMC hypersurfaces with prescribed mean curvature is a very interesting and natural prob-
lem (compare with Yau’s conjecture on minimal hypersurfaces). Recently, there was some
nice progress on this problem presented by Dey [20] and Mazurowski [61] based on [95].
Motivated by a well-known conjecture of Arnold [7, 1981-9] which asserts the existence of
at least two distinct closed curves of any prescribed constant geodesic curvature on an arbi-
trary Riemannian 2-sphere (see [13,97] for more discussions), it is tempting to conjecture that
every closed manifold .M nC1; g/, 3 � n C 1 � 7, contains at least two distinct closed CMC
hypersurfaces with mean curvature c for any c > 0. On a related note, it would be inter-
esting to extend the Rellich conjecture mentioned earlier to higher-dimensional Euclidean
spaces using the theory in [95]. Also, since the Euclidean spaces contain closed embedded
CMC hypersurfaces of any prescribed curvature, it is natural to conjecture that any asymp-
totically flat manifold of low dimension contains at least one closed CMC hypersurface for
any prescribed curvature. (Note that there is an extensive literature on stable CMC hyper-
surfaces in those spaces which we do not go into here.) Finally, we note that the equation
satisfied by marginally outer-trapped surfaces (MOTS) in general relativity is also of pre-
scribed mean curvature type; see [6]. Even though the MOTS equation is not variational, it
is still an interesting question whether one can construct them using a min–max scheme.
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1. Introduction

Ricci flow was introduced by Hamilton in the early 1980s [27], and it preserves the
Kählerian structure. The Kähler–Ricci (abbreciated as KR) flow is simply the Ricci flow
restricted to Kähler metrics. If M is a Fano manifold, that is, a compact Kähler manifold
with positive first Chern class c1.M/ > 0, we usually consider the following normalized
KR-flow:

@!.t/

@t
D �Ric

�
!.t/

�
C !.t/; !.0/ D !0; (1.1)

where !0 and !.t/ denote the Kähler forms of a given Kähler metric g0 and the solutions
of Ricci flow with initial metric g0 in 2�c1.M/, respectively.1 Then the flow preserves the
Kähler class, i.e., Œ!.t/� D 2�c1.M/ for all t . In particular, the flow preserves the volume
of !.t/.

We may write solutions of (1.1) as

!.t/ D !t D !0 C
p

�1@N@'t > 0

for some Kähler potential ' D 't . Let h be a Ricci potential of the background metric !0

such that
Ric.!0/ � !0 D

p
�1@N@h:

In 1985, Cao [11] first reduced (1.1) to solving a parabolic complex Monge–Ampère (MA)
equation in the space of Kähler potentials as follows:

@'

@t
D log

!n
'

!n
0

C ' � h: (1.2)

By using the maximum principle, he proved that (1.2) has a global solution !t for all t � 0.
Thus the main interest in (1.1) is to study the limit behavior of !.t/, as well as 't of (1.2).
In particular, if 't has a smooth limit, !.t/ will converge to a Kähler–Eintein (KE) metric.
Hence, (1.1) also provides an approach to study KE-metrics on a Fano manifold. Compared
to the continuity method used by Yau [68] and Aubin [4], Cao’s argument also gives a vari-
ant proof via KR-flow of the existence of KE-metrics on a compact Kähler manifold with
negative or trivial first Chern class.

In the one-dimensional case, i.e., M D S2, Hamilton proved the convergence of
(1.1) to a round sphere under the assumption of positive curvature of !0 [28]. Later, Chow
removed the Hamilton’s condition [18, 19]. But both proofs depend on the uniformization
theorem. An independent proof for the convergence of (1.1) on S2 was given by Chen–
Lu–Tian [13]. As a consequence, they gave a proof of the uniformization theorem by using
the Ricci flow.

Motivated by the Frankel conjecture, there are many influential works published for
KR-flow on CP n under the assumption of positive (or nonnegative) bisectional curvature,
for instance, see [6, 16,26,41], among other references. In particular, Chen–Sun–Tian gave a
proof of the Frankel conjecture by employing the Ricci flow [14].

1 For simplicity, we will denote a Kähler metric by its Kähler form thereafter.
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Because there are some well-known obstructions for KE-manifolds (cf. [25, 40]),
a Fano manifold may not admit a KE-metric, in general. Thus, the solutions 't of (1.2) may
develop a singularity. It makes the investigation more complicated, when studying the limit
behavior of the flow (1.1). In this paper, we will introduce some basic tools, as well as some
recent developments of the KR-flow, including Perelman’s fundamental estimates for KR-
flow, the smooth convergence of KR-flow, the progress on Hamilton–Tian conjecture and
the KR-flow on G-manifolds with singular limits.

2. Kähler–Ricci solitons

A special class of solutions of (1.1) are related to KR-solitons. A KR-soliton on a
Fano manifoldM is a pair .X; !/, where X is a holomorphic vector field (HVF) onM and
! 2 2�c1.M/ is a Kähler metric onM such that

Ric.!/ � ! D LX .!/; (2.1)

where LX denotes the Lie derivative along X . If X D 0, the KR-soliton becomes a KE-
metric.

In 1985, Bando–Mabuchi proved the following uniqueness result for KE-metrics on
a Fano manifold [7].

Theorem 2.1 (Bando–Mabuchi). For any two KE-metrics ! and !0 on a Fano manifoldM ,
there is a � 2 Aut.M/ such that

!0
D ��!;

where Aut.M/ is the group of holomorphism transformations ofM .

Bando–Mabuchi’s uniqueness theorem was generalized to KR-solitons by Tian and
the author in 2000 [58, 59]: a KR-soliton on a compact complex manifold, if it exists, must
be unique modulo Aut.M/. Furthermore, X lies in the center of Lie algebra of a reductive
part Autr .M/ of Aut.M/. We call such an X a soliton HVF, which is also unique modulo
Aut.M/. In fact, it is determined by the modified Futaki invariant, regardless of the existence
of KR-solitons [59].

An important class of examples of KR-solitons were found in toric manifolds by
Wang–Zhu in 2004. They solved (2.1) for a soliton HVF and torus-invariant metrics on a
Fano toric manifold by using the technique of real MA-equations.

Let �t D exp¹t Re.X/º be a 1-PS in Aut.M/. Then it is easy to see that the induced
metrics by �t from a KR-soliton !,

!.t/ D ��
t ! D ! C

p
�1@N@'t ; (2.2)

are solutions of (1.1), as well as 't are solutions of (1.2). In particular, a KE-metric is a static
solution of (1.1).

Note that 't in (2.2) is not uniformly bounded. Thus, we usually study the conver-
gence of (1.1) or (1.2) in the sense of geometric metrics modulo holomorphism or diffeo-
morphism transformations; see [14,16,55,56,60,61,65,66,72,73], etc.
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3. Perelman’s estimates

There is a fundamental estimate for (1.1) established by Perelman in 2003 [43].

Lemma 3.1 (Perelman). Let ht be a Ricci potential of !t in (1.1). Then there are constants
c > 0 and C > 0 depending only on the initial metric !0 such that the following are true:

(1) diam.M;!t / � C , vol.Br .p/; !t / � cr2n;

(2) For any t 2 .0;1/, there is a constant ct such that ht D � P�t C ct satisfies

kht kC 0.M/ � C; krht k!t � C; k�ht kC 0.M/ � C: (3.1)

Perelamn’s proof of Lemma 3.1 depends on the W -functional and the argument in
proving noncollapsing of Ricci flow in the pioneering paper of his solution of the Poincaré
conjecture [42]. A detailed proof of Lemma 3.1 can be found in a paper by Sesum–Tian [45].
We note that ht is a Ricci potential of !t . Thus (3.1) means that the Ricci potential is uni-
formly bounded along the KR-flow (1.1) as well as the scalar curvature.

For Kähler metrics g in 2�c1.M/ on an n-dimensional Fano manifold M , Perel-
man’s W-functional can be defined with a pair .g; f / by (cf. [62])

W.g; f / D .2�/�n

Z
M

�
R.g/C jrf j

2
C f

�
e�f !n

g ; (3.2)

where f is a real smooth function normalized byZ
M

e�f !n
g D

Z
M

!n
g D V: (3.3)

Then Perelman’s entropy �.g/ is defined by

�.g/ D inf
f

®
W.g; f / j .g; f / satisfies (3.3)

¯
:

The number �.g/ can be attained by some f (cf. [44]). In fact, such an f is a solution of the
equation

24f C f � jDf j
2

CR D �.g/: (3.4)

In particular, f D �X if !g D !KS , where �X is a potential of soliton HVF X associated
to the KR-soliton !KS [61]. As a consequence, one can further prove that the minimizer of
W.g; �/ is uniquely associated to g near a KR-soliton (cf. [47]).

The first variation of �.!g/ with !g 2 2�c1.M/ has been computed [61,62],

ı�.!g/ D �.2�/�n

Z
M

˝
Ric.g/ � g C Hessf; ıg

˛
e�f !n

g :

Then it is easy to see that �.!t / is monotonic along the flow (1.1). Thus the smooth limit of
!t in Cheeger–Gromov topology should be a KR-soliton. In particular, if the curvature of !t

is uniformly bounded, then by the regularity of Ricci flow [46]. together with the noncollapse
property in Lemma 3.1(1), there exists a sequence of !t which converges smoothly to a KR-
soliton in Cheeger–Gromov topology.

Since the scalar curvature of !t is uniformly bounded along (1.1) by Lemma 3.1(2),
the monotonicity of the entropy �.!t / implies a uniform log Sobolev inequality associated
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to !t . It was proved by Zhang that this log Sobolev inequality is equivalent to the following
Sobolev inequality [70]:�Z

M

j j
2n

n�1!n
t

� n�1
n

� Cs

�Z
M

jr j
2
!t
!n

t C

Z
M

j j
2
!t
!n

t

�
; 8 2 C1.M/; (3.5)

where Cs is a uniform constant independent of t .

4. Smooth convergence

As we know, the smooth limit of KR-flow (1.1) should be a KR-soliton. Thus it
is natural to study the convergence of KR-flow on a Fano manifold which admits a KR-
soliton. In 2002, Perelman first announced the convergence result on KE-manifolds in his
distinguished paper [42] (see the last paragraph in the introduction part). In 2007, Tian and
the author gave a proof of Perelman’s result with discrete Aut.M/ [60]. The proof is based
on an inequality of Moser–Trudinger type established by Tian in his seminal work on KE-
mertrics [51]. Then in 2013, we avoided using the Moser–Trudinger inequality and so gave a
complete proof of Perelman’s result for the convergence of KR-flow on KE-manifolds [61].
In the general case of KR-solitons, we have proved the following convergence result in [56].

Theorem4.1. Let .M;!KS / be a Fanomanifold which admits a KR-soliton!KS 2 2�c1.M/

with respect to an HVF X . Let KX be a compact 1-PS in Aut.M/ generalized by Im.X/.
Then for any KX -invariant initial metric !0 2 2�c1.M/, the flow (1.1) converges to !KS

exponentially modulo Aut.M/.

Proof of Theorem 4.1 is reduced to solving the following modified KR-flow equa-
tion:

@!.t/

@t
D �Ric

�
!.t/

�
C !.t/C LX!.t/; !.0/ D !0: (4.1)

Analogous to (1.1), (4.1) is equivalent to

@'

@t
D log

!n
'

!n
0

C ' CX.'/C �X � h; (4.2)

where �X is a potential ofX associated to !0. We will deform theKX -invariant initial metric
!0 from !KS by a path !� (� 2 Œ0; 1�), for example, !� D �!0 C .1� �/!KS , to prove the
convergence of 't in (4.2) for any initial !� .

The first step is to prove the convergence of Kähler potentials 't in (4.2) for an
initial metric !0 very close to !KS . This is related to the stability problem of KR-flow (4.1).
We use a contradiction argument employing the fact of uniqueness of KR-solitons with the
help of the regularity of (4.2) onM � Œ�1C t; 1C t � for any t . In a subsequent paper [73],
the author actually proved that 't is convergent to a Kähler potential exponentially (without
any holomorphism transformation). Moreover, the KX -invariance condition for !0 can be
removed. But we do not know whether the convergence is still with an exponential rate after
holomorphism transformation, in general.
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By the first step, we see that there is �0 � 1 such that the flow (4.1) is convergent
for the initial metric !� with any � < �0. It remains to prove that the convergence still holds
for !�0 . We can also use a contradiction argument. A key estimate is to show that the energy
level L.!�0/ of the flow for the initial metric !�0 satisfies

L.!�0/ D lim
t!1

�.!
�o
t / D �.!KS /: (4.3)

In fact, we prove

Proposition 4.2. Suppose thatM is a Fano manifold which admits a KR-soliton .!KS ;X/.
Then for any KX -invariant initial metric ! of KR-flow (1.1), it holds that

L.!/ D .2�/�n
�
nV �NX

�
c1.M/

��
; (4.4)

where

NX

�
c1.M/

�
D

Z
M

�X .!/e
�X .!/!n (4.5)

is a holomorphic invariant for HVFs, which is independent of ! 2 2�c1.M/, and �X .!/ is
a potential of X associated to ! with a normalizationZ

M

e�X .!/!n
D

Z
M

!n
D V: (4.6)

The proof of Proposition 4.2 depends on an estimate of the asymptotic behavior
of minimizer ft in (3.4) for metric !t of the flow (1.1) via the Sobolev inequality (3.5)
[56, Lemma 3.3, Proposition 4.2].

Remark 4.3. (1) For a KX -invariant initial metric !0, 't in (4.2) is convergent to
a Kähler potential exponentially as in the first step (without any holomorphism
transformation).

(2) In case of Fano toric manifolds, the author proved the convergence of (1.2)
for a torus-invariant initial metric !0 after torus transformations by using the
technique of the real MA-equation [72]. As a consequence, the result gives an
alternative proof of Wang–Zhu’s theorem [67] for the existence of KR-solitons
on toric manifolds via the Ricci flow.

5. H -invariant

The invariant NX .c1.M// in (4.5) can be defined for any Y 2 �r .M/ as follows
(cf. [56]):

H.Y / D FY .Y /CNY

�
c1.M/

�
; (5.1)

where
FY .Y / D

Z
M

Y.h! � �Y .!//e
�Y .!/!n

and
NY

�
c1.M/

�
D

Z
M

�Y .!/e
�Y .!/!n:
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Here ! is chosen as aK-invariant metric in 2�c1.M/ and Im.Y / generates a compact 1-PS
in Autr .M/ so that �Y .!/ is a real potential of HVF Y . Note that FX .�/ is just the modified
Futaki-invariant and so FX .X/ D 0 [59]. Thus,

H.X/ D NX

�
c1.M/

�
:

Moreover,H.Y / can be also written as (cf. [56, (5.3)])

H.Y / D

Z
M

�Y .!/e
h!!n; (5.2)

where the Ricci potential h! is normalized byZ
M

eh!!n
D

Z
M

!n
D V

and is �Y .!/ given in (4.6). Thus if we do not care about the normalization of �Y .!/,

H.Y / D

Z
M

�Y .!/e
h!!n

� V ln
�
1

V

Z
M

e�Y .!/!n

�
; 8Y 2 �r .M/: (5.3)

In the above formula, .�H.�// is usually called an H -invariant in the literature [9, 22, 29,

30], which can be defined for any special degeneration induced by C �-actions onM as the
generalized Futaki-invariant of Ding–Tian [23].

By calculating the H -invariant for the special degeneration arising from the KR-
flow (1.1) with the help of Hamilton–Tian conjecture [51] (also see the next section), Dervan–
Székelyhidi recently proved (4.4) for any! 2 2�c1.M/ [22]. As a consequence, they removed
the assumption for a KX -invariant initial metric !0 in Theorem 4.1 as follows.

Theorem 5.1 (Dervan–Székelyhidi). Let .M;!KS / be a Fano manifold which admits a KR-
soliton !KS . Then for any initial metric !0 2 2�c1.M/, the flow (1.1) converges smoothly
to !KS in the sense of Kähler potentials modulo Aut.M/.

There are other applications of H -invariant to the uniqueness of limit of KR-flow
and the optimal degeneration of Fano manifolds; we refer the reader to recent papers [9,29,

35,65].

Remark 5.2. As we see, Dervan–Székelyhid’s proof of Theorem 5.1 depends on the Hamil-
ton–Tian conjecture. It would be interesting to give a direct proof without using the conjec-
ture as done for Theorem 4.1 in [56].

6. A new approach to the Hamilton–Tian conjecture

In [51], Tian proposed the following conjecture (a folklore conjecture of Hamilton–
Tian (HT-conjecture) [5,17,42,57]):

Any sequence of .M; !.t// contains a subsequence converging to a length space
.M1; !1/ in the Gromov–Hausdorff topology and .M1; !1/ is a smooth KR-soliton out-
side a closed subset S , called the singular set, of codimension at least 4. Moreover, this
subsequence of .M;!.t// converges locally to the regular part of .M1;!1/ in the Cheeger–
Gromov topology.
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The HT-conjecture asserts the existence of a singular limit of (1.1) with local reg-
ularity. The above Theorem 4.1 (and Theorem 5.1) confirms the conjecture for the Fano
manifold admitting a KR-soliton. In this case, the convergence of flow !t is smooth in the
sense of Kähler potentials, in particular, the curvature of !t is uniformly bounded. However,
it has been found in some special Fano manifolds with large symmetric group action that
the curvature of !t cannot stay uniformly bounded [37] (also see the next section). In other
words, there are examples of Fano manifolds on which the KR-flow develops singularities
of type II. Thus, in general, there is no smooth limit of a KR-flow.

The Gromov–Hausdorff convergence part in the HT-conjecture follows from Perel-
man’s noncollapse result and Zhang’s upper volume estimate [71]. There is significant
progress on this conjecture, first by Tian and Zhang in dimension less than 4 [57], then
by Chen–Wang [17] and Bamler [5] in higher dimensions. In fact, by using the tools of geo-
metric measure theory, Bamler proved a generalized version of the conjecture for a Ricci
flow with uniformly bounded scalar curvature. His result can be also regarded as a version
of Ricci flow for Cheeger–Colding compactness theorem [12] for Riemannian metrics with
a bounded Ricci curvature.

In this section, we discuss an alternative proof of the HT-conjecture in a joint work
with Wang [66]. Precisely, we prove

Theorem 6.1. For any sequence of .M;!t / of (1.1), there is a subsequence ti ! 1 and a
Q-Fano variety QM1 with klt singularities such that !ti is locally C1-convergent to a KR-
soliton !1 on Reg. QM1/ in the Cheeger–Gromov topology. Moreover, !1 can be extended
to a singular KR-soliton on QM1 with a L1-bounded Kähler potential  1 and the comple-
tion of .Reg. QM1/; !1/ is isometric to the global limit .M1; !

0
1/ of !ti in the Gromov–

Hausdorff topology. In addition, if !1 is a singular KE-metrics,  1 is continuous andM1

is homeomorphic to QM1 which has Hausdorff codimension of singularities of .M1; !
0
1/

equal to at least 4.

Compared to the proofs by blowing-up arguments in the two long papers [17] and [5],
our proof of Theorem 6.1 is purely analytic by using the technique of the complex MA-
equation. In Theorem 6.1, we also obtain a structure of Q-Fano variety with klt singularities
for the Gromov–Hausdorff limit in the HT-conjecture.

The proof of Theorem 6.1 is based on a recent result of Liu–Székelyhidi on Tian’s
partical C 0-estimate for polarized Kähler metrics with Ricci curvature bounded below [39].
In a paper of Zhang [69], it has been observed that Liu–Székelyhidi’s result can be applied
to prove a partial C 0-estimate for a sequence of Kähler metrics raised from the flow !t of
(1.1). We note that the HT-conjecture also implies a partial C 0-estimate for the flow (1.1)
(cf. [15,57]). Thus we actually prove that the HT-conjecture and the partial C 0-estimate for
the KR-flow are equivalent.

Let .M;L; !/ be a polarized manifold such that ! is a Kähler metric in 2�c1.L/.
Choose a Hermitian metric h on L such that R.h/ D !. Then for any positive integer l , we
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have an L2-inner product onH 0.M;Ll ; !/,

.s1; s2/ D

Z
M

hs1; s2ih˝l!
n; 8s1; s2 2 H 0.M;Ll ; !/: (6.1)

Thus for any orthonormal basis ¹s˛º .0 � ˛ � N D N.l// ofH 0.M;Ll ; !/, we define the
Bergman kernel by (cf. [48])

�l .M;!/.x/ D

NX
iD0

ˇ̌
s˛

ˇ̌2

h˝l .x/; 8x 2 M; (6.2)

which is independent of choice of the basis ¹s˛º.
The following fundamental result was proved by Liu–Székelyhidi [39].

Lemma 6.2 (Liu–Székelyhidi). Given n;D; v > 0, there is a positive integer l and a real
number b > 0 with the following property: Suppose that .M; L; !/ is a polarized Kähler
manifold with ! 2 2�c1.L/ such that

Ric.!/ � �!; vol.M;!/ � v; diam.M;!/ � D: (6.3)

Then for any x 2 M , one has

�l .M;!/.x/ � b: (6.4)

An inequality like (6.4) was called a partialC 0-estimate by Tian [49,50,52,53], which
plays a critical role in his proof of YTD-conjecture [54]. The upper bound of �l .M; !/ can
be also obtained by using the standard Moser iteration (for example, see [31, Lemma 3.2]).

By (6.4), we canwrite! as ametric with boundedKähler potential using the Fubini–
Study metric as the background metric. In fact, if the orthonormal basis ¹s˛º .0 � ˛ � N/

defines an embedding ˆ, then we have

! D ˆ�

�
1

l
!F S

�
�
1

l

p
�1@N@ log �l .M;!/:

By the gradient estimate for s˛ (cf. [24,49]) and the lower bound (6.4) for �l .M;!/, it holds
that

ˆ�

�
1

l
!F S

�
� C.n;D; v/!: (6.5)

This is because

ˆ�.!F S / D
p

�1

PN
˛D0hrs˛;rs˛i

�l .M;!/
�

p
�1
.
PN

˛D0hrs˛; s˛i/.
PN

˛D0hs˛;rs˛i/

�2
l
.M;!/

:

As in [69], wemodifymetric!t to �t so that (6.3) is satisfied by solving the following
MA-equation:

.�t /
n

D .!t C
p

�1@N@�t /
n

D eht!n
t ; sup

M

�t D 0; (6.6)

where ht is a uniformly bounded Ricci potential of !t chosen as in Lemma 3.1. By Yau’s
solution to Calabi’s problem [68], (6.6) can be solved, and by Moser iteration (cf. [58]) we
have

j�t j � C
�
kht kC 0.M/; !0

�
� A: (6.7)
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By (6.7), each orthonormal basis of H 0.M;K�l
M ; !t / is comparable to any one of

H 0.M;K�l
M ; �t /. Thus by Lemma 6.2, we prove [66, Proposition 2.7],

Proposition 6.3. Given any sequence !ti (i ! 1/ of flow !t , there is a subsequence of !ti ,
which is still denoted as !ti , such that (6.4) holds for !ti and the embedding of M by an
orthonormal basis ¹s˛

ti
º ofH 0.M;K�l

M ; !ti / in CPN converges to a normal variety QM1.

Denoting the embedding of ¹s˛
ti

º by ˆi , we have QMi D ˆi .M/ converging to a
normal variety QM1 by Proposition 6.3. Thus

.ˆ�1
i /�!ti D

1

l
!F S C

p
�1@N@'i ; (6.8)

where �i D �
1
l
.ˆ�1

i /�.log �l .M;!i // satisfies

j'i j � C: (6.9)

Moreover, by the gradient estimate for s˛
ti

[31, Lemma 3.1],rs˛
ti


!ti

� Cs

�
khti kC 0.M/; Cs; n

�
l

n
2 C1; (6.10)

where Cs is the Sobolev constant in (3.5). Thus as in (6.5), we get
1

l
!F S j QMi

� C.ˆ�1
i /�!ti : (6.11)

By (6.9) and (6.11), we can derive a local C k;˛-estimate for �i via the parabolic
equation (1.2). In fact, we may choose exhausting open sets � � QM1. Then by Propo-
sition 6.3, there are diffeomorphisms ‰i

 W � ! QMi such that the curvature of !F S j Q�i


is C k-uniformly bounded independently of i , where Q�i
 D ‰i

 .� /. For simplicity, we let
Q!i D

1
l
!F S j QMi

.
The following key estimate was obtained in [66, Lemma 3.1].

Lemma 6.4. There exist constants A;C ; A such that

j'i j � A in QMi ; (6.12)

C�1
 Q!i � .ˆ�1

i /�!ti � C Q!i in Q�i
 ; (6.13)

k'i kC k;˛. Q�i
 / � A : (6.14)

The estimates (6.12)–(6.14) in Lemma 6.4 can be extended to Kähler potentials �s
i

of metrics !ti Cs associated to the background O!i , where s 2 Œ�1; 1� and �s
i satisfies

.ˆ�1
i /�!ti D O!i C

p
�1@N@'s

i :

By Lemma 6.4, we see that !ti (by taking a subsequence) is locally C1-convergent
to a KR-soliton !1 on Reg. QM1/ in the Cheeger–Gromov topology, which can be extended
to a singular KR-soliton on QM1 with a L1-bounded Kähler potential  1 in the sense of
full MA-measure [8]. In the case of KE-metrics !1, one can further show that the local
limit of �ti on Reg. QM1/ associated to !ti in (6.6) is just !1. Thus in this case, we can
actually prove that the Gromov–Hausdorff limit .M1; !

0
1/ is homeomorphic to QM1 and

2727 Kähler–Ricci flow on Fano manifolds



the Hausdorff codimension of singularities of .M1; !
0
1/ is at least 4. The Q-Fano structure

of QM1 with klt singularities can be proved as in [8,31,54].

Remark 6.5. The uniqueness of Q-Fano structure of QM1 in Theorem 6.1 is independent
both of the sequence and initial metric !0 2 2�c1.M/. We refer the reader to recent papers
[15,29,65].

7. KR-flow on G-manifolds

In this section, we discuss the KR-flow on a Fano G-manifold, which develops sin-
gularities of type II [37]. In this joint paper, Li, Tian, and the author prove

Theorem 7.1. Let G be a complex reductive Lie group and .M; J / be a Fano G-manifold.
Suppose that .M;J / does not admit any KR-soliton. Then any solution of KR-flow on .M;J /
with an initial metric !0 2 2�c1.M; J / is of type II.

Here by a G-manifold we mean a (biequivariant) compactification of G which
admits a holomorphic G � G-action and has an open and dense orbit isomorphic to G
as a G � G-homogeneous space [1–3]. Clearly, toric manifolds form a special class of G-
manifolds with G being the torus group.

A criterion theorem for the existence of KE-metrics on FanoG-manifolds was estab-
lished by Delcroix [20] several years ago.

Theorem 7.2 (Delcroix). LetM be a FanoG-manifold with associated moment polytopeP .
Let PC be the positive part of P defined by a positive roots’ system ˆC D ¹˛º of G. Then
M admits a KE-metric if and only if the barycenter of PC with respect to ˆC satisfies

bar.PC/ 2 2�C„; (7.1)

where „ is the relative interior of the cone generated by ˆC and � D
1
2

P
˛2ˆC

˛.

Delcroix’s proof obtains a prior C 0-estimate for a class of real MA-equations on
the positive cone aC � a D Rr (r is the rank of G, i.e., the dimension of a maximal torus
inG) defined byˆC as done for toric Fano manifolds in [67]. Later, Li, Zhou, and the author
gave another proof of Delcroix’s theorem by verifying the properness of K-energy and also
generalized the theorem to the case of KR-solitons [38].

By Theorem 7.2, it is possible to classify all Fano G-manifolds which admit a KE-
metric or KR-solitons. For example, for the rank r D 2, there are two SO4.C/-manifolds
and one Sp4.C/-manifold which cannot admit any KR-solitons, see [20,21,37,74]. Thus The-
orem 7.1 provides a class of examples of Ricci flow with singularities of type II on Fano
manifolds.

By the HT-conjecture and the uniqueness result in [29, 65], we may assume that
the initial metric !0 in Theorem 7.1 is K � K-invariant. Here K is a maximal compact
subgroup of G. The proof of Theorem 7.1 includes two main steps by using a contradic-
tion argument under the assumption of uniformly bounded curvature: first, proving that the
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Cheeger–Gromov limit .M1; J1/ of any sequence of K �K-invariant metrics on .M; J /
is still a G-manifold; second, showing that the complex structure J1 of limit will not jump
from J . It is useful to mention that the above two steps work for any sequence of K �

K-invariant metrics in 2�c1.M; J / and can be also generalized to any sequence of K �K-
invariantmetrics with uniformly bounded curvature on a polarizedG-manifold. For example,
as an application one can establish an analogue of Theorem 7.1 for Calabi’s flows [10] with
singularities of type II on polarized G-manifolds.

7.1. A direct proof of Theorem 7.1 for a sequence of !t

In the following, we present a more direct proof of Theorem 7.1 from a paper jointly
with Tian [63]. We turn to prove

Theorem 7.3. Let !i .D !ti ; ti ! 1/ be a sequence of .M; !t ; J / in the flow of (1.1)
with a K �K-invariant initial metric !0 2 2�c1.M; J /. Suppose that the curvature of !i

is uniformly bounded. Then !i converges to a KR-soliton in the sense of Kähler potentials
on .M; J /. In particular, .M; J / admits a KR-soliton.

We need to recall some notation and facts proved in [37]. Let ¹E1; : : : ;Enº be a basis
of the Lie algebra g. Then the right (left) action of G induces a space of span¹e1; : : : ; enº

of HVFs with Im.ea/ 2 k on M , where k is the Lie algebra of K. By the partial C 0-
estimate as in Section 6, there is a sequence of Kodaira embeddings ˆi W M ! CPN

induced by an orthonormal basis ¹si
˛º in H 0.K�m

M ; !i / such that the image ˆi .M/ D OMi

converges to the image ˆ1.M1/ D OM1 in the topology of complex submanifolds, where
ˆ1 W M1 ! CPN is the Kodaira embedding induced by an orthonormal basis ¹s1

˛ º in
H 0.K�m

M1
; !1/.

Let span¹ Oei
1; : : : ; Oei

nº be a space of HVFs on OMi induced by ˆi . It has been proved
in [37, (4.6)] that for each a, . Oei

a; O!i / converges to an HVF . Oe1
˛ ; O!1/ on OM1 in the sense

of [37, Definition 3.1], where O!i D
1
m
!F S j OMi

and O!1 D
1
m
!F S j OM1

. Moreover, the basis
¹ Oe1

1 ; : : : ; Oe1
n º induces an effective G-action on OM1.

Let T C be a torus subgroup of G acting on OM1 with a basis ¹X1; : : : ; Xrº of
a D J k \ tC . Then it can be regarded as a subgroup of the maximal torus group QT C in
CPN . Let QW1; : : : ; QWN C1 be theN C 1 hyperplanes in CPN where QT C does not act freely.
Thus for any induced HVF QX of X 2 tC on OM1, one has®

Ox 2 OM1 j QX. Ox/ D 0
¯

�

[
˛

QW˛: (7.2)

Let O denote an open denseG-orbit inM . SinceM has finitely manyG �G-orbits
[1,2], there are basis points xı 2 MnO, ı D 1; : : : ; k, such that

M D O
[

ı

.G �G/xı : (7.3)

Note that the closure of each G � G-orbit .G � G/xı is a smooth algebraic variety whose
dimension is less than n. Then, up to a subsequence, the closure ofˆi ..G �G/xı/ converges
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to an algebraic limit in CPN . As a consequence,ˆi .MnO/ has an algebraic limitD OM1 in
OM1 � CPN .

Let OO1 D OM1 nD OM1 be an open set in OM1. We set

OO0
1 D OO1 n

�[
˛

QW˛

�
and O0

1 D ˆ�1
1 . OO0

1/ � M1: (7.4)

Note that
e1

a D .ˆ�1
1 /� Oe1

a ; a D 1; : : : ; n:

Thus

NX.x1/ ¤ 0; 8x1 2 O0
1;

NX 2 span
®
e1

1 ; : : : ; e
1
r

¯
: (7.5)

Fix a point Ox1 2 OO1. We choose Oxi 2 OM ! Ox1 and let xi D ˆ�1
i . Oxi / 2 O1.

Then xi ! x1 2 M1 in the Gromov–Hausdorff topology. Let x0
i D .x1

i ; : : : ; x
r
i / 2 a be

the real part of local partial coordinates zi in [37, Section 2.1]. Without loss of generality, we
may assume x0

i 2 aC since the metric !i is K �K-invariant. By the argument in the proof
of [37, Lemma 4.4], we have actually proved the following key lemma.

Lemma 7.4. Suppose that the center of g is zero. Then there is an absolute constant A such
that ˇ̌

x0
i

ˇ̌2
D

ˇ̌
x1

i

ˇ̌2
C � � � C

ˇ̌
xr

i

ˇ̌2
� A: (7.6)

Proof of Theorem 7.3. Let  ; i be Weyl-invariant convex functions on a associated to the
background metric !0 D

p
�1@N@ andK �K-invariant metrics !i , respectively. It suffices

to prove that

j'i j D
ˇ̌
 i

�  
ˇ̌

� C (7.7)

for some absolute constant C [56].
We first consider Case 1: G is semisimple. Then by Lemma 7.4, (7.6) holds. Thus,

by [37, (4.18)], there is a small Euclidean ball B" in a such that

det. i
ab/.x

0/ � ı0; 8x0
2 B" \ aC: (7.8)

Moreover, as in the proof of [37, (4.23)], there is an open set B 0 � B" \ aC such that for any
˛ 2 ˆC, we have ˝

˛;r i .x0/
˛
� c0; 8x0

2 B 0: (7.9)

Thus, by the metric matrix (2.3) in [37, Lemma 2.1], we get

a0! � !i �
1

a0

! in �0
"; (7.10)

where a0 is a small absolute constant and

�0
" D

®
z 2 �" j x0

z 2 B 0
¯

(7.11)

is an open set of �" D ¹z D .z1; : : : ; zn/ j jzl � xl
i j < "º.
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We claim that there are a point zi
0 2 �0

" and an absolute constant C1 such that

'i .z
i
0/ � sup

M

'i � C1 and � 'i .z
i
0/ � sup

M

.�'i / � C1: (7.12)

By the Green formula, we have

sup
M

'i �
1

V

Z
M

'i!
n
i C C2: (7.13)

On the other hand, by the Sobolev inequality (3.5) and the Green function estimate [7], there
is an absolute constant A1 such that the Green function Gt .�; �/ associated to !t satisfiesZ

M

Gt .x; �/!
n
t D 0 and Gt .x; �/ � A1:

Thus as in (7.13), we also have

sup
M

.�'i / �
1

V

Z
M

.�'i /!
n
i C C3; (7.14)

where C3 is an absolute constant.
For any small number ı � 1, we letMı D

C2V
ı

andM 0
ı

D
C3V

ı
. Set

Eı D

°
z 2 �0

" j 'i .z/ � sup
M

'i �Mı

±
and

Ei
ı D

°
z 2 �0

" j
�
�'i .z/

�
� sup

M

.�'i / �M 0
ı

±
:

Then, by (7.13) and (7.14), it is easy to see that

meas!.Eı/ � ı and mess!i
.Ei

ı/ � ı:

By (7.10), it follows that

meas!.Eı/; meas!.E
i
ı/ ! 0 as ı ! 0:

Note that meas!.�
0
"/ is strictly positive. Hence (7.12) must be true.

By (7.12), we get

oscM 'i � sup
M

'i C sup
M

.�'i /C C � C4:

Recall that !s D !0 C
p

�1@N@'s satisfies the following complex MA-equation:

@'s

@s
D log

.!0 C
p

�1@N@'s/
n

!n
0

C 's � h; s 2 Œ�1C ti ; ti C 1�: (7.15)

Then by Lemma 3.1, we may assume that 's satisfies (cf. [60])

j'sj � C and
ˇ̌̌̌
@'s

@s

ˇ̌̌̌
� C; 8s 2 Œ�1C ti ; ti C 1�:

Thus by the regularity, we get

k'i kC k;˛ � C: (7.16)

As a consequence, !i converges to a KR-soliton on .M; J / [42,60].
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Next we deal with the general Case 2: The center gc of g is not zero. Let ac � a

be the real part of gc . By the above case 1 and the argument in the proof of [37, Lemma 4.4]

(Case 1 on page 14), we may assume that jx0
i j ! 1 as i ! 1 and˝

˛; x0
i

˛
� A; 8˛ 2 ˆC; (7.17)

for some absolute constant A, where ˆC is a positive roots’ system. Write x0
i as

x0
i D x0

i C x00
i ;

where x0
i 2 ac . Then ˝

˛; x0
i

˛
D

˝
˛; x00

i

˛
� A: (7.18)

Let
Q i .x/ D  i .x C x0

i /:

Then Q i .x/ is still a Weyl-invariant convex function on a and it still satisfies equation (7.15).
Moreover, by (7.18), x00

i is uniformly bounded if ac ¨ a. Thus we can argue as in Case 1 for
Q i such that (7.16) holds, while the "-cube �" of dimension n centered at xi in (7.11) is
replaced by

Q�" D
®
z D .z1; : : : ; zn/ j

ˇ̌
zl

� Qxl
i

ˇ̌
< "

¯
in the local coordinates ¹zlºlD1;:::;n, where x00

i D . Qxl
i ; : : : ; Qxl

i /. As a consequence,

!i D Q!i D
p

�1@N@ Q i

converges to a KR-soliton in the sense of Kähler potentials on .M; J /. The proof is com-
plete.

7.2. Examples by Li–Li
By Theorems 7.1 and 6.1 for the HT-conjecture, the limit of KR-flow should be a

singular KR-soliton on a Q-Fano variety QM1 if a FanoG-manifoldM does not admit a KR-
soliton. It is interesting to study the degenerate structure of QM1 from M . Recently, Y. Li
and Z. Li classified QM1 for the case of G D SO4.C/ in [35].

It is known that there are three possible Fano compactifications of SO4.C/ of dimen-
sion 6 (cf. [21]). By Theorem 7.2, one of the compactifications admits a KE-metric and the
other two cannot admit any KE-metric (cf. [74]). Since SO4.C/ is semisimple, the latter two
also cannot admit any KR-soliton. Thus by Theorem 7.1, the limit QM1 of a flow on these
two manifolds should be a singularQ-Fano variety.

By studying the minimizer of H -invariant (see Section 5) for G � G-equivariant
special degenerations on a FanoG-manifold, Y. Li and Z. Li proved that the minimizer can be
attained by a G �G-equivalent special degeneration with a center fiber of G �G-spherical
variety [35]. In the case of G D SO4.C/, they further showed that the two G �G-spherical
varieties corresponding to the two non-KE-manifolds above are both relatively modifiedK-
polystable. By Han–Li’s uniqueness result for the minimizers of H -invariant [29] and the
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fact that the Perelman’s entropy (see Section 3) attains the maximum along the KR-flow
[15,22,65], these two spherical varieties should be limits QM1 of KR-flows.

Remark 7.5. (1) Examples in [36] show that the singular limit QM1 of KR-flow on
a G-manifold cannot be a Q-Fano variety of G-compactification, in general.
We expect it is aG �G-spherical variety as in the above case ofG D SO4.C/.

(2) To the best of the author’s knowledge, there is no known example of Fano man-
ifoldM with discrete Aut.M/ on which the solution of a KR-flow is of type II.
In fact, we do not know whether there is a Fano manifold with discrete Aut.M/

on which the limit of a KR-flow is a singular KE-metric. In the latter,M must
be K-semistable (cf. [34,65]).
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1. Introduction

Many interesting phenomena occur in three and four dimensions that do not occur
in higher dimensions. Indeed, the Poincaré conjecture in dimensions five and higher was
proved by Smale [83] in 1961 using techniques from surgery theory, while the Poincaré con-
jecture in dimension three remained unsolved for another 40 years until Perelman’s proof of
Thurston’s geometrization conjecture [74–76]. In 1982, Freedman [19] proved the topologi-
cal 4-dimensional Poincaré conjecture, while the smooth 4-dimensional Poincaré conjecture
remains open. As another example of how dimension four is special, by work of Freed-
man [19] and Donaldson [12], Rn admits smooth structures that are not diffeomorphic to the
standard one only when n D 4.1

The 3-dimensional homology cobordism group and the knot concordance group
are fundamental structures in low-dimensional topology. The former played a key role in
Manolescu’s disproof of the high dimensional triangulation conjecture [55], while the latter
has the potential to shed light on the smooth 4-dimensional Poincaré conjecture (see, for
example, [18,58]).

Our goal is to review some recent applications of Heegaard Floer theory to homol-
ogy cobordism and knot concordance, and to discuss the power and limitations of these tools
to address major open questions in the field.

1.1. Homology cobordism
Two closed, oriented 3-manifolds Y0; Y1 are homology cobordant if there exists

a smooth, compact, oriented 4-manifold W such that @W D �Y0 t Y1 and the inclusions
� W Yi ! W induce isomorphisms

�� W H�.Yi I Z/ ! H�.W I Z/

for i D 0; 1. The key point is that, on the level of homology, W looks like a product. The 3-
dimensional homology cobordism group‚3

Z consists of integer homology 3-spheres modulo
homology cobordism, under the operation induced by connected sum. A homology sphere
Y represents the identity in‚3

Z if and only if Y bounds a homology 4-ball, and the inverse of
ŒY � in‚3

Z is Œ�Y �, where�Y denotes Y with the opposite orientation. The Rokhlin invariant
[80] gives a surjective homomorphism

� W ‚3
Z ! Z=Z2;

showing that‚3
Z is nontrivial. Manolescu [55] showed that if�.Y / D 1, then Y is not of order

two in ‚3
Z. By work of Galewski–Stern [22] and Matumoto [59], this leads to a disproof of

the triangulation conjecture in dimensions � 5. See [56,57] for an overview of this work. The
triangulation conjecture is also false in dimension four, by work of Casson; see [3].

Fintushel–Stern [14] used gauge theory to show that ‚3
Z is infinite, and Furuta [21]

and Fintushel–Stern [15] improved this result to show that ‚3
Z contains a subgroup isomor-

phic to Z1. Frøyshov [20] used Yang–Mills theory to define a surjective homomorphism

1 Smale, Perelman, Freedman, and Donaldson all won Fields medals for their work discussed
here; Perelman declined the award.
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‚3
Z ! Z, showing that ‚3

Z has a direct summand isomorphic to Z. (This is stronger than
having a Z subgroup, since, for example, Z is a subgroup of Q but not a summand.) In joint
work with Dai, Stoffregen, and Truong, we use Hendricks–Manolescu’s involutive Heegaard
Floer homology [32] to prove the following:

Theorem 1.1 ([9]). The homology cobordism group ‚3
Z contains a direct summand isomor-

phic to Z1.

Fundamental questions about the structure of ‚3
Z remain open:

Question 1.2. Does ‚3
Z contain any torsion? Modulo torsion, is ‚3

Z free abelian?

If there is any torsion in ‚3
Z, two-torsion seems the most likely. Indeed, any integer

homology sphere Y admitting an orientation-reversing self-diffeomorphism is of order at
most two in ‚3

Z. However, as far as we are aware, all known examples of such Y bound
integer homology balls, and hence are trivial in ‚3

Z.
In a different direction, it is natural to ask which types of manifolds can represent a

given class ŒY � 2 ‚3
Z. The first answers to this question were in the positive. Livingston [52]

showed that every class in ‚3
Z can be represented by an irreducible integer homology sphere

and Myers [61] improved this to show that every class has a hyperbolic representative.
In the negative direction, Frøyshov (in an unpublishedwork), F. Lin [49], and Stoffre-

gen [84] showed that there are classes in ‚3
Z that do not admit Seifert fibered representatives.

Nozaki–Sato–Taniguchi [63] improved this result to show that there are classes that do not
admit a Seifert fibered representative or a representative that is surgery on a knot in S3.
However, none of these results were sufficient to obstruct‚3

Z from being generated by Seifert
fibered spaces. In joint work with Hendricks, Stoffregen, and Zemke, we prove the following:

Theorem 1.3 ([30, 31]). The homology cobordism group ‚3
Z is not generated by Seifert

fibered spaces. More specifically, let ‚SF denote the subgroup generated by Seifert fibered
spaces. The quotient ‚3

Z=‚SF is infinitely generated.

In light of the aforementioned Nozaki–Sato–Taniguchi result, it is natural to ask:

Question 1.4. Do surgeries on knots in S3 generate ‚3
Z?

The expectation is that surgeries on knots in S3 are not sufficiently generic to gen-
erate ‚3

Z, but such a result seems beyond the capabilities of current tools.

1.2. Knot concordance
Two knotsK0;K1 � S3 are concordant if there exists a smooth, properly embedded

annulus A in S3 � Œ0; 1� such that Ki D A \ .S3 � ¹iº/ for i D 0; 1. The knot concordance
group C consists of knots in S3 modulo concordance, under the operation induced by con-
nected sum. The inverse of ŒK� in C is given by Œ�K�, where �K denotes the reverse of the
mirror image of K. A knot K � S3 D @B4 is slice if it bounds a smoothly embedded disk
inB4. Fox–Milnor [17] andMurasugi [60] showed thatC is nontrivial, and J. Levine [48] used
the Seifert form to define a surjective homomorphism C ! Z1 ˚ .Z=2Z/1 ˚ .Z=4Z/1,
demonstrating that C is, in fact, highly nontrivial. In higher odd dimensions (that is, knotted

2742 J. Hom



S2nC1 in S2nC3, n � 1), Levine’s homomorphism is an isomorphism, while in the classical
dimension, the kernel is nontrivial [6]. See [53] for a survey of knot concordance.

We can consider various generalizations of the knot concordance group. For exam-
ple, rather than considering annuli in S3 � Œ0; 1�, we may consider annuli in homology
cobordisms. Two knots K0 � Y0 and K1 � Y1 are homology concordant if they cobound a
smooth, properly embedded annulus in a homology cobordism between Y0 and Y1.

Let CZ denote the group of knots in S3, modulo homology concordance. A knot
K � S3 represents the identity in CZ if and only if K bounds a smoothly embedded disk
in some homology 4-ball. Since B4 is of course a homology 4-ball, there is naturally a
surjection from C to CZ. A natural question is whether or not this map is injective; in other
words,

Question 1.5. If a knot K � S3 bounds a disk in a homology 4-ball, must K also bound a
disk in B4?

One reason why the question above is challenging is that many obstructions to a
knot K bounding a disk in B4 also obstruct K from bounding a disk in a homology 4-ball.

An even more difficult question is the following:

Question 1.6. If a knot K � S3 bounds a disk in a homotopy 4-ball, must K also bound a
disk in B4?

Recall the smooth 4-dimensional Poincaré conjecture which by work of Freedman
[19] may be stated as follows:

Conjecture 1.7 (Smooth 4-dimensional Poincaré conjecture). If a smooth 4-manifold X is
homeomorphic to S4, then X is actually diffeomorphic to S4.

A negative answer to Question 1.6 provides one possible strategy for disproving
Conjecture 1.7. Indeed, by Freedman [19], any homotopy 4-sphere is homeomorphic to S4.
Now suppose we found a homotopy 4-sphere X and a knot K � S3 D @.X n VB4/ such that
K bounds a smoothly embedded disk in X n VB4. If we could obstruct K from bounding a
smoothly embedded disk in B4, then it follows that X cannot be diffeomorphic to S4. This
approach was attempted in [18,58], but has yet to lead to a disproof of the conjecture.

We now return to the group CZ. This group is naturally a subgroup of OCZ, the group
of manifold–knot pairs .Y;K/, where Y is a homology sphere bounding a homology ball and
K is a knot in Y , modulo homology concordance. One can ask whether the injection fromCZ

to OCZ is a surjection. Adam Levine [47] answered this question in the negative, showing that
there exist knots in a homology null-bordant Y (in fact, his example bounds a contractible
4-manifold) that are not concordant to any knot in S3. Expanding on this result, in joint work
with Levine and Lidman, we prove the following:

Theorem 1.8 ([39]). The subgroup CZ � OCZ is of infinite index. More specifically,

(1) the quotient OCZ=CZ is infinitely generated, and

(2) the quotient OCZ=CZ contains a subgroup isomorphic to Z.
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This result demonstrates the vast difference between knots in S3 and knots in arbi-
trary homology spheres bounding homology balls, up to concordance. The examples in the
infinite generation part of the theorem bound contractible 4-manifolds; it is unknownwhether
the examples in theZ subgroup do. Zhou [90] proved that the quotient OCZ=CZ has a subgroup
isomorphic to Z1. (It is unknown whether his examples bound contractible 4-manifolds.)
The forthcoming joint work with Dai, Stoffregen, and Truong [10] improves Zhou’s result to
a Z1-summand.

One can also consider concordance in more general 4-manifolds. Let R be a ring.
Two closed, oriented, connected 3-manifoldsY0;Y1 areR-homology cobordant if there exists
a smooth, compact, oriented 4-manifold W such that @W D �Y0 t Y1 and the inclusions
� W Yi ! W induce isomorphisms

�� W H�.Yi I R/ ! H�.W I R/

for i D 0; 1. We have already discussed the case R D Z. The rational homology cobor-
dism group ‚3

Q contains elements of order two, for example, ŒRP 3�; in contrast, as asked in
Question 1.2, it remains open whether there is any torsion in the integer homology cobordism
group ‚3

Z.
We can consider concordances in other R-homology cobordisms, such as Q-homo-

logy cobordisms. A knot K � S3 is rationally slice if it is Q-homology concordant to the
unknot, or equivalently, if K bounds a smoothly embedded disk in a rational homology
4-ball.

Let CQS denote the subgroup of C consisting of rationally slice knots. Cochran,
based on work of Fintushel–Stern [13], showed that the figure-eight knot is rationally slice.
Hence Z=2Z is a subgroup of CQS , since the figure-eight is negative amphichiral and not
slice. Cha [7] extended this result to show that CQS has a subgroup isomorphic to .Z=2Z/1.
A natural question to ask is whether CQS contains elements of infinite order (see, for exam-
ple, [86, Problem 1.11]). Joint work with Kang, Park, and Stoffregen uses the involutive knot
Floer package of Hendricks–Manolescu [32] to prove:

Theorem 1.9 ([38]). The group of rationally slice knots CQS contains a subgroup isomor-
phic to Z1.

The figure-eight is slice in a rational homology 4-ball W with H1.W I Z/ D Z=2Z

(see, for example, [2, Section 3]), as are Cha’s examples [7].

Question 1.10. Does there exist a knotK � S3 that is not slice inB4 but is slice in a rational
homology 4-ball W with jH1.W I Z/j odd?

Compare this question to Question 1.5, which asks whether there is a knot K � S3

that is not slice in B4 but is slice in a integer homology 4-ballW . Indeed, both Questions 1.5
and 1.10 can be viewed as incremental steps towardsQuestion 1.6, a negative answer towhich
would in turn disprove the smooth 4-dimensional Poincaré conjecture.
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1.3. Ribbon concordance
We conclude the introduction with a discussion of ribbon knots, ribbon concor-

dances, and ribbon homology cobordisms. A knotK � S3 is ribbon if it bounds an immersed
disk in S3 with only ribbon singularities. A ribbon singularity is a closed arc consisting of
intersection points of the disk with itself such that the preimage of this arc is two disjoint
arcs in the disk with one arc a1 being contained entirely in the interior of the disk and the
other arc a2 having its endpoints on the boundary of the disk; see Figure 1. Note that ribbon
knots are slice, since ribbon singularities can be resolved in the 4-ball (namely, by pushing
the arc a1 farther into the 4-ball).

Figure 1

An example of a ribbon disk.

Conjecture 1.11 (Slice-ribbon conjecture [16]). Every slice knot is ribbon.

The slice-ribbon conjecture is true for two-bridge knots [51] and many infinite fam-
ilies of pretzel knots [25, 45]. On the other hand, potential counterexamples exist; see, for
example, [1,23].

Equivalently, a ribbon knot can be defined as a knot K � S3 that bounds a ribbon
disk inB4, that is, a smoothly embedded diskD � B4 such that the radial Morse function on
B4 restricted to D has no interior local maxima. There is a ribbon concordance from K0 to
K1 if there is a concordance fromK0 toK1 in S3 � Œ0;1�with no interior local maxima (with
respect to the natural height function on S3 � Œ0; 1�) or, equivalently, if projection to Œ0; 1� is
Morse with only index 0 and index 1 critical points. Note that, unlike ordinary concordance,
ribbon concordance is not symmetric (and that the convention regarding the direction of the
ribbon concordance varies in the literature).

Conjecture 1.12 ([24]). Ribbon concordance is a partial order. That is, if there exist a ribbon
concordance from K0 to K1 and a ribbon concordance from K1 to K0, then K0 D K1.

Gordon [24] proved that Conjecture 1.12 holds for fibered knots and two-bridge
knots, and more generally for the class of knots generated by such knots under the oper-
ations of connected sum and cabling. He also proved that if S is a ribbon concordance from
K0 to K1, then �1.S3 n �.K0// ! �1.X/ is injective and �1.S3 n �.K1// ! �1.X/ is
surjective, where X denotes the exterior of S in S3 � Œ0; 1�.

The notion of a ribbon concordance can also be generalized to homology cobor-
disms. A ribbon cobordism between two 3-manifolds is a cobordism admitting a handle
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decomposition with only 1- and 2-handles. Observe that the complement of a ribbon con-
cordance from one knot to another is naturally a ribbon cobordism between their knot com-
plements. Daemi, Lidman, Vela-Vick, and Wong proposed the following 3-manifold analog
of Conjecture 1.12:

Conjecture 1.13 ([8]). Ribbon Q-homology cobordism is a partial order on closed, ori-
ented, connected 3-manifolds. That is, if there exist a ribbonQ-homology cobordism from Y0

to Y1 and a ribbon Q-homology cobordism from Y1 to Y0, then Y0 and Y1 are diffeomorphic.

The results in [8] provide evidence in support of Conjecture 1.13.

1.4. Organization
The remainder of this article is devoted to discussing applications of Heegaard Floer

homology to the theorems and problems discussed above.Wewill describe various Heegaard
Floer chain complexes associated to 3-manifolds and knots inside of them. As we progress,
our chain complexes will have more and more structure; we will sketch how this additional
structure leads to the results described in the introduction.

In Section 2, we discuss properties of the Heegaard Floer 3-manifold invariant of
[66, 70] and applications to homology cobordism. In Section 3, we move on to knot Floer
homology [69,78] and applications to concordance. With the advent of involutive Heegaard
Floer homology [32], these invariants can be endowed with additional structure; in Section 4,
we describe involutive Heegaard Floer homology, and in Section 5, we delve into involutive
knot Floer homology. Lastly, in Section 6, we discuss the potential (or lack thereof) for Hee-
gaard Floer homology to answer the questions posed in Section 1.

For an introduction to many of the tools described in this article, we refer the reader
to Sections 1–3 of [34].

2. Heegaard Floer homology: the 3-manifold invariant

In this section, we consider the Heegaard Floer 3-manifold invariant and maps
induced by 4-dimensional cobordisms. For expository overviews of Heegaard Floer homol-
ogy, see, for example, [40,72], and [34, Section 2].

2.1. Properties and examples
Given a closed, oriented 3-manifold Y , its Heegaard Floer homology HF�.Y / is a

finitely generated, graded module over F ŒU �, where F D Z=2Z and U is a formal variable
in degree �2. (There are other flavors, HFC.Y /; cHF.Y / of Heegaard Floer homology, but
for the purposes of this article, we will focus on the minus version.)

More precisely, every closed, oriented 3-manifold Y can be described as a union of
two handlebodies; such a decomposition is called a Heegaard splitting. In turn, a Heegaard
splitting can be described via aHeegaard diagramH , consisting of a closed, oriented surface
† of genus g, together with g ˛-circles and g ˇ-circles, which describe how the handlebodies
fill in the surface on either side. (These circles are required to satisfy a certain homological
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condition.) For technical reasons, we also fix a basepoint z in the complement of the ˛- and
ˇ-circles. Any two diagrams representing the same 3-manifold can be related by a sequence
of Heegaard moves, as described in [72, Section 2.6]; see also [34, Section 1].

From this data, Ozsváth–Szabó [70] construct CF�.H /, a free, finitely generated,
graded chain complex over F ŒU �. The variable U keeps track of the basepoint z. The chain
homotopy type of CF�.H / is an invariant of Y , that is, it does not depend on the choice of
Heegaard diagram, or on any other choices made in the construction.We often write CF�.Y /

to denote this chain homotopy class, or a representative thereof. Juhász–Thurston–Zemke
[41] prove something even stronger: Heegaard Floer homology is natural, in the sense that it
assigns a concrete module, rather than an isomorphism class of modules, to a 3-manifold.

Example 2.1. The Heegaard Floer homology of S3 is HF�.S3/ D F.0/ŒU �, where the sub-
script .0/ denotes that 1 2 F ŒU � is in grading 0. (This can easily be computed using the
definition of the Heegaard Floer chain complex.)

Example 2.2. The Heegaard Floer homology of the Brieskorn homology sphere †.2; 3; 7/

is HF�.†.2; 3; 7// D F.0/ŒU � ˚ F.0/. (This is not so easy to compute directly from the
definition of Heegaard Floer homology; however, it is a straightforward consequence of some
of the formal properties of Heegaard Floer homology.)

Example 2.3. The Heegaard Floer homology of the Brieskorn homology sphere †.2; 3; 5/

is HF�.†.2; 3; 5// D F.�2/ŒU �. (This can be computed using some of the formal properties
of Heegaard Floer homology.)

Remark 2.4. In this article, we take the slightly unconventional grading convention above,
which simplifies the formula for gradings in, for example, HF� of connected sums. Many
other sources use the convention that HF�.S3/ D F.�2/ŒU �, which simplifies calculations in
HFC.

Remark 2.5. For rational homology spheres, the gradings in Heegaard Floer homology take
values in Q. For integer homology spheres, the gradings take values in 2Z. For 3-manifolds
Y with H1.Y I Z/ infinite, the gradings are slightly more complicated; see [65, Section 4.2].

Since the degree of U is �2, any homogenously graded polynomial in F ŒU � is of
the form U n for some n 2 N. Thus, by the fundamental theorem of finitely generated graded
modules over a PID, we have that HF�.Y / is of the form

NM
iD1

F.di /ŒU � ˚

MM
j D1

F.cj /ŒU �=U nj F ŒU �;

for Y a rational homology sphere; that is, HF�.Y / is a direct sum of a free part and a U -
torsion part. Ozsváth–Szabó [66, Theorem 10.1] show that when Y is an integer homology
sphere, N D 1, that is, HF�.Y / is of the form

HF�.Y / D F.d/ŒU � ˚

MM
j D1

F.cj /ŒU �=U nj F ŒU �:
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The number d above is called the d -invariant of Y , denoted d.Y /. More generally, when Y

is a rational homology sphere with jH1.Y I Z/j D k, there are exactly k free summands in
HF�.Y /, in which case one obtains a k-tuple of d -invariants of Y .

Heegaard Floer homology satisfies a Künneth-type formula under connected sums
[66, Theorem 1.5]. That is, CF�.Y1#Y2/ is chain homotopy equivalent to

CF�.Y1/ ˝FŒU � CF�.Y2/:

In particular, if Y1 and Y2 are integer homology spheres, then the d -invariant is additive
under connected sum. (An analogous statement also holds for more general 3-manifolds.)

2.2. Cobordism maps
Heegaard Floer homology is a .3 C 1/-dimensional topological quantum field

theory (TQFT) [71, Theorem 1.1]. That is, to a 3-manifold, Heegaard Floer homology as-
sociates a module, and to a 4-manifold cobordism W from Y0 to Y1, it associates a chain
map

FW W CF�.Y0/ ! CF�.Y1/:

When W is a homology cobordism, FW induces an isomorphism

.FW ˝ id/� W U �1 HF�.Y0/ ! U �1 HF�.Y1/;

whereU �1HF�.Y / D H�.CF�.Y / ˝FŒU � F ŒU;U �1�/ [65, Proof of Theorem 9.1]. A straight-
forward algebra calculation then implies that d -invariants are invariants of homology cobor-
dism. In particular, we have a homomorphism

d W ‚3
Z ! 2Z;

and this homomorphism is surjective, since d.†.2; 3; 5// D �2.
In light of the discussion above, and motivated by the desire to study the homology

cobordism group ‚3
Z, one could define an equivalence relation �, called local equivalence,

on Heegaard Floer chain complexes, where CF�.Y0/ � CF�.Y1/ if there exist F ŒU �-module
chain maps

f W CF�.Y0/ ! CF�.Y1/ and g W CF�.Y1/ ! CF�.Y0/;

inducing isomorphisms on U �1 HF�.Yi /. We can now consider the group

D D
®
CF�.Y / j Y an integer homology sphere

¯
= �

under the operation induced by tensor product. This construction yields a homomorphism

‚3
Z ! D

obtained by sending ŒY � to ŒCF�.Y /�. However, it turns out that D is isomorphic to Z, with
the isomorphism being given by ŒCF�.Y /� 7! d.Y /=2.
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2.3. Ribbon homology cobordisms
Ribbon homology cobordisms induce particularly nice maps on Heegaard Floer

homology:

Theorem 2.6 ([8, Theorem 1.19]). Let W be a ribbon homology cobordism from Y0 to Y1.
Then

FW W HF�.Y0/ ! HF�.Y1/

is injective, and includes HF�.Y0/ into HF�.Y1/ as a direct summand.

The proof of Theorem 2.6 relies on considering the double D.W / of W , formed by
gluing W to �W along Y1; they also prove that the analogous statement holds for ribbon
Z=2Z-homology cobordisms. Their approach was inspired by [88].

3. Knot Floer homology

In this section, we will discuss the Heegaard Floer knot invariant, maps induced by
concordances, and various concordance invariants arising from the knot Floer complex. For
expository overviews of knot Floer homology, see [72, Section 10], [37, 54], [29, Section 2],
and [34, Section 3]. Note that [34] uses the same notation and conventions used here (i.e.,
viewing the knot Floer complex as a module over a two-variable polynomial ring), while the
others use a different but equivalent formulation in terms of filtered chain complexes.

3.1. Properties and examples
For simplicity, we will focus on knots in integer homology spheres. Let K be a

knot in an integer homology sphere Y . We can describe the pair .Y; K/ via a doubly pointed
Heegaard diagramH , which consists of aHeegaard diagram forY with an extra basepointw.
The knotK is the union of two arcs, specified by connecting the basepointw to the basepoint
z in the complement of the ˛-arcs, pushed slightly into one handlebody, and connecting z

to w in the complement of the ˇ-arcs, pushed slightly into the other handlebody. See, for
example, [34, Section 1] for more details.

From this data, Ozsváth–Szabo [70] and independently J. Rasmussen [78] construct
a chain complex CFK.H /. One way of constructing this chain complex (see, for example,
[89, Section 1.5]) is as a free, finitely generated, bigraded chain complex over F ŒU; V �, the
second formal variable V corresponding to the second basepoint w. As one would hope, the
chain homotopy type of CFK.H / is an invariant of the pair .Y; K/, and does not depend on
the choice of diagram, or on any of the other choices made in the construction. We often
write CFK.Y; K/, or simply CFK.K/ when Y D S3, to denote this chain homotopy class,
or a representative thereof. Moreover, like the 3-manifold version, knot Floer homology is
natural [41].

Example 3.1. The knot Floer complex of the unknot in S3 is generated over F ŒU; V � by a
single generator x in bigrading .0; 0/ with trivial differential. (This can be computed directly
from the definition of the knot Floer chain complex.)
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Example 3.2. The knot Floer complex of the right-handed trefoil is generated over F ŒU; V �

by a, b, and c with the following differentials and bigradings:

@ gr
a 0 .0; �2)
b Ua C Vc .�1; �1/

c 0 .�2; 0/

(This can be computed directly from the definition of the knot Floer chain complex.)

There is not a simple characterization of finitely-generated, graded modules over
F ŒU; V �, since F ŒU; V � is not a PID. One way to obtain a module over a PID is to set V D 0

on the chain level. (There is a symmetry between U and V , so one could instead choose to
set U D 0.) Taking homology of the resulting chain complex, we obtain a version of knot
Floer homology, namely HFK�.Y; K/ given by

HFK�.Y; K/ D H�

�
CFK.Y; K/=.V D 0/

�
:

If we prefer an even simpler algebraic structure, we can set both U and V equal to zero on
the chain level. Taking homology of the resulting chain complex, we obtain another version
of knot Floer homology, denoted bHFK.Y; K/, namely

bHFK.Y; K/ D H�

�
CFK.Y; K/=.U D V D 0/

�
:

Using a suitable renormalized bigrading, this is the version of knot Floer homology whose
graded Euler characteristic is the Alexander polynomial.

Like the 3-manifold invariant, the knot Floer complex satisfies a Künneth-type for-
mula under connected sums [66, Theorem 1.5]. That is, CFK.Y1#Y2; K1#K2/ is chain homo-
topy equivalent to

CFK.Y1; K1/ ˝FŒU;V � CFK.Y2; K2/:

3.2. Maps induced by concordances
Knot Floer homology also behaves nicely under cobordisms. Consider a cobordism

.W; S/ from .Y0; K0/ to .Y1; K1/, that is, W is a 4-manifold cobordism from Y1 to Y2 and
S � W a properly embedded connected surface with boundary �K0 t K1. The pair .W; S/

induces a module homomorphism

FW;S W CFK.Y0; K0/ ! CFK.Y1; K1/:

When W is a homology cobordism and S is an annnulus, FW;S induces an isomorphism

.FW;S ˝ id/� W .U; V /�1 HFK.Y0; K0/
Š
�! .U; V /�1 HFK.Y1; K1/;

where .U; V /�1 HFK.Y0; K0/ D H�.CFK.Y; K/ ˝FŒU;V � F ŒU; U �1; V; V �1� [89, Theo-

rem 1.7]. When W D S3 � Œ0; 1�, we may simply write FS instead of FW;S .
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Using this additional structure, we define an equivalence relation on these chain
complexes that is well suited to studying the knot concordance group, and more generally,
concordances in homology cobordisms.

Definition 3.3. Two knot Floer complexes, CFK.Y0; K0/ and CFK.Y1; K1/, are locally
equivalent, denoted CFK.Y0;K0/ �CFK.Y1;K1/, if there exist F ŒU;V �-module chain maps

f W CFK.Y0; K0/ ! CFK.Y1; K1/ and g W CFK.Y1; K1/ ! CFK.Y0; K0/;

inducing isomorphisms on .U; V /�1 HFK.Yi ; Ki /.

Remark 3.4. In the literature, this equivalence relation is also referred to as �C-equivalence
[43] and stable equivalence [37].

As in the 3-manifold case above, we can now consider the group

C D
®
CFK.Y; K/ j Y a ZHS3 bounding a ZHB4, K a knot in Y

¯
= �

under the operation induced by tensor product, giving us a homomorphism

OCZ ! C

obtained by sending Œ.Y; K/� to ŒCFK.Y; K/�. (We require Y to bound a ZHB4 to parallel
the definition of OCZ.) By precomposing with the map C ! OCZ, we obtain a homomorphism
C ! C.

The group C is not easy to study. One way to obtain a simpler algebraic structure is
to set V D 0, in which case we can run the analogous construction, that is, we can consider
the group

C0
D

®
CFK.Y; K/=.V D 0/ j Y a ZHS3 bounding a ZHB4, K a knot in Y

¯
= �

where CFK.Y0; K0/=.V D 0/ � CFK.Y1; K1/=.V D 0/ if there exist F ŒU �-module chain
maps

f W CFK.Y0; K0/=.V D 0/ ! CFK.Y1; K1/=.V D 0/;

g W CFK.Y1; K1/=.V D 0/ ! CFK.Y0; K0/=.V D 0/;

inducing isomorphisms onU �1HFK�.Yi ;Ki /; we call this equivalence relation local equiv-
alence mod V . As in the 3-manifold case, this group C0 is isomorphic to Z; indeed, up to
renormalization, this construction yields the Ozsváth–Szabó � -invariant [67] (see also [73,

Appendix A]).
In a case of mathematical Goldilocks, working over the full ring F ŒU; V � yields a

group that is too complicated to study, while working over the ring F ŒU � D F ŒU;V �=.V D 0/

yields a group that is too simple. Somewhat miraculously, it turns out that working over the
ring F ŒU; V �=.U V D 0/ is just right, at least for knots in S3. The main idea is that although
F ŒU; V �=.U V D 0/ has zero-divisors, it is somehow closer to being a PID than F ŒU; V � is.
Furthermore, for knots in S3, the local equivalence group mod U V is totally ordered, as we
now describe.
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Definition 3.5. We say that
CFK.K1/ � CFK.K2/

if there exists an F ŒU; V �=.U V D 0/-module chain map

f W CFK.K1/ ! CFK.K2/

such that f induces an isomorphism on H�.CFK.Ki /=U /=V -torsion. If

CFK.K1/ � CFK.K2/ and CFK.K2/ � CFK.K1/;

then we say that CFK.K1/ and CFK.K2/ are locally equivalent mod U V .

Remark 3.6. Note that since U and V are both zero-divisors in F ŒU; V �=.U V /, we cannot
invert them directly. Also note that requiring f to induce an isomorphism on the module
H�.CFK.Ki /=U /=V -torsion is ever so slightly stronger than requiring f to induce an iso-
morphism on V �1H�.CFK.Ki /=U /.

This is the same total order as that induced by " in [36]. Indeed, one way to define
the ¹�1; 0; 1º-valued concordance invariant " [35] (see also [11, Section 3]) is as follows:

• ".K/ � 0 if and only if CFK.K/ � F ŒU; V �,

• ".K/ � 0 if and only if CFK.K/ � F ŒU; V �.

In particular, ".K/ D 0 if and only if F ŒU; V � � CFK.K/ � F ŒU; V �.
For knots in S3, we are able to characterize their knot Floer complexes, up to local

equivalence mod U V :

Theorem 3.7 ([11, Theorem 1.3]). Let K be a knot in S3. The knot Floer complex of K is
locally equivalent mod U V to a standard complex, which can be represented by a finite
sequence of nonzero integers. Moreover, if we endow the integers with the following unusual
order:

�1 <Š
�2 <Š

�3 <Š
� � � <Š 0 <Š

� � � <Š 3 <Š 2 <Š 1;

then local equivalence classes mod U V are ordered lexicographically with respect to their
standard representatives.

See Section 4 of [11] for the definition of a standard complex. This characterization
of knot Floer complexes up to local equivalence mod U V is a key step in the definition of
the linearly independent family of concordance homomorphisms

'i W C ! Z; i 2 N

from [11]. The main idea is that 'i .K/ is the signed count of the number of times that i

appears in the sequence of integers parametrizing the local equivalence class mod U V of
CFK.K/. (For symmetry reasons, we actually only consider every other term in the sequence;
see [11, Section 7] for more details.)

For knots in S3, we have the following relationships between �; ", and 'i :
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Theorem 3.8 ([11, Proposition 1.2], [36, Proposition 3.2]). Let K be a knot in S3.

(1) If ".K/ D 0, then 'i .K/ D 0 for all i .

(2) The invariant � is equal to

�.K/ D

1X
iD1

i'i .K/:

In particular, if ".K/ D 0, then �.K/ D 0.

The invariant " can be generalized to a homology concordance invariant [39, Sec-
tion 4], which behaves like a sign under connected sum, in the sense that

• if ".Y1; K1/ D ".Y2; K2/, then ".Y1#Y2; K1#K2/ D ".Y1; K1/, and

• if ".Y1; K1/ D 0, then ".Y1#Y2; K1#K2/ D ".Y2; K2/.

The proof of Theorem 1.8(2) relies on using the filtered mapping cone of [28] to produce a
manifold–knot pair .Y;K/with ".Y;K/ D 0 and �.Y;K/ D 1. By Theorem 3.8, we know that
if a knot K in a manifold Y is homology concordant to any knot J in S3 and ".Y; K/ D 0,
then �.Y; K/ D 0. Hence K � Y is not homology concordant to any knot in S3. Moreover,
since � is a concordance homomorphism, it follows that any nonzero multiple of .Y; K/ has
" D 0 and � nonzero, hence cannot be homology concordant to any knot in S3.

Remark 3.9. Note that ".K/, �.K/, 'i .K/, and, more generally, the local equivalence class
of CFK.K/ are all invariant under concordances in rational homology cobordisms. In par-
ticular, they all vanish for rationally slice knots. Thus, in order to study CQS , the group of
rationally slice knots, we will need additional structure, as discussed in Section 5.

3.3. Ribbon concordances
As in the case for 3-manifolds, ribbon concordances induce particularly nice maps

on the knot Floer complex:

Theorem 3.10 ([88, Theorem 1.7]). Let S be a ribbon concordance from K0 to K1 in S3 �

Œ0; 1�, and let S 0 denote the concordance obtained by reversing S . Then

FS 0 ı FS W CFK.K0/ ! CFK.K0/

is chain homotopic to the identity, via an F ŒU;V �-equivariant chain homotopy. In particular,
ifS is a ribbon concordance fromK0 toK1, then bHFK.K0/ is a direct summand of bHFK.K1/

and HFK�.K0/ is a direct summand of HFK�.K1/.

Since knot Floer homology detects the knot genus g.K/ [68], an immediate conse-
quence of the above theorem is that if there is a ribbon concordance from K0 to K1 then
g.K0/ � g.K1/ [88, Theorem 1.3].
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4. Involutive Heegaard Floer homology

We would like to use the Heegaard Floer package to study homology cobordism.
In light of Theorem 3.7, we see that a richer algebraic structure, namely, chain complexes
over a more complicated ring than F ŒU �, can give us richer invariants. Fortunately for us,
Hendricks and Manolescu [32] endowed the Heegaard Floer chain complex with the addi-
tional structure of a homotopy involution �. Very roughly, this additional data lets us think of
the Heegaard Floer chain complex as a module over (a quotient of) a two-variable poly-
nomial ring, allowing us to employ the techniques used in the proof of Theorem 3.7 to
define an infinite family of Z-valued homology cobordism homomorphisms. These homo-
morphisms lead to the proof of Theorem 1.1. Furthermore, the characterization of such chain
complexes up to a suitable notion of local equivalence is a key ingredient in the proof of The-
orem 1.3.

4.1. Properties and examples
Recall that in the construction of Heegaard Floer homology, we specify our 3-

manifold Y via a pointed Heegaard diagram H D .†;˛;ˇ; z/, where † is a closed, oriented
surface of genus g, and ˛ and ˇ are each a collection of g disjoint embedded circles in †.
Reversing the orientation of † reverses the orientation of Y , as does reversing the roles of
the ˛- and ˇ-circles. In particular, the Heegaard diagram H D .�†; ˇ; ˛; z/ describes the
same manifold as H , namely Y . Thus, there is a sequence of Heegaard moves taking H

to H , inducing an F ŒU �-equivariant chain map

ˆH ;H W CF�.H / ! CF�.H /I

this chain map is well defined since Heegaard Floer homology is natural [41]. There is also
a canonical F ŒU �-equivariant chain complex isomorphism

� W CF�.H / ! CF�.H /

given by the “obvious” identification of the generators of the two chain complexes. Hendricks
and Manolescu show that � D ˆH ;H ı � is a homotopy involution (that is, �2 ' id) and prove
that for a homology sphere Y , the chain homotopy type of the pair .CF�.H /; �/ is an invariant
of Y [32, Proof of Proposotion 2.7]; we will write .CF�.Y /; �/, called the �-complex of Y , to
denote a representative of this equivalence class. (An analogous statement holds for a general
3-manifold equipped with a self-conjugate spinc-structure; for ease of exposition, we have
chosen to focus on homology spheres to eliminate the need to discuss spinc-structures.)

Example 4.1. The �-complex of S3 is .F ŒU �; id/. (The map � is uniquely determined by the
fact that �2 ' id.)

Example 4.2. The �-complex of †.2; 3; 7/ is generated over F ŒU � by a, b, and c with @, �,
and gradings as follows:
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@ � gr
a 0 c 0

b Ua C Uc b �1

c 0 a 0

(The map � can be computed by realizing �†.2; 3; 7/ as C1-surgery on the left-handed
trefoil. See [32, Section 6.8].)

We have the following Künneth-type formula for �-complexes of connected sums
[33, Theorem 1.1]:�

CF�.Y1#Y2/; �1#2

�
'

�
CF�.Y1/ ˝FŒU � CF�.Y2/; �1 ˝ �2

�
;

where �1 (respectively �2) denotes the homotopy involution on Y1 (respectively Y2) and �1#2

denotes the homotopy involution on Y1#Y2.

4.2. Cobordism maps
The map � behaves nicely with respect to cobordismmaps. For expositional simplic-

ity, we will focus on homology cobordisms. (One can also consider general cobordisms with
a conjugacy class of spinc-structures.) A homology cobordism W from Y0 to Y1 induces a
chain map

FW W CF�.Y1/ ! CF�.Y2/;

which commutes with �, up to homotopy [32, Proof of Proposition 4.9]:

FW ı �1 ' �2 ı FW :

In particular, we can define a refined version of local equivalence as follows:

Definition 4.3. Two �-complexes .C1; �1/ and .C2; �2/ are �-locally equivalent, denoted
.C1; �1/ � .C2; �2/, if there exist F ŒU �-module chain maps

f W CF�.Y0/ ! CF�.Y1/ and g W CF�.Y1/ ! CF�.Y0/;

inducing isomorphisms on U �1 HF�.Yi /, such that

f ı �1 ' �2 ı f and g ı �2 ' �1 ı g:

We can now consider the group

I D
®�
CF�.Y /; �

�
j Y an integer homology sphere

¯
= �

under the operation induced by tensor product. This construction yields a homomorphism

‚3
Z ! I

obtained by sending ŒY � to Œ.CF�.Y /; �/�. The additional requirement that the local equiva-
lences homotopy commute with � makes this group more interesting than before. However,
this group is almost too interesting, in the sense that it is very difficult to understand.
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As in the knot case above, a certain algebraic simplification allows us to characterize
elements in this group, up to an ever so slightly weaker notion of equivalence. The main idea
is to append “mod U ” to every statement in Definition 4.3 involving �.

Definition 4.4. Two �-complexes .C1; �1/ and .C2; �2/ are almost �-locally equivalent, if there
exist F ŒU �-module chain maps

f W CF�.Y0/ ! CF�.Y1/ and g W CF�.Y1/ ! CF�.Y0/;

inducing isomorphisms on U �1 HF�.Yi /, such that

f ı �1 ' �2 ı f mod U and g ı �2 ' �1 ı g mod U:

Similarly, we can relax the definition of an �-complex so as to only require that
�2 ' id modU ; wewill call such a complex an almost �-complex.2 Almost �-local equivalence
classes of almost �-complexes are totally ordered, with

.C1; �1/ � .C2; �2/;

if there exists an F ŒU �-module chain map f W C1 ! C2, inducing an isomorphism on
H�.Ci /=U -torsion, such that f ı �1 ' �2 ı f mod U .

Theorem 4.5 ([9, Theorem 6.2]). Every �-complex is almost �-locally equivalent to a stan-
dard complex, which can be represented by a finite sequence of the form .ai ; bi /

n
iD1 where

ai 2 ¹˙1º and bi 2 Z n ¹0º. Moreover, if we endow the integers with the following unusual
order:

�1 <Š
�2 <Š

�3 <Š
� � � <Š 0 <Š

� � � <Š 3 <Š 2 <Š 1;

then almost �-local equivalence classes are ordered lexicographically with respect to their
standard representatives.

The astute reader may notice that Theorem 4.5 looks very similar to Theorem 3.7.
Indeed, the idea is that �-complexes can roughly be thought of as chain complexes over
F ŒU; Q�=.Q2/, which are then very similar to chain complexes over F ŒU; V �. Analogously,
we can define a linearly independent family of homology cobordism homomorphisms

�i W ‚3
Z ! Z; i 2 N:

These homomorphisms can be used to show that the Brieskorn homology spheres
†.2j C 1; 4j C 1; 4j C 3/ span a free infinite rank subgroup of ‚3

Z, proving Theorem 1.1.
Rostovtsev [81] gives an alternate proof of Theorem 4.5 and extends our result to define an
additional, linearly independent integer-valued homology cobordism homomorphism.

Let OI denote the group of almost �-complexes up to almost �-local equivalence. We
have the homomorphism

Oh W ‚3
Z ! OI

2 Here, we use the word “almost” to denote that any statement regarding � should be taken
mod U . In the next section, we use the word “almost” to denote that any statement regarding
�K should be taken mod .U; V /.
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defined by sending ŒY � to Œ.CF�.Y /; �/�. We now describe the main ideas behind the proof
of Theorem 1.3, which states that Seifert fibered spaces do not generate ‚3

Z. Let ‚SF denote
the subgroup of ‚3

Z generated by Seifert fibered spaces. In [9, Section 8.1], we determine
Oh.‚SF/, the image of ‚SF in OI . Recall that elements of OI are finite sequences. Elements in
Oh.‚SF/ are exactly the sequences satisfying a certain monotonicity condition on their terms;
see [9, Theorem 8.1] for the precise statement. We then use the involutive surgery formula
[30, Theorem 1.6] to determine the �-complexes of surgeries on a family of connected sums
of torus knots and iterated cables. The sequences associated to these surgeries do not satisfy
the monotonicity condition of Oh.‚SF/. A similar statement applies to linear combinations of
these surgeries, giving Theorem 1.3.

5. Involutive knot Floer homology

In the previous section, we put additional structure, namely the homotopy invo-
lution �, on the Heegaard Floer chain complex CF�.Y /. In this section, we put additional
structure, namely a skew-graded, skew-equivariant (i.e., interchanges the actions ofU andV )
chain map �K , on the knot Floer chain complex CFK.K/. Themap �K is not a homotopy invo-
lution; rather, Hendricks–Manolescu [32, Section 6.2] show that �K squares to be homotopic
to the Sarkar map [82], which is induced by moving the basepoints w and z once around the
knot K. The map �K is the additional structure alluded to in Remark 3.9.

5.1. Properties and examples
The map �K is defined in a similar way to �. Consider a doubly-pointed Heegaard

diagram H D .†; ˛; ˇ; z; w/ for a knot K in an integer homology sphere Y . (With minor
modifications, these constructions also work for null-homologous knots in any 3-manifold.)
The doubly-pointed Heegaard diagram H D .�†; ˇ; ˛; w; z/ also describes K � Y , and
thus there is a sequence of Heegaard moves from H to H , inducing a F ŒU; V �-equivariant
chain map

ˆH ;H W CFK.H / ! CFK.H /:

(Care should be taken with regards to the basepoints; see [32, Section 6.2] for details.) There
is also a canonical skew-equivariant isomorphism

�K W CFK.H / ! CFK.H /;

given by the “obvious” identification of the generators of the two chain complexes. Then
�K is defined to be ˆH ;H ı �K . The chain homotopy type of the pair .CFK.H /; �K/ is an
invariant of the knotK in Y [32, Proposition 6.3]. As usual, we write .CFK.K/; �K/ to denote
a representative of this chain homotopy equivalence class, and we call the pair .CFK.K/; �K/

an �K-complex.

Example 5.1. The �K-complex of the unknot in S3 is .F ŒU;V �; id/. (The map �K is uniquely
determined by the fact that it squares to be homotopic to the Sarkar map.)
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Example 5.2. The �K-complex of the right-handed trefoil is described by

@ �K gr
a 0 c .0; �2)
b Ua C Vc b .�1; �1/

c 0 a .�2; 0/

(The map �K is uniquely determined by the fact that it is skew-graded and squares to be
homotopic to the Sarkar map.)

There is a Künneth-type formula for �K-complexes [87, Theorem 1.1],�
CFK.Y1#Y2; K1#K2/; �K1#K2

�
'

�
CFK.K1/ ˝ CFK.K2/; �K1 ˝ �K2 C .ˆ ˝ ‰/ ı .�K1 ˝ �K2/

�
:

See [87, Section 4.2] for the definitions of ˆ and ‰; for an expository overview, see [38,

Section 2].

5.2. Maps induced by concordances
Let .W; S/ be a Z=2Z-homology cobordism from .Y0; K0/ to .Y1; K1/, that is,

W is a Z=2Z-homology cobordism from Y0 to Y1 and S is a concordance from K0 to K1.
(More generally, one can consider spin cobordisms; see [32].) As one would hope, the module
homomorphism FW;S induced by .W; S/ behaves nicely with respect to �K [87, Theorem 1.3]

in the sense that
FW;S ı �K0 ' �K1 ı FW;S :

Based on previous sections, it may now be apparent to the reader what we do next.
We jump straight to the definition of almost �K-local equivalence; the definition of �K-local
equivalence can be obtained by striking out both instances of “mod .U; V /” in the definition
below.

Definition 5.3. Two �K-complexes .C1; �1/ and .C2; �2/ are almost �K-locally equivalent if
there exist F ŒU; V �-module chain maps

f W CFK.Y0; K0/ ! CFK.Y1; K1/ and g W CFK.Y1; K1/ ! CFK.Y0; K0/;

inducing isomorphisms on .U; V /�1 HFK.Yi ; Ki /, such that

f ı �K0

'

�K1 ı f mod .U; V / and g ı �K1

'

�K0 ı g mod .U; V /;

where 'denotes skew-equivariant homotopy equivalence.

We can now consider OIK , the group of �K-complexes modulo almost �K-local equiv-
alence, with the operation induced by tensor product. Note that this group has 2-torsion,
generated by, for example, the figure-eight knot, and hence this group is not totally ordered.
In particular, there are rationally slice knots, such as the figure-eight, with nontrivial image
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in OIK ; this is possible because the (almost) local equivalence class of a knot is an invariant
of concordances in Z=2Z-homology cobordisms, rather than Q-homology cobordisms, as
is the case in the noninvolutive setting. Thus, this toolkit is particularly well equipped for
studying rationally slice knots.

The proof of Theorem 1.9 relies on finding a linearly independent family of ratio-
nally slice knots. The knots under consideration are Kn, the .2n C 1; 1/-cable of the figure-
eight; these knots are rationally slice because the figure-eight is rationally slice, and thus its
.2n C 1; 1/-cable is rationally concordant (i.e., concordant in a rational homology cobor-
dism) to the .2n C 1; 1/-torus knot, which is the unknot.

We compute the almost �K-local equivalence class of .CFK.Kn/; �K/ using bordered
Floer homology [26,50], in particular, its applications to cables [27,77], together with formal
properties of �K , such as the fact that it squares to be homotopic to the Sarkar map. With this
computation in hand, we observe that there is certain structure in .CFK.Kn/; �K/ (roughly,
a particular F ŒU �=U n summand in HFK�.Kn/) which, using the formula for connected
sums of �K-complexes and properties of almost �K-local equivalences, allows us to determine
that the Kn are linearly independent.

6. What next?

As we have demonstrated, the Heegaard Floer package can answer a range of ques-
tions in low-dimensional topology. Do these techniques have the potential to answer any of
the open questions from Section 1?

Question 1.2 asks whether ‚3
Z contains any torsion. The most likely torsion is

order two, generated by a homology sphere admitting an orientation-reversing self-diffeo-
morphism. There are many constructions for building homology spheres with orientation-
reversing self-diffeomorphisms (for example, the double-branched cover of an amphichiral
knot with determinant one, or the splice of a knot complement with that of its mirror), but so
far, there has been no success in obstructing such an example from being homology cobor-
dant to S3. One can consider an algebraic version of the local equivalence group I , by
considering all �-complexes (not just those known to be realized by a 3-manifold) modulo
local equivalence. This algebraic group is known to have two-torsion; the difficulty lies in
finding a 3-manifold that realizes such an algebraic example. At present, computations of
�-complexes are limited to certain special families of manifolds (e.g., Seifert fibered spaces,
surgeries on knots in S3); we hope to improve this shortcoming in the future.

Question 1.4 asks whether surgeries on knots in S3 generate ‚3
Z. This seems like

a hard question to answer with Heegaard Floer homology, as the question about which �-
complexes can be realized by surgery on a knot in S3 then reduces to the question of which
�K-complexes can be realized by knots in S3. Even without the additional structure of �K ,
this is a difficult question; for some partial answers, see [29], as well as more recent progress
in [4,44,62].

As for Questions 1.5 and 1.6, which ask for knots that are not slice in B4 but are
slice in a homology B4 or a homotopy B4, respectively, it seems unlikely that Heegaard
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Floer homology will be able to provide an answer. Indeed, with the current technology, if
the Heegaard Floer package obstructs a knot from being slice in B4, then it also obstructs
the knot from being slice in a homology or homotopy B4. There are other invariants which
may be able to shed light on this question. For example, at present, it remains open whether
or not the Rasmussen s-invariant [79], defined using the Lee [46] deformation of Khovanov
homology [42] (see [5] for an expository overview), vanishes for knots that are slice in a
homology or homotopy B4.

We now turn to Question 1.10, which asks whether there exists a knot K � S3 that
is not slice in B4 but is slice in a rational homology 4-ball W with jH1.W I Z/j odd. It
seems unlikely that Heegaard Floer homology, in its present form, can address this condi-
tion. Note that involutive Heegaard Floer homology gives obstructions to being slice in a
Z=2Z-homology 4-ball; if W is a rational homology 4-ball with jH1.W I Z/j odd, then it is
aZ=2Z-homology ball. However, recall that prior to the advent of involutive Heegaard Floer
homology, there was no way to use Heegaard Floer homology to obstruct a knot (such as the
figure-eight) from being slice in any rational homology 4-ball. Perhaps there is some other
additional structure that we can add to the Heegaard Floer package, yielding new obstruc-
tions. Alternatively, it remains possible that the s-invariant may have something to say about
this question.

Conjecture 1.12 posits that ribbon concordance is a partial order. Zemke [88, Theo-

rem 1.7] proved that if there is a ribbon concordance from K0 to K1, then bHFK.K0/ injects
into bHFK.K1/. Thus, if there is also a ribbon concordance fromK1 toK0, then bHFK.K0/ Š

bHFK.K1/. Note that there are infinite families of knots with the same knot Floer homology
[29, Theorem 1]. However, as far as the author knows, there are no known ribbon concordances
between distinct knots in any of those families. Further investigation is needed before we rule
out knot Floer homology as a tool for resolving Conjecture 1.12.

Closely related is Conjecture 1.13, which posits that ribbonQ-homology cobordism
is a partial order on 3-manifolds. There is a ribbon homology cobordism from S3 to Y #� Y

for any homology sphere Y . Taking Y D †.2; 3; 5/, and noting that HF�.†.2; 3; 5/# �

†.2; 3; 5// Š HF�.S3/ Š F.0/ŒU �, we see that we have two distinct 3-manifolds with the
same Heegaard Floer homology and a ribbon homology cobordism in one direction. (As
alluded to above, we do not know of an analogous example in the knot case.) However, since
†.2; 3; 5/# � †.2; 3; 5/ does not bound a simply-connected homology 4-ball [85, Proposi-
tion 1.7], it follows that there is no ribbon homology cobordism from†.2;3;5/#� †.2;3;5/

to S3 (for if there were, we could glue a 4-ball to the S3 end and obtain a simply-connected
homology ball with boundary †.2; 3; 5/#� †.2; 3; 5/). We refer the reader to [8] for further
evidence, some of it coming from various Floer homologies, in support of Conjecture 1.13.

As we have seen, advances in Heegaard Floer homology have answered many ques-
tions about homology cobordism and knot concordance. These successes were not immedi-
ate; they began in 2003, when Ozsváth–Szabó [65,67] defined the homomorphisms

d W ‚3
Z ! 2Z and � W C ! Z:
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The next major step in extracting concordance information from the knot Floer complex was
the definition of " in 2014 [36], which in turn led to two infinite families of concordance
homomorphisms

‡t W C ! R; t 2 Œ0; 2� and 'i W C ! Z; i 2 N;

the former defined byOzsváth–Stipsicz–Szabó [64], and the latter byDai, Stoffregen, Truong,
and the author [11]. The algebraic framework necessary to define ‡t and 'i existed since the
inception of knot Floer homology in the early 2000s, yet it took over a decade for anyone to
exploit this structure to define these new homomorphisms. Concurrent with these develop-
ments was the advent of Hendricks–Manolescu’s involutive Heegaard Floer homology [32],
which put new, more refined structure on the Heegaard Floer and knot Floer homology pack-
ages, yielding new homology cobordism homomorphisms and new rational concordance
obstructions. We look forward to seeing whether the Heegaard Floer package in its present
form can be further mined for new applications, to refining the structure on these invariants
even more to prove new theorems, and to developing new, unanticipated tools for resolving
the questions and conjectures that we have posed here.
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1. Introduction

The computation of stable homotopy groups of spheres is one of the most funda-
mental and important problems in topology. It has connections to many topics in topology,
such as the cobordism theory of framed manifolds, the classification of smooth structures
on spheres, obstruction theory, the theory of topological modular forms, algebraic K-theory,
and equivariant homotopy theory.

Consider the set of homotopy classes of continuous based maps SnCk ! Sk

between spheres of dimensions n C k and k. This set admits a natural group structure. By
the Freudenthal Suspension Theorem [12], this group only depends on k when n > k C 1.
This group is called the nth stable homotopy group of spheres, or the nth stable stem, and is
denoted by �n. If n < 0, then �n is the zero group. Moreover, �0 is isomorphic to the group
of integers. Serre’s finiteness theorem [40] tells us that �n is a finite abelian group for n > 0.

Despite their simple definition, which was available 80 years ago, the stable homo-
topy groups are notoriously hard to compute. All known methods only give a complete
answer through a range, and then reach an obstacle that can only be surmounted by the
introduction of a new method.Mahowald’s Uncertainty Principles attempt to quantify the
inherent difficulty of the problem. Despite its difficulty, manymathematicians havemade sig-
nificant progress. We will briefly review the history and Mahowald’s Uncertainty Principles
in Section 3.

Recently, the authors have developed a new method [14] using motivic homotopy
theory. Using this new method, we have already greatly improved our knowledge of stable
stems [19,20], and we have ongoing computations into even higher dimensions. Our method
is currently the most effective and less prone to human error, partly due to the fact that it
relies more heavily on machine computation than previous methods.

The original purpose of motivic homotopy theory was to apply abstract homotopy
theory to problems in number theory and algebraic geometry. In contrast, our work has
reversed the information flow and applied motivic homotopy theory to discover new phe-
nomena in classical topology.

2. Smooth structures on spheres

The work of Kervaire and Milnor [22] on the classification of smooth structures on
spheres in dimensions at least 5 is an important example of an application of stable stem
computations. Let ‚n be the group of h-cobordism classes of homotopy n-spheres. This
group classifies the differential structures on Sn for n � 5. Kervaire and Milnor [22] reduced
the computation of the group ‚n to the computation of the stable homotopy group �n and
the Kervaire invariant problem. The latter was resolved by Hill, Hopkins, and Ravenel [16] in
all dimensions except for 126. In particular, Kervaire and Milnor observed that the spheres
in dimensions 5, 6, and 12 have unique smooth structures.

We restate the following conjecture from [47], which is based on the current knowl-
edge of stable stems and a problem proposed by Milnor [28].
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Conjecture 2.1. In dimensions greater than 4, the only spheres with unique smooth struc-
tures are S5, S6, S12, S56, and S61.

Uniqueness in dimension 56 is due to the first author [18], and uniqueness in dimen-
sion 61 is due to the second and third authors [47].

Conjecture 2.1 is equivalent to the claim that the group ‚n is not of order 1 for
dimensions greater than 61. This conjecture has been confirmed in all odd dimensions by
the second and the third authors [47] based on the work of Hill, Hopkins, and Ravenel [16].

Theorem 2.2 ([47, Corollary 1.13]). The only odd-dimensional spheres with unique smooth
structures are S1, S3, S5, and S61.

For even dimensions, Conjecture 2.1 has been confirmed for over half of all even
dimensions by Behrens, Hill, Hopkins, Mahowald, and Quigley [6,7].

3. History and Mahowald’s uncertainty principles

We review the history of computing stable stems. See [46] for a survey of classical
methods and also Section 2 of [47].

After the geometric computation of the first three stems, Serre [39] computed �n for
n � 8 using the cohomology of Eilenberg–MacLane spaces and the Serre spectral sequence.
Using the EHP sequence and higher compositions such as Toda brackets, Toda [41] computed
a large range of unstable homotopy groups of spheres and obtained �n for n � 19.

Since �n is finite abelian, it can be reconstructed from its p-primary components
for each prime p. History has demonstrated the effectiveness of this approach. The standard
approach to computing stable stems at each prime is to use Adams-type spectral sequences
that converge from algebra to homotopy. To identify the algebraic E2-pages, one needs aux-
iliary algebraic spectral sequences that converge from simpler algebra to more complicated
algebra. For any spectral sequence, difficulties arise in computing differentials and in solving
extension problems. Typically, a variety of complementary methods are required to compute
a spectral sequence. One method may compute some types of differentials and extension
problems efficiently but leave other types unanswered. To obtain complete computations,
one must be eclectic, applying and combining different methodologies. Even so, combining
all known methods, there are eventually some problems that cannot currently be solved.

In fact, we have the following principle, first named by Ravenel [15].

The First Mahowald Uncertainty Principle. Any spectral sequence converging to the
homotopy groups of spheres with an E2-page that can be named using homological alge-
bra will be infinitely far from the actual answer.

The first principle essentially says that the computation of stable stems is not an
algebraic problem—there are infinitely many nonzero differentials that must be resolved in
such a spectral sequence. Based on experience of learning from Mark Mahowald, the third
author [48] named the second principle:
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The Second Mahowald Uncertainty Principle. Any method that computes nontrivial dif-
ferentials in such a spectral sequence will leave infinitely many differentials undecided.

At odd primes, the state-of-the-art is computed by Ravenel in [36] with the Adams–
Novikov spectral sequence [33] and the chromatic spectral sequence, which are based on
complex cobordism and formal groups. As the prime grows, so does the range of computa-
tion, since the spectral sequences become sparser. For example, for p D 3 and p D 5, we
have complete knowledge up to around 100 and 1000 stems, respectively [36]. These ranges
are both approximately equal to p3.2p � 2/.

At the prime 2, the classical Adams spectral sequence [1] is still the most efficient
method. May [26] constructed the May spectral sequence at all primes, which converges to
the E2-page of the Adams spectral sequence, and he computed �n for n � 28. Using higher
structure such as the interactions between Massey products and Toda brackets, Mahowald
(with Barratt, Bruner, Jones, and Tangora) [3, 4, 8, 25] computed �n for n � 47. We also
mention [23, 24], which take an entirely different approach. However, the computations in
[23,24] are now known to contain several errors.

More recently, in 2014, the first author [18] gave a thorough accounting of the Adams
spectral sequence up to dimension 59 with the exception of only one differential, but then he
reached an obstacle as predicted by Mahowald’s Uncertainty Principles. The new idea was
to compare classical computations with the motivic Adams spectral sequence. The exception
was later proved by the third author [21] based on the first author’s computations.

In 2016, with tremendous efforts, the second and third authors [47] bypassed the
above obstacle by computing two more stable stems using the RP1-method. In particular,
the second and third authors proved that�61 is the zero group; Theorem 2.2 is a consequence.
TheRP1-method is useful for finding specific, particularly difficult, Adams differentials and
is not designed to study all differentials systematically.

A major breakthrough occurred in 2017 and the next few years. A new method [14]

allowed the authors [19,20] to recompute most Adams differentials up to dimension 61 very
easily and to extend computations to dimension 90 with only a few exceptions. For example,
the hardest differential d3.D3/ D B3 proved in [47] is now an immediate consequence of
this new method; it comes immediately from the output of a computer program. Our new
method is discussed in the next section.

Further computations into higher dimensions are still ongoing. We have not yet
reached an insurmountable obstacle that will require a new method to resolve.

4. Motivic homotopy theory and algebraicity of the

cofiber of �

Morel and Voevodsky [30,31] developed motivic homotopy theory in the mid-1990s
in order to import homotopical techniques into algebraic geometry. This program found great
success in Voevodsky’s resolutions of the Milnor Conjecture [42] and the Bloch–Kato Con-
jecture [43].

2771 Stable homotopy groups of spheres and motivic homotopy theory



There is a cellular subcategory of the motivic stable homotopy category that is
generated by two types of spheres: the simplicial sphere S1;0, and the multiplicative group
Gm D A1 � 0, denoted by S1;1. After p-completion, there is a stable map � W S0;�1 ! S0;0

over C that induces a nonzero map on mod p motivic homology. We denote by S0;0=� the
cofiber of � .

One may view the p-completed C-motivic stable homotopy category as a defor-
mation of the p-completed classical stable homotopy category, with this element � as a
parameter. Dugger and the first author [11] identified the generic fiber “� D 1” with the
p-completed classical stable homotopy category. Gheorghe and the second and third authors
[14] identified the special fiber “� D 0” with a purely algebraic category.

Theorem 4.1 ([14]). At each prime p, there is an equivalence

S0;0=� -Mod ' D.BP2�BP-Comod/

of stable 1-categories, equipped with t -structures, between the category of cellular module
spectra over S0;0=� and Hovey’s [17] derived category of BP2�BP-comodules.

The right-hand side is also known as the derived category of quasicoherent sheaves
on the moduli stack of formal groups over Zp-algebras, which is foundational to chromatic
homotopy theory [29,35].

The first author [18] observed that the homotopy groups of S0;0=� are isomorphic to
the classical Adams–Novikov E2-page Ext�;�

BP�BP.BP�;BP�/. In 2017, the second author [45]
made a computer program that computes the algebraic Novikov spectral sequence, which
converges to the Adams–Novikov E2-page, in a large range. The computer data aligned with
the motivic Adams spectral sequence for S0;0=� obtained by the first author. This discovery
motivated the following theorem by Gheorghe and the second and third authors [14], which
is crucial to the computation of classical and C-motivic stable homotopy groups of spheres.

Theorem 4.2 ([14]). The tri-graded motivic Adams spectral sequence for S0;0=� is isomor-
phic to the algebraic Novikov spectral sequence for BP2� [27,33]:

Exta;2w�sCa;w
Amot .FpŒ� �; Fp/

Motivic Adams SS

��

Š // Exts;2w
BP2�BP=I

.Fp; I a�s=I a�sC1/

Algebraic Novikov SS

��
�2w�s;w.S0;0=�/

Š // Exts;2w
BP2�BP.BP2�;BP2�/:

Here Amot is the motivic Steenrod algebra, and FpŒ� � is the mod p motivic coho-
mology of S0;0.

There is a Betti realization functor Re from the motivic stable homotopy category
over C to the classical stable homotopy category, which extends the functor that sends a
complex algebraic variety to its C-points. We have Re.Sn;w/ ' Sn and Re.�/ D 1.
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The naturality of Adams spectral sequences then gives us a zigzag diagram

Exts;t
A .Fp; Fp/

Adams SS

��

Exts;t;w
Amot .FpŒ� �; FpŒ� �/

Reoo //

Motivic Adams SS

��

Exts;t;w
Amot .FpŒ� �; Fp/

Motivic Adams SS

��
�t�sS0 �t�s;wS0;0Reoo // �t�s;wS0;0=�

of spectral sequences. Here the left map is given by the Betti realization functor, and the right
map is induced by the quotient map S0;0 ! S0;0=� . This diagram of spectral sequences is
very powerful. The differentials on the right side are purely algebraic by Theorem 4.2 and
can be obtained by the output of a computer program!

In fact, this method obtains all differentials up to the 45-stem with essentially only
one exception. Consistent with the Second Mahowald Uncertainty Principle, more and more
exceptions occur in higher dimensions. See Appendix A of [14] for more details.

In practice, our method can be summarized in the following steps:

(1) Compute the C-motivic Adams E2-page with a machine in a large range.

(2) Compute the algebraic Novikov spectral sequence with a machine in a large
range, including all differentials and multiplicative structure, and use Theo-
rem 4.2 to identify it with the motivic Adams spectral sequence for S0;0=� .

(3) Use the cofiber sequence

S0;�1 �
! S0;0

! S0;0=� ! S1;�1

and naturality of Adams spectral sequences to pull back and push forward
Adams differentials for S0;0=� to Adams differentials for the motivic sphere.

(4) Apply a variety of ad hoc arguments to deduce additional Adams differentials
for the motivic sphere.

(5) Invert � to obtain the classical Adams spectral sequence and the classical stable
homotopy groups.

The machine-generated data that we use in steps (1) and (2) are available at [44].

5. Results and Adams charts

Our computational results of the classical Adams spectral sequence are best sum-
marized in charts, which we include at the end of this article. The charts are displayed in
pieces so that they fit onto individual pages. For tables that describe the stable homotopy
groups �n for n � 90, see [19,20].

The first eight charts (Figures 1–8) represent the Adams E2-page. The dimension
is on the horizontal axis, and Adams filtration is on the vertical axis. Each dot represents a
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copy of F2. Dark gray vertical lines and lines of slope 1 and 1=3 represent multiplications by
h0, h1, and h2, respectively. Light gray lines of slope �r represent Adams dr differentials.

Nearly all of the differentials through dimension 90 have been computed. The only
exceptions are that d9.x85;6 C h3

0c3/ or d10.h1f2/ might equal M�h1d0 in the 84-stem.
The last three charts (Figures 9–11) represent the Adams E1-page. The dark gray

lines represent a multiplicative structure that is inherited from the E2-page. Light gray
lines represent a multiplicative structure that is hidden by the Adams filtration. Beyond the
70-stem, there remain some unresolved � extensions that are not shown on the chart. Beyond
the 80-stem, there remain unresolved 2 extensions and � extensions that are not shown.

The 2-primary part of �n can be read from this chart. The vertical column in dimen-
sion n represents the associated graded object of the Adams filtration of �n. The presence
of k dots in the nth column means that �n has order 2k .

The vertical lines determine the group structure of�n. Each vertical line represents a
nontrivial extension of abelian groups. Therefore, a sequence ofm dots connected by vertical
lines represents a copy of Z=2m inside of �n. For example, the 2-primary part of �23 is
Z=2 ˚ Z=8 ˚ Z=16.

In stems beyond 30, a regular pattern emerges along the top of the E1-page that is
distinct from the much more complicated and irregular pattern below. This regular pattern
represents the v1-periodic part. We omit this pattern starting from the high 40s.

6. Deformations of stable homotopy theory

One interpretation of Theorem 4.1 is that the C-motivic cellular stable homotopy
category is a deformation of classical stable homotopy category. Although our work is heav-
ily motivated by motivic homotopy theory, it is not logically dependent because of purely
topological constructions [13,34] of this cellular subcategory.

There are other deformations of classical stable homotopy theory that are also com-
putationally useful, such as HF2-synthetic stable homotopy theory [9]. Beyond the 90-stem,
HF2-synthetic stable homotopy theory has provided additional information to our method,
and can be viewed as one more tool in the “ad hoc” step (4) of Section 4.

Lately, we have begun to study HF2-synthetic C-motivic stable homotopy theory.
This can be viewed as a deformation of a deformation of classical stable homotopy theory. On
the other hand, one could also perform the deformations in the other order by considering BP-
synthetic, HF2-synthetic stable homotopy theory. We believe that these double deformations
are equivalent, and we propose the name “bimotivic homotopy theory” for this triply-graded
stable homotopy theory.

7. The Chow t-structure

Over an arbitrary based field k, the story is more complicated than just a defor-
mation—it becomes the Postnikov–Whitehead tower associated to the Chow t -structure.
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In [2], Bachmann, Kong, and the second and third authors defined the Chow
t -structure on the motivic stable homotopy category SH.k/ over any base field k. Its non-
negative part SH.k/c�0 is generated by Thom spectra Th.�/ associated to K-theory points
� 2 K.X/ on smooth and proper schemes X . We implicitly invert the exponential charac-
teristic of k and denote by E 7! EcDi the truncations with respect to the Chow t -structure.

Theorem 7.1 ([2]). Let E 2 SH.k/. Then there is a canonical isomorphism

�2w�s;wEcDi Š Exts;2w
MU2�MU.MU2�;MGL2�Ci;�E/:

Here MGL is the algebraic cobordism spectrum. Theorem 7.1 generalizes the iso-
morphism on the abutments in Theorem 4.2 overC to an arbitrary base field and is an integral
statement.

Moreover, the heart of the Chow t -structure SH.k/c~ can be described as a category
of enriched presheaves (see, e.g., [37, Section 3.5]) over the category of pure MGL-motives
PMMGL.k/ [2, Definition 1.4].

Theorem 7.2 ([2]). The Chow heart SH.k/c~ is equivalent to the category of enriched
presheaves on PMMGL.k/ with values inMU2�MU-comodules.

Restricting to the subcategory of cellular objects, the Chow heart can be identi-
fied as the abelian category of MU2�MU-comodules. The category of cellular objects over
.S0;0/cD0 is equivalent to Hovey’s [17] derived category of MU2�MU-comodules.

Theorem 7.3 ([2]). There are equivalences of stable 1-categories

SH.k/cell;c~
' MU2�MU-Comod;

.S0;0/cD0-Modcell ' D.MU2�MU-Comod/:

Theorem 7.3 allows us to identify the motivic Adams spectral sequence of .S0;0/cDi

as an algebraic Novikov spectral sequence, which can be computed by a machine. We antici-
pate that Adams differentials for the k-motivic sphere can be computed through the Postikov–
Whitehead tower associated to the Chow t -structure (see [2] for more details).

It would be interesting to compare our approach with methods developed in [38].

8. Further questions and conjectures

We include a few questions and conjectures for future study.
The orders of individual p-primary stable homotopy groups do not follow a clear

pattern. However, an empirically observed pattern emerges if we consider the cumulative
size of the groups.

Conjecture 8.1 (Stable stems growth conjecture). Let f .n/ be the product of the orders of
the p-primary stable homotopy groups in dimensions 1 through n. Then logp f .n/ D O.n2/.

The ring spectrum of topological modular forms tmf is very useful for comput-
ing Adams differentials for the sphere spectrum, since tmf detects many classes above a
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line of slope 1=6 on the Adams chart. Starting in the high 60s, the Mahowald operator
Ma D hg2; h3

0; ai organizes many more classes just below this line, where a is detected
by tmf .

Question 8.2 (Mahowald operator detection question). Does there exist a ring spectrum
whose Adams spectral sequence is completely computable such that itsE2-page detectsM na

for all n > 0 and all classes a that are detected by tmf ?

Baues, Jibladze, and Nassau [5, 32] described how consideration of the secondary
Steenrod algebra leads to the computation of Adams differentials. Recently, Chua [10] has
used these ideas to obtain machine-generated values of the Adams d2-differentials. This
allows us to take the Adams E3-page as given by machine.

Question 8.3 (Automated Adams differential computation question). Are there effective
algorithms that can compute all Adams d3 or even d4-differentials in a given range?

Question 8.4 (Automated Adams–Novikov differential computation question). Are there
effective algorithms that can compute all Adams–Novikov d3-differentials in a given range?

Within any Adams filtration on the E2-page, there is an operation Sq0 that doubles
the internal degree t . The following Conjecture 8.5 is due to Minami.

Conjecture 8.5 (New doomsday conjecture). For any Sq0-family®
x; Sq0x; : : : ; .Sq0/nx; : : :

¯
in the Adams spectral sequence, only finitely many classes survive to the E1-page.

Conjecture 8.6 (Stable length conjecture). Nonzero Adams differentials supported by any
Sq0-family an are of the form dr .an/ D c � bn when n is large enough, where bn is an
Sq0-family and c is a fixed element in Ext.

In Adams filtrations 1 and 2, the NewDoomsdayConjecture is essentially equivalent
to the Hopf invariant one problem and the Kervaire invariant one problem, respectively.
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Figure 1

The Adams E2-page in dimensions 0–34
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Figure 2

The Adams E2-page in dimensions 32–48
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Figure 3

The Adams E2-page in dimensions 46–60
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Figure 4

The Adams E2-page in dimensions 58–70
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Figure 5

The Adams E2-page in dimensions 68–80
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Figure 6

The Adams E2-page in dimensions 78–90
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Figure 7

The Adams E2-page in dimensions 48–80 in high filtration
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Figure 8

The Adams E2-page in dimensions 78–90 in high filtration
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Figure 9

The Adams E1-page in dimensions 0–34
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Figure 10

The Adams E1-page in dimensions 32–62
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Figure 11

The Adams E1-page in dimensions 62–90
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1. Introduction

Self-homeomorphisms of a topological space can be studied through their mapping
tori. This very basic observation connects surface automorphisms with 3-manifold theory. In
this survey, we focus on recent applications of virtual properties of 3-manifold groups to sur-
face automorphisms and their lifts to finite covers. We collect results and techniques in that
direction. We mention some currently open questions, most of which are reformulated from
more general 3-manifold versions. We review necessary background to make our exposition
accessible to non-expert readers.

Throughout this survey, a surface S refers to a connected compact orientable 2-ma-
nifold, possibly with boundary, and a surface automorphism .S; f / refers to an orientation-
preserving self-homeomorphism f W S ! S . A covering between surface automorphisms
.S 0; f 0/ ! .S; f / refers to an (unramified) covering projection �WS 0 ! S which is equiv-
ariant with respect to the pair of automorphisms (that is, f ı � D � ı f 0). By saying that
a covering .S 0; f 0/ ! .S; f / is finite, regular, characteristic, or so on, we mean that the
referred property holds for S 0 ! S .

2. Surface automorphisms after Nielsen and Thurston

We recall some aspects about surface automorphisms that have been well developed
since the mid-1970s. Our summary puts an emphasis on characterizing dynamical properties
of a surface automorphism in terms of the fundamental group of its mapping torus. To this
end, we denote the mapping torus of any surface automorphism .S; f / as

Mf D
S � R

.x; r C 1/ � .f .x/; r/
;

which is topologically a connected compact orientable 3-manifold, with boundary a possibly
empty disjoint union of tori. Note that we follow the dynamical convention. It makes sure
that translation along the R-factor S � R ! S � RW .x; r/ 7! .x; r C t / descends to the (for-
ward) suspension flow �t WMf !Mf , which is a continuous family of self-homeomorphisms
parametrized by t 2 R, such that �0 is the identity. We denote by �f 2H 1.Mf IZ/ the distin-
guished cohomology class homotopically represented by the natural projectionMf ! R=Z.

2.1. Classification of mapping classes
For surfaces of positive or zero Euler characteristic, the isotopy classes of their auto-

morphisms are easy to describe. When S is a sphere or a disk, any automorphism f of S is
isotopic to the identity. When S is an annulus, parametrized as R=Z � Œ�1; 1�, any automor-
phism f of S is isotopic to either the identity or the involution .xC Z; y/ 7! .�xC Z;�y/.
When S is a torus, parametrized as .R � R/=.Z � Z/, any automorphism f of S is isotopic
to a unique linear automorphism represented by a matrix in SL.2;Z/.

In general, the Nielsen–Thurston classification asserts that the isotopy class of any
surface automorphism falls into one of three types: periodic, reducible, or pseudo-Anosov.
The above description with torus automorphisms provides a prototype of the classification,
and the three types correspond to the representing matrix in SL.2;Z/ being elliptic/central,
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parabolic/central, or hyperbolic, respectively (as a fractional linear transformation on the
upper-half complex plane). In general, a surface automorphism is said to be periodic if it has
finite order under iteration, or reducible if it preserves a union of mutually disjoint, essential
simple closed curves on the surface. A pseudo-Anosov automorphism refers to a surface
automorphism .S; f / such that f preserves a pair of (transversely) measured foliations on
the interior of S , and rescales the measures by some factors � > 1 and ��1, respectively.
Unlike an Anosov torus automorphism, the foliations in the pseudo-Anosov case are allowed
to have prong singularities (having prong number � 3 at points in the interior, or � 1 at the
ends as punctures). We also require the pair of foliations to be transverse to each other except
at a common finite set of singular points. See [8, Exposé 1].

When S has negative Euler characteristic, an automorphism f of S is periodic up
to isotopy if and only if the mapping torus Mf supports the H2 � R geometry (and hence
also the fSL2.R/ geometry with @S ¤ ;); f is reducible up to isotopy if and only if Mf
has nontrivial geometric decomposition; f is pseudo-Anosov up to isotopy if and only if
Mf supports the 3-dimensional hyperbolic geometry H3. Moreover, in the reducible case, a
collection of curves on S for reducing f can be obtained by intersecting any essential torus
or Klein bottle inMf (minimally up to isotopy) with the distinguished fiber S � ¹0º. See [3,

Chapter 1].

2.2. Periodic orbit classes and indices
Given a surface automorphism, one could freely ask if there are any fixed points.

Nielsen’s fixed point theory is more than to answer yes or no. The general theory applies
to continuous self-maps of compact connected simplicial complexes. Instead of considering
individual fixed points, which may disappear or duplicate under homotopy, one will consider
abstract fixed point classes, and distinguish finitelymany essential ones from the others. Then
the essential fixed point classes will depend only on the homotopy class of the self-map, and
each of them will guarantee at least one distinct fixed point. Below we follow the mapping
torus approach as suggested by B. Jiang in the survey [13]; see also [11] for more detail.

Let .S;f / be a surface automorphism. Denote by Fix.f /� S the set of fixed points.
For any x 2 Fix.f /, we obtain a 1-periodic trajectory (of the suspension flow) x W R=Z !

Mf (coming from the line x � R in S � R). We say that x; y 2 Fix.f / are of the same fixed
point class if x and y are freely homotopic inMf . More abstractly, a fixed point class of
f can be defined as a free homotopy loop  in Mf , such that �f ./ D h�f ; Œ�i equals 1.
Every fixed point class p has a well-defined fixed point index ind.f I p/ 2 Z, which can be
described as follows.

Note that Fix.f / � S is a union of mutually disjoint isolated connected closed
subsets, with only finitely many components (since S is compact). The subset Fix.f I p/ �

Fix.f / of fixed point class p is a subunion of those components. If Fix.f I p/ is empty,
ind.f I p/ equals zero. Otherwise, take (a smooth structure of S and) a smooth homotopy
perturbation Qf of f , supported in an open neighborhood U of Fix.f I p/ away from the
rest of Fix.f /; make sure that Qf has only nondegenerate fixed points in U (that is, for any
x 2 Fix. Qf /\ U , the tangent map d Qf jx WTxS ! TxS has no eigenvalue 1). Then ind.f Ip/
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can be calculated as the sum of the sign C1 or �1 of det.id � d Qf jx/, where x ranges over
Fix. Qf / \ U .

A fixed point class is said to be essential if its index is nonzero. In particular, every
essential fixed point class is represented by a fixed point of f . If S is closed and if f is
pseudo-Anosov, every fixed point represents a distinct essential fixed point class. In this
case, there are simple rules for telling the fixed point index. When a fixed point x is a k-
prong singularity (of either of the invariant foliations), its index equals 1� k if f preserves
every prong at x, otherwise its index equals 1; when x is not singular, its index equals �1

or 1 according as f preserves or reverses an orientation of the leaf through x. For general
surface automorphisms, it is also possible to characterize all the essential fixed point classes
and their index, in terms of normal forms in the Nielsen–Thurston classification [14].

For any positive integer m 2 N, an m-periodic orbit class of f can be defined as a
free homotopy loop  inMf with �f ./Dm. Them-index of them-periodic class is defined
as the sum of the fixed point indices of  0 with respect to f m, where  0 ranges over all the
free homotopically distinct lifts of  to the m-cyclic cover Mf m . (The indices of different
lifts are actually equal, so the summation only counts one value with suitable multiplicity.)
Finally, essential m-periodic orbit classes are those of nonzero m-index.

2.3. Homological directions
Let .S; f / be a surface automorphism. As every periodic orbit class p is free-

homotopically represented by a periodic trajectory in Mf , its homology class is a well-
defined element Œp� 2 H1.Mf I Z/. Passing to real coefficients, there is a unique minimal
convex cone inH1.Mf I R/ (formed by linear rays emanating from the origin) that contains
all the homology classes of the essential periodic trajectories. Fried shows that this cone
is polyhedral. In other words, it is the convex hull of finitely many extreme rays. If f is
pseudo-Anosov, this cone has codimension zero in H1.Mf I R/. The directions of rays in
the cone are called the (essential) homological directions of the suspension flow. Fried’s
cone of homological directions is exactly dual to the Thurston’s fibered cone that contains
�f 2 H 1.Mf I R/, as we elaborate below, based on Fried’s exposition [8, Exposé 14].

We recall that the Thurston norm is defined for any compact connected orientable
3-manifold N as a seminorm on the real linear space H 1.N I R/. It is nondegenerate if N
supports the 3-dimensional hyperbolic geometry (of finite volume). It is characterized by
the property that for any integral cohomology class � 2 H 1.N I Z/, the Thurston norm
of � is the minimum of the complexity among all properly embedded oriented surfaces
.S; @S/ � .N; @N / homologous to the Poincaré–Lefschetz dual of � in H2.N; @N I Z/.
Here, the complexity of S refers to

Pk
iD1 max.0;��.Si //, where S1; : : : ; Sk enumerate

the connected components of S .
The unit ball of the Thurston norm of N is a (possibly noncompact) convex poly-

hedron of codimension zero in H 1.N I R/, central symmetric about the origin. Its dual is a
(possibly positive codimensional) compact convex polyhedron in H1.N I R/ Š

HomR.H
1.N I R/;R/. Moreover, if � 2 H 1.N I Z/ is fibered (that is, homotopically rep-

resented by a bundle projection onto the circle with surface fibers), Thurston shows that �
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is contained in the cone over an open codimension-one face the Thurston norm unit ball, in
which the integral classes are all fibered. Such cones are called the fibered cones of N , over
the fibered faces of the Thurston norm unit ball in H 1.N I R/. The fibered faces are dual to
a collection of vertices in the dual of the Thurston norm unit ball in H1.N I R/, which we
may reasonably call the flow vertices.

For the mapping torus Mf of a surface automorphism .S; f /, we find a distin-
guished fibered cone in H 1.Mf I R/ that contains the distinguished cohomology class �f .
When S has negative Euler characteristic, the corresponding flow vertex can be figured out
as�ef =2 inH 2.Mf ; @Mf IR/ŠH1.Mf IR/, where ef 2H 2.Mf ; @Mf IZ/ denotes the rel-
ative Euler class of the (oriented, @-transverse) vertical tangent bundle ofMf with respect to
its fibering over R=Z, oriented compatibly to make �f .ef / D �.S/. We can naturally iden-
tify the tangent space ofH1.Mf IR/ at the opposite vertex ef =2 asH1.Mf IR/. Then Fried’s
cone of homological directions consists exactly of those tangent vectors at ef =2 pointing into
(the corner of) the polytope dual to the Thurston norm unit ball.

2.4. Various zeta functions
For any surface automorphism .S; f /, the Nielsen zeta function is a useful tool for

analyzing the iteration dynamics. It can be defined by the following expression:

�N;f .t/ D exp

 
1X
mD1

N.f m/

m
� tm

!
whereN.f m/ denotes the number of essential fixed points of f m, called theNielsen number
of f m. When f is pseudo-Anosov with stretch factor � > 1, the Nielsen numbers N.f m/
grow exponentially as

lim
m!1

N.f m/1=m D �:

More generally, the above limit superior is equal to the maximum stretch factor among the
pseudo-Anosov components in the Nielsen–Thurston decomposition, or 1 if all the com-
ponents are periodic. In other characterizations, the logarithm of that value is known to be
the mapping-class topological entropy of f . In particular, �N;f .t/ converges absolutely as a
complex analytic function in t in a neighborhood of 0. It is known that �N;f .t/ is a radical
of a rational function in t near 0.

The Lefschetz zeta function �L;f .t/ of .S;f / is defined using the Lefschetz numbers
L.f m/ instead of the Nielsen numbers N.f m/. This makes �L;f .t/ easier to calculate than
�N;f .t/. Indeed, recall that L.f m/ is equal to the alternating sum of the traces of f m� on
H�.S I Q/. It follows that �L;f .t/ is equal to t��.S/ divided by the alternating product of
the characteristic polynomials of f� onH�.S I Q/. The resulting form can be recognized as
(a representative of) the Reidemeister torsion ofMf with respect to �f . This is an instance
of a general connection between twisted Lefschetz zeta functions and twisted Reidemeister
torsions.

Let R be a commutative domain that contains Z. Suppose that �W �1.Mf / !

GL.n; R/ is a linear representation over Rn. The twisted Lefschetz zeta function of .S; f /
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with respect to � is defined as

�
�

L;f
.t/ D exp

 
1X
mD1

P
p ��.p/ � indm.f Ip/

m
� tm

!
;

where p ranges over all the m-periodic orbit classes; being a free homotopy loop, p also
represents a conjugacy class in �1.Mf /, so the character �� of � can be evaluated at p, as
the trace of � evaluated at any group element in that conjugacy class; the notation indm.f Ip/
stands for them-index of p with respect to f (so the summation over p is essentially finite);
finally, the whole expression is understood as a formal power series over the field of fractions
F.R/ in an indeterminate t , with exp.z/ D

P1

nD0 z
n=nŠ. In particular, ��

L;f
.t/ is invariant

under homotopy of f and conjugation of �. On the other hand, we simply recall that the
twisted Reidemeister torsion ��;�fMf

.t/ of Mf with respect to �f and � is well defined as
an element in F.RŒt; t�1�/ D F.R/.t/ up to units of RŒt; t�1� (that is, up to factors in the
multiplicative subgroup .RŒt; t�1�/� D R� � tZ); see [9]. Under the above assumptions,
�
�

L;f
.t/ agrees with the power series expansion in t of a unique rational function over F.R/,

and the identity
�
�;�f
Mf

.t/
:

D �
�

L;f
.t/

holds up to units of RŒt; t�1�; see [12] (and also [17, Lemma 8.2]).

3. Virtual homological eigenvalues

Let .S; f / be a surface automorphism. Since H1.S I Z/ is a finitely generated free
abelian group, the induced linear automorphism f�WH1.S I Z/!H1.S I Z/ has a character-
istic polynomial, which we denote as

�f .t/ D detZŒt�.t � id � f�/:

This is a monic polynomial over Z with the property �f .1/ D ˙1. If S has genus g and
h boundary components, �f .t/ factorizes as the product of a reciprocal polynomial of
degree 2g and cyclotomic factors of total degree max.0; h � 1/, because f preserves @S
and descends to an automorphism of the closed surface obtained by filling @S with disks.
Moreover, �f .t/ can be recognized as the (first) Alexander polynomial ofMf with respect
to �f , the latter being well-defined in ZŒt; t�1� up to units.

A homological eigenvalue of a surface automorphism .S; f / refers to a complex
root of the polynomial �f .t/, and a virtual homological eigenvalue of .S; f / refers to a
complex root of the polynomial �f 0.t/ where .S 0; f 0/ ! .S; f / is some finite covering.
We are interested in a general question as to which complex values may occur as virtual
homological eigenvalues of a given surface automorphism. Moreover, how do they reflect
the dynamical complexity of its isotopy class?

We start with the following well-known, simple observation.

Theorem 3.1. If a surface automorphism has no pseudo-Anosov type components in its
Nielsen–Thurston decomposition, then its virtual homological eigenvalues are all roots of
unity.
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Proof. The condition implies that some finite iterate of the given surface automorphism is
isotopic to a finite product of left- or right-hand Dehn twists along mutually disjoint simple
closed curves. Then the characteristic polynomial of that iterate is a power of t � 1. The con-
clusion follows because the condition also holds for any finite covering of the given surface
automorphism.

There are many pseudo-Anosov automorphisms on any surface of negative Euler
characteristic, such that the induced homological action is trivial. However, when .S; f / is
a pseudo-Anosov automorphism with transversely orientable invariant foliations, the stretch
factor � > 1 must occur as a homological eigenvalue. Moreover, if every singularity of the
invariant foliations is formed with an even number of prongs, one may achieve the transverse
orientability condition by passing to a covering .S 0; f 0/ of degree at most 2, so � still occurs
as a virtual homological eigenvalue. Note that the same trick does not apply when there are
singularities of odd prong numbers, because they locally obstruct the transverse orientability,
and they lift locally homeomorphically to any covering.

The above facts lead to the first part of the following theorem. The second part
is truly surprising, known as the gap theorem due to C. T. McMullen [22]. It is proved by
comparing the Teichmüller metric on the Teichmüller space and the Kobayashi metric on
Siegel spaces associated to finite covers.

Theorem 3.2. Let .S; f / be a pseudo-Anosov automorphism with stretch factor � > 1.

(1) If the invariant foliations of .S; f / have no singularities of odd prong numbers,
then � is a virtual homological eigenvalue of .S; f /.

(2) Otherwise, there exists some constant 1 < r < �, depending only on .S; f /,
such that every virtual homological eigenvalue � of .S; f / satisfies j�j < r .

McMullen conjectured the converse of Theorem 3.1. The converse has been proved
by the author [18], as the following theorem. The proof relies on the virtual specialization of
hyperbolic 3-manifold groups.

Theorem 3.3. If a surface automorphism has a pseudo-Anosov type component in its
Nielsen–Thurston decomposition, then it has a virtual homological eigenvalue outside the
complex unit circle.

Remark 3.4. An analogous conjecture for outer automorphisms of finitely generated free
groups is proved by A. Hadari [10]. The desired finite-index normal subgroup therein is con-
structed using nilpotent quotients. Hadari’s result also implies Theorem 3.3 for surfaces with
nonempty boundary.

An effective version of Theorem 3.3 is yet unknown. We pose the following ques-
tion, as analogous to the Kojima–McShane inequality regarding pseudo-Anosov stretch fac-
tors [15].
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Question 3.5. Suppose that .S; f / is an automorphism of a surface of negative Euler char-
acteristic. Does the following inequality hold as � ranges over all virtual homological eigen-
values of .S; f /:

sup
�

log j�j �
1

3� � j�.S/j
� Vol.Mf /‹

Here, Vol.Mf / denotes the Gromov norm ofMf times the volume of a regular ideal hyper-
bolic tetrahedron.

We mention another upper-bound estimate regarding the distribution of virtual
homological eigenvalues. It is a quick consequence of a theorem due to T. T. Q. Lê [16].
Recall that the (multiplicative) Mahler measure of a nonzero complex polynomial P.t/ D

c �
Qd
jD1.t � �j / refers to the positive value M.P / D jcj �

Qd
jD1max.1; j�j j/. In particular,

M.P / � 1 holds for any nonzero P.t/ 2 ZŒt �.

Theorem 3.6. Suppose that � � � ! .S 0
n; f

0
n/ ! � � � ! .S 0

1; f
0
1/ is a cofinal tower of surface

automorphisms which are regular finite coverings of .S; f /. Then

lim
n!1

logM.�n/

ŒS 0
n W S�

�
1

6�
� Vol.Mf /;

where �n denotes the characteristic polynomial of f 0
n� onH1.S 0

nI Z/.

Proof. Note that M.�gm/ D M.�g/
m for any g D f 0

n and any m 2 N. We can find some
sequencemn 2 N, such that the mapping toriM 00

n of .f 0
n/
mn form a cofinal tower of regular

finite coverings overMf . Then apply [16, Theorem 1.1].

The estimate in Theorem 3.6 would become an equality if the homological torsion
growth conjecture could be proved to that generality [4, 20] (see also [16, Conjecture 1.3]).
That would also imply a positive answer to Question 3.5.

4. Determining properties using finite quotient actions

Let .S; f / be a surface automorphism. Fix a base point of S for speaking of �1.S/.
Using any path from the base point to its image under f , we can construct an automorphism
of �1.S/. Different choices of the path only affect the construction by inner automorphisms
of �1.S/. Therefore, for any characteristic subgroup K of �1.S/, .S; f / induces a well-
defined outer automorphism of the quotient group �1.S/=K, which we denote as Œf �K 2

Out.�1.S/=K/.

Theorem 4.1. Let .S; fA/ and .S; fB/ be automorphisms of a closed surface. If ŒfA�K is
conjugate to ŒfB �K in Out.�1.S/=K/ for every characteristic finite index subgroup K of
�1.S/, then fA and fB are of identical type in the Nielsen–Thurston classification.

Remark 4.2. (1) Theorem 4.1 is a consequence of a theorem due to H. Wilton and
P.A. Zalesskii [28]. They prove that the profinite group completion detects the
geometric decomposition of any finitely generated 3-manifold group. In fact,
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their result implies that fA and fB as in Theorem 4.1 have isomorphic Nielsen–
Thurston decomposition graph decorated with vertex types (as being periodic
or pseudo-Anosov). See [17, Section 12] for an exposition.

(2) The condition in Theorem 4.1 defines an equivalence relation on the set of auto-
morphisms, which passes to an equivalence relation on the mapping class group
Mod.S/. Equivalent mapping classes in this sense are said to be procongruently
conjugate (thinking of anyK as a “principal congruence subgroup” in �1.S/ by
analogy). Any procongruent conjugacy class in Mod.S/ is a disjoint union of
conjugacy classes in Mod.S/. Being procongruently conjugate is equivalent as
having conjugate image under the natural homomorphism Mod.S/ ! Out.b�/,
where b� denotes the profinite completion of � D �1.S/. The homomorphism
naturally factors through the profinite completion of Out.�/, which is very dif-
ferent from Out.b�/ in general. See [17, Section 3] for detailed discussion.

The following theorems are proved in [17].

Theorem 4.3. Let .S;fA/ and .S;fB/ be pseudo-Anosov automorphisms of a closed surface
of genus � 2. If ŒfA�K is conjugate to ŒfB �K in Out.�1.S/=K/ for every characteristic finite
index subgroupK of �1.S/, then fA and fB have identical stretch factor and their invariant
foliations have identical number of singularities of each prong number. In fact, fA and fB
have identical number of fixed points of each index.

Theorem 4.4. Let .S;fB/ be an automorphism of a closed surface. Then there exists a finite
collection B of automorphisms of S with the following property. If .S; fA/ is any automor-
phism, such that ŒfA�K is conjugate to ŒfB �K inOut.�1.S/=K/ for every characteristic finite
index subgroup K of �1.S/, then fA is isotopic to a topological conjugate of some fb 2 B.

Remark 4.5. Theorem 4.4 is equivalent to saying that every procongruent conjugacy class
in Mod.S/ is the disjoint union of finitely many conjugacy classes.

In the pseudo-Anosov case, the finiteness follows immediately from Theorem 4.3
(and Theorem 4.1), together with the well-known finiteness of pseudo-Anosov automor-
phisms with uniformly bounded stretch factor. See also [19] for a more recent finiteness result
regarding profinite completions of finite-volume hyperbolic 3-manifold groups.

Example 4.6. Let S be the torus .R � R/=.Z � Z/. The mapping class group Mod.S/ can
be identified with SL.2;Z/. In 1972, P. F. Stebe [26] discovered a pair of matrices"

188 275

121 177

#
and

"
188 11

3025 177

#
which are not conjugate in SL.2;Z/, or in GL.2;Z/, but are conjugate in GL.2;Z=NZ/ for
any natural number N .

The above example shows that the finiteness in Theorem 4.4 cannot be improved to
uniqueness, in general. Nevertheless, we pose the following question:
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Question 4.7. Let S be a surface of negative Euler characteristic. If .S; fA/ and .S; fB/ are
pseudo-Anosov automorphisms, such that ŒfA�K and ŒfB �K are conjugate in Out.�1.S/=K/
for every characteristic finite index subgroup K of �1.S/, is it true that ŒfA� and ŒfB � are
conjugate in Out.�1.S//?

For a one-holed torus, M. R. Bridson, A.W. Reid, and H. Wilton have answered
Question 4.7 affirmatively [6]. More generally, if one could prove that finite-volume hyper-
bolic 3-manifold groups are profinitely rigid among 3-manifold groups, a positive answer
to Question 4.7 should follow from the bZ�-regularity of profinite isomorphisms as in [19].
See [25] for a survey of the profinite rigidity problem, and [5] for some recent evidence in
finite-volume hyperbolic 3-manifold groups.

Question 4.8. Input a pair of surface automorphisms .S; fA/ and .S; fB/. Is there an algo-
rithm to certify the statement that for all characteristic finite index subgroups K of �1.S/,
ŒfA�K and ŒfB �K are conjugate in Out.�1.S/=K/?

Question 4.9. Let .S; f / be a pseudo-Anosov automorphism on a closed surface of genus
� 2. Is it possible to characterize the Heegaard Floer homology HFC.Mf / [23,24] in terms
of Œf � 2 Out.b�/, where b� denotes the profinite completion of � D �1.S/?

5. Miscellaneous on fibered cones

Let .S; f / be a surface automorphism. For any regular finite coverM 0 of the map-
ping torusMf , the pullback �0 of the distinguished cohomology class �f lies in the interior
of a unique fibered cone inH 1.M 0IR/, which we simply refer to as the distinguished fibered
cone ofM 0. The induced action of deck transformations onH 1.M 0I R/ fixes �0, and hence
preserves the distinguished fibered cone.

Theorem 5.1. If .S; f / is a pseudo-Anosov automorphism on a surface of negative Euler
characteristic, then for any natural number n, there exists a finite regular coverM 0 ofMf ,
such that the distinguished fibered cone of M 0 has at least n distinct deck transformation
orbits of codimension-one faces.

Remark 5.2. (1) Theorem 5.1 is a key ingredient in the proof of Theorem 3.3. For
the case with @S D ;, see [18, Problem 1.5] for an outline in dual terms of cones
of homological directions; see also [19, Section 6.2] for a more detailed proof.
The case with @S ¤ ; can be derived easily using a well-known hyperbolic
Dehn filling trick.

(2) By virtual specialization, every finite-volume hyperbolic 3-manifold is virtually
fibered, and has unbounded virtual first Betti numbers [2]. Moreover, the virtual
numbers of fibered cones are unbounded [1]. Theorem 5.1 shows that any fibered
cone can virtually become as complicated as you want.
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Question 5.3. Let .S; f / be a pseudo-Anosov automorphism of a surface of negative Euler
characteristic. For any primitive periodic trajectory  of �1.Mf /, does there always exist
a regular finite cover M 0 of Mf such that the homological direction along Œ 0� is extreme
on the distinguished cone of homological directions ofM 0? Here,  0 denotes any preimage
component of  inM 00, and Œ 0� denotes its homology class inH1.M I R/.

In other words, is every primitive periodic trajectory covered by some virtual peri-
odic trajectory in an extreme virtual homological direction?

Question 5.4. LetN be an orientable finite-volume hyperbolic 3-manifold. For any embed-
ded closed geodesic  , does there always exist a finite coverN 0 ofN with a fibered class �0,
such that some preimage component  0 of  is freely homotopic to a periodic trajectory of
the pseudo-Anosov suspension flow on N 0 dual to �0?

In other words, is every primitive closed geodesic covered by some (essential) virtual
periodic trajectory, with respect to some virtual fibering?

Question 5.5. Let N be an orientable finite-volume hyperbolic 3-manifold with cusps. In
similar brief words, is every peripheral slope covered by some virtual slope of degeneracy,
with respect to some virtual fibering?

Any cohomology class  2 H 1.Mf I Z/ in the distinguished fibered cone is homo-
topically represented by a bundle projection Mf ! R=Z. The monodromy of that bundle
defines a surface automorphism whose mapping torus is homeomorphic to Mf . If f is
pseudo-Anosov, then the surface automorphism .S ; f  / associated to  is also pseudo-
Anosov, and its suspension flow is isotopic to �t up to parametrization.

Fried showed that the stretch factor �W 7! �.f  / extends to a continuous function
on the distinguished fibered cone of �f valued in .1;C1/, such that �.r / D �. /r holds
for any r > 0. Moreover, restricted to the corresponding fibered face of the Thurston norm
unit ball, 1= log� is a strictly concave function, and converges zero as  tends to the bound-
ary. McMullen introduced a Teichmüller polynomial in the group ring ‚ 2 ZH , where H
denotes the free abelianization of �1.Mf /. One may think of ‚ as a multivariable Laurent
polynomial by fixing a basis ofH , and‚ can be characterized by the property that�. / is the
maximum modulus among the zeros of the  -specialization of ‚ (that is,

P
h2H aht

 .h/

in ZŒt; t�1�, denoting ‚ D
P
h2H ahh in ZH and  WH ! Z in H 1.Mf I Z/). With the

Teichmüller polynomial, McMullen reproved the above properties of Fried’s stretch factor
function �, and went on to ask if the unique minimum of � on the distinguished fibered face
is achieved at a rational point (that is, a point inH 1.Mf I Q/) [21].

H. Sun exhibits examples where the rationality holds, and other more generic exam-
ples where the rationality fails [27]. The following theorem summarizes some properties of
the stretch factor function as discovered in [27].

Theorem 5.6. If .S; f / is a pseudo-Anosov automorphism, then the stretch factor minimiz-
ing point  0 on the distinguished fibered face of Mf is either rational or transcendental.
Moreover, for any finite cover M 0 of Mf , then the stretch factor minimizing point on the
distinguished fibered face ofM 0 is the pullback of  0 divided by ŒM 0 W Mf �.
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As is implied by Theorem 5.6, the rationality/transcendence of the stretch factor
minimizing point is a property that depends only the fibered cone, and is a commensurability
class invariant with respect to cone in a certain sense.

We record the following question as suggested in Sun [27].

Question 5.7. Let N be a finite-volume hyperbolic 3-manifold. Does there always exist a
finite cover N 0 of N , such that N 0 has a fibered face on which the stretch factor function is
minimized at a transcendental point?

In [7], D. Calegari, H. Sun, and S. Wang initiate a systematic study of commensu-
rability relations of surface automorphisms. A pair of surface automorphisms .SA; fA/ and
.SB ; fB/ are said to be commensurable if .SA; f kA / and .SB ; f

l
B/ admit a common finite

covering surface automorphism for some natural numbers nonzero integers k and l . This
is equivalent to saying that the mapping tori MA of .SA; fA/ and MB of .SB ; fB/ admit a
common finite cover such that the distinguished cohomology classes �A and �B are pulled
back to rationally commensurable cohomology classes.

With natural extension of the terminology to 2-orbifold automorphisms, Calegari,
Sun, and Wang prove the following theorem.

Theorem 5.8. The commensurability class of any pseudo-Anosov surface automorphism
has a unique (possibly orbifold) minimal member.

Remark 5.9. Theorem 5.8 contrasts the well-known fact that the commensurability class of
any arithmetic hyperbolic 3-manifold has infinitely many orbifold minimal members.
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Abstract

This is a survey. The main subject of this survey is the homotopical or homological nature
of certain structures which appear in classical problems about groups, Lie rings and group
rings. It is well known that the (generalized) dimension subgroups have complicated com-
binatorial theories. In this paper we show that, in certain cases, the complexity of these
theories is based on homotopy theory. The derived functors of nonadditive functors, homo-
topy groups of spheres, group homology, etc., appear naturally in problems formulated in
purely group-theoretical terms. The variety of structures appearing in the considered con-
text is very rich. In order to illustrate it, we present this survey as a trip passing through
examples having a similar nature.
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1. Introduction

It would be nice to discuss the title first. What will we mean by “group theory”?
Obviously, not a collection of funny stories on various constructions of groups with exotic
properties, as well as not a classification of groups from the point of view of certain structure
theory. In this paper, the groups will be the main category we will work in. In some cases
it will be changed by Lie rings over integers. So, for us the “group theory” will mean just a
(mostly functorial) life inside the category of groups.

We will not define the homotopy pattern as a concept. The term pattern itself is
multi-valued. It is used in different philosophical contexts and usually is understood intu-
itively. One can try to define it after reading this paper. Somebody can understand it as a
system of signs of homotopy origin or a collection of relations that comes from the homo-
topy theory.

The main claim, or “formula,” which we state here is the following abstract relation:

.ˆ/
Intersection of subsctructures

Obvious part
� Homotopy pattern:

We will take some structure like a group, group ring, Lie ring or universal enveloping alge-
bra, consider certain substructures, their intersection, take its quotient by some obvious part
and see that, in many cases, this quotient contains elements of homotopical or homological
nature. An obvious part is not defined in a unified way, usually it is a maximal substructure
of the intersection defined using a given type of operations (for example, it is not an intersec-
tion itself). As a rule, the obvious part is a more explicit construction than the intersection of
substructures. One can consider the left-hand site of the formula .ˆ/ as “implicity modulo
explicity,” or define a hierarchy of the explicity and take the quotients of its terms.

It is a time to stop saying general words and do some math. Let G be a group,
ZŒG� its integral group ring, and b a two-sided ideal of ZŒG�. The problem of identification
of the subgroup

D.G;b/ WD G \ .1C b/ D hg 2 G j g � 1 2 bi

is a fundamental problem in the theory of groups and group rings. It is often the case that a
certain normal subgroupN.G;b/ ofG is easily seen to be contained inD.G;b/ and explicitly
defined in terms of G only, without using the group ring (and is the largest subgroup with
such a property). The computation of the quotient D.G; b/=N.G; b/ usually becomes a
challenging problem. This case will be the first example of our formula .ˆ/. Various choices
of the ideal b lead to the derived functors inside the quotients D.G; b/=N.G; b/. We will
discuss the derived functors and their appearance in this context in Section 2.

The main examples of the above type are classical dimension subgroups. Let g
be the augmentation ideal of ZŒG�. The subgroups Dn.G/ WD G \ .1 C gn/, n � 1 are
known as dimension subgroups. It is easy to see that, for any G and n � 1, the dimen-
sion subgroups contain the terms of lower central series of G: n.G/ � Dn.G/. The lower
central series are defined inductively as follows: 1.G/ WD G, nC1.G/ WD Œn.G/; G� D

hŒx; y�; x 2 n.G/; y 2 GiG , n � 1. Is it true thatDn.G/D n.G/? This problem was open
for many years (see Section 5 for some history). Our formula .ˆ/ states that the dimension
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quotients Dn=n may contain certain elements of homotopical nature. This is exactly the
case. Section 5 is about it. In particular, we will show in details in Section 5 how an element
Z=3 � �6.S

2/ is related to the 3-torsion in dimension quotients for Lie rings.
The formula .ˆ/, which presents not a rigorous statement but a feeling, goes through

the paper. In Section 3 we will see that the homotopy groups of certain spaces can be
described as intersections of subgroups in a group modulo a natural commutator subgroup.
In particular, the homotopy groups of the 2-sphere are given in this way. This is the well-
knownWu formula and its variations. Section 4 is about combinatorics ofWu-type formulas.
One can see examples of homotopy patterns as combinations of brackets in groups and Lie
rings. As we mentioned already, Section 5 shows how these combinations can be applied to
the classical dimension problem.

Section 6 is a bit isolated, however, its subject fits smoothly in a general context of
the paper. Section 6 is about the method of construction of functors via (derived) limits. We
show how to present certain derived functors, group homology, the forth dimension quotient
via limits over the category of group presentations. So the theory of limits becomes a unified
theory for different functors discussed in this paper. At the end of Section 6, we briefly discuss
the so-called fr-language, a combinatorial-linguistic game which can be used in the study of
functors.

On October 2, 2021, my friend and teacher Inder Bir Singh Passi passed away. For
all those 19 years that we were in contact, I was deeply touched by his delicacy, kindness,
and empathy for other people. In 2002, he invited me to visit India for the first time. That
visit changed my life. I dedicate this text to his memory.

2. Derived functors

The derived functors in the sense of Dold–Puppe [10] are defined as follows. For an
abelian groupA and an endofunctor F on the category of abelian groups, the derived functor
of F is given as

LiF.A; n/ D �i

�
FKP�Œn�

�
; i � 0; n � 0;

where P� ! A is a projective resolution of A, and K is the Dold–Kan transform, inverse
to the Moore normalization functor from simplicial abelian groups to chain complexes. For
simplicity, we write LiF.A/ WD LiF.A; 0/.

Derived functors appear naturally in the theory of Eilenberg–MacLane spaces,
Moore spaces and general homotopy theory. For example, for an abelian groupA, homology
H�.A/ can be filtred in a way that the graded pieces are derived functors of the exterior
powers Liƒ

j .A/ [6]. In particular, there exist the following natural exact sequences:

0 ! ƒ3.A/ ! H3.A/ ! L1ƒ
2.A/ ! 0;

0 ! ƒ4.A/ ! H4.A/ ! L1ƒ
3.A/ ! 0:

These exact sequences split as sequences of abelian groups but do not split naturally. This is
a common situation, the homology and homotopy functors usually present nontrivial gluing
of derived functors of different type.
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As a rule, the derived functors have a complicated structure. Here we will describe
a couple of them, in a sense the simplest ones, and show how they appear in the context of
group rings. First, let us recall the well-known description (see, for example, MacLane [25]),
of the derived functor of the tensor squareL1 ˝2 .A/D Tor.A;A/. Given an abelian groupA,
the group Tor.A;A/ is generated by the n-linear expressions �h.a1; a2/ (where all ai belong
to the subgroup hA WD ¹a 2 A j ha D 0º, h > 0), subject to the so-called slide relations

�hk.a1; a2/ D �h.ka1; a2/; (1)

for all i whenever hka1 D 0 and ha2 D 0, and an analogous relation, where the roles of
a1; a2 are interchanged.

The natural projection of the tensor square to the symmetric square ˝2 ! S2

induces a natural epimorphismL1 ˝2 .A/!L1S2.A/which maps the generator �h.a1; a2/

of L1 ˝2 .A/ D Tor.A;A/ to the generator ˇh.a1; a2/ of L1S2.A/ so that the kernel of this
map is generated by the elements �h.a; a/; a 2 hA.

The functor L1S2 appears as a quadratic piece of the homology of Eilenberg–
MacLane spacesH5K.�; 2/:

0 ! L1S2.A/ ! H5K.A; 2/ ! Tor.A;Z=2/ ! 0:

It is shown by Jean in [22] that the first derived functor of the symmetric cube can
be described as follows:

L1S3.A/ '
�
L1S2.A/˝ A

�
= JacS ; (2)

where JacS is the subgroup generated by elements of the form (Jacobi-type elements)

ˇh.x1; x2/˝ x3 C ˇh.x1; x3/˝ x2 C ˇh.x2; x3/˝ x1

with xi 2 hA.
Recall one more property of the functor L1S2. Suppose that an abelian group A

is presented as a quotient A D Q=U , for a free abelian Q and its subgroup U . Then
S2.A/;L1S2.A/ are naturally isomorphic to the zeroth and first homology of the Kozsul-type
complex [1]

ƒ2.U / ! U ˝Q ! S2.Q/:

The maps in this sequence are natural and can be easily recognized. Now consider the fol-
lowing diagram with exact columns:

ƒ2.U / // //
��

��

U ˝Q //
��

��

S2.Q/

ƒ2.Q/ // //

����

Q˝Q //

����

S2.Q/

L1S2.A/ // // ƒ2.Q/=ƒ2.U / // Q=U ˝Q // // S2.A/

(3)
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All vertical maps in this diagram are obvious, the middle horizontal sequence is the classical
Kozsul short exact sequence. The lower sequence is exact.

Now we return to the theory of nonabelian groups. Let F be a free group, R its
normal subgroup, fD .F � 1/ZŒF �, rD .R� 1/ZŒF �, as always. Let us describe the general-
ized dimension subgroupF \ .1C rfC f3/. Obviously, this subgroup contains 2.R/3.F /,
however, this is not a complete description. In order to find the remaining part, denote
Q WD Fab , U WD R=R \ ŒF; F �. Observe now that there are natural vertical isomorphisms

ƒ2.Q/=ƒ2.U / // Q=U ˝Q

2.F /
2.R/3.F /

// f2
rfCf3

and the lower map is induced by g 7! g � 1. That is, the needed generalized dimension
quotient can be described as (see [16] for another proof of this statement)

F \ .1C rf C f3/
2.R/3.F /

D L1S2.Gab/; (4)

whereG D F=R. It is easy to lift the element fromL1S2.F=R2.F // to F \ .1C rf C f3/.
Given ˇh.a1; a2/, denote by f1; f2 the preimages of a1; a2 in F , then f h

1 ; f
h

2 2 R2.F /.
Now the needed image is given as Œf1; f2�

h.
The identification (4) is an example of a situation described in our formula .ˆ/.

The subgroup 2.R/3.F / is the maximal obvious subgroup of the intersection
F \ .1C rf C f3/. In general, for two ideals a;b, the maximal obvious part ofD.F; a C b/
is the productD.F;a/D.F;b/. In the case above,D.F; rf/D 2.R/ andD.F; f3/D 3.F /.
For the situation of arbitrary ideals a and b, the quotient

D.F; a C b/
D.F; a/D.F;b/

shows how these ideals are “linked” in ZŒF � and in many cases has a homological descrip-
tion, what agrees with our formula .ˆ/.

Here is one more example related to the functor L1S2.
Recall the so-called Fox subgroup problem (see [13, p. 557]; [4, Problem 13]; [14]).

It asks for the identification of the normal subgroup F.n; R/ WD F \ .1 C rfn/ for a
free group F and its normal subgroup R. A solution to this problem has been given by
I. A. Yunus [37] and Narain Gupta [14, Chapter III]. It turns out that, while F.1;R/ D 2.R/

and F.2;R/D ŒR\ 2.F /;R\ 2.F /�3.R/, the identification of F.n;R/;n� 3, is given
as an isolator of a subgroup. For instance, F.3;R/ D

p
G.3;R/, where

G.3;R/ WD 2

�
R \ 3.F /

���
R \ 2.F /;R

�
; R \ 2.F /

�
4.R/:

It is shown in [31] that there is a natural isomorphism
F.3;R/

G.3;R/
' L1S2

�
R \ 2.F /

2.R/.R \ 3.F //

�
:
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As in the simplest example, the derived functorL1S2 can be lifted to the generalized
dimension subgroup. This gives a complete description of the third Fox subgroup,F.3;R/D

G.3;R/W , where W is a subgroup of F , generated by elements

Œx; y�mŒx; sy �
�1Œy; sx �

with

xm
D rxsx ; rx 2 R \ 3.F /; sx 2 2.R/;

ym
D rysy ; ry 2 R \ 3.F /; sy 2 2.R/:

Higher generalizations of this description are of interest. For instance, the complete descrip-
tion of the fourth Fox subgroup F \ .1C rf4/ should be related to the derived functors of
certain cubical functors.

The above examples lie at the tip of an iceberg, and present the simplest illustra-
tion of a deep relation between generalized dimension subgroups and derived functors. The
derived functors of high degree polynomial functors, as well as subgroups defined by ideals,
have complicated structure. In many cases the same kind of tricks as above, like diagram
chasing together with group-theoretical identifications, lead to surprising connections.

Here are some other examples of descriptions of the generalized dimension sub-
groups which use the derived functors (we assume that G D F=R):

F \ .1C r2f C f4/
3.R/4.F /

D L2L3
s .Gab/;

F \ .1C f.F 0 � 1/C rf3 C f4/
Œ2.R/; F �4.F /

D L1S3.Gab/;

F \ .1C frf C f4/
Œ2.R/; F �4.F /

D L1S3.Gab/ .provided Gab is 2-torsion-free/:

For an abelian group A, the third super-Lie functor L3
s .A/ is generated by brackets ¹a; b; cº,

a; b; c 2 A, which are additive in each variable with the following relations: ¹a; b; cº D

¹b; a; cº, ¹a; b; cº C ¹c; a; bº C ¹b; c; aº D 0. The derived functors of higher super-Lie
functors appear in the description of the subgroup F \ .1C rnf C fnC2/ for n � 2.

Some exotic examples of the same nature can be found in [30]. In particular, there
are the following descriptions of the generalized dimension subgroups:

F \ .1C rfr C sr/
2.S/3.R/

D L1S2
�
H2.G/

�
;

F \ .1C s2r C r2fr/
3.S/4.R/

D L2L3
s

�
H2.G/

�
;

where S D ŒF;R�, s D .S � 1/ZŒF � andH2.G/ the second integral group homology.

3. Homotopy pushouts

In this section we will see that not only derived functors but also the homotopy
groups of certain spaces can be presented in group-theoretical terms. We start with the sim-
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plest case. Let G be a group, and R;S its normal subgroups. Consider a homotopy pushout

K.G; 1/ //

��

K.G=R; 1/

��

K.G=S; 1/ // X

where the maps between classifying spaces K.�; 1/ are induced by natural epimorphisms
G ! G=R,G ! G=S . Classical van Kampen theorem implies that �1.X/D G=RS . In [8],
the second homotopy group of X is described as follows:

�2.X/ '
R \ S

ŒR; S�
:

This result gives a topological interpretation of the difference between the intersection and
the commutator of a pair of subgroups. (For a pair R; S of normal subgroups of a free
group F , ŒR;R� \ ŒS; S� � ŒR; S�. One can prove this as an exercise.)

A fact that the second homotopy group is related to a certain group-theoretical
construction is not surprising. The theory of (non)aspherical group presentations, identity
sequences, etc., is about the properties of the second homotopy group of a standard complex
constructed from a given group presentation. Next we will show how to extend the above
result for the case of three normal subgroups.

Let R; S; T be normal subgroups of G. Define an analog of the commutator sub-
group as

JR;S; T K WD ŒR \ S; T �ŒS \ T;R�ŒT \R;S�:

Consider a homotopy pushout

K.G; 1/ //

��

K.G=R; 1/

��

~~

K.G=S; 1/

��

//

��

K.G=RS; 1/

��

K.G=T; 1/

��

// K.G=RT; 1/

~~
K.G=ST; 1/ // X

2812 R. Mikhailov



The lower homotopy groups of X are described as follows (see [11]):

�1.X/ ' G=RST;

�2.X/ '
RS \RT

R.S \ T /
;

�3.X/ '
R \ S \ T

JR;S; T K
:

At first glance, it might seem that RS\RT
R.S\T /

is not symmetric in R; S; T and that the sub-
groupR plays a special role. However, the homotopy pushoutX is symmetric and the above
description of �2 provides a proof of the following isomorphisms:

RS \RT

R.S \ T /
'
SR \ ST

S.R \ T /
'
TR \ TS

T .R \ S/
:

The above description shows that the third homotopy group appears quite naturally
in the context of group theory. Next we will show how to get a purely group-theoretic result
using given homotopy identifications.

For a triple of normal subgroup R; S; T of G, consider the corresponding ideals
in ZŒG� W r WD .R � 1/ZŒG�, s WD .S � 1/ZŒG�, and t WD .T � 1/ZŒG�. An obvious ring-
theoretic analog of the subgroup JR;S; T K is the following ideal:

..r; s; t// WD r.s \ t/C .s \ t/r C s.t \ r/C .t \ r/s C t.r \ s/C .r \ s/t:

It is easy to check that, for any w 2 JR;S; T K, w � 1 2 ..r; s; t// and then one asks about the
structure of the quotient

G \ .1C ..r; s; t///
JR;S; T K

:

It is shown in [21] that there exists the following commutative diagram:

R\S\T
JR;S;T K

// r\s\t
..r;s;t//

��

�2.�X/ // H2.�X/

Here X is the homotopy pushout described above, �X is the loop space, the lower hori-
zontal map is the Hurewicz homomorphism, while the upper is the natural map induced by
g 7! g � 1. For a connected space Y , the kernel of the second Hurewicz homomorphism
�2.Y / ! H2.Y / is a 2-torsion group [21]. As a consequence, we get the following theorem
from [21].

Theorem 3.1. For any group G and its normal subgroups R;S; T , the quotient
G \ .1C ..r; s; t///

JR;S; T K

is an abelian 2-torsion group.
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The author does not know how to prove this results without using the homotopy
theory.

What about the higher homotopy groups? Two normal subgroups give a possibility
to model �2 for a certain space, three normal subgroups correspond to �3. Is it true that n
normal subgroups of a group allow constructing a space with a group-theoretical description
of its �n? The answer is “yes,” however, under certain conditions. For a group G and its
normal subgroupsR1; : : : ;Rn, n � 2, construct the homotopy pushout of the n-dimensional
cubical diagram with 2n � 1 classifying spacesK.G=

Q
i2I Ri /, I � ¹1; : : : ; nº. There exist

the so-called connectivity conditions on the collection of subgroups Ri , which imply that
(see [11])

�n.homotopy pushout/ '
R1 \ � � � \Rn

JR1; : : : ; RnK
;

where
JR1; : : : ; RnK WD

Y
I[JD¹1;:::;nº;I\JD;

� \
i2I

Ri ;
\
j2J

Rj

�
:

The main example we will consider here is the Wu formula for homotopy groups
of S2. Let F D F.x1; : : : ; xn/ be a free group of rank n � 2. Consider the following normal
subgroups of F :Ri D hxi i

F , i D 1; : : : ; n,RnC1 D hx1x2 : : : xniF . The homotopy pushout
of a diagram of the corresponding 2n � 1 classifying spaces is S2. Therefore we get the
following:

�nC1.S
2/ '

R1 \ � � � \RnC1

JR1; : : : ; RnC1K
:

This is a version of theWu formula, proved in [36] using simplicial methods. In this particular
case, the above commutator subgroup equals to the symmetric commutator subgroup

ŒR1; : : : ; RnC1�S WD

Y
�2†nC1

�
: : : ŒR�.1/; R�.2/�; : : : ; R�.nC1/

�
:

Here †nC1 is the group of .nC 1)-permutations. That is, the homotopy groups of S2 can
be presented as

�nC1.S
2/ '

R1 \ � � � \RnC1

ŒR1; : : : ; RnC1�S
:

It turns out that the above intersection modulo the symmetric commutator coincides with the
center of the quotient of the free group F modulo the symmetric commutator, that is,

�nC1.S
2/ ' Z

�
F=ŒR1; : : : ; RnC1�S

�
:

A generalization of this construction to the higher spheres, as well as Moore spaces, is given
in [32]. For any n; k > 3, a finitely generated group Gn;k given by explicit generators and
relations is constructed such that �n.S

k/ ' Z.Gn;k/. The group Gn;k is defined in [32] as a
certain quotient of the amalgamated square of the pure braid group on n strands.

Should we mention that the presentation of homotopy groups in this section follows
the idea of our formula .ˆ/? It is always an intersection of some subgroups modulo an
obvious part. In this way, one can reflect on the difference between explicity of terms like
RS \RT and R.S \ T /.

2814 R. Mikhailov



4. Wu-type formulas

What are the first questions that come to mind when you look at Wu formula for
homotopy groups of S2? How to get some results on ��.S2/ using group theory? Can one
find any new element from ��.S

2/ using its group-theoretic presentation? How to present
generators of the known elements of the homotopy groups in terms of the free group? Here
we will briefly discuss the latter question.

We know that �3.S
2/ D Z, �4.S

2/ D Z=2, �5.S
2/ D Z=2, �6.S

2/ D Z=12; : : :

all homotopy groups in degree > 1 of S2 are nonzero (see [20]). In general, the sequence
of finite abelian groups �n.S

2/, n � 4, is one of the most mysterious objects in math, it is
difficult to speculate how far we are from its understanding. It is a strange luck that we can
realize this extremely complicated sequence as a series of simply formulated subquotients
of free groups.

Looking at the Wu formula, one can also ask the following. What about other alge-
braic systems, different from groups? Clearly, the same type of quotients can be considered
for associative rings, Lie rings, etc. As a rule, the answers will be easier. In the associative
case, this is almost obvious. The case of Lie rings (over Z) is interesting and meaningful.
Let Ln D L.y1; : : : ; yn/, n � 2 be a free Lie ring over Z. Consider its ideals Ii D .yi /

L,
i D 1; : : : ; n, InC1 D .y1 C � � � C yn/

L. Define the Lie analog of the symmetric commutator
of ideas

ŒI1; : : : ; InC1�S WD

Y
�2†nC1

�
: : : ŒI�.1/; I�.2/�; : : : ; I�.nC1/

�
:

There is the following isomorphism:
I1 \ � � � \ InC1

ŒI1; : : : ; InC1�S
'

M
i�1

E1
i;n; (5)

where E1
�;� is the first page of the Curtis spectral sequence, defined via derived functors as

E1
i;j D Lj Li .Z; 1/:

Here Li is the i th Lie functor (see [7] for the discussion of this spectral sequence and prop-
erties of derived functors). The values of E1

�;� are known and can be described in terms of
Lambda-algebra (see [5,23]).

Now let us return to the problem of describing the generators in terms of free groups
or Lie rings. It is clear that the generators can be chosen in different ways, since we work
modulo the symmetric commutators. However, we try to find those with a simple form. Here
are the results in low dimensions (see [2]).

Case n D 2. In this case, the generators are given as commutators Œx1; x2� in the group, as
well as Œy1;y2� the Lie ring case (here wewill write the group-expressions in terms of x’s and
Lie ring expressions in terms of y’s). Indeed, Œx1; x2� 2 R1 \R2 \R3 n ŒR1; R2; R3�S . In
this case,R1 \R2 \R3 D 2.F /, ŒR1;R2;R3�D 3.F / and 2.F /=3.F /' Z ' �3.S

2/.
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Case n D 3. In this case, �4.S
2/ D Z=2, E1

4;3 D Z=2, E1
i;3 D 0, i ¤ 4. The generators of

these Z=2-terms are given by�
Œx1; x2�; Œx1; x2x3�

�
;

�
Œy1; y2�; Œy1; y3�

�
:

It can be easily checked that these terms lie inR1 \ � � � \R4 and I1 \ � � � \ I4, respectively.
Since we work in low dimensions, it can be proved directly that they do not belong to the
symmetric commutators.

