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In this note I will attempt to tell the story of an open problem on the minimal number
of generators of groups that I am interested in for a long time and that motivated several of my
research directions, sometimes in surprising ways. As stories go, the focus on the protagonist
(the rank gradient problem) tends to do injustice to the other characters. This means that for
some of the connected math described, even major results will get suppressed. I will also
attempt to build up the character subjectively and from its birth, so not every result will be
stated in its strongest form immediately, like Pallas Athene jumping out of her father’s head
in her full strength. In any case, the note circles around unsolved problems, which is the
very opposite of this image. I will try to mitigate the damages with side stories and remarks.
Finally, I believe that the truth, even mathematical, is inherently subjective and is born from
a dialogue of people arriving from infinitely far. I attempt to tell this story from my own
perspective but this should not be taken as a suggestion on my role in the projects I describe.

For a discrete group � , let d.�/ denote the minimal number of generators of � , that
is, the minimal size of a subset S of � that generates � . We will also call this the rank of � ,
although the word “rank” is used by a lot of other notions already. We are interested in the
case when � is also residually finite, that is, the intersection of its subgroups of finite index
is the trivial subgroup. A rich source of residually finite groups is finitely generated matrix
groups.

The rank is a rather mysterious invariant, already for finite groups. While natural
(geometric) generating sets give suggestions for the rank, other generating sets may beat
them to the punch. The finite symmetric group Sym.n/ can be generated by all transpositions
.i; j / and also by the neighboring transpositions .i; i C 1/. But it can also be generated by
just 2 elements. On this track, we know that every finite simple group can be generated by
at most 2 elements, but as of now, this only follows from the classification of finite simple
groups.

When dealing with infinite groups, the picture does not get clearer, either. Virtually
the only general way to bound the rank from below is to use the first homology, and when this
does not help, one has to play it by the ears. A beautiful exception is the Grushko–Neumann
theorem. The rank is not only hard to control for abstract groups. When � arises as the
fundamental group of a nice manifold, say, one would expect that a minimal generating set,
as a family of loops, will carry some geometric meaning. While there are examples when
this is indeed the case, in general this is too much to hope for.

When an invariant of a residually finite group is rather unruly, one can attempt to
stabilize it by looking at its growth over its subgroups of finite index and hope that this
will give a more robust invariant. The biggest success story here is L2 cohomology, or,
more generally, spectral theory and representation theory, as we will discuss later on. On the
geometric side, this means that instead of the defining manifold or complex M of � , we look
at the family of finite sheeted coverings of M and try to build a geometric understanding of
asymptotic homotopy on these spaces.
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Rank gradient. By the Nielsen–Schreier theorem, when � is a free group, and H is a finite
index subgroup of � , we have d.H/ � 1 D .d.�/ � 1/j� W H j. In other words, the number

r.�; H/ D
d.H/ � 1

j� W H j

is constant d.�/ � 1 when � is free, hence for an arbitrary � , we have the inequality
r.�; H/ � d.�/ � 1. A little exercise then shows that for K � H � � , we have r.�; K/ �

r.�; H/. This implies that for a chain of finite index subgroups � D H0 � H1 � � � � , the
limit

RG
�
�; .Hn/

�
D lim

n!1
r.�; Hn/

will exist. We call this the rank gradient of � with respect to the chain .Hn/. The notion
comes from Marc Lackenby [32], see also an early profinite version in [36]. One can also
define it to an arbitrary subset ¹Hnº of finite index subgroups of � as

RG
�
�; ¹Hnº

�
D inf

n
r.�; Hn/:

Many years ago, we started to study this notion by ourselves with Nik Nikolov, proved some
initial results using elementary group theory, and soon realized that we do not know a con-
vincing example for when the rank gradient in fact depends on the chain. A nonconvincing
example comes from � D F2 � F2: normal chains in � with trivial intersection have rank
gradient zero, but chains that only walk down on one of the factors have positive rank gra-
dient. We could not find an example, however, when the Hn are normal subgroups of finite
index and their intersection is trivial. We still cannot.

Problem 1 (Rank gradient). Let � be finitely generated and let .Hn/ and .Kn/ be normal
chains in � with trivial intersection. Does

RG
�
�; .Hn/

�
D RG

�
�; .Kn/

�
?

What do you do when you encounter an elusive but attractive invariant? 1. Prove
that it vanishes in some natural cases; 2. Try to look for translations or analogues in other
fields and try to make mathematical energy flow through; 3. Connect it to some other, maybe
tamer invariants; 4. Extend the notion wildly and see what happens. In what follows, I will
describe some attempts of these points and where they lead.

The cost correspondence. A good starting exercise for the reader is to prove by hand that
if � has a central element of infinite order, then the rank gradient vanishes for any normal
chain with trivial intersection. After proving some starting results like this with Nik Nikolov
on rank gradient, we managed to connect the rank gradient to cost.

The notion of cost was introduced by Gilbert Levitt [34] and most of the subsequent,
deep work on it was done by Damien Gaboriau [24]. I will not define the notion here, just
state that every probability measure preserving (p.m.p.) action of a countable group � has a
cost, which is a real number between 1 and d.�/. A major question on cost is the following
[24].
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Problem 2 (Fixed price). Let � be a countable group. Does every free p.m.p. action of �

have the same cost?

In his hallmark result [24], Damien Gaboriau showed that this is true for free groups.
Since the cost only depends on the equivalence relation spanned by the action, it immediately
follows that the free groups F2 and F3 are not orbit equivalent, a well-known open problem
at the time.

In [9] we established the following correspondence. For a chain .�n/ in � , one can
associate its coset tree T .�; .�n// as follows. The vertex set of T is the union of cosets
�=�n and the edges are defined by immediate inclusion of cosets. The group � acts on T

by automorphisms and this action extends to the boundary @T of T as a continuous action.
There is a natural measure on the boundary (the product measure on infinite walks) and the
action preserves this measure.

Theorem 3 (Cost correspondence). Let � be finitely generated and let .�n/ be a normal
chain in � with trivial intersection. Then

RG
�
�; .�n/

�
D c

�
�; .�n/

�
� 1;

where c.�; .�n// denotes the cost of � acting on @T .�; .�n//.

So, for chains, the rank gradient problem is a special case of the fixed price problem
for profinite actions.

The existing cost theory immediately gave new vanishing results on rank gradient
for a large class of groups, including amenable groups and more importantly, the so called
right angled groups. These are groups that admit a list of generators of infinite order such
that neighboring generators commute. It is an important class as it containsmany nonuniform
lattices, like SL.3; Z/.

Looking at the cost literature, we also realized that a seemingly innocent result on
cost would actually positively solve the RG problem. The question is whether the cost minus
1 is multiplicative for finite-index subrelations, just like rank minus 1 is for free groups. The
result was announced to be solved at the time with versions of a preprint circulating but by
now the community agrees that it should be considered unsolved. I still think that this could
lead to a fruitful attack on either fixed price, or the rank gradient problem.

The rank vs. Heegaard genus problem. In our project with Nik Nikolov, we studied
Marc Lackenby’s work and its topological motivations [32, 33] and got aware that using
his results on Heegaard genus and expansion [31], proving the vanishing of rank gradient for
� D SL.2; ZŒi �/ would solve a famous old problem in 3-manifold theory. The problem that
is still open is whether for finite volume 3-manifolds, the ratio of the Heegaard genus and
the rank can get arbitrarily large. Note that for hyperbolic manifolds, it was also open for
a long time whether the rank can even differ from the Heegaard genus. Now this is solved
by Tao Li [35]. The deal for the ratio is that by [31] the Heegaard genus grows linearly for
any chain of subgroups with property (� ) and it is easy to produce a normal chain in � with
vanishing rank gradient, since it is virtually a finitely generated free by cyclic group. So if the
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rank gradient is independent of the chain, then a chain of principal congruence subgroups
in � will have property (� ) and hence positive Heegaard genus growth but vanishing rank
gradient, which makes the ratio of the two invariants go to infinity. On the other hand, if the
rank gradient may depend on the chain, then the fixed price problem is solved negatively.

That is, we managed to show that at least one of these well-studied problems have
a negative solution, but we still do not know which one(s). This is certainly a good joke, but
a word of caution is due here. It could very well be that eventually both problems have a
negative solution but for entirely different reasons, and then our bridge between them will
not prove to be useful, as no one walks through it.

Homology growth and Lück approximation. The first rational homology bQ of a group
is a trivial lower bound for its rank, in fact, it is the only general lower bound people use. As
a consequence, the growth of homology satisfies

lim
n!1

sup
bQ.�n/

j� W �nj
� RG

�
�; .�n/

�
:

The good news here is that when � is finitely presented, a famous theorem ofWolfgang Lück
[37] implies that the limit of the left-hand side exists and is independent of the chain.

Theorem 4 (Lück approximation). Let � be a finitely presented group and let .�n/ be a
chain of normal subgroups of finite index in � with trivial intersection. Then we have

lim
n!1

bQ.�n/

j� W �nj
D ˇ1.�/;

where ˇ1.�/ is the first L2 Betti number of � .

The L2 story that starts here is quite extensive and beautiful (see [37] and around),
but for us what matters now is that for finitely presented groups we have

RG
�
�; .Hn/

�
� ˇ1.�/.

We still do not know an example where there is a proper inequality here. Note that for a clas-
sical group theorist, it sounds quite weird that the abelianization of �n should asymptotically
control its rank! For instance, this suggests that if the �n are perfect groups, then by some
miracle we should be able to generate them by fewer elements than the trivial bound.

When turning to the measured setting and use the cost correspondence, this takes
the form of a question already asked in the initial paper of Gaboriau [24]. He shows that for
every free action of � the cost of the action minus 1 is at least ˇ1.�/ and no one knows an
example when they are not equal.

I will not state the full generality of the Lück approximation result, but need to
make some side comments here. First, the proof is really about spectral convergence. It is
easy to see that for normal chains with trivial intersection, the eigenvalue distribution of any
locally defined operator on the finite quotient will weakly converge to the spectral measure
of the same operator in the limit. The gist of Lück approximation is to show that the measure
of the set ¹0º will also converge. This is a tightness result that does not follow from weak
convergence in general. The result was later generalized by Andreas Thom [41] for arbitrary
real values instead of 0.

3378 M. Abért



Graph sequences, combinatorial cost, and the Farber condition. In our project leading
to [9], we also studied what happens with arbitrary instead of normal subgroups or when we
ease up on having trivial intersection. These were not arbitrary questions. First, we hoped
to find counterexamples easier in this bigger class. Second, in a lot of cases when one is
interested in the asymptotic behavior of an invariant on a family of finite index subgroups,
they do not form a chain and are not normal. For instance, in number theory we often care
about the congruence subgroups �0.N /: they are not normal and do not form a chain. These
questions has lead to a connection to graph limit theory.

What connects two different chains of normal subgroups in � with trivial intersec-
tion? The best answer I know is that they are locally indistinguishable. That is, from every
vertex, the corresponding Schreier graphs locally lookmore andmore like the infinite Cayley
graph of � . When you only ask that the same holds for most vertices, you get the notion of
Benjamini–Schramm convergence [13].

In the homological direction, we found Michael Farber’s extension of the Lück
approximation theorem [22] and the subsequent work of Nicolas Bergeron andDamienGabo-
riau [14] on when and how such an extension may fail. It is clear that the Farber condition is
equivalent to asking that the action of � on the boundary of the coset tree is essentially free.
We called these chains Farber chains.

For a fixed generating set S of � , one can visualize the chain .�n/ by looking
at the sequence of finite Schreier graphs .Sch.�=�n; S// and attempt to understand rank
gradient using the asymptotic metric geometry of this graph sequence. Now we can state
what the Farber condition is, in various ways. For a permutation action of � and g 2 � , let
Fix.g; �=�n/ denote the number of fixed points of g.

Proposition 5. Let � be a group generated by the finite symmetric set S and let .�n/ be a
sequence of subgroups in � . Then the following are equivalent:

1. For every 1 ¤ g 2 � , we have

lim
n!1

Fix.g; �=�n/

j� W �nj
D 0 (Farber condition);

2. A random conjugate of �n as an invariant random subgroup weakly converges
to the trivial one;

3. Sch.�=�n; S/ Benjamini–Schramm converges to Cay.�; S/;

4. The coset actions of � on �=�n form a sofic approximation of � .

These equivalences are all easy once one learns the language. However, these forms
are important to note, as they highlight the fields that got connected by this theory: in order,
representation theory, ergodic theory, graph limits, and soficity.

An example for a Farber sequence is the above mentioned congruence subgroups
�0.p/ (p prime). Let me remark that the notion of Farber sequence can be naturally extended
to a sequence of lattices in a fixed locally compact group. In [12] that some people call the
7 samurai paper, we prove that in a higher rank simple Lie group, every sequence of lattices
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with covolume tending to infinity is Farber! We use invariant random subgroups in the proof,
a notion that was coined (but not invented) in [6]. There would be a lot to tell here, but this
story is about rank gradient, so we stop at this point.

When looking at it as a graph theory problem, the rank gradient problem asks
if the asymptotic rank is a local invariant, or whether it depends on global properties of
Sch.�=�n; S/.

The idea of bringing graph limit theory to cost and L2 theory is due to Gabor Elek
[21], who in an early paper [20] defined the combinatorial cost of a graph sequence and proved
the analogues of the known results on cost and homology growth in this setting. A quick
definition of combinatorial cost is as follows. For a sequence of finite graphs, a bi-Lipshitz
rewiring of the sequence is another graph sequence using the same vertex sets, such that
there exists a constant L where the distance of every edge in one graph can be substituted
by a path of length at most L in the other. The combinatorial cost is the infimum of edge
densities that can be achieved by such a rewiring. Note that much later, two groups consisting
of Alessandro Carderi, Damien Gaboriau, and Mikael de la Salle, and me and Laszlo Toth,
respectively, independently showed that using an ultraproduct language [19] or local–global
convergence [10], the combinatorial cost is, in fact, equal to the cost of a suitable limiting
object. But by then, the damage was done and graph limit theory was affecting the field in
various ways.

When you ease up on normality, the intersection of the subgroups really will not
matter, even for chains, and it is the Farber condition that will really affect the behavior.
By [24], every aperiodic p.m.p. action of an amenable group has vanishing cost, but the
rank gradient correspondence only works for Farber chains. Indeed, it is not true that for an
amenable group the rank gradient vanishes for any normal chain, an easy counterexample
comes from the lamplighter group. However, Marc Lackenby [33] showed that for finitely
presented amenable groups, the rank gradient vanishes for arbitrary normal chains, that is,
trivial intersection is not needed there. By pushing his trichotomy theorem a bit further,
together with Nik Nikolov and Andrei Jaikin-Zapirain, we managed to show that for finitely
presented amenable groups, the rank gradient also vanishes for arbitrary chains [7]. This
is one of the examples I know where a result on rank gradient does not seem to have an
immediate cost counterpart.

Weak containment. Using the above observation on local behavior, with Gabor Elek we
attempted to solve the rank gradient problem by showing that the Schreier graphs of any
two normal chains in the same group can be asymptotically “massaged onto each other”
by almost covering maps. We soon realized that what we look at is already investigated for
p.m.p. actions by Alekos Kechris [29] under the name weak containment and is also strongly
connected to the notion of local–global convergence introduced by Bela Bollobas and Oliver
Riordan [16] and developed by Hamed Hatami, Laszlo Lovasz, and Balazs Szegedy [27].
Ironically, we found that, in fact, the opposite of what we attempted holds, and proved the
following rigidity result in [4].
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Theorem 6 (Weak containment rigidity). If a strongly ergodic p.m.p. action of � weakly
contains a finite action of � then it factors onto it. In particular, if two normal chains in
� with property (� ) define weakly equivalent coset tree actions, then the two chains are
refinements of each other.

From the point of view of the rank gradient problem, this can be considered as a
harsh no entry sign, but it does show that arithmetic lattices admit uncountably many weakly
inequivalent p.m.p. actions.

Although weak containment has not yet been successful to prove new results on
rank gradient, let me mention a quite elegant application by Alekos Kechris [30]. A result of
Lewis Bowen [17] implies that for the free group Fn, its profinite completion weakly contains
any free p.m.p. action of Fn. By the cost monotonicity result for weak containment [29], this
implies that among free p.m.p. actions ofFn, the cost isminimal for the profinite completion.
Now using the cost–rank-gradient correspondence above, one yields that the cost of any free
action of Fn is at least n, hence Fn has fixed price n, giving an alternate proof for the famous
starting result of Damien Gaboriau.

The graph limit language suggested another possible attempt at the rank gradient
problem, using a factor of iid generating set for the �n. For a Farber chain, the quotient
Schreier graphs look like the infinite limiting Cayley graph from most points. So, one may
apply the same rule using an iid seed, to get a cheap generating set, and since the seed was iid,
the resulting cheap rewiring also works for any Farber sequence the same way. This attempt
also did not work (yet) but it did eventually lead to the result with Benjy Weiss [11] that
every free action of a countable group � weakly contains its iid actions, hence showing that
iid actions of � have maximal cost.

Homology torsion growth. When trying to interpret the fixed price 1 result of Damien
Gaboriau for right angled groups with Tsachik Gelander and Nik Nikolov in the finite setting,
we realized that there is an interesting rewiring complexity notion hiding behind it and that
the notion can be used to prove vanishing of the first homology torsion growth.

More precisely, when building the cheap rewiring on the finite level, using Damien
Gaboriau’s trick, not only the rewiring gets cheap, but at the same time its complexity also
stays low. In particular, it gives cost 1 C " with a bi-Lipschitz constant that is polynomial in
1=". We then realized that this is enough to prove not only the vanishing of rank gradient,
but also the vanishing of the first homology torsion growth.

For a finitely presented group, it is easy to show that the size of the torsion part of
the abelianization of a subgroup is at most exponential in the index of the subgroup. Hence,
the right growth notion to consider is

t
�
�; .�n/

�
D lim

n!1

log.tor.�n//

j� W �nj
;

assuming this limit exists. Torsion homology growth is studied by various groups for various
reasons, see [15] and references therein. In [5] we prove the following.
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Theorem 7 (First torsion homology growth). Let � be a right angled group and let .�n/ be
a Farber sequence in � . Then

t
�
�; .�n/

�
D 0.

In fact, the proof works for any Farber sequence where the above defined by-
Lipschitz constant is subexponential in the index. This brought an interesting connection
to the Bergeron–Venkatesh conjecture [15], that made me understand something about how
unruly the notion of rank may be in reality.

A special case of the Bergeron–Venkatesh conjecture says that for a principal con-
gruence chain in � D SL.2; ZŒi �/, the first torsion homology growth is a positive constant.
If we believe this, and also that the rank gradient is zero for these chains (these are both tall
orders of course), then the previous theorem implies that while these congruence subgroups
may admit cheap generating sets, their complexity must be exponential in the error 1=". That
is, we may not be able to find them in a nice and geometric way as they hide deep in the cruel
and dark embrace of algebra.

Vanishing theorems can be cool, but they tend to emit a somewhat pessimistic aura.
After all, at the end, we reach zero. However, in the case of first homology torsion growth,
currently no one can do better, as the following is still open.

Problem 8. Is there a finitely presented group � and a Farber sequence .�n/ in � such that
t.�; .�n// > 0?

While there are lower bounds for the torsion, currently they do not get this high.
It is a natural question whether there is a natural “higher rank” notion of being

right angled so that the above vanishing theorem generalizes for higher homology tor-
sion. Recently this was addressed in the paper [2], together with Nicolas Bergeron, Mikolaj
Fraczyk, and Damien Gaboriau.

Uniform rank gradient and Poisson processes. As we discussed above, to solve the rank
vs Heegaard genus problem, it would be enough to effectively estimate the rank of principal
congruence subgroups of SL.2;ZŒi �/. Note that this approach is a blessing and a curse at the
same time. Indeed, while the ambient group and its congruence subgroups seem very con-
crete, they are inherently number-theoretic which means that any attempt would also involve
some possibly rather nontrivial number theory. In fact, the same could be said when we want
to estimate the rank gradient of any discrete group, using geometric methods. Indeed, unless
the group is of some quite special form, like close to free, right angled, or amenable, the
geometry of its Cayley graphs seem quite complicated.

It turns out, however, that when we ask for much more, it immediately forces our
hand in a good way and seems to give a much simpler image to deal with. Let G be a locally
compact group, but for simplicity just concentrate on when G is a simple real Lie group.
When � is a lattice in G, it is finitely generated, moreover, by the work of Tsachik Gelander
[26], we have

d.�/ � Cvol.G=�/;
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where C is an absolute constant. The notion of Farber sequences make perfect sense, using
either Benjamini–Schramm convergence of the quotient spaces G=� (or X=� where X is
the symmetric space for G) or invariant random subgroups.

Problem 9. Let G be a semisimple Lie group and let .�n/ be a Farber sequence of lattices
in G. Does

RG
�
G; .�n/

�
D lim

d.�n/ � 1

vol.G=�n/

exist?

If it does, then the limit is independent of the sequence, since you can merge two
Farber sequences and they stay Farber. This is one of the advantages over using chains of
lattices. In fact, one can define Benjamini-Schramm convergence in the realm of Riemannian
manifolds [3]. On this language one gets the Poisson point process on a symmetric space as
the limit of independent random subsets of the finite volume manifolds.

To address this problem, with SamMellick [8], we recently introduced a cost theory
for point processes of locally compact groups. Note that Alessandro Carderi has already
introduced the cost of p.m.p. actions of locally compact groups in his nice paper [18] and used
an ultraproduct language to prove that the maximal cost of a p.m.p. action ofG dominates the
rank gradient, at least for uniformly discrete Farber sequences of lattices. Our approach of
using point processes allows us to remove his uniform discreteness assumption and answer
his question whether G � Z has fixed price 1.

In the paper [8] we prove that the Poisson processes have maximal cost among free
point processes and that this number dominates the rank gradient of any Farber sequence
in G. This is an analogue of my theorem with Benjy Weiss for discrete groups [11], as Pois-
son processes are arguably the substitutes of iid actions in the locally compact setting. In
particular, if the cost of the Poisson process is 1, then any free point process has cost 1 and
the rank gradient vanishes for any Farber sequence of lattices.

Instead of G, one can again consider Poisson processes on its symmetric space X ,
as they have the same cost. In particular, to settle the rank vs Heegaard genus problem, it
would be enough to show that Poisson processes on the hyperbolic space H 3 have cost 1.

Problem 10 (Poisson cost). Does the Poisson process on H 3 of intensity 1 have cost 1?

This seems to be a much simpler and more direct geometric-stochastic question than
estimating the rank of congruence subgroups directly. On the other hand, if this cost happens
to be greater than 1, this would not tell anything about the rank gradient, but it would still
imply the existence of a countable equivalence relation whose cost does not equal to its first
L2 Betti number, answering a question of Damien Gaboriau (see [25] on L2 numbers of
countable equivalence relations).

Apart from the case whenX is the upper half-plane, as of now, nothing is known for
semisimple Lie groups. The reasonable conjecture is that for every other G, the cost of the
Poisson processes should vanish. When we look at homological counterparts, we still get a
nontrivial task. For rational homology growth, the 7 samurai project [12] and [1] settled most
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of the questions. In the direction of mod p homology growth, Mikolaj Fraczyk [23] proved
in a beautiful paper that when G has higher rank and property (T), then the first mod 2

homology growth vanishes for arbitrary Farber sequences of lattices. In fact, he showed that
every homology class admits a cycle of length that is sublinear in the volume. The difficulty
is clearly shown in the fact that for odd primes, these are still open, although it would follow
from the vanishing of the cost of Poisson processes.

Further questions on rank gradient. Kazhdan’s property (T) is a strong property that can
be used in manifold ways, in particular, it implies that the first L2 Betti number vanishes.
So, it makes sense to ask the following.

Problem 11 (Kazhdan groups). Does the rank gradient vanish for finitely presented, resid-
ually finite groups with property (T)?

In other words, does it vanish for every normal chain with trivial intersection?When
switching to the ergodic side, this asks whether property (T) groups have fixed price 1. This
is also open, however, Tom Hutchcroft and Gabor Pete recently showed in a recent, very nice
paper [28] that such groups always admit an action with cost 1, that is, the infimal cost of �

is 1. It would be natural to use [11] here, but the processes they ingeniously generate are not
factor of iid, so their result does not establish fixed price 1, and also does not seem to settle
the rank gradient problem for these groups. Nevertheless, it is still tempting to try to adapt
their method somehow in the finite setting and yield a vanishing result on rank gradient.

In another direction, it would be interesting to say something meaningful on groups
with positive rank gradient. Marc Lackenby’s trichotomy theorem [32] gives some restric-
tions and also his theorem that finitely presented groups with positive p-gradient are large.
On the other hand, if we omit the finite presentation condition, we will have some positive
rank gradient monsters lurking around, as Denis Osin [39] and Jan-Christoph Schlage-Puchta
[40] showed. A specific question due to Nik Nikolov is as follows.

Problem 12. Can a group satisfying a nontrivial identity have a positive rank gradient?

Nik Nikolov recently managed to show that in this case, the profinite gradient does
vanish [38].
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Abstract

We discuss recent progress in understanding rigidity properties of smooth actions of
higher-rank lattices. We primarily discuss questions of existence in low dimensions
(Zimmer’s conjecture), classification in the smallest possible dimension, and further clas-
sification assuming dynamical properties of the action. Two common themes arise in the
proofs: (1) dynamical properties of the lattice action are mimicked by certain measures
on an induced G-space; (2) such measures often exhibit additional rigidity properties.
Throughout, we state some open problems and possible directions for future research.
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1. Introduction: lattices, group actions, and rigidity

1.1. Rigidity of linear representations
For n � 2, consider the group � D SL.n;Z/ of n � n integer matrices with determi-

nant 1 or a more general lattice subgroup of SL.n;R/. There is a stark distinction between the
case n D 2 and n � 3; in particular, relative to various group- and representation-theoretic
properties, the group � D SL.2; Z/ is rather “flexible” whereas the group � D SL.n; Z/ is
very “rigid” whenever n � 3.

Indeed, when n D 2, linear representations �W � ! GL.d; R/ are very flexible. In
contrast, when n � 3, linear representations �W � ! GL.d; R/ exhibit many well-known
rigidity properties; we highlight local rigidity of the inclusion �W � ! SL.n; R/ [62, 64],
local rigidity of general representations � W � ! GL.d; R/ [52,59,65], and Mostow’s strong
rigidity [50,53,56]. The principle result that includes those above is Margulis’ superrigidity
theorem. Roughly, Margulis’ theorem states (when n � 3) that any representation �W � !

GL.d; R/ coincides—up to a compact error—with the restriction of a continuous repre-
sentation � W SL.n; R/ ! GL.d; R/. Since representations of SL.n; R/ are classified, this
more-or-less classifies all representations of � .

1.2. The general setting
Throughout, G will be a connected noncompact semisimple Lie group. We will

always assume the Lie algebra of G is simple and say that G is a simple Lie group. Through-
out, we will typically assume that G has higher real rank. (The Lie algebra g of G admits
an Iwasawa decomposition g D kan. The real rank of g is dim.a/ and G is higher rank if it
has real rank at least 2.) At times we may also assume G has finite center though that is not
technically necessary for most results.

Such groups G admit biinvariant Haar measures. A lattice in G is a discrete sub-
group � of G such that the coset space G=� has finite volume. A lattice � is cocompact if,
in addition, the quotient G=� is compact; otherwise, � is nonuniform. When G is simple
and is of higher real rank, we say a lattice � in G is a higher-rank lattice.

For simplicity of exposition, we formulate most results and conjectures in the case
that G D SL.n; R/ (though many results and conjectures hold for wider classes of groups).
The real rank of SL.n; R/ is n � 1 and thus we typically assume n � 3 to ensure we are
in the higher-rank setting. The standard example of a lattice subgroup in G D SL.n; R/ is
the subgroup � D SL.n; Z/. The subgroup SL.n; Z/ is nonuniform, though we note that
SL.n; R/ admits cocompact lattices.

1.3. Actions on manifolds and the Zimmer program
Beyond linear representations, wemight replace the vector spaceRd with a compact

manifold M and replace the finite-dimensional Lie group GL.d; R/ with Diffr .M/, the
group of allC r -diffeomorphisms1 ofM . A homomorphism ˛W� !Diffr .M/ then defines a

1 If r � 1 is not integral, we write r D k C ˇ where k 2 N and ˇ 2 .0; 1/ and say that
f W M ! M is C r if it is C k and if the kth derivatives of f are ˇ-Hölder continuous.
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C r action of� onM . If vol is a smooth volume form onM , we also consider Diffrvol.M/, the
group of volume-preserving diffeomorphisms, and study volume-preserving actions ˛W � !

Diffrvol.M/.
For � D SL.2; Z/, actions ˛W � ! Diffr .M/ on manifolds are again quite flexible.

However, by analogy with rigidity properties of linear representations, we might ask if (pos-
sibly volume-preserving) actions of higher-rank lattices exhibit rigidity properties analogous
to those that hold for linear representations. Tomotivate statements, it is useful to recall some
standard low-dimensional, algebraically defined actions by lattices in SL.n; R/.

(1) Affine actions on tori. Consider the case that � has finite index in SL.n; Z/. We
obtain an action ˛W � ! Diff.T n/ on the n-dimensional torus T n D Rn=Zn

given by ˛./.x C Zn/ D  � x C Zn for every matrix  2 � � SL.n; Z/.
Since there exists  2 SL.n; Z/ with all eigenvalues outside of the unit circle,
this gives an example of an affine Anosov action (see Definition 4.3). Observe
that these actions preserve the Haar measure on T d .

(2) Projective actions. Given any lattice subgroup � � SL.n; R/, the linear action
of � on Rn induces an action on the space of rays (or lines) in Rn through the
origin. We thus obtain an action of � on the .n � 1/-dimensional sphere Sn�1

(or RP n�1). The subgroup � � SL.n; R/ also acts on Grassmanians of higher-
dimensional planes in Rn and on spaces of flags in Rn. These actions are all
left actions of � on G=Q for some parabolic subgroup Q � G D SL.n; R/. We
remark that these actions admit no �-invariant probability measure.

(3) Isometric actions. Certain cocompact lattices � � SL.n; R/ admit representa-
tions � W � ! SU.n/ with infinite image (see discussion in [69, Sections 6.7, 6.8,

Warning 16.4.3]). The representation � then induces an isometric action of � on
the .2n � 2/-dimensional space M D SU.n/=S.U.1/ � U.n � 1//.

In the early 1980s, Zimmer established a superrigidity theorem for linear cocy-
cles over ergodic, measure-preserving actions of higher-rank Lie groups and their lattices
(see [72]). The cocycle superrigidity theorem, its corollaries, and contemporaneous results
of Zimmer’s (see [72–77]) led Zimmer to formulate several conjectures and questions con-
cerning (C 1, volume-preserving) actions of higher-rank simple Lie groups and their lat-
tices. These questions, conjectures, and more recent extensions are usually referred to as
the Zimmer program. Roughly, the Zimmer program aims to establish analogues of rigidity
results for linear representations in the setting of smooth actions on compact manifolds. See,
for instance, [24] for an overview and statements of many conjectures in this area.

2. Low dimensions and Zimmer’s conjecture

We present some motivation, state a contemporary version of Zimmer’s conjecture,
and outline recent progress in the area. See also the article by D. Fisher in the same proceed-
ings for related discussion.
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2.1. Motivation and Zimmer’s conjecture
For n � 3, let � be a lattice subgroup of SL.n; R/. Recall the action of � on Sn�1

and, assuming � is commensurable with SL.n; Z/, the affine action of � on T n discussed
in Section 1.3. Zimmer’s conjecture asserts that these represent the minimal dimensions
in which nontrivial actions of such � could occur. To be precise, note that if � 0 � � is a
finite-index normal subgroup, the finite quotient group F D �=� 0 may act on manifolds of
arbitrary dimension. This induces an action of � that should be considered rather trivial.
Assuming dim.M/ is sufficiently small, Zimmer’s conjecture states all actions of � factor
through the action of a finite group.

Conjecture 2.1 (Zimmer’s conjecture for lattices in SL.n;R/). For n � 3, let � � SL.n;R/

be a lattice subgroup. Let M be a compact manifold.

(1) If dim.M/ < n � 1, then any homomorphism � ! Diff.M/ has finite image.

(2) In addition, if vol is a volume form on M and if dim.M/ D n � 1, then any
homomorphism � ! Diffvol.M/ has finite image.

Amotivation (by analogy) for this conjecture is the following corollary of Margulis’
superrigidity theorem: Let � be a lattice in SL.n; R/ for n � 3. For any d < n, the image
of any representation �W � ! GL.d; R/ is finite. Indeed, using that there are no nontrivial
representations� WSL.n;R/ ! SL.d;R/, the image �.�/ is contained in a compact subgroup
K of GL.d;R/; Margulis further studies representations into compact Lie groups and shows
the Lie algebra of K contains only copies of su.n/, the compact real form of sl.n; R/.
A dimension count implies the Lie algebra of K vanishes and thus K is finite.

In the volume-preserving setting, Conjecture 2.1(2) is motivated by the follow-
ing corollary of Zimmer’s cocycle superrigidity theorem: For n � 3, � � SL.n; R/, and
dim.M/ < n, a volume-preserving action � ! Diffvol.M/ preserves a measurable Rie-
mannian metric on TM . If this metric were C 0, the image ˛.�/ would be contained in the
compact isometry group of this metric. A dimension count again yields finiteness. Thus, if
dim.M/ is sufficiently small, one might expect the image ˛.�/ to be contained in a compact
isometry group K of M . To extend the conjecture to other groups, to each simple, noncom-
pact Lie group G we associate 3 positive integers v.G/, n.G/, and d.G/ defined, roughly,
as follows:

(1) v.G/ is the minimal dimension of G=H as H varies over all proper closed
subgroups H � G. (We remark that H is a parabolic subgroup in this case.)

(2) n.G/ is the minimal dimension of a nontrivial linear representation of (the Lie
algebra of) G.

(3) d.G/ D v.Gcmt/ is theminimal dimension of all nontrivial homogeneous spaces
of the compact real form, Gcmt, of G.
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Wealso define another number, r.G/, first defined in [8], which arises from certain dynamical
arguments. A simpler definition of r.G/ is the following:

(4) r.G/ D v.G0/ where G0 is a maximal R-split subgroup of G (with the same
reduced restricted root system as G).

We note that n.G/, d.G/, and v.G/ depend only on the Lie algebra g of G; r.G/ depends
only on the restricted root system ofg. See Tables 1, 2, and 3, inAppendixA for computations
of the numbers v.G/, d.G/, n.G/, and r.G/ for various classical groups. Given the integers
n.G/, d.G/, and v.G/, we have the following general conjecture.

Conjecture 2.2 (Zimmer’s conjecture; general). Let � � G be a lattice in a connected
higher-rank simple Lie group G. Let M be a compact manifold and let vol be a volume
form on M .

(1) If dim.M/ <min¹n.G/;d.G/;v.G/º then any homomorphism˛W� !Diff.M/

has finite image.

(2) If dim.M/ < min¹n.G/; d.G/º then any homomorphism ˛W � ! Diffvol.M/

has finite image.

(3) If dim.M/ < min¹v.G/; n.G/º then for any homomorphism ˛W � ! Diff.M/,
the image ˛.�/ preserves a Riemannian metric.

(4) If dim.M/ < n.G/ then for any homomorphism ˛W � ! Diffvol.M/, the image
˛.�/ preserves a Riemannian metric.

We are intentionally vague about the regularity of the action in the conjecture as it is
unclear what the optimal regularity should be. In parts (3) and (4), the invariant Riemannian
metric should be at least C 0. Most results discussed below require the action to be at least
C 1CHölder though some results hold for C 1 or even C 0 actions. We note that part (3) of Con-
jecture 2.2 implies part (1) and part (4) implies part (2) by compactness of the isometry
group of the invariant metric, superrigidity, and definition of d.G/.

Many prior results towards this conjecture focused on actions on the circle including
[10,32,68] and for volume-preserving (and general measure-preserving) actions on surfaces
including [29,30,55]. See also [31] and [22] for results on real-analytic actions and [11, 13, 14]

for results on holomorphic and birational actions. There are also many results (including
in the C 0 setting) for actions of specific lattices on manifolds with certain topology, where
topological obstructions constrain the possible actions; a partial list of such results includes
[2,54,66,67,70,78].

2.2. Work of Brown, Fisher, and Hurtado
The series of papers [5–7] established Conjecture 2.1, Zimmer’s conjecture, for C r

actions by lattices in SL.n; R/.

Theorem 2.3 ([7]). Conjecture 2.1 holds for C r actions, r > 1.
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For actions by general higher-rank lattices, the same series of papers establishes the
following which directly implies Theorem 2.3 (see Table 1 in Appendix A).

Theorem 2.4 ([5] cocompact case; [7] nonuniform case). Let � � G be a lattice in a con-
nected higher-rank simple Lie group G. Let M be a compact manifold and let r > 1.

(1) If dim.M/ < r.G/ then any homomorphism � ! Diffr .M/ has finite image.

(2) In addition, if vol is a volume form on M and if dim.M/ D r.G/ then any
homomorphism � ! Diffrvol.M/ has finite image.

We outline the broad steps in the proof of Theorem 2.4. Readers interested in the
case of actions by cocompact lattices in SL.n;R/ may consult expository accounts in [3] and
[12] for detailed proofs.

Step 1: subexponential growth. Fix a lattice subgroup � as in Theorem 2.4. We have that
� is finitely generated. Given  2 � , let j j D j jS denote the word-length of  relative to
some finite symmetric generating set S . Equip TM with a Riemannian metric.

Definition 2.5. An action ˛W � ! Diff1.M/ has uniform subexponential growth of deriva-
tives if for every " > 0 there exists C D C" such that for every  2 � ,

sup
x2M

Dx˛./
 � Ce"j j:

The following is the primary technical result established in [5–7].

Theorem 2.6 ([5, Theorem 2.3], [7, Theorem C]). Let � andM be as in Theorem 2.4. For r > 1,
let ˛W � ! Diffr .M/ be an action. Suppose that either

(1) dim.M/ < r.G/, or

(2) dim.M/ � r.G/ and ˛ preserves a smooth volume.

Then ˛ has uniform subexponential growth of derivatives.

Step 2: strong property (T) and averaging Riemannian metrics. The lattices � in The-
orem 2.4 are known to have strong property (T). Strong property (T) was introduced by
V. Lafforgue in [45] and shown for cocompact lattices in higher-rank groups in [16, 45] and
extended to nonuniform lattices by de la Salle in [15]. An action ˛W � ! Diffr .M/ induces
an action on Riemannian metrics. If r � 2, one can average over elements of this action and
apply strong property .T / to obtain the following.

Theorem 2.7 ([5, Theorem 2.4]). Let � be a finitely generated group and let M be a compact
manifold. For k � 2, let ˛W � ! Diffk.M/ be an action. If ˛ has uniform subexponential
growth of derivatives and if � has strong property .T / then ˛.�/ preserves a Riemannian
metric that is C k�1�ı for all ı > 0.

For C 1CHölder actions, the proof can be adapted to establish an analogue of Theo-
rem 2.7. For C 1 actions, an analogue of Theorem 2.7 is obtained in [4, Proposition 5].
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Step 3: Margulis superrigidity. From Steps 1 and 2, the image ˛.�/ is contained in a
compact group K. Finiteness then follows immediately from Margulis’ superrigidity, and a
dimension count since (one can check) r.G/ < d.G/; Theorem 2.4 follows.

2.3. C 1 actions
To establish aC 1 version of Conjecture 2.2, an analogue of Theorem 2.7 is given by

[4, Proposition 5]; it remains to establish a C 1 analogue of Theorem 2.6. However, a crucial
step in the proof of Theorem 2.6 uses Pesin theory and Ledrappier–Young theory, which
requires the consideration of C r actions for r > 1. Still, a partial analogue of Theorem 2.6
holds under stronger constraints on the dimension of M .

Theorem 2.8 ([4]). Let � � G be a lattice in a connected, simple, higher-rank Lie group G.
Let M be a compact manifold.

(1) If dim.M/ < rank.G/, then any homomorphism � ! Diff1.M/ has finite
image.

(2) In addition, if vol is a volume form on M and if dim.M/ � rank.G/, then any
homomorphism � ! Diff2vol.M/ has finite image.

We note that the dimension bounds in Theorem 2.8 only coincide with the dimen-
sions in Conjecture 2.2 in the case G D SL.n; R/.

Question 2.9. Let � be a lattice subgroup of G D Sp.2n; R/, SO.n; n/, or SO.n; n C 1/.
Do Theorem 2.6 and Conjecture 2.2(1)–(2) hold for C 1 actions of �?

2.4. C 0 actions and actions on the circle
Given the results of Theorem 2.4 and Theorem 2.8, it is natural to ask if any analo-

gous results hold for actions by homeomorphisms. For actions of general higher-rank lattices,
most results on C 0 actions have focused on (non-volume-preserving) actions on the circle
or the interval. We mention in particular [68]where it is shown that actions of higher-Q-rank
groups � on the circle are finite. A recent breakthrough by B. Deroin and S. Hurtado [17]

completely resolves the question of C 0 action on the circle (among many other results).

Theorem 2.10 (Corollary of [17, Theorem 1.5]). Let � be a lattice in higher-rank simple Lie
group G. For every action ˛W � ! Homeo.S1/, the image ˛.�/ is finite.

The proof of Theorem 2.10 follows somewhat the approach in the proof of Theo-
rem 2.4 but, due to the lack of differentiability, new tools need to be developed. We mention
only one novelty of working on the circle used in [17]: following [18], one may replace mini-
mal C 0 actions with bi-Lipschitz actions.

2.5. Beyond R-split groups
Theorem 2.4 only gives the optimal dimension bounds for Conjecture 2.2(3) (and

thus Conjecture 2.2(1)) in the case ofR-split Lie groups; see Tables 1 in Appendix A. Further
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analysis of objects arising in the proof of Theorem 2.6 establishes the conjectured bounds
in Conjecture 2.2(3) for some nonsplit groups. This was first shown for actions of lattices
in SL.n; C/ in [71]: For n � 3, Conjecture 2.2(3) holds for C r (r > 1) actions of cocom-
pact lattices in SL.n; C/. The same holds for lattices in general complex simple groups.
Beyond actions by lattices in complex Lie groups, one can establish Conjecture 2.2(3) for
large parameter ranges of many nonsplit Lie groups. The following (nonexhaustive list) gives
some ranges where such results can be shown.

Theorem 2.11 (J. An, A. Brown, and Z. Zhang; in preparation). Conjecture 2.2(3) holds
for C r (r > 1) actions of lattices in the following Lie groups:

(1) all higher-rank simple complex Lie groups;

(2) SL.n; H/ with n � 9;

(3) SOC.m; n/ with 2 � n < m �
1
2
.n2 � n C 4/;

(4) SU.m; n/ with 6 � n � m �
1
4
.n2 � 3n C 6/;

(5) SO�.2n/ with n � 30.

This naturally leads to the following question.

Question 2.12. Does Conjecture 2.2(3) hold for actions of lattices in all higher-rank simple
Lie groups?

We also show some partial results towards Conjecture 2.2(4).

Theorem 2.13 (J. An, A. Brown, and Z. Zhang; in preparation). Let � be a lattice in
SL.n; C/ for n � 4. If dim.M/ � n.G/ � 2 then for any homomorphism ˛W � ! Diffrvol.M/

(r > 1), the image ˛.�/ preserves a Riemannian metric.

2.6. Dimension gaps between (3) and (4) of Conjecture 2.2
Theorem 2.4 implies all statements of Conjecture 2.2 for actions by lattices in

SL.n; R/ and Sp.n; R/ since r.G/ D v.G/ D n.G/ � 1 < d.G/. However, for the R-split
groups G D SO.n; n/ and G D SO.n; n C 1/, we have

r.G/ D v.G/ D n.G/ � 2 < d.G/ D n.G/ � 1 < n.G/:

Thus, for these groups, Theorem 2.4 implies Conjecture 2.2(1)–(3) but does not imply Con-
jecture 2.2(4). This gap also arises for R-split exceptional groups and many non-R-split
groups. For instance, Theorem 2.13 implies that volume-preserving actions of lattices in
SL.n; C/ (for n � 4) preserve a Riemannian metric if dim.M/ � 2n � 2; Conjecture 2.2(4)
asserts the same should hold if dim.M/ D 2n � 1 D n.G/ � 1.

Question 2.14. Does Conjecture 2.2(4) hold for lattices � in SO.n; n/, SO.n; n C 1/, or
SL.n; C/, n � 3? Specifically, if dim.M/ < n.G/, does every volume-preserving action
˛W � ! Diff1vol.M/ preserve a (C 0 or C 1) Riemannian metric?
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We note that every lattice � in G D SO.n; n/ and G D SO.n; n C 1/ admits a non-
isometric action on a compact manifold of dimension n.G/ � 1. Indeed, there is a parabolic
subgroup Q � G with codimension v.G/ D n.G/ � 2; the left action of � on G=Q is
nonisometric. TakingM D .G=Q/ � S1, let � act onM naturally on the left in the first coor-
dinate and as the identity in the second coordinate. We note that this action does not preserve
any volume form on M so does not contradict Question 2.14. As a first step towards Ques-
tion 2.14, we might rule out related constructions that would yield counterexamples as in the
following.

Problem 2.15. Let � be a lattice in G D SO.n; n/ or G D SO.n; n C 1/. Show there is no
volume-preserving action of � on M D .G=Q/ � S1 with infinite image.

As a first step towards solving Problem 2.15, one might restrict to actions that factor
onto the projective action on G=Q. In a related direction, we also pose the following.

Question 2.16. For n � 3, let � be a lattice in G D SO.n; n/ or SO.n; n C 1/. Suppose that
dim.M/ D n.G/ � 1 and that ˛W � ! Diff1.M/ is an action that does not preserve any
(C 0 or C 1) Riemannian metric. Is there either (1) an invariant embedded G=Q in M on
which the dynamics restricts to the standard action or (2) an invariant open subset U � M

restricted to which the dynamics factors onto the standard action on G=Q?

3. Classification in lowest dimensions and rigidity of

projective actions

For n � 3, Theorem 2.3 implies that actions by lattices in SL.n; R/ are finite when
dim.M/ < n � 1. When dim.M/ D n � 1, recall the natural action of � on Sn�1 orRP n�1.
In work in progress, we show these to be the only actions with infinite image.

Theorem 3.1 (A. Brown, F. Rodriguez Hertz, Z. Wang; in preparation). For n � 3, let � be
a lattice subgroup of SL.n;R/. Let M be a connected compact manifold of dimension n � 1.
Fix r > 1 and let ˛W � ! Diffr .M/ be an action with infinite image ˛.�/. Then

(1) there is a C r -diffeomorphism h between M and either Sn�1 or RP n�1 such
that

(2) for all x 2 M and  2 � , h.˛./.x// D  � h.x/ where the right-hand side
denotes the standard projective action of � on Sn�1 or RP n�1.

The techniques used to prove Theorem 3.1 also give local rigidity of higher-dimen-
sional projective actions, extending the results of [38] and [44, Theorem 17].

Theorem 3.2. For n � 3, let F be a flag manifold (of flags in Rn) and let � � SL.n; R/ be
a lattice subgroup. Then the standard action �W � ! Diff.F / is C 1;1;1-locally rigid.

Theorem 3.2 says for any action ˛W � ! Diff1.F / sufficiently C 1 close to the
standard projective action �, there exists a C 1 diffeomorphism hW F ! F such that h ı
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˛./ D �./ ı h for all  2 � . The above results lead to the following question classifying
all actions on flag manifolds.

Question 3.3 (Global rigidity). For n � 3, let � be a lattice subgroup in SL.n; R/ and let F

be a flag manifold (of flags in Rn). Let ˛W � ! Diff1.F / be an action with infinite image
˛.�/. Is ˛ smoothly conjugate to the standard projective action on F ?

4. Classification under dynamical and topological

hypotheses

4.1. Classification in dimension n

Given the classification in Theorem 3.1, it is natural to ask if it is possible to classify
all (possibly volume-preserving) actions ˛W � ! Diff1.M/ when � is a lattice in SL.n; R/

andM is a compact connected manifold of dimension n. This seems much harder since there
are known examples of “exotic” actions in dimension n. In the non-volume-preserving case,
there exist many nonequivalent real-analytic actions of SL.n;R/ on the n-sphere constructed
in [63] and the restriction to � D SL.n; Z/ yields exotic actions of � . Roughly, one builds a
skew-product SL.n;R/-action on Sn�1 � .�1;1/ factoring onto the standard action on Sn�1

and takes the two-point compactification. This motivates the following alternative version
of Question 2.16.

Question 4.1. Let � be a lattice in G D SL.n; R/ for n � 3. Let dim M D n and let
˛W � ! Diff1.M/ be an action with infinite image that does not preserve any volume form
(or absolutely continuous measure). Does M contain an embedded projective action or an
invariant open subset that factors onto the projective action on RP n�1?

In the setting of volume-preserving actions, given the affine action of SL.n; Z/ on
T n, it is possible to blowup a fixed point (or a finite � orbit) to obtain a smooth action on a n-
manifold preserving a smooth density; in [40], A. Katok and J. Lewis showed these examples
can be perturbed to preserve a smooth, nowhere vanishing density.

One might conjecture that actions of lattices � � SL.n; R/ in dimension n are built
by gluing together modifications of standard actions such as those described above. At this
time though, it seems any conjectured picture is far from understood. Thus to classify actions
of � � SL.n; R/ in dimension n (and higher), it is natural to first impose additional dynam-
ical or topological hypotheses. The remainder of this section discusses several results in this
direction.

4.2. Toral homeomorphisms and Anosov diffeomorphisms
Given a homeomorphism f 2Homeo.T d /, there is a uniquematrixAf 2GL.d;Z/

such that any lift Qf WRd ! Rd of f is of the form Qf .x/ D Af x C �.x/ for someZd -periodic
�W Rd ! Rd . We call Af the linear data of f and note that Af induces an automorphism
LAf

on the torus T d . If ˛W � ! Homeo.T d / is an action we similarly obtain �W � !

GL.d; Z/ called the linear data of ˛. A matrix A 2 GL.d; Z/ is hyperbolic if no eigenvalue

3397 Lattices acting on manifolds



of A is on the unit circle. The following theorem characterizes (up to continuous semicon-
jugacy) maps f W T d ! T d whose linear data Af is hyperbolic.

Theorem 4.2 (Franks, [28]). Let f W T d ! T d be a homeomorphism with hyperbolic linear
data Af . There exists a continuous, surjective hW T d ! T d such that h ı f D LAf

ı h.

We recall Anosov diffeomorphisms, which provide the main example of homeomor-
phisms satisfying the hypotheses of Theorem 4.2.

Definition 4.3. AC 1 diffeomorphism f WM ! M of a compact Riemannian manifoldM is
Anosov if there is a continuous,Df -invariant splitting of the tangent bundle TM D Es ˚ Eu

and constants 0 < � < 1 and C � 1 such that for every x 2 M and every n 2 N,Dxf n.v/
 � C �n

kvk; for v 2 Es.x/;
Dxf �n.w/

 � C �n
kwk; for w 2 Eu.x/:

All known examples of Anosov diffeomorphisms occur on finite factors of tori and
nilmanifolds. From [28,49] we have a complete classification of Anosov diffeomorphisms on
tori (and nilmanifolds) up to homeomorphism.

Theorem 4.4 (Franks–Manning, [28,49]). If f W T n ! T n is Anosov, then f is homotopic to
LA for some hyperbolic A 2 GL.n; Z/; moreover, there is a homeomorphism hW T n ! T n

such that h ı f D LA ı h.

4.3. Global topological and smooth rigidity of Anosov actions
For simplicity, consider � � SL.n; R/. An action ˛W � ! Diff.M/ is Anosov if

˛.0/ is Anosov for some 0 2 �; see Definition 4.3. We state the following conjecture
which is motivated in part by the works of Feres–Labourie [23] and Goetze–Spatzier [33].

Conjecture 4.5 ([24, Conjecture 1.3]). If � is a lattice in SL.n; R/ where n � 3, then
any C 1, volume-preserving, Anosov action by � on a compact manifold is smoothly conju-
gate to an action by affine automorphisms of an infranilmanifold.

See also [35, Conjecture 1.1] and [40, Conjecture 1.1] for related conjectures. The
assumption that the action preserves a volume is standard though results discussed below
suggest that such a hypothesis may be unnecessary. Most progress on this conjecture requires
additional strong dynamical hypotheses on the action, low dimensionality of the manifold,
or assumptions on the topology of the underlying manifold.

We note that affine Anosov actions of higher-rank lattices are known to be local
rigid by the work of A. Katok and R. Spatzier [44], extending many earlier results including
[34, 39, 58]. Several partial results towards Conjecture 4.5 appear in [23, 33, 34, 40, 41, 51, 57].
In [9], a new topological and smooth classification of higher-rank lattice actions on tori and
nilmanifolds was established. A novelty of the approach in [9] is that no invariant measure is
assumed unlike many prior global rigidity results including those in [27,41,51]. For simplicity,
we state the following result for actions on tori though versions on nilmanifolds also hold.
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Theorem 4.6 ([9, Theorem 1.3]). Let � be a lattice in SL.n; R/ for n � 3. Let ˛W � !

Homeo.T d / be an action by homeomorphisms with linear data �W � ! GL.d; Z/. Sup-
pose

(1) the matrix �.0/ is hyperbolic for some 0 2 � , and

(2) for some finite-index subgroup � 0 � � , the action ˛W � 0 ! Homeo.T d / lifts to
an action Q̨ W � 0 ! Homeo.Rd /.

Then there is a continuous, surjective hW T d ! T d such that

h ı ˛./ D �./ ı h (4.1)

for all  in a finite-index subgroup � 00 � � . In particular, the action ˛W � ! Homeo.T d /

is semiconjugate to an action by affine maps of T d .

Sufficient conditions for the lifting hypothesis (2) are known; see [9, Remark 1.5] and
references therein. In particular, this automatically holds if � D SL.d; Z/ acts on T d for
d � 5, � is cocompact, or ˛ preserves a probability measure �.

Assuming that ˛.0/ is Anosov for some 0 2 � , Theorem 4.4 implies the map h

in Theorem 4.6 is a homeomorphism. For actions by higher-rank lattices, the map h is, in
fact, smooth, thus classifying all Anosov actions on tori up to smooth coordinate change.

Theorem 4.7 ([9, Theorem 1.7]). Let � be a lattice in SL.n; R/ for n � 3. Let ˛W � !

Diff1.T d / be an action with linear data �W � ! GL.d; Z/. Suppose that

(1) the diffeomorphism ˛.0/ is Anosov for some 0 2 � , and

(2) for some finite-index subgroup � 0 � � , the action ˛W � 0 ! Diff1.T d / lifts to
an action Q̨ W � 0 ! Diff1.Rd /.

Then, there is a C 1 diffeomorphism hW T d ! T d such that

h ı ˛./ D �./ ı h

for all  in a finite-index subgroup � 00 � � . In particular, the action ˛W � ! Diff1.T d / is
smoothly conjugate to an action by affine maps of T d .

Again, similar results hold for lattices in other higher-rank simple Lie groups and for
Anosov actions on nilmanifolds. To establish Theorem 4.7, we need only show the homeo-
morphism h in (4.1) given by Theorem 4.6 and Theorem 4.4 is C 1. Roughly, this follows by
studying the restriction of the action ˛ to a higher-rank abelian subgroup† � � . For Anosov
actions of higher-rank abelian groups, the map intertwining the action with the linear data is
often smooth as shown in [25,26]with the most general result obtained in [60]. The main work
to establish Theorem 4.7 is to find  2 � (which may be different from 0) with sufficiently
large centralizer in � and for which ˛./ is Anosov.

Returning to the setting of Theorem 4.6, we might ask if it is possible to classify
all (non-Anosov) C 1 actions on tori with hyperbolic linear data; it seems plausible that all
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such actions are obtained by a blow-up or slow-down procedure of affine Anosov actions.
This suggests the following.

Problem 4.8. Classify all C 1 actions satisfying the hypotheses of Theorem 4.6.

Specifically, the following may give a possible approach to Problem 4.8.

Question 4.9. Let ˛W � ! Diff1.T d / be an action satisfying the hypotheses of Theo-
rem 4.6. Is there an ˛-invariant open set U � T d such that for the map h satisfying (4.1),
h.U / is dense, h�U is injective, and h�U is smooth?

In the proof of Theorem 4.7, one shows that every Anosov action of a higher-rank
lattice � on T d preserves a volume form. It is natural to ask if the same holds for the actions
as in Theorem 4.6 and ask if a weaker version of Question 4.9 holds. We note that this holds
for SL.n; Z/ acting on T n by discussion and references in [9, Theorem 1.6] and [42].

Question 4.10. Let ˛W � ! Diff1.T d / be an action satisfying the hypotheses of Theo-
rem 4.6. Does ˛ preserve an absolutely continuous probability measure � on T d ? If so, is
there a setU � T d of full�-measure such that for h satisfying (4.1), h.U / has full Lebesgue
measure, h�U is injective, and h is smooth along Pesin unstable manifolds?

4.4. Anosov actions in dimension n

We return to the motiving problem of classifying actions of SL.n; Z/ on n-mani-
folds. In [41], volume-preserving Anosov actions of SL.n; Z/ on n-tori were shown to be
smoothly conjugate to affine actions for n � 3. Recently, H. Lee considered the same problem
but without any assumption on the topology of the underlying manifold.

Theorem 4.11 ([47, Theorem 1.5]). For n � 3, let � be a lattice in SL.n; R/. Suppose
dim.M/ D n and let ˛W � ! Diff1vol.M/ be an action such that ˛.0/ is Anosov for some
0 2 � . Then there is a homeomorphism hW M ! T n such that h ı ˛./ ı h�1 is affine for
every  2 � . Moreover, if ˛W � ! Diff1vol.M/ then h is C 1.

It is natural to ask if the assumption that the action preserves a volume form in The-
orem 4.11 can be removed.

Conjecture 4.12. For n � 3, let � � SL.n; R/ be a lattice. Let ˛W � ! Diffr .M/ be an
action such that ˛.0/ is Anosov for some 0 2 � . Then � preserves a smooth (nowhere
vanishing) volume form on M .

In a recent collaboration, we were able to verify this conjecture in certain situations.

Theorem 4.13 (A. Brown and H. Lee; in preparation). Conjecture 4.12 holds for C 1

Anosov actions on n-manifolds by cocompact lattices in SL.n; R/ for n � 4.

We also expect that Theorem 4.13 holds for nonuniform lattices. In Theorem 4.11,
the only possible lattice subgroups � � SL.n;R/ admitting Anosov actions onT n are (up to
conjugacy) commensurable with SL.n; Z/. Combined with Theorem 4.11, this would imply
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that the only lattices � � SL.n; R/ that admit a C 1 Anosov action in dimension n are
commensurable with SL.n; Z/.

5. Tools used in proofs

5.1. Suspension space and induced G -action
LetG be a Lie group and let � be a lattice subgroup ofG. LetM be a compact man-

ifold and let ˛W � ! Diff.M/ be an action. A well-known construction translates between
the �-action on M and an equivariant G-action on a fiber-bundle X over G=� with fibers
diffeomorphic to M : On G � M consider the right �-action and the left G-action:

.g; x/ �  D
�
g; ˛.�1/.x/

�
; a � .g; x/ D .ag; x/:

Define the quotient manifold X WD .G � M/=� . The G-action on G � M descends to a
G-action on X . For g 2 G and x 2 X , denote the action by g � x and denote the derivative
of the diffeomorphism x 7! g � x at x 2 X by DxgW TxX ! Tg �xX .

The space X is a fiber bundle over G=� . Let � W X ! G=� be the projection and
let E WD kerD� denote the fiberwise tangent bundle. That is, E D .G � TM/=� .

We write AW G � E ! E for the fiberwise derivative cocycle over the G-action X :
given x 2 X , if E.x/ is the fiber of E over x then A.g; x/W E.x/ ! E.g � x/ is the restriction
to E.x/ of the derivative of translation by g:

A.g; x/ D Dxg�E.x/:

When � is cocompact, we equip TX and E with any choice of Riemannian metric. When �

is nonuniform, we use arithmeticity of � and Siegel domains in G to equip TX and E with
Riemannian metrics adapted to the geometry of � in G.

5.2. Common themes
LetA D expa be a maximalR-split Cartan subgroup ofG; whenG D SL.n;R/, we

take A D ¹diag.et1 ; : : : ; etn/ W t1 C � � � C tn D 0º, the subgroup of positive diagonal matrices
whence A ' Rn�1. Most results discussed above follow from precise formulations of the
following 2 heuristics. In the remainder of this section, we discuss concrete examples of
these. Throughout, we always assume dim.A/ � 2.

Theme 1. Dynamical properties of the �-action on M induce A-invariant probability mea-
sures � on X factoring onto the Haar measure on G=� with corresponding dynamical
properties.

Theme 2. A-invariant probability measures � on X factoring onto the Haar measure on
G=� are expected to be very “rigid.”

Theme 2 often leads to extra invariance or homogeneity of the measure �. Com-
bined with dynamical structures associated with� in Theme 1, this often constrains possible
dynamical properties of � on M or reveals some homogeneous structures associated with
the �-action on M .
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Below we describe one instance of Theme 1 and several instances of Theme 2. We
also outline cohomological versions of Theme 1 and Theme 2 that are used in the proof
of Theorem 4.6.

5.3. Theme 1 and subexponential growth
Let X D .G � M/=� denote the induced G-space and let A denote the corre-

sponding fiberwise derivative cocycle. Given a 2 G and an a-invariant probability measure
� on X , we define the average top Lyapunov exponent of A by

�top;a;�;A WD lim inf
n!1

1

n

Z
log

A.an; x/
 d�.x/:

This is finite whenever the function x 7! log kA.a; x/k is L1.�/ which—by the choice of
norm on E—holds for any probability measure� onX that factors onto the normalized Haar
measure on G=� . We recall Definition 2.5. The main technical theorem established in the
papers [5–7] is the following precise version of Theme 1 which, under the assumption that the
conclusion of Theorem 2.6 fails, builds a measure on the suspension space X with certain
dynamical properties.

Theorem 5.1 ([7, Theorem D]). LetG be a connected semisimple Lie group with finite center,2

without compact factors, andwith rankRG � 2. Let� be an irreducible lattice subgroup inG,
let M be a compact manifold, and let ˛W � ! Diff1.M/ be an action. If the action ˛ fails
to have uniform subexponential growth of derivatives then there exists a maximal R-split
Cartan subgroup A of G and a probability measure � on X such that

(1) � is A-invariant,

(2) � projects to the Haar measure on G=� , and

(3) for some a 2 A, the average top Lyapunov exponent �top;a;�;A is positive.

We remark that there are no constraints on the dimension of M in the statement
of Theorem 5.1. In particular, Theorem 5.1 serves as the starting point for the proofs of The-
orems 2.4 and 2.6 as well as Theorems 2.11, 2.13, and 3.1 and may serve as a starting point
for future results.

5.4. Theme 2 and invariance of measures
In Theme 2, we consider an A-invariant probability measure � on X factoring onto

the Haar measure on G=� . One precise version of Theme 2 produces extra invariance of �

by certain subgroups of G normalized by A. See especially [8, Proposition 5.1]. This has the
following corollary used to prove Theorem 2.6.

Theorem 5.2. Let G be a higher-rank simple Lie group, let � be a lattice in G, let M be a
compact manifold, and let ˛W � ! Diffr .M/ be an action for r > 1. Then

2 For simplicity of statement, we assume the center of G is finite though that is not necessary
for applications.
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(1) if dim.M/ � r.G/ � 1, every A-invariant probability measure on X that
projects to the Haar measure on G=� is G-invariant;

(2) if dim.M/ � r.G/ and ˛ is volume-preserving, every A-invariant probability
measure on X that projects to the Haar measure on G=� is G-invariant.

To prove Theorem 2.6, if dim M < n.G/ and if � is a G-invariant probability
measure on X , then Zimmer’s cocycle superrigity implies �top;a;�;A D 0 for every a 2 G.
Combined with Theorems 5.1 and 5.2, we obtain a contradiction unless the conclusion
of Theorem 2.6 holds.

In the setting of C 1 actions, we have the following weaker version of Theorem 5.2
which follows from mild modifications of the invariance principle in [1] (extending results
of [46]).

Theorem 5.3 ([4, Proposition 3]). Let G be a higher-rank simple Lie group, let � be a lattice
in G, let M be a compact manifold, and let ˛W � ! Diff1.M/ be an action. Then

(1) if dim.M/ � rank.G/ � 1, every A-invariant probability measure on X that
projects to the Haar measure on G=� is G-invariant;

(2) if dim.M/ � rank.G/ and ˛ is volume-preserving, every A-invariant probabil-
ity measure on X that projects to the Haar measure on G=� is G-invariant.

The appearance of r.G/ (rather than v.G/ or n.G/) in Theorem 5.2 is the main
reason why r.G/ appears in Theorem 2.4. However, one might expect an analogue of The-
orem 5.2 with dimension bounds corresponding to those in Conjecture 2.2 holds.

Conjecture 5.4. Let G be a higher-rank simple Lie group, let � be a lattice in G, let M be
a compact manifold, and let ˛W � ! Diff1.M/ be an action.

(1) If dim.M/ � v.G/ � 1, every A-invariant probability measure on X that
projects to the Haar measure on G=� is G-invariant.

(2) If dim.M/ � v.G/ and if ˛ is volume-preserving, everyA-invariant probability
measure on X that projects to the Haar measure on G=� is G-invariant.

One might further conjecture the following.

(3) If dim.M/ � n.G/ � 1 and if ˛ is volume-preserving, every A-invariant proba-
bility measure on X that projects to the Haar measure on G=� is G-invariant.

For many non-R-split groups G, (1) and (2) of Conjecture 5.4 can be established
using tools of measure rigidity and cocycle superrigidity. We discuss this in the next section.

5.5. Theme 2: measure and cocycle rigidity; homogeneous structures
Let A be a maximal (connected) R-split Cartan subgroup of G; since A ' Rrank.G/,

A is a higher-rank abelian group if G is higher-rank. Measures invariant under higher-rank
abelian groups (with positive entropy) are expected to exhibit some degree of homogeneity
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unless they factor onto an action of a rank-1 quotient ofA. Such results have been established
in the setting of homogenous dynamics, see especially [19–21,43,48,61], and in the setting of
smooth non-linear dynamics, see especially [36,37].

To prove Theorem 2.11, it remains to establish relevant cases of Conjecture 5.4;
this implies an analogous version of Theorem 2.6 and allows one to complete the outline
in Section 2.2. An argument discovered by J. An shows that one may assume the A-invariant
measure � in the conclusion of Theorem 5.1 is invariant under a parabolic subgroup Q � G

containing A. When the Levi component of Q is sufficiently large, Zimmer’s cocycle super-
rigidity constrains the combinatorics of the Lyapunov spectrum of the cocycle A (over the
action of A and the measure �); this, combined with [8, Proposition 5.1], yields many cases
of Conjecture 5.4 including (among others) the ranges in Theorem 2.11. Adaptations of the
nonlinearmeasure rigidity arguments in [36,37] yield further constraints on the combinatorics
of the Lyapunov spectrum of A solving additional cases of Conjecture 5.4. We summarize
with following.

Theorem 5.5 (J. An, A. Brown, and Z. Zhang; in preparation).

(1) Conjecture 5.4(1) holds for lattices in complex simple Lie groups.

(2) Conjecture 5.4(2) holds for lattices in SL.n; C/ for n � 4.

(3) Conjecture 5.4(1) holds for lattices in the groups appearing in Theorem 2.11.

While this establishes Conjecture 5.4 in many cases, there are many higher-rank
simple groups for which Conjecture 5.4 is unresolved.

Problem 5.6. Find a newmechanism to obtain extra invariance ofA-invariant measures that
allows us to establish additional cases of Conjecture 5.4.

The result announced in Theorem 4.13 follows by similarly adapting the measure
rigidity arguments of [36] as well as a version of Theme 1 involving topological entropy.

The proof of Theorem 3.1 follows from further adapting the techniques of measure
rigidity. Very roughly, starting from the A-invariant measure � in the conclusion of The-
orem 5.1, we have that � is invariant under a parabolic subgroup Q � G containing A.
Locally, every point x 2 X has a neighborhood parameterized as U � M where U � G

is an open neighborhood of the identity. If V � G denotes the unipotent subgroup trans-
verse to Q, one shows the restriction of the measure � to such parameterized neighborhoods
coincides with the graph of an injective, C r function V ! M . These graphs then assemble
coherently to give local homogeneous coordinates relative to which M admits the structure
of a �-equivariant covering space of G=Q.

5.6. Cohomological versions of Theme 1 and Theme 2
We end this note with a reformulation of Theme 1 and Theme 2 used in the proof

of Theorem 4.6. Let� � SL.n;R/ be a lattice, let ˛W� !Homeo.T d / be as in Theorem 4.6,
and let �W� !GL.d;Z/ be the linear data of˛. Passing to compact extensions and subgroups
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of finite index, assume ˛ lifts to an action Q̨ W � ! Homeo.Rd / and that � coincides with the
restriction to � of a continuous representation �WSL.n; R/ ! SL.d; R).