Case n D 4. This case is just a suspension of the previous one, �5.S
2/D Z=2,E1

8;4 D Z=2,
E1

i;4 D 0, i � 8. The generators are given as��
Œx1; x2�; Œx1; x2x3�

�
;
�
Œx1; x2�; Œx1; x2x3x4�

��
and ��

Œy1; y2�; Œy1; y3�
�
;
�
Œy1; y2�

�
; Œy1; y4�

��
:

The fact that these elements lie in the intersection of subgroups Ri or ideals Ii is obvious.
To prove that they do not lie in the symmetric commutators, we need some homotopy theory.
It can be done using simplicial methods, by realizing these elements as cycles in the Milnor
construction F ŒS1� and its Lie analog.

Case n D 5. This case is already complicated,�6.s
2/D Z=12,E1

6;5 D Z=3,E1
8;5 DE1

16;5 D

Z=2, E1
i;5 D 0, i ¤ 6; 8; 16. This horizontal line is the first place in the spectral sequence

where one can see a nontrivial gluing of the E1-term: two cells in degrees 8 and 16 with
values Z=2 are glued into Z=4 � �6.S

2/. It is easy to write down the generator of E1
16;5,

since it comes as a suspension of the previously written element E1
8;4, namely���

Œy1; y2�; Œy1; y3�
�
;
�
Œy1; y2�

�
; Œy1; y4�

��
;
��
Œy1; y2�; Œy1; y3�

�
;
�
Œy1; y2�

�
; Œy1; y5�

�
��:

The term E1
6;5 D Z=3 is generated by the element (see [2] for the proof using simplicial

methods and derived functors)

˛3 WD
��
Œy1; y5�; Œy2; y5�

�
; Œy3; y4�

�
�

��
Œy1; y5�; Œy3; y5�

�
; Œy2; y4�

�
C

��
Œy1; y5�; Œy4; y5�

�
; Œy2; y3�

�
C

��
Œy2; y5�; Œy3; y5�

�
; Œy1; y4�

�
�

��
Œy2; y5�; Œy4; y5�

�
; Œy1; y3�

�
C

��
Œy3; y5�; Œy4; y5�

�
; Œy1; y2�

�
:

The termE1
8;5 and the group-case liftings are much more complicated (see [2]). For example,

the 3-torsion from �6.S
2/ can be written as a product of 14 commutators in a free group of

weight � 6.
The element ˛3 corresponds to the Serre elementZ=3� �6.S

2/. Analogous picture
takes place for all primes. For an odd prime p, the Serre element of order p appears in
the homotopy group �2p.S

2/. These elements can be easily seen from the structure of the
first page of the spectral sequence E1

2p;2p�1 D Z=p (these terms are labeled as �1 in the
language of Lambda-algebras). It turns out that the E1

2p;2p�1-term is isolated from other
Z=p-torsion terms of the spectral sequence, hence E1

2p;2p�1 D E12p;2p�1 (in the theory
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of spectral sequences, such arguments are sometimes called lacunary reasons). Let yi for
i D 1; : : : ; 2p � 1 be free generators of a free Lie algebra and consider the following element:

p̨ D

X
�2†2p�2 a 2p�1-shuffle

�.1/<�.3/<���<�.2p�5/

.�1/�
�
Œy�.0/; y2p�2�; Œy�.1/; y2p�2�; Œy�.2/; y�.3/�; : : : ;

Œy�.2p�4/; y�.2p�3/�
�
I

the sum is taken over all permutations .�.0/; : : : ; �.2p � 3// 2 †2p�2 satisfying
�.0/ < �.1/; : : : ; �.2p � 4/ < �.2p � 3/, as well as �.1/ < �.3/ < � � � < �.2p � 5/. Here
we use the left-normalized notation, i.e., Œx; y; z� WD ŒŒx; y�; z�. Then p̨ presents a generator
of L2p�1L2p.Z; 1/ D E1

2p;2p�1 (see [2] for the proof).
Looking at the elements of free groups and Lie rings like ŒŒx1; x2�; Œx1; x2x3�� or ˛3,

one can get some impression of homotopy patterns. Next we will see how they work in the
context of dimension subgroups.

5. Classical dimension subgroups

Is it true that, for any groupG and n � 1,Dn.G/D n.G/? This question is known
as the dimension problem and has a long history. For a detailed discussion of this problem,
we refer to [14, 28, 33]. The first results in this direction are due to Magnus and Witt. They
proved that, for a free group F , the dimension subgroups coincide with the lower central
series [26, 35]. Incorrect solutions of the dimension problem appeared more than once, see
[9, 24] and [27, Theorem 5.15(i)]. The first example of a group with D4.G/ ¤ 4.G/ is due
to Ilya Rips [34]. The group constructed in [34] has order 238 and it seems that this is the
smallest finite group with the propertyD4 ¤ 4. The next point we have to mention regard-
ing the history of the question is the series of works of Narain Gupta. In order to describe
the dimension subgroups and solve the dimension problem completely, Gupta spent about
20 years developing a special calculus. As a final result, he published the paper [15], where
he claims that the dimension property holds for all groups of odd order. In particular, it fol-
lows from his claim that, for an odd prime p, it is not possible to construct a group G and
n � 1 with Dn.G/=n.G/ � Z=p. In fact, Gupta claimed even more, namely that, for any
group G, the dimension quotientsD�.G/=�.G/ are just Z=2-vector spaces. The last state-
ment was written in the unpublished manuscript of Gupta, which was available from 1990s
to the experts in the area.

The proofs given in the mentioned papers of Gupta are extremely complicated.
During many years the author, together with I. B. S. Passi, tried to understand these proofs. It
became clear already about 10 years ago that they contain gaps, however, it was not easy to
find counterexamples to the main statements. Finally, the following result was proved in [2]:

Theorem 5.1. For any prime p, there exists a group G and integer n, such that
Dn.G/=n.G/ contains Z=p as a subgroup.

Among other things, a small finite group G with D7.G/ ¤ 7.G/ is constructed
in [2]. The needed statement thatD7.G/ ¤ 7.G/ is checked using GAP. The order of G is
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3494 and this is a 3-group without dimension property of the smallest order the authors were
able to construct.

In [2], both categories are considered, groups and Lie rings. What often happens is
that the computations for Lie rings are simpler. Here we will give detailed examples for the
case of Lie rings. For a Lie ring over integers L, consider its universal enveloping algebra
U.L/. The algebra U.L/ admits the augmentation ideal !. The Lie ring L embeds in U.L/,
and the dimension subgroups of L are defined as ın.L/ WD L\ !n. The lower central series
term n.L/ lies in ın.L/, and almost all main statements of the theory of dimension sub-
groups can be extended from groups to Lie rings, with simpler proofs (see [3]). In particular,
for any L, ın.L/ D n.L/, n D 1; 2; 3, and there exists a Lie analog of Rips example such
that ı4=4 D Z=2. The following result also is from [2].

Theorem 5.2. For any prime p, there exist a Lie ring A and integer n such that the abelian
group ın.A/=n.A/ contains Z=p as a subgroup.

In a Lie ring presentation, we introduce the following notation: for d 2 N, when
we write a generator y.d/ of degree d , we mean a list of generators y1; : : : ; yd ; and
when y.d/ is written for the left-normed iterated commutator, then y.d/ WD Œy1; : : : ; yd �.
Thus, for example, “hy.2/

1 ; y
.3/
2 j Œy1; y2�i” is shorthand for “hy1;1; y1;2; y2;1; y2;2; y2;3 j

ŒŒy1;1; y1;2�; Œy2;1; y2;2; y2;3��i.” The following is proved in [2]. Given an integer s � 3, there
are integers e; c0; : : : ; cs and n D c0 C � � � C cs such that, for the Lie ring

A D
˝
y0 : : : ; ys; z

.c0/
0 ; : : : ; z.cs/

s j y0 C � � � C ys D 0; eciyi D zi for i D 0; : : : ; s
˛
;

there exists a natural embeddingM
i

E1
i;s ,! ın.A/=n.A/:

To illustrate how it works, we first rewrite formula (5) as follows. Take L to be a
free Lie ring with generators y0; : : : ; ys and one relation y0 C � � � C ys D 0. Set Ii D .yi /

L.
In this notation,

I0 \ � � � \ Is

ŒI0; : : : ; Is�S
'

M
i�1

E1
i;s :

Consider the universal enveloping algebra U.L/, the corresponding ideals
Ji D yiU.L/ in U.L/, and their symmetric product

.J0; : : : ; Js/S D

X
�2†sC1

J�.0/ � � �J�.s/:

The natural map L ! U.L/ induces

I0\���\Is

ŒI0;:::;Is �S
// J0\���\Js

.J0;:::;Js/S

L
i�1E

1
i;s

// Hs.U.LŒS
1�//
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Here U.LŒS1�/ is the universal enveloping algebra of the simplicial Lie ring LŒS1�, it has
infinite cyclic homology groups in all dimensions. At the same time,E1

i;j -terms of the lower
central series spectral sequence for S2 are finite for all j � 3. It follows that the map is 0.
Therefore, for s � 3 we have I0 \ � � � \ Is � L \ .J0; : : : ; Js/S when considered in the
universal enveloping algebra. See [2] for details.

Next we add the relations eciyi D zi , for a fixed choose of e; ci ; i D 0; : : : ; s. Recall
that the element zi is of degree ci . These relations imply that, for any w 2 I0 \ � � � \ Is , the
image of enw inA, lies in ın. An elementw is our homotopy pattern, we see that, if we write
it in the universal enveloping algebra U.L/, it lies in the symmetric product .J0; : : : ; Jn/S .
At the same time, it does not lie in the symmetric product ŒI0; : : : ; Is�S . Now the relations
eciyi D zi guarantee that enw lies in the nth augmentation power of the universal enveloping
algebra. There is no obvious reason for the element enw to lie in the nth term of the lower
central series of A. The detailed analysis shows that one can choose the constants e; ci , such
that enw will not lie in n.A/ (see [2]). We can call the described method the bloating of a
homotopy pattern.

In particular, we can take e D p, s D 2p � 1 and realize the p-torsion elements p̨

described in the previous section inside dimension quotients of Lie rings.
In some cases it is possible to find ci ’s sufficiently small. The following two exam-

ples are from [2], they are checked with computer assistance. Consider the Lie ring

A D
˝
y0; y1; y2; y3; z

.1/
0 ; z

.2/
1 ; z

.2/
2 ; z

.2/
3

ˇ̌
y0 C y1 C y2 C y3 D 0; y0 D 26z0; 2

6y1 D 25z1; 2
5y2 D 23z2; 2

3y3 D z3

˛
and the element ! D ŒŒy0; y1�; Œy0; y2��. In that Lie algebra, we have ! 2 ı7.A/ n 7.A/ and
2! 2 7.A/. So, our homotopy pattern, which generated L3L4.Z; 1/ and �4.S

2/, makes
the difference between ı7 and 7.

For p D 3, the situation is similar and the construction can be simplified. Consider
the following Lie ring:

A D
˝
yij ; z

.iCjC1/
ij for 0 � i < j � 5

ˇ̌
y01 C y02 C y03 C y04 C y05 D 0;

�y01 C y12 C y13 C y14 C y15 D 0;

�y02 � y12 C y23 C y24 C y25 D 0;

�y03 � y13 � y23 C y34 C y35 D 0;

�y04 � y14 � y24 � y34 C y45 D 0;

3iCjyij D zij for 0 � i < j � 5
˛
:

Then the element ! D 315.Œy04; y14; y23� � Œy04; y24; y13� C Œy04; y34; y12� C Œy14; y24;

y03�� Œy14; y34; y02�C Œy24; y34; y01�/ belongs to ı18.A/ n 18.A/ with 3! 2 18.A/. One
can easily recognize our homotopy pattern ˛3 rewritten in the way Œyi ; yj � yi�1;j�1.

The situation for groups is similar. We start with a free group

F D hx0; : : : ; xs j x0 : : : xs D 1i; Ri D hxi i
F ;
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and take an element q from the intersectionR0 \ � � � \Rs n ŒR0; : : : ;Rs�S . Since, for s � 3,
the Hurewicz homomorphism �sC1.S

2/ D �s.�S
2/ ! Hs.�S

2/ is the zero map, the ele-
ment q � 1, written in the group ring ZŒF �, belongs to the symmetric product of ideals
.r0; : : : ; rs/S . Next we use a bloating of a homotopy pattern applied to the group-case. The
difference between Lie ring and group cases is that, in the case of groups, we cannot transfer
exponents in a free way, Œxe; y� ¤ Œx; ye�. That is, the process has to be accomplished more
carefully. Again we refer to [2] for details. The Z=p-torsion terms in the dimension quotients
can be realized, for example, using Serre elements Z=p � �2p.S

2/. The experiments with
GAP show that Rips-type examples withD4 ¤ 4 also can be constructed using the described
method, by bloating of a homotopy pattern ŒŒx1; x2�; Œx1; x2x3�� which corresponds to the
homotopy element Z=2 D �4.S

2/.

6. Limits. Speculative functor theory

“All Rajayoga, for instance, depends on this perception and experience that our
inner elements, combinations, functions, forces, can be separated or dissolved,
can be new-combined and set to novel and formerly impossible workings or can
be transformed and resolved into a new general synthesis by fixed internal pro-
cesses.” (Sri Aurobindo, “The Synthesis of Yoga”)

A standard way to define a group or Lie algebra is combinatorial, i.e., via generators and
relations. In order to construct an algebraic objects with complicated properties, one can
play with generators and relations. Take, for example, two symbols a and b and one relation,
namely ˝

a; b
ˇ̌
a�1b2ab�1a3b�1

D 1
˛
:

It turns out that the resulting group has interesting and nonobvious properties. When we
consider some functor, we usually mean that this functor comes from a natural consideration
and is not constructed in a speculative way. There are no obvious combinatorial games which
give a possibility to define functors in terms of generators and relations. However, there is one
nonobvious way, and this section will be about it.Wewill see that the characters we discussed
before, like derived functors, dimension quotients and group homology, will appear in those
functorial constructions.

Let G be a group. By Pres.G/ we denote the category of presentations of G with
the objects being free groups F together with epimorphisms to G. Morphisms are group
homomorphisms overG. For a functor F W Pres.G/! Ab from the category Pres.G/ to the
category of abelian groups, one can consider the (higher) limits lim

 �

i F , i � 0, over the cate-
gory of presentations. That is, we fix our groupG, consider free presentationsR ,! F � G

and make functorial (on F;R) constructions F .F;R/. The limits lim
 �

i F .F;R/, i � 0, will
depend only onG and, moreover, present functors from the category of all groups to abelian
groups.
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The category Pres.G/ is strongly connected and has pairwise coproducts. The limit
lim
 �

F D lim
 �

0 F has the following properties. For any c 2 Pres.G/,

lim
 �

F D
®
x 2 F .c/ j 8c0 2 Pres.G/; ';  W c ! c0;F .'/.x/ D F . /.x/

¯
: (6)

Moreover, it is known [31] that the limit of a functor from a strongly connected category with
pairwise coproducts is equal to the equalizer

lim
 �

F Š eq
�
F .c/� F .c t c/

�
for any c 2 Pres.G/. In particular, this equalizer does not depend on c.

The standard and one of the simplest examples is the following. For a group G D

F=R, the Hopf formula for the second homology is very useful: H2.G/ D
R\2.F /

ŒF;R�
. The

second homology can be presented as a limit as well:

H2.G/ D lim
 �

R=ŒF;R�:

That is, the quotient R\2.F /
ŒF;R�

is the maximal subgroup of R=ŒF; R�, which depends on G
only.

The limits lim
 �

i F are studied in the series of papers [12, 17, 19, 29,31]. Next we will
give examples which illustrate the variety and complexity of functors which can be obtained
playing with limits.

The group homology can be presented as follows (see [12,17]):

lim
 �
.R˝n

ab
/F D H2n.G/; n � 1;

lim
 �

1.R˝n
ab
/F D H2n�1.G/:

Here the tensor powers of the relationmodulesRab are considered with diagonal action ofF .
The derived functorsL1S2 andL1S3, which we discussed in Section 2, can be described via
limits (see [29,30])

lim
 �

2.F /

2.R/3.F /
D L1S2.Gab/;

lim
 �

3.F /

Œ2.R/; F �4.F /
D L1S3.Gab/;

lim
 �

3.F /

3.R/4.F /
D L2L3

s .Gab/;

lim
 �

4.F /

Œ2.R/; F; F �2.2.F //5.F /
D L1S4.Gab/;

lim
 �

2.R/

2.ŒR; F �/3.R/
D L1S2

�
H2.G/

�
:

Comparing the first three limits with the results of Section 2, we see that, in certain cases,
when the formula .ˆ/ can be applied, our homotopy patterns can be described as limits

lim
 �

Whole structure
Obvious part of an intersection

D Homotopy pattern:
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Observe that a simple deformation of the considered functor Pres ! Ab may change the
limits completely. For example,

lim
 �

3.F /

Œ2.F /;R�4.F /
D 0:

Let us mention a couple of exotic examples. If a groupG does not have a 2-torsion, then [17]

lim
 �

2.R/=
�
2.R/; F

�
D H4.GI Z=2/;

lim
 �

1 2.R/=
�
2.R/; F

�
D H3.GI Z=2/:

Recall the Fox quotient F .3;R/
G.3;R/

from Section 2. This quotient depends on F and R, not only
on G. The limit of this quotient is computed in [31] as

lim
 �

F.3;R/

G.3;R/
D L1S2

�
L1S2.Gab/

�
:

The next result shows how to present the fourth dimension quotient via limits (see
[31] for the proof)

Theorem 6.1. There is a natural short exact sequence

lim
 �

R \ 2.F /

2.R/.R \ 4.F //
,! lim
 �

2.F /

2.R/4.F /
�

D4.G/

4.G/
:

Theorem 6.1 shows how to describe the fourth dimension quotient as a functor
without using the group ring. The limits in Theorem 6.1 are just equalizers (6), one can
compute them for simple examples. The author thanks L. Bartholdi for computing these
limits for Rips-type examples using a computer. These computations show that the short
exact sequence from Theorem 6.1 does not split.

We finish the paper by briefly reviewing the so-called fr-language (see [18,19]). The
ideals f D .F � 1/ZŒF �, r D .R � 1/ZŒF � define functors Pres.G/ ! Ab. Moreover, all
possible products of ideals f; r, their sums and intersections define functors Pres.G/ ! Ab
as well, and we can ask how to describe their limits. One can take any sentence of symbols
f; r like rr C ffr C frf C rff or rrrf C frrr and consider their lim

 �

i as functors. The author
does not know any unified method to describe the limits for a given fr-sentence. For any
particular case, there are some special tricks, based on homological algebra or group theory.
Sometimes the results are surprising. For example, lim

 �

2 of two mentioned sequences are the
following:

lim
 �

2.rr C ffr C frf C rff/ D Gab ˝Gab;

lim
 �

2.rrrf C frrr/ D H5.G/:

Here are some more examples of computations, which show that the variety of functors
which can be presented as limits of fr-sentences is rich enough:

lim
 �

1.rff C frr/ D Tor
�
H2.G/;Gab

�
;

lim
 �

1.rr C frf C rff/ D H2.G;Gab/;

lim
 �

1.rr C frf/ D H3.G/;
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lim
 �

2.rr C frf/ D g ˝ZŒG� g;

lim
 �

1.rrf C frr/ D H4.G/;

lim
 �

1.rr C fff/ D Tor.Gab; Gab/;

lim
 �

2.rr C fff/ D Gab ˝Gab :

The point of this theory (whichwe also call fr-language) is that the formalmanipula-
tions with codes in two letters may induce deep and unexpected transformations of functors.
Simple transformations of fr-codes, like changing the symbol r by f in a certain place, adding
a monomial to the fr-code, etc., induce natural transformations of (higher) limits determined
by these fr-codes. For example, the transformation of the fr-codes

rr C frf rr C frf C rff

induces the natural transformation of functors

H3.G/ D lim
 �

1.rr C frf/ lim
 �

1.rr C frf C frr/ D H2.G;Gab/:

Here the mapH3.G/ ! H2.G;Gab/ is constructed as

H3.G/ D H2.G; g/ ! H2.G; g=g2/ D H2.G;Gab/;

where the last map is induced by the natural projection g� g=g2 D Gab .
We end this section with an observation that, in many cases, when the formula .ˆ/

can be applied to the structures described in terms of f and r, the homotopy patterns can be
seen via limits. For example, the well-known description of the .2n/th homology .n � 1/,

H2n.G/ D
rn \ frn�1f
rnf C frn

;

represents the formula .ˆ/. A simple computation (see [18]) shows that

lim
 �

1.rnf C frn/ D H2n.G/; n > 1:

The case n D 1 is an exception: lim
 �

1.rf C fr/ D g ˝ZŒG� g � H2.G/. In such cases, the
higher limits give a way to consider derived versions of the homotopy patterns as well. It
seems that this is a good point to end this survey.
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Abstract

We will discuss versions of the Frobenius homomorphism for a ring spectrum R: the Tate-
valued Frobenius R ! RtCp and the Frobenius on topological Hochschild homology
THH.R/ ! THH.R/tCp . Similar to ordinary algebra, these morphisms play an impor-
tant role in higher algebra and are related to various concepts in stable homotopy theory
and algebraic K-theory. We discuss the notion of perfectness, which is to say that these
morphisms are equivalences, and relate this notion to the Segal conjecture, the red-shift
conjecture, and the classification of spaces by stable data.
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In this survey I would like to give an overview of some of the ideas in higher algebra
that have been central to my research over the last few years and which will also be crucial
for the next years. Those ideas arose in joint work and discussions with a lot of people and
many of the aspects are due to them.

The classical Frobenius homomorphism for an ordinary commutative ring R and a
prime number p is the ring map

'p W R! R=pR; r 7!
�
rp

�
:

This homomorphism plays a major role in the analysis and structure theory of algebras and
schemes in characteristic p. A very important class of Fp-algebras are the perfect ones,
i.e., those for which the Frobenius homomorphism is an isomorphism. For example, those
algebras admit unique torsion-free lifts to Zp , called the Witt vectors. There are also mixed
characteristic versions of perfect Fp-algebras, called perfectoid rings, which have similar
deformations. In this survey I will discuss several incarnations of Frobenius homomorphisms
in higher algebra and shed light on the role of perfectness in this setting.

I will use the term “higher algebra” tomean “algebra” over the sphere spectrumS, or
said differently, the theory of spectra and ring spectra. The reader unfamiliar with the notion
of spectra should just think of the sphere spectrum S as a stable homotopy-theoretic ver-
sion of the ring of integers Z. Spectra are modules over S, thus a stable homotopy-theoretic
version of abelian groups. Similarly, E1-ring spectra are commutative algebras over S, a
homotopy coherent version of commutative rings.

It was Waldhausen’s vision to apply arithmetic ideas to ring spectra and develop a
theory similar to ordinary algebra. He called this branch “brave new algebra” to express this
idea. Nowadays there has been a lot of work by many people towards realizing this vision.
Many ideas and concept have been transferred from ordinary to higher algebra, including
scheme theory, obstruction theory, K-theory, and Hochschild homology. We view the results
and ideas that we present in this survey as a further step in this program.

Specifically, we will define and discuss the following two incarnations of Frobenius
homomorphisms for a ring spectrum R:

(1) The Tate-valued Frobenius

'p W R! RtCp :

Here RtCp is the Tate construction which we discuss in Section 1.

(2) The Frobenius on topological Hochschild homology

'p W THH.R/! THH.R/tCp ;

where THH.R/ is a spectrum associated with R, called topological Hochschild
homology which generalizes ordinary Hochschild homology.

Wewill describe how thesemorphisms are related tomany important aspects of stable homo-
topy theory such as power operations, the characterization of spaces by stable data, and the
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computation of algebraic K-theory. A major role for this will be played by the notion of
perfectness, which is to say that these maps are equivalences (at least in a range of degrees).
We will see how perfectness or ring spectra is related to the Segal conjecture, various far
reaching generalizations of it and the red-shift conjecture in algebraic K-theory.

Higher algebra and algebraic K-theory. Let us first say a view general words about the
motivation for higher algebra. Since spectra are the central objects in stable homotopy theory,
it is clear that gaining an understanding of these objects is the major goal. For example,
the homotopy groups of S are the stable homotopy groups of spheres, which besides their
central role in homotopy theory are also closely related to understanding cobordism classes
of manifolds by the Pontryagin–Thom construction. Waldhausen’s original motivation was
to study spaces of diffeomorphism and h-cobordisms, which he managed to relate to the
algebraic K-theory groups of certain ring spectra.

More generally, algebraic K-theory is a topic which is a major motivation to study
ring spectra. Recall that for an ordinary ringR, Quillen assigned groupsK�.R/ for every � 2
N, called the algebraic K-theory groups. Those generalized previously defined groups for
� D 0; 1; 2 and by now play an important role in many areas of mathematics, from geometric
topology to arithmetic. In his ICM address 1974, Quillen conjectured a deep relation of
the higher K-theory groups to étale cohomology [42], the so-called Lichtenbaum–Quillen
conjecture which has later been proven by Voevodsky [48].

By definition, the K-theory groups are the homotopy groups of a spectrum K.R/,
and it turns out that studying the spectrum K.R/ itself is very often more fruitful than just
its homotopy groups. For example, Waldhausen observed that Quillen’s conjecture could be
restated in terms of chromatic homotopy theory, namely that the map K.R/! L

f
1 K.R/

induces a p-adic equivalence in high enough degrees (for a prime p and suitable rings R).
Here L

f
1 is a certain chromatic localization, which is a spectral analogue of localizing a ring

at a prime number. There are also higher versions of this localization denoted L
f
n for n � 0

and Rognes’ red-shift problem in algebraicK-theory is about whether for certain ring spectra
R the corresponding map K.R/! L

f
n K.R/ is a p-adic equivalence in high degrees, see

[44] for a more precise formulation. This question can be seen as a natural higher variant of
the Lichtenbaum–Quillen conjecture.

In order to study the K-theory spectrum K.R/, Bökstedt invented the theory of
topological Hochschild homology [9], which is the natural generalization of Hochschild
homology to the sphere spectrum. Indeed, he defined for every ring R a spectrum THH.R/.
Later Bökstedt–Hsiang–Madsen [10] used the definition of THH to define another spectrum
TC.R/, called topological cyclic homologywhich comes with a mapK.R/! TC.R/, called
the cyclotomic trace. This map is a natural generalization of the Chern-character and is often
close to an isomorphism by work of many people (see [13] for a very definitive statement).
Therefore, if one has a good understanding of topological cyclic homology, one can use this
to compute and understand algebraic K-theory. We will explain how the Frobenius on THH
is the key structure needed to gain such an understanding.
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Overview of this survey. Generally, our aim is not to give a technically precise account or
an exhaustive list of applications and results, but rather explain some fundamental ideas and
give the reader an insight into the phenomena that can show up. In particular, we do not talk
about the concrete computations that have been done using the technology presented here
(see, e.g., [21,43,45]) since this would go beyond the scope of this article.

We will motivate and complement all the homotopy theoretic construction in higher
algebra by the corresponding statements and constructions in ordinary algebra. Therefore
most of the sections contain a short paragraph about the “classical” analogue, presented in
a way that makes it easier to understand what happens in the higher case.

In Section 1 we introduce for a spectrum X and an action of a finite group G on
X the Tate construction X tG . This is a new spectrum whose homotopy groups are closely
related to ordinary Tate cohomology. We explain an important theorem of Lin and Gunawar-
dena, which states that for X the sphere spectrum this Tate spectrum is a completion of the
sphere spectrum. In Section 2 we construct the Tate diagonal, which is a certain natural map
of spectra X ! .X ˝S � � � ˝S X/tCp akin to the diagonal map of a set. This map is the
key needed to define all the Frobenius homomorphisms in higher algebra that we discuss in
subsequent sections. By a deep result of Rognes–Lunøe-Nielsen (with a small refinement
by the author with P. Scholze) this Tate diagonal is often an equivalence. Section 3 contains
the construction of the Tate-valued Frobenius R! RtCp for an E1-ring spectrum. We also
discuss when it gives rise to an equivalence and the notion of perfectness for E1-rings. In
Section 4 we introduce the dual version of the Frobenius for E1-coalgebra spectra C . Mag-
ically, this gives an endomorphism 'p W C ! C if C is connective and p-complete. We
discuss why this endomorphism is the identity for the suspension spectrum C WD .†1

C X/^
p

of a space X and conjecture that this precisely characterizes suspension spectra among all
spectra. In Section 5 we quickly review topological Hochschild homology and then introduce
the Frobenius 'p W THH.R/! THH.R/tCp . We explain how this is gives rise to a cyclo-
tomic structure and how one can define TC.R/ from that. Finally, we elaborate on the role
of perfectness of THH, meaning that the Frobenius is an equivalence. Section 6 contains a
discussion of cyclotomic spectra with Frobenius lifts and the relation between perfectness
and boundedness of cyclotomic spectra. We also explain how this relates to the Quillen–
Lichtenbaum conjecture following work of Mathew and Hahn–Wilson. In the final Section 7
we explain the Segal conjecture and state a conjecture which would drastically generalize it.
This conjecture is the key to prove the conjectures made in Section 4.

All of the section are based on the results and notation introduced in the first two
sections. But the reader only interested in the THH-aspects can skip Sections 3 and 4 and
jump right into Section 5 and 6. Also Section 7 is independent of Sections 3–6.

1. The Tate construction

In this first section we will introduce and study the Tate construction X tG for an
action of a finite group G on a spectrum X . The Tate construction is a stable homotopy
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theoretic version of Tate cohomology, hence the name. We will mostly be interested in the
case of the cyclic group Cp with p elements for a prime number p.

The Tate construction in algebra. Let A be an abelian group with an action by a finite
group G. In this situation we have a norm map from the coinvariants to the invariants:

AG ! AG ; Œa� 7!
X
g2G

ga:

The zeroth Tate cohomology is the cokernel of this map,

OH 0.GIA/ WD AG=AG :

By definition, OH 0.GIA/ comes with a canonical quotient map can W AG ! OH 0.GIA/.

Example 1.1. Assume that G acts trivially on A. Then we get H 0.GIA/ D A=jGj. To say
this a bit more systematically, we note that for the trivial action of G on A we have a natural
map

triv W A
D
�! AG can

��! H 0.GIA/; a 7! Œa�;

and this map induces the isomorphism A=jGj
Š
�! H 0.GIA/.

The “external product”

H 0.GIA/˝H 0.GIB/! H 0.GIA˝ B/; Œa�˝ Œb� 7! Œa˝ b�;

makes the zeroth Tate cohomology into a lax symmetric monoidal functor. It follows that if
A has a ring structure such that G acts through ring homomorphisms, then also H 0.GIA/

is a ring.

Example 1.2. For every abelian group A with G-action, we have that multiplication by jGj
is zero on H 0.GIA/. To see this, note that A is a module over Z with trivial G-action and
so it follows that H 0.GIA/ is a Z=jGj-module.

The Tate construction in higher algebra. Let G be a finite group acting on a spectrum X ,
that is, a functor BG ! Sp. Then we can form the homotopy orbits and the homotopy fixed
points XhG and XhG defined as the colimit and limit of this functor. There is a natural norm
map

NmG W XhG ! XhG

such that the composition X ! XhG ! XhG ! X is given by the sum over all the maps
�g W X ! X for g 2 G. The precise definition requires some coherence technology, see, e.g.,
[32, Section 6.16] or [41, Chapter 1]. The Tate construction is then defined as the cofiber

X tG
WD cofib.NmG/ D XhG=XhG :

Example 1.3. Let HA be the Eilenberg–MacLane spectrum of an ordinary abelian group
with a G-action. Then we have that �0.HAtG/ D OH 0.AIG/. That is the sense in which the
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Tate construction for spectra generalizes the construction from the previous section. We can
also describe the other homotopy groups as follows:

��.A/ D

8̂̂<̂
:̂
ker.AG ! AG/; � D 1;

H��1.GIA/; � > 1;

H ��.GIA/; � < 0:

This follows immediately from the long exact sequence obtained from the defining cofiber
sequence. These are the ordinary Tate cohomology groups.

By construction, we have a canonical map

can W XhG
! X tG

and if X carries the trivial G-action then we can compose this with the map X ! XhG D

XBG induced by the projection BG ! pt to obtain a natural map

triv W X ! X tG :

Theorem 1.4 (Lin [28], Gunawardena [17]). For the sphere spectrum S equipped with the
trivial action of Cp , the map triv W S ! StCp is a p-completion, i.e., exhibits StCp as the
p-complete sphere S^

p .

In my opinion, this result is one of the deepest and most striking results in stable
homotopy theory. For example, the fact that StCp is connective is already quite surprising if
one thinks about Example 1.3. In fact, there is a convergent spectral sequence

OH i
�
Cp; �j .S/

�
) �j �i .S

tCp /:

Every single page of this spectral sequence will be periodic, still the result is connective.
Theorem 1.4 also shows that the homotopy groups of the Tate construction X tCp are in
contrast to the algebraic case generally not p-torsion groups, as �0.S^

p / D Zp .
From Theorem 1.4 it follows that for any p-adically finite1 spectrum X with triv-

ial Cp-action the map triv map also induces an equivalence X^
p ! X tCp which should be

considered as the higher algebra analogue of Example 1.1. For a general spectrum X , this,
however, completely fails as the example of X D HZ already shows. However, the com-
pleteness part is still true very generally and should be considered as the “correct” analogue
of Example 1.2.

Proposition 1.5 ([41, Lemma I.2.9.]). Let X be a bounded below spectrum with Cp-action.
Then X tCp is p-complete.

The bounded below assumption is crucial here, without that one can easily find
counterexamples, e.g., the complex K-theory spectrum KU with trivial Cp-action for which
KUtCp is rational and nontrivial.

1 This means that the p-completion of X is finite over the p-complete sphere. For example,
the p-complete sphere itself is an example which is, of course, not finite over S.
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Proposition 1.6 ([41, Theorem I.3.1]). The functor .�/tG W SpBG
! Sp admits a canonical

lax symmetric monoidal structure.

In particular, when applied to ring spectra, the Tate construction produces ring spec-
tra. For example, for an ordinary ring R with G-action, we find that .HR/tG is a ring
spectrum, which on homotopy groups induces a graded multiplication. This is the multi-
plication in ordinary Tate cohomology, whose existence I find quite striking.

2. The Tate diagonal

The goal of this section is to explain that for every spectrum X and every prime p

there is a natural map �p WX ! .X ˝S � � � ˝S X/tCp which we call the Tate diagonal. Here
Cp-acts by cyclic permutation on the p-fold tensor product X ˝S � � � ˝S X . This map �p

will be the source of all the Frobenius homomorphisms in higher algebra. As usual we want
to explain the algebraic analogue first.

The Tate diagonal in algebra. Let A be an abelian group and p a prime number. We con-
sider the map

A! .A˝Z � � � ˝Z A/Cp ; a 7! a˝ � � � ˝ a; (2.1)

where the target has p tensor factors and Cp acts by cyclic permutations. This map is obvi-
ously not additive, as it sends a0 C a1 to

.a0 C a1/˝ � � � ˝ .a0 C a1/ D
X

.i0;::::;ip/

ai0 ˝ � � � ˝ aip ;

where the sum ranges over all sequences in ¹0; 1ºp . We see that the deviation from additivity
is exactly an element in the image of the norm, so that the composite

�p W A! .A˝Z � � � ˝Z A/Cp
can
��! OH 0

�
CpI .A˝Z � � � ˝Z A/

�
(2.2)

is a group homomorphism. This map is the algebraic version of the Tate diagonal.

Proposition 2.1. For any abelian group and every prime p, the map �p induces an isomor-
phism A=p ! OH 0.CpIA

˝p/.

Sketch. The target is a p-torsion group by Example 1.2. Therefore we get an induced map
A=p ! OH 0.CpIA

˝p/. One checks by hand that this map is an isomorphism for A D Z=n

and A D Z.
The key fact to observe is that the construction OH 0.CpIA

˝p/ commutes with direct
sums in A. This can be seen by expanding the expressing for a direct sum and using that
OH 0.CpI �/ vanishes on induced Cp-modules. Therefore we immediately deduce the result
for all finitely generated abelian groups A. Finally, the functor also commutes with filtered
colimits in A so that it follows for all abelian groups.
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The Tate diagonal in higher algebra. The higher version of the diagonal (2.2) is incarnated
as follows. Considers the functor

Sp! Sp; X 7! .X˝p/tCp : (2.3)

This functor admits a lax symmetric monoidal structure induced by the lax symmetric
monoidal structure of the Tate construction.

Proposition 2.2. For any finite spectrum X , there is a map of spectra

�p W X ! .X ˝S � � � ˝S X/tCp :

This map natural and symmetric monoidal in X and unique with respect to these properties.

We will refer to �p as the Tate diagonal. The key observation to prove Proposi-
tion 2.2 is that the functor (2.3) is exact. This exactness can be reduced to showing that it
preserves binary direct sums X ˚ Y which then amounts to a categorification of the argu-
ment given in the last section. Finally, one uses that the identity functor Sp! Sp is the initial
lax symmetric monoidal endofunctor [39] to deduce Proposition 2.2.

We have the following analogue of Proposition 2.1:

Theorem 2.3 (Lunøe-Nielsen–Rognes [30], Nikolaus–Scholze [41]). For any bounded below
spectrum X and any prime p, the Tate diagonal

X ! .X ˝ � � � ˝X/tCp

is a p-completion.

Note that for X D S this theorem reduces to the Theorem of Lin and Gunawardena
(Theorem 1.4). Rognes and Lunøe-Nielsen have proven Theorem 2.3 under the additional
assumption thatX is of finite type overFp by relating it to the algebraic “Singer construction”
of Li–Singer and Adams–Gunawardena–Miller. In joint work with P. Scholze, we prove the
extension to all bounded below spectra. In fact, we deduce that this follows using formal
properties of the Tate construction from the case X D HFp .

Remark 2.4. ForX DHFp the Theorem asserts that .HFp ˝S � � � ˝S HFp/tCp is concen-
trated in degree 0. One can try proving this directly using the Tate spectral sequence, which
for example for p D 2 takes the form

OH i
�
C2; A_

2

�
) �j �i

�
.HF2 ˝S HF2/tC2

�
;

where A_
2 is the dual Steenrod algebra which carries a C2-action by the conjugation �. The

dual Steenrod algebra, as well as the conjugation, have been calculated by Milnor [38], but
even the invariants of this action are unknown in general (even though it is easy to calculate
them in small degrees with a computer). This means that one cannot completely calculate
the first page of the spectral sequence. But even in the range where this is possible, it is in
my opinion impossible to determine the differentials. Using Theorem 2.3 and the knowledge
that almost everything has to cancel out, one can determine the differentials for the first 20
stems or so. This leads to a wild pattern in which I did not see any regularity.
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3. The Tate-valued Frobenius

Let R be an E1-ring spectrum and p a fixed prime number. The goal of this section
is to discuss a variant of the Frobenius homomorphism for ring spectra, called the Tate-valued
Frobenius, which will be an E1-map R! RtCp . Here Cp-acts trivially on R.

Recall that for an ordinary commutative ringR the Frobenius homomorphism is the
ring morphism

R! R=p; r 7! rp:

Using the algebraic Tate-diagonal (2.1), we can write this map as the composite

R
�p

��! OH 0.CpIR˝Z � � � ˝Z R/
m
�! OH 0.CpIR/

Š
�! R=p;

where m W R ˝Z � � � ˝Z R ! R is the p-fold multiplication map of the ring R, which is
Cp-equivariant for the cyclic action on the source and the trivial action on the target.

Definition 3.1 ([41, Definition IV.1.1]). Let R be an E1-ring spectrum. The Tate-valued
Frobenius is the composite

'p W R
�p

��! .R˝S � � � ˝S R/tCp ! RtCp ;

where �p is the Tate diagonal (cf. Proposition 2.2). The Tate-valued Frobenius is by con-
struction a natural map of E1-ring spectra.

Example 3.2. Let HR be the Eilenberg–MacLane spectrum of an ordinary ring R. Then on
�0 the Tate-valued Frobenius induces the ordinary Frobenius R! R=p.

Example 3.3. One can generalize the last example: if R is a connective ring spectrum, then
we have a canonical map d W �0.RtCp /! �0.R/=p and the composite

�0.R/
�0.'p/
����! �0.RtCp /

d
�! �0.R/=p

is the Frobenius of �0.R/. Note that in contrast to the discrete case, the map d is in general
far from an isomorphism; for example, in the case R D S of the sphere spectrum, it can be
identified with the projection Zp ! Fp (using Theorem 1.4).

The Tate-valued Frobenius is closely related to power operations. For example, if
R D C �.X; F2/ is the E1-ring of F2-valued cochains on a space X then we have that
��.C �.X; F2/tC2/ D H ��.X I F2/..t// with t in homological degree �1. On homotopy
groups the Tate-valued Frobenius induces the map

H �.X IF2/! H �.X IF2/..t//; x 7!

1X
iD0

Sqi .x/t�i ;

where Sqi
W H �.X IF2/! H �Ci .X IF2/ is the i th Steenrod operation, see [41, Proposition

IV.1.16] or [49, Section 3.5]. Note that this sum is finite by the instability relation Sqi .x/ D 0

for i > �jxj in homological grading. More generally, for an arbitrary E1-algebra R over
F2, we have that the Frobenius induces the map

��.R/! ��.R/..t//; x 7!

1X
iD�1

Qi .x/t i ;
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where Qi W ��.R/ ! ��Ci .R/ is the i th Dyer–Lashof operation. This sum is in general
not finite, but a Laurent series since Q�i .x/ D 0 for i > �jxj. In fact, one could take this
as the definition of the Dyer–Lashof operations and derive the usual properties from it, see
Wilson’s paper [49] for a very nice discussion employing this perspective.

One can also get the odd primary Steenrod and Dyer–Lashof operations through this
perspective. More generally one can relate power operations for algebras over any base E1-
algebra to the Tate-valued Frobenius. See [16] for a very nice discussion of general power
operations in the language of ring spectra and the relation to Tate spectra.

The Frobenius as an endomorphism. The main difference of the Tate-valued Frobenius
to the ordinary Frobenius homomorphism is that the target is in general not p-torsion but
rather p-complete as explained around Proposition 1.5. Recall that by Theorem 1.4 we know
that if the underlying spectrum of R is a finite spectrum, then the map

triv W R! RtCp

is a p-completion. Thus using the inverse to this map we can consider the Tate-valued Frobe-
nius as a map

'p W R! R^
p

for every p-adically finite ring spectrum R. The finiteness assumption is crucial here and in
general the Tate-valued Frobenius does not induce an endomorphism. However, sometimes
it does, for example, if R is the dual of a connective coalgebra, as we will see in the next
section.

Example 3.4. For the sphere spectrum S, we have that 'p is the completion map

S! S^
p :

This is forced, since it is a map of ring spectra. More generally, let k be a finite field of
characteristic p. Then there is an E1-ring SW.k/ called the ring of spherical Witt vectors
uniquely characterized by the property that it is p-complete, flat over S^

p and that �0.SW.k//

is the ordinary ring of Witt vectors W.k/. This ring spectrum is finite over the p-complete
sphere (see, e.g., [33, Example 5.2.7] for a discussion of spherical Witt vectors). Thus the
Frobenius is an endomorphism

'p W SW.k/ ! SW.k/

which can be identified with the map induced by the Witt vector Frobenius F W W.k/!

W.k/. This follows by an obstruction theoretic argument from Example 3.3 since maps
between SW.k/ are uniquely determined by their effect on the modulo p-reduction of �0.

Definition 3.5. We say that a p-complete and p-adically finite E1-ring spectrum R is per-
fect if the map 'p W R! R is an equivalence.

Example 3.6. Let X be a finite CW complex. Then we consider the mapping spectrum
R WDmap.X; S^

p / which is an E1-algebra. Since the Frobenius is natural and is the identity
on the sphere, it follows that it is also the identity on R. In particular R is perfect.
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More generally, we can consider a hypercomplete sheaf of spaces on the étale site of
Spec.Fp/, or said differently, a homotopy type X with a (continuous) action of the profinite
group Z^.2 We will denote this 1-category by �Z^ . Then we can form a twisted version
map� .X; S^

p / of map.X; S^
p / as

map�

�
X; S^

p

�
WD mapZ^.X; SW.Fp//:

In this finite case this p-complete E1-algebra map� .X; S^
p / is also perfect. In fact, one can

deduce from Mandell’s theorem [34] that the assignment

�Z^

! AlgE1
.Sp/; X 7! map�

�
X; S^

p

�
defines an equivalence between the full subcategory of equivariantly p-complete, finite, and
simply connected spaces on the left and of perfect E1-algebras R which are p-complete,
p-completely finite, and whose reduced Fp-cohomology is simply connected. See [50, Sec-

tion 7] and [31, Section 3.5] for similar statements. This should be seen as a classification of
a large class of perfect E1-algebras.

4. The coalgebra Frobenius

In the last section we have construction the Tate-valued FrobeniusR!RtCp which
could be interpreted as an endomorphism for R finite. In this section we construct a dual
morphism for connective coalgebra spectra C which will always be an endomorphism. The
construction crucially relies on Theorem 2.3.

The Frobenius homomorphism for ordinary coalgebras. Recall that a cocommutative
coalgebra over a field k is a k-module C together with k-linear maps

� W C ! C ˝k C (comultiplication),

" W C ! k (counit)

satisfying the duals of the axioms of a commutative k-algebra. In fact, one can simply define
a coalgebra as an algebra in the opposite category of the category of k-vector spaces.

The dual C _ D Homk.C; k/ of a coalgebra is always an algebra but the dual A_

of an algebra A is in general not a coalgebra unless A is finite dimensional. More precisely,
dualization induces a functor

.�/_
W coAlgop

k
! Algk

which restricts to an equivalence between finite dimensional coalgebras and algebras.
The fundamental theorem of coalgebras asserts that every coalgebra is the colimit

of its finite dimensional subcoalgebras, see [46]. One can use this to show that the category
coAlgk is the ind-category of the category of finite dimensional coalgebras. In particular, it

2 Here continuity is not meant on the naive sense, but in a sense similar to continuous actions
of profinite groups on discrete sets. One can make this precise using condensed mathe-
matics.
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is opposite equivalent to the category of profinite algebras. From this we can directly deduce
the existence of a Frobenius homomorphism for coalgebras over Fp:

Proposition 4.1. For every cocommutative coalgebra C over Fp there is a natural map

'p W C ! C

uniquely characterized by the property that its dual '_
p W C

_ ! C _ is the Frobenius homo-
morphism of the commutative Fp-algebra C _.

One can also give a more direct construction of the Frobenius for coalgebras involv-
ing the algebraic Tate diagonal. Namely one shows that for every coalgebra over Fp the
diagram

C

'p

��

�p
// .C ˝Fp � � � ˝Fp C /Cp

can
��

C
�p // OH 0.CpIC ˝Fp � � � ˝Fp C /

commutes, where the upper horizontal map is the p-fold comultiplication ofC and the lower
horizontal map is the algebraic Tate diagonal. The algebraic Tate diagonal is an isomorphism
(Proposition 2.1) so that this diagram defines 'p , see [40] for a discussion along those lines.

The Frobenius for coalgebra spectra. We nowwant to discuss the higher algebra analogue
of the Frobenius for coalgebras. Thus let C be an E1-coalgebra spectrum, that is, an E1-
algebra object in the opposite category of spectra. We can form the dual spectrum C _ D

map.C; S/ and this will be an E1-ring spectrum. As in the algebraic case, we find that this
construction induces a functor of1-categories

.�/_
W coAlgE1

.Sp/! AlgE1
.Sp/

which restricts to an equivalence on those full subcategories spanned by objects that are finite
over S.

Warning 4.2. The analogue of the fundamental theorem for coalgebras fails over S: not
every coalgebra over S is a filtered colimit of finite coalgebras. Also finite coalgebras are not
necessarily compact as objects of coAlgE1

.Sp/ and coAlgE1
.Sp/ is not compactly gener-

ated. But it is still a presentable1-category and comonadic over the1-category of spectra
as one can see using the monadicity theorem.

Definition 4.3. For every connective coalgebra C 2 coAlgE1
.Sp/, we define a Frobenius

morphism C ! C ^
p such that the diagram

C

'p

��

�p
// .C ˝S � � � ˝S C /hCp

can
��

C ^
p

�p // .C ˝S � � � ˝S C /tCp

(4.1)

commutes. Here we use that the lower horizontal map is an equivalence by Theorem 2.3.
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A p-complete, connective E1-coalgebra C over S^
p is called perfect if the Frobe-

nius 'p W C ! C is an equivalence.

By definition, 'p is a map of spectra. However, we can consider it as a map C ^
p !

C ^
p and using the monoidal properties of the Tate diagonal one gets the following result:

Proposition 4.4. The map 'p W C
^

p ! C ^
p canonically refines to a natural map of co-E1-

algebras in p-complete spectra. For finite C this morphisms dualizes to the Frobenius of
ring spectra as discussed in Section 3.

Sketch of proof. A coalgebra in Sp^
p is essentially the same as a symmetric monoidal functor

Finop ! Sp^
p ;

where Fin is the category of finite sets with disjoint union as symmetric monoidal struc-
ture. The opposite category Finop can then naturally be considered as a symmetric monoidal
category and thus as a symmetric monoidal1-category. It is the free symmetric monoidal
1-category with a cocommutative coalgebra object (given by the singleton).

Thus for a given p-complete coalgebra C 2 Sp^
p , we get an essentially unique sym-

metric monoidal functor C W Finop! Sp^
p which sends the singleton to C . We can now take

the diagram (4.1) and replace all the instances of C by the functor C to obtain a diagram

C

'p

��

�p
// .C ˝S � � � ˝S C /hCp

can
��

C
�p // .C ˝S � � � ˝S C /tCp

of functors Finop ! Sp^
p . The functors are not strong symmetric monoidal, but still lax

symmetric monoidal, and all the maps admit the structure of symmetric monoidal trans-
formations. Therefore it follows that the left vertical morphism is also symmetric monoidal
which shows the first claim. We skip the argument for the second.

We conclude this section by a conjectural further refinement of the Frobenius for
coalgebras.

Conjecture 4.5. The Frobenius refines to an action of the monoidal category BN on the
1-category coAlgE1

.Sp^
p / of p-complete E1-coalgebras.

Here BN is the category with a single object and the natural numbers as endomor-
phisms. This category is itself symmetric monoidal since N is abelian.

Remark 4.6. An action of BN is the same as an E2-map3

� W N ! Z WD Z
�
coAlgE1

�
Sp^

p

��
;

3 By E2-monoid we mean E2-algebra in the1-category � of spaces.
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where the target is the center of the1-category of coalgebras, by which we mean the E2-
monoid of endomorphisms of the identity functor id W coAlgE1

.Sp^
p /! coAlgE1

.Sp^
p /.

Of course, the map � should send the generator of N to the Frobenius. This determines it as
an E1-map, since N is the free E1-space on a single generator. So the conjecture is about a
refinement of the E1-map given by the Frobenius to an E2-map. Informally, this means that
the Frobenius has to coherently commute with itself.

One can try to understand such a question by obstruction theory: the E2-monoid N

admits a cell structure

N D colim
���!

.M1 !M2 !M3 !M4 ! � � � /

in which M1 is the free E2-monoid on a single generator in degree 0 and each MnC1 is
obtained from Mn by attaching an E2-cell of dimension 2n. This can be seen applying argu-
ments similar to those used in [2, Appendix B] and we learned this statement from Achim
Krause. After group completion the induced E2-cell structure on ZD�2CP1 corresponds
to the standard cell structure of CP1.

The Frobenius defines amapM1!Z, and we get iteratively for n� 1 a sequence of
obstructions on 2 �2n�1.Z/. One could hope that all these homotopy groups vanish, but we
have no insight into whether this might be true. However, if we restrict to perfect coalgebras
this could hold, at least it does under additional finiteness conditions, by the results outlined
at the end of Section 3.

In recent work [50], Allen Yuan has proven a version of this conjecture, namely he
shows that it is true when we restrict to the full subcategory spanned by those coalgebras
whose underlying spectrum is p-adically finite. Equivalently, this can be then be translated
into the dual setting ofE1-algebras by Proposition 4.4. Yuan really proves the corresponding
statement about the Frobenius of finite E1-algebras. His proof crucially relies on the Segal
conjecture, that we will discuss in Section 7 below, specifically Theorem 7.8. In order to
apply similar techniques to prove Conjecture 4.5 in its full generality, one would have to
prove the version of the Segal conjecture for the norm that we propose as Conjecture 7.10.

Boolean coalgebras. In this section we want to talk about a specific class of coalgebras over
the sphere, whichwe call Boolean coalgebras. The definition is conditional to Conjecture 4.5.
We first give the corresponding definition for ordinary coalgebras.

Definition 4.7. Let C be an (ordinary) coalgebra over Fp . Then it is called Boolean (or p-
Boolean if we want to emphasize the prime p) if the Frobenius endomorphism 'p W C ! C

is the identity.

The name Boolean is motivated by the fact that the dual notion (i.e., algebras over
Fp with 'p D id) is for p D 2 the same as a Boolean algebra in the sense of logic.

Proposition 4.8 (coStone duality). The category of p-Boolean coalgebras is equivalent to
the category of sets. The equivalence is given by sending a coalgebraC to the set of coalgebra
morphisms from Fp to C , i.e., the set of grouplike elements in C . Conversely, a set S is sent
to the coalgebra

L
S Fp with the pointwise comultiplication.
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Now we would like to generalize this to higher algebra, i.e., to give a definition of
Boolean coalgebra spectra. The definition of those is conditional to Conjecture 4.5, which
was about the existence of an BN-action on the1-category ofp-complete coalgebras, which
is pointwise given by the Frobenius endomorphism 'p W C ! C . Under suitable finiteness
conditions, this in fact follows from the results of Yuan.

Definition 4.9. A p-Boolean coalgebra spectrum is a fixed point for the action of BN on the
1-category of E1-coalgebras. A (global) Boolean coalgebra spectrum is an E1-coalgebra
C over S together with a refinement to a p-Boolean coalgebra spectrum for every prime p.

Concretely, a p-Boolean coalgebra is a p-complete Boolean E1-coalgebra C

together with a coherent equivalence between the Frobenius endomorphism 'p W C ! C

and the identity id W C ! C .

Example 4.10. The sphere S refines uniquely to a Boolean coalgebra. Therefore for every
space X the suspension spectrum †1

C X also does, as it can be considered as the colimit of
the constant X -indexed diagram in Boolean coalgebras with value the sphere. This way we
get a unique refinement of the functor †1

C through Boolean coalgebras.

Now we conjecture that these Boolean coalgebras can be used to describe spaces
algebraically.

Conjecture 4.11. The functor†1
C induces an equivalence between simply connected objects

in the1-category of spaces and in the1-category of Boolean coalgebras (here simply con-
nected relative to the counit map). The inverse is given by sending a Boolean coalgebra C

to the mapping space from S to C .

This conjecture came up in discussions with Heuts and Klein based on a theorem of
Heuts giving an inductive description of spaces using Tate coalgebras [23]. The version for
finite simply connected spaces has been implemented by Yuan based on a similar theorem
of Mandell [34,35] (using E1-algebras over Z).

Conjecture 4.11 relies on the generalized Segal conjecture that we will explain later
(Conjecture 7.10) for two reasons: first, to define the notion of Boolean coalgebras, but also
to analyze the adjunction counit of the functors between spaces and Boolean coalgebras. We
finally note that one can also make a more general conjecture about a description of p-adic
perfect coalgebras in terms of p-complete spaces with a (suitably continuous) action of the
profinite integers Z^. In the finite case, this can again be deduced from Mandell’s results
[34,35] similar to the result at the end of Section 3. See also the discussion in [50, Section 7].

5. The Frobenius on THH

In this section we will discuss a further instance of the Frobenius operator in higher
algebra, namely the Frobenius operator on topological Hochschild homology. We first recall
that topological Hochschild homology is a variant of Hochschild homology, namely the vari-
ant where one works relative to the sphere spectrum S.

2840 T. Nikolaus



The motivation to consider THH and refined invariants such as TC is that they are
good approximations to algebraic K-theory. More precisely, for any ring R there is a natural
map K.R/! TC.R/, called the cyclotomic trace, which is often close to an isomorphism.
For example, it is a seminal result of Mathew–Clausen–Morrow [13] based on previous work
by McCarthy and many others that for a p-adic ring R the spectrum TC.R/ is after p-
adic completion equivalent to étale K-theory. The proof of this result relies crucially on the
Frobenius-perspective on cyclotomic spectra that we will explain in this section.

THH and Bökstedt’s theorem. Let us review the definition and basic properties of THH
here. For more details, see, e.g., [27] or the YouTube lectures based on this document.

Definition 5.1. Let R be a ring spectrum, not necessarily commutative. Then THH.R/ is
defined as the relative tensor product

THH.R/ D R˝R˝SRop R:

Here Rop is R equipped with the opposite multiplication so that left R ˝S Rop-modules
are R-bimodules. Then we can view R as a left module over R ˝S Rop via its canonical
bimodule structure, but also as a right module over R ˝S Rop using the flip-involution on
R˝S Rop.

We could have worked over other bases than the sphere S by simply taking the
tensor product R˝Rop over other bases. In particular, if R is an algebra spectrum over the
Eilenberg–MacLane spectrum HZ, e.g., if R is itself the Eilenberg–MacLane spectrum of
an ordinary ring, then we can form the relative tensor product

R˝R˝HZRop R;

and it turns out that this is equivalent to ordinary Hochschild homology HH.R/.4

There is a canonical map R! THH.R/ induced by the inclusion of R into any of
the two tensor factors. IfR is anE1-ring spectrum then THH.R/ also inherits a naturalE1-
structure, in particular the homotopy groups THH�.R/ are a graded commutative ring. The
mapR!THH.R/ refines to amap ofE1-maps in this case. Themost important result about
THH is Bökstedts calculation of THH for the finite field Fp , which we implicitly consider as
an Eilenberg–MacLane spectrum.

Theorem 5.2 (Bökstedt [9]). We have that

THH�.Fp/ Š FpŒx�; jxj D 2:

This result is central to almost everything that has been done with THH. It is the
basis of essentially all the K-theory computations that have been carried out using trace
methods, such as the seminal computations of Hesselholt–Madsen [20]. It is used to deduce
the very important computations of Bhatt–Morrow–Scholze for perfectoid rings [6]. These

4 Really one gets a derived variant sometimes called Shukla-homology, but we will not distin-
guish that here.
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are the basis of the relation of THH to p-adic Hodge theory and prismatic cohomology
(pioneered by Lars Hesselholt). Using Bökstedt’s theorem combined with the relation of
THH to K-theory, one can even deduce classical Bott periodicity for complex K-theory (see
[22, Section 1.3.2] for details). There are also computations related to the red-shift conjecture
pioneered by Ausoni–Rognes [3] and with a recent breakthrough by Hahn–Wilson [18]which
we will describe in Section 6. These result also dependent on the computation of THH.Fp/.

The way Theorem 5.2 was originally proven is by computing the Fp-homology of
the spectrum THH.Fp/ using a specific spectral sequence:

HH
�
��.Fp ˝S Fp/=Fp

�
) ��

�
THH.Fp/˝S Fp

�
:

Here ��.Fp ˝S Fp/DA_
p is the dual Steenrod algebra, which has been calculated byMilnor

[38]. It has a number of polynomial and exterior generators. For the computation of Bökstedt,
one needs a bit more information about the dual Steenrod algebra, namely its Dyer–Lashof
operations which have been calculated by Steinberger [11, Chapter 3, Theorems 2.2 and 2.3].
The interesting thing about these calculations for the dual Steenrod algebra is that if one
takes these operations into account, then the homotopy ring of the dual Steenrod algebra
is completely generated by a single element in �1.Fp ˝S Fp/. One can in fact combine all
these computations into a more conceptual statement as follows (see [26, Section 1.1] for a
review):

Theorem 5.3 (Milnor, Steinberger, Araki-Kudo, Dyer-Lashof, etc.). The ring spectrum
Fp ˝S Fp is, as an E2-algebra over Fp , free on a generator in degree 1.

This result really is a combination of all the computations above. For example,
Milnor’s computation of the dual Steenrod algebra can easily be deduced from it. Once one
has phrased the statement about the dual Steenrod algebra in this way it is very easy to deduce
Bökstedt’s theorem from it. But one can also do the opposite: Theorem 5.3 follows formally
from Theorem 5.2 using a version of bar–cobar duality, see, e.g., [26] for details.

The Frobenius on THH. Now we describe extra structure on THH, namely a Frobenius
homomorphism. Let us note that while we are mostly interested in commutative rings the
Frobenius homomorphism even exist in the noncommutative setting. To understand this, let
us first understand the corresponding construction in ordinary algebra.

Assume R is an ordinary, not necessarily commutative ring. Then we have

R˝R˝ZRop R D R=ŒR; R�;

where ŒR; R� � R is the subgroup additively generated by commutators rs � sr . This quo-
tient R=ŒR; R� is the algebraic analogue of THH. In fact, it is isomorphic to �0 of THH.R/.

Observation 5.4. The map

R=ŒR; R�!
�
R=ŒR; R�

�
=p D R=

�
ŒR; R�C pR

�
; Œr� 7!

�
rp

�
;

is a well-defined group homomorphism.
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This is the algebraic version of the Frobenius that we will construct on THH now.
Before we can discuss the Frobenius on THH, we have to introduce another bit of structure:
THH carries a natural action of the circle group T D U.1/. This goes back to Connes and is
a homotopy-theoretic incarnation of the Connes’ operator. We will take this as a black-box
here, see [41] for a careful construction. For an E1-ring R, this T -action on THH.R/ is an
action through E1-homomorphisms and it is a result of McClure, Schwänzel, and Vogt that
THH.R/ is initial among E1-rings under R with an action of T [37].

For any action of T , we get an induced Cp-action by restriction to the subgroup
Cp � T of pth roots. Then we have the following result:

Proposition 5.5. For any ring spectrum R, there is a map

'p W THH.R/! THH.R/tCp

called the cyclotomic Frobenius, which is a natural and symmetric monoidal transformation.
Moreover, it is T -equivariant where the target carries the residual action by T=Cp Š T .

Proof sketch. Let us sketch the construction of 'p in the case of an E1-ring R. There is a
unique extension of the E1-map R! THH.R/ to a Cp-equivariant E1-map

R˝p
D R˝S � � � ˝S R! THH.R/

using that the source is the freeE1-ring with an action ofCp . In particular, we get an induced
map .R˝S � � � ˝S R/tCp!THH.R/tCp . Then the Frobenius 'p is the uniqueT -equivariant
E1-map rendering the diagram

R //

�p

����

THH.R/

'p

��
.R˝S � � � ˝S R/tCp // THH.R/tCp

commutative. Such amap exists by the result ofMcClure, Schwänzel, and Vogt that THH.R/

is the initial E1-ring under R with a T -action.

The map THH.R/! THH.R/tCp is a refinement of the map of Observation 5.4 in
the sense that for an ordinary ring R on �0 it recovers the map of Observation 5.4.

Definition 5.6. A cyclotomic spectrum is a spectrum X with T -action and for every prime
p a T -equivariant map X ! X tCp .

Using this definition we can rephrase Proposition 5.5 as the existence of a natu-
ral cyclotomic structure on THH.R/. The main content of the paper [41] is a discussion of
the theory of cyclotomic spectra and of topological cyclic homology from this perspective.
In particular topological cyclic homology TC.R/ of a connective ring spectrum R can be
computed as the mapping spectrum in the stable 1-category of cyclotomic spectra from
THH.S/ to THH.R/. Prior to that, TC.R/ was defined using point set models of THH.R/

and genuine equivariant homotopy theory.
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Remark 5.7. For an E1-ring R the Tate-valued Frobenius 'p W R! RtCp constructed in
Section 3 and themap THH.R/!THH.R/tCp of Proposition 5.5 are related in the following
sense: there is an E1-map b W THH.R/ ! R. This can be constructed as the unique T -
equivariant map (with trivial action on the target) extending the identity R! R. Then the
following diagram commutes:

R //

'p

��

THH.R/

'p

��
RtCp THH.R/tCp

btCpoo

so that the Frobenius on THH refines the Tate-valued Frobenius.

Perfectness of THH. Recall that we have seen that for a p-adically finite spectrum X the
map triv W X ! X tCp is a p-completion (Theorem 1.4). If X is bounded below then the map
�p W X ! .X ˝S � � � ˝S X/tCp is a p-completion. In this section we will see that in many
situations also the cyclotomic Frobenius

THH.R/! THH.R/tCp

is an equivalence, at least in large degrees. We capture this in the following definition:

Definition 5.8. We say that a cyclotomic spectrum X is eventually perfect (or it satisfies the
Segal conjecture) if the map

X^
p ! X tCp

is an equivalence in sufficiently large degrees � � 0.

It turns out that there are many cases of eventually perfect cyclotomic spectra. We
try to give a short (and incomplete list) to illustrate this.

Example 5.9 (Bökstedt–Madsen). For R D Fp , the map

'p W THH.Fp/! THH.Fp/tCp

is an equivalence in degrees � �1. The map

'p W THH.Zp/! THH.Zp/tCp

is an equivalence in degrees� 0. This can be considerably generalized to see that THH.R/ is
eventually perfect for DVRs of mixed characteristic with perfect residue field [20], for smooth
algebras in positive characteristic [19, Prop. 6.6], and for torsion-free excellent noetherian
ringsRwithR=p finitely generated over itspth powers [36]. Finally, Bhatt–Morrow–Scholze
show that also for R a perfectoid ring the spectrum THH.R/ is eventually perfect.

Example 5.10 (Rognes–Lunøe-Nielsen). For R D MU, the complex cobordism spectrum,
or R D BP, the Brown–Peterson spectrum (which is a retract of p-localized MU), the map

THH.R/! THH.R/tCp

is a p-completion [29].
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Example 5.11 (Ausoni–Rognes [3] for nD 1, Hahn–Wilson [18] for general n). LetF be any
finite type .nC 1/-complex. Then the cyclotomic spectrumF ˝S THH.BPhni/ is eventually
perfect, in other words, the map

F�

�
THH

�
BPhni

��
! F�

�
THH

�
BPhni

�tCp
�

is an equivalence for � � 0.

Remark 5.12. Spectrum THH.R/ is the geometric realization (i.e., colimit) of a simplicial
spectrum THH�.R/ D R˝.�C1/, the cyclic Bar complex. By a p-fold edgewise subdivi-
sion we see that this is also the colimit over sdpTHH�.R/ D R˝p.�C1/. One can show that
applying the Tate diagonal levelwise extends to a map of simplicial objects THH�.R/!

.sdpTHH�.R//tCp . In this picture, the THH-Frobenius 'p is induced by the map

THH.R/ D
ˇ̌
THH�.R/

ˇ̌ �p

��!
ˇ̌�
sdpTHH�.R/

�tCp
ˇ̌ i
�!

ˇ̌
sdpTHH�.R/

ˇ̌tCp
D THH.R/tCp ;

where i is the canonical interchange map. For a connective ring spectrum R, the first map
�p is a p-adic equivalence by Theorem 2.3. Thus the question whether THH is (eventually)
perfect is equivalent to the question whether i is an equivalence (in a range).

6. Frobenius lifts and TR

In this section we will talk about Frobenius lifts for cyclotomic spectra. We fix a
prime p and focus on this prime. One can also set up a global theory for all primes, but we
will not get into this here.

Frobenius lifts in algebra. Recall that for an ordinary commutative ring R a Frobenius lift
(for the fixed prime p) is a ring homomorphism Fp W R! R such that the composite

R
Fp

�! R
can
��! R=p

is the Frobenius homomorphism. Here can is the canonical projection. If R is p-torsion free
this precisely captures the notion of a ı-ring (also known as p-typical �-ring or �p-ring). If
R has p-torsion this not quite true on the nose. In this case one should define a Frobenius
lift as an endomorphism Fp W R! R together with a homotopy between

R
Fp

�! R
can
��! R˝L

Z Fp and R
'p

�! R˝L
Z Fp

considered as maps of animated commutative rings (also known as simplicial commutative
rings). A Frobenius lift on R in this sense is then always equivalent to the structure of a
ı-ring on R, see [7, Remark 2.5].

An example of a ring with a Frobenius lift is given by the ring of p-typical Witt
vectors W.R/ for any ring R. The Frobenius lift F W W.R/ ! W.R/ is the Witt vector
Frobenius. By definition, the Witt vectors come with a reduction map W.R/! R, and we
have:

Proposition 6.1. For any commutative ring R, the ring of p-typical Witt vectors W.R/ is
the universal ring with Frobenius lift over R, i.e., the cofree ı-ring on R.
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In fact, theWitt vectors have additional structure, namely a map V WW.R/!W.R/

called Verschiebung, which is additive but not multiplicative. It instead satisfies the relations

F V D p � id and V
�
F.a/b

�
D aV.b/ for all a; b 2 W.R/.

Moreover, we have that W.R/=V D R and that W.R/ is derived complete with respect to
the filtration induced by V , i.e., the derived inverse limit Rlim

 ���V
W.R/ vanishes.

One can express this a bit more systematically as follows: an abelian group A with
operators F; V W A! A such that F V D p � id is called a (p-typical) Cartier module. On
the category of Cartier modules, there is a tensor product � and the Witt vectors form an
algebra with respect to that, see [1, Section 4.2] for these facts.

Cyclotomic spectra with Frobenius lift. Now we would like to find analogous statements
to the statements of the last paragraph for cyclotomic spectra. We fix a prime p throughout
this section, and everything will depend on p.

Definition 6.2. LetX be a cyclotomic spectrum. A Frobenius lift is aT -equivariant mapF W

X ! XhCp together with an equivalence can ı F ' 'p of T -equivariant maps X ! X tCp .

Now we have an analogue to the algebraic situation, i.e., the analogue of the Witt
vectors:

Proposition 6.3 ([27]). For every cyclotomic spectrum X , there is a universal cyclotomic
spectrum TR.X/! X with Frobenius lift. If X D THH.R/ for a connective E1-ring spec-
trum R, then TR.X/ is also an E1-ring spectrum and the ring �0TR.X/ is canonically
isomorphic to the ring W.�0R/ of p-typical Witt vectors.

This spectrum TR.X/ can be described explicitly by an iterated pullback and has
appeared in the theory of cyclotomic spectra much earlier (in fact, it was used to define TC
in the first place by Bökstedt–Hsiang–Madsen [10]). By a result of Blumberg–Mandell, the
functorX 7! TR.X/ is even corepresentable on the stable1-category of cyclotomic spectra
[8]. We shall not need these facts here, but there is the following abstract characterization:

Proposition 6.4 (Nikolaus–Antieau [1]). For every cyclotomic spectrum X , there is a T -
equivariant map

V W TR.X/hCp
! TR.X/

called Verschiebung such that the cofiber of V is equivalent to X and the composite F ı V W

TR.X/hC2
! TR.X/hC2 is canonically identified with the C2-norm. If X is additionally

bounded below, then we have a pullback square of spectra with T -action of the form

TR.X/ //

F
��

X

'p

��
TR.X/hCp

can // TR.X/tCp ' X tCp :

(6.1)
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From the pullback square (6.1), we see that the cyclotomic spectrumX is eventually
perfect precisely if the map F W TR.X/! TR.X/hCp is an equivalence in high degrees. This
will be important in the next section.

Definition 6.5. A topological Cartier module is a spectrumM withT -action,T -equivariant
maps V WMhCp

!M , F WM !M hCp and a T -equivariant equivalence of the composite
F ı V to the Cp-norm.

With this language, Proposition 6.4 can be summarized by saying that for every
cyclotomic spectrum X the spectrum TR.X/ is a topological Cartier module. Moreover, one
can show that the functor TR induces an equivalence between the1-category of bounded
below cyclotomic spectra and the1-category of bounded below topological Cartier modules
which are complete with respect to the Verschiebung, see [1].

Example 6.6. For the spectrum X D THH.Fp/, one can compute the spectrum TR.X/ and
finds that it is given by the Eilenberg–MacLane spectrumHZp . TheT -action is (necessarily)
trivial and the Frobenius is given by the map F W HZp ! HZ

hCp
p which is the identity on

�0. The Verschiebung is the map V W .HZp/hCp
! HZp which is multiplication by p on

�0. The pullback then takes the form

HZp
//

F
��

THH.Fp/

'p

��

HZ
hCp
p

can // Z
tCp
p

(6.2)

and implies that THH.Fp/ is equivalent to the connective cover of HZ
tCp
p . In fact, one can

reverse the logic here: since �0.TR.Fp// D W.Fp/ D Zp by Proposition 6.3, we see that
Bökstedt’s theorem (Theorem 5.2) is equivalent to the assertion that TR.Fp/ has no higher
homotopy groups, i.e., is 0-truncated. As explained around Theorem 5.3, this is then also
equivalent to the combination of Milnor’s and Steinberger’s computations and implies topo-
logical Bott periodicity.

One can attempt to prove the truncatedness of TR.Fp/ directly to give new proofs
of all of these theorems. Such a direct proof is given in [5] using the theory of polynomial
functors and the fact that TR can be evaluated on polynomial functors.

Boundedness of TR. Nowwe shall relate the perfectness of THH to the red-shift conjecture
and computations of algebraicK-theory. This is based on recent work of Mathew and Hahn–
Wilson.We first review a bit more of the theory of cyclotomic spectra. The stable1-category
of cyclotomic spectra carries a t -structure, defined as follows:

Definition 6.7. A cyclotomic spectrum X is called (cyclotomically) n-connective if the
underlying spectrum is n-connective and cyclotomically n-truncated if every map Y ! X

where Y is .nC 1/-connective is nullhomotopic (as a map of cyclotomic spectra). We say
that X is cyclotomically bounded if it is cyclotomically bounded above and below, i.e., n-
connective for some n� 0 and k-truncated for some k � 0.
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It is not hard to see that this defines a t -structure and as usual the heart consists of
those cyclotomic spectra which are cyclotomically 0-connective and 0-truncated.

Remark 6.8. Note that we are a bit loose with the adjective “cyclotomic” for connective
things, since this simply means that the underlying spectrum is connective and there is
no danger of confusion. For truncated objects, we will be careful though, since this cyclo-
tomic notion of truncatedness is completely different to the truncatedness of the underlying
spectrum X . For example, THH.Fp/ is cyclotomically 0-truncated as one can see from the
following theorem together with Example 6.6, but the underlying spectrum is not truncated
at all (recall Theorem 5.2).

Theorem 6.9 (Antieau–Nikolaus [1]). A p-complete cyclotomic spectrum is cyclotomically
bounded precisely if the spectrum TR.X/ is bounded as a spectrum. In this case X is even-
tually perfect (see Definition 5.8) and the p-completion of TC.X/ is bounded as a spectrum.
The heart of the t -structure is equivalent to the abelian category of derived V -complete
Cartier modules.

One reason why we care about the boundedness of TR and TC is its relation to
the red shift conjecture in algebraic K-theory, which we want to outline now (following the
recent paper [18] of Hahn–Wilson). The first ingredient is the following result, which is a
consequence of work of Mahowald–Rezk:

Proposition 6.10 (Hahn–Wilson [18]). Assume that for a connective ring spectrum R and a
type .nC 2/-complexF the spectrumF ˝S THH.R/ is cyclotomically bounded and�i .R

^
p /

is finitely generated for each i . Then the map

TC.R/! L
f
nC1TC.R/

is an equivalence in degrees � � 0.

In order to use this result, one needs an efficient way of verifying the boundedness
of a cyclotomic spectrum which is provided by the following criterion.

Proposition 6.11 (Mathew [36], Hahn–Wilson [18]). Assume a cyclotomic spectrum X is
bounded below, p-power torsion and eventually perfect. Then the following are equivalent:

(1) X is cyclotomically bounded, i.e., TR is bounded.

(2) The T -spectrum X tCp is T -nilpotent, i.e., lies in the thick subcategory gener-
ated by free T -spectra.

(3) For � � 0 the maps ��.can/ W ��.X
hC

pk /! ��.X
tC

pk / with 1 � k �1 are
zero.

Especially condition (3) can be verified in practice. Using this, Hahn–Wilson prove
that THH.BPhni/ for every E3-form of BPhni satisfies the assumptions of Proposition 6.10.
From this, together they deduce the following groundbreaking result.
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Theorem 6.12 (Hahn–Wilson [18]). For every E3-form of BPhni, the morphisms

TC
�
BPhni

�
! L

f
nC1

�
TC

�
BPhni

��
;

K
�
BPhni

�
! L

f
nC1

�
K

�
BPhni

��
are after p-completion equivalences in degrees � � 0.

Remark 6.13. The thick subcategory of T -nilpotent spectra is in fact a tensor ideal. There-
fore Mathew concludes from Proposition 6.11 and the results of Hahn–Wilson that, for a
connective BPhni-algebra spectrum R and a finite type .nC 2/-complex F , the cyclotomic
spectrum F ˝ THH.R/ is cyclotomically bounded precisely if it is eventually perfect [18,
Proposition 3.3.7].

7. The Segal conjecture

In this last section we want to discuss the Segal conjecture also known as Segal’s
Burnside ring conjecture. Despite its name, this is a theorem that was proven by Carlsson [12].
We will conjecture a generalization of this theorem.

In order to do this, we first have to discuss a variant of the Tate construction called
the proper Tate construction. We will first sketch the algebraic counterpart as usual.

The proper Tate construction in algebra. Let A be an abelian group with G-action and
H � G a subgroup of G. Then we have a relative norm map

AH
! AG ; a 7!

X
Œg�2G=H

ga:

We can form the quotient of AG by all these relative norms

AGL
H¨G AH

; (7.1)

where H ranges trough all proper subgroups of H . This quotient equals the zeroth Tate
construction if G D Cp for a prime p but differs in general.

Example 7.1. IfG has an index n-subgroup then the quotient (7.1) is n-torsion, as one easily
verifies. Applying this observation to Sylow subgroups, we see that the quotient (7.1) van-
ishes ifG is not a p-group. IfG is a p-group which acts trivially onA then the quotient (7.1)
is isomorphic to A=p.

The proper Tate construction in higher algebra. Now we want to make the analogous
construction for spectra. Let X be a spectrum with G-action. Then for any subgroup H � G

there is a similar relative norm map

NmG
H W X

hH
! XhG

and these maps NmG
H are compatible as H ranges through all subgroups of G. To make this

compatibility precise, we consider the orbit category OrbG consisting of all G-orbits, i.e.,
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transitiveG-sets. All of these orbits are of the formG=H for a subgroupH �G. The precise
compatibility statement that we need is the following statement, which follows, for example,
from the work of Barwick [4]:

Proposition 7.2. For any spectrum X with G-action, there is a canonical functor

OrbG ! Sp

which sends G=H to XhH and a map in the orbit category to a relative norm.

Definition 7.3. For a spectrum X with an action by a finite group G, we define the proper
Tate construction X'G as the cofiber

colimH¨G XhH
! XhG ;

where the colimit is indexed over the full subcategory of OrbG consisting of the orbits G=H

for proper subgroups H of G (which we abusively denote by H ¨ G).

Example 7.4. For G D Cp with p prime, the proper Tate construction agrees with the Tate
construction, i.e., X'Cp D X tCp .

Example 7.5. For G D Cpn with n > 0, a cofinality argument shows that the colimit in
Definition 7.3 is equivalent to the colimit over the full subcategory of OrbG spanned by the
orbit with p-elements. Thus we find that

X'.Cpn /
' cofib

�
.X

hCpn�1 /hCp
! XhCpn

�
' .X

hCpn�1 /tCp ;

where the action of Cp on X
hCpn�1 is the “residual” action under the identification Cp D

Cpn=Cpn�1 .

Warning 7.6. For any abelian group A with G-action, there is a canonical map

AG=˚H¨GAH
! �0.HA'G/;

where HA is the Eilenberg–MacLane spectrum associated with A. In contrast to the case for
G D Cp , this map is in general not an isomorphism.

Similar to the Tate construction, the proper Tate construction refines to a lax sym-
metric monoidal functor

.�/'G
W SpBG

! Sp

and, if X is equipped with the trivial G-action, there is a natural map

triv W X ! X'G :

Moreover, there are homotopy-theoretic versions of the statements in Example 7.1:

Proposition 7.7 ([41]). Let X be a spectrum with G action. Then we have X'G D 0, unless
G is a p-group.

Now the following deep result is a generalization of the theorem of Lin and Guna-
wardena (Theorem 1.4) and a higher analogue of the second part of Example 7.1.
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Theorem 7.8 (Carlsson [12]). For any finite p-group G and every finite spectrum X with
trivial G-action, the map triv W X ! X'G is a p-completion.

Remark 7.9. This theorem is equivalent to the Segal conjecture which states that for any
group G the canonical map

SG
! ShG

is a completion. Here SG is the spectrum obtained by the group completion of the category
of finite G-sets. Its �0 is given by the Burnside ring and the relevant completion is the com-
pletion with respect to the augmentation ideal. In this form the conjecture was inspired by
the Atiyah–Segal completion theorem which states that a similar map in complex K-theory
is a completion.

Now similar to the Tate diagonal discussed in Section 2, there is a unique natural
and symmetric monoidal map �G W X ! .X˝G/'G for every finite group G. Note that such
a map does not exist if we replace the proper Tate construction .�/'G by the actual Tate
construction .�/tG .

Conjecture 7.10. For any finite p-group G and any bounded below spectrum X , the Tate
diagonal

X ! .X˝G/'G

is a p-completion.

This conjecture reduces for X D S to Theorem 7.8. For G D Cp , it reduces to
Theorem 2.3 above. One can formally deduce the case G D Cpn from this case using the
Tate orbit lemma of [41] which implies that for any bounded below spectrum X with Cpn -
action we have X'Cpn

D .X tCp /
'Cpn�1 . The key step to verify Conjecture 7.10 in general is

the case of G an elementary abelian p-group. We have been informed that Håkon Bergsaker
is very close proving this conjecture using the continuous Adams spectral sequence and an
Ext-calculation based on the Singer construction similar to the case of the ordinary Segal
conjecture.

Remark 7.11. Conjecture 7.10 is equivalent to the assertion that for any finite group G and
any bounded below spectrum X the map

N G
e .X/G

! .X˝G/hG

from the fixed points of the Hill–Hopkins–Ravenel norm to the homotopy fixed points is a
completion (at the augmentation ideal of the Burnside ring). Equivalently, the HHR-norm is
Borel complete after this completion. In this language, it becomes clear that this is a direct
analogue of the classical Burnside ring conjecture.

A consequence would be that for any finite group G and every connective spec-
trum X , the spectrum .X˝G/hG is connective and �0 is a completion of �0 of the norm.
The latter has an explicit algebraic expression in terms of �0.X/. This was described in
[24,47] but remains somewhat inexplicit. In the case that the group G is given by Cpn , this
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algebraic expression is given by theWitt vectors ofZwith values in the abelian group �0.X/

defined and discussed in [14], see also [25] for a similar description. For a general group G,
the group �0 of the norm should similarly be a certain (yet to be defined) version of Dress–
Siebeneicher’s Witt–Burnside ring [15] for the group G with coefficients in �0.X/.
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1. Introduction

I will be concerned with the homotopy types of the topological groups of dif-
feomorphisms Diff.Rd / and homeomorphisms Homeo.Rd / of Euclidean space, and of
diffeomorphisms Diff@.Dd / and homeomorphisms Homeo@.Dd / of closed discs fixing
the boundary pointwise (equivalently, compactly-supported diffeomorphisms and homeo-
morphisms of Euclidean space). By scaling outwards, the group Diff.Rd / deformation
retracts to the subgroup of linear diffeomorphisms, and thence to the subgroup O.d/ of
orthogonal diffeomorphisms of Rd . By scaling inwards (the “Alexander trick”), the group
Homeo@.Dd / contracts to a point.

In contrast, the groups Homeo.Rd / and Diff@.Dd / have much more mysterious
homotopy types. As long as d ¤ 4, all four groups are related by smoothing theory [23,

Essay V], which provides a homotopy equivalence

Homeo@.Dd /

Diff@.Dd /
' �d

0

�
Homeo.Rd /

Diff.Rd /

�
and so, incorporating the above and writing Top.d/ WD Homeo.Rd /, provides a homotopy
equivalence (the “Morlet equivalence”)

BDiff@.Dd / ' �d
0

�
Top.d/

O.d/

�
:

Taking the homotopy type ofO.d/ as given, theMorlet equivalence shows that understanding
the homotopy types of Top.d/ and BDiff@.Dd / are more or less equivalent. The latter is
independently interesting as it classifies smooth Dd -bundles � W E ! B trivialised near the
boundary, and this perspective offers a useful way to study it: it is the perspective I usually
adopt. For any manifold M of dimension d ¤ 4, smoothing theory identifies Homeo@.M/

Diff@.M/

with certain path components of a space of sections �@.Fr.TM/ �O.d/
Top.d/
O.d/

! M/, so
these homotopy types furthermore describe the difference between diffeomorphisms and
homeomorphisms of all d -manifolds. It is therefore an important goal of geometric topology
to investigate these homotopy types.

In this essay I will describe what is known about the rational homotopy type of
BDiff@.Dd /, and some recent techniques which are allowing us to say more about it. Along
the way the influence of Michael Weiss will be seen at every turn, and it is a pleasure to
acknowledge and celebrate his many profound contributions to this subject.

2. Some phenomena

I will first describe the classical approach to calculating ��.BDiff@.Dd // ˝ Q,
which describes it completely in the so-called pseudoisotopy stable range, and then explain
twomore recent results which indicate the existence of new phenomena outside of this range:
the work of Watanabe on configuration space integrals, and the work of Weiss on unstable
topological Pontrjagin classes.
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2.1. Pseudoisotopy and algebraic K -theory
The topological group of smooth pseudoisotopies

C.M/ WD
®
f W M � Œ0; 1�

diffeo
�! M � Œ0; 1� j f fixes @M � Œ0; 1� [ M � ¹0º pointwise

¯
of a manifold M participates in a fibre sequence

Diff@
�
M � Œ0; 1�

�
! C.M/

f 7!f jM �¹1º

��������! Diff@.M/; (2.1)

and so measures to what extent diffeomorphisms of M � Œ0; 1� may be represented as loops
of diffeomorphisms of M . There is a stabilisation map

�M W C.M/ ! C
�
M � Œ0; 1�

�
morally induced by crossing with the interval, but technically slightly more involved. The
(smooth) pseudoisotopy stable range ˆ.d/ is the minimum of the connectivities of �M

taken over all manifolds M of dimension � d , and it is a deep theorem of Igusa [21] that
ˆ.d/ � min. d�7

2
; d�4

3
/. The stabilisation C .M/ WD hocolimn C.M � Œ0; 1�n/ may be pro-

moted to a homotopy-invariant functor from the category of spaces to the category of infinite
loop spaces. The stable parameterised h-cobordism theorem [42] relates the functor C .�/ to
Waldhausen’s [41] algebraic K-theory of spaces – or to the K-theory of ring spectra – by the
fibration sequence (with cosection) of infinite loop spaces

BC .M/ ! Q.MC/ ! �1K
�
SŒ�M�

�
:

In particular, for M D Dd the rational homotopy equivalence K.S/ ! K.Z/ and
Borel’s [3] calculation

Ki .Z/ ˝ Q D

8<: Q; i D 0; 5; 9; 13; 17; 21; : : : ;

0; else

determines ��.C.Dd // ˝ Q in the pseudoisotopy stable range as being a copy of Q in each
degree � 3 mod 4.

A further piece of structure on C.M/ is the pseudoisotopy involution. Writing � for
the reflection of Œ0; 1� at 1

2
, this is given by

f 7�! Nf D
�
f jM�¹1º � Œ0; 1�

��1
ı .M � �/ ı f ı .M � �/;

and there are compatible involutions on the fibration sequence (2.1) given by inversion on
Diff@.M/, and by conjugating by the reflection M � � on Diff@.M � Œ0; 1�/. By analysing
this involution, as well as the other involution on C.M � Œ0; 1�/ induced by C.M � �/ and
their compatibility with �M , it can be shown (see [22, Section 6.5] for a nice discussion) that

�i

�
BDiff@.D2n/

�
˝ Q D 0;

�i

�
BDiff@.D2nC1/

�
˝ Q D

8<: Q; i � 0 mod 4;

0; else

(2.2)

in the pseudoisotopy stable range. This calculation was first obtained by Farrell and
Hsiang [9], though by somewhat different means.
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2.2. Configuration space integrals
Kontsevich [25] proposed a method to produce invariants of smooth vertically

framed Dd -bundles � W E ! B trivialised near the boundary, by forming (certain compac-
tifications of) the fibrewise configuration spaces and integrating suitably chosen differential
forms along these associated configuration space bundles. The combinatorics of these forms
are organised in terms of graphs, and the result is a chain map GC2

d Œ�d�_ ˝Q R ! ��.B/

from a certain graph complex to the de Rham complex of the base, so the homology of
this graph complex yields invariants of the original bundle. Up to regrading, the chain com-
plexes GC2

d only depend on the parity of d , and they split GC2
d D

L
g GC

2;g-loop
d

as a sum
of subcomplexes of fixed loop order. See Willwacher’s contribution to the 2018 ICM for an
introduction to these objects.

Thework ofWatanabe. The detailed investigation of this construction has been taken up by
Watanabe, firstly in [43–45] for odd-dimensional discs as Kontsevich proposed, and latterly
[46,47] for even-dimensional discs, too. Write BDiff fr@ .Dd / for the space classifying smooth
vertically framed Dd -bundles trivialised near the boundary. (The analogue of the Morlet
equivalence in this setting has the formBDiff fr@ .Dd / ' �dTop.d/—up to a small correction
of path-components which I shall ignore—so studying smooth framed disc bundles has an
even closer connection to homeomorphisms of Euclidean space.) Kontsevich’s construction
in particular gives characteristic classes

�r 2 H r �.d�3/
�
BDiff fr@ .Dd /I A.�1/d

r

�
;

where AC
r and A�

r are real vector spaces spanned by connected trivalent graphs of loop
order r C 1 (equipped with certain orientation data which I shall neglect), modulo the IHX
relation (and modulo certain signs when changing orientation data: these signs depend on
the superscript C and �). This vector space arises as the lowest nontrivial homology of
GC2;.rC1/-loop

d
˝Q R: the differential is given by summing over splitting vertices, so all

trivalent graphs are automatically cycles, and the IHX relation arises from the three ways
to split a 4-valent vertex. For small values of r , the dimension of A�

r has been calculated
to be 1; 1; 1; 2; 2; 3; 4; 5; 6; 8; 9 for r D 1; 2; : : : ; 11, and the dimension of AC

r has been
calculated to be 0; 1; 0; 0; 1; 0; 0; 0; 1 for r D 1; 2; : : : ; 9.

Watanabe’s results in this direction ([44, Theorem 3.1] taking into account the im-
provement in [45], and [46] taking into account the improvement in [47]) is that, as long as
d � 4, the evaluation map

�r W �r �.d�3/

�
BDiff fr@ .Dd /

�
˝ R ! A.�1/d

r

is surjective. In fact, his result is somewhat more precise: he constructs for each trivalent
graph � a more-or-less explicit framed Dd -bundle over a sphere which is sent by the map
�r to the class of � .

This does not directly tell us about BDiff@.Dd / because of the framing data, but
the difference is easily understood. Forgetting framings defines a homotopy fibre sequence

�dO.d/ ! BDiff fr@ .Dd / ! BDiff@.Dd /;

2859 Diffeomorphisms of discs



and it is not hard to calculate

��

�
�dO.d/

�
˝ Q D

M
k�3;

k�2dC1 mod 4

QŒd � k�:

Thus as long as d is even, or d is odd and r > 1, one still has the lower bound

dimQ �r �.d�3/

�
BDiff@.Dd /

�
˝ Q � dimR A.�1/d

r :

It is worth pausing at this point to emphasise how remarkable it is that Watanabe’s results
apply for d D 4, and imply, for example, that �2.BDiff@.D4// ˝ Q ¤ 0.

However, when d is odd—say d D 2n C 1—and r D 1, the composition

R Š �2n�2

�
�2nC1O.2n C 1/

�
˝ R ! �2n�2

�
BDiff fr@ .D2nC1/

�
˝ R

�1
�! Aodd

1 Š R

might be nontrivial, and in fact it is. Watanabe addresses this difficulty in his earlier work
[43], by constructing an integral refinement of �1, and playing off this integrality against the
non-integrality of the topological Pontrjagin classes: his conclusion is that, as long as certain
arithmetic conditions ([43, Corollary 2], [44, Corollary 3.5]) involving Bernoulli numbers and
the orders of stable homotopy groups of spheres are satisfied, one may still conclude that
�2n�2.BDiff@.D2nC1// ˝ Q ¤ 0. He verified this computationally for all odd n � 399.

Automorphisms of the little discs operads. Configuration space integrals are constructed
from (suitable compactifications of) all the ordered configuration spaces Confk.Dd /, and all
the natural maps between them, applied fibrewise to a (vertically framed) Dd -bundle. There
is another way to encode (the homotopy types of) these configuration spaces and the natural
maps between them, namely as the little d -discs operad Ed . There is a topological version
of the framed little d -discs operad, which means that in a suitable homotopical sense the
group Top.d/ acts on Ed , giving a map

BTop.d/ ! BhAut.Ed /;

where the latter is the classifying space of the E1-algebra of derived automorphisms of the
little d -discs operad. Looping this .d C 1/ times gives a map

BDiff fr@ .Dd / ' �dTop.d/ ! �dhAut.Ed /:

(This corresponds [2] to applying the embedding calculus of Goodwillie and Weiss [18, 49]

to framed self-embeddings of Dd relative to the boundary, though that point of view is not
necessary for this discussion.)

The derived automorphisms of the rationalised little d -discs operad E
Q
d

have
been studied by Fresse, Turchin, and Willwacher [11], who for d � 3 give an identifica-
tion �i .hAut.EQ

d
// D Hi .GC2

d /. Combined with the above, this gives a map

�i

�
BDifffr@ .Dd /

�
˝ Q ! HiCd .GC2

d /;

and it is difficult to imagine that this is given by anything other than evaluation of Kont-
sevich’s invariant, but as far as I know the connection between this point of view and con-
figuration space integrals has not yet been made precise. Assuming for now that this is so,
Watanabe’s results show that this map hits those graph homology classes represented by
trivalent graphs.
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2.3. Pontrjagin–Weiss classes
It follows from thework of Sullivan and of Kirby and Siebenmann that the homotopy

fibre Top=O of the map BO ! BTop has finite homotopy groups, and therefore that

H �.BTopI Q/ D QŒp1; p2; p3; : : :�;

a polynomial ring on certain classes pi of degree 4i which pull back to the Pontrjagin classes
on BO: these are the topological Pontrjagin classes. By pulling back along the stabilisation
map BTop.d/ ! BTop, they are defined for all Rd -bundles.

For real vector bundles of dimension 2n, and so universally in the cohomology of
BO.2n/, the definition of Pontrjagin classes in terms of Chern classes of the complexifica-
tion immediately gives that

pi D 0 for i > n; (2.3)

pn D e2; (2.4)

where e denotes the Euler class. The Euler class only depends on the underlying spherical
fibration of the vector bundle, obtained by removing the zero-section. An Rd -bundle also
has an associated spherical fibration (by removing any section), and hence also has an Euler
class: as both the Euler and Pontrjagin classes are defined on BTop.2n/, one may then ask
about the validity of the identities (2.3) and (2.4) there.

The work of Weiss. Reis and Weiss [39] had proposed an elaborate strategy for establishing
these identities, but in a spectacular turnaround Weiss [50] then showed that these identities
are in fact generally false for Rd -bundles. I will comment further on his strategy in Sec-
tion 4.1, as its philosophy is fundamental to all the results in Section 3.

To say more precisely what Weiss proved, consider the fibration sequence
Top.2n/

O.2n/
! BO.2n/ ! BTop.2n/:

The rational cohomology classes pn � e2 and pi for i > n are defined on BTop.2n/ and
are canonically trivial on BO.2n/, and hence yield (pre-)transgressed cohomology classes
.pn � e2/� and p�

i on Top.2n/
O.2n/

. Weiss showed [50, Section 6] that for many n and i � n (he
shows that n � 83 and i < 9n

4
� 11, or n � 59 and i < 7n

4
will do) these evaluate nontrivially

against �4i�1.
Top.2n/
O.2n/

/: this certainly implies that the corresponding pn � e2 and pi are
nontrivial in the cohomology of BTop.2n/, but is stronger. Translated to diffeomorphisms
groups of discs via the Morlet equivalence, Weiss’ result shows that the map

�4i�2n�1

�
BDiff@.D2n/

�
Š �4i�2n�1

�
�2n

0

Top.2n/

O.2n/

�
Š �4i�1

�
Top.2n/

O.2n/

�
.pn�e2/� or p�

i
����������! Q

is nontrivial for many n and i � n. I will call an element of �4i�2n�1.BDiff@.D2n//

a Pontrjagin–Weiss class if it is detected by such maps.
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Odddimensions. OnBO.2n C 1/ the Pontrjagin classes still satisfypi D 0 for i > n, which
is the analogue of (2.3), so there are (pre-)transgressed classes p�

i on Top.2nC1/
O.2nC1/

for i > n,
and one may ask about their nontriviality on homotopy groups. As these classes pull back to
the classes of the same name on Top.2n/

O.2n/
, this nontriviality follows from Weiss’ theorem in

many cases.
It seems to be less well known that there is also an analogue of (2.4) in odd dimen-

sions. Namely, there is a characteristic class E of S2n-fibrations such that

pn D E (2.5)

in H 4n.BO.2n C 1/I Q/. It may be defined as follows. Given an S2n-fibration
S2n ! X

�
! Y with orientation local system O , the self-intersection of the fibrewise diag-

onal map � W X ! X �Y X defines a fibrewise Euler class efw.�/ 2 H 2n.X I O/, and then
E.�/ WD

1
2

R
�

efw.�/3 2 H 4n.Y I Q/.
As E depends only on the underlying spherical fibration, it is also defined in

H �.BTop.2n C 1/I Q/, so one can also ask whether the identity (2.5) fails to hold here,
or even better whether the cohomology class .pn � E/� on Top.2nC1/

O.2nC1/
evaluates nontrivi-

ally on �4n�1.
Top.2nC1/
O.2nC1/

/. It can be checked that under BTop.2n/ ! BTop.2n C 1/ the
class E pulls back to e2, so .pn � E/� pulls back to .pn � e2/� on Top.2n/

O.2n/
, and hence the

nontriviality of .pn � E/� on homotopy groups in many degrees also follows from Weiss’
theorem.

Propagating. Formalising the method used above, the stabilisation maps

�d
0
Top.d�1/
O.d�1/

�0BDiff@.Dd�1/

�d
0
Top.d/
O.d/

BDiff@.Dd /

(known as “Gromoll maps” on the diffeomorphism group side) show that if a Pontrjagin–
Weiss class exists on BDiff@.Dd�1/, and the cohomology class detecting it can be defined
on Top.d/

O.d/
, then it survives to BDiff@.Dd /.

Relation to configuration space integrals. Somewhat surprisingly, the map

�2n�2

�
BDiff fr@ .D2nC1/

�
Š �4n

�
BTop.2n C 1/

� E
�! Q

can be identified with the simplest Kontsevich invariant �1 (which is that associated to the
‚-graph) as studied by Watanabe in [43]. From this point of view, Watanabe’s argument in
that paper shows that pn ¤ E in H 4n.BTop.2n C 1/I Q/, so is closely related to Weiss’
theorem (but does not imply it!). This is explained in detail in [28, Appendix B].

3. The rational homotopy type of BDiff@.Dd /

The results of the last section give a complete calculation (2.2) of the rational homo-
topy groups ��.BDiff@.Dd // ˝ Q valid in the pseudoisotopy stable range, but also indicate
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the existence of various new phenomena outside of this range. These new phenomena start in
degrees� d , and Krannich [26] and I [37] had shown that (2.2) is in fact valid in degrees. d .
In this section I present two recent results, obtained in collaboration with Kupers and with
Krannich, giving detailed information quite far outside of this range, and I then speculate
about what they might be indicating.

3.1. Even-dimensional discs
Kupers and I [32,34] have investigated the rational homotopy type of BDiff@.D2n/.

The following is the main result of [32], incorporating the improvement from [34, Section 7.1].

Theorem 3.1 (Kupers–Randal-Williams). Let 2n � 6. Then �j .BDiff@.D2n// ˝ Q D 0 for
j < 2n � 1, and for j � 2n � 1 we have

�j

�
BDiff@.D2n/

�
˝ Q

D

8̂̂<̂
:̂

Q; j � 2n � 1 mod 4; j 62
S

r�2Œ2r.n � 2/ � 1; 2r.n � 1/ C 1�;

0; j 6� 2n � 1 mod 4; j 62
S

r�2Œ2r.n � 2/ � 1; 2r.n � 1/ C 1�;

‹; otherwise:

The copies of Q in this theorem are generated by Pontrjagin–Weiss classes in the
sense of Section 2.3, and the theorem gives a complete calculation in degrees � 4n � 10, as
well as in higher degrees outside of the indicated “bands”.

It can be cast in a somewhat stronger form by using the Morlet equivalence
BDiff@.D2n/ ' �2n

0
Top.2n/
O.2n/

and considering the fibration sequence

�2nC1

�
Top

Top.2n/

�
! �2n

�
Top.2n/

O.2n/

�
! �2n

�
Top
O.2n/

�
:

A slight strengthening of the theorem is then that ��.�2nC1 Top
Top.2n/

/ ˝ Q is supported in
degrees

S
r�2Œ2r.n � 2/ � 1;2r.n � 1/ C 1�; the rational homotopy groups of�2n Top

O.2n/
are

Q in every degree � 2n � 1 mod 4, and the right-hand map detects the Pontrjagin–Weiss
classes.

The result can also be given a little more structure by using the involution on
BDiff@.D2n/ ' �2n

0
Top.2n/
O.2n/

induced by conjugation by a reflection of the disc. The terms in
the fibration sequence above have compatible involutions, which on ��.�2n

0
Top

O.2n/
/ ˝ Q acts

as .�1/, and on ��.�2nC1 Top
Top.2n/

/ ˝ Q acts as .�1/r in the band of degrees
Œ2r.n � 2/ � 1; 2r.n � 1/ C 1� (when such bands overlap this should be regarded as incon-
clusive). This implies the existence of Pontrjagin–Weiss classes outside of degreesS

r�2;r oddŒ2r.n � 2/ � 1; 2r.n � 1/ C 1�.
Finally, as explained in Section 2.3, Pontrjagin–Weiss classes can be propagated

from smaller discs to larger ones. The conclusion of this discussion is depicted in Figure 1.
It seems likely that all possible Pontrjagin–Weiss classes already exist in ��.BDiff@.D6//.

3.2. Odd-dimensional discs
Krannich and I [28] have investigated the rational homotopy type ofBDiff@.D2nC1/.
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Figure 1

Rational homotopy groups of BDiff@.D2n/. The calculation is complete in the unshaded region, and � denotes
Pontrjagin–Weiss classes. The lightly shaded bands are those on which the reflection acts as C1, and
Pontrjagin–Weiss classes are still present in these; the darkly-
shaded bands are those where the reflection acts as �1. Existing copies of � have been propagated downwards
along lines of slope �1 as in Section 2.3. The numbers denote Watanabe’s lower bounds on these groups. The
dotted line indicates the Igusa stable range.
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Theorem 3.2 (Krannich–Randal-Williams). For degrees j � 3n � 8, we have

�j

�
BDiff@.D2nC1/

�
˝ Q D Kj C1.Z/ ˝ Q ˚

8<: Q; j � 2n � 2 mod 4; j � 2n � 2;

0; otherwise:

The first term is the rational algebraicK-theory of the integers, extending the classes
discussed in Section 2.1. The second term consists of Pontrjagin–Weiss classes. As discussed
in Section 2.3, the lowest of these—in degree .2n � 2/—corresponds to the configuration
space integral associated to the ‚-graph, and so accounts for the class in this degree found
for odd n � 399 by Watanabe [43], and show that such classes exist for all n. The conclusion
of this discussion is depicted in Figure 2.

In proving Theorem 3.2, Krannich and I were only attempting to calculate within
the indicated range, and with the method we used it is not clear how to establish the “band”
pattern in higher degrees for odd-dimensional discs, too. But it does seem feasible that the
method used to prove Theorem 3.1 could be adapted to the odd-dimensional case (though
there are significant hurdles) and I think it very likely that the “band” pattern occurs in this
case, too.

3.3. Outlook and speculation
These two theorems have sufficient detail that one is tempted to propose a structural

description of ��.BDiff@.Dd // ˝ Q. In fact, it seems better to describe ��.BTop.d// ˝ Q.
Summarising the structural features of the above results, ��.BTop.d// ˝ Q has

(i) classes corresponding to Pontrjagin classes, i.e. detected by BTop.d/ !

BTop, in degrees � 0,

(ii) classes corresponding to K�>0.Z/ ˝ Q if d is odd, in degrees & d , and a
class corresponding to K0.Z/ ˝ Q in degree d if d is even (detected by the
Euler class),

(iii) classes supported in bands of degrees around k � d for each k � 2 (at least for
d even, but lets suppose that this also occurs for d odd).

Orthogonal calculus. This behaviour could be explained by Weiss’ theory of orthogonal
calculus [48], a calculus of functors for continuous functors F W J ! Top defined on the
category J of real inner product spaces and their isometric embeddings. It may be applied
to the functor Bt W V 7! BTop.V /, where it provides a tower of Taylor approximations

:::

T2Bt.V / �1
�
S2�V ^ ‚Bt.2/

�
hO.2/

T1Bt.V / �1
�
S1�V ^ ‚Bt.1/

�
hO.1/

Bt.V / T0Bt.V / BTop;
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Figure 2

Rational homotopy groups of BDiff@.D2nC1/. The calculation is complete in the unshaded region: � denotes
Pontrjagin–Weiss classes, and ı denotes algebraic K-theory classes. In the shaded region we have indicated
existing Pontrjagin–Weiss classes, and the numbers denote Watanabe’s lower bounds on these groups.
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whose kth layer is described in terms of an O.k/-spectrum ‚Bt.k/, the kth derivative, and
the 1-point compactifications Sk�V of the vector spaces Rk ˝ V . The zeroth Taylor approx-
imation is the stabilisation of the functor, in this case BTop. It is a theorem of Waldhausen
that ‚Bt.1/ is A.�/ D K.S/, with a certain O.1/-action, and, in view of the rational equi-
valence K.S/ ! K.Z/, points (i) and (ii) above can be accounted for by the first Taylor
approximation. Point (iii) would then be accounted for if

(i) the Taylor tower converges (rationally), and

(ii) for each k � 2 the homotopy orbits .‚Bt.k//hSO.k/ of the derivative spectra
have finitely-many nontrivial (rational) homotopy groups.

In this worldview, the (finitely-many) rational homotopy groups of .‚Bt.k//hSO.k/ corres-
pond to the rational homotopy classes of BTop.d/ in the kth band which are not detected by
Pontrjagin classes or algebraic K-theory: more precisely, the residual O.k/=SO.k/-action
splits ��..‚Bt.k//hSO.k// ˝ Q into eigenspaces, and the .�1/d -eigenspace provides the kth
band of BTop.d/. In particular, this worldview predicts that the homotopy groups in the kth
band depend only on the parity of d .

By Theorems 3.1 and 3.2, this property does indeed hold for the second band, and
Krannich and I [28] have used this to investigate the second derivative ‚Bt.2/, establishing a
rational equivalence

‚Bt.2/
'Q map.S1

C; S�1/

of O.2/-spectra, where O.2/ acts in the usual way on S1. Reis and Weiss [39] had earlier
shown that map.S1

C; S�1/ is the second derivative of the orthogonal functor Bg.V / WD

BhAut.S.V //, the classifying space of the monoid of homotopy automorphisms of the unit
sphere in the inner product space V , and the natural map Bt ! Bg (in fact, zigzag) induces
an equivalence on rationalised second derivatives.

Automorphisms of little discs operads and graph complexes. In Section 2.2 I explained
that there is a map

BTop.d/ ! BhAut.Ed / (3.1)

corresponding to a derived action of Top.d/ on the little d -discs operad Ed . I mentioned
also that the derived automorphisms of the rationalisation E

Q
d
have been analysed by Fresse,

Turchin, and Willwacher [11], giving an identification �i .hAut.EQ
d

// D Hi .GC2
d / for d � 3

in terms of a version of Kontsevich’s graph complex. There is a loop-order decomposition
GC2

d D
L

g�1 GC
2;g-loop
d

and, for g � 2,

H�.GC2;g-loop
d

/ is supported in degrees � 2
�
g.d � 3/ C 3; g.d � 2/ C 1

�
;

and furthermore up to translating degrees this homology depends only on the parity of d .
There are some computer calculations of these groups, but they are largely unknown. On the
other hand, the 1-loop part is completely known, and is

H�.GC2;1-loop
d

/ D

M
k�1;

k�2dC1 mod 4

QŒd � k�:
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Writing EV for the little discs operad modelled on the unit disc in an inner product
space V , one can consider orthogonal calculus applied to the functor Ba W V 7! BhAut.EV /

(or perhaps better BhAut.EQ
V /: there is an important and subtle question if BhAut.EV / !

BhAut.EQ
V / is a rationalisation on universal covers, which I shall elide). Presumably by

passing to appropriate models one can upgrade the maps (3.1) to a map Bt ! Ba of ortho-
gonal functors. The data above would seem to suggest that Ba enjoys precisely the prop-
erty described in the last section, namely that ‚Ba.1/ is rationally equivalent to the O.1/-
spectrum map.CP 1

C ; S0/, where the action is by complex conjugation, and that for k � 2

the rational homotopy groups of .‚Ba.k//hSO.k/ are supported in degrees Œ4 � 3k; 2 � 2k�

and combine the k-loop graph homology for both parities encoded as the O.k/=SO.k/-
eigenspace decomposition. (In particular, this suggests an action of the twisted group ring
H ��.BSO.k/I Q/ŒO.k/=SO.k/� on the graded vector space

s�2kH�.GC2;k-loop
2 / ˚ s�3kH�.GC2;k-loop

3 /;

giving a potentially nontrivial relationship between even and odd graph homology.)
There are two reasons BTop.d/ ! BhAut.EQ

d
/ cannot be a rational equivalence:

(i) this map tends to kill the Pontrjagin–Weiss classes (and for d odd the algeb-
raic K-theory classes),

(ii) the 1-loop graph contributionH�C1.GC2;1-loop
d

/ � ��.BhAut.EQ
d

// does not
come from ��.BTop.d// ˝ Q.

Point (i) concerns the contribution to BTop.d/ D Bt.Rd / due to the first Taylor
approximation T1Bt.Rd /, and, given the degrees in which the 1-loop graphs contribute,
point (ii) presumably concerns the contribution to BhAut.EQ

d
/ D Ba.Rd / due to the first

Taylor approximation T1Ba.Rd /. Together these suggest that a better question is to ask about
the rational homotopy cartesianness of

BTop.d/ Bt.Rd / T1Bt.Rd /

BhAut.EQ
d

/ Ba.Rd / T1Ba.Rd /:

(3.2)

If this square were rationally homotopy cartesian for all large enough d then in particular
the maps on derivatives ‚Bt.k/ ! ‚Ba.k/ would be rational equivalences for all k � 2.
As evidence for this, from the proposed description of the rational homotopy groups of
.‚Ba.k//hSO.k/ described above, and the calculation of 2-loop graph homology, one can
easily deduce that ‚Ba.2/ 'Q map.S1

C; S�1/ and that the induced map ‚Bt.2/ ! ‚Ba.2/

is indeed a rational equivalence.
When d D 2n, rational homotopy cartesianness of (3.2) is equivalent to the map

BDifffr@ .D2n/ ' �2n
0 Top.2n/ ! �2n

0

�
hAut.EQ

2n/ � Top
�

being a rational equivalence, and by comparing certain graphical models arising in [32] with
graph complexes arising in the operadic model for embedding calculus it looks like this
might be true. Kupers, Willwacher, and I are trying to make this precise.
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4. Methods

I will now explain some of the ideas which go into the proofs of Theorems 3.1
and 3.2, though my goal is to give an overall impression of the methods involved rather than
explain how exactly they are combined to prove these two particular results.

4.1. Weiss fibre sequences and the general strategy
Weiss’ proof of the existence of Pontrjagin–Weiss classes contains an observation

[50, Remark 2.1.3] which technically does not play a role in his argument but is central to
its philosophy. It is more a general principle than a specific formulation, and I shall give
it only in a modestly general form: variants of it underlie many recent results about diffeo-
morphism groups [6,7,24,28,30–32]. Let W be a manifold with boundary @W decomposed as
@�W [ @CW into codimension zero submanifolds with common boundary. Then there is a
fibration

BDiff@
�
@�W � Œ0; 1�

�
! BDiff@.W / ! BEmbŠ

@CW .W; W /: (4.1)

The rightmost term needs a little explaining: it is the classifying space of the group-like
topological monoid EmbŠ

@CW .W; W / of those self-embeddings of W which are the identity
on @CW , and which are isotopic to diffeomorphisms. But crucially these self-embeddings
are allowed to send @�W into the interior of W , as indicated in Figure 3.

Figure 3

A self-embedding of W relative only to @CW .

This is not a technically difficult result (after passing to a different model of the
rightmost term, it is a simple consequence of the parameterised isotopy extension theorem).
Somewhat more technical is Kupers’ theorem [30, Section 4] that this fibration sequence
deloops—with respect to the evident composition law on BDiff@.@�W � Œ0; 1�/—which is
sometimes convenient.

The importance of this fibration sequence is the following strategy which it indic-
ates: to understandBDiff@.@�W � Œ0; 1�/, you can instead try to understandBDiff@.W / and
BEmbŠ

@CW .W; W /, for any manifold W containing @�W in its boundary. This is power-
ful because these two spaces can sometimes be accessed, though by very different meth-
ods: the homology of BDiff@.W / by parameterised surgery theory, and the homotopy of
BEmbŠ

@CW .W; W / by embedding calculus. Let me explain how this strategy may be imple-
mented to study BDiff@.Dd /.
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Set-up for discs. If d D 2n then take Wg;1 WD D2n#g.Sn � Sn/ and @�Wg;1 D

D2n�1 � @Wg;1, so that the fibration (4.1) takes the form

BDiff@.D2n/ ! BDiff@.Wg;1/ ! BEmbŠ
@CWg;1

.Wg;1; Wg;1/; (4.2)

where we have identified D2n�1 � Œ0; 1� � D2n.
If d D 2n C 1 then instead of directly using (4.1), take the handlebody

Vg WD \g.Sn � DnC1/, and use a variant of (4.1) allowing most of the boundary of Vg

to not be fixed. This takes the form

BC.D2n/ ! BDiffD2n.Vg/ ! BEmbŠ

D2n;Wg;1
.Vg ; Vg/; (4.3)

where the left-hand term is given by pseudoisotopies of D2n, the middle term by diffeo-
morphisms of Vg fixing a discD2n � @Vg but allowing the rest of the boundary to move, and
the right-hand term is given by self-embeddings of Vg which preserve
@Vg n int.D2n/ D Wg;1 setwise, and furthermore preserve a disc D2n � Wg;1 pointwise.
By the fibration sequence

BDiff@.D2nC1/ ! BC.D2n/ ! BDiff@.D2n/ (4.4)

from (2.1), given BDiff@.D2n/ it is equivalent to get at BDiff@.D2nC1/ or BC.D2n/, and
I will explain below why the latter is more accessible.

Parameterised surgery. The reason for the choice of manifold Wg;1 is that Galatius and I
[15] have shown that the maps BDiff@.Wg;1/ ! BDiff@.WgC1;1/, induced by the evid-
ent embeddings Wg;1 ,! WgC1;1, are homology isomorphisms in a range of homological
degrees tending to infinity with g, as long as 2n � 6, and furthermore [13] that a certain
parameterised Pontrjagin–Thom map

hocolim
g!1

BDiff@.Wg;1/ ! �1
0 MT�n;

to the infinite loop space of a certain Thom spectrum, induces an isomorphism on homology.
The rational cohomology of the right-hand side is quite simple: it is a polynomial algebra on
certain easily-defined cohomology classes, known as Miller–Morita–Mumford classes.

These results are analogues in high dimensions of Harer’s [20] theorem on the sta-
bility of the homology of mapping class groups of oriented surfaces, andMadsen andWeiss’
[35] theorem on the stable homology of thesemapping class groups. In fact, the stability result
holds much more generally for all 2n-manifolds of the form W #g.Sn � Sn/ with 2n � 6

and W simply-connected (or even with virtually polycyclic fundamental group [12]), and
there is an analogous description of the stable homology for any W of any even dimension
[14] (including dimension 4). See Galatius’ contribution to the 2014 ICM for an overview of
this theory.

In odd dimensions the stable homology of the diffeomorphism groups of the ana-
logous manifolds D2nC1#g.Sn � SnC1/ is not yet known, but Botvinnik and Perlmutter [5]
have a version for BDiffD2n.Vg/, and Perlmutter [36] has the appropriate stability theorem
in this case. This accounts for the use of the modified Weiss fibre sequence (4.3) in odd
dimensions, rather than a more obvious analogue of (4.2) involving D2nC1#g.Sn � SnC1/.
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Embedding calculus. The difficulty of studying embeddings of one manifold into another
depends on the codimension, but this must be counted appropriately. What matters is the
geometric dimension of the target minus the handle dimension of the source. In particular,
if W is d -dimensional but can be constructed from @CW � Œ0; 1� by attaching handles of
index � h, then self-embeddings of W relative to @CW have codimension d � h. If this
codimension is � 3, then the theory of embedding calculus as developed by Goodwillie,
Klein, and Weiss [17, 18,49] can be used to access spaces of self-embeddings of W relative
to @CW . This theory provides a tower

:::

BT3EmbŠ
@CW .W; W /

BT2EmbŠ
@CW .W; W /

BEmbŠ
@CW .W; W / BT1EmbŠ

@CW .W; W /;

(4.5)

such that, as long as the codimension (as described above) is � 3, the map

BEmbŠ
@CW .W; W / ! BT1EmbŠ

@CW .W; W / D holim
k!1

BTkEmbŠ
@CW .W; W /

is an equivalence. The bottom stage BT1EmbŠ
@CW .W; W / is equivalent to the classifying

space of the monoid BunŠ
@CW .T W;T W / of bundle maps T W ! T W which are the identity

over @CW andwhich are homotopic to the derivative of a diffeomorphism, and the homotopy
fibre of BTkEmbŠ

@CW .W; W / ! BTk�1EmbŠ
@CW .W; W / has a description in terms of a

space of sections of a bundle Zk ! Ck.W / over the configuration space of k unordered
points in W , whose fibres are constructed from the configuration spaces of � k ordered
points in W . Thus in principle the bottom stage and these homotopy fibres are amenable to
calculation by homotopical methods.

For the manifold Wg;1 and @CWg;1 D D2n, the codimension in the sense described
is n, so the embedding calculus tower converges as long as 2n � 6. For the manifolds Vg ,
there is a similar tower for BEmbŠ

D2n;Wg;1
.Vg ; Vg/, which converges for 2n C 1 � 7.

The strategy which suggests itself is then to calculate as much as you can about the
middle and right-hand terms of (4.2) and (4.3) using these two very different methods, and
then use these fibre sequences and (4.4) to deduce things about BDiff@.Dd /. This is a very
attractive picture, but for getting explicit answers there is a serious

Difficulty. Parameterised surgery fundamentally gets at the homology groups of diffeo-
morphism groups, whereas embedding calculus, at least if applied in the most classical way,
naturally allows one to get at the homotopy groups of embedding spaces.

4.2. Qualitative results
One situation in which this Difficulty is not so serious is if one wishes to obtain

qualitative results about BDiff@.@�W � Œ0; 1�/, for example, that its homology or homo-
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topy groups lie in a given Serre class. This was pioneered by Kupers [30], to prove that
the homotopy (or equivalently, homology) groups of BDiff@.Dd / are finitely-generated for
d ¤ 4; 5; 7. A slight variant of his line of reasoning is as follows.

Firstly, for D2n consider the Weiss fibre sequence (4.2), which may be delooped.
Using [13,15], as long as 2n � 6, the homology of BDiff@.Wg;1/ is easily seen to be finitely-
generated in degrees � �

g�3
2
, so it suffices to show that the homology of

X WD BEmbŠ
@CWg;1

.Wg;1; Wg;1/

is finitely-generated, too. Using the embedding calculus tower (4.5), it is not difficult to show
that the higher homotopy groups of X are all finitely-generated, and hence to deduce that
the homology of the universal cover eX is finitely-generated. It remains to study the spectral
sequence for the fibration eX ! X ! B�1.X/

and the crucial point here is that the group

�1.X/ D �0

�
EmbŠ

@CWg;1
.Wg;1; Wg;1/

�
Š �0

�
Diff@.Wg;1/

�
=�0

�
Diff@.D2n/

�
enjoys Wall’s finiteness property (F1). In this case it is clear by Kreck’s [29] calculation of
the group �0.Diff@.Wg;1//, but as a general principle it follows from Sullivan’s theorem [40]

that mapping class groups of simply-connected manifolds of dimension � 5 are commen-
surable (up to finite kernel, see [27]) to arithmetic groups.

Secondly, for D2nC1 it suffices, given the above, to prove finite-generation of the
homology of BC.D2n/, so consider the Weiss fibre sequence (4.3), which may also be
delooped. Using [5, 36], as long as 2n C 1 � 9, the homology of BDiffD2n.Vg/ is finitely-
generated in a stable range, and embedding calculus considerations as above show that the
homology of BEmbŠ

D2n;Wg;1
.Vg ; Vg/ is finitely-generated, too.

When working modulo a Serre class, one can sometimes also determine the lowest
nontrivial term modulo that class. Bustamante and I [7] have used the above strategy with
a Weiss fibre sequence for the manifolds Xg WD S1 � D2n�1#g.Sn � Sn/ to analyse
��.BDiff@.S1 � D2n�1//.p/ for 2n � 6 modulo the Serre class of finitely-generated
Z.p/-modules, where we show that it vanishes in degrees � < min.2p � 3; n � 2/ and isL1 Z=p in degree 2p � 3 as long as 2p � 3 < n � 2. This was known in the pseudoiso-
topy stable range using algebraicK-theory methods [19], but our work gives a rather different
perspective on this infinitely-generated subgroup.

Turning the Weiss fibre sequence around. A further point of view on the Weiss fibre
sequence is that, assumingBEmbŠ

@CW .W;W /may be understood using embedding calculus,
it reduces questions about BDiff@.W / for a whole class of manifolds W to questions about
the single space BDiff@.@�W � Œ0; 1�/. As the minimal choice of @�W is @�W D Dd�1,
this gives another reason to be particularly interested in BDiff@.Dd /.

Kupers [30] exploits this point of view to show—given the homological, and so
also homotopical, finite generation of BDiff@.Dd / discussed above—that BDiff@.W / has
finitely-generated higher homotopy groups for any closed 2-connected manifold W of
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dimension d ¤ 4; 5; 7. More recently Bustamante, Krannich, and Kupers [6] have exten-
ded this to any closed manifold of dimension 2n � 6 with finite fundamental group.

4.3. Quantitative results
To obtain quantitative results one must confront the Difficulty. The most obvious

way to do this—in the case of discs—is to try to make Kupers’ method from the last section
quantitative, by trying to calculate the homology of the right-hand terms of (4.2) and (4.3).

This is the strategy I pursued with Krannich in [27] to prove Theorem 3.2, and
(though for S1 � D2n�1 and not for discs) with Bustamante in [7]. An important prelim-
inary simplification is to consider the Weiss fibre sequence with framings (or similar): for
example, in the framed version

BDiff fr@ .D2n/ ! BDiff fr@ .Wg;1/ ! BEmbfr;Š
@CWg;1

.Wg;1; Wg;1/ (4.6)

of the sequence (4.2), BDiff fr@ .D2n/ differs from BDiff@.D2n/ by a copy of �2nO.2n/,
whose rational homotopy groups are completely understood, but [13, 15] shows that the
rational homology of BDiff fr@ .Wg;1/ is trivial in the stable range, which is far simpler
than the rational homology of BDiff@.Wg;1/. Luckily, the effect on the homology of the
self-embeddings term is also beneficial. The way we calculate the homology of the (framed)
self-embedding spaces in these papers is not in fact using embedding calculus as I have been
advertising, but rather using disjunction theory (which is in any case the fuel which makes
embedding calculus work [17, 18], but using it directly is sometimes more convenient), in
the form of Morlet’s lemma of disjunction in [7] and Goodwillie’s multi-relative disjunction
lemma [16] in [27]. The nature of the calculations involved makes it hard to say anything very
general about them, so I shall not try to.

Instead, I should like to discuss an alternative strategy, which is what Kupers and
I do in [32] and prepare for in the companion papers [31, 33, 34], and is what leads to the
proof of Theorem 3.1. There we adopt the view that embedding calculus is very well suited
to calculating—or estimating—the rational homotopy groups of BEmbŠ

@CWg;1
.Wg;1; Wg;1/,

and sowe propose to calculate—or estimate—the rational homotopy groups ofBDiff@.Wg;1/

(in fact, we consider the framed version BDifffr@ .Wg;1/, but again the difference on rational
homotopy groups is very mild). Describing these is an interesting problem in its own right,
especially in view of Berglund and Madsen’s [1] calculation of the rational homotopy and
stable cohomology of the groups of block diffeomorphisms and of homotopy automorphisms
of Wg;1. In the remainder I will focus on this calculation, and not try to explain exactly how
it implies Theorem 3.1.

4.4. Torelli groups
Diffeomorphisms of Wg;1 induce automorphisms of Hn.Wg;1I Z/ which preserve

the intersection form, giving a homomorphism

˛g W Diff@.Wg;1/ ! Gg WD

8<:Og;g.Z/; n even,

Sp2g.Z/; n odd:
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This is surjective if n is even or n D 1; 3; 7, but for other odd values of n has image a certain
finite-index subgroup G0

g . By analogy with the case 2n D 2, the kernel of ˛g is called the
Torelli group and denoted Tor@.Wg;1/, so that there is a fibration sequence

BTor@.Wg;1/ ! BDiff@.Wg;1/ ! BG0
g : (4.7)

Now the fundamental group ofBDiff@.Wg;1/ is quite complicated, as it surjects onto
the arithmetic group G0

g , so although the results of [13, 15] describe the rational cohomo-
logy of this space, there is no reason to think that this has much to do with its rational
higher homotopy groups. However, by (4.7) these higher homotopy groups are the same as
those of BTor@.Wg;1/, and, as long as 2n � 6, the Weiss fibre sequence can be used (in
“qualitative mode”) to prove that the space BTor@.Wg;1/ is nilpotent [31, Theorem C]. Thus
BTor@.Wg;1/ has a meaningful rationalisation, and its rational homotopy and cohomology
groups are closely related (in the sense that there are spectral sequences computing each
from the other). On the other hand, passing to the infinite covering space BTor@.Wg;1/ of
BDiff@.Wg;1/ has an unknown effect on cohomology, so the problem is now to understand
the rational cohomology of BTor@.Wg;1/.

Cohomology of Torelli groups. The fibration (4.7) provides a representation of the arith-
metic group G0

g on the rational vector spaces H i .BTor@.Wg;1/I Q/, and, as long as 2n � 6

and g � 2, a further application of the Weiss fibre sequence in “qualitative mode” shows
[31, Theorem A] that these are algebraic representations of G0

g , i.e. they extend to repres-
entations of the ambient algebraic group Gg 2 ¹Og;g ; Sp2gº. As Gg -representations are
semisimple, and the irreducibles are classified in terms of Young diagrams and are all
summands of tensor powers of the defining Gg -representation H WD Hn.Wg;1I Q/, the
G0

g -representation H i .BTor@.Wg;1/I Q/ may be determined in terms of the vector spaces�
H i

�
BTor@.Wg;1/I Q

�
˝ H ˝S

�G0
g (4.8)

for all finite sets S , and the structure maps between them given by applying permutations
and contractions H ˝ H ! Q. On the other hand, the vector spaces (4.8) are related, by the
Serre spectral sequence for (4.7), to the cohomology groups

H �
�
BDiff@.Wg;1/I H ˝S

�
(4.9)

with coefficients in the S th tensor power of the local system H on BDiff@.Wg;1/ provided
by the G0

g -representation H . Using work of Borel [4] this Serre spectral sequence can be
shown to degenerate: Ebert and I [8] introduced this strategy, but as the results of [13,15] only
describe the cohomology of BDiff@.Wg;1/ with constant coefficients, we were only able to
use it to determine ŒH i .BTor@.Wg;1/IQ/�G

0
g in a stable range. However, the results of [13,15]

also apply to BDiff�@.Wg;1/ for quite arbitrary tangential structures � (such as framings, but
also including “maps to a space Y ”), and exploiting the functoriality of the result with respect
to � (this kind of argument originates in [38]) it is possible to calculate (4.9) in a stable range,
and hence by the strategy outlined here to calculate H �.BTor@.Wg;1/I Q/ in a stable range
of degrees, as a Q-algebra and as a G0

g -representation. This is done in [33].
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A similar strategy can be applied toBDiff fr@ .Wg;1/, though by a subtlety in the proof
the argument above does not directly calculate the cohomology of BTorfr@ .Wg;1/. Instead,
there is a certain fibration sequence

X1.g/ ! BTorfr@ .Wg;1/ ! X0

with X0 a loop space having rational cohomology ƒQŒ N�4j �2n�1 j j > n=2�. The N�4j �2n�1

are secondary characteristic classes associated to the fact that the family signature van-
ishes for two different reasons on BTorfr@ .Wg;1/: because of the framing, and because of
the triviality of the action on H n.Wg;1I Z/. The analogue of the argument above leads to
the following description of the cohomology of the nilpotent space X1.g/. For r � 3 and
v1; : : : ; vr 2 H n.Wg;1I Q/, there are defined twisted Miller–Morita–Mumford classes

�1.v1 ˝ � � � ˝ vr / 2 H .r�2/n
�
X1.g/I Q

�
;

which satisfy:

(i) linearity in each vi ,

(ii) �1.v�.1/ ˝ � � � ˝ v�.r// D sign.�/n � �1.v1 ˝ � � � ˝ vr /,

(iii)
P

i �1.v1 ˝ � � � ˝ vk�1 ˝ ai / ^ �1.a#
i ˝ vk ˝ � � � ˝ vr / D �1.v1 ˝ � � � ˝ vr /,

(iv)
P

i �1.v1 ˝ � � � ˝ vr ˝ ai ˝ a#
i / D 0,

where
P

i ai ˝ a#
i 2 H n.Wg;1I Q/˝2 is dual to the intersection form. The framed analogue

of the group G0
g acts on �1.v1 ˝ � � � ˝ vr / by its evident action on the vi 2 H n.Wg;1I Q/.

Kupers and I [32] show that, in a range of degrees tending to infinity with g, the cohomo-
logy algebra of X1.g/ is generated by the classes �1.v1 ˝ � � � ˝ vr / and subject only to the
relations (i)–(iv).

Homotopy of Torelli groups. As the rational cohomology ofX1.g/ is supported in degrees
divisible by n in a stable range, it follows formally that its rational homotopy groups are
supported in degrees [r�1Œr.n � 1/ C 1; rn� in this stable range, so exhibit a band pattern.

But it turns out that we can do a lot better. It is not hard to see that the above data in
fact presents a quadratic algebra, generated by the elements �1.v1 ˝ v2 ˝ v3/ of degree n

(modulo (iv)), and it is then tempting to ask whether this quadratic algebra is Koszul. Kupers
and I [34] prove that H �.X1.g/I Q/ is indeed Koszul in a stable range of degrees (this was
simultaneously proved by Felder, Naef, and Willwacher [10]), so it follows that in this range
��.X1.g// ˝ Q is in fact supported in degrees of the form r.n � 1/ C 1, and is furthermore
given by the quadratic dual Lie algebra. Up to a few extension questions, this calculates
��.BDiff@.Wg;1// ˝ Q in a stable range.
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Floer homology
of 3-manifolds
with torus boundary
Jacob Rasmussen

Abstract

Manifolds with torus boundary have played a special role in the study of Floer homology
for 3-manifolds since the early days of the subject. In joint work with Jonathan Hanselman
and Liam Watson, we defined a geometrical Heegaard Floer invariant for 3-manifolds
with torus boundary. The invariant is a reformulation of the bordered Floer homology of
Lipshitz, Ozsváth, and Thurston, and takes the form of a collection of immersed closed
curves (possibly decorated with local systems) in a covering space of the punctured torus.
We briefly discuss the construction of the invariant and some applications to the L-space
conjecture of Boyer–Gordon–Watson and Juhász. We then describe a generalization to
manifolds with sutured boundary, and some applications to the study of satellite knots.
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1. Introduction

In the seminal papers [16,17], Andreas Floer created two branches of the theorywhich
now bear his name. The first branch is concerned with symplectic geometry, and provides
invariants of symplectomorphisms and Lagrangian submanifolds. The second branch, with
which we will be concerned, provides invariants of 3-manifolds. In addition to Floer’s work,
which uses SU2 instantons, there are many different approaches to defining Floer homology
for 3-manifolds, including the monopole Floer homology of Kronheimer and Mrowka [35]

or Hutchings’ theory of embedded contact homology [29]. We will mainly use the Heegaard
Floer homology of Ozsváth and Szabó [44] which is easy to compute and relatively simple
to work with from a technical standpoint. Regardless of their definition, all Floer theories
assign an abelian group to a closed connected oriented 3-manifold Y . The key question we
will be concerned with is:

“What is the Floer homology of a 3-manifoldM with @M ' T 2?”

Here our main criterion for defining the Floer homology is that if Y D M1 [T 2 M2, we
should be able to recover the Floer homology of Y from the Floer homologies ofM1 andM2.

1.1. The view from 1992
It is illuminating to consider the situation for Floer’s original instanton homology,

as it was understood 30 years ago. Let I �.Y / be the homology of a chain complex CI�.Y /,
which is generated by irreducible flat SU2 connections on Y if things are nice enough. By
considering the holonomy representation, we see that the set of flat connections is in bijection
with the SU2 character variety of Y :

XSU2.Y / D
®
� W �1.Y / ! SU2

¯
=SU2

where SU2 acts on the set of representations by conjugation, .A � �/.x/DA�.x/A�1. A rep-
resentation � is reducible if its image is contained in an abelian subgroup of SU2; otherwise,
it is irreducible. Any reducible representation can be factored as �1.Y / ! H1.Y / ! S1 �

SU2, so ifH1.Y / D 0, the unique irreducible representation is the trivial one.
If @M ' T 2, we can likewise consider the character varietyXSU2.M/. The inclusion

i� W �1.@M/ ! �1.M/ induces a map i� W XSU2.M/ ! XSU2.@M/. Since �1.T
2/ ' Z2 is

abelian, every � W �1.T
2/ ! SU2 is reducible. Any two 1-parameter subgroups in SU2 are

conjugate, and the stabilizer of a fixed 1-parameter subgroup is the Weyl group W D Z=2.
It follows that

XSU2.T
2/ D

®
� W Z2

! S1
¯
=W D T 2=.Z=2/

is the pillowcase orbifold T 2=.x � �x/. Figure 1 shows the image i�.XSU2.M// for two
simple 3-manifolds, namelyM D S1 �D2 andM D MT2;3 – the exterior of the right-hand
trefoil knot in S3.

If Y D M1 [T 2 M2, the inclusions ij � W �1.T
2/ ! �2.Mj / induce maps

i�j W XSU2.Mj / ! XSU2.T
2/. The simplest example of such a gluing is a Dehn filling,

whereM2 D S1 �D2. In this case, it is easy to see:
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Figure 1

The pillowcase orbifold XSU2 .T
2/ is shown on the left. The solid line at the bottom is i�.XSU2 .S

1 �D2//. The
middle figure shows the image of XSU2 .MT2;3

/, which consists of a reducible part (the line at the bottom of the
figure) and an irreducible part (the line segment of slope 6). The figure on the right shows the intersection
between the two character varieties corresponding to C1 surgery on the trefoil.

Lemma 1.1. If Y D M1 [T 2 .S1 � D2/, then X.Y / is naturally identified with the fiber
product XSU2.M1/ �XSU2 .T 2/ XSU2.S

1 �D2/.

The Poincaré sphere is the result of C1 surgery on T2;3. The corresponding fiber
product is illustrated on the right-hand side of Figure 1. There are 3 intersection points (cir-
cled) between XSU2.MT2;3/ and XSU2.S

1 � D2/, which tells us that XSU2.P / consists of
two irreducible characters and a single reducible character.

It is tempting to consider the image i�.XSU2.M// � XSU2.@M/ as a proxy for the
Floer homology ofM . However, a closer consideration of this picture reveals many difficul-
ties:

• How should the reducible flat connections be treated? If Y is a homology sphere,
the only reducible connection is the trivial one, which we can afford to ignore. As
soon asH1.Y / ¤ 0, this is no longer feasible.

• If instead of takingM2 D S1 �D2 we use another 3-manifold, the fiber product
in Lemma 1.1 becomes more complicated. Each intersection between irreducible
points in i�1 .XSU2.M1// and i�2 .XSU2.M2// gives an entire circle of irreducible
flat connections in XSU2.Y /.

• Perhaps most importantly, XSU2.Y / is only the set of generators for CI�.Y /. To
compute the homology, wemust understand the differential, which involves count-
ing solutions to the SU2 ASD equation on Y � R. A priori, there is no reason to
believe that the character variety should tell us anything about this.

Despite these problems, there were reasons for optimism as well. Indeed, CI�.Y /
wasZ=8 graded, and the reduction of this grading toZ=2 agreed with the sign of intersection
in the fiber product. Hence the two irreducible generators for CI�.P / have the same Z=2

grading, and there were no differentials in the chain complex. Fintushel and Stern [15] showed
that the same was true for any Seifert fibered space.
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The second, very potent reason was Floer’s exact triangle, which related the Floer
homologies of different Dehn fillings of M . Suppose K � Y1 is a null-homologous knot,
and let Y0 and Y1 be the manifolds obtained by 0 and 1 surgery on K. Then we have:

Theorem 1.2 ([8,18]). There is a long exact sequence

� � � ! I �.Y1/ ! I �.Y0/ ! I ��1.Y1/ ! I ��1.Y1/ ! � � � :

The original motivation for this theoremwas the relation between character varieties
shown in Figure 2, and the fact that it holds suggests that our naive idea for thinking about
the Floer homology of M in terms of the picture provided by the character variety might
have something to it after all.

Figure 2

The pillowcase with curves corresponding to C1, 0, and 1 surgery slopes. The C1 curve can be continuously
deformed to the union of the other two, producing a chain complex which computes HI�.Y1/ but whose
generators are the union of the generators of CI�.Y0/ and CI�.Y1/.

1.2. The modern perspective
In 30 years, we have made a lot of progress. Many of the technical difficulties

associated with instanton theory have been simplified or elided, first by the appearance
of Seiberg–Witten theory [53] and then by the development of Heegaard Floer homology
[44]. The problems associated with reducibles (such as the first two points above) have been
addressed in several ways: by working with appropriate equivariant versions of the theory,
as in [35]; by restricting to sectors in which reducibles do not appear [36]; or by dividing out
by the based gauge group (or something similar) rather than the full gauge group [34].

We will focus on the Heegaard Floer invariant cHF, which, roughly speaking, corre-
sponds to the monopole Floer invariant obtained by using the based gauge group instead of
the full gauge group. If .Y; z/ is a closed, connected, oriented, pointed 3-manifold, cHF.Y; z/
is a finite-dimensional vector space over the field F D Z=2. Some parts of the theory are
also known to work with Z coefficients, but we will stick to Z=2 coefficients throughout. If
z; z0 2 Y , there is a diffeomorphism  W Y ! Y with  .z/ D z0, so cHF.Y; z/ ' cHF.Y; z0/,
but this isomorphism is not canonical, as was first observed by Juhász [32]. (The point z
corresponds to the point used to define the based gauge group in Seiberg–Witten theory.)
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Suppose that Y DM1 [† M2, where† is a connected surface containing z. In this
situation, the yoga of extended TQFTs suggests that to † we should associate an additive
category A.†/, that M1 and M2 should determine objects A.Mi / of A.†/, and that we
should have cHF.Y; z/ Š Hom

�
A.M1/;A.M2/

�
:

This picture was realized by Lipshitz, Ozsváth, and Thurston [39] in their seminal work on
bordered Floer homology. They described the category A.†/ in terms of algebraic objects
which they called Type D and Type A structures. Their work was given a beautiful geometri-
cal interpretation by Auroux [2,3] who showed that A.†/ can be interpreted as the partially
wrapped Fukaya category of the symmetric product Symg.† � z/.

Auroux’s result is very important from a philosophical standpoint, but its prac-
tical applications are limited by the difficulties of working with the Fukaya category of
Symg.† � z/. Naively, the objects of the Fukaya category are Lagrangian submanifolds,
but in reality one must also consider arbitrary mapping cones built up out of Lagrangians.
The algebra required to do this is essentially the same as that of Type A and Type D structures
invented by Lipshitz, Ozsváth, and Thurston.

The one exception to this rule is the case g D 1, where we can give a simple geo-
metric description of the (compactly supported) Fukaya category of T 2 � z. We say that a
curve in T 2 � z is nice if it is an immersed closed curve which is unobstructed, in the sense
that it bounds no monogon in T 2 � z. Then we can formulate a version of the (compactly
supported) Fukaya category, which we denote by F .T 2 � z/. The objects of F .T 2 � z/

are finite unions of nice curves equipped with local systems, and the group Hom.1; 2/ can
be computed combinatorially. In particular, if 1 and 2 are primitive nonisotopic curves in
T 2 � z, Hom.1; 2/ is determined by the minimal geometric intersection number i.1; 2/.

LetF .T 2 � z/ be the set of isomorphism classes of objects inF .T 2 � z/. Together
with Hanselman and Watson, we proved the following theorem, which realizes the geomet-
rical hope expressed in the previous section in the context of cHF:
Theorem 1.3 ([21, 22]). If .M; z/ is a closed, connected, oriented, and pointed 3-manifold
with z 2 @M ' T 2, there is a well-defined invariant cHF.M;z/ 2 F .@M � z/, which satisfiescHF.M1 [T 2 M2; z/ ' Hom

�cHF.M1; z/; cHF.M2; z/
�
:

In this context, the fact that cHF satisfies an exact triangle analogous to that of The-
orem 1.2 (proved by Ozsváth and Szabó in [43]) is a consequence of the fact that the lines of
slope 0; 1, and 1 in T 2 form an exact triangle in the Fukaya category. This argument is due
to Lipshitz, Ozsváth, and Thurston [39].

The invariant cHF.M/ can be effectively computed in many examples; for example,
by the work of F. Ye [54], it is known for all but 9 of the 286 orientable 1-cusped hyperbolic
manifolds in the SnapPy census of hyperbolic 3-manifolds built from 5 or fewer tetrahedra
[11,27].

Some examples of cHF for simple 3-manifolds are shown in Figure 3. Each curve in
the figure lives in an infinite cylinder obtained by identifying the dashed lines on the left- and
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right-hand sides. To pass to the invariant in T 2 � z, we divide out by the obvious Z action.
Part (d) shows the pairing between cHF.MT / and cHF.S1 �D2/ corresponding toC1 surgery
on the trefoil. There is a single intersection point, which matches the fact that cHF.P /Š Z=2.

Figure 3

Heegaard Floer invariant bHF of some simple manifolds, including (a) S1 �D2, (b) the exterior of the right-hand
trefoil, and (c) the exterior of the figure-eight knot. The dots indicate punctures.

We close this section with a question about instanton Floer homology. Kronheimer
and Mrowka have defined [36] an invariant I ].Y / which is an instanton analog of cHF.Y /
and is conjectured to be isomorphic to it. It is thus very natural to ask:

Question 1.4. Is there an instanton analog of the invariant cHF.M/, and, if so, can it be
related directly to XSU2.M/?

It is probably too much to ask for a direct relation with the character variety in every
case, but one might still hope for it in some simple examples. (See [22] for something along
these lines using the Seiberg–Witten moduli space.)

In the sections that follow, we will briefly explain how the bordered Floer homol-
ogy of a manifold with torus boundary can be reinterpreted to define the invariant cHF.M/,
describe some applications of the theorem, and discuss generalizations and further direc-
tions.

2. Construction and properties of the invariant

2.1. The Fukaya category
We begin with a brief and imprecise account of the Fukaya category. For more care-

ful discussions, we refer the reader to [4,51,52]. Suppose that .M; !/ is an exact symplectic
manifold. Taken naively, objects of the Fukaya category F .M/ are Lagrangian submani-
folds Li � M , and Hom.L1; L2/ D HF.L1; L2/ is Lagrangian Floer homology—the other
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sort of homology invented by Floer. The Floer chain complex is generated by intersections
between L1 and L2, and the differential is given by counting J -holomorphic disks with
respect to a compatible almost-complex structure. This is an oversimplification for many
reasons: first, F .M/ is an A1-category, with higher morphisms given by counts of holo-
morphic polygons with higher numbers of sides; and second, F .M/ is triangulated, so a
typical object is actually a twisted complex—an iterated mapping cone built out of geomet-
ric Lagrangians.

All this extra structuremay seem daunting to the newcomer, but it has its advantages.
Although there are usually infinitely many different Lagrangians in M , in many cases it is
possible to show that every object of F .M/ is isomorphic to a twisted complex built up
out of a finite number of Lagrangians L1; : : : ; Ln. In this case the Li are said to generate
the Fukaya category. This is easiest to arrange in the case where both M and the Li are
noncompact. In fact, M should be a Liouville manifold, so that near infinity it looks like
the symplectization of a contact manifold N . In this situation, we need to be more careful
about what is meant by Hom.Li ;Lj /. The correct answer turns out to be the wrapped Floer
homology, in which we replace Li by its image under a flow determined by the Reeb flow
on N . More generally, we can consider the partially wrapped Floer homology [4] in which
the flow is stopped on some X � N .

If L1; : : : ; Ln generate, we define L D
L

i Li , and consider the A1 algebra
A D End.L/. If L is an object of F .M/, we can consider ML D Hom.L; L/, which
is an A1 module over A. By the Yoneda embedding lemma, L and ML carry the same
information [2].

2.2. Bordered Floer homology
Next, we discuss the work of Lipshitz, Ozsváth, and Thurston [39].

Definition 2.1. Let † be a closed, connected, and oriented surface. A parametrization P

of † is a minimal handle decomposition of †, together with a choice of basepoint z on
the boundary of the 2-handle. A bordered 3-manifold .M;P / is a compact, connected, and
oriented 3-manifoldM , together with a parametrization P of @M .

Up to isotopy, P is specified by the position of the 2-handle and the cocores of its
1-handles. These form a system of disjoint arcs ˛1; : : : ; ˛2g � † with ends on the boundary
of the 2-handle. To a parametrized surface .†;P /, Lipshitz, Ozsváth, and Thurston asso-
ciate an explicit A1 algebra A.P /. (In fact, A.P / is a dga: �i D 0 for all i > 2.) They
also define the notions of Type D and Type A structures over A.P /. In the language of Sec-
tion 2.1, a (bounded) Type D structure is essentially a twisted complex over the category
determined by A.P /. The Type A structure corresponding to a Type D structure D is essen-
tially Hom.A;D/. Thus the relation between Type D and Type A structures is the same as
the relation betweenL and ML in the Fukaya category. The main theorem of bordered Floer
homology is:
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Theorem 2.2 ([38, 39]). A bordered 3-manifold .M; P / determines a Type D structure
bCFD.M;P / over A.P / which is well defined up to quasiisomorphism. If Y D M1 [† M2

and P is a parametrization of †, then cHF.Y / Š Hom.bCFD.M1;P /; bCFD.M2;P //.

Suppose † is a parametrized surface, and let †0 � † be the complement of the
2-handle. If I D ¹i1; : : : ; igº is a g-element subset of ¹1; : : : ; 2gº, we define LI to be the
image of ˛ii � � � � � ˛ig in Symg†0. The LI are noncompact Lagrangian submanifolds of
M D Symg†0. In addition, the point z 2 @†0 determines a stopXz forM . Auroux proved:

Theorem 2.3 ([2, 3]). The LI generate FXz .Symg.†0//, and A.P / Š End L, where
L D ˚LI .

Hence bCFD.M;P / determines an object of FXz .Symg.†0//. A priori, this object
is neither compact nor geometric—it is a twisted complex built up out of noncompact
Lagrangians.

2.3. The torus
Up to isotopy, the torus T 2 has a unique parametrization, P , as shown in Figure 4.

The corresponding algebra A.T 2/ D A.P / is a quotient of the quiver algebra generated
by the quiver below by the quadratic relations �2�1 D �3�2 D 0. Geometrically speaking,
the arrows in the quiver correspond to the labeled arcs in on the boundary of the punctured
torus, as shown in Figure 4. Composition is given by concatenation (when possible) and is
0 otherwise. We write �1�2 D �12, etc.

�0�0 �1

�1

�2

�3

A Type D structure over A.T 2/ can be represented by a decorated graph, whose vertices are
labeled by idempotents of A (we use � for L0, and ı for L1) and whose edges are labeled
by morphisms. The labels on the edges determine the differential D in the twisted chain
complex, which must satisfy D2 D 0. Here is an example of a twisted complex built out of
three objects—one copy of L0 and two of L1:

�3

�1

�23

� ı

ı

The key step in the proof of Theorem 1.3 is an algebraic structure theorem, which
shows that every Type D structure over A.T 2/ is homotopy equivalent to that with a partic-
ularly nice form.

Definition 2.4. A Type D structure over is a loop if its underlying graph (forgetting labels
and orientations) is a cycle. More generally, a Type D structure with graph G is a loop with
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Figure 4

Parametrization of T 2, showing the 2-handle (large circle), ˛ arcs (labeled L0 and L1), and basepoint.

a local system of dimension k if there is a loop L and a map � W G ! L which preserves the
labels edges and vertices and is a k-to-1 covering map away from one edge of L.

The torus algebra is a quotient of a slightly larger algebra eA, which is obtained by
adding in a generator �0 corresponding to the arc that runs over the basepoint z, and setting
any word that contains two copies of �0 to 0, as well as the usual quadratic relations. An
important result due to Lipshitz, Ozsváth, and Thurston is that if @M D T 2, then bCFD.M/

is extendable, that is, we can add in additional arrows labeled by elements of eA so that

D2
D

3X
j D0

�j�j C1�j C2�j C3;

where the subscripts are to be interpreted modulo 4. The main technical result of [21] is:

Theorem 2.5. An extendable Type D structure over A is homotopy equivalent to a disjoint
union of loops with local systems.

The first theorem of this type was proved by Haiden, Katzarkov, and Kontsevich [19],
who showed that any twisted complex overA.T 2/ (or more generally, the algebra associated
to the Fukaya category of a higher genus surface) is a direct sum of loops with local systems
and chains. The key role that such loops play in the study of bordered Floer homology was
first observed by Hanselman and Watson in [23]. In [21] we give an effective algorithm for
reducing an arbitrary extendable Type D structure to a disjoint union of loops. Alternately,
one can appeal to [19], and then use the fact that the Type D structure is extendable to rule
out the presence of any chains.

The final step in the proof of Theorem 1.3 is to associate a geometric loop D (a
closed curve in T 2 n z) to a loop-type Type D structure D , and show that

Hom.D1;D2/ Š HF.D1
; D2

/:

Here the left-hand side is Hom in the category of Type D structures, and the right-hand side
is an appropriately formulated version of Floer homology in T 2 � z; �D is constructed by
taking a straight line segment for each object in the loop, and joining the ends of consecutive
objects according to the label on the arrow that joins them. There are two ways to do this.
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In [19], the authors use the noncompact Lagrangians L0;L1, and join them by arcs along the
boundary. In [21] we take a dual approach, using the compact arcs coming from the cores of
the 1-handles and joining them by curves along the boundary of the 0-handle.

2.4. Spinc structures and the Alexander polynomial
In this section, we review three basic properties of cHF for closed 3-manifolds, and

explain their generalization to manifolds with torus boundary. First, it is well known thatcHF.Y / can be decomposed according to the set of Spinc structures on Y :cHF.Y / D

M
s2Spinc.Y /

cHF.Y; s/:
The same statement is true whenM has torus boundary:cHF.M/ D

M
s2Spinc.M/

cHF.M; s/;
where now the direct sum is taken in the Fukaya category, where it is given by disjoint union
of curves. More interestingly, each summand cHF.M; s/ can be lifted to a covering space of
@M � z. To be precise, let TM be the covering space of TM D @M whose fundamental group
is the kernel of the composite map �1.@M/ ! H1.@M/ ! H1.M/. Let T ı

M D @M � z,
and define T ı

M to be its preimage in TM . It is shown in [21] that cHF.M; s/ lifts to T ı

M . For
example, if H1.M/ Š Z, T ı

M is a punctured cylinder like those shown in Figure 3. There
is a unique s 2 Spinc.M; @M/, and the curves shown in Figure 3 are cHF.M; s/ for their
respectiveM ’s.

Suppose Y D M1 [T 2 M2. By considering the pairing of the lifted curves forcHF.M1/ and cHF.M2/, together with the action of the deck group, one can recover the Spinc

decomposition on cHF.Y /. Figure 5(b) illustrates this computation for 0 surgery on the torus
knot T .2; 5/.

Second, cHF.Y / carries a natural Z=2 grading. For manifolds with torus boundary,
we have the following analog:

Proposition 2.6. IfM is a 3-manifold with torus boundary, then there is natural orientation
on cHF.M/. If Y D M1 [T 2 M2 and x is a generator of cHF.Y / corresponding to an inter-
section point of cHF.M1/ and cHF.M2/, then the Z=2 grading of x 2 cHF.M1/ \ cHF.M2/ is
given by the sign of intersection of cHF.M1/ and cHF.M2/ at x.

Finally, it is well known (going back to Casson [1]) that the Euler characteristic of
Floer homology is related to the Alexander polynomial. We describe this relation in our
context, restricting to the case where H1.M/ D Z for simplicity. Let � W TM ! @M be
the projection. The set ��1.z/ can be naturally identified with Z by the action of the deck
group. The space TM has two ends: a positive end to which the zn converge as n! 1 and a
negative end to which the zn converge as n ! �1. Let �n be a path from zn to the negative
end, and define an to be the signed intersection number of �n with cHF.M/. (Since cHF.M/

is compact, zn D 0 for n � 0.) Then we have:
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Figure 5

Some computations with the .2; 5/ torus knot: (a) bHF.MT .2;5//, (b) bHF of 0-surgery on T .2; 5/ has dimension 2
in each of the Spinc structures s�1;s0, and s1, and (c) bHFK.T .2; 5/; i/ has dimension 1 for i D �2;�1; 0; 1; 2.

Proposition 2.7 ([21]). If �.M/ 2 ZŒt˙1� is the Alexander polynomial, then
�M

1 � t
�

X
n2Z

ant
n:

Here both sides are to be interpreted as Laurent series, and � indicates equality up
to multiplication by some power of t . The quantity on the left-hand side is theMilnor torsion
ofM . For example, by referring to Figure 3, one can easily compute that

�.T /

1 � t
� t�1

C t C t3 C t4 C t5 C � � � ;

corresponding to the well-known fact that �.T / D t�1 � 1C t .

2.5. Knot Floer homology
The definition of Heegaard Floer homology for closed 3-manifolds can be general-

ized to give an invariant of a pair K � Y , where K is a knot in Y . This invariant is called
knot Floer homology (written bHFK.K/), and was discovered by Ozsváth and Szabó [42] and
independently by the author [48]. Two basic properties of knot Floer homology are:

• If b1.Y / D 0, bHFK.K/ splits as a direct sum bHFK.K/ D
L

i2Z
bHFK.K; i/. The

grading i is called the Alexander grading and satisfiesX
i

�
� bHFK.K; i/� � t i � �K.t/:

• If b1.Y /D 0, there are two spectral sequences withE1 term bHFK.K/which con-
verge to cHF.Y /. In one sequence, the differentials decrease the Alexander grading,
while in the other they increase it.
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If @M D T 2 and ˛ is a simple closed curve on @M , we can form the Dehn filling
M.˛/ D M [� S

1 �D2, where ��.Œ@D
2�/ D Œ˛�. We consider the core knot

K˛ D S1
� 0 � S1

�D2
� M.˛/

whose complement is againM . Let L0
˛ be the (noncompact) Lagrangian in @M n z which

consists of a line of slope ˛ passing through z. Then we have, the following result, which is
essentially due to Lipshitz, Ozsváth, and Thurston:

Proposition 2.8. bHFK.K˛/' HF.cHF.M/;L0
˛/. Conversely, ifK � S3 and we understand

both sets of differentials on bHFK.K/, we can reconstruct cHF.MK/.

Since cHF.M/ is compact, the pairing HF.cHF.M/; L0
˛/ can still be computed by

taking the minimal number of intersections between the two curves. By way of comparison,
if L˛ is the compact line of slope ˛ in @M , then HF.cHF.M/;L0

˛/ Š cHF.M.˛//.
As in the previous section, we can understand the Alexander grading by passing to

the lift cHF.M; s/ � T
ı

M . For simplicity, we again restrict to the case where H1.M/ Š Z.
The Lagrangian L0

˛ is homeomorphic to an open interval, so the set of lifts to TM can be
labeled as L˛;i for i 2 Z. With an appropriate choice of labeling,

bHFK.K˛; i/ Š HF
�cHF.M/;L˛;i

�
:

From this perspective, the spectral sequences from bHFK.K˛/ to cHF.M.˛// arise
from the fact that if we push

S
i L

0
˛;i off of the preimage of z, we get ��1.L˛/. The fact

that there are two such sequences corresponds that we can push either to the left or to the
right. From a more algebraic point of view, as an object of the Fukaya category, ��1.L˛/ is
isomorphic to the filtered complex

� � �
�12
��! L0

˛;2

�12
��! L0

˛;1

�12
��! L0

˛;0

�12
��! L0

˛;�1

�12
��! L0

˛;�2

�12
��! � � �

whose associated grading is
L

i2ZL
0
˛;i .

3. Floer simple manifolds and the L-space gluing theorem

3.1. Floer simple manifolds
We say that Y is an L-space if Y is a rational homology sphere and dim cHF.Y;s/D 1

for each s 2 Spinc.Y /. Since �.cHF.Y;s/ D 1, this is as small as it can be, and L-spaces are
the closed manifolds with the simplest possible Floer homology. In this section, we discuss
the analogous notion for manifolds with torus boundary.

IfM is such a manifold, let Sl.M/ be the set of possible Dehn filling slopes onM .
Then Sl.M/ is naturally identified with the projective space on H1.@M I Z/. By choosing a
basis ofH1.M I Z/, we can identify Sl.M/ with the rational projective space QP 1. Let

L.M/ D
®
˛ 2 Sl.M/ j M.˛/ is an L-space

¯
be the set of L-space Dehn filling slopes ofM . With S. Rasmussen, we proved
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Theorem 3.1 ([49]). If @M Š T 2 and b1.M/ D 1, L.M/ is one of the following:

• the empty set,

• a single point

• a closed interval with rational endpoints in QP 1, or

• QP 1 n Œ`� where ` is the rational longitude.

Definition 3.2. Manifold M is Floer simple if L.M/ contains more than one element. In
this case we call L.M/ the L-space interval and write Lı.M/ for its interior.

IfM is Floer simple, cHF.M/ is easy to describe. If ˛ 2 Sl.M/, let n˛ D ˛ � ` and
consider the map p˛ W TM ! R=.n˛/ given by p˛.x/ D ˛ � x. For s 2 Spinc.M/, let M;s

be curve obtained by pulling cHF.M; s/ tight. Then we have:
Proposition 3.3 ([21]). ManifoldM is Floer simple with ˛ 2 Lı.M/ if and only if p˛ maps
M;s bijectively to R=.n˛/ bijectively for all s 2 Spinc.M/.

If M is Seifert fibered with b1 D 1, then M is Floer simple, and the class of the
fiber slope is in Lı.Y /. But many hyperbolic 3-manifolds are Floer simple as well. In [12],
Dunfield studied Burton’s census [9] of all 59,068 1-cusped hyperbolic 3-manifolds which
have b1 D 1 and admit an ideal triangulation with 9 or fewer tetrahedra. He found that 50,598
of them were Floer simple and 8,352 were not, leaving only 118 where he was unable to
decide. It is natural to ask if the condition of being Floer simple has any geometrical meaning.
By applying the fibration detection theorem of Ni [41], it is easy to see

Proposition 3.4. IfM is a Floer simple manifold withH1.M/Š Z, thenM fibers over the
circle.

Conversely, we could ask if there is a geometric characterization of a themonodromy
of a fibered Floer simple manifold. To make the question precise, write Modg;1 for the map-
ping class group of a genus g surface with one puncture. For � 2 Modg;1, let M� be the
mapping torus of �, and define F �g D ¹� 2 Modg;1 j M� is Floer simpleº.

Question 3.5. Describe F �g as a subset of Modg;1.

When g D 1, Mod1;1 Š SL2.Z/. Using Baldwin’s work on the Floer homology of
genus-one fibered manifolds [5], it is not difficult to see that

F �1 D
®
A 2 SL2.Z/ j trA � 1

¯
:

In other words,A 2 SL2.Z/ is a Floer simple monodromy ifA is elliptic or negatively hyper-
bolic or parabolic, but not if A is positively parabolic or hyperbolic. For g > 1, virtually
nothing is known. It would be interesting to know if g D 1 is typical (in the sense that F �g

forms a large subset of Modg;1) or atypical (in the sense that F �g is relatively sparse.)
In another direction, ifM is Floer simple, L.M/ forms a distinguished interval in

the circle of slopes. If we know a single point ofLı.M/, the entire interval can be determined
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from the Turaev torsion ofM [49], but from a purely homological perspective, it is difficult to
say anything aboutL.M/. We have a distinguished slope given by the homological longitude
` which is not contained in L.M/, but otherwise Sl.M/ looks quite homogenous. If M
is Seifert fibered, then the fiber slope is a distinguished element of L.M/. When M is a
1-cusped hyperbolic manifold, there is also a lot more geometry available: the hyperbolic
metric on M naturally induces a flat metric (the cusp metric) on @M or, equivalently, on
H1.@M/, and we can talk about shortest geodesics, length of curves, the degeneracy slope,
etc.

Question 3.6. If M is hyperbolic, can L.M/ be related to the geometry of the induced
metric on the cusp?

In this direction, there is an interesting unpublished observation of T. Brown, who
pointed out that for many (but not all) manifolds in Burton’s census, `? (the slope orthogonal
to the homological longitude with respect to the cusp metric) is contained in L.M/.

3.2. L-space gluings
Our work on the immersed curve picture for Floer homology arose out of earlier

attempts [23,49] to understand the L-space conjecture of Boyer–Gordon–Watson and Juhász.
This conjecture posits a surprising relation between Heegaard Floer homology and the fun-
damental group. To be precise, we say that a nontrivial group G is left orderable if there is
a total order < on G satisfying gx < gy whenever x < y. (By convention, the trivial group
is not left orderable.)

Conjecture 3.7 (The L-space conjecture [7,31]). If Y is prime, the following statements are
equivalent:

• Y is an not an L-space,

• �1.Y / is left-orderable,

• Y admits a coorientable taut foliation.

The notion of the L-space interval, along with similar sets for fibered and non-left
orderable fillings, was first introduced by Boyer and Clay [6], who used it to study the L-space
conjecture for graph manifolds. Building on their work, we proved

Theorem 3.8 ([20,50]). The L-space conjecture holds for graph manifolds.

There are two independent proofs of this theorem—one of them by S. Rasmussen
[50], and the other by Hansel, Watson, and Rasmussen.2 Based on their work, we conjectured
the following L-space Gluing Theorem, which was proved in [21].

Theorem 3.9. Y DM1 [T 2 M2 is an L-space if and only if Lı.M1/[ Lı.M2/D Sl.T 2/.
(In particular, if Y is an L-space, bothM1 andM2 must be Floer simple.)
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When M1 and M2 are Floer simple, partial results in this direction were obtained
in [23, 49], but the proof of the full result relies in an essential way on Theorem 1.3. As a
corollary, we were able to reprove the following result of Eftekhary:

Corollary 3.10 ([14]). An L-space homology sphere cannot contain an incompressible
torus.

4. Links, satellites, and sutures

The results of Theorem 1.3 can be extended without much difficulty to describe a
broad class of manifolds with sutured boundary. We describe an application of this method
to the knot Floer homology of satellite knots.

4.1. Sutured manifolds
Sutured Floer homology is a very important variant of Heegaard Floer homology

introduced by Juhasz [30]. A balanced sutured manifold is a compact, oriented 3-manifold
with boundary, together with a multicurve  (the suture) which divides @M into two parts
RC and R� such that (a) �.RC/ D �.R�/ and (b) each component of @M contains at least
one component of  . If .M; / is a balanced sutured manifold, its sutured Floer homology
SFH.M; / is a vector space over Z=2.

Both cHF and bHFK appear as special cases of SFH. If .Y; z/ is a connected, pointed
3-manifold, we define Y.1/ � Y to be the complement of a small ball in centered at z, and
let  � @Y be a simple closed curve on @Y . Then SFH.Y.1/; / Š cHF.Y /. More generally,
if Y.n/ is the analogous manifold where we remove n balls, we have

SFH
�
Y.n/; 

�
Š cHF.Y /˝H�.S1/˝n:

Similarly, if K � Y has meridian �, we letMK � Y be the exterior of K and define � to
be two parallel copies of � in @MK . Then SFH.MK ; �/ Š bHFK.K/.

Zarev [55] extended the framework of bordered Floer homology to the class of bor-
dered sutured manifolds. Such a manifold consists of a compact oriented 3-manifold M
together with a decomposition @M D F [R, where F is the bordered (or glueable) part of
the boundary, and R is sutured, that is, it is equipped with a multicurve  which divides R
into two parts RC and R�. We do not impose a condition on the Euler characteristic of R˙,
but do require that each boundary component of R intersects both RC and R�.

Following Auroux, Zarev’s bordered sutured Floer homology can be interpreted as
defining an object in a partially wrapped Fukaya category of Symk.F / for some k, where
the set of stops used to define the wrapping is determined by the set of intersections of RC

with @R. The usual bordered Floer homology corresponds to the special case where R is a
small disk centered at z which is divided in half by a single arc.

Suppose thatF is a once punctured torus.WhenRC intersects @F in a single interval
and �.RC/ D �.R�/, the bordered sutured Floer homology can be interpreted as an object
of the partially wrapped Fukaya category of (a covering space of) F . Rather than discussing
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this situation in generality, we will focus on a special case. Suppose that @M ' T 2
a [ T 2

b
,

and giveM the bordered sutured where R D R� consists of all of T 2
b
, equipped with a pair

of parallel sutures of slope �, together with a disk in T 2
a which is divided in half by a single

suture. Then we have

Proposition 4.1. The pair .M;R�/ determines cHF.M;R�/, which is a compactly supported
object of F .T 2

a � z/. As in the closed case, cHF.M; R�/ can be represented by a union of
immersed closed curves equipped with local systems.

Zarev’s gluing theorem [55] then implies that ifM 0 is amanifoldwith torus boundary
and � W T 2

a ! @M is an orientation reversing diffeomorphism, then

HF
�cHF.M 0/; cHF.M;R�/

�
Š SFH.M 0

[� M;�/˝H�.S1/: (4.1)

The extra factor of H�.S1/ appears because the sutured manifold obtained by gluing
.M; R�/ and .M 0; Rz/ together has three boundary components—there is an extra bubble
in the middle coming from the two sutured disks. To get M 0 [� M without the bubble,
we would need to use a bordered sutured manifold .M.�/; R�;�/ which is constructed by
choosing a framed path � from a point on � to z, removing a tubular neighborhood of �,
and using the framing to extend the sutures over the boundary of the tubular neighborhood.
The difference between .M;R�/ and .M.�/;R�;�/ is illustrated in Figure 6.

Figure 6

The bordered sutured manifolds .M;R�/ (on the left) and .M.�/;R�;�/ (on the right). The left- and right-hand
faces of the cubes are part of the boundary ofM . All the other faces are in the interior ofM .

4.2. Link complements
We now specialize to the situation whereM DML is the exterior of a 2-component

link L � S3, and � D �2 is the meridian of the second component of L. (We label the
meridians and longitude of Li by �i ; �i .) Let .ML; �1;�2/ be the sutured manifold with
meridinal sutures on both boundary components. Then

SFH.ML; �1;�2/ D bHFL.L/
is the link Floer homology defined by Ozsváth and Szabó in [45]. In the same way that we
can compute cHF.MK/ from bHFK.K/ (and the differentials on it) when K is a knot in S3,
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we can compute cHF.ML; R�2/ from bHFL.L/ (and the differentials on it) when L2 is the
unknot in S3.

We will describe some examples, but before doing so, we pause to discuss Spinc

structures and lifts. As before, the Floer homology decomposes ascHF.ML; R�/ D

M
s2Spinc.ML;R�/

cHF.ML; R�; s/:

Here Spinc.ML; R�/ is an affine set modeled on coker ia�, where ia� W �1.F / ! H1.ML/.
It is easy to see that coker ia� Š Z=n, where n is the linking number of L. Also as before,cHF.ML; R�; s/ lifts to the covering space T

ı

M of T ı
M WD F given by �1.TM / D ker ia�.

Note that T ı

M is also determined by the linking number: it is the universal abelian cover of
T ı

M if n ¤ 0, but an infinite punctured cylinder if n D 0.

Figure 7

Curves when L is the Hopf link: bHF.ML; R�/ (left) and bHF.ML.�/; R�;�/ (right).

Example 4.2. If L is the Hopf link, thenML D T 2 � I . The linking number is 1, so there
is a unique Spinc structure and TM is the universal abelian cover of TM ; cHF.ML;R�/D 1

is shown on the left-hand side of Figure 7. In this case there is a canonical choice of the
path �, namely z � I . With this choice, cHF.ML.�/; R�;�/ D 2 is shown on the right. The
vector defined by the line segment is �1 D �2 (the homology class of the suture.) Note that
1 is obtained by “inflating” 2 to form a figure-eight. It is not hard to see that HF.; 1/ D

HF.; 2/˝H�.S1/ for any closed curve  , as predicted by equation (4.1).

Example 4.3. If L is the .2; 4/ torus link, the linking number is 2, and there are 2 distinct
Spinc structures. In each case cHF.ML; R�; s/ consists of a single figure-eight obtained by
inflating a line segment. In one Spinc structure the segment represents the vector �1, and in
the other it represents the vector �1 C �1.

Example 4.4. IfL is the positive Whitehead link, the linking number is 0, so we have Spinc

structures si for i 2 Z. In s˙1, we have a single figure-eight representing �1, while in s0,
we have two figure-eights representing �1 C �1 and �1, respectively.

More generally, the we can make the same calculations whenL is a 2-bridge link. In
this case, both components of L are unknots (so we are in the situation where can compute
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cHF.M;R�/ from bHFL.L/), and L is alternating, so bHFL.L/ can be computed by a theorem
of Ozsváth and Szabó. We deduce:

Theorem 4.5. IfM is the complement of a 2-bridge link L, then cHF.ML; R�/ is a collec-
tion of figure-eights determined by the multivariable Alexander polynomial, signature, and
linking number of L.

We expect that in this case there should be a natural choice of curve � for whichcHF.ML.�/;R�;�/ is a collection of line segments which are the “cores” of the figure-eights
in cHF.M;R�/.

4.3. Satellites
SupposeL� S3 is a 2-component link, whereL1 is the unknot. IfC � S3 is a knot,

we choose � W @ML1 ! @MC with ��.l1/D�C and ��.�1/D �C ThenMC [� ML1 Š S3,
so the image of L2 in this union is knot in S3. It is called the satellite knot C.P /, where C
is the companion and P WD L2 is the pattern.

There is a well-known formula for the Alexander polynomial of a satellite,

�C.P /.t/ D �C .t
n/�P .t/;

where n is the winding number of P (its homology class in the solid torus) and �P .t/ is
the single-variable Alexander polynomial of P � S3. It is thus very natural to ask whether
there is a formula for the knot Floer homology of C.P /.

The knot Floer homology of satellites has been studied extensively, starting with the
work of Eftekhary [13] and Hedden [25, 26], and including important contributions by Hom
[28] and Levine [37]. More recently, Chen [10] gave a very interesting method for computing
bHFK.K.P // when P is a component of a 2-bridge link.

The method described above gives an alternate approach to the same problem.
From equation (4.1) above, it is clear that to compute bHFK.C.P //, it suffices to understandcHF.ML; R�/. Hence if L is a 2-bridge link, Theorem 4.5 implies that there is a formula for
bHFK of the satellite, in the sense that there is a finite set of slopes ˛i 2 Sl.MK/ such that

bHFK�
C.P /

�
Š

M
i

bHFK.K˛i
//:

The slopes ˛i are determined by the multivariable Alexander polynomial, signature, and
linking number of L.

Chen’s method also makes use of the curve invariant cHF.MK/, but in a rather dif-
ferent way. (For example, he is able to compute �.C.P //, which the method above does not
allow us to do.) It would be interesting to understand how the two approaches are related.

Ideally, one would like to compute the full curve invariant cHF.MC.P / rather than
just the knot Floer homology. It is unknown how to do this in general, but Hanselman and
Watson have given a very beautiful description of how to do this for cables [24].
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5. Further developments and questions

5.1. Tangles
There are other situations in which Zarev’s bordered Floer sutured homology gives

an invariant which lives in the Fukaya category of a surface. One of the most interesting
invariants corresponds to the case of 2-strand tangles. This situation has been studied by
Zibrowius, who proved

Theorem 5.1 ([58]). If T is a 2-strand tangle in B3, then there is a well-defined invariant
bHFT.T / which takes the form of a collection of immersed closed curves with local systems
in the 4-punctured sphere. If L D T1 [ T2, where T1 and T2 are such tangles, then bHFL.L/
can be computed by pairing the curves bHFT.T1/ and bHFT.T2/.

Other tangle invariants analogous to bordered Floer homology have been developed
by Ozsváth and Szabó [46] and Petkova and Vertesi [47].

Unlike the case of a manifold with torus boundary (where relatively few restrictions
on the form of the curve invariant are known), Zibrowius was able to prove some very strong
constraints on the form of the curves that appear in bHFT.T /. This enabled him to answer
a long-standing question about the effect of mutation on the total dimension of knot Floer
homology.

Theorem 5.2 ([57]). If K1 and K2 are mutant knots, then dim bHFK.K1/ D dim bHFK.K2/.

More recently, Kotelskiy, Watson, and Zibrowius have introduced some similar
interpretations of the Khovanov homology of a 4-ended tangle T [33]. At the level of
polynomials, the Jones polynomial of a 4-ended tangle is not so different from its sl.n//
HOMFLY-PT polynomial. (Both live in 2-dimensional vector spaces.) Hence it is natural to
ask:

Question 5.3. Can the sl.n/ homology of a 4-ended tangle be interpreted as a curve invari-
ant?

5.2. Cobordisms and extended TQFTs
Although we have not discussed it here, cHF fits into the structure of a (relative)

3C 1 dimensional TQFT, as established by Zemke [56]. A cobordism .W; �/ W .Y0; z0/ !

.Y1; z1/ induces a map FW;� W cHF.Y0; z0/ ! cHF.Y1; z1/. It is an important foundational
problem to show that the structure of bordered Floer homology can be extended to give a
(pointed) extended TQFT, so that we associate a categoryA.†; z/ to a pointed surface†, an
object of that category A.M; z/ to a pointed 3-manifoldM with @M Š †, and a morphism
A.M0; z/! A.M1; z/ to a cobordism with cornersW WM0 !M1. The lower-dimensional
parts of this structure have already been established by Lipshitz–Ozsváth–Thurston, and it is
not difficult to understand what the cobordism maps should be. The real work is in showing
that they are well defined and satisfy an appropriate gluing theorem.
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5.3. HF�

For closed 3-manifolds, cHF is part of a larger package that also includes the equiv-
ariant homologies HFC and HF�. One might hope to understand what these invariants mean
for a manifold with torus boundary. Lipshitz, Ozsváth, and Thurston are in the process of
developing a bordered theory for HF� (see [40] for a first installment), and it will be inter-
esting to see whether and how this can be interpreted in terms of curves and the Fukaya
category. Some ideas for knot Floer homology have already been developed by Hanselman.
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Homological stability has shown itself to be a powerful tool for the computation of homo-
logy of families of groups such as general linear groups, mapping class groups, or auto-
morphisms of free groups. We survey here tools and techniques for proving homolog-
ical stability theorems and for computing the stable homology, and illustrate the method
through the computation of the homology of Higman–Thompson groups.
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1. Introduction

Homology is an invariant that comes in many flavors. We will here mostly be con-
cerned with group homology, but the story we will tell can be told in other contexts as well.
Like many invariants, while easy to define, homology is often difficult to compute. What
homological stability has shown to us over the years is that in some situations, it is easier to
compute infinitely many homology groups at once than computing a single one by itself. We
will in this paper illustrate this through examples, and try to give the reader a sense of how
to do homological computations using stability methods, and a sense of when such methods
are likely to work.

Many mathematical objects come in families. We will here be interested in fami-
lies of groups like the symmetric groups †n, the braid group Bn, the general linear groups
GLn.R/ over a ring R, or automorphism groups Aut.Fn/ of free groups. These examples
are more than collections of groups: they all have an additional structure in the form of maps

˚ W †n � †m ! †nCm;

˚ W Bn � Bm ! BnCm;

˚ W GLn.R/ � GLm.R/ ! GLnCm.R/;

˚ W Aut.Fn/ � Aut.Fm/ ! Aut.FnCm/;

by “block sum” of permutations, braids or matrices, or juxtaposition of automorphisms.
Another important flavor of example for us will be families of mapping class groups of
surfaces or 3-manifolds with sum ˚ an appropriate boundary connected sum.

Taking m D 1 in the above and evaluating the maps ˚ at the identity element in
†1; B1;GL1.R/, or Aut.F1/ gives sequences of groups

†1 ! †2 ! †3 ! � � � ;

B1 ! B2 ! B3 ! � � � ;

GL1.R/ ! GL2.R/ ! GL3.R/ ! � � � ;

Aut.F1/ ! Aut.F2/ ! Aut.F3/ ! � � � :

We are here interested in the following property of such sequences of groups:

Definition 1.1. A sequence of groups G1 ! G2 ! � � � satisfies homological stability if the
associated sequence of homology groups

Hi .G1/ ! Hi .G2/ ! Hi .G3/ ! � � � (1.1)

is eventually constant for each i , that is, if Hi .Gn/
Š
�! Hi .GnC1/ for n large enough with

respect to i .

Unless explicitly otherwise stated, homology here means homology with integral
coefficients,H�.�/ D H�.�IZ/. Typical stability bounds are linear, of the form n � ki C a,
for k the slope of stability.

Definition 1.1 clearly makes sense in other contexts, with the groups and group
homology replaced by some other type of object and associated homology theory. Much of
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what we will present here is known to generalize to sequences of spaces, and, to some level,
sequences of algebras. We will focus here on the case of groups for simplicity, and because
it is already very rich.

All the examples of families of groups mentioned above are known to satisfy homo-
logical stability. In the 1960s, Nakaoka computed the homology of the symmetric groups
†n in [53] and observed that

Hi .†n/
Š
�! Hi .†nC1/ for i �

n

2
:

Arnold computed in [1] that the same holds for the homology of the braid groups, and around
the same time Quillen, interested in algebraic K-theory [59] (see also [66]), showed, for exam-
ple, that, for a field F ¤ F2,

Hi

�
GLn.F/

� Š
�! Hi

�
GLnC1.F/

�
for i � n:

Harer showed in the 1980s that also mapping class groups of surfaces satisfy homological
stability [29], a result that was extended to nonorientable surfaces by the author [71]. For the
automorphisms of free groups, the first proof goes back toHatcher [30], while Hatcher and the
author proved a very general stability theorem for mapping class groups of 3-manifolds [34]:
ifM;N are any orientable 3-manifolds such that @M ¤ ;, then the map �0Diff.M#N #n/ !

�0 Diff.M#N #nC1/ extending diffeomorphisms by the identity on the added summand N ,
induces an isomorphism on Hi for i �

n�2
2
. And many more stability results for families of

groups are known!

Quillen’s stability argument. Quillen devised a strategy for proving homological stabil-
ity using a spectral sequence associated to the action of the groups on appropriate spaces:
To apply Quillen’s strategy to a family of groups ¹Gnºn�0, one needs to find a family of
simplicial objects ¹Wnºn2N , with Gn acting on Wn, satisfying (roughly) the following:

(1) the action is transitive on vertices, and has “manageable” sets of orbits of
p–simplices for every p;

(2) the stabilizer of a p-simplex is a previous group in the sequence, e.g., Gn�p�1;

(3) each Wn is highly connected.

From this data, one can construct a spectral sequence with E1-term

E1
p;q D

M
�p

Hq

�
Stab.�p/I Z�

�
;

where the sum runs over representatives of the orbits of p-simplices �p in Wn. The spectral
sequence, together with conditions (1)–(3) and a few minor additional assumptions, allows
then for an inductive argument. (See Section 2.2 for some more details.)

Variants and extensions of this strategy have been applied in a variety of contexts. In
addition to the examples already mentioned, stability has been shown using this strategy for
GLn.R/ for many rings R [44,69], for other classical groups like symplectic groups, orthog-
onal groups, unitary groups, see, e.g., [9,52,64,70], and many other groups. The strategy was
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also adapted to prove homological stability for moduli spaces of manifolds and configuration
spaces [26,56,62], or for certain families of algebras [6,37]. So many stability theorems have
been proved using this method that it is difficult to mention them all.

Stable homology. Let

G1 WD

1[
nD1

Gn D colim
n!1

Gn

be the limit of the sequence of groups. Homological stability can be reformulated as saying
that the map Gn ! G1 induces an isomorphism

Hi .Gn/
Š
�! Hi .G1/

in an increasing range of degrees i � b.n/ for b.n/ a bound depending on n. The limit homol-
ogy H�.G1/ is called the stable homology. The power of homological stability comes from
the fact that often the stable homology is easier to compute because it most often belongs
to the world of spectra, where methods of homotopy theory come into play. We give here
known stable computations for the examples of families of groups described above.

The Barratt–Priddy–Quillen theorem identifies the stable homology H�.†1/ of
the symmetric groups with that of the basepoint component �1

0 S of the infinite loop space
of the sphere spectrum S. Galatius showed that the same holds for the stable homology of
automorphisms of free groups. Combining these results with the best known homological
stability ranges gives

Theorem 1.2 ([2,20,31,53]). For all i �
n
2
, Hi .†n/ Š Hi .�

1
0 S/ Š Hi .Aut.FnC3//.

A direct consequence is that the stable rational homology of Aut.Fn/ is trivial. The
result also gives that the inclusion †n ,! Aut.Fn/ induces a homology isomorphism in the
range i �

n�3
2
, a fact we only know through the above stable homology computation.

For the braid groups Bn, the corresponding result is

Theorem 1.3 ([1,12]). For all i �
n
2
, Hi .Bn/ Š Hi .�

2
0S2/.

F. Cohen completely computed homology of the right-hand side, see [12, Paper III,

App A], yielding a full computation of the stable homology of the braid groups.
For GLn.R/, the relevant spectrum is the K-theory spectrum, and here the flow of

information has gone the other way around compared to the above examples: In the case
where R D Fpr is a finite field, the homology H�.GL.Fpr /I F`/ was completely computed
by Quillen for any prime ` ¤ p, a computation he used to deduce information about the
K-theory spectrum [60]. When ` D p, only the stable homology is fully known:

Theorem 1.4 ([21, 59, 60, 66]). 1 Hi .GLn.Fpr /I Fp/ D 0 for all i � n C r.p � 1/ � 3 if
pr ¤ 2, and for all i < 2n�2

3
if pr D 2.

A similar result holds for symplectic, orthogonal, and unitary groups, see [18,66].

1 Note that the paper [21] uses a different stability method than Quillen’s, see Section 3.
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For mapping class groups of surfaces, the stable homology was computed by
Madsen andWeiss, in a breakthrough work that lead to much progress in manifold topology:
Denoting by †g;b an orientable surface of genus g with b boundary components, and by
Sh;b a nonorientable surface of genus h with b boundary components, and combining the
Madsen–Weiss theorem with the best known ranges for homological stability, as well as the
unoriented versions of these theorems, we have

Theorem 1.5 ([4,46,62,71]).

Hi

�
�0 Diff.†g;b/

�
Š Hi

�
�1

0 MTSO.2/
�
; i �

2g � 2

3
;

Hi

�
�0 Diff.Sh;b/

�
Š Hi

�
�1

0 MTO.2/
�
; i �

h � 3

3
:

Here MTSO.2/ or MTO.2/ are the Thom spectra of the orthogonal bundle to the
universal bundle over the Grassmannian of oriented or nonoriented 2-planes in R1, respec-
tively. A direct consequence is that the stable rational homology of these groups are the
polynomial algebras QŒ�1; �2; : : : � and QŒ�1; �2; : : : �, respectively, where j�i j D 2i and
j�i j D 4i . In the oriented case, this rational computation had been a conjecture of Mum-
ford. This result was generalized to higher dimensional manifolds of even dimension by
Galatius and Randal-Williams [25, 26] and to odd-dimensional handlebodies by Botvinnik
and Perlmutter [5, 57]. This has since been used to compute, e.g., homotopy groups of the
diffeomorphisms of discs, or give a totally new approach to pseudoisotopy theory [40,42].

In Section 4, we will explain such a theorem for the Higman–Thompson groups, see
Theorem 4.1, which computes, as a corollary, the full homology of Thompson’s group V .
And we will explain in Section 3 why one should not be surprised to see double or infinite
loop spaces in the above statements.

Content of the paper. In this article, we want to address the following questions:

(1) When can one expect that homological stability holds?

(2) How does one find appropriate Gn-space for Quillen’s stability argument?

(3) How does one compute the stable homology?

Let us though make clear from the start that we will, of course, not give full answers to any
of the three questions.

A priori one only needs a sequence of groups G1 ! G2 ! � � � to talk about homo-
logical stability. Following the article [63] and its generalization [39], Sections 2 of the present
paper shows that having the additional data of a “block sum,” as exhibited above for the
groups †n; Bn;GLn.R/, or Aut.Fn/, is enough input to run Quillen’s argument in the fol-
lowing sense: in Section 2.1, we construct a canonical space of destabilizations Wn when
the sum operation is braided, and Theorem 2.9 in Section 2.2 states that homological sta-
bility holds whenever these spaces are sufficiently connected. In Section 2.3, we explain
how homological stability with abelian and polynomial coefficients automatically also holds
under the same assumption, see Theorems 2.12 and 2.13.
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In Section 3 we will see that the braiding forces the stable homology, through the
“group completion theorem,” to be that of a double loop space, or an infinite loop space
when the braiding is a symmetry.

In Section 4, we will then explain how all these ideas were used in [68] to show that
the homology of Thompson’s group V is trivial, via a stability theorem and stable computa-
tion for the more general Higman–Thompson groups.

The article ends with a short section addressing the wider perspective.

2. A general framework for Quillen’s stability argument

In this section, we describe a framework in which Quillen’s strategy for proving
homological stability can always be implemented.

Recall that a groupoid G is a category whose morphisms are all invertible. Amonoi-
dal groupoid is a groupoid G equipped with a sum

˚ W G � G ! G

that is associative and unital. It is braided if it is in addition equipped with an isomor-
phism �A;B W A ˚ B ! B ˚ A for every pair of objects, satisfying the braid identity
�A;B�A;C �B;C D �B;C �A;C �A;B W A ˚ B ˚ C ! C ˚ B ˚ A and such that

A ˚ B
�A;B

//

f ˚g

��

B ˚ A

g˚f

��

C ˚ D
�C;D

// D ˚ C

commutes whenever it is defined, see, e.g., [45]. The groupoid is symmetric monoidal if the
braiding squares to the identity.

There are many examples of braided and symmetric monoidal groupoids. Stan-
dard examples of interest to us are the groupoid of sets with disjoint union, the groupoid of
R–modules with direct sum, the groupoid of groups with free or direct product, the groupoid
of vector spaces equipped with a symplectic or Hermitian form with the direct sum, or the
groupoid of manifolds of a given dimension with an appropriate connected sum operation.
Each of these examples are actually the groupoid of isomorphisms in a braided or symmetric
monoidal category. For us only the isomorphisms will play a role.

From groups to groupoids. If we start with a family of groups ¹Gnºn2N and defined
G D

`
n Gn to be the groupoid with objects the formal sums X˚n for n 2 N of a generating

objectX , and only nontrivial morphismsGn WDAutG .X˚n/, then amonoidal structure onG ,
extending the sum in N, is the data of an associative “sum” operation Gn � Gm

˚
�! GnCm,

and a braiding is the data of a homomorphism � W Bn ! Gn from the braid group, such that
the block braid bn;m satisfies that �.bn;m/.g ˚ g0/�.bn;m/�1 D g0 ˚ g for each g 2 Gn and
g0 2 Gm (see Figure 1). The groupoid is symmetric precisely if the homomorphism � factors
through the symmetric group †n.
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Figure 1

Block braid b3;2.

For example, applying this construction to the symmetric groups ¹†nºn2N with
the block sum of permutations yields the following: the objects are the natural numbers,
where we can think of n as representing a set Œn� with n elements, and the automorphism
group of Œn� is †n. As Œn C m� Š Œn� t Œm�, we see that the monoidal sum corresponds
to the disjoint union of sets. The resulting groupoid is a skeleton of the groupoid of finite
sets of Example 2.1 below. If we instead start with the general linear groups ¹GLn.R/ºn2N ,
we can think of the object n in the resulting groupoid as representing Rn D R˚n, whose
automorphism group is GLn.R/. The monoidal product then correspond to the direct sum
of R-modules, yielding a subcategory of the category of R-modules of Example 2.2 below.

From groupoids to groups. If we start instead with a monoidal groupoid G D .G ; ˚/, for
any two objects A; X in G , we get a sequence of groups G1 ! G2 ! � � � by setting

Gn D AutG
�
A ˚ X˚n

�
with

Gn D AutG
�
A ˚ X˚n

� _˚idX
����! GnC1 D AutG

�
A ˚ X˚n

˚ X
�
:

We think of Gn as the automorphism group of “A stabilized n times in the X direction.”

Example 2.1. LetG DSetsiso denote the groupoid of finite sets and bijections, withmonoidal
structure ˚ D t given by disjoint union. It is a symmetric monoidal groupoid with the sym-
metry the standard bijection A t B

Š
�! B t A. Taking A D ; and X D ¹�º in the above

yields Gn D †n the symmetric group on n letters, with †n ! †nC1 the standard inclusion
as the subgroup of permutations fixing the last element.

Example 2.2. Let R be a ring and let G D R–Mod denote the groupoid of R-modules
and their isomorphisms, with monoidal product the direct sum ˚ of modules. This is
again a symmetric monoidal groupoid with symmetry given by the standard isomorphism
M ˚ N

Š
�! N ˚ M . Taking A D 0 and X D R, we get Gn D GLn.R/, the automorphism

group of the module R˚n, with the map GLn.R/ ! GLnC1.R/ adding a 1 in the bottom
corner of the matrix. If we take A to be any R-module, the group Gn D GL.A ˚ R˚n/ is
the automorphism group of the module A stabilized n times.

Example 2.3. Let G D Groupsiso be the groupoid of groups with free product as monoidal
structure. This is again a symmetric monoidal groupoid with symmetry the natural isomor-
phism G � H ! H � G. If we take A D hei to be the trivial group and X D Z, we get
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Gn DAut.Fn/, the already considered automorphism group of the free groupFn. ForA D H

and X D G any group, the group Gn D Aut.H � G � � � � � G/ is the automorphism group
H free product with n copies of G, whose stability is studied in [13,34].

Modules over monoidal groupoids. Let G D .G ; ˚/ be a monoidal groupoid. A category
C is a right module over G if C is equipped with a unital and associative action

C � G
˚
�! C

of G . (See [39, Sect. 7.1].) Taking A 2 C and X 2 G , we can again define Gn D

AutC .A ˚ X˚n/, and this yields just as above a sequence of groups G1 ! G2 ! � � �

with the map _ ˚ idX W Gn ! GnC1 adding the identity on the extra copy of X .
The sequence of groups Gn obtained above from a monoidal groupoid G only is the

special case when C D G , considering G as a module over itself. Most of our examples will
be of that form, but there are examples from, e.g., manifolds [26,34], or Coxeter groups [36],
that require the more general setup of a module over a groupoid. (See also [39] for examples
in the context of homological stability for topological spaces.)

2.1. The space of destabilizations
Recall from the introduction that to apply Quillen’s strategy for proving homologi-

cal stability, one needs for each n a simplicial object Wn on which the group Gn acts, with
appropriate transitivity, stabilizer, and connectivity properties. The spacesWn used in homo-
logical stability are most typically one of three types: simplicial complexes, (semi)simplicial
sets, or posets. We will here only discuss spaces of the first two types.

Ad hoc simplicial objects Wn associated to families of groups Gn have been defined
in very many situations to prove stability statements; in fact, most homological stability the-
orems for families of groups have been so far proved using Quillen’s strategy. Following [63]

and its generalization [39], we construct here the smallest such semisimplicial set Wn for any
family of groups of the form Gn D AutC .A ˚ X˚n/ arising as above from the action of a
braided monoidal groupoid G on a groupoid C ; the definition of the face maps in Wn will
use the braiding of G . We also define an associated simplicial complex Sn.

Fix C a module over a braided monoidal groupoid G , with A an object of C , and X

an object of G as above.

Definition 2.4 ([63, Def. 2.1], [39, Def. 7.5]). The space of destabilizations Wn.A; X/� is the
semisimplicial set with set of p-simplices

Wn.A; X/p D
®
.B; f / j B 2 Ob.C/ and f W B ˚ X˚pC1

! A ˚ X˚n in C
¯
=�

where .B; f / � .B 0; f 0/ if there exists an isomorphism g W B ! B 0 in C satisfying that
f D f 0 ı .g ˚ idX˚pC1/. The face map di W Wn.A; X/p ! Wn.A; X/p�1 is defined by
di ŒB; f � D ŒB ˚ X; di f � for

di f W B ˚ X ˚ Xp
idB ˚b�1

X˚i ;X
˚id

X˚p�i

��������������! B ˚ X˚i
˚ X ˚ X˚p�i f

��! A ˚ X˚n;

for b�1
X˚i ;X

W X ˚ X˚i ! X˚i ˚ X coming from the braiding in G .
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The group Gn D AutC .A ˚ X˚n/ acts on Wn.A; X/� by postcomposition. The
following holds for the action:

(local cancelation) If Y ˚ X˚pC1
Š A ˚ X˚n

H) Y Š A ˚ X˚n�p�1;

then Gn acts transitively on Wn.A; X/p: (2.1)

(injectivity) If the stabilization Gn�p�1 ! Gn taking f to f ˚ idXpC1 is injective,

then there is an isomorphism Gn�p�1 Š Stab.�p/ for of any p-simplex �p:

(2.2)

A direct consequence is that, under these two mild conditions on the G -module C , the set of
p-simplices Wn.A; X/p of the space of destabilizations is isomorphic to Gn=Gn�p�1. As
we will see in Section 4 in an example, local cancelation can actually be forced by changing
the definition of C and G , declaring in particular A ˚ X˚n and A ˚ X˚m for n ¤ m to be
nonisomorphic. If the second condition is not satisfied, Wn.A; X/ needs to be replaced by a
semisimplicial space in Quillen’s argument, see [39, Sect. 7.3].

Remark 2.5. In the case of a groupoid G D C acting on itself, the set of p-simplices of
Wn.A; X/ can be interpreted as the set of morphisms from X˚pC1 to A ˚ X˚n in a cate-
gory hG ; G i constructed from the action, see Appendix A. The face maps are then given by
precomposition with standard morphisms X˚p ! X˚pC1 in that category.

From Wn.A; X/, one can also define a simplicial complex Sn.A; X/ as follows:

Definition 2.6. Let Sn.A;X/ be the simplicial complex with the same vertices asWn.A;X/.
A set of vertices ¹x0: : : : ; xpº spans a p-simplex in Sn.A; X/ if and only if they are the
vertices of a p-simplex of Wn.A; X/.

We will see in Section 2.2 that it is often equivalent, and more convenient, to work
with Sn.A; X/ instead of Wn.A; X/ for connectivity questions.

Example 2.7. As in Example 2.1, consider .G ; ˚/ D .Setsiso; t/ the symmetric monoidal
groupoid of finite sets, seen as amodule over itself, withA D ; andX D ¹�º, givingGn D †n

the symmetric group. A p-simplex ŒB; f � of Wn.;; ¹�º/ is determined by the restriction of
the bijection f W B t Œp C 1� ! Œn� to Œp C 1�. So a p-simplex of Wn.;; ¹�º/ is an ordered
tuple of p C 1 elements of Œn� D ¹1; : : : ; nº. The i th boundary map forgets the .i C 1/st
element. This semisimplicial set is known as the complex of injective words, and it is known
to be .n � 2/-connected [17] (see also [63, Sect. 5.1]). The simplicial complex Sn.;; ¹�º/ has
the same vertices as Wn.;; ¹�º/, namely the elements of Œn�, and p C 1 such elements form
a simplex in Sn.;; ¹�º/ precisely when there exist an injective word in these letters, i.e., if
they are distinct. Hence Sn.;; ¹�º/ identifies with the .n � 1/-simplex �n�1.

Example 2.8. Let .G ; ˚/ D .R–Mod; ˚/ be the symmetric monoidal groupoid of
R-modules acting on itself, with A D 0 and X D R, giving Gn D GLn.R/ as in Exam-
ple 2.2. A p-simplex ŒB; f � in Wn.A; X/, with f W B ˚ RpC1 Š

�! Rn, is determined by
the pair .f .B/ < Rn; f jRpC1 W RpC1 ,! Rn/. The simplicial complex Sn.A; X/ thus has
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vertices pairs .H; f / with H < Rn and f W R ,! Rn so that Rn D H ˚ f .R/, and vertices
..H0;f0/; : : : ; .Hp;fp// form ap-simplex if together the maps .f0 ˚� � �˚fp/ WRpC1 !Rn

form an injective map with a complement H such that each Hi D H ˚
L

j ¤i fj .R/. This
complex is very closely related to complexes studied by van der Kallen [69] and Charney
[10] and is n�a

2
-connected for a a constant depending on the stable rank of R (see [63, Lemma

5.10]). The fact that simplices are not just split injective homomorphisms, but rather split
homomorphisms with a choice of complement H , makes the simplicial complex more intri-
cate to study, but it forces the stabilizer of a p-simplex to be exactly GL.H/, instead of an
affine version of the group, which would be the case if complements had not been chosen.

The simplicial complex Sn.A; X/ has appeared in the literature in many examples
long before it was defined in the above generality. Here are a few additional examples: for the
automorphisms of free groups Aut.Fn/, it is essentially the complex of split factorizations
of Hatcher and Vogtmann [32] (see [63, Sect. 5.2.1]), for mapping class groups of surfaces
with genus stabilization, this identifies with the tethered arc complex of the same authors
[33] (see [63, Sect. 5.6.3]), while the poset of simplices of Wn.A; X/ in the case of unitary
groups already appeared in [52] (see [63, Sect. 5.4]).

2.2. Homological stability
Let C be a module over a braided monoidal groupoid G as above, with A and X

objects of C and G , respectively. We have so far associated a sequence of groups
Gn D AutC .A ˚ X˚n/ to this data, together with a collection of associated Gn-spaces
Wn D Wn.A; X/ and Sn D Sn.A; X/. We will now use this as an input for Quillen’s strategy
for proving homological stability for the groups Gn. It turns out that Wn is best suited for
the spectral sequence argument.

The spectral sequence in Quillen’s argument is obtained as follows. Let E�Gn be
a free resolution of Z as a ZGn-module, and let QC�.Wn/ denote the augmented cellular
complex ofWn. Tensoring these two objects together, we get a first quadrant double complex

C�;� D E�Gn ˝Gn
QC�.Wn/:

Filtering C�;� in the first direction gives a spectral sequence whose E1-page is trivial in
a range under the assumption that Wn is highly connected, from which it follows that the
spectral sequence coming from filtering in the second direction must converge to zero in a
range. By transitivity of the action and Shapiro’s lemma, this latter sequence has E1-term

E1
p;q D Hq

�
Stab.�p/

�
Š Hq.Gn�p�1/

under the local cancelation and injectivity assumption of Section 2.1, where there are no
twisted coefficients because the stabilizer of a p-simplex in Wn always fixes the simplex
pointwise. This spectral sequence allows for an inductive argument. This argument has been
written in full details many places, see [63, Thm. 3.1] for the case where Wn is precisely the
complex of destabilization considered here, or, e.g., [34, Thm. 5.1] for a version adaptable to
more general simplicial objects Wn.
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Theorem 2.9 ([63, Thm. 3.1]). Let Gn D AutC .A ˚ X˚n/ for C ; G ; A and X as above sat-
isfying (2.1) and (2.2), and assume that for all n � 0, there is a k � 2 such that the space
Wn.A; X/ is n�2

k
-connected. Then the stabilization map

Hi .Gn/ ! Hi .GnC1/

is an isomorphism for i �
n�1

k
and a surjection for i �

n
k
.

Remark 2.10. The paper [63] has two additional assumptions on G : it should have no zero
divisors and the unit has no nontrivial isomorphisms, but, as pointed out by Krannich in [39,

Sect. 7.3], these two assumptions are not actually necessary. Indeed, these assumptions ensure
that AutG .A ˚ X˚n/ Š AutU G .A ˚ X˚n/ for U G D hG ; G i a certain category associated
to the groupoid G (see Section A), but in fact stability just holds for both groups whether
they are equal or not, with the same proof. The paper [63] also only formulates the result for
the case of G acting on itself, but the proof generalizes with no significant change, as noted
in [39].

Remark 2.11 (Stability slope). The slope k of stability given by the theorem depends on
the slope of connectivity of the spaces Wn.A; X/, though with the constrain that the best
possible slope is slope 2. This last restriction is due to the structure of the spectral sequence.
To obtain a better slope than slope 2 with the spectral sequence described here, one needs
additional information about the groups or differentials appearing in the spectral sequence;
such better slopes do not follow from a direct inductive argument.

It is an open question whether stability holds if and only if the spaces Wn.A; X/ are
highly connected, see [63, Conj. C].

Connectivity of buildings. Stability can only be proved using the above argument under
the condition that the spaces Wn (the above defined spaces of destabilizations or some other
appropriate buildings) are highly connected. This is a place where work that depends on
the groups in question comes in. Under mild conditions, the connectivity of Wn.A; X/ is
controlled by that of the associated simplicial complex Sn.A; X/, and Sn.A; X/ will also
typically be (weakly) Cohen–Macaulay, a very useful property in connectivity arguments,
see [63, Sect. 2.1].

There are a few general useful facts and tricks that are good to know when working
on connectivity questions for such simplicial complexes or semisimplicial sets, see, e.g., [33,
Sect. 2], [15, Sect. 2,4,5], or [34, Sect. 3], for expositions of tools and techniques. For an example
of how such arguments look like, the survey paper [72] gives a proof of high connectivity of
simplicial complexes of arcs relevant for the stability of themapping class groups of surfaces,
assembling tricks and techniques from the literature.

2.3. Twisted coefficients
Homological stability is also often considered in the context of homology with

twisted coefficients: Given a sequence of groups G1 ! G2 ! � � � , and a sequence of mod-
ules M1 ! M2 ! � � � such that Gn acts on Mn and the map Mn ! MnC1 is equivariant
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with respect to the map Gn ! GnC1, one can ask whether the resulting sequence

Hi .G1; M1/ ! Hi .G2; M2/ ! Hi .G3; M3/ ! � � �

stabilizes. We explain briefly here how the same assumptions as Theorem 2.9 yield that
stability also holds for certain types of “abelian” and “polynomial”coefficients.

Abelian coefficients. Suppose that M is a G1-module. Then we can consider M as a
Gn-module via the maps Gn ! G1 D

S
n Gn. If we let Mn be this module, this gives an

example of a compatible family of coefficients for the groups Gn. We say that M is abelian
if the action of G1 factors through its abelianization H1.G1/.

Theorem 2.12 ([63, Thm. 3.4]). Let Gn D AutC .A ˚ X˚n/ be as in Theorem 2.9 and assume
that for all n � 0, there is a k � 3 such that the space Wn.A; X/ is n�2

k
-connected. Then for

any H1.G1/-module M , the stabilization map

Hi .GnI M/ ! Hi .GnC1I M/

is an isomorphism for i �
n�k

k
and a surjection for i �

n�kC2
k

.

The simplest example of such an abelian coefficient system is M D ZH1.G1/.
Because untwisted homological stability gives that H1.G1/ Š H1.Gn/ for n large enough,
we have that the twisted homology in that case computes the homology of the commutator
subgroup. A direct corollary is thus that, under the same hypothesis as Theorem 2.9 (with
k � 3), homological stability also holds for the commutator subgroups G0

n: the stabilization
map also induces isomorphisms

Hi

�
G0

n

� Š
�! Hi

�
G0

nC1

�
for i �

n�k
k

and a surjection for i �
n�kC2

k
. This gives, for example, homological stability

for alternating groups (D commutator subgroups of symmetric groups), or special automor-
phism groups of free groups (D commutator subgroups of Aut.Fn/).

Note that the best possible slope given by the statement is now slope 3. This is
optimal as stated because we know from [35, Prop. B] that slope 3 is optimal for alternating
groups, despite the fact that the spaces Wn.A; X/ in this case are slope 2 connected.

Polynomial coefficients. Twisted coefficients classically used in homological stability have
been of “polynomial type,” as introduced by Dwyer in [14] in the case of general linear
groups. It turns out that polynomiality in the sense of Dwyer makes sense in our current
general framework of groups of the form Gn D AutC .A ˚ X˚n/, as we explain now.

To define a coefficient system for the groups Gn, we need the data of a module Mn

over Gn for each n, and a map Mn ! MnC1 compatible with the actions. We will here
encode this data in a functor from a category built from the G -module C , in similar fashion
as the spaces Wn.A; X/ were build from G and C2: Let CA;X be the category with objects
A ˚ X˚n and morphisms from A ˚ X˚m to A ˚ X˚n empty unless m � n, in which case

2 This is again an example of a bracket construction for categories, as described in Section A.
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a morphism is an equivalence class of maps f W A ˚ X˚n ! A ˚ X˚n in C , with f � f 0

if there is an isomorphism g W X˚n�m ! X˚n�m in G such that f D f 0 ı .id ˚ g/.
A functor M W CA;X ! R–Mod defines a coefficient system in the above sense,

by setting Mn WD M.A ˚ X˚n/. Because of the equivalence relation in the definition of
the morphisms in CA;X , such coefficient systems have the particularity that AutG .X˚m/

acts trivially on the image of the map Mn ! MnCm; they are in fact characterized by this
property [63, Prop. 4.2].

Using the braiding of G , we can define a functor

†X W CA;X ! CA;X

that adds a copy of X “to the left,” taking A ˚ X˚n to A ˚ X˚nC1, and a morphism f to
the composition .idA ˚ bX;X˚n/ ı .f ˚ idX / ı .idA ˚ b�1

X;X˚n/. This functor comes with a
natural transformation �X W id ) †X (see [63, 4.2]). For M W CA;X ! R–Mod, we define its
suspension

†M D M ı †X W CA;X ! R–Mod:

It comes with a natural transformation M ! †M induced by �X .
A finite degree coefficient system is defined inductively as follows: the trivial coeffi-

cient system M � 0 is by definition of degree �1, and a coefficient system M is of degree r

if the natural transformation M ! †M has trivial kernel, and cokernel of degree r � 1 [63,

Def. 4.10]. For example, constant coefficient systems are of degree 0, and all finitely presented
FI-modules are coefficient systems of finite degree for the symmetric groups [63, Prop. 4.18].
The Burau representation of the braid group is an example of a coefficient system of degree 1
[63, Ex. 4.15].

Theorem 2.13 ([63, Thm. A]). Under the same hypothesis as Theorem 2.9, if ¹Mnºn2N is a
polynomial coefficient system of degree r , then

Hi .GnI Mn/ ! Hi .GnC1I MnC1/

is an isomorphism for i �
n
k

� r � 1 and a surjection for i �
n
k

� r .

3. Group completion and the stable homology

The fact that the groupoid G is braided or symmetric monoidal has direct impli-
cations for the stable homology of the groups Gn D AutC .A ˚ X˚n/ we have been con-
sidering here. We briefly discuss here the case of automorphism groups Gn D AutG .X˚n/

in G , and refer to [63, Sect. 3.2] for more details, and for some words about the case Gn D

AutG .A ˚ X˚n/.

En-algebras. A (topological) En-algebra is an algebra over the little n-disc operad. When
n D 1, such an object goes also under the nameA1-algebra; it is a space with amultiplication
that is associative “up to all higher homotopies”.When n � 2, themultiplication is in addition
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homotopy commutative, with “more andmore” homotopies as n grows, all theway to anE1-
algebra that is commutative up to all higher homotopies. In particular, any En-algebra is a
topological monoid, that is homotopy commutative whenever n � 2. (See, e.g., [3,48].)

These algebraic structures are relevant for us for the following reason: the geometric
realization jG j of the nerve of a monoidal, braided monoidal, or symmetric monoidal cate-
gory G is respectively an E1-, E2-, or E1-algebra, see, e.g., [47], [19, Sect. 8]. When C is a
module over a braided monoidal groupoid G , then jC j is an E1-module over the E2-algebra
jG j in the sense of [39].

The primary example of an En-algebra is the n-fold loop space �nX D

Maps�.Sn;X/ of a spaceX . For n D 1, an1-loop space is an n-fold loop space Y D �nXn

for every n, where the spaces Xn together form a spectrum X. Loops have the partic-
ularity that they possess homotopy inverses with respect to concatenation, which is the
monoid structure underlying their En-algebra structure. The recognition principle for iter-
ated loop spaces says that, after “group completion,” i.e., after adding homotopy inverses, any
En-algebra is an n-fold loop space [48] (see also [3, 65]). Explicitly, the group completion
of a topological monoid .M; ˚/ is the space �B˚M , where B˚ denotes the bar construc-
tion, a simplicial space constructed from M and the sum ˚. The group completion theorem
states that, if .M; ˚/ is homotopy commutative, then H�.�B˚M/ Š H�.M1/ for M1 an
appropriate “limit” space defined from M , see [50,61].

Applying this to the realization jG j of a braided monoidal groupoid, we get that its
group completion �B˚jG j is a double loop space �2X , or an infinite loop space �1X if G

was actually symmetric. For G of the form G D
`

n�0 Gn with Gn D AutG .X˚n/, the limit
space jG j1 identifies with Z � BG1 for G1 D

S
n Gn D colim.G0 ! G1 ! G2 ! � � � /,

and the group completion theorem thus takes the form H�.�B˚jG j/ Š H�.Z � BG1/.
Equivalently, it gives that the stable homology of the groups Gn has the following form:

H�.G1/ Š H�.�0B˚jG j/ Š

´
H�.�2

0X/ if G is braided,

H�.�1
0 X/ if G is symmetric,

for some space X , respectively spectrum X, just as in the examples we have seen so far,
namely Theorems 1.2–1.5. The work in identifying the stable homology of a family of groups
thus comes down, through these classical results, to the question of identifying certain double
or, most often, infinite loop spaces arising as classifying spaces of groupoids. Considered
very broadly, this is the subject of K-theory. In Section 4, we sketch one such computation.

“Higher” stability and the Ek-splitting complex. The stabilization maps we study here
only use a very small part of the E2- or E1-structures we have at hand: taking the sum ˚X

just uses part of the underlyingE1-module structure. The space of destabilizationsWn.A;X/

associated to the E1-module jC j over the E2-algebra jG j and the elements A 2 jC j and
X 2 jG j, can be thought of as a form of resolution of the space

`
n BGn as E1-module

generated by A over the E2-algebra generated by X .
One can ask whether there are interesting “higher” stabilization maps, summing for

example with higher dimensional homology classes, or whether the whole Ek-structure can
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tell us more about the homology of the family of groups. The answer is yes, and is the subject
of the body of work [21–24] (see also [51] in the context of representation stability). Consider-
ing the fullEk-structure has turned out to be powerful, and these papers manage to go further
than with the classical arguments, including to obtain information about the homology past
the stable range. (See also the related paper [38].) The authors define Ek-splitting complexes
that resolve the full Ek-structure. For a relationship between the connectivity of the spaces
Wn.A; X/ defined here and that of the E1-splitting complex, see [38, Thm. 13.2].

4. Higman–Thomson groups

Sometimes homological stability is useful in unexpected situations, as turned out to
be the case in the study of the homology of Thompson’s group V . Thompson’s groups come
in three flavors:F < T < V whereF is a subgroup of the piecewise-linear homeomorphisms
of the interval, T a subgroup of those of the circle, and V of the homeomorphisms of the
Cantor set. The homology of F and T was computed in the 1980s by Brown–Geoghegan
and Ghys–Sergiescu in [8, 27]. Brown proved a few years later that the rational homology
of Thompson’s group V was trivial, and conjectured that it was also integrally trivial [7].
Brown’s conjecture was proved 25 years later by Szymik and the author in [68] using the
following unexpected strategy:

(1) V D V1 is part of a family of groups V1 ! V2 ! V3 ! � � � that satisfies homo-
logical stability;

(2) The homology H�.V / is entirely stable, i.e., H�.V / Š H�.V1/;

(3) The stable homology identifies with that of a trivial infinite loop space.

In fact, we will see below that each group Vn in the sequence is isomorphic to V , but the
maps Vn ! VnC1 are only isomorphisms after passing to homology. The strategy works
more generally to compute the homology of the Higman–Thompson groups, so we describe
it now in more details in that context.

The Higman–Thompson group Vk;n is the group of self-maps of a disjoint union of
n intervals I tn obtained by choosing k-ary subdivisions of the source and target, subdivid-
ing the interval into k equal sized subintervals and repeating on some of the intervals thus
obtained, and matching the resulting subintervals by a chosen bijection. (See [68, Sect. 1.2],
and Figure 2 for an example when k D 2 and n D 1.) Thompson’s group V D V2;1 is the
group obtained this way from binary subdivisions of a single interval. Fixing some k � 2,
we can think of Vk;n as the automorphism group of an object X˚n D I tn in a groupoid
Vk D

F
n�0 Vk;n, just as we have considered in this paper. Juxtaposition of intervals induces

maps
Vk;n � Vk;m ! Vk;nCm
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Figure 2

An element of Thompson’s group V D V2;1 obtained from a binary subdivision of the source and target interval,
and a choice of permutation of the subintervals.

that make the groupoid Vk symmetric monoidal, with the symmetries coming for block
permutations of the intervals. Hence we can try to apply the stability machine described
in the present paper to prove homological stability for the groups ¹Vk;nºn�0.

Note that there are group isomorphisms Vk;n Š Vk;nC.k�1/ induced by subdividing
an interval into k subintervals, but these isomorphisms are not encoded in the groupoid Vk .
For the purpose of homological stability, it is convenient to have a rank function, that is,
to know what “n” is at all times. Ignoring these isomorphisms also gives, by construction,
the local cancelation property (2.1) which was necessary for the transitivity of the action on
the associated complex of destabilization Wn. So from the point of view of the groups, the
objects I and I tk are isomorphic, but we will consciously suppress that information in the
first part of our argument.

Let Wn D Wn.0; I / be the space of destabilizations associated to the symmetric
monoidal groupoid Vk (acting on itself) and the objects 0 and I , and let Sn D Sn.0; I / be
its associated simplicial complex, as defined in Section 2.1. The group Vk;n can be defined
as the automorphism group of an object called the free Cantor algebra Ck.n/ of arity k

on n generators (see [68, Def. 1.1]), and a p-simplex in Wn corresponds to an embedding
Ck.p C 1/ ,! Ck.n/ with complement isomorphic to Ck.n � p � 1/. It is shown in [68,

Cor. 3.4] that Sn, and hence also Wn (by [63, Thm. 2.10]), is at least .n � 3/-connected for all
n � 2. The complex Sn has dimension n � 1 and the idea of the proof of connectivity is
to work with its .n � 2/-skeleton, as simplices that are not maximal correspond to embed-
dings that have a complement of rank at least 1, i.e., at least as big as Ck.1/. But there are
isomorphisms Ck.1/ Š Ck.1 C .k � 1// Š Ck.1 C 2.k � 1// Š � � � so that in practice,
a nontrivial complement is actually a complement that is “as large as one likes,” which is
useful for coning off simplices.

Applying Theorem 2.9, we immediately get that the stabilization map
Vk;n ! Vk;nC1 that adds the identity on the new interval, induces an isomorphism
Hi .Vk;n/

Š
�! Hi .Vk;nC1/ in a range increasing with n. Coupling this with the fact that

the isomorphisms Vk;n Š Vk;nC.k�1/ Š Vk;nC2.k�1/ Š � � � can be chosen compatibly with
the stabilization maps, we get that the rank n can be assumed as large as one like, so that the
isomorphism Hi .Vk;n/

Š
�! Hi .Vk;nC1/ actually holds without any bound.
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It remains to compute the stable homology. From the results described in Section 3,
given that Vk is a symmetric monoidal groupoid, we know that the stable homology of the
groups is that of an infinite loop space. Now here it turns out to be more convenient to do
the computation using a different symmetric monoidal groupoid whose group completion
also yields the stable homology of the groups Vk;n, namely the groupoid Vk where we now
remember the isomorphism I ! I tk or, equivalently, the isomorphisms of Cantor algebras
Ck.n/ Š Ck.n C .k � 1//. Theorem 5.4 of [68] says that

H�.Vk;1/ Š H�.�0B˚jVkj/:

As Vk is symmetric monoidal, we again have that its group completion is an infinite loop
space and what remains is to find out what the corresponding spectrum is.

So nowwe are in the world of symmetric monoidal categories, and the idea is simply
to find a symmetric monoidal category that is equivalent to Vk as symmetric monoidal cat-
egory, and hence group completes to the same infinite loop space, but whose associated
spectrum is easier to recognize. Our search was guided by the following observation: the cat-
egory Vk resembles the category of finite sets and isomorphisms, to which one has declared
one extra isomorphism, namely that Œ1� is now isomorphic to Œk�, or, after group completion,
Œ0� is isomorphic to Œk � 1�. As already mentioned in the introduction, the spectrum asso-
ciated to the category of finite sets (or, equivalently, to the symmetric groups) is the sphere
spectrum S. In homotopy theory, we trivialize by taking cofibers, and the cofiber of the map
S

.k�1/
����! S multiplying by .k � 1/ is a well-known spectrum Mk�1 called the Moore spec-

trum.Making this idea precise, formulating it on the level of symmetric monoidal categories,
and combining it with the homological stability result described above, led to the following
result

Theorem 4.1 ([68]). There are isomorphisms

H�.Vn;k/ Š H�

�
�1

0 Mk�1

�
:

Specializing to the case k D 2 yields that H�.V / D 0 for � > 0 as the spectrum
M1 D cofiber.S

id
�! S/ is trivial.

Note that the homology of �1
0 Mk�1 for k � 3 is tractable, and we have many tools

available to compute it. For example, it is immediate that the rational homology is trivial,
but also that the integral homology is not. We confirm, for instance, in [68, Sect. 6] that
H1.Vk;n/ D Z=2 for k odd and show that the first nontrivial homology group in the k even
case is H2p�3.Vk;n/ D Z=p for p the smallest prime dividing k � 1.

5. Perspectives

Many stability results have been proved over the past decades, and one is left to
wonder how far homological stability methods can reach. We have highlighted here the idea
that braidings seem to be relevant. This is, however, neither a necessary nor a sufficient
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condition. We give here some examples that tests the limits of stability, as well as a hint to
the wider context homological stability can be considered in.

No braiding D no stability? Such a statement is not going to ever be literally true, but here
are some standard types of examples that are good to have in mind: The full braid groups
Gn D Bn satisfy homological stability, but not the pure braid groups Kn D ker.Bn ! †n/.
Likewise, the general linear groups Gn D GLn.R/ satisfy stability for many rings R but not
the congruence subgroups Kn D GLn.R; I / D ker.GLn.R/ ! GLn.I //. There are in fact
many examples of that form with a family of groups Kn < Gn with the groupoid G D

F
Gn

braided monoidal while the groupoid K D
F

Kn is monoidal but not braided, and with the
family Gn stabilizing but not the family Kn. It turns out that such families ¹Knºn�0 often
satisfy instead a form of representation stability in the sense of [11], see also [16,55].

Braiding 6) stability. There are very few examples of braided monoidal categories where
we know that homological stability for the associated groups Gn does not hold. One such
example, constructed by Patzt [54], is the following: consider the category of sets, but using
the product � instead of the disjoint union as monoidal structure. This is a symmetric
monoidal groupoid, and if we pick A D Œ1� and X D Œ2�, we get Gn D †2n is the sym-
metric group on 2n elements. The resulting space Wn.A; X/ is, however, disconnected in
this case! And indeed, even though the symmetric groups satisfy homological stability, the
stabilization maps in this case do not induce isomorphisms; the induced map on first homol-
ogy is instead the zero map. So the existence of a braiding does not imply stability, which in
hindsight is probably not surprising.

There are in addition plenty of exampleswherewe have a braidedmonoidal groupoid
at hand but we do not know that stability holds. For example, the category of R-modules
over any ring R is symmetric monoidal, but stability for the groups GLn.R/ is essentially
only known under the condition that the ring has finite Bass stable range [69]. But examples
of rings for which we know that stability for GLn.R/ does not hold are surprisingly rare;
see [41] for one example of a ring for which H1.GLn.R// does not stabilize. For mapping
class groups or diffeomorphism groups of manifolds, we essentially know stability in full
generality in dimension 2 and 3, but in higher dimension, homological stability for the clas-
sifying spaces of diffeomorphism groups is only known for stabilization by connected sums
with certain products Sp � Sq [5,26]. Similarly, homological stability for the automorphism
groups of vector spaces equipped with a form (symplectic, unitary, or orthogonal groups),
is mostly known in the particular case of stabilizing with the hyperbolic form, see, e.g., [66].
In the other cases, we just do not know the connectivity of the complex of destabilizations.

Homological stability in other contexts. We have already mentioned a number of stability
results for sequences of spaces. The most classical examples are configuration spaces, going
back to the work of McDuff, Segal and F. Cohen in the 1970s [12,49,65]. In other contexts,
examples seem to be more rare so far, but there is currently a growing interest in stability in
the homology of families of algebras, see, e.g., [6,37,67], and there exist, e.g., some results
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for bounded cohomology of groups [43]. These results are of a very similar flavor as what
we have described in the present paper.

A. Adding complements categorically

The semisimplicial sets Wn.A; X/ of Section 2.1 and the categories CA;X used to
define polynomial coefficients in Section 2.3, were constructed using equivalence classes of
maps in the groupoid C . Both these constructions are related to a categorical construction,
first considered by Quillen in the context of K-theory [28, p. 219]. We recall this construction
here and give a few examples. The resulting categories will be natural “homes” of the spaces
Wn.A; X/, and for the polynomial twisted coefficients, which gives some insights.

Let M be a category, that is, a left module over a monoidal groupoid .G ; ˚/. We
define a category hG ; Mi as follows: hG ; Mi has the same objects as M, and morphisms
from A to B are defined as equivalence classes of pairs .X; f / with X an object of G and
f W X ˚ A ! B a morphism ofM, where .X;f / � .X 0; f / if there is a commuting diagram

X ˚ A

g˚id
��

f
// B

X 0 ˚ A

f 0

;;

in M. (If C is a right module instead, a category hC ; G i is defined analogously.) When M is
a groupoid, as will be the case in our examples, the maps f are isomorphisms and the object
X can be thought of as a choice of complement for A inside B .

We will here only consider the case where M D G is a monoidal groupoid acting
on itself, and denote by U G D hG ; G i the resulting category.

Example A.1. Let .G ; ˚/ D .Setsiso; t/ be the monoidal groupoid of finite sets and bijec-
tions of Example 2.1, with the monoidal structure induced by disjoint unions. ThenU G D FI
is the category of finite sets and injections. Indeed, any injection f W A ,! B has, up to iso-
morphism, a unique complement X D Bnf .A/.

Example A.2. Let .G ;˚/ D .R–Mod;˚/ be the groupoid ofR-modules and isomorphisms
of Example 2.2, with the monoidal structure given by direct sum. ThenU G is closely related
to the category sometimes called VIC, with the same objects asR–Mod and with morphisms
from M to N given by pairs .H; f / with f W M ! N a split injective homomorphism and
H a choice of complement in N of the image, N D H ˚ f .M/ (see, e.g., [58]).

If the monoidal groupoid .G ; ˚/ is braided, one can define a monoidal structure on
U G as follows: on objects the monoidal structure ˚ is that of G , and for ŒX; f � a morphism
from A to B and ŒY; g� a morphism from C to D, we set

ŒX; f � ˚ ŒY; g� D
�
X ˚ Y; f ˚ g ı idX ˚ b�1

A;Y ˚ idC

�
W A ˚ C ! B ˚ D
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where we use the braiding to switch A and Y in X ˚ Y ˚ A ˚ C to be able to apply the
morphism f ˚ g. The category U G is not in general braided (see the next example), though
it is symmetric when .G ; ˚/ is a symmetric monoidal groupoid, see [63, Prop. 1.8].

Example A.3. The braid groups Bn form together a groupoid B D
F

n Bn, that is, the free
braided monoidal groupoid on one element, where the monoidal structure comes from the
juxtaposition of braids. The categoryU B can be described in terms of braids with free ends:
a morphism from m to n for m � n in U B is an equivalence class of braid in Bn where the
braid has n � m free ends that can freely pass under, but not over, any other strand, see
[63, Sect. 1.2]. (It can alternatively be defined in terms of embeddings of punctured discs, see
[63, Sect. 5.6.2].) The category U B is not braided monoidal, but only prebraided in the sense
of [63, Def. 1.5].

Remark A.4. The forgetful map Bn ! †n from the braid groups to the symmetric groups
induces a map U B ! FI D U.Setsiso/. Because B is the free braided monoidal category
on one object, it encodes all the structure we have when we picked objects A and X in
the groupoids C and G in Section 2. As pointed out in [39, Remark 2.8], the reason we can
construct a semisimplicial set Wn.A; X/ comes from the following: A semisimplicial set is
a functor �

op
inj ! Sets for �inj the category of finite ordered sets and ordered injections. One

can consider �inj as a subcategory of the category FI of finite sets and injections. Now while
the forgetful map U B ! FI does not admit a splitting, it does admit a partial splitting, in
the form of a functor �inj ! U B, and this partial splitting is what rules the semisimplicial
structure of the space of destabilization Wn.A; X/.
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We present a review on the recently discovered link between the Lie theory, the theory of
quiver Grassmannians, and various degenerations of flag varieties. Our starting point is the
induced Poincaré–Birkhoff–Witt filtration on the highest weight representations and the
corresponding PBW degenerate flag varieties.
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1. Introduction

The celebrated Poincaré–Birkhoff–Witt theorem claims that there exists a filtration
on the universal enveloping of a Lie algebra such that the associated graded algebra is iso-
morphic to the symmetric algebra. The PBW filtration on the universal enveloping algebra
of a nilpotent subalgebra of a simple Lie algebra induces a filtration on the representation
space of a highest weight module. The natural problem is to study this filtration and the corre-
sponding graded space. Quite unexpectedly, the problem turned out to be related to numerous
representation-theoretic, algebro-geometric, and combinatorial questions. Our goal is to give
an overview of the whole story and to describe various links between different parts of the
picture. The main objects of study are monomial bases, convex polytopes, flag and Schubert
varieties, their degenerations, quiver Grassmannians, and toric varieties.

The paper is organized as follows. In Section 2 we collect representation-theoretic
results of algebraic nature. Section 3 is devoted to the geometric representation theory.
In Section 4 we discuss combinatorics emerging from the cellular decomposition of the
PBW degenerate flag varieties. In Section 5 we describe the link between the Lie theory and
the theory of quiver Grassmannians. Finally, Section 6 treats toric degenerations.

Throughout the paper we work over the field of complex numbers.

2. Representation theory: algebra

Let g be a simple Lie algebra with the set RC of positive roots. Let ˛i , !i ,
i D 1; : : : ; n � 1 be the simple roots and the fundamental weights. Let g D nC ˚ h ˚ n� be
the Cartan decomposition. For˛ 2 RC, we denote by e˛ 2 nC and f˛ 2 n� the corresponding
Chevalley generators. We denote by P C the set of dominant integral weights.

Consider the PBW filtration on the universal enveloping algebra U.n�/:

U.n�/s D span
®
x1 � � � xl W xi 2 n�; l � s

¯
;

for example, U.n�/0 D C � 1.
For a dominant integral weight � D m1!1 C � � � C mn�1!n�1, let V� be the cor-

responding irreducible highest weight g-module with a highest weight vector v�. Since
V� D U.n�/v�, we have an increasing filtration .V�/s on V�,

.V�/s D U.n�/sv�:

We call this filtration the PBW filtration and study the associated graded space V a
�

D grV�.
Let us consider an example for fundamental weights in type A. Let V!1 be the

vector representation of sln with a basis w1; : : : ; wn and consider V!k
' ƒkV!1 for

k D 1; : : : ; n � 1. Then .V!k
/s is spanned by the wedge products wi1 ^ � � � ^ wik such

that the number of indices a with ia > k is at most s.
The following holds true [60]:
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(1) The action of U.n�/ on V� induces the structure of an S.n�/-module on V a
�

and V a
�

D S.n�/v�.

(2) The action of U.nC/ on V� induces the structure of a U.nC/-module on V a
�
.

Our aims are to describe V a
�
as an S.n�/-module and to find a basis of V a

�
. We

present the answer in type A. For similar results in other types, see [12,61,62,77,78,99].
The positive roots in type An�1 are of the form ˛i;j D ˛i C � � � C j̨ with 1 � i �

j � n � 1. Recall that a Dyck path is a sequence p D .ˇ.0/; ˇ.1/; : : : ; ˇ.k// of positive
roots of sln satisfying the following conditions: if k D 0, then p is of the form p D .˛i / for
some simple root ˛i , and if k � 1, then the first and last elements are simple roots, and if
ˇ.s/ D p̨;q , then ˇ.s C 1/ D p̨;qC1 or ˇ.s C 1/ D p̨C1;q .

Here is an example of a path for sl6:

.˛2; ˛2 C ˛3; ˛2 C ˛3 C ˛4; ˛3 C ˛4; ˛4; ˛4 C ˛5; ˛5/:

For a multiexponent s D ¹sˇ ºˇ>0, sˇ 2 Z�0, let f s D
Q

ˇ2RC f
sˇ

ˇ
2 S.n�/. For

an integral dominant sln-weight � D
Pn�1

iD1 mi !i , let S.�/ be the set of all multiexponents
s D .sˇ /ˇ2RC 2 ZRC

�0 such that for all Dyck paths p D .ˇ.0/; : : : ; ˇ.k//,

sˇ.0/ C sˇ.1/ C � � � C sˇ.k/ � mi C miC1 C � � � C mj ; (2.1)

where ˇ.0/ D ˛i and ˇ.k/ D j̨ .
The polytopes inRRC

� defined by inequalities (2.1) are referred to as the FFLV poly-
topes. For their combinatorial properties and connection to the Gelfand–Tsetlin polytopes
[75], see [6,44,47,67]. The following theorem holds true [60].

Theorem 2.1. The vectors f sv�, s 2 S.�/, form a basis of V a
�
. In addition, S.�/ C S.�/ D

S.� C �/.

We note that Theorem 2.1 implies that the elements f sv�, s 2 S.�/ form a basis
of the classical representation V� provided an order of factors is fixed in each monomial f s

(see [121]).
Let us describe the Lie algebra ga acting on V a

�
. As a vector space, ga is isomorphic

to g. The Borel b � ga is a subalgebra, the nilpotent subalgebra n� � ga is an abelian ideal,
and b acts on the space n� as on the quotient g=b. Then for any � 2 P C the structure of the
g-module on V� induces the structures of ga module on V a

�
.

Note that V a
�

D S.n�/v� is a cyclic S.n�/-module, so we can write
V a

�
' S.n�/=I.�/, for some ideal I.�/ � S.n�/.

The following theorem holds in types A and C [60]:

Theorem 2.2. I.�/ D S.n�/.U.nC/ ı span¹f
.�;˛_/C1

˛ ; ˛ 2 RCº/.

This theorem should be understood as a commutative analogue of the well-known
description of V� as the quotient

V� ' U.n�/=
˝
f .�;˛_/C1

˛ ; ˛ 2 RC
˛

(see, for example, [74,86]).
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The proof of the theorems above is based on the following claim available in typesA

and C [60–62].

Theorem 2.3. Let �; � 2 P C. Then

V a
�C� ' U.ga/.v� ˝ v�/ ,! V a

� ˝ V a
�

as ga-modules.

The algebraic and representation theoretic properties of the PBW filtration and the
ga action in more general settings are considered in [10–12,32,48,51,52,56,65,70,77,78,99,106,

107].

3. Representation theory: geometry

LetG be a simple simply-connected Lie group with the Lie algebra g. LetB � G be
a Borel subgroup with the Lie algebra b. Each space V�, � 2 P C is equipped with the natural
structure of a G-module. Therefore G acts on the projectivization P .V�/. The (generalized)
flag variety F� ,! P .V�/ is defined as the G-orbit of the line Cv� (see [73,94]). Each variety
F� is isomorphic to the quotient of G by the parabolic subgroup leaving the point Cv� 2

P .V�/ invariant. In particular, forG D SLn and a fundamental weight � D !k the flag variety
F� is isomorphic to the Grassmannian Grk.n/. For a regular weight �, the flag variety F�

sits inside
Qn�1

kD1 Grk.n/ and consists of chains of embedded subspaces. In what follows,
we mostly consider the case G D SLn and regular �, the general type A case can be treated
similarly (see [53,54,56,57]).We denote the complete typeAn�1 flag variety byFn (it is known
to be independent of a regular weight �). The variety Fn admits Plücker embedding into the
product of projective spaces

Qn�1
kD1 P .ƒk.Cn//. The homogeneous coordinate ring (also

known as the Plücker algebra) is a quotient of the polynomial algebra in Plücker variables
XI , I � Œn� by the quadratic Plücker ideal.

Recall the Lie algebra ga acting on V a
�
. We now describe the corresponding Lie

group Ga. Let M D dimn and let Ga be the additive group of the field C. The Lie group
Ga is a semidirect product GM

a Ì B of the normal subgroup GM
a and the Borel subgroup B .

The action by conjugation of B on GM
a is induced from the B-action on .n�/a ' g=b.

We now define the degenerate flag varieties Fa
�

[54]. Let Œv�� 2 P .V a
�

/ be the
line Cv�.

Definition 3.1. The variety Fa
�

,! P .V a
�

/ is the closure of the Ga-orbit of Œv��,

Fa
� D GaŒv�� D GM

a Œv�� ,! P .V a
� /:

We note that the orbit GŒv�� ,! P .V�/ coincides with its closure, but the orbit
GaŒv�� does not; in fact, Fa

�
is the so-called GM

a -variety, see [7,8,82]. Theorem 2.3 implies
that in types A and C the varieties Fa

�
depend only on the regularity class of �, i.e., Fa

�
is

isomorphic to Fa
� if and only if the sets of fundamental weights showing up in � and �

coincide (see [102] for the study of a similar question for Schubert varieties).
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In typesA andC , we have rather explicit description of the degenerate flag varieties
[53,58]. In particular, for g D sln one has Fa

!k
' Grk.n/. To describe the PBW degenerate

flag varieties in type A, we introduce the following notation: let W be an n-dimensional
vector space with a basis w1; : : : ; wn. Let us denote by prk W W ! W the projection along
wk . We denote the regular PBW degenerate flag variety by F a

n . The following theorem holds
[53,54] (we use the shorthand notation Œn� D ¹1; : : : ; nº).

Theorem 3.2. One has

Fa
n '

®
.V1; : : : ; Vn�1/ W Vk 2 Grk.W /; k 2 Œn�I prkC1 Vk � VkC1; k 2 Œn � 1�

¯
:

Using this description, one proves the following theorem [29–31] (see also [96]).

Theorem 3.3. The variety F a
n is isomorphic to a Schubert variety for the group SL2n�1.

The symplectic PBW degenerations are described in [58] (see also [16]).
For a partition� D .�1 � � � � � �n�1 � 0/, we denote byY� the correspondingYoung

diagram. Recall that the classical SLn flag variety admits an embedding to the product of
Grassmannians. The corresponding homogeneous coordinate ring (the Plücker algebra) is
generated by the Plücker variables XI , I � Œn� and is known to be isomorphic to the direct
sum

L
�2P C V �

�
(see [73]). There is a one-to-one bijection between the Plücker variables and

columns filled with numbers from Œn� (the numbers increase from top to bottom). Then the
semistandard Young tableaux provide a basis of the homogeneous coordinate ring of SLn =B

(one takes the product of Plücker variables, corresponding to the columns of a tableau).
Similar result holds true in the PBW degenerate situation.

We denote by �j the length of the j th column of a diagram.

Definition 3.4. A semistandard PBW-tableau of shape � is a filling Ti;j of the Young dia-
gram Y� with numbers 1; : : : ; n. The number Ti;j 2 ¹1; : : : ; nº is attached to the box .i; j /.
The filling Ti;j has to satisfy the following properties:

(1) if Ti;j � �j , then Ti;j D i ;

(2) if i1 < i2 and Ti1;j ¤ i1, then Ti1;j > Ti2;j ;

(3) for any j > 1 and any i , there exists i1 � i such that Ti1;j �1 � Ti;j .

One can show that the number of shape � semistandard PBW-tableaux is equal to
dimV�. Moreover, the following theorem holds [54] (see also [63,79]).

Theorem 3.5. The homogeneous coordinate ring of F a
n (also known as the PBW degenerate

Plücker algebra) is isomorphic to the direct sum of dual PBW degenerate modules .V a
�

/�,
� 2 P C. The ideal of relations is quadratic and is generated by degenerate Plücker relations.
The PBW semistandard tableaux parametrize a basis in the coordinate ring.

Certain infinite-dimensional analogues of the results described above are obtained
in [59,108]. However, this direction has not been seriously pursued so far.
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4. Topology and combinatorics

In this section we describe a cellular decomposition of the type A complete PBW
degenerate flag varieties F a

n (see [16,53,58] for a more general picture).
Let us fix an n-dimensional vector space W with a basis w1; : : : ; wn.

Let I D .I1; : : : ; In�1/ be a collection of subsets of the set Œn� such that jIkj D k. We
denote by pI 2

Qn�1
kD1 Grk.W / a point in the product of Grassmann varieties such that the

kth component is equal to the linear span of wi with i 2 Ik . Theorem 3.2 implies that
pI 2 F a

n if and only if

Ik � IkC1 [ ¹k C 1º for all k D 1; : : : ; n � 2: (4.1)

The following theorem is proved in [53].

Theorem 4.1. The Ga orbits of the points pI provide a cellular decomposition of F a
n .

A natural problem is to compute the Euler characteristic and Poincaré polynomial
of F a

n . The answer is given in terms of the normalized median Genocchi numbers and the
Dellac configurations.

The normalized median Genocchi numbers hn, n D 0; 1; 2; : : : form a sequence
which starts with 1; 1; 2; 7; 38; 295 [1]. The earliest definition was given by Dellac in [36]

(see also [13, 15, 17, 40–42, 55, 80, 93, 120, 122]). Consider a rectangle with n columns and 2n

rows. It contains n � 2n boxes labeled by pairs .l; j /, where l D 1; : : : ; n is the number of a
column and j D 1; : : : ; 2n is the number of a row. A Dellac configuration D is a subset of
boxes, subject to the following conditions:

(1) each column contains exactly two boxes from D,

(2) each row contains exactly one box from D,

(3) if the .l; j /th box is in D, then l � j � n C l .

Let DCn be the set of such configurations. Then the number of elements in DCn is equal
to hn.

We list all Dellac’s configurations for n D 3.

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

:

The importance of the median Genocchi numbers comes from the following theo-
rem [53].

Theorem 4.2. The number of collections I subject to conditions (4.1) is equal to the nor-
malized median Genocchi number hn. The Euler characteristic of F a

n is equal to hn.
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An explicit formula for the numbers hn is available (see [25]), namely

hn D

X
f0;:::;fn�0

nY
kD1

 
1 C fk�1

fk

!
n�1Y
kD0

 
1 C fkC1

fk

!
(4.2)

with f0 D fn D 0.
In order to compute the Poincaré polynomial of F a

n , we define a length l.D/ of a
Dellac configuration D as the number of pairs .l1; j1/, .l2; j2/ such that the boxes .l1; j1/

and .l2; j2/ are both in D and l1 < l2, j1 > j2. This definition resembles the definition of
the length of a permutation. We note that in the classical case the complex dimension of the
cell attached to a permutation � in a flag variety is equal to the number of pairs j1 < j2 such
that �.j1/ > �.j2/, which equals the length of � . One has [53]:

Theorem 4.3. The complex dimension of the cell in F a
n containing a point pI is equal to

l.D/. Thus the Poincaré polynomial hn.q/ D PF a
n
.q/ is given by hn.q/ D

P
D2DCn

ql.D/.

The first four polynomials hn.q/ are as follows:

h1.q/ D 1; h2.q/ D 1 C q;

h3.q/ D 1 C 2q C 3q2
C q3;

h4.q/ D 1 C 3q C 7q2
C 10q3

C 10q4
C 6q5

C q6:

The following (fermionic type) formula for the polynomials hn.q/ is obtained in [25]

using the geometry of quiver Grassmannians:

hn.q/ D

X
f1;:::;fn�1�0

q
Pn�1

kD1.k�fk/.1�fkCfkC1/

nY
kD1

 
1 C fk�1

fk

!
q

n�1Y
kD0

 
1 C fkC1

fk

!
q

(4.3)

(we assume f0 D fn D 0). The formula is given in terms of the q-binomial coefficients 
m

n

!
q

D
mqŠ

nqŠ.m � n/qŠ
; mqŠ D

mY
iD1

1 � qi

1 � q
:

5. Quiver Grassmannians

Theorem 3.2 provides a link between the PBW degenerate flag varieties and quiver
Grassmannians. Let Q be a quiver with the set of vertices Q0 and the set of arrows Q1.
For two vectors e; d 2 ZQ0 , we denote by he; di the value of the Euler from of the quiver.
For a Q module M and a dimension vector e 2 ZQ0

�0 , we denote by Gre.M/ the quiver
Grassmannian consisting of e-dimensional subrepresentations of M . For more details on the
quiver representation theory, see [9,34,35,113]. The general theory of quiver Grassmannians
can be found in [21] (see also [2,3,20,22,85,97,109,110]).

Now let Q be an equioriented type An�1 quiver. We label the vertices by the num-
bers from 1 to n. Then the set Q1 consists of arrows i ! i C 1, i 2 Œn � 1�. The indecom-
posable representations of Q are labeled by pairs 1 � i � j � n; the representation Ui;j is
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supported on vertices from i to j and is one-dimensional at each vertex. The projective inde-
composable representations are given by Pk D Uk;n and the injective indecomposables are
Ik D U1;k . In particular, the path algebra A of Q is isomorphic to the direct sum

Ln�1
kD1 Pk

and the dual A� is the direct sum
Ln�1

kD1 Ik of all indecomposable injectives.
By the very definition, the classical complete flag variety SLn =B is isomorphic to

the quiver Grassmannian GrdimA.P ˚n
1 /. The following observation was made in [25]:

F a
n ' GrdimA.A ˚ A�/: (5.1)

The realization (5.1) provides additional tools for the study of algebro-geometric and combi-
natorial properties of the degenerate flag varieties (see [25–27,29]). In particular, one recovers
and generalizes [27,28] the Bott–Samelson type construction for the resolution of singulari-
ties of F a

n [57] (see also [89,112] for further generalizations). The resolution is constructed as
a quiver Grassmannian for a larger quiver attached to Q.

Since the degenerate flag varieties have many nice properties, it is natural to study
the quiver Grassmannians GrdimP .P ˚ I / for arbitrary projective representation P and
an injective representation I and a Dynkin quiver Q (the so-called well-behaved quiver
Grassmannians). We summarize the main properties of these quiver Grassmannians in the
following theorem (see [25,26]).

Theorem 5.1. Let P and I be a projective and an injective representations of a Dynkin
quiver Q. Then the quiver GrassmannianX DGrdimP .P ˚ I / has the following properties:

(1) dimX D hdimP; dim I i,

(2) X is irreducible and normal,

(3) X is locally a complete intersection,

(4) there exists an algebraic group G � Aut.P ˚ I / acting on X with finitely many
orbits.

For a dimension vector d 2 ZQ0

�0 , let Rd be the variety of Q-representations of
dimension d. The group GLd D

Q
i2Q0

GLdi
acts on Rd by base change and the orbits

are parameterized by the isoclasses of d-dimensional representations of Q. The closure of
orbits induces the degeneration order on the set of isoclasses. Fixing a dimension vector e,
we obtain a family Gre.d/ of e-dimensional quiver Grassmannians over the representation
space Rd (the so-called universal quiver Grassmannian). Let us denote the projection map
Gre.d/ ! Rd by pe;d.

We are interested in the case when Q is the equioriented type An�1 quiver,
d D .n; : : : ; n/ and e D .1; 2; : : : ; n � 1/. Then both the classical and the PBW degen-
erate flag varieties are isomorphic to the fibers of pe;d. It is thus natural to ask about the
properties of the whole family. The GLd orbits on Rd are parametrized by the tuples r of
ranks ri;j of the compositions of the maps between the i th and j th vertices. We define three
rank tuples r0, r1, and r2 by

r0
i;j D n C 1; r1

i;j D n C 1 � .j � i/; r2
i;j D n � .j � i/:
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Then the corresponding representations of Q are given by M 0 D P ˚n
1 , M 1 D A ˚ A�, and

M 2
D

n�1M
kD1

Pk ˚

n�2M
kD1

Ik ˚ S;

where S is the direct sum of all simple modules of Q. One has SLn =B ' Gre.M 0/,
F a

n ' Gre.M 1/. In [23] we prove the following theorem:

Theorem 5.2. (a) The quiver Grassmannian p�1
e;d .M 2/ is of expected dimension

n.n � 1/=2. It is reducible and the number of irreducible components is equal
to the nth Catalan number.

(b) The flat irreducible locus of Gre.d/ consists of the fibers p�1
e;d .M/ such that M

degenerates to M 1.

(c) The flat locus of Gre.d/ consists of the fibers p�1
e;d .M/ such that M degenerates

to M 2.

The case of partial flag varieties is considered in [24].

6. Toric degenerations

As explained in Section 5, the degeneration of the classical flag variety into the
PBW degenerate flag variety can be considered within a family of quiver Grassmannians
over the representation space of the quiver. In particular, the study of other degenerations
(intermediate and deeper ones) leads to the new and interesting results and examples. Yet
another direction is to make a connection between the PBW degeneration and toric degen-
erations [33] of flag varieties (the latter attracted a lot of attention in the last two decades,
see [4, 5, 14, 18, 19, 45, 46, 64, 81, 95]). One of the most famous examples is a flat degeneration
of Fn into the toric variety with the Newton polytope being the Gelfand–Tsetlin polytope
[75,76,92,119]. We are able to prove the following theorem.

Theorem 6.1. The complete flag varietyFn D SLn =B admits a flat degeneration to the toric
variety corresponding to a FFLV polytope with regular highest weight. This degeneration
factors through the PBW degeneration.

The GT and FFLV polytopes are identified with the order and chain polytopes of a
certain poset (see [6,47,100,103,118]). Several proofs of Theorem 6.1 are available. Essentially,
there are three different approaches:

(1) via the representation space V�,

(2) via the Gröbner theory for the Plücker ideal,

(3) via the SAGBI theory for the Plücker algebra.

The first approach is utilized in [43, 48, 63]. The approach is similar to the PBW
degeneration construction: instead of attaching degree one to each Chevalley generator, one
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uses a weight system, attaching weight ai;j to the generators f˛i;j
for all positive roots. For

certain weight systems, one gets a filtration on the universal enveloping algebra, which leads
to a filtered (and then graded) representation space and degenerate flag variety. The following
theorem holds (see [48,63]).

Theorem6.2. Consider the PBWfiltrationwith the weight system ai;j D .j � i C 1/.n � j /.
Then

(1) in the associated graded space the nonzero monomials in f˛ form a basis,

(2) the associated graded space is acted upon by the symmetric algebra S.n�/ and
the degenerate flag variety is a Gn.n�1/=2

a variety,

(3) the corresponding degenerate flag variety is toric with the Newton polytope
being the FFLV polytope.

Instead of working with the representation space, one may start with the algebraic
variety Fn from the very beginning. As an intermediate step one considers the theory of
Newton–Okounkov (NO) bodies [88,105]. The connection between the NO bodies and toric
degenerations is used in many papers, see, e.g., [5,49,81,87]. The following holds true.

Theorem 6.3. The toric variety attached to the FFLV polytope can be constructed as a
Newton–Okounkov body for certain valuations. The valuations are obtained via Lie theory
[63] or geometrically [71,72,90,91].

Recall the Plücker coordinatesXI , the quadratic Plücker ideal defining the flag vari-
ety Fn inside the product of the projectivized fundamental representations and the Plücker
algebra (the quotient by the Plücker ideal). There are two general constructions leading to
the degenerations of algebraic varieties: Gröbner theory for the defining ideals [83,104] (see
also [43,116,117] for the tropical version) and the SAGBI (subalgebra analogues of the Gröb-
ner bases for ideals) theory [111] (see also [37, 83, 84]). The former construction works with
the defining ideals, attaching certain degrees to the variables, and the latter deals with the
quotient algebras, using certain monomial orders. In our setting the following claims hold
(see [43,101]).

Theorem 6.4. There exists a maximal cone in the Gröbner fan of the Plücker ideal such
that a general point corresponds to the monomial ideal defined by the PBW semistandard
tableaux. There exists a monomial order on the set of Plücker variables such that the mono-
mials in Plücker variables corresponding to the PBW semistandard tableaux form a SAGBI
basis of the Plücker algebra.

Let us close with the remark that it would be very interesting to construct and study
toric degenerations for affine flag varieties [94] and semiinfinite flag varieties [50,68]. The first
steps in this direction were made in [114,115]. From the representation theory point of view,
this would lead to new constructions of bases and character formulas for the integrable rep-
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resentations of affine algebras and global Weyl and Demazure modules for current algebras
[38,39,66,98].
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Let F be a local field, i.e., a finite extension of the field R of real numbers, or the
field Qp of p-adic numbers, or the field Fp..t// of Laurent series over a finite field. Let
G be a connected reductive F -group. Motivated by the theory of automorphic forms, the
study of irreducible admissible representations of the topological group G.F / with complex
coefficients has been an active area of research since the pioneering work of Bargmann on
SL2.R/. Some of the main problems in this area are:

(1) the classification of irreducible admissible representations,

(2) the determination of their character functions.

In addition, motivated by Langlands’ conjectures, one can add

(3) the relation with representations of the Galois/Weil group of F ,

(4) the proof of character identities stemming from endoscopy and more general
functoriality, and

(5) the appropriate normalization of intertwining operators for parabolic induction.

In this note I would like to discuss progress towards some of these questions. There are, of
course, many other interesting questions such as, for example, the classification of unitary
representations, about which I will not say anything.

1. Classification of irreducible representations and

characters

1.1. The archimedean case
The archimedean case, where F is a finite extension of R, thus equal to R or C, has

been largely resolved by the work of Harish-Chandra, Langlands, Shelstad, and others. I will
discuss it briefly, because it will serve as a useful guide to the non-archimedean case.

One of Harish-Chandra’s fundamental contributions was the introduction of the
notion of a discrete series representation, i.e., those unitary representations whose matrix
coefficients are square-integrable modulo center, and the classification of such representa-
tions. Slightly more generally, one considers essentially discrete series representations—
those which become discrete series after tensor product with a character of G.F /. His the-
orem can roughly be stated as follows (this is a reformulation due to Langlands [57] and is
easily seen to be equivalent to the original formulation).

Theorem 1.1. The set of isomorphism classes of essentially discrete series representations
of G.F / is in a natural bijection with the set of G.F /-conjugacy classes of triples .S; B; �/,
where S �G is an elliptic (i.e., anisotropic modulo center) maximal torus, B is a Borel sub-
group of G NF containing S , and � is a character of S.F / whose differential is B-dominant.

The group G may fail to have an elliptic maximal torus. For example, when F DC,
such a torus never exists, unless G itself is a torus. Even when F D R an elliptic maximal
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torus may not exist as, for example, in the case of SLn for n > 2. When an elliptic maximal
torus S �G exists, it is unique up toG.R/-conjugacy. The corresponding maximal torus Ssc

of the simply connected cover of the derived subgroup of G is anisotropic, and the restric-
tion of � to it is an algebraic character, i.e., an element of the coweight lattice X�.Ssc/ of
the absolute root system of G relative to S , so it makes sense to ask that d� be B-dominant.
Moreover, when this differential is a regular element of the weight lattice, it uniquely deter-
mines B , so the classifying datum is just a G.R/-conjugacy class of pairs .S; �/. We might
be tempted to call the corresponding essentially discrete series representation “regular,” a
notion that will find its analog in the non-archimedean case.

The essentially discrete series representation �.S;B;�/ associated to the triple
.S; B; �/ by the above theorem can be specified by its character function. This uses another
fundamental result of Harish-Chandra (valid for an arbitrary local field F of characteristic
zero, and extended to local fields of positive characteristic by [16] under some assumptions):
the fact that the character distribution

f 7! tr�.f /; �.f /v D

Z
G.F /

f .g/�.g/vdg

of an admissible representation � of G.F / is representable by a locally integrable function
‚� W G.F / ! C. Just like in the case of finite groups, this function determines � up to
equivalence. In fact, when F D R and � is essentially discrete series, already the restriction
of ‚� to S.R/ determines � . More precisely, we have

Theorem 1.2. �.S;B;�/ is the unique essentially discrete series representations such that for
all s 2 S.F / \G.F /reg,

‚�.S;B;�/
.s/ D .�1/q.G/

X
w2N.S;G/.R/=S.R/

�.sw/Q
˛>0.1 � ˛.sw/�1/

;

where q.G/ is half of the dimension of the symmetric space of G.R/ and ˛ > 0 indicates the
product over all those absolute roots with respect to S that are positive with respect to B .

The classification of (essentially) discrete series representations of G.F / is a key
step in the classification of all irreducible admissible representations of G.F /. The next step
is the classification of the irreducible tempered representations, i.e., those unitary representa-
tions whose matrix coefficients are almost square-integrable modulo center. Harish-Chandra
has shown that these are precisely the irreducible constituents of parabolically induced dis-
crete series representations of Levi subgroups of G. Moreover, the theory of the R-group
due again to Harish-Chandra provides a description of the various irreducible constituents
of such a parabolic induction, and hence a full classification of the tempered representations,
provided one has suitably normalized the intertwining operators. What the right normaliza-
tion is has been conjectured by Langlands for any local field. For archimedean local fields
Arthur [6, §3] proved Langlands’ conjecture, while for non-archimedean local fields of char-
acteristic zero Arthur [6, §4] proved abstractly that a normalization exists, without being able
to prove that it is provided by Langlands’ formula.
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The final step is the Langlands classification theorem, which states that every irre-
ducible admissible representation is equivalent to one of the form j G

P .� ˝ �/. Here P is a
parabolic subgroup of G; we denote by M the Levi quotient of P and by AM the maximal
split torus in the center of M ; � is a tempered representation of M.F / and � is an element of
X�.AM /˝R that lies in the acute open cone associated to P , and which is identified with a
character of M.F / using the exponential map; and j G

P is the unique irreducible quotient of
the parabolic induction iG

P .� ˝ �/. It is known that two such representations are equivalent
if and only if their Langlands data .P; �; �/ are G.F /-conjugate.

1.2. The non-archimedean case
Consider now a finite extensionF ofQp or Fp..t//. Harish-Chandra’s classification

of tempered representations in terms of discrete series representations of Levi subgroups by
means of the theory of theR-group, and Langlands’ classification theorem, continue to hold,
with minor modifications to their statements and proofs, cf. [72, Ch. VII]. This is an instance
of Harish-Chandra’s “Lefschetz principle,” which is the philosophy that the representation
theory of real and p-adic groups (and even the automorphic representations of adele groups)
exhibit parallel behavior, despite the stark differences in the fine structure of these groups.
But, unlike in the archimedean case, our understanding of the discrete series representations
in the non-archimedean case is less developed, and the classification of these representations
is at this moment incomplete.

A special subclass of the discrete series is made out of the supercuspidal represen-
tations, which are those whose matrix coefficients have compact support modulo the center.
Real reductive groups do not have such representations, except for the trivial case of tori. The
last 30 years have seen a significant improvement of our understanding of supercuspidal rep-
resentations, beginning with the work of Moy–Prasad [66,67] and Morris [64,65] in the case
of depth zero, the constructions of general depth supercuspidal representations due to Adler
[4] and Yu [88], and the exhaustion results of Kim [49] and Fintzen [24]. These works rely cru-
cially on the filtrations of the topological group G.F / coming from Bruhat–Tits theory and
its extensions by Moy–Prasad (an example is the filtration of the compact group SL2.Zp/

by congruence subgroups), and as such are very much a p-adic phenomenon with no clear
analog in the archimedean case.

The most comprehensive construction, due to Yu, produces supercuspidal represen-
tations out of what is nowadays customarily called “Yu-data,” rather complicated structures
consisting among other things of a tower of twisted Levi subgroups, a depth-zero supercusp-
idal representation of the smallest subgroup, and a sequence of characters of each subgroup
subject to a genericity condition. Fintzen’s result shows that all supercuspidal representations
arise from this construction whenG is tamely ramified and p does not divide the order of the
absolute Weyl group of G. Work of Hakim–Murnaghan [31] defines an explicit equivalence
relation on the set of Yu-data which describes when two data produce the same representa-
tion. These results amount to a classification of all supercuspidal representations of G.F /

under the given conditions on G, in terms of equivalence classes of Yu-data. However, a
simpler classification may be desirable. In fact, with Harish-Chandra’s Lefschetz princi-
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ple and his work for real groups in mind, we would ideally like a classification in terms
of objects close to G.F /-conjugacy classes of pairs .S; �/ consisting of an elliptic maximal
torus S � G and a character � of it.

Moy–Prasad introduce the notion of depth of a representation and show that an irre-
ducible depth-zero supercuspidal representation always arises via compact induction from
a maximal open and compact-mod-center subgroup G.F /x—the stabilizer of a vertex in
the Bruhat–Tits building—of an irreducible representation � of G.F /x with the following
very special property: G.F /x has a natural quotient that is the group Gx.kF / of kF -points
of a usually disconnected reductive kF -group Gx , and � is required to factor through this
quotient and moreover the restriction to the identity component Gı

x.kF / must contain a cus-
pidal representation of this finite group of Lie type; here kF is the residue field of F . In this
way, the representation theory of finite groups of Lie type (including disconnected ones) is
reflected in the representation theory of reductive p-adic groups. Given a connected reduc-
tive kF -group G and a pair .S; �/ of a maximal torus S � G and a character � of S.kF /

(customarily taking `-adic values), the construction of Deligne–Lusztig [19] assigns a virtual
representation RS;� of G.kF /. In general, this virtual representation is not an actual rep-
resentation (even up to sign), but quite often it is. More precisely, Deligne–Lusztig define
the notions of a character � to be “nonsingular” and in “general position,” which are dual
to the notions of a semisimple element in a connected reductive group to be “regular” and
“strongly regular”. They show [19, Remark 9.15.1] that RS;� is an actual representation (up
to a well-understood sign) whenever � is nonsingular (originally under a certain affineness
assumption, which was later shown to always hold by He [34]). Moreover, Deligne–Lusztig
show that the representation˙RS;� is irreducible when � is in general position, and cuspidal
if S is elliptic.

These results are both encouraging for our quest to parameterize supercuspidal rep-
resentations in terms of pairs .S; �/, but also cautioning us that there will be supercuspidal
representations that do not obey such a parameterization. More precisely, in [45, §3] I define
the notion of a “regular” supercuspidal representation, which is one that arises from Yu’s
construction and for which the depth-zero part of the Yu-datum comes from, via the results
of Moy–Prasad and Deligne–Lusztig, a character in general position, and then prove the
following classification.

Theorem 1.3 ([45, Cor. 3.7.10]). Assume that G splits over a tame extension of F and p does
not divide the order of the Weyl group of G. The set of isomorphism classes of regular super-
cuspidal representations of G.F / is in a natural bijection with the set of G.F /-conjugacy
classes of pairs .S; �/, where S is an elliptic maximal torus that splits over a tame extension,
and � is a regular character of S.F /.

Remark 1.4. (1) The condition on p can be weakened; I have opted here for the
one which is easiest to state.

(2) I have not explicated here the definition of a “regular” character � , but the main
point is that it is an explicit Lie-theoretic condition, essentially amounting to the
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stabilizer inNG.S/.F /=S.F / of the restriction �0 of � to the Iwahori subgroup
of S.F / being trivial. For details, cf. [45, Def. 3.7.5].

(3) In the definition of regular supercuspidal representation, “general position”
should be taken with respect to the p-adic group G, which is slightly stronger
than taking it with respect to the finite group of Lie type Gı

x .

(4) One of the useful properties of this theorem is that it does not reference the fine
structure of the topological group G.F / coming from the p-adic field F , such
as the various filtrations coming from Bruhat–Tits and Moy–Prasad theory.

(5) Continuing the previous point, this theorem is, in fact, rather analogous to The-
orem 1.1 restricted to regular discrete series representations (in the sense of the
previous subsection). In this way, it establishes the Harish-Chandra Lefschetz
principle among a wide class of discrete series representations, setting up a par-
allel between the regular discrete series representations of real reductive groups
and the regular supercuspidal representations of p-adic reductive groups.

(6) One important difference between the real and p-adic cases is that while in the
real case S is unique up to G.F /-conjugacy, in the non-archimedean case there
usually are (finitely) many different G.F /-conjugacy classes (in fact, even iso-
morphism classes) of elliptic tamely ramified maximal tori of G. Moreover, in
the non-archimedean case, elliptic maximal tori always exist, and supercuspidal
representations always exist, cf. [56].

There is also an analog of Theorem 1.2 which we will discuss in a moment, but
before doing so we briefly consider going beyond the “regular” case. We can impose on �

the p-adic analog of Deligne–Lusztig’s “nonsingularity” condition, which is weaker than
the condition of being regular. The arguments involved in the proof of Theorem 1.3 still
apply and produce a supercuspidal representation �.S;�/, which may, however, be reducible,
in fact, a direct sum of finitely many irreducible supercuspidal representations.

The irreducible representations obtained this way, i.e., the irreducible constituents of
�.S;�/ for all possible pairs .S; �/, can be characterized in the same way as the regular ones,
but where we replace the “general position” requirement with a “nonsingularity” require-
ment [47, Def. 3.1.1]. We can thus call these supercuspidal representations “non-singular”
(although a better term might be “semisimple,” as a contrast to the concept of a unipotent
supercuspidal representation). It may not be clear at first sight why this class of represen-
tations is interesting, beyond being a generalization of the class of regular supercuspidal
representations. The main interest in them comes from the fact that these are precisely those
supercuspidal representationswhose Langlands parameters are “supercuspidal,” i.e., discrete
with trivial monodromy, at least when p does not divide the order of the Weyl group and
according to the construction of [47]; we will discuss this point in the next section.

The classification of all irreducible nonsingular supercuspidal representations
reduces, via the analog of Theorem 1.3, to the study of the internal structure of the rep-
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resentations �.S;�/, i.e., its decomposition into irreducible factors and their multiplicities.
The situation is made subtle by the fact that an irreducible constituent of �.S;�/ may occur
with multiplicity greater than 1, which is a phenomenon that does not occur for connected
reductive groups over finite fields. The study of the internal structure of �.S;�/ reduces
to the case of depth-zero, where it relies on geometric intertwining operators acting on
Deligne–Lusztig induction in the setting of disconnected groups, building on the work of
Bonnafé–Dat–Rouquier [10]. These operators must be suitably normalized. Using square
brackets to denote sets of irreducible constituents, the following classification result is proved
in [47, §3].

Theorem 1.5 ([47, Fact 2.4.11, Proposition 3.2.4, Proposition 3.4.6, Corollary 3.4.7]). Assume
that G splits over a tame extension of F and p does not divide the order of the Weyl group
of G.

(1) The set of normalizations of the geometric intertwining operators is a nonempty
torsor under the Pontryagin dual of the finite abelian groupNG.S/.F /�0=S.F /

(cf. Remark 1.4(2)).

(2) Any such normalization provides a multiplicity-preserving bijection

Œ�.S;�/�$ ŒIrr� .NG.S/.F /� �;

where on the right we have those irreducible representations of NG.S/.F /�

whose restriction to S.F / is � -isotypic.

The existence of normalized intertwining operators, which is part of the first point, is
formally analogous to Arthur’s result [6, §4] on the existence of suitable normalization of stan-
dard intertwining operators between parabolically induced representations. As in Arthur’s
situation, I have not been able to provide a specific normalization. In fact, at the moment
there is not even a conjectural expectation of what a good normalization might look like.
The fact that the decomposition of the supercuspidal representation �.S;�/ is formally analo-
gous to the decomposition of a parabolic induction (via standard intertwining operators and
the R-group) is quite intriguing.

The above theorem implies that the set of isomorphism classes of nonsingular super-
cuspidal representations of G.F / is in bijection with the set of G.F /-conjugacy classes of
triples .S; �; �/, where S is an elliptic maximal torus that splits over a tame extension, � is a
nonsingular character of S.F /, and � is an irreducible representation of NG.S/.F /� whose
restriction to S.F / is � -isotypic. The bijection is at the moment not completely natural, due
the lack of natural normalization of the intertwining operators.

We now come to the non-archimedean analog of Theorem 1.2. It is based on work
of Adler, DeBacker, Reeder, and Spice [5, 17, 18,84,85], and is ultimately formulated in [26].
First, we state a simpler version.

Theorem 1.6 ([26, Proposition 4.3.2]). Let �.S;�/ be the (possibly reducible) supercuspidal
representation associated to a pair .S; �/ of a tame elliptic maximal torus and a nonsingular
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character. Let s 2 S.F /\G.F /reg be topologically semisimple modulo center. The value of
‚�.S;�/

at s is given by

e.G/"L

�
X�.TG/C �X�.S/C; ƒ

�
D.s/� 1

2

X
w2N.S;G/.F /=S.F /

�abs
II

�
a; �00

�
.ws/�.ws/:

To briefly explain the notation, D.s/ D j
Q

˛.1 � ˛.s//j is the usual Weyl discrim-
inant, the product being taken over all absolute roots of S , e.G/ is the Kottwitz sign of G as
in [51], TG is the minimal Levi subgroup of the quasisplit inner form of G, ƒ is an arbitrarily
chosen nontrivial character of the additive group of the base field F , "L is the root number
of the given virtual Artin representation of degree 0, and �abs

II is the function of S.F / given
by the formula

�abs
II .s/ D

Y
˛

�00
˛

�
˛.s/ � 1

a˛

�
:

The product runs over the �-orbits of absolute roots of S that are symmetric, i.e., invariant
under multiplication by �1, and � is the absolute Galois group of F . If ˛ represents such an
orbit, we can associate the subgroups �˛ � �˙˛ � � and the corresponding field extensions
F˛=F˙˛=F . Then a˛ 2F �

˛ and�00
˛ WF

�
˛ !C� are computed explicitly in terms of � , and a˛

depends moreover onƒ. We refer to [26, §4] for the precise formulas. The first main takeaway
is this:

All constituents of this formula make sense for F D R, and with this interpretation this
formula recovers Harish-Chandra’s formula from Theorem 1.2.

There is, however, a key difference: Theorem 1.6 applies only to very special elements of
S.F / \ G.F /reg—those that are topologically semisimple modulo center. It may happen
that there are no such elements at all! So the values of the given function may not uniquely
characterize the representation �.S;�/. There is a sense in which the formula itself does char-
acterize it, but such a statement may be met with skepticism by some colleagues, and in any
event the question remains as to characterizing �.S;�/ by its character function. There are
two approaches to this problem. One, taken by Chan–Oi in [14], is to extend the validity of
this formula to some more general elements of S.F /\G.F /reg and prove that the resulting
values are enough to characterize the representation; so far this has been successful under
additional assumptions on .S; �/, including the assumption that S is unramified. One can
hope that such methods can be generalized to yield the validity of Theorem 1.6 for all ele-
ments of S.F / whose topologically semisimple modulo center part is regular. The other
approach, taken by [26, §4], is to establish a more general character formula, valid for all
elements of G.F /reg and all .S; �/, but under stricter conditions on F , as follows.

Theorem 1.7 ([26, Theorem 4.3.5]). Assume F has characteristic zero and p does not divide
the order of the Weyl group of G and is larger than .2C e/n, where e is the ramification
degree of F=Qp and n is the smallest dimension of a faithful algebraic representation of G.
For any  2 G.F /reg with topological Jordan decomposition modulo center  D 0 � 0C,
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the value of ‚�.S;�/
at  is given by

e.G/e.J /"L

�
X�.TG/C �X�.TJ /C; ƒ

�
D./� 1

2

�

X
g2S.F /nG.F /=J.F /

g 02S.F /

�abs
II

�
a; �00

�
.g0/�.g0/ OOJ

Xg .log 0C/:

To explain the new notation,J is the identity component of the centralizer of 0 inG,
X is any element of Lie�.S/.F / such that �.exp.Y //Dƒ.hX;Y i/ for all Y 2 Lie.S/.F /0C,
and OOJ

Xg is the function on Lie.J /.F / representing the Fourier transform of the orbital inte-
gral on Lie�.J /.F / at Xg . In �abs

II we now drop those roots trivial on g0.
The reason we impose the stricter conditions on F is so that the exponential map

converges on the set of topologically nilpotent elements of Lie.G/.F /, cf. [17, App. A]. This
leads naturally to the following question:

Question 1.8. Is there a formulation of the above character formula in which the function
OOJ
Xg .log 0C/ is replaced by another function on the set of topologically unipotent modulo

center elements of J.F /, which does not involve the logarithm map, but is still conjugation-
invariant. Such a function can be seen as a p-adic analog of Lusztig’s Green functions,
and this formulation would be valid also in positive characteristic and with possibly weaker
conditions on p, as it avoids the use of the logarithm.

It should be noted that the results of [85] are formulated with weaker conditions
on F , but use a pseudologarithm map that may not have good equivariance properties.

Remark 1.9. For Theorems 1.6 and 1.7, one must use the twisted Yu construction of [26],
which is a modification of the original Yu construction whose purpose is to remedy an error
in [88] that goes back to [30]. That error invalidates some results of [88], rendering invalid
Yu’s proof that the construction produces irreducible supercuspidal representations. It was
shown by Fintzen in [25] that despite the error, the original Yu construction does produce
irreducible supercuspidal representations. Nonetheless, the error introduces problems that
lead to the appearance of auxiliary sign characters in the character formula (the characters
"ram and "f;ram of [45, Corollaries 4.8.2, 4.10.1], as well as the character of [46, Proposition

5.27]), which make some applications of the resulting formula very difficult. In addition, the
arguments of [85] can only be carried out for the twisted Yu construction.

1.3. Double covers of tori
In the archimedean setting, Adams and Vogan [2] have shown that Theorem 1.1, as

well as the local Langlands correspondence that will be our next topic, are more naturally
formulated if instead of characters � of an elliptic maximal torus S.R/ one uses genuine
characters of a certain double coverS.R/�. This double cover is obtained by choosing a Borel
C-subgroup B of G that contains S and considering the algebraic double cover S� obtained
as the pullback of the diagram S

2�
! C�

2
 C�, where 2� is the sum of the B-positive

absolute roots and 2 denotes the squaring map. Then S.R/� is defined as the preimage of
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S.R/ under the isogeny S�.C/! S.C/. Note that there is a canonical character � W S� !

Gm. The choice of B is immaterial, as one can take the limit over all possible choices.
One can then reformulate Theorems 1.1 and 1.2 as the statement that there is a

bijection between the set of discrete series representations of G.R/ and the set of G.R/-
conjugacy classes of pairs .S; Q�/, whereS �G is an elliptic maximal torus and Q� is a genuine
character of the double cover S.R/� such that d Q� is regular. Note that we are not restricting
here to what we called “regular” discrete series representations, i.e., this formulation of the
theorem covers all discrete series representations. Moreover, the representation �

.S; Q�/
is the

unique one whose Harish-Chandra character function evaluated at an element s 2 S.R/ \

G.R/reg has the form

.�1/q.G/

P
w2N.S;G/.R/=S.R/ sgn.w/ Q�.Qsw/Q

˛>0.˛
1
2 .Qs/ � ˛� 1

2 .Qs//
; (1.1)

where ˛ > 0 runs over all absolute roots that are positive with respect to the Weyl chamber
determined by the regular element d Q� , and Qs 2 S.R/� is any lift of s. Both numerator and
denominator are well-defined genuine functions on S.R/�, and their quotient descends to
S.R/.

The double cover of Adams–Vogan generalizes to all local fields, but the general-
ization takes a different form than the original definition, in that it is of Galois-theoretic
rather than algebraic nature. Without going into technical details, for which we refer to [46],
we just mention that for any local field F , a connected reductive F -group G, and a max-
imal torus S � G, there exists a double cover S.F /˙ whose elements can be represented
by tuples .s; .ı˛// with s 2 S.F / and ı˛ 2 F �

˛ for every symmetric ˛ 2 R.S; G/ such that
ı�.˛/ D �.ı˛/ for all � 2 � and ı˛=ı�˛ D ˛.s/. When F D R and the torus S is elliptic,
S.R/˙ is canonically identified with S.R/�.

Theorems 1.3 and 1.6 take the following shape in terms of this double cover: There
is a natural bijection between the set of G.F /-conjugacy classes of regular supercuspidal
representations and the set of G.F /-conjugacy classes of pairs .S; Q�/, where S is a tame
elliptic maximal torus and Q� is a regular genuine character of the double cover S.F /˙. For
any s 2 S.F / \ G.F /reg that is topologically semisimple modulo center, ‚�

.S; Q�/
takes the

value

e.G/"L

�
X�.TG/C �X�.S/C; ƒ

�
D.s/� 1

2

X
w2NG.S/.F /=S.F /

aS .Qsw/ Q�.Qsw/;

where aS W S.F /˙ ! ¹˙1º is the genuine function sending Qs D .s; .ı˛// 2 S.F /˙ toY
˛

�˛

�
ı˛ � ı�˛

a˛

�
;

the product runs over the set of �-orbits of symmetric elements in R.S; G/, and
�˛ W F

�
˙˛ ! ¹˙1º is the quadratic character associated to the extension F˛=F˙˛ . One can

also formulate Theorem 1.7 in terms of S.F /˙; we skip this for now, but will formulate an
analogous formula when discussing the local Langlands correspondence.

2957 Representations of reductive groups over local fields



The advantage of using S.F /˙ is that it removes the somewhat mysterious charac-
ters �00

˛ used in Theorem 1.6 (or rather, it clarifies their role as mediating between characters
of S.F / and genuine characters of S.F /˙). Unfortunately, unlike in the archimedean case,
this formulation does not allow the parameterization in terms of pairs .S; Q�/ to be extended
beyond the case of regular supercuspidal representations.

2. The local Langlands correspondence

2.1. The basic version
Let F be a local field and G be a connected reductive F -group. Let LG D bG Ì �

be the L-group of G and let LF be the local Langlands group of F , i.e., the Weil group WF

when F is archimedean, or the group WF � SL2.C/ when F is non-archimedean. The basic
version of the local Langlands conjecture states that there exists a surjective finite-to-one
map from the set of equivalence classes of irreducible admissible representations of G.F /

to the set of bG-conjugacy classes of relevant L-parameters ' W LF !
LG. The fiber over '

is called an L-packet, denoted by …'.G/.
There are reduction steps on the side of L-parameters that are parallel to the reduc-

tion steps “admissible” ! “tempered” ! “discrete” in the classification of irreducible
admissible representations, but amount to simple exercises. The step “admissible”! “tem-
pered” produces from an arbitrary Langlands parameter ' a triple .P; 'M ; �/ consisting
of a parabolic subgroup P of G, a tempered parameter 'M for the Levi quotient M of P ,
and an element � of X�.AM /R that lies in the P -positive open cone, cf. [81] for the non-
archimedean case. The L-packet …'.G/ then consists of the representations j G

P .� ˝ �/

for any � 2 …'M
.M/. The step “tempered”! “discrete” is even simpler, and just records

the Levi subgroup M of G so that a given tempered L-parameter factors through LM

and through no smaller Levi subgroup. The L-packet …'.G/ consists of the irreducible
constituents of the parabolic induction iG

P .�/ for any � 2 …'.M/.
This reduces the construction of the correspondence to the case of discrete parame-

ters, i.e., those that do not factor through any proper Levi subgroup, and essentially discrete
series representations. At this point it becomes clear that the conjecture, as stated so far, is
almost vacuous: nothing prevents us from randomly assigning discrete series representations
to discrete parameters. This raises the following fundamental question, raised on various
occasions by M. Harris, K. Buzzard, and others, which is so far unresolved in full generality:

Question 2.1. Find a list of properties that uniquely characterize the local Langlands corre-
spondence.

As discussed above, it is enough to answer this question for discrete parameters.
While eventually a compatibility with a given global correspondence would be a key require-
ment, at the moment this is not feasible, and we seek a purely local characterization.

A number of expected properties have already been formulated, for example, com-
patibility with central and cocentral characters and homomorphisms with abelian kernel and
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cokernel [11, 10.3(1),(2),(5)], the strong tempered L-packet conjecture (a strengthening of [76,
Conjecture 9.4] stating that each tempered L-packet on a quasisplit group contains a unique
member that is generic with respect to a fixed Whittaker datum), the formal degree conjec-
ture [38], and the contragredient conjecture [3, 39]. These are, however, not enough to pin
down the correspondence uniquely. The following property is also expected:

Conjecture 2.2. Each discrete1 seriesL-packet is atomically stable, i.e., there exists a linear
combination of the Harish-Chandra characters of its members that is a stable distribution,
and no proper subset of the L-packet has this property.

It is expected that Conjecture 2.2 uniquely characterizes the partition of the set of
equivalence classes of irreducible discrete series representations of G.F / into L-packets.
However, it does not determine the matching between L-packets and L-parameters.

In the case of GLN , stability is a vacuous condition and L-packets are singletons.
On the other hand, Henniart has found [35, 37] a list of conditions that uniquely determine
the local Langlands correspondence for GLN when F is non-archimedean. Besides the
already listed conditions regarding central and cocentral characters and contragredient, what
is needed is equality of L- and "-factors of pairs, which on the Galois side are the Artin fac-
tors of the tensor product of the two Galois representations, and on the automorphic side are
given by Rankin–Selberg integrals. While analogous factors can be defined for some other
groups as well, such as classical groups, it is unfortunately not yet known how to define
them for general reductive groups intrinsically. For some interesting ideas in this direction,
see [13]. Another approach to characterizing the local Langlands correspondence for non-
archimedean F was pioneered by Scholze in [73] for the group GLN , and extended to a
certain list of other groups in [63] based on [74].

One way to characterize the assignment ' 7!…'.G/would be to associate to each '

a stably invariant distribution S‚G
' that would be the stable character of the corresponding

L-packet (unique up to nonzero scalar multiple by Conjecture 2.2). In the archimedean case,
where the local correspondence has been constructed by Langlands [57], this stable distribu-
tion (in fact function) can be described most conceptually using the double covers discussed
in Section 1.3. According to Adams–Vogan [2], this description is as follows. The existence
of a discrete parameter ' easily implies the existence of an elliptic maximal torus S � G.
There is an L-group LS˙ associated to the double cover S.R/˙. One key property of the
double cover is that there is a canonical bG-conjugacy class of L-embeddings LS˙ !

LG

(this is not the case for the L-group LS of the torus S itself), cf. [46, §4.1]. It is again easy to
see that ' factors through this L-embedding, and thus leads canonically to a genuine char-
acter Q� of S.R/˙, well defined up to WG.S/.R/. The stable character associated to ' is

1 Conjecture 2.2 is expected more generally for tempered L-packets, but not for nontempered
L-packets; the latter need to be enlarged to Arthur packets, or more generally ABV packets,
in order to provide stable distributions, cf. [1,8].
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uniquely characterized by its restriction to S.R/, where it takes the form

S‚G
' .s/ D .�1/q.G�/

�

P
w2WG.S/.R/ sgn.w/ Q�.Qsw/Q

˛>0.˛
1
2 .Qs/ � ˛� 1

2 .Qs//
: (2.1)

Here again ˛ > 0means h˛_; d Q�i> 0. We denote byWG.S/DNG.S/=S the absoluteWeyl
group, and by G� the quasisplit inner form of G. Note the very close relationship to (1.1). It
may appear odd that we insist on the constant .�1/q.G�/ even though the entire function is
supposed to be well defined only up to a constant; we will see in the next subsection that in
fact this function is conjecturally well defined “on the nose,” and not just up to a constant.

Turning to a non-archimedean base field F , we can use these ideas of Adams–
Vogan and our experience from Theorems 1.6 and 1.7 to formulate the following conjectures
describing the stable character associated to a supercuspidal parameter ', i.e., a discrete
parameter that is trivial on the subgroup SL2.C/ of LF . It is easy to see that, when G is
tame and p does not divide the order of the Weyl group of G, such a parameter determines a
stable conjugacy class of elliptic maximal tori S � G, and that ' factors through the canon-
ical embedding LS˙ !

LG, thereby providing a genuine character Q� of S.F /˙.

Conjecture 2.3. Let  2G.F / be regular semisimple and topologically semisimple modulo
center. Then S‚G

' ./ is zero unless  lies in the image of an admissible embedding S ! G,
in which case (after identifying S with that image), we have

S‚G
' ./ D "L

�
X�.TG/C �X�.S/C

�
D./� 1

2

X
w2WG.S/.F /

ŒaS �
Q��.w/: (2.2)

Note the strong similarity between (2.1) and (2.2). In fact, this is more than just a
similarity:

Formula (2.2) makes sense for any local field F , and recovers formula (2.1) when F D R.
Therefore, it gives a conjectural description of the stable character associated to a discrete

Langlands parameter ' W WF !
LG that is uniform for any local field F .

Of course, this conjecture only applies to discrete parameters that, in the non-archimedean
case, have trivial restriction to SL2.C/, and in addition p is prime to jWG.S/j. This conjec-
ture was the guiding principle behind the constructions of [45,47]. One drawback it has is that
in the non-archimedean case there may not be enough topologically semisimple elements of
S.F / to fully determine the function S‚G

' . This is not an issue in the setting of [45, 47]

because we are not using the values of the function, but rather the entire formula, which car-
ries more information. Nonetheless, a more complete solution is desirable. It is conceivable
that the ideas of [14] might lead to a stronger version of this formula. Another approach is
to allow arbitrary regular semisimple elements of G.F /, in the vein of Theorem 1.7. This
leads to the following conjecture.
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Conjecture 2.4 ([46, §4.4]). For any strongly regular semisimple  2G.F / with topological
Jordan decomposition modulo center  D 0 � 0C,

S‚G
' ./D e.J /"L

�
X�.TG/C �X�.TJ /C

�
D./� 1

2

X
j WS!J

ŒaS �
Q��.

j
0 / �bSOJ

j X

�
log.0C/

�
;

assuming F has characteristic zero and p � .2C e/n.

The notation is the same as that in Theorem 1.7, except now we are using the stable
orbital integral at j X instead of the usual orbital integral, and the sum runs over the set of
stable classes of admissible embeddings S ! J .

Again, the reason we require the characteristic of F to be zero and p to be very
large is to ensure the convergence of exp on Lie.G/.F /0C, in particular on Lie.J /.F /0C.
A positive resolution to Question 1.8 would weaken this requirement.

The most general constructions of the non-archimedean basic local Langlands
correspondence are given byGenestier–Lafforgue [29] in positive characteristic and Fargues–
Scholze [22] for arbitrary non-archimedean local fields. These constructions only produce
semisimplified parameters, but, at least in positive characteristic, recent work of Gan–
Harris–Sawin [27] (based on arguments of Gan–Lomelí [28] in the case of classical groups)
provides a unique enrichment of such a semisimplified parameter to a full Langlands param-
eter when the representation in question is supercuspidal. Earlier constructions include
[33, 36, 59] for GLN and [9] for quasisplit symplectic and orthogonal groups in character-
istic zero, and [32] for generic supercuspidal representations of the exceptional group G2.

At the moment there are many open questions regarding the constructions [22, 29],
such as

(1) Is the map � 7! ' surjective?

(2) Are the resulting L-packets always finite?

(3) Does the construction of Fargues–Scholze specialize to that of Genestier–
Lafforgue when F has positive characteristic?

(4) Do Conjectures 2.2 and 2.4 hold?

(5) Does the formal degree conjecture hold?

On the other hand, [47] gives an explicit construction of the correspondence under
the assumption that G is tame and p does not divide the order of the Weyl group, and ' is
a supercuspidal parameter, building on prior work [17,40,71]. This setting is more restrictive
than that of [22] or [29], but in return provides much more knowledge about the resulting
correspondence. For example, we know that

(1) The map � 7! ' has as domain all nonsingular supercuspidal representations,
and as image all supercuspidal parameters.

(2) The map � 7! ' is compatible with central and cocentral characters.
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(3) The resulting L-packets are always finite and, in fact, have the desired internal
structure (see the next section).

(4) Both Conjectures 2.2 and 2.4 hold [26, §4.4].

(5) The formal degree conjecture holds, as shown by Schwein [75] and Ohara [68].

The question whether the constructions of [22] and [47] agree is equivalent (in the
setting of F having characteristic zero and p being sufficiently large) to the question of
whether [22] satisfies Conjecture 2.4. A strong indication that they agree would be given if
Conjecture 2.3 could be proved instead; the latter can also be pursued for [29], since it allows
the characteristic of F to be positive.

The opposite setting of that of supercuspidal parameters and nonsingular (i.e.,
semisimple) supercuspidal representations is that of unipotent supercuspidal representa-
tions, and more generally arbitrary unipotent representations. Much progress has been made
on the local Langlands correspondence for these representations via detailed study of affine
Hecke algebras and formal degrees [23,61,62,70,82].

2.2. The refined version
For many applications, such as the Gan–Gross–Prasad conjecture, or the multiplic-

ity formula for discrete automorphic representations, the basic version of the local Langlands
conjecture is insufficient because it describes packets of representations rather than individ-
ual representations. The refined local Langlands conjecture remedies this by enhancing the
notion of a Langlands parameter to allow the description of individual irreducible admis-
sible representations. In fact, already the statement of the Hiraga–Ichino–Ikeda conjecture
requires the refined correspondence, a point that we glossed over in the previous subsection.

As pointed out by Vogan [87], the refined conjecture requires a rigidification of the
concept of inner forms of reductive groups. In the archimedean case, a good rigidification
was obtained by Adams–Barbasch–Vogan [1]. In the non-archimedean case, different ways
of rigidification have led to different versions of the refined conjecture. We only give a brief
summary, referring the reader to [41] for more details.

The set of equivalence classes of inner forms of a connected reductive group G is
H 1.F; Gad/, where Gad D G=Z.G/ is the adjoint group of G. In every inner class there is a
unique quasisplit form, and we normalize things by taking G to be that form. A rigidification
of the notion of an inner form can be achieved by choosing a Galois gerbe E . When F has
characteristic zero such a gerbe can be understood, following Langlands–Rapoport [58], as
an extension 1! u.F /! E ! � ! 1 of the absolute Galois group � of F by an algebraic
or proalgebraic group u. Following Kottwitz [54], one then considers the set H 1

bas.E; G/

of cohomology classes of E with values in G.F / whose restriction to u factors through the
centerZ.G/ ofG. There is a natural embeddingH 1.F;G/!H 1

bas.E;G/ and a natural map

H 1
bas.E; G/! H 1.F; Gad/: (2.3)

A rigidification of an inner form of G is the choice of an element of H 1
bas.E; G/ that lifts the

class of that inner form.
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Vogan’s notion of pure inner forms comes from the trivial Galois gerbe E triv D � ,
for which u D ¹1º. Kottwitz’s theory of isocrystals with G-structure [53] employs the gerbe
E iso of the Tannakian category of F -isocrystals. The problem with E triv and E iso is that in
general the map (2.3) is not surjective, so not all inner forms can be rigidified. For E iso,
that map is surjective when Z.G/ is connected. In [42] I define a gerbe E rig for which the
map (2.3) is always surjective. It turns out that, when F D R, this gerbe recovers the notion
of strong real forms introduced by [1]. A key property of the gerbes E iso and E rig is that they
satisfy a generalization of Tate–Nakayama duality.

When F has positive characteristic the simplified concept of a Galois gerbe as an
extension of the absolute Galois group becomes inadequate, due to the possible nonsmooth-
ness of u. Despite this difficulty, Peter Dillery [20] has found a way to construct a suitable
analog of E rig. In fact, his construction works uniformly for all non-archimedean local fields
and recovers E rig when F has characteristic zero. Therefore, we now have a satisfactory
definition of E rig for any local field.

The refined local Langlands conjecture parameterizes all irreducible admissible rep-
resentations of all inner forms ofG at once.More precisely, one considers tuples .G0; �;z;�/,
where G0 is a connected reductive F -group, � W GF s ! G0

F s is an isomorphism of
F s-groups, where F s is a fixed separable closure of F , z 2 Z1

bas.E
rig; G/, and

��1�.�/ D Ad. Nz� /, where Nz� is the image of z in Z1.F; Gad/ (since Gad is smooth we
can interpret the latter as étale, i.e., Galois, cohomology), and finally � is an irreducible
admissible representation of G0.F /. An isomorphism .G1; �1; z1; �1/ ! .G2; �2; z2; �2/

is a pair .g; f / with g 2 G.F s/ and f W G1 ! G2 an isomorphism of F -groups such that
f ı �1 D �2 ıAd.g/ and z2.e/D gz1.e/�e.g/�1; here �e 2 � is the image of e 2 E rig. The
key property of the set Z1

bas.E
rig; G/ is that if we fix the triple .G0; �; z/, then two tuples

.G0; �; z; �1/ and .G0; �; z; �2/ are isomorphic if and only if the representations �1 and �2

of G0.F / are equivalent.
Assuming the validity of the basic local Langlands conjecture, we can define for

each Langlands parameter ' W LF !
LG the “compound L-packet” …' as the set of iso-

morphism classes of tuples .G0; �; z; �/, for all possible .G0; �; z/ and all � 2 …'.G0/. We
further let S' be the centralizer of ' in bG, and SC

' and Z.ŒbNG�C/ be the preimages of S'

and Z.bG/� in the universal cover bNG of bG. The refined conjecture, inspired by the work of
Adams-Barbasch-Vogan and Vogan, is then the following.

Conjecture 2.5 ([42, §5.4]). Fix a Whittaker datum w for G.

(1) There exists a bijection �';w that is the top map in the following commutative
diagram

…'

�';w //

��

Irr.�0.SC
' //

��

H 1
bas.E

rig; G/ // �0.Z.bNG/C/�
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in which the left map sends the isomorphism class of .G0; �; z; �/ to the class
of z, the right map is the central character map, and the bottom map is gen-
eralized Tate–Nakayama duality. This bijection relates the unique w-generic
constituent of …' to the trivial representation of �0.SC

' /.

Given a semisimple element Ps 2 SC
' , a rigid inner twist .G0; �; z/, and a tempered parame-

ter ', define the virtual character

‚
G0;�;z

';w;Ps
D e.G0/

X
�2…'.G0/

tr
�
�';w

�
G0; �; z; �

�
.Ps/

�
�‚� :

(2) The distribution ‚
G0;�;z
';w;1 is stable and independent of w and z.

(3) For a general Ps 2 SC
' , the distribution ‚

G0;�;z

';w;Ps
is the endoscopic lift of the dis-

tribution ‚
H;id;1
';�;Ps

for the endoscopic datum .H; Ps/ associated to ', with respect
to the transfer factor normalized via w and z as in [42, (5.10)].

Remark 2.6. (1) Point (3) specifies the bijection �';w uniquely, provided such a
bijection exists.

(2) The distribution in (2) is what we referred to asS‚G0

' in the previous subsection.
Note that the inner twist � is used to identify LG0 with LG, so if we use LG as
codomain for Langlands parameters, we should write S‚

G0;�
' to indicate that

this distribution depends also on �, not just G0.

(3) The fiber over Œz� 2 H 1
bas.E

rig; G/ of the left vertical map in (1) is by defini-
tion the L-packet …'.G Nz/ of the inner form G Nz of G associated to the image
Œ Nz�2H 1.F;Gad/ of z. Note that there can be two distinct Œz1�; Œz2�2H 1.E rig;G/

mapping to Œ Nz�. This leads to the appearance of the sameL-packet…'.G Nz/mul-
tiple times in the compound L-packet …' . This “overcounting” is the spectral
incarnation of the rigidification of the notion of inner forms.

(4) When F is non-archimedean, the bottom map in (1) is bijective. This means
that the L-packet …'.G Nz/ for the individual group G Nz is described precisely by
the set Irr.�0.SC

' /; Œz�/ of irreducible representations of �0.SC
' / that transform

under �0.Z.bNG/C/ via the character corresponding to Œz�. As just discussed,
there can be multiple Œz� lifting Œ Nz�, leading to multiple ways to parameterize
…'.G Nz/. Thankfully, it is a rather straightforward matter to relate these two
parameterizations of …'.G Nz/, as we will discuss in the next subsection.

(5) When F D R, the bottom map in (1) need not be injective or surjective. These
failures are well understood, cf [42, §3.4, §4, Proposition 5.3]. The nonsurjectivity
implies that, for some �2�0.Z.bNG/C/�, the set Irr.�0.SC

' /;�/ does not parame-
terize anyL-packet. The noninjectivity implies that for some � 2 �0.Z.bNG/C/�,
the set Irr.�0.SC

' /; �/ parameterizes a union of L-packets over certain rigid
inner forms. The set of rigid inner forms appearing in such a union consists of
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exactly those inner forms ofG that are related to each other byGalois 1-cocycles
valued in the simply connected covers of their adjoint groups; this set is termed
a K-group by Arthur in [7, §1].

(6) An analogous conjecture can be stated with E iso or E triv in place of E rig. One
has to then replace �0.Z.bNG/C/� by X�.Z.bG/�/ or �0.Z.bG/�/�, respectively,
and �0.SC

' / by S
\
' D S'=.S' \ bGder/

ı or �0.S'/, respectively. There is a com-
mutative diagram

�0.S'/ �0.SC
' /oo // S \

'

�0.Z.bG/�/

OO

�0.Z.bNG/C/oo

OO

// Z.bG/�

OO

that relates the three versions of the conjecture. Given �1 2 �0.S'/� and
�2 2 X�.Z.bG/�/ with common image � 2 �0.Z.bNG/C/�, this diagram induces
bijections Irr.�0.S'/; �1/ D Irr.�0.SC

' /; �/ D Irr.S \
' ; �2/. Therefore, the three

versions of the conjecture differ only in the amount of inner forms of G that
they can reach, and the way in which these inner forms are overcounted by
rigidification. For a more thorough comparison, cf. [44, §4.2].

When F D R, Conjecture 2.5 was established by Shelstad in a series of papers,
especially [77–80], cf. also [42, §5.6]. A geometric approach to Conjecture 2.5 was developed
in [1], which also produces and parameterizes Arthur packets, not just L-packets.

For non-archimedean local fields of characteristic zero, the restriction of Conjec-
ture 2.5 to quasisplit classical groups was proved by Arthur [9].

For more general groups over non-archimedean local fields, we have the following.

Theorem 2.7 ([26, §4.4]). Under the assumptions of Theorem 1.7, Conjecture 2.5 holds for
the construction of regular supercuspidalL-packets of [45], and more generally for all super-
cuspidal L-packets constructed [47], but in that larger generality point (3) is proved only for
certain elements Ps (the remaining elements Ps are work in progress).

It is at the moment not known if the constructions of [29] or [22] satisfy Conjec-
ture 2.5. This would follow from Theorem 2.7 once Conjecture 2.4 is established for these
constructions, via comparison with [47], at least under the assumptions under which that
theorem and conjecture are formulated. We note that [22] works with the concept of inner
forms rigidified via E iso because isocrystals with G-structure appear naturally in the theory
of the Fargues–Fontaine curve, but the relationship between the two versions of the refined
correspondence is well understood as per Remark 2.6(6).

The refined local Langlands conjecture can be combined with a global version of
E rig, developed in [43] over number fields, and in [21] over global function fields, to obtain
a precise formulation of the conjectural multiplicity formula for discrete automorphic rep-
resentations originally due to Kottwitz [52, (12.3)], cf. [43, §4.5], [21, §5.4]. Special cases of
this formula have been proved by O. Taïbi, cf. [86]. One can also obtain a global multiplicity
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conjecture using the global version of E iso defined by Kottwitz in [50], under the assumption
that the global group G has connected center and satisfies the Hasse principle. Under those
conditions, the two global multiplicity formulas coming from E iso and E rig are equivalent,
cf. [48].

Another setting in which information about the refined local Langlands conjecture,
more precisely part (1) of Conjecture 2.5, has been obtained is that of unipotent representa-
tions, cf. [23,61,62,70,82].

2.3. Compatibility properties
The basic version of the local Langlands correspondence is expected to satisfy many

compatibility properties, cf. [11, §10]. The refined version of the local Langlands correspon-
dence allows one to formulate more precise compatibility properties. Some of them turn
out to be formal consequences of the refined conjecture, while others have to be proved
independently.

Among the simplest such properties are those regarding the dependence of the
parameterizing bijection �';w on the Whittaker datum w and on the element of H 1

bas.E
rig; G/

lifting the class of H 1.F; Gad/ that describes the relevant inner form.

2.3.1. Whittaker data
If another Whittaker datum w0 is chosen, there exists an element g 2 Gad.F / such

that w0 D gwg�1. Denote by .w0; w/ the image of g under the connecting homomorphism
H 0.F; Gad/! H 1.F; Z.Gsc//. Local Tate duality identifies H 1.F; Z.Gsc// with the dual
of H 1.F; Z.bGsc// D H 1.LF ; Z.bGsc//. A Langlands parameter ' W LF !

LG induces an
action of LF on bG by conjugation via ', which coincides with the usual action of LF on
Z.bGsc/. Via the connecting homomorphism H 0.'.LF /; bGad//! H 1.LF ; Z.bGsc// in the
resulting long exact cohomology sequence, we can pull back the character .w0; w/ to the
group S'=Z.bG/� D SC

' =Z.bNG/C. The following result is stated in [39, Theorem 4.3] for real
groups or quasisplit classical p-adic groups, but the proof actually shows that it is a formal
consequence of Conjecture 2.5:

Theorem 2.8. The validity of Conjecture 2.5 implies

�';w0. P�/ D �';w. P�/˝ .w0; w/ 8 P� 2 …' :

2.3.2. Rigidifying data
The question of changing the rigidifying element can be resolved in an analogous

way. Consider an element Nz 2 Z1.F; Gad/ leading to the inner form G Nz . Let
z1; z2 2 Z1

bas.E
rig; G/ both lift Nz. Then z2z�1

1 2 Z1.E rig; Z.G//, and we denote by Œz2z�1
1 �

its class. Given a Langlands parameter ' W LF !
LG and � 2 …'.G Nz/, we can consider

the elements P�1 D .G Nz ; �; z1; �/ and P�2 D .G Nz ; �; z2; �/ of …' , where � denotes the identi-
fication of GF s with G Nz;F s . These elements both describe the representation � of the group
G Nz.F /, but are distinct elements of the compound packet …' . This is the overcounting
phenomenon mentioned in the previous subsection. To relate these two “reflections” of � ,
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consider the exact sequence

1! �1.bG/! bNG ! bG ! 1

equipped with the action of LF via conjugation by '. It leads to the differential d W SC
' !

Z1.F; �1.bG// that factors through �0.SC
' /. We denote by �d the composition of this

differential with the inversion automorphism of the abelian group �1.bG/. It is shown in
[44, §§6.1,6.2] that local Tate duality generalizes to a duality between H 1.E rig; Z.G// and
Z1.F; �1.bG//. The element Œz2z�1

1 � thus becomes a character of Z1.F; �1.bG//, which can
be pulled back to �0.SC

' / by �d .

Theorem 2.9 ([44, §6.3]). The validity of Conjecture 2.5 implies

�';w. P�2/ D �';w. P�1/˝ .�d/�
��

z2z�1
1

��
:

Remark 2.10. The cohomological constructions in Theorem 2.8 and 2.9 are very closely
related: the composition of the differential d W SC

' ! Z1.F; �1.bG// with the natural pro-
jection Z1.F; �1.bG//!H 1.F; �1.bG// and the natural map �1.bG/! �1.bGad/D Z.bGsc/

equals the composition of the natural projectionSC
' !H 0.'.LF /; bGad/with the connecting

homomorphismH 0.'.LF /; bGad/!H 1.LF ;Z.bGsc//DH 1.F;Z.bGsc//. This is embodied
in the commutative diagrams [44, (6.1),(6.2),(6.6)].

2.3.3. Contragredients
We now discuss the compatibility of the local Langlands conjecture with respect

to taking contragredients. To state it, we write bC for the Chevalley involution of bG, well
defined up to conjugation, and by LC its extension to an automorphism of LG. We write
�_ to denote the contragredient of a representation � , and given P� D .G0; �; z; �/ we write
P�_ D .G0; �; z; �_/.

Conjecture 2.11. Assume Conjecture 2.5. Let ' W LF !
LG be a Langlands parameter

with compound L-packet …' . Then

(1) …LC ı' D ¹ P�
_ j P� 2 …'º,

(10) S‚
G0;�
LC ı'

.ı/ D S‚
G0;�
' .ı�1/ whenever ' is tempered,

(2) �LC ı';w�1. P�_/ D .�';w.�/ ı bC �1/_.

Part (1) can be stated for L-packets on an individual group, and hence without
assuming Conjecture 2.5. In this form it was formulated by Adams–Vogan in [3], where it
was also proved for F D R. Wen-Wei Li proved that statement of (1) in [60] for the semisim-
plified basic correspondence of [29]. Part (10) is a variation of part (1)—it implies part (1) via
linear independence of characters, provided one assumes Conjecture 2.2. Over F D R parts
(1) and (10) are, in fact, equivalent, since Conjectures 2.2 and 2.5 are known and S‚

G0;�
' is

simply the sum of ‚� over all � 2 …'.G0/.
Part (2) was formulated by D. Prasad, cf. [69, Conjecture 2]. It was proved in

[39, Theorem 5.9] that Conjecture 2.5 for G, together with part (10) for all endoscopic groups
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of G, implies part (2) for G. It was furthermore proved in [39, Theorem 5.8] that for p-adic
fields part (10) holds for quasisplit symplectic and orthogonal groups; the same argument
also applies to quasisplit unitary groups.

2.3.4. Automorphisms
The next compatibility we discuss is with respect to automorphisms. Initially, one

may be interested in a particular connected reductive F -group G0 and wonder how an
F -automorphism � 0 of G0 respects the (basic or refined) local Langlands correspondence.
We will see, however, that this is a special case of the following more general consideration.

Let as before G be a quasisplit connected reductive F -group. Let � 2 AutF .G/.
Then � acts on Z1

bas.E
rig; G/ via its action on G, and furthermore acts on the set of tuples

.G0; �; z; �/ by the rule �.G0; �; z; �/ D .G0; � ı ��1; �.z/; �/. This induces an action of
AutF .G/ on the set of isomorphism classes of such tuples. The subgroup IntF .G/ of inner
F -automorphisms of G does not act trivially, but it follows from Theorems 2.8 and 2.9 and
Remark 2.10 that �';�.w/.� P�/ D �';w. P�/ for � 2 IntF .G/ and P� 2 …' . Note this implies
that � preserves the compound L-packet …' .

On the other hand, the group AutF .bG/ of �-equivariant automorphisms of bG acts
on the set of refined Langlands parameters by the rule �.'; �/ D .� ı '; � ı ��1/, and the
subgroup IntF .bG/ acts trivially on the bG-conjugacy classes of such parameters by definition.
Recall that the exact sequences of�-modules 1! IntF s .G/!AutF s .G/!OutF s .G/! 1

and 1! Int.bG/! Aut.bG/! Out.bG/! 1 are split, and the choice of an F -pinning of G

resp. of a�-stable pinning of bG determine�-equivariant splittings of these sequences. Recall
finally that there is a natural �-equivariant identification Out.G/ D Out.bG/, via which we
obtain the identification AutF .G/=IntF .G/DOutF .G/DOutF .bG/DAutF .bG/=IntF .bG/.

To state the following conjecture, it is convenient to write �.w; P�/ D .'; �/, where
' is the unique Langlands parameter with P� 2 …' , and � D �';w. P�/.

Conjecture 2.12. Assume Conjecture 2.5. Let ' W LF !
LG be a Langlands parameter

with compound L-packet …' . For � 2 OutF .G/ D OutF .bG/,

(1) …�ı' D ¹� P� j P� 2 …'º.

(2) �.�.w/; �. P�// D �.�.w; P�//.

Again part (1) can be formulated for L-packets on an individual group, and hence
without assuming Conjecture 2.5. In that form it appears as [3, Lemma 6.18] when F D R.

Note the formal similarity between Conjectures 2.11 and 2.12. If we let � be the
element of OutF .G/ D OutF .bG/ that corresponds to the Chevalley involutions and set
�.w; P�/ D .'; �/, then Conjecture 2.11(2) states �.w�1; P�_/ D .�.'/; �.�/_/, while Con-
jecture 2.12(2) states �.�.w/; �. P�// D .�.'/; �.�//. We are free to lift � to an element of
AutF .G/ any way we like; if we take it to be the involution �G;P defined by D. Prasad in [69,

Definition 1] with respect to a pinning related to the Whittaker datum w as in [55, §5.3], then
�.w/ D w�1. This shows that [69, Conjecture 1] follows from Conjectures 2.11 and 2.12.

2968 T. Kaletha



Let us now discuss how Conjecture 2.12 gives information about the compatibility
of the refined local Langlands correspondence with F -automorphisms of a fixed group G0.
We realize G0 as a rigid inner twist .�; z/ W G ! G0 of its quasisplit inner form G. Given
� 0 2 AutF .G0/, the automorphism ��1� 0� of G need not respect the F -structure. However,
it does respect the F s-structure and, moreover, the difference .��1� 0�/�1 ı �.��1� 0�/ is
an inner automorphism of G for each � 2 � . In other words, the image of ��1� 0� in the
group Out.G/ D Aut.G/=Int.G/ is an F -point. Let � 2 AutF .G/ be a lift of that F -point
that preserves the Whittaker datum w. Then ��1� 0� D Ad.g/ ı � for some g 2 G.F s/.
Since the automorphism ��1� 0� of G commutes with the twisted action Ad. Nz� /� on G.F s/

for all � 2 � , we see that the equality �. Nz� / D g�1 Nz� �.g/ holds in Z1.F; Gad/. Then
ye WD .g�1ze�e.g// � �.ze/�1 2 Z1.E rig; Z.G// and we see that .g; � 0/ is an isomorphism
.G0; � ı ��1; y � �.z/; �/! .G0; �; z; � ı � 0 �1/. The class Œy� of y is uniquely determined
by � 0 and .�; z/. From Theorem 2.9, we obtain

Corollary 2.13. Assume Conjectures 2.5 and 2.12. Then

�.G0; �; z; � ı � 0 �1/ D �
�
�.G0; �; z; �/

�
˝ .�d/�

�
Œy�

�
;

where the tensor product affects the second component � of the refined parameter .'; �/.

The class Œy� is trivial if and only if g can be chosen so that .g; � 0/ is an isomor-
phism .G0; � ı ��1; �.z/;�/! .G0; �; z;� ı � 0 �1/. This is not always possible: the simplest
example is when � 0 is an inner automorphism of G0 that comes from an element of G0

ad.F /

which does not lift to G0.F /. In fact, this example is very useful and leads to the following
application of Corollary 2.13.

Corollary 2.14. Assume Conjectures 2.5 and 2.12. The action of G0
ad.F / on the set of rep-

resentations of G0.F / preserves each L-packet. More precisely, if � 0 D Ad. Ng/ for some
Ng 2 G0

ad.F /, then

�.G0; �; z; � ı � 0 �1/ D �.G0; �; z; �/˝ .�d/�
��

g�1ze�e.g/z�1
e

��
;

for any lift g 2 G.F s/ of ��1. Ng/.

2.3.5. Homomorphism with abelian kernel and cokernel
Let f 0 W G0

1 ! G0
2 be a homomorphism of connected reductive F -groups with

abelian kernel and cokernel, and Lf W LG0
2!

LG0
1 be the correspondingL-homomorphism.

For a Langlands parameter '2 W LF !
LG0

2 we can consider the composed parameter
'1 WD

Lf ı '2 and the corresponding L-packets …'2.G0
2/ and …'1.G0

1/ provided by the
basic local Langlands conjecture.

It is asserted in [11, §10] that for any �2 2 …'2.G0
2/ the representation �2 ı f 0 of

G0
1.F / is a direct sum of finitely many members of …'1.G0

1/. The refined local Langlands
correspondence allows us to formulate a more precise expectation, namely about the multi-
plicity

m.�1; �2/ D dim Hom
�
�1; �2 ı f 0

�
D dimHom

�
�2 ı f 0; �1

�
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for each �1 2 …'1.G0
1/. To that end, note that Lf induces a map bf W SC

'2
! SC

'1
via which

we can define for any �1 2 Irr.�0.S'1// and �2 2 Irr.�0.S'2// the number

m.�1; �2/ D dimHom.�2; �1 ı
bf / D dimHom.�1 ı

bf ; �2/:

We can realize G0
i as a rigid inner twist .�i ; zi / W Gi ! G0

i of its quasisplit inner form Gi

in such a way that f D ��1
2 ı f 0 ı �1 is a homomorphism of F -groups G1 ! G2 and

z2 D f .z1/.

Conjecture 2.15. Let �i D �'i ;w.G0
i ; �i ; zi ; �i /. Then

m.�1; �2/ D m.�2; �1/:

This conjecture has been stated by Solleveld as [83, Conjecture 2], where it has been
proven in some cases. A weaker form has been stated by Choiy in [15], where it has been
proved under certain working hypotheses numbered 4.1, 4.3, 4.6, 4.11, and 4.15. Among
these, 4.1, 4.3, and 4.6 amount to Conjecture 2.5, 4.11 is Corollary 2.14, and 4.15 is a certain
dual version to 4.11 that also appears plausible. A direct verification of the basic version of
this conjecture stated in [11, §10] in the setting of [47] has been announced by Bourgeois–Mezo
in [12], again assuming F has characteristic zero.
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Perfect bases in
representation
theory: three
mountains and their
springs
Joel Kamnitzer

Abstract

In order to give a combinatorial descriptions of tensor product multiplicites for semisimple
groups, it is useful to find bases for representations which are compatible with the actions
of Chevalley generators of the Lie algebra. There are three known examples of such bases,
each of which flows from geometric or algebraic mountain. Remarkably, each mountain
gives the same combinatorial shadow: the crystal B.1/ and the Mirković–Vilonen poly-
topes. In order to distinguish between the three bases, we introduce measures supported on
these polytopes. We also report on the interaction of these bases with the cluster structure
on the coordinate ring of the maximal unipotent subgroup.
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1. Representations and their bases

1.1. Semisimple Lie algebras and their representations
Let G be a complex semisimple group. The representation theory of G is very well

understood. The irreducible G-representations are labeled by dominant weights, and every
representation is a direct sum of these irreducible representations. For � 2 PC, the irre-
ducible representation V.�/ admits a decomposition into eigenspaces V.�/� for the action
of T . These eigenspaces are called weight spaces and their dimensions are called weight
multiplicities.

The tensor product of two irreducible representations decomposes into a direct sum
of irreducible representations with tensor product multiplicities c�

��
,

V.�/˝ V.�/ Š
M

�2PC

V.�/
˚c�

�� :

Problem 1.1. Determine combinatorial formulae for weight multiplicities and tensor prod-
uct multiplicities.

Weight and tensor product multiplicities are closely related by the following con-
struction. Let C �

��
D Hom.V .�/; V .�/˝ V.�//, a vector space whose dimension is c�

��
.

Proposition 1.2. There is an injective map C �
��
! V.�/��� with image

T
i2I ker e

˛_
i .�/C1

i .

Here we use the Chevalley presentation of g, with generators ei ; fi ; ˛_
i , for i 2 I .

1.2. Good and perfect bases
Problem 1.1 was first solved by Littelmann [34] and Berenstein–Zelevinsky [9],

following an approach first proposed by Gel’fand–Zelevinsky [21]. They suggested finding
weight bases for each V.�/ which restrict to bases of tensor product multiplicity spaces.

Let V be a G-representation. A weight basis for V is a basis consisting of weight
vectors. A weight basis B for V.�/ is called good, if for each i 2 I , it is compatible with the
filtration of V.�/ given by the kernels of powers of ei . From Proposition 1.2, it follows that
a good basis restricts to a basis of each tensor product multiplicity space.

A slight strengthening of the notion of good basis was proposed by Berenstein–
Kazhdan [8]. One might imagine that we could find a basis for a representation such that
each ei takes each basis vector to another basis vector (or 0). However, this is not always
possible (see Example 1.4). So instead we will demand that each ei permutes the basis up to
lower order terms.

To formulate this, we define a map "i W V ! N giving the nilpotence degree of ei

on a vector v 2 V ; more precisely, "i .v/ D max¹n 2 N W en
i b ¤ 0º.

A good basis B of V is called perfect, if for each i 2 I , and b 2 B , either ei b D 0

or there exists Qei .b/ 2 B such that

ei b D "i .b/ Qei .b/C v for some v 2 ker e
"i .b/�1
i :
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In other words (up to a predictable scalar) ei b equals Qei .b/ modulo a vector with
lower nilpotence degree. Note that this definition only requires V to be a representation of
the Borel subalgebra b.

Example 1.3. To understand these scalars and gain some intuition, it is instructive to con-
sider the case of gD sl2. In this case, PC DN and V.n/D CŒx; y�n, the space of homoge-
nous polynomials of degree n. The Chevalley generator e acts by y@x (on both the left and
right) and the unique perfect basis (up to a scalar) is ¹xn; xn�1y; : : : ; ynº.

Note that y@x.xkyn�k/ D kxk�1yn�kC1 and ".xkyn�k/ D k. In this case there is
no lower order term.

Example 1.4. The simplest irreducible representation where lower order terms occur is the
adjoint representation of sl3. In this representation, V D sl3 with the action given by matrix
commutator. If we assume that B contains the highest weight vector0B@0 0 1

0 0 0

0 0 0

1CA ;

then it is easy to see that the perfect basis condition forces B to contain0B@0 0 1

0 0 0

0 0 0

1CA ;

0B@0 �1 0

0 0 0

0 0 0

1CA ;

0B@0 0 0

0 0 �1

0 0 0

1CA ;

0B@0 0 0

1 0 0

0 0 0

1CA ;

0B@0 0 0

0 0 0

0 1 0

1CA ;

0B@ 0 0 0

0 0 0

�1 0 0

1CA :

The choice of basis for the diagonal matrices is more interesting. The requirement that B be
compatible with the kernels of e1; e2 forces B to contain matrices of the form0B@�a 0 0

0 �a 0

0 0 2a

1CA ;

0B@2b 0 0

0 �b 0

0 0 �b

1CA
for some nonzero a; b. We are forced to take b D 1=3 and similarly a D 1=3, since

e1

0B@0 0 0

1 0 0

0 0 0

1CA D
0B@1 0 0

0 �1 0

0 0 0

1CA D 2

0B@2=3 0 0

0 �1=3 0

0 0 �1=3

1CAC
0B@�1=3 0 0

0 �1=3 0

0 0 2=3

1CA ;

where the second term is of lower nilpotence degree (since it lies in the kernel of e1).

1.3. Perfect bases and crystals
Any perfect basis gives rise to a combinatorial structure called a crystal. Crystals

were first introduced by Kashiwara [30] as the q D 0 limit of a basis for a representation of
a quantum group. However, we prefer to view them as recording the leading order behavior
of ei acting on a perfect basis.

A crystal is a finite set B , along with a map wt W B ! P , and for each i 2 I , a
partially defined map Qei W B ! B . If B is a perfect basis, then it automatically acquires a
crystal structure. The following result of Berenstein–Kazhdan [8, Theorem 5.37] shows that
this combinatorial structure depends only on the representation.
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Theorem 1.5. Let V be a representation and let B; B 0 be two perfect bases. Then there
exists a bijection B Š B 0 which is an isomorphism of crystals.

Because of this theorem, we may speak of the crystal of a representation. In partic-
ular, the crystal of V.�/ is denoted B.�/. Many different explicit combinatorial realizations
of B.�/ are possible. In this talk, we will focus on MV polytopes Section 2.3.

1.4. Biperfect bases
Rather than looking at each irreducible representation individually, we can study

them all at once, using the following trick. The maximal unipotent subgroup N has left and
right actions of N and thus the coordinate ring CŒN � has left and right actions of n by
differential operators. For each i 2 I , we write ei W CŒN �! CŒN � for the left action and
e�

i W CŒN �! CŒN � for the right action.
For each � 2 PC, choose a highest weight vector v� 2 V.�/ and let v�

�
W V.�/! C

be a dual linear form. We define an N -equivariant map

‰� W V.�/! CŒN �; ‰�.v/.g/ D v�
�.gv/:

This linear map is injective and its image is

im‰� D

\
i2I

ker
�
e�

i

�˛_
i .�/C1

� CŒN �: (1.1)

Thus a basis for CŒN � compatible with the kernels of all powers of e�
i gives a basis for each

V.�/. Conversely, a collection of bases for each V.�/ can sometimes glue together to give a
basis for CŒN �.

A basis B of CŒN � is called biperfect if it contains 1, and it is perfect with respect
to both the left and right actions of n. Thus, B will have two families of crystal operators,
written Qei ; Qe

�
i and two families of maps "i ; "�

i W B ! N (but only one weight map).
From Proposition 1.2 and (1.1), we immediately deduce the following corollary,

which can be regarded as a generalization (from the canonical basis to arbitrary biperfect
bases) of [9, Corollary 3.4].

Corollary 1.6. Let B be a biperfect basis of CŒN �.

(1) For any � 2 PC, the set ¹b 2 B W "�
i .b/ � ˛_

i .�/º restricts via ‰� to a perfect
basis for V.�/.

(2) For any �; �; � 2 PC, the set®
b 2 B W wt.b/ D � � � � � and 8i 2 I; "i .b/ � ˛_

i .�/; "�
i .b/ � ˛_

i .�/
¯

restricts to a basis for C �
��

.

Thus we can solve Problem 1.1 by understanding well the bicrystal structure on B .
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1.5. The bicrystal B.1/

The Berenstein–Kazhdan result (Theorem 1.5) generalizes to biperfect bases.

Theorem 1.7 ([5, Theorem 2.4]). Let B and B 0 be two biperfect bases of CŒN �. Then there
is a unique bijection B Š B 0 that respects the bicrystal structure.

The abstract combinatorial crystal underlying any biperfect basis is denoted B.1/.
On B.1/ we have the Kashiwara involution � W B.1/! B.1/ exchanging Qei and Qe�

i .

Remark 1.8. The algebraCŒN � has an involutive automorphism � (coming from the inverse
map on N ) which exchanges the left and right actions of n. A �-invariant perfect basis is a
perfect basis which is invariant under �. Every example of a biperfect basis that we know is
�-invariant. The Kashiwara involution � on B.1/ is the combinatorial manifestation of the
involution � on CŒN �.

Example 1.9. When G D SL3, B.1/ can be drawn in the following way. The action of e1

is given by right-pointing diagonal arrows and the action of e2 is given by the left-pointing
ones. Each horizontal group of dots have the same weight and the Kashiwara involution flips
each such group. We would like to thank Mark Haiman for showing us this drawing many
years ago.

�

� �

� � � �

� � � � � �

� � � � � � � � �

e1 e2

1.6. Biperfect bases in small rank
For small rank groups, it is easy to show the existence and uniqueness of biperfect

bases of CŒN � by elementary means.

Theorem 1.10. For G D SL2;SL3;SL4, CŒN � has a unique biperfect basis.

Example 1.11. SupposeG D SL2, thenCŒN �DCŒx� and‰n WCŒx;y�n!CŒx� is the map
sending y to 1. The left and right actions of e 2 n on CŒx� agree and are given by e D @x .
The unique biperfect basis of CŒx� is ¹1; x; x2; : : : º.
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Example 1.12. Suppose G D SL3, with the standard choice for B , T and N . Then
CŒN � D CŒx; y; z� where x, y and z are the three matrix entries of an upper unitrian-
gular matrix 0B@1 x z

0 1 y

0 0 1

1CA 2 N:

The unique biperfect basis of CŒN � is

B D
®
xazb.xy � z/c

W .a; b; c/ 2 N3
¯
[

®
yazb.xy � z/c

W .a; b; c/ 2 N3
¯
:

1.7. Three different biperfect bases
For general G, biperfect bases are not unique, nor is it very easy to show their exis-

tence.
The first example of a biperfect basis was Lusztig’s dual canonical basis which is

also known as Kashiwara’s upper global basis [31,37]. This is actually a basis for the corre-
sponding quantum deformation ofCŒN �, but it can be specialized at q D 1 to give a biperfect
basis.

Another example, when g is simply-laced, is Lusztig’s dual semicanonical basis
[38], which is constructed by means of the representation theory of the preprojective algebra.

A third example is the Mirković–Vilonen basis [39] coming from the geometry of
the affine Grassmannian.

This trichotomy of bases will be the focus of this paper. Each of these bases comes
from a complicated algebraic or geometric source. Following Arun Ram, we can imagine
three high mountains whose springs give these three bases.

These bases are all different, combining [5, Thm. 1.7], [4, Prop. 2.7], and [18, (3)].

Theorem 1.13. For G D SL6 in the weight space 2˛1 C 4˛2 C 4˛3 C 4˛4 C 2˛5, and for
G D SO8 in the weight space 2˛1 C 4˛2 C 2˛3 C 2˛4, there is a point of B.1/ whose
corresponding dual canonical, dual semicanonical, and MV bases are all different.

Moreover, in both these examples, we have the following specific situation:

d D b C v; c D b C 2v; (1.2)

where b; c; d denote the MV, dual semicanonical, and dual canonical basis vectors, all of
which define the same point in B.1/, and v denotes a vector common to all three bases.

Question 1.14. What can we say about the set of all biperfect bases of CŒN � for a fixed G?

2. Mirković–Vilonen basis

2.1. MV cycles
Mirković–Vilonen [39] used the geometric Satake correspondence to define the MV

basis for irreducible representations of G. This basis is indexed by certain subvarieties in the
affine Grassmannian, known as MV cycles.
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Let G_ be the Langlands dual group and let Gr D G_..t//=G_JtK denote the affine
Grassmannian of this group. By definition, the coweight lattice of G_ coincides with the
weight lattice P of G. For each coweight � 2 P , we get a point of G_..t// and hence a point
L� in Gr. Let S�

˙
WDN _

˙
..t//L� denote semiinfinite orbits in Gr, where N _

˙
denote opposite

unipotent subgroups in G_.
For � 2 PC, let Gr� WD G_JtKL� be a spherical Schubert variety. This is a finite-

dimensional singular projective variety whose geometry is closely related to the irreducible
representation V.�/. Let P.Gr/ denote the category of perverse sheaves on Gr which are
constructible with respect to the stratification byG_JtK orbits. This is a semisimple category
whose simple objects are the intersection cohomology sheaves IC� of the spherical Schubert
varieties. There is a monoidal structure on P.Gr/ by convolution.

The following geometric Satake correspondence was established by Mirković–
Vilonen [39], following earlier work by Lusztig [35] and Ginzburg [23].

Theorem 2.1. (1) There is an equivalence of monoidal categories,P.Gr/ŠRepG.

(2) Under this equivalence, for each � 2 PC, IC� is sent to V.�/.

(3) Under this equivalence, for each � 2 P , the hyperbolic stalk functor H �

S
�
�

.�/

matches the functor of taking the �-weight space.

Combining these statements, we conclude Htop.Gr� \S�
� / Š V.�/�. The irre-

ducible components of Gr� \S�
� are called MV cycles. Via this theorem, they provide a

basis for each V.�/�.

2.2. Stable MV cycles
For bases of CŒN �, we will be concerned with the intersection of opposite semi-

infinite orbits. For any � 2 QC, the positive root cone, the irreducible components of
S�

C \ S0
� are called stable MV cycles.
Given an MV cycle Z � Gr�\S�

� , we can translate by t�� to produce a stable MV
cycle t��Z. This process is the geometric analog of the map ‰� W V.�/! CŒN �.

In [5], we combined work of Ginzburg [23] and Mirković–Vilonen [39] to prove the
following result, which had been conjectured by Anderson [1].

Theorem 2.2. (1) The MV bases for each V.�/ can be collected together to form
a biperfect basis for CŒN �, which is indexed by stable MV cycles.

(2) For each i , the action of ei on anMV basis vector bZ is given by the intersection
of the stable MV cycle Z with a hyperplane section.

(3) Given two MV cycles Z1; Z2, the product bZ1bZ2 in CŒN � is given by the
Beilinson–Drinfeld degeneration of Z1 �Z2.

In particular, the structure constants for the action of ei and for the multiplication
are nonnegative integers.
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2.3. MV polytopes
For each stable MV cycle Z, we define Pol.Z/ to be its moment map image (for a

real Hamiltonian torus action). Equivalently, we have

Pol.Z/ D Conv.� W L� 2 Z/:

The polytopes produced this way are called MV polytopes. In [27], we proved the following
result.

Theorem 2.3. The map Z 7! Pol.Z/ gives a bijection between the stable MV cycles and
the MV polytopes. The MV polytopes are precisely those lattice polytopes whose dual fan is
a coarsening of the Weyl fan and whose 2-faces are MV polygons for the appropriate rank 2
groups (which can be described explicitly).

This theorem was reinterpreted by Goncharov–Shen [24] as the following statement.

Corollary 2.4. The MV polytopes are in natural bijection with .G_=B_/.Ztrop/�, the non-
negative tropical points of the flag variety.

Following the historical order, we have describedMV polytopes as the moment map
images of MV cycles. However, we emphasize that Theorem 2.3 shows that they are purely
combinatorial objects. We will see in the next two sections that these same polytopes are
naturally obtained from general preprojective algebras modules and simple KLR modules.
They are the common shadows from all three mountains.

In [26], we gave an explicit description of the crystal structure on the set of MV poly-
topes. This provides a convenient combinatorial framework for describing the crystal B.1/

and is easily connected to many other combinatorial models. In particular, for each reduced
word si1 � � � sim D w0 for the longest element of the Weyl group, Lusztig [36] constructed a
bijection B.1/!Nm using the relation between PBWmonomials and the canonical basis.
In [26], we showed that the Lusztig datum of b 2 B.1/ is the list of lengths along a path
following the edges of the MV polytope Pol.b/, in root directions determined by the reduced
word.

Example 2.5. Take G D SL3. In this case, an MV polytope is a hexagon with all 120ı

angles, whose “width” A is equal to the maximum of its two “heights” B; C .

A

B

C

For this polytope, the two Lusztig data are .3; 2; 1/ and .2; 1; 4/.
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3. Dual semicanonical basis

3.1. Preprojective algebra
Assume for this section that g is simply-laced. LetH denote the set of oriented edges

of the Dynkin diagram of g. If hD .i; j /, write NhD .j; i/. Fix a map � WH ! ¹1;�1º such
that for each h, �.h/C �. Nh/ D 0 (such a � corresponds to an orientation of each edge of the
Dynkin diagram).

The preprojective algebra ƒ is the quotient of the path algebra of .I; H/ by the
relation

P
h2H �.h/h Nh D 0. So a ƒ-module M consists of vector spaces Mi , for i 2 I , and

linear maps Mh WMi !Mj for each h D .i; j / 2 H , such thatX
h2H

�.h/MhM Nh D 0: (3.1)

Given a ƒ-module M , we define its dimension vector by

dim
��!

M D
X
i2I

.dimMi / ˛i :

Wewrite Si for the simple module at vertex i , the unique module with dim
��!