Cohomological reformulation. Consider the identify map h0W T d ! T d ; the defect of h0

satisfying (4.1) determines a continuous, �-twisted 1-cocycle cW � � T d ! Rd , given by
c.; x/ D Q̨ ./. Qx/ � �./ Qx for any lift Qx 2 Rd of x. In particular, for 1; 2 2 � ,

c.12; x/ D �.1/c.2; x/ C c
�
1; ˛.2/.x/

�
: (5.1)

Suppose that c is a coboundary; that is, suppose there exists a continuous function �W T d !

Rd such that for every  2 � and x 2 T d , c.; x/ D �./�.x/ � �.˛./.x//. The function
h.x/ D h0.x/ C �.x/ D x C �.x/ then satisfies (4.1).

Cohomological version of Theme 1. Rather than study the �-action on T d , we pass to the
G-action on the suspension space X and define a related cocycle QcW G � X ! Rd . While
Qc is continuous in every fiber of X , it is only Borel measurable over G=� . Nonetheless, to
establish Theorem 4.6, it suffices to show Qc is a coboundary: for every g 2 G,

Qc.g; x/ D �.g/ Q�.x/ � Q�.g � x/ (5.2)

where Q�W X ! Rd is a measurable function that is continuous in Haar-almost every fiber.
Using that �.0/ is hyperbolic for some 0 2 � , a modification of the proof of Theorem 4.2
produces such a function Q�W X ! Rd such that (5.2) holds for all g 2 A and almost every
fiber.

Cohomological version of Theme 2. It remains to show the function Q� solves equation (5.2)
for all g 2 G. We identify finitely many unipotent subgroupsU D ¹U1; : : : ;U`º (specifically,
1-parameter root subgroups) of SL.n; R/, each of which is normalized by A, and show

(1) the cocycle equation (5.2) holds for all g 2 Uj , and

(2) the group G is generated by the subgroups U D ¹U1; : : : ; U`º and A.

For the case ofG D SL.n;R/wemay takeU to contain all root subgroups normalized byA.
However, for certain higher-rank simple groups G (such as Sp.4; R/ of real rank 2), it may
be that (5.2) only holds for g in a subset of the root groups; nonetheless, these groups still
generate all of G.

The above outline should apply to any �-twisted cocycle cW� � T d ! Rk , assuming
�.0/ is hyperbolic for some 0 2 � , and show c is a coboundary. However, this is a large
restriction on the class of representations � considered; for instance, it does not include the
case that � is the adjoint representation. Still, using that c is a cocycle for an action of a large
group, it may be possible to solve the following.

Question 5.7. Let cW � � T d ! Rk be a �-twisted cocycle where �W G ! GL.k; R/ is a
nontrivial irreducible representation (such as the adjoint). Is c a coboundary?
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A. Numerology associated with Zimmer’s conjecture

We compute the numbers n.G/, d.G/, v.G/, and r.G/ for various classical real Lie
groups. These numbers depend only on the Lie algebra of G.

Lie algebra g restricted
root system

real
rank

n.G/ d.G/ v.G/ r.G/

sl.n; R/

n � 2

An�1 n � 1 n 2n � 2, n ¤ 4

5, n D 4(a)
n � 1 n � 1

sp.2n; R/

n � 2

Cn n 2n 4n � 4 2n � 1 2n � 1

so.n; n C 1/

n � 3(b)
Bn n 2n C 1 2n 2n � 1 2n � 1

so.n; n/

n � 4(c)
Dn n 2n 2n � 1 2n � 2 2n � 2

(a) sl.4; R/ D so.3; 3/
(b) so.1; 2/ D sl.2; R/ and so.2; 3/ D sp.4; R/
(c) so.2; 2/ is not simple and so.3; 3/ D sl.4; R/

Table 1

Numerology appearing in Zimmer’s conjecture for classical R-split Lie algebras.

Lie algebra g restricted
root system

real
rank

n.G/ d.G/ v.G/ r.G/

sl.n; C/

n � 2

An�1 n � 1 2n 2n � 2, n ¤ 4

5, n D 4(d)
2n � 2 n � 1

sp.2n; C/

n � 2

Cn n 4n 4n � 4 4n � 2 2n � 1

so.2n C 1; C/

n � 3(e)
Bn n 4n C 2 2n 4n � 2 2n � 1

so.2n; C/

n � 4(f)
Dn n 4n 2n � 1 4n � 4 2n � 2

(d) sl.4; C/ D so.6; C/
(e) so.5; C/ D sp.4; C/ and so.3; C/ D sl.2; C/.
(f) so.6; C/ D sl.4; C/ and so.4; C/ is not simple.

Table 2

Numerology appearing appearing in Zimmer’s conjecture for classical complex Lie algebras.
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Lie algebra g restricted
root system

real
rank

n.G/ d.G/ v.G/ r.G/

sl.n; H/, n � 3 An�1 n � 1 4n 4n � 2 4n � 4 n � 1

so.n; m/

2 � n � n C 2 � m

Bn, n < m n n C m n C m � 1 n C m � 2 2n � 1

su.n; m/

2 � n � m

.n; m/ ¤ .2; 2/(g)

.BC /n, n < m

Cn, n D m

n 2n C 2m 2n C 2m � 2 2n C 2m � 3 2n � 1

sp.2n; 2m/

1 � n � m

.BC /n, n < m

Cn, n D m

n 4n C 4m 4n C 4m � 4 4n C 4m � 5 2n � 1

so�.2n/

n � 4 even(h)
C 1

2 n
n
2 4n 2n � 1 4n � 7 n � 1

so�.2n/

n � 5 odd
.BC / 1

2 .n�1/
n�1

2 4n 2n � 1 4n � 7 n � 2

(g) su.2; 2/ D so.4; 2/
(h) so�.4/ is not simple

Table 3

Numerology appearing in Zimmer’s conjecture for classical higher-rank nonsplit real forms.
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1. Introduction

The study of dynamics on moduli spaces of translation surfaces has been undergo-
ing intensive growth over the last two decades. This subdomain of ergodic theory lies at the
crossroads of dynamics of Lie group actions and geometry of surfaces and has close con-
nections with the theory of rational billiards, interval exchange transformations, Teichmüller
theory, algebraic geometry, number theory, mathematical physics, and more. The founda-
tions of the theory were laid down by Masur and Veech in the 1980s, in work motivated by
a conjecture of Keane about interval exchange transformations. Through the efforts of many
mathematicians (see the ICM proceedings contributions [11,16,23,30,49], and the survey [33]

about billiards in this volume), we now know a great deal about the dynamics on these spaces.
As entry points we recommend the surveys [17,24,26,44,46–48].

Our focus in this survey will be results and open questions concerning the dynamics
of the horocycle flow. Much of the work on the dynamics on spaces of translation surfaces
has beenmotivated by a fruitful analogy with the study of Lie group actions on homogeneous
spaces. In such a putative dictionary, the horocycle flow on moduli spaces corresponds to a
unipotent flow on a homogeneous space, for which Ratner [31] famously showed that all orbit-
closures and invariant measures admit a nice algebraic description. The celebrated “magic
wand” theorems of Eskin,Mirzakhani, andMohammadi [14,15], whichwewill discuss briefly
below, may be regarded as providing positive evidence for the existence of a corresponding
picture for moduli spaces of translation surfaces. However, as we will see, the emerging
picture for the horocycle flow in moduli spaces is more complicated than this simple analogy
might suggest.

2. Definitions and background

There are several alternative points of view concerning the definitions of translation
surfaces, their moduli spaces, and the SL2.R/-action on them, see Definitions 1, 4, and 5
of [24]. See the surveys mentioned above for more information, and alternative definitions,
and see [4, §2] for a more detailed treatment following the point of view we will take here.

A polygonal surface (which we will also call a polygonal presentation of a transla-
tion surface) is a finite collection of polygons in the plane, equipped with a partition of the
sides into pairs of parallel sides of equal length and opposite orientation, which we identify
by translations.

If e; e0 is a pair of identified sides, then there is a unique translation ' D 'e;e0 with
'.e/ D e0, and we say that each x 2 e is identified with '.x/ 2 e0. The identifying maps
¹'e;e0º generate an equivalence relation on the polygonal surface. For points in the interior
of polygons, the equivalence class is a singleton; for points in the interior of a side, it is
a pair of points; and for vertices, it is some finite set of vertices. The union of polygons
has a topology as a subset of Euclidean space, and we endow the polygonal surface with
the quotient topology for the equivalence relation just defined. Thus the polygonal surface
becomes a compact oriented surface. We make the further requirement that it is connected.
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Figure 1

A polygonal surface. Parallel edges (in case of ambiguity, those with the same marking) are identified by
translations, and the points marked with � and ı represent two singularities, each of order 1. The rotating arc
around singularity ı measures its turning angle of 4� .

A polygonal surface inherits some geometric structures from the plane. Each point
has a cone angle which measures the total turning angle made by a curve around the point.
At points which are interior points of polygons or of edges, the turning angle is 2� , and for
vertices of polygons, it is 2�.1C k/ for some integer k � 0 measuring the excess in angle.
Points for which the excess in angle is positive are called singularities, and the excess in
angle of a singularity is its order. One defines the area of a polygonal surface, as the sum
of the areas of the polygons. The surface also inherits the notion of a straightline flow in any
direction. This is defined by extending the motion along a straight line by applying the maps
'e;e0 . If a straightline flow reaches a singularity, the straightline trajectory does not extend
past the singularity, and thus the straightline flow in a given direction is defined for all times,
only on a denseGı subset of the polygonal surface. A finite straightline flow trajectory which
begins and ends at singular points is called a saddle connection. One can also measure the
total horizontal and vertical displacement along an oriented path ˛ in a polygonal surface
M , i.e., the total amount traveled in the horizontal and vertical directions, when traveling
along the path. We denote by holM .˛/ 2 R2 the holonomy vector whose components are
these horizontal and vertical displacements. See Figure 2.

There is a scissors congruence equivalence relation on polygonal surfaces, gener-
ated by the following three operations:

(a) subdividing a polygon into two polygons by adding a diagonal (in this case the
two new edges are “both sides” of the new diagonal and they are identified);

(b) the inverse operation of amalgamating two polygons separated by an edge into
a larger one by deleting a diagonal; and

(c) translating polygons by translations.

See Figure 3.
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Measuring holM .˛/ for a saddle connection ˛.

A scissors equivalence class of polygonal surfaces is called a translation surface.
The number of singularities of a fixed order, the area and the holonomy vectors of piecewise
linear paths are the same for polygonal surfaces that are the same up to scissors congruence,
and thus make sense on translation surfaces.

The collection of all translation surfaces with a fixed number of singularities of
given orders is called a stratum; we denote by H .a1; : : : ; ar /, where a1; : : : ; ar are positive
integers, the stratum of translation surfaces with r singularities, of orders a1; : : : ; ar . The
group

G D SL2.R/ D

´ 
a b

c d

!
W ad � bc D 1

µ
acts on the plane by linear transformations. This action extends to an action on polygonal
surfaces (by applying the same linear transformation to each polygon) and preserves scissors
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Two scissors-equivalent polygonal surfaces.

equivalence, and thus acts on each stratum. The restriction of this action to the group

¹gt W t 2 Rº; where gt D

 
et 0

0 e�t

!
is called the geodesic flow. This action has been extensively studied, since the projections
of its orbits to the moduli space of Riemann surfaces are parameterized geodesic paths with
respect to the Teichmüller metric, and also since it provides a renormalization framework
used for studying billiards and interval exchange transformations. Our focus will be on the
horocycle flow, which is defined as the restriction of the G-action to the subgroup

U D ¹us W s 2 Rº; where us D

 
1 s

0 1

!
: (2.1)

We will pay special attention to orbit-closures for this action. For this, we need to define a
topology on a stratum H . The topology we will use is a metrizable topology, characterized
by the property that a sequence ¹Mj º of translation surfaces converges toM as j ! 1 if
one can choose polygonal surfaces which are representatives forM and each of theMj such
that, for all large enough j , the polygonal surfaces have the same combinatorics (that is, the
same number of polygons with the same number of sides and the same side identifications)
and the vertices of the polygons comprising Mj converge to the corresponding vertices of
the polygons comprisingM . See [4, §2.4] for more details.
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2.1. Some foundational results
The following fundamental results were proved in the 1980s and 1990s.

• The G-action preserves the area of a translation surface, and we denote by
H1.a1; : : : ; ar / the collection of area-one surfaces in H .a1; : : : ; ar /. There is a
natural smoothG-invariant measure of full support on the spacesH1.a1; : : : ; ar /,
derived from the Lebesgue measure in “period coordinates” via a “cone construc-
tion,” which was constructed by Masur [20] and Veech [40], and is now referred
to as the Masur–Veech measure. Masur, Veech, and Masur–Smillie [25] proved
that it is finite. Kontsevich and Zorich [19] classified the connected components
of strata.

• Masur [20] and Veech [38] showed that interval exchange transformations can be
suspended and understood via straighline flows on translation surfaces, and that
the ¹gt º-action can be used to renormalize the straightline flow dynamics. They
used this approach to settle a conjecture of Keane concerning the unique ergod-
icity of interval exchange transformations.

• Masur [20] and Veech [39] showed that the G-action is ergodic with respect to the
Masur–Veech measure. This implies that there are dense orbits for the horocycle
flow and the geodesic flow, and that these flows are both mixing.

• Veech [37] gave examples of Z=2Z skew products of rotations that can be inter-
preted as flows on translation surfaces [26]. In these translation surfaces one has
directions in which the straightline flow is minimal but not uniquely ergodic.
Similar examples were also independently constructed by Sataev [32]. This phe-
nomenon of minimality without unique ergodicity of the straightline flow will
play an important role in our discussion. Masur [22] established a link between
nondivergence of geodesic trajectories and unique ergodicity of foliations. Masur
and Smillie [25] showed that, while they are rare, there are abundant examples of
minimal and not uniquely ergodic flows on translation surfaces.

• Veech [41] gave example of surfaces whose G-orbit carries a finite G-invariant
measure (such surfaces are now known as Veech surfaces). Using the connec-
tion to the G-dynamics, he showed that for Veech surfaces, the straightline flow
dynamics admits a complete description.

• Masur [21] showed that G-orbits are never bounded, and used this to show the
existence of periodic trajectories for rational billiards. On the other hand, Smillie
(see [35,42]) showed that aG-orbitGq is closed if and only if q is a Veech surface.

2.2. The analogy with Ratner’s work, and the magic wand theorem
The results mentioned in Section 2.1 can be seen as counterparts of similar results

in the setting of homogeneous flows. Around the end of the 20th century, several researchers
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began to speculate that there might be a translation surface analogue of Ratner’s celebrated
theorems on the action of groups generated by unipotents, acting on homogeneous spaces. In
particular, see [1,11], whose authors noted the usefulness of obtaining analogues of Ratner’s
theorem for applications in geometry and dynamics of translation surfaces.

What makes Ratner’s results so powerful is that they are able to shed light on the
behavior of every orbit (in contrast to softer results in ergodic theory which describe the
behavior of typical orbits). Indeed, this analogy led to the hope that it might be possible
to completely classify all invariant measures and all orbit-closures for the G-action and the
U -action, as these are the only two connected subgroups of G (up to conjugation) that are
generated by unipotent one parameter subgroups. McMullen [27] established such a result
for the G-action in genus two, see also Calta [6] for earlier strong results in this direction.
These results gave further impetus to work in this direction. The search was officially on
when Zorich published an influential survey [48] with a section titled “hope for a magic
wand.” For the G-action, the conjecture was confirmed in a spectacular fashion by Eskin,
Mirzakhani, and Mohammadi in [14,15]. This work has revolutionized the study of dynamics
on translation surfaces and has already had many applications in geometry which we do not
survey here. As a sample of their results, we have the following:

Theorem 2.1 (Eskin–Mirzakhani–Mohammadi, P -genericity). For any translation surface
q, there is a measure � whose support is the orbit-closure Gq and such that, for any com-
pactly supported continuous test function ' on the stratum containing q,

1

T

Z T

0

Z 1

0

'.gtusq/dsdt �!
T !1

Z
' d�:

The measure � is affine in natural coordinates, see [15, Def. 1.1] for a precise statement.

These developments left open the question of whether a similar result was possible
for the U -action, i.e., whether it is possible to classify all the U -orbit closures in terms of
some algebraic or geometric data. Can one understand allU -invariant ergodic measures, and
the asymptotic distribution of averages along any U -orbit? While the focus of this survey is
on the horocycle dynamics as an interesting subject in its own right, we note that positive
answers to these questions would have far-reaching consequences for some counting prob-
lems associated with billiards and flat surfaces. However, as we will see in this survey, the
behavior of U -orbits in strata of translation surfaces can be quite different from the behavior
of unipotent trajectories in homogeneous spaces.

3. Behavior of individual horocycle orbits

3.1. Some early results
Using ideas of Kerckhoff, Masur, and Smillie [18], Veech [43] showed that there is

no orbit of the horocycle flow that diverges in H . That is, for any q 2 H , there is a compact
K � H such that the set of visit times

¹s > 0 W usq 2 Kº
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is unbounded. A quantitative strengthening of this result was obtained by Minsky and Weiss
[28]: for any q 2 H and any " > 0, there is a compact subset K � H such that

lim inf
T !1

1

T

ˇ̌®
s 2 Œ0; T � W usq 2 K

¯ˇ̌
> 1 � ":

These results are parallels of quantitative nondivergence results of Dani and Margulis for
unipotent flows on homogeneous spaces (see [10]). With these results in hand, Smillie and
Weiss [34] classified theminimal sets for theU -action onH . They showed that for any q 2 H ,
the orbit-closure Uq contains a minimal set, i.e., a closed U -invariant subset containing no
proper closedU -invariant subsets. Furthermore,Uq is minimal if and only if the straightline
flow in the horizontal direction on the underlying surfaceMq is completely periodic. It fol-
lows that any orbit-closure for theU -action contains such a horizontally completely periodic
surface.

In some rather special settings, it was possible to completely classify theU -invariant
measures and orbit-closures. For Veech surfaces, this follows from results in homogeneous
dynamics, as was observed in [13]. The first result of this kind in a nonhomogeneous setting
is due to Eskin, Marklof, and Witte Morris [12], who studied surfaces which are branched
covers of Veech surfaces. This work was later extended by Calta and Wortman [7] and Bain-
bridge, Smillie, and Weiss [4]. In [4], a complete classification of U -invariant measures and
orbit-closures is given within the eigenform loci in genus two. In these loci, which are 5-
dimensionalG-orbit-closures in H .1; 1/ arising in McMullen’s genus-two classification, we
have a complete understanding of the possible orbit-closures and invariant measures. In these
examples one can observe some phenomena not present for the G-dynamics, for instance,
orbit-closures which are manifolds with nonempty boundary and an infinitely generated fun-
damental group. Nevertheless, these partial results were all consistent with a putative “magic
wand theorem for horocycles.”

3.2. Recent results
The situation changed in our work [9]. In this paper we proved the following results.

We recall that if � is a measure on H and q 2 H , we say that q is generic for � if for any
compactly supported continuous function f on H one has

1

T

Z T

0

f .usq/ ds �!
T !1

Z
H

f d�: (3.1)

Theorem 3.1. Let H D H .1; 1/ be the stratum of genus two surfaces with two singular
points. Then:

(1) There is a surface q 2 H and aG-invariant ergodic measure � on H such that
q is generic for � but supp.�/   Uq.

(2) There is a surface q 2 H which is not generic for any measure.

(3) There is a surface q 2 H whose orbit-closure is a fractal, in the sense that the
Hausdorff dimension of Uq is not an integer.
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Wemake some remarks to put these results in context. The third item in Theorem 3.1
is perhaps the most striking, but the first two are also in stark contrast with a “magic wand
paradigm.” Note that in (1), the support of the measure limit measure � is not the closure of
the orbit – compare with Theorem 2.1 or Ratner’s work. Also in (2) we see that there is no
analogue of Theorem 2.1 for the horocycle flow.

The orbit-closure we construct in (3) has an explicit description. The precise state-
ment requires some technical preparation and will not be discussed here, see [9, Thm. 1.8].

The stratum H .1; 1/ is the simplest one in which we are able to exhibit a surface
satisfying (3) but it is likely that our method can be extended to many other strata. However,
we are not able to establish (1) and (3) in the stratum H .2/. Note, however, that (2) holds in
H .2/ by the work of Chaika, Khalil, and Smillie [8].

In the next sections we will explain some of the ideas of [9], focusing on the proofs
of (1) and (2).

4. Tremors

The dynamical properties of a horocycle flow trajectory are intimately related to
those of the horizontal straightline flow on the corresponding surfaces. Following [9], we
will use the notation q to refer to a surface in a stratum, and Mq to refer to the underlying
translation surfaces. Although they are formally identical, we will use the symbol q when
the dynamical system we are considering is primarily the G-action on the stratum H con-
taining q, and we will useM DMq when we are considering the dynamics of the horizontal
straightline flow on the underlying translation surface. From now on, by straightline flow we
always mean the horizontal straightline flow, which we will denote by ¹�t º (the surface on
which the flow takes place will be clear from the context).

Let � be a ¹�t º-invariant measure onM . The simplest example is the Lebesguemea-
sure on the individual polygons. The second simplest example is the restriction of Lebesgue
measure to a polygonal subsurface which is ¹�t º-invariant; for example, in Figure 1, the
restriction of Lebesgue measure to one of the two hexagons in the picture (note that these
hexagons are separated from each other by two horizontal saddle connections, and thus each
is ¹�t º-invariant). Finally, a more interesting example referred to earlier, is the case when the
straightline flow is minimal but not uniquely ergodic; in that case there will be two or more
mutually singular ¹�t º-invariant measures, all supported on the entire surfaceM . By a stan-
dard result (see, e.g., [26]), if the straightline flow is not minimal then the surface contains
a horizontally invariant polygonal subsurface, and thus this list exhausts all possible cases.
Note that for almost every surfaceM , with respect to the measures discussed in Section 2.1,
the only ¹�t º-invariant measure (up to scaling) is Lebesgue measure.

Let � be any nonhorizontal segment in M . Such a segment is known as a cross-
section. We consider � as a piece of a trajectory for a (nonhorizontal) straightline flow,
thus parameterizing it by an interval, where we choose the positive orientation on � so that
holM .�/ D .x� ; y� / satisfies y� > 0. From � we can construct a cross-section measure on
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� via the formula

ˇ�;�.A/ D ˇ.A/ D lim
"!0C

1

"
�
�®
�t .a/ W a 2 A; t 2 Œ0; "�

¯�
:

This classical construction defines a bijection between straightline flow invariant measures
onM and measures on � which are invariant under the first return map to � along horizon-
tal lines (see [2]).1 If � D Leb is Lebesgue measure onM , the cross-section measure on �
(viewed as an interval via its parameterization) is a multiple of one-dimensional Lebesgue
measure. The system of measures ˇ� D ¹ˇ�;� W � is a cross-sectionº is an example of a trans-
verse measure (corresponding to �).2 The transverse measure corresponding to Leb will be
called the canonical transverse measure. Similarly, if � is the restriction of Lebesgue mea-
sure to a polygonal subsurface, the cross-section measure on each � is the restriction of
Lebesgue measure to a finite collection of subintervals. If ¹�t º is minimal but not uniquely
ergodic, the cross-section measures are fully supported measures which may be distinct from
Lebesgue measure.

Let us now express the action of the horocycle element us (notation as in (2.1)).
Recall that us acts on polygonal surfaces by tilting or shearing polygons. The computation

holusM .�/ D

 
1 s

0 1

! 
x�

y�

!
D

 
x� C sy�

y�

!
D holM .�/C

 
sy�

0

!
shows that the amount of tilting of a side � of a polygon is proportional to its measure, with
respect to the canonical transverse measure. We can tweak this definition and replace each
appearance of y� with ˇ.�/, where ˇ is a transverse measure onM . This idea gives rise to
the tremor map. It takes as input a surface q, a transverse measure ˇ, and a “time parameter”
s, and produces a new translation surface q0 D trems;ˇ .q/, whereM 0 D Mq0 is defined by
assigning to each side � of a polygonal presentation ofMq the holonomy

holM 0.s/ D holM .�/C

 
sˇ.�/

0

!
:

A basic observation is that this definition makes sense. That is, there is a polygon presen-
tation of Mq for which the adjusted segments in the above definition still give a polygonal
presentation of a surfaceM 0, and, moreover,M 0 does not depend on a particular choice of
a polygonal presentation. Furthermore,3 it can be shown that trems;ˇ .q/ is defined for all
values of s. On the other hand, the tremor map is not a flow in the sense that the choice of ˇ
depends on the initial translation surfaceMq . For most choices ofMq , the only choice for ˇ
is the canonical transverse measure, and in that case trems;ˇ .q/ is nothing but the horocycle

1 More precisely, for this correspondence we need � to intersect every straightline trajectory;
this always happens when the straightline flow is minimal but it will be convenient to relax
this condition and define ˇ�;�.A/ for any � .

2 In [9] we use a more general definition of transverse measures, but the only transverse mea-
sures we will need in this survey arise from straightline flow invariant measures via this
construction.

3 Recall that in this survey we discuss a more restrictive class of transverse measures. This
assertion is false in the more general context considered in [9].
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image usq. However, for surfacesMq for which there are noncanonical transverse measures,
we get other tremor paths ¹trems;ˇ .q/ W s 2 Rº.

Sometimes it will be helpful to ignore the dependence of trems;ˇ .q/ on s, and we
will write tremˇ .q/D trem1;ˇ .q/. Note that themultiple of a transversemeasure by a positive
scalar is also a transverse measure, and we have the obvious identity

tremsˇ .q/ D trems;ˇ .q/: (4.1)

It is sometimes helpful to work with signed measures, which turns the set of all “signed
transverse measures” into a real vector space. We call elements of this vector space signed
foliation cycles. One can extend the definition of a tremor to the case in which ˇ is a signed
foliation cycle, and then one obtains identities like (4.1) for all s 2 R. In this more general
setup, the set of transverse measures forms a convex cone CC

q in the vector space of signed
foliation cocycles. See [9, §6] for more details.

A crucial fact for our analysis is the fact that surfaces which are obtained from one
another by a tremor “have the same horizontal foliation.” To make this precise, in [9, §5],
we show the existence of a homeomorphism  D  ˇ W Mq ! Mq0 , which is a topological
conjugacy between the straightline flow onMq and the straightline flow onMq0 , i.e.,

8t 2 R; �0
t ı  D  ı �t ; (4.2)

where �t ;�
0
t denote respectively the straightline flows onMq andMq0 . The pushforwardmap

 � induces a bijection between the straightline flow invariant measures onMq and those on
Mq0 , and thus between the cones of transverse measures CC

q ; C
C

q0 . In particular, this holds
when ˇ is canonical, i.e., when q0 2 Uq. Thus if Mq is not horizontally uniquely ergodic,
then the same holds forMq0 . Furthermore, we have the relation

8s 2 R; ustrem�.q/ D trem�.usq/; (4.3)

where we have used � to denote both a transverse measure onMq , and its image under  �.
Formally, this is a commutation relation between the maps q 7! trem�.q/ and q 7! us.q/.
Note, however, that off of a set of measure zero, any tremor is just the horocycle flow and (4.3)
is just the relation us1 ı us2 D us2 ı us1 .

5. Some ideas in the proof of Theorem 3.1

5.1. U -orbits of tremored surfaces almost track U -orbits
The starting point for our analysis is the following observation:

Proposition 5.1. There is a proper complete metric dist on H , inducing the topology, such
that the following holds. Let q 2 H be such that Mq admits a noncanonical transverse
measure ˇ D ˇ� , where � is a straightline flow invariant measure satisfying � � Leb. Let
q0 D tremˇ .q/. Then

sup
s2R

dist
�
usq; usq

0
�
< 1: (5.1)
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Note that by (4.3), usq
0 D tremˇ .usq/. A useful (but imprecise) heuristic explana-

tion of (5.1) is that a fixed tremor can only move points a bounded distance. The metric dist
appearing in Proposition 5.1 was introduced in [3].

A more detailed analysis of the function s 7! dist.usq; usq
0/ appearing in (5.1)

yields the following statement.

Theorem 5.2. Let M DGq   H be aG orbit-closure, and let � be theG-invariant ergodic
measure on M (as in Theorem 2.1). Suppose q is generic for � andMq is horizontally mini-
mal but not uniquely ergodic. Let ˇ be a noncanonical transverse measure onMq such that
q0 D tremˇ .q/ … M. Then there is s0 2 R so that the surface q0 D us0q satisfies

8" > 0;
1

T

ˇ̌®
s 2 Œ0; T � W dist

�
usq

0; usq0

�
� "

¯ˇ̌
�!

T !1
0: (5.2)

Note that q0 2 M is also generic for �, since q is. If ˇ were the canonical transverse
measure then q0 D us0q D q0 and (5.2) would be vacuously true. The result asserts that
when q0 … M, the trajectory of q0 nevertheless spends all but a negligible proportion of its
time arbitrarily close to the trajectory of a generic point. In particular, it “falls back on M.”
Since genericity is not affected by modifying a trajectory on a set of zero measure, we see
that Theorem 5.2 implies (1) of Theorem 3.1, provided one can find examples of M and q
for which the conditions of Theorem 5.2 are satisfied.

That such examples exist follows from the genericity results in [4]. Indeed, in the
setting of eigenform loci in H .1; 1/ studied in that paper, the condition of having a minimal
but not uniquely ergodic horizontal straightline flow does not have any effect on the asymp-
totic distribution of a horocycle orbit. In the simplest of these examples, M can be taken to
be the collection of surfaces in H .1; 1/ which admit a 2 W 1 branched covering of a torus
(this orbit-closure is denoted by E4 in McMullen’s classification [27]).

We now explain the idea behind the proof of (5.2). It is useful to view a transverse
measure as a cohomology class. Indeed, a transverse measure (or indeed, a signed foliation
cocycle) assigns a real number to any positively oriented transverse segment on Mq . One
can check that the assignment � 7! ˇ�;�.�/ (where ˇ D ¹ˇ�;�º) is a cochain representing
a cohomology class in H 1.Mq; †qI R/, where †q is the set of singularities. Consider the
vector bundle B over H for which the fiber over q isH 1.Mq; †I R/, that is,

H 1.Mq; †qI R/ B

H

The bundle B has a simple description as a subbundle of the tangent bundle of H ,
with the pair .q; ˇ/ representing the tangent direction of the curve s 7! trems;ˇ .q/.4 In par-
ticular,B has a natural topology, and in this topology the set of cones of transverse measures

4 To make this description precise one should work in the category of orbifold bundles.
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CC
q is closed (see [9, §4.1, §13]). That is, if ˇn 2 H 1.Mqn ; †qn I R/ are cohomology classes

represented by transverse measures, and .qn; ˇn/ ! .q1; ˇ1/ as elements of B, then ˇ1

is also represented by a transverse measure onMq1
. Furthermore, the map

B ! H ; .q; ˇ/ 7! tremˇ .q/ (5.3)

is continuous with respect to the topology on B.
This basic fact seems to contradict our previous heuristic that surfaces which are in

the same U -orbit have the same cone of transverse measures. Indeed, suppose qn D unq for
un 2 U , and q and thus all of the qn have a noncanonical transverse measure, but qn ! q1

where q1 has a uniquely ergodic straightline flow. Then we have that all the qn have the same
fixed cone CC

q of transverse measures, containing both the canonical transverse measure
and a noncanonical one, while at the same time this cone of transverse measures converges
to CC

q1
, which is just the ray generated by the canonical transverse measure. How is this

possible?
The answer is that, with respect to any reasonable metric on B, the bijection

sending CC
q to CC

qn
is far from being an isometry. One can define norms k � kq on each

H 1.Mq; †qI R/, which are continuous in the bundle topology, with respect to which the
unit length transverse measures ¹ˇ 2 CC

qn
W kˇkqn D 1º all converge to the unique unit

length transverse measure in CC
q1

. Thus, the cones CC
qn
, although of dimension > 1 and in

bijection with each other, “collapse” down to the ray CC
q1

.
Using this idea, in the proof of Theorem 5.2 we show that, for any " > 0, there is an

open set U � M containing all the uniquely ergodic surfaces such that, for any q1 2 U, the
diameter of ¹ˇ 2 CC

q1
W kˇkq1 D 1º is at most ". By genericity, the orbit Uq spends all but a

negligible proportion of its time in U, and since the map (5.3) is continuous for the metric
dist, (5.2) follows.

5.2. From genericity to lack of genericity
Recall that from Birkhoff’s theorem, any ergodic U -invariant measure assigns full

measure to its generic points. It is sometimes useful to work with quasigeneric points instead.
These are defined as points q for which there is a sequence Tn ! 1 such that for all com-
pactly supported continuous test functions f ,

1

Tn

Z Tn

0

f .usq/ ds �!
n!1

Z
f d�:

Note that a generic point is quasigeneric, but a point can be quasigeneric for two measures.
If q0 is quasigeneric for two measures � and �, we can take f for which

R
f d� ¤

R
f d�

to see that the limit limT !1
1
T

R T

0
f .usq0/ ds does not exist, and, in particular, q0 is not

generic for any measure. Thus for a given dynamical system, the condition that there are
distinct invariant measures, and every point is generic for one of them, implies that there
are no points which are quasigeneric for two different measures. Recall that this condition is
satisfied for unipotent flows on homogeneous spaces (by Ratner’s work), as well as for some
averages on moduli spaces of translation surfaces (e.g., the horocycle flow in the settings of
[4,7,12], or two-dimensional averages for G-invariant measures as in Theorem 2.1).

3424 J. Chaika and B. Weiss



To see that this is quite restrictive, we note that the set of quasigeneric points for
somemeasure � is aGı set. Indeed, let ¹fj ºj 2N be a dense countable collection of continuous
compactly supported test functions. For each j 2 N, each T > 0, and each " > 0, continuity
of the action implies that

Uj;T;" D

´
q 2 H W for i D 1; : : : ; j;

ˇ̌̌̌
ˇ 1T

Z T

0

fi .usq/ ds �

Z
fi d�

ˇ̌̌̌
ˇ < "

µ
is open. The set of quasigeneric points can be written as

1\
j D1

1\
kD1

1[
T Dk

Uj;T;1=j ;

proving the claim.
By the Baire category theorem, any two dense Gı subsets intersect. Let M be as in

Theorem 5.2, let � and � be the fully supportedG-invariant measures on H .1; 1/ and on M

respectively. By Birkhoff’s theorem, the set of generic points for � is dense in H .1; 1/. Thus
item (2) of Theorem 3.1 follows from Theorem 5.2 and the following:

Proposition 5.3. The set of surfaces of the form®
tremˇ .q/ W q 2 M is generic for � and horizontally minimal; ˇ 2 CC

q

¯
(5.4)

is dense in H .1; 1/.

In order to prove this statement, we recall the observation “if q0 is obtained from q by
a tremor thenMq andMusq have the same transverse measures,” which we discussed above
in connection with (4.3). We add to it the additional observation “if q0 is obtained from q by
the ¹gt º-action thenMq andMq0 have the same transverse measures.” This is proved using
a similar idea to the comparison homeomorphism of [9, §5]. Namely, the definition of the gt

action shows that if q0 D gt0q then there is a homeomorphismMq !Mq0 which intertwines
the straightline flow up to a time change. That is, if ¹�t º and ¹�0

t º denote respectively the
horizontal straightline flows on Mq and Mq0 , and  W Mq ! Mq0 is the map obtained by
acting on a polygonal presentation as in the definition of the gt action, then

8t 2 R; �0

et0 t
ı  D  ı �t :

It follows from this that analogously to (4.3), one has

8ˇ 2 CC
q ; t 2 R; gt trems;ˇ .q/ D tremet s;ˇ .gtq/

(where we consider ˇ simultaneously as belonging to CC
q and CC

gt q via the above bijection).
Together with (4.3), we find that the set of surfaces F defined in (5.4) is invariant under
both flows ¹gt º, ¹usº, and hence, by Theorem 2.1, F is G-invariant. Moreover, M ¨ F ,
and examining the possibilities for F in McMullen’s classification [27] gives that F is dense
in H .1; 1/.
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6. Questions

There are many open questions about the horocycle flow on strata of translation
surfaces. We list some of them. We begin with one of the most outstanding questions in the
field:

Question 1. Is there an “exotic”U -ergodic measure? For example, measures whose support
has noninteger Hausdorff dimension, or fully supported measures that differ from Masur–
Veech measure.

A precise statement of the above question is tricky because Calta [6] and Smillie and
Weiss [36] gave examples of U -invariant ergodic measures whose support is a manifold with
boundary and infinitely generated fundamental group.

The following question is motivated by renormalization dynamics:

Question 2. If � is a U -invariant ergodic measure that is not G-invariant, are there two
G-invariant ergodic measures ��, �C so that

• supp.��/ ¨ supp.�C/,

• gt� �!
t!C1

�C,

• gt� �!
t!�1

��?

Note that we consider the zero measure to be a G-invariant ergodic measure. Even
the special case of measures supported on periodic horocycles (where �� is the zero mea-
sure) is open and very interesting. The same question is also interesting for horocycle orbit
closures.

Some basic questions on the topological dynamics of the horocycle flow are open.
To us, the following is the most outstanding example.

Question 3. Is the horocycle flow recurrent as a topological dynamical system? That is, is
it true that for every q 2 H there exists a sequence ti % 1 so that uti q �!

i!1
q?

In the realm of orbit closures:

Question 4. In [9] we construct an exotic U orbit-closure, which is the orbit closure of the
tremor of a translation surface in an “eigenform locus.” What are all the orbit closures of
tremors of translation surfaces in eigenform loci that do not have horizontal saddle con-
nections? Do they all have the description given in [9, Eq. (1.8)]? Informally, is any such
orbit-closure the set of all surfaces obtained from tremoring surfaces in a given eigenform
locus by at most a certain fixed amount?

Of course, we are also interested in other horocycle orbit-closures, including those
that arise from tremors of surfaces in proper G-orbit closures outside of H .1; 1/.

In special cases (see [4, 7, 12, 13]) the horocycle flow has been shown to behave
much like it does in homogeneous settings. For example, every point is generic for some
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U -invariant ergodic measure. These examples are all rank-one loci in the sense of [45]. This
motivates the following general question.

Question 5. In the special setting of rank-one loci, what can be said about the behavior of
the horocycle flow?

There is a growing dictionary between the earthquake flow and the horocycle flow.
This dictionary was initiated by Mirzakhani [29], who used it to prove that the earthquake
flow is ergodic. Calderon and Farre [5] have added to this dictionary and extended it to other
actions, which has allowed them to showcase additional behavior of the earthquake flow.
It is interesting to see whether some of these results can be proven directly in the setting of
earthquake flows and if any arguments in the setting of earthquake flows can be used to show
new behavior of horocycle flows on strata.
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Topological entropy
and pressure for
finite-horizon Sinai
billiards
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Abstract

This brief survey describes recent progress in our understanding of a variety of equilib-
rium states for finite-horizon dispersing billiard maps in two dimensions. In particular,
we review formulations of topological entropy and pressure for the family of geometric
potentials �t log J uT , where J uT denotes the unstable Jacobian of the map and t 2 R.
We summarize recent results, proving the existence and uniqueness of related equilibrium
states for some range of t � 0, including Œ0; 1�. In this family, t D 0 corresponds to the
measure of maximal entropy, while t D 1 corresponds to the smooth invariant measure for
the billiard map. In addition, variational principles are presented which express topological
notions of pressure and entropy as the supremum of their measure-theoretic counterparts.
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1. Introduction

The study of mathematical billiards as prototypical examples of mechanical systems
with frictionless collisions was introduced by Sinai [57] and subsequently developed bymany
authors. In such models, a finite number of convex obstacles are placed on a two-dimensional
torus, forming the billiard table, and a point particle is set in motion, moving with constant
velocity between collisions, and undergoing elastic reflections at the boundary. The billiard
map is the discrete-time map which takes the particle from one collision to the next. Despite
the presence of singularities (the map is discontinuous and its derivative is unbounded near
tangential collisions) the map preserves a smooth invariant measure, and the ergodic proper-
ties of the map with respect to this measure have been studied extensively through a variety
of techniques, including Markov partitions [14] and sieves [16], Young towers [21,60], and the
spectral analysis of the associated transfer operator [32–34].

It is also possible to introduce variations on the dynamics, by varying the shape
of the boundary or by including external forces such as electric fields and potentials which
act on the particle between collisions [24,25,29], or twists and kicks at the moment of colli-
sion [45,61]. For small forces, the dynamics resemble those of the classical billiard [8,22,23],
while for large forces the dynamics may change significantly [36,45,52]. The subject quickly
becomes vast and technical, so in this note we will focus on the dynamics of the classical
Sinai billiard without external forces. The book [27] by Chernov and Markarian provides an
excellent introduction to the subject.

The purpose of this expository note is to introduce the reader, without delving
into too many technicalities, to recent developments in the study of a family of equilib-
rium states for this class of billiards. Traditionally, and in all the references listed above, the
focus has been on the ergodic and statistical properties of the map with respect to the Sinai–
Ruelle–Bowen (SRB) measure, which in the unperturbed case has a smooth density with
respect to Lebesgue measure, such as ergodicity, mixing and the Bernoulli property [37,57],
rate of decay of correlations [21,60], dynamical Central Limit Theorem [14], and related limit
theorems [32,46,51]. Here, instead, we outline the progress made in [3,4] regarding the family
of geometric potentials, �t logJ uT , t 2 R, determining the existence and uniqueness of the
associated equilibrium states. The importance of this family lies in the fact that t D 1 cor-
responds to the SRB measure while t D 0 corresponds to the measure of maximal entropy.
More generally, the parameter t has been linked to the Hausdorff dimension of certain invari-
ant sets [12,42].

Despite this, geometric potentials have received relatively little attention in the con-
text of billiards. For t D 0, the topological entropy of a finite-horizon Sinai billiard map
T was studied in [20] by identifying a full Lebesgue measure set of points M1 that can be
coded via a countable Markov partition. Chernov showed that the topological entropy of T
restricted toM1 is equal to the topological entropy of the induced topological Markov chain
and used this to obtain a lower bound on the growth of periodic orbits. Yet, no invariant
measure achieving this topological entropy was constructed and whether the setM1 saw the
full topological entropy of the system was left open. For t near 1, the preprint [19] obtains
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results regarding equilibrium states for this class of geometric potentials. Yet, uniqueness is
not proved, and left open is the possible connection to a topological notion of pressure.

With these questions in mind, the papers [3,4] represent a significant advance in our
understanding of topological entropy and pressure and related equilibrium states. It is these
ideas and the techniques involved that we hope to illuminate in this note. These, naturally,
lead to further questions, several of which we formulate at the end of this review.

The paper is organized as follows. In Section 2, we present the minimal background
on dispersing billiards necessary for the subsequent discussion, and state the main results
from [3, 4]. In Section 3 we outline the main approach and principle estimates needed to
prove the variational principle for t > 0, and in Section 4 we do the same for the case t D 0.
In Section 5, we formulate some open problems related to the equilibrium states we will
construct.

2. Preliminaries and statements of main theorems

A Sinai billiard table is a subset of the torus T2 obtained by removing finitely many
pairwise disjoint, closed convex sets Bi , i.e.,Q D T2 n .

Sd
iD1Bi /. The Bi are called scat-

terers and are assumed to haveC 3 boundaries with strictly positive curvatureK . The billiard
flow is the motion of a point particle in Q traveling at unit speed and undergoing specular
reflections (angle of incidence equals angle of reflection) at collisions with the scatterers.

We introduce coordinates on @Q by parametrizing @Bi according to arclength and
recording at each collision the position r and the angle ' made by the postcollision velocity
vector with the outward pointing normal to the boundary. Thus the phase space for the map,
M D .

Sd
iD0 @Bi /� Œ��

2
; �
2
�, is a union of cylinders, and for each xD .r;'/2M , the billiard

map T .r; '/ D .r1; '1/ maps one collision to the next. The map preserves a smooth prob-
ability measure, d�SRB D .2j@Qj/�1drd', which is ergodic, indeed Bernoulli, and enjoys
exponential decay of correlations on smooth observables, as described in the Introduction.

Let �.x/ denote the (Euclidean) distance from x to T .x/ in Q. We say the billiard
has finite horizon if there is no trajectory making only tangential collisions. This implies,
in particular, that �max WD sup � < 1. In addition, the fact that the scatterers are disjoint
guarantees �min WD inf � > 0. Setting Kmin D infK > 0 and Kmax D supK <1, it follows
[27, Sect. 4.4] that the stable and unstable cones in the tangent space R2,

C s D

²
.dr; d'/

ˇ̌
� Kmax �

1

�min
�
d'

dr
� �Kmin

³
;

Cu D

²
.dr; d'/

ˇ̌
Kmin �

d'

dr
� Kmax C

1

�min

³
are strictly invariant under DT �1 and DT , respectively, whenever the derivatives exist.
Away from tangential collisions, T is uniformly hyperbolic, i.e., for ƒ WD 1C 2�minKmin,
there exists C0 > 0 such that for all n � 0,DT n.x/v � C0ƒ

n
kvk; 8v 2 Cu; andDT �n.x/v

 � C0ƒ
n
kvk; 8v 2 C s :

(2.1)
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2.1. Singularities and distortion
Denote the set of tangential collisions by �0 D ¹x D .r; '/ 2 M j ' D ˙

�
2

º. The
singularity set for T n, n 2 Z, is defined by

�n D

n[
iD0

T �i�0:

Assuming finite horizon, �n comprises a finite collection ofC 2 curves for each n. Indeed, the
hyperbolicity of T implies an alignment property: for n > 0, �n n �0 comprises decreasing
curves in C s , while for n < 0, �n n �0 comprises increasing curves in Cu [27, Prop. 4.45].

While the set
S
n2Z �n is dense inM [27, Sect. 4.11], its �SRB-measure is 0. Setting

M 0 D M n
S
n2Z �n, it follows that the stable/unstable subspaces Es.x/ and Eu.x/ are

defined for all x 2 M 0. Thus we may define the stable/unstable Jacobians of T by

J sT .x/ D
DT.x/jE s.x/ and J uT .x/ D

DT.x/jEu.x/ 8x 2 M 0:

If x has a stable/unstable manifold of positive length (which also occurs on a full-measure set
M 00 �M 0 [27, Thm. 4.66]), then J sT and J uT serve as the Jacobians for a change of variables
when integrating along these manifolds with respect to arclength. We let W s denote the set
of local stable manifolds of T with length at most ı0 > 0, which is chosen to guarantee a
local complexity condition. See Lemma 3.1 for t > 0 and Section 4.1.1 for t D 0.

In fact, DT.x/ becomes unbounded as T .x/ approaches �0. To compensate for
this, the standard technique is to introduce homogeneity strips that partition the space into a
countable set of horizontal strips accumulating on �0 and which are effectively treated as sin-
gularity curves in exchange for providing some control of distortion. Specifically, choosing1

q > 1 and an index k0 2 N, one defines for k � k0,

Hk D

²
.r; '/ j .k C 1/�q �

�

2
� ' � k�q

³
;

with a similar definition for H�k approaching ' D ��=2. Let W s
H � W s denote the set

of curves W 2 W s which lie in a single homogeneity strip. Such curves are called weakly
homogeneous stable manifolds for T .

It follows that there exists Cd > 0 such that for all n � 0, if T i .x/; T i .y/ 2 T iW 2

W s
H for each 0 � i � n � 1, thenˇ̌̌̌

J sT n.x/

J sT n.y/
� 1

ˇ̌̌̌
� Cdd.x; y/

1=.qC1/; (2.2)

which is the desired distortion control (see [27, Lemma 5.27] or [4, Lemma 2.1]).

2.2. Measure-theoretic pressure for geometric potentials
Let t 2 R and � be an invariant probability measure for T . Define the pressure of

� with respect to the geometric potential �t logJ uT to be

P�.�t logJ uT / D h�.T / � t

Z
M

logJ uT d�;

1 The standard choice for dispersing billiards is q D 2, yet here we will choose q depending
on the parameter t in our potential.
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where h�.T / denotes the Kolmogorov–Sinai entropy2 of �. If � satisfies

P�.�t logJ uT / D P.t/ WD sup
®
P�.�t logJ uT / j � 2 I

¯
;

where I is the set of invariant probability measures for T , then � is called an equilibrium
state for the potential, and P.t/ is the pressure of �t logJ uT .

The theory of equilibrium states has been well established for Hölder-continuous
potentials, first for Anosov and Axiom A systems [11, 53, 58], and then for nonuniformly
hyperbolic systems using a variety of techniques [17, 18, 44, 50, 56]. Much less is known in
the case of billiards. For t D 1, it is known that P�SRB.� logJ uT / D 0; this is the so-called
Pesin entropy formula [27, Thm. 3.42]. Yet, the uniqueness of this equilibrium state was not
proved until [4]. For t near 1, Chen–Wang–Zhang [19] prove existence, but not uniqueness,
of equilibrium states using Young towers.

One of the complications of studying equilibrium states associated with this poten-
tial is that the unstable Jacobian is not Hölder continuous; indeed, J uT is not continuous
on any open set and it is not bounded (for x near �1, J uT .x/ � 1= cos '.T x/). Yet, it is
regular along homogeneous unstable manifolds (as the time reversal of (2.2) demonstrates)
and can be approximated by smooth functions in the distributional norms we will define in
Sections 3.2 and 4.2, permitting the analysis we will describe here.

In addition to proving the existence and uniqueness of equilibrium states for the
family of geometric potentials, we are interested in expressing the pressure P.t/ in terms
of topological notions of entropy for t D 0 and pressure for t > 0. We define such notions
precisely in the next two subsections.

Remark 2.1. For t < 0, P.t/ D 1 if there is a periodic orbit making a grazing collision.
In this case, if � is the atomic measure supported on such a periodic orbit, then P�.t/ D 1

as well. Thus the (possibly many) measures maximizing the pressure are simple to describe,
so we will not discuss the case t < 0 here.

2.3. Topological entropy and variational principle for t D 0

Following [3], define for n; k � 0,

Mn
�k D

®
maximal connected components ofM n .��k [ �n/

¯
: (2.3)

Thus elements of Mn
0 are the (open) domains of continuity for T n and M0

�n plays the anal-
ogous role for T �n. We define the topological entropy of T to be the exponential rate of
growth of #Mn

0 , where #A denotes the cardinality of the set A.

Definition 2.2 (Topological entropy). Define h� WD limn!1
1
n
log.#Mn

0 /.

The limit above exists due to the submultiplicativity of #Mn
0 [3, Lemma 3.3]. Note

also that ifA 2 Mn
0 , then T nA 2 M0

�n, so that #Mn
0 D #M0

�n and hence h�.T /D h�.T
�1/.

2 Since T admits a finite generating partition, h�.T / is necessarily finite for any T -invariant
probability measure.
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One can connect h� to the usual Bowen definitions of topological entropy via both
"-separated and "-spanning sets, whose definitions we do not recall here. Although such
definitions are usually made for continuous maps, it is a consequence of [3, Thm. 2.3] that
both of the Bowen definitions coincide with h�.

The main result in [3] is the following.

Theorem 2.3 (Measure of maximal entropy and variational principle). Let T be a finite-
horizon Sinai billiard map as defined above. Under a sparse recurrence condition on the
singularity set, defined in (4.1), there exists a unique measure �0 such that

h� D h�0.T / D sup
�2I

h�.T /:

Moreover, �0 is hyperbolic and Bernoulli,3 has no atoms and is positive on open sets.

A more complete set of properties for �0 can be found in [3, Thm. 2.6]. That
h� � P�.0/ for any T -invariant probability measure � is due to a soft, classical argument
(see, for example, [59, Prop. 9.10]) since the sequence Mn

0 is related to a finite generating par-
tition for T [3, Lemma 3.3]. The main work of [3] is to construct an invariant measure�0 whose
entropy equals h�. This requires a precise understanding of the geometry of the setsMn

0 com-
bined with some functional analytic techniques, whose main ideas are described in Section 4.

2.4. Topological pressure and variational principle for t > 0

Before defining our notion of topological pressure for the potential �t log J uT ,
it is convenient to consider the corresponding potential in the associated transfer operator.
Indeed, arguing by analogy to smooth hyperbolic systems, the transfer operator QLt with
spectral radius eP.t/ is defined, for example, on bounded, measurable functions, by

QLtf D
f ı T �1

..J uT /tJ sT / ı T �1
:

For a Sinai billiard, setting E.x/ D sin.†.Es.x/; Eu.x/// to denote the sine of the angle
between the stable and unstable subspaces at x, and denoting by JLebT the Jacobian of T
with respect to Lebesgue measure onM , we have

cos'.x/
cos'.T x/

D JLebT .x/ D J sT .x/J uT .x/
E.T x/

E.x/

H) .J uT /tJ sT D

�
E cos'

.E cos'/ ı T

�t
.J sT /1�t :

Since the two potentials are related by a coboundary, the associated transfer operators will
have the same spectral radius, so we will study instead the operator

Ltf D
f ı T �1

.J sT /1�t ı T �1
: (2.4)

Remark that J sT � cos' so that the potential is unbounded whenever t ¤ 1.

3 By hyperbolic, we mean that �0-a.e. point has stable and unstable manifolds of positive
length. By Bernoulli, we mean that it is isomorphic to a Bernoulli shift, which implies also
that �0 is ergodic and K-mixing.

3437 Topological entropy and pressure for finite-horizon Sinai billiards



2.4.1. Weight function for the topological pressure
In order to control the evolution ofLtf in Section 3.2, it will be necessary to control

integrals of the formZ
W

Ln
t f  dmW D

Z
T�nW

f  ı T n
ˇ̌
J sT n

ˇ̌t
dmT�nW ;

whereW 2 W s ,mW is (unnormalized) arclength onW ,  is a Hölder-continuous test func-
tion, and f is an element of the Banach space we will construct.

In order for .J sT n/t to play the role of a test function, (2.2) suggests that we decom-
pose T �1W into a countable collection of maximal curvesW 1

i 2 W s
H and then iterate these,

subdividing into homogeneous components at each step until time n. We denote this collec-
tion of curves comprising T �nW by G H

n .W /. Then the spectral properties of Lt depend on
the growth of X

Wi2G H
n .W /

ˇ̌
J sT n

ˇ̌t
C 0.Wi /

as a function of n and W . (2.5)

This toy calculation suggests the weight we use to define the topological pressure below.

2.4.2. Definition of topological pressure
Define �H

0 D �0 [ .
S

jkj�k0
@Hk/ and for n 2 Z, �H

n D
Sn
iD0 T

�i�H
0 . This will act

as an extended singularity set for T n where we introduce artificial cuts in order to preserve
bounded distortion. Let

M
n;H
0 WD

®
maximal connected components ofM n .�H

n�1 [ T �n�0/
¯
:

We define the weighted sum

Qn.t/ D

X
A2M

n;H
0

sup
x2A\M 0

ˇ̌
J sT n.x/

ˇ̌t
;

and the topological pressure for t > 0 is the exponential rate of growth ofQn.t/.

Definition 2.4 (Topological pressure). We let P�.t/ WD limn!1
1
n
logQn.t/.

As with Definition 2.2, the limit above exists and equals the lim inf due to the sub-
multiplicativity ofQn.t/. It follows thatQn.t/ � enP�.t/ for each n � 0.

The first theorem from [4] says that P�.t/ dominates the metric pressures.

Theorem 2.5 (Variational inequality). Let T be a finite-horizon Sinai billiard map. Then
P�.t/ is a convex, continuous, decreasing function for t > 0, and P.t/ satisfies

P�.t/ � P.t/ D sup
®
P�.�t logJ uT / j � is an invariant probability measure for T

¯
:

Remark that for anyT -invariantmeasure�,
R
logJ uT d�D �

R
logJ sT d�, which

is useful for relating P.t/ with P�.t/. As with Theorem 2.3, the inequality P�.t/ � P.t/ is
straightforward, while the main work lies in constructing a measure �t such that
P�t .�t log J uT / D P�.t/. This again requires a detailed analysis of the growth rate of
Qn.t/ and the pressure of G H

n .W / from (2.5) as a function of n and W 2 W s
H.
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2.4.3. Equilibrium state and variational principle
To prove that, in fact, P.t/ D P�.t/ and produce an equilibrium state, we restrict

our range of t . Recalling ƒ > 1 from (2.1), define

t� WD sup
®
t > 0 j P.t/ > �t logƒ

¯
:

Remark 2.6. The definition of t� is motivated by the fact thatƒ�t controls the local growth
in complexity due to singularities (and homogeneity strips), while eP�.t/ controls the global
growth in complexity via Qn.t/. Then t < t� implies the “pressure gap” condition ƒ�t <

eP.t/ � eP�.t/.
Note that since P.1/ D 0, ƒ > 1 and P.t/ is decreasing, it must be that t� > 1.

The main result in this setting from [4] is the following.

Theorem 2.7 (Unique equilibrium state and variational principle). Let T be a finite-horizon
Sinai billiard and let t 2 .0; t�/. Then P�.t/ D P.t/ and there exists a unique equilibrium
state �t for the potential �t logJ uT , i.e.,

P�t .�t logJ
uT / D P�.t/ D P.t/:

Moreover, �t is hyperbolic, has no atoms, is positive on every open set, and enjoys exponen-
tial decay of correlations against Hölder observables.

The main technique used in the proof of the theorem is the construction of aniso-
tropic Banach spaces of distributions, adapted to t , on which the transfer operator Lt has
a spectral gap. Then the measure �t is constructed as a product of left and right eigenvec-
tors of Lt , following the standard Parry construction (see, for example, [43, Sect. 4.4] for an
introduction, or [41] for an application in the case of Anosov diffeomorphisms). Indeed, our
control of the spectrum of Lt also implies the following theorem.

Theorem 2.8 (Analyticity of P.t/). The pressure function P.t/ is analytic for t 2 .0; t�/,
with

P 0.t/ D

Z
logJ sT d�t D �

Z
logJ uT dmt < 0 and

P 00.t/ D

X
k�0

�Z
.logJ sT ı T k/ logJ sT d�t �

�
P 0.t/

�2�
� 0:

Moreover, P 00.t/ D 0 if and only if logJ sT D f � f ı T C P 0.t/ for some f 2 L2.�t /.
If there exists s ¤ t 2 .0; t�/ such that �s D �t , then P.t/ is affine on .0; t�/ and

logJ sT is �t -a.e. cohomologous to a constant for all t 2 .0; t�/.
Finally, under the sparse recurrence condition (4.1), limt#0 P.t/ D P.0/ D h�.

We conjecture that, in fact, �s ¤ �t for any s ¤ t in .0; t�/, i.e., J sT cannot be
cohomologous to a constant for a Sinai billiard. If it were, then the theorem would imply that
P.t/ is affine and, by uniqueness, �t D �SRB for each t 2 Œ0; t�/. See Section 5.
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3. Ideas from the proof of Theorem 2.7

In this section, we present some of the key ideas in the proof of Theorem 2.7. In
light of Theorem 2.5, they divide into two principal parts: (1) geometric estimates that con-
trol local complexity and establish a uniform exponential rate of growth for Qn.t/; (2) the
functional-analytic framework needed to construct a measure �t with pressure P�.t/.

The development of a functional-analytic framework in which to study transfer oper-
ators for hyperbolic systems has a well-established history. After some early success in the
hyperbolic analytic case [54,55], intense interest was generated by the paper of Blank, Keller,
and Liverani [10], which launched a series of subsequent papers developing a variety of
Banach spaces for Anosov and Axiom A maps [1,7,40,41]. This was later extended to piece-
wise hyperbolic maps [5, 6, 31] and ultimately to a variety of hyperbolic billiards [3, 32–34].
See [2] for a comprehensive survey or [30] for a gentle introduction to the use of such spaces.
The norms we shall define in Section 3.2 are a natural adaptation of these ideas to the family
of geometric potentials.

3.1. Growth lemmas and exact exponential growth of Qn.t/

Our first goal is to establish precise bounds on the exponential growth of Qn.t/ as
well as the growth of the pressure over G H

n .W / from (2.5). In order to accomplish this, we
fix t0 > 0 and t1 < t� and obtain uniform bounds for t in the closed interval Œt0; t1�.

Fix q � 2=t0 and let � 2 .ƒ; 1/ be such that � t1 < eP�.t1/. The latter choice is
possible by definition of t�, and implies by the convexity of P�.t/ that � t < eP�.t/ for all
t 2 Œt0; t1�. Next we adapt the usual one-step expansion (see [27, Lemma 5.56]) to our potential.

Lemma 3.1. There exist k0, ı0 > 0 such that

sup
V 2Ws

jV j�ı0

X
Vi

ˇ̌
J sT

ˇ̌t
�;C 0.Vi /

< � t for all t � t0,

where Vi are the maximal, connected homogeneous components of T �1V and j � j� denotes
the sup norm with respect to an adapted metric.4

Sketch of proof. Due to the finite-horizon condition, a short stable manifold V can be cut
by at most �max=�min tangential collisions under T �1 and all but one of these collisions are
nearly grazing. Near grazing collisions, Vk � Hk and, since J sT � cos',X

k�k0

ˇ̌
J sT

ˇ̌t
�;C 0.Vk/

� C
X
k�k0

k�qt
� C 0k�1

0 since qt � 2.

Thus setting "D � �ƒ�1 > 0, we choose k0 in the definition of homogeneity strips so large
thatC 0k�1

0
�max
�min

< ". Finally, choose ı0 so small that if jV j � ı0, then T �1V can intersect only
homogeneity strips of index at least k0 at the nearly tangential collisions. This is possible
since jT �1V j � C jV j1=2 [27, Exercise 4.60].

4 The adapted metric is defined as in [27, Sect. 5.10] so that in (2.1) the constant C0 D 1,
i.e., the expansion is seen in one step. The lemma applies equally well to more general cone-
stable curves and its time reversal to cone-unstable curves.
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The one-step expansion expressed by Lemma 3.1 guarantees that the expansion pro-
vided by the weight 1=.J sT /t along stable manifolds mapped by T �1 is strong enough to
overcome the effect of cutting by both the primary and secondary discontinuities of T �1.
This can be iterated inductively to obtain statements regarding the prevalence of long pieces
in both T �nW and M

n;H
0 , as summarized in Lemma 3.2 below.

Recalling the definition of G H
n .W / from (2.5), for ı1 < ı0 and W 2 W s , define

G
ı1;H
n .W / as a decomposition of T �nW in an analogous manner with G H

n .W /, but with
pieces longer than length ı1 subdivided into length between ı1=2 and ı1 at each step (rather
than length ı0).

For a setE �M , we use diamu.E/ to denote the length of the longest cone-unstable
curve in E, and diams.E/ to denote the length of the longest cone-stable curve in E.

Lemma 3.2. (a) 8" > 0 9ı1; n1 > 0 such that 8W 2 W s with jW j � ı1=3 and all
n � n1, X

Wi2G
ı1;H
n .Wi /

jWi j<ı1=3

ˇ̌
J sT n

ˇ̌t
C 0.Wi /

� "
X

Wi2G
ı1;H
n .W /

ˇ̌
J sT n

ˇ̌t
C 0.Wi /

:

(b) For A 2 M
n;H
0 , let Bn�1.A/ denote the connected component of M n

.
Sn�1
iD0 T i�H

0 / containing T n�1A. Define An.ı/ D ¹A 2 M
n;H
0 W

diamu.Bn�1.A// � ı=3º. There exist ı2 � ı1 and c0 > 0 such thatX
A2An.ı2/

sup
x2A\M 0

ˇ̌
J sT n.x/

ˇ̌t
� c0Qn.t/; 8n 2 N;8t 2 Œt0; 1�:

Comments on proof. The proof of part (a) relies on iterating Lemma 3.1 combined with the
following lower bound on growth valid for t � 1 and V 2 W s ,X

Wi2G
ı1;H
k

.V /

ˇ̌
J sT k

ˇ̌t
C 0.Wi /

D

X
Wi2G

ı1;H
k

.V /

ˇ̌
J sT k

ˇ̌
C 0.Wi /

ˇ̌
J sT k

ˇ̌t�1
C 0.Wi /

� C1ƒ
k.1�t/

X
Wi2G

ı1;H
k

.V /

jT kWi j

jWi j
� C1ƒ

k.1�t/
jV jı�1

1 ;

which guarantees that long pieces most continue to produce a sufficient number of long
pieces. Once (a) is proved for t � 1, we extend it to t 2 .1; t1� via interpolation (see
[4, Sect. 3.4]).

(b) The proof of (b) follows the same lines as (a), using a version of Lemma 3.1
for elements of M

n;H
0 and a generalization of bounded distortion which says that J sT n.x/,

J sT n.y/ are comparable when x; y belong to the same element of M
n;H
0 .

Using Lemma 3.2, we can prove the following key results regarding the uniform
growth of W 2 W s and a type of supermultiplicativity forQn.t/.

Proposition 3.3. (a) 9c1 > 0 such that 8W 2 W s with jW j � ı1=3,X
Wi2G H

n .W /

ˇ̌
J sT n

ˇ̌t
C 0.Wi /

� c1Qn.t/; 8n � 1;8t 2 Œt0; t1�:

(b) 9c2 > 0 such that for all k;n� 1 and all t 2 Œt0; t1�,QnCk.t/� c2Qn.t/Qk.t/.
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Sketch of proof. Let Lı1n .W / denote the elements of G
ı1;H
n .W / longer than ı1=3. Then (b)

follows from (a) and Lemma 3.2 (choosing " D 1=2 there) since,X
Wi2G

ı1;H
nCk

.W /

ˇ̌
J sT nCk

ˇ̌t
C 0.Wi /

� C
X

Vj2L
ı1
n .W /

ˇ̌
J sT n

ˇ̌t
C 0.Vj /

X
Wi2G

ı1;H
k

.Vj /

ˇ̌
J sT k

ˇ̌t
C 0.Wi /

�
C

2

X
Vj2G

ı1;H
n

ˇ̌
J sT n

ˇ̌t
C 0.Vj /

c1Qk.t/ �
C

2
c21Qn.t/Qk.t/:

The proof of (a) relies on covering a full �SRB-measure set ofM with a finite col-
lection of Cantor rectangles, formed by maximal intersections of local stable and unstable
manifolds so that each rectangle has a hyperbolic product structure. By [27, Lemma 7.87], we
may choose a finite collection of such rectangles,R.ı2/D ¹Riº

Nı2
iD1, such that any cone-stable

or cone-unstable curve of length at least ı2=3 properly crosses at least one Ri . Let

Ai
n WD

®
A 2 An.ı2/ � M

n;H
0 j Bn�1.A/ properly crosses Ri

¯
:

By Lemma 3.2(b), there must exist i� such that
P
A2A

i�
n
supA jJ sT njt �

c0
Nı2

Qn.t/.
LetW 2 W s with jW j � ı1=3 � ı2=3.W must properly cross one Rj . Since �SRB

is mixing, we may ensure that V D T �NW properly crosses Ri� , where N depends only
on ı2. This proper crossing ensures that

P
Wi2G H

n .V /
jJ sT njt

C 0.Wi /
will be comparable toP

A2A
i�
n
supAjJ sT njt , and then, adjusting forN , we conclude that

P
Wi2G H

n .W /
jJ sT njt

C 0.Wi /

grows at the rateQn.t/.

Remark 3.4. Proposition 3.3(a) says that the pressure of all long (in the scale ı1) local stable
manifolds grows at a uniform exponential rate (not just asymptotically the same rate).

A corollary of Proposition 3.3(b) is the exact exponential growth ofQn.t/,

enP�.t/ � Qn.t/ � 2c�1
2 enP�.t/ 8n � 1;8t 2 Œt0; t1�;

where the lower bound follows from the submultiplicativity of Qn.t/ and the upper bound
follows from its (approximate) supermultiplicativity. This bound is essential in proving the
requisite spectral properties of Lt in Section 3.2.2.

3.2. Banach spaces adapted to t 2 Œt0; t1�

The Banach spaces adapted to the operator Lt for t 2 .0; t�/ are similar to those
used in [33] for the case t D 1. For convenience, we identify f 2 C 1.M/ with the measure
d� D fd�SRB. With this identification, the transfer operator defined on distributions � by

Lt�. / D �
�
 ı T � .J sT /t�1

�
for suitable test functions  ; (3.1)

coincides with the pointwise definition of Ltf acting on measurable functions from (2.4).
As in Section 3.1, we fix Œt0; t1� � .0; t�/ and obtain uniform estimates for t 2 Œt0; t1�.

3.2.1. Definition of norms
Since Ltf has a deregularizing effect in the stable direction, but improves regular-

ity in the unstable direction, the norms defined below have two important properties: they
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integrate along local stable manifolds to average out the action of Ltf in the stable direc-
tion, while requiring Ltf to have a form of average regularity in the unstable direction (see
the definition of k � ku below). Integrating along local stable manifolds (as opposed to the
cone-stable curves used in [32–34]) also allows us to take advantage of the fact that J sT is
Hölder continuous along such manifolds.