Si D ˛i .
For each � D

P
i2I �i ˛i 2 QC, we consider the affine variety of ƒ-module struc-

tures on
L

i2I C�i . More precisely, we define

ƒ.�/ �
M

.i;j /2H

Hom.C�i ; C�j /

to be the subvariety defined by equation (3.1).

3.2. The dual semicanonical basis
Let M be a ƒ-module. Following Lusztig [38] and Geiss–Leclerc–Schröer [18, §5],

we define an element �M 2 CŒN � as follows. First, for each i 2 I p , we define the projective
variety of composition series of type i ,

Fi .M/ D
®
0 DM 0

�M 1
� � � � �M p

DM WM k=M k�1
Š Sik for all k

¯
and then we define �M 2 CŒN � by requiring that

hei1 � � � eip ; �M i D �
�
Fi .M/

�
for any i 2 I p , where � denotes topological Euler characteristic, and where h�; �i denotes the
pairing between U n and CŒN �.

This mapM 7! �M is constructible and so for any irreducible component Y �ƒ.�/,
we can define cY 2 CŒN �� by setting cY D �M , for M a general point in Y .

The following result is due to Lusztig [38].

Theorem 3.1. (1) For each � 2 QC, ¹cY j Y 2 Irrƒ.�/º is a basis for CŒN �� .

(2) Together they form a biperfect basis of CŒN �, called the dual semicanonical
basis.
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3.3. Polytopes from preprojective algebra modules
In the resulting bicrystal structure on the set t� Irrƒ.�/, we have

"i .Y / D dimHomƒ.M; Si /; "�
i .Y / D dimHomƒ.Si ; M/;

where M is a general point of Y .

Remark 3.2. Fix � 2 PC. From Corollary 1.6(1), those components Y which satisfy
"�

i .Y / � ˛�
i .�/ index a basis for V.�/. These same irreducible components form the core of

the corresponding Nakajima quiver variety via the correspondence explained in [43, Section

4.6].

The bicrystal t Irr ƒ.�/ is isomorphic to B.1/ by Theorem 1.7. Thus, an MV
polytope is canonically associated to component Y . We can describe this polytope using the
module structure on a general point of Y .

Theorem 3.3 ([6, §1.3]). Let Y be a component of ƒ.�/ and M be a general point of Y . The
MV polytope of the basis vector cY is given by the Harder–Narasimhan polytope of M ,

Pol.M/ WD Conv.dim
��!

N W N �M is a submodule/:

Example 3.4. Take g D sl3, and consider � D ˛1 C ˛2.
Then ƒ.�/ D ¹.a; b/ 2 C2 W ab D 0º where .a; b/ corresponds to the ƒ-module

C
b

�
a

C:

Further, ƒ.�/ has two components in this case. If Y is the component given by b D 0, then
for general M 2 Y , we have submodules in M of dimension 0; ˛1; ˛1 C ˛2 and so Pol.M/

is the triangle with these vertices.

4. Dual canonical bases

4.1. KLR algebras
Let g be an arbitrary semisimple Lie algebra. For each � 2QC, Khovanov–Lauda–

Rouquier defined an algebra R� . It can either be defined by generators and relations using a
modification of the presentation of a Hecke algebra [42], or as an algebra of decorated string
diagrams as in [32]. This algebra can also be realized as an Ext algebra of certain perverse
sheaves constructed by Lusztig (see [45]).

In this section, we work over C, though it is possible to work over fields of positive
characteristic; this produces different bases, called the dual p-canonical bases.

The algebra R� contains indempotents ei indexed by sequences .i1; : : : ; ip/ 2 I p

such that ˛i1 C � � � C ˛ip D �. We write K.R�/C for the complexified Grothendieck group
of finite-dimensional R� modules. The following result is due independently to Rouquier
and Khovanov–Lauda.

Theorem 4.1. For each � 2 QC, there is an isomorphism K.R�/C Š CŒN �� , written
ŒL� 7! dL such that hei ; dLi D dim ei L, for any module L and i as above.
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The vector space K.R�/C has a basis given by the simple finite-dimensional R�-
modules. By [45], the resulting basis for CŒN � coincides with Lusztig’s dual canonical
basis.

4.2. Polytopes from KLR modules
The bicrystal structure on the set of simple KLR modules was carefully studied by

Lauda–Vazirani [33]. By Theorem 1.7, this bicrystal is isomorphic toB.1/, and thus anMV
polytope is canonically associated to each simple KLR module.

On the other hand, these algebras come with nonunital morphisms

R� ˝R��� ! R� :

We write e�;��� for the image of the identity under this map. Tingley–Webster [44] used
these morphisms to define a polytope associated to each KLR module.

Theorem 4.2. The MV polytope of a simple R�-module L is the character polytope

Pol.L/ WD Conv.� W e�;���L ¤ 0/:

4.3. Generalizations to affine and Kac–Moody cases
Unlike the MV basis, the dual semicanonical basis and dual canonical basis admit

straightforward generalizations to the setting where g is a symmetric (resp. symmetrizable)
Kac–Moody Lie algebra.

The polytopes Pol.M/ and Pol.L/ associated to a general ƒ-module or a simple
KLR module admit obvious generalizations in this setting. However, due to higher root
multiplicities, the polytope is not enough to characterize the point in B.1/. Thus, we
must enhance the polytope with some extra information. This was carried out in [6] (using
ƒ-modules) and in [44] (using KLR modules).

In the affine case, this extra information consists of partitions associated to vertical
edges of the polytope (vertical edges are those pointing in the imaginary root direction).
Moreover, these decorated polytopes are characterized by their 2-faces (as in the finite case,
Theorem 2.3) and the new relevant polygons were described combinatorially in [3].

Question 4.3. (1) Is it possible to give a “tropical” description of affine MV poly-
topes, similar to Corollary 2.4?

(2) Outside of the affine type, it is possible to give a combinatorial description to
the extra information carried on the MV polytope?

(3) Though more complicated, the theory of MV cycles exists for affine Kac–
Moody Lie algebras. How can we relate these MV cycles to the affine MV
polytopes? In particular, what information about the cycles is encoded in the
partitions along vertical edges?
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5. Comparing biperfect bases

5.1. Change of basis matrix
Let B; B 0 be two biperfect bases for CŒN �. By Theorem 1.7, we obtain bijections

B!B.1/ B 0 and thus a bijection betweenB andB 0. Thus, it makes sense to speak of the
change of basis matrix between B and B 0. In [2], Baumann proved that this matrix is upper
unitriangular with respect to a partial order on B.1/, defined combinatorially using the
crystal structure.Many elements ofB.1/ are incomparable using this order. Thus, many off-
diagonal elements of the change of basis matrix must vanish. In low rank, the order becomes
trivial and gives the proof of Theorem 1.10.

5.2. Measures
We think of anMVpolytope as the shadow of a biperfect basis vector. Unfortunately,

this shadow is not precise enough to distinguish between different biperfect basis vectors
which represent the same element of B.1/. For this reason, we now introduce a measure
supported on the MV polytope.

Consider the vector space Dist.t�
R/ of C-valued compactly supported distributions

on t�
R. It forms an algebra under convolution, using the addition map t�

R � t�
R

C
�! t�

R.
Let �p WD ¹.c0; : : : ; cp/ 2RpC1 W each ci � 0; c0C � � � C cp D 1º be the standard

p-simplex. For i 2 I p , we define the linear map �i W RpC1 ! t�
R by

�i .c0; : : : ; cp/ D

pX
kD0

ck.˛i1 C � � � C ˛ik /:

We define the measure Di on t�
R by Di WD .�i /�.ı�p /, the push-forward of Lebes-

gue measure on the p-simplex. The measures Di satisfy the shuffle identity.

Lemma 5.1 ([5, Lemma 8.5]). For j 2 I p; k 2 I q ,

Dj �Dk D

X
i2j�k

Di ;

where j � k is the set of all sequences obtained by shuffling j and k.

Elementary considerations involving the coproduct structure on U n show that the
shuffle identity implies that there is an algebra morphism D W CŒN �! Dist.t�

R/ defined by

D.f / D
X

i

hei ; f iDi :

5.3. Fourier transform
For each weight ˇ 2 P , we define eˇ to be the function x 7! ehˇ;xi on tC . Given a

measure D.f / as above, we can consider its Fourier transform FT.D.f // which lies in the
space of meromorphic functions on tC , spanned by these exponentials over the field C.t/ of
rational functions. In this way, we obtain the following result.

Proposition 5.2. The composition FT ıD defines an algebra morphism

CŒN �! C.t/˝CŒT �:
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This algebra morphism defines a rational map t � T ! N . This map is actually
regular on treg � T , where treg is the complement of the root hyperplanes in t.

Theorem 5.3 ([5, Theorem 8.11]). (1) For all x 2 treg, there exists a unique nx 2 N

such that Adnx .x/ D x C e.

(2) The rational map from Proposition 5.2 is given by .x; t/ 7! t�1nxtn�1
x .

We now study a simpler invariant D. For a sequence i D .i1; : : : ; ip/, we define

Di D

pY
kD1

1

˛ik C � � � C ˛ip

2 C.t/:

Proposition 5.4 ([5, Proposition 8.4 and Lemma 8.7]). (1) These rational functions
satisfy the shuffle identity from Lemma 5.1 and thus define an algebra mor-
phism D W CŒN �! C.t/ by D.f / D

P
i hei ; f iDi .

(2) For any f 2 CŒN �, D.f / is the coefficient of e0 in FT.D.f //.

(3) The algebra morphism from (1) comes from the morphism of varieties treg!N

given by x 7! nx .

5.4. Duistermaat–Heckman measure
In symplectic geometry, the Duistermaat–Heckman (DH) measure of a symplectic

manifold with a Hamiltonian torus action is defined to be the push-forward of the Liouville
measure under the moment map. Brion–Procesi [14] reformulated this notion in algebraic
geometry by considering the asymptotics of sections of equivariant line bundles.

Fix a W -invariant bilinear form on t (normalized so that short roots have length 1).
This leads to a central extension of G_..t// and thus an equivariant line bundle O.1/ on Gr.

LetZ �Gr be anMV cycle. The torus T _ acts on the space of sections �.Z;O.n//.
We consider Œ�.Z; O.n//� as a distribution on t�

R by�
�

�
Z; O.n/

��
D

X
�2P

dim�
�
Z; O.n/

�
�

ı�:

(Implicitly, we use the bilinear form to identify t and t�.)
Let �n W t

�
R ! t�

R be the automorphism given by scaling by 1
n
. The Duistermaat–

Heckman measure of Z is defined to be the limit

DH.Z/ WD lim
n!1

1

ndimZ
.�n/�

�
�

�
Z; O.n/

��
within the space of distributions on t�

R. Note that each .�n/�Œ�.Z; O.n//� is supported on
Pol.Z/, and hence so is DH.Z/.

Via the Fourier transform, DH.Z/ is closely related to the class ofZ in the equivari-
ant homology of the affine Grassmannian. The following ideas are not specific to the affine
Grassmannian: they apply to any (ind-)projective variety equipped with a torus action having
isolated fixed points. First, we have the localization theorem in equivariant homology (see,
for example, [13]).
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Theorem 5.5. The inclusion GrT _

! Gr induces an isomorphism

H T _

� .GrT
_

/˝CŒt� C.t/
�
�! H T _

� .Gr/˝CŒt� C.t/:

Because of this theorem and using GrT _

D ¹L� W � 2 P º, we can write

ŒZ� D
X
�2P

m�.Z/
�
¹L�º

�
for unique m�.Z/ 2 C.t/. Following Brion [13], we call m�.Z/ the equivariant multiplicity
of Z at L�. In [5], we proved the following result (again in the general context of projective
varieties with torus actions), following ideas of Brion.

Theorem 5.6. For any MV cycle Z,

FT
�
DH.Z/

�
D

X
�2P

m�.Z/e�:

5.5. DH measures and measures from CŒN�

The T _-equivariant homology of Gr was computed by Yun–Zhu [46]. They defined
a commutative convolution algebra structure on H T _

� .Gr/ and described this algebra using
the geometric Satake correspondence.

Let e D
P

ei be a regular nilpotent element. We define the universal centralizer
space to be

C WD
®
.x; b/ 2 t � B W Adb.x C e/ D x C e

¯
:

Remark 5.7. For any x 2 t, x C e is regular and has centralizer contained in B . Thus our
spaceC is the base change over t! t=W of the usual universal centralizer (often denoted J ),
as defined in, for example [10, §2.2].

From the definition, we have a map C ! t � T given by .x; tn/ 7! .x; t/. The dual
algebra map fits into the following diagram.

Theorem 5.8 ([46, Prop 3.3 and 5.7]). There is an isomorphism of algebras � W CŒC � !

H T _

� .Gr/ making the following diagram commute:

CŒt�˝CŒT �
� //

��

H T _

� .GrT _

/

Theorem 5.5
��

CŒC �
� // H T _

� .Gr/

Recall the mapD WCŒN �!Dist.t�
R/ defined in §5.2 and themapD WCŒN �!C.t/

defined in Section 5.3. Combining Theorems 5.3, 5.6, and 5.8, we proved the following in [5].

Corollary 5.9. For any stable MV cycle Z,

D.bZ/ D DH.Z/; D.bZ/ D m0.Z/:

This corollary is very useful since the equivariant multiplicitym0.Z/ is easily com-
puted using computer algebra programs. In the appendix of [5] (written with C. Morton-
Ferguson and A. Dranowski), we used this approach to establish part of Theorem 1.13.
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5.6. Measures from preprojective algebra modules
LetM be aƒ-module of dimension vector �. By the definition of �M and themapD,

we have that
D.�M / D

X
i

�
�
Fi .M/

�
Di :

In the previous section (Corollary 5.9), we saw that the measure D.bZ/ of an MV basis
vector equals the asymptotics of sections of line bundles on Z. In a similar fashion, we will
now explain that D.�M / can also be regarded as an asymptotic.

Consider the algebra ƒŒt� WD ƒ˝C CŒt �. We define

G�

�
MŒt�=tn

�
D

®
N �M ˝CŒt �=tn

W N is a ƒŒt�-submodule, dim
��!

N D �
¯
:

We will record the information of the Euler characteristics of these varieties as an element
of Dist.t�

R/ by �
H �

�
G

�
MŒt�=tn

���
D

X
�2QC

�
�
G�

�
MŒt�=tn

��
ı�:

Theorem 5.10 ([5, Theorem 11.4 and Lemma 12.3]). For any ƒ-module M , we have

D.�M / D lim
n!1

1

ndimM
.�n/�

�
H �

�
G

�
MŒt�=tn

���
:

5.7. A conjecture and symplectic duality
Suppose that Y 2 Irr ƒ.�/, with general point M , and Z is a stable MV cycle,

such that cY D bZ (there are many such pairs, conjecturally). Then D.cY / D D.bZ/. Via
Theorem 5.10 and Corollary 5.9, both sides are the asymptotics of T _-representations. So
it is natural to expect equality before taking the limit. If we further assume that the odd
cohomology of G�.MŒt �=tn/ vanishes, this implies that there is an isomorphism of T _-
representations,

�
�
Z; L ˝n

�
Š H �

�
G

�
MŒt�=tn

��
; for all n 2 N; (5.1)

where T _ acts on the right-hand side through the decomposition G.MŒt�=tn/ D

tG�.MŒt �=tn/.
The left-hand sides of (5.1) form the components of a graded algebra, so it is natural

to search for a similar structure on the right-hand sides. After studying this question for some
time, we are pessimistic about finding this algebra structure. On the other hand, CŒZ� WDL

n �.Z;L ˝n/ is also a module over CŒS�
C \ S0

��. We believe that such a module structure
naturally exists for the direct sums of the right-hand side of (5.1).

Conjecture 5.11. (1) For any preprojective algebra module M of dimension
vector �,

L
n2N H �.G.MŒt �=tn// carries the structure of a C ŒS�

C \ S0
��-

module.

(2) When bZ D cY and M is a general point of Y , then there is an isomorphism
(5.1) of C ŒS�

C \ S0
��-modules.
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This conjecture should be a manifestation of the symplectic duality between gen-
eralized affine Grassmannian slices and Nakajima quiver varieties. In particular, Braverman–
Finkelberg–Nakajima [12] proved that a generalized affineGrassmannian slice is the Coulomb
branch associated to the quiver gauge theory defining the corresponding Nakajima quiver
variety. In [25], with Hilburn and Weekes, we developed a Springer theory for Coulomb
branch algebras and proved a weak form of Conjecture 5.11 for those modules M which
come from a representation of the undoubled quiver.

The symplectic singularity viewpoint is also a useful framework for thinking about
our three bases. In particular, following the philosophy of Braden–Licata–Proudfoot–Webster
[11], the MV cycles and quiver variety components can be categorified using category O for
quantizations of affine Grassmannian slices and quiver varieties, respectively. Moreover,
these categories are closely related to categories of modules for KLR algebras [28]. From
this perspective, the failures of these bases to agree with the dual canonical basis in Theo-
rem 1.13 can be attributed to the nonirreducibility of the character varieties of simple objects
in these categories.

6. Cluster structures

6.1. Cluster structures on CŒN�

Cluster algebras were defined by Fomin–Zelevinsky in order to understand the
dual canonical basis of CŒN �. A cluster algebra is a commutative algebra A with a distin-
guished collection of “clusters.” Each cluster consists of an algebraically independent subset
T D ¹x1; : : : ; xnº � A, such that A � C.x1; : : : ; xn/. We pass from one cluster to another
using an “exchange procedure” which removes one of the xi and replaces it with a certain
rational function. A cluster monomial is a monomial in the variables in one cluster.

Berenstein–Fomin–Zelevinsky [7] proved that CŒN � carries a cluster algebra struc-
ture. Every reduced word si1 � � � sim D w0 for the longest element of the Weyl group gives us
a cluster T .i/ (though these are not all the clusters).

Geiss–Leclerc–Schröer [19] established the following beautiful result explaining
how the theory of preprojective algebras provides an additive categorification of the cluster
algebra structure on CŒN �.

Theorem 6.1. Assume that g is simply-laced.

(1) A maximal rigid ƒ-module T gives a cluster with cluster variables
x1 D �T1 ; : : : ; xn D �Tn , where Ti are the distinct indecomposable summands
of T .

(2) Every cluster is of this form and all cluster monomials lie in the dual semicanon-
ical basis.

(3) The exchange relations in CŒN � comes from short exact sequences in ƒ-mod.
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On the other hand, Kang–Kashiwara–Kim–Oh [29] proved that the categories ofR�-
modules provide a monoidal categorification of the cluster algebra CŒN �. In particular, they
proved the following result, which was obtained at around the same time by Qin [40].

Theorem 6.2. Every cluster monomial in CŒN � lies in the dual canonical basis.

Together, Theorems 6.1 and 6.2 imply that the dual semicanonical and canonical
bases contain many common elements, since they both contain all cluster monomials.

6.2. g-vectors
Fix a cluster T D ¹x1; : : : ; xnº in a cluster algebra A. Let u 2 A be a cluster mono-

mial. Fomin–Zelevinsky [17] defined combinatorially the g-vector gT .u/ 2 Zn of u using a
mutation procedure. In [15], Derksen–Weyman–Zelevinsky proved that this g-vector encodes
the “leading monomial” appearing in u. In this case, we say u is g-pointed. As we vary the
cluster T , the data of these gT .u/ defines a tropical point in the Langlands dual cluster X

variety, as studied by Fock–Goncharov [16].
The following observation is due to Genz–Koshevoy–Schumann [22, Section 6].

Proposition 6.3. Let i be a reduced word for w0, giving a cluster T .i/. Let u be a cluster
monomial. Then gT .i/.u/ agrees with the i -Lusztig data of u, up to a simple linear change
of coordinates.

In this way, we see explicitly how the information of all these g-vectors is the same
information as the MV polytope (this is also closely related to Corollary 2.4).

In the setting of the dual semicanonical basis, this can be generalized as follows. Let
T be a maximal rigid ƒ-module and let M 2 ƒ-mod. Geiss–Leclerc–Schröer [20] defined
gT .M/ 2 Zn using homological algebra, extending the above notion of g-vector. Moreover,
they proved that �M is g-pointed in each cluster.

6.3. Theta basis
A cluster algebra that contains finitely many clusters is called finite type. The cluster

algebra CŒN � is of finite type only when G D SL2; SL3; SL4; SL5. When a cluster algebra
A is not finite type, then the cluster monomials do not span A. It was a longstanding open
problem to extend the set of cluster monomials to a basis for A. This problem was solved by
the following remarkable theorem of Gross–Hacking–Keel–Kontsevich.

Theorem 6.4. LetA be a cluster algebra, satisfying some hypotheses (which hold forCŒN �).
There is a natural basis for A, called the theta basis, extending the set of cluster monomials.
This theta basis is parametrized by the set of tropical points of the Langlands dual cluster X

variety. Moreover, each theta basis element is g-pointed in each cluster.

Combining Theorem 6.4 with Proposition 6.3 or Corollary 2.4, we get a natural
parametrization of the theta basis of CŒN � by B.1/. In Section 1.5, we saw that biperfect
bases are parametrized by B.1/, so it is natural to ask the following.
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Question 6.5. Is the theta basis for CŒN � a biperfect basis?

6.4. Cluster structure on the MV basis
From Theorems 6.1 and 6.2 the dual semicanonical and dual canonical bases for

CŒN � contain all cluster monomials. In another direction, Qin [41] studied bases which are
g-pointed in each cluster and gave a description of the set of all such bases. In particular, he
showed that all such bases contain all the cluster monomials.

This motivates the following conjecture.

Conjecture 6.6. The MV basis for CŒN � contains all cluster monomials. Moreover, its ele-
ments are g-pointed in each cluster.

Note that the conjecture would imply that the MV basis and dual semicanonical
basis agree for SL5 which is not known.

As evidence for this conjecture, let us mention that the first counterexamples (in both
SO8 and SL6) to the equality of the MV and dual semicanonical bases (see Theorem 1.13)
occur for the square of the simplest basis element which is not a cluster monomial.

Baumann–Gaussent–Littelmann proved this conjecture for certain clusters.

Theorem 6.7 ([4, Prop 7.2]). If a reduced word i for w0 satisfies a certain condition (which
holds for all reduced words in small rank), then all cluster monomials in the cluster T .i/ lie
in the MV basis.

At the moment, we are far from Conjecture 6.6, but thinking about this conjecture
motivates the following questions.

Question 6.8. (1) Is there a refinement of the notion of biperfect basis whichwould
imply that such a basis contains all cluster monomials?

(2) What do cluster exchange relations correspond to geometrically? Which collec-
tions of MV cycles form clusters?

Finally, we close with the following wild conjecture.

Conjecture 6.9. The MV and theta bases for CŒN � coincide.

We have three pieces of weak evidence for this conjecture. First, the way in which
the MV, dual canonical, and dual semicanonical bases differ in CŒN � for SL6 in (1.2) is
very reminiscent of the way in which the theta, dual canonical, and generic bases differ for
rank 2, affine type cluster algebras. Second, the construction of the MV and theta bases are
both related to the geometry of loop spaces. Finally, the trichotomy of bases studied here
seems to match the trichotomy of bases for cluster algebras, see [41].
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We discuss generalizations of the Langlands program, from reductive groups to the local
and automorphic spectra of spherical varieties, and to more general representations arising
as “quantizations” of suitable Hamiltonian spaces. To a spherical G-variety X , one asso-
ciates a dual group LGX and an L-value (encoded in a representation of LGX ), which con-
jecturally describe the local and automorphic spectra of the variety. This sets up a problem
of functoriality, for any morphism LGX !

LGY of dual groups. We review, and gener-
alize, Langlands’ “beyond endoscopy” approach to this problem. Then, we describe the
cotangent bundles of quotient stacks of the relative trace formula, and show that transfer
operators of functoriality between relative trace formulas in rank 1 can be interpreted as a
change of “geometric quantization” for these cotangent stacks.
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1. Integral representations of L-functions

1.1. Classical periods
1.1.1. In his legendary 1859 paper [66], Riemann proved the functional equation

of the zeta function by representing it as the Mellin transform of a theta series

�� s
2�

�
s

2

�
�.s/ D

Z 1

0

y
s
2

1X
nD1

e�n2�y d�y:

The proof used the functional equation of the latter with respect to the substitution y$ y�1,
previously established by Jacobi and based on the Poisson summation formula.

About 90 years later, Iwasawa, in a short announcement [37], and Tate, in his
thesis [83], reformulated this integral in the language of the adeles. The new formulation
could be directly applied to the generalizations of the zeta function to arbitrary Dirichlet
characters (by Dirichlet), or number fields (by Dedekind) and Grössencharacters (by Hecke),
and clarified the meaning of the Euler factors of the zeta function, as Mellin transforms of
Schwartz functions on the p-adic completions of Q. Namely, we have an identity

�p.s/ D

Z
Q�
p

p̂.x/jxj
s d�x;

where, for finite primes p, �p.s/ D .1 � p�s/�1 and p̂ D 1Zp , the characteristic function
of the p-adic integers, is what we will call the basic Schwartz function onQp; the same inter-
pretation extends to the “Archimedean factor” �1.s/D �

� s
2�. s

2
/ of the functional equation,

with Q1 D R, and ˆ1 the Gaussian e��x2 .

1.1.2. Meanwhile, in 1936–1937, Hecke [34] introduced what is today called the
L-function of a modular form, generalized to nonholomorphic automorphic forms by Maass
in 1944 [56]. Recast in the adelic language by Jacquet and Langlands in their seminal 1970
work [41], these L-functions, with appropriate Archimedean factors, can be represented as
Mellin transforms Z

k�nA�

f

 
a

1

!
jajs d�a;

where k denotes a number field, A its ring of adeles, and f is a cuspidal automorphic form
on GL2.k/nGL2.A/.

Shortly after Hecke, Rankin [65] and Selberg [80] discovered an integral represen-
tation for the L-function that carries their names, which today is seen as a special case of a
Langlands L-function, attached to the tensor product representation

LG D GL2 �GL2
˝
�! GL4

of the Langlands dual of the group G D GL2 �GL2. This integral is, on the surface, very
different from the Mellin transforms of Riemann and Hecke, as it involves a pair of cusp
forms and an Eisenstein series:Z

GL2.A/
f1.g/f2.g/E.g; s/ dg:
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1.2. The theta series of spherical varieties
1.2.1. The aforementioned works, and their adelic reformulations, led to an explo-

sion of research around L-functions from the 1970s onward, with numerous new integral
representations discovered by Godement, Jacquet, Rallis, Piatetski-Shapiro, Gelbart, Sha-
lika, Waldspurger, Ginzburg, Bump, Friedberg, Garrett, and others [19], combining elements
from all of the methods above, such as the theta series (fromRiemann), the “period integrals”
over subgroups (from Hecke), and the Eisenstein series (from Rankin and Selberg).

A uniform approach to many of these methods was proposed in [68]; it relies on the
following ingredients:

• A (suitable) affine spherical variety X for a group G over a number field k; that
is,X is a normal, affineG-variety, with a dense orbit for the Borel subgroup ofG.
This space is X D A1 for G D Gm in Riemann–Iwasawa–Tate theory, X D GL2
for G D GL1 � GL2 in Hecke–Jacquet–Langlands theory, and X D V �GL

diag
2

.GL2�GL2/, where V is the standard representation of GL2, in Rankin–Selberg
theory.

• A suitable space of “Schwartz functions”F .X.kv// for every completion kv of k;
at almost every place, it contains a distinguished vector ˆ0;v , giving rise to a
restricted tensor product F .X.A// D

N0

v F .X.kv//. When X is smooth and kv
is non-Archimedean with ring of integers ov , we have ˆ0;v D 1X.ov/.

• The X -theta series
‚ W F

�
X.A/

�
! C1

�
ŒG�

�
;

where ŒG�DG.k/nG.A/, given by‚ˆ.g/ WD‚.ˆ/.g/ WD
P
2X.k/ˆ.g/. This

generalizes the Jacobi theta series used by Riemann, andmany other series of clas-
sical analytic number theory, such as Poincaré series (if we allow X to stand for
the Whittaker model, which is not just a space but also a nontrivial “line bundle”
over it, see § 2.2.5), and Eisenstein series (after we pair a suitable theta series with
an automorphic form for some Levi subgroup).

The theta series (for varying inputs ˆ) are then integrated against automorphic
forms f , and, under some assumptions on the space X , the “period pairing”

hf;‚ˆi WD

Z
ŒG�

f .g/‚ˆ.g/ dg (1.1)

is expected to be related to a special value of an L-function of f . This relation will be
discussed in Sections 2.3.2–3.1.1.

1.2.2. While it is not the main focus of the present article, it should be mentioned
that the main point of the proposal of [68] was to include singular affine spherical varieties,
in which case the “basic function” ofX.kv/ is the “IC function,” obtained through the sheaf–
function dictionary from the intersection complex of a suitable geometric model of X.ov/,
see § 3.1.3. This was inspired by the work of Braverman–Kazhdan on the basic affine space
[14,16], which goes back to the geometric Langlands program [13] and ideas of Drinfeld.
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The conjecture was refined by Ngô [62] for a class of affine embeddings of reductive
groups; the IC function, for non-Archimedean local fields in equal characteristic, was defined
in [12], where Ngô’s conjecture was proven. In recent joint work with Jonathan Wang [78],
we have obtained similar results for the IC function of a broad class of spherical varieties,
including a straightforward generalization of the Hecke and Rankin–Selberg integral repre-
sentations to the LanglandsL-function associated to the n-fold tensor product representation
of the dual group

LG D GL2 � � � � � GL2„ ƒ‚ …
n times

˝
�! GL2n :

1.2.3. The elephant in the room, of course, is the global functional equation (and
meromorphic continuation), which is not available for these L-functions, yet. In favorable
cases, it should arise from a Poisson summation formula for a “Fourier transform”

F
�
X.A/

�
! F

�
X�.A/

�
;

where X� is the same variety X , with the G-action twisted by a Chevalley involution. Such
a Fourier transform and a Poisson summation formula are often available for smooth affine
spherical varieties, which are vector bundles over homogeneous spaces, but are quite myste-
rious in the singular case. For the moment, they are known for spaces of the form X D the
affine closure of ŒP;P �nG, whereP �G is a parabolic, by the work of Braverman–Kazhdan
[14,16] (and its refinement [33]). An extension toX D the affine closure of UP nG, where UP
is the unipotent radical of P , would give rise to the functional equation of normalized Eisen-
stein series, greatly simplifying and generalizing the theory ofL-functions obtained through
the Langlands–Shahidi method [50,81]. In recent work, Getz and his collaborators [31,32] have
proven a Poisson summation formula for a singular space Y which is not directly related to
Eisenstein series—the only example of this sort to date, to my knowledge.

In general, this “Fourier” transform may only be available at the level of trace
formulas—see [73,88], as well as the discussion of § 6.4 below.

1.2.4. The “period pairing” (1.1) between theta series coming from spherical vari-
eties and automorphic forms is not general enough to include all known integral representa-
tions of L-functions. At the very least, we need to replace the Schwartz space of a spherical
G-variety bymore general quantizations of HamiltonianG-spaces. In the smooth case, those
are affine symplecticG-spacesM , equipped with a moment mapM ! g�, which generalize
the cotangent bundle T �X of a smooth spherical G-variety. The analog of the “spherical”
condition for a Hamiltonian G-spaceM is that it be coisotropic, that is, the Poisson algebra
k.M/G of G-invariant rational functions onM be Poisson-commutative.

An example of such a space, that is not the cotangent bundle of a spherical variety,
is a symplectic vector spaceM under the action of a Howe dual pair G; that is, G is, up to
central isogeny, equal to a product G1 � G2 of two subgroups of Sp.M/, where G1 is the
commutator ofG2, and vice versa. As “quantization” ofM we understand theWeil represen-
tation of the metaplectic group Mp.M/ associated with an additive character  , restricted
to (the metaplectic cover of) G. Theta series and the pairing (1.1) still make sense in this
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setting. More general examples mixing the Weil representation with periods are contained
in the influential conjectures of Gan, Gross, and Prasad [27].

In an ongoing work with Ben-Zvi and Venkatesh, we describe a class of coisotropic
Hamiltonian spaces M whose “quantizations” in the form of theta series are expected to be
related to special values of L-functions, and we demonstrate, by means of known examples,
that the L-value associated to such a space gives rise to a dual Hamiltonian space LM for the
Langlands dual group. In the context of the geometric Langlands program, this leads to a
hierarchy of conjectures, with connections to mathematical physics. We will encounter one
of these conjectures in our discussion of unramified L-factors in § 3.2 below.

1.3. Outline of this paper
In Section 2 we introduce the relative Langlands program, up to the conjectural

Euler factorization of the period pairings (1.1).
In Section 3 we discuss the relationship between the local unramified Euler factors

and special values of L-functions.
In Section 4 we discuss the “beyond endoscopy” approach to functoriality, general-

ized to the setting of the relative Langlands program.
Section 5 provides a new interpretation for the transfer operators of functoriality

studied in [74], based on the concept of quantization. (Proofs for the results of this section
will appear in an expanded version of this article on the arXiv.)

Finally, in Section 6 we discuss interesting research directions for the near future.

1.4. Notation and language
• In general, when a variety is defined over a local field F , and there is no danger
of confusion, we will use the same letter to denote its F -points, e.g., “a Schwartz
function on X” really means “on X.F /.”

• For a quasiaffine G-variety over a field F , we will denote by X=G the stack quo-
tient, and by X �G the invariant-theoretic quotient SpecF ŒX�G .

• A “complex line bundle” on the points of a smooth variety X over a local field F
will be

– whenF DR orC, a complex line bundle onX.F /, viewed as a smooth
(Nash) manifold;

– when F is non-Archimedean, a locally constant sheaf of complex
vector spaces (l-sheaf) on X.F /, for the p-adic (Hausdorff) topology,
with 1-dimensional stalks.

When no confusion arises, we will just say “line bundle” for a complex line
bundle; when we want to distinguish it from a line bundle on X in the sense
of algebraic geometry, we will say “algebraic line bundle” for the latter.
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• An algebraic line bundle L over a smooth F -variety X , where F is a local field,
together with a complex number s, give rise to a complex line bundle jLjs on
X.F /, by reduction of the corresponding Gm-torsor via the sequence of maps
Gm.F /

j�j
�! R�

C

x 7!xs

����! C�. (When F is non-Archimedean, the absolute value
map is discretely-valued, giving rise to the structure of a locally constant sheaf.)

• When L D detT �X , the line bundle of volume forms on X , the associated com-
plex vector bundle jLjs is known as the bundle of s-densities. We will, in general,
understand the field F as endowed with a Haar measure; this identifies densities,
i.e., sections of jLj, as measures on X.F /. When no confusion arises, we will
denote jdxj, the density attached to a volume form dx, simply by dx.

• The space of Schwartz functions on theF -points of a varietyX , whereX is a local
field, will be denoted by F .X.F //, the space of Schwartz measures by �.X.F //,
and the space of Schwartz half-densities by D.X.F //. These are smooth, com-
pactly supported sections of the corresponding bundles of s-densities, in the non-
Archimedean case. In the Archimedean case, they are smooth sections of rapid
decay, see [1]. We will also say “test functions/measures,” etc., for “Schwartz.”

• For an admissible, smooth, complex representation � of a reductive group over
a local field, we will denote by Q� its contragredient. When � is unitary, Q� is
identified with the complex conjugate N� .

• We will generally prefer to replace a hermitian pairing H between functions by
the associated bilinear pairing B.ˆ1; ˆ2/ D H.ˆ1; ˆ2/. When H is an inner
product, we will sometimes call B , by abuse of language, an “inner product.”

• WF will denote the Weil group of a local or global field, and LF will be the
“Langlands group,” whose representations should parametrize local and auto-
morphic L-packets. It is the Weil group for Archimedean local fields and global
function fields, the Weil–Deligne group for non-Archimedean local fields, and a
conjectural extension of the Weil group for number fields.

• We adopt the “Weil group” convention for L-groups of reductive groups,
LG D LG Ì WF ; the dual group LG is identified with the set of its complex points.

2. The relative Langlands conjectures

2.1. The local and global spectrum of a spherical variety
2.1.1. To understand the relationship between period pairings (1.1) and L-func-

tions, one needs to start by understanding the phenomenon of distinction, highlighted by the
groundbreaking work of Jacquet and his collaborators [38, 42]. A naive formulation of this
phenomenon goes as follows:
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The local and global spectrum of a spherical G-variety X only contain repre-
sentations with Langlands parameters in a certain subgroup LGX � LG of the
L-group of G.

To make sense of this statement, we need to explain “the local and global spectrum
of a G-variety.” Then, we need to talk about the L-group LGX . Finally, the statement needs
to be corrected, for some “nontempered” varieties X , replacing Langlands parameters by
appropriate Arthur parameters.

Let R denote either a local field, or the adelic points of a global field. In order to
define the local and global spectrum of aG-varietyX (defined over the corresponding field),
we will introduce the Plancherel formula and the relative trace formula. These decompose
certain distributions—or rather, generalized functions—on theR-points ofX �X , invariant
under the diagonal action ofG. For the purposes of the Langlands program, it turns out to be
more natural to think of them as generalized functions on the R-points of the quotient stack
X D .X �X/=Gdiag, which naturally includes “pure inner forms” of the pair .G;X/.

2.1.2. Let F be a local field. The space L2.X/ is the Hilbert space completion of
the space D.X/ of Schwartz half-densities on X.F /, with respect to the L2-inner product,
and furnishes a unitary representation of G. By the Plancherel decomposition, there are a
measure �X on the unitary dual OG of G and a measurable family of linear forms

J� W D.X �X/! C

such that:

• for �X -almost every � , J� factors as D.X �X/! � Ő N� ! C, and

• for all ˆ 2 D.X �X/, we haveZ
Xdiag

ˆ D

Z
OG

J�.ˆ/�X .�/: (2.1)

A linear form satisfying the first property above will be called a relative character.
The productJ��X , which can be thought of as ameasure valued in the space of functionals on
D.X �X/, is uniquely defined. Moreover, the relative characters J� are invariant under the
diagonal action ofGDG.F /; thus, they factor through the coinvariant spaceD.X �X/G D

the quotient of D.X �X/ by the (closed, in the Archimedean case) subspace generated by
elements of the form f � g � f , where g � f denotes the action of g 2 G on f by diagonal
translation.

Let us assume that X carries a positive G-invariant measure dx, and use it
to identify functions, half-densities, and measures on X through the G-equivariant maps
ˆ 7! ˆ.dx/

1
2 7! ˆdx (and similarly on X � X ). Then, the coinvariant space

D.X � X/G ' �.X � X/G is more naturally understood as a subspace of the Schwartz
space of the quotient stack X WD .X � X/=G [71]. This Schwartz space is really a complex
of vector spaces, but here we will focus only on its zeroth cohomology, which has the explicit
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description

�.X/ D
M
˛

�.X˛ �X˛/G˛ : (2.2)

Here, ˛ runs over isomorphism classes ofG-torsors (parametrized by theGalois cohomology
set H 1.�F ; G/, where �F is the Galois group of a separable closure of F ); if R˛ is a
representative of a class ˛, we let G˛ D AutG.R˛/, and X˛ D X �G R˛ , a G˛-space. In
other words, G˛ is what is called a “pure inner form” of G, and X˛ can similarly be called
a “pure inner form” of X , if its set of F -points is nonempty.

The Plancherel formula (2.1) extends to �.X/, with a measure �X, on the right-
hand side, on the union of the unitary duals of the pure inner forms G˛ . The support …X

of this measure (avoiding redundancy—i.e., the support of the canonical linear form-valued
measure J��X) can be called the local (L2-)spectrum of the quotient stack X.

2.1.3. The global (automorphic) spectrum of X (or rather, again, of the stack
X D .X �X/=Gdiag) can be defined through the relative trace formula of Jacquet. This is a
generalization of the Arthur–Selberg trace formula, and an automorphic analog of the local
Plancherel formula. Its definition uses the theta series encountered in § 1.2.1, therefore we
assume here that X , defined over a global field k, is quasiaffine, so that X.k/ is discrete in
the adelic pointsX.A/. As before, we write ŒG�DG.k/nG.A/ for the automorphic quotient
space.

Roughly speaking, the relative trace formula is the Plancherel formula for L2.ŒG�/,
applied to the inner product of two theta series for X , i.e., decomposing the functional

RTFX W F
�
X.A/

�
˝ F

�
X.A/

�
3 ˆ1 ˝ˆ2 7! ‚ˆ1 ˝‚ˆ2

7!

Z
ŒG�

‚ˆ1.g/‚ˆ2.g/ dg 2 C: (2.3)

This naive point of view requires some caution:

• The inner product on the right-hand side of (2.3) does not, in general, converge,
and needs to be regularized. Depending on X , there may be a canonical way to
regularize it, described in [71, §6]. In many cases of interest, though, notably in the
case of the Arthur–Selberg trace formula (where X D H , a reductive group, and
G DH �H ), a canonical regularization is not available, and it takes the mastery
of Arthur’s work [6] to engineer an invariant expression. Such work has not yet
been done in the general setting of the relative trace formula.

• We can again choose a G-invariant measure on X.A/ (e.g., Tamagawa measure)
to identify functions with measures, and understand the G.A/diag-invariant func-
tional (2.3) as a functional on �.X �X.A//G.A/. As in the local case, this space
is a subspace of the global Schwartz space of the stack X D .X �X/=Gdiag,

�
�
X.A/

�
D

0O
v

�
�
X.kv/

�
;
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and the relative trace formula should be defined as a functional on the bigger
space,

RTFX D

X
˛

RTFX˛ ;

where now ˛ runs over isomorphism classes of G-torsors over the global field k.

Ignoring the regularization issue, if we could apply the Plancherel formula forL
˛ L

2.ŒG˛�/ to the pairing (2.3), we would obtain the spectral side of the relative trace
formula,

RTFX D

Z
J aut
� �aut

X .�/; (2.4)

where the product J aut
� �aut

X is a measure on the union
F
˛
cG˛aut of (L2-)automorphic spectra

of the pure inner forms of G, valued in linear forms on �.X.A//.
The global (automorphic) spectrum of X is defined as the support of J aut

� �aut
X .

Clearly, this definition is incomplete, as it relies on overcoming the aforementioned issues
of regularization, and developing a spectral decomposition for the relative trace formula.

2.2. The Langlands dual group
2.2.1. The local and global spectrum of a spherical variety X are conjecturally

governed by the L-group LGX of X . We owe this dual group to the insights developed by
Nadler in his thesis [60], and in his joint workwith Gaitsgory [25]. They realized that the “little
Weyl group” of a spherical G-variety (defined by Brion in [18], and generalizing the little
Weyl group of a symmetric space) corresponds to a subgroup LGX � LG of the Langlands dual
group of G, and gives rise to a form of the geometric Satake isomorphism for the spherical
variety. In [77], it was proposed that this dual group comes equipped with a distinguished
morphism

LGX � SL2 ! LG (2.5)

that governs the harmonic analysis of X , in a way that will be described below. Since Gaits-
gory and Nadler did not fully identify their dual group LGX (constructed in a Tannakian way),
an independent description of a morphism (2.5) was achieved by Knop and Schalke [47]; we
can take this as the definition of the dual group, for what follows. Finally, for the purposes
of the Langlands program, we need an L-group, in the form of an extension

1! LGX !
LGX ! WF ! 1:

The correct definition of thisL-group, whenG is not split, is not completely understood yet,
although it is probably within reach. For what follows, we will assume such anL-group, and
an extension of the homomorphism (2.5) to the L-groups, in the sense that the conjectures
to be stated should hold for an appropriate definition of LGX .
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2.2.2. We briefly describe one way to characterize the root datum of the dual group
LGX : As in the case of reductive groups, the first step is to describe a canonical maximal torus,
which in turn is dual to an “abstract Cartan” group. Let A be the abstract Cartan group ofG;
it is canonically equal to the reductive quotient of any Borel subgroup ofG. Fix such a Borel
subgroup B , with unipotent radical N , and let Xı be the open B-orbit. On the quotient
Xı � N , B acts through a quotient AX of A; this is the Cartan group of X , and it can be
seen to be independent of B , in the sense that any two choices induce canonical tori up to a
canonical isomorphism. (These definitions assume that B is defined over the base field, but
by Galois descent the Cartan groups A and AX are defined over the field, even if B is not.)

The quotient A! AX gives rise to a morphism of dual tori LAX ! LA, which could
have nontrivial (finite) kernel. The image of this morphism is the canonical maximal torus
of the Gaitsgory–Nadler dual group LGX . (We caution the reader that in [77] the group LGX
was not necessarily defined as a subgroup of LG, and had LAX as its maximal torus.)

It is slightly harder to define the little Weyl groupWX . Once this is done, the coroots
of LGX , which will be called the normalized spherical roots of X , are uniquely determined
up to multiple, and that multiple is fixed by the following axiom:

A normalized spherical root is either a root of G, or the sum of two strongly
orthogonal roots, i.e., two roots whose linear span contains no other roots but
their multiples.

2.2.3. For the Weyl group, there are many equivalent definitions. Most relevant to
our purposes, when X is defined over a field F in characteristic zero, is the following one,
due to Knop [45]: We may assume thatX is smooth and that F is algebraically closed (since
LGX only depends on the open G-orbit over the algebraic closure). Consider the cotangent
space M D T �X , equipped with the moment map � W M ! g�. If a� denotes the dual
Lie algebra of the Cartan of G, Chevalley’s isomorphism identifies the invariant-theoretic
quotient g� �G with a� �W . The polarized cotangent bundle

OM WDM �a��W a�

is not, in general, irreducible. Knop describes a distinguished irreducible component OM ı

living over the dual Lie algebra a�
X � a� of AX , and shows that the map OM ı!M is gener-

ically a Galois cover with covering group a subquotient WX of the Weyl group; this is the
little Weyl group of X [45, §6].

For later use, we mention a related result of Knop, still in the homogeneous case.
Let g�

X D the normalization of the image of the moment map in M (i.e., the spectrum of
the integral closure of the image of F Œg�� in F ŒM�). The composition OM ı ! a�

X ! c�
X WD

a�
X �WX factors through a map �G W M ! g�

X ! c�
X , called the invariant moment map,

and identifies c�
X with the invariant-theoretic quotientM �G [45, Korollar 7.2].
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2.2.4. Finally, the restriction of the map (2.5) to SL2, which we will call the
“Arthur-SL2” of X , is determined by the conjugacy class of parabolics of the form

P.X/ D
®
g 2 G j Xıg D Xı

¯
;

where Xı is the open orbit for a Borel subgroup B . In the quasiaffine case, P.X/ is the
largest parabolic such that all highest weight vectors in kŒX� are P.X/-eigenvectors. To this
class is canonically associated a standard Levi subgroup LL.X/ of LG, and the Arthur-SL2 of
X is a principal SL2 ! LL.X/.

2.2.5. In order to keep the discussion that follows as simple as possible, let us
single out a convenient class of spherical varieties. We will say that a spherical G-variety
X is excellent if it is affine, homogeneous, and the kernel of the map A! AX is connected
(equivalently, the map LAX ! LA of dual tori is injective).

We also need to enlarge the class of spherical varieties, in order to include objects
such as the Whittaker model. The Whittaker model is the space NnG, where G is qua-
sisplit and N is a maximal unipotent subgroup, endowed with a nondegenerate character
 WN.F /!C�. This character defines, by induction, a complex line bundleL overNnG,
and the Whittaker model consists of sections of this line bundle. In the sequel, when we say
that Y is “theWhittaker model,” we will mean the spaceNnG together with this line bundle,
and we will be using the Schwartz space notation F .Y /, �.Y /, etc., to denote Schwartz sec-
tions (resp. measures) valued in this line bundle. For a more general discussion of “Whittaker
induction,” see [77, §2.6].

2.3. Conjectures
2.3.1. Let X be defined over a local field F , and let …X be the set of L2-distin-

guished representations of X and its pure inner forms, as in § 2.1.2. We assume, for sim-
plicity, that X carries an invariant measure, to identify measures with half-densities. The
“relative local Langlands conjecture” of my work with Venkatesh [77, §16] states:

Conjecture. Let �LGX be the natural measure on the set of tempered local Langlands
parameters into LGX . There is a decomposition of the inner product on D.X �X/,Z

Xdiag
ˆ D

Z
J�.ˆ/�LGX .�/; (2.6)

where the “stable relative characters” J� are linear combinations of relative characters for
representations belonging to Arthur packets with parameter

LF � SL2
��Id
���!

LGX � SL2
(2.5)
��!

LG: (2.7)

For the “natural measure” on such parameters, see [77, §16]. Comparing with the
Plancherel formula (2.1), the conjecture implies that the localL2-spectrum…X ofX belongs
to the union of Arthur packets with parameters of the form (2.7). Developing a Plancherel
formula for X in terms of discrete-mod-center spectra of its “boundary degenerations,” as
in [22,77], reduces the conjecture to discrete spectra.
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When G is quasisplit, acts faithfully on X , and the map LAX ! LA is injective
(§ 2.2.2), one would expect the functionals J� of (2.6), after summing over all pure inner
forms of X , to be nonzero. In a broad range of individual cases, including the Gan–Gross–
Prasad conjectures [27] and other cases considered by D. Prasad [64] and C. Wan [87], we
have much more precise conjectures about how many and which elements in the given
Arthur packets are distinguished. A number of cases have been proven by Waldspurger,
Mœglin, Beuzart-Plessis, Gan, Ichino, and others [9,28,58,86], and by Mœglin–Renard [57]

for symmetric spaces over R.
Besides the question of L2-distinction, one can ask the question of smooth distinc-

tion: Which irreducible representations embed as � ,! C1.X/? The general answer to this
question is less understood.

2.3.2. Now, let X be defined over a global field k, and let…aut
X be the automorphic

spectrum of X, as in § 2.1.3. We recall that its definition is, in general, conditional on devel-
oping the spectral decomposition of the relative trace formula. Nonetheless, one can often
restrict to parts of the spectrum where the full relative trace formula is not needed; for exam-
ple, if � is a discrete automorphic representation where the period pairing (1.1) is absolutely
convergent, the corresponding functional-valued measure J aut

� �aut
X of (2.4), applied to a test

function ˆ1 ˝ˆ2 on .X �X/.A/, should have the meaning of

J aut
� .ˆ1 ˝ˆ2/�

aut
X .�/ D

X
f

�Z
ŒG�

‚ˆ1f

��Z
ŒG�

‚ˆ2
Nf

�
;

where f runs over an orthonormal basis of � .
A landmark in our understanding of these global relative characters was the paper

[36] of Ichino and Ikeda, generalizing the formula ofWaldspurger [85] to a precise conjectural
Euler factorization of J aut

� , in the case of orthogonal Gross–Prasad periods. The conjectures
of Ichino and Ikeda gave rise to the realization that there was a general pattern in the Euler
factorization of automorphic periods, and were quickly adapted to other cases. Unlike the
orthogonal case, which remains open, the conjecture for unitary Gross–Prasad periods has
been proven in [8,10,90], its analog for Whittaker periods of metaplectic and unitary groups
was proven in [53,54,59], and there are significant partial results in many other cases.

A generalization of the Ichino–Ikeda conjecture to a wide range of spherical periods
(satisfying certain conditions) was proposed in [77]. As in the local case, it lacks the preci-
sion of conjectures known in special cases, hence leaving an open problem that should be
addressed in the near future. On the other hand, the conjecture of [77] makes clear the con-
nection between the (global) relative trace formula and the (local) Plancherel formula. I will
formulate a variant of this conjecture here, using the hypothetical notion of global Arthur
parameters, and being a bit vague on choices of measures (see [77, §17] for some hints). Its
formulation also relies on Conjecture 3.1.1 below, expressing the local Plancherel density
of the basic function ˆ0;v 2 F .X.kv// at almost every place v in terms of a local L-value
LX .�v/ WD L.�v; �X ; 0/, where �v is a local unramified Langlands parameter into LGX and
�X W

LGX ! GL.VX / is a certain representation of the L-group of X .

3009 Spherical varieties, functoriality, and quantization



Conjecture. There is a decomposition

RTFX D

Z
J aut
� �aut

X .�/;

where �aut
X is a measure on the set of global Arthur parameters which factor as

Lk � SL2
�
�!

LGX � SL2
(2.5)
��!

LG

(with � lying over the identity map for the projections to SL2), and J aut
� is a sum of rela-

tive characters �.X.A//! � Ő N� ! C for automorphic representations � belonging to the
corresponding Arthur packet.

Moreover, when X is stable, the restriction of J aut
� �aut

X .�/ to the most tempered
Arthur type (�.SL2/ D SL2), away from the poles of LX .�jLk

/ is equal to

1

jS� j

0Y
v

J�v � �LGX .�/; (2.8)

where �LGX is the natural measure on the set of such parameters, S� is the stabilizer of �
in LGX , and the factors J�v of the Euler product are the local Plancherel relative characters
of Conjecture 2.3.1.

“Stable,” here, means that the stabilizers of generic points have trivial Galois coho-
mology; one can drop this assumption, replacing RTFX by its (properly defined) stable
analog. The Euler product of the conjecture needs to be understood, outside of a finite set S
of places, as the partial L-value LSX .�/=L

S .�; LgX ; 1/, according to Conjecture 3.1.1 below.
The conjecture can be generalized to other quantizations of suitable Hamiltonian spaces,
such as the theta correspondence, where it was shown in [72] to follow from a version of
the Rallis inner product formula proven in [29,89]. The conjecture is compatible with earlier
results and methods for computing period integrals, such as the “unfolding” method [77, §18],
or the work of Jacquet and Feigon–Lapid–Offen on unitary periods [7,23,39].

3. The L-value of a spherical variety

3.1. Plancherel density of the basic function
3.1.1. It is a very interesting problem to relate the Euler factors of (2.8)—that

is, the local Plancherel densities—to special values of local L-functions at every place,
including ramified and Archimedean ones. However, we will confine ourselves here to the
calculation of the local Plancherel density of the basic function ˆ0 2 F .X.F //, for a local
non-Archimedean field F . We assume thatG;X are defined over the integers o of F , withG
reductive, and recall that the basic function is equal to 1X.o/, when X is smooth and affine;
in general, it is the “IC function,” see § 3.1.3 below. We assume that the map LAX ! LA is
injective (§ 2.2.2).

For simplicity of presentation, we will assume that G is split, so that the maximal
compact subgroup LA1X � LAX is identified with the group of unramified unitary characters
of AX . The unramified representations appearing in Conjecture 2.3.1 are those obtained by
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unitary induction of those characters from the parabolic P.X/ (§ 2.2.4) through the quo-
tient P.X/ ! AX , and the “natural measure” of the conjecture, restricted to unramified
parameters (i.e., to LA1X=WX ), reads

� LGX
.�/ D

L.�; LgX= LaX ; 1/

L.�; LgX= LaX ; 0/
dHaar�:

Conjecture. Let X be an affine spherical variety satisfying the conditions above, with a
goodmodel over o, andˆ0 its basic function. There is a representation �X W LGX!GL.VX /
such that, setting LX .�/ D L.�; �X ; 0/, the Plancherel decomposition of ˆ0 reads

kˆ0k
2
D

Z
LA1X=WX

LX .�/

L.�; LgX ; 1/
� LGX

.�/: (3.1)

We refrain from giving details on the precise normalization of Haar measures, or the
precise meaning to “good model;” at a minimum, the conjecture should be valid at almost
every place for any global model. This, in particular, will identify almost every Euler factor
of Conjecture 2.3.2 as a quotient of special values of local L-functions. Note that the “true”
point of evaluation of LX is not 0, but is encoded in �X , which is a representation of the
full L-group. Here, this representation would factor through the unramified quotient, and
the “true” point of evaluation depends on the action of Frobenius.

The relation between localL-values and Plancherel densities is a fascinating one. On
the surface, it is just the outcome of a local integral. For example, whenX.o/DH.o/nG.o/,
the value J�.1X.o// is given by the following Ichino–Ikeda local period, in the so-called
strongly tempered cases where it is convergent:

J�.1X.o// D

Z
H

m�.h/dh;

where m� is the zonal spherical function (D unramified matrix coefficient with value 1 at
the identity) for the unramified representation with Satake parameter �. This calculation,
however, has a conceptual meaning, in terms of both harmonic analysis and geometry. We
will only attempt to give a flavor of the richness of the topic here.

3.1.2. The study of the Plancherel density of the basic function is a topic with a long
history. The mainstream method for calculating it is the Casselman–Shalika method [20,21],
and it is essentially equivalent to the problem of calculating eigenvectors for the unramified
(spherical) Hecke algebra H .G.F /;G.o// on the space C1.X.F //.

The calculation was related to the structure theory of spherical varieties in [70], for
G split. Here, we will formulate the result in the special case whenX is an excellent spherical
variety (§ 2.2.5) with LGX D LG. Fix a Borel subgroup B � G, with unipotent radicalN . The
important geometric invariants determining the L-value are the colors of the spherical vari-
etyX : those are theB-stable prime divisors onX , over the algebraic closure. For simplicity,
we will assume all those divisors to be defined over F . Each such divisor D induces a val-
uation on the function field F.X/, which we restrict to the multiplicative group of nonzero
B-eigenfunctions. This gives rise to a homomorphism factoring as

F.X/.B/ ! X�.AX /! Z;
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i.e., an element LvD 2 X�.AX /, the character group of the dual torus LAX (which here is equal
to LA). By [78, Corollary 7.3.4], the weights LvD are all minuscule. Let VX be the smallest self-
dual (algebraic) representation of LG which contains all those weights (with multiplicity, if
some of the LvD’s coincide). For an alternative interpretation of this representation, in terms
of the structure of the Hamiltonian space T �X , see Theorem 6.2.2 below. The following was
proven in [70] under some assumptions, and in [78] in general:

Theorem. The Plancherel density of the basic function 1X.o/ is given by

J�.1X.o/ ˝ 1X.o//� LG
.�/ D

L.�; VX ;
1
2
/

L.�; Lg; 1/
� LG
.�/: (3.2)

Note that, for simplicity, we have assumed that LGX D LG. The point 12 of evaluation
changes in the general case.

3.1.3. The case of singular affine varieties X was undertaken in [78], for the cases
with LGX D LG. As mentioned, here one needs to work in a geometric setting, assuming that
F is a local field in equal characteristic, F ' Fq..t//, with G;X defined over Fq . (There
are ad hoc ways to transfer the results to mixed characteristic, but it would be nice to see
a direct geometric approach.) The basic function ˆ0 is then defined as the Frobenius trace
on the stalks of the intersection complex of finite-dimensional formal models of LCX , the
formal arc space of X [12].

Let us discuss the special case when X is the affine closure SpecFqŒX�� of its open
G-orbitX�. Colors, here, do not need to be minuscule, but one can still define VX as before.
We have the following generalization of Theorem 3.1.2:

Theorem. There is a representation V 0
X of LA, with the same weights as VX andW -invariant

multiplicities, such that the Plancherel density of the basic function ˆ0 is

J�.ˆ0 ˝ˆ0/� LG
.�/ D

L.�; V 0
X ;

1
2
/

L.�; Lg; 1/
� LG
.�/: (3.3)

Of course, we expect that V 0
X D VX . This is automatic in the minuscule case. For

example [78, Example 1.1.3], there is a family of varieties Xn, n 2 N, which gives rise to the
generalization of the Hecke and Rankin–Selberg integrals, mentioned in § 1.2.2.

3.2. Derived Satake equivalence for spherical varieties
Ongoing joint work with Ben-Zvi and Venkatesh has revealed deeper relations

between periods andL-functions; currently, those can be formulated over function fields and
their completions. In the local setting, F ' Fq..t//, Conjecture 3.1.1 should be obtained by
applying the sheaf–function dictionary to a categorical statement, along the following lines:

We retain the assumptions of the previous subsection, withX andG defined overFq ,
and also assume X to be smooth. We denote formal loop and arc spaces by L, resp. LC,
so that LX.Fq/ D X.F /, LCG.Fq/ D G.o/. For appropriate measures, the left-hand side
of (3.1), and, more generally, the pairing of two G.o/-invariant functions f , g obtained
via the sheaf–function dictionary from objects F ; G in the bounded derived category
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Shv.LX=LCG/ of constructible `-adic étale sheaves on LX=LCG can be computed as
the (alternating) trace of geometric Frobenius on a derived homomorphism complex:Z

X.F /

f .x/g.x/dx D tr
�
Frobq;Hom.F ;DG /�

�
;

whereD D Verdier dual. The pairing is really a finite sum, and makes sense over Q`.
The right-hand side of (3.1), through a simple application of the Weyl integration

formula, can be interpreted as the Frobenius trace on

CŒVX �
LGX D CŒ LM�

LG ;

where VX is the space of the representation �X , and we have set
LM D VX �

LGX LG:

The empirical observation is that the space LM has a natural symplectic structure, and, more-
over, that the assignmentM D T �X ! LM is involutive, although, to make sense of this, one
needs to allow for more general coisotropic Hamiltonian spaces, as mentioned in § 1.2.4. For
the categorical analog of Conjecture 3.1.1, we need to shear the ringCŒ LM� into a dg-algebra
CŒ LM�(, with zero differentials, in degrees related to the action of Frobenius in �X .

Conjecture. Fix an isomorphismCDQ`. There is an equivalence of triangulatedC-linear
categories

Shv.LX=LCG/
�
�! D(

per.
LM= LG/;

where D(
per. LM= LG/ denotes the full triangulated subcategory, generated by perfect com-

plexes, of the category of LG-equivariant differential graded CŒ LM�(-modules localized by
quasi-isomorphisms.

This generalizes the derived Satake equivalence of Bezrukavnikov–Finkelberg [11];
it should be compatible with it, under the action of Shv.LCGnLG=LCG/ on the left, and
the moment map LM ! Lg� on the right. There is a similar, categorical version of the global
Conjecture 2.3.2, for which I defer to the upcoming article.

4. Beyond endoscopy

4.1. Relative functoriality
4.1.1. Let X; Y be two spherical varieties (for possibly different groups G; G0),

and let r be a morphism of theirL-groups, r W LGX ! LGY . According to the relative local
Langlands conjecture of § 2.3.1, it should give rise to a map

¹X -distinguished L-packetsº ! ¹Y -distinguished L-packetsº;

at least for L-packets distinguished in the L2-sense.
A basic tenet of Langlands’ “beyond endoscopy” proposal [51], generalized to the

relative setting, states that the resulting map of stable relative characters JX�1 7! J Y�2 should
be realized as the adjoint of a “transfer operator” between spaces of stable test measures,

T W �.Y/st ! �.X/st; (4.1)
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where Y denotes the stack .Y � Y /=G0, and X D .X �X/=G. In most cases, one can take
“stable” to mean the image of the canonical pushforward map

�.X/! Measures
�
.X �X/ �G

�
:

When the map �.X/! �.X/st is an isomorphism (e.g., for the Kuznetsov formula), we will
be dropping the exponent “st.”

In the group case, this operator has been studied by Langlands [52] and Johnstone
[43] when X is a torus and Y is GLn. Understanding these transfer operators could be con-
sidered as the basic problem of functoriality, at least in the local setting.

4.1.2. In the global setting, one would have to find a way to employ these transfer
operators in a comparison of relative trace formulas. Langlands’ proposal, generalized to
our setting, is to extract the part of the automorphic spectrum of Y that is in the image of
the functorial lift from X from the (stable) relative trace formula for Y by means of poles of
L-functions.

The question of whether it is possible to identify the spectrum ofX by orders of poles
ofL-functions has been studied and is known to have a negative answer, in general [5]. Other
difficulties with this proposal include the isolation of the tempered part of the spectrum; a lot
of hard work has gone into this problem, already for the case of GL2 [2–4,24].

4.2. An example: symmetric square lift
4.2.1. Rather than speculating on how to overcome these difficulties, it may be

more instructive to look at a variant of the idea, which was applied successfully in the thesis
of Venkatesh [84], and to understand what the structure of local transfer operators can tell
us about the global problem. Here, X D T is a 1-dimensional torus over a global field k
(the kernel of the norm map for a quadratic etale algebra E=k whose quadratic idele class
character we will denote by �), and Y is the Whittaker model of the group G D Gm � SL2,
so that LGY D LG. There is a morphism of L-groups r W LT ! LG, whose image stabilizes a
vector under the product of the standard representation ofGm with the adjoint representation
of PGL2 (that is, the symmetric-square representation of GL2, as it factors through GL2 !
LG D Gm � PGL2 ! GL3). Let Z=2 act on T by inversion. The local transfer operator for
this morphism was computed in [76]:

Theorem. Let G; T as above be defined over a local field F . There is a transfer operator

T W �.N; nG=N; /! �.T /Z=2;

such that the pullback of every unitary character of T is the Kuznetsov relative character of
its functorial lift. In natural coordinates .r; t/ for NnG �N ' Gm �A1, it is given by

.da/�1T f .a/ D .dt/�1�.�;  /

Z
r

Z
x

f

�
r;
t

x

�
�.xrt/ .x/ dx; (4.2)

where a 2 T and t D t .a/ is its image through an isomorphism T � .Z=2/ ' A1 '

NnSL2 �N , and �.�;  / is a constant.
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What does this theorem tell us about how to extract from the relative trace formula
of Y (that is, the Kuznetsov formula ofG) the part of the spectrum that is due to the torus T ?
Venkatesh [84] performs this extraction in two steps, a Poisson summation formula followed
by taking the pole of a zeta integral. As explained in [76, §10], the adelic reformulation of
the first step is the Poisson summation formula for the Fourier transform corresponding to
the inner integral of (4.2), while the second step is a global version of the Mellin transform
represented by the outer integral.

4.2.2. Thus, we see that understanding the local transfer operators can guide our
steps for the global “beyond endoscopy” comparisons of trace formulas. Another example
of such a comparison is that between the Kuznetsov formula of G D GL2 and the Selberg
trace formula for the same group. The local transfer operator for this comparison was com-
puted in [75, §4], and is given by a simple Fourier tranform (see Theorem 5.3.5). Restricted
to holomorphic cusp forms, this global comparison via a Poisson summation formula was
performed in the thesis of Zeev Rudnick [67], about 10 years before Langlands’ “beyond
endoscopy” proposal. A generalization of this comparison to the full Kuznetsov formula,
and for GLn with n arbitrary, is the object of ongoing joint work with Chen Wan.

4.2.3. It has hopefully become clear that understanding the transfer operators is of
paramount importance for the problem of functoriality. In [74], I showed that these operators
have a very uniform form, for spherical varieties of rank 1. In the remainder of this paper,
I would like to propose a reinterpretation of this work, which provides an understanding of
those transfer operators as “change of Schrödingermodel/geometric quantization” associated
to a symplectic group scheme.

5. Transfer operators and quantization

The goal of this section is to recast the transfer operators of functoriality, studied
in [74], in the language of quantization. The idea that quantization should have something to
do with functoriality is not new; V. Lafforgue suggested it several years ago (private com-
munication), in order to interpret the Rankin–Selberg method, and the functoriality kernels
of L. Lafforgue [49]. Here, however, we apply this idea in a different setting: the setting of
“beyond endoscopy,” and of the quotient stacks showing up in the relative trace formula—the
hope being that these operators of functoriality will always exist in this setting, even if they
do not exist for the spaces “upstairs.”

Geometric quantization was introduced by Kostant and Souriau [48, 82], following
thework of Kirillov on the orbit method [44]. Since the notion of quantization formeasures on
stacks that we need has not been developed yet, we will take a phenomenological approach,
with ad hoc definitions that provide the desired reformulation of the results of [74].

5.1. Cotangent space of the RTF stack
5.1.1. The groundbreaking work of Friedrich Knop has shown that, although spher-

ical varieties can be very different from each other, their cotangent bundles are quite similar.
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This will be the basis of our considerations, when we try to relate cotangent bundles of
different quotient stacks of the form .X �X/=G.

For the rest of this paper we will assume, for simplicity, that all groups are split,
defined over a field F in characteristic zero. The results of Knop, then, recalled in § 2.2.3,
hold verbatim over F . We assume that X is smooth and quasiaffine, and set again � WM D
T �X ! g� for the cotangent bundle and its moment map.

The ring of regular functions F ŒM� has a Poisson structure. Knop has studied
the subalgebra F ŒM�G of G-invariants; when X is spherical, this subalgebra is Poisson-
commutative, and can be naturally identified with the algebra of regular functions on the
affine space c�

X , defined in § 2.2.3. Hence, regular functions on c�
X pull back to a Poisson-

commuting algebra of G-invariant functions (“Hamiltonians”) onM . One can ask whether
the corresponding Hamiltonian vector fields can be integrated to the action of an abelian
group scheme JX (over c�

X ) of G-automorphisms ofM , and Knop has answered this in the
affirmative [46].

5.1.2. More precisely, JX is “the group scheme of regular centralizers in the split
reductive group GX dual to LGX .” When LGX is adjoint, so that GX is simply connected, the
group scheme JX has an explicit description as

.Resa�
X=c

�
X
T �AX /

WX (5.1)

(see [61, §2.4]), where Resa�
X=c

�
X
denotes Weil restriction of scalars from a�

X to c�
X .

In general, the group scheme JX acting onM is an open subgroup scheme of (5.1),
which depends not only on the pair .AX ;WX /, but also on the root datum ofX . Knop defines
a slightly different root datum than ours in [46, §6], giving the maximal possible subgroup
scheme acting onM . For our purposes, we will be content with taking JX D the open sub-
group scheme of (5.1) that corresponds to the set of normalized spherical roots, see § 2.2.2.
This can be described as the regular centralizer group scheme ofGX , and is the complement
of a divisor in (5.1), see [46, Theorem 7.7], [61, §2.4].

5.1.3. Let us discuss the rank-1 cases. Consider first the case LGX D PGL2, so that
AX D Gm, WX D Z=2, and the normalized spherical root is twice the generator of the
character lattice. (The isomorphism AX ' Gm is canonical, if we require positive roots to
correspond to positive powers.) Then, JX D JSL2 is given by the restriction of scalars (5.1),
which can explicitly be described as follows: Identify a�

X D g�
m with the affine line, with

coordinate � D the differential of the identity cocharacter, and set � D �2, a coordinate
on c�

X . We can write
JX D SpecF Œt0; t1; ��=.t20 � �t

2
1 � 1/;

so that the canonical base change map

JX � a�
X ! T �AX D T

�Gm D Gm � g�
m;

where by � we denote fiber product over c�
X , is given by .t0; t1; �/ 7! .t0 C �t1; �/.
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The symplectic form is given by

! D
dt1 ^ d�

2t0
D
dt0 ^ d�

2�t1
D dt0 ^ d.t

�1
1 /:

It is immediate to check that this is regular and nondegenerate everywhere on JX .
On the other hand, when the normalized root datum of X is that of PGL2 (i.e., the

normalized spherical root is a generator of the character lattice), the fiber of (5.1) over the
nilpotent point 0 2 c�

X is isomorphic to Ga � ¹˙1º, but the fiber of JX is just Ga.

5.1.4. Returning to the general case, the Lie algebra of JX is canonically isomor-
phic to the cotangent space of c�

X . Thus, the Hamiltonian vector fields associated to F Œc
�
X �

give rise to a homomorphism from Lie.JX / to G-invariant vector fields along the fibers of
M ! g�

X (notation as in § 2.2.2). Knop has shown [46] that these vector fields integrate to
an action of JX onM D T �X over g�

X , commuting with the action of G.
Moreover, over a dense open subset Vc�

X � c�
X , the mapM ! g�

X is a JX -torsor, and
the action of JX arises from the stabilizers of points of g�

X , or even of g�, in G, i.e., the
stabilizer Gz of a generic point z 2 g� in the image of the moment map acts transitively on
the fiber through a map Gz ! JX .

5.1.5. In order to study the relative trace formula for a stack of the form XD .X �

X/=G, I propose to use its cotangent stack

T �X D .T �X �g� T �X/=G:

(Strictly speaking, the fiber product over g� should taken with respect to the moment map
and its negative, .�;��/, so that the quotient above corresponds to symplectic reduction
with respect to the diagonal action of G. We apply multiplication by �1 on the fibers of one
factor, in order to have fiber product with respect to .�; �/, which is notationally simpler.)

The fiber product, here, should be taken in the derived sense, turning this quotient
into a symplectic derived stack. Although the derived features are likely to be important in
the future, for the purposes of the current paper we will ignore them. Then, the fiber product
over g� coincides with the fiber product over g�

X over a dense open Vc�
X � c�

X , which we will
take small enough so that it also has the properties of § 5.1.4.

Knop’s theory, now, gives a very satisfactory description of a dense substack.
Namely, consider the diagonal embedding T �X ,! T �X �g� T �X , which by the action
of JX on the first variable gives rise to

JX � T
�X ! T �X �g� T �X; (5.2)

where again by � denotes �c�
X
. Given that T �X ! g� is generically a JX -torsor over its

image, this map is birational into an irreducible component of the right hand side.
Taking quotients by the G-action in (5.2), and using the invariant moment map

T �X ! c�
X , we obtain a correspondence

JX  .JX � T
�X/=G ! T �X D .T �X �g� T �X/=G: (5.3)
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Over the dense open subset Vc�
X , the right arrow is an isomorphism, and the left arrow

is an isomorphism if we ignore stabilizers. We would like to think of (5.3) as saying that the
symplectic stack T �X is “birational” to the symplectic group scheme JX . Of course, this
is a very naive notion of birationality since, even over a good open dense subset, we are
ignoring stacky and derived structures in T �X. Nonetheless, even this weak correspondence
is quite remarkable, since JX depends only on the dual group of X . It is not too far-fetched
to imagine that this correspondence plays a key role in functoriality.

5.2. Rank 1 spherical varieties
5.2.1. We will now specialize to spherical varieties X D HnG with G and H

split reductive groups, whose dual group is LGX D PGL2 or SL2. The group scheme JX was
described in § 5.1.3.

In this setting, [74] gave explicit formulas for transfer operators (4.1) between
Y D the Kuznetsov stack for the group with dual group LGX (see § 5.2.2 below), and
X D .X � X/=Gdiag. These operators transfer spaces of test measures to each other, but
in a number of cases, studied in [30,75,76], properties such as the transfer of characters or the
appropriate fundamental lemma are also known; thus, there is enough evidence to believe
that these are the “correct” operators of functoriality for these comparisons.

The simplest form of transfer operators appears when the normalized root datum of
X is simply connected, i.e., LGX D PGL2. For some varieties, this is possible to achieve by
passing to a finite cover; the only cases where this can be done lead to the following spaces:

X D SO2n�1 nSO2n; Spin7 nSpin8; G2 nSpin7 : (5.4)

We will call them “cases of type G,” because the base case is the group variety
SO3 n SO4 ' SL2. (Here, the SO7 n SO8 ' Spin7 n Spin8 ' G2 n Spin7 as varieties, but
with the action twisted by the triality automorphism of Spin8, for the second, and restricted
to the subgroup Spin7, for the third.)

The remaining cases of spherical varieties satisfying our assumptions are

X D GLn nPGLnC1; SO2n nSO2nC1; Sp2n�2 �Sp2 nSp2n (with n � 2);

Spin9 nF4; SL3 nG2: (5.5)

We will call them “cases of type T ,” because in the base case Gmn PGL2 the stabilizer is a
torus. (Again, SL3 nG2 ' SO6 nSO7, but with the action restricted to G2 � SO7.)

In those cases, the normalized root datum ofX is that of PGL2, and, as we will see,
it will be necessary to “lift” our description of transfer operators to the root datum of GL2.

5.2.2. Let X be as above. Let G0 be the split reductive group with the same dual
group as X , that is, G0 D SL2 for the varieties of (5.4) and G0 D PGL2 for the varieties
of (5.5). Let N � G0 be the upper triangular unipotent subgroup, identified with the addi-
tive group Ga, fix a nontrivial character  of F , and let Y be the Whittaker model of G0

with respect to .N;  /, § 2.2.5. Let Y � be the Whittaker model with respect to the inverse
character,  �1.
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We will symbolically write Y D .Y � Y �/=G0 for the “Kuznetsov stack,” but we
will really treat it not as an abstract quotient stack, but as one equipped with the line bundle
defined by the Whittaker character. More precisely, this symbol will only find a rigorous
meaning in its Schwartz space �.Y/, which we define to be the G0 diag-coinvariant space of
the space �.Y � Y �/ of Whittaker Schwartz measures.

Having identifiedN withGa, we letM 0D .f Cn?/�N G0 be theWhittaker cotan-
gent bundle, where f is a nilpotent element of .g0/� that is equal to the identity functional
on n D Ga. The corresponding bundle for Y � is M 0 � D .�f C n?/ �N G0. Both come
equipped with natural moment maps to g0 �, which we will indiscriminately denote by�. We
now define the Kuznetsov cotangent stack as

T �Y D
�
M 0
��;g0 �;.��/M

0 �
�
=G0
' .M 0

��;g0 �;�M
0/=G0:

Note that the invariant-theoretic quotient g0 �G0 is canonically identified with c�
X ,

and the group scheme of regular centralizers in G0 is canonically identified with JX . It is
well known thatM 0 is a JX -torsor over the regular subset of g0 �; in fact, a Kostant section
provides a section for this torsor. Therefore, the same considerations that led us to (5.3) hold,
but here we have an exact isomorphism

JX ' T
�Y: (5.6)

Our hope, now, is to demonstrate the following idea:

The cotangent stacks T �X and T �Y being roughly isomorphic to JX (by (5.3),
(5.6)), there is a transfer operator of functoriality

T W �.Y/! �.X/st;

corresponding to a “change of geometric quantization” for JX .

5.2.3. Quantization, of course, is as much of a science as an art, and the reader
should not expect a rigorous formulation of this hope in this article. In particular, the type
of geometric quantization that we need (suitable for encoding measures on stacks) has not,
to my knowledge, been developed, yet. Therefore, the real content of the results that follow
is already contained in [74]; but we will dress them up in an ad hoc language of quantization,
in order to exhibit some deeper structure that seems to be lying behind them.

We will also assume, from now on, that our base field is F D R, in order to use
the language of line bundles with connection, and will write the chosen additive character
as  .x/ D ei„x , where „ is a nonzero real constant. The final results, contained in The-
orems 5.3.5 and 5.4.3, are valid and were proven in [74] over an arbitrary local field in
characteristic 0, just by an obvious translation of the formulas. We will only care to describe
transfer operators up to an absolute scalar; therefore, we will feel free to choose measures
that only modify the result by a scalar, without commenting on those choices.

5.3. Geometric quantization for type G

5.3.1. The process of geometric quantization on a (real) symplectic manifold
.M; !/ consists in fixing a (complex) Hermitian vector bundle L, equipped with a con-
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nection r whose curvature is i„!, as well as a Lagrangian foliation F , such that the space
of leaves M=F is a Hausdorff manifold. Then, one attaches to these data the vector space
DF .M;L/ of smooth half-densities onM=F valued in the space of sections of L overM
that are constant along the foliation F (with respect to the connection). This space has a
canonical inner product (namely, the L2-inner product overM=F ), giving rise to a Hilbert
space, by completion.

To reformulate the results of [74] in this language, we will now recast the space
�.X/st of stable test measures for the relative trace formula as a space of half-densities on
the quotient of the group scheme JX by a Lagrangian foliation, valued in a line bundle LX .

5.3.2. Fix a rank-1 space X “of type G,” i.e., in the list (5.4).
Consider the composition of maps

JX � T
�X ! T �X �g� T �X ! X �X (5.7)

induced from (5.2). There is a natural scaling Gm-action on the left-hand side, under which
this composition is invariant, and if we consider the “projectivization” of the space on the
left (D remove the zero section in T �X and divide by Gm), it was shown in [74, §3] that the
resulting map

P
�
JX � T

�X
�
! X �X (5.8)

is generically an isomorphism. More precisely, in the type-G cases it is an isomorphism over
P .J ı

X � T
�X/, where J ı

X � JX is the complement of the divisor given by the homogeneous
equation t1 D 0. (This is a combination of Propositions 3.3.2, 3.5.1 in [74], and the fact that
those spaces have an involutive G-automorphism.)

The invariant-theoretic quotient X � X ! .X � X/ � G is an affine line, and its
composition with (5.7) is the map JX � T �X ! JX ! A1 that remembers only t0 from
the triple .t0; t1; �/ [74, Proposition 3.4.2]. We notice that the level sets of t0 on J ı

X form a
Lagrangian foliation; we will call this foliation “vertical,” and denote it by Fver.

5.3.3. Let d D dimX . The short version of the story that follows is that we replace
the element f 2 �.X/st (a measure in the variable t0) by

f .t0/.dt0/
� 1
2 jt1j

� d
2 C1; (5.9)

obtaining a half-density on J ı
X=Fver valued in the line bundle LX whose sections are func-

tions on J ı
X=Fver multiplied by the factor jt1j�

d
2 C1. More precisely, LX will be identified

with the trivial line bundle on J ı
X , but endowed with a connection

r
X
D r

0
C d log jt1j

d
2 �1
� i„t�11 dt0 D r

0
C

�
d

2
� 1

�
t�11 dt1 � i„t

�1
1 dt0; (5.10)

with curvature i„!, where r0 is the standard flat connection, so that its parallel sections
along the vertical foliation are as described.

Presented this way, this connection is completely unmotivated. In § 5.3.6 below, we
will discuss a more natural description of the pair .LX ;rX /. Continuing, for now, in this ad
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hoc fashion, (5.9) defines a map

�.X/st ! Dhor.J
ı
X ; LX /; (5.11)

whereDhor (with regular font) denotes continuous (not necessarily Schwartz, or even smooth)
“horizontal” half-densities valued in LX (i.e., half-densities on J ı

X=Fver valued in the
descent of LX by parallel transport). The image of this map will be denoted by D.X/.

5.3.4. We consider another Lagrangian foliation Fhor on J ı
X , which we will call

“horizontal”: its leaves are the level sets of t1. For the line bundle with connection .LX ;rX /,
as above, flat sections along horizontal leaves are simply functions of t1¤ 0, multiplied by the
factor . t0

t1
/; note that this description is independent of the dimension d used to definerX .

We now propose to think of the space of test measures �.Y/ for the Kuznetsov
formula as a subspace D.Y/ � Dver.J

ı
X ; LX /, where Dver denotes continuous “vertical”

half-densities (i.e., half-densities on J ı
X=Fhor) valued in LX . First of all, consider the map

JX �M
0 �
�!M 0

�g0 � M 0;

with notation as in § 5.2.2, where the action of JX is again on the first copy ofM 0.

Lemma. The composition of the map above withM 0 �g0 � M 0 ! Y � Y ! .Y � Y / � G
is the map that only remembers the coordinate t1 of JX .

This is the reason why the foliation Fhor is relevant to the Kuznetsov formula.
There is a natural pullback from Whittaker functions on Y � Y � to scalar-valued

functions onM 0 �g0 � M 0, as follows: Thinking of elements ofF .Y / (that is,Whittaker func-
tions) as sections of a line bundle L over Y D NnG0 (and similarly for Y �, just replacing
 by  �1), we note that the line bundle L �L �1 is canonically trivial over the diagonal
Y diag � Y � Y �. There is now a unique trivialization of its pullback to JX �M 0 which coin-
cides with the canonical one over the diagonal, and is equivariant with respect to the action
of JX �G0. More explicitly, if we use a Kostant section to identify T �Y ' c�

X �G
0, and the

negative of that section for Y �, we pull back Whittaker functions to scalar-valued functions
on T �Y via the projection toG0, and then restrict to T �Y ��;g0 �;.��/ T

�Y � 'M 0 �g0 � M 0.
The short version of the story, now, is that we fix a G0-invariant measure on NnG0,

use it to identify Schwartz (Whittaker) measures on Y � Y � with Schwartz (Whittaker)
functions, pull them back to scalar-valued functions on J ı

X �M
0 ' J ı

X � G
0, and integrate

them against a chosen Haar measure onG0. This gives functions on J ı
X that, as can be easily

confirmed, correspond to sections of LX , flat along the leaves of Fhor; further multiplying
them by the factor jt1j

1
2 dt

1
2

1 gives rise to an element of Dver.J
ı
X ; LX /. This descends to an

injective map

�.Y/! Dver.J
ı
X ; LX /; (5.12)

whose image will be denoted by D.Y/. Again, the factor jt1j
1
2 dt

1
2
1 seems unmotivated, and

we will attempt to explain it in § 5.3.9 below, after formulating the main theorem.
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5.3.5. To recap, we have defined a line bundle LX on J ı
X , endowed with a connec-

tion rX with curvature i„!, “vertical” and “horizontal” foliations Fver, Fhor on J ı
X , and

have identified the spaces �.X/st, �.Y/ of test measures for the corresponding quotients with
spaces D.X/, D.Y/ of “horizontal” and “vertical” half-densities for .LX ; J ı

X /. The main
result [74, Theorem 1.3.1] for the transfer operator in this case can nowbe formulated as follows:

Theorem. There is an injective operator

T W D.Y/! D.X/

given by integration along the leaves of the vertical foliation:

Dver.J
ı
X ; LX / ⇢ Dhor.J

ı
X ; LX /;

T '.j / D

Z
Fver;j

Tj;j 0

�
'.j 0/

�ˇ̌
!.j 0/

ˇ̌ 1
2 ;

(5.13)

whereFver;j denotes the leaf ofFhor through the point j , and Tj;j 0 denotes parallel transport
from the fiber of LX over j 0 to the fiber over j 0 along this leaf.

Its inverse T �1, valued in an enlargement D�
LX
.Y/ �D.Y/ described in [74, §1.3],

is given by integration along the leaves of the horizontal foliation:

Dhor.J
ı
X ; LX / ⇢ Dver.J

ı
X ; LX /;

Note that a horizontal half-density on J ı
X , multiplied by the half-density j!j

1
2 , gives

rise to a vertical half-density valued in the bundle of densities on the leaves of Fhor; thus,
it makes sense to integrate it along these leaves, obtaining a half-density on J ı

X=Fhor. This,
of course, is completely analogous to the canonical intertwiners for the Schrödinger models
quantizing a symplectic vector space [55].

5.3.6. The line bundleLX , with its connection, admits amore natural description as
the dual to a line bundle of half-densities on the fibers of the invariant moment map
�G WM D T

�X ! c�
X . The map (5.11), then, admits a more natural description as descend-

ing, up to a choice of invariant measure on X , from a map from Schwartz half-densities on
X �X ,

D.X �X/! Dhor.J
ı
X ; LX /: (5.14)

Let us see how this works.
It will be convenient to choose a section s of the invariant moment map �G . Such

a section exists in the cases X D HnG of (5.4) when G andH are split; it suffices to check
the case of SO2n�1 n SO2n, and we refrain from attempting to give an abstract argument.
See § 5.4.7 for a further discussion of this issue.

Obviously, the section s has image in the smooth locus of themap�G , which implies
that the fibers of this map are transversal to the section. If O� denotes the fiber over � 2 c�

X ,
let DX be the algebraic line bundle over c�

X whose fiber over � is the determinant of the
tangent space of O� at s.�/. Let LX D jDX j

1
2 , a complex line bundle whose fiber over �

is dual to the space of Haar half-densities on this tangent space. By pullback, we will also
consider LX as a line bundle over JX .
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For � ¤ 0, the fibers of the invariant moment map�G areG-orbits, therefore the tan-
gent space of O� is g=gs.�/, and the fiber of LX over � is the complex line
j detg˝ detg�

s.�/
j
1
2 . Its dual is the line of invariant half-densities on O� .

There is a natural way to trivialize the bundle LX , up to a scalar. It uses the fact that
the stabilizersGs.�/, for � ¤ 0, are isomorphic over the algebraic closure. Thus,G-conjugacy
gives canonical isomorphisms between the complex line bundles j detgs.�/j, and this allows
us to uniformly fix an invariant measure d Pg on all orbits O� , for � ¤ 0, see [74, §4]. Then, by
[74, Theorem 4.0.3]:

Proposition. For a suitable choice of d Pg as above, and the canonical measure dz on T �X

induced by the symplectic form, we have the integration formulaZ
T �X

ˆ.z/dz D

Z
c�
X

j�j
d
2 �1

Z
O�

ˆ
�
s.�/ Pg

�
d Pg d�:

Hence, the family of Haar half-densities � 7! .j�j
d
2 �1d Pg/

1
2 on the orbits O� , for

� ¤ 0, extends to a nonvanishing half-density on the fiber over 0. We now use this family
(depending up to a constant on our choice of d Pg) to trivialize L�

X , hence also LX , i.e., we
have an isomorphism

LX ' C (5.15)

with the trivial line bundle. Moreover, the proposition above shows that a nonzero element
of the fiber of L�

X over 0 corresponds to a unique half-density on O0, obtained as the limit
of G-invariant half-densities over the fibers O� with � ¤ 0. Hence, each element in the total
space of L�

X gives rise to a half-density on the corresponding fiber of �G .

5.3.7. We can now define the map (5.14). Let ' 2 D.X � X/. The product ' �
.dt0/

� 1
2 restricts to a half-density on each fiber of the smooth locus of the invariant-theoretic

quotient X �X ! .X �X/ �G. The idea is to integrate this half-density, but for that pur-
pose we need to turn it into a measure. We will do so after pulling it back to J ı

X via the maps

J ı
X � .T

�X XX/! P .J ı
X � T

�X/! X �X;

where the second arrow is (5.8), an isomorphism onto its image.
For every j 2 J ı

X with image �.j / 2 c�
X , the map (5.7) restricts to a map

¹j º � O�.j / ! X �X that is, by (5.8), an isomorphism onto its image (up to removing the
zero section of T �X , if �.j / D 0). Thus, the pullback of ' � .dt0/�

1
2 induces a half-density

on O�.j /. Multiplying by the half-density corresponding to an element of the fiber of L�
X

over �.j / gives rise to a measure, which we can integrate. This way, we get a canonical map

D.X �X/.dt0/
� 1
2 � L�

X ! C;

where L�
X denotes the total space of the line bundle L�

X over J ı
X . This corresponds to a map

D.X �X/.dt0/
� 1
2 ! �.J ı

X ; LX /; (5.16)

where the right-hand side denotes (continuous) sections of LX over J ı
X .
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5.3.8. The image of ' � .dt0/�
1
2 under this map has an invariance property: namely,

its values at different points j with the same value of t0 “coincide.” To make sense of this,
we need to endowLX with a connection, whose parallel sections along vertical Lagrangians
descend to duals of half-densities on the corresponding G-orbits on X � X . To explicate
this, consider the integration formula of [74, Theorem 4.0.2]:

Proposition. For a function ˆ and an invariant measure dx on X �X , we haveZ
X�X

ˆ.x/ dx D

Z
.X�X/�G

jt20 � 1j
d
2 �1

Z
Ot0

ˆ. Pg/ d Pg dt0: (5.17)

Here, we have denoted by Ot0 the preimage of t0 2 .X �X/ �G in X �X , using
similar notation as for the preimages of points of c�

X in T �X . The reason is that, as above,
for j 2 J ı

X with �.j / ¤ 0, we can identify the G-orbit O�.j / with the image of ¹j º �O�.j /

in X � X , which is equal to Ot0.j /. The measure d Pg in the Proposition, then, is the same
measure on O�.j / as that used to trivialize the bundle LX in § 5.3.6.

The proposition above tells us that, if for every j with �.j / ¤ 0 we multiply
'.dt0/

� 1
2 by the half-density .jt20 .j / � 1j

d
2 �1d Pg/

1
2 , the integral will depend only on the

function t0.j / of j . On the other hand, the trivialization (5.15) of LX uses the half-density
.j�j

d
2 �1d Pg/

1
2 . The quotient of the two is jt1j

d
2 �1. We conclude that the map (5.16), com-

posed with the trivialization (5.15), gives rise to functions f on J ı
X such that jt1j

d
2 �1f is

constant along fibers of t0. This explains the definition of rX in (5.10), and completes the
construction of the map (5.14).

5.3.9. In a similar way, we define a line bundle LY on JX , pulled back from c�
X ,

as the dual of the line bundle of G0-invariant half-densities on the fibers ofM 0 D T �Y !

c�
X . Here, the fibers are G

0-torsors, hence fixing a Haar half-density on G0 gives rise to a
trivialization

LY
�
�! C: (5.18)

Through the trivializations (5.15) and (5.18), the line bundles LX and LY are identified.
Recall from § 5.3.4 that the description of “vertical” half-densities for

.LX ;r
X / is the same in every case (does not depend on the dimension d of X ). We can

now define a map

D.Y � Y �/! Dver.J
ı
Y ; LY /; (5.19)

in a completely analogous way to (5.14), using also the scalar-valued pullback from Whit-
taker functions on Y � Y � to scalar-valued functions onM 0 �g0 � M 0, described in § 5.3.4.
To describe it explicitly, consider the integration formula for functions on Y 2, analogous
to (5.17), Z

Y�Y

ˇ̌
ˆ.y/

ˇ̌
dy D

Z
.Y�Y /�G0

jt1j

Z
G0

ˇ̌
ˆ. Qt1g/

ˇ̌
dg dt1 (5.20)
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(where Qt1 denotes any lift of t1 to Y � Y ). Symbolically, we can write the G0 �G0-invariant
measure dy on Y � Y as dg � jt1jdt1. Similarly, we can write the spaces of Schwartz mea-
sures and half-densities as

�.Y � Y / D F .Y � Y / �
�
dg � jt1jdt1

�
;

D.Y � Y / D F .Y � Y / �
�
dg � jt1jdt1

� 1
2 :

Choosing the half-density .dg/ 12 to define the trivialization (5.18), the image of a Schwartz
half-densityˆ � .dg � jt1jdt1/

1
2 under (5.19) is precisely the image of the Schwartz measure

ˆ � .dg � jt1jdt1/ described in the definition of (5.12), giving a natural meaning to that
definition.

5.4. Geometric quantization for type T

5.4.1. In the cases (5.5) of “type T ,” the analog of Theorem 5.3.5 does not directly
hold. In turns out, however, that there is a similar interpretation of transfer operators, if we
pass from JX , the group scheme of regular centralizers in PGL2, to QJX D the group scheme
of regular centralizers in GL2. It lives over QcX�

WD gl�
2 � GL2.

If we write GL2 D .SL2 �Gm/=�2, use coordinates .t0; t1; �/, as before, for JSL2 ,
and coordinates .z; �/ for T �Gm D Gm � g�

m, we obtain

QJX D SpecF
�
t0; t1; �; z

˙1; �
��2
=.t20 � �t

2
1 � 1/;

where �1 2 �2 acts by .t0; t1; �; z; �/ 7! .�t0;�t1; �;�z; �/. The map to JX D JPGL2 is
then obtained by symplectic reduction modulo Gm, and the symplectic form on QJX reads

! D dt0 ^ d.t
�1
1 /C d�z ^ d�;

where the notation is d�z WD d log z D dz
z
.

5.4.2. To motivate the passage to QJX , we should first look at the simple case
X D Gmn PGL2. This space is a quotient of QX D GmnGL2, where Gm is embedded as
the general linear group of a 1-dimensional subspace, and one can think of �..X �X/=G/

as the Gm-coinvariants of the space �.. QX � QX/= QG/, where Gm stands for the center of
QG D GL2,

�
�
.X �X/=G

�
D �

�
. QX � QX/= QG

�
Gm
:

In this setting, one can easily study a transfer operator

T W �. QY/! �. QX/;

where QXD . QX � QX/= QG, and QY is the “Kuznetsov quotient stack” of GL2, via the “unfolding”
method. The “unfolding” method [77, §9.5] gives rise to an explicit morphism of Schwartz
half-densities

U W D. QY /! D. QX/ (5.21)

(where QY denotes the Whittaker model of GL2), which extends to an L2-isometry.
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We can repeat the earlier constructions to identify the spaces of test measures above
with spaces of “vertical,” resp. “horizontal,” half-densities on QJX

ı
D the complement of

t1 D 0, valued in a line bundle LX (with connection). Here, the corresponding foliations are
determined by the following:

Lemma. The invariant-theoretic quotient . QX � QX/ � QG D GmnGL2 �Gm is a two-dimen-
sional affine space. One can choose the coordinates .x; y/ so that the resulting map

QJX ! QJX � T
� QX ! T � QX �Qg� T � QX ! . QX � QX/ � QG

(the first arrow again by choosing a section of T � QX ! QcX
�) is given by

.t0; t1; �; z; �/ 7!
�
x D z�1.t0 � � t1/; y D z.t0 C � t1/

�
: (5.22)

The invariant-theoretic quotient for the Kuznetsov formula of GL2, composed with
the analogous map from QJX ,

QJX ! QJX � T
� QY ! Nn QG �N

is the map that remembers all even-order monomials in the coordinates t1 and z˙1.

Note that the map QJX ! . QX � QX/ � QG is smooth, when restricted to QJX
ı
D the

complement of the divisor t1 D 0. The “vertical” foliation Fver is defined as the set of fibers
of this map. The “horizontal” foliation Fhor on QJX

ı is defined by the level sets of .t1z; z2/.

Remark. The passage to .X �X/ �G D A1 is given by the coordinate

.x; y/ 7! c WD xy D t20 � �
2t21 D .� � �

2/t21 C 1: (5.23)

5.4.3. Still in the case of QX D GmnGL2, defining line bundles LX , LY over QJX
ı

exactly as before, we can repeat the constructions of the maps (5.14) and (5.19) for QG, to
identify test measures as spaces

D. QX/ ,! Dhor. QJX
ı
; LX /;

D. QY/ ,! Dver. QJX
ı
; LY /

of “horizontal,” resp. “vertical,” half-densities valued in those line bundles.
With the appropriate identificationLX 'LY over QJX

ı (whichwewill present for the
general case in § 5.4.4), we can now descend the unfolding map (5.21), applied to D. QY /˝

D. QY �/, to coinvariants for the diagonal action of QG, obtaining a transfer operator, which
can be explicitly described, along the lines of [69, Theorem 5.4]:

Theorem. The transfer operator
QT W D. QY/

�
�! D. QX/

is the operator of integration along the leaves of the vertical foliation:

Dver. QJX
ı
; LX / ⇢ Dhor. QJX

ı
; LX /:

The transfer operator
T W D.Y/! D.X/

is the descent of QT to Gm-coinvariants.
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5.4.4. Let, now, X be a general space from the list (5.5). The idea is to generalize
the statement of Theorem 5.4.3 for the transfer operator T , even though the spaceX does not,
in general, admit a cover such as QX . (Such a cover exists, more generally, for
X D GLn nPGLnC1, and can be used to motivate some of the definitions that follow.)

An important feature of the general case is that we will extend the map JX !
.X � X/ � G ' A1 to a map QJX ! A1, given by the same coordinate c, (5.23), as in the
case of GmnGL2, and will define the vertical and horizontal foliations on QJX

ı as in § 5.4.2,
e.g., the vertical foliation consists of level sets of the pair of functions .x; y/ of (5.22). We
define the complex line bundle LX over c�

X as in § 5.3.6, and extend it to a line bundle LX
on QcX�, by pullback along the map

QcX
�
3 .�; �/ 7! � � �2 2 c�

X : (5.24)

By pullback from QcX�, this also becomes a line bundle over QJX . We endow it with the same
trivialization (5.15) as before.

Roughly speaking, now, if we fix a Haar measure on F �, the map (5.24) allows us
to pull back elements of Dhor.J

ı
X ; LX / to Gm-invariant elements of Dhor. QJX

ı
; LX /, thus

obtaining maps

D.X �X/! Dhor.J
ı
X ; LX /! Dhor. QJX

ı
; LX /

Gm : (5.25)

(Fixing a Haar measure on F � allows the switch from the coinvariants of Theorem 5.4.3
to invariants.) However, there is one more twist, which is not seen in the cases of X D
GLn n PGLnC1, but is needed in the general case. Namely, instead of Gm-invariants, one
needs twisted invariants with respect to a character of Gm (that is, of F �).

5.4.5. To introduce this final piece of the puzzle, we recall from [74] that the space
X � X has two closed G-orbits of codimension larger than 1: the diagonal Xdiag (whose
codimension we keep denoting by d ), and a second closed G-orbit, whose codimension we
will denote by d 0. We define a character of Gm by �d 0 W z 7! jzj�

d 0

2 C1. We will then under-
stand the space of test densities for .X �X/=G as a subspace of the .Gm; �d 0/-equivariant
elements ofDhor. QJX

ı
; LX /, by composing (5.25) with multiplication by

jyj�
d 0

2 C1
D jz.t0 C � t1/j

� d 0

2 C1;

obtaining a map

D.X �X/! Dhor. QJX
ı
; LX /

.Gm;�d 0 /: (5.26)

The image D.X/ is identified, as before, with the space �.X/st of stable test measures, if we
fix an invariant measure onX �X . To summarize, the map �.X/st!D.X/ takes a measure
f .c/ to

f .c/.dc/�
1
2 jyj�

d 0

2 C1
jt1j

� d
2 C1.d�z/

1
2 ; (5.27)

in the trivialization (5.15), where y; c are given by (5.22) and (5.23).

Remark. The most convincing argument for the relevance of the character �d 0 is [74, Propo-
sition 6.1.5], describing orbital integrals in the neighborhood of c D xy D 0 in terms of
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Gm-orbital integrals on the .x; y/-plane, twisted by this character. However, a more concep-
tual understanding of it would be highly desirable.

5.4.6. We also replace half-densities for the Kuznetsov formula of G0 D PGL2 by
half-densities for GL2 with central character �d 0 , namely, we define an embedding

D.Y/ ,! Dver. QJX
ı
; LX /

.Gm;�d 0 /

simply by multiplying the embedding D.Y/ ,! Dver.J
ı
X ; LY / of § 5.3.9 by the factor

jzj�.
d 0

2 �1/.d�z/
1
2 , and use the same trivialization (5.18) to identify LY ' C ' LX .

The main result [74, Theorem 1.3.1] for the transfer operator in this case can now be
formulated as follows:

Theorem. There is an injective operator

T W D.Y/! D.X/

given by integration along the leaves of the vertical foliation:

Dver. QJX
ı
; LX / ⇢ Dhor. QJX

ı
; LX /:

Its inverse T �1, valued in an enlargement D�
LX
.Y/ �D.Y/ described in [74, §1.3],

is given by integration along the leaves of the horizontal foliation:

Dhor. QJX
ı
; LX / ⇢ Dver. QJX

ı
; LX /;

5.4.7. I finish this section with a brief discussion of a case where a section c�
X !

T �X does not exist. LetX D T nPGL2, where T is a nonsplit torus, splitting over a quadratic
extension E=F . In this case, the transfer operator

T W �.Y/! �.X/

was computed in [69], and can be described as follows:
Instead of defining QJX to be the group scheme of regular centralizers in GL2, define

it to be the Gal.E=F /-twist of that, determined by the automorphism .t0; t1; �; z; �/ 7!

.t0; t1; �; z
�1;��/; that is, QJX will be isomorphic to the group scheme of regular centralizers

in the quasisplit unitary groupU2. The transfer operator, now, it obtained as in Theorem 5.4.3,
by descending the operator of integration along the leaves of the corresponding “vertical”
foliation on QJX to U1-coinvariants.

Both the Schwartz space and the descent to U1-coinvariants, here, need to be under-
stood in a sophisticated, “stacky” way. Namely, the full space �.X/ includes a “pure inner
form” as in (2.2),

�.X/ D �.X �X/G ˚ �.X˛ �X˛/G˛ ;

where X˛ ' T nG˛ , with G˛ D PD�, the projective multiplicative group of the quater-
nion division algebra. Similarly, the U1-coinvariants of Dver. QJX

ı
; LX /, Dhor. QJX

ı
; LX /

need to be understood in a stacky way. Explicitly, recall that in the split case the space
Dhor. QJX

ı
; LX / was the space of half-densities on the .x; y/-plane (in coordinates (5.22)),

with Gm acting as z � .x; y/ D .z�1x; zy/. In the nonsplit case, the .x; y/-plane becomes
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the space V D ResE=F Ga, and instead ofU1-coinvariants of the spaceD.V .F //, one needs
to consider the direct sum

D
�
V.F /

�
U1
˚D

�
V 0.F /

�
U1
;

where V 0 is the twist of V by the nontrivial U1-torsor. The same interpretation is needed
for “stacky” U1-coinvariants of the space Dver. QJX

ı
; LX / (with the coordinates a D zt1,

bD z�1t1 for the leaves of the horizontal foliation interchanged by the Galois action), and the
operator of “integration along vertical half-densities”—essentially, a Fourier transform from
the Galois-twisted .x; y/-plane to the Galois-twisted .a�1; b�1/-plane—naturally descends
to give the transfer operator T of [69, Theorem 5.1].

6. Problems for the near future

6.1. The relative Langlands conjectures
The relative Langlands conjectures presented in Sections 2.3.1–2.3.2 do not have

the precision of the local conjectures of Gan–Gross–Prasad [27], or the global conjectures of
Ichino–Ikeda [36]. Moreover, an extension of those conjectures to Arthur packets not appear-
ing in the L2-decomposition is required, as in [26].

It is therefore an important problem to refine the existing conjectures. It is also a
fascinating one: as always, finding a way to blend several known cases into a uniform theory
can lead to new insights about the nature of the problems. The geometric relative Langlands
conjectures proposed in joint work with Ben-Zvi and Venkatesh can probably assist in this
direction, providing a geometric spectral answer to automorphic problems, which can then
be translated to number theory by decategorifying.

6.2. Transfer operators in higher rank
The most important problem “beyond endoscopy,” in my view, is to understand

transfer operators in higher rank, and for morphisms of L-groups LGX ! LGY that are not
isomorphisms. Regarding the latter, despite the traditional emphasis on the Arthur–Selberg
trace formula, it might be better, as first observed by Sarnak [79], to try to compare Kuznetsov
formulas, which, according to the results of [74], seem to be the “base cases” for every com-
parison. This can be “explained” by the simple structure (5.6) of the Kuznetsov cotangent
stack.

If the ideas discussed in this paper have any merit, understanding transfer operators
in terms of “quantization” would involve several steps, including the following:

6.2.1. Develop a theory of “geometric quantization” for derived symplectic stacks,
whose output includes the Schwartz spaces of stacks defined in [71]. The cases presented
here, and in particular the construction of the maps (5.14) and (5.26), could provide some
hints on how to do that, but the various twists involved need to be better understood.

6.2.2. Obtain a better understanding of the structure of coisotropic Hamiltonian
spaces and the cotangent stacks appearing in the relative trace formula. The diagram (5.3),
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arising from the work of Knop, which was interpreted as a “birational” description of T �X,
does not capture the difference between T �X, and the Kuznetsov cotangent stack with the
same L-group. This difference seems to be significant for the structure of transfer operators
and for spaces of test measures. For example, the enlarged spaces ��

LX
.Y/ of test measures

for the Kuznetsov formula in Theorems 5.3.5 and 5.4.3 should be seen as quantizations of
T �X, which is strictly larger than the Kuznetsov stack T �Y. This difference can also explain
“Galois twists” of transfer operators, as in the example of § 5.4.7, where T �X failed to admit
an analog of a Kostant section.

A baby case of the idea that embeddings of Hamiltonian spaces correspond to
enlarged Schwartz spaces is Iwasawa–Tate theory, where the embedding T �Gm ,! T �A1

corresponds to the enlargement �.F �/ ,! �.F /. This can be generalized to toric stacks,
as described in [63, §5.2]. For a torus A, a collection of coweights � W Gr

m ! A defines a
stack A� WD Ar= ker.�/ with an action of A. The dual Hamiltonian space of such a stack is
defined as the symplectic LA-vector space LM with weights ¹˙�º.

To give an example of the descriptions of Hamiltonian spaces envisioned here, in
an ongoing joint work with Ben-Zvi and Venkatesh we take a step beyond Knop’s theory,
modeling the most regular locus of M D T �X , up to codimension 2, on a the analog of a
“toric stack” for the group scheme JX . Our result confirms an observation of V. Lafforgue,
shared in private communication several years ago. For example, for spherical varieties X
with LGX D LG and LAX D LA, our description uses the toric stack AX corresponding to the
dual Hamiltonian space LM D VX of the spherical variety, described in terms of its colors in
§ 3.1.2.

Theorem. In the setting above, there is an action ofWX on the toric cotangent stack T �AX ,
and an open dense subset c�

X
0
� c�

X , whose complement has codimension � 2, such that
the restrictionM 0 � M to the image of c�

X
0 under a Kostant section � W c�

X ! g� admits a
JX -equivariant symplectomorphism

M 0
' .Resa�

X=c
�
X
T �AX /

WX �c�
X

c�
X

0
:

6.2.3. Use cotangent spaces to understand transfer operators. As we saw in the
discussion of cases of type T in § 5.4, a “naive” change of geometric quantization on JX
did not give the correct transfer operators; instead, one has to pass to the group scheme QJX
associated with the root datum of GL2, producing a 2-dimensional Fourier transform.

Ongoing joint work with C. Wan, comparing the Kuznetsov to the Arthur–Selberg
trace formula for GLn, suggests that, in higher-rank cases, the transfer operator for a compar-
ison to a Kuznetsov quotient with the same dual group might be given by an r-dimensional
integration, where r is, roughly, half the dimension of the nonzero weight spaces of the rep-
resentation VX (§ 3.1.1) of the dual group. In view of the discussion of § 6.2.2, this seems to
be closely related to the structure of T �X. For example, in the setting of Theorem 6.2.2 (such
as in the case of Gan–Gross–Prasad periods), one could speculate that the transfer operator to
the Kuznetsov formula is somehow a “descent” of a Fourier transform in dim LM

2
-dimensions.

In this “dream,” the following three objects would be closely related: the L-value LX asso-
ciated to a spherical variety (encoded in a dual Hamiltonian space LM ), the fine structure of
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the Hamiltonian spaceM D T �X (whose quantization is the space of test measures on X ),
and the transfer operator between the relative trace formula ofX and the Kuznetsov formula
with the same dual group.

6.3. Poisson summation formula
Understanding the local transfer operators should be followed by a global compar-

ison of trace formulas. For example, comparing the relative trace formula for any spherical
variety X with the Kuznetsov formula with the same dual group should amount to commu-
tativity of the diagram

��
LX
.Y.A//

T //

RTFY
$$

�.X.A//st

RTFX
{{

C

; (6.1)

where ��
LX
.Y.A// is a suitable enlarged space of test measures for the Kuznetsov formula,

related to the L-value LX of X .
Having a formula for the transfer operator in terms of Fourier transforms (as in The-

orems 5.3.5 and 5.4.3) gives hope of employing the Poisson summation formula to establish
commutativity of (6.1). However, this is far from straightforward, as the spaces of stable test
measures are nonstandard. In Altuğ’s work [2], the approximate functional equation was used
for the trace formula ofX D GL2, obtaining an expression similar to the Kuznetsov formula
(in particular, containing Kloosterman sums), but not quite equal to it.

A different approach was introduced in [73], for the case X D T nPGL2. It is based
on the idea of deforming spaces of test measures and transfer operators in analytic families
depending on a parameter s (which moves the point of evaluation of LX ), so that in some
domain for s the Poisson summation formula is valid. It is likely that this method can be
applied more generally, but it requires a better understanding of the idea of deforming spaces
of test measures (orbital integrals).

6.4. Hankel transforms
In the recent literature on automorphic forms, the term “Hankel transforms” has

been used to describe two distinct conjectural notions:

• The nonlinear Fourier transforms ��.G.F //! ���.G.F // between nonstandard
spaces of Schwartz functions (or measures) on a reductive group over a local
field, adapted to a representation � of its dual group, and its dual. These spaces
and operators would generalize Fourier transform on the space �.Matn.F //
of Godement–Jacquet theory, for the case � D the standard representation of
LG D GLn, and would similarly give rise to the local functional equation for the
L-functions associated to �. They were introduced by Braverman and Kazhdan
[15,17], and advanced in the work of Ngô [63].
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• The descent of such transforms to spaces of test measures for the Arthur–Selberg
trace formula, or for the Kuznetsov formula. In the latter case, those would be
operators

H� W ��.Y/! ���.Y/

between enlarged spaces of measures for the Kuznetsov formula, such as those
encountered in Theorems 5.3.5 and 5.4.3.

The two notions are closely related, but it is the latter that we would like to focus on
here. It is natural to ask the question of whether one can describe H� explicitly, and prove a
Poisson summation formula, globally, in the sense that the diagram

��.Y.A//
H� //

RTFY $$

���.Y.A//

RTFYzz
C

(6.2)

should commute. This would lead to an independent proof of the functional equation of the
pertinent L-functions.

Such Hankel transforms have been described by Jacquet [40] for � D the standard
representation of GLn (the paper [35] is closely related), and byme [76] for �D the symmetric
square representation of GL2. It would be interesting to examine if these formulas admit an
interpretation in terms of quantization, like the transfer operators in this paper.

It seems counter to the strategy of the Langlands program to seek such a proof of the
functional equation, independent of functoriality. On the other hand, the similarity between
diagrams (6.1) and (6.2) is enticing. More fundamentally, trace formulas with nonstandard
test functions, such as those in Langlands’ original “beyond endoscopy” proposal, or the
Kuznetsov formula appearing in (6.1), have the L-functions embedded into them. Obtaining
the spectral decomposition of those formulas will likely require more than “brute force” ana-
lytic number theory, and a Poisson summation formula of the form (6.2) could help resolve
the problem. This idea was successfully employed in [73] for a new proof of Waldspurger’s
formula for toric periods in PGL2 via a nonstandard comparison of the form (6.1). There-
fore, it might be that, in the “beyond endoscopy” program, functoriality and the functional
equation of L-functions should be studied hand-in-hand.
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1. Introduction

Categorification, in the broad sense, refers to the realization of amathematical object
as the Grothendieck group of certain category. Lie theory is a domain with many interesting
examples of categorifications. An important family among them consists of categorification
of quantum groups and their representations.

Let g be a Kac–Moody Lie algebra, Uv.g/ be its quantized enveloping algebra, and
UC

v be the positive part. The first categorification of UC
v was constructed by Lusztig [41,42]

using perverse sheaves on the moduli stack of quiver representations. It reveals some deep
structures of UC

v , including the existence of a remarkable basis called the canonical basis.
It is defined as the classes of intersection complexes in the Grothendieck group. Kashiwara
[29] also gave a construction of this basis using a different method.

A (naive) categorical g-action on an exact category C consists of pairs of exact
adjoint endofunctors Ei ,Fi onC such that the Grothendieck group ofC is a g-representation
with the Chevalley generators in g acting by the operators induced by Ei , Fi . A famous
example is the categorical action of the affine Lie algebra bslp on the category of representa-
tions over a field of characteristic p of the symmetric groups of all ranks. The functors Ei ,
Fi are given by some i -restriction and i -induction functors. Categorifical actions also had
remarkable applications to representation theory of affine Hecke algebras and their cyclo-
tomic quotients. Ariki [1] proved that the category of modules over affine Hecke algebras of
typeA at an eth root of unity categorifies the positive half of bsle , and the category of modules
over cyclotomic Hecke algebras categorifies an integrable irreducible bsle-representation,
with the classes of simple modules corresponding to the dual canonical basis. This result
confirms a conjecture by Lascoux–Leclerc–Thibon [39] and provides character formulae for
simple modules over cyclotomic Hecke algebras.

In 2008, a seminal work of Chuang–Rouquier [17] brought some new perspectives on
categorifications. They introduced an enhanced notion of sl2-categorical action, whose input
requires not only exact adjoint endofunctorsE ,F as above, but also some natural transforma-
tions x 2 End.E/, � 2 End.E2/ satisfying the defining relations for nil-affine Hecke algebras.
They showed that many previously known examples of categorifications in Lie theory can
be enhanced. The enhancement has two important advantages among others. First, it guar-
antees that the categorification of a simple integrable sl2-representation is unique. Second,
it provides derived self-equivalences between different blocks, categorifying the Weyl group
action on the underlying representation. As an application, Broué’s abelian defect group
conjecture for symmetric groups was proved.

To extend this powerful theory from sl2 to arbitrary Kac–Moody Lie algebra g, one
needs correct substitutions for the nil-affine Hecke algebras. This is provided by a new family
of Z-graded algebras introduced by Khovanov–Lauda [33] and independently by Rouquier
[53], called quiver Hecke algebras (also known as KLR algebras). The category of graded
projective modules over these algebras gives a categorification of UC

v in purely algebraic
terms. Moreover, by work of Rouquier [55] and Varagnolo–Vasserot [65], it is equivalent to
Lusztig’s categorification. Integrable simple g-representations also admit categorifications
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by representations of cyclotomic quotients of quiver Hecke algebras by Kang–Kashiwara
[25]. Moreover, Rouquier [53] proved the unicity of categorifications for these simple repre-
sentations.

Quiver Hecke algebras have captured a tremendous amount of interest in the last
decade and many important progress have been made. We do not intend to give a complete
survey of the subject. Instead, we will focus on some new equivalences of categorifications
and some recent applications to representation theory. Here is an outline of this report.

In Section 2 we review Lusztig’s categorification of UC
v , quiver Hecke algebra, its

realization as extension algebra of some `-adic complexes, the theory of standard modules
for quiver Hecke algebras and their relations to PBW basis. We also mention the monoidal
categorification of the quantum cluster algebra structure on the quantum coordinate ringAC

v

by Kang–Kashiwara–Kim–Oh [27].
In Section 3 we discuss categorifications of quantized loop algebras. By the theory

of K-theoretical Hall algebras, there is a natural categorification of the positive part of
quantized loop algebras in terms of coherent sheaves on the cotangent dg-stacks of quiver
representations. For a quiver of finite type, since the loop algebra is part of the corresponding
affine Lie algebra, it can also be categorified using representations of quiver Hecke algebras.
It is natural to ask whether these two categorifications are equivalent. An equivalence of this
kind was given for sl2 in [61]. It also gives an interesting comparison between two monoidal
categorifications of the quantum cluster algebra structure on a quantum unipotent coordinate
ring for bsl2, one in terms of quiver Hecke algebras as mentioned above and the other in terms
of perverse coherent sheaves on affine Grassmannians, constructed by Cautis–Williams [15].

In Section 4 we discuss some recent applications of categorical actions to repre-
sentation theory, including those of rational double affine Hecke algebras and those of finite
reductive groups of classical types. We also discuss how to use categorical actions to con-
struct representations of current algebras on the center of the underlying categories. As an
application, we obtain an isomorphism between the center of cyclotomic quiver Hecke alge-
bras and the singular cohomology of Nakajima quiver varieties in finite types. In a parallel
context, we get an explicit computation of the cohomology of Gieseker moduli spaces.

2. Quiver Hecke algebras

2.1. Notation
For an exact (resp. triangulated) category C , its Grothendieck group ŒC � is the

quotient of the freeZ-module spanned by the isomorphism classes of objects inC by the rela-
tions ŒM � D ŒM 0� C ŒM 00� whenever there is a short exact sequence M 0 ! M ! M 00(resp.
distinguished triangle). Abelian categories are naturally exact categories. Additive categories
can be viewed as exact categories with short exact sequences being the split ones.

An exact category C is graded if it is equipped with an exact autoequivalence
h1i W C ! C . For such a category, the Grothendieck group ŒC � is a ZŒv˙1�-module with
vŒM� D ŒM h1i�. Here v is a formal variable. In particular, for an object M 2 C and
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a.v/ D
P

r arvr 2 NŒv˙1�, we write a.v/M D ˚rM hri˚ar . We set

Hom�
C .�; �/ D

M
r2Z

HomC .�; �hri/:

A standard example of graded category is the category of graded vector spaces over a field
k with .M h1i/n D MnC1. Its Grothendieck group is isomorphic to ZŒv˙1�, with the class
of M D

L
n2Z Mn mapping to its graded dimension gdim.M/ D

P
n2Z.dimk Mn/vn.

An exact categoryC is monoidal if it is equippedwith an exact bifunctorC � C ! C

satisfying certain associativity constraints. Such a bifunctor yields a ring structure on the
abelian group ŒC �. If C is graded monoidal, then ŒC � becomes a ZŒv˙1�-algebra.

Let k be a field. For a graded k-algebra A, let Mod.A/ be the category of graded
A-modules. Let mod.A/, proj.A/, fmod.A/ be respectively the full subcategories consisting
of finitely generated gradedA-modules, finitely generated graded projectiveA-modules, and
graded A-modules which are finite dimensional over k.

2.2. The quantized enveloping algebra
Let I be a finite set. Fix a Cartan datumwith a symmetric generalized Cartan matrix

A D .aij /i;j 2I , a set of simple roots ¹˛i j i 2 I º, a weight latticeP , and a symmetric bilinear
formP � P ! Q, .�;�/ 7! � � � such that ˛i � j̨ D aij and!i � j̨ D ıij , where ¹!i j i 2 I º

are the fundamental weights. Let g D gA be the associated Kac–Moody Lie algebra. Let
Q D

L
i2I Z˛i be the root lattice. Set QC D

L
i2I N˛i and P C D

L
i2I N!i . Let ˆ be

the set of roots, and ˆC the set of positive roots. Let n � g be the Lie subalgebra spanned
by positive root spaces.

For n 2 N, 1 6 l 6 n, define the following quantum integers in ZŒv˙1�:

Œn� D
vn � v�n

v � v�1
; Œn�Š D

nY
rD1

Œr�;
� n

l

�
D

Œn�Š

Œl �ŠŒn � l �Š
:

The positive part 0UC
v of the quantized enveloping algebra is the unital Q.v/-algebra gener-

ated by Ei for i 2 I , subject to defining relationsX
sCrD1�aij

.�1/sE
.s/
i Ej E

.r/
i D 0; for i ¤ j 2 I;

where E
.n/
i D En

i =Œn�Š. It is a QC-graded algebra with deg.Ei / D ˛i . There is a coproduct

� W
0UC

v !
0UC

v ˝
0UC

v ; Ei 7! Ei ˝ 1 C 1 ˝ Ei ; 8i 2 I;

such that 0UC
v is a twisted1 bialgebra. There is a unique nondegenerate symmetric bilinear

form .�; �/v on 0UC
v determined by .1; 1/v D 1, .Ei ; Ej /v D ıi;j =.1 � v2/, and .ab; c/v D

.a ˝ b; �.c//v for a; b; c 2 0UC
v , where .a ˝ b; c ˝ d/v D .a; c/v.b; d/v on 0UC

v ˝ 0UC
v .

1 Here and below, twisted means the multiplication on 0UC
v ˝ 0UC

v is .a ˝ b/.c ˝ d/ D

v� deg.b/�deg.c/ac ˝ bd for homogeneous elements a; b; c; d 2 0UC
v .
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Let UC
v be the ZŒv˙1�-subalgebra of 0UC

v generated by E
.n/
i for i 2 I , n > 1. It is

a ZŒv˙1�-form for 0UC
v , and its specialization at v D 1 is an integral form for the universal

enveloping algebra of n. The dual form

AC
v D

®
x 2

0UC
v j .x; y/v 2 Z

�
v˙1

�
; 8y 2 UC

v

¯
is called the quantum unipotent coordinate ring. Its specialization at v D 1 is an integral
form for the coordinate ring of the unipotent group associated with n.

2.3. Quivers and Ringel’s Hall algebra
A quiver � D .I; H/ is an oriented graph with vertices set I and arrows set H . For

h W i ! j 2 H , we write h0 D i , h00 D j . Let hij be the total number of arrows from i to j .
Assume that � has no edge loops, then it determines a symmetric generalized Cartan matrix
A D .aij /i;j 2I given by ai i D 2 and aij D �hij � hj i for i ¤ j . Write g� D gA. We say
� is of finite type if g� is finite dimensional.

Fix a field F . A �-representation over F is a pair .x; V /, where V D
L

i2I Vi is
an I -graded F -vector space, and x D .xh/h2H is a collection of linear maps
xh W Vh0 ! Vh00 . Its dimension is the element

P
i2I dimF .Vi /˛i inQC. Amorphism of repre-

sentations .x;V / ! .x0;V 0/ is a family of linear maps ai W Vi ! V 0
i such that ah00xh D x0

h
ah0

for all h 2 H . Fix ˇ D
P

i2I di ˛i 2 QC, the space of �-representations of dimension ˇ is

Xˇ D

M
h2H

HomF .Fdh0 ; Fdh00 /:

The groupGˇ D
Q

i2I GLdi
acts onXˇ by .gx/h D gh00xhg�1

h0 for all h 2 H , g D .gi / 2 Gˇ .
Two representations are isomorphic if and only if they are in the same Gˇ -orbits. So the
quotient stack Xˇ D ŒXˇ =Gˇ � parametrizes the isomorphism classes of �-representations.
For each i 2 I , there is a unique simple �-representation Si of dimension ˛i with x D 0. All
simple �-representations are of this form. For a sequence � D .�1; �2; : : : ; �m/ of elements
in QC whose entries sum up to ˇ, let QX� be the moduli stack of flags of �-representations
�� D .�1 � � � � � �m/ such that �r=�r�1 2 X�r for 1 6 r 6 m. We have a proper morphism

f� W QX� ! Xˇ ; �� 7! �m: (2.1)

Let Xnil
ˇ
be the union of the image of f� for all possible �. Representations in Xnil

ˇ
are called

nilpotent. If � has no oriented cycles, then Xˇ D Xnil
ˇ

for all ˇ.
Let F D Fq be a finite field. The space QŒXnil

ˇ
� of Q-valued functions on the

finite set Xnil
ˇ

is spanned by the characteristic functions 1� for � 2 Xnil
ˇ
. The Hall algebra

H.�; q/ D
L

ˇ2QC QŒXnil
ˇ

� is an associative algebra with the multiplication given by

1�1 � 1�2 D

X
�2XˇC

c�

ˇ̌
f �1

� .�/ \ p�1
� .�1; �2/

ˇ̌
1� ;

for�1 2 Xˇ ,�2 2 X . Here � D .ˇ;/, c� is some structural constant andp� is themorphism

p� W QX� ! Xˇ � X ; .�0
� �/ 7! .�0; �=�0/: (2.2)
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Theorem 2.1 ([52]). The assignments Ei 7! 1Si
for i 2 I defines a QC-graded algebra

embedding
0UC

v jvDq�1=2 ,! H.�; q/:

It is an isomorphism when � is a quiver of finite type.

We recall some properties of Xˇ in two special examples which will be used later.

Example 2.2. Assume � is a quiver of finite type. Let F D Fq . By a theorem of Gabriel,
there is a bijection between ˆC and the set of isomorphism classes of indecomposable
�-representations, sending ˛ to M˛ . There exists a total order on ˆC such that ˛0 � ˛

if Hom�.M˛; M˛0/ D 0. Fix such an order, then Gˇ -orbits on Xˇ are in bijection with
descending sequences of elements in ˆC whose entries sum up to ˇ. Such sequences are
called Kostant partitions. We denote by …ˇ the set of all Kostant partitions of ˇ.

Example 2.3. Let F D Fq . Consider the quiver O� D .0 � 1/ associated with the affine
Lie algebra bsl2. The path algebra of O� is isomorphic to the self-extension algebra of the
tilting bundle T D OP1 ˚ OP1.1/ on the projective line P 1. Thus there is an equivalence
of derived categories

Ext�.T ; �/ W Db Coh.P 1/ ' Db Rep. O�/:

It sends the line bundle OP1.k/ for k > 0 to the indecomposable preprojective O�-represen-
tation of dimension ˛1 C kı. Since any vector bundle on P 1 is isomorphic to a direct sum
of line bundles, the isomorphism classes of rank r vector bundles are in bijection with the
decreasing sequences in Zr . For ˇ D r˛1 C nı, let

ƒˇ D
®
.�1 > � � � > �r / 2 Nr

j �1 C � � � C �r D n
¯
: (2.3)

Let BunC

ˇ
be the stack of vector bundles parametrized byƒˇ . Let Yˇ be the open substack of

Xˇ consisting of preprojective representations. Then the derived equivalence above yields
an isomorphism of stacks BunC

ˇ
' Yˇ .

2.4. Lusztig’s categorification
Based on Ringel’s construction andGrothendieck’s sheaf–function correspondence,

Lusztig constructed the following categorification of UC
v . Let F D Fq and k D Q`. Let

Db
c .Xˇ / be the bounded derived category of constructible `-adic sheaves on Xˇ . The cate-

gory
Db

c .X/ D

M
ˇ

Db
c .Xˇ /

admits a monoidal structure given by the convolution product

F1 � F2 D f��p�
� .F1 � F2/Œ�ˇ � �; for F1 2 Db

c .Xˇ /; F2 2 Db
c .X /;

where � D .ˇ; / and p� , f� are the morphisms defined in (2.1) and (2.2). For i 2 I , let
Li D kX˛i

Œ�1� be the (shifted) constant sheaf on X˛i
. For � D .�1; : : : ; �n/ 2 I n, we have

L�1 � � � � � L�n ' f��.k QX�
Œdim. QX�/�/:
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Denote this complex by L� . Note that by the decomposition theorem, it is a direct sum of
intersection complexes on Xˇ up to some shifts. Let I ˇ be the subset of I n consisting of
sequences � whose entries sum up to ˇ. Set Lˇ D

L
�2I ˇ L� .

Lusztig defined a full additive subcategory UC

ˇ
of Db

c .Xˇ / which is generated by
the indecomposable summands of Lˇ and closed under the shifts by Œ1�. The sum UC DL

ˇ2QC UC

ˇ
is stable under convolution. Hence it is a graded monoidal subcategory of

Db
c .X/. We have an isomorphism of ZŒv˙1�-algebras

ŒUC� ' UC
v

with ŒLi � 7! Ei for i 2 I and Œ1� 7! v.
A basis of ŒUC� as a ZŒv˙1�-module is given by the isomorphism classes of inde-

composable objects in UC modulo shifts. Let Bˇ be the set of isomorphism classes of
intersection complexes which appear as direct summands of Lˇ up to some shift. Then
B D

F
ˇ2QC Bˇ is a basis of ŒUC�, called the canonical basis.

2.5. Quiver Hecke algebras
Let k be a field. For i; j 2 I , set Qij .u; v/ D .�1/hij .u � v/�aij for i ¤ j and

Qi i D 0. For ˇ 2 QC of height n, the symmetric group Sn acts on the set I n by permutation.
The subset I ˇ is stable under this action. Write sk D .k; k C 1/ 2 Sn for 1 6 k 6 n � 1.

Definition 2.4 ([33,53]). For ˇ 2 QC of height n, the quiver Hecke algebra Rˇ is the unital
k-algebra generated by x1; : : : ; xn, �1; : : : ; �n�1 and e� for � 2 I ˇ , subject to the following
defining relations:

xkxl D xlxk ; xke� D e�xk ; e�e�0 D ı�;�0e� ;
X

�2I ˇ

e� D 1;

�le� D esl .�/�l ; �k�l D �l�k if jk � l j > 1; �2
k e� D Q�k ;�kC1

.xk ; xkC1/e� ;

.�kC1�k�kC1 � �k�kC1�k/e� D ı�k ;�kC2

Q�k ;�kC1
.xk ; xkC1/ � Q�kC2;�kC1

.xkC2; xkC1/

xk � xkC2

e� ;

.�kxl � xsk.l/�k/e� D

8̂̂<̂
:̂

�e� ; if l D k; �k D �kC1;

e� ; if l D k C 1; �k D �kC1;

0; otherwise.

It admits a Z-grading with deg.e�/ D 0, deg.xk/ D 2, and deg.�le�/ D �a�l ;�lC1
.

Remark 2.5. Quiver Hecke algebras are also defined for symmetrizable Cartan datum and
for more general choices of parameters Qij . These generalizations are important as they
provide new categorification results beyond those with geometrical origins. But to simplify
exposition, we will not discuss them in this survey.

Example 2.6. For any i 2 I , the algebra Rn˛i
is isomorphic to the nil-affine Hecke algebra

NHn. Consider the polynomial ring Poln D kŒx1; : : : ; xn�. LetZn be the subring of symmet-
ric polynomials. Recall that Poln is a free graded Zn-module of rank v

n.n�1/
2 Œn�Š. We have

an algebra isomorphism � W NHn ! EndZn.Poln/ such that �.xk/ is the multiplication
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by xk and �.�l / D
sl �1

xl �xlC1
is the Demazure operator. So NHn is a matrix algebra over Zn.

It has a unique indecomposable self-dual grade projective module Pn D v�
n.n�1/

2 Poln, and
NHn ' Œn�ŠPn as graded NHn-modules.

Example 2.7. Let Hn;q be the affine Hecke algebra of type A. It is generated by
X˙1

1 ; : : : ; X˙1
n , T1; : : : ; Tn�1 subject to usual defining relations. Assume q ¤ 1. Fix a

finite subset I in k�, define a quiver �q with vertices set I and arrows i ! qi . Its connected
components are either of type A or of affine type A. Let Mod.Hn;q/I be the category of
Hn;q-modules over which X1; : : : ; Xn acts locally finitely with eigenvalues in I . Brundan–
Kleshchev [12] and Rouquier [53] proved that Mod.Hn;q/I is equivalent to the category of
Rn-modules over which x1; : : : ; xn act nilpotently, where Rn D

L
jˇ jDn Rˇ is the quiver

Hecke algebra for �q .

For ˇ,  2 QC, the element eˇ; D
P

�2I ˇ ;�02I  e��0 is an idempotent in RˇC .
There is a natural algebra embedding Rˇ ˝k R ! eˇ; RˇC eˇ; . For M 2 Mod.Rˇ /,
N 2 Mod.R /, the induction

M ı N D RˇC eˇ; ˝Rˇ ˝kR .M ˝k N /:

yields a monoidal structure on Mod.R/ D
L

ˇ2QC Mod.Rˇ /. The restriction Resˇ; .�/ D

eˇ; .�/ is right adjoint to the induction. Both functors are exact and preserve the subcat-
egories mod.R/, proj.R/, and fmod.R/. So the Grothendieck groups of these categories
become twisted bialgebras.

There are also duality functors ~ and ] on fmod.Rˇ / and proj.Rˇ /, given respec-
tively by M ~ D Homk.M; k/, P ] D HomRˇ

.P; Rˇ /, both viewed as left Rˇ -modules via
the unique antiinvolution onRˇ fixing the generators. They induce involutions on Œfmod.R/�

and on Œproj.R/� such that v 7! v�1.

Theorem 2.8 ([33]). There are unique isomorphisms of twisted ZŒv˙1�-bialgebras�
proj.R/

�
' UC

v ; ŒR˛i
� 7! Ei ; i 2 I;�

fmod.R/
�

' AC
v ;

such that .ŒP �; ŒN �/v D gdimHomR.P ]; N / for P 2 proj.R/ and N 2 fmod.R/.

The following theorem shows that quiver Hecke algebras provide a purely algebraic
description of Lusztig’s category UC.

Theorem 2.9 ([55,65]). There is an isomorphism of graded algebras

Rˇ ' Ext�
Db

c .Xˇ /
.Lˇ ; Lˇ /op: (2.4)

The functor ˚ˇ Ext�
Db

c .Xˇ /
.Lˇ ; �/ yields an equivalence of graded monoidal categories

UC
' proj.R/;

which sends B to the classes of indecomposable self-dual projective modules.
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Remark 2.10. This theorem was extended to the setting F D C and k a field of positive
characteristic by Maksimau [44].

Remark 2.11. Kang–Kashiwara–Park [28] introduced quiver Hecke algebras for quivers
with edge loops and established the analog of isomorphism (2.4) in this setting.

2.6. Representations of geometric extension algebras
Consider an arbitrary algebraic variety X over F D Fq equipped with an action

of a reductive group G and a G-equivariant proper morphism f W QX ! X from a smooth
variety QX . Assume that X , G, f are defined over Fq . Let X D ŒX=G� and QX D Œ QX=G�. Let
k D Q`. The push-forward of constant sheafLf D f�k QX Œdim. QX/� is a self-dual semisimple
complex in Db

c .X/. The main player of this section is the Yoneda algebra

Af D Ext�
Db

c .X/
.Lf ; Lf /op:

Many interesting algebras in representation theory arise in this way. We have just seen that
quiver Hecke algebras are of this kind. Historically, Lusztig first gave such a realization
for degenerate affine Hecke algebras using the Springer resolutions. There are many other
examples, including Schur algebras, degenerate double affine Hecke algebras, and the math-
ematical definition of Coulomb branch by Braverman–Finkelberg–Nakajima.

In [32], Kato studied homological properties of Af . Assume G acts on X with
finitely many orbits ¹O�º�2„, and every point in X has a connected stabilizer in G. Then
each orbit supports a unique G-equivariant simple perverse sheaf IC� given by the interme-
diate extension of kO�

ŒdimO�� to X . By the decomposition theorem, we have

Lf D

M
�2„f

IC� ˝L�;

whereL� are self-dual graded vector spaces and„f D ¹� 2 „ j L� ¤ 0º. The set ¹L�º�2„f

is a complete collection of nonisomorphic self-dual simple graded Af -modules. For each �,
the Af -module P� D Ext�

Db
c .X/

.Lf ; IC�/ is a projective cover of L�. Let j� W O� ! X be
the natural embedding, define the standard module as

�� D Ext�
Db

c .X/

�
Lf ; j��

�
kO�

ŒdimO��
��

: (2.5)

We equip „ with the partial order � given by the closure relations on the orbits.

Theorem 2.12 ([32]). Assume that „f D „ and that

(1) the algebra Af is pure of weight zero,

(2) the complex IC� is pointwise pure for every � 2 „.

Then the category .mod.Af /; ¹��º�2„; �/ is a polynomial highest weight category.

The notion of polynomial highest weight categorywas introduced byKleshchev [36].
Being of polynomial highest weight means that in mod.Af / the projective module P� is
filtered by standard modules �� with � � � and �� appears only once as a quotient, and
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that End�
Af

.��/ is a polynomial ring over which�� is a finitely generated freemodule, for all
� 2 „. In this case, the algebra Af has finite global dimension and the following generalized
BGG reciprocity holds:

ŒP� W ���v D Œ�� W L��v; (2.6)

where �� D �� ˝End�
Af

.��/ k is called a proper standard module, and Œ� W ��v stands for
the graded multiplicities.

Remark 2.13. A version of Theorem 2.12 for F D C and k a field of positive characteristic
was established by McNamara [48], where purity conditions are replaced by parity condi-
tions.

The theorem is applicable to quiver Hecke algebras when � is of finite type. Thus
mod.Rˇ / is a polynomial highest weight category in these cases. In fact, for any quiver, the
stabilizer of a point in Xˇ is connected, and the purity assumption (1) is satisfied. However,
the finite type assumption is crucial to guarantee that„f D „ is finite. The purity assumption
(2) is proved by Lusztig [42] for finite type quiver, but unknown in general. In the affine case,
one needs to modify mod.Rˇ / to get a similar result. Here is an example.

Example 2.14 ([61]). Let O� be the Kronecker quiver. Let Yˇ be the open substack of pre-
projective representations in Xˇ defined in Example 2.3. Recall that the points in Yˇ are
indexed by the finite set ƒˇ . Let jˇ W Yˇ ! Xˇ be the natural embedding. Set

Sˇ D Ext�
Db

c .Yˇ /

�
j �

ˇ .Lˇ /; j �
ˇ .Lˇ /

�op
: (2.7)

Then the category mod.Sˇ / is polynomial highest weight. In this case, the purity assump-
tion (2) is proved using the isomorphism Yˇ ' BunC

ˇ
and the fact that BunC

ˇ
admits an affine

paving.

2.7. Standard modules and PBW bases
There is also an algebraic approach for standard modules over quiver Hecke alge-

bras, which works for symmetrizable generalized Cartan matrices as well.
Assume that g� is of finite type. A convex order on ˆC is a total order � such that

if ˛ � ˇ and ˛ C ˇ is a root, then ˛ � ˛ C ˇ � ˇ. For each positive root ˛, and any n 2 N, a
finitely generated Rn˛-module L is called semicuspidal if Res�;�.L/ ¤ 0 implies � is a sum
of roots� ˛ and� is a sum of roots� ˛. Semicuspidal modules form an abelian subcategory
in mod.Rn˛/ which is equivalent to mod.NHn/ in Example 2.6. In particular, it contains a
unique self-dual simple module Ln˛ . Let �n˛ be its projective cover inside this subcategory
of semicuspidal modules. Then�ın

˛ D Œn�Š�n˛ andLn˛ D v
n.n�1/

2 Lın
˛ . Recall that a Kostant

partition � is of the form .ˇ
m1

1 ; : : : ; ˇ
mk

k
/ with ˇ1 � � � � � ˇk . Set

�� D �m1ˇ1
ı � � � ı �mkˇk

; �� D Lm1ˇ1
ı � � � ı Lmkˇk

:

Let …ˇ be the set of Kostant partitions of ˇ, and equip it with the bilexicographic order.
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Theorem 2.15 ([13]). Assume that g� is of finite type.

(1) The categorymod.Rˇ / is polynomial highest weight with ¹��º�2…ˇ
being the

standard modules, and ¹��º�2…ˇ
being the proper standard modules.

(2) For each� , the module�� has a unique simple quotientL� . The set ¹L�º�2…ˇ

is a complete collection of nonisomorphic self-dual simple gradedRˇ -modules.

Note that if the convex order on ˆC satisfies the property given in Example 2.2,
then the standard module �� here coincide with the geometrical one in (2.5).

Remark 2.16. Part (2) gives a new parametrization of simple Rˇ -modules. It generalizes
Zelevinsky’s parametrization of simple modules for affine Hecke algebras of type A in terms
of multi-segments.

For each choice of a reduced expression for the longest element w0 D si1 � � � siN in
the Weyl group, we have a convex order ˛1 � � � � � ˛N on ˆC with ˛k D si1 � � � sik�1

.˛ik /.
Lusztig [43] defined the PBW basis for UC

v as follows. The root vectors are
E˛k

WD Ti1 � � � Tik�1
.Eik / in UC

v , where Ti are certain braid group operators. The dual
root vectors are E�

˛ D .1 � v2/E˛ 2 AC
v . The PBW basis is ¹E� D E

.m1/

ˇ1
� � � E

.mk/

ˇk
j

� 2 …º, and the dual PBW basis for AC
v is ¹E�

� D vs� E
�m1

ˇ1
� � � E

�mk

ˇk
j � 2 …º, where

s� D
Pk

rD1 mr .mr � 1/=2 and… D
F

ˇ2QC …ˇ . Under the isomorphisms Œproj.R/� ' UC
v

and Œfmod.R/� ' AC
v , we have Œ�� � D E� , Œ�� � D E�

� . In particular, the homological prop-
erty (2.6) implies that the transfer matrix between the PBW basis and the canonical basis
is unitriangular with off-diagonal entries belong to vNŒv�. This confirms a conjecture of
Lusztig.

This theory has been extended to symmetric affine type by McNamara [49] and
Kleshchev–Muth [37]. For a real positive root ˛, the category of semicuspidal Rn˛-modules
is again equivalent to mod.NHn/. The new ingredient is a classification of semicuspidal rep-
resentations for the imaginary roots. Once these representations are constructed, one can
proceed as above to define �� , �� indexed by (generalized) Kostant partitions. They give
categorifications for the PBW basis and the dual PBW basis defined by Beck [3]. There is a
similar positivity on the coefficients of the transfer matrix.

An important difference in the affine case is that the category mod.Rˇ / is no more
polynomial highest weight, and its global dimension may be infinite. However, it has an
interesting monoidal subcategory Dˇ with nice properties. Namely, let Og be the affine Lie
algebra associated with a finite Lie algebra g. Let Ô CC be the subset of real roots ˛ C kı

such that ˛ 2 ˆC, k > 0. We can choose a preorder on the set Ô of affine roots such that
Ô CC � Ô

�ı . Let …C

ˇ
be the set of Kostant partitions of ˇ which are supported on Ô CC.

Then the subcategory Dˇ of mod.Rˇ / generated by L� for � 2 …C

ˇ
is a polynomial highest

weight category. In particular, it has finite global dimension. So the category of projective
objects in Dˇ and the derived category Db.Dˇ / have the same Grothendieck group. Put
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D D
L

ˇ2QC Dˇ . We have �
Db.D/

�
' Uv

�
nŒz�

�
: (2.8)

Example 2.17. For the Kronecker quiver in Example 2.3, the closure relation on the orbits
in Yˇ is compatible with the convex preorder ˛0 � ˛0 C ı � � � � � Zı � � � � � ˛1 C ı � ˛1.
We have an equivalence of categories Dˇ ' mod.Sˇ /, where Sˇ is the algebra in (2.7). We
have seen in Example 2.14 that this category is polynomial highest weight. The algebraic
standard modules again coincide with the geometric ones.

Remark 2.18. The algebra Sˇ is a semicuspidal algebra for the category Dˇ . The semicus-
pidal algebra for the imaginary part was studied by Klechshev–Muth [37] and Maksimau–
Minets [45].

2.8. Monoidal categorification of quantum cluster algebras
For a symmetric Kac–Moody algebra g and any element w in its Weyl group, Geiß–

Leclerc–Schröer [23] showed that the quantum unipotent coordinate ring Av.n.w// is a
quantum cluster algebra, where n.w/ D

L
˛2ˆC\w�1.ˆ�/ n˛ . A cluster algebra is a sub-

ring of the fraction field of a quantum torus, with some special elements called cluster
variables, which are grouped into some overlapping subsets called clusters. The clusters
are obtained from an initial one by a combinatorial procedure called mutations. A product
of elements inside the same cluster is called a cluster monomial. It was conjectured that the
cluster monomials in Av.n.w// all belong to the dual canonical basis, see Kimura [35]. This
conjecture was proved by Kang–Kashiwara–Kim–Oh [27] using a monoidal categorification
of Av.n.w// by modules over quiver Hecke algebras, see Kashiwara’s ICM talk [30] for a
nice survey on this subject.

A key ingredient in this construction is the study of products of real simple objects.
A simple Rˇ -module L is called real if L ı L is simple. It was shown in [26, 27] that if
either M or N is a real simple object, then HomR.M ı N; N ı M/ D kr, where
r W M ı N ! N ı M is a nonzero map given by a construction called renormalized
r-matrix. Moreover, the image of r is simple, isomorphic to the head of M ı N , and the
socle of N ı M (with grading ignored). In [27] it was shown that given the presence of
a quantum cluster structure on the Grothendieck ring of a monoidal category, how renor-
malized r-matrices reduce the existence of iterated mutations to the existence of one step
mutation.

Renormalized r-matrices naturally show up in other contexts, including finite-
dimensional representations of quantum affine algebras (which was studied before quiver
Hecke algebras), as well as in representations of p-adic groups, see, e.g., [38]. Recently,
Cautis–Williams [15] constructed renormalized r-matrices for perverse coherent sheaves on
affine Grassmannians, and used them to construct a monoidal categorification of a quantum
coordinate ring for bsl2.
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3. Coherent categorification of quantized loop algebras

3.1. K -theoretical Hall algebra
We have explained the categorifications of UC

v by perverse sheaves on the stack of
quiver representations, and its algebraic counterpart by modules over quiver Hecke algebras.
Now, we discuss a categorification of the quantized loop algebra via coherent sheaves.

Let � D .I; H/ be a quiver, g D g� and let n be the positive part in g. The loop
algebra nŒz˙1� (with z being a formal variable) is a Lie algebra with bracket Œxzm; yzn� D

Œx; y�zmCn for x; y 2 n.

Definition 3.1 (Drinfeld). The quantized enveloping algebra 0 QUC
v for nŒz˙1� is the

Q.v/-algebra generated byEi;n with i 2 I , n 2 Z, subject to the following defining relations:

(1) for i , j 2 I , we have .vaij z � w/Ei .z/Ej .w/ D .z � vaij w/Ej .z/Ei .w/,

(2) for i ¤ j , put l D 1 � aij , we have the Serre relation

Symz

lX
rD0

.�1/r
�

l
r

�
Ei .z1/ � � � Ei .zr /Ej .w/Ei .zrC1/ � � � Ei .zl / D 0:

Here z, w, z1; : : : ; zl are variables, Ei .z/ D
P

n2Z Ei;nz�n, the operator Symz is averaging
with respect to the commutator Œa; b�z D ab � zba.

Let QUC
v be the ZŒv˙1�-subalgebra of 0 QUC generated by the quantum divided powers

E
.r/
i;n with i 2 I , n 2 Z, r > 1.We explain now its relationshipwithK-theoretical Hall algebra.

Let N� be the quiver obtained from � by adding an arrow Nh W h00 ! h0 for each h 2 H .
For ˇ 2 QC, let NXˇ be the space of representations of N� of dimension ˇ. Then we have a
natural isomorphism NXˇ ' T �Xˇ . The action ofGˇ on NXˇ is Hamiltonian with the moment
map given by

�ˇ W NXˇ ! gˇ ; .xh; x Nh/h2H 7!

X
h2H

Œxh; x Nh�:

We impose C�-actions on NXˇ and on gˇ by dilations of weight 1 and weight 2, respec-
tively. Set Gc

ˇ
D Gˇ � C�. Then �ˇ is Gc

ˇ
-equivariant. The cotangent dg-stack of Xˇ is the

quotient stack
T �Xˇ D

�
NXˇ �

R
gˇ

¹0º=Gc
ˇ

�
:

Here NXˇ �R
gˇ

¹0º is the derived fiber of �ˇ at zero. In concrete terms, NXˇ �R
gˇ

¹0º D

Spec.Aˇ /, where Aˇ D S. NXˇ / ˝ S.gˇ Œ1�h2i/ is a graded dg-algebra with the differen-
tial given by the contraction by �ˇ 2 S2. NXˇ / ˝ g�

ˇ
h�2i. Here h1i is the degree shift for the

internal grading induced by the C�-action.
Let Db Coh.T �Xˇ / be the derived category of coherent sheaves on the dg-stack

T �Xˇ . Equivalently, it is the derived category of graded Aˇ Ì Gˇ -modules whose coho-
mology is finitely generated over H 0.Aˇ /. There is a convolution product on

Db Coh.T �X/ D

M
ˇ2QC

Db Coh.T �Xˇ /;
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so that it becomes a graded monoidal triangulated category. The ZŒv˙1�-algebra
ŒDb Coh.T �X/� is called the K-theoretical Hall algebra. We also consider a triangulated
monoidal subcategory Db Coh.T �X/nil consisting of complexes with cohomology sup-
ported on a closed substack of nilpotent elements.

Example 3.2. Consider� D �, the quiver for sl2. Then nŒz˙1� ' CŒz˙1�. WriteQC D N˛.
Since � has no arrow, we have Xr˛ D NXr˛ D ¹0º and T �Xr˛ D Œ¹0º �R

glr
¹0º=GLc

r �. Hence
Ar˛ is the exterior algebra S.glr Œ1�h2i/ with zero differential. By Koszul duality, we have

Db Coh.T �Xr˛/ ' Db Coh
��

glr=GLc
r

��
:

For each irreducible GLr -representation V.�/ of highest weight �, set O.�/r˛ D

Oglr
˝ V.�/. Let !1; : : : ; !r be the fundamental weights. Then O.n!r /r˛ with r > 1

and n 2 Z generate
L

r>0 Db Coh.Œglr= GLc
r �/ as a monoidal triangulated category. We

have an isomorphism of ZŒv˙1�-algebrasM
r>0

�
Db Coh

��
glr=GLc

r

���
' QUC

v ;
�
O.n!r /r˛

�
7! E.r/

˛;n:

Now, assume that � is an arbitrary quiver with no edge loop. Then for each i 2 I ,
we have Xr˛i

D Œ¹0º=GLr � and the vector bundles O.n!r /r˛i
2 Coh.T �Xr˛i

/ as defined
above. We have the following theorem.

Theorem 3.3 ([66]). There is a unique surjective ZŒv˙1�-algebra homomorphism

� W QUC
v !

�
Db Coh.T �X/nil

�
; E

.r/
i;n 7!

�
O.n!r /r˛i

�
:

Moreover, � is an isomorphism if � is of finite or affine type except A
.1/
1 . In particular,

Db Coh.T �X/nil gives a categorification of QUC
v .

Remark 3.4. K-theoretical Hall algebras are constructed more generally for quivers with
potential by Padurariu [51] using a category of singularities. Conjecturally, they are isomor-
phic to the positive part of Okounkov–Smirnov quantum affine algebras.

3.2. Equivalence of constructible and coherent categorifications
If g is of finite type, its affine Lie algebra Og is a central extension of the loop algebra

gŒz˙1�. The Kac–Moody positive part On and the loop algebra nŒz˙1� shares a common Lie
subalgebra, which is nŒz�.

Recall that for quiver Hecke algebras Rˇ of type Og, we have introduced the category
D which categorifies Uv.nŒz�/, see (2.8). On the other side, QUC

v is categorified by coherent
sheaves on T �X, andUv.nŒz�/ is the subalgebra generated by divided powersE

.r/
i;n for i 2 I ,

n > 0, r > 1. Let Db Coh.T �X/C be the triangulated subcategory of Db Coh.T �X/ gen-
erated by O.n!r /r˛i

for i 2 I , n > 0, r > 1. It also categorifies Uv.nŒz�/. It is natural to
ask whether these two categorifications are equivalent.
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Question 3.5. Is there an equivalence of triangulated graded monoidal categories

Db.D/ ' Db Coh.T �X/C

which induces the identity on the Grothendieck group?

In [61], a version of such an equivalence was given for g D sl2. On the quiver
Hecke side, we consider the category Dˇ attached to the Kronecker quiver in Example 2.17.
The simple objects in this category are parametrized by the finite set ƒˇ in (2.3). For ˇ D

r˛1 C nı, let Db Coh.Œglr=GLc
r �/ˇ be the triangulated subcategory of Db Coh.Œglr=GLc

r �/

generated by O.�/r˛ for � 2 ƒˇ , see Example 3.2. We conjecture that in this case there is
an equivalence of graded monoidal categories

Db.Dˇ / ' Db Coh
��

glr=GLc
r

��
ˇ

:

Note that both categories can be viewed as categories over glr==GLr . The fiber at zero on the
coherent side isDb Coh.ŒNr=GLr �/ˇ , whereNr � glr is the nilpotent cone. It has a perverse
coherent t -structure defined by Arinkin–Berzukavnikov [2], whose heart PCoh.ŒNr=GLc

r �/ˇ

is the category of equivariant perverse coherent sheaves onNr . The fiber at zero on the quiver
Hecke side is a subcategory D

]

ˇ
of Dˇ with the same simple objects as in Dˇ .

Theorem 3.6 ([61]). For ˇ D r˛1 C nı with r > 1, there is an equivalence of graded trian-
gulated categories2

Dperf.D
]

ˇ
/ ' Dperf Coh

��
Nr=GLc

r

��
ˇ

;

which induces an equivalence of graded abelian categories

D
]

ˇ
' PCoh

��
Nr=GLc

r

��
ˇ

:

Further, this equivalence is compatible with the proper stratified structures on both sides.

The proof of this theorem uses a derived equivalence between Dˇ and the category
of constructible sheaves on the stack of preprojective representations Yˇ ' BunC

ˇ
in Exam-

ple 2.3, the derived geometric Satake equivalence between Db Coh.Œglr= GLc
r �/ and the

equivariant derived category of constructible sheaves on the affine Grassmannian for GLr

established by Bezrukavnikov–Finkelberg [8], and a version of Radon transform between
BunC

ˇ
and the affine Grassmannian.

Remark 3.7. This theorem has a similar flavor as the equivalence between two categorifi-
cations of affine Hecke algebras established by Bezrukavnikov [6].

Remark 3.8. For w D .s0s1/N in the affine Weyl group of bsl2, by [27] the quantum cluster
algebra Av.w/ has a monoidal categorification by a subcategory in D . Cautis–Williams [15]
constructed another monoidal categorification using equivariant perverse coherent sheaves
on the affine Grassmannian for GLN . The theorem above combined with a functor of
Finkelberg–Fujita [22] yields a faithful functor between these two categorifications, which is
expected to be an equivalence.

2 Here “perf” refers to the subcategory of perfect complexes.
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4. Categorical representations and applications

4.1. Categorical representations
The categorified quantum group is a monoidal k-linear 2-category U with objects

being elements in the weight lattice P , the set of 1-morphisms generated by Ei , Fi for i 2 I ,
and 2-morphisms generated by x 2 End.Ei /, � 2 End.Ei Ej /, �i W 1 ! Fi Ei , "i W Ei Fi ! 1,
subject to a list of relations. Khovanov–Lauda [34] and Rouquier [53] independently intro-
duced a definition of U, with different sets of generators and relations for 2-morphisms.
Brundan [11] proved that they are equivalent.

A categorical U-representation is a 2-functor from U to the 2-category of k-linear
categories. In concrete terms, it consists of a collection of k-linear categories ¹C�º�2P

equipped with adjoint functors Ei W C� ! C�C˛i
, Fi W C�C˛i

! C�, and natural trans-
formations x, � , "i , �i satisfying the defining relations in U. In this case, we also say that
C D

L
�2P C� carries a categorical g-action.
For g of type A or affine type A, a categorical g-action on an abelian and Artinian

category C is equivalent to the following data (see [53]):

• a decomposition C D
L

�2P C�,

• a pair of biadjoint endofunctors E , F on C ,

• natural transformations X 2 End.E/, T 2 End.E2/,

such that X acts on E , F with eigenvalues in I , the generalized eigenfunctors Ei , Fi for
i 2 I yield a g-action on the Grothendieck group ŒC � such that ŒC�� is the �-weight space,
and X , T satisfy defining relations for affine Hecke algebras.

Many representation categories carrie such actions, including those of symmetric
groups, cyclotomic Hecke algebras, the category O for gln, etc. By Chuang–Rouquier [17],
the existence of such a categorical action implies that the categories C� for � lying in the
same Weyl group orbit are derived equivalent. They also constructed a crystal structure on
the set of simple objets in C . In [58], it is proved that the classes of these simple objects form
a perfect basis in the Grothendieck group, which has nice unicity properties.

4.2. Minimal categorification
Let g be any symmetrizable Kac–Moody algebra. For a dominant weight � 2 P C,

the irreducible g-representation of highest weight � has an integral form Vv.�/, which is a
quotient of UC

v . Let V�
v.�/ be the dual form.

Definition 4.1. The cyclotomic quiver Hecke algebra R�
ˇ
is the Z-graded algebra defined as

the quotient of Rˇ by the two-sided ideal generated by
P

�2I ˇ x
��˛�1
1 e� .

Kang–Kashiwara [25] proved that Vv.�/ is categorified by C� D proj.R�
ˇ

/ for
� D � � ˇ, with Fi W proj.R�

ˇ
/ ! proj.R�

ˇC˛i
/ given by R�

ˇC˛i
eˇ;i ˝R�

ˇ
�, and the adjoint

functor given by Ei .�/ D eˇ;i .�/ viewed as left R�
ˇ
-modules. The 2-morphisms x, � are

given by multiplying with the same named generators in Rˇ . The representation V�
v.�/ is

3053 Categorification and applications



categorified by
L

ˇ2QC fmod.R�
ˇ

/. This result generalizes Ariki’s [1] categorification theo-
rem for cyclotomic Hecke algebras. Rouquier [53] proved that the categorification of Vv.�/

by k-linear additive categories is unique.

4.3. Applications to representations of rational double affine Hecke algebras
Cyclotomic rational double affine Hecke algebra (DCRDAHA) is a special family

of symplectic reflection algebras introduced by Etingof–Ginzburg [21]. They are associated
with complex reflection groups G.l; 1; n/ and some parameters. They have a category O,
which is a highest weight cover of the category of finitely generated modules over cyclo-
tomic Hecke algebras. This representation category can be viewed as a generalization of the
q-Schur algebra, and provides an important example of category O associated with quan-
tization of symplectic resolutions. The Grothendieck group of these category O (summed
over n) can be naturally identified with the Fock space Fv of level l . The latter is a combina-
torial model which gives a concrete realization of integrable bsle-representations. Rouquier
[54] conjectured that the classes of simple modules in O correspond to the dual canoni-
cal basis in Fv . This yields character formulae for these simple modules in terms of affine
Kazhdan–Lusztig polynomials.

In [58], a categorical bsle-action on O was constructed using the induction and
restriction functors defined by Bezukavnikov–Etingof [7]. Varagnolo–Vasserot [64] con-
structed a categorical bsle-action on an affine type A parabolic category O, and conjectured
it should be equivalent to that for CRDAHA. This conjecture was proved independently
by Losev [40] and Rouquier–Shan–Varagnolo–Vasserot [56]. As a consequence, Rouquier’s
conjecture was confirmed. Further, by [59], the parabolic affine category O admits a Koszul
grading. By the equivalence above, this transfers to a Koszul grading on the category O of
CRDAHA. Moreover, its Koszul dual is the category O of another CRDAHA. This confirms
a conjecture of Chuang–Miyachi [16]. The Koszul duality categorifies the level–rank duality
on the Fock space.

On the Fock space, there is also an interesting Heisenberg algebra action. A cate-
gorification of this action was constructed in [62] and it was used to prove a conjecture of
Etingof [20] on the number of finite dimensional representations of these CRDAHA.

4.4. Applications to representations of finite reductive groups
Categorical actions are also constructed on the category of unipotent representa-

tions of classical finite algebraic groups, over a field of characteristic ` different from the
defining characteristic. For G D GLn.Fq/, this was done by Chuang–Rouquier [17]. For
finite unitary groups and finite classical groups of type B , C , it was constructed by Dudas–
Varagnolo–Vasserot [18, 19]. In all these cases, the functors E and F are given by Harish-
Chandra restriction and induction functors. The underlying Grothendieck group is a level
one Fock space in the case of GLn.Fq/, and some explicit level 2 Fock spaces for the other
classical types. As a consequence, Broué’s abelian defect group conjecture is proved for
unipotent `-blocks of these groups at linear prime `.
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4.5. Applications to the study of center and cohomology
Let C be a graded k-linear category. Denote the identity functor by 1C . The center

ofC is the graded k-algebraZ�.C/ D End.1C /. Given a pair of biadjoint endofunctors E;F

and x 2 End.E/, Bernstein [5] introduced the following operator:

ZE.x/ W Z�.C/ ! Z�.C/;

z 7! . 1C

� // F 1C E
F zx // F 1C E

"0
// 1C /;

where � and "0 are the unit and counit in the biadjunction.
WhenC carries a categorical g-action, it is equipped with a family of biadjoint func-

tors Ei ,Fi and an endomorphism x 2 End.Ei / ' End.Fi /
op. So we get a family of operators

xC

i;r D ZFi
.xr /, x�

i;r D ZEi
.xr / for i 2 I , r > 0. By Beliakova–Habiro–Lauda–Webster [4]

and Shan–Varagnolo–Vasserot [60], these operators define an action of the current algebra
Lg on Z�.C/. If g is of type ADE, then Lg D gŒz� and the operators xC

i;r , x�
i;r correspond

to Ei ˝ zr , Fi ˝ zr , respectively.
This construction applied to the minimal categorification in Section 4.2 allows to

establish an isomorphism between the center of cyclotomic quiver Hecke algebras and the
singular cohomology of quiver varieties. Quiver varieties are a family of complex symplectic
varieties M�

ˇ
introduced by Nakajima [50]. Here � 2 P C, ˇ 2 QC. Nakajima defined a g-

action on the sum over ˇ of the middle cohomology of M�
ˇ
with coefficient in k. Varagnolo

[63] extended this to an Lg-action on the total cohomology ˚ˇH�.M�
ˇ

/.

Theorem 4.2 ([4,60]). Assume g is of type ADE. Fix � 2 P C. There is an isomorphism of
Lg-modules M

ˇ2QC

Z�.R�
ˇ / '

M
ˇ2QC

H�.M�
ˇ /; (4.1)

which respects QC-grading and intertwines the product on the center and the cup product
on the cohomology.

This isomorphism is canonical in the following sense. It is not hard to show that
the center of Rˇ is canonically isomorphic to H�.Œpt =Gˇ �/. The quotient map Rˇ ! R�

ˇ

induces a map on the center �a W Z�.Rˇ / ! Z�.R�
ˇ

/, whichmay not be surjective in general.
On the geometrical side, the quiver variety M�

ˇ
admits an open embedding into Œpt =Gˇ �.

The pull-back gives the so-called Kirwan map �g W H�.Œpt=Gˇ �/ ! H�.M�
ˇ

/. McGerty and
Nevins [47] proved that �g is surjective for any quiver, including those with edge loops. The
isomorphism (4.1) fits into the following diagram:

Z�.Rˇ /
� //

�a

��

H�.Œpt =Gˇ �/

�g

��
Z�.R�

ˇ
/

(4.1) // H�.M�
ˇ

/:

Remark 4.3. Quiver varieties carry a symplectic G�-action and an additional C�-action
rescaling the symplectic form. The theorem admits a G�-equivariant version by consid-
ering cyclotomic quiver Hecke algebras defined over the ring H �

G�
.pt/. However, adding
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C�-equivariance on the geometrical side changes the Lg-action to a Yangian action. It is
not known how to realize the Yangian action on the center side.