Fix 0 < ˛ � 1=.q C 1/. For f 2 C 1.M/, define the weak norm of f by

jf jw D sup
W 2Ws

H

sup
 2C˛.W /
j jC˛�1

Z
W

f  dmW : (3.2)

Define Bw to be the completion of C 1.M/ in the j � jw norm.
For the strong norm, we need additional parameters. Choose

p > q C 1 such that � t1�1=p < eP�.t1/; ˇ 2 .1=p; ˛/ and  < min¹1=p; ˛ � ˇº:

Define the strong stable norm of f by

kf ks D sup
W 2Ws

H

sup
 2Cˇ .W /

j j
Cˇ

�jW j�1=p

Z
W

f  dmW :

The strong unstable normmeasures the integral of f on two curves that are close together. To
define this, we need notions of distance between curves and test functions. Since the stable
cone C s is bounded away from the vertical, we view W 2 W s as the graph of a function of
the r-coordinate over an interval IW ,

W WD
®
GW .r/ j r 2 IW

¯
WD

®�
r; 'W .r/

�
j r 2 IW

¯
:

Now given W1;W2 2 W s defined by 'W1 ; 'W2 , define

d.W1;W2/ D jIW1 4 IW2 j C j'W1 � 'W2 jC 1.IW1\IW2 /
;

if W1; W2 lie in the same homogeneity strip, and d.W1; W2/ D 1 otherwise. If
d.W1;W2/ < 1, we define a distance between test functions  k 2 C 0.Wk/ by

d0. 1;  2/ D j 1 ıGW1 �  2 ıGW2 jC 0.IW1\IW2 /
:

With these definitions, we are able to define the strong unstable norm of f as

kf ku D sup
"�"0

sup
W1;W22Ws

H
d.W1;W2/�"

sup
j i jC˛.Wi /�1

d0. 1; 2/D0

"�

ˇ̌̌̌Z
W1

f  1 dmW1 �

Z
W2

f  2 dmW2

ˇ̌̌̌
;

where "0 > 0 is a small constant depending on the table. Finally, define B to be the closure
of C 1.M/ in the strong norm k � kB , defined by kf kB D kf ks C cukf ku, where cu is
chosen so that the inequalities in Theorem 3.7 provide contraction in the strong norm (see
[4, Sect. 4.3]).

Remark 3.5. The choices of parameters are motivated as follows: ˛ � 1=.q C 1/ due to
the Hölder exponent in (2.2). Then ˇ < ˛ is required for relative compactness of the unit
ball of B in Bw . The weight jW j�1=p weakens the contraction of the one-step expansion to
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W1

W2

��n

T �n

Gn.W1/

Gn.W2/

Figure 1

Two stable manifolds W1 (green) and W2 (blue) and their images under T �n. Green and blue pieces are matched,
while red curves are not matched due to cuts introduced by ��n.

� t�1=p , so p is chosen large enough that this is still small compared to the pressure eP�.t/.
Finally, the regularity exponent  is chosen sufficiently small that the unmatched pieces
created by discontinuities in the Lasota–Yorke inequalities are rendered negligible by the
weight jW j1=p .

Proposition 3.6. With the correct choices of parameters above, we have a sequence of con-
tinuous inclusions, C 1.M/ � B � Bw � .C ˛.M//�.

Moreover, the embedding of the unit ball of B into Bw is compact.

3.2.2. A spectral gap for Lt

Since B is defined as the completion of C 1.M/ in k � kB , a priori it is not clear that
Lt acts continuously on B since J sT is not even piecewise Hölder continuous; however,
[27, Theorem 5.66] and [4, Lemma 4.10] show that J sT varies sufficiently regularly on hyperbolic
Cantor rectangles so that if f 2 C 1.M/, then Ltf can be approximated by C 1 functions
in the k � kB-norm, i.e., Ltf 2 B. Thus we are able to prove:

Theorem 3.7 ([4]). Operator Lt acts continuously on B and satisfies the following Lasota–
Yorke (or Doeblin–Fortet) inequalities: there exist C;Cn > 0 such that for all f 2 B, n � 0,ˇ̌

Ln
t f

ˇ̌
w

� CQn.t/jf jw ;Ln
t f


s

� C
�
ƒ�.ˇ�1=p/nQn.t/C � .t�1=p/n

�
kf ks C Cnjf jw ;Ln

t f

u

� CQn.t/
�
nƒ�n

kf ku C Cnkf ks

�
:

Furthermore, Lt has a spectral gap: eP�.t/ is the eigenvalue of maximum modulus, it is
simple, and the rest of the spectrum of Lt is contained in a disk of radius �eP�.t/, where
� < 1 is uniform for t 2 Œt0; t1�.

Comments on the proof. (1) The estimate on unmatched pieces. For a proof of the Lasota–
Yorke inequalities, the reader is referred to [4, Sect. 4.3]. Here we comment only on the control
of “unmatched pieces” in the estimate of the strong unstable norm since this leads to essential
changes in the case t D 0. We must estimate j

R
W1

Ln
t f  1 �

R
W2

Ln
t f  2j.
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Changing variables, we see that G H
n .W1/ comprises matched pieces (that are close

to a corresponding curve in G H
n .W2/), and unmatched pieces (which are not, due to cuts by

the singularity set ��n). See Figure 1. The distance between matched pieces contracts due
to the hyperbolicity of T , but the unmatched pieces do not contract. Yet, unmatched pieces
have length at most ƒ�j " if they are cut by a singularity curve at time �j , so we may use
the strong stable norm to estimateZ

Wi

Ln
t f  D

Z
Vj

L
n�j
t f  ı T j

ˇ̌
JVj T

j
ˇ̌t

� ƒ�j=p"1=p
L

n�j
t f


s

ˇ̌
JVj T

j
ˇ̌t
C 0

In this sense, k � ks acts as a “weak norm” for k � ku to control unmatched pieces. This is
the reason why the weight jW j�1=p must be included in the definition of k � ks , and is an
essential difference with the case t D 0 in Section 4.2.

(2) Quasicompactness of Lt . The Lasota–Yorke inequalities imply that the spectral radius
of Lt on B is at most eP�.t/ and its essential spectral radius < eP�.t/ if � t < eP�.t/. This is
the pressure gap condition guaranteed by choice of � for all t 2 Œt0; t1�. In order to conclude
quasicompactness, however, we need a lower bound on the spectral radius. This follows from
Proposition 3.3(a). Indeed, letW 2 W s

H with jW j � ı1=3, and choose � 1. For any n� 1,Z
W

Ln
t 1 D

X
Wi2G H

n .W /

Z
Wi

ˇ̌
J sT n

ˇ̌t
� e�Cd

ı1

3

X
Wi2L

ı1
n .W /

ˇ̌
J sT n

ˇ̌t
C 0.Wi /

� Cc1Qn.t/

� C 0enP�.t/:

Thus kLn1ks � C 0enP�.t/, and so the spectral radius of L is eP�.t/.

(3) A spectral gap for Lt . Exact exponential growth of Qn.t/ (see Remark 3.4) implies
kLn

t kB � CQn.t/ � C 0enP�.t/, so that the peripheral spectrum of Lt has no Jordan blocks.
Then the expression

�t . / WD lim
n!1

1

n

n�1X
kD0

e�kP�.t/Lt1. / (3.3)

defines a finite Borel measure in B satisfying Lt�t D eP�.t/�t , where, according to our
identification of functions with densities with respect to �SRB, we set

Lt1. / WD

Z
M

 Lt1 d�SRB: (3.4)

Using (3.3) and the uniform control provided by Proposition 3.3, one shows that all eigen-
vectors corresponding to the peripheral spectrum are measures absolutely continuous with
respect to �t and all eigenvalues are roots of unity. Finally, the topological mixing of T
implies that there can be no other eigenvalues of modulus eP�.t/.

3.2.3. An equilibrium state and a variational principle
Let �t be defined as in (3.3) and let Q�t 2 B� denote the analogous construction with

the dual operator L�
t . Define

�t . / D
h�t ;  Q�t i

h�t ; Q�t i
;  2 C ˛.M/:
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The normalization h�t ; Q�t i ¤ 0 by Proposition 3.3(a). Then it is a standard calculation that
�t is an invariant probability measure for T , and due to the spectral gap of Lt , �t enjoys
exponential decay of correlations against Hölder observables.

The facts that �t has no atoms, gives 0 weight to any C 1 curve, is positive on open
sets, and has stable and unstable manifolds of positive length all follow from the regularity
of �t 2 B.

Finally, we comment on the entropy of �t and conclude the variational principle
stated in Theorem 2.7. To this end, define the Bowen balls for T �n by

B.x; n; "/ D
®
y 2 M W d.T �ix; T �iy/ � ";8i 2 Œ0; n�

¯
: (3.5)

Proposition 3.8 (Measure of Bowen balls). There exists C > 0 such that for all x 2 M ,
n � 1, and y 2 B.x; n; "/,

�t
�
B.x; n; "/

�
� Ce�nP�.t/Ct logJ sT n.T�ny/:

Then [13, Main Theorem] implies that for �t -a.e. x 2 M ,

lim
"!0

lim sup
n!1

�
1

n
log�t

�
B.x; n; "/

�
D h�t .T /:

This, together with Proposition 3.8, implies

h�t .T / � P�.t/ � t

Z
logJ sT d�t D P�.t/C t

Z
logJ uT d�t :

But P�.t/ � h�t .T / � t
R
logJ uT d�t since P�.t/ � P.t/ by Theorem 2.5. We conclude

that P�.t/ D h�t .T /� t
R
logJ uT d�t D P.t/, which implies both that �t is the measure

maximizing the pressure and that the topological pressure satisfies a variational principle,
despite the effect of singularities.

The last item of Theorem 2.7, the uniqueness of �t , uses the concept of a tangent
measure. The argument exploits in particular the differentiability of the pressure for t > 0.
We refer the interested reader to [4, Sect. 5.5].

4. Ideas from the proof of Theorem 2.3

In this section, we provide a parallel presentation to Section 3 for the case t D 0,
i.e., the construction of the measure of maximal entropy. As before, we divide the ideas into
two parts: (1) geometric estimates to control local complexity and a uniform rate of growth
for #Mn

0 ; (2) a functional-analytic framework needed to construct the equilibrium state �0.
In contrast to Section 3, we cannot use homogeneity strips and must drastically alter

the weights in the strong norm. These changes are sufficiently severe to prevent us from
obtaining a spectral gap for L0 and exponential mixing for �0.

4.1. Complexity and exact exponential growth of #Mn
0

Recall the toy calculation in Section 2.4.1 for deriving the correct weight for the
topological pressure. If we consider (2.5) with t D 0, we have #G H

n .W / D 1 whenever
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T �nW crosses infinitely many homogeneity strips. Thus we cannot use homogeneity strips
when studying the case t D 0. Moreover, the one-step expansion Lemma 3.1 does not hold.

Instead, we use the linear complexity bound due to Bunimovich. For x 2 M , let
N.�n; x/ denote the number of singularity curves in �n that meet at x. Define N.�n/ D

supx2M N.�n; x/.

Lemma 4.1 ([15]). Assume finite horizon. There exists K > 0, depending only on the con-
figuration of scatterers, such that N.�n/ � Kn for all n � 1.

Sketch of proof from [28]. Suppose x; x0 2 M lie on a straight billiard trajectory with one
or more tangential collisions between them. Let A, A0 be neighborhoods of x; x0 in M ,
partitioned into sectors A1; : : : Ak � A and A0

1; : : : A
0
k

� A such that T njAj D A0
j . Define

OT jAj WD T nj . See Figure 2.

x x0

B3

B1 B2B4

B5

(a)

OT

A A0

x x0

(b)
Figure 2

(a) A trajectory with multiple tangencies. (b) Neighborhood A of x with elements of �n and neighborhood A0 of
x0 with their images in ��n.

We prove the statement by induction. For nD 1 it is trivial. Now assumeN.�n�1/�

K.n � 1/ for some K > 0. Let N.�i jA0
j ; x

0/ denote the number of curves in �i passing
through x0 and lying in A0

j . Since curves in �i n �0 (stable) and ��n n �0 (unstable) are
uniformly transverse, each sector created by �i can only intersect one sector created by ��n.
Then pulling back the picture from x0 to x and recalling that k is the number of tangencies
meeting at x, we have (here we are using continuity of the flow)

N.�n; x/ � k C

X
j

N.�n�nj jA
0
j ; x

0/ � k C

X
j

N.�n�1jA
0
j ; x

0/;

and, using the inductive assumption on n � 1, this yields N.�n; x/ � k CK.n � 1/, which
is less than Kn if k � K. Due to the finite horizon condition, the number of tangencies
intersecting at a point x 2 M has a finite upper bound depending only on the table. Thus
choosing K to be this upper bound completes the proof of the lemma.

4.1.1. Fragmentation lemmas
Choose n0 2 N such that n�1

0 log.Kn0 C 1/ < h�. Due to Lemma 4.1, we may
choose ı0 > 0 such that any stable curve of length � ı0 is cut into at most Kn0 C 1 pieces
by ��n0 . We use this choice of ı0 in our definition of W s , the set of local stable manifolds
with which we work. (In Section 4.2.2 we will shrink ı0 further depending on the parameters
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in our norms.) This choice of ı0 will ensure that the growth in Gn.W / due to local complexity
will be slower than enh� . We make this precise below.

For ı � ı0, let G ın .W / denote the collection of curves in T �nW analogous to
G H
n .W /, but without using homogeneity strips, and with pieces longer than ı subdivided into

curves between length ı=2 and ı at each step. Define Lın.W /D ¹Wi 2 G ın .W / W jW j � ı=3º

and Shın.W / D G ın .W / n Lın.W /.

Lemma 4.2 ([3]). For all " > 0, there exist n1; ı > 0 such that, for all n � n1,

#Shın.W / � "#G ın .W / for all W 2 OW s with jW j � ı=3.

Idea of proof. Recalling (2.1), choose " > 0 and n1 such that 3C�1
0 .Kn1 C 1/ƒ�n1 < ".

Choose ı > 0 such that if jW j < ı then T �n1W comprises at most Kn1 C 1 connected
components of length at most ı0. Then Shın1.W / contains at most Kn1 C 1 elements.
On the other hand, jT �n1W j � C0ƒ

n1ı=3, where ƒ D 1C 2Kmin�min is from (2.1). Thus
#G ın1.W / � C0ƒ

n1=3, and so #Shın1.W / � "#G ın1.W / by the choice of n1.
The argument can be iterated, grouping each collection of pieces at time kn1 by the

most recent time jn1, j � k, that each piece was contained in an element of Lıjn1.W /.

As in Lemma 3.2(b), some control of short pieces can also be extended to elements
of Mn

0 and M0
�n. Let ı1, n1 � n0 correspond to " D 1=4 in Lemma 4.2. Define

Ls.M
n
0 / D

®
A 2 Mn

0 W diams.A/ � ı1=3
¯

and

Lu.M
0
�n/ D

®
B 2 M0

�n W diamu.B/ � ı1=3
¯
:

Lemma 4.3 ([3]). There exists c0 > 0 such that, for all n � 1,

#Ls.Mn
0 / � c0ı1#Mn

0 and #Lu.M0
�n/ � c0ı1#M0

�n:

4.1.2. Uniform bounds on growth
As in Section 3.1, the fragmentation lemmas above imply uniform bounds on the

growth of #Gn.W / and #Mn
0 .

Proposition 4.4. (a) There exists c1 > 0 such that, for any W 2 W s with
jW j � ı1=3,

#Gn.W / � c1#Mn
0 8n � 1:

(b) There exists c2 > 0 such that for all k; n � 1,

#MnCk
0 � c2#Mn

0 � #Mk
0 :

Idea of proof. Claim (b) follows from (a) and Lemma 4.2 since #MnCk
0 � 2ı�1

0 #GnCk.W /

and

#GnCk.W /�

X
Vj2L

ı1
n .W /

#Gk.Vj /� #Lı1n .W /c1#Mk
0 �

3c1

4
#G ı1n .W /#Mk

0 �
3c21
4

#Mn
0#Mk

0 :

The proof of (a) follows the same lines as the proof of Proposition 3.3(a), covering
M with a finite number Nı1 of Cantor rectangles depending on the length scale ı1. Then
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Lemma 4.3 implies at least one of these rectangles, Ri� , is fully crossed (in the unstable
direction) by at least c0ı1

Nı1
#M0

�n “long” elements of M0
�n. Any W 2 W s of length at least

ı1=3 crosses one rectangleRj . Then there existsN , depending only on ı1, such that T �NW

properly crosses Ri� in the stable direction. Thus T �N�nW intersects at least c0ı1
Nı1

#Mn
0

elements ofMn
0 since #Mn

0 D #M0
�n. Adjusting forN (which only affects c1) proves (a).

Remark 4.5. Proposition 4.4(b) implies the exact exponential growth of #Mn
0 ,

enh� � #Mn
0 � 2c�1

2 enh� for all n � 1.

As in Section 3.2.2, this will be essential to controlling the peripheral spectrum of L0.
A second corollary of our uniform bounds is the uniform growth rate of jT �nW j in

terms of the topological entropy h�, i.e., there exists C > 0 such that, for all W 2 W s with
jW j � ı1=3,

Cenh� �
ˇ̌
T �nW

ˇ̌
� C�1enh� for all n � n1:

This is precisely the rate of growth one sees in smooth hyperbolic systems, despite the fact
that in this context h� also counts cuts due to discontinuities.

To prove this bound, the previous remark, together with Proposition 4.4(a), gives
Cenh� � #Gn.W /�C�1enh� . But jT �nW j � ı0#Gn.W / since curves inGn.W / have length
at most ı0, proving the upper bound. Finally, the lower bound follows from Lemma 4.2 with
" D 1=4, ˇ̌

T �nW
ˇ̌

D

X
Wi2G

ı1
n

jWi j �
ı1

3
#Lı1n .W / �

ı1

4
#G ı1n .W /:

4.2. Banach spaces adapted to t D 0

We define L0 acting on functions as in (2.4) and on distributions as in (3.1).
Unfortunately, the Hölder weight jW j1=p in the strong stable norm from Sec-

tion 3.2.1 is disastrous when t D 0. This is because if W 2 W s and T �1W has a single
component near a tangential collision so that jT �1W j � jW j1=2, then, if  D jW j�1=p ,Z

W

L0f  D

Z
T�1W

f  ı T � kf ks
jT �1W j1=p

jW j1=p
� kf ksjW j

�1=2p:

Taking the supremum over W 2 W s yields 1 and hence L0 is not a bounded operator.
Yet, we cannot abandon the weight entirely due to the need to control the unmatched

pieces in the Lasota–Yorke estimates, see Figure 1 and the proof of Theorem 3.7. These con-
siderations force us to adopt a weak logarithmic weight j log jW jj in the definition of k � ks ,
which in turn forces a logarithmic modulus of continuity in k � ku. This last change prevents
a genuine contraction in the Lasota–Yorke inequality, which prevents us from proving that
L0 is quasicompact with a spectral gap.

Nevertheless, under a sparse recurrence condition to the singular set (4.1), we show
that the spectral radius of L0 on B is eh� and we obtain left and right eigenvectors of L0 as
limit points using compactness, from which we construct the measure �0 with entropy h�.
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4.2.1. Sparse recurrence to singularities
In order to control the evolution of Ln

0 in the strong norm, we shall need the follow-
ing condition on the rate of recurrence to the singular set �0, which corresponds to tangential,
or grazing, collisions. Note that our results up until now have not needed this condition.

Choose n0 2 N and an angle '0 close to �=2. Let s0 2 .0; 1/ be the smallest number
such that any orbit of length n0 has at most s0n0 collisions with j'j � '0. The finite horizon
condition guarantees that we can always choose n0 and '0 so that s0 < 1. Indeed, if there
are no trajectories with three consecutive tangencies on the table (a generic condition), then
one may choose n0 and '0 so that s0 �

2
3
. Our assumption is the following:

h� > s0 log 2: (4.1)

The log2 comes from the fact that ifW is a local stable manifold that makes a nearly
tangential collision under T �1 then jT �1W j � jW j1=2. Thus our assumption ensures that
the growth due to tangential collisions along sufficiently long orbit segments does not exceed
the exponential rate of growth given by h�.

We remark that there is no known table for which the condition h� > s0 log 2 fails.
Indeed, since h� � h�SRB and h�SRB D

R
logJ uT d�SRB by the Pesin entropy formula, it suf-

fices to check that �C
�SRB

> s0 log2, where �C
�SRB

is the positive Lyapunov exponent of T with
respect to�SRB, in order to conclude that (4.1) holds. Using this criterion, all examples com-
puted numerically in [9] for a triangular lattice and [38] for a rectangular lattice satisfy (4.1).
Furthermore, it is possible to prove analytically that (4.1) holds for large open sets of such
billiard configurations. See [3, Sect. 2.4] for a more detailed discussion.

4.2.2. Definition of norms
Choose ˛; ˇ;  > 0, and p > 1 such that

ˇ < ˛ � 1=3; 2s0p < eh� ;  < p:

Enlarge n0 so that
1

n0
log.Kn0 C 1/ < h� � ps0 log 2;

where K is from Lemma 4.1. Choose ı0 > 0 as in Section 4.1.1 so that any stable manifold
of length � ı0 is cut into at most Kn0 C 1 pieces by ��n0 .

The weak norm j � jw and Bw are defined precisely as in (3.2), so we focus on the
strong norm. For f 2 C 1.M/, define the strong stable norm of f by

kf ks D sup
W 2Ws

sup
 2Cˇ .W /

j j
Cˇ .W /

�j log jW jjp

Z
W

f  dmW

Recalling the distance between curves d.W1; W2/ and between test functions d0. 1;  2/
from Section 3.2.1, we define the strong unstable norm of f by

kf ku D sup
"�"0

sup
W1;W22Ws

d.W1;W2/�"

sup
j i jC˛.Wi /�1

d0. 1; 2/D0

j log "j
ˇ̌̌̌Z
W1

f  1 �

Z
W2

f  2

ˇ̌̌̌
:

3450 M.F. Demers



The strong norm of f is defined to be kf kB D kf ks C kf ku, and B is the completion of
C 1.M/ in the k � kB norm.

4.2.3. Spectrum of L0 and construction of an invariant measure
Proposition 3.6 still holds true with these new norms and most importantly, the unit

ball of B is compact in Bw . However, due to the logarithmic modulus of continuity in the
definition of k � ku, the strong unstable norm does not contract. Indeed, recalling Figure 1,
when we compare

R
W 1 L0f  1 �

R
W 2 L0f  2, the matched pieces W k

i 2 Gn.W
k/ have

contracted to a distance d.W 1
i ;W

2
i / � Cƒ�n". Yet, the contraction in the norm is given by

j logCƒ�n"j

j log "j , and taking the supremum over " > 0 yields 1. The inequalities we can prove are
the following.

Proposition 4.6. Assume h� > s0 log2. There exists C > 0 such that, for all f 2 B, n � 0,ˇ̌
Lnf

ˇ̌
w

� C jf jw#Mn
0 ;Lnf


s

� C
�
�nkf ks C jf jw

�
#Mn

0 ; for some � < 1;Lnf

u

� C
�
kf ku C kf ks

�
#Mn

0 :

Although the bounds of Proposition 4.6 are not sufficient to prove the quasicompact-
ness of L0 on B, they, together with Proposition 4.4, do provide good control of kLn

0kB .
Using Remark 4.5, we have kLn

0kB � Cenh� , for all n � 1. Moreover, our lower
bounds on #Lı1n .W / from Lemma 4.2 and #Gn.W / from Proposition 4.4 imply thatLn

01

s

�
ˇ̌
Ln
01

ˇ̌
w

�

Z
W

Ln
01 �

X
Wi2L

ı1
n .W /

jWi j �
ı1

3

3

4
#G ı1n .W / � Cenh� : (4.2)

These estimates imply not only that the spectral radius of L0 on B is eh� , but also
that the sequence e�nh�Ln

01 is uniformly bounded away from 0 and 1 in the strong norm.
We now use this fact to construct an eigenmeasure for L0 with eigenvalue eh� .

By the observation above, for n � 1 the sequence

�n D
1

n

n�1X
kD0

e�kh�Lk
01 is uniformly bounded in B.

Since any ball of finite size in B is compact in Bw , a subsequence converges in Bw . Let
�0 2 Bw be a limit point of �n. A priori, �0 is only a distribution; yet, recalling (3.4), the
calculation ˇ̌

�0. /
ˇ̌

� lim
j!1

1

nj

nj�1X
kD0

e�kh�
ˇ̌
Lk
01. /

ˇ̌
� j j1�0.1/

shows that, indeed, �0 can be extended as a bounded operator on continuous functions, i.e.,
�0 is a measure and, indeed, a nonnegative measure since the �n are nonnegative. A similar
calculation shows that L0�0 D eh��0.

Similarly, let Q�0 2 .Bw/
� be a limit point of the sequence

1

n

n�1X
kD0

e�kh�.L�
0/
k.d�SRB/;
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which is again a measure. Define the pairing

�0. / D
h�0;  Q�0i

h�0; Q�0i
; for  2 C 1.M/.

SinceL0�0 D eh��0 andL�
0 Q�0 D eh� Q�0, it is a standard calculation that�0. ıT /D�0. /,

i.e., �0 is an invariant probability measure for T . We remark that, by definition of �0 and Q�0,
the normalization h�0; Q�0i can be computed as the average of the terms e�kh�

R
M

Lk
01d�SRB.

Thus the fact that h�0; Q�0i ¤ 0 follows from the lower bound (4.2) (see [3, proof of Prop. 7.1]).

4.2.4. Properties of �0

The key observation for proving all subsequent properties of �0 is that, although
�0 2 Bw , it inherits stronger regularity as a limit point of the sequence .�n/n2N , which is
uniformly bounded in the k � kB-norm. In particular, the convergence of .�nj / to � in Bw

implies

lim
j!1

sup
W 2Ws

sup
j jC˛.W /�1

�Z
W

� dmW �

Z
W

�nj dmW

�
D 0;

and, since k�nj ku � C for some C > 0, we conclude that k�ku � C as well. Similarly,R
W
� � C j log jW jj�p from the uniform bound on k�nj ks . This regularity then opens the

door to a host of properties for �0.

(1) Hyperbolicity. For k 2 Z, " > 0, letting N".�k/ denote the "-neighborhood of �k inM ,
the strong norm bound implies that there exists Ck > 0 such that

�0
�
N".�k/

�
� Ckj log "j�p and �0

�
N".�k/

�
� Ckj log "j�p: (4.3)

This implies in turn that �0 is T -adapted, i.e.,
R
M

� log d.x; �˙1/ d�0.x/ < 1, and that
�0-a.e. x 2M has a stable and unstable manifold of positive length. The same is true for �0.

(2) Ergodicity. Since �0 is hyperbolic, we may cover a full measure set of M with Cantor
rectangles comprising intersections of stable and unstable manifolds, and study the proper-
ties of �0 on each rectangle. In particular, the fact that k�0ku < 1 allows us to prove the
following (but note that �0 itself is singular with respect to Lebesgue measure).

Lemma 4.7 (Absolute continuity of holonomy). On each Cantor rectangle R, the holon-
omy map sliding along unstable manifolds in R is absolutely continuous with respect to the
conditional measures of �0 on stable manifolds.

Using a Hopf argument and the above lemma, we show that each Cantor rectangle
R belongs to one ergodic component. Then since T is topologically mixing, we can force
images of rectangles to overlap and thus conclude that .T n; �0/ is ergodic for all n.

(3) Mixing and Bernoulli property. The local product structure of the Cantor rectangles,
together with a global argument showing that a full measure set of points on each component
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ofM can be connected by a network of stable and unstable manifolds, enables us to prove
that .T; ��/ is K-mixing,5 following techniques of Pesin [48,49].

Then adapting the approach of [26] (carried out there for �SRB), which uses all the
properties we have established thus far: K-mixing, hyperbolicity, the absolute continuity of
Lemma 4.7, and our bounds on�0.N".�˙1//, we prove that the partitionM1

�1 is very weakly
Bernoulli. Since

W1

nD�1 T �n.M1
�1/ generates the full � -algebra for T , this implies by [47]

that .T; �0/ is Bernoulli.

(4) Entropy of �0. For x 2 M , define the "-Bowen ball for T �n as in (3.5). Using the fact
that �0 scales by enh� under a change of variables, we are able to prove:

Proposition 4.8 (Measure of Bowen balls). There exists C > 0 such that, for all x 2M and
n � 1,

�0
�
B.x; n; "/

�
� Ce�nh� :

As in Section 3.2.3, [13, Main Theorem] implies that for �0-a.e. x 2 M ,

lim
"!0

lim sup
n!1

�
1

n
log�0

�
B.x; n; "/

�
D h�0.T

�1/ D h�0.T /:

This, together with Proposition 4.8, implies h�0.T /� h�. But h� � h�.T / for all T -invariant
probability measures as stated in Section 2.3. We conclude that h� D h�0.T /, so �0 has
maximal entropy.

4.2.5. Uniqueness of �0

Finally, we discuss the proof of uniqueness of the measure of maximal entropy from
Theorem 2.3. This is essentially a modification of the classical Bowen argument, which uses
a uniform lower bound on the measure of Bowen balls,

8" > 0; 9C > 0 such that for �0-a.e. x 2 M;��.B.x; n; "// � Ce�nh�

(see, for example, [43, Sect. 20.3]).
Unfortunately, this lower bound fails for billiards due to the rate of approach of

typical points to the singularity set. We can prove, rather, that 8� > 0 and �0-a.e. x 2 M ,

9C D C.�; x/ > 0 such that �0.B.x; n; "// � Ce�n.h�C�/. (4.4)

But even this arbitrarily small error in the exponent is not sufficient for the Bowen argument.
Instead, we prove a version of the lower bound that “most” x 2 M “often” belong to an
element of M

j
0 satisfying good lower bounds.

To make this precise, let Nn 2 N be such that .K Nn C 1/1= Nn < eh�=2. Then using
Lemma 4.2, choose ı2 > 0 such that if A 2 Mn

�k
satisfies

max
®
diamu.A/; diams.A/

¯
� ı2;

5 If A denotes the Borel sigma-algebra onM , then K-mixing means that there exists a sub-
sigma algebra K � A such that (1) K � TK; (2)

W1
nD0 T

nK D A; (3)
T1
nD0 T

�nK D

¹X;;º.
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then A n �˙ Nn consist of at most K NnC 1 connected components. Define

Sh2n0 WD
®
A 2 M2n

0 W 8j; 0 � j � n=2; T jA � E 2 M
2n�j
0 such that diams.E/ < ı2

¯
;

with a similar definition for Sh0�2n with diam
u.E/ replacing diams.E/. These are the “per-

sistently short” elements of M2n
0 and M0

�2n, respectively, which have not belonged to a
“long” element within the past n=2 iterates.

The next lemma demonstrates that persistently short pieces make up a small propor-
tion of M2n

0 and that long elements that also have long images satisfy strong lower bounds.

Lemma 4.9. (a) Let B2n D ¹A 2 M2n
0 W either A 2 Sh2n0 or T 2nA 2 Sh0�2nº.

There exists C > 0 such that, for all n � 1, #B2n � Ce7nh�=4.

(b) For all k � 1, if E 2 Mk
0 with diams.E/ � ı2 and diamu.T kE/ � ı2,

then �0.E/ � Cı2e
�kh� ; for some Cı2 > 0.

Some comments on the proof. Claim (a) follows by iterating the complexity bound given by
Lemma 4.2, using the fact that, by the choice of Nn and ı2, persistently short pieces cannot
grow at a rate faster than .K NnC 1/n=.2 Nn/ < enh�=4 over the most recent n=2 iterates.

Claim (b) rests on the fact that if E is long in the stable direction and T kE is long
in the unstable direction, then both E and T kE cross Cantor rectangles of a fixed size,
depending on ı2. Then the lower bound (4.2) is used to derive (b).

The importance of Lemma 4.9 lies in the fact that if A 2 G2n WD M2n
0 n B2n, then

there exists j; k � n=2 such that T jA � E 2 M
2n�j�k
0 and E satisfies Lemma 4.9(b),

i.e., �0.E/ � Cı2e
�.jCk/h� . Thus, apart from a set of “bad” elements B2n whose size is

relatively small, most elements of M2n
0 belong to the “good” set G2n and are contained in

a larger set that has good lower bounds. This, together with a time shift to group elements
of M2n

0 according to their good counterparts in M
2n�j�k
0 , is sufficient to adapt the Bowen

argument for uniqueness. The reader interested in more details is referred to [3, Sect. 7].

5. Open questions

We conclude by formulating several open questions relating to the family of geo-
metric potentials we have discussed.

(1) Is�0 D �SRB, or, more generally, is�s D �t for s ¤ t? If there exist s; t > 0, s ¤ t , such
that �s D �t , then Theorem 2.8 implies that P.t/ is affine on .0; t�/, so that �SRB would be
the equilibrium state for all t 2 .0; t�/, and assuming the sparse recurrence condition (4.1),
�SRB D �0 as well.

This seems highly unlikely. Indeed, suppose that z is a periodic orbit with no grazing
collisions and let �C

z be its positive Lyapunov exponent. Then our estimates on Bowen balls
such as Proposition 4.8 and (4.4), in addition to analogous ones for�SRB, imply that h� D �C

z

[3, Prop. 7.13]. Thus if we can find two periodic orbits with different Lyapunov exponents, we
can conclude that �0 ¤ �SRB, and in turn �s ¤ �t for all s ¤ t . There are no known Sinai
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billiard tables in which all periodic orbits have the same Lyapunov exponent, yet it is not
proved that this cannot happen. See [35, Sect. 4.4] for a related class of models (a type of
open billiard) for which such anomalous behavior has been effectively ruled out.

(2) Can one establish a rate of mixing for �0?While exponential mixing for �t , t 2 .0; t�/,
follows from the spectral gap for Lt , no such gap is available for L0. The question arises
whether this is a consequence of the technique or whether there is a genuine failure of expo-
nential mixing at t D 0. The fact that the pressure P.t/ is finite for t � 0 and infinite for
t < 0whenever there is a periodic orbit with a grazing collision suggests that there is, indeed,
a phase transition at t D 0, so a loss of exponential mixing would not be out of place. On the
other hand, for many expanding systems, the measure of maximal entropy has a faster rate
of mixing than the SRB measure, not a slower one.

(3)What are other limit theorems and properties of�0?Once a rate ofmixing has been estab-
lished, other limits theorems might follow, for example, a dynamical Central Limit Theorem,
which generally requires a summable rate of decay of correlations. Other limit theorems
might include invariance principles or large deviation estimates. These are all available for
�t , t > 0, by spectral techniques (see [39] or [32, Sect. 6]), but not for �0 at this time.

(4) Can one find a finite horizon Sinai billiard table such that the sparse recurrence condition
fails? In other words, can one find a table with h� � s0 log2? If so, does ameasure ofmaximal
entropy still exist and is it T -adapted, i.e., does it satisfy bounds of the form (4.3)?