Remark 4.4. There is also a similar isomorphism between the cocenter Tr�.R�
ˇ

/ of R�
ˇ
and

the Borel–Moore homology of a Langrangian subvariety inM�
ˇ
. Moreover, in [4] it is proved

that for g of type ADE, the cocenter of the 2-category U is an idempotent version of Lg.
For general type of Kac–Moody algebra g, it is proved in [60] that Tr�.R�/ D ˚ˇ Tr�.R�

ˇ
/

is always a cyclic gŒz�-module.

There is an interesting variation of this result for the Jordan quiver � dd .
In this case, the quiver variety Mr

n is the Gieseker moduli space parametrizing
framed rank r torsion-free sheaves on P 2 with the second Chern class equal to n. It car-
ries an action of GLr � GL2, where GLr acts on the framing and GL2 acts on P 2. Let
Gr DGLr �C�, withC� D diag.t; t�1/ in GL2. Let k DHGr .pt/ D kŒ„�Œy1; : : : ; yr �Sr and
k0 be its fraction field. Maulik–Okounkov [46] and Schiffmann–Vasserot [57] independently
proved that for fixed r , there is an affineW-algebra action on the (localized) equivariant coho-
mology Mr D ˚nH�

Gr
.Mr

n/ ˝k k0, confirming a version of the AGT conjecture concerning
pure N D 2 gauge theory for the group SUr . The quiver Hecke algebra Rn associated with
the Jordan quiver is the degenerate affine Hecke algebra over the ring k. Define its cyclo-
tomic quotient Rr

n D Rn=.x1 � y1/ � � � .x1 � yr /. The quotient map induces a morphism
�r

n W Z�.Rn/ ! Z�.Rr
n/, which is only surjective after localization.

Theorem 4.5 ([60]). Fix r > 1. There is an action of the affine W-algebra onM
n2N

Z�.Rr
n/ ˝k k0

constructed using Bernstein operators. The module obtained is isomorphic toMr . Moreover,
there is a ring isomorphism

im.�r
n/ ' H�

Gr
.Mr

n/; 8n 2 N:

In particular, since the ring im.�r
n/ has a presentation by generators and relations

given by Brundan [10], this theorem gives an explicit description for the ring structure on
H�

Gr
.Mr

n/. It also generalizes the results of Göttsche–Soergel [24] and Vasserot [67] for
Hilbert scheme of n points on C2, which is M1

n.

Remark 4.6. A similar description for the equivariant cohomology of Calogero–Moser
spaces was established in [9].

Remark 4.7. S. Cautis, A. Lauda, A. Licata, and J. Sussan [14] showed that the cocenter of
Khovanov’s Heisenberg category is a quotient of the W -algebra above.
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Abstract

The theory of theta correspondence, initiated by R. Howe, provides a powerful method of
constructing irreducible admissible representations of classical groups over local fields.
For archimedean local fields, a principle of great importance is the orbit method intro-
duced by A. A. Kirillov, and it seeks to describe irreducible unitary representations of a
Lie group by its coadjoint orbits. In this article, we examine implications of Howe’s theory
for the orbit method and unitary representation theory, with a focus on a recent work of
Barbasch, Ma, and the authors on the construction and classification of special unipotent
representations of real classical groups (in the sense of Arthur and Barbasch-Vogan).
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1. Theta lifting: the basic construction

Classical invariant theory, as expounded by H. Weyl [40], is the study of the polyno-
mial invariants for an arbitrary number of (contravariant or covariant) variables for a standard
classical group action. A related theme is the study of the isotypic decomposition of the
full tensor algebra for such an action. It is well known that Weyl’s approach to classical
invariant theory yields in particular a full description of all irreducible rational representa-
tions of a classical group. See [16] and [11, 18] for a modern treatment. The theory of theta
correspondences, initiated by R. Howe in the 1970s, is a transcendental version and a pro-
found generalization of classical invariant theory [14, 17]. The theory includes both global
and local aspects, and has been investigated extensively and by many authors. We will focus
on the archimedean local aspect and will thus be concerned with admissible representations
of classical Lie groups.

Let W be a finite-dimensional real symplectic vector space with symplectic form
h�; �iW W W �W ! R. Denote by � the anti-involution of EndR.W / specified by

hx � u; viW D
˝
u; x�

� v
˛
W
; u; v 2 W; x 2 EndR.W /:

Then the symplectic group is Sp.W /D ¹x 2EndR.W / j x�xD 1º. Let .A;A0/ be a pair of � -
stable semisimple R-subalgebras of EndR.W / that are mutual centralizers of each other. Put
G WDA\ Sp.W / andG0 WDA0 \ Sp.W /, which are closed subgroups of Sp.W /. Following
Howe [14], the pair of groups .G;G0/ is called a reductive dual pair in Sp.W /. The dual pair
.G;G0/ is said to be irreducible if the algebra A (or equivalently, A0) is either simple or the
product of two simple algebras that are exchanged by � .

Every reductive dual pair is uniquely a product of irreducible dual pairs, and com-
plete classification of irreducible reductive dual pairs has been given by Howe [14, 28], as
described in what follows. Let .D; �0/ be one of the following seven pairs so that D is an
R-algebra and �0 is an anti-involution of D:

.R; identity map/; .C; identity map/; .C; /; .H; /;�
R � R; .x; y/ 7! .y; x/

�
;

�
C � C; .x; y/ 7! .y; x/

�
;

�
H � H; .x; y/ 7! . Ny; Nx/

�
;

where H denotes the algebra of Hamiltonian quaternions, and indicates the complex or
quaternionic conjugation.

Let �D ˙1. Let V be an �-Hermitian right D-module, namely a free right D-module
of finite rank, equipped with a nondegenerate R-bilinear map

h�; �iV W V � V ! D

such that

hua; viV D hu; viV a; hu; viV D �
�
hv; uiV

��0
; for all u; v 2 V; a 2 D:

This R-bilinear map is called the �-Hermitian form on V . The isometry group G.V / is a
classical Lie group, namely, a real orthogonal group, a real symplectic group, a complex
orthogonal group, a complex symplectic group, a unitary group, a quaternionic symplectic
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group, a quaternionic orthogonal group, a real general linear group, a complex general linear
group, or a quaternionic general linear group.

Let V 0 be an �0-Hermitian right D-module, equipped with the �0-Hermitian form
h�; �iV 0 , where ��0 D �1. LetW WD HomD.V;V

0/, equipped with the symplectic form h�; �iW

given by
hT; SiW WD TrR.T �S/; T; S 2 HomD.V; V

0/,

where TrR.T �S/ is the trace of T �S as a R-linear transformation, and T � 2 HomD.V
0; V /

is the adjoint of T defined by˝
T v; v0

˛
V 0 D

˝
v; T �v0

˛
V
; for all v 2 V , v0 2 V 0. (1.1)

There is a natural homomorphism: G.V / � G.V 0/ ! Sp.W / given by

.g; g0/ � T D g0Tg�1 for T 2 HomD.V; V
0/, g 2 G, g0 2 G0:

If both V and V 0 are nonzero, then G.V / and G.V 0/ are both identified with subgroups of
Sp.W /, and .G.V /;G.V 0// is an irreducible reductive dual pair in Sp.W /. Moreover, all
irreducible reductive dual pairs arise in this way.

Now we return to the general setting so that .G; G0/ is an arbitrary reductive dual
pair in Sp.W /. Write H.W / WD W � R for the Heisenberg group with group multiplication

.u; t/ � .u0; t 0/ D
�
uC u0; t C t 0 C

˝
u; u0

˛
W

�
; u; u0

2 W; t; t 0 2 R:

Its center is obviously identified with R. Fix a nontrivial unitary character  W R ! C�.
Recall the Stone–von Neumann Theorem which asserts that up to isomorphism, there exists
a unique irreducible unitary representation of H.W / with central character  .

Let QG and QG0 be a pair of reductive Lie groups together with surjective Lie group
homomorphisms QG ! G and QG0 ! G0. The group QG � QG0 acts on the Heisenberg group
H.W / as group automorphisms through its obvious action onW . Using this action, we define
the Jacobi group

J WD . QG � QG0/ Ë H.W /:

Suppose that J has a unitary representation b! whose restriction b!jH.W / to H.W / is
irreducible with central character  . All such representations, if they exist, are isomorphic
to each other up to twisting by unitary characters. We fix one such b! and write ! for the
space of smooth vectors of b!jH.W /, which is J -stable and is a smooth representation of J .
We will refer to ! as a smooth oscillator representation.

Remark. A typical pair . QG; QG0/ is obtained by taking the inverse image of .G;G0/ in eSp.W /,
where eSp.W / is the real metaplectic group, namely the unique double cover of Sp.W / that
is nonsplit whenever W is nonzero. It is well known that smooth oscillator representations
exist in this setting [14,39]. For the related issue of splittings, see [23].

Let � be a Casselman–Wallach representation of QG, whose contragredient rep-
resentation is denoted by �_. (We refer the reader to [38, Chapter 11] for generalities on
Casselman–Wallach representations.) The full theta lift of � is defined to be

‚
QG0

QG
.�/ WD .!b̋�_/ QG ;
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which is a Casselman–Wallach representation of QG0. Here and henceforth, b̋ indicates the
completed projective tensor product, and a subscript group indicates the Hausdorff coin-
variant space. The theta lift � QG0

QG
.�/ of � is defined to be the largest semisimple quotient of

‚
QG0

QG
.�/. The following result is one formulation of Howe’s duality theorem.

Theorem 1.1 ([17]). Suppose that � is irreducible. Then � QG0

QG
.�/ is irreducible or zero.

By reversing the role of QG and QG0, Theorem 1.1 implies that the theta lift is injective
in the following sense: for any irreducible Casselman–Wallach representations �1 and �2

of QG, if � QG0

QG
.�1/ Š �

QG0

QG
.�2/ ¤ ¹0º, then �1 Š �2.

2. Theta lifting via matrix coefficient integrals and

preservation of unitarity

Let V be an �-Hermitian right D-module as in Section 1. Fix a maximal compact
subgroupKV of G.V /. Recall that an element g 2 G.V / is said to be hyperbolic if the linear
operator g ˝ 1 W V ˝R C ! V ˝R C is diagonalizable and all its eigenvalues are positive
real numbers. Denote by ‰V the function of G.V / satisfying the following conditions:

• it is both left and right KV -invariant;

• for all hyperbolic elements g 2 G.V /,

‰V .g/ D

Y
a

�
1C a

2

�� 1
2

;

where a runs over all eigenvalues of g ˝ 1 W V ˝R C ! V ˝R C, counted with
multiplicities.

Note that 0 < ‰V .g/ 6 1 for all g 2 G.V /.
Denote by „V the bi-KV -invariant Harish-Chandra’s „ function on G.V /. (For a

convenient reference, see [37].) Put

�V WD rankD.V / �
2 dimR¹t 2 D j t�0 D �tº

dimR.D/
:

If G.V / is noncompact, then �V is the smallest real number such that

‰
�V

V �„�1
V is bounded:

Given � 2 R, a positive function‰ on G.V / is said to be �-bounded if there is a real number
r > 0 such that

‰.kak0/ 6
�
log

�
3C TrR.a/

��r
�‰�

V .a/ �„V .a/

for all k; k0 2 KV and all hyperbolic elements a 2 G.V /.
In the rest of this section, we assume that G D G.V /, G0 D G.V 0/,

W D HomD.V; V
0/, and both V and V 0 are nonzero so that .G; G0/ is an irreducible dual

pair in Sp.W /. Let QG ! G, QG0 ! G0, J , b!, and ! be as in Section 1.
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Definition 2.1. ACasselman–Wallach representation � of QG is said to be �-bounded if there
exist a �-bounded positive function‰ onG and continuous seminorms j � j� and j � j�_ on �
and �_, respectively, such thatˇ̌

h Qg � u; vi
ˇ̌

6 ‰.g/ � juj� � jvj�_

for all u 2 � , v 2 �_, and Qg 2 QG, where g denotes the image of Qg under the homomorphism
QG ! G.

For a complex vector space E, denote by NE its complex conjugate. Thus NE is a
complex vector space equipped with a conjugate linear isomorphism E ! NE, v 7! Nv. In the
setting of Section 1, N! is a smooth representation of J in the obvious way, and the inner
product on b! induces a J -invariant continuous bilinear form

h�; �i W ! � N! ! C:

WriteZ for the kernel of the homomorphism QG!G, and denote by�Z the unitary character
of Z by which Z acts on !.

Let � be a Casselman–Wallach representation of QG. Assume that � is genuine,
namely Z acts on � by the character �Z .

Definition 2.2. The Casselman–Wallach representation � of QG is convergent for‚ QG0

QG
if it is

�-bounded for some � > �V � rankD.V 0/.

Suppose that � is convergent for ‚ QG0

QG
. Then the integral

! � �_
� N! � � ! C;

.�; v0; �0; v/ 7!

Z
G

˝
Qg � �; �0

˛
�
˝
Qg � v0; v

˛
dg;

(2.1)

is absolutely convergent [6] and defines a continuous multilinear map, where dg is a fixed
Haar measure onG, and Qg 2 QG is an element whose image under the homomorphism QG !G

equals g.
The map (2.1) yields a continuous bilinear map

.!b̋�_/ � . N!b̋�/ ! C: (2.2)

Define
N�

QG0

QG
.�/ WD

!b̋�_

the left kernel of (2.2)
: (2.3)

This is a quotient of ‚ QG0

QG
.�/, and hence a Casselman–Wallach representation of QG0.

Remark. The idea of studying theta lifting by matrix coefficient integrals, as in (2.3), first
appeared in Li’s work [25,26].

Definition 2.3. The Casselman–Wallach representation � of QG is overconvergent for‚ QG0

QG
if

it is �-bounded for some � > �ı
V � rankD.V 0/, where

�ı
V WD

8̂̂<̂
:̂
�V C 1; if G is a real or complex odd orthogonal groupI

�V C
1
2
; if G is a quaternionic symplectic or quaternionic orthogonal groupI

�V ; otherwise:
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The idea that one could produce interesting sets of unitary representations from
theta lifting is due to Howe [15]. The following result gives a sufficient condition for the
preservation of unitarity (see [12,13,25,26] for some earlier results along the same direction).

Theorem 2.4 ([6]). Assume that rankD.V 0/ > �ı
V , and � is overconvergent for ‚ QG0

QG
. If � is

unitarizable, then so is N�
QG0

QG
.�/.

Remark. Given that N�
QG0

QG
.�/ is unitarizable, it is clearly a semisimple quotient of‚ QG0

QG
.�/. If,

in addition, � is irreducible and N�
QG0

QG
.�/¤ ¹0º, then the fundamental result of Howe implies

that � QG0

QG
.�/ D N�

QG0

QG
.�/ and is irreducible.

Conjecture 2.5. Suppose that � is irreducible and convergent for ‚ QG0

QG
. Then � QG0

QG
.�/ D

N�
QG0

QG
.�/ as quotients of ‚ QG0

QG
.�/.

Remark. When � is not convergent for ‚ QG0

QG
, by the doubling method and by taking the

leading coefficient of the local zeta integral ([32] and [24, Section 3]), we may still define a
continuous bilinear map as in (2.2), and therefore N�

QG0

QG
.�/. We expect that the statement of

Conjecture 2.5 remains true for any irreducible � , whether or not it is convergent for ‚ QG0

QG
.

It will be interesting to establish a version of Theorem 2.4 in this more general setting.

3. Algebraic theta lifting and bound via moment maps

We continue with the notation of Section 2, and further assume that the homomor-
phisms QG ! G and QG0 ! G0 are finite fold covering maps. We fix a choice of maximal
compact subgroupsK of G andK 0 of G0, compatible with a given choice of maximal com-
pact subgroup U of Sp.W /. Let � � ! be the Harish-Chandra module associated to U ,
which is naturally a .g � g0; QK � QK 0/-module. Here and as usual, g and g0 denote the com-
plexified Lie algebras of G and G0, respectively, and QK � QG and QK 0 � QG0 are respectively
the preimages of K and K 0.

Let … be a .g; QK/-module of finite length, whose Harish-Chandra dual is denoted
by…_. The (algebraic) full theta lift of… is defined to be

‚V 0

V .…/ WD .�˝…_/g; QK (the coinvariant space).

The .g0; QK 0/-module ‚V 0

V .…/ is of finite length [17].
We will be concerned with the so-called associated cycles of ‚V 0

V .…/.

3.1. The associated cycle map
We recall basic notions from the theory of associated varieties [35]. The theory is a

key part of Vogan’s formulation of the orbit method for reductive Lie groups [34,36].
Write VC WD V ˝R C, which is a right D˝R C-module. TheR-bilinear map h�; �iV W

V � V ! D extends to a C-bilinear map h�; �iVC W VC � VC ! D ˝R C. Write GC for the
isometry group of .VC; h�; �iVC /, which is a complexification of G. Write KC and QKC for
the complexifications of the compact groups K and QK, respectively. The space V 0

C and the
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groupsG0
C ,K

0
C , and QK 0

C are similarly defined. We identify g with its dual space g� by using
the trace form

g � g ! C; .x; y/ 7! the trace of the C-linear endomorphism xy W VC ! VC:

Likewise, g0 is identified with g0�.
Let NilGC .g/ be the set of nilpotent GC-orbits in g. Suppose that O 2 NilGC .g/.

We say that a finite length .g; QK/-module … is O-bounded if the associated variety of the
annihilator ideal in U.g/ (the universal enveloping algebra of g) is contained in the Zariski
closure O of O. Denote by

g D k ˚ p

the complexified Cartan decomposition fixed by our choice of the maximal compact sub-
group K of G, and by NilKC .p/ the set of nilpotent KC-orbits in p. It follows from [34,

Theorem 8.4] that… is O-bounded if and only if its associated variety AV.…/ is contained in
O \ p. Let MO.g; QK/ denote the category of O-bounded finite length .g; QK/-modules, and
write KO.g; QK/ for its Grothendieck group.

Under the adjoint action of KC , the complex variety O \ p is a union of finitely
many orbits, each of dimension dimC O

2
. For any KC-orbit O � O \ p, let KO. QKC/ denote

the Grothendieck group of the category of QKC-equivariant algebraic vector bundles on O ,
and KC

O .
QKC/ the submonoid generated by the QKC-equivariant algebraic vector bundles.

Taking the isotropy representation at a point X 2 O yields an identification

KO. QKC/ D R
�
. QKC/X

�
;

where the right-hand side denotes the Grothendieck group of the category of algebraic rep-
resentations of the stabilizer group . QKC/X .

Put
KO. QKC/ WD

M
O is a KC -orbit in O \ p

KO. QKC/

and
KC

O
. QKC/ WD

M
O is a KC -orbit in O \ p

KC
O .

QKC/:

There is a partial order � on KO. QKC/ defined by

E1 � E2 , E2 � E1 2 KC

O
. QKC/; E1;E2 2 KO. QKC/:

According to Vogan [34, Theorem 2.13], we have a canonical homomorphism, called
the associated cycle map:

ACO W KO.g; QK/ ! KO. QKC/:

For a .g; QK/-module of finite length…which is O-bounded, we call ACO.…/ the associated
cycle of…. This is a fundamental invariant attached to….
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3.2. The moment maps
PutW DHomD˝RC.VC;V

0
C/DW ˝R C. Recall we have the moment maps [10,22]

g W
Moo M0

// g0

that are given by
M.�/ D ��� and M0.�/ D ���:

Here �� denotes the adjoint map as in (1.1).
As in [6, Section 3], we may find “Cartan transforms” L on VC , L0 on V 0

C , and L

on W which will induce compatible Cartan involutions on G, G0, and Sp.W /, respectively.
Then KC D GL

C (the centralizer of L) and K 0
C D .G0

C/
L0 .

We decompose
W D X ˚ Y (3.1)

where X and Y are
p

�1 and �
p

�1 eigenspaces of L, respectively. We have the following
two algebraic maps [30]:

p X
MDMjXoo

M 0DM0jX // p0;

��� �
�oo � // ���:

These two maps M and M 0 are also called the moment maps. They are both KC � K 0
C-

equivariant. HereK 0
C acts trivially on p,KC acts trivially on p0, and all the other actions are

the obvious ones.
Put

Wı
WD

®
� 2 W j the image of �� is nondegenerate with respect to h�; �iVC

¯
and

Xı
WD X \ Wı:

Lemma 3.1 ([6]). Let O 0 be a K 0
C-orbit in p0. Suppose that O 0 is contained in the image of

the moment mapM 0. Then the set

.M 0/�1.O 0/ \ Xı (3.2)

is a singleKC �K 0
C-orbit. Moreover, for every element � in .M 0/�1.O 0/\ Xı, there is an

exact sequence of algebraic groups,

1 ! .KC/� !
�
KC �K 0

C

�
�

the projection to the second factor
�������������������!

�
K 0

C

�
e0 ! 1;

where e0 WD M 0.�/ 2 O 0, and a subscript element indicates the stabilizer group of the ele-
ment.

In the notation of Lemma 3.1, write

r.O 0/ WD the image of the set (3.2) under the moment mapM ,

which is a KC-orbit in p. This is called the descent of O 0. It is an element of NilKC .p/ if
O 0 2 NilK0

C
.p0/.
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Now suppose that we have a G0
C-orbit O0 � g0, which is contained in the image of

the moment map M0. Similar to the first assertion of Lemma 3.1, the set

.M0/�1.O0/ \ Wı (3.3)

is a single GC �G0
C-orbit. Write

r.O0/ WD the image of the set (3.3) under the moment map M,

which is a GC-orbit in g. This is called the descent of O0. It is an element of NilGC .g/ if
O0 2 NilG0

C
.g0/.

3.3. Geometric theta lift
We are in the setting of Section 3. We assume that the choice of X in (3.1) is com-

patible with �, as follows. As a module for the Lie algebra h.W /, � is the submodule of !
generated by !X (the invariant space of X, which is one-dimensional). Write QU ! U for
the double cover of U induced by the metaplectic double cover eSp.W / ! Sp.W /. Recall
that � is naturally an .sp.W/; QU/-module. Recall also from [6, Section 5.1] that QKC � QK 0

C

acts on !X by a character, henceforth denoted by �.
We are now back in the setting of Lemma 3.1, with O 0 2 NilK0

C
.p0/. Write O WD

r.O 0/, and let e WD M.�/.
Let E be a QKC-equivariant algebraic vector bundle over O . Its fiber Ee at e is an

algebraic representation of the stabilizer group . QKC/e , which is the preimage of .KC/e . We
also view it as a representation of the group . QKC � QK 0

C/� via the pull-back through the
homomorphism �

KC �K 0
C

�
�

the projection to the first factor
�����������������! .KC/e:

We may thus view Ee ˝ � as a representation of . QKC � QK 0
C/� and, by taking the coinvari-

ant space .Ee ˝ �/. QKC/�
, we get an algebraic representation of . QK 0

C/e0 . Write E 0 WD L#O0

O .E/

for the QK 0
C-equivariant algebraic vector bundle over O 0 whose fiber at e0 equals this coin-

variant space representation. In this way, we get an exact functor L#O0

O from the category of
QKC-equivariant algebraic vector bundle over O to the category of QK 0

C-equivariant algebraic
vector bundle over O 0. This exact functor induces a homomorphism of the Grothendieck
groups:

L#O0

O W KO. QKC/ ! KO0

�
QK 0

C

�
:

The above homomorphism is independent of the choice of � in Lemma 3.1.
Now let O WD r.O0/, where O0 2 NilG0

C
.g0/. We define the geometric theta lift to

be the homomorphism
L#O0

O W KO. QKC/ ! KO0

�
QK 0

C

�
such that

L#O0

O .E/ D

X
O0 is a K 0

C -orbit in O0 \ p0, r.O0/ D O

L#O0

O .E/;

for any KC-orbit O in O \ p, and any QKC-equivariant algebraic vector bundle E over O .

3070 B. Sun and C.-B. Zhu



A basic result in algebraic theta lifting is the following theorem.

Theorem3.2 ([6]). Suppose thatO WD r.O0/ andO0 is regular forr (see [6, Definition 7.6]).
Let… be an O-bounded .g; QK/-module of finite length. Then ‚V 0

V .
L…/ is O0-bounded, and

ACO0

�
‚V 0

V .
L…/

�
� L#O0

O

�
ACO.…/

�
:

Remark. Earlier results on the associated cycles of ‚V 0

V .
L…/ appeared in [27,29,31].

4. Combinatorial parameters for special unipotent

representations

In [33], Vogan proposed that the orbit method (introduced by A. A. Kirillov [19];
see also [21] for an extension in geometric terms) should serve as a unifying principle in
the description of the unitary duals of reductive Lie groups. Furthermore, the quantization
problem (attaching irreducible unitary representations to coadjoint orbits) should involve
three steps in accordance with the Jordan decomposition of the element representing an
(co)adjoint orbit, and in the order of the nilpotent step, the elliptic step, and the hyperbolic
step. The elliptic and hyperbolic steps are implemented by cohomological and parabolic
induction, respectively, and are well understood. The nilpotent step is the most difficult, and
is the theory of unipotent representations [34,35], which is still in development. We refer the
reader to [36] for a comprehensive account of Vogan’s conception of the orbit method for
reductive Lie groups.

We will be concerned with special unipotent representations, which originated in
Arthur’s work [3,4] and are defined by Vogan and Barbasch [2,8]. It will turn out that all spe-
cial unipotent representations of classical Lie groups can be constructed via iterated theta
lifts, supplemented by irreducible unitary parabolic inductions. We take even real orthog-
onal groups and real symplectic groups as examples, and will construct a (combinatorially
defined) parameter set which underlies the special unipotent representations of both groups.

For every Young diagram {, write Ri .{/ and Ci .{/ (i 2 NC, the set of positive
integers), respectively, for its i th row length and i th column length. Let LO be a nonempty
Young diagram which satisfies the following good parity condition (for typeD and C ):

All nonzero row lengths of LO are odd. (4.1)

Put

m WD j LOj WD

1X
iD1

Ri . LO/ and l WD C1. LO/:

We define a pair .{ LO
; | LO

/ of Young diagrams such that the nonzero column lengths are given
by 8̂̂<̂

:̂
Ci .{ LO

/ D
R2i . LO/C 1

2
; 1 6 i 6

l � 1

2
;

Ci .| LO
/ D

R2i�1. LO/ � 1

2
; 1 6 i 6

l C 1

2
;
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if l is odd, and 8̂̂<̂
:̂

Ci .{ LO
/ D

R2i�1. LO/C 1

2
; 1 6 i 6

l

2
;

Ci .| LO
/ D

R2i . LO/ � 1

2
; 1 6 i 6

l

2
;

if l is even.
For any Young diagram {, we introduce the set BOX.{/ of boxes of { as the following

subset of NC � NC:

BOX.{/ WD
®
.i; j / 2 NC

� NC
j j 6 Ri .{/

¯
:

We introduce five symbols �, s, r , c, and d , and make the following definition.

Definition 4.1. A painting on a Young diagram { is a map

P W Box.{/ ! ¹�; s; r; c; dº

with the following properties:

• P �1.S/ is the set of boxes of a Young diagram when S D ¹�º; ¹�; sº; ¹�; s; rº, or
¹�; s; r; cº;

• when S D ¹sº or ¹rº, every row of { has at most one box in P �1.S/;

• when S D ¹cº or ¹dº, every column of { has at most one box in P �1.S/.

Definition 4.2. Define PBP. LO/ to be the set of all pairs .P ;Q/, whereP andQ are paintings
on { LO

and | LO
, respectively, subject to the following conditions:

• P �1.�/ D Q�1.�/;

• the image of P is contained in8<: ¹�; r; c; dº; if l is odd;

¹�; s; r; c; dº; if l is even:

• the image of Q is contained in8<: ¹�; sº; if l is odd,

¹�º; if l is even:

Let � D .P ;Q/ 2 PBP. LO/. We associate a classical group G� as follows.
If l is odd, define G� WD Spm�1.R/.
If l is even, define the signature .p� ; q� / by counting the various symbols appearing

in .{ LO
;P /, .| LO

;Q/: 8<:p� WD .#�/C 2.#r/C .#c/C .#d/;

q� WD .#�/C 2.#s/C .#c/C .#d/:
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Here

#� WD #
�
P �1.�/

�
C #

�
Q�1.�/

�
.# indicates the cardinality of a finite set/;

and the other terms are similarly defined. Define G� WD O.p� ; q� /. In addition, define "� 2

Z=2Z such that "� D 0 if and only if the symbol d occurs in the first column of P or Q.
If l > 1, we define LO0 to be the Young diagram obtained from LO by removing the

first row. The descent map
r W PBP. LO/ ! PBP. LO0/

is defined in [6, Section 2] and plays a crucial role in our construction of special unipotent
representations.

Example. Let

LO D :

Then

.{ LO
; | LO

/ D

0BBBB@ ;

1CCCCA
and

LO0
D :

Also let

� D .P ;Q/ D

0BBBB@
� �

� s

� s

r d

;

� �

�

�

1CCCCA 2 PBP. LO/:

Then G� D O.11; 13/, "� D 1, and

r.�/ D .P 0;Q0/ D

0BBBB@
�

�

�

d

;

� s

�

�

1CCCCA 2 PBP. LO0/:

Define PP. LO/ to be the set of all i 2 NC such that

Ri . LO/ > RiC1. LO/ > 0 and i � l .mod 2/:

Put
PBPext. LO/ WD PBP. LO/ �

®
} � PP. LO/

¯
:

For each .�; }/ 2 PBPext. LO/, we will construct a representation ��;} of G� .
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5. Special unipotent representations of classical Lie

groups

As in Section 4, let LO be a nonempty Young diagram which satisfies the good parity
condition (4.1) and .�; }/ 2 PBPext. LO/. Let G WD G� , whose complexification GC equals
Spm�1.C/ or Om.C/, respectively, when l is odd or even. The Langlands dual of GC is
defined to be Om.C/. Identify LO with the corresponding nilpotent Om.C/-orbit in om.C/.
Take an sl2-triple . Le; Lh; Lf / in om.C/ such that Le 2 LO. Then 1

2
Lh is a semisimple element of

om.C/, which determines a character �. LO/ W U.g/GC ! C in the usual way [4,8]. By a well-
known result of Dixmier [9, Section 3], we know that there is a uniquemaximalG-stable ideal
of U.g/ that contains the kernel of �. LO/. Write I LO

for this ideal. The associated variety of
I LO

is the closure of a nilpotent orbit O 2 NilGC .g/which is called the Barbasch–Vogan dual
of LO. Following Barbasch andVogan [2,8], an irreducible Casselman–Wallach representation
� ofG is said to be special unipotent attached to LO if I LO

annihilates � . Write Unip LO
.G/ for

the set of isomorphism classes of irreducible Casselman–Wallach representations of G that
are special unipotent attached to LO.

Put

Unip. LO/ WD

8<:Unip LO
.Spm�1.R//; if l is odd;F

p;q2N;pCqDm Unip LO
.O.p; q//; if l is even:

We have the following result on the counting of special unipotent representations.

Theorem 5.1 ([6, 7]). Let LO be a nonempty Young diagram which satisfies the good parity
condition (4.1). Then

#
�
Unip. LO/

�
D

8<: #.PBPext. LO//; if l is odd;

2#.PBPext. LO//; if l is even:

For each .�; }/ 2 PBPext. LO/, we shall now construct an irreducible Casselman–
Wallach representation ��;} of G by induction on l . First assume that l D 1, namely the
Young diagram LO has only one row. Then G D Spm�1.R/, and the set PBPext. LO/ has a
unique element. In this case, we define ��;} to be the trivial representation of G.

Now assume that the Young diagram of LO has at least two rows. Write � 0 WD r.�/ 2

PBP. LO0/, and define

}0
WD

®
i 2 NC

j i C 1 2 }
¯

� PP. LO0/:

Write m0 WD j LO0j and G0 WD G� 0 . Note that G and G0 form a reductive dual pair in Sp.W /,
whereW is a real symplectic space of dimension .m� 1/m0 orm.m0 � 1/, respectively, when
l is odd or even. Let J D .G � G0/ Ë H.W / and let ! be as in Section 1. If G is an even
orthogonal group, we assume G acts trivially on the one-dimensional space !X (the coin-
variant space of X ), for every G-stable Lagrangian subspace X of W . Similar assumption
is made when G0 is an even orthogonal group.
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By induction hypothesis, we have an irreducible Casselman–Wallach representation
�� 0;}0 of G0. We define

��;} WD

8<:‚G
G0.�

_
� 0;}0 ˝ det"} /; if l is odd;

‚G
G0.�

_
� 0;}0/˝ .1

C;�
p� ;q�

/"� ; if l is even:
(5.1)

Here 1C;�
p� ;q�

denotes the character of O.p� ; q� / whose restriction to O.p� / � O.q� / equals
1˝ det (1 stands for the trivial character), and "} denote the element in Z=2Z such that

"} D 1 , 1 2 }:

It turns out that the representation ��;} remains unchanged if we replace ‚G
G0 by �G

G0 or N�G
G0

in (5.1).

Theorem 5.2 ([6]). Let LO be a nonempty Young diagram which satisfies the good parity
condition (4.1).

(a) For every .�;}/ 2 PBPext. LO/, the representation ��;} ofG� is irreducible, uni-
tarizable, and special unipotent attached to LO.

(b) Suppose that l is odd so that G D Spm�1.R/. Then the map

PBPext. LO/ ! Unip LO
.G/;

.�; }/ 7! ��;}

is bijective.

(c) Suppose that l is even, and p;q are nonnegative integers with pC q Dm. Then
the map®

.�; }/ 2 PBPext. LO/ j .p� ; q� / D .p; q/
¯

� Z=2Z ! Unip LO

�
O.p; q/

�
;

.�; }; �/ 7! ��;} ˝ det�

is bijective.

We remark that the unitarizability of ��;} in part (a) of Theorem 5.2 follows from
the preservation of unitarity (Theorem 2.4). Furthermore the computation of the associated
cycles of ��;} , in particular Theorem 3.2, plays a critical role in the proof of Theorem 5.2.
By Theorem 5.2, we have explicitly constructed all special unipotent representations in
Unip LO

.G/, when all row lengths of LO are odd. If some row lengths of LO are even, then these
even row lengths must come in pairs. In this case, the set Unip LO

.G/ of the special unipo-
tent representations attached to LO is similarly defined, and via irreducible unitary parabolic
inductions, the construction of representations in Unip LO

.G/ is reduced to the case when all
row lengths of LO are odd (see [7]). In the same approach, we may parameterize and construct
all special unipotent representations of the real classical groups GLn.R/, GLn.C/, GLn.H/,
U.p; q/, O.p; q/, Sp2n.R/, O�.2n/, Sp.p; q/, On.C/, Sp2n.C/, as well as all metaplectic
special unipotent representations of eSp2n.R/ and Sp2n.C/. See [5] for the notion of meta-
plectic special unipotent representations.
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We thus have the following result which confirms the Arthur–Barbasch–Vogan con-
jecture [2, Introduction] for real classical groups.

Theorem 5.3 ([6]). All special unipotent representations of the real classical groups are
unitarizable; all metaplectic special unipotent representations of eSp2n.R/ and Sp2n.C/ are
also unitarizable.

Remark. The unitarizability of special unipotent representations for quasisplit classical
groups is independently due to Adams, Arancibia Robert, and Mezo [1].

The authors would like to conclude by noting the prescient remark of A. A. Kir-
illov in a survey article on the orbit method in 1999 [20]: Howe duality – a new branch of
representation theory where the orbit method has not yet been used to the fullest.
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1. Introduction

1.1. Quantum groups
According to Drinfeld and Jimbo, a quantum groupUDUv.g/ is the quantum defor-

mation (as Hopf algebras) of the universal enveloping algebra U.g/, for a semisimple or
Kac–Moody Lie algebra g. Since their inception in 1985, quantum groups have found numer-
ous applications to diverse areas, including mathematical physics, representation theory,
algebraic combinatorics, and low dimensional topology.

We offer a (personal) Top Ten List of highlights in quantum groups, viewed as a part
of Lie theory, as follows:

(1) Definition [27,31]

(2) (Quasi-)R-matrix [27,55]

(3) Canonical basis [53–55] [32]

(4) Quantum Schur duality [31]

(5) Super type A Kazhdan–Lusztig theory [18] [22] [19]

(6) Hall algebra [60] [17]

(7) Current presentation of affine quantum groups [27] [14,23]

(8) Braid group action [53,55]

(9) Categorification [34,61]

(+) ı ı ı ı ı ı

We apologize beforehand for omitting many important constructions for quantum groups in
the above list, and your favorite construction may likely fall into the black holes in Item (+).
Also, the references listed above are mostly samples of the original contributions, and there
are often dozens or hundreds of additional works which are not cited.

The list (1)–(9) is so arranged that the topics are to be matched with the {-generali-
zations which we shall describe later in the same ordering.

1.2. Quantum symmetric pairs
Recall that a symmetric pair .g; g� / consists of a semisimple Lie algebra g and

an involution � on g. The classification of irreducible symmetric pairs is equivalent to the
classification of real forms of complex simple Lie algebras (which goes back to É. Cartan);
for example, they can now be classified in terms of Satake diagrams.

LetU D Uv.g/ be a quantum group (of finite type) with comultiplication� in (2.2).
According to Gail Letzter [39–41], a quantum symmetric pair .U;U{/ consists of a Drinfeld–
Jimbo quantum groupU and its (right) coideal subalgebraU{ (i.e.,� W U{ ! U{ ˝ U) which
specializes at v 7! 1 to U.g� /. Starting with the Satake diagrams, Letzter constructed the
corresponding quantum symmetric pairs. The U{ comes with parameters, which reflects the
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fact that there is a family of (explicit) embeddings of U{ into U; see (2.4). A generalization
of quantum symmetric pairs of Kac–Moody type was carried out by Kolb in [35], now a
standard reference in the subject; Kolb’s conventions are compatible with those in Lusztig’s
book [55]. As we may deal with U{ alone, we shall call U{ an {quantum group.

Letzter’s foundational work on quantum symmetric pairs was motivated by har-
monic analysis on quantum symmetric spaces, generalizing earlier examples given byKoorn-
winder, Gavrilik–Klimyk, Noumi, and others. Letzter’s work was ahead of her time.

1.3. Goal
We take the view that {quantum groups are a vast generalization of quantum groups

(as real reductive groups are a generalization of compact or complex reductive groups).

Example 1.1 (Quantum groups as {quantum groups). Consider the diagonal symmetric pair
.g � g;g4/, where g4 is a diagonal copy of g. Similarly, we have a quantum symmetric pair
of diagonal type .U ˝ U;U/; the embedding is given by .! ˝ 1/� W U ! U ˝ U (see [8]),
where one checks that the image of U is a coideal subalgebra of U ˝ U.

The goal of this report is to survey some recent advances on quantum symmetric
pairs and {quantum groups, generalizing Items (1)–(9) above. The {-analogs of the construc-
tions in Items (2)–(5) were initiated by Huanchen Bao and the author in [9], where it was
proposed that all fundamental (algebraic, geometric, categorical) constructions in quantum
groups should be generalized to {quantum groups.

The good news is that all Items (1)–(9) admit genuine {-generalizations, while
the bad news, or the exciting news for an optimist, is that many {-generalizations are not
yet in full generality. A reader might well be tempted to try one’s hands in developing
these {-generalizations in greater generality. He or she is encouraged to pick his or her
own favorite construction in quantum groups in Item (+); even better, to supply its missing
{-generalization.

All the known constructions indicate that the {-generalizations (when done right!)
look natural and inevitable, though proofs are often much lengthier and challenging. The
complications in {quantum groups are often caused by

(i) absence of triangular decompositions;

(ii) presence of many rank 1 types and parameters;

(iii) presence of nonuniform Serre-type relations;

(iv) hidden (nonobvious) integral forms.

1.4. A quick overview
A Serre-type presentation for an {quantum group U{ is due to Letzter [40] in the

finite type setting, and has been generalized since then to Kac–Moody type in various forms
(cf. [2,20,24,35,38]). This can be viewed as an {-analog of the construction in Item (1).

Let us provide some details on the constructions in Items (2)–(5).
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As a generalization of Jimbo–Schur duality [31], an {Schur duality between a quasi-
split type AIII {quantum group U{ and type B Hecke algebra was formulated in [9] (and
[4,11]). Recently, the Jimbo–Schur duality and quasisplit {Schur duality have been uniformly
generalized using a general {quantum group of type AIII by Yaolong Shen and the author
in [62]. This has led unexpectedly to quasiparabolic Kazhdan–Luszig bases associated to
(possibly nonparabolic) reflection subgroups of the type BWeyl group, extending the classic
constructions of Kazhdan–Lusztig [33] and Deodhar [25].

The {canonical basis and {Schur duality (in quasisplit type AIII setting) were moti-
vated by and played a key role in formulating a super type B Kazhdan–Lusztig theory (which
was a decades old open problem) [9]; see also Bao [4] for a super type D formulation. Our
approach was inspired by Brundan–Kazhdan–Lusztig conjecture in the super type A setting
[18] and its proof by Cheng, Lam, and the author [22].

The {-analog of quasi-R-matrix, known as quasi-K-matrix nowadays, was formu-
lated by Bao and the author in [9] as a key step in the construction of {canonical bases, and
a proof for its existence in great generality has been given by Balagovic–Kolb in [3]; see
Appel-Vlaar [1] for a more recent reformulation and generalization. The quasi-K-matrix fur-
ther leads to a construction of the K-matrix [3,9], which was shown in [3] to provide solutions
to the reflection equation.

As an extension of Lusztig’s approach [53,54], a theory of {canonical bases arising
from quantum symmetric pairs has been systematically developed by Bao and the author in
[8,10]. The {canonical bases on based U-modules (viewed as U{-modules) and on the mod-
ified {quantum groups are established; also see [5, 43] and [29] for a geometric approach in
type AIII setting. The {canonical basis in split rank 1, also known as {divided powers [9,16],
has found applications in the works with Xinhong Chen and Ming Lu [20,21,52]. H. Watan-
abe [65, 66] has developed a crystal approach (à la Kashiwara [32]) to {canonical bases of
U{-modules, for some quasisplit finite types.

Motivated by earlier constructions of Bridgeland [17] and then M. Gorsky [30]

(extending the foundational work of Ringel [60]), Lu–Peng and Lu developed semiderived
Hall algebras associated to 1-Gorenstein algebras (see [44] and [50, Appendix A]). Lu and the
author introduced in [50, 52] the {Hall algebras, i.e., semiderived Hall algebras associated
to the {quiver algebras, to realize the (universal) {quantum groups QU{ . This is a conceptual
{-analog of (6), generalizing [17].

In [49], Lu and the author have formulated a Drinfeld-type presentation for affine
{quantum groups of split ADE type; this has been generalized to split BCFG type byWeinan
Zhang [67]. This provides an {-analog of (7). Lu andRuan are developing {Hall algebras of the
weighted projective lines [45] to realize the affine {quantum groups in the new presentation,
generalizing the rank-1 construction in [46].

The braid group actions associated to relative Weyl groups on (mostly quasisplit)
finite type U{ were obtained by Kolb–Pellegrini in [37] (via computer computation), where
the existence of such an action on an arbitrary {quantum group of finite type was conjectured.
Relative braid group actions on QU{ (of quasisplit Kac–Moody type) were obtained in [47] via
reflection functors in {Hall algebras, and it becomes clear that the universal {quantum groups
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provide a conceptual framework for braid group actions. We announce an intrinsic approach
developed byW. Zhang and the author in [64] to relative braid group action on QU{ of arbitrary
finite type (and onU-modules) with explicit formulas, providing a conceptual {-analog of (8).
The quasi-K-matrix plays a basic role in our formulation.

This survey is organized as follows. The {-counterparts of the quantum group high-
lights (1)–(8) will be formulated in Sections 2–9 below. In Section 10, we discuss additional
topics in {quantum groups including the {-analog of (9), and list some open problems.

2. Quantum symmetric pairs: definition

2.1. Quantum groups
We mostly follow notations in the book [55]. Denote by N the set of nonnegative

integers. Let .Y; X; h�; �i; : : : / be a root datum of type .I; �/; cf. [55]. The quantum group U
associated with this root datum .Y;X; h�; �i; : : : / is the associativeQ.v/-algebra generated by
Ei , Fi for i 2 I and K� for � 2 Y , subject to standard relations which can be found in [55].
LetW denote the Weyl group generated by simple reflections si for i 2 I. The Q.v/-algebra
U admits a Chevalley involution ! such that

!.Ei / D Fi ; !.Fi / D Ei ; !.K�/ D K��; for i 2 I; � 2 Y: (2.1)

For any i 2 I, we set vi D v
i �i
2 . For i 2 I, n; s 2 N with 0 � s � n, we define Œn�i D

vn
i �v�n

i

vi �v�1
i

and Œs�Ši D
Qs

kD1Œk�i , and
�

n
s

�
i

D
Œn�Ši

Œs�Ši Œn�s�Ši
.

Let UC, U0, and U� be the Q.v/-subalgebra of U generated by Ei .i 2 I/,
K�.� 2 Y /, and Fi .i 2 I/, respectively. Let A D ZŒv; v�1�. We let AU� (respectively,
AUC) denote the A-subalgebra of U� (respectively, UC) generated by all divided powers
F

.a/
i D F s

i =Œs�
Š
i (respectively, E

.a/
i ). With QK˙i WD K

˙ i �i
2 i , the coproduct � W U ! U ˝ U

is given by

�.Ei / D Ei ˝ 1C QKi ˝Ei ; �.Fi / D 1˝ Fi C Fi ˝ QK�i ; �.K�/ D K� ˝K�:

(2.2)

Let XC D ¹� 2 X j hi; �i 2 N;8i 2 Iº be the set of dominant integral weights.
By � � 0 we shall mean that the integers hi; �i for all i are sufficiently large. The Verma
module M.�/ of highest weight � 2 X has a unique simple quotient U-module L.�/ with
a highest weight vector ��. We define a U-module !L.�/, which has the same underlying
vector space as L.�/ but with the action twisted by the Chevalley involution ! in (2.1); then
!L.�/ is simple of lowest weight��with lowest weight vector denoted by ���. For � 2XC,
we let AL.�/ D AU��� and !

A
L.�/ D AUC��� be the A-submodules of L.�/ and !L.�/.

There is a canonical basis B on U�, inducing a canonical basis on UC via the
standard isomorphism U� Š UC. For each � 2 XC, there is a subset B.�/ of B so that
¹b��� j b 2 B.�/º forms a canonical basis of L.�/. For w 2 W , let �w� denote the unique
canonical basis element of weight w�.

Let PU D
L

�2X
PU1� be the modified quantum group and A

PU be its A-form. Then PU
admits a canonical basis PB D ¹b1}�b2 j .b1; b2/ 2 B�B; � 2Xº, compatible with canonical
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bases on !L.�/ ˝ L.�/, for �; � 2 XC; cf. [55, Part IV]. For any I� � I, let UI�
be the

Q.v/-subalgebra of U generated by Fi , Ei , and Ki .i 2 I�/. Let BI�
be the canonical basis

of U�
I�
.

2.2. Satake diagrams and admissible pairs
Let � be an involution of the Cartan datum .I; �/; we allow � D Id. We further

assume that � extends to an involution on X and an involution on Y , respectively, such that
the perfect bilinear pairing is invariant under the involution � . Given a finite type I� � I,
let WI�

D hsi j i 2 I�i be the parabolic subgroup of W with longest element w�, and let ��

(and �_
� ) be the half-sum of all positive roots (and coroots) in the root system R� (and R_

� ).
Set Iı D InI�. A pair .I D I� [ Iı; �/ is called admissible (cf. [35, Definition 2.3]) if
�.I�/D I�, the actions of � and�w� on I� coincide, and h�_

� ; j
0i 2 Zwhenever �j D j 2 Iı.

We regard admissible pairs as a synonyms for Satake diagrams.
Note that � D �w� ı � is an involution of X and Y . For any � 2 X (or Y ), we shall

write �� D �.�/, �� D �.�/. Following [8], we introduce the {-weight and {-root lattices

X{ D X= MX; where MX D
®
� � ��

j � 2 X
¯
;

Y {
D
®
� 2 Y j ��

D �
¯
:

For � 2 X , we denote its image inX{ by �. The involution � of I induces an isomorphism of
the Q.v/-algebra U, denoted also by � , which sendsEi 7! E�i , Fi 7! F�i , andK� 7!K��.

2.3. Quantum symmetric pairs
We review the definition of quantum symmetric pair .U;U{/, where U{ is a coideal

subalgebra of U, following [35]; also see [2,3,8]. Letzter’s convention is a little different.
An {quantum group U{ is the Q.v/-subalgebra of U generated by

Bi WD Fi C &iTw�
.E�i / QK�1

i C �i
QK�1

i .i 2 Iı/; K�.� 2 Y {/; Fi ; Ei .i 2 I�/; (2.3)

where &i 2 Q.v/�, �i 2 Q.v/, for i 2 Iı, are parameters, and Tw D T 00
w;C1 denotes a

braid group operator as in [55]. Denote by U{0 the Q.v/-subalgebra of U{ generated by K�

.� 2 Y {/, and denote the embedding via (2.3) by

{ W U{
! U; x 7! x{ : (2.4)

The parameters &i ; �i are required to satisfy Conditions (2.5)–(2.6):

�i D 0 unless “� i D i;
˝
i; j 0

˛
D 0 8j 2 I�;&

˝
k; i 0

˛
2 2Z 8�k D k D w�k 2 Iı”I

(2.5)

&i D &�i if i � �.i/ D 0: (2.6)

Conditions (2.5)–(2.6) ensure the quantum Iwasawa decomposition and hence U{ have the
expected size [35,40]. By definition, the algebra U{ contains UI�

as a subalgebra.
In the remainder of this paper, we shall impose the following additional conditions

on parameters besides (2.5)–(2.6), as required for the construction of quasi-K-matrix and
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{canonical basis:

&i ; �i 2 Z
�
v; v�1

�
; for i 2 Iı; (2.7)

�i D �i ; &�i D .�1/h2�_
� ;i 0iv

�hi;2��Cw��i 0i

i &i : (2.8)

Conditions in (2.8) appeared in [3].
The nontrivial Serre presentation of U{ was given by Letzter [40] in finite type

setting, and further generalized in different forms [2, 20, 35, 38]. Certain Serre–Lusztig (or
higher-order Serre) relations for U{ have been obtained in [21] via {divided powers (see
Example 4.3).

Example 2.1. We callU{ quasisplit if I� D ; and split if, in addition, � D Id. A split {quan-
tum group U{ is the subalgebra of U generated by Bi D Fi C &iEi

QK�1
i C �i

QK�1
i .i 2 I/;

often �i D 0 thanks to (2.5). Relations in splitU{ are given in (9.1)–(9.2) (with Ki D �v2
i &i )

for ADE type and in (9.9)–(9.10) (with k D l D 0) for BCFG type.

3. (Quasi) K-matrices

As predicted in [9] and established in [2,36] (also cf. [20]), there is a unique antilinear
bar involution of the Q-algebra U{ , denoted by  { , such that  {.v/ D v�1 and

 {.Bi / D Bi .i 2 Iı/;  {.Fj / D Fj ;  {.Ej / D Ej .i 2 I�/;

 {.K�/ D K�� .� 2 Y {/:

The formulation of the quasi-K-matrix ‡ below (called an intertwiner earlier) was
due to Bao and the author [9]; its existence in great generality has been established in [3]

(also cf. [8, Remark 4.9]) with additional technicality removed in [10,36]. The quasi-K-matrix
for a quantum symmetric pair of diagonal type reduces to the quasi-R-matrix (cf. [55]).

Theorem 3.1 ([3,8,9]). There exists a unique family of elements‡� 2 UC
� , for � 2 NI, such

that ‡0 D 1 and ‡ D
P

�2NI ‡� satisfies the following identity:

 {.u/‡ D ‡ .u/; for all u 2 U{ : (3.1)

Moreover, ‡� D 0, unless �� D �� 2 X . (Recall that � D �w� ı � .)

A quasi-K-matrix was originally introduced in order to construct a new bar invo-
lution and then {canonical bases on based U-modules (see Section 4 below). On the other
hand, a suitable twisting of‡ by elements in U{0 provides certain U{-module isomorphisms
[9, §2.5], [3] (also see [8, §4.5] for a different formulation), nowadays known as the K-matrix. It
is shown in [3] that the K-matrix provides solutions to the reflection equation, an {-analog of
the Yang–Baxter equation. There has been a reformulation of quasi-K-matrix in [1] without
referring explicitly to the bar involution of U{ ; this has the advantage of making sense of
quasi-K-matrices with general parameters satisfying (2.5)–(2.6).

3086 W. Wang



4. Canonical bases arising from quantum symmetric pairs

4.1. Based modules
The quasi-K-matrix ‡ in (a completion of) UC induces a Q.v/-linear map

‡ W M ˝ L.�/ ! M ˝ L.�/, for any � 2 XC and any weight U-moduleM with weights
bounded above. A U{-moduleM equipped with an antilinear involution  { is called {-invo-
lutive if  {.um/ D  {.u/ {.m/, for all u 2 U{ , m 2 M . Let .M;B/ be a based U-module
[55, IV] with weights bounded above. We denote the bar involution onM by  . ThenM is
an {-involutive U{-module with involution (see [9])

 { WD ‡ ı  :

Assume that .M; B/ is a based U-module with weights bounded above such that
‡ preserves the A-submodule AM . Then the Q.v/-linear map  { D ‡ ı  (and sub-
sequently, ‡ ) preserves the A-submodule AM ˝A AL.�/, for any � 2 XC; see [10]. In
particular, the involution  { on the {-involutive U{-module L.�1/˝ � � � ˝ L.�`/ preserves
theA-submodule AL.�1/˝A � � � ˝A AL.�`/, where �i 2XC for 1� i � `. For .U;U{/ of
finite type, a stronger statement holds [10], namely ‡� 2 AUC, for each �. This generalizes
the integrality of quasi-R-matrix of finite type due to Lusztig [55, 24.1.6].

Define a partial order � on the weight lattice X such that � � �0 if and only if
�0 � � 2 NI. For an element x inU or in aU-moduleM of weight� 2X , we write jxj D �.

Theorem4.1 ([8,10]). Let .M;B/ be a basedU-module with weights bounded above. Assume
that the involution  { D ‡ ofM preserves the A-submodule AM . Then,

(1) the U{-module M admits a unique basis (called {canonical basis)
B { WD ¹b{ j b 2 Bº which is  {-invariant and of the form

b{
2 b C

X
b02B;jbj<jb0j

v�1ZŒv�1�b0
I

(2) B { forms an A-basis for the A-lattice AM (generated by B), and forms a
ZŒv�1�-basis for the ZŒv�1�-lattice M (generated by B).

In particular, L.�1/ ˝ � � � ˝ L.�`/, where �i 2 XC for all i , admits an {canoni-
cal basis. Theorem 4.1 was further generalized in [10, 12] to provide an {canonical basis on
N ˝ L.�/, for a based U{-module N and � 2 XC.

4.2. Canonical bases on modified {quantum groups
Following [55, IV], we can define a modified {quantum group PU{ (an associative

Q.q/-algebra structure without unit) such that PU{ D
L

�2X{
U{1�; see [10]. In contrast to

quantum groups, the A-form of PU{ is far from being obvious (even for rank 1).
For �; � 2 XC and w 2 W , denoting ��

�
WD �w��, we introduce the following

U-submodule:

L{.�; �/ WD U.�w�� ˝ ��/ � L.�/˝ L.�/;
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which can be shown to be a based U-module and hence admits an {canonical basis by The-
orem 4.1. Let � D w��C � and �{ D �. The following hold [8,10]:

F The {canonical basis of L{.�; �/ is of the form B{.�; �/ D ¹.b1}�{
b2/

{
w��;�

j

.b1; b2/ 2 BI�
� Bºn¹0º, where .b1}�{

b2/
{
w��;�

is  {-invariant and lies in

.b1}�b2/.�
�
� ˝ ��/C

X
jb0

1jCjb0
2j�jb1jCjb2j

v�1Z
�
v�1

�
.b0

1}�b
0
2/.�

�
� ˝ ��/:

F We have a projective system ¹L{.�C �� ; �C �/º�2XC of U{-modules, where

��C�1;�1 W L{.�C ��
C ��

1 ;�C � C �1/! L{.�C �� ;�C �/; �; �1 2 XC;

is the unique homomorphism of U{-modules mapping ��

�C�� C��
1

˝ ��C�C�1 to
��

�C�� ˝ ��C� . The K-matrix [3,8,9] plays a role here.

The following theorem generalizes [55, Chap. 25]. For quantum symmetric pairs of
diagonal type in Example 1.1 or a trivial pair .U;U/, it reduces to Lusztig’s setting.

Theorem 4.2 ([8] [10, Theorem 7.2]). Let �{ 2 X{ and .b1; b2/ 2 BI�
� B .

(1) There is a unique element u D b1}{
�{
b2 2 PU{ such that

u.��
� ˝ ��/ D .b1}�{

b2/
{
w��;� 2 L{.�; �/;

for all �;� � 0 with w��C � D �{ :

(2) The element b1}{
�{
b2 is  {-invariant.

(3) The set PB{ D ¹b1}{
�{
b2 j �{ 2X{ ; .b1; b2/ 2 BI�

�Bº forms a Q.v/-basis of PU{ .

Example 4.3 ({Divided powers). Consider the quantum symmetric pair of split rank 1
.U; U{/ D .Uv.sl2/; Q.v/ŒBi �/ associated to I D ¹iº, via the embedding U{ ! U,
Bi 7! Fi C &iEiK

�1
i . It is a new phenomenon of {quantum groups [9] that there are

two different modified forms of U{ , denoted by PU{1 N0 and PU{1 N1, depending on a parity
X{ D ¹N0; N1º, which are compatible with the parity of highest weights of finite-dimensional
simple U-modules.

We define the {divided powers of B to be

B
.m/

i; N1
D

1

Œm�Ši

8<:Bi

Q`
j D1.B

2
i � vi&i Œ2j � 1�2i / if m D 2`C 1;Q`

j D1.B
2
i � vi&i Œ2j � 1�2i / if m D 2`;

B
.m/

i; N0
D

1

Œm�Ši

8<:Bi

Q`
j D1.B

2
i � vi&i Œ2j �

2
i / if m D 2`C 1;

B2
i

Q`�1
j D1.B

2
i � vi&i Œ2j �

2
i / if m D 2`:

These formulas (with parity swapped) appeared first in [9, Conjecture 4.13] (in terms of Bi

in (2.3) with �i D 1, &i D v�1
i ); see [20] for application to Serre relations for {quantum

groups.
Set the parameter &i D v�1

i . Then B N0 WD ¹B
.m/

i; N0
j m � 0º (and respectively,

B N1 WD ¹B
.m/

i; N1
j m � 0º) forms the {canoical basis for the modified {quantum group PU{1 N0
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(and respectively, PU{1 N1). Let L.n/ be the simple U-module of highest weight n 2 N with
highest weight vector �. Then, for n even, B N0�D ¹B

.m/

i; N0
� j n �m � 0º forms the {canonical

basis for L.n/ and B.m/

i; N0
� D 0, for m > n; similar claims hold for L.n/ with n odd and B N1;

see [16].

5. Quantum Schur dualities

5.1. Quasi-parabolic Kazhdan–Lusztig bases
Let Wd be the Weyl group of type Bd generated by simple reflections si , for

0 � i � d � 1. It contains the symmetric group Sd as a subgroup generated by si , for
1 � i � d � 1. For p 2 vZ, the Hecke algebra HBd

of type Bd is a Q.v/-algebra generated
by Hi .0 � i � d � 1/ such that .H0 C p�1/.H0 � p/ D 0, .Hi C v�1/.Hi � v/ D 0

for i � 1, and braid relations hold; HBd
admits a bar involution N such that v D v�1 and

Hi D H�1
i , for all i .
For x 2 R andm 2 N, we denote Œx::xCm�D ¹x;xC 1; : : : ; xCmº. For a 2 Z�1,

we denote by Ia D Œ1�a
2
::a�1

2
�. For r; m 2 N (not both zero), we introduce a new notation

Irjmjr WD I2rCm to indicate a fixed set partition, Irjmjr D I�
ı [ I� [ IC

ı , where

IC
ı D

�
mC 1

2
::r C

m � 1

2

�
; I� D

�
1 �m

2
::
m � 1

2

�
; I�

ı D �IC
ı : (5.1)

We view f 2 Id
rjmjr

as a map f W ¹1; : : : ; dº ! Irjmjr , and identify f D .f .1/; : : : ; f .d//.
We define a right action of Wd on Id

rjmjr
such that, for f 2 Id

rjmjr
and 0 � j � d � 1,

f � sj D

8̂̂<̂
:̂
.: : : ; f .j C 1/; f .j /; : : : /; if j > 0;

.�f .1/; f .2/; : : : ; f .d//; if j D 0; f .1/ 2 I�
ı [ IC

ı ;

.f .1/; f .2/; : : : ; f .d//; if j D 0; f .1/ 2 I�:

Let p 2 vZ. Consider the Q.v/-vector space V D
L

a2Irjmjr
Q.v/ua. Given

f D .f .1/; : : : ; f .d// 2 Id
rjmjr

, we denote Mf D uf .1/ ˝ uf .2/ ˝ � � � ˝ uf .d/. We shall
call f a weight and ¹Mf j f 2 Id

rjmjr
º the standard basis for V ˝d . There is a right action

of the Hecke algebra HBd
on V ˝d as follows (see [62]):

Mf �Hi D

8̂̂̂̂
ˆ̂̂̂̂̂<̂
ˆ̂̂̂̂̂̂
ˆ̂:

Mf �si
C .v � v�1/Mf ; if f .i/ < f .i C 1/; i > 0;

Mf �si
; if f .i/ > f .i C 1/; i > 0;

vMf ; if f .i/ D f .i C 1/; i > 0;

Mf �si
C .p � p�1/Mf ; if f .1/ 2 IC

ı ; i D 0;

Mf �si
; if f .1/ 2 I�

ı ; i D 0;

pMf ; if f .1/ 2 I�; i D 0:

Aweight f 2 Id
rjmjr

is called antidominant if m�1
2

� f .1/� f .2/� � � � � f .d/; in
this casewe havef .j /2 I�

ı [ I�, for all j . Denote I
d;�
rjmjr

D¹f 2 Id
rjmjr

jf is antidominantº.
Decompose V ˝d into a direct sum of cyclic submodules generated by Mf , for antidomi-
nant weights f : V ˝d D

L
f 2I

d;�
rjmjr

Mf , where Mf D Mf HBd
. Denote by Of the orbit
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of f under the action of Wd on Id
rjmjr

. The HBd
-module Mf admits a standard basis

¹Mg j g 2 Of º.
The stabilizer subgroup of f 2 I

d;�
rjmjr

in Wd is of the form

Wf D Wm1 � � � � �Wmk
� SmkC1

� � � � � Sml
;

with allmi > 0 andWm1 � � � � �Wmk
corresponding to the components of f in I�. Note that

the stabilizer subgroupWf is not a parabolic subgroup ofWd when k � 2. This phenomenon
does not occur in the setting of [9,12]. We call the summands Mf of V ˝d quasipermutation
modules. Clearly, for f;f 0 2 I

d;�
rjmjr

, we haveMf Š Mf 0 , ifWf DWf 0 . IfWf is not parabolic,
Mf is in general not an induced module as those considered in parabolic KL setting [25].

Let f 2 I
d;�
rjmjr

. Denote by fW the set of minimal length right coset representatives
in Wf nWd . We define a Q-linear map  { on the module Mf (which has a basisMf �� , for
� 2 fW ) by  {.v/ D v�1,  {.Mf �� / D Mf

NH� , 8� 2 fW . It can be shown [62] (more
difficult than the parabolic case in [25]) that the map  { on Mf is compatible with the bar
operator on the Hecke algebra, i.e., {.xh/D {.x/h, for all x 2 Mf , h2 HBd

. In particular,
 2

{ D Id. We shall call  { the bar involution on Mf .

Theorem 5.1 ([62]). Suppose p 2 vZ and let f 2 I
d;�
rjmjr

. Then for each � 2 fW , there exists
a unique element C� 2 Mf such that

 {.C� / D C� and C� 2 Mf �� C

X
w2f W;w<�

v�1Z
�
v�1

�
Mf �w :

Similarly, there exist elements C �
� 2 Mf , for � 2 fW , characterized by

 {.C
�
� / D C �

� and C �
� 2 Mf �� C

P
w2f W;w<� vZŒv�Mf �w . The basis ¹C� j � 2 fW º

is called a quasiparabolic KL basis for Mf ; the basis ¹C �
� j � 2 fW º is called a dual quasi-

parabolic KL basis for Mf . Depending on the choice of f , the canonical basis can be type
B or type A parabolic KL basis [25,33], or neither.

5.2. A type B {Schur duality
Set n D

m
2

2
1
2
N. We consider the quantum group U D Uv.sl2rCm/ of type

A2rCm�1, where I WD Œ1 � n � r::nC r � 1�. We view V as a natural representation of U,
and so V ˝d is a U-module via the comultiplication �. We consider the Satake diagram
of type AIII with m � 1 D 2n � 1 black nodes and r pairs of white nodes, and a diagram
involution � :

ı

�n � r C 1

� � � ı

�n

�

�nC 1

� � � �

n � 1

ı

n

� � � ı

nC r � 1

(In case n D 0, the black nodes are dropped; the nodes n and �n are identified and fixed
by � .) The involution � on I sends i 7! �.i/ D �i , for all i , and it induces an involution
of U, denoted again by � , by permuting the indices of its generators Ei ; Fi ; K

˙1
i .
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Let I� D Œ1� n::n� 1� be the set of all black nodes in I and Iı D InI�. Associated
to the Satake diagram .I D I� [ Iı; �/, we have a quantum symmetric pair .U;U{/ of type
AIII. Recall that p 2 vZ. We shall fix the parameters to be8<: &i D 1 .for i ¤ ˙n/;

&n D .�1/m�1vmp�1; &�n D p; if m D 2n 2 Z�1;
(5.2)8<: &0 D v�1; &i D 1 .for i ¤ 0/;

�0 D .p � p�1/=.v � v�1/; if m D 0:
(5.3)

It can be shown [62] that the actions of U{ and HBd
on V ˝d commute with each

other:
U{ ‰Õ V ˝d ˆÕ HBd

:

Moreover,‰.U{/ andˆ.HBd
/ form double centralizers in End.V ˝d /. This duality has been

called {Schur duality (which goes back to [9] in a quasisplit case).
There exists a unique antilinear bar involution  { W V ˝d ! V ˝d such that

 {.Mf / D Mf , for f 2 I
d;�
rjmjr

, and it is compatible with the bar involutions on HBd
and

U{ , that is, for u 2 U{ , v 2 V ˝d , and h 2 HBd
,  {.uvh/ D  {.u/ {.v/ Nh. Recall that V ˝d

is a direct sum of the quasipermutation modules Mf of HBd
. The union of the (dual)

quasiparabolic KL bases on the summands Mf provides a (dual) quasiparabolic KL basis
on V ˝d .

Theorem 5.2 ([62]). The (dual) {canonical basis onV ˝d (viewed as aU{-module) coincides
with the (dual) quasiparabolic KL basis on V ˝d D

L
f Mf (viewed as an HBd

-module).

The quasiparabolic KL polynomials are by definition the transition matrix entries
from the quasiparabolic KL to the standard basis. An inversion formula for parabolic KL
polynomials (theorems of Kazhdan–Lusztig and Douglass) can be generalized to the quasi-
parabolic cases.

Remark 5.3. In case when r D 0, {Schur duality reduces to Jimbo–Schur duality [31]

between U and Hecke algebra of type A, and Theorem 5.2 goes back to a result of Frenkel–
Khovanov–Kirillov. In case whenmD 0;1, it reduces to the quasisplit {Schur duality [4,9,11],
which has applications to Kazhdan–Lusztig theory of classical type.

6. Application to super Kazhdan–Lusztig theory

6.1. The BGG category
Consider the BGG category O of g-modules, where g D n� ˚ h ˚ n is a simple

or reductive Lie (super)algebra over C. There is a duality functor _ W O ! O sending
M D

L
�2h� M� to M_ WD

L
�2h� M �

� . Let M.�/ be the Verma module with highest
weight � and L.�/ be its unique irreducible quotient. It is known that a simple module L.�/
and a tilting module T .�/ (of highest weight �) are self-dual with respect to _.
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For semisimple Lie algebras, the linkage is controlled by the dot action of the Weyl
group, and the BGG category O admits a block decomposition according to the central char-
acters. For a (or any) regular block O0, its Grothendieck group is identified with the Weyl
group algebra. If we further identify the Verma module basis in ŒO0� with the standard basis
in the Hecke algebra (specialized at v D 1), then the Kazhdan–Lusztig conjecture (a theorem
of Beilinson–Bernstein and Brylinski–Kashiwara) states that the simple module basis corre-
sponds to the dual canonical basis (and the tilting module basis corresponds to the canonical
basis).

For general linear or orthosymplectic Lie superalgebras, the linkage in the BGG
category is no longer controlled by the Weyl group, and so the formulation of Kazhdan–
Lusztig theory via Hecke algebras breaks down.

6.2. Super type BCD character formulas
Let us treat the super type B case, g D osp.2mC 1j2n/, in detail. With respect to

a standard Dynkin diagram

  
N

  (H � � � � � �

�1 ��1 C �2 ��m C ı1 �ı1 C ı2 �ın�1 C ın

we have the Weyl vector

� D
1

2
�1 C

3

2
�2 C � � � C

�
m �

1

2

�
�m �

�
m �

1

2

�
ı1 �

�
m �

3

2

�
ı2 � � � � �

�
m � nC

1

2

�
ın:

There exists a �-shift bijection for the set of integer weights

Xmjn
WD

mM
iD1

Z�i ˚

nM
j D1

Zıj
Š

���!
�-shift

�
1

2
C Z

�mCn

; � 7! f�;

where f� is defined via �C �D
Pm

iD1 f�.i/�i C
Pn

j D1 f�.mC j /ıj . Similarly, there exists
a bijection for the set of half-integer weights

X
mjn
1
2

WD

mM
iD1

�
1

2
C Z

�
�i ˚

nM
j D1

�
1

2
C Z

�
ıj

Š
�����!
��-shift

ZmCn; � 7! f�:

Denote by O
mjn

b (respectively, O
mjn

b; 1
2

) the BGG category which contains the Verma mod-
ules M.�/, tilting modules T .�/ and simple modules L.�/, parametrized by the weights
� 2 Xmjn (respectively, � 2 X

mjn
1
2

).
Recall from Section 5.2 the quasisplit quantum symmetric pair .Uv.slN /;U{/ of

type AIII, where we fix p D v in (5.2)–(5.3). Recall the natural representation V with basis
¹ui j i 2 Œ1�N

2
::N �1

2
�º, for N even and odd, allowing N D 1 with parity! Then we can

identify the indexing set Œ1�N
2
::N �1

2
�with 1

2
C Z forN D 1 (even), and withZ forN D 1

(odd).
By Theorem 4.1, the Uv.sl1/-module V ˝m ˝ V �˝n (regarded as U{-module with

p D v) admits an {canonical basis, denoted by ¹C {
f

º, and a dual {canonical basis, denoted
by ¹L{

f
º, where f 2 .1

2
C Z/mCn or ZmCn, respectively.

3092 W. Wang



Define the following Z-module isomorphisms:

‰b W
�
O

mjn

b

�
! V ˝m

Z ˝ V �˝n
Z ;

�
M.�/

�
7! Mf�

.� 2 Xmjn/;

‰b; 1
2

W
�
O

mjn

b; 1
2

�
! V ˝m

Z ˝ V �˝n
Z ;

�
M.�/

�
7! Mf�

.� 2 X
mjn
1
2

/: (6.1)

A basic fact here [9] is that the generators Bi in U{ act on ŒOmjn

b � and ŒOmjn

b; 1
2

� by transla-
tion functors, and the above Z-module isomorphisms become U{

Z-module isomorphisms at
v D 1. (A similar observation on translation functors and Bi is valid for p D 1 [4], and it
was made independently in [28] in the nonsuper setting.)

Theorem 6.1 ([9]). The Z-module isomorphism ‰b (respectively, ‰b; 1
2
) in (6.1) sends�

L.�/
�

7! L{
f�
;

�
T .�/

�
7! C {

f�
; for � 2 Xmjn (and respectively, � 2 X

mjn
1
2

).

Remark 6.2 (Super type A Kazhdan–Lusztig theory). Consider the BGG category Omjn of
modules over the general linear Lie superalgebra g D gl.mjn/ of integer weights. We have
an almost identical Z-module isomorphism ‰ W ŒOmjn� ! V ˝m

Z ˝ V �˝n
Z as in (6.1), which

match the Verma basis with the standard basis. Then Brundan–Kazhdan–Lusztig conjec-
ture [18] (proved by Cheng, Lam, and the author in [22]) states that the simple module basis
(respectively, tilting module basis) is mapped by ‰ to Lusztig dual canonical basis (respec-
tively, canonical basis). There has been a second proof in [19] using ideas of categorification.

Example 6.3. Take n D 0 and m D 1, so that g D so3 Š sl2. If the standard basis
(D canonical basis) ¹ui j i 2 Zº for V is indexed by Z, then V admits an {canonical basis
¹u0;u�i ;ui C v�1u�i j i 2 Z>0º and a dual {canonical basis ¹u0;u�i ;ui � vu�i j i 2 Z>0º.

Theorem 6.1 can be adapted to the type D Lie superalgebra g D osp.2mj2n/, by
setting the parameter p D 1 (instead of p D v) in (5.2)–(5.3) (see Bao [4]). Thanks to Theo-
rem 5.2, Theorem 6.1 formD 0 amounts to a reformulation for the type B Kazhdan–Luszitg
conjecture [33]. For further extension to Kazhdan–Lusztig theory for super parabolic BGG
categories, see [12].

7. Hall algebras

The Drinfeld double quantum group QU D QU.g/ is the Q.v/-algebra generated by
Ei ; Fi ;Ki ;K

0
i .i 2 I/ subject to relations in [50, (6.1)–(6.5)] similar to those in U. Denote the

Cartan matrix for g by .cij /i;j 2I . Following [50], we define the universal {quantum group QU{

associated to a Satake diagram .I D I� [ Iı; �/ as the Q.v/-subalgebra of QU generated by
QUI�

and ¹Bi ; Qki j i 2 Iıº, with identifications

Bi 7! Fi C QTw�
.E�i /K

0
i ;

Qki 7! KiK
0
�i ; i 2 Iı: (7.1)

Denote the embedding by { W QU{ ! QU, x 7! x{ . One checks that QU{ is a right coideal subal-
gebra of QU. The {quantum group U{ (with Y D NI) can be obtained from QU{ via a central
reduction.
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In the remainder of this section, we shall only consider QU{ of quasisplit types, i.e.,
I� D ;. Let Q D .Q0; Q1/ be a virtually acyclic quiver; see [52, Def. 4.4]. This is a mild
generalization of acyclic quivers, allowing a generalized Kronecker subquiver. Throughout
the paper, we shall identifyQ0 D I. An {quiver .Q;�/ consists of a (virtually acyclic) quiver
Q and an involution � of Q; we allow the trivial involution Id. We work over a finite field
Fq . An involution � ofQ induces an involution of the path algebra FqQ, also denoted by � .

LetQ be a new quiver obtained fromQ by adding a loop "i at the vertex i 2 Q0 if
� i D i , and adding an arrow "i W i ! � i for each i 2Q0 if � i ¤ i ; the "i are in purple color
below. The {quiver algebra ƒ{ associated to .Q; �/ can be defined in terms of the quiverQ
with relations, cf. [50, Prop. 2.6], that is,ƒ{ Š FqQ=I , where I is generated by "i"�i for each
i 2 Q0 and "i˛ � �.˛/"j for each arrow ˛ W j ! i inQ1.

Rank 1 or 2 subquivers of the quiver Q associated to a general virtually acyclic
quiverQ look like as follows (whereQ is obtained fromQ by adding arrows "’s):

i
-
-� � �

˛1

˛a

j
	 	

"1 "2 i � i

˛a
˛1 ˇ1

ˇa
���

A
A
A
AU

A
A
A
AU

�
�
�
��

���

�
�

�
��

j

-�
"1

"3

"2

I

i

"1

!!
˛r //
˛1
��� //

� iˇ1
oo

"2

`` ˇr
���oo

Denote by modnil.ƒ{/ the category of finite-dimensional nilpotent ƒ{-modules.
Denote by Si the 1-dimensional ƒ{-module supported at i 2 I, and Ki the 2-dimensional
module “supported at "i .” The algebraƒ{ is a 1-Gorenstein algebra and hence admits favor-
able homological properties. In particular, the subcategory P �1.ƒ{/ of modnil.ƒ{/ consist-
ing of modules of projective dimension at most 1 admits clean characterization.

Let H .ƒ{/ be the Ringel–Hall algebra of modnil.ƒ{/ over Q.
p
q/, that is, the

Q.
p
q/-vector spacewhose basis is formed by the isoclasses ŒM � of objectsM 2modnil.ƒ{/,

with multiplication defined by ŒM � ˘ ŒN � D
P

ŒL�2Iso.mod.ƒ{//
jExt1.M;N /Lj

jHom.M;N /j
ŒL�. Then, the

semiderived Hall algebra �DH .ƒ{/ of ƒ{ is defined in terms of localization of a quotient
algebra of the Ringel–Hall algebra H .ƒ{/ with respect to P �1.ƒ{/, and the {Hall algebra
QH .FqQ; �/ is defined to be �DH .ƒ{/ with a new multiplication via twisting by an Euler
form; see [50, Appendix A] [52] for precise definitions.

Let I� be a set of representatives of the � -orbits on Iı.

Theorem 7.1 ([50,52]). Let .Q; �/ be a virtually acyclic {quiver. Then there exists a Q.
p
q/-

algebra monomorphism e W QU{
jvD

p
q

! QH .FqQ; �/, which sends

Bj 7!
�1

q � 1
ŒSj �; if j 2 I� ; Qki 7! �q�1ŒKi �; if � i D i 2 I;

Bj 7!

p
q

q � 1
ŒSj �; if j … I� ; Qki 7!

p
q

�ci;� i
2 ŒKi �; if � i ¤ i 2 I:

This theorem for diagonal {quivers .Q tQ; swap/ specializes to Bridgeland’s Hall
algebra realization of Drinfeld double quantum groups in [17]. The above monomorphism
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becomes an isomorphism for Dynkin {quivers. Reflection functors on {Hall algebras provide
a conceptual approach to braid group actions on QU{ (of quasisplit type); see [47,48].

8. Relative braid group actions

Let . QU; QU{/ be the universal quantum symmetric pair associated to a Satake diagram
.I D I� [ Iı; �/. It is shown in [64] that there exists a quasi-K-matrix e‡ associated to . QU; QU{/

satisfying an intertwining relation like (3.1). For i 2 Iı, denote by e‡ i the quasi-K-matrix
associated to the rank-1 Satake subdiagram I�;i WD I� [ ¹i; � iº in the setting of . QU; QU{/.

Let W�;i be the parabolic subgroup of the Weyl group W of g generated by si ,
for i 2 I�;i , with longest element w�;i . Define ri 2 W�;i by ri D w�;iw�; it is clear that
ri D r�i . Recall that I� denotes a set of representatives of the � -orbits on Iı. The relative
Weyl group associated to the symmetric pair is identifiedwith the subgroupW D hri j i 2 I� i

ofW . There is a notion of the relative braid group associated to W . The existence of such a
relative braid group action on an {quantum group U{ was conjectured in [37]. The conjecture
was verified therein via a computation for (mostly quasisplit) finite type; for an alternative
approach via {Hall algebras, see [47,48].

There is a braid group action associated to W on the Drinfeld double QU (see [48]),
a variant of the braid group action on U in [55]. We shall need a suitably rescaled variant,
denoted by QT �1

i , for i 2 I, which again satisfies the braid group relations. In particular, an
automorphism QT �1

ri
of QU, for i 2 I� , is defined. We announce a new conceptual approach

developed by W. Zhang and the author to relative braid group actions.

Theorem 8.1 ([64]). Let . QU; QU{/ be a universal quantum symmetric pair of arbitrary finite
type. Then there exists an automorphism QT�1

i of QU{ , for i 2 I� , which satisfies the intertwining
relation

QT�1
i .x/ e‡ i D e‡ i

QT �1
ri
.x{/; for all x 2 QU{ :

Moreover, the automorphisms QT�1
i , for i 2 I� , satisfy the relative braid group relations.

The approach in [64] has additional consequences. Explicit compact formulas for
the action of QT�1

i on the generators of QU{ are obtained. The relative braid group action on
QU{ gives rise to compatible relative braid group actions on U{ and U-modules (viewed as
U{-modules). Along the way, we prove the conjecture of Dobson–Kolb [26] on factorization
of quasi-K-matrices of arbitrary finite type.

9. A current presentation of affine type

In this section, we consider universal {quantum groups QU{ of split affine type, that
is, I� D ;, � D Id, and the Cartan matrix .cij /i;j 2I is of untwisted affine type. By definition,
QU{ is a subalgebra of QU; alternatively, QU{ is the Q.v/-algebra generated by Bi ;K˙1

i .i 2 I/,
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subject to the following relations: Ki are central, and

BiBj � BjBi D 0; if cij D 0; (9.1)

B2
i Bj � Œ2�iBiBjBi C BjB

2
i D �v�1

i Bj Ki ; if cij D �1: (9.2)

We omit here the more complicated Serre-type relations between Bi ; Bj for cij D �2;�3;
they can be read off from setting k D l D 0 in (9.9)–(9.10) below. The Ki (which is natural
from {Hall algebra viewpoint) is related to Qki used earlier by Ki D �v2

i
Qki .

Associated to the affine Lie algebra g, we denote by g0; I0; X0; W0 the underlying
semisimple Lie algebra, its simple roots, weight lattice, and finite Weyl group. Recall the
(extended) affine Weyl groupW e DW0 ËX0. There are automorphisms QTi of QU{ , for i 2 I,
which arise naturally from {Hall algebras [47, 48]; also see Section 8. They give rise to the
action of an affine braid group associated to W e for the affine Lie algebra g. In particular,
we have automorphisms QTw of QU{ , for w 2 W e .

Define a sign function o.�/ W I0 ! ¹˙1º such that o.i/o.j /D �1whenever cij < 0.
Define v-root vectors Bi;k ; K‚i;m; ‚i;m in QU{ for i 2 I0, k 2 Z and m � 1 by [49,67]

Bi;k D o.i/k QT�k
!i
.Bi /;

K‚i;m D o.i/m

 
�Bi;m�1

QT!0
i
.Bi /C v2

i
QT!0

i
.Bi /Bi;m�1

C .v2
i � 1/

m�2X
pD0

Bi;pBi;m�p�2K�1
i Kı

!
;

‚i;m D K‚i;m �

b m�1
2 cX

aD1

.v2
i � 1/v�2a

i
K‚i;m�2aKaı � ım;evv

1�m
i K m

2 ı :

A version of the v-root vectors for U{ in affine rank-1 case (known as q-Onsager algebra)
was constructed earlier in [13].

Let Dr QU{ be theQ.v/-algebra generated byK˙1
i ,C˙1,Hi;m, andBi;l , where i 2 I0,

m 2 Z�1, l 2 Z, subject to the following relations, for m; n 2 Z�1 and k; l 2 Z:

Ki ; C are central, ŒHi;m;Hj;n� D 0; Ki K
�1
i D 1; CC�1

D 1; (9.3)

ŒHi;m; Bj;l � D
Œmcij �i

m
Bj;lCm �

Œmcij �i

m
Bj;l�mC

m; (9.4)

ŒBi;k ; Bj;lC1�v
�cij
i

� v
�cij

i ŒBi;kC1; Bj;l �v
cij
i

D 0; if i ¤ j; (9.5)

ŒBi;k ; Bi;lC1�v�2
i

� v�2
i ŒBi;kC1; Bi;l �v2

i

D v�2
i ‚i;l�kC1C

kKi � v�4
i ‚i;l�k�1C

kC1Ki C v�2
i ‚i;k�lC1C

lKi

� v�4
i ‚i;k�l�1C

lC1Ki ; (9.6)

ŒBi;k ; Bj;l � D 0; if cij D 0; (9.7)
2X

sD0

.�1/s

"
2

s

#
i

B2�s
i;k Bj;lB

s
i;k D �v�1

i Bj;lKiC
k ; if cij D �1; (9.8)
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3X
sD0

.�1/s

"
3

s

#
i

B3�s
i;k Bj;lB

s
i;k D �v�1

i Œ2�2i .Bi;kBj;l � Bj;lBi;k/KiC
k ; if cij D �2;

(9.9)
4X

sD0

.�1/s

"
4

s

#
i

B4�s
i;k Bj;lB

s
i;k

D �v�1
i

�
1C Œ3�2i

�
.Bj;lB

2
i;k C B2

i;kBj;l /KiC
k

C v�1
i Œ4�i

�
1C Œ2�2i

�
Bi;kBj;lBi;kKiC

k
� v�2

i Œ3�2i Bj;lK
2
i C

2k ; if cij D �3;

(9.10)

where ‚i;m are related toHi;m by

1C

X
m�1

.vi � v�1
i /‚i;mu

m
D exp

�
.vi � v�1

i /
X
m�1

Hi;mu
m

�
:

(The Dr QU{ is denoted by Dr QU{
red in [67].)

Below is an {-analog of the Drinfeld presentation of affine quantum groups [27]

(proved in [14,23]).

Theorem 9.1 ([49,67]). There is a Q.v/-algebra isomorphism ˆ W Dr QU{ ! QU{ , which sends

Bi;k 7! Bi;k ; Hi;m 7! Hi;m; ‚i;m 7! ‚i;m; Ki 7! Ki ; C 7! Kı ;

for i 2 I0, k 2 Z, m � 1.

Remark 9.2. More involved Serre relations among Bi;k ; Bj;l ; Bi;k0 generalizing the rela-
tions (9.8)–(9.9) are available; see [49,67]. They can be shown to be equivalent to (9.8)–(9.9),
when combined with other relations (9.3)–(9.7) above.

It is straightforward to pass the v-root vectors and Drineld-type presentation of QU{

to U{ with arbitrary parameters by central reduction. This current (or Drinfeld-type) presen-
tation will be extended beyond split types in a future work.

10. Open problems

“There’s no use trying, one can’t believe i... things.”
“Why, sometimes I’ve believed as many as six i... things before breakfast.”

—Alice in Wonderland

The open problems in the following six (interconnected) directions on {quantum
groups look most appealing to us:

(1) Positivity of {canonical basis
Positivity of {canonical basis holds in the (affine) type AIII setting [29, 43].
We conjecture that the {canonical bases arising from the {quantum groups of
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(quasi)split ADE type (with parameters suitably specified; see Example 4.3)
exhibit various positivity properties. Recently Lusztig extended his earlier con-
struction of total positivity to symmetric spaces in [56]. It would be interesting to
strengthen this construction by connecting to {canonical basis (with positivity).

(2) {Quiver varieties and geometric realizations of {quantum groups
Geometric realizations of quantum groups are obtained in [15, 57, 58, 63]. The
works [5, 29] can be regarded as the {-generalizations of [15]. Li [42] provides
an {-analog of some Nakajima quiver varieties. We observe, however, that the
diagram involutions used in that work are in line with Vogan diagrams instead
of Satake diagrams. A fresh start is needed to construct general {quiver vari-
eties (allowing Satake diagrams with black nodes and non-Dynkin types). The
geometric realization of {quantum groups à la [57, 58, 63] remains to be car-
ried out. Lu and the author provided in [51] a realization of QU{ via Nakajima–
Keller–Scherotzke quiver varieties, generalizing F. Qin’s approach for quantum
groups [59].

(3) {Categorification
There has been a KLR-type categorification of one family of modified {quantum
groups of type AIII by Bao, Shan, Webster, and the author [7]. The categorifica-
tion of the split rank-1 {quantum group (see Example 4.3) will be a fundamental
new step, allowing the {categorification to move forward. The {categorification
shall have applications to modular representation theory.

(4) {Hall algebra
So far, the {Hall algebras can only realize the quasisplit {quantum groups; see
[52]. It is desirable to extend the {Hall algebras to a greater generality allow-
ing Satake diagrams with black nodes, and also to understand categorically the
embedding QU{ ! QU, as well as the coideal structure (� W QU{ ! QU{ ˝ QU).

(5) Representations of affine {quantum groups
There have been numerous results in finite-dimensional representations of affine
quantum groups and connections to other areas, presented by V. Chari andmany
others. One hopes that the Drinfeld-type presentation of affine {quantum groups
(see [49,67]) can stimulate the development of their finite-dimensional represen-
tations.

(6) {Quantum groups at roots of 1
Building on Lusztig’s constructions for quantum groups at roots of 1, Bao and
Sale [6] have taken a first step in formulating small quantum symmetric pairs.
More can be expected in this direction in light of Lusztig’s program.

It is hoped that {quantum groups may find more applications in mathematical
physics, geometric and modular representation theory, quantum topology, and algebraic
combinatorics.
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Just as generalizing the study of compact or complex Lie groups to real Lie groups
and symmetric spaces, we hope to have convinced the reader that it is good to generalize
various fundamental constructions from quantum groups to {quantum groups.

It is time for the reader to come up with his or her own favorite item (+) in the list of
highlights for quantum groups in the Introduction, and supply its missing {-generalization!
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Convex geometry and
its connections to
harmonic analysis,
functional analysis
and probability
theory
Keith Ball

Abstract

Convex geometry and analysis have connections to many areas of the mathematical sci-
ences: PDEs, discrete geometry, optimization, theoretical computer science, and mathe-
matical economics. No article could even scratch the surface of all of these. Instead, we
shall begin by describing how the development of the subject was influenced over the last
50 years by two other fields, harmonic and functional analysis, and then discuss the subtle
and still somewhat mysterious way in which convex domains exhibit properties that we
normally expect to see within probability theory.
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Introduction

The task I was set in this article was to discuss convex geometry and analysis and
their connections to other fields. As pointed out in the abstract, it would be impossible towrite
a readable article that even began to exhaust such a broad remit. Naturally, I have opted to
explain the connections between convex geometry and the areas that I am most familiar
with and, in order to make the article accessible to as large an audience as possible, I have
included a few pages of introduction describing the classical theory. The three main sections
cover the subject’s connections with harmonic analysis, functional analysis, and probability
theory, respectively. Some of the material goes back several decades but helps to provide a
context for the more recent material: again the aim is to make the article widely accessible
to nonspecialists.

It is natural to begin a discussion of convex geometry with the isoperimetric inequal-
ity: the statement that if you wish to enclose the largest volume with a given surface area,
the optimal shape is a Euclidean ball. Equivalently, if a set K � Rd is measurable then

dv
1=d

d
jKj

.d�1/=d
� j@Kj1

where vd is the volume of the Euclidean ball of radius 1. Formally, this is not a statement
involving convexity since it applies to all sufficiently nice sets, but it is clear that in spirit
we are talking about convex sets. It may not be any easier to give a formal proof that the
optimizers are convex than to prove the full inequality; but it is intuitively clear that if your set
has gaps, then you can push bits of it together so as to decrease its surface without changing
its volume.

Isoperimetric principles of one sort or another appear all over mathematics: in par-
ticular, their generalizations in the form of large deviation inequalities play a crucial role in
probability theory. Section 3 of this article discusses the influence of functional analysis on
convex geometry, and in this section we shall describe how deviation principles are used to
prove one of the most celebrated results in convex geometry, Dvoretzky’s Theorem, which
guarantees that all convex bodies have almost ellipsoidal sections of quite high dimension.
The section will also discuss the reverse Santaló inequality of Bourgain and Milman and
how this grew out of the interaction between functional analysis and geometry.

Quite early in the 20th century it was realized that the isoperimetric inequality can
be extended from sets to functions to give the Gagliardo–Nirenberg–Sobolev inequality. If
a measurable f W Rd ! R has a gradient almost everywhere then

dv
1=d

d

�Z
Rd

jf j
d=.d�1/

�.d�1/=d

�

Z
Rd

krf k2:

It is in this spirit that we shall look at links between convex geometry and harmonic anal-
ysis in Section 2 of the article. We shall discuss a convolution inequality of Brascamp and
Lieb that belongs firmly in harmonic analysis but which dovetails perfectly with a geometric

1 Throughout this article we shall use the modulus sign j � j to denote the volume measure of
the appropriate dimension.
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principle of Fritz John to prove the reverse form of the isoperimetric inequality found by
the present author. We shall also discuss the beautiful monotone transportation map of Bre-
nier and how Barthe used it to prove the Brascamp–Lieb inequality. Finally, we shall briefly
discuss the quite extensive recent work on the stability of the isoperimetric inequality, in
particular in the work of Fusco, Figalli, Jerison, Maggi, and Pratelli.

The final section, Section 4 of the article, focusses on a remarkable correspondence
between convex geometry and probability. In linking geometry and harmonic analysis, we
shall frequently switch between a convex domain and its indicator function. If the domain
has volume 1 then its indicator is automatically the density of a random vector in Rd . So at
a trivial level there is obviously a reinterpretation of geometry2 in terms of probability. But
probability theory is much more than just analysis with total measure 1. Central to it is the
concept of independence and a wealth of related ideas: filtrations, conditional expectations,
and so on. Over the last three decades, it has become increasingly clear that the uniform
measure on a convex domain exhibits properties that we would expect from the joint law of
independent random variables: for example, the central limit theorem for convex domains
that was conjectured by the present author and proved by Klartag. The background to these
developments was a collection of conjectures made in the late 1980s and early 1990s, and on
which quite a lot of progress has been made in the last 20 years. One of the motivations for
these conjectures is their relationship to a lovely problem in theoretical computer science: the
difficulty of computing volumes of convex sets. So we shall mention the algorithms of Dyer,
Frieze, Kannan, Lovász, Simonovits, Applegate, Vempala, and Lee, which depend upon the
rate at whichMarkov chains diffuse inside a convex body. This section also includes Paouris’
decay estimate for the Euclidean norm on a convex set, the stochastic localization technique
of Eldan and a very recent development by Chen. Being more recent, this material has not
yet been highly digested, and so this section is much less polished than the earlier ones.
Section 1 of the article will recall some standard facts from convex geometry that we shall
refer to throughout the article.

Since this article cannot touch on all of the many areas in which convex analysis
appears, we shall say nothing about the combinatorial theory of polytopes and its relation
to the topology of complex varieties and very little about the huge field of optimization. An
excellent starting point on polytopes is the article by Henk, Richter-Gebert, and Ziegler [67].
We shall also not mention the relationship between polyhedra and lattice points described in
loving detail in the book by Barvinok [16]. If my selection of topics has a unifying theme, it
is (as by now the reader will have guessed) the isoperimetric inequality.

1. The fundamentals of convex geometry

The aim of this section is to describe some of the most basic ideas in convex geom-
etry. The list is far from exhaustive: the topics are selected mainly so that I can refer to them
in the subsequent sections of the article.

2 Or at least the kind of geometry we are talking about.
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1.1. The Brunn–Minkowski inequality
The basic Sobolev inequality mentioned in the introduction is one way to generalize

the isoperimetric inequality, but there is another rather different generalization, which con-
stitutes the most fundamental relation between volume and the linear structure of space. For
a set A with a nice enough boundary, we can compute its surface area by considering the
volume of its neighborhoods

A" D
®
x W kx � yk � "; for some y 2 A

¯
:

We then compute the surface area as the “derivative” of volume

j@Aj D lim
"!0

jA"j � jAj

"
:

The "-neighborhood can be described in a different way as

A C B."/ D
®
x C u W x 2 A; u 2 B."/

¯
where B."/ is the Euclidean ball of radius ". Therefore the isoperimetric inequality will
follow from a sufficiently strong estimate from below for the volume of the sumsetA C B."/.
The Brunn–Minkowski inequality provides such an estimate for the sum of any two (let us
say compact) sets.

Theorem 1 (Brunn–Minkowski). Suppose A and B are compact sets in Rd . Then

jA C Bj
1=d

� jAj
1=d

C jBj
1=d :

The inequality can be reformulated in terms of convex combinations of sets (rather
than sums). For compact sets A and B in Rd and � 2 .0; 1/,ˇ̌

.1 � �/A C �B
ˇ̌1=d

� .1 � �/jAj
1=d

C �jBj
1=d

and, by using the arithmetic/geometric mean inequality, we can deduce a multiplicative ver-
sion, which has a number of advantages,ˇ̌

.1 � �/A C �B
ˇ̌

� jAj
1��

jBj
�: (1.1)

Among other things, this formulation has a natural generalization to functions that was found
by Prékopa and Leindler (see, for example, [101]) and which can be very easily proved by
induction on the dimension d . (This induction argument seems to have appeared first in [30].)
The original inequality does not lend itself to such a proof because in order to deduce
the d -dimensional result for (indicator functions of) sets, you need to apply the .d � 1/-
dimensional result for more general functions.

Theorem 2 (Prékopa–Leindler). If f; g; m W Rd ! Œ0; 1/ are measurable, � 2 .0; 1/, and,
for each x and y,

m
�
.1 � �/x C �y

�
� f .x/1��g.y/�;

then Z
m �

�Z
f

�1���Z
g

��

:
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A function f WRd ! Œ0;1/ is called logarithmically concave if its logarithm is con-
cave (with the usual convention regarding �1). Equivalently, f is logarithmically concave
if it satisfies

f
�
.1 � �/x C �y

�
� f .x/1��f .y/�

for all x; y 2 Rd and � 2 Œ0; 1�. The Prékopa–Leindler inequality ensures that if f is such
a function then its marginals are too, and from this it follows that convolutions of logarith-
mically concave functions are also logarithmically concave. The class of such functions thus
constitutes a natural extension of the class of indicator functions of convex sets, but which
is closed under the most common operations applied to densities in probability theory.

There is a rather odd consequence (or variant) of the Brunn–Minkowski inequality
found by Busemann in [33]. Suppose K is a symmetric convex body, or equivalently the
unit ball of a norm on Rd . For each unit vector � , look at the intersection of K with the
.d � 1/-dimensional subspace �? orthogonal to � . Then the function

� 7!
ˇ̌
K \ �?

ˇ̌�1

that measures the reciprocal of the .d � 1/-dimensional volume of the intersection, extends
to a norm on Rd . So this is a precise way to say that if you pick two nearby sections of K

then a section between them cannot have volume much smaller than they do. Busemann’s
Theorem has a simple, but surprisingly useful extension [9]:

Theorem 3 (Busemann–Ball). Let f W Rd ! Œ0; 1/ be an even logarithmically concave
function whose integral is finite and strictly positive. Then for each p � 1, the function

x 7!

 Z 1

0

f .rx/rp�1 dr

!�1=p

defines a norm on Rd .

By generating a norm (and hence a convex set) from a logarithmically concave func-
tion, the theorem automatically transfers information about convex sets to logarithmically
concave functions. Working with functions provides the flexibility to take marginals and
convolutions without much affecting what is true. Many of the well-known inequalities for
convex sets have analogues for logarithmically concave functions that can be proved in sim-
ilar ways.

1.2. Fritz John’s Theorem
In a famous paper [69] from 1948 on optimization problems, Fritz John gave an

example that turned out to be extremely prescient and which has become one of the standard
tools in understanding convex domains. The theorem characterizes the ellipsoid of largest
volume inside a convex domain in terms of the geometric structure of the contact points
between the ellipsoid and the surface of the body. There are two versions, one for symmetric
bodies and one for general ones. To get the feel of the theorem, we will just quote the simpler
symmetric version. (Throughout the article wewill often quote results just for symmetric sets
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or even functions. In all cases they hold without the symmetry assumption, but the statements
are often more complicated and the proofs need no additional ideas.)

Theorem 4 (John). Let K be a symmetric convex body in Rd . Then K contains a unique
ellipsoid of largest volume. This ellipsoid is the standard Euclidean ball Bd

2 if and only if
the ball is indeed included in K and there are unit vectors u1; u2; : : : ; um on the surface of
K and positive weights c1; c2; : : : ; cm for which

mX
1

ci hui ; xi
2

D kxk
2 (1.2)

for every x 2 Rd .

The condition shows that the contact points behave somewhat like an orthogonal
basis. That forces their directions to be distributed in a well-spread-out way: they cannot all
lie too close to a subspace of dimension less than d . By applying the identity to an orthonor-
mal basis and summing, we get that X

ci D d: (1.3)

Plainly, K is included in the set®
x W

ˇ̌
hui ; xi

ˇ̌
� 1; for all i

¯
and hence for any x 2 K,

kxk
2

�

mX
1

ci D d:

Consequently,K not only includes the ball of radius 1 but is included in the ball of radius
p

d .
Thus John’s Theorem provides a way to use a linear map to make a convex body “as round
as possible”: choose the largest ellipsoid inside K and map that to the standard Euclidean
ball.

1.3. The Blaschke–Santaló inequality and symmetrization
A crucial role is played in functional analysis by duality. The theory extends from

symmetric convex bodies, the unit balls of norms on Rd , to more general convex sets. The
polar of a body K is

Kı
D
®
y W hy; xi � 1; for all x 2 K

¯
:

The fundamental fact here is the Blaschke–Santaló inequality [21] and [104].

Theorem 5 (Blaschke–Santaló). If K is a symmetric convex body then the product of the
volumes of K and its polar Kı is no more than that for the Euclidean balls v2

d
.

As it stands the statement cannot be true for arbitrary (nonsymmetric) sets because
if the origin is not inside the set, the polar will be unbounded. However, there is an extension
to general sets, in which one first shifts the set K to the optimal position in space before
taking the polar Kı.
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Figure 1

Symmetrizing a convex set

A classical and very lovely way to establish inequalities such as the isoperimetric
inequality is by means of Steiner symmetrization. If U is a 1-codimensional subspace of Rd

thenwe can symmetrizeK with respect toU in the followingway. For each line perpendicular
to U , consider its intersection with K. Now shift that line segment so that it sits symmetri-
cally either side of the subspace U ; see Figure 1. Plainly, the new set has the same volume
as K and Steiner showed that it has a smaller surface area. To establish the isoperimetric
inequality, you need to show that, by repeatedly symmetrizing a set in different subspaces,
you can (in the limit) turn it into a ball. This was done in a famous article by De Giorgi [41].

One can generalize this idea of symmetrization to subspaces of dimension other
than d � 1. If U is a subspace then we replace K by the set of all points of the form

u C .v � w/=2;

where u is a point inU , v andw are in the orthogonal complementU ?, and u C v and u C w

are in K. It was found by Saint-Raymond [103] that, by using this type of symmetrization,
one can give a proof of the Blaschke–Santaló inequality. (See also [9].) If you symmetrize
K and its polar in orthogonal subspaces then the polar of the symmetrization contains the
symmetrization of the polar. Therefore the product of the volumes goes up when you sym-
metrize. A lovely generalization of this argument to nonsymmetric sets was found by Meyer
and Pajor [87].

1.4. Lévy’s inequality
Isoperimetric inequalities hold in many manifolds although there are not too many

examples where the exact optimizers are known. One case in which the optimum is known
is that of the sphere Sd�1 in Euclidean d -dimensional space. We use the rotation-invariant
probability measure �d�1 on the sphere to measure “volume.” Lévy proved that among com-
pact subsets of the sphere with a given measure, those with the smallest boundary are the
spherical caps; see Figure 2.
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Figure 2

A spherical cap

The inequality can be extended. For each " > 0, the subset of Sd�1 of a given
measure whose "-neighborhood has smallest measure is a spherical cap. It was shown by
Benyamini that this can be proved by a kind of symmetrization argument: the so-called 2-
point symmetrization first introduced byWolontis [110]. Benyamini’s argument is included in
the article [51]. The process is this. You start with a subset of the sphere. Choose a direction
(let us say downwards) and, for each line in that direction that meets the sphere, ask whether
the two points where it meets the sphere lie in the set. If both do, neither do, or just the bottom
one does, then leave them alone. But if just the top one belongs to the set, then move it to the
bottom. You thus compress the set as much as possible into the southern hemisphere. So this
is actually a “compression” argument rather than a “symmetrization” argument, but they are
clearly very similar in spirit.

Lévy’s inequality implies a deviation estimate on the sphere something like the fol-
lowing:

Theorem 6. Suppose A � Sd�1 and

�d�1.A/ � 1=2:

Then its "-neighborhood has probability at least

�d�1.A"/ � .1 � 2e�d"2=2/:

1.5. Differentiability
A classic and much loved text on convex analysis is that by Rockafellar [102]. His

bookwaswritten with optimization inmind and so proceeds in a very different direction from
this article, but we shall want one famous fact from that source. It contrasts appealingly with
the warning we impress upon our students in their second or third analysis courses, namely
that convergence of functions does not imply convergence of their derivatives.

Theorem 7. If � W Rd ! R is convex then f has a gradient almost everywhere. Indeed, the
gradient exists outside a set of Hausdorff dimension at most d � 1. If �k are convex functions
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converging locally uniformly to � then wherever the derivatives exist we also have

r�k ! r�:

In fact, much more is true. There are a number of ways to make sense of the idea that
convex functions are twice differentiable almost everywhere. It cannot be true in the classical
sense because the function might fail to be differentiable on a dense set. However, if we are
content to ask just for a second-order Taylor expansion instead of the existence of a classi-
cal second derivative then the Busemann–Feller–Alexandrov Theorem [1,34] guarantees its
existence almost everywhere. As you would expect, this Hessian of a convex function will be
a positive semidefinite map almost everywhere. An excellent account of the various forms
of twice differentiability, and several new arguments are contained in the article by Bianchi,
Colesanti, and Pucci [20].

2. Connections with harmonic analysis

The aim of this section is to describe a number of geometric principles that have
been established by using very precise inequalities from harmonic analysis and how these
methods then fed back into the study of the original inequalities. An important role is played
here by the monotone transport of Brenier which became a powerful tool in PDEs and a
subject of considerable attention in the late 1990s and early part of this century. A good
reference is the monograph of Villani [109].

2.1. The reverse isoperimetric inequality
In 1937 Behrend [18] asked a rather natural question about reversing the isoperimet-

ric inequality. If a set looks like a scattering of dust it can have huge surface area but very
small volume. Even if the set is convex there is no upper bound for the surface in terms of the
volume, because the set could be a pancake. Behrend’s question was this: suppose you are
allowed to apply a linear map to your convex set which preserves the volume but makes the
surface area as small as possible. For which convex set is the minimal surface area largest?
The natural conjecture is that in each dimension, the simplex is the solution to this max–min
problem.

In 1961 Petty [96] found a characterization of the optimal affine image for each
convex body.

Theorem 8 (Petty). A convex body K � Rd has the least surface area among all its affine
images of the same volume, if and only if for every x 2 Rd ,

d

j@Kj

Z
@K

hn; xi
2

D kxk
2; (2.1)

where the integral is taken with respect to the area measure on the boundary of K and n is
the unit normal at each point of the boundary.

The condition is clearly very similar to the Fritz John condition in Theorem 4 and,
in fact, there are a number of results with the same general “shape”; see [61]. In spite of
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this attractive characterization, Behrend’s question was not answered until 1990 [11], and it
turned out that the affine image which was best adapted to solving the problem was actually
the one characterized by John rather than the optimal one for surface area. It is an elementary
exercise to check that if a convex K � Rd includes the Euclidean ball of radius 1, then
j@Kj � d jKj with equality if K is a polytope whose facets all touch the ball (and in many
other cases). Since there is equality for a regular solid simplex, we can prove the reverse
isoperimetric inequality by showing that the regular simplex has the largest volume among
all bodies whose ellipsoid of maximal volume is the Euclidean unit ball. (Among symmetric
convex bodies, the cube has the largest volume ratio; the proof is similar but a bit simpler.)

Theorem 9 (Ball). Suppose K is a convex set in Rd , the ellipsoid of largest volume in K is
the Euclidean ball B.1/, and T is a regular simplex with the same maximal ellipsoid. Then

jKj � jT j;

and consequently,
j@Kj

jKj.d�1/=d
�

j@T j

jT j.d�1/=d
:

As mentioned in the introduction, the proof of this theorem depended upon a con-
volution inequality of Brascamp and Lieb. The famous inequality of Young for convolutions
states that if f; g; h W R ! Œ0; 1/ are measurable and 1=p C 1=q C 1=r D 2 thenZ

R
f � g � h � kf kpkgkqkhkr :

The inequality holds on any locally compact group using integrals with respect to Haar mea-
sure. On compact groups where constant functions belong to all Lp-spaces, the inequality
is sharp, but for the real line it is not. The sharp version was found for certain exponents by
Beckner [17] and in full generality by Brascamp and Lieb [29]. The extremal functions for the
inequality are Gaussian densities rather than constant functions.

The key to proving the reverse isoperimetric inequality, Theorem 9, was to recog-
nize that the Brascamp–Lieb inequality dovetails perfectly with Fritz John’s Theorem. The
appropriate formulation is this.

Theorem 10 (Brascamp–Lieb). Suppose that unit vectors .ui / inRd and weights .ci / satisfy
the John condition

mX
1

ci hui ; xi
2

D kxk
2
2

for all x 2 Rd . Then if .fi / are nonnegative measurable functions on R,Z
Rd

mY
1

fi

�
hui ; xi

�ci
�

mY
1

�Z
R

fi

�ci

:

Some feel for the inequality can be gained by observing that there is obviously equal-
ity if the .fi / are identical Gaussian densities. If fi .t/ D e�t2 for each i thenY

fi

�
hui ; xi

�ci
D exp

�
�

X
ci hui ; xi

2
�

D e�kxk2
2
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by the Fritz John condition (1.2). The integral of this function is the same as the productY�Z
R

fi

�ci

D

�Z
e�t2

�d

by equation (1.3). There is something pleasingly counterintuitive about the fact that we prove
an inequality for which the simplex is extremal by using a result from harmonic analysis in
which Gaussian densities are extremal. The resolution of the paradox lies in the fact that the
Brascamp–Lieb inequality is sharp (whatever the fi ) if the vectors ui form an orthonormal
basis.

It is natural to conjecture an extension of the Brascamp–Lieb inequality in which
one replaces the rank-one projections x 7! hui ; xiui by orthogonal projections of higher
rank. This generalized inequality was proved by Lieb in a later article [81].

2.2. Monotone transport
A few years after the proof of the reverse isoperimetric inequality, Barthe [15] gave

an elegant new proof of the generalized Brascamp–Lieb inequality using the optimal trans-
portation map discovered by Brenier. A map T W Rd ! Rd transports a probability measure
� on Rd to a probability measure � if, for each measurable set A � Rd , we have

�
�
T �1.A/

�
D �.A/: (2.2)

Among all maps that do so, one can ask for the one that minimizes the total costZ
Rd

c.x; T x/ d�.x/

for some cost function c. (So c.x;y/ is the cost of moving unit measure from x to y.) Brenier
[32] realized that for one very specific cost function, c.x; y/ D kx � yk2, the square of
the Euclidean distance, the optimal map exists under only very weak hypotheses about the
measures and has a very special form: it is the gradient of a convex function. (This map
is called a monotone transport map by analogy with the 1-dimensional case in which the
derivative of a convex function is monotone.) A version for still more general measures was
found by McCann [86]. For our purposes, the following theorem, which has a very simple
proof [12], gives a good enough picture:

Theorem 11 (Brenier–McCann). If� and � are probability measures onRd , � has compact
support and� assigns nomass to any set of Hausdorff dimension d � 1, then there is a convex
function � W Rd ! R, so that T D r� transports � to �.

The hypothesis on � corresponds precisely to the conclusion of the differentiability
Theorem 7 since we need � to be differentiable almost everywhere with respect to �.

Barthe’s proof of the Brascamp–Lieb inequality involves transporting the given den-
sities to Gaussian densities and checking that the integral of the product increases as a result.
The latter depends crucially upon the fact that the transportation map is the gradient of a
convex function and hence that its Hessian is positive semidefinite symmetric. So the argu-
ment constitutes a kind of symmetrization technique in which we do not know exactly what
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map we are using but we do have an inequality for its Hessian. We introduced monotone
transport because of Barthe’s proof of the Brascamp–Lieb inequality but it has an obvious
alternative point of contact with convex analysis: it involves the gradient of a convex func-
tion. The contact is actually much closer. If K � Rd is a convex body then, by Theorem 7, it
has a well-defined outward unit normal almost everywhere on its surface. By the divergence
theorem, the integral of this normal over the surface is zero. The Gauss map which takes
a point on the surface to the normal at that point, transports the surface area measure to a
measure � on the sphere satisfying Z

Sd�1

� d�.�/ D 0: (2.3)

A beautiful classical theorem ofMinkowski goes in the other direction, just like Theorem 11.

Theorem 12 (Minkowski existence theorem). Suppose that � is a finite measure on Sd�1

for which equation (2.3) holds and whose support spans Rd . Then there is a convex body K

whose Gauss map transports its surface measure to �.

This theorem may look a bit different from Theorem 11 because in this case we
appear to build the surface measure at the same time as the convex set instead of being given
both measures to begin with. But in reality we are effectively given the surface measure,
namely it is .d � 1/-dimensional Hausdorff measure.

Another elegant approach to the Brascamp–Lieb inequality, this one using heat flow
methods, was found by Carlen, Lieb, and Loss [37] and Bennett, Carbery, Christ, and Tao [19].
In the latter article the formulation of the inequality that matches John’s Theorem is called
the “geometric form” of the inequality. Following Barthe’s argument, monotone transporta-
tion was also used to give very elegant proofs of a number of other geometric inequalities
(with best possible constants). For the purposes of this article, the obvious paper to mention
is that of Cordero-Erausquin, Nazaret, and Villani [40] where they study the Sobolev and
Gagliardo–Nirenberg inequalities. The original proofs of the best constants were found by
Aubin [6] and Talenti [108] and by Del Pino and Dolbeault [42].

2.3. Projections and surface area
If K is a symmetric convex body in Rd and for each unit vector � we consider the

.d � 1/-dimensional volume jP� .K/j of the projection of K onto the orthogonal comple-
ment of the span of � , then it is easy to see that the map

� 7!
ˇ̌
P� .K/

ˇ̌
extends to a norm on Rd . The unit ball of this norm has volume

VK D dvd

Z
Sd�1

1

jP� Kjd
d�d�1

and, unlike the surface area, this quantity is unchanged if we apply a linear map of determi-
nant 1 to K. On the other hand, the surface area of K is (apart from the obvious constant)
the average of the volumes of the projections

j@Kj D
dvd

vd�1

Z
Sd�1

jP� Kj d�d�1:
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So it is natural to ask whether there is a strong form of the isoperimetric inequality guaran-
teeing that VK is minimized over bodies of a given volume by the Euclidean ball. This is,
indeed, the case and was proved by Petty [97]. Petty’s projection inequality has been consider-
ably generalized in the work of Lutwak, Yang, and Zhang [83] and Haberl and Schuster [65].

The corresponding reverse questionwas solved by Zhang [111]who proved thatVK is
maximized over bodies of a given volume by the simplex.Whereas Petty’s Theorem strength-
ens the isoperimetric inequality, Zhang’s Theorem does not follow from Theorem 9 with the
correct constant because for the simplex the volume jP� Kj is not constant as a function of � ,
and so there is strict inequality in the Hölder inequality that one would wish to invoke.

2.4. Stability
Whenever one has an important inequality like the isoperimetric inequality, it is nat-

ural to ask about its stability. If a set has small surface area, must it resemble a Euclidean
ball? Again, strictly speaking, this is not necessarily a problem about convex sets: the ques-
tion might well make sense for other sets, as long as we specify carefully what we mean by
“resemble.” The most famous classical result in this direction is that of Bonnesan [24] from
1924 which is, indeed, specific to convex sets. He proved that for a convex region C in the
plane with area A and perimeter P , there are concentric discs D1 and D2 with radii r1 and
r2 for which D1 � C � D2 and with

P 2
� 4�

�
A C .r2 � r1/2

�
:

Thus ifC almost satisfies the isoperimetric inequalityP 2 � 4�Awith equality, its boundary
can be sandwiched between two very similar circles. This result was not extended to higher
dimensions until 1989 when Fuglede [55] showed that for a convex body K in Rd , the Haus-
dorff distance ofK from the closest Euclidean ball can be estimated by a certain power of the
gap between j@Kj and the surface area of a ball of the same volume. This sort of conclusion
is clearly impossible without the convexity assumption since a general set could have a tiny
piece far from the rest of it, which contributes very little to either the volume or the surface
area.

However, if we choose to measure the distance of a set from a ball by the volume
of their symmetric difference then we can drop the convexity. In a couple of articles, in
particular [66], Hall proved the following:

Theorem 13 (Hall). For each d , there is a constant C.d/ so that if A is a measurable set in
Rd then there is a Euclidean ball B of the same volume as K for which

jA 4 Bj
4

� C.d/
�
j@Aj � j@Bj

�
:

Hall conjectured that the exponent 4 in this theorem was not optimal and that 2 was
the correct exponent. This was proved by Fusco, Maggi, and Pratelli in [57]. Normally, the
only reasonable way to prove a stability estimate for a sharp inequality is to take a proof of
the inequality and to “watch carefully” what it does, so as to track how much the quantities
on each side change as you run through the proof. (Since the stability result implies the
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original inequality, your argument had better give a proof of the original, so you might as
well start with such a proof.) Each of the stability results mentioned so far, tracks the Steiner
symmetrization proof of the isoperimetric inequality which was mentioned in Section 1.3.

Knöthe [76] found a different approach to the Brunn–Minkowski inequality and
(a fortiori) to the isoperimetric inequality. He used a measure transport map satisfying an
equation like (2.2), but whose derivative at each point is upper triangular rather than posi-
tive semidefinite symmetric. His argument works just as well with the Brenier map except
that to make it rigorous you need some regularity for the map, and this is more difficult to
establish in the case of monotone transport. (The main reference here is the subtle regu-
larity theory of Cafarelli [36] for the Monge–Ampére equation.) In their article [50], Figalli,
Maggi, and Pratelli obtain stability results by tracking the transportation proof of the isoperi-
metric inequality instead of the symmetrization proof. The main thrust of their article is
that the latter method works for “anisotropic” isoperimetric inequalities. It was pointed out
by Gromov [92] that Knöthe’s argument works even when you measure surface area in a
direction-dependent (anisotropic) way, whereas the symmetrization argument cannot possi-
bly work because the extremal cases are no longer Euclidean balls.

As a consequence of the Brunn–Minkowski inequality, we know that the map

" 7! jA C B."/j1=d

is concave in ". If we control the surface area of A then we control the derivative of the
map at 0 and hence its value at each ". Therefore one can strengthen the stability estimates
for the isoperimetric inequality by showing that A must look like a ball under the weaker
assumption that the volume jA C B."/j1=d is not too large. This was done by Figalli and
Jerison [49]. There are two very comprehensive surveys of all of these stability results, namely
by Fusco [56] and Maggi [84]. To some extent, the existence of these surveys, by authors
heavily involved in the developments, has prompted me to give relatively brief descriptions.

3. Applications of functional analysis

In the 1970s and 1980s researchers in geometric functional analysis began to focus
on quantitative problems in finite-dimensional normed spaces rather than problems in infinite
dimensions that were, at least in spirit, qualitative. The work led to many new results in
convex geometry and, perhaps most strikingly, the reverse Santaló inequality of Bourgain
and Milman. These developments really began with Dvoretzky’s Theorem about a decade
earlier.

3.1. Dvoretzky’s Theorem
We shall say that a symmetric convex body K is t -equivalent to an ellipsoid if for

some ellipsoid E ,
E � K � tE:

This is the same as saying that the normed space with unit ball K is isomorphic to Euclidean
space with a constant of isomorphism t . Dvoretzky [44] answered a question of Grothendieck
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by proving that high-dimensional convex bodies have fairly high-dimensional slices that are
almost indistinguishable from ellipsoids.

Theorem 14 (Dvoretzky). For each positive integer k and each " > 0, there is an integer d

so that any d -dimensional symmetric convex body has a k-dimensional slice that is .1 C "/-
equivalent to an ellipsoid.

This theorem was one of the earliest triumphs of the probabilistic method: the use of
probability theory to construct (or demonstrate the existence of) mathematical objects with
special properties. About 12 years later, Milman [89] found a different proof which gives the
optimal dependence of k on d . (The fact that it is optimal is shown, for example, by the
cube.)

Theorem 15 (Milman). For each " > 0, there is a constant c."/ > 0 so that any d -dimen-
sional symmetric convex body has a k-dimensional slice that is .1 C "/-equivalent to an
ellipsoid with

k � c."/ log d:

Milman’s proof is now the most familiar. It proceeds in several steps. Assume (by
applying a linear transformation) that the Euclidean unit ball is the ellipsoid of largest volume
inside the convex body K. Then if k � kK is the norm whose unit ball is K, we have that
kxkK � kxk2 for every x in Rd giving a bound on the Lipschitz constant of k � kK as a
function on the Euclidean sphere. Using the first step, you check that if kxkK is roughly
constant on a reasonably dense finite subset of the sphere in some k-dimensional subspace,
then it will be roughly constant on the whole sphere in that subspace. A simple argument
shows that the sphere in Rk has a fairly dense subset with only about 4k points. Now using
the Lipschitz property again and Levy’s isoperimetric inequality, Theorem 6, you show that
k � kK is roughly constant on a huge part of the Euclidean sphere in Rd . Now choose a space
at random from among all k-dimensional subspaces and conclude that with high probability
the norm, restricted to 4k points in this subspace, will be almost constant.

The proof seems complete, but a moment’s thought shows that there is a point
glossed over. We transformed K to make it as round as possible in the hope that there would
then be large sets on the sphere where k � kK is almost constant. However, so far we have only
used the fact thatK includes the ball of radius 1. That would still be true ifK were a huge set
with no similarity to a ball whatsoever. To make the details of the argument work, we need
to know that the average of the norm over the Euclidean sphere is not too small (using the
fact that the Euclidean ball is the ellipsoid of maximal volume). Thus we have a final step
using a result of Dvoretzky and Rogers which shows that if the ellipsoid of maximal volume
inside K is the Euclidean unit ball then for some c independent of d ,Z

Sd�1

k�kK d�d�1.�/ � c
p
log d:

Dvoretzky’s original argument is more complicated. Dvoretzky introduced the first
and last steps but did not apply the discretization. Instead, he showed “directly” that the
norm is almost constant on a k-dimensional subspace. As a result, instead of considering
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neighborhoods of substantial subsets of the sphere, he was forced to consider neighborhoods
of sets that meet a substantial proportion of the k-dimensional subspaces. Milman’s method
threw into sharper relief the idea that on a space like the sphere, which satisfies a deviation
principle, any Lipschitz function will be almost equal to its average on a huge part of the
space. This viewpoint led to a series of important results in the 1980s which will be discussed
in Section 3.3, but in the next short subsection we shall say a bit more about Euclidean slices.

3.2. Sections of `p balls
In 1974 Kašin [71] showed that the finite-dimensionalL1 spaces, `d

1 , have Euclidean
subspaces of much higher dimension than is guaranteed by Dvoretzky’s Theorem.

Theorem 16 (Kašin). For each d , there is a subspace of `d
1 of dimension at least d=2 which

is 32-isomorphic to a Euclidean space.

He used the fact that the unit ball ofBd
1 D ¹.xi /

d
1 W
P

jxi j � 1º contains a Euclidean
ball of radius 1=

p
d whose volume is as large as 1=2d times the volume of Bd

1 . This remark-
able fact, that the unit ball of `d

1 has almost spherical slices of dimension proportional to d ,
was reproved in [51] using Milman’s approach to Dvoretzky’s Theorem.

A familiar phenomenon in functional analysis is that theLp spaces for p < 2 behave
very differently from those for p > 2: several important identities in Hilbert space become
inequalities in Lp , in one direction for p < 2 but in the other direction for p > 2. Kašin’s
argument can be used to show that for p < 2 the space `d

p contains subspaces of proportional
dimension that are almost Euclidean. However, for p > 2 the correct dependence is d 2=p as
shown in [51]. This fact was the starting point for Bourgain’s remarkable solution to the ƒp

problem on subspaces of Lp spanned by trigonometric characters [26].

3.3. The reverse Santaló inequality
In 1939Mahler asked a very natural question, prompted by applications in the geom-

etry of numbers. We already saw that the product of the volumes of a symmetric convex body
and its polar cannot be more than for the Euclidean ball v2

d
. Mahler asked whether the min-

imum occurs for the pair consisting of the cube and the so-called cross-polytope, the unit
balls of `d

1 and `d
1 , respectively, for which the product is 4d =dŠ. He also asked whether the

minimum over all (not necessarily symmetric) bodies occurs for the simplex. The precise
questions are still open but, for example, the products v2

d
and 4d =dŠ have a ratio of about

.�=2/d , so for most purposes it is enough to have an estimate

jKj:jKı
j � cd v2

d

for some positive constant c. Such an estimatewas proved in awell-known article of Bourgain
and Milman [28].
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Theorem 17 (Bourgain–Milman). There is a constant c > 0 so that if K is a symmetric
convex body and Kı is its polar then

jKj:jKı
j �

�
c

d

�d

:

The assumption of symmetry was removed in subsequent works, but the ideas
involved in proving the more general statement do not really add anything to the origi-
nal.

The original proof of the theorem used a subtle, but rather technical, estimate of
Milman’s [90] (which he called the lower M �-estimate), together with the theory of type and
cotype developed principally by Kwapień, Maurey, and Pisier; see in particular [85, 98]. A
crucial result of the latter is Pisier’s estimate for the norm of the Rademacher projection on
a finite-dimensional space [99]. If K is a convex body that is t -equivalent to an ellipsoid in
the sense of Section 3.1 then there is a linear image QK so that the norms whose unit balls are
QK and its polar satisfyZ

Sd�1

k�k QK d�d�1.�/

Z
Sd�1

k�k QKı d�d�1.�/ � C.1 C log t / (3.1)

for some constant C . As alluded to in Section 2.3, an upper estimate forZ
Sd�1

k�k QK d�d�1.�/

yields a lower estimate for the volume of K because of Hölder’s inequality. So Pisier’s result
gives an estimate

jKj:jKı
j �

�
c

d log d

�d

which is much stronger than the estimate that follows from John’s Theorem, but contains
an extra log d that is not present in the Bourgain–Milman Theorem. Milman’s lower M �-
estimate demonstrates the existence of a high-dimensional subspace on which k � k QK is
controlled in terms of the quantityZ

Sd�1

k�k QKı d�d�1.�/:

This and the very weak (logarithmic) dependence of the integral on the distance of a normed
space from Euclidean made possible an iterative argument: apply a linear map that makes
the integral small, find a subspace much closer to Euclidean and repeat. Shortly after The-
orem 17, Milman proved another result in the same spirit: his reverse Brunn–Minkowski
inequality [91]. The reverse Santaló and reverse Brunn–Minkowski inequalities are explained
at length in the books [5,100].

In the years following the Bourgain–Milman Theorem, there have been a number
of other proofs using very different methods. Kuperberg [77] found one that uses topology,
and Nazarov [93] presented a method using complex analysis. Quite recently an “elementary”
proof was found by Giannopoulos, Paouris, and Vritsiou [60]which is very much in the spirit
of convex geometry. This will be discussed in Section 4.6 below.
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4. The probabilistic picture

The aim of this last section is to explain the somewhat cryptic assertion made in the
the introduction that convex domains exhibit many of the properties we expect of the joint
densities of independent random variables. In the previous section it was explained how
the probabilistic method appears in the proofs of subtle geometric results. But here we are
after a more intimate connection between geometry and probability. Instead of probability
being a tool for proving geometric facts, we want to see classical probability theory actually
mimicked by the geometry.

4.1. The cube and the Gaussian isoperimetric inequality
To begin gently, observe that the indicator function of the cube Œ�1=2; 1=2�n is

exactly the joint density of n independent random variables, each one uniformly distributed
on the interval Œ�1=2; 1=2�. If our convex set happened to be a rectangle then it would be the
joint density of independent random variables, but we have to choose the coordinate system
carefully. If a long thin rectangle is not aligned with the coordinates then its coordinates are
highly dependent; see Figure 3.

Figure 3

A rectangle misaligned

For a general convex domain, there is no natural choice of a coordinate system, so,
in order to witness its similarity to a joint density, we must first transform the domain in
such a way that the choice of coordinate system does not really matter. If .Xi / are not just
independent but also identically distributed then all marginals of the joint distribution have
the same variance: the vector .X1; : : : ; Xd / has the property that for any unit vector .�i /,

E
�X

�i Xi

�2

D EX2
1 :

So, given a symmetric convex domain, we start by applying the linear map which makes its
inertia tensor a multiple of the identity. We call a symmetric domain K isotropic ifZ

K

hu; xi
2 du D L2

kxk
2
2 (4.1)
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for some L and every vector x. Note that this condition again resembles the conditions of
John (1.2) and Petty (2.1). (If the domain is not symmetric, we also shift it so that

R
K

x D 0.)
For an isotropic body, it makes sense to ask whether its indicator looks like the joint density
of IID random variables.

The cube is the only example of a convex domain which exactly corresponds to IID
random variables, but the model we want to keep in mind is that of the standard Gaussian
density on Rd , namely

x 7! g.x/ D
1

.
p

2�/d
exp

�
�kxk

2
2=2

�
:

Although this is not the density of a convex set, it is logarithmically concave and is the joint
density of independent 1-dimensional Gaussians. There is an isoperimetric principle for the
Gaussian density established independently by Borell [25] and by Sudakov and Tsirel’son
[106]. We write

.A/ D

Z
A

g

for the Gaussian measure of a measurable set A in Rd .

Theorem 18 (Borell–Sudakov–Tsirel’son). Suppose A is a measurable subset ofRd and H

is a half-space with the same Gaussian measure, .A/ D .H/. Then for each " > 0 the
"-neighborhoods of these sets satisfy

.A"/ � .H"/:

Both articles establish the theorem by using the isoperimetric inequality on the
sphere and a limiting process. There are other, direct, proofs; a particularly elegant one
was found by Bobkov [22]. From this isoperimetric principle, we can immediately obtain
a deviation estimate: if .A/ D 1=2 then the t -neighborhood of A has large measure:

.At / � 1 � 1=2e�t2=2:

It follows from this, or can easily be checked by simple calculation, that most of the mass of
the Gaussian density in Rd lies in a spherical shell of constant thickness (the constant being
independent of dimension) and radius about

p
d . In other words, most of the mass lies in a

shell much thinner than its radius.
As explained, the aim of this final section of the article is to discuss the extent to

which convex domains exhibit features like those of the Gaussian density. To set the scene,
let us remark that we already have a deviation inequality for the Euclidean ball: Theorem 6
works just as well for the solid ball as for the sphere. Moreover, Pisier noticed that we can get
a similar inequality for the cube by transporting the Gaussian measure to Lebesgue measure
on the cube. However, one cannot hope to obtain such a sub-Gaussian deviation principle
for a general convex domain. The unit ball of `d

1 has volume 2d =dŠ so the scaled copy that
has volume 1 is about d times as large. Its marginal in a coordinate direction decays like
.1 � x=d/d and this is only subexponential, rather than sub-Gaussian. For a general convex
domain, a subexponential deviation estimate can be provided by a Poincaré inequality which
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estimates the smallest nontrivial eigenvalue�1.K/ of theNeumann Laplacian on the domain.
In an influential paper [38] Cheeger showed that (on any compact Riemannian manifold)
this eigenvalue cannot be too small if there is an isoperimetric inequality for subsets in the
manifold. On the other hand, Gromov andMilman [62] showed that a lower bound for �1 does
imply a subexponential deviation estimate. The statement that �1.K/ is the first nontrivial
eigenvalue can be written as an inequality: if s W K ! R is differentiable and perpendicular
to the trivial constant eigenfunction Z

K

s D 0;

then
�1.K/

Z
K

s2
�

Z
K

krsk
2
2: (4.2)

Observe that if K is isotropic with constant L as in equation (4.1), then for any unit vector e

we have Z
K

hu; ei
2 du D L2:

So by taking s to be the function s W u 7! hu; ei whose gradient everywhere is the vector e

of length 1, we conclude that �1.K/ cannot be larger than 1=L2.
The Laplacian with respect to Gaussian measure, namely the operator

s 7! �
r:.grs/

g
D ��s C hx; rsi;

satisfies a Poincaré inequality with constant 1: the linear functions x 7! hu; xi are the eigen-
functions of this operator that have the smallest nonzero eigenvalue. The conjectures dis-
cussed below are intended to capture the extent to which convex domains sharewithGaussian
densities the properties of having Gaussian marginals, satisfying a Poincaré inequality or
concentrating mass in a thin shell. Before addressing the conjectures that frame our proba-
bilistic picture of convex domains, it is helpful to discuss sections of convex bodies.

4.2. Sections of convex bodies
From now on we shall assume that K is a symmetric convex domain in Rd with

volume 1 which is isotropic, that is,Z
K

hu; xi
2 du D L2

kxk
2
2 (4.3)

for all x 2 Rd . As a consequence of the Brunn–Minkowski inequality, each marginal density
of K is logarithmically concave, and that means we can relate its maximum value to its
“variance” L2. Hensley [68] pointed out that this implies that if H is a 1-codimensional
subspace ofRd then the sliceH \ K has volume between, say, 1=.4L/ and 1=L. The obvious
question is “How big is L?”. We can apply (4.3) to an orthonormal basis to getZ

K

kuk
2
2 D dL2;

and so it is clear that L is minimized if K is a Euclidean ball. In this case L is approxi-
mately 1=

p
2�e. So the question is how large L can be? It is tempting to think that a convex
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domain of volume 1 must obviously have some 1-codimensional slices as large as those of
the Euclidean ball of the same volume and use Hensley’s result to deduce that L must be at
most a constant independent of dimension. In 1956 Busemann and Petty [35] asked a general
version of this question: Is it true that if K and B are symmetric convex bodies and every
1-codimensional slice through the center ofK has .d � 1/-dimensional volume smaller than
the corresponding slice ofB , thenK itself must have smaller d -dimensional volume thanB?
The answer is no, and the simplest counterexamples take B to be the Euclidean ball, so there
is no hope of estimating L in this way. A negative answer in 12 dimensions was provided in
1975 by Larman and Rogers [78] with K a random perturbation of the Euclidean ball. Some
years later I proved that each 1-codimensional slice of the cube has volume at most

p
2 and,

as a result, if the dimension is at least 10, the unit cube has all its slices smaller than those
of the Euclidean ball of volume 1; see [8] and [10].

The Busemann–Petty problem is now solved in all dimensions. Lutwak [82] showed
that the problem can be reformulated in terms of intersection bodies (the unit balls of the
norms generated by Busemann’s Theorem 3) and using this Gardner [58] proved that the
problem has a positive solution in 3 dimensions, while Zhang [112] proved it for 4 dimen-
sions. For dimension 5 and above, the solution is negative, and a unified treatment of the
problem can be given using ideas of Koldobsky; see the article by Gardner, Koldobsky, and
Schlumprecht [59]. (In the special case in which K is the Euclidean ball, the answer to the
Busemann–Petty question is yes in all dimensions: every convex body has a slice as small
as those of the Euclidean ball of the same volume.) So there remains the question: Is there
an upper bound, independent of dimension, for the variance of isotropic convex domains in
Euclidean space? This will be the subject of the first conjecture in the next subsection.

4.3. The conjectures
The aim of this subsection is to describe three conjectures that have motivated much

of the work in high-dimensional geometry over the last two decades, each of which describes
a sense in which the indicators of convex domains look like the densities of independent
random variables or, more specifically, like Gaussian densities.

Conjecture 19 (Bourgain’s slicing conjecture). There is a constant M independent of
dimension so that if K is an isotropic symmetric convex domain of volume 1 in Rd thenZ

K

kuk
2
2 � M 2 d:

While this conjecture is usually attributed to Bourgain, I personally do not think
he actually believed it. The question of just how large the integral can be remains open but
there has been dramatic recent progress that will be discussed in Section 4.6. Note that the
conjecture is equivalent to the following tantalisingly simple statement: there is a constant
ı > 0 so that every convex body of volume 1 has a 1-codimensional slice of volume at least
ı; hence the name of the conjecture. As explained in the previous section, you cannot hope
to prove the conjecture by showing that every convex body of volume 1 has a slice as large
as the Euclidean ball of the same volume. What is trivial is that every convex domain of
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volume 1 must have width at most that of the Euclidean ball of the same volume, in at least
one direction, and this is about

p
d . By the Cavalieri principle, it must have a slice of volume

at least 1=
p

d . On the face of it, this conjecture appears to be saying much less than that a
convex domain looks like a Gaussian density; this point will be taken up in Section 4.4 below.

The second conjecture was made by the present author in the mid-1990s (and later
published in a joint article with Anttila and Perissinaki [3]) and also by Brehm and Voigt
[31]. Roughly speaking, it says the following:

Conjecture 20 (The central limit problem). LetK be an isotropic, convex domain of volume
1 in Rd . Then in all but a small proportion of directions, the 1-dimensional marginals of K

are approximately Gaussian.

(The precise formulation stipulates that as d ! 1 the proportion decreases to 0
and the distance of the marginals from Gaussian also decreases to 0.)

The third and final conjecture concerns the Poincaré constant for an isotropic convex
domain. It has been known for a century that for a bounded connected domain � � Rd there
is a spectral gap for the Neumann Laplacian on �. The gap can be very small if � is a
dumbbell-shaped domain because then s can be equal to �1 on one of the weights, 1 on the
other, and only have a nonzero gradient on the narrow bar that joins the two weights. Even
if � is convex, the constant can be large if the set is long and thin since then s can take large
values at the two ends by changing only very slowly along the length of �. However, for an
isotropic convex set K, there is a bound depending only upon dimension. As was remarked
earlier the spectral gap cannot be more than 1=L2. In their article [70], Kannan, Lovász, and
Simonovits conjectured that this is the correct order.

Conjecture 21 (Kannan–Lovász–Simonovits). There is a constantC independent of dimen-
sion so that if K is an isotropic, convex domain of volume 1 then for any differentiable s on
K with

R
K

s D 0, Z
K

s2
� CL2

Z
K

krsk
2
2 (4.4)

where L is the “slicing constant” of K, that is,Z
K

hu; xi
2 du D L2

kxk
2
2:

Thus the conjecture is that for convex domains, linear functions are approximately
the worst for the spectral gap problem, just as they are for the Gaussian density.

In the same article Kannan, Lovász, and Simonovits gave a better bound for the
spectral gap than the trivial one that can be deduced just from a bound on the diameter of K.
To do so, they used a localization method for proving inequalities originally employed by
Payne and Weinberger [95], which is roughly as follows. Among convex sets, the cones are
“extremal” in the sense that they are only just convex. As you scan along a cone in Rd the
.d � 1/-dimensional volume of the slices is given by x 7! l.x/d�1 where l is a real-valued
linear function. You have a pair of functions f and g and youwant to contradict the claim that
they both have positive integral (thereby proving the inequality you want). Assume that they

3125 Convex geometry and probability



do. Choose a hyperplane that cuts space into two pieces on which the integrals of f are the
same and pick the piece onwhich the integral of g is the larger. Thus you have found a smaller
region on which both functions have positive integral. Keep doing this and take a “limit.”
It is possible to show that the limiting region is an infinitesimal truncated cone: formally, a
line segment and a weight function of the form l.x/d�1 for some linear function l . You now
just have to prove the inequality you want in this 1-dimensional setting. The estimate given
by Kannan, Lovász, and Simonovits isZ

K

s2
� CdL2

Z
K

krsk
2
2

with an additional factor of the dimension d , instead of inequality (4.4). The same estimate
was later established by Bobkov [23] using entropy arguments.

The next subsection explains the probabilistic picture of geometry that grew out
of these conjectures and how this led to a study of the entropy of logarithmically concave
random variables. The following subsections will then describe the state of play on each of
the three conjectures. There are a number of books and survey articles on these topics, for
example, [2,75].

4.4. The probabilistic picture clarified
It was remarked in Section 1.1 that the class of logarithmically concave densities is

an extension of the class of convex domains which has the virtue of being closed under the
most common operations of probability theory. Facts about convex domains usually transfer
to this larger class: for example, using Theorem 3 it is not hard to show that if M is a bound
in the slicing conjecture for a given dimension then eM works for logarithmically concave
densities in the same dimension (see [9]). When studying a convex domain, it makes sense
to consider its indicator function which takes the value 1 on the domain. But when looking
at more general densities, it is not natural to normalize by fixing the value at a point. In the
context of probability theory, it is clearly much more natural to consider probability densities
f W Rd ! R for which the covariance matrix is the identity; so for all x,Z

Rd

f .u/hu; xi
2

D kxk
2
2:

Once you rescale in this way, two of the conjectures read differently. The central limit prob-
lem, of course, stays as it is: we still want marginals to look Gaussian, just with a different
variance.

The KLS conjecture now becomes as simple as it could be, namely the slicing con-
stant L simply disappears from the statement.

Conjecture 22 (KLS probabilistic version). There is a constantC independent of dimension
so that if f W Rd ! Œ0; 1/ is an even logarithmically concave probability density whose
covariancematrix is the identity, then for any differentiable s WRd !Rwith compact support
and

R
sf D 0, Z

s2f � C

Z
krsk

2
2f:
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The slicing problem states that in passing from the convex body normalization to the
probabilistic normalization, we haven’t had to rescale too much. So it now specifies that the
value f .0/ cannot be more thanM d for some constantM . However, the quantity f .0/ looks
rather unnatural in the probabilistic setting: among other things, it is very unstable under
probabilistic operations such as convolution. Fortunately, it can be replaced by a proxy that
is much more appropriate. It is not difficult to check that for an even logarithmically concave
density the entropy, Ent.f / D �

R
Rd f logf , satisfies

� logf .0/ � Ent.f / � � logf .0/ C cd

for some constant c. (Within a few days of my pointing this out, Fradelizi showed me a neat
argument that gives the optimal constant, c D 1. He included it into an article some years
later [54].) Therefore the slicing problem now reads

Conjecture 23 (Slicing, probabilistic version). There is a constantC independent of dimen-
sion so that if f W Rd ! Œ0;1/ is an even logarithmically concave probability density whose
covariance matrix is the identity, then

Entf � �Cd:

Among random vectors with a given covariance matrix, the Gaussian has the largest
entropy. The gap between the entropy of a random vector on Rd with density f and the
entropy of the Gaussian is a well-known and very natural measure of how far the random
vector is from being Gaussian. So this version of the slicing problem shows clearly that it
does indeed constitute a statement about logarithmically concave densities being similar to
Gaussians.

This entropic formulation of the problem was the motivation behind a series of
articles [4, 13] of Artstein, Barthe, Naor, and the author, which used a local version of the
Brunn–Minkowski inequality to find a new formula for the entropy (or more precisely, the
Fisher information) of a marginal distribution. This did not solve the slicing problem, but
led us to (among other things) the solution of an old problem in information theory: Is the
central limit theorem driven by an analogue of the second law of thermodynamics? Since
the Gaussian has the largest entropy among random variables with a given variance, it makes
sense to ask whether the central limit theorem can be “explained” by the fact that normalized
sums of IID random variables have increasing entropy that drives them to the Gaussian.

Theorem 24 (Artstein–Ball–Barthe–Naor). If .Xi / are IID square-integrable random vari-
ables then the entropies

Ent

 
1

p
n

nX
1

Xi

!
increase with n.

This theorem constitutes an application of convex geometry to information theory
rather than the other way around, but the machinery developed in [13] did have one surprising
consequence for geometry. Following the work of Bakry and Emery [7], most studies of
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entropy consider the evolution of a random vector along the Ornstein–Uhlenbeck semigroup.
This is a semigroup ¹Pt ºt�0 of convolution operators onL1 which can be defined as follows.
If f is the density of a random vector X then Pt f is the density of the random vector
Xt D

p
e�2t X C

p
1 � e�2t G where G is a standard Gaussian independent of X . Thus

the semigroup evolves the original random vector towards the Gaussian. The logarithmic
Sobolev inequality of Gross [63] ensures that the rate of decrease of the entropy gap between
the random vector Xt at time t and the Gaussian limit is at least a certain multiple of the gap:

2.EntG � EntXt / � �
@

@t
.EntG � EntXt /:

As a result the entropy gap decays to zero at least as fast as the exponential e�2t . One con-
sequence of the methods found in [13] is that if we start with a random variable X with a
logarithmically concave density f D e�� for which the Laplacian

s 7! �
r:.f rs/

f
D ��s C hr�; rsi

itself has a spectral gap, then the entropic convergence is enhanced. So if the KLS conjecture
holds for a particular density f , we get more rapid convergence of the entropy gap to zero.
With some care, this can be used to show that the initial entropy gap was not too large to
start with and hence yield an estimate for the slicing constant for f . The argument appears
in [14].

Theorem 25 (Ball–Nguyen). Let f W Rd ! R be an isotropic even logarithmically concave
probability density satisfying a Poincaré inequalityZ

s2f � C

Z
krsk

2
2f

for differentiable s with compact support satisfying
R

sf D 0. Then the slicing constant of
f is at most e16C .

Some years later Eldan and Klartag [47] gave a much tighter estimate for the rela-
tionship between the spectral gap and the slicing bound, not for each convex domain but
“globally.” They showed that an estimate C in the KLS conjecture for all convex domains
transfers to an estimate of some constant multiple ofC in the slicing problem for all domains.
The most interesting thing about the argument is that they apply the spectral gap property to
a more natural function, the Euclidean norm, than in the case of the theorem for individual
domains stated above. Their result has acquired new significance following a recent article
of Chen [39] and will be taken up in Section 4.6. The last three sections deal with what is
known on the three conjectures stated above.

4.5. The central limit problem
It was shown by Sudakov [105] and by Diaconis and Freedman [43] that an isotropic

probability measure� on high-dimensional space will have Gaussian marginals, in the sense
of the central limit problem stated above, as long as the measure satisfies a thin shell estimate
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of the kind that Gaussian measure satisfies. IfZ
Rd

hu; xi
2 d�.u/ D L2

kxk
2
2

for all x then the typical radius of the random vector with law � is L
p

d . The thin shell
condition states that most of the mass of � lies in a shell of roughly this radius, whose
thickness is significantly smaller, namely

�
�ˇ̌

kxk2 � L
p

d
ˇ̌

> "L
p

d
�

< ":

Ameasure satisfying this will have Gaussian marginals in most directions up to an error of "

plus a term depending only on d (that is, o.1/ as d ! 1). In the case of the uniformmeasure
on a convex set, one can obtain essentially optimal estimates (in terms of " and d ) as in [3].
This thin shell condition is clearly implied by a Poincaré inequality for the measure, so the
KLS conjecture is stronger than both the central limit conjecture and the slicing problem.
The KLS conjecture would give the thin shell property with " of the order of 1=

p
d which is

the best one could possibly hope for. It was explained in Section 4.3 that Kannan, Lovász, and
Simonovits had used localization to obtain a bound on the spectral gap for isotropic convex
sets or logarithmically concave functions. That bound does not provide an estimate for " that
tends to 0 as the dimension grows.

The central limit problem was solved in 2006 by Klartag [73] and shortly afterwards
a completely different proof was given by Fleury, Guédon, and Paouris [53]. The key idea
in Klartag’s article is to show that typical marginals of the body of fairly high dimension,
say log d , have almost exactly rotation-invariant densities, a kind of Dvoretzky Theorem
for marginal densities instead of sections. (The possibility of such an approximate rotation
invariance was suggested by Gromov during the 1980s.) For a rotation invariant density,
the thin shell property is a 1-dimensional question that is easily solved. Then, since the 1-
dimensional marginals of the original body are the 1-dimensional marginals of the log d -
dimensional ones, they must be almost Gaussian.

A year or so before the proof of the central limit theorem for convex domains,
Paouris [94] proved an optimal decay estimate for the Euclidean norm, which is clearly related
to the thin shell estimate but ultimately has rather different consequences.

Theorem 26 (Paouris). Suppose K is an isotropic, symmetric convex body of volume 1 in
Rd and Z

K

kxk
2
2 D L2d:

Then the volume of the part of K where kxk2 is significantly larger than L
p

d decays asˇ̌®
x 2 K W kxk2 � cL

p
dt
¯ˇ̌

< e�
p

dt

for some constant c independent of dimension and K, and for all t > 1.

The restriction that t should be larger than 1 means that the theorem does not yield
a concentration of volume in a shell but it gives an excellent decay rate for large radii. The
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proof of this theorem depends upon a delicate analysis of the integralsZ
Sd�1

k�k
q
K d�d�1.�/

of powers of the norm corresponding to K. This in turn depends upon a study of the norm
restricted to subspaces in the same spirit as the Bourgain–Milman Theorem, the new ingre-
dient here being that a crucial role is played by subspaces of dimension

p
d . The optimality

(apart from the value of c) is shown by sets like the unit ball of `d
1 as remarked earlier.

The proof of the central limit problem given by Fleury, Guédon, and Paouris uses a
variant of themethods of Theorem 26. Each of these two articles gives an estimate for the thin
shell problem with " only logarithmic in the dimension. Klartag [74] quickly gave a power-
type estimate and this was improved by Fleury [52], and again by Guédon and E. Milman
[64] by combining the techniques from [53,73]. Then in [79] Lee and Vempala showed how to
use the stochastic localization method of Eldan to estimate the thin shell bound. At the time
this gave a bound of the form " D 1=d 1=4, but the recent work of Chen reduces this almost
to 1=

p
d .

4.6. The slicing conjecture
Bourgain not only posed the slicing problem but gave the first significant estimate.

As remarked above, there is a trivial bound of
p

d for slicing constants in dimension d . In
[27] Bourgain improved this dramatically to d 1=4 log d .

Theorem 27 (Bourgain). For some M independent of dimension, if K is an isotropic sym-
metric convex body of volume 1 then

1

d

Z
K

kxk
2
2 � M.d 1=4 log d/2:

Bourgain’s argument used much of the functional-analytic machinery that had just
become available: Pisier’s estimate (3.1), Talagrand’s majorizing measure theorem [107], and
an interpolation argument using the Brunn–Minkowski inequality.

In the late 1980s when the problemwas first discussed, there was considerable inter-
est in the question of whether the slicing constant is an isomorphic invariant for normed
spaces. Suppose we have two t -equivalent norms on Rd with unit balls J and K which are
isotropic and have volume 1. If the slicing constant of K is L, must it be that the constant
for J is at most some fixed function of t times as large as L? Klartag [72] showed some 15
years later that, in this form at least, the question is a bit of a red herring.

Theorem 28 (Klartag). If K is a convex body and " > 0, there is another body T which is
.1 C "/-equivalent to K and whose slicing constant is at most C=

p
".

So every convex body is quite similar to one with a bounded slicing constant. Thus
the only way that the slicing constant can be an isomorphic invariant is that it is essentially
the same for all convex bodies. Klartag pointed out that by combining this with Paouris’
estimate, Theorem 26, one can eliminate the log d factor in Bourgain’s Theorem to give an
estimate for slicing constants of d 1=4.
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Klartag’s argument is very surprising. He considers the following logarithmically
concave function:

y 7! ehx;yi

restricted to K, for different choices of x. Using the theory of monotone transport discussed
in Section 2.2, he shows that for an appropriate x, the slicing constant for this function can be
bounded in terms of the volume product jKj:jKıj and then invokes a nonsymmetric version
of Theorem 3 to create a convex set from the logarithmically concave function. To get Theo-
rem 28, he used the reverse Santaló inequality (Theorem 17). Some years later Giannopoulos,
Paouris, and Vritsiou realized that the final step could be avoided in a rather dramatic way. It
is possible to estimate the volume product of a body in terms of its slicing constant. In itself
that is not very surprising: the slicing conjecture is a strong statement, and already in [9]

there was a very simple proof that the slicing conjecture implies Milman’s reverse Brunn–
Minkowski inequality. But the key point here is that the powers of the volume product in
Klartag’s Theorem and in the reverse direction are different, and this means that they can be
combined to yield a proof of the reverse Santaló inequality. That in turn can be fed back into
Klartag’s Theorem. So there is now an “elementary” approach to Theorem 17.

It was remarked in Section 4.4 that the KLS conjecture implies the slicing conjecture
and that Eldan and Klartag [47] had sharpened the dependence. Their argument applies the
spectral gap property to the function kxk2 and so what they actually prove is that estimates
in the slicing conjecture can be deduced from estimates for the thin shell bound discussed in
the previous subsection. Their original argument involved the construction of a Riemannian
metric related to a convex body which seems to have little or nothing to do with the other
ideas discussed in this article, although one can see a link to the proof of Theorem 28. Subse-
quently, themachinery of stochastic localization developed by Eldan, whichwill be discussed
in the next section, was used by Eldan and Lehec [48] to give an alternative proof. The best
estimates currently known in the slicing problem have just been improved dramatically as
will be explained at the end of the next subsection.

4.7. The KLS conjecture
It was remarked in Section 4.1 that for a convex set, a bound on the spectral gap is

equivalent to an isoperimetric inequality for subsets, that is, a bound on the Cheeger constant.
The Cheeger constant for a domain K is the minimum over all subsets A of K of the ratio

j@Aj

jAj:jK � Aj

where the “surface area” j@Aj of A includes only the part of the surface inside K. So the
constant tells you how small can be the area of a (curved) cut that divides the set into roughly
equal pieces. In the paper [88] of E.Milman, there is a detailed explanation of the relationship
between the Cheeger constant, the spectral gap, and (on the face of it) much weaker notions
for convex domains.

The interest of computer scientists in the spectral gap problem for convex domains
arose because of the problem of effective computation of volume for convex sets. To com-
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pute volume deterministically, even to within a factor that is exponential in the dimension, is
computationally hard. However, in [45] Dyer, Frieze, and Kannan found a randomized algo-
rithm which involved running a random walk inside the set: sampling from a set is more or
less equivalent to computing its volume. There has been a succession of improvements in the
run time of the algorithm by Lovász, Simonovits, Applegate, Vempala, Lee, and the original
authors over a period of 30 years. A very helpful survey of the history is provided by Lee
and Vempala [80]. Some of these improvements involve choosing enhanced random walks,
but others depend upon getting better estimates for the geometry of the domains being sam-
pled. In order to sample effectively, you want the randomwalk to mix throughout the domain
quickly and the barrier to that happening will be a bottleneck: a way of cutting the domain
into substantial pieces with a cut whose area is small. If your domain has this dumbbell shape
then a random walk can get trapped in one of the weights. This is exactly the Cheeger con-
stant problem. So better estimates in the KLS conjecture immediately imply better run times
in the algorithm.

A very new approach to the problemwas found by Eldan, [46]. Instead of convolving
with a Gaussian as in the Ornstein–Uhlenbeck process above, Eldan’s method can be thought
of as the apparently simpler one of multiplying by a Gaussian density. But it is a random
density and the aim is to show that the typical product behaves as you would like. If you
multiply by a Gaussian with large variance you do not really change the logarithmically
concave density: if you multiply by a Gaussian with small variance you get essentially a
Gaussian, for which you know everything. The problem is to keep track of how quantities
change in going from one to the other. The key is to effect the multiplications by a stochastic
process, what Eldan called stochastic localization. The process is governed by a stochastic
differential equation, but Eldan explains that this can be thought of in the following way. At
each infinitesimal step, you multiply the density by a linear function whose gradient has a
random direction. A linear function such as x 7! 1 � x1 puts greater weight on one half of
the density, thus mimicking the localization technique described in Section 4.3. A familiar
fact in analysis is that the product of two “complementary” linear functions

.1 � x1/.1 C x1/ D 1 � x2
1

gives you a hump which is the first step towards a Gaussian.
When he introduced the method, Eldan used it to show that the thin shell property

for a logarithmically concave density implies the KLS conjecture up to a factor that is only
a power of log d . As explained above, Lee and Vempala modified the technique to prove an
estimate " D 1=d 1=4 for the thin shell problem and hence by [47] a bound of d 1=4 for the
slicing conjecture, the same as Klartag’s. At that point it was tempting to wonder whether
this might be the correct order of the worst slicing constant on the grounds that two (or even
three) completely different methods gave (essentially) the same bound. However, in a recent
remarkable breakthrough, Chen [39] found a way to use stochastic localization to get a bound
for the KLS conjecture, the thin shell problem and the slicing problem, which is O.d ˛/ for
every ˛ > 0.
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Theorem 29 (Eldan–Chen). For every ˛ > 0, there is a constant C.˛/ so that for every
symmetric, isotropic convex domain K � Rd of volume 1 and every differentiable s W K ! R
with

R
K

s D 0, we have Z
K

s2
� C.˛/d ˛

Z
K

krsk
2
2:

4.8. Conclusion
I introduced the final section by suggesting that convex bodies mimic classical prob-

ability theory. But with hindsight one should perhaps see the situation differently. Indepen-
dence and convexity each, in their different ways, force a measure to be “genuinely” high-
dimensional, as opposed to being a low-dimensional measure that accidentally lies in a high-
dimensional space. What makes a measure roughly Gaussian is the high-dimensionality.
How is it that the extra freedom in high dimensions creates what appears to be more order
and predictability instead of less? I admit to being biased but surely a clue is given by Theo-
rem 24: the disorder that comes from high-dimensionality is the sort of disorder that is found
in physical systems, namely the disorder of high entropy. And increased entropy presents to
low-dimensional human eyes as uniformity and regularity.
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1. Introduction

One of the key properties of a compact group G is that it admits a unique left and
right invariant probability measure �G . It is called the Haar measure, and we refer to [15]

for reference. In other words, �G.G/ D 1, and for any Borel subset A of G and g 2 G,
�G.Ag/ D �G.gA/ D �G.A/, whereAg D ¹hg;h 2 Aº and gA D ¹gh;h 2 Aº. The left and
right invariance together with the uniqueness of �G readily imply that �G.A�1/ D �G.A/.
The standard proofs of existence of the Haar measure are not constructive. In the more gen-
eral context of locally compact groups, a left (resp. right) invariant measure exists, too. It is
finite if and only if the group is compact and uniqueness is up to a nonnegative scalar multi-
ple. In addition, the left and right Haar measures need not be the same. For locally compact
groups, a classical proof of existence imitates the construction of the Lebesgue measure
on R and resorts to outer measures. In the specific case of compact groups, a fixed-point
argument can be applied. Either way, in both cases, the proof of existence is not construc-
tive, in the sense that it does not tell us how to integrate functions. Weingarten calculus is
about addressing this problem systematically.Which functions one wants to integrate needs,
of course, to be clarified. We focus on the case of matrix groups, for which there are very
natural candidates, namely polynomials in coordinate functions.

We recast this problem as the question of computing the moments of the Haar mea-
sure. Recall that, for a real random variable X , its moments are by definition the sequence
E.Xk/; k � 0—whenever they are defined. If the variable is vector-valued in Rn, i.e.,
X D .X1; : : : ; Xn/, then the moments are the numbers E.X

k1
1 � � � X

kn
n /; k1; : : : kn � 0.

Naturally, the existence of moments is not granted and is subject to the integrability of the
functions. In the case of matrix compact groups, we have G � Mn.C/ D R2n2 therefore we
may consider that the random variable we are studying is a random vector in R2n2 whose
distribution is the Haar measure with respect to the above inclusion. In this sense, we are
really considering a moment problem. For this reason, we do not consider only coordinate
functions, but also their complex conjugates in our moment problem.

The goal of this note is to provide an account of Weingarten calculus and in partic-
ular its multiple applications, with emphasis on the moment aspects and applications. From
the point of view of the theory, there have been many approaches to computing integral of
functions with respect to the Haar measure. We enumerate here a few important ones:

(1) Historically, the first nontrivial functions computed are arguably Fourier trans-
forms, e.g., the Harish-Chandra integral [51]. The literature is huge and started
from the initial papers of Harish-Chandra and Itzykson Zuber until now, how-
ever, we do not elaborate too much on this field as we focus on polynomial
integrals. These techniques involve representation theory, symplectic geometry,
and complex analysis. We refer to [62] for a recent approach and to the bibliog-
raphy therein for references.

(2) Geometric techniques are natural because, when compact groups are manifolds,
the measure can be described locally with differential geometry. They are effi-
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cient for small groups. We refer, for example, to [3] for such techniques and
gaussianization methods, with application to quantum groups. Geometry is also
useful to compute specific functions, such as polynomials in one row or column
with respect to orthogonal or unitary groups.

(3) Probability, changes of variables, and stochastic calculus are natural tools to try
to compute the moments of Haar measures. For example, Rains in [68] used
Brownian motion on compact groups and the fact that the Haar measure is the
unique invariant measure to compute a complete set of relations. Subsequently,
Lévy, Dahlqvist, Kemp, and the author have made progress on understanding
the unitary multiplicative Brownian version of Weingarten calculus in [21,56].

(4) Representation theory has always been ubiquitous in the quest for calculating
the Haar measure. A first important set of applications can be found by [45], but
results were already available by [17,44,73].

(5) Combinatorial interpretations of the Haar measure in some specific cases were
initiated in [18]. In another direction, there was the notable work of [18]. Subse-
quently, new combinatorial techniques were developed in [20,24], and we refer to
[26] for substantial generalizations. We also refer [59] for modern interpretations
and applications to geometric group theory.

As for the applications, they can be found in a considerable number of areas, includ-
ing theoretical physics (2D quantum gravity, matrix integrals, random tensors), mathematical
physics (quantum information theory, quantum spin chains), operator algebras (free probabil-
ity), probability (limit theorems), representation theory, statistics, finance, machine learning,
and group theory. The foundations of Weingarten calculus, as well as its applications, keep
expanding rapidly, and this manuscript is a subjective snapshot of the-state-of-the-art. This
introduction is followed by Section 2 that contains the foundations and theoretical results
about the Weingarten functions. Section 3 investigates “simple” asymptotics of Weingarten
functions and applications to random matrix theory. Section 4 deals with “higher order”
asymptotics and applications tomathematical physics. Section 5 considers “uniform” asymp-
totics and applications to functional analysis, whereas the last section contains concluding
remarks and perspectives.

2. Weingarten calculus

2.1. Notation
On the complex matrix algebra Mn.C/, we denote by A the entrywise conjugate

of a matrix A and A� D A
t the adjoint. In the sequel we work with a compact matrix

group G, i.e., a subgroup of GLn.C/ of invertible complex matrices, that is compact for
the induced topology. It is known that such a group is conjugate inside GLn.C/ to the
unitary group Un D ¹U; U U � D U �U D 1nº. Writing an element U of Un as a matrix
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U D .uij /i;j 2¹1;:::;nº, we view the entriesuij as polynomial functionsUn ! C. As functions,
they form a �-algebra—the �-operation being the complex conjugation. By construction,
they are separating for Un, therefore, by Weierstrass’ theorem, the �-algebra generated by
uij ; i; j 2 ¹1; : : : ; nº, which is the algebra of polynomial functions on Un, is a dense subal-
gebra for the sup norm in the algebra of continuous functions on G.

By Riesz’ theorem, understanding the Haar measure boils down to understandingR
U 2G

f .U /d�G.U / for any continuous function. By density and linearity, it is actually
enough to be able to calculate systematicallyZ

U 2G

ui1j1 : : : uikjk
ui 0

1j 0
1

: : : ui 0

k0 j
0

k0
d�G.U /:

No answer was known in full generality until a systematic development was initiated in
[20, 40]. However, in the particular case of Un; On, an algorithm to calculate a develop-
ment in large n was devised in [44, 73], with further improvements by [66], and character
expansions were obtained in [17], however, these approaches are largely independent. Like-
wise, Woronowicz obtained a formula for the moments of characters in the case of quantum
groups in [74]. Interestingly, motivated by probability questions, the same formula was redis-
covered independently by Diaconis–Shashahani [45] in the particular case of compact matrix
groups.

2.2. Fundamental formula
Although the partial answers to the question of computing moments were rather

involved, the general answer turns out, in hindsight, to be surprisingly simple, so we describe
it here. We also refer to [32] for an invitation to the theory. We first start with the follow-
ing notation: for an element U D .uij / 2 G � Mn.C/, U is the entrywise conjugate, i.e.,
U D .Uij /. Since U is unitary, U is unitary, too. We denote by V D Cn the fundamental
representation of G, and V the contragredient representation. For a general representation
W of G, Fix.G; W / is the vector subspace of W of fixed points under the action of G, i.e.,
Fix.G; W / D ¹x 2 W; 8U 2 G; Ux D xº. Finally, we fix two integers k; k0, and set

ZG D

Z
U 2G

U ˝k
˝ U

˝k0

d�G.U /;

and abbreviate Fix.G; V ˝k ˝ V
˝k0

/ into Fix.G; k; k0/.

Proposition 2.1. The matrix ZG is the orthogonal projection onto Fix.G; k; k0/.