(5) Does �t ! �0 as t ! 0? For t 2 .0; t�/, continuity of �t and differentiability of P.t/
follow from perturbation theory. Assuming the sparse recurrence condition (4.1), Baladi and
Demers [4, Prop. 5.5] prove that limt#0 P.t/ D P.0/ D h�, yet the question of whether the
equilibrium states converge remains open.

(6) Is P.t/ analytic for all t > 0 or is there a phase transition at some t? > 1? If so,
how does t? depend on the configuration of scatterers? It is clear from the definition of
t� that it is not an optimal condition for most billiard tables since the hyperbolicity constant
ƒ D 1C 2Kmin�min is a lower bound, which in general may not be attained along most or
even all orbits.

A more refined attempt would be to define �min � ƒ to be the minimal positive
Lyapunov exponent over all periodic orbits. Then we could define

t? D sup
®
t > 0 W P.t/ > �t�min

¯
;

and try to show that the spectral techniques described here go through for all t < t? (note that
t? � t�). This should involve in particular working with higher iterates of T and proving a
version of (2.1) withƒ replaced by �min. (In some works on the thermodynamic formalism,
the value of t? is called the freezing point of the geometric family, in analogy with 1=t being
thought of as temperature.)

Some inspiration for �min being the correct quantity to use can be found in finite-
horizon billiards in a triangular lattice. All scatterers on such tables are circles of equal
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radius R, thus the positive Lyapunov exponent of a period 2 orbit between two scatterers
at minimal distance from one another is precisely ƒ D 1 C

2�min
R

. In this case, ƒ D �min

and so t� D t?. If ı is the atomic invariant measure supported on this period 2 orbit, then
Pı.t/ D �t logƒ, so certainly P.t/ � �t logƒ for all t > 0. Yet, it is not known even in
this special case whether in fact P.t/ D �t logƒ at some t D t?, or whether t? D 1.
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Holomorphic dynamics was once part of classical complex analysis, but since its
rebirth in the 1980s it keeps enlarging its scope, integrating new ideas, and developing new
interactions. Some main tendencies of contemporary holomorphic dynamics are the conver-
gence between its one- and higher-dimensional aspects and its ever deeper interconnection
with algebraic and arithmetic dynamics. As a consequence, there is an endless diversifica-
tion of the available mathematical techniques. Besides the classical methods from dynam-
ics and complex analysis, its modern toolbox now comprises sophisticated tools and ideas
imported from complex geometry, pluripotential theory (and its latest advances for currents
of higher bidegree), algebraic geometry and commutative algebra, non-Archimedean anal-
ysis and geometry, arithmetic geometry (in particular, arithmetic equidistribution theory),
Teichmüller theory, geometric group theory, etc. Conversely, each of these domains bene-
fits from its interaction with holomorphic dynamics, by gaining new problems and examples.
Many (though not all!) of these connections were reported in recent ICMs [21,25,34,40,71,77].
Our purpose here is to present a few contemporary research themes whose common thread—
if one were to find one—is an emphasis on “soft” geometric techniques, such as the basic
geometry of analytic subsets in Cn. These represent only a tiny piece of the domain, reflect-
ing, of course, the author’s own taste and research interests. The main topics that will be
discussed are geometric currents, bifurcation theory, and the problem of wandering Fatou
components. The reader will soon notice that these three subjects are largely interrelated.
Many open problems have also been included, as a motivation for future investigations.

Let us describe in more detail the contents of this paper. Section 1 is a short survey
on positive closed currents with “geometric structure”. The use of geometric currents in
holomorphic dynamics was pioneered by Bedford, Lyubich, and Smillie in their seminal
work [9] on complex Hénon maps. Since then they have turned into a very versatile tool,
with many applications. Here we intend to give the flavor of a few specific results and how
they are used in dynamical problems, so this part of the paper will be a bit more technical
than the remaining sections.

Holomorphic dynamics is equally about the dynamics of a holomorphic map f and
about the evolution of this dynamical behavior when f depends on certain parameters. The
basic stability/bifurcation theory of rational maps in one variable was designed by Mañé,
Sad, Sullivan, and Lyubich [69,70,73] in the 1980s, who showed that one-dimensional ratio-
nal maps are generically structurally stable, using surprisingly elementary arguments. For
the quadratic family z2 C c, c 2 C, the bifurcation locus is the celebrated Mandelbrot set,
whose intricate structure was thoroughly studied since then, using a variety of combinato-
rial and geometric methods. This research area was profoundly renewed in the 2000s by the
systematic investigation of higher-dimensional phenomena, and in particular with the intro-
duction of bifurcation currents by DeMarco [32]. The bifurcation theory of holomorphic
dynamical systems is nowadays a very active research domain, and a meeting point between
the communities of one and several variable dynamicists. We relate this continuing story in
Section 2.
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Finally, one recent breakthrough is the construction of wandering Fatou components
in higher-dimensional polynomial dynamics, which at the same time solves an old problem
and raises many questions. We review these recent developments in Section 3.

Let us conclude this introduction with a little notice. Some important theorems will
be mentioned only in passing, while others are isolated within numbered environments: this
is meant to keep the reading flow, not to reflect a hierarchy of importance. Likewise, the list
of references is already quite long, but not exhaustive, and we apologize in advance for any
serious omission.

1. Geometric currents

1.1. Definitions
This part assumes some familiarity with positive currents and pluripotential theory

(see, e.g., Demailly [31] for basics). All the definitions here are local, so we work in some
bounded open set � � Ck . Let T be a positive closed current of bidimension .p; p/ in �.
Following Bedford, Lyubich, and Smillie [9], we say that T is locally uniformly laminar if
there exists a lamination by complex submanifolds of dimension p embedded in� such that
the restriction of T to any flow box B of the lamination is of the form

T jB D

Z
�

Œ�t �d�.t/: (1.1)

Here � is a global transversal in the flow box B , the �t are the plaques of the lamination
in the flow box, and � is a positive measure on � . The word “uniform” here refers to the
local uniformity of the geometry of the plaques �t We say that T is laminar if there exists
a sequence of open subsets �k , together with a sequence of currents Tk , locally uniformly
laminar in �k , such that Tk increases to T . The �k should be thought of as a union of
many small polydisks, whose complement has a small mass. The key word in the defini-
tion is “increases.” Intuitively, this definition should be understood as follows: Tk represents
all the disks contained in T of some given size (say 2�k); then, to Tk we add TkC1 � Tk

which is made of disks of size 2�.kC1/ (which may have nonempty boundary in �k , but
form a lamination in �kC1 � �k), and so on. The sequence Tk is not canonical, and has to
be understood as the choice of a “representation” of T as a laminar current. From this we
can deduce another representation of T as an integral over an abstract family of compatible
holomorphic disks, namely

T D

Z
A

ŒD˛�d�.˛/: (1.2)

Here compatible means that two disks can only intersect along some relatively open subset,
but there is no further restriction on the geometry of theD˛ . Even if this definition is rather
restrictive, it can lead to pathological examples, and for dynamical applications we will have
to constrain it further (see the notion of “strongly approximable” current below).

It was observed by Dinh [39] that in many situations it is more natural to let the
disks admit nontrivial intersections. One then defines uniformly woven currents by replac-
ing “lamination” by “web” in (1.1), where a web is locally given by a family of disks of
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dimension p with uniformly bounded volume or, more generally, a family of holomorphic
chains of dimension p with uniformly bounded volume (any such family is precompact for
the Hausdorff topology, so it makes sense to define a measure on a set of such disks). Then,
woven currents are defined from uniformly woven ones as in the laminar case. A difference
between laminar and woven currents is that in the woven case the measures in (1.1) and (1.2)
are not determined by T (e.g., the standard Kähler form in C2 admits several representations
as a uniformly woven current), so a woven current has to be thought of as “marked” by such
a measure �. It is not completely obvious to show that not every positive closed current is
woven; we leave this as an exercise to the reader!

There is no unified reference for the basic properties of laminar and woven currents.
Besides [9] and [39], the information in this paragraph was extracted from various papers,
notably by De Thélin and the author [28, 30, 37, 43,44,46]. In the following we use the word
geometric as a synonym of “laminar or woven.”

1.2. Construction and approximation
Positive closed currents often appear as limits of sequences of normalized currents

of integration. Furthermore, by a classical theorem of Lelong, any positive closed current
of bidegree .1; 1/ is locally of this form. In this section we explain how, under appropriate
hypotheses, a geometric structure can be extracted from such an approximation.

Still working locally in some open set�� Ck , endowedwith its standard Hermitian
structure, we say that a submanifold V of dimension p in� has size r at x 2 V if it contains
a graph over a ball of radius r of its tangent space TxV , relative to the orthogonal projection
to TxV , with slope (i.e., the norm of the derivative of the graphing map) bounded by 1.
In particular, V has no boundary in B.x; cr/ for some constant c depending only on p
and k. This notion of size makes sense in any compact complex manifold, up to uniform
constants, by choosing a finite covering by coordinate charts and a Hermitian metric. Note
that we may relax this definition by allowing V to be an analytic set: then V can have several
irreducible components at x, some of which being of size r .

If V is any submanifold (or subvariety) of�, possibly with boundary, and r > 0, we
denote by V r the set of x 2 V such that V has size r at x. In this way we get a tautological
decomposition, V D V r [ .V n V r /, which is reminiscent of the thin–thick decomposition
of hyperbolic manifolds.

Assume now that Vn is a sequence ofp-dimensional subvarieties of volume vn, such
that v�1

n ŒVn� converges to a positive closed current T . If Vol.V rn / � vn.1 � ".r// where
" is a function independent of n and such that ".r/ ! 0 as r ! 0, then one may extract
a subsequence so that v�1

n ŒV rn � converges to a geometric current T r � T with the mass
estimate M.T � T r / � ".r/. This endows T with a geometric structure: if p � k � 2, we
obtain a woven current and, if p D k � 1, this current is laminar. Indeed, if p D k � 1, by the
persistence of proper intersections, the limiting graphs cannot intersect nontrivially. (Note
that when p � k � 2, intersections can appear at the limit even if the Vn are submanifolds.
Conversely, if in codimension 1 we allow the Vn to admit self-intersections, we obtain woven
currents also in this case.)

3463 Geometric methods in holomorphic dynamics



A technically convenient option is to further assume that the disks constituting V rn
are submanifolds (without boundary) in a subdivision of � by cubes of size cr (for some
constant c > 0). This is consistent with the manner in which the V rn are constructed in prac-
tice, and the resulting definition is equivalent (see [46]). In this way the limiting currents T r

are uniformly geometric in the cubes of this subdivision.
There are several easily checkable geometric and/or topological criteria ensuring

this condition, which sometimes give an explicit bound on ".r/:

• If W C !X is an entire curve in a projectivemanifold, then byAhlfors’ theory of
covering surfaces, for well-chosen sequencesRn ! 1, Vn WD .D.0;Rn// satis-
fies v�1

n Œ@Vn�! 0 andVol.V rn /� vn.1� ".r// for ".r/DO.r2/. Thus the cluster
values of v�1

n ŒVn� are closed woven currents; if, in addition,  is injective and
dim.X/ D 2, then they are laminar (Bedford–Lyubich–Smillie [9], Cantat [24]).

• If Vn is a sequence of algebraic curves in a projective surface whose geometric
genus is O.vn/, then Vol.V rn / � vn.1 � ".r// for ".r/ D O.r2/, therefore the
limiting currents of v�1

n ŒVn� are woven; under a mild additional condition on the
singularities of Vn, they are laminar (Dujardin [43]).

• If �n W Pp ! X is a sequence of holomorphic mappings of generic degree 1 to a
projective manifold X of dimension k > p and Vn D �n.Pp/, then the limiting
currents of v�1

n ŒVn� are woven (Dinh [39]). In addition, ".r/ D O.r2/ [46].

• If Vn is a sequence of smooth curves in the unit ball in C2, whose genus isO.vn/,
then the limiting currents of v�1

n ŒVn� are laminar (De Thélin [28]). A version of
this result in arbitrary dimension is given by De Thélin in [30].

In all these papers, the geometric structure is obtained by projecting Vn in several directions
and keeping only from Vn the graphs over these directions with bounded diameter or volume.
The bound ".r/ D O.r2/ plays an important role in applications as we shall see below.

1.3. Geometric intersection
The main interest of geometric currents is the possibility of a geometric interpreta-

tion of their wedge products. This technique was introduced in [9], and it was systematized
and generalized in several subsequent works. Such results are so far essentially available in
dimension 2; again since the problem is local, we work in some open set � � C2, say a
ball. If T1 and T2 are closed positive .1; 1/ currents in �, we say that the wedge product
T1 ^ T2 is well defined if u1 2 L1loc.T2/, where ui is a local potential of Ti , in which case
we set T1 ^ T2 D dd c.u1T2/. This condition and the resulting wedge product are actually
symmetric in T1 and T2. We also say that such a current is diffuse if it gives no mass to
curves.

For uniformly laminar and woven currents, geometric intersection is easy and basi-
cally follows from Fubini’s theorem. Indeed, assume that T1 and T2 are uniformly geometric
.1; 1/-currents in �, which locally in � admit the representation Ti D

R
Œ�it �d�i .t/. Then,
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if the wedge product T1 ^ T2 is well defined, locally we have that

T1 ^ T2 D

Z �
�1t \�2s

�
d�1.t/d�2.s/; (1.3)

where Œ�1t \ �2s � is the sum of point masses at isolated intersection points, counting mul-
tiplicities (see [38, 44]). In addition, if T1 and T2 are laminar and diffuse, nontransverse
intersections do not contribute to the integral, so we can restrict to transverse intersections.
Note the intermediate “semigeometric intersection” result

T1 ^ T2 D

Z ��
�1t

�
^ T2

�
d�1.t/; (1.4)

which makes sense for an arbitrary positive closed current T2.
Now assume that T is a geometric positive closed current in � � C2 and S is an

arbitrary positive closed current in� such that the wedge product S ^ T is well defined. We
say that T ^ S is semigeometric if there is a representation T D limr!0 T

r as an increasing
limit of uniformly geometric currents, such that T r ^ S increases to T ^ S as r ! 0. Thanks
to (1.4), T r ^ S admits a geometric interpretation. If now S itself is a geometric current,
we say that the wedge product T ^ S is geometric if there are representations T r % T and
S r % S such that T r ^ S r (which has a geometric interpretation by (1.3)) increases to
T ^ S .

We say that a geometric current is strongly approximable if there is a representation
T r % T where T r is uniformly geometric in a subdivision�r of� into cubes of size r , and
".r/ D M.T � T r / D O.r2/. As we have seen in Section 1.2, this estimate is commonly
satisfied in practice. (Technically, some freedom on the choice of �r is also necessary, but
we do not dwell on this point.) The sharpest version of the geometric intersection theorem
for geometric currents in dimension 2 is the following:

Theorem 1.1 (Dujardin [38, 44, 45]). Let S and T be closed positive .1; 1/ currents in
� � C2, such that the wedge product T ^ S is well defined. Assume that T is a strongly
approximable geometric current. Then, if S has locally bounded potentials, or if T ^ S gives
no mass to pluripolar sets, then T ^ S is semigeometric.

A consequence of this theorem, which is often as useful as the result itself, is that if
T was obtained as the limit of v�1

n ŒVn� as in Section 1.2, then v�1
n ŒV rn �^ S is close to T ^ S

for small r and large n.
Applying Theorem 1.1 to T ^ S and S ^ T , we get:

Corollary 1.2. If in Theorem 1.1 both S and T are strongly approximable geometric cur-
rents and T ^ S gives no mass to pluripolar sets, then T ^ S is geometric.

Themain open problem at this stage is the extension of these results to higher dimen-
sions.

Question 1.3. Is there a version of Theorem 1.1 for geometric currents of arbitrary codi-
mension?
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While the case of uniformly geometric currents and the case where T is of bidimen-
sion .1; 1/ follow without serious difficulties (see [46] and [47] for details), the general case
remains a challenge so far. The crucial mass estimateM.T � T r /DO.r2/ is known to hold
in some significant cases (see [46]), but it does not appear to be sufficient to conclude for
currents of arbitrary bidimension.

1.4. Dynamical applications
The first application of laminar currents by Bedford, Lyubich, and Smillie [9]was to

prove that certain intersections are nonempty. A typical example is the following: assume that
we are given an entire curve  W C ! X in some projective manifold, and let T be a closed
current obtained from  by Ahlfors’ construction. Let S be a current of bidegree .1; 1/ with
bounded potentials. If we know that

R
T ^ S > 0 (for instance, for cohomological reasons),

then by Theorem 1.1, this intersection is semigeometric, thereforeS j .D.0;Rn// is nonzero for
large n. (A version of this result which does not apply to laminarity was proved by Dinh and
Sibony [42].) This fact (as well as some variants) plays an important role in the dynamics of
automorphisms and birational maps on complex surfaces, where it is used as a tool to create
intersections between stable and unstable manifolds. This is used in [9] to establish that any
saddle point belongs to the support of the maximal entropy measure; this technique also
appears in the work of Cantat, Favre, Lyubich, and the author [24, 26, 52, 53], among others.
Note also that the failure of Theorem 1.1 for unbounded potentials can be viewed as the main
reason why the uniqueness of the measure of maximal entropy for general birational maps
of surfaces remains an unsolved problem.

Another use of geometric intersection, which was initiated in [45], concerns the
dynamical analysis of wedge products of dynamically defined currents. Indeed, suppose that
f is a self-map of some complex manifold X , and f n.L/ is a sequence of iterated curves
such that d�nf n.L/ converges to a geometric current T , with a control of the asymptotic
geometry of f n.L/ as in Section 1.2. Assume also that S is some invariant current of bide-
gree .1; 1/: f �S D dS and that T ^ S is a semigeometric intersection. Then for large n,
the action of f k on the bounded geometry part of d�nŒf n.L/� ^ S is a good approxima-
tion of the action of f k on T ^ S , and its expansion properties “in the direction of T ” can
be analyzed geometrically by “soft” methods, such as counting disjoint disks of size r and
length–area estimates (see below Theorem 2.4 for a worked out example). This idea was used
in various contexts by De Thélin and others [29,36,37,45,46].

1.5. Foliations
FoliatedAhlfors currents play an important role in thework of Brunella andMcQuil-

lan on singular holomorphic foliations (see, e.g., [20]). Geometric intersection has been
applied in foliation theory to prove the vanishing of certain self-intersections. For a posi-
tive current directed by a holomorphic foliation on a compact Kähler surface, this vanishing
can in turn be used to infer dynamical properties of the foliation such as the nonexistence
of invariant transverse measures (for closed currents) or the uniqueness of harmonic mea-
sures (for dd c-closed currents), according to a Hodge-theoretic formalism for dd c-closed
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currents devised by Fornæss and Sibony [58]. Proving that the self-intersection of harmonic
currents directed by holomorphic foliations vanishes is a very difficult problem in the pres-
ence of singularities. On P2 this can be treated by regularizing with global automorphisms,
the general case makes use of the theory of densities of Dinh and Sibony (see [41]). Here we
want to mention a more elementary-looking problem:

Question 1.4. Does there exist a diffuse (closed) uniformly laminar current on P2?

The expected answer to the question is “no,” since it is generally expected that there
does not exist a Riemann surface lamination embedded in P2. The above question is sup-
posed to be the “easy case” of this deep conjecture (since it deals with laminations with
transverse measures), and it admits a straightforward approach: if T is such a current, then
T ^ T D 0 because of the laminar structure, which is impossible onP2. This approach works
well as soon as T ^ T is well defined in the sense of pluripotential theory (but it does not for
a curve!), or when the holonomy of the induced lamination is Lipschitz [58]. But in general
the holonomy of a Riemann surface lamination in C2 (that is, a holomorphic motion) is less
regular and, surprisingly enough, the problem is still open so far. (See Kaufmann [66] for a
discussion of the higher-dimensional case.)

2. Bifurcation theory in one and several dimensions

Let .f�/�2ƒ be a family of rational maps on P1 of degree d , holomorphically
parameterized by some complex manifold ƒ. Then the well-known Fatou–Julia decompo-
sition of the phase space is mirrored by a stability–bifurcation dichotomy of the parameter
space. The proper definition of stability in this context was found simultaneously by Mañé–
Sad–Sullivan and Lyubich [69, 70, 73]: the family .f�/�2ƒ is J -stable over some domain
� � ƒ if one of the following equivalent conditions holds over �:

(i) the periodic points of .f�/ do not collide or, equivalently, the nature (attracting,
repelling, indifferent) of each periodic point remains the same in the family;

(ii) the Julia set � 7! J� moves continuously for the Hausdorff topology;

(iii) for any two parameters �; �0 in �, f�jJ� is topologically conjugate to f�0 jJ�0 ;

(iv) the orbits of the critical points f� do not bifurcate.

The equivalence between these properties relies on the notion of holomorphic motion (also
known as holomorphic families of injections) of a subset of the Riemann sphere, and the
simple, yet powerful idea of automatic extension of a holomorphic motion to its closure (the
“�-lemma”). Condition (iv), together with the finiteness of the critical set, easily implies that
in any such parameterized family .f�/, the stability locus is open and dense in ƒ. In other
words, one-dimensional polynomial and rational maps are generically stable.

For the emblematic family f�.z/D z2 C� of quadratic polynomials, the bifurcation
locus is the boundary of the Mandelbrot set M (connectivity locus). Even if its interior is
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empty, @M is still quite large, as shown by the following famous result of Shishikura [80]:
@M has Hausdorff dimension 2. This property was extended to arbitrary families of rational
maps by Tan Lei and McMullen [67, 75]. The basic technical tool underlying Shishikura’s
theorem is the phenomenon of parabolic implosion, which will also play an important role
below. Note that is still unknown whether @M has zero or positive Lebesgue measure.

This research area was renewed in the last 20 years as the result of several tenden-
cies: (1) the use of positive closed currents, and (2) the move towards higher dimensions
(both in dynamical and parameter spaces). In the next few pages, we review some of these
developments; in particular, we will see how these influential one-dimensional results trans-
late to new settings. Lack of space prevents us from giving a complete treatment, and some
important results will barely be mentioned. Also, we do not discuss the profound connection
with arithmetic dynamics, for which the reader is referred, e.g., to [34], or bifurcations of
Kleinian groups (see [35,48]).

2.1. Bifurcation currents in one-dimensional dynamics
Let as above .f�/�2ƒ be a holomorphic family of rational maps of degree d . The

following addition to the list of equivalent conditions to stability was found by DeMarco [33]:

(v) the Lyapunov exponent of the unique measure of maximal entropy �.�f�/ is a
pluriharmonic function of �.

The bifurcation current is then defined by Tbif WD dd c
�
�.�f�/. For the family of quadratic

polynomials, Tbif (D �bif, see below) is the harmonic measure of the Mandelbrot set.
The original definition of the bifurcation current in [32] can be interpreted geomet-

rically as follows (see [51]). Consider the fibered dynamical system in ƒ � P1 defined by
Of W .�; z/ 7! .�; f�.z//. It admits a natural invariant current OT of bidegree .1; 1/, sat-
isfying Of � OT D d OT , whose restriction to a generic vertical line ¹�º � P1 is the maximal
entropy measure �f� . Now, take a holomorphically moving (or “marked”) point � 7! a.�/

in P1, and denote by �a its graph in ƒ � P1. If � W ƒ � P1 ! ƒ is the natural projec-
tion, we obtain a current in ƒ associated to a by slicing OT by �a and projecting down to
ƒ: Ta WD ��. OT ^ Œ�a�/. If in a holomorphic family .f�/, the critical points are marked
by holomorphic functions � 7! ci .�/ (this is always possible up to replacing ƒ by some
branched cover), we thus obtain the corresponding bifurcation currents Tci . It turns out that
Tbif D

P
Tci : this follows from a variant of theManning–Przytycki formula for the Lyapunov

exponent �.�f�/, which in the case of polynomials is written as

�.�f / D log d C

X
i

Gf .ci /;

where Gf is the dynamical Green function (which satisfies dd cGf D �f ).
Bifurcation currents have turned into a fundamental tool for exploring higher dimen-

sional issues in parameter spaces. Here is a sample problem: consider a critically marked
family .f�; ci .�// and suppose that for some parameter �0 2 ƒ, the critical point c1.�/
bifurcates at � D �0. Then a simple application of Montel’s theorem shows that there is
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a sequence of parameters �n ! �0 such that, for � D �n, c1 is preperiodic. Now assume
that several (say all) critical points bifurcate at �0: is it then possible to approximate �0 by
parameters such that the corresponding critical points are preperiodic? Of course, in this
question one has to discard a few “trivial” obstructions, e.g., when dim.ƒ/ is too small, so
that there are not enough degrees of freedom to hope for an independent behavior of the crit-
ical points. Still after excluding these counterexamples, the answer to this problem is “no”
(see [51, Example 6.13]), the fundamental reason for this being the failure of Montel’s theo-
rem in higher dimension. Using currents is a known way of circumventing this problem in
higher-dimensional dynamics, and, as a matter of fact, the following theorem holds:

Theorem 2.1 (Bassanelli–Berteloot [8], Dujardin–Favre [51]). Let .f�/�2ƒ be a holomor-
phic family of rational maps of degree d � 2. Then for every k � dim.ƒ/,

Supp.T kbif/ � ¹�; f� admits k periodic critical pointsº: (2.1)

(This result was actually not stated explicitly in [8, 51], see [48] for this formulation. The
converse inclusion is studied below.)

When ƒ is the moduli space Pd of polynomials of degree d with marked critical
points (which is a finite quotient ofCd�1) or themoduli spaceMd of rational maps of degree
d with marked critical points (which is of dimension 2d � 2), we define the bifurcation
measure �bif to be the maximal exterior power of Tbif, that is, �bif D T d�1

bif or �bif D T 2d�2
bif ,

respectively. The following neat dynamical characterization of Supp.�bif/ can be obtained:

Theorem 2.2 (Dujardin–Favre [51], Buff–Epstein [22]). For ƒ D Pd or Md , the support of
�bif is the closure of (non-Lattès) strictly postcritically finite parameters, that is, parameters
for which all critical points are preperiodic to a repelling cycle.

A version of this result for intermediate powers of Tbif was obtained in [47], which
explains to what extent the converse inclusion in (2.1) holds.

Sketch of proof. The most delicate point is to show that any non-Lattès postcritically finite
parameter �0 belongs to Supp.�bif/. To fix the ideas, assume thatƒD Md . Observe that �0
is an intersection point of a family of .2d � 2/ hypersurfaces of the form®

� 2 Md ; f
n
�

�
ci .�/

�
D f nCk

�

�
ci .�/

�¯
(one for each critical point). The proof in [22] is based on two important ideas. The first
one consists in proving that these hypersurfaces are smooth and transverse at �0: this is
based on Teichmüller-theoretic ideas. Then, using this transversality, a version of Tan Lei’s
transfer principle between dynamical and parameter space allows comparing the mass of
�bif in a carefully scaled small polydisk about �0 with the mass of �f�0 near the f

n.ci /, and
conclude that this mass is positive.

In the space of polynomials of degree d , Theorem 2.2, together with other charac-
terizations of Supp.�bif/, e.g., in terms of landing of parameter rays, makes Supp.�bif/ the
natural analogue of the boundary of the Mandelbrot set for polynomials of higher degree.
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This motivates an investigation of its topological and geometric properties. First, it is a com-
pact set, which, for d � 3, is strictly contained in the boundary of the locusCd of polynomials
with connected Julia set. A topological consequence of Theorem 2.1 is that Supp.�bif/ is con-
tained in the closure of Int.Cd /; on the other hand, it is unknownwhetherCd is the closure of
its interior. Gauthier [59] extended Shishikura’s theorem to show that Supp.�bif/ hasmaximal
Hausdorff dimension at each of its points. Let us also note that by using advanced nonuni-
form hyperbolicity techniques, it was shown by Astorg, Gauthier, Mihalache, and Vigny [6]

that in the space Md of rational maps of degree d , Supp.�bif/ has positive volume.
The technical core of Theorems 2.1 and 2.2 is the fact that Tbif and its exterior powers

describe the asymptotic distribution of families of dynamically defined hypersurfaces in the
parameter space, like parameters with a preperiodic critical point, or parameters with a peri-
odic point of a givenmultiplier. Initiated in [7,8,51], this research theme has gradually evolved
in scope and sophistication, notably through its connections with arithmetic equidistribution
(see [54]).

A striking and unexpected consequence of this technology is an asymptotic estimate
for the number of hyperbolic components in Md , which is so far not accessible by other
means. Recall that a hyperbolic component is a connected component of the stability locus
in which the dynamics is uniformly expanding on the Julia set. We say that a hyperbolic
component� is of disjoint type .n1; : : : ; n2d�2/ if the critical points are attracted by distinct
attracting cycles of respective exact period ni .

Theorem 2.3 (Gauthier, Okuyama, and Vigny [60]). The number N.n/ of hyperbolic com-
ponents of disjoint type .n; : : : ; n/ in Md satisfies

N.n/ �
n!1

d .2d�2/n

.2d � 2/Š

Z
Md

�bif:

(An analogous formula holds for arbitrary disjoint type .n1; : : : ;n2d�2/.) Note that the corre-
sponding result inPd is much easier and follows essentially fromBézout’s theorem (together
with a transversality argument). The value of

R
Md

�bif is known only for d D 2 [60].
Once the bifurcation measure is constructed on Pd or Md , it is natural to inquire

about the dynamics of a �bif-typical parameter. In Md this question is completely open so
far. For the family of quadratic (and more generally unicritical) polynomials, it was shown
by Graczyk–Swiatek [62] and Smirnov [81] in the late 1990s that a �bif-typical parameter
satisfies the Collet–Eckmann condition; in particular, the local geometry of its Julia set is
well understood. These results are based on combinatorial techniques and the landing of
external and parameter rays, and the method carries over for degree d polynomials (see [51,

Thm. 10]). Interestingly, a completely new approach to the results of [62,81]was recently found,
which applies to arbitrary families of rational maps.

Theorem 2.4 (De Thélin, Gauthier, and Vigny [36]). Let .f�/�2ƒ be an algebraic family of
rational maps of degree d with a marked critical point c.�/. Let Tc be the bifurcation current
associated to c and kTck be the associated total variation measure. Then for kTck-a.e. �,

lim inf
n!1

ˇ̌
Df n�

�
c.�/

�ˇ̌
�
1

2
log d > 0: (2.2)
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For the unicritical family zd C �, this statement is precisely the typicality of the
Collet–Eckmann expansion property.

Sketch of proof. This is an application of the techniques of Section 1.4. We may assume that
ƒ is of dimension 1, so that Tc is just a positive measure on ƒ. Consider the sequence of
iterated graphs �f n.c/, parameterized by n W � 7! .�; f n

�
.c.�///. Then, as explained above,

Tc D ��. OT ^ Œ�c �/, where � W ƒ � P1 ! ƒ is the first projection and OT is the natural
Of -invariant current in ƒ � P1. Using the Of -invariance of OT , we infer that

Tc D ��

�
d�nŒ�f n.c/� ^ OT

�
; and conversely .n/�.Tc/ D d�nŒ�f n.c/� ^ OT :

Since the �f n.c/ are algebraic curves of uniformly bounded genus, by the results of Sec-
tion 1.2, the part .d�nŒ�f n.c/�/

r of these curves made of disks of size r has mass 1�O.r2/,
and since OT has continuous potential, by Theorem 1.1 the intersection d�nŒ�f n.c/� ^ OT is
carried by .d�nŒ�f n.c/�/

r , up to a small error �.r/. But to fill up a set of measure 1 � �.r/

of d�nŒ�f n.c/� ^ OT , at least c.r/dn disjoint such disks are required, and, pulling them back
by n, we get a set of c.r/dn disjoint disks in ƒ, covering a set of measure 1 � �.r/ for Tc ,
each of which mapped under n to a disk of size r . Being disjoint, most of the pulled-back
disks in ƒ have area at most Cd�n, so the derivative of n there must typically be larger
than Cdn=2. Analyzing how the derivative of n is expressed in terms of theDf k� .c.�//, for
0 � k � n, finally leads to (2.2).

As already mentioned, the theory of bifurcation currents has deep connections with
arithmetic dynamics, and related rigidity problems in moduli spaces. A typical problem in
this context is the classification of families with amarked point .f�;a.�// for which the bifur-
cation current Ta is “abnormally regular.” The reader is referred to the recent monograph [55]

by Favre and Gauthier for more on this topic.

2.2. Stability/bifurcation theory in higher dimension
Moving to higher dimension, it is tempting to imitate the definition of J -stability

by coining a definition of stability from the noncollision of periodic points. An obvious
difficulty is that in this context the automatic extension of holomorphic motions fails and
the relevance of this definition needs to be justified, for instance, by proving its equivalence
with other natural ones. Due to the variety of possible situations, in higher dimension the
details depend on the category of maps under study. So far, this program has been fulfilled in
two cases: polynomial automorphisms of C2 (by Lyubich and the author), and holomorphic
maps on Pk (by Berteloot, Bianchi, and Dupont).

2.2.1. Polynomial automorphisms of C2

For a polynomial automorphism f of C2, we can define Julia sets JC and J�

respectively associated to forward and backward iteration, as well as the “small Julia set”
J D JC \ J�, and J � � J the closure of the set of saddle periodic points, which is also
the support of the maximal entropy measure [9]. Following [53], we say that a holomorphic
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family .f�/�2ƒ of polynomial automorphisms of fixed dynamical degree d is weakly J �-
stable if (i) its saddle points do not bifurcate, hence (under mild assumptions) so do all
periodic points. (Here the numbering of properties corresponds to that of the 1-dimensional
case at the beginning Section 2.) Then the holomorphic motion of saddle points extends to
a branched holomorphic motion of J � and the condition is equivalent to (ii) � 7! J �.f�/

is continuous. Furthermore, the branched holomorphic motion extends to the “big Julia set”
JC [ J�. It remains an open question whether weak J �-stability yields a conjugacy on J �

or J (that is, whether an analogue of (iii) holds). It is proved in [13] that weak J �-stability
implies a probabilistic form of structural stability, that is, a conjugacy can be defined on a
full measure subset for any hyperbolic measure. Also, weak J �-stability preserves uniform
hyperbolicity [13, 50], so the familiar concept of hyperbolic component makes sense in this
setting.

Even if strictly speaking polynomial automorphisms have no critical points, the
main issue in [53] is about condition (iv) (stability of critical points). Indeed, it a popular
analogue of a prerepelling critical point for a 2-dimensional diffeomorphism is a hetero-
clinic tangency, so we are looking for a characterization of stability in terms of (absence of)
tangencies. It is well known that in dissipative dynamics, homoclinic tangencies yield bifur-
cations from saddles to sources, and the main point of [53] is to find a mechanism for the
converse implication. The key is the phenomenon of semiparabolic implosion.