Proof. Since the distribution of U and U U 0 is the same for any fixed U 0 2 G, it implies
that for any U 2 G, ZG D ZG � U ˝k ˝ U ˝k0 . Integrating once more over U gives the fact
that ZG is a projection. The fact that the map U ! U �1 D U � preserves the Haar measure
implies that ZG D Z�

G . From the definition of invariance, for x 2 Fix.G; k; k0/ and for any
U 2 G one has U ˝k ˝ U ˝k0

� x D x. Integrating with respect to the Haar measure of G

gives ZG � x D x. Finally, take x outside Fix.G; k; k0/. It means that there exists U such that

U ˝k
˝ U ˝k0

x ¤ x:
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However, jjU ˝k ˝ U ˝k0
xjj2 D jjxjj2. Thanks to the strict convexity of the Euclidean ball,

after averaging over the Haar measure, we necessarily get jjZGxjj2 < jjxjj2, which implies
that x is not in Im.ZG/. Therefore we proved that Im.ZG/ D Fix.G; k; k0/.

From this, we can deduce an integration formula as soon as we have a generating
family y1; : : : ; yl for Fix.G; k; k0/ (for any k; k0). Let

Gr D .gij /i;j 2¹1;:::;lº

be its Gram matrix, i.e., gij D hyi ; yj i and W D .wij / the pseudoinverse of Gr. Let
E1; : : : ; En be the canonical orthonormal basis of V D Cn. Let k be a number and we
consider the tensor space V ˝k with its canonical orthogonal basis EI D ei1 ˝ � � � ˝ eik ,
where I D .i1; : : : ; ik/ is a multiindex in ¹1; : : : ; nºk . Let I D .i1; : : : ; ik ; i 0

1; : : : ; i 0
k0/,

J D .j1; : : : ; jk ; j 0
1; : : : ; j 0

k0/ be k C k0-indices, i.e.. elements of ¹1; : : : ; nºkCk0 . Then

Theorem 2.2.Z
U 2G

ui1j1 : : : uikjk
ui 0

1j 0
1

: : : ui 0

k0 j
0

k0
d�G.U / D hZG ; EI ˝ EJ i

D

X
i;j 2¹1;:::;lº

hEI ; yi ihyj ; EJ iwij :

2.3. Examples with classical groups
For interesting applications to be derived, the following conditions must be met:

(1) y1; : : : ; yl must be easy to describe.

(2) Gr should be easy to compute—and if possible, its inverse, the Weingarten
matrix, too.

(3) hEI ; yi i should be easy to compute.

Let us describe some fundamental examples. Let P2.k/ be the collection of pair partitions
on ¹1; : : : ; kº (P2.k/ is empty if k is odd, and its cardinal is 1 � � � .k � 1/ D kŠŠ if k is even).
Typically, a partition � 2 P2.k/ consists of k=2 blocks of cardinal 2, � D ¹V1; : : : ; Vk=2º,
and we call ı�;I the multiindex Kronecker function whose value is 1 if, for any block
V D ¹k < k0º of � , ik D ik0 , and zero in all other cases. Likewise, we callE� D

P
I EI ı�;I .

In [40], we obtained a complete solution to computing moments of Haar integrals
for On; Un; �pn. The following theorem describes this method. For convenience, we stick
to the case of On; Un.

Theorem 2.3. The entries ofGr are hE� ;E� 0i D nloops.�;� 0/, and we have hEI ;E�i D ı�;I .

• (The orthogonal case) For On, E� ; � 2 P2.k/ is a generating family of the image
of ZOn

.

• (The unitary case) Thanks to commutativity, and setting 2k0 D k, we consider the
subset of P2.k/ of pair partitions such that each block pairs one of the first k0
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elements with one of the last k0 elements. This set is in natural bijection with the
permutations Sk0 , and it is the generating family of the image of ZUn

.

Proof. The first two points are direct calculations. The last two points are a reformulation
of Schur–Weyl duality, respectively in the case of the unitary group and of the orthogonal
group (see. e.g., [46]).

2.4. Example with Quantum groups
We finish the general theory of Weingarten calculus with a quick excursion through

compact matrix quantum groups. For the theory of compact quantum groups, we refer to
[74,75]. The subtlety for quantum groups is that in general we can not capture all represen-
tations with just U ˝k ˝ U ˝k0 because U and U fail to commute in general. The theory of
Tannaka–Krein duality for compact quantum groups is completely developed, and in order
to get a completely general formula, we must instead consider

U ˝k1 ˝ U ˝k0
1 ˝ � � � ˝ U ˝kp ˝ U ˝k0

p :

Let us just illustrate the theory with the free quantum orthogonal group OC
n . It

was introduced by Wang in [72], and its Tannaka–Krein dual was computed by Banica in
[1]. Its algebra of polynomial functions C.OC

n / is the noncommutative unital �-algebra
generated by n2 self-adjoint elements uij that satisfy the relation

P
k uikujk D ıij 1 andP

k uki ukj D ıij 1. Note that the abelianized version of this unital �-algebra is the
�-algebra of polynomial functions on On, which explains why it is called the free orthog-
onal quantum group. There exists a unital �-algebra homomorphism, called the coproduct
� W C.OC

n / ! C.OC
n / ˝ C.OC

n / defined on generators by �uij D
P

k uik ˝ ukj , and a
unique linear functional � W C.OC

n / ! C such that �.1/ D 1 and

.� ˝ Id/� D 1�; .Id ˝ �/� D 1�:

This functional is known as the Haar state, and it extends the notion of Haar measure on
compact groups. Although the whole definition is completely algebraic, the proofs rely on
functional analysis and operator algebras.

However, the calculation of the Haar state is purely algebraic and just relies on the
notion of noncrossing pair partitions, denoted by NC2.k/, which are a subset of P2.k/

defined as follows. A partition � of P2.k/ is noncrossing—and therefore in NC2.k/ if
any two of its blocks ¹i; j º and ¹i 0; j 0º fail to satisfy the crossing relations i < j , i 0 < j 0,
i < i 0 < j < j 0. This notion was found to be of crucial use for free probability by Speicher,
see, e.g., [64]. The following theorem is a particular case of a series of results that can be
found in [4]:

Theorem 2.4. In the case of OC
n , for U ˝k , the complete solution follows from the following

result: E� ; � 2 NC2.k/ is a generating family of the image of ZOC
n
.

Note that, since U D U , it is enough to consider U ˝k to compute fully the Haar
measure. We refer to [2, 5, 6] for applications of classical Weingarten functions to quantum
groups, and to [3,4,8] for further developments of quantum Weingarten theory.
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2.5. Representation theoretic formulas
A representation theoretic approach to Weingarten calculus is available for many

families of groups, including unitary, orthogonal, and symplectic groups. Here we only
describe the unitary group, and for the others, we refer to [30,60].

Call Sk the symmetric group and consider its group algebra CŒSk �—the unital
�-algebra whose basis as a vector space is �� ; � 2 Sk , and endowed with the multiplication
�� �� D ��� and the �-structure ��

� D ���1 . We follow standard representation-theoretic
notation, see, e.g., [19] and � ` k denotes a Young diagram � has k boxes; � ` k enumerates
both the conjugacy classes of Sk and its irreducible representations. The symmetric group
Sk acts on the set ¹1; : : : ; kº, and in turn, by leg permutation on .Cn/˝k , which induces
an algebra morphism CŒSk � ! Mn.C/˝k . By Schur–Weyl duality, � describes also irre-
ducible polynomial representations of the unitary group Un if its length is less than n and in
this context, V� stands for the associated representation of the unitary group. For a permuta-
tion � 2 Sk , we call #� the number of cycles (or loops) in its cycle product decomposition
(counting fixed points). Consider the function

G D

X
�2Sk

n#� �� ;

and its pseudoinverse W D G�1 D
P

�2Sk
w.�/�� . The following result was observed by

the author and Śniady in [40] and it provides the link between representation theory and
Weingarten calculus:

Theorem 2.5. G is positive in CŒSk �. In addition, we have w.�; �/ D w.���1/, which we
rename asWg.n; ���1/, and the following character expansion:

Wg.n; �/ D
1

kŠ2

X
�`k

��.e/2��.�/

dimV�

:

Proof. Consider the action of Sk on .Cn/˝k by leg permutation. It extends to a unital
�-algebra morphism � W CŒSk � ! Mn.C/˝k . By inspection, for A 2 CŒSk �,
TrŒ�.A/� D �.GA/, where � is the regular trace �.�g/ D ıg;e . The positivity of � implies
that of G which proves positivity. The remaining points follow from the fact that G is central
and by a character formula.

2.6. Combinatorial formulations
Let us write formally n�kG D �e C

P
�2Sk�¹eº n#��k�� . It follows that as a power

series in n�1,

nkW D �e C

X
p�1

.�1/p

� X
�2Sk�¹eº

n#��k��

�p

:

Reading through the coefficients of this series gives a combinatorial formula for Wg in the
unitary case. Such formulas were first found in [20], and we refer to [26] for substantial gen-
eralizations. See also [59] for other interpretations, as well as [18].
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However, this formula is signed, and therefore impractical for the quest of uniform
asymptotics. In a series of works, Novak and coworkers in [47–49,61] came with a very inter-
esting solution to this problem which we describe below. It relies on JucysMurphy elements,
which are the following elements of CŒSk �: Ji D

P
j >i �.ij /. The following important result

was observed:
G D .n C J1/ � � � .n C Jk�1/:

This follows from the fact that every permutation � has a unique factorization as

� D .i1j1/ � � � .iljl /

with the property ip < jp and jp < jpC1.
This prompts us to define P.�; l/ to be the set of solutions to the equation

� D .i1j1/ � � � .iljl / with ip < jp , jp � jpC1. The number of solutions to this problem
is related to Hurwitz numbers, for details we refer, for example, to [26] and to the above
references. From this we have the following theorem:

Theorem 2.6. For � 2 Sk , we have the expansion

Wg.n; �/ D n�k
X
l�0

#P.�; l/.�n�1/l : (2.1)

The first strategy to compute the Weingarten formula was initiated in [73]. Let us
outline it. We can write Wg.n; �/ D

R
u11 � � � ukku1�1 � � � uk�k . Indeed, when considering

the integral on the right-hand side in Theorems 2.2 and 2.3, the only pairing appearing cor-
responds to Wg.n; �/. Replacing the first row index of u and u by i and summing over i , we
are to evaluate

nX
iD1

Z
ui1 � � � ukkui�.1/ � � � uk�.k/ D ı1�.1/

Z
u22 � � � ukku2�.2/ � � � uk�.k/

D nWg.n; �/ C

lX
iD2

Wg
�
n; .1i/�

�
; (2.2)

where the first equality follows from orthogonality and the second from repeated use of the
Weingarten formula. The second line provides an iterative technique to compute Wg.n; �/

both numerically and combinatorially. Historically, this is the idea of Weingarten, and in [73]

he proved that the collection of all relations obtained above determine uniquely Wg for k

fixed, n large enough.
In [31], we revisited his argument and figured out that these equations can be inter-

preted as a fixed point problem and a path counting formula, both formally and numerically.
We got theoretical mileage from this approach and obtained new theoretical results, such as

Theorem 2.7. All unitary Weingarten functions and their derivatives are monotone on
.k; 1/.

The unavoidability of Weingarten’s historical argument becomes blatant when one
studies quantum Weingarten function. Partial results about their asymptotics were obtained
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in [8], however, the asymptotics were not optimal for all entries. On the other hand, motivated
by the study of planar algebras, Vaughan Jones asked us the following question: considering
the canonical basis of the Temperley Lieb algebra TLk.n/, are the coefficients of the dual
basis all nonzero when expressed in the canonical basis? For notations, we refer to our paper
[16]. One motivation for this question is that the dual element of the identity is a multiple of
the Jones–Wenzl projection.

Observing that this question is equivalent, up to a global factor, to the problem of
computing the Weingarten function for OC

n , and realizing that representation theory did not
give tractable formulas in this case, we revisited the original idea of Weingarten and proved
the following result, answering a series of open questions of Jones:

Theorem 2.8. The quantum OC
n Weingarten function is never zero on the noncritical inter-

val Œ2; 1/, and it is monotone.

Our proof actually provides explicit formulas for a Laurent expansion of the free
Wg in the neighborhood of n D 1, as a generating series of paths on graphs.

3. Asymptotics and properties of Weingarten functions

In this section, we are interested in the following problem. For a given permutation
� 2 Sk , what is the behavior as n ! 1 of Wg.n; �/? This function is rational as soon as
n � k, and even elementary observations about its asymptotics have nontrivial applications
in analysis. In the forthcoming subsections, we refine iteratively our study of the asymp-
totics, and derive each time new applications. Similar results have been obtained for most
sequences of classical compact groups, but we focus here mostly on Un and On, and refer
to the literature for other compact groups.

3.1. First order for identity Weingarten coefficients and Borel theorems
Let us first setup notations related to noncommutative probability spaces and of

convergence in distribution in a noncommutative sense. A noncommutative probability space
(NCPS) is a unital �-algebra A together with a state � (� W A ! C is linear, �.1/ D 1, and
�.xx�/ � 0 for any x). In general, we will assume traciality, �.ab/ D �.ba/ for all a; b.

Assume we have a family of NCPS .An; �n/, a limiting object .A; �/ and a d -tuple
.x1

n; : : : ; xd
n / 2 Ad

n . We say that this d -tuple of noncommutative random variables converges
in distribution to .x1; : : : ; xd / 2 Ad iff for any sequence i1; : : : ; ik of indices in ¹1; : : : ; dº,

�n.xi1
n � � � xik

n / ! �.xi1 � � � xik /:

In the abelian case this corresponds to a convergence in moments (which is not in general
the convergence in distribution); however, in the noncommutative framework, it is usually
called convergence in noncommutative distribution, cf. [71]. The following result was proved
in [42] in the classical case, and [4] in the quantum case:
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Theorem 3.1. Consider a sequence of vectors .An
1; : : : ; An

r / in Mn.R/ such that the matrix
.tr.Ai A

t
j // converges toA, and aOn-Haar distributed random variableUn. Then, as n ! 1,

the sequence random vectors �
Tr.An

1Un/; : : : ;Tr.An
r Un/

�
converges in moments (and in distribution) to a Gaussian real vector of covariance A. If we
assume instead Un to be in OC

n , then .Tr.An
1Un/; : : : ;Tr.An

r Un// converges in noncommu-
tative distribution to a free semicircular family of covariance A.

The proof relies on two ingredients. Firstly, for all examples considered so far,
GrD nk � 1l .1 C O.n�1//, which implies thatW DGr�1

D n�k1l .1 C O.n�1//. By inspec-
tion, it turns out that in the above theorem, the only entries of W that contribute asymptot-
ically are the diagonal ones, and one can conclude with the classical (resp. the free) Wick
theorem.

3.2. Other leading orders for Weingarten coefficients
The asymptotics obtained in the previous section are sharp only for the diagonal

coefficients, however, they already yield nontrivial limit theorems. For more refined theo-
rems, it is, however, necessary to obtain sharp asymptotics for all Weingarten coefficients.
In the case of Un, sharp asymptotics can be deduced from the following

Theorem 3.2. In the case of the full cycle in Sk , we have the following explicit formula:

Wg
�
n; .1 � � � k/

�
D

.�1/kC1ck

.n � k C 1/ � � � .n C k � 1/
;

where ck D .k C 1/�1
�

2k
k

�
is the Catalan number. In addition,Wg is almost multiplicative

in the following sense: if � is a disjoint product of two permutations � D �1 t �2 then

Wg.n; �/ D Wg.n; �1/Wg.n; �2/
�
1 C O.n�2/

�
:

This result defines recursively a function Moeb W
F

k�1 Sk 7! Z � ¹0º satisfying

Wg.n; �/ D n�k�j� jMoeb.�/
�
1 C O.n�2/

�
:

This function was actually already introduced by Biane in [12], and it is closely related to
Speicher’s noncrossing Möbius function on the incidence algebra of the lattice of noncross-
ing partitions—see, e.g., [64]. Similar results are available for the orthogonal and symplectic
group, we refer to [41]. Finally, let us mention that the asymptotics Weingarten function for
the unitary group are the object of intense study; see, for example, [59,69].

3.3. Classical asymptotic freeness
Weingarten calculus allows answering the following

Question 1. Given two families .A
.n/
i /i2I and .B

.n/
j /j 2J of matrices in Mn.C/, what is the

joint behavior of .A
.n/
i /i2I t .UnB

.n/
j U �

n /j 2J , where Un is invariant according to the Haar
measure on Un?
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The notion of behavior has to be clarified, and it will be refined in the same time as
we refine our estimates of the Weingarten function. For now, we assume that .A

.n/
i /i2I and

.B
.n/
j /j 2J have asymptotic moments, namely, for any sequence i1; : : : ; il ,

trA
.n/
i1

� � � A
.n/
il

admits a finite limit, and likewise for .B
.n/
j /j 2J (note that our standing notation is

tr D n�1 Tr). In this specific context, the question becomes:

Question 2. Does the enlarged family .A
.n/
i /i2I t .UnB

.n/
j U �

n /j 2J have asymptotic
moments?

Let us note that since themoments are random, the question admits variants, namely,
does the enlarged family have asymptoticmoments in expectation, almost surely? The answer
turns out to be yes—irrespective of the variant chosen—and the above asymptotics allow us
to deduce the joint behavior of random matrices in large dimension. We recall that a family
of unital �-subalgebras Ai ; i 2 I of an NCPS .A; �/ is free iff for any l 2 N�, i1; : : : ; il 2 I ,
i1 ¤ i2; : : : ; il�1 ¤ il ; �.x1 � � �xl / D 0 as soon as (i) �.xj / D 0 and (ii) xj 2 Aij . Asymptotic
freeness holds when a family has a limit distribution and the limiting distribution generates
free �-subalgebras.

Theorem 3.3. The answer to Question 2 is yes. The limit of the union is determined by the
relation of asymptotic freeness, and the convergence is almost sure.

The proof relies on calculatingmoments, together with our knowledge of the asymp-
totics of the Weingarten function. In the next theorem, we observe that different types of
“asymptotic behavior,” such as the existence of a limiting point spectrum, are also preserved
under enlargement of the family. The theorem below is a particular case of a results to be
found in [27]:

Theorem 3.4. Let �i;n be sequences of complex numbers such that limn �i;n D 0. Let
ƒi;n D diag.�i;1; : : : ; �i;n/ and Aj;n be random matrices with the property that (i) .Aj;n/j

converges in NC distribution as n ! 1 and (ii) .UAj;nU �/j has the same distribution as
.Aj;n/j as a d -tuple of random matrices. Let P be a noncommutative polynomial. Then the
eigenvalues of P.ƒi;n; Aj;n/ converge almost surely.

The proof is also based on Weingarten calculus and moment formula. The limiting
distribution is of a new type—involving pure point spectrum—andwe call it cyclic monotone
convergence.

3.4. Quantum asymptotic freeness
Finally, let us discuss another seemingly completely unrelated application, to asymp-

totic representation theory. The idea is to replace classical randomness by quantum random-
ness. To keep the exposition simple, we stick to the case of the unitary group, although
more general results are true for more general Lie groups, see [41]. Call Eij the canonical
matrix entries of Mn.C/, and eij the generators of the enveloping Lie algebra U.GLn.C//
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of GLn.C/, namely, the unital �-algebra generated by eij and the relations e�
ij D ej i and

Œeij ; ekl � D ıjkeil � ıilekj . The map Eij ! eij can be factored through all Lie algebra
representations of Un, and we are interested in the following variants of its Choi matrix

A.1/
n D

X
ij

Eij ˝ eij ˝ 1; A.2/
n D

X
ij

Eij ˝ 1 ˝ eij 2 Mn.C/ ˝ U
�
GLn.C/

�˝2
:

In [39], thanks—among others—to asymptotics of Weingarten functions, we proved the fol-
lowing, extending considerably the results of [11].

Theorem 3.5. For each n, take �n; �n two Young diagrams corresponding to a polynomial
representations V�n

;V�n ofGLn.C/. Assume that both dimensions tend to infinity as n ! 1

and consider the traces on ��n
; ��n on U.GLn.C//. Assume that An converges in noncom-

mutative distribution in Voiculescu’s sense both for tr˝��n
and tr˝��n . Then A

.1/
m ; A

.2/
n

are asymptotically free with respect to tr˝��n
˝ ��n .

4. Multiplicativity and applications to mathematical

physics

4.1. Higher-order freeness
The asymptotic multiplicativity of the Weingarten function states that

Wg.�1 t �1/ D Wg.�1/Wg.�2/
�
1 C O.n�2/

�
and it is very far reaching. The fact that the error termO.n�2/ is summable in n allows in [20]

to use a Borel–Cantelli lemma and prove almost sure convergence of moments for random
matrices, cf. [70] for the original proof.

A more systematic understanding of the error term is possible and has deep appli-
cations in random matrix theory. It requires the notion of classical cumulants that we recall
now. Let X be a random variable, the cumulant Cp.X/ is defined formally by

C.t/ D logE.exp tX/ D

X
p�1

tp Cp.X/

pŠ
:

For instance, the second cumulant C2.X/ D E.X2/ � E.X/2 is the variance of the proba-
bility distribution of X . Cumulant Cp.X/ is well defined as soon as X has moments up to
order p, and it is an n-homogeneous function in X , therefore we can polarize it and define
a p-linear symmetric function .X1; : : : ; Xp/ ! Cp.X1; : : : ; Xp/. For any partition � of p

elements with blocks B 2 � , we define C�.X1; : : : ;Xp/ D
Q

B2� C.
Q

i2B Xi /. We are now
in the position to write the expectations in term of the cumulants:

E

 
pY

iD1

Xi

!
D

X
�2P.p/

C� :

The equation can be inverted through the Möbius inversion formula. Asymptotic freeness
considers the case where moments have a limit, whereas higher-order asymptotic freeness

3153 Moment methods on compact groups: Weingarten calculus and its applications



considers the case where things are known about the fluctuations of the moments: in addition
to the existence of limn trA

.n/
i1

� � � A
.n/
il
, we assume the existence of

lim
n

n2k�2Ck.A
.n/
i11

� � � A
.n/
il11

; : : : ; A
.n/
i1k

� � � A
.n/
ilk k

/

for any sequence of indices.We call this set of limits the higher order limit. In [33], we proved

Theorem 4.1. The extended family .A
.n/
i /i2I t .UB

.n/
j U �/j 2J admits a higher order limit.

In addition, there exists a combinatorial rule to construct the joint asymptotic correlations
from the asymptotic correlations of each family.

This rule extends freeness, is called higher order freeness. Subsequent work was
done in the case of orthogonal invariance by Mingo and Redelmeier.

4.2. Matrix integrals
Historically, matrix integrals have been studied before higher order freeness. How-

ever, from the point of view of formal expansion, higher order freeness supersedes matrix
integrals. In [20], we proved the following

Theorem 4.2. Let A be a noncommutative polynomial in formal variables .Qi /i2I , formal
unitaries Uj ; j 2 J and their adjoint. Consider in Mn.C/ matrices .Q

.n/
i /i2I admitting

a joint limiting distribution as n ! 1, and in i.i.d. Haar distributed .U
.n/

j /j 2J and their
adjoint. Evaluating A in these matrices in the obvious sense, we obtain a random matrix An

and consider the Taylor expansion around zero of the function

z ! n�2 logE
�
exp.zn2An/

�
D

X
q�1

a.n/
q zq :

Then, for all q, limn a
.n/
q exists and depends only on the polynomial and the limiting distri-

bution of Q
.n/
i .

In [24], we upgraded this result in the case where An is selfadjoint, and proved that
there exists a real neighborhood of zero on which the convergence holds uniformly. The
complex convergence remains a difficult problem, as a uniform understanding of the higher
genus expansion must be obtained. Novak made a recent breakthrough in this direction, in
the case of the HCIZ integral, see [65].

4.3. Random tensors
Let us revisit Question 1, under the assumption that U has more structure, i.e.,

less randomness. Our model is a tensor structure, namely, U D U1 ˝ � � � ˝ UD where
Ui 2 Mn.C/ are i.i.d. In other words, we are interested in the symmetries under conjugation
by elements of the group Un

˝D . The joint moments of a matrix are a complete invariant of
global symmetry under Un-conjugation in Mn.C/, however, for U1 ˝ � � � ˝ UD-invariance
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in Mn.C/˝D , one needs more invariants, generated, for �1; : : : ; �D 2 Sk , by

Tr�1;:::;�D
.A/ D

X
i11;:::;iDk ;j11;:::;jDk

Ai11:::iD1;j11:::jD1
� � � Ai1k :::iDk ;j1k :::jDk

� ıi11;j1�1.1/
� � � ıi1k ;j1�1.k/

� � � ıiD1;jD�D.1/
� � � ıiDk ;jD�D.k/

: (4.1)

In the case of higher tensors, thanks to theWeingarten calculus, we unveil many new inequiv-
alent asymptotic regimes for higher order tensors. These questions are addressed in a series
of projects with Gurau and Lionni, starting with [26]. We study the asymptotic expansion of
the Fourier transform of the tensor valued Haar measure—a tensor extension of the Harish-
Chandra integral to tensors, and considerably extend the single tensor case. Just as the HCIZ
integral can be seen as a generating function for monotone Hurwitz numbers, which count
certain weighted branched coverings of the 2-sphere, the integral studied in [26] leads to a
generalization of monotone Hurwitz numbers, which count weighted branched coverings of
a collection of 2-spheres that “touch” at one common nonbranch node.

4.4. Quantum information theory
Quantum information theory has been a powerful source of problems in random

matrix theory in the last two decades, and their tensor structure has made it necessary to
resort to moment techniques. The goal of this section is to elaborate on a few salient cases.
One starting point is the paper [53] where the authors compute moments of the output of
random quantum channels. We just recall here strictly necessary definitions, and refer to
[36] for details. A quantum channel ˆ is a linear map Mn.C/ ! Mk.C/ that preserves
the nonnormalized trace, and that is completely positive, i.e., ˆ ˝ Idl W Mn ˝ Ml .C/ !

Mk.C/ ˝ Ml .C/ is positive for any integer l . It follows from Stinespring theorem that for
any quantum channel, there exists an integer p and an isometry U W Cn ! Ck ˝ Cp such
that ˆ.X/ D .Idk ˝ Trp/UXU �.

The set of density matrices Dn consists in the selfadjoint matrices whose eigenval-
ues are nonnegative and whose trace is 1. For A 2 Dn, we define its von Neumann entropy
H.A/ as

Pn
iD1 ��i .A/ log�i .A/with the convention that 0 log0 D 0 and the eigenvalues of

A are �1.A/ � � � � � �n.A/. Theminimum output entropy of a quantum channelˆ is defined
as Hmin.ˆ/ D minA2Dn H.ˆ.A//, and a crucial question in QIT was whether one can find
ˆ1; ˆ2 such that

Hmin.ˆ1 ˝ ˆ2/ < Hmin.ˆ1/ C Hmin.ˆ2/:

For the statement, implications and background, we refer to [36]. An answer to this question
was given in [52] and it relies on random methods, which motivates us to consider quantum
channels obtained from Haar unitaries. A description of ˆ.Dn/ in some appropriate large n

limit has been found in [9], and the minimum in the limit of the entropy was found in [10]. In
the meantime, the image under tensor product of random channels ˆ1 ˝ ˆ2 of appropriate
matrices (known as Bell states) had to be computed. To achieve this, we had to develop a
graphical version of Weingarten calculus in [34].

We consider the case where k is a fixed integer, and t 2 .0; 1/ is a fixed number. For
each n, we consider a random unitary matrix U 2 Mnk.C/, and a projection qn of Mnk.C/
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of rank pn such that pn=.nk/ � t as n ! 1. Our model of a random quantum channel is
ˆ W Mpn.C/ ! Mn.C/ given by ˆ.X/ D trk.UXU �/, where Mpn.C/ ' qnMnk.C/qn.
By Bell we denote the Bell state on Mpn.C/˝2. In [34], we proved

Theorem 4.3. Almost surely, as n ! 1, the random matrix ˆ ˝ ˆ.Bell/ 2 Mn2.C/ has
nonzero eigenvalues converging towards

 .t/
D

�
t C

1 � t

k2
;

1 � t

k2
; : : : ;

1 � t

k2„ ƒ‚ …
k2�1 times

�
:

This result plays an important result in the understanding of phenomena underlying
the subadditivity of the minimum output entropy, and relies heavily on Weingarten calculus,
and in particular a graphical interpretation thereof. Much more general results in related
areas of quantum information theory have been obtained in [22,28,35,37,38,43].

5. Uniform estimates and applications to analysis

5.1. A motivating question
The previous sections show that when the degree of a polynomial is fixed, very pre-

cise asymptotics can be obtained in the limit of large dimension. For the purpose of analysis,
an important question is whether such estimates hold uniformly. About 20 years ago, Gilles
Pisier asked me the following question: given k i.i.d. Haar unitaries U

.n/
1 ; : : : ; U

.n/

k
2 Un,

what is the large dimension behavior of the real random variable

tn D jjU
.n/
1 C � � � C U

.n/

k
jj1;

where jj � jj1 stands for the operator norm? It follows from asymptotic freeness results that
almost surely lim inf tn � 2

p
k � 1 as soon as k � 2. Setting Xn D U

.n/
1 C � � � C U

.n/

k
, it

would be in principle enough to estimate

E
�
Tr
�
.XnX�

n /l.n/
��

for l.n/ � logn. However, there are two major hurdles: (i) uniform estimates of Weingarten
calculus would be needed; (ii) unlike in the multimatrix model case, the combinatorics grow
exponentially and a direct moment approach is not possible. Both hurdles require developing
specific tools, which we describe in the sequel.

One notion on which we rely heavily is that of strong convergence. Given a mul-
tiatrix model that admits a joint limiting distribution in Voiculescu’s sense, we say that it
converges strongly iff the operator norm of any polynomial P , evaluated in the matrices of
the model—thus yielding the random matrix Pn—satisfies

lim
n

jjPnjj D lim
`

.lim
n

n�1 Tr
�
.PnP �

n /`
�.2`/�1

:

In other words, the operator norm of any matrix model obtained from a noncommutative
polynomial converges to the operator norm of the limiting object. Strong convergence was
established in [50] in the case of Gaussian random matrices. Subsequently, the author and
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Male solved the counterpart for Haar unitary matrices in [29], with no explicit speed of con-
vergence. This result was refined further by Parraud [67]with explicit speeds of convergence,
relying on ideas of [25]. The strongest result concerning strong convergence of random uni-
taries can be found in [14]:

Theorem 5.1. .U
˝q�

i ˝ U
˝qC

i /iD1;:::;d are strongly asymptotically free as n ! 1 on the
orthogonal of fixed point spaces.

This means that strong asymptotic freeness does not hold at the sole level of the
fundamental representation of Un, but with respect to any sequence of representation asso-
ciated to a nontrivial .�; �/. In other words, the only obstructions to strong freeness are the
dimension one irreducible representations of Un. We need a linearization step, popularized
by [50] to evaluate the norm of

Pd
iD�d ai ˝ X

.n/
i , where X

.n/
�i D X

.n/�
i and X

.n/
0 D Id .

Although this first simplification step was sufficient to obtain strong convergence for i.i.d.
GUE—i.e., matrices with high symmetries—thanks to analytic techniques, this turns out to
be insufficient when one has to resort to moment methods. In [13], we initiated techniques
based on a operator version of nonbacktracking theory, which we generalized in [14]. We
outline one key feature here.

We consider .b1; : : : ; bl / elements inB.H /whereH is a Hilbert space. We assume
that the index set is endowed with an involution i 7! i� (and i�� D i for all i ). The non-
backtracking operator associated to the `-tuple of matrices .b1; : : : ; bl / is the operator on
B.H ˝ Cl / defined by

B D

X
j ¤i�

bj ˝ Eij : (5.1)

The following theorem allows leveraging moments techniques on linearization of noncom-
mutative polynomials through the study of B:

Theorem 5.2. Let � 2 C satisfy �2 … [i2¹1;:::;lºspec.bi bi�/. Define the operator A� on H

through

A� D b0.�/ C

X̀
iD1

bi .�/; bi .�/ D �bi .�
2

� bi�bi /
�1;

and

b0.�/ D �1 �

X̀
iD1

bi .�
2

� bi�bi /
�1bi� :

Then � 2 �.B/ if and only if 0 2 �.A�/.

5.2. Centering and uniform Weingarten estimates
In order to use Theorem 5.2, one has to understand the spectral radius of the operator

B and therefore, evaluate �.BT B�T / with T growing with the matrix dimension, and this
can be done through moment methods as soon as we have uniform estimates on Weingarten
functions. The first uniform estimate was obtained in [23] and had powerful applications
to the study of area laws in mathematical physics, however, it was not sufficient for norm
estimates, and it was superseded by [31]:
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Theorem 5.3. For any � 2 Sk and n >
p

6k7=4,

1

1 �
k�1
n2

�
nkCj� j Wg.n; �/

Moeb.�/
�

1

1 �
6k7=2

n2

:

In addition, the left-hand side inequality is valid for any n � k.

This result already enables us to prove Theorem 5.1 in the case where q� ¤ qC

because there are no fixed points there. Let us now outline how to tackle the case q� D qC,
which is interesting because it has fixed points. To handle fixed points, we need to introduce
the centering of a random variable X , namely ŒX� D X � E.X/. For a symbol " 2 ¹�;�º and
z 2 C, we take the notation that z" D z if " D � and z" D z if " D �. We want to compute,
for U D .Uij / Haar distributed on Un, expressions of the form E

QT
tD1Œ

Qkt

lD1
U

"tl
xtl ytl

� in a
meaningful way. We can write a Weingarten formula:

E
TY

tD1

"
ktY

lD1

U "tl
xtl ytl

#
D

X
�;�2P2.k1C���CkT /

ı�;xı�;y Wg.�; � I k1; : : : ; kT /;

where the function Wg depends on the pairings and the partition. We say that a block of the
partition ¹¹1; : : : ; k1º; : : : ; ¹k1 C � � � C kT �1 C 1; : : : ; k1 C � � � C kT ºº is lonesome with
respect to the pairing .�; �/ iff the group generated by �; � stabilizes it. In [14], we prove

Theorem 5.4. Wg decays as n�k where k D .k1 C � � � C kT /=2 C d.�; �/ C 2#lonesome
blocks, and this estimate is uniform on k � Poly.n/.

This theorem, together a comparison with Gaussian vectors, allows proving Theo-
rem 5.1.

6. Perspectives

Understanding better how to integrate over compact groups is a fascinating problem
which is connected tomany questions in various branches ofmathematics and other scientific
fields. We conclude this manuscript by a brief and completely subjective list of perspectives:

(1) Uniform measures on (quantum) symmetric spaces
Viewing a group as a compact manifold, can one extend the Weingarten cal-
culus to other surfaces? Some substantial work has been done algebraically in
this direction by Matsumoto [60] in the case of symmetric spaces, see as well
[42] for the asymptotic version. It would be interesting to study extensions of
Matsumoto’s results for compact quantum symmetric spaces.

(2) Surfaces and geometric group theory
An important observation by Magee and Puder is that if G is a compact sub-
group of Un, the Haar measure on Gk yields a random representation of the
free group Fk on Un whose law is invariant under outer automorphisms of Fk .
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This motivated them to compute, in [59], the expectation of the trace of nontriv-
ial words in .U1; : : : ; Uk/ 2 Un

k . In addition to refining known asymptotics,
they used the properties of the Weingarten function to solve nontrivial prob-
lems about the orbits of Fk under the action by its outer conjugacy group. In a
different vein, Magee has very recent achieved a breakthrough by obtaining the
first steps ofWeingarten calculus for representations of some one relator groups
[57,58].

(3) Other applications to representation theory
The problem of calculating Weingarten functions on SU.n/ efficiently is hard,
and even more so when the degree is high in comparison to n. A striking exam-
ple is

R
U 2SU.n/

Qn
i;j D1 uij . It was established in [55] that proving that this inte-

gral is nonzero is equivalent to the Alon–Tarski conjecture.
More generally, this raises the question of computing efficiently integrals of
high degree on classical groups (typically, of degree � n or � n2). Weingarten
calculus as developed in this manuscript is not well adapted to this task. Some
results in this direction have been obtained byNovak [65] the author, and Cioppa.

(4) More tensors and norm estimates
In [13,14], we obtained strong convergence for an arbitrary finite number of ten-
sors of random unitaries or random permutations. It turns out that the result can
be relaxed a bit to allow the number of legs to vary slowly to infinity as the
dimension of the group goes to infinity. This points to a double limit problem,
and we wonder to which extent the number of legs of tensors and the size of the
matrix can be independent. In the extreme case, could strong freeness hold for
a given finite group but a number of tensors tending to infinity? Many variants
of this problem exist, e.g., taking i.i.d. copies of unitaries instead of the same.
Likewise, an important question is the behavior of Ui ˝ Uj for arbitrary
indices—not only i D j as in [13, 14]. As observed by Hayes in [54], this is
a possible approach towards the Peterson–Thom conjecture in operator alge-
bras, and it seems plausible that Weingarten calculus could help to solve this
problem.

(5) Maximizing functionals over groups
Given a polynomial function f W G ! C, finding m D maxU 2G jf .U /j could
provide approaches to various conjectures in analysis or algebra. In general,
finding the argmax is a problem intricately linked to the conjectures, and Haar
integration could yield nonconstructive approaches. Indeed,

l�1 log
Z �

f .U /f .U /
�l

d�G.U / � 2 logm;

and the left-hand side could in principle be approached with Weingarten calcu-
lus. Let us mention the example of the Hadamard conjecture. It states that for
any 4=n, there exists an orthogonal matrix in Mn.R/ whose entries are ˙1.
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An approach to this problem would be to show that the minimum of the poly-
nomial function f .U / D

P
ij u4

ij on On is 1. We refer to [7] for attempts with
Weingarten calculus. We also believe that some important problems in operator
algebra could be approached that way (e.g., the problem of the nonexistence of
hyperlinear group).

Acknowledgments

It has always been extremely stimulating to work with people from very diverse back-
grounds: coauthors, graduate students, as well as postdoctoral fellows. I want to thank
them all for our collaborations. I would like to thank Charles Bordenave, Mike Brannan,
Luca Lionni, Sho Matsumoto, Akihiro Miyagawa, Ion Nechita, and Jonathan Novak for
reading carefully my manuscript and for many suggestions of improvements.

Funding

This work was partially supported JSPS Kakenhi 17H04823, 20K20882, 21H00987.
Most of the original results presented in this note have been supported by JSPS Kakenhi,
NSERC grants and ANR grants, while the author was working at either of the following
places: CNRS (Lyon 1), the University of Ottawa, or Kyoto University.

References

[1] T. Banica, Le groupe quantique compact libre U.n/. Comm. Math. Phys. 190
(1997), no. 1, 143–172.

[2] T. Banica, S. T. Belinschi, M. Capitaine, and B. Collins, Free Bessel laws. Canad.
J. Math. 63 (2011), no. 1, 3–37.

[3] T. Banica, J. Bichon, and B. Collins, Quantum permutation groups: a survey. In
Noncommutative harmonic analysis with applications to probability, pp. 13–34,
Banach Center Publ. 78, Polish Acad. Sci. Inst. Math, Warsaw, 2007.

[4] T. Banica and B. Collins, Integration over compact quantum groups. Publ. Res.
Inst. Math. Sci. 43 (2007), no. 2, 277–302.

[5] T. Banica and B. Collins, Integration over quantum permutation groups. J. Funct.
Anal. 242 (2007), no. 2, 641–657.

[6] T. Banica and B. Collins, Integration over the Pauli quantum group. J. Geom.
Phys. 58 (2008), no. 8, 942–961.

[7] T. Banica, B. Collins, and J.-M. Schlenker, On polynomial integrals over the
orthogonal group. J. Combin. Theory Ser. A 118 (2011), no. 3, 778–795.

[8] T. Banica, S. Curran, and R. Speicher, Stochastic aspects of easy quantum groups.
Probab. Theory Related Fields 149 (2011), no. 3–4, 435–462.

[9] S. Belinschi, B. Collins, and I. Nechita, Eigenvectors and eigenvalues in a random
subspace of a tensor product. Invent. Math. 190 (2012), no. 3, 647–697.

3160 B. Collins



[10] S. T. Belinschi, B. Collins, and I. Nechita, Almost one bit violation for the addi-
tivity of the minimum output entropy. Comm. Math. Phys. 341 (2016), no. 3,
885–909.

[11] P. Biane, Representations of unitary groups and free convolution. Publ. Res. Inst.
Math. Sci. 31 (1995), no. 1, 63–79.

[12] P. Biane, Representations of symmetric groups and free probability. Adv. Math.
138 (1998), no. 1, 126–181.

[13] C. Bordenave and B. Collins, Eigenvalues of random lifts and polynomials of
random permutation matrices. Ann. of Math. (2) 190 (2019), no. 3, 811–875.

[14] C. Bordenave and B. Collins, Strong asymptotic freeness for independent uni-
form variables on compact groups associated to non-trivial representations. 2020,
arXiv:2012.08759.

[15] N. Bourbaki, Integration. II. Chapters 7–9. Elem. Math. (Berlin), Springer, Berlin,
2004. Translated from the 1963 and 1969 French originals by S. K. Berberian.

[16] M. Brannan and B. Collins, Dual bases in Temperley–Lieb algebras, quantum
groups, and a question of Jones. Quantum Topol. 9 (2018), no. 4, 715–748.

[17] E. Brézin and D. J. Gross, The external field problem in the large N limit of QCD.
Phys. Lett. B 97 (1980), no. 1, 120–124.

[18] P. W. Brouwer and C. W. J. Beenakker, Diagrammatic method of integration over
the unitary group, with applications to quantum transport in mesoscopic systems.
J. Math. Phys. 37 (1996), no. 10, 4904–4934.

[19] T. Ceccherini-Silberstein, F. Scarabotti, and F. Tolli, Representation theory of the
symmetric groups. Cambridge Stud. Adv. Math. 121, Cambridge University Press,
Cambridge, 2010. The Okounkov–Vershik approach, character formulas, and par-
tition algebras.

[20] B. Collins, Moments and cumulants of polynomial random variables on unitary
groups, the Itzykson–Zuber integral, and free probability. Int. Math. Res. Not. 17
(2003), 953–982.

[21] B. Collins, A. Dahlqvist, and T. Kemp, The spectral edge of unitary Brownian
motion. Probab. Theory Related Fields 170 (2018), no. 1–2, 49–93.

[22] B. Collins, M. Fukuda, and I. Nechita, On the convergence of output sets of
quantum channels. J. Operator Theory 73 (2015), no. 2, 333–360.

[23] B. Collins, C. E. González-Guillén, and D. Pérez-García, Matrix product states,
random matrix theory and the principle of maximum entropy. Comm. Math. Phys.
320 (2013), no. 3, 663–677.

[24] B. Collins, A. Guionnet, and E. Maurel-Segala, Asymptotics of unitary and
orthogonal matrix integrals. Adv. Math. 222 (2009), no. 1, 172–215.

[25] B. Collins, A. Guionnet, and F. Parraud, On the operator norm of non-commutative
polynomials in deterministic matrices and iid GUE matrices. 2019,
arXiv:1912.04588. Accepted in Camb. J. Math.

3161 Moment methods on compact groups: Weingarten calculus and its applications

https://arxiv.org/abs/2012.08759
https://arxiv.org/abs/1912.04588


[26] B. Collins, R. Gurau, and L. Lionni, The tensor Harish-Chandra–Itzykson–Zuber
integral I: Weingarten calculus and a generalization of monotone Hurwitz num-
bers. 2020, arXiv:2010.13661.

[27] B. Collins, T. Hasebe, and N. Sakuma, Free probability for purely discrete eigen-
values of random matrices. J. Math. Soc. Japan 70 (2018), no. 3, 1111–1150.

[28] B. Collins, P. Hayden, and I. Nechita, Random and free positive maps with appli-
cations to entanglement detection. Int. Math. Res. Not. IMRN 3 (2017), 869–894.

[29] B. Collins and C. Male, The strong asymptotic freeness of Haar and deterministic
matrices. Ann. Sci. Éc. Norm. Supér. (4) 47 (2014), no. 1, 147–163.

[30] B. Collins and S. Matsumoto, On some properties of orthogonal Weingarten func-
tions. J. Math. Phys. 50 (2009), no. 11, 113516, 14 pp.

[31] B. Collins and S. Matsumoto, Weingarten calculus via orthogonality relations:
new applications. ALEA Lat. Am. J. Probab. Math. Stat. 14 (2017), no. 1,
631–656.

[32] B. Collins, S. Matsumoto, and J. Novak, The Weingarten calculus. 2021,
arXiv:2109.14890.

[33] B. Collins, J. A. Mingo, P. Śniady, and R. Speicher, Second order freeness and
fluctuations of random matrices. III. Higher order freeness and free cumulants.
Doc. Math. 12 (2007), 1–70.

[34] B. Collins and I. Nechita, Random quantum channels I: Graphical calculus and
the Bell state phenomenon. Comm. Math. Phys. 297 (2010), no. 2, 345–370.

[35] B. Collins and I. Nechita, Gaussianization and eigenvalue statistics for random
quantum channels (III). Ann. Appl. Probab. 21 (2011), no. 3, 1136–1179.

[36] B. Collins and I. Nechita, Random matrix techniques in quantum information
theory. J. Math. Phys. 57 (2016), no. 1, 015215, 34 pp.

[37] B. Collins, I. Nechita, and D. Ye, The absolute positive partial transpose prop-
erty for random induced states. Random Matrices Theory Appl. 1 (2012), no. 3,
1250002, 22 pp.

[38] B. Collins, I. Nechita, and K. Życzkowski, Area law for random graph states.
J. Phys. A 46 (2013), no. 30, 305302, 18 pp.

[39] B. Collins, J. Novak, and P. Śniady, Semiclassical asymptotics of GLN .C / tensor
products and quantum random matrices. Selecta Math. (N.S.) 24 (2018), no. 3,
2571–2623.

[40] B. Collins and P. Śniady, Integration with respect to the Haar measure on uni-
tary, orthogonal and symplectic group. Comm. Math. Phys. 264 (2006), no. 3,
773–795.

[41] B. Collins and P. Śniady, Representations of Lie groups and random matrices.
Trans. Amer. Math. Soc. 361 (2009), no. 6, 3269–3287.

[42] B. Collins and M. Stolz, Borel theorems for random matrices from the classical
compact symmetric spaces. Ann. Probab. 36 (2008), no. 3, 876–895.

[43] B. Collins, Z. Yin, and P. Zhong, The PPT square conjecture holds generically for
some classes of independent states. J. Phys. A 51 (2018), no. 42, 425301, 19 pp.

3162 B. Collins

https://arxiv.org/abs/2010.13661
https://arxiv.org/abs/2109.14890


[44] B. de Wit and G. ’t Hooft, Nonconvergence of the 1=N expansion for SU.N /

gauge fields on a lattice. Phys. Lett. B 69 (1977), no. 1, 61–64.
[45] P. Diaconis and M. Shahshahani, On the eigenvalues of random matrices. J. Appl.

Probab. 31A (1994), 49–62.
[46] R. Goodman and N. R. Wallach, Symmetry, representations, and invariants. Grad.

Texts in Math. 255, Springer, Dordrecht, 2009.
[47] I. P. Goulden, M. Guay-Paquet, and J. Novak, Monotone Hurwitz numbers in

genus zero. Canad. J. Math. 65 (2013), no. 5, 1020–1042.
[48] I. P. Goulden, M. Guay-Paquet, and J. Novak, Polynomiality of monotone Hurwitz

numbers in higher genera. Adv. Math. 238 (2013), 1–23.
[49] I. P. Goulden, M. Guay-Paquet, and J. Novak, Monotone Hurwitz numbers and the

HCIZ integral. Ann. Math. Blaise Pascal 21 (2014), no. 1, 71–89.
[50] U. Haagerup and S. Thorbjørnsen, A new application of random matrices:

Ext.C �
red.F2// is not a group. Ann. of Math. (2) 162 (2005), no. 2, 711–775.

[51] Harish-Chandra, Differential operators on a semisimple Lie algebra. Amer. J.
Math. 79 (1957), 87–120.

[52] M. B. Hastings, Superadditivity of communication capacity using entangled
inputs. Nat. Phys. 5 (2009), no. 4, 255–257.

[53] P. Hayden and A. Winter, Counterexamples to the maximal p-norm multiplicity
conjecture for all p > 1. Comm. Math. Phys. 284 (2008), no. 1, 263–280.

[54] B. Hayes, A random matrix approach to the Peterson–Thom conjecture. 2020,
arXiv:2008.12287.

[55] S. Kumar and J. M. Landsberg, Connections between conjectures of Alon–Tarsi,
Hadamard–Howe, and integrals over the special unitary group. Discrete Math. 338
(2015), no. 7, 1232–1238.

[56] T. Lévy, Schur–Weyl duality and the heat kernel measure on the unitary group.
Adv. Math. 218 (2008), no. 2, 537–575.

[57] M. Magee, Random unitary representations of surface groups I: asymptotic
expansions. 2021, arXiv:2101.00252.

[58] M. Magee, Random unitary representations of surface groups II: the large n limit.
2021, arXiv:2101.03224.

[59] M. Magee and D. Puder, Matrix group integrals, surfaces, and mapping class
groups I: U.n/. Invent. Math. 218 (2019), no. 2, 341–411.

[60] S. Matsumoto, Weingarten calculus for matrix ensembles associated with com-
pact symmetric spaces. Random Matrices Theory Appl. 2 (2013), no. 2, 1350001,
26 pp.

[61] S. Matsumoto and J. Novak, Jucys–Murphy elements and unitary matrix integrals.
Int. Math. Res. Not. IMRN 2 (2013), 362–397.

[62] C. McSwiggen, A new proof of Harish-Chandra’s integral formula. Comm. Math.
Phys. 365 (2019), no. 1, 239–253.

3163 Moment methods on compact groups: Weingarten calculus and its applications

https://arxiv.org/abs/2008.12287
https://arxiv.org/abs/2101.00252
https://arxiv.org/abs/2101.03224


[63] J. A. Mingo and R. Speicher, Free probability and random matrices. Fields Inst.
Monogr. 35, Springer, New York; Fields Institute for Research in Mathematical
Sciences, Toronto, ON, 2017.

[64] A. Nica and R. Speicher, Lectures on the combinatorics of free probability.
London Math. Soc. Lecture Note Ser. 335, Cambridge University Press, Cam-
bridge, 2006.

[65] J. Novak, On the complex asymptotics of the HCIZ and BGW integrals. 2020,
arXiv:2006.04304.

[66] K. H. O’Brien and J. B. Zuber, A note on U.N / integrals in the large N limit.
Phys. Lett. B 144 (1984), no. 5–6, 407–408.

[67] F. Parraud, On the operator norm of non-commutative polynomials in determin-
istic matrices and iid Haar unitary matrices. 2020, arXiv:2005.13834. Accepted in
PTRF.

[68] E. M. Rains, Combinatorial properties of Brownian motion on the compact clas-
sical groups. J. Theoret. Probab. 10 (1997), no. 3, 659–679.

[69] D. Stanford, Z. Yang, and S. Yao, Subleading Weingartens. 2021,
arXiv:2107.10252.

[70] D. Voiculescu, A strengthened asymptotic freeness result for random matrices
with applications to free entropy. Int. Math. Res. Not. 1 (1998), 41–63.

[71] D. V. Voiculescu, K. J. Dykema, and A. Nica, A noncommutative probability
approach to free products with applications to random matrices, operator alge-
bras and harmonic analysis on free groups. Free random variables, CRM Monogr.
Ser. 1, American Mathematical Society, Providence, RI, 1992.

[72] S. Wang, Free products of compact quantum groups. Comm. Math. Phys. 167
(1995), no. 3, 671–692.

[73] D. Weingarten, Asymptotic behavior of group integrals in the limit of infinite
rank. J. Math. Phys. 19 (1978), no. 5, 999–1001.

[74] S. L. Woronowicz, Compact matrix pseudogroups. Comm. Math. Phys. 111
(1987), no. 4, 613–665.

[75] S. L. Woronowicz, Tannaka–Kreĭn duality for compact matrix pseudogroups.
Twisted SU.N / groups. Invent. Math. 93 (1988), no. 1, 35–76.

Benoît Collins

Mathematics Department, Kyoto University, Kyoto, Japan, collins@math.kyoto-u.ac.jp

3164 B. Collins

https://arxiv.org/abs/2006.04304
https://arxiv.org/abs/2005.13834
https://arxiv.org/abs/2107.10252
mailto:collins@math.kyoto-u.ac.jp




Analysis on simple Lie
groups and lattices
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Abstract

We present a simple tool to perform analysis with groups such as SLn.R/ and SLn.Z/,
that has been introduced by Vincent Lafforgue in his study of nonunitary representations
and strong property (T), in connection with the Baum–Connes conjecture. It has been
later applied in various contexts: operator algebras, Fourier analysis, geometry of Banach
spaces, and dynamics. The idea is to first restrict to compact subgroups and then exploit
how they sit inside the whole group.
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This text is devoted to the presentation of a single idea that has been useful to answer
several analysis questions on higher rank simple Lie groups and lattices. This idea originates
from Vincent Lafforgue’s work [43], and can be summarized as rank 0 reduction.

One of the basic tools to study Lie algebras is that of sl2 triples. In the context a
semisimple Lie groups, it is often used in the following form: to understand a possibly com-
plicated Lie group, one restricts to its subgroups locally isomorphic to SL2.R/ (and there are
plenty by the Jacobson-Morozov theorem), the simplest noncompact semisimple Lie group.
This idea, that we could call rank 1 reduction because SL2.R/ has rank 1, can be powerful.
For example, it allows obtaining precise information on the unitary representations of higher
rank simple Lie groups [34, 57]. But, as we shall see later in this text, there are situations
where rank 1 reduction is not efficient. Rank 2 reduction has also become a standard tool
in the study of higher rank simple Lie groups, as every real simple Lie group of rank � 2

contains a subgroup locally isomorphic to one of the rank 2 groups SL3.R/ of SP2.R/. See,
for example, [2, I.1.6].

Rank 0 reduction, the subject of this survey, consists in studying a Lie group through
its compact subgroups. The idea is to first restrict to the compact subgroups of the Lie group
G and do analysis there. It is perhaps surprising that there are nontrivial general things to
say (see Proposition 1.1). And then, in a second step, by analyzing the relative positions of
the various cosets of compact groups in G, it is possible to promote the local phenomena
that have been discovered in the first step to global phenomena in G.

In the whole text, except for the brief and last Section 5, we only consider for sim-
plicity the Lie group SL3.R/ and its subgroup SL3.Z/. In the first section, we illustrate rank 0

reduction in the simplest meaningful setting of unitary representations of SL3.R/: we shall
see that this idea provides a new proof of Kazhdan’s celebrated theorem that SL3.R/ has
property (T). In the next sections we show several other applications of this idea for SL3.R/

or SL3.Z/, each time with a brief history of the problems. In Section 2, devoted to Fourier
analysis for noncommutative groups, we explain how this same idea can show that Fourier
synthesis (the reconstruction of a “function” from its Fourier series) is in a way impossi-
ble for SL3.R/ and SL3.Z/. We then interpret these Fourier analysis statements in terms of
approximation properties of the vonNeumann algebra of SL3.Z/ and its noncommutativeLp

spaces. Section 3 is devoted to strong property (T): we study nonunitary representations of
SL3.R/ and SL3.Z/ on Hilbert spaces and see that the same idea allows proving some form
of property (T) for them. Applications of strong property (T) are also described, in particular
we explain how strong property (T) appears as a key tool in the resolution by Brown, Fisher,
and Hurtado of Zimmer’s conjecture for group actions of high rank lattices on manifolds
of small dimension. Section 4 is devoted to group actions on Banach spaces: we investigate
how much of strong property (T) can be proved for representations on more general Banach
spaces. Finally, in Section 5 we survey how these ideas have been used for other semisimple
Lie groups or algebraic groups over other local fields.
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1. A proof of property (T) for SL3.R/

Throughout this text, by representation of a locally compact group G on a Banach
space X , we will always mean a group homomorphism � from G to the group of invertible
continuous linear maps on X that is continuous for the strong operator topology: for every
� 2 X , g 7! �.g/� is continuous. A unitary representation is when � takes values in the
unitary group of a Hilbert space.

A topological group G has Kazhdan’s property (T) whenever the trivial represen-
tation is isolated in its unitary dual for the Fell topology. This means that every unitary
representation � of G on a Hilbert space H which almost has invariant vectors (i.e., there is
a net �i of unit vectors in H such that limi k�.g/�i � �i k D 0 uniformly on compact subsets
of G), has a nonzero invariant vector. Because of its numerous applications, property (T)
has become a central concept in many areas of mathematics such as geometric and analytic
group theory, operator algebras, ergodic theory, etc; see [2].

The purpose of this introductory section is to give a detailed proof of Kazhdan’s
celebrated theorem [35] that the group SL3.R/ has property (T). We do not give one of
the classical proofs (which rely in a way or another on the pair SL2 � SL3) but a proof
due to Lafforgue [43] (which relies on the pair SO.3/ � SL3.R/). We denote G D SL3.R/,
K D SO.3/ � G being themaximal compact subgroup. Then the polar decomposition asserts
that every element of G can be written as a product g D kak0 for k; k0 2 K and a diagonal
matrix a with positive entries in nonincreasing order. In other words, it identifies the double
classes KnG=K with theWeyl chamber ƒ D ¹.r; s; t/ 2 R3; r � s � t; r C s C t D 0º via
the identification of .r; s; t/ with the class KD.r; s; t/K of

D.r; s; t/ D

0B@er 0 0

0 es 0

0 0 et

1CA :

We also introduce the subgroup U ' SO.2/ � K of block-diagonal matrices

U D

8̂<̂
:

0B@1 0 0

0 � �

0 � �

1CA
9>=>; \ K:

The double classes U nK=U are then parametrized by Œ�1; 1�, the parametrization being
given by UkU 7! k1;1. For every ı 2 Œ�1; 1�, let kı denote a representative of the corre-
sponding double class, for example,

kı D

0B@ ı �
p

1 � ı2 0
p

1 � ı2 ı 0

0 0 1

1CA :

Step 1. The first step is the observation that U -biinvariant matrix coefficients of unitary
representations of K are Hölder 1

2
-continuous on .�1; 1/. In particular, we have

Proposition 1.1. For every unitary representation � of K on a Hilbert space H and every
�.U /-invariant unit vectors �; � 2 H , we haveˇ̌˝

�.kı/�; �
˛
�

˝
�.k0/�; �

˛ˇ̌
� 2

p
jıj:
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Proof. By the Peter–Weyl theorem, it is enough to prove the inequality for the irreducible
representations of SO.3/. For the nth irreducible representation of SO.3/ (the degree n

spherical harmonics), the quantity h�.kı/�; �i is equal to ˙Pn.ı/, the value at ı of the
nth Legendre polynomial normalized by Pn.1/ D 1, see, for example, [22]. So we have to
prove that supn jPn.ı/ � Pn.0/j � 2

p
jıj. By boundingˇ̌

Pn.ı/ � Pn.0/
ˇ̌

� min
�ˇ̌

Pn.0/
ˇ̌
C

ˇ̌
Pn.ı/

ˇ̌
; jıj max

t2Œ0;1�

ˇ̌
P 0

n.tı/
ˇ̌�

and using the Bernstein inequality jPn.x/j � min.1;

q
2

�n
.1 � x2/� 1

4 / [70, Theorem 7.3.3]

and the formula
.1 � x2/P 0

n.x/ D �nxPn.x/ C nPn�1.x/

expressing P 0
n in terms of Pn and Pn�1, one deduces the proposition.

Step 2. The next step is to deduce regularity properties of K-biinvariant matrix coefficients
of unitary representations ofG. The proof is short, but there are important things happening.

Proposition 1.2. Let � be a unitary representation of G on a Hilbert space H , and �; � be
�.K/-invariant unit vectors. Then for every g1; g2 2 G,ˇ̌˝

�.g1/�; �
˛
�

˝
�.g2/�; �

˛ˇ̌
� 100min

�
kg1k;

g�1
1

; kg2k;
g�1

2

�� 1
2 :

Proof. We may regard the matrix coefficient g 7! h�.g/�; �i as the map cW ƒ ! C given
by c.r; s; t/ D h�.D.r; s; t//�; �i. For every .r; s; t/ 2 ƒ, the matrix D.�t; t

2
; t

2
/ commutes

withU , so the unit vectors �.D.�t; t
2
; t

2
//� and �.D.t;� t

2
;� t

2
//� areU -invariant. We can

therefore apply Proposition 1.1. With ı D
sinh.rC t

2 /

sinh.� 3t
2 /

, we obtainˇ̌̌̌
c.r; s; t/ � c

�
�

t

2
; �

t

2
; t

�ˇ̌̌̌
� 2

p
ı � 2e

r
2 Ct

D 2e� r
2 �s : (1.1)

Applying this to the representation g 7! �..gT /�1/, we also obtainˇ̌̌̌
c.r; s; t/ � c

�
r; �

r

2
; �

r

2

�ˇ̌̌̌
� 2e

t
2 Cs : (1.2)

These two inequalities are best understood on a picture (see Figure 1): (1.1) expresses that
the amplitude of c is very small (exponentially small in the distance to the origin) on lines
of slope �

1
2
in the region s � �1, whereas (1.2) expresses that the amplitude of c is very

small on vertical lines in the region s � 0. We can join any two points of the Weyl chamber
by a zigzag path as in Figure 1, and combining these estimates we deduceˇ̌

c.r; s; t/ � c.r 0; s0; t 0/
ˇ̌

� 100max
�
e�

min.r;�t/
2 ; e�

min.r 0;�t 0/
2

�
;

which is exactly the proposition.

If � is a representation of G on a Hilbert space H and g 2 G, let us denote by
�.KgK/ the bounded operator on H mapping � to

’
K�K

�.kgk0/�dkdk0, where the inte-
grals are with respect to the Haar probability measure on K. We also say that a vector � 2 H

is harmonic if �.KgK/� D � for every g 2 G (the terminology is justified by [24]).
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r D s

s D t

s D �1
s D 0

Figure 1

The zigzag path in the Weyl chamber ƒ.

Corollary 1.3. If � is a unitary representation of G, then�.KgK/ � P


B.H/
� 100min

�
kgk;

g�1
�� 1

2 ; (1.3)

where P is a projection on the space of harmonic vectors.

Proof. Taking the supremum over all K-invariant unit vectors in Proposition 1.2, we obtain
that .�.KgK//g2G is Cauchy in B.H /, and that its limit P satisfies (1.3). Then P is clearly
the identity on the space of harmonic vectors, and the following computation shows that the
image of P is made of harmonic vectors:

�.KgK/P �dk D lim
g 0!1

�.KgK/�.Kg0K/� D lim
g 0!1

Z
K

�.Kgkg0K/� D P �:

So P is indeed a projection (and even the orthogonal projection) on the space of harmonic
vectors.

Step 3. The last step, which can be summarized as harmonic implies invariant, is the conclu-
sion of the proof of property (T). Let � be a unitary representation ofG with almost invariant
vectors. Evaluating �.KgK/ at almost invariant vectors, we see that �.KgK/ has norm 1

for every g 2 G. The limit P in Corollary 1.3 therefore also has norm 1, which means that
there is a nonzero harmonic vector �. For every g 2 G, the equality � D

’
�.kgk0/�dkdk0

expresses � as an average of vectors of the same norm �.kg0k/�. By strict convexity of
Hilbert spaces, we have that �.kgk0/� D � for every k; k0, in particular � is �.g/-invariant.
So � is a nonzero invariant vector. This proves that G D SL3.R/ has property (T).

For further reference, we can rephrase Proposition 1.1 in terms of the operators
Tı WL2.S2/ ! L2.S2/ defined by Tıf .x/ is the average of f on the circle ¹y 2 S2jhx;yi D

ıº. Identifying S2 with SO.3/=SO.2/, we see that Proposition 1.2 is equivalent to

kTı � T0k � 2
p

jıj: (1.4)
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1.1. Comments on the proofs
The distinct steps in the proof of property (T) for SL3.R/ have different nature. The

first step is analytic and deals with harmonic analysis on a compact group, and more pre-
cisely on the pair .U � K/ of compact groups. The second step is geometric/combinatorial.
What happens is that one studies the various K-equivariant embeddings of the sphere S2

(identified with K=U D SO.3/=SO.2/) into the symmetric space G=K D SL3.R/=SO.3/.
The relative position between a pair of such embeddings gives rise to an embedding of
U nK=U D Œ�1; 1� inside the Weyl chamber KnG=K. There are three types of such embed-
dings: the segments in Figure 1; others, that are of no use for us, are segments parallel to the
line s D 0. Combining these embeddings allows us to explore the whole Weyl chamber of
SL.3;R/, and to prove that K-biinvariant matrix coefficients of unitary representations of G

are Hölder 1
2
-continuous away from the boundary of ƒ. The crucial fact that leads to (1.1)

and (1.2) expresses that the interesting embeddings are exponentially distorted in the dis-
tance to the origin in the Weyl chamber, and hence that this exploration allows us to escape
to infinity in finite time. The last step is rather obvious, but will become much more involved
later.

It is informative to make similar computations for rank 1 simple Lie groupsG which
contain a subgroup isomorphic to SO.3/ (for example, for SO.3; 1/). In that case, one gets
also lots of embeddings of Œ�1; 1� inside the Weyl chamber Œ0; 1/ of G, and also enough to
explore the whole Weyl chamber and prove Hölder 1

2
-regularity in the interior of the Weyl

chamber. The difference (and the reason why this does not create a contradiction by proving
that SO.3; 1/ has property (T)!) is that these embeddings are almost isometric, and so it
takes an infinite time to explore the whole Weyl chamber. In a sense, only the segments
going straight but slowly to infinity exist in rank one. Those that are used in the zigzag
argument, which take less direct routes but are faster, only appear in higher rank.

The fact that all the analysis is done at the level of the compact groups U; K is very
important, because harmonic analysis for compact groups is much better understood than
for arbitrary groups (see, for example, the very easy results in Lemmas 2.2, 3.1, 3.6). This
is what permits using a similar approach for other objects than coefficients of unitary repre-
sentations, and proving rigidity results in various other linear settings. This is the content of
the remaining of this survey.

1.2. Induction and property (T) for SL3.Z/

For later reference, we recall the classical argument why property (T) for SL3.R/

implies property (T) for SL3.Z/. We uses Minkowski’s theorem that SL3.Z/ is a lattice in
SL3.R/. A lattice in a locally compact group G is a discrete subgroup such that the quotient
G=� carries a finite G-invariant Borel probability measure. Equivalently, there is a Borel
probability measure� onG whose image inG=� isG-invariant. The proof that property (T)
passes to lattices uses induction of representations. If � is a unitary representation of � on
a Hilbert space H , the space of the induced representation is the space L2.G; �I H /� of
measurable functions G ! H that satisfy f .g/ D �.�1/f .g/ for every g 2 G and 
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in � , and such that
R

G
kf .g/k2d�.g/ < 1. It is equipped with a unitary representation of

G by left-translation g � f D f .g�1�/. If � almost has invariant vectors, then so does the
induced representation. By property (T) for G, it has a nonzero invariant vector. This vector
is a constant function with values in H � . So � has invariant nonzero vectors.

2. Fourier series, approximation properties, operator

algebras

2.1. Fourier series, absence of Fourier synthesis
If 1 < p < 1, it is very well known (this follows immediately from Marcel Riesz’s

theorem that the Hilbert transform f 7!
P

n�0
Of .n/e2i� � is bounded onLp) that the Fourier

series of every function f 2 Lp.R=Z/ converges in Lp:

lim
N

f �

NX
nD�N

Of .n/e2i� �


p

D 0:

This is not true for p D 1 or p D 1, but there are more clever summation methods, for
example, Fejér’s method: if we denote WN .n/ D max.1 �

jnj

N
; 0/, then

lim
N

f �

X
n

WN .n/ Of .n/e2i� �


p

D 0;

and this time the convergence holds forL1, and evenL1, if f is continuous. All this remains
true on the torus .R=Z/d of arbitrary dimension, and more generally on the Pontryagin dualb� of every discrete abelian group.

When � is a nonabelian discrete group, b� does not make sense as a group, but
the spaces C.b�/, L1.b�/, and Lp.b�/ have a very natural meaning: they are respectively
the reduced C �-algebra C �

�
.�/, the von Neumann algebra L� , and the noncommutative Lp

space [64] of the vonNeumann algebra ofL� . Recall that if� is the left regular representation
(by left-translation) of � on `2.�/, C �

�
.�/ is the norm closure in B.`2.�// of the linear span

of �.�/, L� is its closure for the weak-operator topology, and Lp.L�/ its completion for
the norm x 7! hjxjpıe; ıei

1
p . The elements of each of these spaces admit a Fourier series

f D
P


Of ./�./. This is a formal series, whose convergence is not clear in general (except

in L2). One can wonder in that case whether, as in the case when � is abelian, there exist
Fourier summation methods in this context, i.e., a sequence of functions WN W � ! C with
finite support such that

f D lim
N

X


WN ./ Of ./�./; (2.1)

for every f in C �
�

.�/ or Lp.L�/ (convergence in norm). It is well known that this is the
case when � is amenable. According to a celebrated (and surprising at that time) result by
Haagerup [28], this is also true when � is a nonabelian free group. This result has inspired a
massive research program on approximation properties of group operator algebras. Indeed,
by the Banach–Steinhaus theorem, if (2.1) holds, then the maps f 7!

P
� WN ./ Of ./�./,

called Fourier multipliers, are uniformly bounded, have finite rank, and converge pointwise
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to the identity. In [10] de Cannière and Haagerup realized that in the case of free groups,
the convergence even holds for every f in the C �-algebra B.`2/ ˝ C �

�
.�/, that is, when

the Fourier coefficients Of ./ are bounded operators on `2. When this holds, � is said to
be weakly amenable. Moreover, a function W W � ! C is said to be a completely bounded
Fourier multiplier if the map f 7!

P
 W./ Of ./ ˝ �./ is bounded on B.`2/ ˝ C �

�
.�/.

So weak amenability comes with a constant, which is the smallest common upper bound
on these completely bounded norms, among all sequences of finitely supported multipli-
ers achieving (2.1). Mutatis mutandis, completely bounded Fourier multipliers and weak
amenability alsomake sense for locally compact groups, and importantly restriction to closed
subgroups and induction from lattices work well for completely bounded Fourier multipli-
ers. In particular, the weak amenability constant coincide for a group and a lattice [29]. The
major achievement in this direction was obtained in a series a work by Haagerup with de
Cannière and Cowling [10,16,29], that led to the exact computation of the weak amenability
constant of all simple Lie groups. Excluding exceptional groups, it is equal to 1 for SO.n; 1/,
SU.n; 1/, 2n � 1 for SP.n; 1/, and is infinite for higher rank groups.

In [32], Haagerup and Kraus discovered a strange phenomenon: it might happen that
there is no sequence WN satisfying (2.1) for every f 2 B.`2/ ˝ C �

�
.�/, but there exists

such a generalized sequence (or net).1 A group for which such a net exists is said to have the
approximation property of Haagerup and Kraus, or simply AP.

So groups without the AP are groups in which no L1-summation method exists
whasotever for operator coefficients. It has been difficult to produce such groups. It was
known [32] that nonexact groups [59] would be such examples, but they are difficult to con-
struct. Haagerup and Kraus had conjectured that SL3.Z/ was another example. This conjec-
ture turned out to be delicate because classical approaches to rigidity in higher-rank lattices,
which rely on the subgroup SL2.Z/ Ë Z2 or its relative SL2.R/ Ë R2, are inefficient by the
strange phenomenon described above. It is the ideas described in Section 1 that allowed to
settle it.

Theorem 2.1 ([47]). SL3.Z/ does not have the approximation property of Haagerup and
Kraus.

The original proof of this theorem was not direct and went through Lp Fourier
theory (Theorem 2.3), but, thanks to several simplifications [30, 66, 71], a very easy proof
is now known. We have already justified that, by induction, we can as well prove the theorem
for SL3.R/. The starting point is the following straightforward lemma (which is known to
hold more generally if [36] and only if [4] the locally compact group K is amenable), which
provides a characterization of completely bounded Fourier multipliers of compact groups.

1 Remembering that the Banach–Steinhaus theorem is false for nets might help imagine how
such a statement could be true. An example is given by SL2.Z/ Ë Z2: it has the AP as the
semidirect product of two weakly amenable groups and AP is stable by group extensions
[32]. That it is not weakly amenable was proved in [29] and also reproved in [60].
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Lemma 2.2. Let K be a compact group. A function 'WK ! C defines a completely bounded
Fourier multiplier ofC �

�
.K/ if and only if ' is a matrix coefficient of a unitary representation

of K.

Proposition 1.1 therefore says that SO.2/-biinvariant completely bounded Fourier
multipliers of C �

�
.SO.3// are Hölder-1

2
continuous in the interior of SO.2/nSO.3/=SO.2/.

The same proof as Proposition 1.2 then produces a map from SO.3/nSL3.R/=SO.3/ into the
dual of the space of completely bounded Fourier multipliers of SL3.R/, which satisfies the
Cauchy criterion. Its limit vanishes on compactly supported functions and takes the value 1

on the identity multiplier. This is exactly a Hahn–Banach-type separation, which says that
SL3.R/ does not have the AP.

The same argument can also be used to say something about Lp Fourier summa-
bility for some finite p and to obtain the following, which is an equivalent form of the main
result in [47].

Theorem2.3 ([47]). For every 4 < p < 1 or 1 � p < 4
3
, there is f 2 Lp.LSL3.Z/ ˝ B.`2//

such that, for every finitely supported W W SL3.Z/ ! C,f �

X


W./ Of ./�./


p

� 1:

Again, the proof has the same structure as in Section 1. To initiate the first step, we
need to investigate in more details the spectral decomposition of the operators Tı in (1.4). For
a Hilbert space H , the Schatten p-class Sp.H / is the space of operators T on H such that
kT kSp WD .Tr.jT jp//

1
p < 1. It can be shown [47] that the operators Tı , ı 2 .�1; 1/ belong

to Sp.L2.S2// if p > 4, and there is a constant C such that for every ı; ı0 2 Œ�1=2; 1=2�,

kTı � T0kSp �
C

.p � 4/1=p
jıj

1
2 � 2

p : (2.2)

With this inequality, we can run the argument of Section 1 and obtain a form of Theorem 2.3
for SL3.R/. However, the induction procedure for completely bounded Lp Fourier multipli-
ers, which works well when p D 1 [29,32], is problematic for 1 < p ¤ 2 < 1. It is known
to work well mainly for amenable groups [12, 13, 56]. The solution is to work with Herz–
Schur multipliers on Sp.L2.G//, that is, operators of the form A D .Ag;h/ 2 Sp.L2.G// 7!

.W.gh�1/Ag;h/ for functions W W G ! C, for which induction works well. Fortunately, for
compact groups (and even amenable groups [12, 56]) Schur Sp and Fourier Lp multipliers
coincide.

The preceding sketch is the only proof I know of Theorem 2.3. It can be shown
that (2.2) is optimal, and that Tı � T0 does not belong to S4 for any ı ¤ 0. So this idea
cannot work for 2 < p � 4, and it is an intriguing question whether this condition is really
needed for Theorem 2.3. As we will explain in Section 5, a positive answer to this question
would allow distinguishing the von Neumann algebra of SL3.Z/ and PSLn.Z/ for n > 4, and
would confirm a conjecture of Connes. The challenge is to construct nontrivial Lp Fourier
multipliers for SL3.Z/. A first step is to do so for SL3.R/. Together with Parcet and Ricard
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[62], we made some progress on that recently by proving a satisfactory local form of the
Hörmander–Mikhlin multiplier theorem for SLn.R/.

2.2. Approximation properties for Banach spaces and operator algebras
In his thesis [26], Grothendieck initiated the study of tensor product of topological

vector spaces, and realized the tight connection with the Banach’s approximation property
AP: a Banach space E has the approximation property (AP) if the identity operator belongs
to the closure of the space of finite rank operators, for the topology of uniform convergence
on compact sets. He was even led to conjecture that all Banach space have the AP (this would
make the theory of tensor product simpler!). Later in his Résumé [25] he changed his mind
and actually expected that Banach spaces exist, which fail the AP. Récoltes et Semailles [27]

contains a moving part, where Grothendieck explains how much he suffered from the year
he spent on working on this problem without progress. It was only much later than the first
example of Banach space was constructed by Enflo [21], followed by many other examples.
See the survey [11] for a list. Let me emphasize: the examples of Enflo, as most other exam-
ples, are obtained from delicate combinatorial constructions, and in particular they are not
Banach spaces, the existence of which was known to Grothendieck. There is, to my knowl-
edge, only one example of a Banach space that is both natural (not obtained from an ad hoc
construction) and known to fail the AP, namely the space B.`2/ of all bounded operators
on `2 [69]. This space is not reflexive and we are lacking separable and natural examples of
space with the AP. For some time in the 1970s, a candidate of such a satisfactory example
was C �

�
.F2/, the reduced C �-algebra on the nonabelian free group with two generators, and

the hope was that the lack of AP could be explained by the non amenability of F2. Haagerup
broke this hope in [28] by proving, better, thatC �

�
.F2/ has the metric AP (the identity belongs

to the closure of the norm 1 finite rank operators). More precisely, as explained in the pre-
vious section, F2 is weakly amenable with constant 1. However, two serious candidates of
natural separable Banach spaces without the AP remain in the same vein: C �.F2/, the full
C �-algebra of F2 and C �

�
.SL3.Z//. It is hoped that the first lacks the AP for the simple

reason that F2 is nonamenable, and the latter for reasons related to the ideas in Section 1.
This last conjecture has not been settled, but its weakening in the sense of operator

spaces is known. Indeed, there are natural variants of Grothendieck’s approximation property
in the category of operator spaces rather than Banach spaces (replacing bounded operators by
completely bounded operators [63]), that we denote by OAP and CBAP. The CBAP, meaning
that the identity on E belongs to the closure of the finite rank operators with completely
bounded norm bounded above by some constant C , comes with a constant (the best such C ).
Given a discrete group � , the fundamental observation of Haagerup [29] (and Kraus for OAP
[32]) is that the CBAP/OAP for C �

�
.�/ (and respectively its variants for dual spaces for the

von Neumann algebra L.�/) can be achieved with finitely supported Fourier multipliers. As
a consequence, the weak amenability constant of a discrete group � is an invariant of its von
Neumann algebra, and so is the AP of Haagerup and Kraus. For example, the computation
of the weak amenability constant of simple Lie groups [10, 16, 29] discussed above allows
distinguishing the von Neumann algebra of a lattice in SP.n; 1/ (for n ¤ 3, n ¤ 11) from

3175 Analysis on simple Lie groups and lattices



the von Neumann algebra of a lattice in a simple Lie group that is not locally SP.n; 1/. Also,
Theorem 2.1 can be rephrased as C �

�
.SL3.Z// does not have the approximation property in

the category of operator spaces. This was the first example of an exact C �-algebra without
the OAP. Similarly, Theorem 2.3 can be rephrased as Lp.LSL3.Z// does not have the OAP
for p > 4. For 4 < p < 80, this was the first example of a noncommutative Lp space without
the CBAP.

3. Nonunitary representations: Lafforgue’s strong

property (T)

This section is devoted to non unitary representations on Hilbert spaces.

3.1. Strong property (T) for SL3.R/

It is useful at this point to have a look back at the proof of property (T) for SL3.R/

in Section 1 and see precisely where the assumption that the representations are unitary was
used. Step 1 is about the compact group SO.3/, and therefore only uses that the restriction to
SO.3/ is unitary. This is not a very strong assumption, as compact groups are unitarizable:

Lemma 3.1. Every representation of a compact group on a Hilbert space is similar to a
unitary representation.

In particular, every representation of SL3.R/ is similar to a representation whose
restriction to SO.3/ is unitary.

Step 2 did not use that � is unitary in a strong way, and remains true (with a different
constant and the exponent �

1
2
replaced by 2˛ �

1
2
) if

˛ D ˛.�/ WD lim sup
jt j!1

1

jt j
log

�

�
D

�
�t;

t

2
;

t

2

�� <
1

4
:

So if � is a representation of SL3.R/ on a Hilbert space such that ˛.�/ < 1
4
, we obtain

that �.KgK/ converges in norm to a projection on the space of harmonic vectors. Step 3
apparently relies more fundamentally on the fact that � is unitary. However, it is still true
when ˛.�/ < 1

4
that harmonic vectors are invariant. This requires new ideas, which make

step 3 the most involved part, see [43] or the presentation in [65]. To summarize, the condi-
tion ˛.�/ < 1

4
is enough to guarantee that �.KgK/ converges in norm to a projection on

the invariant vectors. In the terminology of Vincent Lafforgue [43], SL3.R/ has strong prop-
erty (T), which is a form of property (T) for representations on Hilbert spaces with small
exponential growth rate. Let us spell out the definition.

If G is a locally compact function, a length function ` W G ! RC is a function
that is bounded on compact subsets, that is, symmetric `.g/ D `.g�1/ and subadditive
`.gh/ � `.g/ C `.h/. Let us denote C`.G/ the completion of Cc.G/ for the norm given by
kf kC`.G/ D sup k�.f /k where the supremum is over all representations of G on a Hilbert
space such that k�.g/k � e`.g/ for every g 2 G. It is a Banach algebra for the convolution.
An element p 2 C`.G/ is called aKazhdan projection if �.p/ is a projection on the invariant
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vectors H � of � for every such representation. Kazhdan projections have been investigated
in [20, 67]. If a Kazhdan projection exists, �.p/ is the unique G-equivariant projection on
H � , so p is unique [67].

Definition 3.2 ([43]). G has strong property (T) if for every length function `, there is s > 0

such that for every C > 0, Cs`CC .G/ has a Kazhdan projection.

A posteriori, a group with strong property (T) is necessarily compactly generated
(this is even a consequence of property (T)), and it is enough to check the definition for ` the
word-length with respect to a compact generating set.

We have just explained the proof of the following theorem.

Theorem 3.3 ([43]). SL3.R/ has strong property (T).

Moreover, the Kazhdan projection belongs to the closure of Cc.G/C WD ¹f 2

Cc.G/ j f .g/ � 08g 2 Gº. Some authors [6–9] add this precision to the definition because,
as we will see below, this is crucial for some applications.

Vincent Lafforgue’s original motivation for this definition was his work on the
Baum–Connes conjecture. Indeed, strong property (T) (and variants of it) are the natural
obstructions for applying some of his ideas (and in particular the ideas in [46]) to groups
such as SL3.Z/. We refer to [45] for more on the link with the Baum–Connes conjecture.

3.2. Strong property (T) for SL3.Z/

Theorem 3.3 also holds for SL3.Z/, but the proof turned out to be delicate. In par-
ticular, we do not see how to prove in general that strong property (T) passes to lattices.

Theorem 3.4 ([68]). SL3.Z/ has strong property (T).

The way Theorem 3.4 is proved is by introducing and working with representation-
like objects, where one is only allowed to compose once and that I call two-step representa-
tions.

Definition 3.5. A two-step representation of a topological group G is a tuple .X0; X1; X2;

�0; �1/ where X0; X1; X2 are Banach spaces and �i W G ! B.Xi ; XiC1/ are strongly con-
tinuous2 maps such that

�1.gg0/�0.g00/ D �1.g/�0.g0g00/ for every g; g0; g00
2 G:

In this case we will denote by � W G ! B.X0; X2/ the continuous map satisfying �.gg0/ D

�1.g/�0.g0/ for every g; g0 2 G.

The reason for this introduction is that two-step representations appear naturally
when we induce non unitary representations. Indeed, let � � G be a lattice. For every
probability measure � on G as in Section 1.2, we can consider the space L2.G; �I H /� .
When � is a cocompact lattice (that is G=� is compact), Lafforgue [43] observed that it

2 In other words, for every x 2 Xi , the map g 2 G 7! �.g/x 2 XiC1 is continuous.
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is possible to choose � in such a way that the induced representation remains by bounded
operators on L2.G; �I H /� , with small exponential growth if the original representation of
� had small exponential growth. Therefore, strong property (T) passes to cocompact lat-
tices [43]. When � is not cocompact and � is not uniformly bounded, there does not seem
to be any choice of � for which the representation is by well-defined (bounded) operators.
However, in the particular case of SL3.Z/ � SL3.R/, if � is well chosen and if the origi-
nal representation � of has small enough exponential growth, it possible to show that the
representation g � f D f .g�1�/ is bounded from Lp.G; �I H /� ! Lq.G; �I H /� when-
ever 1

q
�

1
p

�
1
2
. This uses some strong exponential integrability properties of SL3.Z/ in

SL3.R/, which rely on the celebrated Lubotzky–Mozes–Raghunathan theorem [52]. In par-
ticular, we obtain a two-step representation withX0 D L1.G;�IH /� ,X1 D L2.G;�IH /� ,
and X2 D L1.G; �I H /� . So Theorem 3.4 is a consequence of a form of strong property (T)
for two-step representations of SL3.R/ where X1 is a Hilbert space. This is done following
the strategy in Section 1. The starting point is again a straightforward statement, which asserts
that two-step representations of compact groups are governed by usual representations:

Lemma 3.6. If .X0; X1; X2; �0; �1/ is a two-step representation of a compact group K

where X1 is a Hilbert space, then there is a constant C such that, for every f 2 Cc.K/,�.f /


B.X0;X2/
� C

�.f /


C �
�

.K/
:

3.3. Applications of strong property (T)
Let us end this section with two applications of strong property (T). We will see in

the next section other applications of variants of strong property (T) for representations on
Banach spaces. All applications have in common that strong (T) is used as a way to system-
atically find and locate fixed point. The first is a result about vanishing of first cohomology
spaces for representations with small exponential growth. If � is a representation of G on a
space H , we denote by H 1.G; �/ the quotient of the space of cocycles

Z1.G; �/ WD
®
b 2 C.G; H / j 8g1; g2 2 G; b.g1g2/ D b.g1/ C �.g1/b.g2/

¯
by the subspace of coboundaries

B1.G; �/ D
®
g 7! �.g/� � � j � 2 H

¯
:

HenceH 1.G;�/ parametrizes the continuous affine actions ofG onH with linear part� , up
to a change of origin. Delorme and Guichardet have proved that a second countable locally
compact group G has property (T) if and only if H 1.G; �/ D 0 for every unitary repre-
sentation � . The following result has the same flavor, but the proof is different. The idea is
that any b 2 Z1.G; �/ gives rise to a representation

�
�.g/ b.g/

0 1

�
with the same exponential

growth rate on H ˚ C.

Proposition 3.7 ([44]). If G has strong property (T) and ` is a length function on G, there
is s > 0 such that H 1.G; �/ D 0 for every representation with exponential growth rate � s.

This proposition can be used to show that strong property (T) is incompatible with
hyperbolic geometry, and in particular that infinite Gromov-hyperbolic groups do not have
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strong property (T). Indeed, in [43], for every groupG actingwith infinite orbits on aGromov-
hyperbolic graph with bounded degree, a representation with quadratic growth rate on a
Hilbert space is constructed with H 1.G; �/ ¤ 0. By Proposition 3.7, such a group cannot
have strong property (T).

Another notable application of strong property (T) was found in the resolution of
most cases of Zimmer’s conjecture by Brown, Fisher, and Hurtado (see [5,23]). The following
is a particular case of their result.

Theorem 3.8 ([7]). Let G be a locally compact group with length function ` and ˛ W G !

Diff.M/ an action by C 1 diffeomorphisms on a compact Riemannian manifold with subex-
ponential growth of derivatives:

8" > 0; sup
g2G

e�"`.g/ sup
x2M

Dx˛.g/
 < 1:

If G has strong property (T) with Kazhdan projections in the closure of Cc.G/C, then for
every k, ˛ preserves C k Riemannian metrics on M . In particular, for the original metric, ˛

has bounded derivatives.

The idea is to use strong property (T) for the representation on the Hilbert space of
signed metrics onM with Sobolev normsW n;2, which take into account theL2-norms of all
derivatives of order � n. Here n is an arbitrary positive integer. Strong property (T) allows
constructing such invariant signed metrics. The fact that the Kazhdan projection belongs
to the closure of nonnegative functions is used to ensure that these signed metrics can be
taken positive. The Sobolev embedding theorems say that, for n large, these metrics become
smoother.

4. Banach space representations

4.1. Banach spaces versions of property (T)
The last two decades have seen important developments in the study of group actions

on Banach spaces, initiated by a number of more or less simultaneous investigations [1, 14,

15,42,43,72].
The work [1] (and also [14, 43]) has proposed to study different possible general-

izations of property (T) with Hilbert spaces replaced by Banach spaces. If one adopts the
definition in terms of almost invariant vectors, one gets property (TX ). Let E be a class of
Banach spaces.

Definition 4.1 (Bader, Furman, Gelander, Monod [1]). A locally compact groupG has prop-
erty (TE ) if for every isometric representation � WG ! O.X/ on a spaceX in E , the quotient
representation G ! O.X=X�.G// does not almost have invariant vectors. Here, X�.G/

denotes the closed subspace of X consisting of vectors that are fixed by � .

When the quotient representationG ! O.X=X�.G// does not almost have invariant
vectors, we say that � has spectral gap.
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Compact groups have TX with respect to all Banach spaces, but for other locally
compact groups we have to impose conditions on a Banach space to hope to have TX . For
example, the action by left-translation of C0.G/ has spectral gap if and only G is compact.

Adapting the equivalent characterization of property (T) in cohomological terms,
we obtain:

Definition 4.2 ([1]). A locally compact group G has property FE if every action of G by
affine isometries on a space in E has a fixed point.

It still holds that for � -compact groups, FE implies (TE ), but the converse is not true.
For example, Pansu’s computation of Lp-cohomology of rank 1 symmetric spaces [61] says
that Sp.n; 1/ does not have FLp for p > 4n C 2, whereas as every group with property (T)
[1], it has TLp for every 1 � p < 1. Pansu’s result has been generalized by Yu [72] who
showed that every Gromov-hyperbolic group has a proper isometric action on an Lp space
for every large p. We refer to [17,18,48,53] and [19,40,58] for recent progresses on fixed points
properties for actions on Lp spaces and other Banach spaces. So studying for which spaces
a group has FX is a way to quantify the strength of property (T). The following conjecture
therefore is another indication that SL3.Z/ has a very strong form of property (T).

Conjecture 4.3 ([1]). Any action by isometries of SL3.Z/ (or, more generally, a lattice in
a connected simple Lie group of real rank � 2) on a uniformly convex Banach space has a
fixed point.

4.2. Expander graphs
The study of group actions on Banach spaces is also related to questions about the

possible interactions between geometry of finite graphs and of Banach spaces. Given a finite
graph G and a Banach space X , the X -valued Poincaré constant �.G ;X/ is the smallest con-
stant � such that, for every function f from the vertex set of G to X , the Poincaré inequality

inf
�2X

kf � �k2 � �krf k2

holds, where rf is the function on the edge set of G taking the value f .x/ � f .y/ at the
edge .y; x/. A sequence of bounded degree graphs with size going to infinity is said to be
expanding with respect to X if infn �.Gn; X/ > 0. When X is the line, or a Hilbert space,
or an Lp space for 1 � p < 1, we recover the usual notion of expander graph. On the
opposite, there are no expanders with respect to `1, and more generally with respect to a
space containing arbitrarily large copies of `n

1 (such space are called spaces with trivial
cotype). A sequence Gn that is expanding with respect to every uniformly convex Banach
space is called a sequence of superexpanders [54]. There are two sources of examples known:
one that we will discuss in the last section, coming from quotients of arithmetic groups over
nonarchimedean local fields [44] and relying on the ideas from Section 1, and one coming
from zigzag products [54].

When a sequence of graphs Gn are Cayley graphs of .�n;Sn/where�n is a sequence
finite quotients of a group � with size going to infinity and Sn the image of a fixed generating
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set of � in �n, the fact that Gn are expanders with respect to X is equivalent to the fact that
the representation � on `2.

S
n �nIX/ has spectral gap. This if, for example, the case if � has

(T`2.NIX/). It follows from this discussion is that Conjecture 4.3 is stronger than the following
conjecture:

Conjecture 4.4. The sequence of Cayley graphs of SL3.Z=nZ/ with respect to the elemen-
tary matrices is a sequence of superexpanders.

It is conceivable that they are even expanders with respect to every Banach space
of nontrivial cotype. The existence of such expanders is still unknown. On the opposite, it is
also unknownwhether there exist expanders that are not expanders with respect to all Banach
spaces of nontrivial cotype. This is revealing of how little such questions are understood.

4.3. Strong Banach property (T)
Let E be a class of Banach spaces. If, in Definition 3.2, we allow representations on

a Banach space in E rather than only on a Hilbert space, we say that G as strong property (T)
with respect to E . So there are as many Banach space versions of strong property (T) that
classes of Banach spaces. In [44], Lafforgue uses the terminology strong Banach property (T)
to mean thatG has strong property (T) with respect to every class E in which `1 is not finitely
representable. This is essentially the largest possible class, because no noncompact group can
have strong property (T) with respect to L1.G/.

Strong property (T) with respect to Banach spaces has the same kind of applications
than for Hilbert spaces. First as in Proposition 3.7, strong property (T) with respect toX ˚C
implies that H 1.G; �/ D 0 for every representation on X with small enough exponential
growth. We also have a variant of Theorem 3.8. If G is assumed to have strong property (T)
with respect to all subspaces ofLp spaces for all 2 � p < 1, then it is enough to assume that
the action is by C 1Cs-diffeomorphisms to ensure that for every " > 0 ˛ preserves of metric
of regularity C s�" [7], and enough to assume that the action is by C 1-diffeomorphisms to
ensure that for every p < 1 ˛ preserves a measurable metric that is Lp-integrable [6].

The sketch of proof of strong property (T) for SL3.R/ and SL3.Z/ is Section 3
applies in the same way, provided that there are constants C; � > 0 such that

8ı 2 Œ�1; 1�; kTı � T0kB.L2.S2IX// � C jıj
�=2: (4.1)

Theorem 4.5 ([43,68]). SL3.R/ and SL3.Z/ have strong property (T) with respect to X for
every Banach space satisfying (4.1) for some C; � > 0.

It is expected that all uniformly convex Banach spaces spaces satisfy (4.1) for some
C; � . More precisely, it should be true that spaces satisfying (4.1) are exactly the spaces of
nontrivial Rademacher type. This would settle Conjecture 4.3 and 4.4.

If follows from the Riesz–Thorin theorem that (4.1) holds for Lp spaces for 1 <

p < 1 and therefore for every subspace of an Lp space, and more generally for every � -
Hilbertian space. In [65], exploiting the stronger summability property from (2.2), I showed
that (4.1) holds whenever dn.X/ D O.n

1
4 �"/ as n ! 1. Here dn.X/ denotes the supremum
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over all subspaces E of X of dimension n of the Banach–Mazur distance to the Euclidean
space of the same dimension. For example, this holds if X has type p and cotype q with
1
p

�
1
q

< 1
4
.

5. Other groups

There is no general theory yet, in which the strategy from Section 1 for SL3.R/ fits,
but there are other examples of groups for which such tools have been developed: SL3.F/

for a nonarchimedean local field [43], SP2.R/ and its universal cover [30,31,37,38], SP2.F/

[50,51], SLn.F/ and SLn.R/ for n � 4 [47] and [39,41], SO.n; 1/ [62], and finally lattices in
locally finite affine buildings of type QA2 [49].

Let me expand a bit, starting with the real Lie groups. The group SP2.R/ is the
group of 4 � 4 matrices which preserve the standard symplectic form !.x; y/ D y1x3 C

y2x4 � x1y3 � x2y4. The Bernstein inequalities used in Proposition 1.1 were generalized in
[33] to Jacobi polynomials, which appear as spherical functions for other Gelfand pairs than
SO.2/ � SO.3/. In [30,31], Haagerup and de Laat then generalized Theorem 2.1 to SP2.R/

and its universal cover, respectively. The analogue of Theorem 2.3 was obtained in [37], but
for p > 12 (improved to p > 10 in [38] by refining the Bernstein inequalities from [33]), and
strong property (T) was proved in [38] for the Lie groups or their cocompact lattices, and in
[68] for their non cocompact lattices, for a class of Banach spaces that is more restrictive than
for SL3.R/. By rank 2 reduction all these results extend to all real connected semisimple Lie
groups all of whose simple factors have rank � 2, and all their lattices.

When F is a nonarchimedean local field, in the same way, to obtain all almost F-
simple algebraic group of split rank at least two, it was enough to consider SL3 and SP2.
Lafforgue’s original article [43] already contained a proof of strong property (T) for SL3.F/.
Steps 2 and 3 are almost identical to the real case, but the first step is very different because
maximal compact subgroups of SL3.F/ are very different from those in SL3.R/. For exam-
ple, when F D Qp , a maximal compact subgroup is SL3.Zp/, which contains large nilpotent
groups (the groups of upper-triangular matrices). This difference turns out to play a rôle
for Banach space versions of strong property (T). Indeed, exploiting these large nilpotent
groups and the good understanding of abelian Fourier analysis on vector-valued Lp spaces
[3], Lafforgue [44] was able to make the first step work for representations of the maximal
compact subgroups of SL3.F/ on arbitrary Banach space of nontrivial type. For SP2, the
same was proved by Liao in [50]. As a consequence, all almost F-simple algebraic group
of split rank at least two and their lattices have strong property (T) with respect to Banach
spaces of nontrivial type, and Conjectures 4.3 and 4.4 hold for SL3.Z/ replaced by such
lattices.

The Fourier analysis and approximation results from Section 2 have also been
obtained for nonarchimedean local fields, in [47] for SL3 and [51] for SP2. The results are
identical for SL3.F/ and SL3.R/. Interestingly, for SP2 a difference appears: the condition
p > 10 becomes better, namely p > 4, in the nonarchimedean case [51].
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The fact that both in the real and nonarchimedean case the proofs do not allow taking
p down to 2 in Theorem 2.3 has been a motivation for finding other groups for which the
restriction on p is smaller. And indeed, this is the case for SLn.F/ [47] and SLn.R/ [39] for
large n. Let us focus on SLn.R/ because the situation is closer to Section 1. In that case,
a satisfactory replacement for Step 1 is to work with the pair SO.d/ � SO.d C 1/. In the
sphere picture, we are studying the operators Tı defined as for S2 but in higher dimension
Sd D SO.d C 1/=SO.d/. In [39], we proved that the map ı 2 .�1; 1/ 7! Tı 2 Sp is Hölder
continuous for every p > 2 C

2
d�1

. Step 2 is more delicate. Taking n � d C 1 and seeing
SO.d C 1/ � SLn.R/, by considering all possible matrices D; D0 2 SLn.R/, the maps k 2

SO.d C 1/ 7! DkD0 2 SLn.R/ pass to maps from the segment Œ�1; 1� D SO.d/nSO.d C

1/=SO.d/ into the Weyl chamber ƒn WD SO.n/nSLn.R/=SO.n/. The problem is that all
these maps take values in a fixed .d � 2)-codimensional subset of ƒn, so it is hopeless
to efficiently connect any two points in the Weyl chamber by such moves as in Figure 1.
Even worse, when n < 2d � 1, the unions of these segments have only bounded connected
components. Fortunately, when n � 2d � 1, these connected components merge to form an
unbounded component, and a weaker form of efficient exploration of this unbounded compo-
nent is possible. Putting everything together, we obtain that SL2d�1.Z/ satisfies Theorem 2.3
for every p > 2 C

2
d�1

. Equivalently, the noncommutative Lp space of the von Neumann
algebra of SL2d�1.Z/ does not have the CBAP for every p > 2 C

2
d�1

. If d � 5, by rank
2d � 1 reduction, we obtain that the same is true for every � is a simple Lie group of rank
at least 2d � 1. In particular, if Lp.LSL3.Z// had the CBAP for some p > 2, this would
distinguish the von Neumann algebras of SL3.Z/ and SL2d�1.Z/ for large d . Even more
optimistically, if conversely Lp.LSL2d�1.Z// had the CBAP for 2 � p �

2
d�1

, this would
distinguish the von Neumann algebras of SLn.Z/ for odd n.

In [41] the exploration procedure of the Weyl chamber of SLn.R/ was refined, and
this allowed proving strong property (T) for SLn.R/with respect to classes of Banach spaces
that become larger with n: if a Banach space X satisfies that, for some ˇ < 1

2
, dk.X/ D

O.kˇ / as k ! 1, then X has strong property (T) with respect to X for every n �
c

1
2 �ˇ

. The

property that dk.X/ D o.k
1
2 / characterizes the Banach spaces with nontrivial type [55], and it

is an old problem whether they automatically satisfy the stronger condition dk.X/ D o.k
1
2 /.

This is, for example, the case if X has type 2.
So far, we have only talked about higher rank groups, and rank 0 reduction was

used to prove strong rigidity results. But rank 0 reduction can also say something about
rank 1 groups, which are not rigid in the same way as higher rank group. The following is
an example.

Proposition 5.1 ([62]). Every SO.n/-biinvariant matrix coefficient of every representation
of SO.n; 1/ on a Hilbert space is of class C

n
2 �1�" outside of SO.n/, for every " > 0.

We do not know if the regularity n
2

� 1 is optimal, but the linear order of n is, already
for unitary representations. For odd n, " D 0 is allowed.
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The goal of this paper is to go over some recent work by the author and her collabora-
tors on Schrödinger maximal estimates, weighted Fourier extension estimates, and Falconer
distance set problem. The study of Schrödinger maximal estimates arises from the point-
wise convergence problem of the solution to the Schrödinger equation raised by Carleson
in the late 1970s. Weighted Fourier extension estimates are closely related to the classical
Fourier restriction problem raised by Stein and have various applications in PDEs and geo-
metric measure theory. Falconer distance set problemwas introduced by Falconer in the early
1980s and remains to be a difficult and wide open question in geometric measure theory. Two
major special cases of the general weighted Fourier extension estimates apply to Schrödinger
maximal estimates and Falconer distance set problem.

1. Schrödinger maximal estimates

The solution to the free Schrödinger equation8<: iut � �u D 0; .x; t/ 2 Rn � R;

u.x; 0/ D f .x/; x 2 Rn;

is
eit�f .x/ D .2�/�n

Z
ei.x��Ct j�j2/ Of .�/ d�:

It is not hard to show that the solution eit�f .x/ converges to the initial data f in
L2 as the time t tends to 0. However, the problem of pointwise convergence is much harder.
About 40 years ago, Carleson [10] proposed the question of identifying the optimal exponent
s for which limt!0 eit�f .x/ D f .x/ almost everywhere whenever f lies in the Sobolev
space H s.Rn/. He proved himself the convergence for s � 1=4 when n D 1. Dahlberg and
Kenig [12] then showed that this result is sharp. The higher-dimensional case has since been
studied intensely [4–6, 9, 11, 13, 15, 16, 20, 30–32, 36, 38, 39, 41, 42]. Recently, Bourgain [6] gave
counterexamples showing that s �

n
2.nC1/

is necessary for the pointwise convergence to
hold. In collaboration with Guth and Li, and then with Zhang, we proved that Bourgain’s
bound is also sufficient (up to endpoint).

Theorem 1.1 (n D 2, Du, Guth, and Li [15]; n � 3, Du and Zhang [20]). Let n � 2. For every
f 2 H s.Rn/ with s > n

2.nC1/
, limt!0 eit�f .x/ D f .x/ almost everywhere.

The pointwise convergence problem can be approached via a standard smooth
approximation argument. Indeed, the convergence holds uniformly for Schwartz functions
because of their rapid decay nature. Since the space of Schwartz functions is dense in the
Sobolev space, to prove that limt!0 eit�f .x/ D f .x/ holds a.e. for any f in H s.Rn/, it is
enough to show that the associated maximal function sup0<t�1 jeit�f .x/j is bounded from
H s.Rn/ to Lp.Bn.c; 1// for some p � 1 and any unit ball Bn.c; 1/ in Rn. Such estimates
are called the Schrödinger maximal estimates. More precisely, results in Theorem 1.1 are
consequences of the following two theorems on Schrödinger maximal estimates.
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Theorem 1.2 (Du, Guth, and Li [15]). For any s > 1
3
, the following bound holds: for any

function f 2 H s.R2/, sup
0<t�1

jeit�f j


L3.B2.0;1//

� Cskf kH s.R2/:

Theorem 1.3 (Du and Zhang [20]). Let n � 3. For any s > n
2.nC1/

, the following bound
holds: for any function f 2 H s.Rn/, sup

0<t�1

jeit�f j


L2.Bn.0;1//

� Cskf kH s.Rn/:

Comparing the two Schrödinger maximal estimates above, we note that one can
derive Theorem 1.3 in the case n D 2 from Theorem 1.2 using Hölder’s inequality. Despite
the fact that Theorem 1.3 in the cases n D 1; 2 can recover the almost sharp results of point-
wise convergence problem, the sharp estimates for the L2-norm of the Schrödinger maximal
function are not as strong as the previous sharp estimates for the Lp-norm (p D 4 when
n D 1 is due to Kenig, Ponce, and Vega [29], and p D 3 when n D 2 is due to Du, Guth, and
Li [15]). Based on these results, it is natural to ask the following:

Question 1.4. Consider the Schrödinger maximal estimates of the form sup
0<t�1

jeit�f j


Lp.Bn.0;1//

� Cskf kH s.Rn/: (1.1)

(1) Let n � 3. Determine the optimal p D p.n/ for which (1.1) holds for any
s > n

2.nC1/
.

(2) Let n � 3 and fixp > 2. Identify the optimal range of s D s.n;p/ for which (1.1)
holds.

Via a localization argument, Littlewood–Paley decomposition, and parabolic rescal-
ing, the above question can be reduced to the problem of identifying the sharp exponent
.n; p/, which is the optimal  such that sup

0<t�R

jeit�f j


Lp.Bn.0;R//

/ R
kf kL2 ; 8f W supp Of � Bn.0; 1/: (1.2)

Here A / B means A � C"R"B for any " > 0, R � 1. The known results [6,12,15,20,29] can
be summarized as

.n; p/ D max
²

n

�
1

p
�

n

2.n C 1/

�
; 0

³
(1.3)

for any p � 1 when n D 1; 2, and 1 � p � 2 when n � 3.
It remains an interesting problem to determine .n; p/ for p > 2 when n � 3. It

seemed possible that (1.3) should hold for any p � 1 and n � 1. However, we disproved this
for a certain range of p when n � 3 by examining Bourgain’s example [6] in all intermediate
dimensions:

Theorem 1.5 (Du et al. [19]). Let n � 3 and p > 2. Then

.n; p/ � max
m2Z;1�m�n

�
n C m

2

�
1

p
�

1

2

�
C

m

2.m C 1/

�
:
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Let us look at two special cases of Theorem 1.5: by a direct calculation,

• if n;p D n. 1
p

�
n

2.nC1/
/, then p � p0.n/ WD 2 C

4
.n�1/.nC2/

;

• if n;p D 0, then p � p1.n/ WD maxm2Z;1�m�nŒ2 C
4

n�1CmCn=m
�.

Note that p0.n/ < 2.nC1/
n

< p1.n/when n � 3. Therefore, (1.3) fails for p0.n/ < p < p1.n/

when n � 3.
To establish (1.2), it is helpful to consider amore general setting, inwhich it is conve-

nient to use induction on scales. By formalizing the being locally constant property, one can
treat jeit�f .x/j essentially as a constant on each unit cube, and therefore the left-hand side
of (1.2) is equivalent to keit�f kLp.X/, whereX is a union of lattice unit cubes inBnC1.0;R/

such that each lattice vertical thin tube of dimensions 1 � � � � � 1 � R contains exactly one
unit cube from X . In particular, the set X satisfies the condition that jX \ Br j . rn for any
ball Br of radius r � 1. Based on this observation, we are led to consider a slight general-
ization of (1.2):

Question 1.6. Let XnC1;R denote the collection of subsets X such that each X in XnC1;R

is a union of lattice unit cubes in BnC1.0; R/ satisfying jX \ Br j � rn for any ball Br of
radius r � 1.

Let n � 3 and fixp > 2. Determine the sharp exponent Q.n;p/, which is the optimal
 for which the following holds:eit�f


Lp.X/

/ R
kf k2; 8X 2 XnC1;R; 8f W supp Of � Bn.0; 1/: (1.4)

The argument from Du, Guth, and Li [15] can be adapted to establish Q.n D 2;

p D 3/ D 0, which in turn determines Q.n D 2; p/ for all p � 1:

Q.n D 2; p/ D

8<: 2. 1
p

�
1
3
/; 1 � p � 3;

0; p � 3:

For general n � 3, the fractal L2 Fourier extension estimate from Du and Zhang [20] gives
the sharp exponent Q.n; p D 2/ D

n
2.nC1/

, which also determines Q.n; p/ for all 1 � p � 2:

Q.n; p/ D n

�
1

p
�

n

2.n C 1/

�
; 8n � 3; 81 � p � 2:

The main ingredients in the work of [15] include the polynomial partitioning method
adapted by Guth to Fourier restriction problem [25] and Bourgain–Demeter’s l2 decoupling
theorem [7]. The method of polynomial partitioning identifies algebraic structures where
the Schrödinger solutions are most concentrated, and reduces the original 3-dimensional
problem to an essentially 2-dimensional one. The reduced problem can then be solved by a
bilinear refined Strichartz estimate, which is derived via decoupling and induction on scales.

The proof of the fractal L2 Fourier extension estimate in [20] uses a broad–narrow
analysis [5,7,8,26]. In the broad case, there are n C 1 transverse frequency caps in Bn.0; 1/

making significant contributions, and we can apply either Bennett–Carbery–Tao’s multilin-
ear restriction estimates [2] or multilinear refined Strichartz estimates of Du et al. [16]. In
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the narrow case, we invoke l2 decoupling [7] in dimension n and use an induction on scales
argument which is rooted in the proof of the refined Strichartz estimates [15].

It remains a wide open and challenging problem to determine Q.n; p/ for n � 3 and
p > 2.

2. Weighted Fourier extension estimates

In this section, we discuss the general weighted Fourier extension estimates, which
include the Schrödinger maximal estimate as a major special case. Besides their own inde-
pendent interest, such general estimates have various applications in PDEs and geometric
measure theory.

Definition 2.1. Let 0 < ˛ � d .

(1) We say that � is an ˛-dimensional measure in Bd .0; 1/ if it is a positive Borel
measure, supported in the unit ball Bd .0; 1/, that satisfies

c˛.�/ WD sup
x2Rd ;r>0

�.B.x; r//

r˛
< 1:

(2) We say that H is an ˛-dimensional weight in Rd if it is a nonnegative measur-
able function on Rd that satisfiesZ

B.x;r/

H.x/ dx � r˛; 8x 2 Rd ; 8r � 1:

(3) Let Xd;˛;R denote the collection of subsets X such that each X in Xd;˛;R is a
union of lattice unit cubes in Bd .0; R/ satisfyingˇ̌

X \ B.x; r/
ˇ̌

� r˛; 8x 2 Rd ; 8r � 1:

Let S denote either the unit sphere Sd�1 or the truncated paraboloid P d�1. Let d�

be the induced Lebesgue measure on S . Consider the Fourier extension operator

Ef .x/ D ES f .x/ D

Z
S

ei!�xf .!/ d�.!/:

Note that EPd�1f corresponds to free Schrödinger solutions. We are interested in the fol-
lowing weighted Fourier extension estimates:

Question 2.2. Determine the sharp exponent .d ; ˛; p/, which is the optimal  for which
the following two equivalent estimates hold:

(1) For any ˛-dimensional weight H in Rd and any function f 2 L2.S; d�/,

kEf kLp.Bd .0;R/IHdx/ / R
kf k2I (2.1)

(2) For any subset X 2 Xd;˛;R and any function f 2 L2.S; d�/,

kEf kLp.X/ / R
kf k2: (2.2)
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To see the equivalence of the two estimates (2.1) and (2.2), one direction is easy:
given X 2 Xd;˛;R, the characteristic function of X is an ˛-dimensional weight in Rd ; the
other direction was proved in Du and Zhang [20] where the being locally constant property
and dyadic pigeonhole argument play key roles. The advantage of the expression (2.2) is that
it allows us to take into account geometric structures more directly.

The case ˛ D n D d � 1 of (2.2) is a generalization of Schrödinger maximal esti-
mates as described in Section 1. Estimates (2.1) for general ˛ are related to the study of
spherical average Fourier decay rates of fractal measures [3, 17, 20–23, 33–35, 40, 43]. For ˛

around d
2
, estimates (2.1) have drawn particular interest because of their application to Fal-

coner’s distance set problem [17, 20–24, 43]. The techniques in the proof of Theorems 1.2
and 1.3 are used to establish the following results:

Theorem 2.3. Let H be an ˛-dimensional weight in Rd .

(1) (Du et al. [17]). For 3
2

< ˛ � 2,

kEf kL3.B3.0;R/IHdx/ / kf k2; 8f 2 L2.S; d�/: (2.3)

(2) (Du and Zhang [20]). For d � 3 and d
2

< ˛ < d ,

kEf kL2.Bd .0;R/IHdx/ / R
˛

2d kf k2; 8f 2 L2.S; d�/: (2.4)

In particular, (2.3) gives that .d D 3;˛ D 2;p D 3/ D 0, which in turn determines
the exact .d D 3; ˛ D 2; p/ for all p � 1. For 3

2
< ˛ < 2, it is unknown, but expected, that

.d D 3; ˛; p/ D 0 for some p smaller than 3.
Due to a recent example in Du [14], (2.4) is sharp when d � 1 � ˛ < d , and it

determines the exact value of .d;˛;p/ for all d � 1 � ˛ < d and 1 � p � 2. For ˛ < d � 1,
it is expected that there is still room to improve the estimate (2.4). The key feature of the
examples from [14] is that for ˛ 2 Œm; m C 1� the corresponding examples are concentrated
around hyperplanes of dimension m or m C 1. This explains in some way why (2.4) only
gives sharp results for large ˛. When working towards answering Question 2.2 for small ˛,
we need to explore newmethods which can reduce the original question that in a much lower
dimension.

Theorem 2.3 gives certain state-of-the-art results for several problems in PDEs and
geometric measure theory, including size of the divergence set of Schrödinger solutions,
Fourier decay rates of fractal measures, and Falconer distance set problem.

2.1. Divergence set of Schrödinger solutions
A natural refinement of Carleson’s problem was initiated by Sjögren and Sjölin [38]:

determine the size of the divergence set, in particular, consider

˛n.s/ WD sup
f 2H s.Rn/

dim
°
x 2 Rn

W lim
t!0

eit�f .x/ ¤ f .x/
±
;

where dim denotes the Hausdorff dimension. It is known that

˛n.s/ D

8<: n; for s �
n

2.nC1/
(Bourgain [6], Lucà and Rogers [32]);

n � 2s; for n
4

� s �
n
2

(Žubrinić [44], Barceló et al. [1]):
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An open problem is to determine ˛n.s/ for n � 2 and n
2.nC1/

< s < n
4
. For ˛ in this

range, the best known lower bounds (examples) are due to Lucà and Rogers [31,32], and the
best known upper bounds follow from Theorem 2.3:

˛n.s/ � n C 1 �
2.n C 1/s

n
(Du and Zhang [20]):

An improvement of estimate (2.4) will give a better upper bound of ˛n.s/. More
precisely, if

kEf kL2.BnC1.0;R/IHdx/ / R
kf k2; 8˛-dimensional weight H; 8f 2 L2.P n; d�/;

then we have ˛n.s/ � ˛0, where ˛0 is the root for ˛ to the equation  C
n�˛

2
D s [33].

2.2. Fourier decay rates of fractal measures
Let ˇd .˛; S/ denote the average Fourier decay rate of fractal measures, which is

defined as the supremum of the numbers ˇ for whichb�.R�/
2

L2.S;d�/
. c˛.�/k�kR�ˇ ; (2.5)

wheneverR > 1 and� is an ˛-dimensional measure inBd .0; 1/. The problem of identifying
the value of ˇd .˛; Sd�1/ was proposed by Mattila [35].

In dimension two, the exact decay rates are known:

ˇ2.˛; S/ D

8̂̂<̂
:̂

˛; ˛ 2 .0; 1=2� (Mattila [34]),

1=2; ˛ 2 Œ1=2; 1� (Mattila [34]),

˛=2; ˛ 2 Œ1; 2� (Wolff [43]):

In higher dimensions, it is known that ˇd .˛; S/ D ˛ in the range ˛ 2 .0; d�1
2

�, and

ˇd .˛; P d�1/ D
.d � 1/˛

d
for d � 3 and d � 1 � ˛ < d (Du and Zhang [20], Du [14]):

In other cases, ˇd .˛; S/ is still a mystery. The current best lower bounds are

ˇd .˛; S/ �

8̂̂<̂
:̂

˛; ˛ 2 .0; d�1
2

� (Mattila [34]),
d�1

2
; ˛ 2 Œ d�1

2
; d

2
� (Mattila [34]),

.d�1/˛
d

; ˛ 2 Œ d
2

; d � .Du et al. [17, d D 3], Du and Zhang [20, d � 4]/:

For upper bounds, the author’s recent work [14] includes a summary. New upper bounds
are obtained in [14] for ˇd .˛; Sd�1/ with d � 4, ˛ > d

2
, and for ˇd .˛; P d�1/ with d � 3,

˛ > d�1
2
.
By a duality argument and Hölder’s inequality, the weighted Fourier extension esti-

mates (2.1) and ˇd .˛; S/ are related as follows: if

kEf kLp.Bd .0;R/IHdx/ / R
kf k2; 8˛-dimensional weight H; 8f 2 L2.S; d�/;

then ˇd .˛; S/ � 2. ˛
p

� /. Therefore, in order to determine the exact ˇd .˛; S/, it is of
particular interest to study Question 2.2 for fractional dimension ˛ 2 . d�1

2
; d � 1/.
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2.3. Falconer’s distance set problem
The Falconer distance set conjecture, which is a famously difficult problem in geo-

metric measure theory, is a continuous version of the celebrated Erdős distinct distance
conjecture whose two-dimensional case was resolved by Guth and Katz [28]. The study of
the Falconer problem is naturally related to Fourier restriction theory, projection theory of
fractal measures, and incidence geometry. It has attracted a great amount of attention over
the decades and has seen some very recent breakthroughs. See [17,18,20,27] and the references
therein for more details.

LetE � Rd be a compact set. Its distance set �.E/ is defined by�.E/ WD ¹jx � yj W

x; y 2 Eº.

Conjecture 2.4 (Falconer [24]). Let d � 2 and E � Rd be a compact set. Then

dim.E/ >
d

2
)

ˇ̌
�.E/

ˇ̌
> 0:

Here j � j denotes the Lebesgue measure and dim.�/ is the Hausdorff dimension.

Different methods have been invented to lower the dimensional threshold. To name
a few landmarks: in 1985, Falconer [24] showed that j�.E/j > 0 if dim.E/ > d

2
C

1
2
. This

dimensional threshold has since been lowered gradually. It was further lowered byWolff [43]

to 4
3
in the case d D 2, and by Erdoğan [22] to d

2
C

1
3
when d � 3. These records were

recently broken with the following state-of-the-art thresholds:8̂̂̂̂
<̂̂
ˆ̂̂̂:

5
4
; d D 2 (Guth et al. [27]);

9
5
; d D 3 (Du et al. [17]);
d2

2d�1
D

d
2

C
1
4

C
1

8d�4
; d � 3 and d is odd (Du and Zhang [20]);

d
2

C
1
4
; d � 4 and d is even (Du et al. [18]):

By a classical analytic approach ofMattila [34], we can approach Falconer’s problem
via Fourier decay rates of fractal measures and thus via weighted Fourier extension estimates.
This is the route taken in many prior works, including [17,20,22,43]. More precisely, if

kEf kLp.Bd .0;R/IHdx/ / R
kf k2; 8˛-dimensional weight H; 8f 2 L2.S; d�/;

then j�.E/j > 0 if dim.E/ > ˛0, where ˛0 is the root for ˛ to the equation ˛ D d � 2. ˛
p

� /.
In a recent breakthrough by Guth et al. [27], they studied the two-dimensional Fal-

coner problem, and developed a new method that modifies the original Mattila’s approach.
Their argument consists primarily of two steps. First, prune the natural Frostman measure �

on E by removing “bad” wave packets at different scales, and show that the error introduced
in the pruning process can be controlled. Second, apply a refined decoupling inequality to
estimate some L2 quantity involving the pruned good measure.

The above arguments do not readily extend to higher dimensions. In [27], to verify
that the pruned measure is close enough to the original Frostman measure, one applies a
radial projection theorem of Orponen [37] that assumes the measure has dimension
˛ > d � 1. However, when d � 3, this condition fails to hold if ˛ is close enough to d

2
.
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In a recent work Du et al. [18], we overcame this difficulty by introducing another
ingredient into the process: orthogonal projections of the original measure. Combining
orthogonal projections and Orponen’s radial projection theorem, we were able to remove
certain bad part from the original measure and approach Falconer’s distance set problem via
the following:

Question 2.5. Prove weighted L2 Fourier extension estimates for good functions:

kEf kL2.Bd .0;R/IHdx/ / R
kf k2; 8˛-dimensional weight H; 8 good f 2 L2.S; d�/:

By the techniques from [18], we can define good functions as follows: we say f 2

L2.S; d�/ is good if in its wave packet decomposition f D
P

T 2T fT (here for each wave
packet fT , EfT is essentially supported on a tube T of dimensions R1=2 � � � � � R1=2 � R,
and fT is supported on a cap � D �.T / � S of radius R�1=2), for each tube T 2 T with
fT ¤ 0, Z

T

H.x/ dx /

8<: R˛R� d
4 ; d is even;

R˛R� d�1
4 ; d is odd:

(2.6)

Note that since H is ˛-dimensional, we have that the total weight H on Bd .0; R/ is � R˛ .
Condition (2.6) says that a function f is good if the weight H on each relative tube from
the wave packet decomposition of f is just a small proportion of the total weight. Roughly
speaking, all the relative tubes are light. To further improve the current results for Falconer’s
distance set problem, one may explore other tools from geometric measure theory which
could help removing more bad parts from the original measure and so the functions under
consideration are good at various scales in contrast with (2.6).
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1. Introduction and main results

In order to explain the motivation for our work and to state our main results, we set
up the following terminology regarding higher rank lattices.

Terminology. LetG be any connected semisimple real Lie group with finite center, no non-
trivial compact factor, and real rank rkR.G/ � 2. Let � < G be any irreducible lattice,
meaning that � is a discrete subgroup of G with finite covolume such that N � � is a dense
subgroup of G for every noncentral closed normal subgroup N C G. In what follows, if all
the above conditions are satisfied, then we simply say that � < G is a higher rank lattice.

The following examples of higher rank lattices are particular cases of general results
due to Borel–Harish-Chandra [11].

Examples. For every d � 2, the special linear group SLd .R/ is a connected simple real Lie
group with finite center Z .SLd .R// D ¹˙1d º and real rank rkR.SLd .R// D d � 1.

(1) For every d � 3, SLd .Z/ < SLd .R/ is a higher rank lattice.

(2) For every d � 2 and every square free integer q 2 N,

� WD
®
.g; g� / j g 2 SLd

�
ZŒ

p
q�

�¯
< SLd .R/ � SLd .R/ WD G

is a higher rank lattice, where � is the order-2 automorphism of Q.pq/.

The main inspiration for our work is Margulis’ celebrated normal subgroup theo-
rem which states that for any higher rank lattice � < G, any normal subgroup N C � is
either finite and contained inZ .�/ orN has finite index in � (see [41, Theorem IV.4.9]). Mar-
gulis’ remarkable strategy to prove the normal subgroup theorem consists of two “halves”:
the amenability half and the property (T) half. Indeed, assuming thatN C � is a noncentral
normal subgroup, to prove that the quotient group �=N is finite, Margulis showed that �=N
is both amenable and has property (T). The proof of the amenability half relies on Margulis’
factor theorem which states that any measurable �-factor of the homogeneous space G=P ,
where P < G is a minimal parabolic subgroup, is measurably isomorphic to a G-factor
whence of the form G=Q, where P < Q < G is an intermediate parabolic subgroup (see
[41, Theorem IV.2.11]). Margulis’ strategy has been used to prove a normal subgroup theorem
for various classes of irreducible lattices in product groups (see [4, 16, 24,49]) and to under-
stand the structure of point stabilizers of ergodic probability measure preserving actions of
higher rank lattices (see [23,50]). More recently, Margulis’ strategy has been adapted to the
noncommutative setting to study characters of higher rank lattices (see [22,46]).

In that respect, for any countable discrete groupƒ, we denote byP.ƒ/ the space of
positive definite functions ' Wƒ!C normalized so that '.e/D 1. ThenP.ƒ/� `1.ƒ/ is a
weak-� compact convex subset. Thanks to the Gelfand–Naimark–Segal (GNS) construction,
to any positive definite function ' 2 P.ƒ/ corresponds a triple .�' ;H' ; �'/, where �' W

ƒ ! U .H'/ is a unitary representation and �' 2 H' is a unit vector such that the linear
span of �'.ƒ/�' is dense in H' and

8 2 ƒ; './ D
˝
�'./�' ; �'

˛
:
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We consider the conjugation action ƒ Õ P.ƒ/ defined by

8; g 2 ƒ;8' 2 P.ƒ/; .'/.g/ WD '.�1g/:

A fixed point ' 2 P.ƒ/ for the conjugation action is called a character. We denote by
Char.ƒ/ � P.ƒ/ the weak-� compact convex subset of all characters. Any countable dis-
crete groupƒ always admits at least two characters: the trivial character 1ƒ and the regular
character ıe . The GNS representation of the regular character ıe coincides with the left regu-
lar representation� Wƒ! U .`2.ƒ//. An important source of characters comes from ergodic
theory. Indeed, for any probability measure preserving action ƒ Õ .X; �/ on a standard
probability space, the function '� W ƒ ! C W  7! �.Fix.// defines a character. The action
ƒ Õ .X; �/ is (essentially) free if and only if the above character '� is equal to ıe .

For any unitary representation � Wƒ! U .H�/, we consider the unital C�-algebra

C�
�.ƒ/ WD C�

�®
�./ j  2 ƒ

¯�
� B.H�/

endowed with the conjugation action Ad.�/ W ƒ Õ C�
�.ƒ/. We then regard the state space

S.C�
�.ƒ// as a ƒ-invariant weak-� compact convex subset of P.ƒ/ via the mapping

S.C�
�.ƒ// ,! P.ƒ/ W  7!  ı � . When � D � is the left regular representation, C�

�.ƒ/ is
the reduced group C�-algebra which is endowed with the canonical faithful trace �ƒ defined
by �ƒ W C�

�.ƒ/ ! C W a 7! haıe; ıei.
Given unitary representations �i W ƒ ! U .Hi /, i D 1; 2, we say that �2 is weakly

contained in �1 if the map �1.ƒ/! �2.ƒ/ W �1./ 7! �2./ is well defined and extends to
a �-homomorphism C�

�1
.ƒ/ ! C�

�2
.ƒ/. Following [5], we say that a unitary representation

� Wƒ! U .H�/ is amenable if the trivial representation 1ƒ is weakly contained in� ˝� . If
� contains a finite dimensional subrepresentation, then � is amenable. Ifƒ has property (T),
then conversely any amenable representation � Wƒ! U .H�/ contains a finite-dimensional
subrepresentation.

We now present in a unified way the main results we obtained in [13] (joint work
with R. Boutonnet) and [3] (joint work with U. Bader, R. Boutonnet, and J. Peterson). Our
first main result deals with the existence of characters. It is a fixed point theorem for the
affine action of higher rank lattices on their space of positive definite functions.

Theorem A ([3,13]). Let � < G be any higher rank lattice. Then any nonempty �-invariant
weak-� compact convex subset C � P.�/ contains a character.

Our second main result deals with the classification of characters of higher rank
lattices. Bekka [6] obtained the first character rigidity results in the case � D SLd .Z/ for
d � 3.More recently, using a different approach based onMargulis’ strategy discussed above,
Peterson [46] obtained character rigidity results for arbitrary higher rank lattices (see also
[22] for the case of irreducible lattices in certain product groups). The operator-algebraic
framework we developed in [3,13] enables us to obtain a new and more conceptual proof of
Peterson’s character rigidity results [46].

Theorem B (Peterson, [46]). Let � < G be any higher rank lattice. Then any character
' 2 Char.�/ is either supported on Z .�/ or its GNS representation �' is amenable.
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In caseG has a simple factor with property (T), any character ' 2 Char.�/ is either
supported on Z .�/ or its GNS representation �' contains a finite dimensional subrepre-
sentation.

TheoremBgeneralizesMargulis’ normal subgroup theorem [41] and Stuck–Zimmer’s
stabilizer rigidity theorem [50]. Also, Theorem B solved a conjecture formulated by Connes
(see [38]). For other recent results regarding classification of characters, we refer the reader
to [7,9,22,40,47].

Combining Theorems A and B, we obtain new results regarding the simplicity and
the unique trace property for the C�-algebra C�

�.�/ associatedwith an arbitrary nonamenable
(resp. weakly mixing) unitary representation � W � ! U .H�/. In particular, Corollary C
provides a far reaching generalization of the results obtained by Bekka–Cowling–de la
Harpe [8] for the reduced C�-algebra C�

�.�/.

Corollary C ([3, 13]). Let � < G be any higher rank lattice. Let � W � ! U .H�/ be any
unitary representation. Then C�

�.�/ admits a trace.
Assume, moreover, that G has trivial center. If � is not amenable, then � is weakly

contained in � and the unique �-homomorphism ‚ W C�
�.�/ ! C�

�.�/ W �./ 7! �./ sat-
isfies the following properties:

(1) �� ı‚ is the unique trace on C�
�.�/.

(2) ker.‚/ is the unique proper maximal ideal of C�
�.�/.

In case G has property (T), the above properties hold as soon as � does not contain any
nonzero finite-dimensional subrepresentation.

In case ƒ is a countable discrete group and � D �, Hartman–Kalantar [34] initi-
ated the study of the noncommutative dynamical system ƒ Õ C�

�.ƒ/ and obtained a new
characterization of the simplicity and the unique trace property for C�

�.ƒ/ (see also [15,39]).
As a byproduct of our operator algebraic methods, we also obtain a topological

analogue of Stuck–Zimmer’s stabilizer rigidity theorem [50]. In particular, our next result
gives a positive answer to a recent problem raised by Glasner–Weiss [32].

Theorem D ([3, 13]). Let � < G be any higher rank lattice and assume that G has trivial
center. Let � Õ X be any minimal action on a compact space. Then at least one of the
following assertions holds:

(1) There exists a �-invariant Borel probability measure on X .

(2) The action � Õ X is topologically free.

In case G has a simple factor with property (T), either X is finite or the action � Õ X is
topologically free.

As we will explain, all the main results stated above are consequences of a dynam-
ical dichotomy theorem for �-equivariant faithful normal unital completely positive (ucp)
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mapsˆ WM ! L1.G=P /, whereM is an arbitrary von Neumann algebra endowed with an
ergodic action � ÕM (see Theorem E and Theorem 3.8 below). This dynamical dichotomy
theorem is one of the key novelties of our operator algebraic framework. Both its statement
and its proof rely on von Neumann algebra theory and depend heavily on whether the con-
nected semisimple real Lie group G is simple or not.

In our first joint work [13], we dealt with the case where G is simple and rkR.G/ �

2 (and, more generally, where all its simple factors Gi satisfy rkR.Gi / � 2). In that case,
we obtained the following noncommutative analogue of Nevo–Zimmer’s structure theorem
[43, 44]. We denote by P < G a minimal parabolic subgroup and whenever P < Q < G

is an intermediate parabolic subgroup, we denote by pQ W G=P ! G=Q W gP 7! gQ the
canonical factor map and byp�

Q W L1.G=Q/! L1.G=P / W f 7! f ıpQ the corresponding
unital normal embedding.

Theorem E ([13]). Let � < G be any higher rank lattice and assume that G is simple. Let
M be any von Neumann algebra, � ÕM any ergodic action, andˆ WM ! L1.G=P / any
�-equivariant faithful normal ucp map. Then the following dichotomy holds:

• Either ˆ.M/ D C1,

• Or there exist a proper parabolic subgroup P < Q < G and a �-equivariant
unital normal embedding � W L1.G=Q/ ,! M such that ˆ ı � D p�

Q.

Theorem E extends the work of Nevo–Zimmer in two ways. Firstly, we deal with
arbitrary von Neumann algebras M (instead of measure spaces .X; �/) and secondly, we
deal with �-actions � Õ M (instead of G-actions G Õ .X; �/). We refer to Section 3 for
the correspondence between equivariant ucp maps and stationary states. The remarkable
feature of Theorem E is that whenˆ WM ! L1.G=P / is not invariant, there is a nontrivial
�-invariant commutative von Neumann subalgebra M0 � M such that M0 Š L1.G=Q/.
This allows us to exploit the dynamical properties of the ergodic action � Õ G=Q and
the fact that every noncentral element  2 � n Z .�/ acts (essentially) freely on G=Q. In
particular, in [13], we used Theorem E to derive all the main results stated above.

In our second joint work [3], we dealt with the case whereG is not simple. We point
out that whenG has a rank one simple factor (e.g.,G D SL2.R/� SL2.R/), a Nevo–Zimmer
structure theorem does not hold, and the method used in [13] to prove the main results does
not apply. Instead, we proceeded as follows [3]. Firstly, for any higher rank lattice � < G, we
formulated a general dynamical dichotomy theorem invariant vs. singular for �-equivariant
faithful normal ucp maps ˆ W M ! L1.G=P / (see Theorem 3.8 below) and we showed
that all the main results stated above can be derived from this general dichotomy theorem. In
case G is simple, the dynamical dichotomy Theorem 3.8 is a straightforward consequence
of Theorem E. Secondly, to prove the dynamical dichotomy Theorem 3.8 in the case where
G is not simple, we developed a new method based on the product structure in G. In that
respect, the tools developed in [13] and [3] are complementary.

For any nonsingular action ƒ Õ .X; �/ on a standard probability space, we denote
by L.ƒÕX/ the corresponding groupmeasure space vonNeumann algebra (see Section 2).
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For higher rank latttices � < G whereG is simple with trivial center, we present yet another
application of Theorem E that appeared in [2] (joint work with U. Bader and R. Boutonnet).
The next result can be regarded as a noncommutative analogue of Margulis’ factor theorem.

Corollary F ([2]). Let � < G be any higher rank lattice and assume that G is simple with
trivial center. Let L.�/�M � L.� ÕG=P / be any intermediate von Neumann subalgebra.
Then there is a unique intermediate parabolic subgroup P < Q < G such that

M D L.� Õ G=Q/:

In Section 2, we give some preliminary background on Poisson boundaries, semi-
simple Lie groups and operator algebras. In Section 3, we introduce the notion of boundary
structures for von Neumann algebras and state the dynamical dichotomy theorem. We also
outline the main steps of the proof of Theorem E. In Section 4, we sketch the proofs of
Theorems A, B and Corollary C based on the dynamical dichotomy theorem. We also dis-
cuss open problems related to our main results. In Section 5, we discuss Corollary F and its
relevance for Connes’ rigidity conjecture.

Remark. In this survey article, we only consider higher rank lattices in connected semisim-
ple real Lie groups to simplify the exposition and to focus on the main ideas. However,
we point out that all our main results do hold for higher rank lattices in semisimple alge-
braic groups defined over arbitrary local fields. We refer the reader to [2,3] for more general
statements and further details.

2. Preliminaries

2.1. Poisson boundaries
Let H be any locally compact second countable (lcsc) group. We say that a Borel

probability measure � 2 Prob.H/ is admissible if the following conditions are satisfied:

(1) � is absolutely continuous with respect to the Haar measure;

(2) supp.�/ generatesH as a semigroup;

(3) supp.�/ contains a neighborhood of the identity element e 2 H .

We say that a bounded measurable function F W H ! C is (right) �-harmonic if

8g 2 H; F.g/ D

Z
H

F.gh/ d�.h/:

Any �-harmonic function is continuous. We denote by Har1.H; �/ � Cb.H/ the space
of all (right) �-harmonic functions. The left translation action � W H Õ Cb.H/ leaves the
subspace Har1.H;�/ globally invariant.

Let .X; �/ be any standard probability space endowed with a measurable action
H Õ X . We say that .X; �/ is a .H; �/-space if � is �-stationary, that is, � � � D �. For
any .H; �/-space .X; �/, define the Poisson transform ‰� W L1.X; �/ ! Har1.H; �/ by
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the formula

8f 2 L1.X; �/;8g 2 H; ‰�.f /.g/ D

Z
X

f .gx/ d�.x/:

The mapping ‰� W L1.X; �/ ! Har1.H; �/ is H -equivariant, unital, positive, and con-
tractive.

Theorem 2.1 (Furstenberg, [26]). There exists a unique .H;�/-space .B; �B/ for which the
Poisson transform ‰� W L1.B; �B/ ! Har1.H;�/ is bijective.

The .H; �/-space .B; �B/ is called the .H; �/-Poisson boundary. For a construc-
tion of the .H; �/-space .B; �B/, we also refer to [4, 25]. The .H; �/-space .B; �B/ enjoys
remarkable ergodic theoretic properties. In that respect, let .E;k � k/ be any separable contin-
uous isometric BanachH -module and C � E� any nonemptyH -invariant weak-� compact
convex subset. Denote by Bar W Prob.C /! C theH -equivariant continuous barycenter map.
A point c 2 C is �-stationary if Bar.�c��/ D c where �c W H ! C W g 7! gc is the orbit
map associated with c 2 C . By Markov–Kakutani’s fixed point theorem, the subset C� � C

of all �-stationary points in C is not empty.
The following theorem due to Furstenberg provides the existence (and uniqueness)

of boundary maps (see also [4, Section 2]).

Theorem 2.2 (Furstenberg, [26]). Let c 2 C� be any �-stationary point. Then there exists
an (essentially) uniqueH -equivariant measurable map ˇ W B ! C such that

Bar.ˇ��B/ D c:

We say that ˇ W B ! C is theH -equivariant boundary map associated with c 2 C�.

2.2. Semisimple Lie groups
LetG be any connected semisimple real Lie group with finite center and no nontriv-

ial compact factors. Fix an Iwasawa decomposition G D KAV , whereK < G is a maximal
compact subgroup,A<G is a Cartan subgroup, and V <G is a unipotent subgroup. Denote
by L WD ZG.A/ the centralizer of A in G and set P WD LV . Then P < G is a minimal
parabolic subgroup. Since K Õ G=P is transitive, G=P is a compact homogeneous space,
and there exists a uniqueK-invariant Borel probability measure �P 2 Prob.G=P /. The mea-
sure class of �P coincides with the unique G-invariant measure class on G=P .

Example 2.3. Assume that G D SLd .R/ for d � 2. Then we may takeK D SOd .R/, A <
G the subgroup of diagonal matrices, and V < G the subgroup of strict upper triangular
matrices. In that case, P D AV < G is the subgroup of upper triangular matrices. The
homogeneous spaceG=P is the full flag varietywhich consists of all flags ¹0º �W1 � � � � �

Wd D Rd , whereWi � Rd is a vector subspace such that dimR.Wi /D i for every 1� i � d .

Observe that, for any left K-invariant Borel probability measure �G 2 Prob.G/,
the probability measure �G � �P is K-invariant on G=P and so �G � �P D �P , that is,
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.G=P; �P / is a .G; �G/-space. Furstenberg [27] proved the following fundamental result
describing the Poisson boundary of semisimple Lie groups.

Theorem 2.4 (Furstenberg, [27]). Let �G 2 Prob.G/ be any K-invariant admissible Borel
probability measure. Then .G=P; �P / is the .G;�G/-Poisson boundary.

For lattices � < G in connected semisimple real Lie groups as above, Fursten-
berg [28] also showed that .G=P; �P / can be regarded as the .�;��/-Poisson boundary with
respect to a well chosen probability measure �� 2 Prob.�/ (see also [25] and the references
therein).

Theorem 2.5 (Furstenberg, [28]). Let � < G be any lattice. Then there exists a probabil-
ity measure �� 2 Prob.�/ with full support such that .G=P; �P / is the .�; ��/-Poisson
boundary.

We call a probability measure �� 2 Prob.�/ as in Theorem 2.5 a Furstenberg mea-
sure. Combining Theorems 2.4 and 2.5, we have

Har1.G;�G/ Š
G-equiv.

L1.G=P; �P / Š
�-equiv.

Har1.�; ��/:

A combination of Theorem 2.5 and [33] implies that, for any intermediate parabolic
subgroup P < Q < G, the map

ı ı pQ W G=P ! Prob.G=Q/ W gP 7! ıgQ (2.1)

is the (essentially) unique �-equivariant measurable mapping � W G=P ! Prob.G=Q/.

2.3. Operator algebras
A C�-algebra A is a Banach �-algebra endowed with a complete norm k � k that

satisfies the C�-identity ka�ak D kak2, for every a 2 A. Any C�-algebraA admits a faithful
isometric �-representation on a Hilbert space � W A ! B.H /. After identifying A with
�.A/, we may regard A � B.H / as a concrete C�-algebra. Unless stated otherwise, all
C�-algebras and all linear mappings between C�-algebras are always assumed to be unital.

We denote by S.A/ the state space of A. Then S.A/ � Ball.A�/ is a weak-�
compact convex subset. We say that an action � W H Õ A is continuous if the action map
H �A ! A W .g; a/ 7! �g.a/ is continuous. We then simply say that A is aH -C�-algebra.
The continuous action H Õ A induces a weak-� continuous affine action H Õ S.A/.
We may apply the results from Section 2.1 to the H -invariant weak-� compact convex set
C D S.A/. When � 2 Prob.H/ is an admissible Borel probability measure, we denote by
S�.A/ � S.A/ the nonempty weak-� compact convex subset of all �-stationary states.

Examples 2.6. We will consider the following examples of C�-algebras:

(1) For any compact metrizable space X , the space C.X/ of all continuous func-
tions onX endowed with the uniform norm k � k1 is a commutative C�-algebra.
Any commutative C�-algebra arises this way. We identify the set Prob.X/ of
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Borel probability measures on X with the state space S.C.X// via the con-
tinuous mapping Prob.X/ ! S.C.X// W � 7!

R
X

� d�. Any continuous action
by homeomorphismsH Õ X naturally gives rise to a continuous actionH Õ
C.X/ in the above sense.

(2) For any countable discrete group ƒ and any unitary representation � W ƒ !

U .H�/, define the C�-algebra

C�
�.ƒ/ WD C�

�®
�./ j  2 ƒ

¯�
� B.H�/

and consider the conjugation action Ad.�/ W ƒ Õ C�
�.ƒ/. The state space

S.C�
�.ƒ// is a ƒ-invariant weak-� compact convex subset of P.ƒ/ via the

mapping S.C�
�.ƒ// ,! P.ƒ/ W  7!  ı � . If � D � is the left regular rep-

resentation, then C�
�.ƒ/ is the reduced group C�-algebra. Moreover, the state

�ƒ W C�
�.ƒ/ ! C W a 7! haıe; ıei is a faithful trace.

A von Neumann algebra (or W�-algebra)M is a unital C�-algebra which admits a
faithful unital �-representation � W M ! B.H / such that �.M/ � B.H / is closed with
respect to the weak (equivalently strong) operator topology. After identifyingM with �.M/,
we may regardM � B.H / as a concrete von Neumann algebra. By von Neumann’s bicom-
mutant theorem, a unital �-subalgebra M � B.H / is a von Neumann algebra if and only
if M is equal to its own bicommutant M 00, that is, M D M 00. There is a unique Banach
space predualM� such thatM D .M�/

�. The ultraweak topology onM coincides with the
weak-� topology arising from the identification M D .M�/

�. A linear mapping between
von Neumann algebras is normal if it is continuous with respect to the ultraweak topol-
ogy. We say that an action � W H Õ M is continuous if the corresponding action map
H � M� ! M� W .g; '/ 7! ' ı ��1

g is continuous (see, e.g., [52, Proposition X.1.2]). We
then simply say thatM is aH -von Neumann algebra. The actionH Õ M is ergodic if the
fixed point von Neumann subalgebraMH D ¹x 2 M j 8g 2 H; �h.x/ D xº is trivial.

Examples 2.7. We will consider the following examples of von Neumann algebras:

(1) For any standard probability space .X; �/, the space L1.X; �/ of all �-equi-
valence classes of (essentially) bounded measurable functions endowed with
the (essential) uniform norm k � k1 is a commutative von Neumann algebra.
Any commutative vonNeumann algebra arises this way. Any nonsingular action
H Õ .X; �/ naturally gives rise to a continuous action H Õ L1.X; �/ in
the above sense. When no confusion is possible, we simply write L1.X/ D

L1.X; �/.

(2) For any countable discrete group ƒ and any nonsingular action ƒ Õ .X; �/

on a standard probability space, define the group measure space von Neumann
algebra

L.ƒ Õ X/ WD
®
f ˝ 1; �./ j f 2 L1.X/;  2 ƒ

¯00
� B

�
L2.X; �/˝ `2.ƒ/

�
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where � W ƒ ! U .L2.X; �/˝ `2.ƒ// is the unitary representation defined by

8� 2 L2.X; �/;8; h 2 ƒ; �./.� ˝ ıh/ D

s
d.� ı �1/

d�
� ı �1

˝ ıh:

When .X; �/ is a singleton, the von Neumann algebra L.ƒ Õ X/ coincides
with the group von Neumann algebra L.ƒ/. When the action ƒ Õ .X; �/ is
(essentially) free and ergodic, the von Neumann algebra L.ƒ Õ X/ is a factor
whose type coincides with the type of the action (see, e.g., [53, Theorem XIII.1.7]).

A von Neumann algebraM � B.H / is amenable if there exists a norm-one projec-
tion E W B.H /!M . By Connes’ fundamental result [17],M is amenable if and only ifM is
approximately finite dimensional, that is, there exists an increasing net of finite-dimensional
subalgebrasMi � M such that

W
i2I Mi D M .

3. Dynamical dichotomy for boundary structures

3.1. Boundary structures
For any C�-algebra A � B.H / and any n � 1, Mn.A/ WD Mn.C/˝A � B.H ˚n/

is naturally a C�-algebra. Let A, B be any C�-algebras. A linear map ˆ W A ! B is said
to be unital completely positive (ucp) if ˆ is unital and if for every n � 1, the linear map
ˆ.n/ W Mn.A/ ! Mn.B/ W Œaij �ij 7! Œˆ.aij /�ij is positive. Any unital �-homomorphism
� W A ! B is a ucp map. When A or B is commutative, any unital positive linear map
ˆ W A ! B is automatically ucp (see, e.g., [45, Theorems 3.9 and 3.11]).

Definition 3.1 ([3]). Let � < G be any higher rank lattice andM any �-von Neumann alge-
bra with separable predual. A �-boundary structureˆ WM ! L1.G=P / is a �-equivariant
faithful normal ucp map. We say that ˆ is invariant if ˆ.M/ D C1.

We will simply say that ˆ W M ! L1.G=P / is a boundary structure instead of a
�-boundary structure when it is understood that M is a �-von Neumann algebra. In this
survey, we only deal with higher rank lattices in connected semisimple real Lie groups. In
that setting, the notion of boundary structure is equivalent to the notion of stationary state.
Indeed, fix a Furstenberg measure �� 2 Prob.�/ so that .G=P; �P / is the .�; ��/-Poisson
boundary (see Theorem 2.5).

• If ˆ W M ! L1.G=P / is a boundary structure, then ' WD �P ı ˆ 2 M� is a
faithful normal �� -stationary state on M . Moreover, if ˆ is invariant, then ' is
�-invariant.

• Conversely, let ' 2 M� be any faithful normal �� -stationary state onM . Define
the �-equivariant faithful normal ucp map

ˆ W M ! Har1.�; ��/ W x 7!
�
 7! '.�1x/

�
:
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Since Har1.�; ��/ Š L1.G=P; �P / as �-operator systems, we may further
regard ˆ W M ! L1.G=P / as a boundary structure such that ' D �P ıˆ. If '
is �-invariant, then ˆ is invariant.

Remark 3.2. The notion of boundary structure was developed in [3] to replace the notion of
stationary state used in [13] in order to deal with higher rank lattices in semisimple algebraic
groups defined over arbitrary local fields.

It is useful to restrict boundary structures to separable C�-subalgebras. Let M be
any �-von Neumann algebra with separable predual. A globally �-invariant separable ultra-
weakly dense C�-subalgebra A � M is called a separable model for the action � Õ M . If
ˆ WM ! L1.G=P / is a boundary structure, then .�P ıˆ/jA 2 S�� .A/ and the restriction
ˆjA W A ! L1.G=P / gives rise to the �-equivariant boundary map ˇ W G=P ! S.A/ W

b 7! ˇb such that Bar.ˇ��P / D .�P ıˆ/jA, where

8a 2 A; ˆ.a/.b/ D ˇb.a/:

We present several examples of boundary structures.

Example 3.3 (Boundary structure arising from unitary representations). Let � W � !

U .H�/ be any unitary representation and set A WD C�
�.�/. Choose an extremal �� -statio-

nary state ' 2 S�� .A/ and consider the GNS triple .�' ;H' ; �'/. Denote by ˇ W G=P !

S.A/ W b 7! ˇb the �-equivariant boundary map associated with ' 2 S�� .A/. By duality,
we may consider the �-equivariant ucp mapˆ W A! L1.G=P / W a 7! .b 7! ˇb.a// which
satisfies �P ı ˆ D '. Set M WD �'.A/

00 D .�' ı �/.�/00. By extremality, the conjugation
action Ad.�' ı �/ W � Õ M is ergodic. Moreover, the �-equivariant ucp map

�'.A/ ! L1.G=P / W �'.a/ 7! ˆ.a/

is well defined and extends to a boundary structure ˆ W M ! L1.G=P /. We refer to [13,

Proof of Theorem A] for further details.

Example 3.4 (Boundary structure arising from characters). Let' 2Char.�/ be any extremal
character. Simply denote by .�;H ; �/ the GNS triple associated with ' 2 Char.�/. Denote
by J W H ! H W �./� 7! �./�� the canonical conjugation. Following [46], define the
noncommutative Poisson boundary B as the von Neumann algebra of all �P -equivalence
classes of (essentially) bounded measurable functions f W G=P ! B.H / satisfying
f .b/ D Ad.J�./J /.f .b// for every  2 � and almost every b 2 G=P . Observe that
C1 ˝ �.�/00 � B. Since P is amenable, B is an amenable von Neumann algebra. By
extremality, the conjugation action Ad.�/ W � Õ B is ergodic. Moreover,

ˆ W B ! L1.G=P / W f 7!
�
b 7!

˝
f .b/�; �

˛�
is a boundary structure. When ' D ıe is the regular character, the noncommutative Poisson
boundary B coincides with the group measure space von Neumann algebra L.� Õ G=P /

and the boundary structure ˆ W L.� Õ G=P / ! L1.G=P / is the canonical �-equivariant
conditional expectation. We refer to [13, Proof of Theorem C] for further details.
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Example 3.5 (Boundary structure arising from topological dynamics). Let � Õ X be any
minimal action on a compact metrizable space. Choose an extremal �� -stationary Borel
probability measure � 2 Prob�� .X/. By minimality, we have supp.�/ D X . Denote by ˇ W

G=P ! Prob.X/ W b 7! ˇb the�-equivariant boundarymap associated with � 2 Prob�� .X/.
By duality, wemay consider the �-equivariant ucp mapˆ WC.X/! L1.G=P / W f 7! .b 7!

ˇb.f // which satisfies �P ı ˆ D �. By extremality, the nonsingular action � Õ .X; �/ is
ergodic. Moreover,ˆ W C.X/! L1.G=P / extends to a boundary structureˆ W L1.X;�/!

L1.G=P /.

The notion of boundary structure is well adapted to induction. Indeed, letˆ WM !

L1.G=P / be any �-boundary structure. Denote by OM WD IndG� .M/Š L1.G=�/˝M the
induced G-von Neumann algebra. Since G=P is a G-space, we have IndG� .L

1.G=P // Š

L1.G=�/ ˝ L1.G=P /, where G Õ G=� � G=P acts diagonally. Denote by �� 2

Prob.G=�/ the uniqueG-invariant Borel probability measure. Then the map b̂ WD �� ˝ˆ W

OM ! L1.G=P / is a G-equivariant faithful normal ucp map. We then refer to b̂ as the
induced G-boundary structure. Note that ˆ is invariant if and only if b̂ is invariant.

This framework provides a more conceptual approach to the stationary induction
considered in [13, Section 4]. Let �G 2 Prob.G/ be any K-invariant admissible Borel prob-
ability measure. Let ' be any faithful normal �� -stationary state on M and define the
corresponding �-boundary structure ˆ W M ! L1.G=P / such that �P ıˆ D '. Consider
the induced G-boundary structure b̂ W OM ! L1.G=P /. Then b' WD �P ı b̂ is a faithful
normal �G-stationary state on OM . Moreover, ' is �-invariant if and only ifb' isG-invariant.

3.2. The dynamical dichotomy theorem for boundary structures
Let A be any separable C�-algebra. We say that �; 2 S.A/ are pairwise singular

and write � ?  if there exists a sequence .ak/k in A such that 0 � ak � 1 for every k 2 N
and for which limk �.ak/D 0D limk  .1� ak/. This notion naturally extends the notion of
pairwise singularity of Borel probability measures on metrizable compact spaces. Observe
that for any unital C�-subalgebra B � A and any states �;  2 S.A/, if �jB ?  jB , then
� ?  . We introduce the following terminology.

Definition 3.6 ([3]). Let � < G be any higher rank lattice. LetM be any �-von Neumann
algebra with separable predual and ˆ W M ! L1.G=P / any boundary structure. We say
that ˆ is singular if there exists a separable model A � M for the action � Õ M such that
the corresponding �-equivariant boundary map ˇ W G=P ! S.A/ W b 7! ˇb satisfies the
following property:

For every  2 � n Z .�/; for almost every b 2 G=P; ˇb ? ˇb : (3.1)

The notion of singularity for boundary structures is quite robust. If ˆ W M !

L1.G=P / is singular, then for every separable model A � M , the corresponding �-equi-
variant boundary map ˇ W G=P ! S.A/ W b 7! ˇb satisfies (3.1) (see [3, Proposition 4.10]).
This implies the following useful fact. IfM0 �M is a �-invariant von Neumann subalgebra
and if the restriction ˆjM0 W M0 ! L1.G=P / is singular, then ˆ is singular as well.
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In case the action � Õ M is given by conjugation, singular boundary structures
enjoy the following useful vanishing property.

Proposition 3.7 ([3]). LetM be any von Neumann algebra with separable predual and � W

� ! U .M/ any unitary representation. Consider the conjugation action Ad.�/ W � Õ M .
Letˆ WM ! L1.G=P / be any singular boundary structure. Then for every  2 � n Z .�/,
we have ˆ.�.// D 0.

Proof. The proof is similar to [34, Lemma 2.2]. We may choose a separable model A � M for
the conjugation action Ad.�/ W � ÕM such that�.�/�A. Denote by ˇ WG=P ! S.A/ the
�-equivariant boundary map arising from ˆjA. Let  2 � n Z .�/ be any element. Choose
a conull measurable subset Y � G=P such that for every b 2 Y , we have ˇb D ˇb D

ˇb ı Ad.�./�/ and ˇb ? ˇb . Let b 2 Y be any point and choose a sequence .ak/k in A
such that 0 � ak � 1 for every k 2 N and for which limk ˇb.ak/ D 0 D limk ˇb.1 � ak/.
Then Cauchy–Schwarz inequality implies thatˇ̌

ˇb
�
.1 � ak/�./

�ˇ̌
D

ˇ̌
ˇb

�
.1 � ak/

1=2
� .1 � ak/

1=2�./
�ˇ̌

� ˇb.1 � ak/
1=2

! 0:

Likewise, Cauchy–Schwarz inequality implies thatˇ̌
ˇb

�
ak�./

�ˇ̌
D

ˇ̌
ˇb

�
�./a

1=2

k
� a
1=2

k

�ˇ̌
� ˇb.ak/

1=2
! 0:

Then ˇb.�.// D ˇb..1 � ak/�.//C ˇb.ak�.// ! 0 and so ˇb.�.// D 0. Since this
holds true for every b 2 Y , it follows that ˆ.�.// D 0.

As we mentioned in the Introduction, the following dynamical dichotomy theorem
invariant vs. singular for boundary structures is the key novelty in our operator-algebraic
framework.

Theorem3.8 ([3,13]). LetM be any ergodic�-vonNeumann algebrawith separable predual
and ˆ W M ! L1.G=P / any boundary structure. Then ˆ is either invariant or singular.

The proof of Theorem 3.8 depends heavily upon whether the ambient connected
semisimple real Lie group G is simple or not.

In case G is simple, let us explain why Theorem E implies Theorem 3.8. Let
ˆ W M ! L1.G=P / be any noninvariant boundary structure. By Theorem E, there exist
a proper parabolic subgroup P < Q < G and a �-equivariant unital normal embedding
� W L1.G=Q/ ,! M such that ˆ ı � D p�

Q. Set M0 WD �.L1.G=Q// � M . Then A WD

�.C.G=Q//�M0 is a separable model for the action � ÕM0 and the �-equivariant bound-
ary map corresponding to ˆjA is exactly ı ı pQ W G=P ! Prob.G=Q/ W gP 7! ıgQ. Since
any element  2 � n Z .�/ acts (essentially) freely on G=Q (see, e.g., [13, Lemma 6.2]), it
follows that the restriction ˆjM0 W M0 ! L1.G=P / is singular. Thus, ˆ is singular.

In caseG is not simple, we have to use a different approach. Following [3], we outline
the main steps of the proof of Theorem 3.8 in the particular case where G D G1 �G2 with
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G1 and G2 noncompact connected simple Lie groups with finite center. This particular case
already contains all the main conceptual difficulties. Let i D 1; 2. Denote by pi W G ! Gi

the canonical factor map. Denote by Pi < Gi a minimal parabolic subgroup and set P D

P1 � P2 < G. By Theorem 2.4, .Gi ; �Pi / is the .Gi ; �i /-Poisson boundary with respect to
appropriate Borel probability measures�i 2 Prob.Gi / and �Pi 2 Prob.Gi=Pi /. Letˆ WM !

L1.G=P / be any noninvariant boundary structure. Our goal is to show that ˆ is singular.

Step 1: Induction. Denote by b̂ W OM !L1.G=P / the inducedG-boundary structure. Since
ˆ is not invariant, b̂ is not invariant either, that is, b̂. OM/ ¤ C1.

Step 2: Reduction to the von Neumann algebra of G1-continuous elements. Exploiting
the product structureG DG1 �G2 and up to permuting the indices, we show that the restric-
tion of b̂ to theG2-fixed point von Neumann subalgebra OMG2 � OM still satisfiesˆ. OMG2/¤

C1 and, moreover, b̂. OMG2/� L1.G1=P1/. Exploiting that � <G1 �G2 is irreducible and
that .Gi ; �Pi / is the .Gi ;�i /-Poisson boundary, i D 1; 2, we show that theG1-von Neumann
algebra OMG2 is �-isomorphic to the �-von Neumann subalgebraM1 � M of all elements
x 2 M for which the action map � ! M W  7! � .x/ extends continuously to G1. We say
thatM1 � M is the von Neumann subalgebra of G1-continuous elements. Moreover, under
the identification OMG2 D M1, we naturally have the identification b̂j OMG2

D ˆjM1 . Then
M1 is aG1-ergodic von Neumann algebra andˆjM1 WM1 ! L1.G1=P1/ is aG1-boundary
structure such that ˆ.M1/ ¤ C1. Since ˆjM1 is the restriction to M1 of the �-boundary
structure ˆ, it suffices to show that ˆjM1 is singular.

Step 3: Singularity of ˆjM1
. We may choose a separable model A1 � M1 for the contin-

uous action G1 Õ M1. Since G1 Õ G1=P1 is transitive, ˆjA1 W A1 ! L1.G1=P1/ gives
rise to a G1-equivariant continuous boundary map ˇ W G1=P1 ! S.A1/ W b 7! ˇb . Since
the actionG1 ÕM1 is ergodic, the P1-invariant state WD ˇP1 2 S.A1/ is extremal among
P1-invariant states. We then show that for every g 2 G1, either g ?  or g D  . Since
 is not G1-invariant on A1, the stabilizerQ1 D StabG1. / is a proper parabolic subgroup
such that P1 < Q1. Since any element g 2 G1 n Z .G1/ acts (essentially) freely on G1=Q1
and since p1.� n Z .�// � G1 n Z .G1/, it follows that the restriction ˆjM1 is singular.
Thus, ˆ is singular.

3.3. Outline of the proof of Theorem E
Following [13], we outline themain steps of the proof of TheoremE.Wemay assume

that G is a connected simple real Lie group with trivial center and real rank rkR.G/ � 2.
Recall that G admits an Iwasawa decomposition G D KAV where K < G is a maximal
compact subgroup, A < G is a Cartan subgroup, and V < G is a unipotent subgroup. Set
P DLV whereLD ZG.A/ and note thatP <G is aminimal parabolic subgroup. Likewise,
write P D LV for the opposite minimal parabolic subgroup. Note that G D hP;V i and the
map V ! G=P W Nv 7! NvP defines a measurable isomorphism. Let ˆ W M ! L1.G=P / be
any noninvariant boundary structure. Our goal is to show that there exist a proper parabolic
subgroup P < Q < G and a �-equivariant unital normal embedding � W L1.G=Q/ ,! M .
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Step 1: Induction. Exactly as in the proof of Theorem 3.8, denote by b̂ W OM ! L1.G=P /

the induced G-boundary structure which satisfies b̂. OM/ ¤ C1. We may choose a separable
model A � OM for the continuous action G Õ OM . Since G Õ G=P is transitive, b̂jA W

A! L1.G=P / gives rise to aG-equivariant continuous boundary map ˇ W G=P ! S.A/ W

b 7! ˇb . Denote by  WD ˇP 2 S.A/ the corresponding P -invariant state, consider the
GNS representation � W A! B.H / and setN WD � .A/

00. ThenN is a P -von Neumann
algebra and we may consider the induced G-von Neumann algebra IndGP .N /. Moreover, we
may regard OM � IndGP .N / as a G-von Neumann subalgebra. We point out that the normal
state  2 N� need not be faithful on N . Since we only give a sketch of the proof, we will
assume that  is faithful on N . We refer to [13, Theorem 5.1] for the general proof.

Step 2: Construction of a well behaved von Neumann subalgebra. In this step, we build
upon Nevo–Zimmer’s proof of [44, Theorem 1]. Since b̂. OM/¤ C1, the P -invariant state 2

S.A/ is notG-invariant whence notV -invariant. Using the real rank assumption rkR.G/� 2,
there is a strict intermediate parabolic subgroup P < P0 < G with Levi decomposition
P0 D L0V0, where L0 D ZG.A0/, A0 < A, and V0 < V , such that  2 S.A/ is not V 0-
invariant. Choose a nontrivial element s 2 A0 so that s (resp. s�1) acts by conjugation as a
contracting automorphism ofV0 (resp.V 0). ByMautner phenomenon, any s-fixed element in
N is necessarily V0-fixed. Since the subgroup hs; V0i is normal in P , it follows thatN s �N

is a P -invariant von Neumann subalgebra. Using these assumptions, we show that M0 D

OM \ IndGP .N s/ is a G-von Neumann subalgebra such that b̂.M0/ ¤ C1.

Step 3: From noncommutative to commutative. We reached the point where we can no
longer rely on Nevo–Zimmer’s argument [44]. Indeed, M0 is not commutative and so we
cannot use the Gauss map trick from [44, Section 3] to conclude. We adopt the following new
strategy. Using the induction in two steps, we may write IndGP .N s/ D IndGP0.Ind

P0
P .N

s// Š

L1.V 0; IndP0P .N
s//. Regarding M0 � L1.V 0; IndP0P .N

s// as a G-von Neumann subal-
gebra, denote by N0 � IndP0P .N

s/ the von Neumann subalgebra generated by the essential
values of all the elements f 2 A0, where A0 � M0 is an ultraweakly dense separable C�-
subalgebra. On the one hand, by construction, we have M0 � L1.V 0;N0/ Š L1.V 0/˝

N0. On the other hand, exploiting that s�1 acts by conjugation as a contracting automor-
phism of V 0, we show that C1˝ N0 � M0. Therefore, we have the inclusions C1˝ N0 �

M0 � L1.V 0/˝ N0. By considering the centers, we also haveC1˝ Z .N0/� Z .M0/�

L1.V 0/ ˝ Z .N0/. Since G Õ M0 is faithful and since s acts identically on C1 ˝ N0,
we have C1 ˝ N0 ¨ M0. Exploiting Ge–Kadison’s splitting theorem [30], we show that
C1˝ Z .N0/ ¤ Z .M0/. This further implies that ˆ.Z .M0// ¤ C1. We may now apply
Nevo–Zimmer’s result [44, Theorem 1] to the commutativeG-von Neumann algebra Z .M0/

to obtain a proper parabolic subgroupP <Q<G and aG-equivariant unital normal embed-
ding � W L1.G=Q/ ,! Z .M0/ � OM .

Step 4: Back to the lattice. We use the simple argument given in [2]. Since the actionG Õ
C.G=Q/ is k � k-continuous, by G-equivariance, it follows that �.C.G=Q// is contained in
the C�-subalgebra C�

b.G;M/� � OM of all �-equivariant bounded continuous functions f W
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G ! M . Consider the evaluation �-homomorphism ev W C�
b.G;M/� ! M W f 7! f .e/.

Then ev ı � W C.G=Q/ ! M is a �-equivariant �-homomorphism which extends uniquely
to a �-equivariant unital normal embedding L1.G=Q/ ,! M thanks to (2.1).

4. Proofs of the main results

In this section, following [3, 13], we explain how to use the dynamical dichotomy
Theorem 3.8 to prove the main results stated in the Introduction. We fix a higher rank lattice
� < G and a Furstenberg measure �� 2 Prob.�/ so that .G=P; �P / is the .�; ��/-Poisson
boundary (see Theorem 2.5). Since the proofs of Theorems A and D are similar, we only
give the proofs of Theorems A, B and Corollary C.

Proof of Theorem A. Denote by � W � ! U .H�/ the universal unitary representation,
meaning that � is equal to the orthogonal direct sum of all cyclic unitary representations
of� . ThenA WDC�

�.�/ coincideswith the full C
�-algebra C�.�/ andwemay use the identifi-

cationS.A/D P.�/. LetC � S.A/ be any nonempty �-invariant weak-� compact convex
subset. We claim that any�� -stationary state ' 2 C is �-invariant. More generally, we claim
that any �� -stationary state on A is �-invariant. By Krein–Milman theorem, it suffices to
show that any extremal �� -stationary ' 2 S.A/ is �-invariant. LettingM D �'.A/

00, con-
sider the boundary structure ˆ W M ! L1.G=P / such that �P ıˆ D ' as in Example 3.3.
By Theorem 3.8, ˆ is either invariant or singular. If ˆ is invariant, then ' 2 Char.�/. If ˆ
is singular, then Proposition 3.7 implies that for every  2 � n Z .�/, we haveˆ.�.//D 0

and so './ D 0. Then ' is supported on Z .�/ and so ' 2 Char.�/.

Proof of Theorem B. Let' 2Char.�/ be any character.Wemay assume that ' is an extremal
character. Denote by B the noncommutative Poisson boundary and consider the boundary
structure ˆ W B ! L1.G=P / as in Example 3.4. By Theorem 3.8, ˆ is either invariant or
singular. If ˆ is invariant, then for every f 2 B, the function ˆ.f / W G=P ! C W b 7!

hf .b/�; �i is (essentially) constant. Since C1˝ �'.�/
00 � B and since the linear span of

�'.�/�' is dense in H' , it easily follows that every f 2 B is (essentially) constant as a
function G=P ! B.H'/. This further implies that B D C1 ˝ �'.�/

00 and so �'.�/00 is
amenable. This further implies that �' is amenable. If ˆ is singular, then for every  2

� n Z .�/ we have ˆ.�.// D 0 and so './ D 0. Thus, ' is supported on Z .�/.
IfG has property (T), then � has property (T). If ' is not supported on Z .�/, then

�' is amenable and so �' necessarily contains a finite-dimensional subrepresentation. In the
more general case whereG has a simple factor with property (T), we refer to the proof of [3,
Proposition 7.5].

Proof of Corollary C. Let � W � ! U .H�/ be any unitary representation and set A WD

C�
�.�/. Regarding S.A/ � P.�/ as a �-invariant weak-� compact convex subset, Theo-

rem A implies that the C�-algebra A admits a trace.
Assume, moreover, that G has trivial center and that � is not amenable. Let ' 2

S.A/ be any trace. Regarding ' 2 Char.�/ as a character, the GNS representation �' is

3217 Noncommutative ergodic theory of higher rank lattices



weakly contained in � and so �' is not amenable. Theorem A implies that ' D ıe . Then
�' D � is the left regular representation and � is weakly contained in � . Denote by ‚ W

C�
�.�/ ! C�

�.�/ the unique �-homomorphism such that‚.�.// D �./ for every  2 � .
Then �� ı‚ is the unique trace on A D C�

�.�/. Let J C A be any proper ideal and define
� WA!A=J . Then the unitary representation � ı � is weakly contained in � and so � ı � is
not amenable. The previous reasoning implies that� is weakly contained in � ı� and so there
is a �-homomorphism‚ W A=J ! C�

�.�/ such that‚D‚ ı �. Then J D ker.�/� ker.‚/.
Therefore, ker.‚/ C C�

�.�/ is the unique maximal proper ideal.

We now discuss open problems in relationwith ourmain results. Let .E;k � k/ be any
separable Banach�-module andC �E� any nonempty�-invariant weak-� compact convex
subset. Let � 2 Prob.�/ be any probability measure. By analogy with [29], we say that the
affine action � Õ C is�-stiff if any�-stationary point is invariant. The proof of Theorem A
shows that for any Furstenberg measure �� 2 Prob.�/, the affine action � Õ P.�/ is �� -
stiff. It is natural to ask whether the stiffness property holds for more general probability
measures � 2 Prob.�/.

Problem 4.1. Let � 2 Prob.�/ be any probability measure such that hsupp.�/i D � . Is the
action � Õ P.�/ �-stiff?

Problem 4.1 requires a new strategy as we can no longer identify the .�;�/-Poisson
boundary with .G=P; �P /. We note that in case � has trivial center, it is showed in [34]

that for any probability measure � 2 Prob.�/ such that hsupp.�/i D � , the affine action
� Õ S.C�

�.�// is �-stiff and the canonical trace �� is the only �-stationary state on C�
�.�/.

Problem 4.1 is particularly relevant in case � WD SLd .Z/ < SLd .R/ WD G for d � 3. To
draw a parallel with homogeneous dynamics, we point out that the affine action SLd .Z/ Õ
Prob.Td / is �-stiff for every d � 2 and every probability measure � 2 Prob.SLd .Z// such
that hsupp.�/i D SLd .Z/ [12]. We refer the reader to [12] and [10] for more general results
regarding measure rigidity.

We say that a countable discrete group ƒ is character rigid if for any extremal
character ' 2 Char.ƒ/, either ' is supported on Z .ƒ/ or the GNS representation �' is
finite dimensional. Assuming that G has a simple factor with property (T), Theorem B says
that � is character rigid. It is showed in [47] that SLd .ZŒS�1�/ is character rigid for every
d � 2 and every nonempty set of primes S . In view of Margulis’ normal subgroup theorem
which holds for arbitrary higher rank lattices, the next problem is of fundamental importance.

Problem 4.2. Let � < G be any higher rank lattice. Is � character rigid?

Problem 4.2 is also discussed in [31, Question 2.1] for characters arising from ergodic
probability measure preserving actions � Õ .X; �/, in connection with Stuck–Zimmer’s
results [50]. To answer positively Problem 4.2, it would suffice to prove for every extremal
character ' 2 Char.�/ that is not supported on Z .�/, the tracial GNS factor �'.�/00 has
property (T) in the sense of Connes–Jones [20]. This would correspond to the property (T)
half in Margulis’ normal subgroup theorem.
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5. Noncommutative factor theorem and Connes’ rigidity

conjecture

Connes [18] obtained the first rigidity result in von Neumann algebras by showing
that for any icc (infinite conjugacy classes) countable discrete group ƒ with property (T),
the type II1 factorM D L.ƒ/ has countable outer automorphism group Out.M/ and count-
able fundamental group F .M/1. This result prompted Connes to state the following bold
conjecture (see [19, Problem V.B.1]).

Connes’ rigidity conjecture. Let ƒ1 and ƒ2 be any icc countable discrete groups with
property (T) such that L.ƒ1/ Š L.ƒ2/. Show that ƒ1 Š ƒ2.

We say that a discrete group ƒ is W�-superrigid if whenever ‡ is another discrete
group such that L.ƒ/Š L.‡/, we haveƒŠ ‡ . Using [20], Connes’ rigidity conjecture asks
whether every icc countable discrete group ƒ with property (T) is W�-superrigid.

A first deep result towards Connes’ rigidity conjecture was obtained by Cowling–
Haagerup [21] where they showed that for every n � 2 and every lattice ƒ in the rank one
connected simple Lie group Sp.n; 1/=¹˙1º, the type II1 factor L.ƒ/ retains the integer
n � 2. For the last two decades, Popa’s deformation/rigidity theory [48] has led to tremen-
dous progress regarding classification and rigidity results for group (resp. group measure
space) von Neumann algebras. In particular, the first examples ofW�-superrigid groups were
obtained by Ioana–Popa–Vaes [37]. The examples constructed in [37] are generalized wreath
products groups and so they do not have property (T). It is still an open problem to find an
example of a W�-superrigid countable discrete group ƒ with property (T). For other recent
results regarding classification and rigidity results for von Neumann algebras, we refer the
reader to the surveys [35,36,54].

Connes’ rigidity conjecture is particularly relevant for the class of higher rank lat-
tices. In this context, celebrated strong rigidity results by Mostow and Margulis (see [42] and
[41, Chapter VI]) show that whenever �i < Gi is a higher rank lattice, where Gi has trivial
center, i D 1; 2, if �1 Š �2, thenG1 Š G2. In view of the strong rigidity results by Mostow
and Margulis, we state the following version of Connes’ rigidity conjecture for higher rank
lattices.

Conjecture. For every i D 1; 2, let Gi be any connected simple real Lie group with trivial
center and real rank rkR.Gi /� 2 and �i <Gi any lattice. If L.�1/Š L.�2/, thenG1 ŠG2.

Popa’s deformation/rigidity theory cannot be used to tackle the above conjecture
because higher rank lattices are somehow “too rigid.” As suggested by Connes himself (see
the discussion in [38, Section 4]), it is natural to try and develop a strategy building upon the
works of Furstenberg, Margulis, and Zimmer. In what follows, we assume that G is a con-
nected simple real Lie group with trivial center and real rank rkR.G/ � 2. We fix a minimal
parabolic subgroup P <G. Let � < G be any lattice (e.g., � WD PSLd .Z/ < PSLd .R/ WDG

1 The fundamental group F .M/ of a type II1 factorM is defined as the subgroup of R�
C
that

consists of all �.p/
�.q/

, where p; q 2 M are projections for which pMp Š qMq.
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for d � 3). Then � is icc and the group von Neumann algebra L.�/ is a type II1 factor.
Moreover, the nonsingular action � Õ .G=P; �P / is (essentially) free and ergodic and the
corresponding von Neumann factor L.� Õ G=P / is amenable and of type III1 (see, e.g.,
[14, Proposition 4.7]). We now give the proof of Corollary F by combining Theorem E with
Suzuki’s results [51].

Proof of Corollary F. Denote by E W L.� Õ G=P / ! L1.G=P / the canonical �-equi-
variant conditional expectation. Let L.�/ � M � L.� Õ G=P / be any intermediate von
Neumann subalgebra and consider the boundary structure ˆ D E jM W M ! L1.G=P /.
Note that the conjugation action � Õ L.� Õ G=P / is ergodic. By Theorem E, there are
two cases to consider.

Firstly, assume that ˆ is invariant. Following Examples 2.7(2), we simply denote
by u 2 L.�/ � L.� Õ G=P / the canonical unitaries implementing the action � Õ G=P .
For every x 2 M , write x D

P
2� xu for its Fourier expansion, where x D E.xu�

 / for
every  2 � . Since E jM D ˆ is invariant and since L.�/ � M , it follows that x 2 C1 for
every  2 � and every x 2 M . This implies thatM D L.�/ (see, e.g., [1, Lemma 6.8]).

Secondly, assume that ˆ is not invariant. There there exist a proper parabolic sub-
group P < Q < G and a �-equivariant unital normal embedding � W L1.G=Q/ ,! M such
that E ı� D p�

Q. This further implies that L.� Õ G=Q/ D L.�/ _ L1.G=Q/ � M . Since
the nonsingular action � Õ .G=Q; �Q/ is (essentially) free (see, e.g., [13, Lemma 6.2]), a
combination of [51, Theorem 3.6] and [41, Theorem IV.2.11] implies that there exists a parabolic
subgroup P < R < Q such thatM D L.� Õ G=R/.

It is well known that there are exactly 2rkR.G/ intermediate parabolic subgroupsP <
Q < G. Thus, Corollary F implies that there are exactly 2rkR.G/ intermediate von Neumann
subalgebras L.�/ � M � L.� Õ G=P /. In particular, the inclusion L.�/ � L.� Õ G=P /

retains the real rank rkR.G/. We believe this result could be useful to tackle Connes’ rigid-
ity conjecture and to show that the group von Neumann algebra L.�/ retains the real rank
rkR.G/.
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On some properties
of sparse sets:
a survey
Malabika Pramanik

Abstract

Sparse sets are, by definition, sets that are small, either in cardinality, measure, dimension,
or density. Curves, surfaces, and other submanifolds are standard examples of sparse sets
in Euclidean space. However, many sparse sets naturally occurring in ergodic and geo-
metric measure theory, such as Cantor-like sets or self-similar fractals, lack the regularity
of the aforementioned objects. Despite this deficiency, many sparse sets are rich in arith-
metic, geometric, and analytic properties that can be viewed as working substitutes for
smoothness. This has led to a vibrant line of inquiry into the governing principles behind
certain phenomena that are typically associated with submanifolds and that have the poten-
tial for ubiquity in far more general contexts. Structural and analytical properties of sparse
sets, whether discrete or continuous, lie at the center of many problems in harmonic anal-
ysis, fractal geometry, combinatorics, and number theory. This is a survey of a few such
problems that the author has worked on.
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1. Introduction

Many problems in harmonic analysis and geometric measure theory, including
restriction, Bochner–Riesz, Kakeya, Falconer conjectures, maximal operator bounds, and
oscillatory integral estimates, are at heart questions involving size and structural properties
of sparse sets. In classical formulations of the problems, these sparse sets are often lower-
dimensional surfaces in Euclidean space, such as lines, curves, other submanifolds, zero sets
of polynomials or real-analytic functions. For example, the famous Kakeya conjecture aims
to quantify the size of a possibly small (i.e., Lebesgue-null) set that contain lines in every
direction; intersection properties of lines or thin tubes (which are thickened versions of lines)
are essential to its analysis. The restriction problem is a statement about the Lebesgue inte-
grability of the Fourier transform of certain classes of functions in Rd after being restricted
to a sphere; the latter hypersurface provides the geometric basis for this problem. Decay rates
of multidimensional oscillatory integrals and integral operators are tied to critical points of
their phases; if the phase function is polynomial or analytic in nature, the set of critical points
is a semialgebraic set whose structure determines the asymptotic behavior of the integral.
These avenues of research naturally use well-developed analytic and geometric notions, such
as smoothness or curvature, of the underlying surfaces. A more recent research direction in
harmonic analysis has been devoted to investigating extensions of classical results that are
normally associated to surfaces and manifolds to the context of more general sets. More pre-
cisely, do similar results continue to hold for arbitrary Euclidean sets, possibly of fractional
dimension, where tools like smoothness or curvature are unavailable, or have to be replaced
by appropriate generalizations? To what extent are such results transferable between the dis-
crete and continuum settings, and which features are unique? This in turn has led to a deeper
investigation of the structure and content of sparse sets.

This article, arranged in three distinct and notationally self-contained parts, gives an
overview of part of the author’s work to date in this area, undertaken with many collaborators
over the last decade and a half. The common theme is the study of sparse sets. Each section
contains a brief motivation for the problems considered, and a statement of the main results.
Proofs are delegated to the publications where the results appear. An in-depth discussion of
the surrounding literature had to be scaled back due to space constraints, but the bibliography
contains some important landmarks in the subject, as well as more exhaustive surveys.

2. Maximal averages and differentiation

2.1. Motivation of the problem
There is a vast literature on maximal and averaging operators over families of lower-

dimensional submanifolds of Rd . The aim is to quantify the behavior of such operators;
for instance, what are the Lebesgue mapping properties of the maximal operator? What is
the Lebesgue or Sobolev regularity of the averaging operator? For concreteness, we will
focus here on the case of maximal operators over rescaled copies of a single submanifold.
Assuming that the submanifold in question is sufficiently smooth, an important issue turns
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out to be its curvature. Roughly speaking, curved submanifolds admit nontrivial maximal
estimates, whereas flat submanifolds do not. A fundamental and representative positive result
is the spherical maximal theorem, due to Stein [90] for d � 3 and Bourgain [9] for d D 2.
Recall that the spherical maximal operator in Rd is defined to be

MSd�1f .x/ WD sup
r>0

Z
Sd�1

ˇ̌
f .x C ry/

ˇ̌
d�.y/; (2.1)

where � is the normalized Lebesgue measure on the unit sphere Sd�1 � Rd .

Theorem 2.1 (Stein [90], Bourgain [9]). For any d � 2, the maximal operator MSd�1 is
bounded on Lp.Rd / for p > d

d�1
, and this range of p is optimal.

It is well known that Theorem 2.1 fails in all dimensions d � 2 if the sphere Sd�1 is
replaced by a polygonal line or the surface of a polytope. These geometric objects, while still
piecewise smooth, do not have any curvature. In intermediate cases such as conical surfaces,
which are flat along their generating rays but curved in other directions, maximal estimates
may still be available but with weaker exponents. Many results of this type are known under
varying smoothness and curvature conditions. We refer the reader to [19,45,46,66–68,88,89,

91,92] for an introduction to this prolific area of research and further references.
Stein’s proof of the spherical maximal theorem for d � 3 exploits curvature only

through the decay of the Fourier transform of the surface measure on the manifold, as do
many of the other results just mentioned. Let us recall that for any finite measure � on Rd ,
its Fourier transform is defined asb�.�/ WD

Z
Rd

e�ix��d�.x/: (2.2)

In the case of the sphere, the Fourier transform decays like j�j�
d�1

2 at infinity; similar esti-
mates hold for other convex hypersurfaces of codimension 1 with nonvanishing Gaussian
curvature. The decay estimates are weaker for manifolds with flat directions, which in turn
result in the restricted range of exponents in maximal and averaging estimates mentioned
above.

The connection between the Fourier decay of a measure and the maximal average
associated with it is exemplified in the following classical result of Rubio de Francia [73].
Given a measure �, let us define its corresponding maximal operator

M�f .x/ WD sup
r>0

Z ˇ̌
f .x C ry/

ˇ̌
d�.y/; (2.3)

which is the supremal average of jf .x C �/j over all possible dilates of �. If � is the surface
measure of Sd�1, then M� coincides with the spherical maximal operator defined in (2.1).

Theorem 2.2 (Rubio de Francia [73]). Suppose that � is a compactly supported Borel mea-
sure on Rd , d � 1, such that ˇ̌b�.�/

ˇ̌
� C

�
1 C j�j

��a (2.4)

for some a > 1
2
. Then the maximal operator M�, defined as in (2.3) is bounded on Lp.Rd /

for p > .2a C 1/=.2a/.
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Theorem 2.2 implies Theorem 2.1 for d � 3, since then the surface measure � on
the sphere obeys the above assumption with a D

d�1
2

> 1
2
. However, this Fourier decay is

insufficient for d D 2. In other words, Theorem 2.2 fails to capture the circular maximal
estimate in R2, for which a D

1
2
just misses the stated range. Instead, Bourgain’s proof of

the circular maximal theorem for d D 2 relies more directly on the geometry involved. The
relevant geometric information concerns intersections of pairs of ı-thickened circles, in other
words, annuli of width ı. In an arrangement of many such annuli, most pairwise intersections
are of the order ı2, which is smaller by an order of magnitude than each annulus itself. While
larger intersections are possible, Bourgain’s proof shows that they do not occur frequently.
An alternative proof of the circular maximal theorem that exploits finer properties of Fourier
integral operators rather than Fourier decay can be found in [65].

2.2. Main results
The above class of results does not offer an easy extension to dimension one. Indeed,

it is not clear a priori what a one-dimensional theory might look like, given that the real line
has no nontrivial lower-dimensional submanifolds. However, given any " > 0, there are many
singular measures on R supported on sets of Hausdorff dimension 1 � ". Viewing " as an
analogue of “codimension,” it is natural to ask whether by imposing additional structure on
these sets that would assume the role of curvature, one might obtain Lp estimates similar to
those in Theorem 2.1 for the associated maximal operators and for a range p > p", where
p" & 1 as " ! 0. Theorem 2.3 below, joint with Izabella Łaba, provides an affirmative
answer to this question. Theorem 2.3 may be interpreted as the limiting situation as " ! 0

(compare with Theorem 2.1 as d ! 1) where the maximal range .1; 1� of p is achieved
for a single set S of zero Lebesgue measure.

Theorem 2.3 ([59]). For every 0 � " < 1
3
, there exists a probability measure � D �."/

supported on a Lebesgue-null set S of Hausdorff dimension 1 � " such that M� is bounded
on Lp.R/ for all p > 1C"

1�"
.

The result above is one of many similar ones involving the operator on restricted sets
and restricted scales. The interested reader is referred to [59] for other analogous statements
concerning M� and its variants. As a consequence of Theorem 2.3, we obtain a differentia-
tion theorem for � that answers a question of Aversa and Preiss [2,3,69].

Theorem 2.4. For 0 � " < 1
3
, let � D �."/ be the measure specified in Theorem 2.3. Then

for every f 2 Lp.R/ with p 2 ..1 C "/=.1 � "/; 1/, we have

lim
r!0

ˇ̌̌̌Z
f .x C ry/d�.y/ � f .x/

ˇ̌̌̌
D 0 for a.e. x 2 R: (2.5)

Thus for " D 0, the measure � D �.0/ is supported on a full-dimensional set, is
singular with respect to Lebesgue, and yet differentiates Lp in the sense of (2.5), as does the
Lebesgue measure. Further, the maximal operator M� is bounded on the same Lebesgue
spaces Lp (namely, p 2 .1; 1/) as the one-dimensional Hardy–Littlewood maximal func-
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tion. However, unlike the Lebesgue measure, the measure � D �.0/ fails to differentiate L1,
as shown by Preiss [59, Section 8].

The measures � D �."/ in our results are constructed by randomizing a Cantor-
type iteration. More precisely, we describe a random mechanism for building the nested
Cantor iterates Sk as a union of finitely many intervals. The measure � is then shown to
be the weak-� limit of the natural probability measures 1Sk

=jSkj, which are supported on
S D

T
k Sk .
It turns out that the proof of Theorem 2.3 does not use any Fourier decay condi-

tions. Instead, the proof relies on geometric arguments akin to those in Bourgain’s proof of
the circular maximal theorem. The right substitute for Fourier decay turns out to be a cor-
relation condition between affine copies of the sets Sk , providing the needed bound on the
size of multiple intersections analogous to those arising in Bourgain’s argument. Readers
familiar with the proof of Theorem 2.1 for d D 2 or other similar results will recognize the
correlation condition as a bound on the integrand (interpreted as the correlation function) in
the expression for the Ln-norm of the dual linearized and discretized maximal operator, for
large integer values of n. The proof attempts to minimize this integrand whenever possible
through randomization arguments.

The threshold exponent p0 D .1 C "/=.1 � "/ is suboptimal in general. Shmerkin
and Suomala [82] have improved the range of p for random measures � associated to an
Ahlfors-regular variant of fractal percolation. Another improvement in a different direction
is due to Łaba [57], who has obtained slightly weaker estimates forM�, but for a much larger
class of measures �; in particular, her results apply to measures � with self-similar supports
of arbitrarily small Hausdorff dimension and no Fourier decay. Determining the Lebesgue
boundedness of M� where � is the Cantor–Lebesgue measure on the standard middle-third
Cantor set remains an open problem.

3. Sparse restriction of Laplace–Beltrami

eigenfunctions

The study of eigenfunctions of Laplacians lies at the interface of several areas of
mathematics, including analysis, geometry, mathematical physics, and number theory. These
special functions arise in physics and in partial differential equations as modes of periodic
vibration of drums and membranes. In quantum mechanics, they represent the stationary
energy states of a free quantum particle on a Riemannian manifold.

Let .M;g/ denote a compact, connected, n-dimensional Riemannianmanifold with-
out boundary, and ��g the positive Laplace–Beltrami operator on M . It is well known [87,

Chapter 3] that the spectrum of this operator is nonnegative and discrete. Let us denote its
eigenvalues by ¹�2

j W j � 0º, and the corresponding eigenspaces by Ej . Without loss of gen-
erality, the positive square roots of the distinct eigenvalues can be arranged in increasing
order, with

0 D �0 < �1 < �2 < � � � �j < � � � ! 1:
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It is a standard fact [87, Chapter 3] that each Ej is finite-dimensional. Further, the space
L2.M; dVg/ (consisting of functions on M that are square-integrable with respect to the
canonical volume measure dVg ) admits an orthogonal decomposition in terms of Ej :

L2.M; dVg/ D

1M
j D0

Ej :

One of the fundamental questions surrounding Laplace–Beltrami eigenfunctions targets their
concentration phenomena, via high-energy asymptotics or high-frequency behavior. There
are many avenues for this study, as exemplified in [1,11,13,20,32,41,61,74,79,83,99,100]. One
such approach involves studying the growth of the Lp-norms of these eigenfunctions as the
eigenvalue goes to infinity. My joint work with Suresh Eswarathasan [27], the main focus of
this section, lies in this category. Specifically, we describe the L2.M/ ! Lp.�/ mapping
property of a certain spectral projector (according to the spectral decomposition above),
where� is a Lebesgue-null subset ofM . In particular,� does not enjoy any smooth structure,
a point of departure from prior work where this feature was heavily exploited. We begin by
reviewing the current research landscape that will help place the main results in context.

3.1. Motivation of the problem
The Weyl law in spectral theory provides an L1-bound on eigenfunctions on M

[43]. The first results that establish Lp eigenfunction bounds for p < 1 are due to Sogge
[86].

Theorem 3.1 ([86]). Given any manifold M as above and p 2 Œ2;1�, there exists a constant
C D C.M; p/ > 0 such that the following inequality holds for all � � 1:

k'�kLp.M/ � C.1 C �/ı.n;p/
k'�kL2.M/; with (3.1)

ı.n; p/ D

8̂̂<̂
:̂

n � 1

4
�

n � 1

2p
; if 2 � p �

2.n C 1/

n � 1
;

n � 1

2
�

n

p
; if

2.n C 1/

n � 1
� p � 1

9>>=>>; : (3.2)

Here '� is any eigenfunction of��g corresponding to the eigenvalue �2. The bound is sharp
for the n-dimensional unit sphere M D Sn, equipped with the surface measure.

Historically, an important motivation and source of inspiration for this line of inves-
tigation has been the Fourier restriction problem, which explores the behavior of the Fourier
transform when restricted to curved surfaces in Euclidean spaces. In fact, the Stein–Tomas
L2-restriction theorem [96], originating in Euclidean harmonic analysis, was a key ingredi-
ent in an early proof of Theorem 3.1 for the sphere. Indeed, Theorem 3.1 may be viewed
as a form of discrete restriction on M where the frequencies are given by the spectrum of
the manifold, see, for example, [85]. Conversely, it is possible to recover the L2-restriction
theorem for the sphere from a spectral projection theorem such as Theorem 3.1 applied to
the n-dimensional flat torus. The lecture notes of Yung [98, Section 2] contain a discussion
of these implications.
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Theorem 3.1 permits a number of independent proofs. For an argument that involves
well-known oscillatory integral estimates of Hörmander applied to the smooth spectral pro-
jector (denoted �.

p
��g � �/), we refer the reader to the treatise [87]. The semiclassical

approach of Koch, Tataru, and Zworski [54] has also yielded many powerful applications.
Finer information on eigenfunction growth may be obtained through Lp-bounds on

'� when restricted to smooth submanifolds of M . One expects '� to assume large values
on small sets. Thus its Lp-norm on a Lebesgue-null set such as a submanifold, if meaning-
ful, is typically expected to be larger in comparison with the Lp-norm taken over the entire
manifold M , as given by Theorem 3.1. The first step in this direction is due to Reznikov [70],
who studied eigenfunction restriction phenomena on hyperbolic surfaces via representation-
theoretic tools. The most general results to date on restricted norms of Laplace eigenfunc-
tions are by Burq, Gérard, and Tzvetkov [14], and independently byHu [44]. The work of Tacy
[95] has extended these results to the setting of a semiclassical pseudodifferential operator
(not merely the Laplacian) on a Riemannian manifold, while removing logarithmic losses
at a critical threshold. Another particular endpoint result is due to Chen and Sogge [18]. We
have summarized below the currently known best eigenfunction restriction estimates for a
general manifold, combined from this body of work and for easy referencing later.

Theorem 3.2 ([14, 44, 95]). Let † � M be a smooth d -dimensional submanifold of M ,
equipped with the canonical measure d� that is naturally obtained from the metric g. Then
for each p 2 Œ2; 1�, there exists a constant C D C.M; †; p/ > 0 such that for any � � 1

and any Laplace eigenfunction '� associated with the eigenvalue �2, the following estimate
holds:

k'�kLp.†;d�/ � C.1 C �/ı.n;d;p/
k'�kL2.M;dVg /: (3.3)

The exponent ı.n; d; p/ admits a multipart description. Specifically,

ı.n; n � 1; p/ D

8<: n�1
4

�
n�2
2p

; for 2 � p �
2n

n�1
;

n�1
2

�
n�1

p
; for 2n

n�1
� p � 1:

(3.4)

For d ¤ n � 1,

ı.n; d; p/ D
n � 1

2
�

d

p
; for 2 � p � 1 and .d; p/ ¤ .n � 2; 2/: (3.5)

For .d; p/ D .n � 2; 2/, the exponent ı.n; d; p/ is still given by (3.5); however, there is an
additional logarithmic factor log1=2.�/ appearing in the right-hand side of inequality (3.3).

The proofs in [14] and [18] use a delicate analysis of oscillatory representations of
the smoothed spectral projector �.

p
��g � �/ restricted to submanifolds†, combined with

refined estimates influenced by the considered geometry. Alternatively, [44] uses general
mapping properties for Fourier integral operators with prescribed degenerate canonical rela-
tions to obtain bounds for the oscillatory integral operators in question. There are several
recurrent features in these proofs; namely, stationary phase methods, arguments involving
integration by parts and operator-theoretic convolution inequalities. This methodology heav-
ily relies on the fact that the underlying measures are induced by Lebesgue, which in turn is
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a consequence of M and † being smooth manifolds. We wanted to explore the accessibility
of this machinery in the absence of smoothness, and to find working substitutes when such
methods are unavailable.

There is a common theme in Theorems 3.1 and 3.2 above; namely, the left-hand side
of both inequalities (3.1) and (3.3) involves the Lp-norm of an eigenfunction '� but over
different submanifolds of M (including M itself), and with respect to natural measures on
these submanifolds. An interesting feature of the exponents ı.n; p/ and ı.n; d; p/ is that for
large p, they are both of the form .n � 1/=2 � ˛=p, where

˛ D dimension of the space on which the Lp-norm of '� is measured

D

´
dim.M/ D n in Theorem 3.1;

dim.†/ D d in Theorem 3.2:
(3.6)

In view of this commonality in (3.2), (3.4), and (3.5), we pose the following question:

• Given an arbitrary Borel set � � †, does there exist a measure � supported on
† with respect to which we can estimate the growth of the eigenfunctions '�?

The nontrivial situation arises when � is Lebesgue-null, i.e., � is singular with respect to
the canonical measure on †. The optimal scenario would be to obtain bounds that reflect the
dimensionality of the set � in the same way that Theorems 3.1 and 3.2 do. We answer this
by presenting the main results of our article [27].

3.2. Main results
Given a compact n-dimensional Riemannian manifold .M; g/, let † � M be a

smooth embedded submanifold of dimension 1 � d � n, equipped with the restricted Rie-
mannian metric naturally endowed by g. Let .U; u/ be a local coordinate chart on †, where
U � Rd is an open set containing Œ0; 1�d and u W U ! u.U / ,! † is a smooth embed-
ding. Given any " 2 Œ0; 1/, let E � Œ0; 1�d be an arbitrary Borel set of Hausdorff dimension
dimH.E/ D d.1 � "/. We refer the reader to the classical textbook of Mattila [64, Chap-

ter 4] for the definitions and properties of Hausdorff dimension of sets in Euclidean spaces.
The Borel set E � Œ0; 1�d generates a corresponding Borel set � D �ŒE� in † by setting
� WD u.E/. Conversely, every Borel subset � in u.Œ0; 1�d / � † can be identified with a set
E D u�1.�/ � Œ0;1�d . Similarly, anymeasure � supported on� corresponds with a measure
� D u�� on E via the pull-back u�, i.e.,

�.A/ WD �
�
u�1.A/

�
for all Borel sets A � †: (3.7)

The converse is also true; any Borel measure � generates another measure � on � through
its push-forward, given by the same relation (3.7). Since u is a diffeomorphism, and thus bi-
Lipschitz, it preserves Hausdorff dimension [28, Corollary 2.4]; hence dimH.�/ D

dimH.E/ D d.1 � "/. Let us define our critical exponent

p0 D p0.n; d; "/ WD
4d.1 � "/

n � 1
: (3.8)
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Our result below, representative of the class of results presented in [27], specifies a family of
restricted eigenfunction estimates for every such set � .

Theorem 3.3 ([27]). Let M , †, � and p0 be as above. Then for every � > 0 sufficiently
small, there exists a probability measure �.�/ supported on � such that for all � � 1 and all
p 2 Œ2; 1�, we have the eigenfunction estimate

k'�kLp.�;�.�// � C�;p.1 C �/�p ‚.�I �; p/k'�kL2.M;dVg /: (3.9)

Here '� denotes any L2-eigenfunction associated with the eigenvalue �2 for the Laplace–
Beltrami operator ��g on M . For p0 > 2, the exponent �p is given by

�p D �p.n; d; "/ WD

8<: n�1
4

if 2 � p � p0 �
4�

n�1
;

n�1
2

�
d.1�"/

p
if p � p0 �

4�
n�1

:
(3.10)

The function ‚ represents a power loss of �=p beyond the critical threshold:

‚.�I �; p/ WD

8̂̂̂<̂
ˆ̂:

1 if 2 � p � p0 �
4�

n�1
;

.1 C �/
�
p .log�/

1
p if p D p0 �

4�
n�1

;

.1 C �/
�
p if p > p0 �

4�
n�1

:

For p0 � 2 and 2 � p � 1, we set

�p D �p.n; d; "/ WD
n � 1

2
�

d.1 � "/

p
and ‚.�I �; p/ D .1 C �/

�
p :

The positive constant C�;p in (3.9) may depend on n; d; "; �, and p, but is independent
of �. The probability measure �.�/ in (3.9), given by Frostman’s lemma, obeys the following
volume growth condition: there exists C� > 0 such that for all x 2 † and r > 0,

�.�/
�
Bg.xI r/

�
� C�rd.1�"/�� ; (3.11)

where Bg.xI r/ � M denotes the Riemannian ball centered at x of radius r .

The estimate (3.9) is sharp for p � max.2; p0/, except possibly for the infinitesimal
blow-up factor of .1 C �/�=p . More precisely, for every " 2 Œ0;1/, d � n, andp �max.2;p0/,
the bound in (3.9) is realized, ignoring subpolynomial losses, for certain sets of dimension
d.1 � "/ in M D Sn. The estimate is not sharp for 2 � p < p0, when p0 > 2. This is an
artifact of our proof strategy.

For an arbitrary Borel set � , the information available about measures supported
on it is limited. As a result, the measure �.�/ that realizes (3.9) varies with � in general.
Thus we are able to prove (3.9) only for all � > 0 and not for � D 0. On the other hand, if
� D M or if � is a submanifold of M , it follows from [14, 44, 87, 95] that there is a natural
Lebesgue-induced measure on � for which (3.9) does hold with � D 0. We show in [27] is
that such an improvement holds in a generic sense. In Theorem 1.7 and Corollary 1.8 of [27],
we provide a large class of sparse subsets � that are not submanifolds, each supporting a
single probability measure � that obeys (3.11) for all � > 0, even though C� % 1 as � & 0.
For this measure �, we show that a stronger version of (3.9) holds, with � D 0. However,
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‚ is then replaced by a function of slow growth in the range p � max.2; p0/. A precise
functional form for ‚ that quantifies the infinitesimal blowup is provided.

For p � max.2; p0/, the exponent �p in Theorem 3.3 is of the same form alluded
to in (3.6), namely �p D .n � 1/=2 � ˛=p with ˛ D d.1 � "/ D dimH.�/. Thus our result
may be viewed as a natural interpolation between the global estimates in [86] and the smooth
restriction estimates in [14], bridging the estimates across a family of arbitrary Borel sets
with continuously varying Hausdorff dimensions.

To the best of our knowledge, Theorem 3.3 is the first result of its kind in several
distinct categories. First, it offers eigenfunction bounds restricted to any Borel subset of pos-
itive Hausdorff dimension, for every manifold M and every smooth submanifold † therein.
Second, even for integers m, our result produces new sets of dimension m, for example, with
.n;d; "/ D .2; 2; 1=2/, that are not necessarily contained in anym-dimensional submanifold,
and yet capture the same eigenfunction growth bounds as smooth submanifolds of the same
dimension, up to subpolynomial losses. Third, when " D 0, our result provides examples
of singular measures supported on submanifolds with respect to which the eigenfunctions
obey the same Lp growth bounds, up to any prescribed �-loss, as with the induced Lebesgue
measure on the same submanifold.

The work of Burq, Gérard, and Tzvetkov [14, Theorem 2] shows that when n D 2,
d D 1 and � is a curve of nonvanishing geodesic curvature, Theorem 3.2 admits a significant
improvement; namely the growth exponent ı.2;1;p/ can be replaced by the smaller exponent
Qı.2; 1;p/ D 1=3 � 1=.3p/ in the range 2 � p � 4. The correct analogue of the nonvanishing
curvature condition for an arbitrary sparse set � that would lead to similar improvements for
Theorem 3.3 is as yet unknown.

4. Configurations in sparse sets

Another related field of research, at the interface of harmonic analysis, geometric
measure theory, and fractal geometry, is the study of patterns or configurations in sparse
sets. Questions here are typically of the following type: Under what conditions must a small
set contain a given pattern? Can it contain many? Can a large set avoid specified patterns?
How can one quantify the patterns contained in a set? Stated in this level of generality, these
questions lack precision, both in the quantification of size and in the specification of patterns.
“Large” could be interpreted in the context of cardinality, Lebesgue measure, asymptotic or
Banach density, Hausdorff, Minkowski or Fourier dimension. “Patterns” could be geometric
in nature, for example, arithmetic or geometric progressions, equilateral triangles, parallel-
ograms; alternatively, they could be algebraic, such as solutions of certain equations. This
line of investigation has a particularly rich history in number theory and additive combi-
natorics where the ambient space is often the space of integers, or subsets thereof. It has
expanded into an active research area in the continuum setting within the last two decades.
While the questions often look similar in the discrete and continuous regimes, the answers
are sometimes very different.
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4.1. Existence and avoidance of linear patterns
Can large sets avoid many patterns? Regardless of the many possible variants of

such a question, it would seem that a natural answer would be “no,” with any reasonable
definition. Indeed, there is a large body of work that supports this intuition; see [5,15,35–37,

42,58].
However, there are also many results in the literature that challenge this intuition,

especially when slight variations in the notions of size lead to very different conclusions
regarding the existence of patterns. For example, in the discrete setting, a classical result
of Behrend [4] and Salem and Spencer [78] says that for any " > 0 and all sufficiently
large positive integers M , there exists a set XM � ŒM � WD ¹0; 1; 2; : : : ; M � 1º such that
#.XM / > M 1�" and XM contains no nontrivial three-term arithmetic progression. This is
in sharp contrast with the celebrated results of Roth [71, 72] and Szemerédi [93, 94], which
state that for any k � 3 and any c > 0, there exists M0 � 1 such that for M � M0, any set
XM � ŒM � obeying #.XM / � cM contains a nontrivial k-term arithmetic progression. The
work of Ruzsa [75,76] on subsets of integers avoiding nontrivial solutions of linear equations
has been particularly influential in subsequent research in additive combinatorics.

Similar results exist in the continuum as well. For instance, one can deduce from
the Lebesgue density theorem that any set in R with a Lebesgue density point contains a
nontrivial affine copy of any finite configuration. This conclusion applies therefore to any
set of positive Lebesgue measure. On the other hand, Keleti [52] constructs a compact subset
E � Œ0; 1� with Hausdorff dimension 1 but Lebesgue measure zero such that there does not
exist any nontrivial solution of x � y D z � w, with x < y � z < w and .x; y; z; w/ 2 E4.
In particular, E avoids all three-term arithmetic progressions. Subsequent results [23,30,40,

52, 53, 62, 63] have explored the issue of avoidance further, providing examples of sets of
large Hausdorff dimension that omit increasingly general families of algebraic and geometric
patterns. Let us recall from [64, Theorem 8.8] or [28, Section 4.1] that theHausdorff dimension
dimH.A/ of a Borel set A � Rn is the supremum of exponents ˛ > 0 with the following
property: there exists a probability measure � supported on A such that for some positive,
finite constant C1,

�
�
B.x; r/

�
� C1r˛ for all x 2 Rn; r > 0: (4.1)

These results suggest a general rule of thumb: large Hausdorff dimension is usually not
enough to ensure that a set contains a specified family of patterns.

On the other hand, the situation is expected to be different for setsA of large Fourier
dimension. The Fourier dimension dimF .A/ of a Borel set A � Rn is defined as the supre-
mum of exponents ˇ � n obeying the following condition: there exist a probability measure
� supported on A and a positive finite constant C2 such thatˇ̌b�.�/

ˇ̌
� C2

�
1 C j�j

��ˇ=2 for all � 2 Rn; where b�.�/ WD

Z
e�ix�d�.x/: (4.2)

Frostman’s lemma [64, p. 168] states that dimF .A/ � dimH.A/ for any Borel set A. This
inequality implies that sets of large Fourier dimension form a smaller subclass within the
class of sets of large Hausdorff dimension. It gives rise to the intuition that such sets are more
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likely to enjoy additional properties rooted in the Fourier decay of the supporting measures;
in particular, they could possibly contain a richer class of patterns. A Borel set whose Fourier
dimension equals its Hausdorff dimension is called a Salem set. One therefore hopes that a
Salem set of large dimensionmay contain patterns that a non-Salem set of the sameHausdorff
dimension does not. While this naive expectation turns out to be false in general (more on
this in Section 4.2), there is a core of truth in this heuristic principle. In joint work with Yiyu
Liang [60], we have made this precise. Our results in this direction form the main content of
this subsection and the next.

The intuition that large Salem sets are richer in structure than their non-Salem coun-
terparts of the same dimension is perhaps also due to the known examples of such sets. Salem
sets are ubiquitous among random sets. Many random constructions yield sets that are, on the
one hand, often (almost surely) Salem and, on the other hand, embody verifiable algebraic or
geometric structure. The first such random construction is due to Salem himself [77]; many
subsequent random constructions have appeared in [7,8,16,17,25,49,50,58,81]. Deterministic
examples of Salem sets are comparatively fewer [38, 39, 47, 48, 51], but they arise naturally
in number theory [6, 12, 24] and are rich in arithmetic patterns as well. The work of Körner
[55,56], which explicitly addresses the relation between the rate of decay of the Fourier trans-
form of a measure and possible algebraic relations within its support, is perhaps closest to
the main theme of this section.

In the results to be stated shortly, we will provide a quantitative formulation of
the heuristic principle that Salem sets possess richer structure, in the specific context of
translation-invariant linear patterns. More precisely, we will be concerned with algebraic
patterns that occur as a nontrivial zero of some function in the class

F D F .N/ WD

1[
vD2

Fv.N/; where (4.3)

Fv.N/ WD

8̂̂<̂
:̂f .x0; : : : ; xv/ WD m0x0 �

vX
iD1

mi xi

ˇ̌̌̌
ˇ̌̌̌ m0; : : : ; mv 2 N; m0 D

vX
iD1

mi ;

gcd.m0; m1; : : : ; mv/ D 1

9>>=>>; :

(4.4)

Here v 2 N n ¹1º and N WD ¹1; 2; : : :º.

Definition 4.1. Let us briefly review the patterns whose existence or avoidance we will
explore in this section.

• Given f 2 Fv.N/, a vector x D .x0; x1; : : : ; xv/ 2 RvC1 is said to be a zero of f

if it obeys the equation f .x0; : : : ; xv/ D 0. Such a vector x will also be referred
to as a solution of the equation f .x0; : : : ; xv/ D 0.

• A zero x D .x0; : : : ; xv/ 2 RvC1 of a function f 2 Fv.N/ is said to be nontrivial
if the entries of x are all distinct. All other zeros of f are called trivial. The terms
“trivial” and “nontrivial” apply with the same definition to solutions of equations
of the form f D 0 as well.
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• Given a setE � R, we say thatE contains a nontrivial zero of f 2 Fv.N/ if there
exists x D .x0; x1; : : : ; xv/ 2 EvC1 with all distinct entries such that f .x/ D 0.
If no such x 2 EvC1 exists, we say that E avoids all nontrivial zeros of f .

• A set E � R is said to contain a nontrivial translation-invariant rational linear
pattern if it contains a nontrivial zero of some f 2 F .

A three-term arithmetic progression .x0; x1; x2/ with nonzero common difference
is a simple example of a nontrivial translation-invariant rational linear pattern, since it is a
nontrivial zero of the function f .x0; x1; x2/ D 2x0 � .x1 C x2/. If a vector

x D .x0; : : : ; xv/ 2 RvC1

is a trivial zero of some f 2 Fv.N/ with v � 3 but has at least two distinct entries, then the
vector y D .y0; : : : ; yv0/ consisting of the distinct entries of x provides a nontrivial zero of
some g 2 Fv0.N/, v0 < v.

In the following subsection, we provide answers to variants of the following ques-
tion: given F � � F .N/, how large a set E � R, in the sense of Fourier dimension, can
one construct that avoids all the nontrivial zeros of all f 2 F �? Alternatively, are sets of
large enough Fourier dimension guaranteed to contain a nontrivial zero of some f 2 F �?
The requirement m0 D

Pv
iD1 mi in Fv.N/ is designed to avoid trivial answers; without

this assumption, one can always find an avoiding interval (of positive Lebesgue measure)
centered around 1.

4.2. Main results
In [58, Theorem 1.2], we showed, in joint work with Izabella Łaba, that if a compact

setA � Œ0; 1� supports a probability measure� obeying a ball condition of the type (4.1) and
a Fourier decay condition of the type (4.2), thenA contains a nontrivial three-term arithmetic
progression, provided (a) ˇ > 2=3, (b) the constants C1 and C2 are appropriately controlled,
and (c) the exponent ˛ is sufficiently close to 1, depending on C1; C2, and ˇ. The article [58,

Section 7] also contains a large class of examples of Salem sets that verify the hypotheses
of [58, Theorem 1.2]. This leads to a natural question whether the technical growth conditions
(b) on C1; C2 are truly necessary, and whether progressions exist in any set of large enough
Fourier dimension. This naive expectation is, however, false. Shmerkin [80, Theorems A and B]

has recently proved the existence of a compact full-dimensional Salem set contained in Œ0; 1�

that avoids all nontrivial arithmetic progressions. The existence of such a Salem set seems, at
first glance, to contradict the conventional belief that such sets should enjoy richer structure.

4.2.1. Rational linear patterns
Our next three results show that even though a Salem set of large dimension can

avoid a specific linear pattern (or even finitely many) given by F , it cannot avoid all of them.

Theorem 4.2 ([60]). Given v 2 N, v � 2, let E � Œ0; 1� be a closed set satisfying
dimF .E/ > 2

vC1
, i.e., there exist some ˇ > 1

vC1
, a probability measure � supported on E,
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and some positive constant C such thatˇ̌
O�.�/

ˇ̌
� C

�
1 C j�j

��ˇ
: (4.5)

Then E contains a nontrivial zero of some f 2 Fv.N/ defined in (4.4). In other words,
there exists ¹m0; : : : ; mvº � N satisfying m0 D

Pv
iD1 mi , such that E contains a nontrivial

solution of the equation
vX

iD1

mi xi D m0x0: (4.6)

Corollary 4.3 ([60]). Let E � Œ0; 1� be a closed set of positive Fourier dimension. Then E

contains a nontrivial translation-invariant rational linear pattern, in the sense of Defini-
tion 4.1.

We compare Theorem 4.2 with earlier results of Körner [55,56]. For instance, in [56,

Lemma 2.3] he shows that if E is a subset of the unit circle T D R=Z with dimF .E/ > 2
.vC1/

,
then there exist integers m0; m1; : : : ; mv 2 Z, not all zero, and distinct points x0; x1; : : : ;

xv 2 E such that
m0x0 D m1x1 C � � � C mvxv (mod 1): (4.7)

A priori, one does not know the number of integers mj that are zero in the above equation,
the signs of the nonzero integers mj and whether the equation is translation-invariant. On
the other hand, the linear equations stemming from Fv.N/ and underlying Theorem 4.2 are
exact (not modulo integers), and the coefficients m0; : : : ; mv are all positive with the further
constraint m0 D m1 C � � � C mv . Körner [56, Theorem 2.4] also constructs a set E � T of
Fourier dimension 1=v with the following property: there does not exist any nonzero vector
.m0; : : : ; mv/ 2 ZvC1 for which the equation (4.7) admits a nontrivial solution consisting of
distinct points x0; x1; : : : ; xv 2 E. Körner’s construction, based on a Baire category argu-
ment, is nonexplicit. We ask the interested reader to compare Körner’s construction of an
avoiding set with the avoidance results in this paper (Theorems 4.5, 4.6, and 4.10). The
sets that we construct avoid more restricted classes of equations but are of larger Fourier
dimension.

As another point of contrast, we mention a construction of Keleti [53] that provides,
for any countable set T � .0; 1/, a subset E � Œ0; 1� of Hausdorff dimension 1 that does
not contain any triple of distinct points ¹x; y; zº such that tx C .1 � t /y D z for any t 2 T .
Choosing v D 2 and T D Q \ .0; 1/, the set of rationals in .0; 1/, we observe that dimF in
Theorem 4.2 cannot be replaced by dimH. Generalizing Keleti’s result, Mathé [63] proves
the existence of a rationally independent set in R of full Hausdorff dimension. We recall that
a set E � R is rationally independent if for any integer v � 2 and any choice of distinct
points x1; x2; : : : ; xv 2 E,

vX
j D1

aj xj D 0 with ¹a1; : : : ; avº � Z implies a1 D a2 D � � � D av D 0:

Theorem 4.2 implies that such sets cannot be Salem. Indeed, any set E � R of positive
Fourier dimension will support a probability measure � that satisfies (4.5) for some v 2 N
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and some ˇ > 1=.v C 1/. By Theorem 4.2, it will contain a rationally dependent .v C 1/-
tuple of distinct points that obeys a relation of the form (4.6).

Corollary 4.4 ([60]). There can be no rationally independent set in R of positive Fourier
dimension.

However, it is possible for a large Salem set to avoid nontrivial zeros of any finite
sub-collection of F , as our next result illustrates.

Theorem 4.5 ([60]). Let F be as in (4.3). Given any finite collection G � F , there exists a
set E � Œ0; 1� with dimF E D 1 such that E contains no nontrivial zero of any f 2 G .

Corollary 4.4 and Theorem 4.5 lead to a natural question: does there exist a full-
dimensional Salem set that avoids the nontrivial zeros of some countably infinite sub-
collection of F? We answer this question in the affirmative; see Theorem 4.10. At the
moment, we do not know how to characterize such subcollections.

Our next result attempts to strike a balance of a different sort between Theorems 4.2
and 4.5. While Theorem 4.2 dictates that a Salem set of large Fourier dimension must nec-
essarily contain a nontrivial zero .x0; x1; : : : ; xv/ of some function f 2 Fv and some v � 2,
it a priori does not specify the diameter or spread of such a solution,

diam.x0; : : : ; xv/ D max
®
jxi � xj jI i; j 2 ¹0; 1; : : : ; vº; i ¤ j

¯
;

which could in principle be very small; in other words, the nontrivial solution could be
“almost trivial.” We now show that it is possible to construct a full-dimensional Salem set
that prohibits, in a quantifiable way, nontrivial zeros from being almost trivial.

Theorem 4.6 ([60]). There exists a set E � Œ0; 1�, dimF E D 1 with the following property.
For every v � 2 and every f 2 Fv.N/ defined as in (4.4), there exists � > 0 such that
whenever there exists a .v C 1/-tuple .x0; x1; : : : ; xv/ 2 EvC1 with

diam.x0; x1; : : : ; xv/ < � and f .x0; x1; : : : ; xv/ D 0; (4.8)

we have that x0 D x1 D � � � D xv . In particular, a nontrivial zero of f in E, if it exists, would
obey diam.x0; : : : ; xv/ � �.

In addition, the constant � D �N can be chosen uniformly for all f 2 F whose
coefficients are bounded by N .

4.2.2. General linear patterns
The statements of Theorems 4.2 and 4.5 lead to an interesting possibility. Let

Fv.RC/ denote the class of translation-invariant linear functions in .v C 1/ variables with
real positive coefficients. Then Fv.RC/ can be identified with the .v � 1/-dimensional set

Tv D
®
t 2 .0; 1/v�1

W t1 C t2 C � � � C tv�1 < 1
¯
; (4.9)
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which is a half-space of Rv�1 restricted to the open unit cube, via the map

t D .t1; : : : ; tv�1/ 2 T 7! ft 2 Fv.RC/; where

ft.x/ D x0 � .t1x1 C t2x2 C � � � C tvxv/; tv D 1 �

v�1X
iD1

ti :

Under this map, the class Fv.N/ is identified with the positive rationals in Tv , and hence is
of Hausdorff dimension zero. On the other hand,Fv.RC/ is of positive .v � 1/-dimensional
Lebesguemeasure. One is then led to ask:Given a collectionF � Fv.RC/ that is of positive
Lebesgue measure or large Hausdorff dimension under this identification, does there exist
a set E � R of large Fourier dimension that avoids all nontrivial zeros of F? In our next
two theorems, we answer this question in the affirmative, in the special case of trivariate
equations, where v D 2 and F can be viewed as a subset of .0; 1/. In Theorem 4.7, the
class F is identified with a union of intervals, in Theorem 4.8 with collections of badly
approximable numbers.

Theorem 4.7 ([60]). Let us fix any p 2 N with p � 2 and any ˛ 2 .0; 1/. Then there exist
some � D �.p; ˛/ > 0 and E � Œ0; 1� with dimF .E/ � ˛ such that E contains no nontrivial
solution of

tx C .1 � t /y D z for all t 2

p�1[
qD1

�
q

p
� �;

q

p
C �

�
:

For fixed constants 0 < � , c � 1, let us define the collection Ec;� of badly approx-
imable numbers as follows:

Ec;� WD

²
t 2 .0;1/ W

ˇ̌̌̌
t �

q

p

ˇ̌̌̌
>

c

p1C�
; for all

q

p
2 Q;p 2 N; q 2 Z;gcd.p;q/ D 1

³
: (4.10)

Sets of this type have applications in number theory, and their sizes have been widely studied.
For example, if � D 1, then the Hausdorff dimension of Ec;� is of the order of 1 � Oc.1/ as
c ! 0. We refer the reader to [84, Theorem 1.3] and the bibliography in this article for a survey
of such results.

Theorem 4.8 ([60]). For every "0 2 .0; 1
2
/, there exists a set E � Œ0; 1� with dimF .E/ D

1
1C�

such that E contains no nontrivial solution of

tx C .1 � t /y D z; for any t 2 Ec;� \ ."0; 1 � "0/:

The combined strategies of Theorems 4.7 and 4.8 imply the following corollary.

Corollary 4.9 ([60]). Let us fix 0 < � , c � 1, "0 2 .0; 1
2
/, and p 2 N n ¹1º. Then for all

sufficiently large M 2 N and � D
1

2pM
, there exists E � Œ0; 1� with dimF E D

1
1C�

such
that E contains no nontrivial solution of

tx C .1 � t /y D z; for any t 2
�
C \ ."0; 1 � "0/

�
[

"
p�1[
qD1

�
q

p
� �;

q

p
C �

�#
:

The sets of forbidden coefficients t in Theorems 4.7 and 4.8 are large, as a con-
sequence of which the avoiding sets we obtain are not of full dimension. Is it possible to
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construct a full-dimensional Salem set for which the set of forbidden coefficients is still
quantifiably large? Our next result provides an affirmative answer to this question, while
also addressing the question posed after Theorem 4.5.

Theorem 4.10 ([60]). There exists an infinite set C � .0; 1/ and E � Œ0; 1� with dimF E D 1

such that E contains no nontrivial solution of

tx C .1 � t /y D z for any t 2 C: (4.11)

The set C contains infinitely many rationals and uncountably many irrationals.

It is natural to ask whether there exists a version of Shmerkin’s theorem [80] or
Theorem 4.5 for a finite but arbitrary collection of equations in Fv.RC/; for instance,
does there exist a full-dimensional Salem set E that contains no nontrivial solution of
tx C .1 � t /y D z, for any prespecified irrational t 2 .0; 1/? We are currently unable to
provide an answer to this question. Also, the proof techniques of this paper are not immedi-
ately generalizable to other types of translation invariant equations, for example, when

mX
iD1

si xi D

nX
j D1

tj yj with
mX

iD1

si D

nX
j D1

tj D 1; 0 < si ; tj < 1 and m; n � 2;

or when the equation is nonlinear, say x3 � x1 D .x2 � x1/2. We are pursuing these direc-
tions in ongoing work.

4.3. A Roth-type result for dense Euclidean sets
A main objective of Ramsey theory is the study of geometric configurations in

large, but otherwise arbitrary sets. A typical problem in this area reads as follows: given
a set S , a family F of subsets of S and a positive integer r , is it true that any r-coloring of
S yields some monochromatic configuration from F ? More precisely, for any partition of
S D S1 [ � � � [ Sr into r disjoint subsets, does there exist i 2 ¹1; 2; : : : ; rº and F 2 F

such that F � Si? In discrete (respectively Euclidean) Ramsey theory, S is generally Zd

(respectively Rd ), and sets in F are geometric in nature. For example, if X is a fixed finite
subset of Rd , such as a collection of equally spaced collinear points or vertices of an isosce-
les right triangle, then F D F .X/ could be the collection of all isometric copies or all
homothetic copies of X in S . A coloring theorem refers to a choice of S and F for which
the answer to the above-mentioned question is yes. Such theorems are often consequences
of sharper, more quantitative statements known as density theorems. A fundamental result
with S D N D ¹1; 2; : : : º is Szemerédi’s theorem [93] (already mentioned in Section 4.1),
which states that if E � N has positive upper density, i.e.,

lim sup
N !1

jE \ ¹1; : : : ; N ºj

N
> 0;

then E contains a k-term arithmetic progression for every k. This in particular implies van
der Waerden’s theorem [34, 97], which asserts that given r � 1, any r-coloring of N must
produce a k-term monochromatic progression, i.e., a homothetic copy of ¹1; 2; : : : ; kº. This
subsection is devoted to joint work with Brian Cook and Akos Magyar [22], where we are
concerned with certain density theorems in Ramsey theory over Rd .
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4.3.1. Motivation of the problem
A basic and representative result of the type we are interested in states that, with

d � 2, a set A � Rd of positive upper Banach density contains all large distances, i.e., for
every sufficiently large � � �0.A/ there are points x; x C y 2 A such that kyk2 D �. Recall
that the positive upper Banach density of A is defined as

Nı.A/ WD lim
N !1

sup
x2Rd

jA \ .x C Œ0; N �d /j

N d
:

The quoted result was obtained independently, along with various generalizations, by a
number of authors, for example, Furstenberg, Katznelson, and Weiss [31], Falconer and
Marstrand [29], and Bourgain [10].

To paraphrase, the above result shows that for any two-point configuration X 2 Rd

we are guaranteed the existence, up to congruence, of all sufficiently large dilates ofX inside
of A. The term configuration simply refers to a finite point set. From this point of view, it
is a natural question to ask is whether similar statements exist that involve configurations
with a greater number of points. If one looks for some (rather than every) sufficiently large
dilate of a given configuration, such results are well known in the discrete regime of the
integer lattice, under suitable assumptions of largeness on the underlying set. These results
can often be translated to existence of configurations in the Euclidean setting as well. For
instance, Roth’s theorem [71] in the integers states that a subset ofZ of positive upper density
contains a three-term arithmetic progression ¹x; x C y; x C 2yº, and it easily implies that a
measurable setA � R of positive upper density contains a three-term progression whose gap
size can be arbitrarily large. Results ensuring all sufficiently large dilates of a configuration
in a set of positive Banach density are stronger, and their proofs typically more difficult.
Bourgain [10] shows that if X D ¹x1; : : : ; xkº is any nondegenerate k-point simplex in Rd ,
d � k � 2 (i.e., if ¹x2 � x1; : : : ;xk � x1º spans a .k � 1/-dimensional space), then any subset
of Rd of positive upper Banach density contains a congruent copy of �X for all sufficiently
large �.

On the other hand, a simple example given in [10] shows that there is a set A � Rd

in any dimension d � 1, such that the gap lengths of all 3-progressions in A do not contain
all sufficiently large numbers. In other words, the result of [10] is false for the degenerate
configuration X D ¹0; e1; 2e1º, where e1 is the canonical unit vector in the x1-direction.
More precisely, the counterexample provided in [10] is the set A of points x 2 Rd such that
jkxk2

2 � mj �
1

10
for some m 2 N. The parallelogram identity

2kyk
2
2 D kxk

2
2 C kx C 2yk

2
2 � 2kx C yk

2
2

then dictates that jkyk2
2 �

`
2
j �

4
10

(for some ` 2 N) for any progression ¹x; x C y;

x C 2yº � A. Thus the squares of the gap lengths are restricted to lie close to the half-
integers, and therefore cannot realize all sufficiently large numbers.

The counterexample above has an interesting connection with a result in Euclidean
Ramsey theory due to Erdős et al. [26]. Let us recall [33] that a finite point set X is said to be
Ramsey if for every r � 1, there exists d D d.X; r/ such that any r-coloring ofRd contains a
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congruent copy of X . A result in [26] states that every Ramsey configuration X is spherical,
i.e., the points in X lie on an Euclidean sphere. (The converse statement is currently an open
conjecture due to Graham [33]). Since a set of three collinear points is nonspherical, it is
natural to ask whether Bourgain-type counterexamples exist for any nonspherical X . This
question was posed by Furstenberg and answered in the affirmative by Graham [33].

Theorem 4.11 (Graham [33]). Let X be a finite nonspherical set. Then for any d � 2, there
exist a set A � Rd with Nı.A/ > 0 and a set ƒ � R with ı.ƒ/ > 0 so that A contains no
congruent copy of �X for any � 2 ƒ.

4.3.2. Main result
It is interesting to observe that while Bourgain’s counterexample prevents an exis-

tence theorem for three term arithmetic progressions of all sufficiently large Euclidean gaps,
it does not exclude the validity of such a result when the gaps are measured using some other
metric on Rd that does not obey the parallelogram law. In [22] we prove that such results do
indeed exist for the lp metrics kykp WD .

Pd
iD1 jyi j

p/1=p for all 1 < p < 1, p ¤ 2. In this
sense, a counterexample as described above is more the exception rather than the rule.

Variations of our arguments also work for other metrics given by specific classes of
positive homogeneous polynomials of degree at least 4 and those generated by symmetric
convex bodies with special structure. Results of the first type were obtained in the finite field
setting by Cook and Magyar [21]. Also, the arguments here can be applied to obtain similar
results for certain other degenerate point configurations.

Theorem 4.12 ([22]). Let 1 < p < 1, p ¤ 2. Then there exists a constant dp � 2 such that
for d � dp the following holds. Any measurable setA � Rd of positive upper Banach density
contains a three-term arithmetic progression ¹x; x C y; x C 2yº � A with gap kykp D �

for all sufficiently large � � �.A/.

The result is sharp in the range of p. Easy variants of the example in [10] show that
Theorem 4.12 and in fact even the two-point results of [10,29,31] cannot be true for p D 1 and
p D 1. Indeed, if A D Zd C "0Œ�1; 1�d for some small "0 > 0, then, on the one hand, A is
of positive upper Banach density. On the other hand, if x; x C y 2 A for some y ¤ 0, then
both kyk1 and kyk1 are restricted to lie within distance O."0/ from some positive integer.

Indeed, counterexamples similar to [10] and the above can be constructed for norms
given by a symmetric, convex body, a nontrivial part of whose boundary is either flat or coin-
cides with an l2-sphere. An appropriate formulation of a positive result for a general norm,
and indeed the measurement of failure of the parallelogram law for such norms, remains an
interesting open question.

We do not know whether the p-dependence of the dimensional threshold dp stated
in the theorem is an artifact of our proof. In our analysis, dp grows without bound as p % 1,
while other implicit constants involved in the proof blow up near p D 1 and p D 2. It would
be of interest to determine whether Theorem 4.12 holds for all d � 2 for the specified values
of p.
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Since three distinct collinear points cannot lie on an lp-sphere for any p 2 .1; 1/,
Theorem 4.12 shows that a result of the type considered by Graham in [33] is in general false
for an lp-sphere if p ¤ 1; 2; 1. Thus any connection between Ramsey-like properties and
the notion of sphericality appears to be a purely l2 phenomenon.
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Abstract

We survey some of the recent progress in determining the number of two-sided closed
ideals in the Banach algebras of bounded linear operators on Lebesgue spaces, LpŒ0; 1�.
In particular, we discuss two recent results: the first of Johnson, Pisier, and the author,
showing that there are a continuum of such ideal in the case of p D 1; the second a result
of Johnson and the author, showing that in the case 1 < p < 1, p 6D 2, there are exactly 2
to the continuum such ideals.
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1. Introduction

For a Banach spaceX over the real or complex field, we denote byL.X/ the Banach
algebra of bounded linear operators on X . The wider subject of study here is the structure
of the class of closed two-sided ideals in this algebra. We recall that a closed ideal here is a
closed linear subspace M of L.X/ such that if T 2 M and A; B 2 L.X/ then ATB 2 M .
The research we shall concentrate on describing here is concerned with the modest aim of
deciding what the number of such different closed ideals is when X is one of the Lebesgue
spaces, LpŒ0; 1�, 1 � p � 1.

Recall that for a measure space .�; F ; �/ and 1 � p < 1, Lp.�; F ; �/ denotes
the Banach spaces of all (equivalence classes of) F measurable functions, f , such that
kf kp D .

R
�

jf jpd�/1=p < 1. ByL1.�;F ;�/we denote the space of essentially bounded
functions with the sup norm. Of particular interest will be the case of � D N with the count-
ing measure, in which case we will denote the space by p̀ , and the case when .�; F ; �/

is the interval Œ0; 1� with Lebesgue measure, which we will denote by LpŒ0; 1�. We recall
that for 1 � p < 1, any infinite-dimensional separable Lp.�; F ; �/ space is isomorphic
to either LpŒ0; 1� or p̀ . Of course, L2Œ0; 1� and `2 are isometric. Also, L1Œ0; 1� and `1 are
known to be isomorphic. We also denote by c0 the subspace of `1 of sequences tending to
zero.

Most probably, the first result concerning the structure of ideals of L.X/ is the
influential work of Calkin [7] who showed that if X is a separable Hilbert space then the
only nontrivial (that is, different from the whole space and ¹0º) closed ideal here is the ideal
of compact operators. This result was generalized in [11] to the other separable classical
sequence spaces p̀ , 1 � p < 1, and c0. There were more results for special cases, including
some natural nonseparable ones. Pietsch’s book [17, Chapter 5] contains a survey of the results
obtained by 1980. Pietsch also points out that, following a known result, in L.LpŒ0; 1�/,
1 < p < 1, p 6D 2, there are countably many different closed ideals and raises the question
of how many ideals are there in L.LpŒ0; 1�/, 1 � p < 1, and some other classical spaces.

The subject of the structure of the set of ideals in L.X/ laid dormant for a while
but gained new drive since the beginning of this century. We shall not survey most of these
developments. We refer to the very good introduction in [3] for a survey of the known results
up to a couple of years ago. Let us just say that there are very few spaces X for which we
have a complete knowledge of all the ideals inL.X/. From now on we shall concentrate only
on the question of the number of closed ideals in L.X/ for X being a separable Lp or some
related space.

Note that if P is a (always bounded, linear) projection onto a subspace Y of X and
Y is isomorphic to its square, Y ˚ Y , then the set®

APBI A; B 2 L.X/
¯

is a closed ideal in L.X/. This is easy to verify. (The requirement that Y is isomorphic to
its square comes to ensure that this set is a closed subspace of L.X/.) If P1; P2 are two
such projections onto Y1; Y2, respectively, and if there is no isomorphism of X which car-
ries Y1 onto Y2 then the two ideals generated are different. In particular, this is the case if

3251 Ideals of operators on Lebesgue spaces



Y1 and Y2 are not isomorphic. By the time [17] was written, it was known [19] that there are
countably many mutually nonisomorphic complemented subspaces (i.e., ranges of projec-
tions) of LpŒ0; 1�, 1 < p < 1, p 6D 2, each isomorphic to its square (in particular, they are
infinite-dimensional). So the reasoning above, appearing in [17], yields infinitely many dif-
ferent closed ideals in LpŒ0; 1�, 1 < p < 1, p 6D 2. Pietsch asked in his book whether there
are uncountably many such ideals and also what the number of closed ideals in L1Œ0; 1� is
(at that time only finitely many closed ideals were known). Shortly afterward, [6] produced
@1 mutually nonisomorphic complemented subspaces of LpŒ0; 1�, each isomorphic to its
square, raising the number of different ideals in L.LpŒ0; 1�/ to @1. In his book Pietsch also
noticed (building again on known complemented subspaces) that in the algebra of bounded
operators on C.0; 1/, the space of continuous functions on the unit interval, there are @1

different closed ideals. We remark in passing that in the situation above (where the differ-
ent ideals in each case are related to complemented subspaces) the ideals constructed are
not even mutually isomorphic as Banach algebras. This follows immediately from a result
of Eidelheit [8]: If Y and Z are Banach spaces such that the algebras L.Y / and L.Z/ are
isomorphic as Banach algebras then Y and Z are isomorphic as Banach spaces (and trivially
vice versa).

The main purpose of this note is to focus on two recent advancements in this direc-
tion in which the author was involved. In [13] we built a continuum of different closed ideals
in L.L1Œ0; 1�/, in L.C.0; 1//, and also in L.L1Œ0; 1�/. (In these results and also in the
other we survey here, we are not using the continuum hypothesis, so the cardinality of the
continuum may be larger than @1.) The result is stated as Theorem 5.1 below.

The result of [15] may be more surprising: The number of different closed ideals in
each of L.LpŒ0; 1�/, 1 < p < 1, p 6D 2, is 2c (c D 2@0 is the cardinality of the continuum).
The upper bound is simple. The problem is to produce 2c ideals. The result is stated as
Theorem 4.1 below.

The proofs of the two results are quite different, but a common feature is that the con-
structions and proofs (that the constructed ideals are really different) boils down to inequal-
ities in the quantitative finite-dimensional world and involve probabilistic and/or harmonic-
analytical methods.

Except for these two papers, there are more results, by others, involving related
questions of Pietsch, that we shall only report on here but will not go into the detailed con-
structions. Pietsch asked whether for 1 � p < q < 1, L. p̀ ˚ `q/ contains infinitely many
different closed ideals. This was solved by Schlumprecht and Zsák [20] producing a contin-
uum of such ideals in these spaces as well as in L. p̀ ˚ c0/, 1 � p < 1. Later, building in
part on the method in [15], Freeman, Schlumprecht, and Zsák in [9,10] showed that there are
2c different closed ideals in the spacesL. p̀ ˚ `q/, 1 < p < q < 1, as well as inL. p̀ ˚ c0/,
L. p̀ ˚ `1/, L. p̀ ˚ `1/, 1 < p < 1.

In all the questions and answers described above, two ideals are considered differ-
ent if they are different as sets. There are, of course, weaker distinctions one can consider.
A natural one is to consider two ideals to be different if they are not isomorphic as Banach
algebras, i.e., are not homomorphic by a homomorphism which is continuous in both direc-
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tions. In Corollary 6.7 we report on a recent observation of Bill Johnson, Chris Phillips, and
the author, based of Eidelheit’s [8], showing that this seemingly weaker distinction still gives
the same results.

Another question from [17] was whether p̀ , 1 � p < 1 and c0 are the only spaces
X in which the only nontrivial closed ideal in L.X/ is the ideal of compact operators. This
turned out not to be the case. Solving an old problem of Lindenstrauss, Argyros, and Haydon,
[1] built a Banach space in which every operator is a multiple of the identity plus a compact
operator from which it easily follows that the only nontrivial closed ideal in the space of
operators on this space is the ideal of compact operators.

In Section 2 we survey what was previously known about closed ideals in the space
of operators on separable Lp spaces, 1 � p < 1. We also define the notions of small and
large ideals. Section 3 deals with a criterion for Banach spaces X ensuring the existence
of 2c different closed ideals, which turns out to be relevant for a construction of that many
ideals in L.LpŒ0; 1�/, 1 < p < 1. The criterion is in terms of the existence of a certain
operator on the space X . Section 4 is devoted to the construction of such an operator. Here
the presentation is different than in the original paper and, since we think it may be useful
in the future, is given in more detail. Section 5 deals with the case of L.L1Œ0; 1�/ and is
independent of the previous sections. In the final section we gather some remarks and open
problems.

2. Old ideals

Here we survey what was known before [13, 15, 20]. It is not needed for reading the
next three sections which contain newer results. We begin with a few simple observations
about (always two-sided) closed ideals in L.X/ for a general (infinite-dimensional) Banach
space X . Since any Banach space admits a rank-one operator and since for any two rank-one
operators R1; R2 2 L.X/ there are S; T 2 L.X/ with R2 D SR1T , every ideal in L.X/

contains any rank-one operator and, since it is a subspace, all finite rank operators. So any
closed ideal in L.X/ contains the closure of the finite rank operators, F .X/. If X has the
approximation property, as anyLp space and all the other classical Banach spaces have, then
F .X/ is equal to the ideal of compact operators, K.X/. Since X is infinite-dimensional
K.X/ is a proper ideal. As we already mentioned, for some X including p̀ , 1 � p < 1,
and c0, K.X/ is the only proper closed ideal in L.X/. Another closed “small” proper ideal
presented in every space (although sometimes coincides with the compact operators) is that
of the strictly singular operators, �.X/, i.e., the set of all operators onL.X/which are not an
isomorphism when restricted to any infinite-dimensional subspace. We call a closed ideal in
L.X/ small if it is contained in �.X/, otherwise we call it large. This distinction is not always
useful but inL.LpŒ0; 1�/ and, in particular, inL.L1Œ0; 1�/ it contributes to the understanding
of the structure of the class of closed ideals as we shall see. It also gives rise to some open
problems.

InL.L1Œ0;1�/ consider the set I`1
of operators that factor through `1. It turns out that

this is a closed ideal. It is, of course, large (as `1 is isometric to a complemented subspace
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of L1Œ0; 1�). It follows from known results (see the introduction in [13] for this and other
unexplained reasoning in this section concerning L.L1Œ0; 1�/) that I`1

contains �.L1Œ0; 1�/

and is contained in any large ideal. In particular, any large ideal in L.L1Œ0; 1�/ contains any
small ideal.

Except for K.L1Œ0; 1�/ and �.L1Œ0; 1�/, there is another classical small ideal: This
is the set of Danford–Pettis operators (operators which send weakly compact sets onto norm
compact sets). As for classical large ideals, except for I`1

, there is only one other known
large ideal in L.L1Œ0; 1�/. This is the maximal proper ideal which turns out to be the set of
all operators which are not isomorphisms when restricted to a subspace of L1Œ0; 1� isomor-
phic to L1Œ0; 1� (the fact that this is an ideal is not trivial at all). The continuum of ideals
produced in Section 5 are all small. We do not know if there are infinitely many large ideals
in L.L1Œ0; 1�/.

For L.LpŒ0; 1�/, 1 < p < 1, p 6D 2, the break point between small and large
ideals is not as sharp as for p D 1. Except for the ideal I

p̀
of all operators which factor

through p̀ , there is another incomparable minimal large ideal. This is the closure of the
operators which factor through `2, denoted �2. It turns out that every large ideal contains
one of these two ideals. However, �2 does not contain the strictly singular operators in
L.LpŒ0; 1�/, 1 < p < 1, p 6D 2. So not every large ideal contains all the small ideals. We
refer to the introduction in [15] for this and other unexplained reasoning here. As was already
remarked above, there were @1 large closed ideals known in L.LpŒ0; 1�/ for quite a while
(an ideal generated by a projection onto an infinite-dimensional complemented subspace is
clearly large). There is also the maximal ideal of all operators not preserving an isomorphic
copy of LpŒ0; 1� which is clearly large. (Again the fact that this is an ideal is not simple.)
Schlumprecht and Zsák [20] produced a continuum of small ideals in these L.LpŒ0; 1�/ alge-
bras. Prior to [20], only a finite number of such small ideals were known. As is exposed in
Sections 3 and 4 below, in [15] we produced 2c large ideals, as well as 2c small ideals in
L.LpŒ0; 1�/, 1 < p < 1, p 6D 2.

3. A criterion for having many closed ideals

This section is taken almost verbatim from [15, Section 2].
Recall first the notion of unconditional basis for a Banach space X . A sequence

¹ei º
1
iD1 is said to be a (Schauder) basis for X if any x 2 X has a unique representation as

x D
P1

iD1 ai ei for some coefficients ¹ai º. The basis ¹ei º
1
iD1 is said to be K-unconditional

if for all signs ¹"i º
1
iD1 2 ¹�1; 1ºN and all

P1

iD1 ai ei 2 X , 1X
iD1

"i ai ei

 � K

 1X
iD1

ai ei

:

Note that given a subset M of N, the natural projection PM, given by PM.
P1

iD1 ai ei / DP
i2M ai ei , is of norm at mostK. We also denote its range, the closed linear span of ¹ei ºi2M

by Œei �i2M. It is also true and easy to show that an unconditional basis is a Schauder basis in
any order.
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The theorem below is stated for a 1-unconditional basis, enough for our purposes,
but can easily be generalized for any K-unconditional basis.

There is a continuum of infinite subsets of the natural numbers N, each two of
which have only a finite intersection. Denote some fixed such continuum by C . For a finite-
dimensional normed space E, we denote by d.E/ the Banach–Mazur distance of E to a
Euclidean space, i.e., if the dimension of E is k then

d.E/ D inf
®
kAkkBk I A W `k

2 ! E; B W E ! `k
2 ; AB D IE

¯
:

Also, recall that for an operator T W X ! Y between two normed spaces, 2.T / denotes its
factorization constant through a Hilbert space:

2.T / D inf
®
kAkkBk I A W H ! Y; B W X ! H; T D AB; H a Hilbert space

¯
:

If T is of rank k, then 2.T / � k1=2kT k because every k dimensional normed space is
k1=2-isomorphic to `k

2 . Note that d.E/ is just 2.IE /, where IE is the identity operator
on E.

Theorem 3.1. LetX be a Banach space with a 1-unconditional basis ¹ei º, let Y be a Banach
space, and let T W X ! Y be an operator of norm at most 1 satisfying:

(a) For some � > 0 and for every M , there is a finite-dimensional subspace E of
X such that d.E/ > M and kT xk > �kxk for all x 2 E.

(b) For some constant � and every m, there is an n such that every m-dimensional
subspace E of Œei �i�n satisfies 2.TjE / � � .

Then there exist natural numbers 1 D p1 < q1 < p2 < q2 < � � � such that, denoting
for each k, Gk WD Œei �

qk

iDpk
, and defining for each ˛ 2 C , the operator P˛ W X ! ŒGk �k2˛

to be the natural basis projection, and setting T˛ WD TP˛ , we have the following:
If ˛1; : : : ; ˛s 2 C (possibly with repetitions) and ˛ 2 C n ¹˛1; : : : ; ˛sº, then for all

A1; : : : ; As 2 L.Y / and all B1; : : : ; Bs 2 L.X/,T˛ �

sX
iD1

Ai T˛i
Bi

 � �=2: (3.1)

Since we do not have anything to add to the original proof of this theorem, we refer
the interested reader to [15] for the not-so-hard proof.

Theorem 3.1 provides a criterion for having 2c different closed ideals in a space
satisfying the assumptions of the theorem.

Corollary 3.2. LetX be a Banach space with a 1-unconditional basis ¹ei º and assume there
is an operator T W X ! X of norm at most 1 satisfying .a/ and .b/ of Theorem 3.1. Then
L.X/ has exactly 2c different closed ideals.

Proof. Indeed, for any nonempty proper subset A of C , let IA be the ideal generated by
¹T˛º˛2A, i.e., all operators of the form

Ps
iD1 Ai T˛i

Bi with s 2 N, Ai ; Bi 2 L.X/, ˛i 2 A,
i D 1; : : : ; s. Since we allow repetition of the T˛i

, it is easy to see that this really defines a
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(nonclosed) ideal. We will show that, when A ranges over the nonempty proper subsets of
C , IA define different closed ideals.

Let B be a subset of C different from A and assume, without loss of generality,
that B 6� A. Let ˛ 2 B n A. Then, by Theorem 3.1, T˛ … IA. Consequently, IA and IB are
different.

Since the density character ofL.X/, for any separableX , is at most the continuum, it
is easy to see that, for any separable spaceX ,L.X/ has at most 2c different closed ideals.

Remark 3.3. If Y is a Banach space that contains a complemented subspace X with the
properties of Corollary 3.2 then, clearly, L.Y / also has 2c different closed ideals. The same
is true also for any space isomorphic to such a Y . Also, the assumption that T has norm at
most 1 can be weakened to just requiring that T is bounded.

Remark 3.4. By the discussion just before Corollary 6.7 below, if Y is as in the previous
remark then L.Y / actually has 2c closed ideals, each two of which are not isomorphic as
Banach algebras. That is, there is no homomorphism between them which is continuous in
both directions.

Maybe the simplest examples of spaces X that satisfy the hypotheses of Corol-
lary 3.2 (and thus L.X/ has 2c different closed ideals) are .

P
`

ni
ri

/2 for ri " 2 and ni

satisfying n
1
ri

� 1
2

i ! 1. These spaces satisfy the assumptions with T being the identity.
Verifying (a) is simple with E being one of the spaces `

ni
ri
for i large enough. Verifying (b)

is a bit more involved and, since as we shall shortly remark that this space is not good for
our purposes, we shall not enter into the reasoning here. (The main point is that the distance
of the worst m-dimensional subspace of Lr from a Euclidean space tends to 1 when r tends

to 2.) Unfortunately, .
P

`
ni
ri

/2 for ri " 2 and n
1
ri

� 1
2

i ! 1 does not embed isomorphically as
a complemented subspace into anyLp , p < 1, so this example is not good for our purposes.
Actually, at least for some sequences ¹.ri ; ni /º with the above properties, .

P
`

ni
ri

/2 does not
even embed isomorphically into any Lp space, p < 1. That this is true, for example, if each
.r; n/ 2 ¹.ri ; ni /º repeats n times, follows from Corollary 3.4 in [16].

In the next section we show how to get complemented subspaces of the reflexive Lp

spaces that satisfy the hypotheses of Corollary 3.2.

4. A special operator and the case of reflexive Lebesgue

spaces

In order to apply the criterion in Theorem 3.1 and deduce by Corollary 3.2, the
existence of 2c different closed ideals in LpŒ0; 1�, 1 < p < 1, p 6D 2, it is enough, by
Remark 3.3, to find a complemented subspace of a space isomorphic to LpŒ0; 1� having a
1-unconditional basis and an operator on it satisfying (a) and (b) of Theorem 3.1. In [15] this
is done by using a certain complemented subspace of LpŒ0; 1�, 1 < p < 1, p 6D 2, and a
certain operator on it (which is a variant of an operator the authors used in a previous paper
[14] for a different purpose). The complemented subspace, Xp , is a span of independent,
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3-valued, symmetric random variables. The space Xp which was investigated by Rosenthal
startingwith [18]was very influential in studying the geometry ofLp spaces. The operator is a
certain diagonal operator between two suchXp spaces (followed by an injection of the second
space into the first). This is where probabilistic inequalities, alluded to in the introduction,
enter into the reasoning.

Here we shall describe the construction in a different way (although if one digs into
the roots of the two constructions, they amount to basically the same operator). We think the
presentation here may be cleaner and thus more accessible for further applications.

We begin with a nontraditional representation of (a space isomorphic to) LpŒ0; 1�.
For 2 < p � 1, define Mp to be Lp.0; 1/ \ L2.0; 1/ with norm

kf kMp D max
®
kf kLp.0;1/; kf kL2.0;1/

¯
:

For 1 � q < 2, we define Mq to be Lq.0; 1/ C L2.0; 1/ with norm

kf kMq D inf
®
kgkLq.0;1/ C khkL2.0;1/ I f D g C h

¯
:

Here, Lr .0; 1/ denotes the space of functions, f , on .0; 1/ with kf kr D

.
R1

0
jf .t/jr dt/1=r < 1. (Also, M2 WD L2.0; 1/.)

Note that Mp , 1 � p � 1, are rearrangement-invariant spaces, i.e., the norm of f

depends only on the distribution of jf j. Also it is easy to prove that for 1 � q < 1, the dual
of Mq is Mp where, 1

q
C

1
p

D 1. In [12, Chapter 1] it is proved that, for 1 < p < 1, p 6D 2,
Mp is isomorphic to LpŒ0; 1�. We remark in passing that this is done based on Rosenthat’s
[18] and is where probabilistic inequalities are used. In the presentation below, probability
will not appear anymore. So, LpŒ0; 1�, 1 < p < 1, p 6D 2, has two different isomorphic
representations as rearrangement-invariant function spaces on .0; 1/. It is also proved in
[12] that these are the only two such representations, a fact we will not use here. For p D 1

and p D 1, Mp is not isomorphic to LpŒ0; 1�.
If q < r < 2 then the function fr .t/ D t�1=r is in Mq . Indeed,

kfrkMq � kfr1.0;1/kq C kfr1Œ1;1/k2 < 1:

If f 1; f 2; : : : are disjoint functions on .0; 1/, each (when restricted to its support) with the
same distribution as fr , then ¹f i º1

iD1 is isometrically equivalent in Mq to the unit vector
basis of `r . This actually holds in any rearrangement-invariant function space on .0; 1/

containing the function fr and follows from the simple fact that if
P1

iD1 jai j
r D 1 then

j
P1

iD1 ai f
i j has the same distribution as fr .

For 1 � q < r < 2 and s > 1, define Ds W Mq ! Mq by Dsf .t/ D s1=rf .st/. Note
that

Dsfr D fr ; (4.1)

for all f 2 L2.0; 1/,
kDsf k2 D s

1
r � 1

2 kf k2; (4.2)

and for all f 2 Lq.0; 1/,
kDsf kq D s

1
r � 1

q kf kq : (4.3)
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Also, D� W Mp ! Mp , p D q=.q � 1/, is given by

D�
s g.t/ D s

1
r �1g.t=s/: (4.4)

Given 0 < ı < 1, put s D s.ı/ D ı
rq

q�r and define r D r.ı/ by s
1
r � 1

2 D 2. Note that ı & 0

implies that s.ı/ % 1 and r.ı/ % 2. Also for all f 2 L2.0; 1/,

kDs.ı/f k2 D 2kf k2; (4.5)

and for all f 2 Lq.0; 1/,
kDs.ı/f kq D ıkf kq : (4.6)

Let ¹�i;j º1
i;j D1 be a partition of .0; 1/ into disjoint measurable sets of infinite

measure. For each i; j , let 'i;j W .0;1/ ! �i;j be a one-to-one and onto measure-preserving
transformation. Let ıi & 0 and put si D si .ıi /, ri D ri .ıi /. Define fi;j W �i;j ! RC by

fi;j

�
'�1

i;j .t/
�

D t�1=ri ; t 2 .0; 1/;

and Di;j W Mq.�i;j / ! Mq.�i;j / by

Di;j f
�
'i;j .t/

�
D s

1=ri

i f
�
'�1

i;j .si t /
�
:

Define also D W Mq ! Mq by DjMq.�i;j / D Di;j . Then (denoting by fi;j also the function
which is equal to fi;j on �i;j and zero elsewhere),

D.fi;j / D fi;j : (4.7)

In particular, for each i , D is the identity on the span of ¹fi;j º1
j D1 which is isometric to `ri

.
For all f 2 L2.0; 1/,

kDf k2 D 2kf k2; (4.8)

and for all f 2 Lq.
S1

iDi0

S1

j D1 �i;j /,

kDf kq � ıi0kf kq : (4.9)

Note that (4.8) and (4.9) imply that D is bounded (by 2) on Mq .
Let "i;j , i; j D 1; 2; : : : , be an arbitrary sequence of positive numbers and, for each

i; j , let A
i;j
1 ; : : : ; A

i;j
ni;j

be a sequence of disjoint sets in �i;j such that the distance of fi;j

from the span of ¹1
A

i;j
k

º
ni;j

kD1
is at most "i;j , i; j D 1; 2; : : :

Let mi 2 N be such that m
1
ri

� 1
2

i % 1 (recall that m
1
ri

� 1
2

i is the Banach–Mazur
distance of `

m1
ri

to a Euclidean space) and pick the "i;j ’s to be such that for each i the span of
¹1

A
i;j
k

º
ni;j mi

kD1;j D1
contains a sequence ¹gi;j º

mi

j D1 which is a, say, 1=4-perturbation of ¹fi;j º
mi

j D1: miX
iD1

aj fi;j �

miX
iD1

aj gi;j


Mq

<
1

4

 
miX

j D1

jaj j
ri

!1=ri

(4.10)

for all ¹aj º
mi

j D1. The properties of D then assure that it preserves a 2-isomorph of `
mi
ri

up to
constant 3.
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The space X D Xq that we will use the criterion of Theorem 3.1 on is the span, in
Mq; 1 � q < 2, of ¹1

A
i;j
k

º
ni;j mi 1

kD1;j D1;iD1
with

xi;j;k D 1
A

i;j
k

=k1
A

i;j
k

kMq ; i D 1; 2; : : : ; j D 1; : : : ; mi ; k D 1; : : : ; ni;j ;

as its 1-unconditional basis. (We used the notation Xq in the beginning of this section for
seemingly different spaces. The two spaces are actually isomorphic, a fact we will not use
here.) It is easy to see that Xq is complemented in Mq . Actually, the conditional expectation
– replacing the values of a function f by their averaged values on each of the sets A

i;j

k
– is

a norm-one projection.
The operator T we would like to use is basically D defined above, restricted to Xq .

There is a slight problem here asD does not mapXq back toXq . This is easy to rectify. Note
first that for each " > 0 the sum of the measures of the sets in ¹A

i;j

k
º

ni;j mi 1

kD1;j D1;iD1
which are

of measure smaller than " is infinite. Otherwise, as is easily verified, ¹xi;j;kº is equivalent
in some order to the natural basis of `q , `2, or `q ˚ `2. But none of these three bases con-

tains block bases 3-equivalent to the natural basis of `
mi
ri

with m
1
ri

� 1
2

i % 1. Now, D1
A

i;j
k

,
i D 1; 2; : : : , j D 1; : : : ; mi , k D 1; : : : ; ni;j are disjoint characteristic functions, 1

B
i;j
k

,

i D 1; 2; : : : , j D 1; : : : ; mi , k D 1; : : : ; ni;j . By the property of the A
i;j

k
’s each B

i 0;j 0

k0 is
equal in distribution to a disjoint union of sets from ¹A

i;j

k
º

ni;j mi 1

kD1;j D1;iD1
, and one can choose

the sets in such a manner that each set in ¹A
i;j

k
º

ni;j mi 1

kD1;j D1;iD1
appears at most once in these

representations. It follows that DX is isometric to a subspace of X . So the operator T we
will use is D restricted to X , followed by this isometry. By the sentence following (4.10), T
satisfies (a) of Theorem 3.1.

The fact that T satisfies (b) follows from (4.8) and (4.9). Indeed, let E be an m-
dimensional subspace of Mq.

S1

iDi0

S1

j D1 �i;j /. (The subspace of Mq containing all func-
tions supported on

S1

iDi0

S1

j D1 �i;j .) It is enough to show that if ı0 is small enough (depend-
ing only on m) then D restricted to E has 2 norm at most 6. This will clearly imply that T ,
which is basically the restriction of D to Xq , satisfies (b).

The dual of Mq.
S1

iDi0

S1

j D1 �i;j / is Mp.
S1

iDi0

S1

j D1 �i;j /, 1
q

C
1
p

D 1. So there
is a subspace F of Mp.

S1

iDi0

S1

j D1 �i;j / of dimension k.m/ depending only on m which
2-norms E. Simple duality properties of the 2 norm imply that it is enough to prove that if
ı0 is small enough (depending only on m) then D� restricted to F has 2 norm at most 3.

Now Mp is naturally a subspace of Lp.0; 1/ ˚1 L2.0; 1/ and D� W Mp ! Mp

is the restriction of the operator K W Lp.0; 1/ ˚1 L2.0; 1/ ! Lp.0; 1/ ˚1 L2.0; 1/

given by
K.f; g/ D .D�f; D�g/:

We will denote by P1 and P2 the natural projections onto the first and second components
of Lp.0; 1/ ˚1 L2.0; 1/, respectively. Equations (4.8) and (4.9) imply that for all f 2

L2.0; 1/,
kD�f k2 D 2kf k2; (4.11)

and for all f 2 Lp.
S1

iDi0

S1

j D1 �i;j /,

kD�f kp � ıi0kf kp: (4.12)
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The standard inequality, 2.S/ � kSkk1=2 for any operator of rank k, implies that if ı0 <

k.m/�1=2 then the 2 norm of KP2 restricted to F is smaller than 1. Since KP2 has 2

norm 2, we get that 2.KjF / < 3. This implies (using another simple property of the 2

norm) that 2.D�
jF

/ < 3.
The discussion above, Corollary 3.2 and Remark 3.3 imply the main theorem below

for 1 < p < 2. The case 2 < p < 1 follows by duality.

Theorem 4.1 (JS). For 1 < p < 1, p 6D 2, L.LpŒ0; 1�/ has exactly 2c different closed
ideals.

Remark 4.2. The proof also gives that M1 (which is not isomorphic to an L1 space) has
exactly 2c different closed ideals. By duality, also M1 has at least 2c different closed ideals.

Remark 4.3. By Corollary 6.7 below, Theorem 4.1 and Remark 4.2 can be strengthened
by interpreting the word “different” to mean mutually nonisomorphic as Banach algebras.
That is, no two ideals admit an homomorphism between them which is continuous in both
directions.

5. The nonreflexive classical spaces

Here we deal mostly with the number of closed ideals in L.L1Œ0; 1�/. The result is
less impressive than that in the previous section as we only prove the existence of a continuum
of such ideals. On the other hand, the leap from previous results may seem larger, compared
with the case of LpŒ0; 1�, p > 1, as prior to [13] only a finite number of such ideals were
known. We also deal here with the spaces L.C.0; 1// and L.L1Œ0; 1�/.

The result is:

Theorem 5.1 (JPS). There exists a family ¹IpI 2 < p < 1º of (nonclosed) ideals in
L.L1Œ0; 1�/ such that their closures Ip are distinct ideals in L.L1Œ0; 1�/. The spaces
L.C.0; 1// and L.L1Œ0; 1�/ also have a continuum of closed ideals.

Remark 5.2. As with the case of L.LpŒ0; 1�/, by Corollary 6.7 below, Theorem 5.1 can be
strengthened by interpreting the word “distinct” to mean mutually nonisomorphic as Banach
algebras. That is, no two of those ideals admit an homomorphism between them which is
continuous in both directions.

We do not have much to add to the actual proof in [13]. We will only sketch the
construction and comment on the idea of the proof. The gist of the construction is the simple
Lemma 5.3, which we bring in full and try to explain its relevance.

In the discussion below, we replace L1Œ0; 1� with its isometric copy, L1.T /. Recall
that a set of characters on the circle group, T , equipped with the normalized Lebesgue mea-
sure, is called a ƒp set, 2 < p < 1, if the Lp norm on the closed linear span of this set of
characters is equivalent to the L2 norm. For each 2 < p < 1, we will build a sequence of
characters of the circle group ¹

p
j º1

j D1 which form a ƒp set and is “as dense as possible”
in a certain precise way. We then let Jp be the formal identity from `1 to this set viewed in
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L1.T /, i.e., Jp W `1 ! L1.T /, Jpei D 
p
i . Each ideal Ip , 2 < p < 1, in the statement of

Theorem 5.1 will be the set of all operators which factor through Jp , i.e.,

Ip D
®
AJpBI B W L1.T / ! `1; A W L1.T / ! L1.T /

¯
:

To show that the closures of the Ip’s are different, we show that for q > p > 2, JqP is not
in Ip , where P is a norm-one projection from L1.T / onto (an isometric copy of) `1.

For 1 � r < 1 andM 2 N, we denoteLr over a finite set of cardinalityM equipped
with the normalized counting measure by LM

r . We recall that for each p > 2 there exists a
positive C depending only on p, and for each N 2 N there are vectors ¹vi º

N
iD1 in LN p=2

p

such that

(1) k
PN

iD1 ai vi kp � C.
PN

iD1 jai j
2/1=2, and

(2) min1�i�N kvi k1 � 1.

One can take the vi ’s to be characters in the span of the firstN p=2 characters (a space
isomorphic with constant depending only on p to LN p=2

p ). This follows from the solution of
Bourgain to the ƒp problem [5]. The existence of the vi ’s also follows from easier and earlier
probabilistic construction of [4] which does not yield characters but is good enough for our
purposes. The dimension N p=2 is best possible, up to constants depending only on p. The
next lemma shows this in greater generality.

Lemma 5.3. Let 1 � p < q < 1, ¹v1; : : : ; vN º � Lq.T /, and let T W L1.T / ! LN
p
2

1 be
an operator. Suppose that C and � satisfy

(1) maxj�i jD1k
PN

iD1 �i vi kq � CN 1=2, and

(2) min1�i�N kT vi k1 � �.

Then kT k � .�=C /N
q�p
2q .

Lemma 5.3 and the discussion preceding it should be interpreted in the following
way: For each 2 < p < 1 and N , there is a nicely bounded operator J N

p W `N
1 ! LN p=2

1 .
But for q > p, J N

q does not factor well through J N
p .

The actual operator Jp is built by gluing together infinitely many J N
p ’s for an

increasing sequence of N ’s. Also, we repeat each block infinitely often to ensure that Ip

is a subspace, a requirement in the definition of an ideal. The discussion in the previous
paragraph hints at the proof that, for q > p, Jq does not factor through Jp . We will not
repeat the actual construction and proof here and refer the interested reader to the original
paper. We do reproduce the proof of Lemma 5.3 here, as we believe it should be useful
elsewhere and we would like to emphasize its relative simplicity.
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Proof of Lemma 5.3. Take u�
i in LN

p
2

1 D .LN
p
2

1 /� with ju�
i j � 1 so that hu�

i ; T vi i D

kT vi k1 � �. Then

�N D

NX
iD1

˝
T �u�

i ; vi

˛
WD

1

2�

Z 2�

0

NX
iD1

.T �u�
i /.a/vi .a/ da

�
1

2�

Z 2�

0

sup
a2Œ0;1�

ˇ̌̌̌
ˇ NX
iD1

.T �u�
i /.a/vi .b/

ˇ̌̌̌
ˇ db

DW
1

2�

Z 2�

0

 NX
iD1

vi .b/T �u�
i


L1Œ0;1�

db

� kT k
1

2�

Z 2�

0

 NX
iD1

vi .b/u�
i


LN

p
2

1

db

� kT kN
p
2q

1

2�

Z 2�

0

 Z
ŒN

p
2 �

ˇ̌̌̌
ˇ NX
iD1

u�
i .c/vi .b/

ˇ̌̌̌
ˇ
q

dc

! 1
q

db

� kT kN
p
2q

 Z
ŒN

p
2 �

1

2�

Z 2�

0

ˇ̌̌̌
ˇ NX
iD1

u�
i .c/vi .b/

ˇ̌̌̌
ˇ
q

db dc

! 1
q

� C kT kN
pCq
2q :

The results stated in Theorem 5.1 for L.C.0; 1// and L.L1Œ0; 1�/ are proved by not
completely trivial reasoning from the L1 case. We will not repeat the arguments here.

6. Remarks and open problems

The main problem left open here is

Problem 6.1. How many different closed ideals are there in L.L1Œ0; 1�/, L.C.0; 1//, and
L.L1Œ0; 1�/?

Another problem concerning ideals in L.L1Œ0; 1�/ comes from the fact that the con-
tinuum of ideals built in [13] and discussed in Section 5 are all small.

Problem 6.2. Are there infinitely many large ideals in L.L1Œ0; 1�/?

This, of course, is verymuch connected with the question of what the complemented
subspaces of L1Œ0; 1� are. We repeat the well-known simplest question in this direction here.

Problem 6.3. Are there infinite-dimensional complemented subspaces ofL1Œ0;1�which are
not isomorphic to either `1 or L1Œ0; 1�?

Remark 6.4. The ideals constructed in Section 4, based on Corollary 3.2, turn out to be all
large. In [13] we also build 2c small ideals in L.LpŒ0; 1�/, 1 < p < 1, p 6D 2.
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Remark 6.5. 1. One can strengthen the conclusion of Corollary 3.2 by getting an
antichain of 2c closed ideals in L.X/, i.e., a collection of 2c closed ideals, no
two of which are included one in the other. For that, one just uses a collection
of 2c subsets of C , no two of which are included one in the other.

2. Similarly, one gets a collection of c different closed ideals in L.X/ that form
a chain (by taking a chain of subsets of C of that cardinality). It is also easy
to show by a density argument that, for any separable X , this is the maximal
cardinality of any chain of closed ideals in L.X/.

3. Consequently, L.LpŒ0; 1�/, 1 < p < 1, p 6D 2 contains an antichain of cardi-
nality 2c of closed ideals. It also contains a chain of length c of different closed
ideals.

4. The construction surveyed in Section 5 also produces a chain of length c of
closed ideals in L.L1Œ0; 1�/.

Next we would like to discuss a stronger notion of distinction between closed ideals
(and Banach algebras, in general). We say that two Banach algebras A and B are isomor-
phically homomorphic if there is an injective and surjective homomorphism from A onto B

which is continuous in both directions. In the literature on Banach algebras, the isomorphism
of Banach algebras is sometimes understood to be an isometry, i.e., preserving the norm. We
use the ad hoc term isomorphic homomorphism to emphasize that we only require the homo-
morphism to be bounded (equivalently, continuous) in both directions. One could ask

Question 6.6. Let 1 � p < 1, p 6D 2. How many closed ideals are there in L.LpŒ0; 1�/,
each two of which are not isomorphically homomorphic?

Eidelheit [8] proved that if X and Y are Banach spaces such that L.X/ and L.Y /

are isomorphically homomorphic then X and Y are isomorphic Banach spaces. It follows
that the @1 ideals in L.LpŒ0; 1�/, 1 < p < 1, p 6D 2 coming from nonmutually isomorphic
complemented subspaces of LpŒ0; 1� are mutually nonisomorphically homomorphic. Going
a bit deeper into the proof of [8], Johnson, Phillips, and the author showed that if I and J are
two closed ideals in L.X/ which are isomorphically homomorphic then I D J. The proof
will appear elsewhere. This, together with Theorems 5.1, 4.1 and the results of [9,10], gives

Corollary 6.7. 1. L.L1Œ01; �/ contains a continuum of mutually nonisomorphi-
cally homomorphic closed ideals.

2. For 1 < p < 1, p 6D 2, L.LpŒ0; 1�/ contains exactly 2c mutually nonisomor-
phically homomorphic closed ideals.

3. Each of the spaces L. p̀ ˚ `q/, 1 < p < q < 1, L. p̀ ˚ c0/, L. p̀ ˚ `1/,
L. p̀ ˚ `1/, 1 < p < 1, contains 2c mutually nonisomorphically homomorphic
closed ideals.
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We do not know the answer to the relevant question in the Banach space category:

Problem 6.8. Let 1 � p < 1, p 6D 2. How many closed ideals are there in L.LpŒ0; 1�/,
each two of which are not isomorphic as Banach spaces?

A result of Arias and Farmer [2] states that for every infinite-dimensional comple-
mented subspace X of LpŒ0; 1�, 1 < p < 1, which is not isomorphic to a Hilbert space,
L.X/ is isomorphic (as a Banach space) to L.LpŒ0; 1�/. So all the ideals coming from com-
plemented subspaces of LpŒ0; 1� are isomorphic.

Next we repeat the main problem concerning complemented subspaces of LpŒ0; 1�,
1 < p < 1.

Problem 6.9. Is there a continuum of complemented subspaces of LpŒ0; 1�, 1 < p < 1,
p 6D 2, which are mutually nonisomorphic?

There was very little progress on new constructions of complemented subspaces
of LpŒ0; 1�, 1 < p < 1, p 6D 2, since [6], which contains a list of still open problems. We
would like to repeat one of them as it may appeal to the Harmonic Analysis community.
The mutually nonisomorphic @1 complemented subspaces of LpŒ0; 1� constructed in [6] are
all translation-invariant subspaces of Lp over the Cantor group ¹�1; 1ºN endowed with the
natural product measure (which is isometric to LpŒ0; 1�). The projections onto them are
translation-invariant operators (it is easy to prove that if there is a bounded projection onto a
translation-invariant subspace then the translation-invariant one is also bounded), i.e., idem-
potentmultipliers inLp.¹�1;1ºN/. This produces@1 quite nontrivialmultipliers. Pełczynski
asked whether a similar phenomenon happens on other groups, in particular on T .

Problem 6.10. Are there uncountably many mutually nonisomorphic complemented trans-
lation invariant subspaces of Lp.T /?
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Slices and distances:
on two problems
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and Falconer
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Abstract

We survey the history and recent developments around two decades-old problems that con-
tinue to attract a great deal of interest: the slicing �2, �3 conjecture of H. Furstenberg in
ergodic theory, and the distance set problem in geometric measure theory introduced by
K. Falconer. We discuss some of the ideas behind our solution of Furstenberg’s slicing
conjecture, and recent progress in Falconer’s problem. While these two problems are on
the surface rather different, we emphasize some common themes in our approach: ana-
lyzing fractals through a combinatorial description in terms of “branching numbers,” and
viewing the problems through a “multiscale projection” lens.
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1. Introduction

In this article we survey recent progress on the following two old conjectures. Haus-
dorff dimension is denoted dimH.

Conjecture 1.1 (Furstenberg’s slicing conjecture, [18]). Let X; Y � Œ0; 1/ be closed and
invariant under Ta; Tb respectively, where Tm.x/ D mx mod 1 is multiplication by m on
the circle. Assume that log a= log b is irrational. Then

dimH
�
.X � Y / \ `

�
� max

�
dimH.X/ C dimH.Y / � 1; 0

�
for all lines ` that are neither vertical nor horizontal.

Conjecture 1.2 (Falconer’s distance set problem, originating in [16]). Let X � Rd , d � 2

be a Borel set with dimH.X/ � d=2. Let �.X/ D ¹jx � yj W x; y 2 Xº. Then

dimH
�
�.X/

�
D 1:

We discuss the history and motivation behind these conjectures in Sections 3 and 4,
respectively. Conjecture 1.1 was resolved by the first author [48] and, simultaneously, inde-
pendently, andwith a strikingly different proof, byM.Wu [57].Many related problems remain
open. Conjecture 1.2 is open in all dimensions.

At first sight, Conjectures 1.1 and 1.2 appear to be rather different (other than both
involving Hausdorff dimension). A key difference is that Furstenberg’s conjecture deals with
sets with a rigid arithmetic structure, while Falconer’s conjecture involves arbitrary Borel
sets. A more subtle but also crucial distinction is that Furstenberg’s conjecture is linear in
nature (it concerns linear slices of X � Y ), while Falconer’s conjecture deals with Euclidean
distances and curvature plays a key rôle in all partial progress towards it.

Nevertheless, we will see that there are some similar ideas in our own approach to
these two problems. We will recast both in terms of projections. To handle these projections,
we use in both cases a combinatorial approach to the study of fractals through their branching
structure. Bourgain’s celebrated discretized projection theorem [6,7] (or its proof) makes an
appearance in our work on both conjectures.

In Section 2, we discuss a key uniformization lemma, and Bourgain’s discretized
sumset, sum-product, and projection theorems. In Section 3, we put Furstenberg’s slicing
conjecture into context and give an impressionistic account of our solution. In Section 4,
we discuss Falconer’s problem and some of our recent progress towards it (obtained partly
in collaboration with T. Keleti and with H. Wang). Along the way, we will touch upon the
closely related and vast field of projection theory in geometric measure theory.

A word on notation. Given two positive quantities A; B , the notation A . B means
that A � CB for some constant C > 0, while A .x B means that A � C.x/B , where again
C.x/ > 0. We write A & B for B . A and A � B for A . B . A, and likewise with
subindices. We denote positive constants whose value is not too important by c; C and as
before indicate their dependencies with subindices.
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2. A glimpse of Bourgain’s discretized geometry

2.1. Uniform sets and uniformization
Even though the statements of Conjectures 1.1 and 1.2 involve Hausdorff dimension,

most approaches discretize the problem at a small scale ı. Given a bounded set X � Rd ,
let jX jı be the number of ı-mesh cubes

Qd
iD1Œki ı; .ki C 1/ı/ intersecting X . If X has the

property that jX jı � ı�s for arbitrarily small values of ı, then dimH.X/ � s. If, on the
other hand, jX jı � ı�s for all small ı, it does not quite follow that dimH.X/ � s—what is
technically true is that the lower Minkowski dimension of X is at least s. For the sake of
simplicity, we will ignore this distinction, and consider the growth rate of jX jı as a good
proxy for the (Hausdorff) dimension of X . In this discussion, there is no loss of generality
in restricting ı to dyadic numbers 2�m or even .2T /-adic numbers 2�T ` once the integer T

has been fixed.
Let Dı denote the family of ı-mesh cubes in Rd . If X � Rd is a union of cubes in

D2�m , we say thatX is a 2�m-set. ForX � Rd , we denote the set of cubes inDı intersecting
X by Dı.X/.

Let X � Œ0; 1/d . Given a T 2 N (which we consider fixed) and ` � 1, we can
view .D2�Tj .X//`�1

j D0 as a tree, with Œ0; 1/d as the root and descendance given by inclusion.
This tree provides a combinatorial description of X at resolution 2�T `. In general, the tree
may be very irregular, with different vertices having different numbers of offspring. In many
situations, the set X is easier to study if one knows that the tree is spherically symmetric,
meaning that the number of offspring is constant at each level of the tree (but can still change
from level to level).

Definition 2.1. A set X � Œ0; 1/d is .T; .Nj /`�1
j D0/-uniform if

Q 2 D2�jT .X/ H)
ˇ̌
D2�.j C1/T .X \ Q/

ˇ̌
D Nj ; j D 0; 1; : : : ; ` � 1:

If X is .T; .Nj /`�1
j D0/-uniform for some .Nj /`�1

j D0, then we also say that X is .T I `/-uniform.

We emphasize that what is fixed at each scale is the number of offspring; the partic-
ular set ofNj subcubes is still allowed to depend on the parent cube of level j . The following
uniformization lemma says that by taking T large, and at the price of replacing X by a large
subset, we may always assume that X is .T I `/-uniform.

Lemma 2.2. Fix T;` 2 N and writem D T `. LetX � Œ0;1/d be a 2�m-set. ThenX contains
a .T I `/-uniform subset X 0 withˇ̌

X 0
ˇ̌

� .2T /�`
jX j D 2.� log.2T /=T /m

jX j:

Proof. We begin from the bottom of the tree, settingX .`/ WD X . OnceX .j C1/ is constructed,
we let

X .j;k/
D

[®
X .j C1/

\ Q W
ˇ̌
Q \ X .j C1/

ˇ̌
2�.j C1/T 2

�
2k

C 1; 2kC1
�¯

; k D 0; : : : ; T � 1:

Since k takes T values, we can pick k D kj such that jX .j;k/j � jX .j C1/j=T . By remov-
ing at most half of the cubes in D2�.j C1/T .X .j C1// from each of the sets Q \ X .j C1/
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making up X .j;k/, we obtain a set X .j / � X .j C1/ such that jX .j /j � jX .j C1/j=.2T / and
jQ \ X .j /j2�.j C1/T D 2k for allQ 2 DjT .X .j //. We see inductively that jQ \ X .j /j2�.j 0C1/T

is constant over all Q 2 Dj 0T .X .j //, for all j 0 D j; j C 1; : : : ; ` � 1. The lemma follows
by taking X 0 D X .0/.

We make some remarks on this statement and its proof. Firstly, this is just the sim-
plest example of a flexible and powerful multiscale pigeonholing argument. For example,
instead of (or additionally to) uniformizing the branching numbers Nj , we can pigeonhole
any property of Q \ X , Q 2 DTj .X/, that depends only on the behavior at scale 2�T .j C1/

and can be partitioned into a number CT of classes, with log.CT /=T ! 0 as T ! 1. Sec-
ondly, these ideas can also be used to “uniformize” a measure �—an additional first step in
this case is to pigeonhole a “�-large” 2�T `-setX such that the density of�jX is roughly con-
stant; we can then invoke the argument for sets. Here “�-large” could simply mean that�.X/

is large, but sometimes it is convenient to look at other quantities like k�jX kLq . Lastly, we
can iterate such a uniformization lemma to decomposeX (or�) into a union of finitely many
“large” uniform subsets Xi , plus a “small” remaining set Xbad; see, e.g., [33, Corollary 3.5].

2.2. Bourgain’s sumset theorem
Let X � Œ0; 1/ be a 2�m-set for some large m. We are interested in understanding

how the size of the arithmetic sum X C X D ¹x C y W x; y 2 Xº relates to the structure of
X . If X is an interval, then jX C X jı � jX jı . There are many “fractal” sets which satisfy
jX C X jı � 2"mjX jı with " > 0 arbitrarily small: fix a large T 2 N, an even larger ` � T ,
and J � ¹0; 1; : : : ; ` � 1º. Let XJ be the set of points in Œ0; 1/ whose base 2T -expansion has
a digit zero at position j C 1 for j 2 J , but is otherwise arbitrary. Then XJ C XJ has the
same structure, except that there could be carries; however, because T is large, these carries
will not substantially increase the size of XJ C XJ . More precisely,

jXJ C XJ j � 2`�jJ j
jXJ j � 2"m

jXJ j; where " D 1=T;

where as usual we write m D T `. Note that even though XJ may not look macroscopically
like an interval, there is a sequence of scales at which it looks like a union of intervals of the
same length, and the left endpoints of these intervals form an arithmetic progression.

The setXJ is .T I .Nj /`�1
j D0/-uniform, withNj D 1 if j 2 J , andNj D 2T otherwise.

Bourgain’s sumset theorem, which is implicit in [7], and stated in this form in [48, Corollary

3.10], asserts that having a small sumset forces this kind of branching structure:

Theorem 2.3. Given ı > 0 there are " > 0, T 2 N, such that the following holds for all
sufficiently large ` 2 N.

Let m D `T . Suppose X is a 2�m-set with jX C X j2�m � 2"mjX j2�m . Then X

contains a .T; .Nj /`�1
j D0/-uniform subset X 0 such that:

(i) jX 0j2�m � 2�ımjX j2�m ,

(ii) for each j , either Nj D 1, or Nj � 2.1�ı/T .
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In other words, up to passing to a large subset, 2�m-sets with sub-exponential dou-
bling locally look, depending on the scale, like an interval or a point. This is an example of
an “inverse theorem” in (discretized) additive combinatorics, in which from a purely combi-
natorial fact (small doubling) one deduces strong structural information. We will encounter
another (related) inverse theorem in Section 3.6. We emphasize that Theorem 2.3 does not
characterize sets with small doubling—even if X is uniform with either full or no branching
at each scale, if the locations of the (single) offspring cubes at the scales wit no branching
do not have any arithmetic structure, it may well happen that jX C X j2�m is far larger than
jX j2�m .

2.3. Bourgain’s discretized sum-product and projection theorems
A heuristic principle of great reach asserts that if X is a subset of some ring, then

either the sumset X C X or the product set X � X must be substantially larger than X , unless
X itself looks like a subring. For example, it is a longstanding conjecture of Erdős and Sze-
merédi that if X � Z, then max¹jX C X j; jX � X jº &" jX j2�"—in other words, either the
sumset or the product set must be as large as possible. See [47] for the best bound at the time
of writing, and further discussion.

When dealing with products, it is more convenient to work with subsets of Œ1; 2/

rather than Œ0; 1/. Again, if X D Œa; b/ � Œ1; 2/, then both jX C X jı and jX � X jı are com-
parable to jX jı . Heuristically, one would expect that if X � Œ1; 2/ does not look roughly like
an interval at scales in Œı; 1�, then either jX C X jı or jX � X jı is substantially larger than
jX jı . This is the content of Bourgain’s discretized sum-product theorem, which confirmed
a conjecture of Katz and Tao [30]:

Theorem 2.4 ([6,7,9]). Given 0 < ˛ < 1 and ˇ > 0 there are �.˛; ˇ/ > 0, � D �.˛; ˇ/ > 0

such that the following holds for ı � ı0.˛; ˇ/. Let X � Œ1; 2� satisfy jX jı � ı�˛ andˇ̌
X \ Œt; t C r�

ˇ̌
ı

� ı��rˇ
jX jı ; t 2 Œ1; 2�; r 2 Œı; 1�: (2.1)

Then
max

®
jX C X jı ; jX � X jı

¯
� ı�˛��:

Hypothesis (2.1) is known as a nonconcentration assumption, and it quantifies the
fact that X “does not look like an interval.” Note that because of the factor ı�� , it is vacuous
at scales close to 1 or ı. Bourgain [6] first proved this theorem under the stronger assumption
that (2.1) holds with ˛ in place of ˇ (so that the nonconcentration exponent matches the size
of the set). Bourgain and Gamburd [9] then proved it as stated, and used it to establish a spec-
tral gap for subgroups of SU.2/ satisfying a diophantine condition. Under the assumption
ˇ D ˛, Guth, Katz, and Zahl [24] recently found a simpler proof with an explicit value: any
� < ˛.1�˛/

4.7C3˛/
works (with � depending also on �).

In [7], Bourgain proved a discretized projection theorem that can be seen as a far
more flexible form of Theorem 2.4. Let …x.a; b/ D a C bx.

Theorem 2.5 ([7, Theorem 2]). Given 0 < ˛ < 2 and ˇ > 0, there are �.˛; ˇ/ > 0 and
� D �.˛; ˇ/ > 0 such that the following holds for ı � ı0.˛; ˇ/. Let E � Œ0; 1�2 satisfy
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jEjı � ı�˛ and ˇ̌
E \ B.x; r/

ˇ̌
ı

� ı��rˇ
jEjı ; x 2 Œ0; 1�2; r 2 Œı; 1�:

Let X � Œ1; 2� be a set satisfying (2.1).
Then there is a set X0 � X with jX n X0jı � ı� jX jı , such that if x 2 X0 thenˇ̌

…x.E 0/
ˇ̌
ı

� ı�˛=2�� for all E 0
� E;

ˇ̌
E 0
ˇ̌
ı

� ı�
jEjı :

This is not quite the form the theorem was stated in [7] but is formally equivalent;
see W. He’s article [25] for this formulation and an extension of Theorem 2.5 to projections
from Rd

! Rk . Taking E D X � X with jX jı D ı� , we obtain in particular jX C X �

X jı & ı��� , which is close to Theorem 2.4. One can in fact recover Theorem 2.4 from
Theorem 2.5, see [7, Proof of Theorem 1].

The proof of Theorem 2.5 relies on Theorem 2.3. An intermediate step in the proof
is showing that if Y � Œ1; 2/ satisfies the nonconcentration assumption (2.1), then jY C xY jı

is large for some x 2 X . If this does not hold, then it is easy to see that jY C Y jı is also
small. The structural information on Y provided by Theorem 2.3 can then be used (very
nontrivially!) to show that in fact jY C xY jı must be large for some x 2 X .

Theorem 2.5 has striking applications, for example, to equidistribution of linear
random walks in the torus [8] and bounds for the dimensions of Kakeya sets in R3

[31].
We discuss a nonlinear version of the theorem and applications to the Falconer distance set
problem in Section 4.2. For later reference, we conclude this discussion with a Hausdorff
dimension version of Theorem 2.5. We note however that it is the discretized version that
gets used in the applications.

Theorem 2.6 ([7, Theorem 4]). Given 0 < ˛ < 2 and ˇ > 0, there is � D �.˛; ˇ/ > 0 such
that for any Borel set E � R2 with dimH.E/ � ˛,

dimH

²
x 2 R W dimH.…xE/ <

˛

2
C �

³
� ˇ:

3. Furstenberg’s slicing problem

3.1. Furstenberg’s principle and rigidity result
Recall that integers a; b 2 N are called multiplicatively dependent (denoted a � b)

if log a= log b 2 Q or, equivalently, a and b are powers of a common integer. Otherwise,
we say that a and b are multiplicatively independent, and denote it by a œ b. If a � b, say
a D ma0 , b D mb0 , then there is a straightforward relationship between the expansion of a
real number x to bases a and b: they are both essentially the expansion to base m, looking
at it in blocks of a0 and b0 digits at a time. In the 1960s, H. Furstenberg proposed a series of
conjectures which, in different ways, aim to capture the heuristic principle that, on the other
hand, expansions in multiplicatively independent bases have no common structure.

Recall that if a 2 N�2, we let Ta W Œ0; 1/ ! Œ0; 1/, x 7! ax mod 1 denote multipli-
cation by a on the circle. A set X � Œ0; 1/ is Ta-invariant if TaX � X . Since the map Ta

shifts the a-ary expansion of a real number, a proper, closed, infinite Ta-invariant subset of
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Œ0; 1/ can be thought of as being structured to base a. (The full circle Œ0; 1/ and finite rational
orbits ¹j=mºm�1

j D1 are trivially invariant under all Ta.) In 1967, Furstenberg [17] proved that
no proper infinite closed subset of the circle can be invariant under Ta and Tb if a œ b. This
was the first concrete verification of the above heuristic principle, and gave birth to the vast
and ongoing area of rigidity in ergodic theory. Furstenberg’s �2, �3 problem asks whether
the natural analog of this result also holds for measures, and is one of the most fundamental
open questions in ergodic theory and beyond. He also proposed a number of other conjectures
involving Ta-invariant sets, that we discuss next.

3.2. Furstenberg’s sumset, slice, and orbit conjectures
In this section a;b � 2 aremultiplicatively independent, andX;Y � Œ0;1/ are closed

and invariant under Ta; Tb . According to Furstenberg’s principle, such setsX;Y should have
no common structure. Furstenberg’s rigidity result established a rough form of this: X and
Y cannot be identical, unless trivial. Furstenberg conjectured that X and Y should be not
just distinct but “geometrically independent,” obeying dimensional relationships analogous
to those of linear planes in general position. Since these are fractal sets (Ta-invariance can be
seen as a kind of self-similarity, and it is well known that dimH.X/ < 1 unless X D Œ0; 1/),
it is natural to use Hausdorff dimension.

Furstenberg’s sumset conjecture (which originated in the 1960s but was never stated
in print) asserts that

dimH.X C Y / D min
�
dimH.X/ C dimH.Y /; 1

�
;

while Furstenberg’s slice or intersection conjecture, stated as Conjecture 1 in [18], states that

dimH.X \ Y / � max
�
dimH.X/ C dimH.Y / � 1; 0

�
:

As pointed out in [18], this latter conjecture easily implies that X ¤ Y (unless trivial), recov-
ering the rigidity result. While stopping short of proving the conjecture, Furstenberg in [18]

introduced some ideas that are at the heart of modern progress in the area, including what are
now known asCP-chains, a class ofMarkov chains where the transitions consist in “zooming
in” dyadically towards typical points for the measures (see [19] for an elegant formulation of
the theory). Using CP-chains, he showed that if dimH.X \ Y / >  , then for almost all reals
u there is a line `u with slope u such that dimH..X � Y / \ `u/ >  ; moreover, there is
an ergodic dynamical system on (measures supported on) linear fibers of X � Y of dimen-
sion >  .

After partial progress in [44], the sumset conjecture was fully resolved by M. Hoch-
man and the author in [29], using CP-chains as a key tool. In this work we also introduced
the method of local entropy averages to bound from below the entropy and dimension of
projected images; we will come back to this in Section 4.4. A simple, purely combinatorial
proof was recently obtained by D. Glasscock, J. Moreira, and F. Richter [21].

The slice conjecture was resolved around 10 years later, independently by the author
[48] and M. Wu [57]. Wu’s proof is also based on CP-chains and the ideas from [18], but
introduces a key new ergodic-theoretic insight. A simple conceptual proof, also based on the
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CP-chains from [18], was recently obtained by T. Austin [4]. By adaptingWu’s method, H. Yu
[58] gave a more elementary and quantitative proof in the case dimH.X/ C dimH.Y / < 1.
Our proof follows a different approach, based on additive combinatorics and multifractal
analysis—we will describe some of the main ideas in the rest of this section. All the proofs
yield also Conjecture 1.1, which was also implicitly stated in [18]. They all also imply the
sumset conjecture. Applications of the slice conjecture to number-theoretic problems involv-
ing integers with restricted digit expansions were given in [10,20].

A further conjecture of Furstenberg [18, Conjecture 2], in the authors’ view among
the hardest and most beautiful in mathematics, asserts that for every irrational x 2 Œ0; 1/, if
Om;x D ¹T n

mxºn2N , is the closure of the orbit of x under Tm, then

dimH.Oa;x/ C dimH.Ob;x/ � 1:

This fits into the theme of lack of common structure for expansions to bases a; b: it says that
such expansions of an irrational number cannot simultaneously have “low complexity,” as
measured by the dimension of the orbit closure. In particular, if the orbit closure under Ta has
“minimal complexity” (dimension 0), then the Tb-orbit must be dense, meaning that every
possible b-ary block appears in the base b expansion of x. This conjecture is wide open;
even proving that either dimH.Oa;x/ or dimH.Ob;x/ has positive dimension seems to require
completely new ideas. However, it is a formal consequence of the slicing conjecture that the
set of x for which the orbit conjecture fails has Hausdorff dimension zero. Unfortunately, this
says nothing about points x for which dimH.Oa;x/ D 0, since all such points form a zero-
dimensional set. Recently, B. Adamczewski and C. Faverjon [1] showed that an irrational
number cannot be automatic in bases a and b; being automatic is a computational notion of
“simplicity,” and so this can be seen as a first verification that an irrational number cannot
be “too simple” in two multiplicatively independent bases.

3.3. Lq dimensions, self-similarity, and the dimension of slices
Let P .X/ denote the family of Borel probability measures on a metric space X .

Given � 2 P .Rd /, the Lq dimensions ¹D�.q/ºq>1 are a family of indices measuring the
degree of singularity of � through its q-moments:

D�.q/ D D.�; q/ D lim inf
ı!0

log
P

Q2Dı
�.Q/q

.q � 1/ log ı
:

(It is also possible to define D�.q/ for q < 1, but we do not need this here.) The normalizing
factor 1=.q � 1/ ensures that D�.q/ 2 Œ0; d �. If � has an Lq density, then D�.q/ D 1 but
D�.q/ < 1 is possible even for other absolutely continuous measures. For any fixed �, the
function D� is nonincreasing, so it makes sense to define

D�.1/ D D.�; 1/ D lim
q!1

D�.q/:

It is not hard to show that D�.1/ is the supremum of the s such that �.B.x; r// � C rs for
some constant C D C.�; s/ and all closed balls B.x; r/. Such s are also called Frostman
exponents of �. The function ��.q/ D .q � 1/D�.q/ is known as the Lq-spectrum of �. It
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is always concave. In particular, both �� and D� are differentiable outside of a countable set
of q. See [34, Section 3] for proofs of these facts and further background on the Lq spectrum
and dimension.

We are interested in upper bounds for the dimension of slices. The next very
simple but key lemma relates this problem to lower bounds on D�.1/ for suitable mea-
sures �. Given a map � W X ! Y and � 2 P .X/, we denote the push-forward measure by
�� D � ı ��1.

Lemma 3.1. Suppose � W Rd
! R is a Lipschitz map. Let � 2 P .Œ0; 1�d / be such that

�.B.x; r// � cr˛ for all x 2 X WD supp.�/, r 2 .0; 1�. If D.��; 1/ � ˇ, then

dimH
�
X \ ��1.y/

�
� ˛ � ˇ for all y 2 R :

Proof. Fix a small " > 0 and y 2 R. Let .xj /M
j D1 be a maximal "-separated subset of X \

��1.y/, and let A D
SM

j D1 B.xj ; "=2/. Since the balls are disjoint, �.A/ � cM."=2/˛ . On
the other hand, �A is contained in an interval of size . " and hence, for any � > 0,

�.A/ � .��/.�A/ .� "ˇ��:

Comparing the bounds, M .c;� "ˇ�˛�� . Now X \ ��1.y/ �
SM

j D1 B.xj ; "/ by the max-
imality of .xj /, and hence X \ ��1.y/ can be covered by .c;� "ˇ�˛�� balls of radius ".
Letting � ! 0, we get the claim.

In order to connect this lemma to the slice conjecture, our next step is to look at
measures defined on invariant sets. A set X � R is self-similar if there are finitely many
contracting similarity transformations fi .x/ D ri x C ti , i 2 I with 0 < ri < 1, such that
X D

S
i2I fi .X/. The family .fi /i2I is called an iterated function system (IFS) and X is its

attractor. For simplicity, from nowwe assume that we are in the homogeneous case, meaning
that all the contractions ri are equal.

A closed Ta-invariant set X needs not be self-similar in the sense above. However,
it is easy to see [48, p. 378] that for every " > 0 there is a set X 0 � X with dimH.X 0/ <

dimH.X/ C ", which is the attractor of an IFS of the form ¹a�m.x C j /ºj 2J , where m and
the “digit set” J � ¹0; : : : ; am � 1º depend on ". Hence, in order to establish Conjecture 1.1,
we may assume that X; Y are self-similar of this special form. Since the assumption a œ b

is not affected by taking powers, we assume that m D 1 for simplicity.
Given a homogeneous IFS I D ¹rx C ti ºi2I , let � D �I D

1
jI j

P
i2I ıti , where ıt

denotes a unit mass at t , and define the (natural) self-similar measure

� D �I D �
1
nD0Srn�;

where Su D ux scales by u. In other words, � is the push-forward of
Q1

nD0 � under
.xn/1

nD0 7!
P1

nD0 xnrn. Then � is supported on the attractor X , and it easy to check that
for ˛ D log jI j= log.1=r/,

�
�
B.x; r/

�
� cr˛; x 2 X; r 2 .0; 1�:

The parameter˛ is the similarity dimension of the IFS I; if the pieces .fi .X//i2I are disjoint,
then it equals dimH.X/, but it is a well known open problem to understand when equality
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holds in the overlapping situation; see [26] and P. Varjú’s survey in this volume for progress
on this problem.

Fix closed Ta; Tb-invariant self-similar sets X; Y as above, and let �X ; �Y be the
corresponding self-similar measures, defined in terms of atomic measures �X ; �Y . Let
˛ D dimH.X/, ˇ D dimH.Y /. As we have seen,

.�X � �Y /
�
B.p; r/

�
� cr˛Cˇ ; p 2 X � Y; r 2 .0; 1�:

Recall that…u.x;y/ D x C uy. Then…u.�X � �Y / D �X � Su�Y . By the above discussion
and Lemma 3.1, in order to prove Conjecture 1.1, it is enough to show:

Theorem 3.2.

D.�X � Su�Y ; 1/ D min.˛ C ˇ; 1/ for all u ¤ 0: (3.1)

This recasts the slice conjecture into a problem concerning projections and self-
similarity. This is convenient, since a lot was previously known about this topic. For exam-
ple, (3.1) was known to hold for Hausdorff dimension in place of L1 dimension [29] and
even for Lq dimension for q 2 .1; 2� [38]. However, these results used in an essential way
the known fact that for arbitrary measures �; �, equation (3.1) with q 2 .1; 2� in place of 1

holds for almost every u. This is not true for q > 2 and hence new ideas were needed. While
the setting is different, the inspiration came from M. Hochman’s work on self-similarity, see
the survey [28] for an overview.

3.4. Dynamical self-similarity and exponential separation
While �X and �Y are self-similar measures in the sense described in Section 3.3,

the convolution �X � Su�Y is not strictly self-similar since a œ b. However, it satisfies a
more flexible notion that we term dynamical self-similarity. Suppose a < b, and let us define
G D Œ0; log b/, T W G ! G, x 7! x C log a mod .log b/. For each x 2 G, let

�.x/ D

8<:�X � Sex �Y if x 2 Œ0; log a/;

�X if x 2 Œlog a; log b/:
(3.2)

These are finitely supported measures. It is easy to check (see [48, §1.4]) that

�x WD �X � Sex �Y D �
1
nD0Sa�n

�
�
�
Tnx

��
:

This is what we mean by dynamical self-similarity: �x has a structure analogous to that of
�X ; �Y , but the discrete measure � now depends on the scale and is driven by the dynamics
of T. Note that

�x D �x;n � Sa�n�Tnx ; where �x;n D �
n�1
j D0�.Tj x/: (3.3)

This says that �x is a convex combination of scaled down copies, not quite of itself (as in the
strictly self-similar case), but of the related measures �Tnx .

In the proof of Theorem 3.2, dynamical self-similarity plays a central rôle. Another
key feature is exponential separation. The measures �x;n defined in (3.3) are purely atomic;
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let Ax.n/ denote the set of its atoms. Thenˇ̌
Ax.n/

ˇ̌
�

n�1Y
j D0

ˇ̌
supp

�
�
�
Tj x

��ˇ̌
:

Let Mx.n/ denote the minimal separation between two elements of Ax.n/, defined to be 0

if the inequality above is strict. We claim that there is a number c > 0 such that

Mx.n/ � cn for n � n0.x/; for Lebesgue almost all x 2 G: (3.4)

Indeed, the distance between two elements of Ax.n/ has the form ia�n C exjb�n for some
ji j < an, jj j < bn, and i; j are not both 0. If j D 0, then i ¤ 0 and the distance is � a�n.
Otherwise, x 7! ia�n C exjb�n has derivative � b�n in absolute value, and so is � cn in
absolute value outside of a set of x of measure 2.cb/n. Since there are . .ab/n pairs i; j ,
we see that Mx.n/ � cn outside of a set of measure . .c � ab2/n. Hence if c < .ab2/�1,
then the Borel–Cantelli lemma yields (3.4).

Exponential separation was introduced in the self-similar setting by Hochman [26].
The way we apply it will be conceptually similar. However, in the strictly self-similar setting,
this condition is often hard to check (or fails) for concrete examples, while as we have seen, in
the dynamical setting the one-dimensional group G makes the verification straightforward.

A final ingredient of the proof of Theorem 3.2 is unique ergodicity: the dynami-
cal system .G;T/ is isomorphic to a .log a= log b/-rotation on the circle. Because a œ b,
Lebesgue measure on the circle is the only T-invariant measure on G: this is the point in the
proof where the hypothesis a œ b gets used. As we will see, this will be crucial in obtaining
information for every x 2 G out of seemingly weaker information for almost every x 2 G.

In the rest of this section, we indicate how dynamical self-similarity, exponential
separation and unique ergodicity enter into the proof of Theorem 3.2. The theorem extends
to a more general setting in which appropriate versions of these three properties hold (plus
some additional technical assumptions): see [48, §1.5].

3.5. A subadditive cocycle and the rôle of unique ergodicity
Fix q 2 .1; 1/, recall that �x D �X � Sex �Y D …ex .�X � �Y /, and let

�q;n.x/ D log
� X

I2D2�n

�x.I /q

�
; x 2 G;

where here and below logarithms are to base 2. In order to establish Theorem 3.2, it is enough
to show that

lim inf
n!1

�q;n.x/

�.q � 1/n
� min.˛ C ˇ; 1/; for all x 2 G: (3.5)

Indeed, it is rather easy to check that for any x 2 G

lim sup
n!1

�q;n.x/

�.q � 1/n
� min.˛ C ˇ; 1/;

and so (3.5) yields D.�X � Su�Y ; q/ D max.˛ C ˇ; 1/ (and the limit in the definition of
Lq dimension exists), from where the claim follows by taking q ! 1. A priori this is only
true for u D ex 2 Œ1; b/, but using self-similarity it is not hard to extend it to every u ¤ 0.
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Dynamical self-similarity and the convexity of tq imply (see [48, Prop. 4.6])

�q;nCm.x/ � Cq C �q;n.x/ C �q;m.Tnx/:

Hence .�q;n C Cq/n is a subadditive cocycle over the dynamical system .G;T/. The func-
tions �q;n are continuous on G except at x D log a. The unique ergodicity of .G; T/ can
then be seen to imply ([48, §4.2]) that there is a number D.q/ such that

lim inf
n!1

�q;n.x/

�.q � 1/n
D D.q/ for all x 2 G;

lim
n!1

�q;n.x/

�.q � 1/n
D D.q/ for almost all x 2 G:

Hence the task is now to show that D.q/ D max.˛ C ˇ; 1/. This is a really crucial point,
because one only needs to compute the almost sure limit D.q/ in order to reach a conclusion
valid for every x. This is also the strategy from [38] in the case q � 2; the almost sure state-
ment follows in that case by classical projection results, while the more involved argument
discussed below is required when q > 2. Because theLq dimension is continuously decreas-
ing in q, it is easy to check that D D D�x (as a function) for almost all x; in particular, D is
differentiable outside of a countable set.

3.6. An inverse theorem for the Lq norms of convolutions
So far, discretized additive combinatorics has not entered the picture. As indicated

earlier, the proof of Theorem 3.2 is inspired by Hochman’s work on self-similar sets and
measures [26]. Hochman [26, Theorem 2.7] proved an inverse theorem for the entropy of con-
volutions of general measures on R, then applied it to self-similar measures, and concluded
that under exponential separation they have the “expected” dimension; again we refer to [28]

for a survey of these ideas. We follow a parallel strategy; in particular, we rely on a new
inverse theorem for the Lq norms of convolutions.

If � is finitely supported, we denote k�k
q
q D

P
x �.x/q for q 2 .1; 1/. If �; � are

supported on 2�m Z \Œ0; 1/ then, by Young’s inequality (which in this setting is just the
convexity of tq),

k� � �kq � k�kqk�k1: (3.6)

We are interested in understanding what happens when we are close to equality, in an
exponential sense (up to 2�"m factors). This is the case if � is the uniform measure on
2�m Z \Œ0; 1/, or if � is supported on a single atom, but also in some “fractal” situations.
For example, if � D � is the uniform measure on the (left endpoints of the intervals making
up the) sets XJ from Section 2.2; it is also possible to construct similar examples with � dif-
ferent from �. Our inverse theorem asserts, roughly speaking, that if we are close to equality
in (3.6), then locally either � looks very uniform or � looks like an atom.

Theorem 3.3 ([48, Theorem 2.1]). For each q > 1, ı > 0, there are T 2 N, " > 0 such that
the following holds for ` � `0.q; ı/. Let m D `T and let �; � 2 P .2�m Z \Œ0; 1//. Suppose

k� � �kq � 2�"m
k�kq :
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Then there exist sets X � supp� and Y � supp �, so that

(i) k�jX kq � 2�ımk�kq and k�jY k1 D �.Y / � 2�ım;

(ii) �.x1/ � 2�.x2/ for all x1; x2 2 X ; and �.y1/ � 2�.y2/ for all y1; y2 2 Y ;

(iii) X and Y are .T I `/-uniform; let .Nj /`�1
j D0, .N 0

j /`�1
j D0 be the associated se-

quences;

(iv) For each 0 � i < `, either Nj � 2.1�ı/T or N 0
j D 1 (or both).

The reader will note the analogy with Theorem 2.3, especially in the case � D �.
In fact, Theorem 2.3 is a central component of the proof of Theorem 3.3. In order to
pass from the size of sumsets to the Lq norm of convolutions, we use the celebrated
Balog–Szemerédi–Gowers (BSG) Theorem, see [54, §2.5]. Simplifying slightly, the BSG
Theorem asserts that if k� � �k2 � K�1k�k2 for � 2 P .Z/, then there is a set X such that
�.X/ � K�C and jX C X j � KC jX j, where C > 0 is universal. To be more precise,
this holds if � is the uniform measure on some set X0. In the case � D � and q D 2, the
claim is little more than the BSG Theorem combined with Theorem 2.3 and some dyadic
pigeonholing. To deal with the general case, we appeal to an asymmetric version of BSG,
[54, Theorem 2.35], while the general case q 2 .1; 1/ can be reduced to the case q D 2 by
an application of Hölder’s inequality [48, Lemma 3.4]. We remark that the theorem fails at
q D 1 and q D 1 due to lack of strict convexity; this is the reason why, even though we are
ultimately interested in L1 dimensions, we work with Lq dimensions throughout the proof.

While motivated by the slice conjecture, Theorem 3.3 is a result in geometric mea-
sure theory. In [46], E. Rossi and the author applied it to the growth of Lq dimension under
convolution. It also features in two recent results of T. Orponen [41,42] concerning projections
of planar sets outside of a zero-dimensional set of directions.

3.7. Conclusion of the proof: sketch
We indicate very briefly how the proof of Theorem 3.2 (and hence of Conjecture 1.1)

is concluded. Given a measure � on R, we let �.m/ be the purely atomic measure with

�.m/.j 2�m/ D �
�
Œj 2�m; .j C 1/2�m/

�
:

Thus, �.m/ is a discrete approximation to � at scale 2�m. Note that �q;m.x/ D log k�
.m/
x k

q
q .

The inverse theorem is used to show:

Theorem 3.4 ([48, Theorem 5.1]). Fix q 2 .1; 1/ such that D is differentiable at q and
D.q/ < 1. For every � > 0 there is " D ".�; q/ > 0 such that if m � m0.�; q/, and
� 2 P .2�m Z \Œ0; 1// satisfies k�kq � 2��m, then�.m/

x � �


q
� 2�.D.q/C"/m; x 2 G:

The assumption k�kq � 2��m says that � is not too close to being atomic in the
Lq sense. Since D.q/ D D�x .q/ for almost all x, the theorem says that convolving with any
quantitatively nonatomic measure results in a smoothening of the Lq norm of �x at small
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scales (unless D.q/ D 1, in which case �x was already “maximally smooth”). This is, again,
a dynamical, Lq version of a result of Hochman, [26, Corollary 5.5]. Heuristically, this is
deduced from Theorem 3.3 as follows: assuming the conclusion fails, let X; Y be the sets
provided by the inverse theorem. Using that k�kq � 2��m, one can see that Y has positive
branching (N 0

j > 1) for a positive proportion of scales j . Then by (iv), X must have “almost
full branching” .Nj � 2.1�ı/T / at those scales. But the dynamical self-similarity of �x can
be used to rule this out, since it implies that �x should have “roughly constant branching,”
which is less than full since D.q/ < 1. Making this precise is one of the biggest hurdles in
the proof of Theorem 3.2; it relies on ideas from multifractal analysis, in particular, the fact
that ifD0.q/ exists then k�

.m/
x kq is heavily concentrated on points of mass� 2T 0.q/m, where

T D .q � 1/D.
Once Theorem 3.4 is in hand, the rest of the proof of Theorem 3.2 is a fairly straight-

forward adaptation of Hochman’s arguments. Theorem 3.4 is used to show that (always
assuming D0.q/ exists and D.q/ < 1)

lim
n!1

log k�
.Rn/
x;n k

q
q

.q � 1/n log.1=a/
D D.q/ for any R > log a and almost all x 2 G;

where �x;n is the discrete approximation to �x defined in (3.3). See [48, Proposition 5.2].
Now the exponential separation (3.4) comes into play: if R is taken large enough in terms
of c, then the atoms of �x;n are 2�Rn-separated for n � n0.x/, and this easily yields

log
�.Rn/

x;n

q

q
D log k�x;nk

q
q D .1 � q/

n�1X
j D0

log
ˇ̌
supp

�
�.Tj x/

�ˇ̌
:

Recalling (3.2), the ergodic theorem can then be used to conclude that if D.q/ < 1, then
D.q/ D ˛ C ˇ, completing the proof.

3.8. Extensions and open problems
3.8.1. Slices of McMullen carpets
The setX � Y in Conjecture 1.1 is invariant under the toral endomorphism Ta � Tb ,

but there are many closed invariant sets under Ta � Tb which are not cartesian products. The
simplest class are McMullen carpets: given J � ¹0; : : : ; a � 1º � ¹0; : : : ; b � 1º, let

EJ D

´ 
1X

nD1

xna�n;

1X
nD1

ynb�n

!
W .xn; yn/ 2 J for all n

µ
:

If J D J1 � J2 then we are in the setting of Conjecture 1.1, but otherwise the methods
of [48,57] do not directly apply. One new difficulty is that these carpets often have different
Hausdorff, Minkowski, and Assouad dimension, while these all coincide in the product case.
Nevertheless, by modifying the method of Wu, A. Algom [2] proved an upper bound for the
dimension of linear slices of McMullen carpets, that reduces to Conjecture 1.1 in the product
case. The bound was recently improved further by A. Algom and M. Wu [3], but the optimal
result remains elusive.
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3.8.2. Bernoulli convolutions
Given � 2 .1=2; 1/, we define the Bernoulli convolution (BC) �� D �1

nD0S�n�,
where � D

ı�1Cı1

2
. This is the simplest family of overlapping self-similar measures, yet it

remains a major open problem with deep connections to number theory to elucidate their
properties. BCs are extensively discussed in [28] and in P. Varjú’s article in this volume, so
here we only point out that the method of proof discussed in this section also yields that
D.��; 1/ D 1 for all � with exponential separation (a set of Hausdorff co-dimension zero)
and �� is absolutely continuous with a density in Lq for all q 2 .1; 1/, for all � outside of a
(nonexplicit) set of exceptions of zero Hausdorff dimension. See [48, Section 9]. In a major
breakthrough, P. Varjú [55] proved that �� has Hausdorff dimension 1 (which is weaker than
D.��; q/ D 1 if q > 1) for all transcendental �. It remains a challenge to extend Varjú’s
result to L1 and even to Lq dimensions.

3.8.3. Higher dimensions
A natural higher-dimensional version of Conjecture 1.1 involves slicing the product

of closed sets .Xi /
d
iD1 invariant under .Tai

/d
iD1, with affine subspaces. As another applica-

tion of the dynamical self-similarity framework, we have:

Theorem 3.5. Let Xi be closed, Tai
-invariant sets, i D 1; : : : ; d , with ai œ aj for i ¤ j .

Then

dimH
�
.X1 � � � � � Xd / \ H

�
� max

�
dimH.X1/ C � � � C dimH.Xd / � 1; 0

�
for all affine hyperplanes H � Rd not containing a line in a coordinate direction.

The case d D 2 is Conjecture 1.1. The higher-dimensional case follows in a similar
way, using [48, Theorem 1.11] and Lemma 3.1 for projections from Rd to R, although veri-
fying the exponential separation assumption takes a little bit of work, see [52]. We underline
that it seems hard to prove such a result using the approaches of [4, 57]. To be more pre-
cise, it is possible but under the more restrictive assumption that .1= log ai /

d
iD1 are linearly

independent over Q. This is unknown in most cases, for example, for 2; 3; 5.
What about slicing with lower dimension subspaces? For this, we need to consider

projections… W Rd
! Rk and in turn this requires an inverse theorem for convolutions inRk .

This is necessarily more challenging because there is a new obstruction to smoothening of
convolutions: having the measures (locally) concentrated on lower-dimensional subspaces.
Nevertheless, Hochman [27] proved an inverse theorem for the entropy of convolutions in
arbitrary dimension. In [52], using Hochman’s result, we derive an Lq version, and use it to
deduce a generalization of Theorem 3.5 to slices with planes of arbitrary dimension.

4. Falconer’s distance set problem

4.1. Introduction
We now discuss Conjecture 1.2. It is a natural continuous analog of the P. Erdős

distinct distances conjecture, stating that N points in Rd determine &d;" N 2=d�" distinct
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distances. Erdős’ conjecture was famously resolved in the plane by L. Guth and N. Katz [23],
but the techniques they used seem hard to extend to the continuous setting. As shown already
by Falconer [16], the measurability condition in Conjecture 1.2 is crucial.

From now on fix a Borel setX � Rd . Falconer [16] proved that j�.X/j > 0 provided
dimH.X/ > .d C 1/=2 (here and below, j � j denotes Lebesgue measure, as well as cardinal-
ity). In the plane, the threshold 3=2 was lowered successively to 13=9 by J. Bourgain [5],
to 4=3 by T. Wolff [56], and recently to 5=4 by L. Guth, A. Iosevich, Y. Ou, and H. Wang
[22]. There have been parallel developments in higher dimensions [11–13, 15]. These results
use deep methods from restriction theory in harmonic analysis; the connection to restric-
tion was made by P. Mattila [36], through what has become known as the Mattila integral.
B. Liu [35] found a pinned version of the Mattila integral, that is, with �.X/ replaced by
�y.X/ D ¹jx � yj W x 2 Xº. As a result, all the previous results are also valid for pinned
distance sets. Summarizing, the current world records are [11–13,22]: let

˛d D

8<: d
2

C
1
4

if d is even,
d
2

C
1
4

C
1

8d�4
if d is odd:

Then for a Borel set X � Rd with dimH.X/ > ˛d there is y 2 X such that j�y.X/j > 0.
What if we assume dimH.X/ D d=2 instead? Falconer [16] proved that in this case

dimH.�.X// � 1=2. There are at least three reasons why this is a natural barrier to over-
come: (i) If R was a 1=2-dimensional Borel subring of the reals, then the distance set of
X D R � � � � � R � Rd would be contained in a locally Lipschitz image of R. By the prod-
uct formula for dimension, dimH.X/ � d=2, so if R existed then Falconer’s bound would be
sharp. As it turns out, no such Borel subring exists [14], but this was an open problem for
nearly 40 years. (ii) For a natural single-scale version of the problem, the exponent 1=2 is
actually sharp. This is the “train track” example introduced by N. Katz and T. Tao [30]: given
a small scale ı > 0, letX � Œ0; 1�2 be the union of� ı�1=2 equally spaced vertical rectangles
of size ı � ı1=2, with a ı1=2 space between consecutive rectangles. See [30, Figure 1]. Then
jX jı � ı�1 and ˇ̌

X \ B.x; r/
ˇ̌
ı

� r jX jı ; x 2 X; r 2 Œı; 1�:

HenceX looks very much like a set of dimension 1 (even Ahlfors regular) down to resolution
ı. Yet, the set of distances between two separated rectangles is contained in an interval of
length . ı, and this can be used to show that j�.X/jı � ı�1=2. (iii) Finally, if the Euclidean
norm is replaced by the `1 norm, then again it is not hard to see that the threshold 1=2 is
sharp, so any improvementmust exploit the curvature of the Euclidean norm.We also empha-
size that even though the harmonic analytic methods described above also yield dimension
estimates when dimH.X/ � ˛d , they do not say anything for dimH.X/ D d=2.

Despite these challenges, we have:

Theorem 4.1 (Katz–Tao [30], Bourgain [6]). There is a universal � > 0 such that if X � R2

is a Borel set with dimH.X/ � 1, then dimH.�.X// � 1=2 C �.
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Katz and Tao [30] proved that the discretized sum-product conjecture (Theorem 2.4)
implies the above theorem. As we saw, Bourgain [6] then proved Theorem 2.4. In order to
avoid “train track” examples, Katz and Tao had as an intermediate step a “discretized bilin-
ear” version of Falconer’s problem. This approach does not seem to extend to pinned distance
sets. The value of �, although effective in principle, is hard to track down and would in any
event be tiny (recall that the conjecture is � D 1=2).

4.2. A nonlinear version of Bourgain’s projection theorem
There is a formal analogy between Theorems 2.6 and 4.1: both provide an

“�-impovement” over a natural barrier, and as we saw they are both connected to discretized
sum-product. We take this analogy further. We can view ¹�y.x/ D jx � yjºy2X as a family
of (nonlinear) projections. One can then ask if it satisfies an estimate similar to that of
Theorem 2.5. It turns out that it does:

Theorem 4.2 ([50, Theorem 1.1]). Given ˛ 2 .0; 2/, ˇ > 0, there is � D �.˛; ˇ/ > 0 such that
the following holds: let X � R2 be a Borel set with dimH.X/ � ˛. Then

dimH
�
E.X; �/

�
� ˇ; where E.X; �/ D

²
y 2 R2

W dimH
�
�y.X/

�
<

˛

2
C �

³
: (4.1)

In particular, taking ˇ < 1 D ˛, this provides a pinned version of Theorem 4.1.
Theorem 4.2 follows from a general scheme that can be seen as a nonlinear extension

and refinement of Bourgain’s projection theorem and its higher rank generalization byW. He.
See [50] for further discussion and precise statements. This scheme yields Theorem 4.2 also
for smooth norms of everywhere positive Gaussian curvature and `p norms for p 2 .1; 1/,
as well as some partial extensions to higher dimensions; see [50, Theorem 1.1].

Using the nonlinear adaptation of Bourgain’s projection theorem (along with many
other ideas), O. Raz and J. Zahl [45] have recently obtained a further refinement of Theo-
rem 4.2. They show that for every ˛ 2 .0; 2/ there is � D �.˛/ > 0 such that the set E.X; �/

from (4.1) is flat, which roughly means that it is contained in a union of a small set of lines,
see [45, Definition 1.4]. This is optimal since they also observe that Theorem 4.2 is sharp in
the sense that � ! 0 as ˇ ! 0, but the sets that witness this are contained in a line (or a
union of a small family of lines). Raz and Zahl also obtain a related single-scale distance set
estimate involving only three noncollinear vantage points:

Theorem 4.3 ([45, Theorem 1.9]). Given ˛ 2 .0; 2/, there is � D �.˛/ > 0 such that if
E � Œ0; 1�2 satisfies the nonconcentration estimateˇ̌

E \ B.p; r/
ˇ̌
ı

� ı��r˛
jEjı ; p 2 Œ0; 1�2; r 2 Œı; 1�;

and y1; y2; y3 2 Œ0; 1�2 span a triangle of area � ı� , then max3
iD1 j�yi

X jı � ı�˛=2�� .

Note that the quantitative noncollinearity hypothesis prevents the train-track almost
counterexamples discussed above. These are just special cases of general theorems involving
nonlinear projections and Blaschke curvature, see [45] for further details.
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4.3. Explicit estimates and sets of equal Hausdorff and packing dimension
The improvements upon the natural threshold 1=2 that we have seen so far all involve

a tiny and unknown parameter �. The following were the first explicit bounds in the near
critical regime:

Theorem 4.4 (T. Keleti and P. Shmerkin, [33]). LetE � R2 be a Borel set with dimH.E/ > 1.
Then dimH.�.E// > 37=54 � 0:685, and there is y 2 E such that dimH.�y.E// > 2=3 and
dimP.�y.E// D .2 C

p
3/=4 � 0:933.

Here dimP is packing dimension; we refer to [37, §5.9–5.10] for its definition and basic
properties, and recall only that it lies between Hausdorff and Minkowski (box) dimensions.
See [35,51] for some further improvements, always assuming dimH.E/ > 1.

The first explicit estimates in the critical case dimH.E/ D d=2 were obtained only
very recently by the author and H. Wang [53, Theorems 1.1 and 1.2]:

Theorem 4.5. Let E � Rd be a Borel set with dimH.E/ D d=2 where d D 2 or 3. Then
supy2E dimH.�yE/ � ˛d , where ˛2 D .

p
5 � 1/=2 � 0:618 and ˛3 > 0:57.

While these are the best currently known estimates for general Borel sets, for sets of
equal Hausdorff and packing dimension we are able to prove the full strength of Falconer’s
conjecture [53, Theorem 1.4]:

Theorem 4.6. Let E � Rd , d � 2, be a Borel set with dimH.E/ D dimP.E/ D d=2. Then
supy2E dimH.�yE/ D 1, and if E has positive d=2-dimensional Hausdorff measure then
the supremum is attained.

If dimH.E/ D dimP.E/ D ˛, then for each " > 0 there is � 2 P .E/ such that

r˛C" ." �
�
B.x; r/

�
." r˛�"; r 2 .0; 1�; x 2 supp.�/:

Thus we can interpret this condition as a rough or approximate version of Ahlfors regularity
(which corresponds to the case " D 0).

In the plane, Theorem 4.6 has several predecessors. In an influential article, Orponen
[39] proved that if E is Ahlfors regular of dimension 1, then the packing dimension of �.E/

is 1. In [49], assuming that dimH.E/ > 1, we showed that there is y 2 E with dimH.�yE/ D 1;
this result was recovered and made more quantitative in [33]. Extending the proof to the
critical case dimH.E/ D 1 and to higher dimensions required new ideas; we sketch some of
them in Section 4.6.

4.4. A multiscale formula for the entropy of projections
A common theme through the proofs of Theorems 4.2, 4.4, 4.5, and 4.6 is the use of

a lower bound for the entropy of projections in terms of multiscale decompositions. Recall
that the Shannon entropy of � 2 P .Rd / with respect to a partition A of Rd is

H.�I A/ D

X
A2A

�.A/ log
�
1=�.A/

�
:
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This quantity measures how uniform the measure � is among the atoms A 2 A. A basic
property is that H.�I A/ � log jAj, and in particular

Hı.�/ WD H.�I Dı/ � log j supp�jı : (4.2)

Given a measure � and a set X with �.X/ > 0, we denote �X D
1

�.X/
�jX 2 P .X/. Finally,

fix aC 2 map F W U � Œ0; 1�d ! Rwith no singular points, and let �.x/ D rF.x/=jrF.x/j.

Proposition 4.7 ([50, Proposition A.1]). Let � 2 P .Œ0; 1/d /, let 1 > ı0 > ı1 > � � � > ıJ D ı

be a sequence with ı2
j � ıj C1, 0 � j < J . Let F be as above. Then, denoting orthogonal

projection in direction � by P� .x/ D hx; �i,

Hı.F�/ � �CF;d J C

Z JX
j D1

Hıj C1
.P�.x/�Dıj

.x// d�.x/: (4.3)

A local variant of this formula is a key element in the proof of Furstenberg’s sumset
conjecture in [29]. Orponen [39] introduced this approach to the distance set problem. The
method was further refined in [33, 49]—these papers highlighted the importance of choos-
ing the scales ıj depending on the combinatorics of the measure �, a point to which we
will come back shortly. Thanks to (4.2), the formula (4.3) provides a lower bound on box-
counting numbers jF.supp�/jı . In order to obtain Hausdorff dimension estimates, one needs
a more robust (and technical) variant; we refer to [50, Appendix A] for details and here we stick
with (4.3) for simplicity.

In all our applications the number of scales J is bounded while ı ! 0, and so the
error term is negligible. Note that if Q 2 Dıj

, then P� Q is an interval of length .d ıj , and
hence Hıj C1

.P� �Q/ � log.ıj =ıj C1/ C Cd .
Why is Proposition 4.7 useful? A key feature is that it linearizes the nonlinear pro-

jection F ; the hypothesis ı2
j � ıj C1 comes from linearization, and can be dropped if F

is linear. Another advantage is that it replaces the single projection F� by an average of
projections, taken over x and, crucially, over the scales .ıj /.

4.5. Theorems for radial and linear projections, and choice of scales
We sketch how Proposition 4.7 is used to prove the bound dimH.�yE/ > 2=3 from

Theorem 4.4. By Frostman’s Lemma [37, Theorem 8.8], there are �; � 2 P .E/ with

�
�
B.x; r/

�
; �
�
B.y; r/

�
. r˛; x; y 2 R2; r > 0;

where ˛ > 1, and X D supp.�/, Y D supp.�/ are disjoint. We apply Proposition 4.7 to
the family .�y/y2Y and �. Since r�y.x/ D �x.y/ WD jy � xj=.y � x/, Equation (4.3)
becomes

Hı.�y�/ � �CJ C

Z JX
j D1

Hıj C1
.P�x.y/�Dıj

.x// d�.x/: (4.4)

The scales ıj will eventually be chosen in such a way that ıj C1 � ıcıj for some small
constant c; in particular, this ensures that J � dc�1e is bounded as ı ! 0.
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A radial projection theorem of Orponen [40] yields
R

k�x�k
p
p d�.x/ < 1 for some

p D p.˛/ > 1; it is here that the hypothesis dimH.E/ > 1 gets used. Restricting �, we may
thus assume that k�x�kp . 1 for all x 2 X . Hölder’s inequality and a quantitative form of
Marstrand’s projection theorem [37, Theorem 9.7] yield that, for any x 2 X and � 2 P .R2/,

�x�
®
� 2 S1

W kP� �k
2
2 � ı�"I1.�/

¯
� 2cp"; (4.5)

where I1.�/ D
R

jx � yj�1d�.x/d�.y/ is the 1-energy of �. Once the scales ıj are fixed, we
write �x;j for the convolution of �Dıj

.x/ with a bump function at scale ıj C1, scaled up by a
factor ı�1

j . Applying (4.5) to � D �x;j for fixed x and 1 � j � J , using that J is bounded,
and then Fubini, we eventually obtain a point y 2 Y and a set X 0 � X with �.X 0/ � 1=2,
such that

kP�x.y/�x;j k
2
2 � ı�"I1.�x;j /; x 2 X 0; 1 � j � J:

Jensen’s inequality can be used to bound

Hıj C1
.P�x.y/�x;j / � log.ıj =ıj C1/ � log kP�x.y/�x;j k

2
2 � C:

Putting everything together, (4.4) becomes (denoting a negligible error term by err)

Hı.�y�/ � log.1=ı/ �

JX
j D1

Z
X 0

log
�
I1.�x;j /

�
d�.x/ � err: (4.6)

Now the task has become to choose the scales ıj (depending on �!) subject to the constrains
ı

1=2
j � ıj C1 � ıcıj , in such a way that log.I1.�x;j // is minimized on average. This is a
combinatorial problem that becomes more tractable by first uniformizing � by applying (the
measure version of) Lemma 2.2 and using the branching numbers Nj as the combinatorial
input. The issue to deal with is that, even though � is ˛-dimensional, many of the measures
�x;j can be nearly atomic (if Nj � 1), which causes the 1-energy to explode, so one seeks
to merge the scales at which this happens with coarser scales at which � looks like a large
dimensional set. The value 2=3 is the outcome of this combinatorial problem. Note that if
� is (roughly) Ahlfors regular, then so are the measures �x;j , and then log.I1.�x;j // is
uniformly small—so (4.6) also yields dimH.�yE/ D 1 in this case.

We underline that even though linearization is at the core of this approach, it is still
crucial that the distance map is nonlinear, as this is what generates a rich set of directions
�x.y/ D

d
dx

�y.x/ to work with—curvature is still key!
The proofs of Theorems 4.1, 4.5, and 4.6 follow a similar approach, but they each

involve different radial and linear projection theorems. For example, Theorem 4.1 relies
(unsurprisingly) on Theorem 2.5 and a different radial projection bound of Orponen [40].
One feature of Theorems 4.5 and 4.6 is that they depend on new radial and linear projection
theorems; we briefly describe them in the next section, in the planar case.

4.6. Improving Kaufman’s projection theorem, and radial projections
Let E � R2 be as in Theorems 4.5 or 4.6. Fix " > 0 and, as before, let �; � be

Frostman measures on E with exponents 1 � ", and disjoint supports X; Y . If either � or �
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gives positive mass to a line, then E intersects that line in dimension � 1 � ", which makes
the distance set estimate immediate. So we may assume that �; � give zero mass to all lines.

As our discussion in Section 4.5 suggests, it is key to understand radial projections
.�y/y2Y first, and for this we use (again) Proposition 4.7. Note that d

dx
�y.x/ D �y.x/?:

this means that in order to estimate radial projections in this way, we need to rely on a priori
radial projection bounds. This opens the door to bootstrapping arguments, and this is exactly
what is done to prove Theorems 4.5 and 4.6.