Before moving on to this topic, let us point out that so far there is no theory of
bifurcation currents for automorphisms of C2.

Question 2.5. For polynomial automorphisms of C2, is stability characterized by the har-
monicity of the Lyapunov exponents of the maximal entropy measure? In other words, does
an analogue of condition (v) above hold?

2.2.2. Semiparabolic implosion and tangencies
Parabolic implosion refers to a set of phenomena, discovered by Douady and La-

vaurs, occurring when unfolding a periodic point with a rational indifferent multiplier. To be
specific, consider a family of the form

f�.z/ D .1C �/z C z2 C h:o:t:

in a neighborhood of the origin, for small �. For � D 0, the fixed point 0 admits a basin of
attraction B. Now If � approaches the origin tangentially to the imaginary axis, we can track
precisely how the parabolic basin B “implodes” by “passing through the eggbeater” created
between two slightly repelling fixed points p� D 0 and q� � ��. More precisely, for well-
chosen �n, f n�n converges locally uniformly in B to a nonconstant Lavaurs map W B ! C,
depending on .�n/. Of course, for �n � 0,  D 0: in this sense the limiting dynamics of f�
as � ! 0 is richer than that of f0. This gives rise to a wealth of dynamical phenomena at a
such a parabolic bifurcation, like the discontinuity of the Julia set or the birth of hyperbolic
set of large Hausdorff dimension, which are instrumental in Shishikura’s theorem that the
boundary of the Mandelbrot set has dimension 2.
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Bedford, Smillie and Ueda [11] extended this analysis to the unfolding of a semi-
parabolic fixed point of multiplicity 2 in C2, that is, of the form

f�.z; w/ D
�
.1C �/z C z2 C h:o:t:; b�w C h:o:t:

�
; with jb0j < 1: (2.3)

In this dissipative situation, as before the Lavaurs map is a limit of iterates of the form f n
�n
,

its domain is the attracting basin B of the origin, but its values are contained a curve: the
repelling petal of the semiparabolic point. For polynomial automorphisms, this leads to a pre-
cise description of the discontinuity of the Julia sets J and JC at�D 0. (See also Bianchi [15]
for some results about the implosion of general parabolic germs.)

If .f�/ is an arbitrary family of dissipative polynomial automorphisms, semi-
parabolic bifurcations (of possibly arbitrary multiplicity) occur densely in the bifurcation
locus by definition. A mechanism producing homoclinic tangencies from semiparabolic
implosion was designed in [53]. Besides the analysis of Lavaurs maps (which is not as pre-
cise as in the multiplicity 2 case (2.3)), this involves a construction of “critical points” in
semiparabolic basins, which by definition are tangencies between unstable manifolds (asso-
ciated to some given saddle point) and the foliation of the basin by strong stable manifolds.
Surprisingly, this construction is based on Wiman’s classical theorem on entire functions of
slow growth, and requires a stronger dissipativity condition: jJac.f�/j < d�2 (substantially
dissipative regime). Altogether we obtain the following theorem, which confirms a classical
conjecture of Palis in this setting:

Theorem 2.6 (Dujardin and Lyubich [53]). In a substantially dissipative family of polyno-
mial automorphisms of C2, parameters with homoclinic tangencies are dense in the bifur-
cation locus.

It is expected that this result holds without the substantial dissipativity assumption.
Also, it is an open question whether quadratic tangencies are always created in this process.
A positive answer would yield an interesting link with the quadratic family, and add further
evidence to the universality of the Mandelbrot set.

2.2.3. Holomorphic maps on P k

The case of families of holomorphic maps on Pk was studied by Berteloot, Bianchi,
and Dupont in [14]. Here, as in the one-dimensional case, one starts with the stability of
repelling periodic points. More precisely, one has to restrict to repelling points contained
in the “small Julia set” J � (which by definition is the support of the maximal entropy
mesure �), since there can be a number of “spurious” repelling points outside J �. Then
Berteloot, Bianchi, and Dupont obtain an almost complete generalization of the results of
Mañé–Sad–Sullivan, Lyubich, and DeMarco (that is, of the above equivalent conditions (i)
to (v)). As before, a remaining issue is whether this notion of weak J �-stability implies
structural stability on J �. A main difference with the 1-dimensional case is that the char-
acterization of bifurcation in terms of currents is now essential to establish the equivalence
between the remaining conditions. More precisely, the link between the instability of critical
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orbits and that of periodic points is provided by a formula à la Manning–Przytycki for the
Lyapunov exponent of the maximal entropy measure.

We saw in Theorems 2.1 and 2.2 that the higher bifurcation currents T kbif describe
accurately certain higher-codimensional phenomena in the parameter space. It seems that the
distinction between Tbif and its powers is not as clear in higher-dimensional dynamics: in a
recent work, Astorg and Bianchi [3] showed that in a large portion of the family of polynomial
skew products of C2, the supports of all currents T kbif coincide with the bifurcation locus. So
the significance of these higher bifurcation currents in this context is yet to be explored.

2.3. Robust bifurcations
As said before, due to the finiteness of the critical locus, one-dimensional polyno-

mial and rational maps are generically stable. Intuition from real dynamics suggests that
this is not anymore the case in higher dimension. As in the previous paragraph, we discuss
separately the cases of polynomial automorphisms and of holomorphic maps on Pk .

2.3.1. Polynomial automorphisms
Given the characterization of weak J �-stability in [53], a straightforward adaptation

of the one-dimensional argument for the density of stability shows that in any holomorphic
family .f�/ of polynomial automorphisms ofC2, the union of (weakly J �-)stable parameters
together with parameters with infinitely many sinks is dense. Prior to [53], it was actually
already known that stability is not a dense phenomenon in this context, due to the following
remarkable result:

Theorem2.7 (Buzzard [23]). There exist d >1 and an open subset��Autd .C2/ contained
in the bifurcation locus. In particular, maps with infinitely many sinks are dense in �.

Here Autd .C2/ is the space of polynomial automorphisms of C2 of degree d . This
deep theorem is nothing but the adaptation to the complex setting of Newhouse’s theorem
(see [76]) on the existence of surface diffeomorphisms with persistent homoclinic tangencies.
It is obtained by first constructing transcendental examples and then approximating them by
polynomial ones, hence the degree d is unknown and presumably very large. The existence
of this complex Newhouse phenomenon in arbitrary degree is a major open problem.

Question 2.8. Is the bifurcation locus of nonempty interior in Autd .C2/ for any d � 2?

As in the real case (cf. [76]), one may even expect that robust bifurcations (that is,
interior points of the bifurcation locus) are dense in the bifurcation locus, at least in the dissi-
pative regime. For this, it is tempting to imitate the approach of Shishikura’s theorem on the
Hausdorff dimension of @M and use semiparabolic implosion to construct large bifurcation
sets from a single parabolic bifurcation: in this sense the density of robust bifurcations would
be the optimal generalization of Shishikura’s theorem to automorphisms of C2. An interest-
ing first step would be to show that the bifurcation locus has maximal Hausdorff dimension at
every point. More advanced techniques will certainly be needed to get open subsets: an ambi-
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tious research program on the intersection of complex Cantor sets was initiated by Araujo,
Moreira, and Zamudio towards this perspective (see [1,2]).

Biebler observed in [18] that the existence of robust bifurcations is actually more
tractable in higher dimensions and showed that: for every d � 2, the bifurcation locus has
nonempty interior inAutd .C3/. This is based on a distinct mechanism for robust bifurcation,
namely the blenders of Bonatti and Diaz [19]. These are dynamically defined Cantor sets
which are so fat in a certain “direction” that they intersect an open set of curves. The point
of [18] is to use this feature as a building block for persistent tangencies.

Finally, let us point out a recent beautiful result by Yampolsky and Yang [85]: the
one-dimensional family of degree 2 Hénon maps with a golden mean Siegel disk

fa.x; y/ D .x2 C ca � ay; x/;

with ca D .1C a/

�
�

2
C

a

2�

�
�

�
�

2
C

a

2�

�2
and � D e�.1C

p
5/i ;

is structurally unstable at every parameter with small enough Jacobian jaj. This relies on a
completely different approach to persistent tangencies, based on Siegel renormalization.

2.3.2. Holomorphic maps on P k

From the work of Berteloot, Bianchi, and Dupont, we know that the basic phe-
nomenon responsible for bifurcations for holomorphic maps on Pk is when the postcritical
set intersects the small Julia set J �. Thus, to obtain robust bifurcations, it is enough to find a
mechanism ensuring a robust intersection between the postcritical set and J �. A convenient
tool for this is the Bonatti–Diaz blender, which leads to:

Theorem2.9 (Dujardin [49]). For every k� 2 and d � 2, the bifurcation locus has nonempty
interior in Hold .Pk/.

Here, Hold .Pk/ is the space of holomorphic maps on Pk of degree d . A specific
one-dimensional family of holomorphic maps of P2 with a full bifurcation locus was found
independently by Bianchi and Taflin [16]. After this result, a natural question is that of the
abundance of robust bifurcations in Hold .Pk/. Taflin [83] showed that robust bifurcations
are abundant near product polynomial maps of C2, and Biebler [17] showed that Lattès maps
of sufficiently large degree are accumulated by robust bifurcations. Blenders are involved
directly or indirectly in both cases, and seem to appear quite naturally when a repelling
periodic point bifurcates to a saddle. Still, the general picture remains elusive.

Question 2.10. Is the bifurcation locus in Hold .Pk/ the closure of its interior?

Lastly, a celebrated theorem of McMullen asserts that any stable algebraic fami-
lies of rational maps on P1 is either isotrivial or a family of flexible Lattès examples [74].
Extending this result to higher dimensions is a promising research problem; one main obsta-
cle is that part of the argument relies on Thurston’s topological characterization of rational
functions. Related preliminary results have been obtained by Gauthier and Vigny [61].
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3. (Non-)Wandering Fatou components

The classification of Fatou components is a basic chapter of holomorphic dynamics.
For rational maps in dimension 1, periodic Fatou components can be classified into attract-
ing basins, parabolic basins, and rotation domains (Siegel disks and Herman rings). The
crowning achievement of this classification is the celebrated nonwandering domain theorem
of Sullivan [82]: for a one-dimensional rational map, any Fatou component is preperiodic.

In higher dimensions, techniques from geometric function theory may be applied to
classify periodic Fatou components. It is convenient to distinguish between recurrent and
nonrecurrent periodic components: a fixed Fatou component � is recurrent if for some
x 2 �, the !-limit set !.x/ is not completely contained in @�. Recurrent Fatou compo-
nents were classified in various classes of rational maps in [10,56,57,84]. The upshot is that
in such a component either there is an transversely attracting submanifold (possibly a point)
or the dynamics is of rotation type. The situation is far less understood in the nonrecurrent
case. A notable exception is that of substantially dissipative automorphisms ofC2, for which
it was shown by Lyubich and Peters [72] that any nonrecurrent Fatou component is the basin
of a semiparabolic periodic point.

On the other hand, it is immediately clear that the quasiconformal techniques used
in Sullivan’s proof are not generalizable to higher dimension. As it turns out, wandering
components do exist in 2-dimensional polynomial dynamics:

Theorem 3.1 (Astorg, Buff, Dujardin, Peters, and Raissy [5]). If 0 < a < 1 is sufficiently
close to 1, the polynomial mapping of C2 defined by

f W .z; w/ 7!
�
p.z;w/; q.w/

�
D

�
z C z2 C az3 C

�2

4
w;w � w2

�
admits a wandering Fatou component.

The proof is based on an original idea of M. Lyubich, and relies on a skew product
version of parabolic implosion. It was further implemented in other situations in [4,63].

Sketch of proof. Write p.z;w/ D p0.z/C ".z;w/, with p0.z/ D z C z2 and ".z;w/ being
thought of as a perturbative term. Start with an initial point .z0; w0/ such that z0 belongs to
the parabolic basin of attraction of 0 for p0 and w0 a small positive number, and let as usual
.zn; wn/ D f n.z0; w0/. Then wn D qn.w/ converges to 0 along the positive real axis, and
pn0 .z0/ converges to 0 along the negative real axis. Therefore zn D pn0 .z0/C "n is pushed
a little faster towards the origin by the term "n. The terms in ".z; w/ are crafted so that if
z0 is chosen carefully in some open set of initial conditions, the iterates zn indeed pass the
origin by going “through the eggbeater” and come back close to their initial position. So we
can repeat this process and conclude that .z0; w0/ belongs to some Fatou component. But
since the returning time increases with the number of iterations, this Fatou component is not
periodic, and we are done.

At this stage the following natural questions arise:
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Question 3.2. (1) Are there other dynamical mechanisms leading to wandering
Fatou components?

(2) Find substantial families of higher-dimensional rational mappings without wan-
dering domains.

Regarding the first question, a mechanism for constructing wandering domains in 2-
dimensional smooth dynamics, based on the Newhouse phenomenon, was devised by Colli
and Vargas [27]. Berger and Biebler recently proved that this mechanism can be implemented
in certain 5-dimensional families of Hénon maps, leading to the following stunning theorem:

Theorem 3.3 (Berger and Biebler [12]). There exists a polynomial automorphism of C2 of
degree 6 with a wandering Fatou component.

This solves the existence problem for wandering Fatou components for plane poly-
nomial automorphisms, which does not seem to be amenable to the techniques of [5].

For the second question, it is a classical fact that hyperbolic dynamics prevents the
existence of wandering domains. Besides this observation, not much is known. In view of
Theorem 3.1, it is natural to investigate the case of skew products with a fixed attracting fiber,
that is, of the form

f .z;w/ D
�
p.z/; q.z; w/

�
; with p.0/ D 0 and

ˇ̌
p0.0/

ˇ̌
< 1: (3.1)

In this case it could be expected that Sullivan’s theorem, together with the attracting nature of
the invariant fiber, should be enough to prevent the existence of wandering domains. Embar-
rassingly enough, even in such a simple situation, there is no definitive answer so far, and
furthermore it was shown by Peters and Vivas [79] that the above naive intuition does not
lead to a proof. Here is the current status of the problem:

Theorem 3.4 (Lilov, Peters-Smit, Ji). If f is an attracting skew product as in (3.1), then
there are no wandering components near the attracting fiber, whenever:

• p0.0/ D 0 [68] or, more generally, if jp0.0/j is small enough (with respect to p
and q) [65];

• jp0.0/j< 1 and q.0; �/ satisfies some nonuniform hyperbolicity properties [64,78].

There is currently no hope for a general understanding of the problem of wandering
Fatou components in several dimensions, and even going beyond skew products seems to be
a serious challenge. An interesting first case to be considered is that of Fatou components in
the neighborhood of an invariant superattracting line, which would cover, for instance, the
case of regular polynomial mappings of C2 near the line at infinity.

Acknowledgments

It is a great pleasure to thank my collaborators Eric Bedford, Pierre Berger, Serge Cantat,
Bertrand Deroin, Jeff Diller, Charles Favre, Vincent Guedj, and Misha Lyubich for so
many discussions about the mathematical themes presented here, and more generally my

3477 Geometric methods in holomorphic dynamics



colleagues from the holomorphic dynamics community for maintaining such a friendly
atmosphere over the years. Special thanks to Charles Favre and Thomas Gauthier for their
helpful comments on this paper. Nessim Sibony, who introduced me to higher dimensional
holomorphic dynamics, tragically passed away while this paper was in final revision. The
importance of his vision for the shaping of the field can hardly be overestimated, and his
ideas will remain a source of inspiration for many of us.

References

[1] H. Araújo and C. G. Moreira, Stable intersections of conformal Cantor sets. 2019,
arXiv:1910.03715.

[2] H. Araújo, C. G. Moreira, and A. Z. Espinosa, Stable intersections of regular con-
formal Cantor sets with large Hausdorff dimensions. 2021, arXiv:2102.07283.

[3] M. Astorg and F. Bianchi, Higher bifurcations for polynomial skew products.
2020, arXiv:2007.00770.

[4] M. Astorg, L. Boc-Thaler, and H. Peters, Wandering domains arising from
Lavaurs maps with Siegel disks. Anal. PDE, to appear.

[5] M. Astorg, X. Buff, R. Dujardin, H. Peters, and J. Raissy, A two-dimensional
polynomial mapping with a wandering Fatou component. Ann. of Math. (2) 184
(2016), no. 1, 263–313.

[6] M. Astorg, T. Gauthier, N. Mihalache, and G. Vigny Collet, Eckmann and the
bifurcation measure. Invent. Math. 217 (2019), no. 3, 749–797.

[7] G. Bassanelli and F. Berteloot, Bifurcation currents in holomorphic dynamics on
Pk . J. Reine Angew. Math. 608 (2007), 201–235.

[8] G. Bassanelli and F. Berteloot, Lyapunov exponents, bifurcation currents and lam-
inations in bifurcation loci. Math. Ann. 345 (2009), no. 1, 1–23.

[9] E. Bedford, M. Lyubich, and J. Smillie, Polynomial diffeomorphisms of C2. IV.
The measure of maximal entropy and laminar currents. Invent. Math. 112 (1993),
no. 1, 77–125.

[10] E. Bedford and J. Smillie, Polynomial diffeomorphisms of C2. II. Stable mani-
folds and recurrence. J. Amer. Math. Soc. 4 (1991), no. 4, 657–679.

[11] E. Bedford, J. Smillie, and T. Ueda, Semi-parabolic bifurcations in complex
dimension two. Comm. Math. Phys. 350 (2017), no. 1, 1–29.

[12] P. Berger and S. Biebler, Emergence of wandering stable components. 2020,
arXiv:2001.08649.

[13] P. Berger and R. Dujardin, On stability and hyperbolicity for polynomial automor-
phisms of C2. Ann. Sci. Éc. Norm. Supér. (4) 50 (2017), no. 2, 449–477.

[14] F. Berteloot, F. Bianchi, and C. Dupont, Dynamical stability and Lyapunov expo-
nents for holomorphic endomorphisms of Pk . Ann. Sci. Éc. Norm. Supér. (4) 51
(2018), no. 1, 215–262.

[15] F. Bianchi, Parabolic implosion for endomorphisms of C2. J. Eur. Math. Soc.
(JEMS) 21 (2019), no. 12, 3709–3737.

3478 R. Dujardin

https://arxiv.org/abs/1910.03715
https://arxiv.org/abs/2102.07283
https://arxiv.org/abs/2007.00770
https://arxiv.org/abs/2001.08649


[16] F. Bianchi and J. Taflin, Bifurcations in the elementary Desboves family. Proc.
Amer. Math. Soc. 145 (2017), no. 10, 4337–4343.

[17] S. Biebler, Lattès maps and the interior of the bifurcation locus. J. Mod. Dyn. 15
(2019), 95–130.

[18] S. Biebler, Newhouse phenomenon for automorphisms of low degree in C3. Adv.
Math. 361 (2020), 106952, 39.

[19] C. Bonatti and L. J. Díaz, Persistent nonhyperbolic transitive diffeomorphisms.
Ann. of Math. (2) 143 (1996), no. 2, 357–396.

[20] M. Brunella, Courbes entières et feuilletages holomorphes. Enseign. Math. (2) 45
(1999), no. 1–2, 195–216.

[21] X. Buff and A. Chéritat, Quadratic Julia sets with positive area. In Proceedings
of the International Congress of Mathematicians. III, pp. 1701–1713, Hindustan
Book Agency, New Delhi, 2010.

[22] X. Buff and A. Epstein, Bifurcation measure and postcritically finite rational
maps. In Complex dynamics, pp. 491–512, A K Peters, Wellesley, MA, 2009.

[23] G. T. Buzzard, Infinitely many periodic attractors for holomorphic maps of 2 vari-
ables. Ann. of Math. (2) 145 (1997), no. 2, 389–417.

[24] S. Cantat, Dynamique des automorphismes des surfaces K3. Acta Math. 187
(2001), no. 1, 1–57.

[25] S. Cantat, Automorphisms and dynamics: a list of open problems. In Proceedings
of the International Congress of Mathematicians—Rio de Janeiro 2018. II. Invited
lectures, pp. 619–634, World Sci. Publ., Hackensack, NJ, 2018.

[26] S. Cantat and R. Dujardin, Random dynamics on real and complex projective sur-
faces. 2020, arXiv:2006.04394.

[27] E. Colli and E. Vargas, Non-trivial wandering domains and homoclinic bifurca-
tions. Ergodic Theory Dynam. Systems 21 (2001), no. 6, 1657–1681.

[28] H. de Thélin, Sur la laminarité de certains courants. Ann. Sci. Éc. Norm. Supér.
(4) 37 (2004), no. 2, 304–311.

[29] H. de Thélin, Sur la construction de mesures selles. Ann. Inst. Fourier (Grenoble)
56 (2006), no. 2, 337–372.

[30] H. de Thélin, Un critère de laminarité locale en dimension quelconque. Amer. J.
Math. 130 (2008), no. 1, 187–205.

[31] J.-P. Demailly, Complex analytic and differential geometry. https://www-fourier.
ujf-grenoble.fr/~demailly/manuscripts/agbook.pdf.

[32] L. DeMarco, Dynamics of rational maps: a current on the bifurcation locus. Math.
Res. Lett. 8 (2001), no. 1–2, 57–66.

[33] L. DeMarco, Dynamics of rational maps: Lyapunov exponents, bifurcations, and
capacity. Math. Ann. 326 (2003), no. 1, 43–73.

[34] L. DeMarco, Critical orbits and arithmetic equidistribution. In Proceedings of
the International Congress of Mathematicians—Rio de Janeiro 2018. Volume III.
Invited lectures, pp. 1867–1886, World Sci. Publ., Hackensack, NJ, 2018.

3479 Geometric methods in holomorphic dynamics

https://arxiv.org/abs/2006.04394
https://www-fourier.ujf-grenoble.fr/~demailly/manuscripts/agbook.pdf
https://www-fourier.ujf-grenoble.fr/~demailly/manuscripts/agbook.pdf


[35] B. Deroin and R. Dujardin, Random walks, Kleinian groups, and bifurcation cur-
rents. Invent. Math. 190 (2012), no. 1, 57–118.

[36] H. De Thélin, T. Gauthier, and G. Vigny, Parametric Lyapunov exponents. Bull.
Lond. Math. Soc. 53 (2021), no. 3, 660–672.

[37] J. Diller, R. Dujardin, and V. Guedj, Dynamics of meromorphic maps with small
topological degree III: geometric currents and ergodic theory. Ann. Sci. Éc. Norm.
Supér. (4) 43 (2010), no. 2, 235–278.

[38] J. Diller, R. Dujardin, and V. Guedj, Dynamics of meromorphic mappings with
small topological degree II: energy and invariant measure. Comment. Math. Helv.
86 (2011), no. 2, 277–316.

[39] T.-C. Dinh, Suites d’applications méromorphes multivaluées et courants lami-
naires. J. Geom. Anal. 15 (2005), no. 2, 207–227.

[40] T.-C. Dinh, Pluripotential theory and complex dynamics in higher dimension. In
Proceedings of the International Congress of Mathematicians—Rio de Janeiro
2018. Volume III. Invited lectures, pp. 1561–1581, World Sci. Publ., Hackensack,
NJ, 2018.

[41] T.-C. Dinh, V.-A. Nguyen, and N. Sibony, Unique ergodicity for foliations on
compact Kähler surfaces. 2018, arXiv:1811.07450.

[42] T.-C. Dinh and N. Sibony, Green currents for holomorphic automorphisms of
compact Kähler manifolds. 2003, arXiv:math/0311322.

[43] R. Dujardin, Laminar currents in P2. Math. Ann. 325 (2003), no. 4, 745–765.
[44] R. Dujardin, Sur l’intersection des courants laminaires. Publ. Mat. 48 (2004),

no. 1, 107–125.
[45] R. Dujardin, Laminar currents and birational dynamics. Duke Math. J. 131

(2006), no. 2, 219–247.
[46] R. Dujardin, Fatou directions along the Julia set for endomorphisms of CPk .

J. Math. Pures Appl. (9) 98 (2012), no. 6, 591–615.
[47] R. Dujardin, The supports of higher bifurcation currents. Ann. Fac. Sci. Toulouse

Math. (6) 22 (2013), no. 3, 445–464.
[48] R. Dujardin, Bifurcation currents and equidistribution in parameter space. In

Frontiers in complex dynamics, pp. 515–566, Princeton Math. Ser. 51, Princeton
Univ. Press, Princeton, NJ, 2014.

[49] R. Dujardin, Non-density of stability for holomorphic mappings on Pk .
J. Éc. Polytech. Math. 4 (2017), 813–843.

[50] R. Dujardin, Saddle hyperbolicity implies hyperbolicity for polynomial automor-
phisms of C2. Math. Res. Lett. 27 (2020), no. 3, 693–709.

[51] R. Dujardin and C. Favre, Distribution of rational maps with a preperiodic critical
point. Amer. J. Math. 130 (2008), no. 4, 979–1032.

[52] R. Dujardin and C. Favre, The dynamical Manin–Mumford problem for plane
polynomial automorphisms. J. Eur. Math. Soc. (JEMS) 19 (2017), no. 11,
3421–3465.

3480 R. Dujardin

https://arxiv.org/abs/1811.07450
https://arxiv.org/abs/math/0311322


[53] R. Dujardin and M. Lyubich, Stability and bifurcations for dissipative polynomial
automorphisms of C2. Invent. Math. 200 (2015), no. 2, 439–511.

[54] C. Favre and T. Gauthier, Distribution of postcritically finite polynomials. Israel J.
Math. 209 (2015), no. 1, 235–292.

[55] C. Favre and T. Gauthier, The arithmetic of polynomial dynamical pairs. 2020,
arXiv:2004.13801.

[56] J. E. Fornæss and F. Rong, Classification of recurrent domains for holomorphic
maps on complex projective spaces. J. Geom. Anal. 24 (2014), no. 2, 779–785.

[57] J. E. Fornæss and N. Sibony, Classification of recurrent domains for some holo-
morphic maps. Math. Ann. 301 (1995), no. 4, 813–820.

[58] J. E. Fornæss and N. Sibony, Harmonic currents of finite energy and laminations.
Geom. Funct. Anal. 15 (2005), no. 5, 962–1003.

[59] T. Gauthier, Strong bifurcation loci of full Hausdorff dimension. Ann. Sci. Éc.
Norm. Supér. (4) 45 (2012), no. 6, 947–984.

[60] T. Gauthier, Y. Okuyama, and G. Vigny, Hyperbolic components of rational maps:
quantitative equidistribution and counting. Comment. Math. Helv. 94 (2019),
no. 2, 347–398.

[61] T. Gauthier and G. Vigny, The geometric dynamical Northcott and Bogomolov
properties. 2019, arXiv:1912.07907.

[62] J. Graczyk and G. Świątek, Harmonic measure and expansion on the boundary of
the connectedness locus. Invent. Math. 142 (2000), no. 3, 605–629.

[63] D. Hahn and H. Peters, A polynomial automorphism with a wandering Fatou
component. Adv. Math. 382 (2021), 107650, 46.

[64] Z. Ji, Non-uniform hyperbolicity in polynomial skew products. 2019,
arXiv:1909.06084.

[65] Z. Ji, Non-wandering Fatou components for strongly attracting polynomial skew
products. J. Geom. Anal. 30 (2020), no. 1, 124–152.

[66] L. Kaufmann, Self-intersection of foliation cycles on complex manifolds. Internat.
J. Math. 28 (2017), no. 8, 1750054, 18.

[67] T. Lei, Hausdorff dimension of subsets of the parameter space for families of
rational maps. (A generalization of Shishikura’s result). Nonlinearity 11 (1998),
no. 2, 233–246.

[68] K. Lilov, Fatou theory in two complex dimensions. Ph.D. thesis, University of
Michigan, 2004.

[69] M. Lyubich, Some typical properties of the dynamics of rational mappings.
Uspekhi Mat. Nauk 38 (1983), no. 5(233), 197–198.

[70] M. Lyubich, Investigation of the stability of the dynamics of rational functions.
Teor. Funkc. Funkc. Anal. Ih Prilozh. 42 (1984), 72–91.

[71] M. Lyubich, Analytic low-dimensional dynamics: from dimension one to two.
In Proceedings of the International Congress of Mathematicians—Seoul 2014.
Volume 1, pp. 443–474, Kyung Moon Sa, Seoul, 2014.

3481 Geometric methods in holomorphic dynamics

https://arxiv.org/abs/2004.13801
https://arxiv.org/abs/1912.07907
https://arxiv.org/abs/1909.06084


[72] M. Lyubich and H. Peters, Classification of invariant Fatou components for dissi-
pative Hénon maps. Geom. Funct. Anal. 24 (2014), no. 3, 887–915.

[73] R. Mañé, P. Sad, and D. Sullivan, On the dynamics of rational maps. Ann. Sci. Éc.
Norm. Supér. (4) 16 (1983), no. 2, 193–217.

[74] C. T. McMullen, Families of rational maps and iterative root-finding algorithms.
Ann. of Math. (2) 125 (1987), no. 3, 467–493.

[75] C. T. McMullen, The Mandelbrot set is universal. In The Mandelbrot set, theme
and variations, pp. 1–17, London Math. Soc. Lecture Note Ser. 274, Cambridge
Univ. Press, Cambridge, 2000.

[76] S. E. Newhouse, The abundance of wild hyperbolic sets and nonsmooth stable sets
for diffeomorphisms. Publ. Math. Inst. Hautes Études Sci. 50 (1979), 101–151.

[77] K. Oguiso, Some aspects of explicit birational geometry inspired by complex
dynamics. In Proceedings of the International Congress of Mathematicians—
Seoul 2014. Volume II, pp. 695–721, Kyung Moon Sa, Seoul, 2014.

[78] H. Peters and I. M. Smit, Fatou components of attracting skew-products. J. Geom.
Anal. 28 (2018), no. 1, 84–110.

[79] H. Peters and L. R. Vivas, Polynomial skew-products with wandering Fatou-disks.
Math. Z. 283 (2016), no. 1–2, 349–366.

[80] M. Shishikura, The Hausdorff dimension of the boundary of the Mandelbrot set
and Julia sets. Ann. of Math. (2) 147 (1998), no. 2, 225–267.

[81] S. Smirnov, Symbolic dynamics and Collet–Eckmann conditions. Int. Math. Res.
Not. 7 (2000), 333–351.

[82] D. Sullivan, Quasiconformal homeomorphisms and dynamics. I. Solution of the
Fatou–Julia problem on wandering domains. Ann. of Math. (2) 122 (1985), no. 3,
401–418.

[83] J. Taflin, Blenders near polynomial product maps of C2. J. Eur. Math. Soc.
(JEMS) (2021).

[84] T. Ueda, Holomorphic maps on projective spaces and continuations of Fatou
maps. Michigan Math. J. 56 (2008), no. 1, 145–153.

[85] M. Yampolsky and J. Yang, Structural instability of semi-Siegel Hénon maps.
Adv. Math. 389 (2021), 107900.

Romain Dujardin

Sorbonne Université, Laboratoire de Probabilités, Statistique et Modélisation, 4 place
Jussieu, 75005 Paris, France, romain.dujardin@sorbonne-universite.fr

3482 R. Dujardin

mailto:romain.dujardin@sorbonne-universite.fr




Rigidity, lattices,
and invariant
measures beyond
homogeneous dynamics
David Fisher

Abstract

This article discusses two recent works by the author, one with Brown and Hurtado on
Zimmer’s conjecture and one with Bader, Miller, and Stover on totally geodesic subman-
ifolds of real and complex hyperbolic manifolds. The main purpose of juxtaposing these
two very disparate sets of results in one article is to emphasize a common aspect: that
the study of invariant and partially invariant measures outside the homogeneous setting
is important to questions about rigidity in geometry and dynamics. I will also discuss some
open questions including some that seem particularly compelling in light of this juxtaposi-
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1. Introduction

This article focuses on some recent developments concerning the rigidity of dis-
crete subgroups of Lie groups. This area has long had deep connections with ergodic theory
and dynamical systems going back to seminal work of Furstenberg, Margulis, Mostow, and
Zimmer [44,62,63,68,91]. Here we emphasize the role of invariant measures for groups and
their subgroups. From one point of view, a key step in Margulis’ proof of his superrigidity
theorem can be written as finding an invariant measure for a subgroup in a group action.
Invariant measures have also long been a key object of study in homogeneous dynamics.
Rigidity of discrete groups and homogeneous dynamics have long been allied and inter-
acting fields, but the developments here are part of a strengthening of those connections,
particularly in terms of proving rigidity results directly through the study of invariant mea-
sures in inhomogeneous settings, using techniques, ideas, and results from homogeneous
dynamics. In particular, both results study dynamical systems with homogeneous factors
and the dynamics on the homogeneous factor help control the dynamics on the total system.

Let H be a Lie group, ƒ < H a discrete subgroup, and S < H a subgroup. Homo-
geneous dynamics is most often the study of invariant measures, orbit closures, and equidis-
tribution for the S action onH=ƒ. This area has been quite fruitful with applications to areas
as diverse as number theory, geometry, and physics. Here we are more often concerned with
dynamical systems where the space H=ƒ is replaced by a space that is not homogeneous.
Perhaps the most famous example of this is the action of SL.2; R/ on the moduli space of
quadratic differentials on a surface. This area is not our topic here, but the fruitful impor-
tation of ideas from homogeneous dynamics to this area has a long history, starting with
work of Veech and currently culminating in the work of Eskin, Mirzakhani, and Moham-
madi [32, 33, 84]. Some ideas arising in this setting have been pushed even further into the
inhomogeneous world by work of Brown–Rodriguez Hertz and ongoing work of Brown–
Eskin–Filip [21]. More closely allied with the developments here is work of Katok, Kalinin,
and Rodriguez Hertz on invariant measures for actions of higher rank abelian groups on
compact manifolds [54].

I want to point to one other principle that has played a key role in many develop-
ments, which is the notion of stiffness, first formalized by Furstenberg [45]. When studying
actions of amenable groups, it suffices to consider invariant measures.When the acting group
S is not amenable, to understand the dynamics it is important to study the broader class of
stationary measures. Furstenberg called an action of a group S on a spaceX stiff if every sta-
tionary measure for S was in fact invariant. Even before Furstenberg defined the term, Nevo
and Zimmer had considered the case where S is a higher rank simple Lie group acting on an
arbitrary measure space X and given criteria for stiffness in terms of measurable projective
quotients [71]. More recently, Benoist and Quint proved dramatic results on stiffness in the
homogeneous setting that were inspirational for the work of Eskin–Mirzakhani mentioned
above [12].