To start the bootstrapping, we need an a priori radial projection estimate for mea-
sures of dimension � 1 that give zero mass to lines (note that if both measures are supported
on the same line, the radial projections �x� are atomic for all x 2 X ; this is why we excluded
this case at the beginning of the argument). This is provided by a result of Orponen from [40],
that we alluded to earlier in connection with Theorem 4.1. In our setting it asserts that for
a set of x of �-measure � 1=2, the radial projection �x� satisfies a Frostman condition of
exponent 1=2 � " (more precisely this holds after restricting � further, depending on x).

The goal is to apply Proposition 4.7 to .�y/y2Y to bootstrap the parameter 1=2 � "

to 1 and to .
p

5 � 1/=2 in the Ahlfors regular and general case, respectively. Following the
scheme of Section 4.5, we end up needing a certain linear projection theorem, that we discuss
next. A classical projection theorem of R. Kaufman [32] from 1968 asserts that if X � R2

is a Borel set and s < min.1; dimH.X//, then

dimH
®
� 2 S1

W dimH.P� X/ � s
¯

� s:

It is natural to conjecture that Kaufman’s theorem is not optimal, in that the bound s on
the right-hand side can be lowered, depending on s and dimH.X/. When s �

dimH.X/=2 C �.dimH.X//, such improvement follows from Theorem 2.6, but the general
case was established only very recently by T. Orponen and the author:

Theorem 4.8 ([43, Theorem 1.2]). Given s 2 .0; 1/, t 2 .s; 2�, there is " D ".s; t/ > 0 such
that if X � R2 is a Borel set with dimH.X/ � t , then

dimH
®
� 2 S1

W dimH.P� X/ � s
¯

� s � ":

The proof uses many of the ingredients we have discussed in this survey: Bour-
gain’s projection theorem, the uniformization lemma, and choosing the scales depending on
the given measure. There are also new ideas, including an “incidence version” of Propo-
sition 4.7 and a dichotomy between the “roughly Ahlfors regular” and “far from Ahlfors
regular” situations, each requiring different arguments.

A quantitative version of Theorem 4.8 (see [43, Theorem 1.3]) provides the input nec-
essary to complete the bootstrapping step in the proofs of the planar cases of Theorems 4.5
and 4.6. To be more precise, so far we have been considering radial projections, but because
d

dx
�y and d

dx
�y are rotations of each other, the argument for distance sets can be completed

in parallel. The golden mean .
p

5 � 1/=2 arises as the outcome of the combinatorial problem
of optimizing the choice of scales (after uniformization).
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Abstract

The problem of estimating the smallest singular value of random square matrices is impor-
tant in connection with matrix computations and analysis of the spectral distribution. In
this survey, we consider recent developments in the study of quantitative invertibility in the
non-Hermitian setting, and review some applications of this line of research.
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1. Introduction

Given an N � n (N � n) matrix A, its singular values are defined as square roots
of the eigenvalues of the positive semidefinite n � n matrix A�A:

si .A/ WD
p

�i .A�A/; i D 1; 2; : : : ; n;

where we assume the nonincreasing ordering �1.A�A/ � �2.A�A/ � � � � � �n.A�A/. The
classical Courant–Fischer–Weyl theorem provides a variational formula

si .A/ D min
E W dim.E/Dn�iC1

max
x2E; kxk2D1

kAxk2; 1 � i � n;

where the minimum taken over all linear subspaces E of the specified dimension. In partic-
ular, the smallest and the largest singular values of A can be computed as

smin.A/ D sn.A/ D min
xWkxk2D1

kAxk2; smax.A/ D s1.A/ D max
xWkxk2D1

kAxk2:

Additionally, if the matrix A is square (N D n) and invertible then smin.A/ D
1

smax.A�1/
.

Themagnitude of the smallest singular value of square randommatrices has attracted
much attention due to the special role it plays in several questions of theoretical significance
and in applications. In particular, the ratio of the largest and smallest singular values of
a square matrix – the condition number – is systematically used in numerical analysis as a
measure of sensitivity to round-off errors. Further, for certain randommatrix models, bounds
on the spectral norm of the matrix’ resolvent (or, equivalently, the smallest singular value of
diagonal shifts of the matrix) is a crucial point in the study of the spectral distribution. We
refer to Sections 2 and 3 of the survey for a discussion of those directions.

In this survey, we consider quantitative invertibility of random non-Hermitian
square matrices, including matrices with independent entries and adjacency matrices of
random regular digraphs. The main objective in this line of research is to obtain bounds on
the probability P¹smin.A/ � tº as a function of t , of the dimension, and, possibly, of some
parameters of the model under consideration, such as the variance profile of the matrix or
its mean.

One approach to the problem, which can be named analytical, is based on comparing
the distribution of smin.A/with the distribution of the smallest singular value of a correspond-
ing Gaussian random matrix. The latter is very well understood [25] since explicit formulas
for the joint distribution of the singular values of Gaussian matrices are available [46]. We
refer to [14,85] for results of that type.

Another approach, which is the focus of this survey, falls in the category of non-
asymptotic methods [75] and is based on a combination of techniques originated within
asymptotic geometric analysis. It often produces very strong probability estimates, although
typically lacks the precision of the analytical methods. The major features of this approach
are (a) reducing the estimation of smin to estimating distances between random vectors and
random linear subspaces associated with the matrix, and (b) using concentration (Bernstein-
type) and anti-concentration (Littlewood–Offord-type) inequalities. Often, this approach also
involves constructing discretizations of certain subsets of Rn or Cn ("-nets) and estimating
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their cardinalities. We will give a description of the features by considering multiple exam-
ples from the literature.

Because of some differences in methodology, and because we wish to emphasize
the importance of the matrix invertibility for numerical analysis and in the study of the
spectral distribution, this survey does not cover nonquantitative results on the singularity
of random matrices. We note that estimating the singularity probability for several models
of discrete random matrices is a major topic within the combinatorial random matrix theory
[10,21,47,50,63,83]. In the last few years there has been a significant progress in this research
direction (also, as corollaries of quantitative results), in particular, the problem of estimating
the singularity probability of adjacency matrices of random regular (di)graphs [38,62,65], of
Bernoulli randommatrices [43,57,92] and, more generally, discrete matrices with i.i.d. entries
[44], as well as of random symmetric matrices [11–13,29]. We refer to a recent survey [97] for
a discussion and further references.

The rest of the survey is organized as follows. Sections 2 and 3 provide motivation
for studying quantitative invertibility of non-Hermitian randommatrices, and a brief account
of known results. In Section 4, we give an overview of the methodology, starting with the
result of Rudelson and Vershynin [72] as a main illustration. We then discuss novel additions
to the methodology made in the past ten years, which allowed making progress on several
important problems in the randommatrix theory. Finally, in Section 5, we discuss some open
problems.

Let us recall some notions which will be used further.
A random variable X on R or C is called subgaussian if E exp.jX j2=K2/ < 1 for

some number K > 0. The smallest value of K such that E exp.jX j2=K2/ � 1 � 1, is called
the subgaussian moment of X . Any gaussian random variable is also subgaussian; further,
all bounded random variables are subgaussian.

Given a sequence of random Borel probability measures .�m/1
mD1 and a random

probability measure � on C, we say that �m converge weakly in probability to � if for every
bounded continuous function f on C,

lim
m!1

P

²ˇ̌̌̌ Z
f d�m �

Z
f d�

ˇ̌̌̌
> "

³
D 0; 8" > 0:

We will denote by k�k the spectral norm of a matrix. The standard Euclidean norm
in Rn or Cn will be denoted by k�k2. We will write dist.S; T / for the Euclidean distance
between two subsets S and T of Rn or Cn. By Sn�1.R/ or Sn�1.C/ we denote the unit
Euclidean sphere in Rn or Cn, respectively. The constants will be denoted by C; c0, etc.

2. Quantitative invertibility in matrix computations

In this section, we discuss the importance of estimating the smallest singular value
in numerical analysis, and provide a brief overview of related results on random matrices.
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2.1. The condition number in numerical analysis
For an n � n invertible matrix A 2 Cn�n, the condition number of A is defined as

�.A/ WD kAk
A�1

 D
smax.A/

smin.A/
:

Consider a system of n linear equations in n variables, represented in the matrix–vector form
as Ax D b. If the system is well conditioned, i.e., the condition number of the coefficient
matrix A is small, a perturbation of the matrix or the coefficient vector does not strongly
affect the solution. In particular, the round-off errors in matrix computations such as the
Gaussian elimination, do not significantly distort the solution vector.

As an example of well-known theoretical guarantees, we mention an estimate on the
relative distance between the solution of Ax D b and the solution of a perturbed system

.A C F /y D .b C f /:

The terms F 2 Cn�n and f 2 Cn can be thought of as consequences of measurement or
round-off errors. It is not difficult to check that under the assumption that ı WDmax. kF k

kAk
; kf k2

kbk2
/

is small, the relative distance ky�xk2

kxk2
satisfies

ky � xk2

kxk2

D O
�
ı�.A/

�
(see, in particular, [33, Section 2.6.2], [80, Section 4]). In the specific setting when the system
Ax D b is solved using the Gaussian elimination with partial pivoting and the perturbation
of the system is due to round-off errors, Wilkinson [98] showed that the relative distance
between the computed and actual solutions can be bounded above by nO.1/"�.A/�. Here the

growth factor � is defined as � WD
maxkD0;1;:::I i;j �n ja

.k/
ij j

maxi;j �n jaij j
, with a

.k/
ij being the .i; j /th element

of the matrix A.k/ obtained from A after k iterations of the Gaussian elimination process,
and " is the precision of the machine (see also [77,94]).

Whereas the condition number of A characterizes sensitivity of the corresponding
system of linear equations to small perturbations, the eigenvector condition number quanti-
fies the stability of the spectrum and eigenvectors of A. The eigenvector condition number
of a diagonalizable matrix A 2 Cn�n is defined as

�V .A/ WD min
W 2Cn�nWW �1AW is diagonal

�.W / D min
W 2Cn�nWW �1AW is diagonal

smax.W /

smin.W /
:

Clearly, �V .A/ D 1 if and only if A is unitarily diagonalizable (normal). A classical stabil-
ity result for a matrix spectrum using the eigenvector condition number is the Bauer–Fike
theorem [8]. According to the theorem, given a diagonalizable matrix A and its perturbation
A C F , the distance between any eigenvalue � of A C F and the spectrum of A can be
estimated as

min
�2Spec.A/

j� � �j � �V .A/kF k:

Moreover, stability of matrix functions under perturbations of the argument can be quantified
using the eigenvector condition number (see [36, Section 3.3]). Here, we refer to a related line
of research dealing with the approximate diagonalization of matrices, namely approximating
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a matrix with one having a small eigenvector condition number (see [2,3,22,41] and references
therein). A connection between �V .A/ and quantitative invertibility of diagonal shifts of A

is established through the notion of a pseudospectrum. An "-pseudospectrum of A, denoted
Spec".A/, is defined as the set of all points z 2 C with smin.A � z Id/ < ". It can be shown
(see [23, Lemma 9.2.11]) that for a diagonalizable matrix A with D being a corresponding
diagonal matrix, Spec.D/ C �V .A/�1"U � Spec".A/ � Spec.D/ C �V .A/"U , where U

is the unit disk of the complex plane.

2.2. Related results on random matrices
Randomness is a natural approach to simulate typical matrices observed in applica-

tions. For example, the LINPACK benchmark for measuring the computing power involves
systems of linear equations with a randomly generated coefficient matrix [24]. Condition
numbers of random square matrices with the computational perspective were first consid-
ered by von Neumann and Goldstine [96]. Rigorous results were obtained much later, notably
by Edelman [25] for Gaussian random matrices (see also Szarek [82]). We note here that for
sufficiently dense random matrices with i.i.d. entries satisfying certain moment conditions,
estimating the largest singular values up to a constant multiple can be accomplished by a
simple combination of Bernstein-type inequalities and an "-net argument (see, for example,
[75]), and with precision up to .1 ˙ o.1// multiple via the trace method [30,79,100]. Further,
we only discuss estimates for the smallest singular value.

The average-case quantitative analysis of the matrix invertibility, when a typical
matrix is modeled as a random matrix with independent entries and with matching first
two moments, has been developed in multiple works. We refer, in particular, to papers [14,

85] employing the analytical approach, as well as works [5, 7, 37, 43, 44, 57–60, 67, 69, 71, 72,

89–92] based on the reduction to distance estimates and use of concentration/anticoncentra-
tion inequalities. Some of those results are mentioned below.

In [72], Rudelson and Vershynin showed that given a random n � n matrix A with
i.i.d. real entries of zero mean, unit variance, and a bounded subgaussian moment, the small-
est singular value of A satisfies

P
®
smin.A/ � n�1=2t

¯
� C.t C cn/; t > 0;

where the constants C > 0 and c 2 .0; 1/ may only depend on the subgaussian moment
(in fact, the statement is preserved if A is shifted by a nonrandom matrix with the spectral
norm of order O.

p
n/). The moment assumptions and the requirement that the entries are

equidistributed were relaxed in later works [58,59,67]. On the other hand, in the special case
of a matrix A with i.i.d. entries taking values C1 and �1 with probability 1=2, it was proved
in [92] that for any " > 0,

P
®
smin.A/ � n�1=2t

¯
� C t C C.1=2 C "/n; t > 0;

where C > 0 is only allowed to depend on " (see the introduction to [92], as well as [97],
for a discussion of this result in the context of the combinatorial random matrix theory). An
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even stronger result is available when A has i.i.d. discrete entries which are not uniformly
distributed on their support [44]: for every " > 0 and assuming n is sufficiently large,

P
®
smin.A/ � n�1=2t

¯
� C t C .1 C "/P¹two rows or columns of A are colinearº; t > 0;

with C > 0 depending only on the individual entry’s distribution (see [44] for the statement
in its full strength). In the setting when A has i.i.d. Bernoulli(p) entries and p is allowed to
depend on n, its was shown in [7,37,57] that, as long as p � c for a small universal constant
c > 0, for every " > 0 and assuming n is sufficiently large,

P
®
smin.A/ � n�C t

¯
� t C .1 C "/P¹a row or a column of A is zeroº; t > 0;

where C > 0 is a universal constant. We refer to [37] for a generalization to matrix rank
estimates, as well as work [43] for sharp bounds in the setting of constant p 2 .0; 1=2/, and
[5] for stronger quantitative estimates in a certain range for the parameter p.

Put forward by Spielman and Teng [81], the smoothed analysis of the condition
number is concerned with quantitative invertibility of a typical matrix in a small neigh-
borhood of a fixed matrix (with possibly a very large spectral norm). A basic model of that
type is of the form A C M , where M is a nonrandom matrix, and A has i.i.d. entries. The
result of Sankar–Spielman–Teng [78] provided a bound for the smallest singular value of a
shifted Gaussian real random matrix with i.i.d. standard normal entries, independent from
the shift:

P
®
smin.A C M/ � tn�1=2

¯
� C t; t > 0; M 2 Rn�n;

for a certain universal constant C > 0 (see also [3, Section 2.3]). Analogous estimates for a
broader class of randommatrices with continuous distribution were later obtained in [91]. On
the other hand, it was observed that for certain discrete randommatrices, such as random sign
(Bernoulli) matrices, no shift-independent small ball probability bounds for smin.A C M/

are possible [42, 87, 91]. In particular, it is shown in [42] that, assuming A has i.i.d. entries
taking values ˙1 with probability 1=4 and zero with probability 1=2, for every L � 1 and
every positive integer K,

sup
M WkMk�nL

P
®
smin.A C M/ � C n�KL

¯
� cn�K.K�1/=4;

whereC;c > 0may only depend onL andK. The smoothed analysis of the matrix condition
number for discrete distributions was carried out in works [39,42,87,88] (see also references
therein). The following result was proved in [87]. Let K; B; " > 0 and L � 1=2 be arbitrary
parameters. Then, for all sufficiently large n, given an n � n random matrix A with i.i.d.
centered entries of unit variance and the subgaussian moment bounded above by B , and
given a nonrandom matrix M with kM k � nL, one has

P
®
smin.A C M/ � n�.2KC1/L

¯
� n�KC":

In [42], it is shown that the above small ball probability bound can be significantly improved
to match the average-case result of Rudelson and Vershynin [72], under the assumption that
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a positive fraction of the singular values of M are of order O.
p

n/. More specifically, for
every Qc 2 .0; 1/ and QC > 0, and any fixed matrix M with sn�bQcnc.M/ � QC

p
n, one has

P
®
smin.A C M/ � tn�1=2

¯
� C

�
t C cn

�
;

whereC > 0 and c 2 .0; 1/may only depend on Qc, QC , and the subgaussian momentB . Under
much weaker assumptions on the shiftM , though at a price of precision, quantitative bounds
for smin.A C M/ were obtained in [39].

3. Invertibility and spectrum

Given a square n � n matrix An, denote by �An its normalized spectral measure
(spectral distribution):

�An WD
1

n

nX
iD1

ı�i .An/:

For real and complex Gaussian matrices with i.i.d. standard entries (the Ginibre ensemble),
explicit formulas for the joint distribution of the eigenvalues are known [26,31,51]. Those, in
turn, were used by Mehta [61], Silverstein (unpublished; see [9, Section 3]) and Edelman [26]

to derive convergence results for the spectral distribution in the Gaussian case.
In the non-Gaussian setting, where no similar formulas are available, Girko [32]

proposed a Hermitization argument based on the identity

1

n

nX
iD1

log
ˇ̌
z � �i .An/

ˇ̌
D

1

n
log

q
det
�
.An � z Id/.An � z Id/�

�
D

1

n

nX
iD1

log si .An � z Id/;

which relates the spectrum to the singular values of the matrix resolvent. A modern form of
the argument can be summarized as follows (see [9, Lemma 4.3], as well as the replacement
principle in [86]). Assume that a sequence of randommatrices .An/1

nD1 is such that for almost
every z 2 C, the sequence of measures�p

.An�z Id/.An�z Id/� converges weakly in probability
to a nonrandom probability measure �z . Assume further that the logarithm is uniformly
integrable in probability with respect to .�p

.An�z Id/.An�z Id/�/1
nD1 for almost every z 2 C,

that is,

lim
t!1

sup
n

P

²
1

n

X
i�nWj log si .An�z Id/j>t

ˇ̌
log si .An � z Id/

ˇ̌
> "

³
D 0; 8" > 0: (3.1)

Then there is a measure � on C such that the sequence .�An/1
nD1 converges to � weakly in

probability; moreover, the measure � can be characterized in terms of .�z/z2C . We refer to
[9] for proofs, as well as a detailed historical account of the study of the spectral distribution
of non-Hermitian random matrices, up to 2000s.

In view of the uniform integrability requirement (3.1), strong quantitative estimates
for small singular values of matrices An � z Id are an essential part of the Hermitization
argument. In the setting of matrices with i.i.d. non-Gaussian entries, first rigorous estimates
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on the small singular values of An � z Id sufficient for the argument to go through were
obtained for a class of continuous distributions by Bai [1], who applied the estimates to study
the limiting spectral distribution in that setting. As the techniques to quantify invertibility
of more general classes of matrices became available through the works of Tao–Vu [89],
Rudelson [69], and Rudelson–Vershynin [72], the result of Bai was consequently generalized
in works [34,66,84,86]. The strong circular law under minimal moment assumptions proved
in [86] can be formulated as follows. Let � be a complex-valued random variable of zeromean
and unit absolute second moment, and let .An/1

nD1 be a sequence of randommatrices, where
each An is n � n with i.i.d. entries equidistributed with � . Then the sequence of spectral dis-
tributions .� 1p

n
An

/1
nD1 converges weakly almost surely to the uniform probability measure

on the unit disk of the complex plane.
In the context of the circular law, the most studied model of sparse randommatrices

is of the form An D Bn ˇ Mn, where Bn is the random matrix with i.i.d. Bernoulli(pn)
entries, Mn is independent from Bn and has i.i.d. entries equidistributed with a random
variable � of unit variance, and “ˇ” denotes the Hadamard (entrywise) product of matrices.
In the regime pn � n�1C" for a fixed " > 0, the (weak) circular law has been established in
[99] following earlier works [34,84] dealing with additional moment assumptions.

In an even sparser regime, estimating the smallest singular value of An � z Id
presents significant challenges, and further progress has only been made recently in [6, 70].
In [70], it is proved that, assuming � is a real-valued random variable with unit variance,
npn � n1=8, and npn tends to infinity with n, and assuming the matrices An D Bn ˇ Mn are
defined as in the previous paragraph, the sequence of spectral distributions .� 1p

npn
An

/1
nD1

converges weakly in probability to the uniform measure on the unit disk of C. A central
technical result of [70] is the following quantitative bound for smin.An � z Id/: under the
assumption that jzj � npn and j=.z/j � 1,

P
®
smin.An � z Id/ � exp.�C log3 n/

¯
� C.npn/�c ;

where C; c > 0 may only depend on the c.d.f. of �.
Quantitative invertibility and spectrum of adjacency matrices of random regular

directed graphs have been considered in multiple works in the past [4,15,17,18,53–55]. Given
integers n and d , a d -regular digraph on vertices ¹1; 2; : : : ; nº is a directed graph in which
every vertex has d incoming edges and d outgoing edges. Here, we focus on the model
when no multiedges are allowed, but the graph may have loops (the latter condition is not
conventional). For each n, denote byAn;d the adjacency matrix of a random graph uniformly
distributed on the set of all d -regular digraphs on ¹1; 2; : : : ; nº (we allow d to depend on n).
The first results on invertibility for this model were obtained by Cook [18]. The circular law
for the sequence of spectral measures .� 1p

d.1�d=n/
An;d

/1
nD1 has been established in [17] under

the assumption min.d; n � d/ � log96 n. Later, in [53–55], the range !.1/ D d � log96 n

was treated. Either of the two results relies heavily on the estimates of the smallest singular
values of An;d � z Id. In particular, the main theorem of [53] is the following statement:
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assuming C � d � n= log2 n and jzj � d=6,

P
®
smin.An;d � z Id/ < n�6

¯
�

C log2 d
p

d
;

where C > 0 is a universal constant.
The invertibility of structured random matrices and applications to the study of

limiting spectral distribution have been considered, in particular, in [16,19,20,40,76]. A basic
model of interest here is of the form An D Un ˇ Mn � z Id, where Mn is a matrix with
i.i.d. entries having zero mean and unit variance, z 2 C is some complex number, Un is
a nonrandom matrix with nonnegative real entries encoding the standard deviation profile,
and “ˇ” denotes the Hadamard (entrywise) product of matrices. Note that An has mutu-
ally independent entries, with

p
Var aij D uij , 1 � i; j � n. In [76], the invertibility (and,

more generally, the singular spectrum) of Un ˇ Mn was studied in connection with the
problem of estimation of matrix permanents. In particular, strong quantitative bounds on
smin.Un ˇ Mn/ were obtained in the setting when Mn is the standard real Gaussian matrix,
andUn is a broadly connected profile (see [76, Section 2]). A significant progress in the study
of structured random matrices was made by Cook in [16], who extended the result of [76] to
non-Gaussian matrices, and obtained a polynomial lower bound on smin.Un ˇ Mn � z Id/

under very general assumptions on Un. Namely, assuming that all entries of Un are in the
interval Œ0; C �, that z 2 Œc

p
n; C

p
n� for some constants c; C > 0, and that the entries of

Mn have a bounded .4 C "/-moment, the main result of [16] asserts that

P
®
smin.Un ˇ Mn � z Id/ � n�ˇ

¯
� n�˛

for some ˛; ˇ > 0 depending only on c; C; ", and the value of the .4 C "/-moment. In [19],
this estimate was applied to derive limiting laws for the spectral distributions, under some
additional assumptions on Un. One of the results of [19] is the circular law for doubly
stochastic variance profiles: provided that

Pn
iD1.Un/2

ij D
Pn

iD1.Un/2
ji D n, 1 � j � n, and

supn maxi;j .Un/ij < 1, the sequence of spectral distributions .� 1p
n

UnˇMn
/1
nD1 converges

weakly in probability to the uniform measure on the unit disc of C.
The setting of sparse structured matrices is not well understood. For results in that

direction, we refer to a recent paper [40] dealing with the invertibility and spectrum of block
band matrices.

4. Methodology

We start this section with a brief outline of [72] which will serve as an illustration
of nonasymptotic methods (at the same time, we note that the argument of [72] is strongly
influenced by earlier works, in particular, by Tao–Vu [89] and Rudelson [69]). The proof of
the main theorem in [72] relies on four major components: sphere partitioning, invertibility
via distance, "-net arguments, and Littlewood–Offord-type inequalities.

Let A be an n � n matrix with i.i.d. real entries having zero mean and unit vari-
ance, and assume for simplicity that the entries are K-subgaussian for some constant K > 0.
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A vector x 2 Rn is called m-sparse if the size of its support is at most m. We will denote the
set of all m-sparse vectors by Sparsen.m/. The proof of [72, Theorem 3.1] starts with splitting
Sn�1.R/ into sets of compressible and incompressible vectors,

Compn.ı; �/ WD
®
x 2 Sn�1.R/ W dist

�
x;Sparsen.ın/

�
< �

¯
I

Incompn.ı; �/ WD
®
x 2 Sn�1.R/ W dist

�
x;Sparsen.ın/

�
� �

¯
:

Here, ı; � 2 .0; 1/ are small constants. The variational formula for smin.A/ allows writing

P
®
smin.A/ � s

¯
� P

®
kAxk2 � s for some x 2 Compn.ı; �/

¯
C P

®
kAxk2 � s for some x 2 Incompn.ı; �/

¯
; s > 0:

If both ı and � are sufficiently small, the set of compressible vectors has small covering
numbers, which allows applying an "-net argument. More specifically, it can be checked that
for every " 2 .3�;1=2�, there is a discrete subsetN �Compn.ı;�/ of size at most . C

"ı
/ın such

that for every x 2 Compn.ı; �/, we have dist.x; N / � " (i.e., N is an "-net in Compn.ı; �/

with respect to the Euclidean metric). Consequently, for every L > 0,

P
®
kAxk2 � s for some x 2 Compn.ı; �/

¯
� P

®
kAyk2 � s C "L

p
n for some y 2 N

¯
C P

®
kAk > L

p
n
¯

� jN j sup
z2Sn�1.R/

P
®
kAzk2 � s C "L

p
n
¯

C P
®
kAk > L

p
n
¯
:

For any z 2 Sn�1.R/, the vector Az has i.i.d. subgaussian components with unit variances,
and a standard Laplace transform argument implies that, as long as s C "L

p
n is much less

than
p

n, the probability P¹kAzk2 � s C "L
p

nº is exponentially small in n. Moreover, for
a sufficiently large constant L, the probability P¹kAk > L

p
nº is exponentially small in n.

Therefore, an appropriate choice of parameters ı; �; "; L yields

P
®
kAxk2 � s for some x 2 Compn.ı; �/

¯
� 2 exp.�cn/; s D o.

p
n/:

We refer to [72] and [75] for details regarding the above computations. Let us note also that
the idea of sphere partitioning was applied a few years earlier in [56] dealing with rectangular
random matrices.

The incompressible vectors are treated using the invertibility via distance argument,
which is based on the observation that for any incompressible vector x, a constant proportion
of its components are of order �.n�1=2/ by the absolute value. For every 1 � i � n, denote
by Hi .A/ the linear span of columns of A except the i th,

Hi .A/ WD Span
®
Colj .A/; j ¤ i

¯
:

Then for arbitrary vector x and arbitrary “threshold” � > 0 with ¹i W jxi j � �º ¤ ;, we have

kAxk2 � max
1�i�n

�
jxi jdist

�
Coli .A/; Hi .A/

��
� � max

i Wjxi j��
dist

�
Coli .A/; Hi .A/

�
;

and hence for any s > 0, 1¹kAxk2�sº �
1

j¹i Wjxi j��ºj

Pn
iD1 1¹dist.Coli .A/;Hi .A//�s=�º. This, com-

bined withMarkov’s inequality and the fact that every .ı;�/–ncompressible vector is spread,
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i.e., has at least ın components of magnitude at least �n�1=2, gives for t > 0,

P
®
9 x 2 Incompn.ı; �/ W kAxk2 � tn�1=2

¯
�

1

ın

nX
iD1

P
®
dist

�
Coli .A/; Hi .A/

�
� t=�

¯
(4.1)

(see [72, Lemma 3.5]). Since the distribution of A is invariant under column permutations, the
last relation can be rewritten as

P
®
kAxk2 � tn�1=2 for some x 2 Incompn.ı; �/

¯
�

1

ı
P
®
dist

�
Coln.A/; Hn.A/

�
� t=�

¯
�

1

ı
P
®
j
˝
Coln.A/; Yn.A/

˛
j � t=�

¯
;

where Yn.A/ denotes a unit normal to Hn.A/ measurable with respect to �.Hn.A//.
The most involved part of [72] is the analysis of anticoncentration of hColn.A/;

Yn.A/i. Recall that the Lévy concentration function L.Z; t/ of a real variable Z is defined
as

L.Z; t/ WD sup
r2R

P
®
jZ � r j � t

¯
; t � 0:

The relationship between the magnitude of L.
Pn

iD1 ai Zi ; t / for a linear combination of
random variables

Pn
iD1 ai Zi and the structure of the coefficient vector .a1; : : : ; an/ has

been studied in numerous works, starting from an inequality of Erdős–Littlewood–Offord
[27, 52]; we refer, in particular, to works [28, 48, 49, 68], as well as [89] and a survey [64] for
a more recent account of the Littlewood–Offord theory and its applications to the matrix
invertibility.

To characterize the structure of a coefficient vector in regard to anticoncentration,
the notion of the essential least common denominator (LCD) has been introduced in [72].
We quote a slightly modified definition from [73]:

LCD.a/ WD inf
®
� > 0 W dist

�
�a; Zn

�
< min

�
k�ak2; ˛

p
n
�¯

; a 2 Rn:

Here, ˛;  are small positive constants. The Littlewood–Offord-type inequality used in [72,

73] can be stated as follows. If Z1; Z2; : : : ; Zn are i.i.d. real-valued random variables with
P¹jZi � EZi j < ˇº � 1 � ˇ for some ˇ > 0 then for any unit vector a 2 Rn,

L

 
nX

iD1

ai Zi ; t

!
� C t C

C

LCD.a/
C 2 exp.�cn/; t > 0; (4.2)

where C > 0 may only depend on ˇ;  and c > 0 only on ˛; ˇ (see [73] for a proof). Using
an "-net argument, the authors of [72] show that, with probability exponentially close to one,
the random unit normal vector Yn.A/ has an exponentially large LCD. This implies

P
®ˇ̌˝
Coln.A/; Yn.A/

˛ˇ̌
� s

¯
� P

®
LCD

�
Yn.A/

�
< exp.c0n/

¯
C C s C 2 exp.�c0n/

� C s C 3 exp.�c00n/; s > 0:

The combination of all the ingredients now gives the final estimate

P
®
smin.A/ � tn�1=2

¯
� QC t C QC exp.�Ocn/; t > 0;
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matching, by the order of magnitude and up to the exponentially small additive term, the
known asymptotics of smin of Gaussian random matrices [25,82].

In the remaining part of this section, we will consider some of the novel additions
to the methodology made over the past years. To avoid technical details as much as possible,
we will refer to compressible vectors, as well as all related notions from the literature, as
almost sparse vectors, and to incompressible vectors and their relatives as spread vectors.

Invertibility over almost sparse vectors. In the setting of dense random matrices as
described above, the set of almost sparse vectors AlSpn can be treated by a simple "-net
argument since anticoncentration estimates for kAzk2 for an arbitrary vector z 2 Sn�1 are
able to overpower the cardinality of the "-net N in AlSpn. In the case of sparse and certain
models of structured random matrices, such an argument may not be sufficient since the
product jN j supz2Sn�1.R/ P¹kAzk2 � sº may become infinitely large even for small s > 0.
We consider two (related) approaches to this problem from the literature.

The first is based on further subdividing AlSpn into a few subsets T1;T2; : : : accord-
ing to the size of set of vector’s components of nonnegligible magnitude, and applying an
"-net argument within each subset. Anticoncentration estimates for Az for vectors z 2 Ti

then compete with the cardinality of an "-net on the set Ti rather than on the entire collec-
tion AlSpn, which, for certain models, allows the proof to go through. We refer, in particular,
to [76, Section 4] and [16, Section 3] for an application of this strategy to structured random
matrices; as well as [17, Proposition 3.1] dealingwith adjacencymatrices of random d -regular
digraphs.

The second approach consists in identifying a class of nonrandom matrices C such
that, for every M 2 C and every almost sparse vector z 2 Sn�1, Mz has a nonnegligible
Euclidean norm, and then showing that, with probability close to one,A 2 C . As an example,
consider a collection of matrices M such that for every nonempty subset I � Œn� with jI j �

m, there is a row Rowi .M/ with jsuppRowi .M/ \ I j D 1. Then, it is not difficult to check
that, for every nonzero m-sparse vector z, one has Mz ¤ 0. It can further be verified that a
randommatrix A with i.i.d. Bernoulli(p) elements and n�1polylog.n/ � p � cm�1 belongs
to this class with probability tending to one as n ! 1 [5]. The construction can be made
robust to treat almost sparse vectors, and can be further elaborated to deal with diagonal
shifts of very sparse matrices [5,53,70].

Invertibility via distance. Relation (4.1) discovered in [72] can be applied to any model
of randomness. However, this relation is not completely satisfactory when either (a) there
are strong probabilistic dependencies between Coli .A/ and Hi .A/ which make estimating
P¹dist.Coli .A/; Hi .A// � tº challenging, or (b) invertibility over the almost sparse vectors
cannot be treated with a desired precision using approaches based on "-net arguments or on
conditioning on a particular structure of the matrix. Here, we consider some developments
of the invertibility via distance argument made in the contexts of d -regular random digraphs
and smoothed analysis of the condition number.

Let An;d be the adjacency matrix of a uniform random d -regular directed graph
on n vertices. The regularity condition implies that for every 1 � i � n, Coli .An;d / is a
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function of ¹Colj .An;d /ºj ¤i , creating issues with applying the original version of the argu-
ment from [72]. In [18], Cook proposed a modification of the argument based on considering
distances between the matrix columns and random subspaces of the form Hi1;i2;C.An;d / WD

Span¹Colj .An;d /; j ¤ i1; i2I Coli1.An;d / CColi2.An;d /º, for i1 ¤ i2. This was later applied
in [17,53]. Here, we quote [53, Lemma 4.2]: denoting by S.�; ı/ the collection of all unit vectors
x in Cn with inf�2C j¹i � n W jxi � �j > �n�1=2ºj > ın, one has

P
°

inf
x2S.�;ı/

.An;d � z Id/x


2
� tn�1=2

±
�

1

ın2

X
i1;i22Œn�;

i1¤i2

P
®
dist

�
Coli1.An;d � z Id/; Hi1;i2;C.An;d � z Id/

�
� t=�

¯
:

Conditioned on a realization of Colj .An;d /, j ¤ i1; i2 (hence, also Y WD Coli1.An;d / C

Coli2.An;d /), the support of the i1th column of An;d is uniformly distributed on the collec-
tion of d -subsets Q satisfying ¹j � n W Yj D 2º � Q � suppY . In the regime d ! 1 as n

tends to infinity, this is “sufficient randomness” for a satisfactory bound on smin.An;d � z Id/

required by the Hermitization argument [17,53].
We remark here that another version of the argument for matrices with dependencies

based on evaluation of certain quadratic forms, introduced in [95], has been used in a non-
Hermitian setting in [74] to estimate the smallest singular value of unitary and orthogonal
perturbations of fixed matrices, which in turn is an important ingredient of the single ring
theorem [35,74]. We refer to [74] for details.

In [91], a variant of the invertibility via the distance argument was developed to deal
with nonrandom shifts of matrices with continuous distributions. The main observation of
[91] is that the distances dist.Coli .A/;Hi .A//, 1 � i � n, are highly correlated, which allows
for a more efficient analysis than the first moment method estimate (4.1). The invertibility
via distance is applied in [91] to the entire sphere rather than the set of spread vectors. As an
illustration of the principle, we consider a simpler setting of centered randommatrices when
the argument is still able to produce new results. Assuming A is an n � n real randommatrix
with i.i.d. entries having zeromean, unit variance, and the distribution density bounded above
by �, for every t > 0 and 1 � k � n, one has P¹9 I � Œn� W jI j � k; dist.Coli .A/; Hi .A// �

t 8 i 2 I º � C�t .n=k/5=11, where C� > 0 may only depend on � (see [91, Prop. 3.8]). This,
combined with the simple consequence of the negative second moment identity

smin.A/ �

 
nX

iD1

dist
�
Coli .A/; Hi .A/

��2

!�1=2

;

implies an estimate P¹smin.A/ � tn�1=2º � C 0
�t , t > 0, which does not carry the cn additive

term inevitable when an "-net-based approach is used. We refer to [91] for the more involved
setting of noncentered random matrices.

Alternatives to the LCD. Functions of coefficient vectors different from the essential least
common denominator have been introduced in the literature to deal with anticoncentration in
the context of sparse and inhomogeneous randommatrices, and matrices with dependencies.
Here, we review some of them (for non-Hermitian models only).
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The original notion of LCD is not applicable to the study of linear combinations of
nonidentically distributed variables: in fact, given any vector a 2 Sn�1.R/ with an exponen-
tially large LCD, one can easily construct mutually independent variables Z1; : : : ; Zn with
L.Zi ; 1/ � 1=2, 1 � i � n, and such that L.

Pn
iD1 ai Zi ; 0/ D �.n�1=2/. Given a random

vector X in Rn and denoting by NX the difference X � X 0 (where X 0 is an independent copy
of X/, the randomized least common denominator with respect to X is defined by

RLCDX .a/ WD inf
®
� > 0 W Edist2

�
.�a1

NX1; : : : ; �an
NXn/; Zn

�
< min

�
k�ak

2
2; ˛n

�¯
; a 2 Rn:

The notion was introduced in [59] to deal with inhomogeneous random matrices with dif-
ferent entry distributions. The small ball probability inequality (4.2) from [72,73] extends to
the non-i.i.d. setting with the RLCD taking place of the original notion. We refer to [59] for
details.

Strong quantitative invertibility results for matrices with fixed rowsums and adja-
cency matrices of d -regular digraphs obtained recently in [93] and [45], respectively, rely on
a modification of the LCD which allows treating linear combinations of Bernoulli variables
conditioned on their sum. Specifically, in [93] the notion of the combinatorial least common
denominator CLCD is defined by

CLCD.a/ WD inf
®
� > 0 W dist

�
�.ai � aj /i<j ; Z

�
n
2

��
< min

�

�.ai � aj /i<j


2
; ˛n

�¯
; a 2 Rn;

where .ai � aj /i<j denotes a vector in R
�
n
2

�
with the .i; j /th coordinate equal to ai � aj ,

1 � i < j � n. It is further shown that for the random vector .Z1; Z2; : : : ; Zn/ uniformly
distributed on the collection of 0=1 vectors with exactly n=2 ones, an analog of the anti-
concentration inequality (4.2) holds, with LCD replaced by CLCD. A modification of the
notion, called QCLCD, was further considered in [45]. We refer to that paper for details.

Another functional – the degree of unstructuredness UD – was introduced in [57] to
study the invertibility of sparse Bernoulli random matrices. The main observation exploited
in [57] is that, for p D o.1/, linear combinations of i.i.d. Bernoulli(p) random variablesPn

iD1 ai Zi are often more concentrated than corresponding linear combinations of depen-
dent 0=1 variables conditioned to sum to a fixed number of order‚.pn/. In [57], the argument
proceeds by conditioning on the size of the support of a column of the matrix and estimating
the anticoncentration of dist.Coli .A/; Hi .A// D jhColi .A/; Yi .A/ij in terms of the degree
of unstructuredness of the unit random normal Yi .A/. The definition of UD is technically
involved, and we do not provide it here; see [57] for details.

Average-case analysis of anticoncentration. The average-case study of Littlewood–Offord-
type inequalities for linear combinations

Pn
iD1 ai Zi , introduced in the random matrix con-

text in [92], was a crucial element in some of recent advances on quantitative invertibility
of random discrete matrices [43,44,92], which helped resolve some long-standing problems
in the combinatorial random matrix theory. The main idea of [92] is, rather than attempting
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to obtain an explicit description of vectors a such that
Pn

iD1 ai Zi is strongly anticoncen-
trated, to consider the linear combination for a randomly chosen coefficient vector (with
an appropriately defined notion of randomness). This approach allowed strengthening the
invertibility results available through the use of the LCD. As an example, we consider a
simplified version of the main technical result of [92]. Let " 2 .0; 1=2/, M � 1. Then there
exist n0 D n0."; M/ depending on "; M and L0 D L0."/ > 0 depending only on " (and
not on M ) with the following property. Take n � n0, 1 � N � .1=2 C "/�n, and let A WD

.¹�2N; : : : ;�N � 1º [ ¹N C 1; : : : ; 2N º/n. Assume that a random vector a D .a1; : : : ; an/

is uniformly distributed on A. Then

Pa

®
LZ.a1Z1 C � � � C anZn;

p
n/ > L0N �1

¯
� e�Mn:

Here, LZ.�; �/ denotes the Lévy concentration function with respect to the randomness of
.Z1; : : : ; Zn/, a vector with independent ˙1 components. The main point of the statement
is that the parameter L0 controlling the anticoncentration of the linear combination does not
depend on M , i.e., the proportion of the coefficient vectors in A such that the anticoncen-
tration of a1Z1 C � � � C anZn is weak, becomes superexponentially small in n as n ! 1.

Matrices with heavy entries. For the invertibility of (dense) random matrices with inde-
pendent entries assuming only finite second moments, we refer to [58,59,67].

5. Open problems

We conclude this survey with a selection of open research problems.

Refined smoothed analysis of invertibility. Recall that a standard model in the setting of
the smoothed analysis of the condition number is of the form A C M , where A is an n � n

random matrix with i.i.d. entries, and M is a nonrandom shift.

Problem 1 (Shift-independent estimates for matrices with continuous distributions). Let �

be a real random variable with zero mean, unit variance, and bounded distribution density.
Let A be an n � n matrix with i.i.d. entries equidistributed with �. It is true that for every
nonrandom matrix M ,

P
®
smin.A C M/ � tn�1=2

¯
� C t; t > 0;

where C > 0 may only depend on the c.d.f. of � (and not on n)?

For partial results on the above problem, see [78,91].

Problem 2 (Optimal dependence of smin.A C M/ on the norm of the shift in the discrete
setting). Let A be an n � n matrix with i.i.d. ˙1 entries, and let T; t > 0 be parameters. For
any "; L > 0, estimate supM WkMk�T P¹smin.A C M/ � tº up to a multiplicative error O.n"/

and an additive error O.n�L/, that is, find an explicit function f .n; T; t/ such that

n�"f .n; T; t/ � C n�L
� sup

M WkMk�T

P
®
smin.A C M/ � t

¯
� n"f .n; T; t/ C C n�L;

where C > 0 may only depend on " and L.
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For the best known partial results on the above problem, see [42,87].

Problem 3 (Dependence of smin.A C M/ on M in the Gaussian setting). Let A be an n � n

matrix with i.i.d. standard real Gaussian entries. Find an estimate onEsmin.A C M/ in terms
of the singular spectrum of M .

One can assume in the above problem that M is a diagonal matrix with the i th diag-
onal element si .M/, 1 � i � n. Note that A may either improve or degrade the invertibility
of M .

Invertibility and spectrum of very sparse matrices. Here, we consider the problem of
identifying the limiting spectral distribution for non-Hermitian matrices with constant aver-
age number of nonzero elements in a row/column.

Problem 4 (The oriented Kesten–McKay law; see [9, Section 7]). Let d � 3. For each n,
let An;d be the adjacency matrix of a uniform random d -regular directed graph on n ver-
tices. Prove that the sequence of spectral distributions .�An;d

/1
nD1 converges weakly to the

probability measure on C with the density function

�d .z/ WD
1

�

d 2.d � 1/

.d 2 � jzj2/2
1

¹jzj<
p

dº
:

Assuming the standard Hermitization approach to the above problem, the following
is the crucial (perhaps the main) step of the argument:

Problem 5. Let d � 3 and let .An;d /1
nD1 be as above. Prove that for almost every z 2 C and

every " > 0,
lim

n!1
P
®
smin.An;d � z Id/ � exp.�"n/

¯
D 0:

Problem 6 (Spectrum of directed Erdős–Renyi graphs of constant average degree). Let
˛ > 0. For each n � ˛, let An be an n � n random matrix with i.i.d. Bernoulli(˛=n) entries.
Does a sequence of spectral distributions .�An/ converge weakly to a nonrandom probability
measure?

As in the case of regular digraphs, assuming the Hermitization argument, the follow-
ing problem constitutes an important step in understanding the asymptotics of the spectrum:

Problem 7. For each n � ˛, let An be an n � n random matrix with i.i.d. Bernoulli(˛=n)
entries. Is it true that for almost every z 2 C and every " > 0,

lim
n!1

P
®
smin.An � z Id/ � exp.�"n/

¯
D 0‹

Invertibility and spectrum of structured random matrices. The spectrum of structured
random matrices in the absence of expansion-like properties (such as broad connectivity
[76] or robust irreducibility [19, 20]) is not well understood as of now. In particular, a full
description of the class of inhomogeneous matrices with independent entries with spectral
convergence to the circular law seems to be out of reach of modern methods.
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Problem8. Give a complete description of sequences of standard deviation profiles .Un/1
nD1

satisfying the following condition: assuming that � is any random variable with zero mean
and unit variance, and that for each n,Mn is an n � nmatrix with i.i.d. entries equidistributed
with � , the sequence of spectral distributions .�UnˇMn/ converges weakly in probability to
the uniform measure on the unit disc of C.

A natural class of profiles considered, in particular, in [19,20], are doubly stochastic
profiles. One may expect that those profile sequences, under some weak assumption on the
magnitude of the maximal entry, should be sufficient for the circular law to hold:

Problem 9. Assume that for each n, the standard deviation profile Un satisfies
nX

iD1

.Un/2
ij D

nX
iD1

.Un/2
ji D 1; 1 � j � n;

and that for some " > 0, lim supnmaxij ..Un/ij n"/ D 0. Is it true that, withMn as in the above
problem, the sequence .�UnˇMn/ converges weakly in probability to the uniform measure
on the unit disc of C?

Note that the above setting allows sparse matrices (cf. [19, Theorem 2.4]). Solving the
above problem, if approached with Girko’s Hermitization procedure, requires satisfactory
bounds on the smallest singular values of Un ˇ Mn � z Id.
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amenable C �-algebras
Stuart White

Abstract

Operator algebras are subalgebras of the bounded operators on a Hilbert space. They
divide into two classes: C �-algebras and von Neumann algebras according to whether
they are required to be closed in the norm or weak-operator topology, respectively.
In the 1970s Alain Connes identified the appropriate notion of amenabilty for von Neu-
mann algebras, and used it to obtain a deep internal finite-dimensional approximation
structure for these algebras. This structure is exactly what is needed for classification, and
one of many consequences of Connes’ theorem is the uniqueness of amenable II1 factors,
and later a complete classification of all simple amenable von Neumann algebras acting on
separable Hilbert spaces.
The Elliott classification programme aims for comparable structure and classification
results for C �-algebras using operator K-theory and traces. The definitive unital classifi-
cation theorem was obtained in 2015. This is a combination of the Kirchberg–Phillips the-
orem and the large scale activity in the stably finite case by numerous researchers over the
previous 15–20 years. It classifies unital simple separable amenable C �-algebras satisfying
two extra hypotheses: a universal coefficient theorem which computes KK-theory in terms
of K-theory and a regularity hypothesis excluding exotic high-dimensional behaviour.
Today the regularity hypothesis can be described in terms of tensor products (Z-stability).
These hypotheses are abstract, and there are deep tools for verifying the universal coeffi-
cient theorem and Z-stability in examples.
This article describes the unital classification theorem, its history and context, together
with the new abstract approach to this result developed in collaboration with Carrión,
Gabe, Schafhauser, and Tikuisis. This method makes a direct connection to the von Neu-
mann algebraic results, and does not need to obtain any kind of approximation structure
inside C �-algebras en route to classification. The companion survey [32] focuses on the
role of the Z-stability hypothesis, and the associated work on “regularity.”
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1. Operator algebras

This survey aims to describe how the classification theorems for simple amenable
C �-algebras parallel Connes’ celebrated vonNeumann algebra classification results from the
1970s. The first four sections set the context and are written for a nonexpert. Section 5 focuses
on the two key hypotheses required for the classification theorem. The last four sections
give a flavour of some of the ideas involved in these results, and require increasingly more
background.

Operator algebras originate in the mathematical foundations of quantum mechan-
ics. There are two main classes: C �-algebras and von Neumann algebras. A C �-algebra
is a complex Banach algebra A equipped with an involution � satisfying the fundamental
C �-identity, kx�xk D kxk2 for all x 2 A. This seemingly innocuous formula binds the alge-
braic and analytic aspects of the definition together. It is the source of a surprising amount of
rigidity: the norm on a C �-algebra is unique and determined algebraically through spectral
data. C �-algebras are based on abstraction of the bounded operators on a Hilbert space H ,
and so examples arise from Hilbert space representations. For example, the left regular rep-
resentation � W G ! B.`2.G// of a discrete groupG is given by �g.f /.h/ WD f .g�1h/ for
g; h 2 G and f W G ! C in `2.G/. To this we associate the reduced group C �-algebra of
G, C �

�
.G/ as the C �-algebra generated by the unitaries .�g/g2G . Group C �-algebras pro-

vide a framework linking operator algebras with group representation theory and harmonic
analysis.

Norm convergence of bounded operators is a restrictive condition, and there are a
number of finer topologies onB.H /: the strong operator topology of pointwise convergence,
the weak operator topology of pointwise weak convergence, and the weak�-topology from
the duality with the trace class operators. Von Neumann algebras are the �-subalgebras of
B.H / which are closed in these topologies (they all give �-subalgebras the same closure).
The group von Neumann algebra L.G/ is the von Neumann algebra generated by the image
of the left regular representation, so L.G/ is the weak operator closure of C �

�
.G/.

The distinction between the norm and strong or weak operator topologies creates
a profound difference between the flavour of C �-algebras and von Neumann algebras. The
former are topological in nature, while the latter are measure-theoretic. This is evident in the
abelian case: via the Gelfand transform, every commutative C �-algebra arises as the algebra
C0.X/ of continuous functions vanishing at infinity on a locally compact Hausdorff space
X . While uniform limits of continuous functions are continuous, pointwise limits are only
guaranteed to be measurable, and a general abelian von Neumann algebra is L1.X; �/ for
some measure space .X; �/. In the setting of discrete abelian groups G, these spaces come
from the Fourier transform: C �.G/ Š C0. OG/ and L.G/ Š L1. OG/, where OG is the Fourier
dual group. Considering G D Z and Z2, we have C �

�
.Z/ 6Š C �

�
.Z2/ as the Fourier duals

T and T2 are not homeomorphic. The circle and torus are measurably indistinguishable, so
L.Z/ Š L.Z2/.

Another important family of examples arises from dynamics. Given a group action
G Õ X , we obtain an induced action ˛ on the relevant abelian operator algebra, C0.X/ or
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L1.X/, according to whether X is topological or measurable. Reminiscent of the semidi-
rect product construction from group theory, the reduced crossed product is a C �-algebra
C0.X/Ìr G or von Neumann algebraL1.X/ÌG generated by the relevant abelian algebra
C0.X/ or L1.X/ and unitaries .ug/g2G that implement the induced action:
ugf u

�
g D ˛g.f / for g 2 G and f in the commutative subalgebra. This construction is

set up so that the unitaries ug generate C �
�
.G/ or L.G/, respectively. These operator alge-

bras provide tools for examining actions whose quotient spaces are non-Hausdorff, such
as the action Z Õ T of rotation by an irrational multiple � of 2� leading to the famous
irrational rotation C �-algebras A� D C.T / Ìr;� Z.

2. Projections and approximate finite dimensionality

Classification results for operator algebras go back to the foundational work of
Murray and von Neumann on projections. This relativises the classification of closed sub-
spaces of an infinite-dimensional Hilbert space by their dimension to an operator algebra A.
Projections p; q 2 A are equivalent (written p � q) if there exists v 2 A with v�v D p

and vv� D q; p is sub-equivalent to q (p - q) if there exists q0 � q with p � q0. Akin to
Dedekind’s definitions for sets, a projection is called infinite if it is equivalent to a proper
sub-projection of itself, and finite otherwise. Likewise a unital operator algebra is infinite or
finite according to the behaviour of its unit. This theory is particularly clean for von Neu-
mann algebras where p - q and q - p imply p � q, and is at its crispest in the case of
factors. A factor is a von Neumann algebra with trivial centre; these are precisely the simple
von Neumann algebras. Factors are the irreducible building blocks of von Neumann algebras
and the set of equivalence classes of projections in a factor is always totally ordered.

Murray and von Neumann used this total ordering to loosely divide factors into
types. The type I factors have a discrete order ¹0; 1; 2; : : : ; nº or ¹0; 1; 2; : : : º [ ¹1º. The
only examples are bounded operators on a Hilbert space. The interest begins with the type II
factors, where the projections form a continuum. These subdivide further into II1 factors,
where the unit is finite, and II1 factors where it is infinite. After rescaling, the Murray–von
Neumann equivalence classes of projections in a II1 factor M identify with Œ0; 1� and are
determined by the trace. That is, there is a unique positive linear functional � with �.1M/D 1

satisfying the trace identity �.xy/D �.yx/. Then projections p; q 2 M satisfy p - q if and
only if �.p/ � �.q/. Every II1 factor is a von Neumann tensor product of a II1 factor and
B.H /, so for many purposes the study of II1 factors reduces to that of II1 factors. Finally,
there are the type III factors, which are purely infinite: all non-zero projections are infinite
(and in the separably acting case equivalent).

Murray and von Neumann constructed an example of a II1 factor R as a suitable
completion of the algebraic tensor product of infinitely many copies of the algebra M2

of 2 � 2 matrices, where the trace comes from extending the product of the normalised
traces on the matrix algebras. This led them to isolate a key internal approximation prop-
erty: hyperfiniteness. A von Neumann algebra is hyperfinite if finite families of operators
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can be approximated in strong operator topology by finite dimensional subalgebras (in R

one uses finite tensor products of copies ofM2 to perform these approximations).
Murray and von Neumann’s celebrated uniqueness theorem from [23] shows that all

separably acting hyperfinite II1 factors are isomorphic. In particular, there is nothing special
about the 2� 2matrices above. Any choice of matrix size would lead to the same hyperfinite
II1 factor, denoted R.

Examples of II1 factors appear naturally from groups and dynamics. The von Neu-
mann algebra of an infinite discrete group G is a II1 factor if and only if G is an ICC group:
one where all non-trivial elements have infinite conjugacy classes. When G is an inductive
limit of finite groups, L.G/ will be hyperfinite. If G is additionally ICC (such as the group
S1 of all finitely supported permutations of the natural numbers) thenL.G/will be isomor-
phic to R by Murray and von Neumann’s uniqueness theorem. Approximating an irrational
rotation by a rational rotation one gets hyperfiniteness for the II1 factors L1.T / Ì Z asso-
ciated to irrational rotations.

For C �-algebras, approximate finite dimensionality (AF) is defined analogously
to hyperfiniteness working with the operator norm in place of the strong topology. This
changes things significantly: the infinite C �-tensor products M21 WD

N1

nD1 M2 and
M31 WD

N1

nD1M3 are not isomorphic. Indeed, there is no unital embedding of M2 into
M31 , as this would give rise (by a perturbation argument) to a unital embedding ofM2 into
some M3n , which is impossible. The difference is that norm-close projections are equiv-
alent, whereas strong-operator-close projections need not be. This line of reasoning led
Glimm to classify all such C �-algebra infinite tensor products of matrices (known as uni-
formly hyperfinite (UHF) algebras) by the supernatural number consisting of the infinite
product of primes appearing in the matrix sizes. Later, Bratelli examined isomorphisms
between separable AF C �-algebras in terms of diagrammatic data for inclusions of finite-
dimensional C �-algebras, and Elliott gave an algebraic classification which turned out to be
in terms of K-theory.

OperatorK-theory is a non-commutative generalisation of Atiyah and Hirzebruch’s
topological K-theory. For a unital C �-algebra A, K0.A/ is defined as the Grothendieck
group of the abelian semigroup of projections in matrices over A up to equivalence (addi-
tion is given by a diagonal direct sum). Elliott’s invariant for unital AF-algebras is then
.K0.A/; K0.A/C; Œ1A�0/, where K0.A/C is the positive cone arising from projections in
matrices over A, and Œ1A�0 is the class of the unit. The unital case of Elliott’s theorem shows
that for separable unital AF C �-algebras A and B , any isomorphism ˆ W K0.A/ ! K0.B/

withˆ.K0.A/C/DK0.B/C andˆ.Œ1A�0/D Œ1B �0 comes from an isomorphism � WA!B .
TheK0-functor preserves inductive limits, so one can easily computeK0.M21/ as

the dyadic rationals ¹m=2n Wm 2 Z; nD 0; 1; : : : º with positivity inherited from the positive
reals, and Œ1M21 �0 D 1, whereas K0.M31/ is the triadic rationals.
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3. Connes’ theorem

While Murray and von Neumann’s uniqueness theorem is a beautiful result, it is not
easy to apply directly; obtaining hyperfiniteness explicitly is out of reach in many examples.
Connes resolved this issue in a landmark abstract characterisation from the 1970s.

Theorem 3.1 (Connes, [5]). Let M � B.H / be a von Neumann algebra. The following are
equivalent:

(1) M is injective, i.e., there is a linear contractionˆ W B.H /! M withˆ.x/D x

for x 2 M.

(2) M is semidiscrete.

(3) M is hyperfinite.

Injectivity is so named because it is equivalent to injectivity of M in the category
of von Neumann algebras and completely positive and contractive (cpc) maps. The defi-
nition is independent of the representation of M. Semidiscreteness is a finite-dimensional
approximation property, though a priori of a much weaker nature than hyperfiniteness. It
asks for point weak� approximations of the identity map by cpc maps factoring through
finite-dimensional C �-algebras—such maps preserve the adjoint and order structure (at all
levels of matrix amplification), but are not required to preserve the product. Both injectivity
and semidiscreteness are much easier to access than hyperfiniteness in examples; indeed, the
equivalence of amenablility of a discrete groupG with both injectivity and semidiscreteness
of L.G/ significantly predates Connes’ theorem. Likewise all actions of amenable groups
on injective von Neumann algebras produce injective crossed products.

The marriage of Connes’ structural theorem with Murray and von Neumann’s
uniqueness theorem gives a definitive classification result—there is a unique injective separa-
ble II1 factor—with readily verifiable hypotheses. All the von Neumann algebras associated
to countably infinite discrete amenable ICC groups are isomorphic. Moreover, Connes was
able to apply Theorem 3.1 to his earlier work on type III factors, giving an almost complete
classification of separable injective factors. The puzzle was completed 10 years later when
Haagerup established the uniqueness of the hyperfinite III1 factor [13].

Theorem 3.2 (Connes, Haagerup, Murray–von Neumann). There is a complete classifica-
tion of separable injective factors.

The impact of Theorem 3.1 goes well beyond classification results. It shows that
hyperfiniteness passes to subalgebras of the hyperfinite II1 factor, which is vital to Jones’
theory of subfactors, and directly inspired the classification of amenable equivalence rela-
tions by Connes, Feldman, and Weiss.

Connes proved Theorem 3.1 in the II1 factor case, and deduced the other cases from
this. A central component of his argument is a deep generalisation of characterisations of
amenability in terms of invariant means and Følner sets to traces on operator algebras. As
such it is highly non-constructive, and it remains completely out of reach to describe hyper-
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finiteness of L.G/ explicitly in terms of Følner sets for an amenable groupG. Both Connes’
theorem and the techniques involved remain completely instrumental today; for example they
play a major role in Popa’s deformation-rigidity theory.

Various aspects of Connes’ arguments, and the later proofs of Theorem 3.1 by
Haagerup and Popa have heavily influenced developments for C �-algebras. Here I highlight
two ingredients of Connes’ proof for later comparison.

(1) Connes approximates the trace on a separable injective II1 factor M externally
by a sequence of approximately trace preserving, approximately multiplicative
cpc maps (in normalised Hilbert–Schmidt norm) to matrices. Such a sequence
is conveniently encoded by an embedding of M into the ultrapower R! of the
hyperfinite II1 factor.

(2) It is clear that the infinite algebraic tensor product of matrices satisfiesN1

nD1M2 Š
N1

nD1M2 ˝
N1

nD1M2. This persists in the weak operator clo-
sure used to obtain R, which becomes idempotent for the von Neumann tensor
product, R Š R ˝ R. This is known as self-absorption. A major aspect of
Connes’ proof is to show that R is a tensorial unit for all separable injective
II1 factors M, i.e., M Š M ˝ R. This condition had been previously devel-
oped by McDuff, who characterised these McDuff factors by the existence of
approximately central matrix subalgebras [22].

4. Simple nuclear C �-algebras and the Elliott

classification programme

In a nutshell, the Elliott classification programme aims for a C �-analogue of the
Connes, Haagerup, and Murray and von Neumann classification theorem. Ideally, we seek
complete classification results, with abstract hypotheses that are widely verifiable in a range
of examples. A fundamental question is: which C �-algebras should be classified, and by
what data? This is illustrated over the next two sections by the crossed products C.X/ Ìr G
associated to the action of a discrete group G on a compact Hausdorff space X .

Semidiscreteness has a direct analogue for C �-algebras—the completely positive
approximation property (CPAP). The only change to the definition is to use the point-norm
topology in the C �-setting. The CPAP is in turn equivalent to nuclearity, which is char-
acterised by the uniqueness of a C �-norm on the algebraic tensor product A ˇ B for all
C �-algebrasB . These conditions give the appropriate notion of amenability forC �-algebras.
For instance, a discrete groupG is amenable if and only ifC �

�
.G/ is nuclear and nuclearity is

preserved by actions of amenable groups. Moreover, as a surprising application of Connes’
theorem, a C �-algebra A has the CPAP if and only if its bidual A�� (which is naturally a
von Neumann algebra) is semidiscrete.

The most naive attempt to generalise Connes’ theorem fails spectacularly: nuclear
C �-algebras will rarely be AF (for example, C Œ0; 1� is nuclear, but certainly not AF).
Nonetheless, there are many situations where nuclear C �-algebras have properties akin
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to those of injective von Neumann algebras, after making some subtle adjustments to allow
for topological phenomena. For example, separable nuclear C �-algebras acting on the same
separable Hilbert spaces whose unit balls are close in the Hausdorff metric are spatially iso-
morphic [4]. This is analogous to existing results for injective von Neumann algebras [3]—in
both cases amenability is the key hypothesis—but one has to accept somewhat less strong
control on the spatial isomorphism in the C �-setting.

For group actions, C.X/ Ìr G is nuclear whenever G is amenable. One can also
define amenable actions of non-amenable groups, such as hyperbolic groups acting on their
boundary. Then C.X/ Ìr G is nuclear precisely when G Õ X is amenable.

Within the class of nuclear C �-algebras, the classification programme has mainly
focused on simple C �-algebras. From one point of view, these are analogous to factors—the
simple von Neumann algebras—but, on the other hand (and unlike von Neumann alge-
bras) we cannot decompose a general C �-algebra in terms of simple algebras. Nevertheless,
simple C �-algebras have proved a very fertile ground. For example, the construction of
the Cuntz algebras On led Cuntz to identify the C �-analogue of type III factors—purely
infinite simple C �-algebras. These have an abundance of projections (simple purely infi-
nite C �-algebras have real rank zero, and hence are the closed linear span of their projec-
tions) and any two nonzero projections p and q satisfy p - q and q - p. In a von Neu-
mann factor, this would force p � q, but this need not hold in a C �-algebra. In fact, the
equivalence classes of projections can be very complex: any pair .G0; G1/ of countable
abelian groups can appear as the K-theory of a separable simple nuclear purely infinite
C �-algebra. Two particularly important examples are O2 and O1 which have K-theories
.0; 0/ and .Z; 0/, respectively. In the setting of amenable group actions G Õ X , paradoxi-
cality can be used to obtain simple purely infinite nuclear C �-algebras.

The Elliott programme to classify separable simple nuclear C �-algebras began in
earnest after twin breakthroughs in the 1990s. In the infinite setting, Kirchberg’s revolu-
tionary work led to the Kirchberg–Phillips theorem: a complete K-theoretic classification
of simple separable nuclear and purely infinite C �-algebras—now called Kirchberg alge-
bras—satisfying Rosenberg and Schochet’s universal coefficient theorem (see Section 5).

Theorem 4.1 (Unital Kirchberg–Phillips theorem [16,24]). Let A and B be unital Kirchberg
algebras satisfying Rosenberg and Schochet’s universal coefficient theorem. Then A Š B if
and only if there is an isomorphism ˛� W K�.A/

Š
! K�.B/ with ˛0.Œ1A�0/ D Œ1B �0.

In the finite setting, Elliott’s classification of AT -algebras (inductive limits of C �-
algebras C.T ; F /, where F is finite dimensional) of real rank zero by ordered K-theory,
combined with the Elliott–Evans theorem that irrational rotation C �-algebras are AT , to
spark substantial work on inductive limit C �-algebras. Thomsen soon realised that ordered
K-theory alone was not enough to classify all simple AT algebras. Traces are also needed.

As with von Neumann algebras, a trace � on a simple C �-algebra A ensures finite-
ness: if v�v � vv�, then �.vv� � v�v/ D 0, forcing vv� D v�v. Moreover,Mn.A/ will be
finite for all n 2 N, i.e., A is stably finite. A deep theorem of Haagerup shows that stably
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finite simple nuclear (and, more generally, exact) C �-algebras always admit traces. So one
can detect stable finiteness by traces. However, there is not a direct dichotomy between the
finite and infinite: Rørdam produced a finite simple nuclearC �-algebraAwhich is not stably
finite [25]. Such an algebra does not have a von Neumann counterpart.

We write T .A/ for the set of traces on A. When A is unital, T .A/ is compact in the
weak�-topology, and convex Moreover T .A/ is a Choquet simplex (this ensures that T .A/
can be written as an inverse limit of finite simplices, a fact which is very useful in producing
C �-algebras with given trace spaces). We view T .A/ as a family of non-commutative mea-
sures, and in many examples it can be determined explicitly. Indeed, traces on simple crossed
products C.X/ Ìr G correspond to G invariant measures on X . In this way, the irrational
rotation C �-algebras have a unique trace coming from the Lebesgue measure on the circle.

It is often convenient to work with the space AffT .A/ of continuous affine functions
T .A/ ! R. By Kadison duality, this is canonically dual to T .A/. (One reason for working
with A 7! Aff T .A/ is that makes the entire classification invariant covariant). Every trace
induces a well-defined order-preserving map K0.A/ ! R mapping Œ1A�0 to 1, and so there
is a pairing between K-theory and traces. At the level of affine functions this is given by

�A W K0.A/ ! AffT .A/; �A.x/.�/ D �.x/; x 2 K0.A/; � 2 T .A/: (4.1)

Putting these ingredients together, the Elliott invariant of a unital C �-algebra A is

Ell.A/ D
�
K0.A/;K0.A/C; Œ1A�0; K1.A/;AffT .A/; �A

�
; (4.2)

and Elliott conjectured that this should classify all non-elementary simple separable unital
nuclear C �-algebras, analogously to the classification of injective factors [7].

For the irrational rotation algebrasA� DC.T /Ìr;� Z, one hasK�.A� /Š .Z2;Z2/.
The unique trace � embedsK0.A/� R by �.m;n/DmC �n form;n 2 Z and here the trace
determines the positive cone on K0.A/: x � 0 in K0.A/ if and only if x D 0 or �.x/ > 0.
A computation then shows A� Š A� if and only if � 2 ˙� C Z.

For irrational rotation algebras both K0.A/C and the trace pairing carry the same
information. In generality, neither of K0.A/C and .T .A/; �A/ can be recovered from the
other. However, in all cases where classification has been obtained K0.A/C is determined
by T .A/ as above. Thus, although the historical evolution of the Elliott invariant includes
K0.A/C (this dates back to the classification of AF algebras, whereas traces were only added
to the invariant later), with hindsight it is perhaps natural to work with the smaller invariant
KTu.A/ consisting of .K0.A/; Œ1A�0;K1.A/; T .A/; �A/. I prefer this approach for a number
of reasons: it makes it clear that the order structure on K0 does not play an explicit role; the
range ofKTu on simple separable unital and nuclear C �-algebras is completely understood
(it remains a very challenging problem to determine all possible orders on K0.A/C when
they are not given by the trace pairing); and KTu interacts very cleanly with the crucial
tensorial absorption condition of Z-stability (see Section 5.2 below). I choose to use the
Elliott invariant in the main classification theorems, reflecting both the important role Ell has
played historically and the amazing vision Elliott showed in his conjecture, and subsequent
programme.
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5. The unital classification theorem

Rørdam’s examples (and precursors by Villadsen) showed that there are highly
exotic simple nuclear C �-algebras with phenomena that have no von Neumann algebraic
counterpart. Toms later refined these ideas, constructing simple nuclear C �-algebras which
can never be classified by reasonably tractable data [31]. Thus we need additional, more
subtle, hypotheses to divide the classifiable stably finite simple nuclear C �-algebras from
the exotic. By the late 1990s two necessary conditions were known:

(1) A satisfies the universal coefficient theorem;

(2) A is stable under tensoring by the Jiang–Su algebra Z, i.e., A Š A˝ Z.

5.1. The universal coefficient theorem
Kasparov’s bivariant KK-theory is one of the fundamental tools in the classifi-

cation of C �-algebras, providing a tool unifying K-theory and extension theory
(K0.A/ Š KK.C; A/ and Ext.A/ Š KK.A; C0.R//). In fact, Kirchberg and Phillips both
showed that equivalence in KK-theory (viewed as a very weak kind of homotopy equiv-
alence) gives rise to an isomorphism for Kirchberg algebras. Thus the Kirchberg–Phillips
theorem has the flavour of a homotopy rigidity result.

Theorem 5.1 (Classification of unital Kirchberg algebras by KK-theory). Let A and B be
unital Kirchberg algebras. Then A Š B if and only if there is a KK-equivalence
˛ 2 KK.A;B/ with ˛ � Œ1A�0 D Œ1B �0.

The key tool for computing KK-theory is Rosenberg and Schochet’s universal
coefficient theorem (UCT) from [26]. The Kasparov product gives a map KK.A; B/ !

Hom.K�.A/;K�.B//, and a C �-algebra A satisfies the UCT when this map fits into a short
exact sequence

0 ! Ext1Z
�
K�.A/;K�C1.B/

�
! KK.A;B/ ! Hom

�
K�.A/;K�.B/

�
! 0 (5.1)

for all separableC �-algebrasB . In particular, when bothA andB satisfy theUCT, an isomor-
phismK�.A/ŠK�.B/ lifts to aKK-equivalence; this is how one returns from Theorem 5.1
to the K-theoretic classification of Theorem 4.1.

Rosenberg and Schochet established their universal coefficient theorem for abelian
C �-algebras, and then showed that the class of nuclear C �-algebras satisfying the UCT is
closed under various natural operations (in particular, all C �-inductive limits covered by
various classification results lie in the UCT class). It is a major and rather pressing open
problem whether all separable nuclear C �-algebras satisfy the UCT, but for the purposes
of applying the classification theorem to concrete examples, this is rarely a difficulty. Pretty
much all separable nuclear C �-algebras that can be explicitly described are known to satisfy
the UCT, often through Tu’s result (building on Higson and Kasparov’s work on the Baum–
Connes conjecture) that all C �-algebras associated to amenable groupoids satisfy the UCT.
In particular, all crossed products C.X/ Ìr G coming from amenable actions satisfy the
UCT.
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Moreover as the examples realising the invariant for Kirchberg algebras all satisfy
the UCT, the UCT is necessary for a K-theoretic classification.

5.2. Z-stability
The Cuntz algebraO1 satisfiesK�.O1/ŠK�.C/D .Z; 0/. SinceO1 satisfies the

UCT, one can apply the Künneth formula to obtain K�.A˝ O1/ Š K�.A/ for all separa-
bleA. So classification predicts that a Kirchberg algebraA should be isomorphic toA˝ O1,
i.e.,A is O1-stable. This was confirmed in one of Kirchberg’s famous absorption theorems:

Theorem5.2 (Kirchberg’s absorption theorems [16,17]). LetA be a separable simple nuclear
C �-algebra. Then:

(1) A is purely infinite if and only if A˝ O1 Š A;

(2) A˝ O2 Š O2.

Just as Connes goes via R-stability of injective II1 factors en-route to hyperfinite-
ness, the published approaches to the classification of Kirchberg algebras all use the O1-
absorption theorem in a crucial way. With hindsight O1-absorption is the key hypothesis
which enables the classification of Kirchberg algebras. The absorption theorem then enables
classification to be accessed via the more elementary condition of pure infiniteness. This
view point is strengthened by Kirchberg’s subsequent classification (by ideal related KK-
theory) of all separable nuclear O1-stable C �-algebras.

Returning to stably finite C �-algebras, it is natural to ask what is the right analogue
of the hyperfinite II1 factor? A naive first answer might be the CAR-algebra,M21 , but this
is not canonical. Or one could try the universal UHF-algebra Q D

N1

nD2Mn, but this is too
big:M21 is a tensorial unit for Q, not the other way round. No UHF-algebra is a tensorial
unit for all its fellows.We want a stably finite unital simpleC �-algebra withK-theory .Z; 0/
generated by the class of the unit and a unique trace, so that (assuming the Künneth formula)
it will be a tensorial unit at the level of K-theory and traces, just as O1 is for Kirchberg
algebras. One such C �-algebra is C. Are there others?

In the mid-1990s, Elliott constructed infinite dimensional stably finite simple sepa-
rable nuclear C �-algebras with arbitraryK-theory/trace pairings and so implicitly obtained
a C �-algebra with the properties above. A few years later Jiang and Su tackled this question
more explicitly from the view point of tensorial absorption, giving another construction of
what we now call the Jiang–Su algebra Z (though at the time it would not have been obvious
that Elliott and Jiang and Su produced the same algebra) proving Z Š Z ˝ Z. Accordingly,
it makes sense to consider Z-stable C �-algebras—those A for which A Š A ˝ Z—and,
moreover, through the later abstract framework of strongly self-absorbing algebras, Winter
showed that Z-stability is, in a precise sense, the minimal tensorial absorption hypothesis
akin to the McDuff property of a II1 factor.

While Z is a little tricky to construct, Z-stability of a separable C �-algebra can
be described without direct reference to Z and in a comparable fashion to McDuff’s char-
acterisation of R-stable II1 factors in terms of approximately central matrix subalgebras.
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Via Matui and Sato’s breakthrough [20], this is particularly clean for a stably finite simple
separable nuclear C �-algebra which is Z-stable when it contains tracially large approxi-
mately central cones over matrices. This is vital in Kerr’s approach to detecting Z-stability
of crossed products [14] (leading to the recent touchstone result that all free minimal actions
of elementary amenable groups on finite dimensional spaces have Z-stable crossed product
[15]). I will describe Z and Z-stability further in the companion survey article [32].

Just as the UCT is necessary for classification, so too is Z-stability. Not only
are the models realising all K-theory/trace pairings Z-stable, but tensoring by Z acts as
the identity on KTu, and, when A is exact, the order on K0.A ˝ Z/ is always given by
traces. Moreover, combining work of Kirchberg and Rørdam, for a unital separable nuclear
C �-algebra without traces, Z-stability and O1-stability are equivalent. In particular, Z-
stability is a generalisation of the classifiability hypothesis for Kirchberg algebras.

5.3. The unital classification theorem, dichotomy, and Toms–Winter
regularity
The combined efforts of large numbers of researchers over close to 30 years have cul-

minated in the definitive classification theorems for simple nuclear C �-algebras, providing
the topological counterpart to Connes’ theorem. The two subtle hypotheses in the previ-
ous subsections are sufficient as well as necessary. We state this in the unital case (and call
C �-algebras satisfying the hypothesis of the following theorem classifiable). In particular,
all crossed products C.X/ Ìr G arising from free minimal actions of countable elementary
amenable groups on compact metrisable spaces of finite covering dimension are classifiable.

Theorem 5.3 (The unital classification theorem). Let A and B be unital separable simple
nuclear C �-algebras which are Z-stable and satisfy the UCT. ThenA andB are isomorphic
if and only if Ell.A/ Š Ell.B/.

As noted above the unital classification theorem is accompanied by a “range of
the invariant theorem”: any K-theory/trace pairing can arise. This can be used to estab-
lish properties of all classifiable C �-algebras through models. For example, all stably finite
classifiable C �-algebras are approximately subhomogeneous (with at most 2-dimensional
building blocks); inductive limit structure is a consequence of classification. Recently Li
used this to show that all classifiable C �-algebras arise from twisted étale groupoids [18].

Although the unital classification theorem covers both stably finite and purely infi-
nite C �-algebras, the two cases are handled separately. A beautiful dichotomy theorem of
Kirchberg shows that any unital simple exact C �-algebra which is a tensor product of two
infinite-dimensional C �-algebras (such as a Z-stable nuclear C �-algebra) is either purely
infinite or stably finite. Moreover, the presence or absence of traces decides in which camp a
classifiableC �-algebra is found. The unital classification theorem is then the combination of
the Kirchberg–Phillips theorem, and the stably finite case of the unital classification theorem.
The rest of the article focuses on the stably finite situation.

The stably finite unital classification theorem was originally obtained in 2015 by
combining [8, 11, 12, 30] (and with Z-stability being replaced with the at the time stronger
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hypothesis of finite nuclear dimension, of which a tiny bit more below). These in turn build
on decades of work—the unital classification theorem is the collective result of the entire
C �-research community—but in this millennium two names stand out: Lin and Winter.
They drove two major strands of activity in parallel: classification through tracial approx-
imations and regularity through dimension and Z-stability. The cross fertilisations between
these directions have been the source of many of the breakthroughs which have peppered the
route to Theorem 5.3.

On the classification side, inspired by Popa’s local quantisation technique (a C �-
version of the ideas in his proof of injectivity implies hyperfiniteness) Lin introduced the
notion of tracial approximations in the early 2000s. These are a kind of internal approxima-
tion by subalgebras whose unit is a projection which is uniformly large in trace. Weakening
the approximation in this way allows more algebras to be reached; the class of tracially
AF-algebras is larger than the class of AF-algebras. Lin and collaborators then massively
developed these ideas in a huge body of work culminating in [11,12].

Meanwhile, Winter and his collaborators developed non-commutative versions of
covering dimension (decomposition rank, and then nuclear dimension) for C �-algebras
through refined versions of the completely positive approximation property. This is one of
the central concepts in the Toms–Winter conjecture, and combining Winter’s Z-stability
theorem from [33] with the recent [2] (which completes a line of work going back to Matui
and Sato’s breakthrough [21]) a simple separable unital nuclear non-elementary C �-algebra
is Z-stable if and only if it has finite nuclear dimension. In the setting of the action of a
group G on a finite-dimensional compact metrizable space X , one can directly estimate the
nuclear dimension of C.X/ÌG whenG is nilpotent, but one cannot expect direct estimates
to work much more generally. In contrast, Z-stability can be obtained much more generally:
now when G is elementary amenable. A detailed discussion of regularity is out of scope
here; I will discuss this further in [32].

The two strands come together in a number of landmarks, such as Winter’s strat-
egy [34] for converting a strong form of classification for UHF-stable C �-algebras to the
classification of Z-stable C �-algebras. The later result is used in the monumental work of
Gong, Lin, and Niu [11,12] to classify all Z-stable C �-algebras A with the property that for
a UHF-algebra U , A˝ U has a certain 1-dimensional tracial approximation. As they show,
such algebras exhaust the invariant, so the challenge is to access these very general approx-
imations. This is achieved in [8] using [30] by combining finite nuclear dimension and the
UCT.

The ideas in the 2015 proof of the unital classification theorem and the regularity
programme are described in more detail in Winter’s survey [35]. In the rest of this article,
I will outline some ingredients in a new abstract and short(er) approach to the stably finite
unital classification theoremwhich is joint work with Carrión, Gabe, Schafhauser, and Tikui-
sis [1], which makes more direct contact with von Neumann classification results.
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6. Elliott intertwining: Classifying C �-algebras by

classifying maps

The route towards the unital classification theorem, like many classification results
before it, is through a classification of maps together with an Elliott intertwining argument.
This overarching technique goes back to Elliott’s classification of AF-algebras, and aspects
can even be seen in Murray and von Neumann’s uniqueness theorem. We start out by revis-
iting the classification of AF-algebras via a framework which applies much more generally.

6.1. Classifying AF algebras
We consider the classification of countable inductive limits of finite-dimensional

algebras by ordered K0, dividing this into three steps.

Step 1. Classify maps from finite-dimensional C �-algebras. A C �-algebra B has cance-
lation if K0 determines Murray–von Neumann equivalence of projections, i.e.,
Œp�0 D Œq�0 H) p � q. This ensures that unital �-homomorphisms from finite dimen-
sional algebras into B are classified up to unitary equivalence by ordered K0 and the class
of the unit. As ever, classification of maps consists of two components: existence (here that
any unital ordered K0-morphism is realised by a unital �-homomorphism) and uniqueness
(here two �-homomorphisms are unitarily equivalent if and only if they induce the same map
on K0).

Step 2. Intertwine to classify maps from inductive limits. Step 1 can be boosted by
taking inductive limits to classify maps from a countable inductive limit A D

S1

nD1An of
finite dimensional C �-algebras into a C �-algebraB with cancelation. The invariant remains
ordered K0 and the class of the unit, but one can only expect uniqueness up to approx-
imate unitary equivalence (�;  W A ! B are approximately unitary equivalent, written
� �au  , when for all finite subsets F � A and � > 0 there exists a unitary u 2 B with
ku�.x/u� �  .x/k < � for x 2 F ).

That the invariant gives uniqueness of maps A ! B up to approximate unitary
equivalence is immediate from the uniqueness up to unitary equivalence of maps An !

B in step 1. Existence needs a (one-sided) Elliott intertwining argument. Given a homo-
morphism ˆ W .K0.A/; K0.A/C; Œ1A�0/! .K0.B/; K0.B/C; Œ1B �0/, construct compatible
�-homomorphisms �n W An ! B inductively. Existence in step 1 gives a map Q�n imple-
menting ˆ on K0.An/. Then uniqueness gives a unitary conjugate �n of Q�n agreeing with
the previously defined �n�1 on An�1. The resulting map defined on

S1

nD1 An extends by
continuity to a �-homomorphism � inducing ˆ.

Step 3. Symmetrise assumptions to classify separable AF-algebras. The following ab-
stract form of Elliott’s intertwining argument converts a classification of maps up to approx-
imate unitary equivalence to a classification of algebras.

Proposition 6.1 (Elliott’s two-sided intertwining argument). Suppose thatA andB are sep-
arable unitalC �-algebras and there are �-homomorphisms � WA! B and W B !A such
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that  ı � �au idA and � ı  �au idB . Then A and B are isomorphic. Moreover, � and  
are approximately unitarily equivalent to mutually inverse isomorphisms.

In particular, if a functor F classifies unital maps on a class A of separable unital
C �-algebras up to approximate unitary equivalence, then F also classifies A. Indeed, given
A;B 2 A and an isomorphismˆ W F.A/! F.B/, the existence component of classification
gives �-homomorphisms � W A ! B and  W B ! A with F.�/ D ˆ and F. / D ˆ�1,
and the uniqueness component shows that � and  satisfy the conditions of Proposition 6.1.

This process classifies those C �-algebras which are both inductive limits of finite
dimensional C �-algebras and have cancelation by ordered K0 together with the unit. But
the latter hypothesis is readily seen to be automatic for an AF-algebra, so in fact it classifies
countable inductive limits of finite dimensional C �-algebras.

6.2. Reducing the unital classification theorem to the classification of
approximately multiplicative maps
Let us now return to the general setting, and follow the same 3 step strategy.

Step 1. Classify approximately multiplicative maps A ! B. When A D
S1

nD1An is
an AF-algebra as in Section 6.1, a sequence .�n/ of �-homomorphisms An ! B can be
viewed as an approximately multiplicative map on A. Indeed, each �n has a cpc extension to
A which is approximately multiplicative in that k�n.x/�n.y/� �n.xy/k ! 0 for x; y 2 A.
Such approximatelymultiplicative cpcmapsA!B provide a starting point for classification
results in the general setting.

A uniqueness theorem is of the form: for all finite subsets F � A and " > 0, there
exists a finite subset G � A and ı > 0 such that any two cpc maps �; W A ! B which are
.G ; ı/-approximately multiplicative, and approximately agree on the invariant are approxi-
mately unitary equivalent onF up to ". Such statements (and their counterparts for existence)
can very quickly become a morass of quantifiers, so it is convenient to use sequence algebras
or ultraproducts (just as Connes did in his proof that injectivity implies hyperfiniteness).

Definition 6.2. The sequence algebraB1 of a C �-algebra B is the quotient `1.B/=c0.B/.
It is typical to use representative bounded sequences in B to denote elements of B1.

Reindexing—the art of turning approximate statements into exact ones—is a key
feature of sequence algebras and ultraproducts. For example, when A is a separable
C �-algebra, and B a unital C �-algebra, �-homomorphisms �;  W A ! B1 are approx-
imately unitary equivalent if and only if they are unitarily equivalent. So we aim to classify
maps A ! B1 up to unitary equivalence. Such a result cleanly encodes a classification of
approximately multiplicative maps up to approximate unitary equivalence.

Step 2. Intertwine to classify maps A ! B. Using separability of A and an intertwining
argument we boost the classification of approximately multiplicative maps to a classification
of �-homomorphisms A ! B . There is a very clean way to do this through intertwining
through reparameterisations. Under very mild conditions (namely that inclusions B ! B1
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induce an injectivemap at the level of invariants), this uses classification intoB1 to show that
if � W A ! B1 looks like it factors through B (i.e., it has an invariant factoring through B),
then it is approximately unitary equivalent to a map that really does factor through B .

One can also use this approach for finite von Neumann algebras (suitably adjusted
to k � k2-approximations and ultrapowers). Here the classification of maps from finite-
dimensional C �-algebras into finite von Neumann algebras N by traces (essentially Murray
and von Neumann’s analysis of projections) gives rise to a classification of maps M ! N !

when M is separable and hyperfinite, and N ! is a tracial ultrapower of N . Then a one-
sided intertwining classifies maps M ! N , and a two-sided intertwining gives Murray
and von Neumann’s uniqueness of the hyperfinite II1 factor (avoiding a number of explicit
perturbation results).

Moreover, via Connes’s theorem we have:

Theorem 6.3. Maps from a separable nuclear C �-algebra A to a finite von Neumann alge-
bra N are classified up to strong operator approximate unitary equivalence by traces.

The point is that any map A ! N will factor through a tracial von Neumann com-
pletion of A which is injective, so hyperfinite. Then the previous paragraph applies to give
Theorem 6.3. We use this well-known result explicitly in our proof of the unital classifica-
tion theorem, and it is the only point in the argument where we use some form of internal
approximation by subalgebras (namely that the finite part of A�� is hyperfinite).

Step 3. Symmetrise assumptions to classify C �-algebras. In both steps 1 and 2, the
assumptions on the domainA and codomain B are likely to be quite different, and there may
also be assumptions on the map (such as nuclearity). Nowwe symmetrise all the assumptions
(requiring that the identity maps on all algebras under consideration satisfy any morphism
assumptions) and obtain a classification of algebras using the two-sided Elliott intertwining
argument (Proposition 6.1).

The upshot of this section is that the unital classification theorem can be expected
to follow from a classification of maps A ! B1. The rest of the article examines this.

7. The total invariant for classifying approximate

multiplicative maps

Examples from the 1990s show thatK-theory and traces are not enough to classify
�-homomorphisms. For example, the tensor flip

� W O3 ˝ O3 ! O3 ˝ O3I x ˝ y 7! y ˝ x (7.1)

on the Cuntz algebra O3 is trivial on K-theory. However, � ˝ idO3 does not act trivially
on K0, and so is not approximately inner. This section discusses the additional ingredients
which must be added to the invariant to obtain uniqueness theorems.

The underlying obstruction behind the example in (7.1) is found in K-theory with
coefficients. Introduced by Schochet, the groups K�.AI Z=nZ/ fit into a natural six-term
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exact sequence
K0.A/ K0.AI Z=nZ/ K1.A/

K0.A/ K1.AI Z=nZ/ K1.A/

�n�n (7.2)

and so provide a framework for studying torsion inK-theory (namely the kernel of the maps
of multiplication by n) at the C �-algebraic level. An efficient way to define K.AI Z=nZ/ is
as K�.A˝ Cn/ for any separable nuclear C �-algebra Cn in the UCT class with K�.Cn/ Š

.Z=nZ ; 0/, such as Cn D OnC1. The total K-theory of A, K.A/ is the combination of
K�.A/ and

L
n�2K�.AI Z=nZ/ together with the natural maps in (7.2) (and other natural

maps connecting the groups with different coefficients). Each of the groups Ki .AI Z=nZ/

is determined by K�.A/ but in an unnatural fashion. It is on morphisms � W A ! B where
K.�/ carries more information than K�.�/, e.g., K�.�n/ D K�.idOn˝On/ while K.�n/ ¤

K.idOn˝On/.
While KK-theory determines whether UCT-Kirchberg algebras are isomorphic, it

is a little too refined for detecting approximate unitary equivalence: maps �;  W A ! B

with � �au � can differ inKK.A;B/. Rørdam (in the UCT case) and later Dadarlat (in gen-
eral) identified a quotientKL.A;B/ ofKK.A;B/which is constant on approximate unitary
equivalence classes of morphisms; for Kirchberg algebras, the converse holds andKL.A;B/
determines approximate unitary equivalence. One computesKL.A;B/ throughDadarlat and
Loring’s universal multicoefficient theorem [6]:KL.A;B/Š Hom.K.A/;K.B//whenever
A has the UCT. In this way, total K-theory classifies morphisms between UCT-Kirchberg
algebras. This works inmuchmore generality (see, for example, Gabe’s retreatment of Kirch-
berg’s O1-stable classification [10]).

Theorem 7.1. Let A be a separable exact unital C �-algebra satisfying the UCT, and let B
be a unital simpleO1-stableC �-algebra. Then unital full nuclear �-homorphismsA!B1

are classified up to approximate unitary equivalence by totalK-theory (withmaps preserving
the class of the unit in K0).

In the stably finite setting, one needs yet further information. Examples due to
Nielsen and Thomsen in the setting of AT -algebras show the importance of a certain alge-
braic K1-group. Given a unital C �-algebra A, equip U1.A/ D

S1

nD1 U.Mn.A// with the
inductive limit topology. The map U1.A/ ! K1.A/ factors through the abelianisation
U1.A/=DU1.A/, where DU1.A/ is the group generated by commutators in U1.A/,
but this functor is not invariant under approximate unitary equivalence of morphisms.
The solution is to form the Hausdorffised unitary algebraic K1-group, K

alg
1 .A/ of A as

U1.A/=DU1.A/. We write �aA W K
alg
1 .A/ ! K1.A/ for the canonical quotient map.

The group Kalg
1 .A/ was systematically studied by Thomsen [29] who used the

de la Harpe–Skandalis determinant to relate it to K-theory and traces through a natural
map ThA W Aff T .A/ ! K

alg
1 .A/ which fits into a sequence

Aff T .A/
ThA
! K

alg
1 .A/

�aA! K1.A/: (7.3)

3329 Abstract classification theorems for amenable C�-algebras



The kernel of ThA is precisely the closure of �A.K0.A// in Aff T .A/, so that
ker�aA ŠAffT .A/=�A.K0.A//. This is a divisible group, so there is a non-canonical splitting

K
alg
1 .A/ Š K1.A/˚ ker�aA: (7.4)

Given a �-homomorphism � W A ! B , there is no reason why Kalg
1 .�/ should respect the

splittings. In general, there is a rotation map r� W K1.A/ ! ker �aB so that, with respect to
decompositions (7.4), Kalg

1 .�/ W K1.A/˚ ker�aA ! K1.B/˚ ker�aB is given by

K
alg
1 .�/ D

 
K1.�/ 0

r� K
alg
1 .�/jker �aA

!
: (7.5)

Example 7.2. Consider the crossed product A D .
N1

�1 Z/ Ì Z, where the action is given
by a Bernoulli shift on the tensor product. The Pimsner–Voiculescu 6-term exact sequence
can be used to calculate K�.A/ Š .Z;Z/, with K1.A/ being generated by the canonical
unitary u implementing the action. Moreover, A has a unique trace (from the unique trace
onZ). So ker�aA ŠAff T .A/=�A.K0.A//Š R=Z Š T , andKalg

1 .A/Š Z ˚ T . The elements
¹�1A W � 2 Tº give representatives of ker�aA (by an easy de la Harpe–Skandalis determinant
calculation).

There are just two automorphisms ofK�.A/ fixing Œ1A�0: the identity and .m;n/ 7!

.m;�n/. These can be paired with any rotation map Z ! T . The combination of idK�.A/

with rotation map � is implemented by the automorphism of A fixing
N1

�1 Z and sending
u to �u, while the automorphism of A which reverses the order of the infinite tensor product
and sends u 7! �u� acts as the flip on K1.A/ with rotation map �.

It turns out that the extra data described above is now enough for uniqueness. It is
formalised in the total invariant.

Definition 7.3. The total invariant KTu.A/ of a unital C �-algebra A consists of K.A/,
AffT .A/, and Kalg

1 .A/, together with all the natural maps between these objects.

While it is necessary to adjoin K.�/ and Kalg
1 .�/ to Elliott’s invariant to obtain

uniqueness of morphisms, doing so increases the difficulty of proving the corresponding
existence result. We must now determine exactly which maps between these invariants arise
from �-homomorphisms. In addition to the pairing maps ��, the maps Th� and �a�, it turns
out that there are natural maps

�
.n/
A W K0.AI Z=nZ/ ! K

alg
1 .A/; n � 2; (7.6)

relating total K-theory and Kalg
1 . Compatibility with the �.n/� is an extra obstruction for

maps .K.A/;Aff T .A/; Kalg
1 .A// ! .K.B/;Aff T .B/; Kalg

1 .B// to come from a �-homo-
morphism. We use the last clause of Definition 7.3 to regard the maps �.n/� as part of KTu
so that by definition KTu-morphisms are compatible with �.n/� . This completes the total
invariant—no more compatibility requirements are needed for an existence theorem.

Themaps �.n/A are a little fiddly to set up in general (see [1, Section 3], which also sets
out how they interact with the other natural maps making upKTu), but they are readily iden-
tified in straightforward examples. For example, under the identifications K0.ZI Z=nZ/ Š
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Z=nZ, andKalg
1 .Z/ Š T , the maps �.n/

Z
are just the inclusions of the nth roots of unity into

the circle. Moreover, the maps �.n/� do not play a role when K1.A/ is torsion free; in this
case compatibility with the �.n/� is automatic from the other compatibility requirements.

Everything is now in place to state a general version of the classification of unital
approximate morphisms. Note how the hypotheses found in the unital classification theorem
split up amongst the domain, codomain, and morphism in Theorem 7.4.

Theorem 7.4 (Stably finite classification of approximately multiplicative maps [1]). Let A
be a separable unital nuclear C �-algebra satisfying the UCT, and let B be a unital simple
Z-stable nuclear C �-algebra with T .B/ ¤ ;. Then the total invariant KTu classifies full
unital nuclear maps A ! B1 up to unitary equivalence.

Once Theorem 7.4 has been established, the Elliott intertwining techniques dis-
cussed in Section 6 can be used to obtain classification results for algebras. Applying Step 2
of Section 6 to Theorem 7.4 classifies unital nuclear maps A ! B , and then symmetrising
assumptions following Step 3 of Section 6 classifies the algebras in the unital classification
theorem. But the invariant isKTu notKTu or Ell. So the final ingredient in the unital classi-
fication theorem is to extend an isomorphism KTu.A/ Š KTu.B/ toKTu.A/ Š KTu.B/.
The extension to K-theory, and Kalg

1 .�/ are purely algebraic results appearing in earlier
classification work. A last little detail is required to correct these extensions and ensure com-
patibility with the �.n/� when K1.A/ has torsion. Such an extension is highly non-canonical
(and typically far from unique).

8. Quasidiagonality

It is easier to construct approximately multiplicative maps (existence in Step 6.1)
as compared with a �-homomorphism (existence in Step 6.2). This is exemplified by con-
trasting quasidiagonality with embeddings into the universal UHF-algebra Q. Voiculescu
showed that quasidiagonality of a C �-algebra A can be viewed as an external approxima-
tion property: the existence of approximately multiplicative, approximately isometric cpc
maps from A into matrix algebras. When A is separable, these can be packaged into to an
embedding of A into Q1 (this characterises quasidiagonality when A is nuclear).

ManyC �-algebras are quasidiagonal; a deep theorem of Voiculescu shows that qua-
sidiagonality is invariant under homotopy, so that all conesC0.0;1�˝A are quasidiagonal—
a result Kirchberg uses in his O2-embedding theorem. On the other hand, as Q has a faith-
ful trace, no cone over a simple purely infinite C �-algebra embeds in Q. As one cannot
model an infinite projection in a matrix algebra, quasidiagonal C �-algebras are stably finite.
The Blackadar–Kirchberg problem asks whether this is the only obstruction for nuclear
C �-algebras: are all stably finite nuclear C �-algebras quasidiagonal? This question parallels
Connes’ important observation that injective II1 factors always embed into R! . Moreover,
the constructions of stably finite simple separable nuclear C �-algebras which exhaust the
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Elliott invariant are all quasidiagonal. Finding an abstract source of quasidiagonality is nec-
essary for stably finite classification theorems.

This was achieved for simple stably finite nuclear C �-algebras with the UCT in
the quasidiagonality theorem [30]. The idea is to use traces as a kind of measuring device,
by showing that all traces on A are quasidiagonal. One definition of quasidiagonality of
� 2 T .A/ is the existence of a sequence .�n/n of approximately multiplicative cpc maps
A ! Q with �.x/ D limn �Q.�n.x// for all x 2 A.

Theorem8.1 (The quasidiagonality theorem [30]). LetA be a separable nuclearC �-algebra
satisfying the UCT. Then all faithful amenable traces on A are quasidiagonal. Accordingly,
stably finite simple separable nuclear C �-algebras satisfying the UCT are quasidiagonal.

With hindsight the quasidiagonality theorem has turned out to be just the right level
of difficulty to isolate and simplify fundamental tools in classification. The original proof was
inspired by a stable uniqueness across the interval technique from the tracial approximation
approach to classification, and the quasidiagonality theorem is then used to construct tra-
cial approximations from abstract conditions in [8]. A major breakthrough was subsequently
made by Schafhauser [27]. Reframing the problem in terms of liftings, he gave a conceptual
new proof using Ext-groups. This idea provides the main framework for our approach to the
classification of approximate morphisms (as outlined in the next section).

To sketch Schafhauser’s plan, we begin with the trace-kernel extension. At this point
is preferable to work with ultrapowers rather than sequence algebras, so let ! 2 ˇN n N

be a free ultrafilter. We form Q! as the quotient of `1.Q/ by those sequences .xn/ with
limn!! kxnk D 0; it behaves analogously to Q1. The ultrapower R! is the quotient of
`1.R/ by those sequences with limn!! �.x

�
nxn/ D 0; the point is that this is a von Neu-

mann algebra, whereas a sequence algebra version is not. Since Q is weakly dense in R,
Kaplansky’s density theorem gives rise to a surjection of Q! onto R! with kernel J .

Given a trace � on a separable nuclear C �-algebra A, one has an embedding
� W A ! R! realising � (by Theorem 6.3). Via the Choi–Effros lifting theorem in one direc-
tion, and Theorem 6.3 in the other, � is quasidiagonal if and only if � lifts to Q� W A ! Q! ,

A

0 J Q! R! 0:

�
Q� (8.1)

Forming the pullback extension

� W 0 J E A 0

0 J Q! R! 0;

(8.2)

liftability of � is equivalent to the existence of a �-homomorphism splitting A ! E of �.
Extension theory provides the ideal tool for tackling problems of this nature, as �

induces a class in Ext.A; J /. However, there is a problem, the trace-kernel ideal J appears
somewhat unwieldy. In particular, it is neither stable nor � -unital, which is a deterrent to
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using Ext. Schafhauser’s key observation is that comparison properties of Q ensure that J
is separably stable: for every separable C �-subalgebra J0 � J , there is a stable separable
J1 with J0 � J1 � J . With a fair bit of care, this is enough stability to use Ext.

A computation using the UCT and theK-theory ofR! readily shows that Œ��D 0 in
Ext.A;J /. This does not yet mean that � splits, but rather that after adjoining a further trivial
extension �1, say, the sum �˚ �1 splits. So the final step is to ensure that � is absorbing so
that � Š � ˚ �1. This is achieved using an abstract Weyl–von Neumann/Voiculescu-type
theorem of Elliott and Kucerovsky [9] which heavily exploits Kirchberg’s work for infinite
C �-algebras. When A is non-unital, absorption is a consequence of the faithfulness of � via
injectivity of � . There is an important detail when A (and hence � ) are unital. In this case
� can never be absorbing and we can only ask for absorption of unital extensions. The trick
is to pass to a non-unital 2 � 2 matrix amplification to replace � by a non-unital map. This
de-unitization idea recurs extensively in the classification of approximate morphisms.

9. Classification of approximately multiplicative maps

We end with a brief discussion of some ingredients in the classification of approxi-
mately multiplicative maps. For the rest of the article, let A and B be as in Theorem 7.4.

Crudely the plan is to solve the classification problem at the von Neumann level, and
lift this back to the C �-setting. Slightly more precisely, we look for a quotient RB of B1

into which we can classify maps A! B1 by traces. This will fit into a short exact sequence

0 ! JB ! B1 ! RB ! 0: (9.1)

We then try and classify unital lifts of a given unital �-homomorphism � W A ! RB , i.e.,
characterise when a lift Q� WA!B1 of � exists, and classify these up to unitary equivalence.
Successfully combining these steps will classify maps A ! B1.

When B has unique trace � , it is natural to take RB to be the II1 factor ultrapower
.�� .B/

00/! , which is a quotient of B1 by Kaplansky’s density theorem. Via Connes’ theo-
rem, unital �-homomorphisms � W A ! RB are classified up to unitary equivalence by the
trace they induce on A (Theorem 6.3). Assuming additionally that A has the UCT and B is
Q-stable withK1.B/ D 0, and working with B! in place of B1 Schafhauser classified lifts
of a given � W A ! RB byK0. Combining these two statements and then intertwining gives
a classification of maps A ! B by K0 and traces. Symmetrising hypotheses in the spirit of
Section 6 gives the first truly abstract proof of a stably finite classification theorem.While the
hypotheses are quite stringent, they are powerful enough to show that a separable exact C �-
algebra satisfying the UCT and with a faithful trace embeds into a monotracial AF-algebra
[28]. It is vital that the ideal JB is separably stable, which one gets from Q-stability of B
(the need for separable stability also forces the use of B! when we work with an ultrapower
quotient).

Outside the unique trace setting, it is tempting to take RB to be a suitable von Neu-
mann ultrapower of B��

fin , as Connes’ theorem would classify maps A ! RB by traces.
However, using positive elements .xn/1nD1 in B1 for which limn �.xn/ D 0 pointwise but
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not uniformly in � , one can easily obstruct separable stability of the resulting JB . A more
refined choice of quotient is needed to handle traces in a uniform fashion. Such constructions
came to the fore through Matui and Sato’s work [20]. This is the point where Schafhauser’s
abstract classificationmachinerymerges with the Toms–Winter regularity programme.Write
kxk2;T .B/ D sup�2T.B/ �.x

�x/1=2. Then we define the uniform tracial sequence algebra by

B1
D `1.B/=

°
.xn/

1
nD1 2 `1.B/ W lim

n!1
kxnk2;T .B/ D 0

±
: (9.2)

In this way, B1 quotients onto B1 leading to the uniform trace-kernel extension

0 ! JB
jb
! B1

qb
! B1

! 0: (9.3)

This is the right framework to classify unital maps A ! B1 by traces and their lifts back to
B1 by the other aspects ofKTu. The former uses regularity techniques, while the latter uses
abstract classification. The essential point is that Z-stability of B gives separable stability of
JB allowing KK.A; JB/ to be used. In what follows, I pretend that JB is stable.

9.1. Classifying unital maps A ! B1

When B has a unique trace, B1 is not quite the von Neumann algebra ultrapower
.�� .B/

00/! used in Schafhauser’s unique trace UHF-stable argument. But for the purposes
of classifying maps from separable nuclear C �-algebras A, there is no real difference. The
real challenge comes when B has infinitely many extremal traces, particularly if the extreme
boundary @eT .B/ is not compact. In this case, for each � 2 T .B1/, Connes’ theorem clas-
sifies maps � W A ! �� .B

1/00. We must glue these together to a classification of maps
A ! B1 by traces.

Problems of this nature have been at the heart of work on Toms–Winter regular-
ity conjecture, and a general strategy for gluing properties from each �� .B1/00 together
to obtain global statements which hold uniformly in all traces was developed in [2]. These
techniques give B1 a “von Neumann-like” flavour when B is nuclear and Z-stable, and in
particular they can be used to obtain the required classification of maps A ! B1. Conse-
quently, given two maps �1; �2 W A ! B1 which agree on traces, the compositions qB ı �1

and qB ı �2 are unitarily equivalent via a unitary u 2 B1 say. For each trace � on B1, we
can write �� .u/ as an exponential eih� for a self-adjoint h� 2 �� .B

1/00. Another applica-
tion of the gluing procedure can be used to find a single self-adjoint h 2 B1 with u D eih.
Therefore, u lifts to a unitary in B1, and by conjugating by a lift of u, we can assume
that qB ı �1 D qB ı �2. In this way, the remainder of the uniqueness problem for a pair of
maps �1; �2 W A ! B1, becomes a question about the uniqueness of lifts of the common
�-homomorphism qB ı �1 D qB ı �2 W A ! B1 back to B1.

In fact, the full force ofZ-stability is not needed, and one can get awaywith a weaker
central sequence condition in the spirit of Murray and von Neumann’s property � . There is
a lot going on behind the scenes here, and I will describe the ideas behind these techniques
a bit further in the more regularity focused companion survey [32].
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9.2. Classifying unital lifts
In the second part we are given a unital map � W A ! B1 and aim to classify

lifts back to B1. A necessary condition for a lift is the existence of � 2 KK.A; B1/ with
ŒqB �� D Œ� � in KK. We can produce these � using the universal (multi)coefficient theorem
from the total K-theory component of a map KTu.A/ ! KTu.B

1/.
Given such a �, small modifications of Schafhauser’s proof of the quasidiagonal-

ity theorem produces some lift  � W A ! B1 of � . But this might not have Œ �� D �

in KK.A; B1/, and it must be corrected so that it does. By construction, � � Œ �� will
map to 0 under the mapKK.A;B1/ ! KK.A;B1/ induced by (9.3) so half-exactness of
KK.A; �/ gives that � � Œ �� is in the image of KK.A; jB/ W KK.A; JB/ ! KK.A;B1/.
Write � � Œ �� D KK.A; jB/.�/ for some � 2 KK.A; JB/.

Cuntz’s quasihomomorphism picture of KK-theory is particularly well suited to
C �-classification problems. This defines KK.A; JB/ as homotopy classes of Cuntz-pairs:
maps .�C; ��/ W A ! M.JB/ such that �C.x/� ��.x/ 2 JB . In order to translate between
KK-theory and �-homomorphisms into B1, we need KK-existence and uniqueness theo-
rems, both of which rely on absorption. The existence theorem says that if �� W A! M.JB/

is absorbing, then given any � 2 KK.A; JB/ we can find �C W A ! M.JB/ such that
the Cuntz-pair .�C; ��/ realises �. This works in vast generality and has been regularly
used in classification (in our situation all one needs is the separable-stability to work with
KK.A; JB/). Following the map  � above by the natural map B1 ! M.JB/ gives rise to
�� W A ! M.JB/. Using the Elliott–Kucerovsky theorem (and modulo the de-unitisation
trick alluded to at the end of Section 8, which is suppressed here), �� is absorbing. Thus we
can find �C W A ! M.JB/ such that .�C; ��/ forms a Cuntz-pair representing �. A fairly
standard pullback calculation then produces a map  C W A ! B1 also lifting � (as a con-
sequence of .�C; ��/ being a Cuntz-pair) so thatKK.A; jB/.�/ D Œ C�� Œ ��. Therefore
 C realizes the element � 2 KK.A;B1/.

How unique is  C? Given two lifts  1;  2 W A ! B1 of � , we obtain a Cuntz-pair
.�1; �2/ W A! M.JB/ representing a class inKK.A;JB/. AKK- orKL-uniqueness theo-
rem is designed to give asymptotic or approximate unitary equivalence of absorbing �1 and
�2 when Œ�1;�2� vanishes inKK.A;JB/ andKL.A;JB/, respectively.WhileKK-existence
holds very generally,KK- and KL-uniqueness are more subtle, going back to Dadarlat and
Eilers in the setting of KK.A;K/, and it is currently unclear how generally such results
can hold. For us, Z-stability of B is the key ingredient through a Z-stable KL-uniqueness
theorem developed in [1] (extending a Q-stable KK-uniqueness theorem from [28]). This
gives approximate unitary equivalence (with unitaries in the unitisation of JB ˝ Z) of the
Z-stabilisations �1 ˝ 1Z; �2 ˝ 1Z W A ! M.JB/ ˝ Z from Œ�1; �2� D 0 in KL.A; JB/.
Using separable Z-stability of B1 and the fact we work in a sequence algebra, this gives
unitary equivalence of  1 and  2. So lifts are classified by KL.A; JB/, which fits into an
exact sequence

kerKL.A; jB/ ! KL.A; JB/ ! KL.A;B1/: (9.4)
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Dadarlat and Loring’s universal (multi)coefficient theorem (obtained from the UCT) com-
putes KL.A; B1/ Š Hom.K.A/; K.B1//. We need to interpret kerKL.A; jB/ in terms
of Kalg

1 and in particular the rotation maps r� from (7.5).
This is achieved through an isomorphism

RA;B W kerKL.A; jB/ ! Hom
�
K1.A/=Tor

�
K1.A/

�
; ker�aB1

�
(9.5)

with the property that RA;B.Œ 1;  2�/ ı tA D r 1 � r 2 when . 1;  2/ W A ! B1 realise a
class in kerKL.A; jB/. Here tA WK1.A/!K1.A/=Tor.K1.A// is the quotient map, which
removes torsion from K1.A/. While the individual rotation maps r 1 and r 2 depend on a
choice of decomposition in (7.4), when  1 and  2 agree on KTu the difference r 1 � r 2
does not. In this case .r 1 � r 2/ ı�aA DK

alg
1 . 1/�K

alg
1 . 2/ WK

alg
1 .A/!K

alg
1 .B1/. Then,

given �1; �2 W A! B1 agreeing onKTu, by successively using traces (to reduce to the case
that qB ı �1 D qB ı �2/, and then totalK-theory, andKalg

1 (to see that �1 and �2 induce the
same class in KL.A; JB/), these tools combine to give unitary equivalence of �1 and �2.

The pairing maps �.n/� from (7.6) are required for existence. When we attempt
to realise maps ˛ W K.A/ ! K.B1/, ˇ W K

alg
1 .A/ ! K

alg
1 .B1/, and  W Aff T .A/ !

Aff T .B1/, one first constructs � W A ! B1 using  . Then one lifts to � W A ! B1

realising a lift � of ˛. As both Kalg
1 .�/ and .˛; ˇ; / are KTu-morphisms, one can use

compatibility with �.n/� to show that the rotation map induced by ˇ �K
alg
1 .�/ vanishes on

Tor.K1.A//. This enables RA;B to be used to modify the behaviour of � on Kalg
1 .A/.

The isomorphism RA;B is an abstract sequence algebra version of the rotation map
computations developed by Lin (see [19], for an example of the use of a rotation map in an
asymptotic classification result). It is built in two steps. First, the UCT gives an isomorphism
ker.KL.A; jB// to ker Hom.K.A/;K.jB//. The second part of the isomorphism is then a
direct computation, which relies heavily on the “von Neumann like” structure of B1 (in
particular, K�.B

1/ Š .AffT .B1/; 0/) via the techniques in [2] hinted at in Section 9.1.
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In this note we survey some topics in random walks on countable groups. The main focus
is on quantitative estimates for random walk characteristics on amenable groups, in con-
nections to geometric and algebraic properties of the underlying groups.
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1. Introduction: a brief review of some history

Random walks on general countable groups were introduced by H. Kesten in his
thesis titled Symmetric Random Walks on Groups [63]. Let � be a countable group and let
� be a probability measure on � . We say that � is symmetric if �.g/ D �.g�1/ for all
g 2 � , and � is nondegenerate if the support of � generates � as a semigroup. Consider a
random walk on � in which every step consists of right multiplication by a random group
element distributed according to �. In other words, take a sequence of independent random
variables .Yn/1nD1 on � distributed as �. Let W0 D id� , Wn D Y1 � � � Yn. We refer to the
process .Wn/1nD0 as a �-random walk on � . The distribution of Wn is the nth convolution
power �.n/.

When � is generated by a finite subset S � � , consider the Cayley graph of .�; S/,
which is a graph with vertex set� and edge set ¹.g;gs/ W g 2 �;s 2 Sº. The word length jgjS

of a group element is the smallest integer n � 0 for which there exist s1; : : : ; sn 2 S [ S�1

such that g D s1 � � � sn. A random walk with step distribution � supported on S [ S�1 can
be visualized as a random nearest neighbor exploration process on the Cayley graph.

The questions considered in [62,63] regard the relation between the spectrum of the
associated linear operator P� on `2.�/ and the structure of the group � , where
P�f .x/ D

P
y2� f .xy/�.y/. The original definition of amenability, introduced by von

Neumann to explain the Hausdorff–Banach–Tarski paradox, says that � is amenable if
there is a �-invariant mean on `1.�/. Kesten’s characterization of amenability [62] states
that when � is a nondegenerate symmetric probability measure on � , the spectral radius
�.�; �/ D limn!1 �.2n/.id/1=2n is 1 if and only if � is amenable. When � is amenable,
one might further ask what is the behavior of the spectral distribution of P� near 1, or of the
decay of return probability �.2n/.id/ when n goes to infinity. Since the pioneering work of
Varopoulos, such questions are studied using both analytic and geometric tools. In particular,
there are close relations between the behavior of the heat semigroup .P n� /1nD0 on `2.G/ and
geometric properties captured through Sobolev-type inequalities, see the survey [98] and the
monograph [99].

A real-valued function f on � is called �-harmonic if it satisfies the mean value
property that f .x/D

P
y2� f .xy/�.y/ for all x 2 � . When all bounded �-harmonic func-

tions are constant, we say .�; �/ has the Liouville property. A theory for the non-Liouville
case, in the more general context of locally compact second countable (abbreviated as lcsc)
groups is initiated by Furstenberg [37,39,40], where a measure-theoretical object called Pois-
son boundary (also called Poisson–Furstenberg boundary) was introduced to represent the
space of bounded �-harmonic functions. In particular, the Poisson boundary of .G; �/ is
trivial if and only if .G; �/ has the Liouville property. Note that the measure-theoretical
Poisson–Furstenberg boundary is different from the topological Furstenberg boundary which
is also introduced in [37].
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Entropy is a crucial quantity in the study of Poisson boundaries. Let .Wn/1nD0 be a
�-random walk on a countable group � . Denote byH�.n/ the (Shannon) entropy of Wn,

H�.n/ D H.Wn/ D �

X
g2�

�.n/.g/ log�.n/.g/: (1.1)

The limit h� D limn!1H�.n/=n is called the (Avez) asymptotic entropy of the �-random
walk. The celebrated entropy criterion for the Liouville property, due to Avez [7], Derriennic
[28] and Kaimanovich–Vershik [60], states that if � has finite entropy, then the asymptotic
entropy is 0 if and only if .�; �/ is Liouville.

Suppose now � is generated by a finite subset S � � . When the measure � has
finite first moment with respect to the word norm j � jS , that is,

P
jgjS�.g/ < 1, we may

consider the speed function (also called rate of escape or drift), defined as

L�.n/ D E
�
jWnjS

�
D

X
g2�

jgjS�
.n/.g/: (1.2)

The limit l� D limn!1 L�.n/=n is called the asymptotic speed/drift. By Kingman’s sub-
additive ergodic theorem, we have jWnjS=n ! l� when n ! 1 almost surely.

By the so called “fundamental inequality” that h� � vl� (see, e.g., [19]), where
v is the asymptotic volume growth rate of .�; S/, we have that l� D 0 implies h� D 0.
A theorem of Karlsson and Ledrappier [61] combined with the entropy criterion imply the
following speed criterion: for a nondegenerate centered step distribution � on � with finite
first moment, the asymptotic speed l� D 0 if and only if .�;�/ is Liouville. In the special case
where � is a nondegenerate symmetric probability measure with finite support, the speed
criterion is proved earlier in [96] by showing a general off-diagonal estimate for transition
probabilities P n.x; y/, where P is a reversible Markov operator on a countable state space.
A generalization and improvement of this estimate is given in [22] (with a simpler proof)
and is now called the Varopoulos–Carne inequality. Applied to a �-random walk on � , the
inequality reads: let S D supp� and take the word distance on the Cayley graph .�;S/, then

P n� .x; y/ � 2e�dS .x;y/
2=2n: (1.3)

When .�; �/ is not Liouville, the Poisson boundary identification problem asks if
one can find an “explicit” �-spaceX , a � -algebraB onX and a probability measure � onB,
such that .X;B; �/ is isomorphic to the Poisson boundary of .�;�/ via a �-equivariant mea-
surable isomorphism. The entropy criterions of Kaimanovich [57] provide powerful tools for
the identification problem. As remarked in [59], a majority of known examples of nontrivial
boundary behaviors of random walks on countable groups fall into one of the following two
classes:

(i) Convergence of random walk sample paths to some suitable geometric bound-
ary, in the presence of hyperbolicity or nonpositive curvature.

(ii) Pointwise stabilization of some notion of “configurations” along random walk
sample paths.

3342 T. Zheng



Based on the limit behavior of the random walks observed, one can define a space .X;B; �/
which is a quotient of the Poisson boundary (such a space is called a �-boundary). Roughly
speaking, the entropy criterion says that the candidate space .X;B; �/ is isomorphic to
the Poisson boundary if the random walk .Wn/1nD0 conditioned on its “limit” in X , has
asymptotic entropy 0 almost surely (see [57, Section 4] for a precise statement). The ray and
strip criterions in [57] provide more checkable sufficient conditions to ensure the conditional
asymptotic entropy given .X;B; �/ is 0 almost surely.

Prototype examples of (i) are randomwalks on nonelementary Gromov word hyper-
bolic groups, where the geometric boundary is the visual boundary. In this case for a step
distribution � of finite entropy and finite log-moment, the visual boundary equipped with
the hitting distribution is identified as the Poisson boundary of the �-random walk in [57].
This type of geometric boundary identification holds for a wide class of groups acting on
hyperbolic spaces (not necessarily proper or locally compact), see the work of Maher and
Tiozzo [76] and references therein.

Prototype examples of (ii) are random walks on the so called lamplighter groups
.Z=2Z/ o Zd D .˚ZdZ=2Z/ Ì Zd . Symmetric random walks on .Z=2Z/ o Zd , d � 3, are
considered in [60] as first examples of random walks on amenable groups with nontrivial
Poisson boundary. A crucial observation there is that for some suitably chosen step distribu-
tion �, when the projected random walk on Zd is transient, the configuration in ˚ZdZ=2Z

stabilizes pointwise along the random walk trajectory almost surely. The question whether
the �-boundary from pointwise stabilization is the full Poisson boundary remained open,
until resolved positively in the work of Erschler [33] for d � 5 and in Lyons and Peres [73]

for all d � 3.
In the rest of this note we survey in more details some aspects around asymptotic

behaviors of random walks. Because of limitations of space and the author’s knowledge,
this survey is not intended to be comprehensive; rather only a small selection of topics are
discussed.

2. A few themes

Here are some loosely phrased questions that have emerged from the study of
random walks on groups:

(1) Can some random walk behaviors (for classes of random walks on a group, say
finite range nondegenerate symmetric random walks, random walks satisfying
some moment condition, etc.) be deemed group invariant?

(2) What properties of the group can be characterized in terms of random walk
behaviors?

(3) Can random walk behavior be used to understand groups and their actions?

In each of these directions of research, many natural questions remain open.
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2.1. Stability problems
Question 1 is often casted as stability problems. It is interesting both from the point

of view of understanding random walk behaviors, and searching for group invariants arising
from stochastic processes on them. Regarding the behavior of return probabilities, the fol-
lowing stability theorem is established by Pittet and Saloff-Coste [87] using comparison of
Dirichlet form techniques (for the definition of Dirichlet form in this context see Section 3.1).
Given two nonincreasing functions f; g W N ! R, we say they are equivalent if there is a
constant C � 1 such that g.Cx/=C � f .x/ � Cg.x=C/. We say a probability measure �
on � has finite ˛-moment (with respect to the word distance) if

P
g2� jgj˛S�.g/ < 1.

Theorem 2.1 ([87]). The equivalence class of the decay function n 7! �.2n/.id/, where � is
the step distribution of a nondegenerate symmetric random walk of finite second moment on
� , is a quasiisometry invariant.

The finite second moment condition in the theorem is necessary. For example, on
Z consider an ˛-stable-like measure �˛.x/ D

c˛
.1Cjxj/˛C1 , where ˛ 2 .0; 2/ and c˛ is the

normalizing constant so that �˛ has total mass 1. Then the decay function behaves like
�
.2n/
˛ .0/' n� 1

˛ , which is not equivalent to the decay function of symmetric simple random
walk on Z.

In [16], Bendikov and Saloff-Coste considered the question of fastest decay of return
probability under a given moment condition. Given ˛ 2 .0; 2/ and a constant C > 0, let ��;˛

be the set of all symmetric probability measures � on � such that
P
g2� jgj˛S�.g/ � C .

Consider the following function of fastest decay under ˛-moment condition:

ˆ�;˛ W n 7! inf
®
�.2n/.id/; � 2 ��;˛

¯
:

It turns out to be convenient to consider the version defined using weak ˛-moment as well.
For some specific classes of groups the behavior of ˆ�;˛ can be understood rather well,
see [16, 90]. However, the question whether the equivalence class of the function ˆ�;˛ is a
quasiisometry invariant remains open.

In contrast to the decay of return probabilities, where tools such as comparison of
Dirichlet forms are available, for entropy and speed functions stability is a well-known open
problem for general amenable groups. For instance, fix the group � , it is an important open
question whether the behavior of the entropy function n 7! H�.n/ or the speed function
n 7! EŒjXnjS �, is stable among nondegenerate, symmetric, finitely supported step distribu-
tions on � . Note that it is known that the Liouville property is not stable under quasiisometry
for general graphs, see [17,75].

2.2. Characterizations in terms of random walks
Kesten’s characterization of amenability cited earlier can be viewed as a first result

in the direction of Question 2. Kesten asked in [64] for a characterization of recurrent groups.
What are the finitely generated groups that can carry a nondegenerate recurrent symmetric
random walk? This problem was settled by Varopoulos in the 1980s, invoking Gromov’s
polynomial growth theorem.
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Theorem2.2 ([97]). Suppose� is a finitely generated group and there exists a nondegenerate
symmetric probability measure � on � such that the �-random walk is recurrent. Then � is
a finite extension of the trivial group ¹idº, Z; or Z2.

The growth function is an important geometric invariant of a group. Let � be a
finitely generated group and S be a finite generating set of � . The growth function v�;S .n/
counts the number of elements with word length j jS � n, that is,

v�;S .n/ D
ˇ̌®
 2 � W j jS � n

¯ˇ̌
:

A finitely generated group � is of polynomial growth if there exists 0 < D < 1 and a
constant C > 0 such that v�;S .n/ � CnD . It is of exponential growth if there exist � > 1
and c > 0 such that v�;S .n/ � c�n. If v�;S .n/ is subexponential, but � is not of polynomial
growth, we say � is a group of intermediate growth. By Gromov’s theorem [46], any group
of polynomial growth is virtually nilpotent. For some classes of groups, the growth is either
polynomial or exponential (for example, for solvable groups by results of Milnor and Wolf
[79,101], and for linear groups as it follows from the Tits alternative [93]).

The first examples of groups of intermediate growth are constructed by Grigorchuk
in [43], answering a question of Milnor. These groups are indexed by infinite strings ! in
¹0; 1; 2º1: for any such !, four automorphisms a; b! ; c! ; d! of the rooted binary tree are
associated. The group G! is generated by S D ¹a; b! ; c! ; d!º. By [43], if ! is eventually
constant thenG! is virtually abelian (hence of polynomial growth); otherwiseG! is of inter-
mediate growth. The group G! is periodic (also called torsion) if and only if ! contains all
three letters 0; 1; 2 infinitely often. A special example of such a string is .012/1; the corre-
sponding group is called the first Grigorchuk group, which was introduced and shown to be
an infinite torsion group Grigorchuk in [45]. First examples of simple groups of intermediate
growth are constructed in the recent work of Nekrashevych [83,84].

A key point in Varopoulos’ proof is that a volume growth lower bound (geometric
property of the underlying group) implies an upper bound for the decay of return probabilities
(analytic property of the heat semigroup). More precisely, suppose that there are constants
c; d > 0 such that the volume growth of the group � satisfies v�;S .n/ � cnd for all n, then
there is a constant c1 > 0 such that�.2n/.id/� c1n

� d
2 . Since, by Gromov’s theorem [46] and

its version in van den Dries and Wilkie [94], a group of weak polynomial growth is virtually
nilpotent, this estimate leads to a proof of Theorem 2.2.

We now discuss some results that characterize properties of the underlying group
� in terms of boundary behaviors of random walks. In [37] Furstenberg proved that if � is
nonamenable, then for any nondegenerate step distribution � on � , the Poisson boundary of
.�; �/ is nontrivial; and the converse to this statement was conjectured to be true as well.
This conjecture was proved independently by Kaimanovich and Vershik [60], Rosenblatt [88]:

Theorem 2.3 ([60,88]). A countable group � is amenable if and only if there is a nondegen-
erate symmetric random walk on � with trivial Poisson boundary.

It is classical that for any step distribution on a virtually nilpotent group, the asso-
ciated Poisson boundary is trivial, see [30]. In [60] it is conjectured that on any group of

3345 Asymptotic behaviors of random walks on countable groups



exponential growth, there exists a symmetric step distribution (of infinite support in gen-
eral) with nontrivial Poisson boundary. The first result on nontrivial boundary behavior of
randomwalks on intermediate growth groups is due to Erschler [32]. Note that by the entropy
criterion for the Liouville property, any finite range random walk on a group of intermedi-
ate growth has trivial Poisson boundary. Thus to observe nontrivial boundary behavior, it is
necessary to take random walk step distributions with infinite support.

Theorem 2.4 ([32]). Let� DG! be a Grigorchuk group with! 2 ¹0;1º1, where! contains
infinite numbers of 0 and 1. Then � admits a symmetric measure � of finite entropy such that
the Poisson boundary of .�; �/ is nontrivial.

We mention that the nontrivial limit behavior observed in Theorem 2.4 is of type
(ii) as described in the Introduction.

The longstanding problem which groups admit random walks with nontrivial Pois-
son boundary is completely settled in the recent work of Frisch, Hartman, Tamuz, and Vahidi
Ferdowsi [36]. Recall that � has the infinite conjugacy class property (ICC) if each of its non-
trivial elements has an infinite conjugacy class. Note that in someworks the definition of ICC
also requires the group to be nontrivial. For a finitely generated group � , having no ICC quo-
tient except the trivial one ¹idº is equivalent to being virtually nilpotent.

Theorem 2.5 ([36]). Let � be a countable group. The following are equivalent:

(i) � has a quotient group N� such that N� is a nontrivial ICC group.

(ii) There is a probability measure � on � with nontrivial Poisson boundary.

The direction (ii) implies (i) in the statement is known from the earlier work of
Jaworski in [52]. The direction (i) implies (ii) is proved in [36] by a novel construction of step
distributions with nontrivial Poisson boundary, directly using the ICC property. Moreover,
the measure � can be taken to be a symmetric measure with finite Shannon entropy whose
support generates � . Theorem 2.5 solves the aforementioned conjecture of Kaimanovich
and Vershik positively; and moreover brings in the key insight that the algebraic condition of
having a nontrivial ICC quotient plays a crucial role. We mention that the similar problem
for nondiscrete locally compact groups remains open: for instance, how to characterize a
locally compact group G which admits a step distribution � with nontrivial Poisson bound-
ary, where � is absolutely continuously with respect to the Haar measure of G. For this
formulation, an answer is known for connected compactly generated lcsc groups by [50]:
the characterization is that G is not of polynomial growth. The question is open for totally
disconnected locally compact groups. One may also drop the constraint on � and formulate
the problem for any step distribution on the group G. Dropping the assumption on � may
change possible boundary behaviors even on polynomial growth groups, see [51,53].

2.3. Random walks as tools
Nowwe turn to Question 3. Random walks provide a natural tool to study stationary

measures. Consider an action of � on a compact spaceX by homeomorphims and let � be a
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probability measure on� . Denote byP.X/ the space of probability measures on the Borel � -
field ofX . Then by a standard compact argument, there always exists a�-stationary measure
� 2 P.X/, that is, � satisfies

P
g2� g:��.g/ D � where g:�.A/ D �.g�1:A/. One funda-

mental observation in [37] is that the martingale convergence theorem implies that almost
surely, along the �-random walk .Wn/1nD0, the sequence of measures .Wn:�/ converges in
the weak topology of P.X/. In particular, the limit measures give rise to a �-equivariant
map from the Poisson boundary of .�;�/ to P.X/. This map is sometimes referred to as the
affine boundary map associated to � Õ .X; �/. Ideas of using Poisson boundaries to answer
algebraic questions appear in the work of Furstenberg on lattice envelopes [38]. Furstenberg’s
ideas inspire the use of boundary theory in later works on rigidity phenomena, which we do
not touch on here.

Next we discuss some works in which random walks are used as tools to prove
amenability of groups. It is shown in von Neumann’s work that finite groups and abelian
groups are amenable and that the class of amenable groups (AG) is closed under four standard
operations: taking (i) subgroups, (ii) quotients, (iii) group extensions, and (iv) direct unions.
The term elementary amenable is coined by Day: denote by EG be the smallest class of
groups which contains all finite groups and all abelian groups and is closed under operations
(i)–(iv).

A finitely generated group � of subexponential growth is amenable: subexponential
growth implies that there exists a subsequence of balls B.id; ri / forming a Følner sequence.
Chou shows in [23] that a finitely generated group in EG is either virtually nilpotent or of
exponential growth; a torsion group in EG is locally finite; and a finitely generated simple
group in EG is finite. Thus Grigorchuk groups of intermediate growth are in AG but not EG.
As in [27], denote by SG the closure of all groups of subexponential growth under (i)–(iv). It
is clear that EG � SG � AG.

A first example to separate SG and AG is shown in Bartholdi and Virág [14]. The
example is called the Basilica group, which was first studied in [44]. The Basilica group
B is a two-generated group acting on the rooted binary tree. One key idea in [14] is certain
randomwalk onB enjoys self-similar properties compatible with thewreath recursions down
the tree. The self-similarity allows one to efficiently use the recursion on the tree to study
behaviors of the random walk. In [14] it is shown that the return probability of such a random
walk on B decays subexponentially, thus B is amenable by Kesten’s criterion. The idea
of self-similar random walks is later extended to larger classes of groups acting on trees
in [2, 13, 20, 58]. It is later understood that for proving amenability, one crucial property is
that the induced random walk on certain orbital Schreier graph is recurrent. For instance,
amenability of B can be shown in the unified framework of “extensive amenability,” which
emerges from the seminal work [54] and is developed in [55,56].

For the rest of this subsection we focus on the relation of randomwalks with nontriv-
ial Poisson boundary to volume growth of the group. The most direct way to obtain a growth
lower bound is to exhibit distinct elements within a given radius. For instance, if � contains
two elements a; b such that they generate a free semigroup, then thIS semigroup provides 2n

distinct elements within radius nmax¹jajS ; jbjSº. In general, it can be rather challenging to
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find explicit elements within a given distance, see [11,71] on the first Grigorchuk group. As a
consequence of the entropy criterion and Shannon’s theorem, random walks with nontrivial
Poisson boundary on � can provide lower bounds on volume growth of � . Heuristically,
instead of exhibiting many distinct elements in a ball, one constructs random walks with
positive asymptotic entropy, which indirectly imply there must be sufficiently many points
in balls. The quantitative relation between the tail decay of the step distribution� and growth
of � can be made precise:

Lemma 2.6. Suppose � admits a �-random walk with nontrivial Poisson boundary, where
the probability measure � has finite entropy H.�/ < 1 and finite ˛-moment, for some
˛ 2 .0; 1�. Then there is a constant c > 0 such that the volume function satisfies

v�;S .r/ � exp.cn˛/:

See [35, Lemma 2.1] for a more general statement. To avoid possible periodicity issues,
we may always assume that �.¹id�º/ > 0: changing � to a convex combination of � and the
ı-mass at id does not change the space of harmonic functions. To make use of Lemma 2.6,
one first constructs a random walk � with finite entropy, which is designed to guarantee that
there exists a tail event A of the �-random walk whose probability is not in ¹0; 1º. Then we
have:

Observation of one nontrivial tail event for �-random walk

m

Poisson boundary of .G;�/ is nontrivial

+

Volume lower bound from the moment condition satisfied by �:

The random walks with nontrivial Poisson boundary on the Grigorchuk group G.01/1 con-
structed by Erschler in Theorem 2.4 yield lower bounds which match rather tightly with
upper bounds. More precisely, by [32, Theorems 2 and 3], the growth function ofG D G.01/1

satisfies

exp
�

n

log2C�.n/

�
. vG;S .n/ . exp

�
n

log1��.n/

�
; for any � > 0:

The construction in [32] uses the fact thatG.01/1 contains an infinite dihedral group. For the
Grigorchuk group G.012/1 , which is a torsion group by [45], random walks with nontrivial
Poisson boundary and tight control over the tail decay are constructed in [35].

Theorem 2.7 ([35]). Let ˛0 D
log2
log�0 � 0:7674, where�0 is the positive root of the polynomial

X3 � X2 � 2X � 4. For any � > 0, there exists a constant C� > 0 and a nondegenerate
symmetric probability measure � on G D G.012/1 of finite entropy and nontrivial Poisson
boundary, where the tail decay of � satisfies that for all r � 1,

�
�®
g W lS .g/ � r

¯�
� C�r

�˛0C�:
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As a consequence, for any � > 0, there exists a constant c� > 0 such that for all n � 1,

vG;S .n/ � exp.c�n˛0��/:

The volume lower bound in Theorem 2.7 matches up in exponent with the growth
upper bound in [10]. In particular, combined with the upper bound we conclude that the
volume exponent of the first Grigorchuk group G D G.012/1 exists and is equal to ˛0, that
is,

lim
n!1

log log vG;S .n/
logn

D ˛0:

A detailed sketch of the construction of measure � stated in Theorem 2.7 can be found in
[35, Introduction].

The method also applies to other period strings ! in ¹0; 1; 2º1, which contains
all three symbols infinitely often, to show the corresponding Grigorchuk group G! has a
volume exponent ˛! 2 .0; 1/, see [35, Theorem B]. When ! is not periodic, it is shown in
[43] that for some choices of !, the growth of G! exhibits oscillating behavior: limit of
log log vG! ;S .n/= log n does not exist. Indeed, the family ¹G!º provides a continuum of
mutually nonequivalent growth functions. This statement is shown in [43] with the introduc-
tion of the space of marked groups, see more discussion in Section 3.2. In [35, Theorems C and

8.5] it is shown that for a large collection of nonperiodic !, the oscillating growth function
of G! can be estimated with good precision. In particular, combined with the upper bounds
from [12], the estimates show that given any ˛ � ˇ in the interval Œ˛0; 1�, where ˛0 is the
growth exponent of G.012/1 , there is an ! 2 ¹0; 1; 2º1 with

lim inf
n!1

log log vG! ;S .n/
logn

D ˛ and lim sup
n!1

log log vG! ;S .n/
logn

D ˇ:

We mention that it is an open problem whether one can find an example of intermediate
growth groupwhose lower growth exponent is strictly less than ˛0. Such questions are related
to Grigorchuk’s gap conjecture, see [42].

3. Quantitative behavior of random walk characteristics

In this section we focus on quantitative estimates for random walks on groups. Here
are some of the key interrelated aspects:

(i) What are the spectral properties of the convolution operator f 7! f ��when
� is a symmetric probability measure on �?What is the behavior of the prob-
ability of return of a symmetric random walk driven by step distribution �?

(ii) What is the asymptotic entropic behavior, that is, the behavior of n 7!H�.n/

as n tends to infinity? HereH�.n/ is the Shannon entropy of Wn as in (1.1).

(iii) What is the escape behavior of transient random walks captured in terms
of some given distance function on the group, say, in the form of average
displacement as in (1.2) or more refined descriptions?
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(iv) What is the structure of sets �-harmonic functions (bounded, positive, of
polynomial growth, of a given growth type, slow or fast, etc.)?

In this section we mainly focus on topics around (i)–(iii); unbounded harmonic functions are
discussed in the next section.

3.1. Isoperimetric profiles
We first introduce some notations for (i). Let R� be the right convolution operator

`2.�/ ! `2.�/ defined as R�.f /.x/ D .f � �/.x/ D
P
g2� f .xg

�1/�.g/. The return
probability to identity at time n is given by �.n/.id/D hRn�ıid; ıidi`2.�/. When � is symmet-
ric, R� is a self-adjoint operator. Denote by ER�

�
D 1.�1;��.R�/ the spectral projections

of R�. The spectral measure of R� is given by

NR�
�
.�1; ��

�
D

˝
E
R�
�
.ıid/; ıid

˛
`2.�/

:

The relation between return probabilities and the spectral measure is expressed through the
transform

�.2n/.id/ D

Z
R
�2ndNR�.�/ D

Z 1

�1

�2ndNR�.�/:

The last equality is becauseR� is a Markov operator. When � is an infinite amenable group,
one may draw information on the behavior of the spectral measure near 1 from the decay of
return probabilities, using Tauber–Karamata theorems for Laplace transforms.

The decay of return probability �.2n/.id/ is closely related to isoperimetric pro-
files of R�, which in the discrete setting can be introduced for more general reversible
Markov operators. Let V be a countable set, typically the vertex set of a graph, and let
P W V � V ! Œ0; 1� be the transition probabilities of a reversible Markov chain on V . Denote
by � a reversing measure for P , that is, �.x/P.x; y/ D �.y/P.y; x/ for all x; y 2 V . Con-
sider the associated Dirichlet form

EP .f1; f2/ D
1

2

X
x;y

�
f1.y/ � f1.x/

��
f2.y/ � f2.x/

�
�.x/P.x; y/;

which is a bilinear form on Dom.EP / D ¹f 2 L2.V; �/ W EP .f; f / < 1º. The
L2-isoperimetric profile of P , also called the spectral profile, is defined as

ƒ2;P W RC ! Œ0; 1�;

v 7! inf
®
�P .�/ W � � V; �.�/ � v

¯
;

where �P .�/ is the lowest eigenvalue of the Laplacian operator I �P with Dirichlet bound-
ary condition in �,

�P .�/ D inf
®
EP .f; f / W supp .f / � �; kf kL2.V;�/ D 1

¯
:

The L1-isoperimetric profile is defined analogously. Using an appropriate coarea formula,
ƒ1;P can equivalently be defined more geometrically as

ƒ1;P .v/ D inf
²P

x;y2V 1�.x/1V n�.y/�.x/P.x; y/

�.�/
W �.�/ � v

³
;
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where the quantity
P
x;y2V 1�.x/1V n�.y/�.x/P.x; y/ measures the size of the boundary

of � with respect to P .
Between the L1- and L2-isoperimetric profiles, we have the following inequality,

often referred to as Cheeger’s inequality (see, e.g., [68]):
1

2
ƒ21;P � ƒ2;P � ƒ1;P : (3.1)

The nonobvious directionƒ2;P �
1
2
ƒ21;P is useful for transferringL1-expansion inequalities

to spectral profile lower bounds. The Coulhon–Saloff-Coste inequality [26], which implies,
for example,

ƒ1;Ru

�
2v�;S .r/

�
�

1

2r
;

where u is the uniform measure on S [ S�1 and v�;S is the volume function function of
.�; S/, can be proved by an elementary mass displacement type argument. Sharp
L1-expansion inequalities on Zd can be derived from Loomis–Whitney inequalities, see,
e.g., [72, Section 6.6]; further connections between isoperimetric inequalities and entropy
inequalities (and consequences such as Loomis–Whitney, Harper inequalities) are investi-
gated in [48].

The use of Nash-type inequalities to estimate return probabilities in the discrete set-
ting was introduced in [95]. It turns out Nash inequalities are equivalent to Faber–Krahn-type
inequalities, where the latter is of the form ƒ2;P .v/ � f .v/ for some positive function f .
In fact, in very general settings, it is known that various forms of functional inequalities
are equivalent, see [8] and references therein. Comparison of forms, considered in [29] for
random walks on finite groups, is a useful tool to deduce isoperimetric inequalities for a
Markov operator P of interest from known results on other Markov operators.

Through a series of works by Coulhon and Grigor’yan [24, 25], it is shown that
under some mild conditions, the asymptotic decay of return probability supx2V P

2n.x; x/

and the L2-isoperimetric profile of P determine each other. More precisely, suppose that
�� D infx2V �.x/ > 0. Let .t/ be the function defined by the equation

t D

Z  .t/

��

dv

ƒ2;P .v/v
; (3.2)

then under a mild regularity assumption, the return probabilities satisfy

sup
x2V

P 2n.x; x/

�.x/
'

1

 .2n/
: (3.3)

For the Markov operator R�, where � is a probability measure on a countable amenable
group, a precise formula relating the behavior of the spectral measure NR� near 1 and ƒR�
near infinity is obtained in [15], under the assumption thatƒR� ı exp is doubling near infinity.

For classes of groups where explicit estimates of return probabilities and isoperi-
metric profiles are known, the read may consult [15, Table 1] and pointers to references there.
In addition to the Table, for free solvable groups see [89], and for discrete subgroups of upper
triangular matrices over a local field see [92].
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A consequence of (3.2) and (3.3) is the following isoperimetry test for transience.
Suppose we have a Faber–Krahn inequality for an irreducible reversible Markov operator
P of the form ƒ2;P .s/ � f .s/, s 2 Œ1;1/, where f is a continuous positive decreasing
function on Œ1;1/. If Z 1

1

ds

s2f .s/
< 1; (3.4)

then theMarkov chainwith transition operatorP is transient, see [41, Theorem 6.12]. Recall the
type (ii) boundary behavior described in the Introduction, which often relies on the transience
of induced random walks on certain orbits. In particular, isoperimetry of induced random
walks on Schreier graphs play an important role in the construction of random walks with
nontrivial Poisson boundary in Theorem 2.7.

3.2. The space of marked groups and realization problems
The speed function realization problem, which is often attributed to Vershik, asks

what kind of functions can be realized as the speed function of a simple random walk on
some finitely generated group. By realizing a given function f as a speed function, we mean
finding .�;�/ such that the speed of the�-randomwalk satisfies f .n/=C �L�.n/�Cf .n/

for some constant C � 1. Similar realization problems can be posed for other random walk
characteristics such as the entropy functionH�.n/; and for geometric invariants such as the
growth function v�;S .

A complete solution to a realization problem consists of two parts. The first part
identifies constraints on the functions; the second part shows that all functions under the
necessary constraints can be realized. Consider the speed function L�.n/, where � is a
nondegenerate symmetric probability measure of finite support on � . Then the triangle
inequality for the norm j � jS and translation invariance imply that L�.n/ is a subadditive
function, L�.n C m/ � L�.n/ C L�.m/. Another constraint is known as the “universal
diffusive lower bound”, which is proved in Lee and Peres [69] building on an earlier idea
of Erschler: there is a universal constant c > 0 such that for any infinite amenable group
� equipped with a finite generating set S , for any symmetric probability measure � on �
whose support contains S , we have

L�.n/ � c
p
p�n; where p� D min

2S
�./:

For more discussion on the connection of such a general bound to harmonic embeddings
into a Hilbert space, see Section 4. The diffusive lower bound is achieved, for example, by
simple random walk on Z: take � D Z and �.˙1/ D

1
2
. Given these constraints, the speed

function realization problem asks what functions between
p
n and n can be realized as speed

function of finite range symmetric random walks on groups.

Theorem 3.1 ([21]). There exists a universal constant C > 1 such that the following holds.
For any function f W Œ1;1/ ! Œ1;1/ such that f .1/ D 1 and x=f .x/ is nondecreasing,
there exist a group� equipped with a finite generating set T and a nondegenerate symmetric
probability measure � on � of finite support such that
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• the speed and entropy functions satisfy L�.n/ 'C H�.n/ 'C

p
nf .

p
n/;

• the Lp-isoperimetric profile satisfies ƒp;R�.v/ 'C .
f .log.eCv//
log.eCv/

/p for any
p 2 Œ1; 2�;

• the return probability satisfies � log.�.2n/.id// 'C w.n/, where w.n/ is deter-
mined by n D

R w.n/
1

. s
f .s/

/2ds.

When the function f is sublinear, that is, limx!1 f .x/=x D 0, the group � can be chosen
to be elementary amenable with asymptotic dimension 1.

Here the notation f 'C g means g.x/=C � f .x/ � Cg.x/. In particular, the first
item gives a satisfying answer to the speed function realization problem. The statement for
speed function realization between n3=4 and n ,  < 1, is obtained earlier by Amir and
Virag in [4]. The group� constructed in Theorem 3.1 is of exponential growth. It is an open
problem for the entropy function, whether a nondegenerate symmetric random walk � on a
group � of exponential growth always satisfiesH�.n/ &

p
n.

As cited in Section 2.3, the space of marked groups is introduced by Grigorchuk
in [43] to show that there are 2@0 groups with pairwise inequivalent growth functions.
A k-marked group is a pair .�; T /, where T D .t1; : : : ; tk/ is an ordered k-tuple in �k

which generates � . Equivalently, let Fk be the rank k free group; .�; T / corresponds to
the kernel of the homomorphism Fk ! � which sends the j th free generator of Fk to tj ,
1 � j � k. Denote by Mk the space of k-marked groups. The product topology on 2Fk
induces a topology on Mk , via the identification described above. This topology on Mk is
sometimes called the Cayley–Grigorchuk topology, as two marked groups are close if their
labeled Cayley graphs agree on a large ball around the identity. Under this topology, Mk is
a metrizable compact Hausdorff space.

The product operation in Mk is called a diagonal product: consider a collection of
marked groups ..�i ; Ti //i2I their diagonal product, denoted by

N
i2I .�i ; Ti /, is the quo-

tient of Fk with kernel
T
i2I ker.Fk ! �i /. In some situations it is possible to understand

well the structure of a diagonal product. Consider a converging sequence of marked groups
..�i ; Ti //

1
iD1 in Mk and denote by .�0; T0/ D limi!1.�i ; Ti /. Then the limit .�0; T0/ is a

marked quotient of the diagonal product�D
N1

iD1.�i ; Ti /. When the sequence �i consists
of finite groups, � is a FC-central extension of �0. The construction in [21] takes diagonal
product of a sequence of marked groups which converges to a wreath product of the form
�0 D .A � B/ o Z where A; B are finite groups. The sequence is chosen so that one can
understand what elements in ker.� ! �0/ are, and, moreover, explicitly estimate the word
length of such elements with respect to the marking on�. The flexibility in the construction
allows proving Theorem 3.1.

3.3. Relations between random walk characteristics
The three random walk characteristic functions, namely the decay of return proba-

bilities, the entropy function, and the speed function post constraints on each other.
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3.3.1. Between speed and entropy
As a consequence of the Varopoulos–Carne inequality and the fundamental inequal-

ity mentioned earlier, for a symmetric probability measure � on G with finite support,
entropy and speed satisfy

1

n

�
1

4
L�.n/

�2
� 1 � H�.n/ � .v C "/L�.n/C lognC C; (3.5)

where v is the exponential volume growth rate of .G; supp�/, C > 0 is an absolute constant,
see [4, 31]. For example, if we know H�.n/ ' n� (that is, the entropy exponent is � ), then
the speed function is constrained by n� . L�.n/ . n.1C�/=2.

In [1], the joint realization problem of speed and entropy is considered. The con-
struction in [21]with a sequence of expanders as input and the one with finite dihedral groups
allows showing that for any entropy exponent � 2 Œ1=2; 1�, all speed exponents allowed by
the constraint (3.5) can be realized. That is, for any � 2 Œ1

2
; 1� and  2 Œ1

2
; 1� satisfying

� �  �
1
2
.� C 1/, there exists a finitely generated group G and a symmetric probability

measure � of finite support on G, such that the random walk on G with step distribution �
has entropy exponent � and speed exponent  , see [21, Corollary 1.3, Proposition 3.17]. The
case where both exponents �;  belong to Œ3

4
; 1� was treated by Amir [1].

3.3.2. Between return probabilities and entropy
Let � be a symmetric probability measure of finite entropy on a group G. In

[86,90], the following connection between return probability and entropy is shown. Let � be
a symmetric probability measure of finite entropy on � . Then:

• if � log�.2n/.id/=n1=2 ! 0 as n ! 1, then the pair .G; �/ has the Liouville
property;

• furthermore, if� log�.2n/.id/. nˇ whereˇ 2 .0;1=2/, then the entropy function
satisfies

H�.n/ . n
ˇ
1�ˇ ;

see [86, Theorems 1.1 and 3.2]. The sharpness of this bound, which turns a return probability
lower estimate into an entropy upper estimate, is demonstrated on a family of groups called
bubble groups, which are considered in [67].

If instead of slow decay of return probabilities, one has estimates on the spectral pro-
files of balls, �R�.B.id; r//. r�� , then, by [86, Theorem 1.6], the ˛-moment of displacement
of the �-random walk .Wn/1nD1 satisfies

E
h
max
1�k�n

jWkj
˛
S

i
� Cn˛=� ; for any ˛ 2 .0; �/:

3.4. Connection to metric embeddings
The study of embeddings of finitely generated groups (viewed as a metric space

with word distance on its Cayley graph) into Hilbert space was initiated by Gromov [47]. In
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the seminal work [102], G. Yu proved that groups that admit coarse embeddings into Hilbert
space satisfy the coarse Baum–Connes conjecture.

Distortion of embeddings of finite metric spaces has been extensively studied in the
theory of Banach spaces. Similar to the notion of distortion, Guentner and Kaminker [49]

introduce a natural quasiisometry invariant that characterizes how close to bi-Lipschitz can
an embedding of an infinite group into a Banach space be. Let � be a group generated by
a finite set S and equipped with the associated left-invariant word metric dS . For a Banach
spaceX let ˛�

X .�/ be the supremum over all ˛ � 0 such that there exists a Lipschitz mapping
f W� !X and c > 0 such that for all x;y 2� we have kf .x/� f .y/kX � cdS .x;y/

˛ . Sim-
ilarly, one can define the equivariant compression exponent ˛#X .�/ by restricting to equiv-
ariant Lipschitz maps, namely kf .gx/� f .gy/kX D kf .x/� f .y/kX for all g; x; y 2 G.
When the target space is the classical Lebesgue space Lp.Œ0; 1�/, we write ˛�

p .�/ and ˛#p.�/
for the compression exponents.

The idea of connecting the notion of Markov type, which is an important metric
invariant introduced by K. Ball [9], to Banach compression exponent of infinite groups first
appears in Austin, Naor, and Peres [6]. For wreath products, in [81] an explicit formula for the
Hilbert compression exponent ofH o Z is shown, assuming that the lamp groupH satisfies
˛#2.H/ D

1
2ˇ�.H/

, where ˇ�.H/ is the supremum of upper speed exponent of symmetric
random walk of bounded step distribution onH . Further, in [82] which significantly extends
the method in [6,81], theLp-compression exponent ofZ o Zwas determined forp � 1. In [21]

it is shown that for any p 2 Œ1; 2� and a finitely generated infinite group H , the equivariant
Lp-compression exponent of the wreath productH o Z is

˛#p.H o Z/ D min
²

˛#p.H/

˛#p.H/C .1 �
1
p
/
; ˛#p.H/

³
:

When applying the Markov-type method, one has the flexibility of choosing which Markov
chains to consider: for instance, ˛-stable like random walks in [82] and jumping processes
confined on finite subsets ofH o Z in [21].

It is known that distortion of metric embeddings can be captured by Poincaré
inequalities of general forms. In particular, the Markov-type inequalities mentioned above
can be viewed as a special form of Poincaré inequalities. Other types of obstructions to low
distortion embeddings can be observed in the metric geometry of finitely generated groups.
The construction of diagonal product � with infinite dihedral groups as input in [21] con-
tains scaled `1-cubes of growing sizes in �. Sharp estimates of distortion of embeddings
of `1-cubes into Lp-spaces are provided by the deep work of Mendel and Naor on metric
cotype in [77]. Explicit evaluation of compression exponents of such diagonal products yields
the following. With certain choice of parameters, such groups also provide the first exam-
ples where Lp-compression exponent, p > 2, is strictly larger than the Hilbert compression
exponent. It might be interesting to investigate this collection of groups in the program on
quasiisometric rigidity of solvable groups.
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Theorem 3.2 ([21]). For any 2
3

� ˛ � 1, there exists a 3-step solvable group� such that for
any p 2 Œ1; 2�,

˛�
p .�/ D ˛#p.�/ D ˛:

Further, there exists a 3-step solvable group �1 such that for all p 2 .2;1/,

˛#p.�1/ �
3p � 4

4p � 5
> ˛#2.�1/ D

2

3
:

4. Unbounded harmonic functions and equivariant

embeddings into Hilbert spaces

Besides bounded harmonic functions one may consider other classes of harmonic
functions and their relation to random walks. In this section we focus on harmonic func-
tions of at most linear growth on amenable groups. Unlike the boundary theory associated
with bounded harmonic functions, there is no systematic theory developed for this class of
harmonic functions. Throughout this section, let � be a finitely generated group and take a
symmetric probability measure � of finite generating support on � .

Let � W � ! U.H / be a unitary representation of � on a separable Hilbert spaceH .
A map b W � ! H is a 1-cocycle if b.gh/D b.g/C �gb.h/ for all g; h 2 � . Because of the
cocycle equality, given a probabilitymeasure� onG, b is�-harmonic if

P
s2�b.s/�.s/D 0.

A �-harmonic 1-cocycle b W G ! H is also referred to as an equivariant harmonic embed-
ding of G into H .

As a special case of results in [80] (for the finitely presented case) and [66], a finitely
generated group G does not have Kazhdan’s Property .T / if and only if it admits a noncon-
stant equivariant �-harmonic embedding into a Hilbert space. For an exposition of the proof
in the setting of finitely generated groups, see [65, Appendix]. In the amenable case, nontrivial
�-harmonic embeddings can be constructed more explicitly by using �-random walks, see,
for example, [69, Section 3] and [34].

One may ask about properties of unitary representations associated with noncon-
stant �-harmonic 1-cocycles. In [91] Shalom introduced the following notions in connection
to the large-scale geometry of the groups. We say � has Property HFD (HF, or HT, respec-
tively) if for every nonconstant �-harmonic 1-cocycle b W G ! H , the associated represen-
tation � has a finite-dimensional (finite, or trivial, respectively) subrepresentation. We say
� is weakly mixing if it does not admit any finite-dimensional subrepresentations. It is clear
that PropertiesHFD,HF, andHT are in increasing strength, while the sharpest one of them,
HT, implies that all �-harmonic 1-cocyles are homomorphisms to H .

4.1. Martingale small-ball probabilities
The existence of a nontrivial equivariant�-harmonic embedding b W� ! H implies

the a diffusive lower bound for speed of a �-random walk on G, see [69]. In this subsec-
tion, we review bounds on small-ball probabilities of the martingale b.Wt /, which provide
additional information about the behavior of the random walk. Note that from the cocycle
equality, kb.gs/ � b.g/kH D kb.s/kH , in particular the map b is Lipschitz.
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Consider a martingale .Xt /1tD0 with respect to filtration .Ft /1tD0 taking values in
a Hilbert space H . Under the assumption of bounded increments and that the conditional
variances EŒkXtC1 � Xtk

2jFt � are constant, general small-ball probabilities estimates are
proved independently in [70] and [5]. Applied to the martingale .b.Wt //1tD0, where .Wt /1tD0
is a �-random walk on � , we have:

Theorem 4.1 ([5,70]). For any nonconstant equivariant�-harmonic embedding b WG ! H ,
there is a constant C > 0, such that for all t; r � 1,

P
�b.Wt / � r

�
�
Cr
p
t
:

Note that this general bound cannot be improved, since, for instance, it is sharp for
a simple random walk .Wt / on Z where �.˙1/ D 1=2 and b W Z ! R given by b.z/ D z.
Note that in this example the representation associated with b is trivial.

When b W G ! H is a nonconstant harmonic 1-cocycle with weakly mixing repre-
sentation � , the martingaleXt D b.Wt / satisfies an asymptotic orthogonality condition: for
large k, the direction of the incrementXtCk �Xt is almost orthogonal toXt . More precisely,
when the representation � is weakly mixing, there exists a sequence of nonincreasing con-
stants .�k/k2N such that limk!1 �k D 0 and for any t; k 2 N, the martingale Xt D b.Wt /

satisfies
1

k
E

��
Xt

kXtk
; XtCk �Xt

�2
jFt

�
� �k almost surely: (4.1)

This claim can be deduced directly from [85, Lemma], which is a step in Ozawa’s functional
analytic proof of the Gromov polynomial growth theorem.

It turns out for H -valued martingales with bounded increments and asymptotic
orthogonality property (4.1), one can obtain superpolynomial decay bounds for small-ball
probabilities, following a classical Foster–Lyapunov drift-type supermartingale argument.
Applied to the martingale .b.Wt //1tD0, we have the following superpolynomial decay esti-
mate for small-ball probabilities. If b W G ! H is a nontrivial harmonic 1-cocycle with
weakly mixing representation � , then for any ˇ > 0, there exists a constant C > 0 depend-
ing on ˇ such that

P
�b.Wt / � r

�
� C

�
r

p
t

�ˇ
for all t; r � 1: (4.2)

4.2. Some open problems
Since its introduction in [91], it is believed that for amenable groups, PropertyHFD

is a rather strong property only satisfied by certain “small” groups. This is reflected in the
state that the only known examples of groups with PropertyHFD are nilpotent groups, poly-
cyclic groups, wreath product F o Z with finite F , and certain extensions of such groups.
There are very limited known tools to establish that a given group has Property HFD. If �
embeds as a lattice in a nondiscrete locally compact group G, then one might use the repre-
sentation theory of G: this approach is carried out in [91] to establish that polycyclic groups
have Property HFD. Probabilistic approaches using random walks, see [85], require strong
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coupling properties. For instance, it is still not known whether the wreath product F o Z2,
where F is finite, has PropertyHFD.

In this subsection, we discuss two problems on general amenable groups, in both sit-
uations knowing that the group � does not have PropertyHF implies positive answers. These
problems provide motivations to understand better the class of groups with PropertyHF.

4.2.1. Dimension of the space of linear growth harmonic functions
Problem 4.2 ([78]). Let HF1.�; �/ denote the space of �-harmonic functions on � whose
growth is bounded by a linear function. Is it true that HF1.�; �/ is finite dimensional if and
only if � is of polynomial growth?

For more background and discussions around this question see [78, Introduction].
The “if” direction is known: it is a step inKleiner’s proof [65] ofGromov’s polynomial growth
theorem. Towards the “only if” direction, when � does not have Property HFD, there exists
an irreducible unitary representation � W � ! H which is weakly mixing and associated
with a nonconstant �-harmonic cocycle b W � ! H . Consider the subspace of Lipschitz
�-harmonic functions ¹fvºv2H given by fv.g/ D hb.g/; vi. One can check that since � is
weakly mixing, the space ¹fvºv2H is infinite dimensional. When � has Property HFD but
notHF, then it virtually admits a solvable group of exponential growth as a quotient group,
see [91, Proposition 4.2.3]. In this case applying the results in [78] to a solvable quotient group
then lifting back to � show that HF1.�; �/ is infinite dimensional. Therefore the problem
remains open only for groups with PropertyHF.

4.2.2. Occupation time of balls
For a transient�-randomwalkW D .Wn/

1
nD1 on� , one can consider the occupation

time of a finite set, that is, the total amount of time the random walk spent in the given set.
Of particular interest is the occupation time of balls:

NW .r/ WD
ˇ̌®
n 2 N W Wn 2 BS .id; r/

¯ˇ̌
D

X
2BS .id;r/

G�.id; /;

where BS .id; r/ is the set of vertices within graph distance r to the identity on the Cayley
graph .�; S/, and G�.x; y/ D

P1

nD0 �
.n/.x�1y/ is the Green function of the �-random

walk.

Problem 4.3 ([74]). If .Wn/1nD0 is a transient symmetric randomwalk on a finitely generated
group G, then

E
�
NW .r/

�
. r2;

where NW .r/ is the occupation time of the ball BS .id; r/ as defined above.

The motivation for the conjectured quadratic bound is as follows. Let �r be the first
exit time of the ball B.id; r/ of a random walk starting at the identity. Take a equivariant
�-harmonic embedding b W G ! H normalized such that Ekb.W1/k

2 D 1. Applying the
optional stopping theorem to the martingale kb.Wt /k

2 � t , we deduce that E.�r / . r2.
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Heuristically, since the random walk is assumed to be transient, once it has left a ball
BS .id; C r/, where C is a large constant, the chances that it comes back to B.id; r/ is
small. Hence conjecturally, the expected occupation time of balls should admit a quadratic
upper bound as well.

In [74], it is shown that in general, for any nondegenerate symmetric transient random
walk .Wn/1nD0 on a finitely generated infinite group � , we have

E
�
NW .r/

�
. r2

p
log v�;S .r/; (4.3)

where v�;S .r/ is the volume growth function of .�; S/. In particular, on groups of exponen-
tial volume growth it yields the upper bound r5=2. The boundE.NW .r//. r3 on exponential
growth groups is shown in [18] relying only on the Varopoulos bound that on such groups
�.2n/.id/ . e�n1=3 .

We mention a connection of polynomial upper bounds on occupation times of balls
to positive �-harmonic functions. See [100, Chapter IV] for a treatment of the Martin bound-
ary, which is a topological boundary representing positive harmonic functions. The bound
E.NW .r// � CrD implies that the minimum of the Green function of the �-random walk
satisfies

min
2B.id;r/

G�.id; / �
CrD

jB.id; r/j
:

In particular, when � is of exponential growth, by the classical bound E.NW .r// . r3,
the minimum of the Green function in B.id; r/ decays exponentially in r . By translation
invariance, we can write the Green function as a telescoping product

G�.id; y1y2 � � �yn/

G�.id; id/
D

n�1Y
iD0

G�.yi ; yiC1 � � �yn/

G�.yiC1; yiC1 � � �yn/
; where y0 D id; yi 2 �:

Then an argument by contradiction shows that exponential decay of min2B.id;r/G�.id; /
in r implies that there exists s 2 S2 and a sequence .n/1nD0 in � going to infinity such
that limn!1 G�.s; n/=G�.id; n/ < 1. This shows that the Martin kernel K.�; �/ is not
constant in the first coordinate for some point � in the Martin boundary; equivalently, there
are nonconstant positive �-harmonic functions on � . Thus it gives another proof (though
similar in spirit) of the result in [3], for any nondegenerate symmetric probability measure �
on a group � of exponential growth.

For Problem 4.3, when when � does not have PropertyHFD, we can apply the esti-
mate (4.2) to a nonconstant �-harmonic cocycle b W � ! H with weakly mixing � . Indeed,
choose any ˇ > 2, since b is C -Lipschitz, we have

E
�
NW .r/

�
� r2 C

1X
tDr2

P
�b.Wt / � Cr

�
� r2 C C 0

1X
tDr2

�
r

p
t

�ˇ
� C 00r2:

When � has Property HFD but not HF, then one can verify the quadratic bound by directly
examining the random walk on a virtual quotient which is solvable of exponential growth.
Therefore the problem is open only for groups with PropertyHF that are not virtually nilpo-
tent.
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