In this article we point to directions where homogeneous dynamics techniques are
applied outside the homogeneous setting to prove rigidity results about discrete groups and
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their actions, and in particular questions where we need to move beyond the question of
stiffness. The first work I will describe, joint with Brown and Hurtado, resolves important
cases of Zimmer’s conjecture. A key ingredient in our work is to move beyond stiffness
and consider an even larger class of measures than the stationary ones. In this context, the
stationary measures can be made to correspond to the invariant ones for some subgroup
P < S but our proof requires understanding something about the invariant measures for a
much smaller subgroup A < P . The other results I will focus on concern totally geodesic
submanifolds of real and complex hyperbolic manifolds of finite volume and are joint works
with Bader, Lafont, Miller, and Stover. In this setting, once again a key object is to construct
certainmeasures that are invariant under subgroups of the acting group. In this work, the class
of measures studied is simply different than the stationary ones, not more or less general.

Overall, I think the results mentioned above, as well as numerous results by other
authors, point to the development of a broad area of research in which the study of invariant
measures beyond homogeneous dynamics has broad implications for rigidity theory, and that
many of these developments will spring from broadening the efficacy of ideas that originate
in homogeneous dynamics. It feels too early to attempt a survey of these developments, so
I will restrict myself to an account of these developments in my own work. Along the way
I will point to open questions inspired by that work, some of which fits this introductory
framework and some of which do not.

2. Zimmer’s conjecture and the Zimmer program

In this section I will discuss some aspects of recent work with Brown and Hurtado
on Zimmer’s conjecture and also discuss the implications for further work. In the course of
this, I will point to some work in progress with Melnick concerning examples and also point
to an old paper of Uchida which has important implications for the Zimmer program and
which seems too little known. For a different take on some results and questions discussed
here, see Brown’s contribution in these proceedings [17].

2.1. Zimmer’s conjecture
Throughout this subsectionG will be a simple Lie group with real rank at least 2 and

� < G will be a lattice. The reader will lose little by considering the case of G D SL.n; R/

and � D SL.n; Z/ with n > 2. In [92,93], Zimmer laid out a program for understanding �

actions on a compact manifoldM preserving a volume form!. The base case of this program
is to show that for any homomorphism � W � !Diff.M;!/, the image �.�/ always preserves
a smooth Riemannian metric if dim.M/ is less than the dimension of the minimal real G

representation. This conjecture was motivated by Zimmer’s cocycle superrigidity theorem,
which in this context produced a measurable Riemannian metric whose associated volume
form was !.

Already in the 1990s, this conjecture about low-dimensional actions had been trans-
ported out of the volume-preserving setting by numerous works, particularly concerning
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actions on the circle, see, e.g., [31,49]. The work with Brown and Hurtado proved this more
general conjecture in many cases, here I state only the following special case.

Theorem 2.1 (Brown, Fisher, Hurtado). Let � be a lattice in SL.n; R/, let M be a compact
manifold and let � W � ! Diff.M/ be a homomorphism. Then

(1) if dim.M/ < n � 1, the image of � is finite;

(2) if dim.M/ < n and �.�/ preserves a volume form on M , then the image of � is
finite.

While I include a very rough sketch of ideas in the proof, more detailed outlines
can be found in [16,39,40]. A key step is showing that � acts with subexponential growth of
derivatives. We let l be any word length on the group � .

Definition 2.2. Let � W � ! Diff.M/ be an action of a finitely generated group � on a
compact manifold M . We say � has subexponential growth of derivatives if for every � > 0

there exists C > 0 such that

sup
x2M

D�./x

 < Ce�l./:

The idea that controlling the growth of derivatives is pivotal was long known, see
the discussion in [39, End of Section 7]. However, a particular novelty introduced in [18] is that
we use the strong property .T / of Lafforgue to convert subexponential growth of derivatives
to an invariant Riemannian metric without any further hypothesis. For much more on strong
property .T /, see de la Salle’s contribution in these proceedings [24].

The approach to proving subexponential growth of derivatives in [18–20] was also
distinct from previous ideas on Zimmer’s conjecture but did have some classical inspirations
as well as a more closely related one in [52]. We give a somewhat ad hoc definition of zero
Lyaponov exponents for a group action here, other definitions are possible and most are
somewhat weaker than this, but this one suffices for current purposes.

Definition 2.3. Let � W � !Diff.M/ be an action of a finitely generated group on a compact
manifold. Let � be a measure on M . We say � has zero first Lyapunov exponent for � if

lim
l./!1

ln kD�./xk

l./
D 0

for � almost every x in M .

Essentially, the proof of Theorem 2.1 consists of showing that exponential growth
of derivatives must be witnessed by a positive Lyapunov exponent for some � invariant
measure and then seeing that this contradicts Zimmer’s cocycle superrigidity theorem. The
motivation is probably most easily encapsulated by this classical proposition.

Proposition 2.4. Let M be a compact manifold and let � W Z ! Diff.M/ be the action
generated by a single diffeomorphism f . Then � has subexponential growth of derivatives if
and only if � has zero first Lyapunov exponent for every f -invariant measure �.
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The proposition is not easily adapted to group actions partly because if the group is
not amenable, there may be no invariant measures at all. One attempt to remedy this would
be to consider stationary measures and random Lyapunov exponents, but there is no useful
analogue of the proposition in that context. The issue that arises is that the random Lyapunov
exponent might vanish while exponential growth of derivatives still occurs along a very thin
set of trajectories in the acting group. There is a weaker statement that is true and even useful
in some contexts that is implicit in [52, Section 3]. That argument does produce a measure
on a skew product over a shift space. However, the measure produced when projected to the
shift space is not independent and identically distributed but quite arbitrary and does not fall
into the usual context of random dynamics, stationary measures, and stiffness.

For the work on Zimmer’s conjecture, we take a long detour which I will only
describe a small part of in the next subsection, to make clear the connections to homoge-
neous dynamics and also to make clear why it is not enough to prove stiffness of the action.

2.2. Measures in the proof of Zimmer’s conjecture
The first step in the proof of Theorem 2.1 uses the notion of an induced action, a vari-

ant of induced representations due to Mackey. This notion is also similar to the construction
of flat bundles. If � acts on a manifold M via a homomorphism � W � ! Diff.M/, then we
can build a G action on a manifold .G � M/=� . This can be specified just by specifying
commuting G and � actions on G � M . We do this by the formula

g.g0; m/ D .gg0�1; �./m/:

Note that there is a G-equivariant map � W .G � M/=� ! G=� and this map exhibits
.G � M/=� as a fiber bundle over G=� with fiber M . Also note that the tangent bundle
to .G � M/=� admits a G-invariant subbundle consisting of directions tangent to fibers of
the projection � , i.e., .G � TM/=� � T .G � M/=� .

We then define fiberwise zero first Lyapunov exponent and fiberwise subexponential
growth of derivatives for the G action on .G � M/=� by restricting all derivatives in the
definitions to the invariant subbundle .G � TM/=� � T .G � M/=� . It is a relatively easy
exercise to see that if � < G is cocompact, then the subexponential growth of derivatives
for the � action is equivalent to the fiberwise subexponential growth of derivatives for the
G action on .G � M/=� . The situation when G=� has finite volume but is not compact is
considerably more complicated, and we do not discuss it here. At this point, the structure
of Lie groups begins to play an important role. It turns out that G can always be written
as a product KAK where K is compact and A is abelian. For SL.n; R/, these groups are
K D SO.n/ and A the group of diagonal matrices of determinant one. Since K is compact,
we can average any Riemannian metric on .G � M/=� over the K action and obtain a
K-invariant metric. This means that for the action of G any growth of derivatives that we
see comes entirely from the action ofA. Modifying the proof of Proposition 2.4 and retaining
the notation and terminology above, we prove
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Lemma 2.5. Given � W � ! Diff.M/ then either � has subexponential growth of derivatives
or there is an A-invariant measure � on .G � M/=� with nonzero fiberwise first Lyapunov
exponent for some element a in A.

If � were in fact G-invariant, then this can be seen to contradict Zimmer’s cocycle
superrigidity theorem. A key point that makes it possible to prove Lemma 2.5 is that A is
abelian and so amenable.

We proceed by proving that � can be replaced by a measure that is in fact G-invari-
ant. This is done in two steps. First, we average the measure over certain subgroups of G to
produce a measure �0 whose projection ���0 to G=� is Haar measure. The difficulty here is
to do the averaging while retaining that �0 is A-invariant and that some a in A has positive
first Lyapunov exponent for �0. After this step, we can use a result of Brown, Rodriguez
Hertz, and Wang, together with some algebraic computations, to show that �0 is in fact
G-invariant [22]. This contradiction shows that � does in fact have subexponential growth
of derivatives.

The step of averaging the measure � to produce �0 makes extensive use of homoge-
neous dynamics and, in particular, work of Ratner and Shah [75,76,80]. The work of Brown,
Rodriguez Hertz, andWang pivots on relations between invariant measures and entropy, and
in particular on an extension of the important work of Ledrappier and Young [57]. A key
ingredient in both parts is the theory of Lyapunov exponents and, particularly, the fact that
for actions of an abelian group A, Lyapunov exponents give rise to linear functionals on A.

In this context, stationary measures can be thought of roughly as just measures
invariant under P and not all of G. It turns out not to be possible to start a proof by consider-
ing only P -invariant measures, instead of the wider class of A-invariant measures. A priori,
exponential growth of derivatives is only witnessed on some sequence gn of elements in G

and a naive rewriting of the proof of Proposition 2.4 only gives an exponent along that par-
ticular sequence. One can choose this sequence to be in P by essentially the same reasoning
by which we choose it to be in A. But at that point, it is then very hard to proceed since
Lyapunov exponents on P do not a priori have any structure analogous to their structure as
linear functionals on A. A main observation is that one can in fact choose gn to be in A

and use this to produce Lyapunov exponent first for a measure invariant under a 1-parameter
subgroup of A and then by averaging under all of A. While our argument has been rewritten
by An, Brown, and Zhang as then producing a P -invariant measure from this A-invariant
measure, at this step one has to argue using a great deal of homogeneous dynamics and using
a rather intricate averaging procedure [4].

2.3. Other results, future directions
The joint work with Brown and Hurtado classifies actions of lattices in SL.n; R/ in

dimension at most n � 2 and volume-preserving actions in dimension n � 1. A more recent
result of Brown, Rodriguez Hertz, andWang completes the picture through dimension n � 1,
showing that in general an action of a lattice in SL.n;R/ on an .n � 1/-dimensional manifold
either factors through a finite group or extends to an SL.n; R/ action. It is easy to see that
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there are exactly two actions of SL.n; R/ on .n � 1/-manifolds, namely the action on P .Rn/

and lift of that action to Sn�1. Clearly, a natural question would be to also classify actions
in dimension n, but this becomes surprisingly harder, mainly because there are many more
examples.

Already actions of SL.n;R/ on n-manifolds are quite complicated and not fully clas-
sified. A remarkable and little known paper of Uchida classifies analytic actions of SL.n; R/

on Sn, and the parameter space turns out to be infinite-dimensional. In a work in progress
with Melnick, we are extending this to a classification of all analytic actions of SL.n; R/ on
n-manifolds and may also produce a smooth classification, though there are missing ingredi-
ents at the moment. For lattice actions, there are more examples known, constructed first by
Katok and Lewis [56] and studied by the author with various coauthors [13,43]. In addition,
some ideas from the work of Uchida allow us to adapt a continuous construction described
by Farb and Shalen and show that it can be done analytically [35,83].

The current conjectural picture of actions of SL.n; R/ lattices on n-manifolds that
results from these developments is quite complicated, and we will not attempt to describe it
here. Instead, we state a conjecture in dimension n about stiff actions.

Conjecture 2.6. Let � < SL.n; R/ be a lattice and assume � acts on an n-manifold stiffly.
Then either the action factors through a finite group or the action lifts to a finite cover where
it is smoothly conjugate to an affine action of a finite index subgroup of SL.n; Z/ on T n.

For nonstiff actions, one can formulate a conjecture about actions of lattices in
SL.n; R/ on n-manifolds but the statement becomes quite involved. The pivotal fact that
one would need to even begin classifying actions is summarized by

Conjecture 2.7. Let � < SL.n; R/ be a lattice and assume � acts on an n manifold M .
Assume that the induced action on .G � M/=� admits a P -invariant measure than is not
G-invariant. Then the support of this measure is of the form .G � N /=� where N is an
embedded .n � 1/-sphere or P .Rn/ in M .

One can even weaken the hypotheses to consider A-invariant measures that are not
G-invariant, and it seems that the only additional possibility will be Haar measure on closed
A orbits in .G � M/=� . While I do not state the full conjecture here, I do hope to include it
in a future work. An added difficulty is that it seems one can obtain analytic actions with an
open subset where the action is analytically conjugate to the one that extends to the action of
SL.n; R/ on Rnn¹0º. These subsets do not support any invariant probability measures and
new ideas are definitely needed to capture this behavior in a classification. Another key step
in completing a classification would involve designing an equivariant surgery that cuts along
the invariant N from Conjecture 2.7 and simplifies the resulting manifold and action. A full
classification may be considerably easier if one assumes the action is volume-preserving.
This rules out the “bad” open sets just described and would also considerably simplify the
required surgery operations.

In fact, in the current state of knowledge, one expects that a variant of Conjecture 2.6
might hold much more generally. For this, we require a definition from [42].
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Definition 2.8. 1. Let A and D be topological groups, and B < A a closed sub-
group. Let � W D � A=B!A=B be a continuous action. We call � affine, if, for
every d2D there is a continuous automorphism Ld of A and an element td 2A

such that �.d/Œa� D Œtd �Ld .a/�.

2. Let A and B be as above. Let C and D be two commuting groups of affine
diffeomorphisms of A=B , with C compact. We call the action of D on C nA=B

a generalized affine action.

3. Let A, B , D, and � be as in case 1 above. Let M be a compact Riemannian
manifold and � W D � A=B! Isom.M/ a C 1 cocycle. We call the resulting
skew product D action on A=B � M a quasiaffine action. If C and D are as
in case 2, and ˛ W D � C nA=B! Isom.M/ is a C 1 cocycle, then we call the
resulting skew product D action on C nA=B � M a generalized quasiaffine
action.

We note that generalized quasiaffine actions for D a higher-rank simple group or
a lattice in such a group might be more constrained than it first appears. It seems at least
possible that there are considerable restrictions on the cocycle into Isom.M/ defining the
skew product. Very partial results in this direction are obtained byWitte Morris and Zimmer
in [67].

Question 2.9. Assume G is a higher-rank simple Lie group and � < G is a lattice and
M is a compact manifold. Let � W � ! Diff.M/ be a stiff action. Is the action generalized
quasiaffine?

A negative answer to Question 2.9 would require a genuinely new idea. All existing
constructions of actions which are not generalized quasiaffine involve cutting and pasting
along certain singular divisors and these singular divisors always carry stationary measures
that are not invariant.

All of our understanding of these examples suggest the following

Conjecture 2.10. Assume the setup of Question 2.9. Instead of assuming stiffness, assume
that the action preserves a rigid geometric structure or that a single element admits a dom-
inated splitting, then the action is generalized quasiaffine.

For all of the conjectures and questions just mentioned, one might try to start with
P -invariant measures in the induced action, but the proof of Zimmer’s conjecture does
indicate that it is perhaps more fruitful to start by studying A-invariant measures. It also
indicates that one intermediate goal might be producing some uniform hyperbolicity, such
as a dominated splitting. Subexponential growth of derivatives is exactly the uniform absence
of hyperbolicity. The best evidence for the dynamical form of this conjecture is in dimen-
sion n in a recent paper of my student Homin Lee [58]. There is more plentiful evidence for
the geometric form, going back to results of Zimmer, but the question remains mostly open
see [37, Section 6].
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In addition, one might ask for some analogue of Conjecture 2.7 in higher dimen-
sions. The analogue might well have the identical statement but it is not as clear what N

should occur here. Examples first constructed by Benveniste show that the cutting and past-
ing may occur along much more complicated submanifolds in general, see, e.g., [13, 36].
In these examples, the P -invariant but not G-invariant measures are in fact supported on
more complicated sets and not on manifolds of the form G=Q where Q is a parabolic of G.
Instead, one gets, for example, sets that areG=Q bundles overG=� for some lattice. One can
also build examples where the cutting and pasting occurs along a high-dimensional sphere
or projective space and the P -invariant measures are supported on a very low-dimensional
submanifold of that space simply by doing the Katok–Lewis example for some large value of
N and restricting the action to SL.n; Z/ < SL.N; Z/ for some 3 � n � N . In these exam-
ples one will also end up with invariant open subsets where the induced action admits no
stationary probability measure.

Because of this complexity, it quickly becomes hard to state a general conjecture in
high dimensions precisely. A formulation favored by Zimmer and later Labourie is that the
action is homogeneous on an open dense set or perhaps even built of locally homogeneous
pieces. For a different conjecture, concerning ways in which one might expect the � action
to extend locally to a G action, see [38, Conjecture 5.6].

Before ending this section, I will recall that while the results we can prove for
Zimmer’s conjecture are sharp for lattices SL.n; R/ and Sp.2n; R/ they are not sharp for
lattices in other simple and semisimple Lie groups. There are two obstructions that arise,
each of which is serious. For nonsplit groups, including even SL.n; C/ and SL.n; H/, there
is an issue arising where we employ the work of Brown, Rodriguez Hertz, and Wang [22].
That work only “sees” the number of roots of a simple Lie group and not the dimensions
of the root subspaces. To see the impact on dimensions where we can prove a result, recall
that any simple Lie group G contains a maximal R-split subgroup G0 of the same R-rank.
If we let Q be a maximal parabolic of highest dimension G and Q0 a maximal parabolic of
highest dimension in G0, then one expects that for all lattices � < G that all smooth actions
on compact manifolds are isometric below dim.G=Q/, but our methods only prove this for
dim.G0=Q0/. To see the effect in practice, one should consider, say, SO.m; n/ for m < n and
note that the maximal R-split subgroup is SO.m; m C 1/. This shows that this gap between
expected results and what we can prove can be arbitrarily large. For C-split groups, An,
Brown, and Zhang have announced a remedy to this issue, but it appears their solution for
that case is not sufficiently robust to overcome the problem in general [4].

There is another gap that arises from the fact that our proofs seem, in most cases,
to be much better in the context where one does not preserve a volume form. Our tech-
niques always only manage to constrain volume preserving actions in one dimension more
than they preserve non-volume-preserving ones. This is because all we are using about
volume-preserving actions is the single linear condition an invariant volume form imposes
on Lyapunov exponents. Conjecturally, all volume-preserving actions should be isometric
below the dimension d of the minimal G representation, while all actions should only be
isometric below the dimension of G=Q where Q is a maximal parabolic of largest dimen-
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sion. For the real split form of E8, these numbers are 248 and 57. Surprisingly, this is the
largest gap that occurs between the conjectured minimal dimensional nonisometric volume-
preserving action and the conjectured minimal dimensional nonisometric action.

Problem 2.11. Complete the proof of Zimmer’s conjecture in general by overcoming the
two problems just discussed.

If I had to guess, I would say that the second problem is considerably harder than
the first to overcome. There is no clear robust dynamical behavior to exploit to resolve the
problem.

3. Totally geodesic manifolds and rank one symmetric

spaces

This section concerns recent results by Bader, the author, Miller, and Stover, moti-
vated by questions of McMullen and Reid in the case of real hyperbolic manifolds. Through-
out this section a geodesic submanifold will mean a closed immersed, totally geodesic sub-
manifold. (In fact, all results can be stated also for orbifolds, but we ignore this technicality
here.) A geodesic submanifold ismaximal if it is not contained in a proper geodesic subman-
ifold of smaller codimension.

For arithmetic manifolds, the presence of one maximal geodesic submanifold can be
seen to imply the existence of infinitely many. The argument involves lifting the submanifold
S to a finite cover QM where an element � of the commensurator acts as an isometry. It is
easy to check that for most choices of �, the submanifold �.S/ can be pushed back down to
a geodesic submanifold of M that is distinct from S . This was perhaps first made precise in
dimension 3 by Maclachlan–Reid and Reid [60, 78], who also exhibited the first hyperbolic
3-manifolds with no totally geodesic surfaces.

In the real hyperbolic setting the main result from [6] is

Theorem 3.1 (Bader, Fisher, Miller, Stover). Let � be a lattice in SO0.n; 1/. If the asso-
ciated locally symmetric space contains infinitely many maximal geodesic submanifolds of
dimension at least 2, then � is arithmetic.

Remark 3.2. (1) The proof of this result involves proving a superrigidity theorem
for certain representations of the lattice in SO0.n;1/. As the conditions required
become a bit technical, we refer the interested reader to [6]. The superrigidity is
proven using ideas and methods introduced in [7].

(2) At about the same time, Margulis andMohammadi gave a different proof for the
case n D 3 and � cocompact [64]. They also proved a superrigidity theorem,
but both the statement and the proof are quite different than in [6].

(3) A special case of this result was obtained a year earlier by the author, Lafont,
Miller, and Stover [41]. There we prove that a large class of nonarithmetic man-
ifolds have only finitely many maximal totally geodesic submanifolds. This
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includes all the manifolds constructed by Gromov and Piatetski-Shapiro but
not the examples constructed by Agol and Belolipetsky-Thomson.

Theorem 3.1 has a reformulation entirely in terms of homogeneous dynamics, and
homogenous dynamics play a key role in the proof. It is also interesting that a key role is also
played by dynamics that are not quite homogeneous but that take place on a projective bundle
over the homogeneous space G=� . In fact, the work can be used to give a classification of
invariant measures for certain subgroups W < SO0.n; 1/ on these projective bundles.

Even more recently the same authors have extended this result to cover the case of
complex hyperbolic manifolds.

Theorem 3.3 (Bader, Fisher, Miller, Stover). Let n � 2 and � < SU.n; 1/ be a lattice, and
M D CHn=� . Suppose that M contains infinitely many maximal totally geodesic subman-
ifolds of dimension at least 2, then � is arithmetic.

As before, this is proven using homogeneous dynamics, dynamics on a projective
bundle over G=� , and a superrigidity theorem. Here the superrigidity theorem is even more
complicated than before and depends also on results of Simpson and Pozzetti [74,81]. A very
different proof for the case where the totally geodesic submanifolds are all assumed to be
complex submanifolds was given very shortly after ours by Baldi and Ullmo [8]. There is
almost no overlap of ideas between the two proofs, theirs characterizes the totally geodesic
submanifolds in terms of special intersections and then studies them using Hodge theory and
o-minimality.

The results in this section provide new evidence that totally geodesic manifolds play
a very special role in nonarithmetic lattices and perhaps provide some evidence that the
conventional wisdom on Questions 3.10 and 3.4 below should be reconsidered.

3.1. Other results and open questions
It is important to preface this section by saying that for all semisimple Lie groups G

other than SO.n; 1/ for n > 2 and SU.n; 1/ for n > 1, we have an essentially complete clas-
sification of lattices in G. For SO.2; 1/ D SU.1; 1/, the lattices are exactly the fundamental
groups of hyperbolic surfaces of finite volume, which have been understood for quite some
time. For all the remaining groups, all lattices are arithmetic. I will discuss the known con-
struction of nonarithmetic lattices in SO.n; 1/ and SU.n; 1/. To begin slightly out of order,
I emphasize one of the most important open problems in the area.

Question 3.4. For what values of n does there exist a nonarithmetic lattice in SU.n; 1/?

The answer is known to include 2 and 3. The first examples were constructed by
Mostow in [69] using reflection group techniques. The list was slightly expanded by Mostow
and Deligne using monodromy of hypergeometric functions [25, 70]. The exact same list of
exampleswas rediscovered/reinterpreted by Thurston in terms of conical flat structures on the
2-sphere [82], see also [79]. There is an additional approach via algebraic geometry suggested
by Hirzebruch and developed by him in collaboration with Barthels and Höfer [9]. More
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examples have been discovered recently by Couwenberg, Heckman, and Looijenga using the
Hirzebruch-style techniques and by Deraux, Parker, and Paupert using complex reflection
group techniques [23,28–30]. But as of this writing there are only 22 commensurability classes
of nonarithmetic lattices known in SU.2; 1/ and only 2 known in SU.3; 1/. An obvious
refinement of Question 3.4 is the following:

Question 3.5. For what values of n do there exist infinitely many commensurability classes
of a nonarithmetic lattice in SU.n; 1/?

We remark here that the approach via conical flat structures was extended by Veech
and studied further by Ghazouani and Pirio [48,85]. Regrettably this approach does not yield
more nonarithmetic examples. It seems that the reach of this approach might be extended
to be roughly equivalent to the reach of the approach via monodromy of hypergeometric
functions, see [47]. There appears to be some consensus among the experts that the answer
to both Questions 3.4 and 3.5 should be “for all n”, see, e.g., [55, Conjecture 10.8]. We point
to a recent result of Esnault and Groechenig that indicates that complex hyperbolic lattices
are in fact much more constrained than their real hyperbolic analogues [34].

Theorem 3.6. Let� be a lattice inG D SU.n;1/ for n > 1. Then� is integral, i.e.,� < G.k/

for some number field k, and if � is any finite place of k then � < G.kv/ is precompact.

The earliest nonarithmetic lattices in SO.n; 1/ for n > 2 were constructed by
Makarov and Vinberg by reflection group methods [61, 86]. It is known by work of Vin-
berg that these methods will only produce nonarithmetic lattices in dimension less than 30

[87]. The largest known nonarithmetic lattice produced by these methods is in dimension 18

by Vinberg and the full limit of reflection group constructions is not well understood [88].
We refer the reader to [10] for a detailed survey. The following question seems natural:

Question 3.7. In what dimensions do there exist lattices in SO.n; 1/ or SU.n; 1/ that are
commensurable to nonarithmetic reflection groups? In what dimensions do there exist lat-
tices in SO.n; 1/ or SU.n; 1/ that are commensurable to arithmetic reflection groups?

For the real hyperbolic setting, there are known upper bounds of 30 for arithmetic
lattices and 997 for any lattices. The upper bound of 30 also applies for nonarithmetic uniform
hyperbolic lattices [10, 87]. In the complex hyperbolic setting, there seem to be no known
upper bounds, but a similar question recently appeared in, e.g., [55, Question 10.10]. For a
much more detailed survey of reflection groups in hyperbolic spaces, see [10].

A dramatic result of Gromov and Piatetski-Shapiro vastly increased our stock of
nonarithmetic lattices in SO.n; 1/ by an entirely new technique:

Theorem 3.8 (Gromov and Piatetski-Shapiro). For each n, there exist infinitely many com-
mensurability classes of nonarithmetic uniform and nonuniform lattices in SO.n; 1/.

The construction in [50] involves building hybrids of two arithmetic manifolds by
cutting and pasting along totally geodesic codimension-one submanifolds. The key observa-
tion is that noncommensurable arithmetic manifolds can contain isometric totally geodesic
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codimension-one submanifolds. This method has been extended and explored by many
authors for a variety of purposes, see, for example, [1, 2, 11, 46]. It has also been proposed
that one might build nonarithmetic complex hyperbolic lattices using a variant of this
method, though that proposal has largely been stymied by the lack of codimension-one
totally geodesic codimension one submanifolds. The absence of codimension-1 submani-
folds makes it difficult to show that attempted “hybrid” constructions yield discrete groups.
For more information, see, e.g., [72, 73,90] and [55, Conjecture 10.9]. We point out here that
the results of Esnault and Groechenig discussed above implies that the “inbreeding” vari-
ant of Agol and Belolipetsky-Thomson [2, 11] cannot be adapted to produce nonarithmetic
manifolds in the complex hyperbolic setting even if the original method of Gromov and
Piatetski-Shapiro can be. To me personally, this seems a very strong negative indication on
the possibility of such an adaptation. While the key observation of Agol was made long after
the paper of Gromov and Piateksi-Shapiro, the constructions are very similar.

In [50], Gromov and Piatetski-Shapiro ask the following intriguing question:

Question 3.9. Is it true that, in high enough dimensions, all lattices in SO.n; 1/ are built
from subarithmetic pieces?

The question is somewhat vague and [50] also contains a group-theoretic variant that
is easily seen to be false for the examples of Agol and Belolipetsky-Thomson, but a more
precise starting point is:

Question 3.10. For n > 3, is it true that any nonarithmetic lattice in � < SO.n; 1/ intersects
some conjugate of SO.n � 1; 1/ in a lattice?

This is equivalent to asking if every finite-volume nonarithmetic hyperbolic mani-
fold in dimension at least 4 contains a closed codimension-one totally geodesic submanifold.
Both reflection group constructions and all known variants of hybrid constructions contain
such submanifolds. The consensus in the field seems to be that the answer to this question
should be no, but I know of no solid evidence for that belief. In particular, starting in dimen-
sion 4, Wang finiteness shows that the quantitative structure of hyperbolic manifolds is very
different than in dimension 3 [89]. And recent work of Gelander–Levit makes it at least plau-
sible that variants of the hybrid and inbreeding constructions construct “enough” hyperbolic
manifolds to capture all examples [46]. This is very different than the situation in dimension
3 where hyperbolic Dehn surgery constructs many “more” hyperbolic manifolds and con-
cretely exhibits the failure of Wang finiteness. One can think of Questions 3.9 and 3.10 as
asking for particular qualitative reasons behind this difference in quantitative behavior.

In the next subsection, I will discuss some approaches to giving a positive answer to
this question or perhaps criterion for a positive answer for some examples building on ideas
in [6]. It is also not known to what extent the hybrid and reflection group constructions build
distinct examples. Some first results, indicating that the classes are different, are contained
in [41, Theorem 1.7] and [65, Theorem 1.5].

Given Theorem 3.1, it is reasonable to ask more detailed questions about the finite
collection of totally geodesic submanifolds in a nonarithmetic hyperbolic manifold. A very
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reasonable question, on which first results have been obtained by Lindenstrauss andMoham-
madi, is whether there is any bound on the finite number in terms of geometric invariants
of the hyperbolic manifold. Their theorem, stated in Mohammadi’s contribution to these
proceedings as [66, Theorem 7.4], gives a result in the class of constructions of the style of
Gromov and Piatetski-Shapiro in the case of three-dimensional hyperbolic manifolds. A key
ingredient is the Angle Rigidity Theorem found in a joint work of the author with Lafont,
Miller, and Stover [41]. While the proof of finiteness in [41] is definitely superseded by that in
[6], it is more useful for proving bounds because it gives an explicit open set of “impossible
configurations” for the finite set of maximal totally geodesic submanifolds in many cut and
paste constructions of hyperbolic manifolds. Roughly speaking, the key result in [41] says
that, given a nonarithmetic manifold built in the manner of Gromov and Piatetski-Shapiro,
any closed totally geodesic submanifold intersecting the “cut and paste” hypersurface must
do so at a right angle. All other angles of intersection are forbidden. It seems highly unlikely
that these are the only “impossible configurations.”

Question 3.11. Find other restrictions on the possible configurations of totally geodesic
submanifolds in a nonarithmetic hyperbolic manifold.

It is worth mentioning that our understanding of lattices in SO.2; 1/ and SO.3; 1/

is both more developed and very different. Lattices in SO.2; 1/ are completely classified,
but there are many of them, with the typical isomorphism class of lattices having many
nonconjugate realizations as lattices, parameterized by moduli space. In SO.3; 1/, Mostow
rigidity means there are no moduli spaces. But Thurston–Jorgensen hyperbolic Dehn surgery
still allows one to construct many “more” examples of lattices, including many that yield a
negative answer to Question 3.10. There remains an interesting sense in which the answer to
Question 3.9 could still be yes even for dimension 3.

Question 3.12. Can every finite-volume hyperbolic 3-manifold be obtained as Dehn surgery
on an arithmetic manifold?

To clarify the question, it is known that every finite-volume hyperbolic 3-manifold
is obtained as a topological manifold by Dehn surgery on some cover of the figure-8 knot
complement, which is known to be the only arithmetic knot complement [51,77]. What is not
known is whether one can obtain the geometric structure on the resulting three-manifold as
geometric deformation of the complete geometric structure on the arithmetic manifold on
which one performs Dehn surgery.

We end this section by discussing an additional question that illustrates the differ-
ence in our knowledge of real hyperbolic manifolds in dimension 3 and dimensions at least 4

and then discuss an intriguing variant in complex hyperbolic geometry. We call a group �

virtually large if it has a finite index subgroup that surjects onto a nonabelian free group.
The following theorem of Lubotzky shows a strong connection between totally geodesic
submanifolds and this property [59].
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Theorem 3.13. Let M be a finite-volume hyperbolic manifold. Then if M admits a closed
codimension-1 totally geodesic submanifold, the fundamental group of M is virtually large.

It follows from work of Agol that in dimension 3 all finite-volume hyperbolic man-
ifolds have a virtually large fundamental group [3]. But starting in dimension 5, there are
explicit examples where we do not know if the fundamental group is virtually large. These
are the so-called second-type arithmetic groups constructed using quaternion algebras. In
fact, effectively the only way we know to show that a hyperbolic manifold of dimension 4 or
higher has a virtually large fundamental group is to apply Lubotzky’s theorem. We ask the
following question in an intentionally provocative manner:

Question 3.14. If M is a finite-volume hyperbolic manifold of dimension at least 4, then
is having a virtually large fundamental group equivalent to having a closed totally geodesic
submanifold of codimension 1?

There seems to be something close to a consensus that the answer to this question
should be “no” in general and all lattices in SO.n; 1/ should be virtually large. However, I
know of no strong evidence for this belief other than the results in dimension 3. There is even
one potential strategy for proving a negative answer to Question 3.14, arising from Agol’s
work on the virtual Haken conjecture [3].

Question 3.15. If M is a finite-volume hyperbolic manifold, can we cubulate M ?

The answer is yes in dimension 3 by the work of Kahn–Markovic [53]. Agol’s work
then implies that this cubulation is special, which ismore than enough to prove largeness. The
concrete challenge in this setting is to prove that second-type arithmetic hyperbolic manifolds
can be cubulated. That the first-type can be is shown by Bergeron, Haglund, and Wise in
[14]. It seems well known to experts that all inbreeding and hybrid examples can also be
cubulated, but there does not appear to be an explicit statement in the literature. However,
all of these approaches to cubulating hyperbolic manifolds of dimension at least 4 depend
on the existence of totally geodesic submanifolds of codimension 1. To cubulate in cases
where codimension-1 totally geodesic submanifolds do not exist, the work in dimension 3

suggests that one should find some other convex or quasiconvex submanifolds or subspaces
of codimension 1. Due to density of the commensurator, in the arithmetic setting, it suffices
to find one such manifold.

It is interesting in the context of this article to also summarize what is known about
the largeness for lattices in SU.n; 1/. In this case all known constructions do not produce
largeness directly. Instead, one constructs a holomorphic retract onto a totally geodesic Rie-
mann subsurface as a forgetful map in terms of the Deligne–Mostow hypergeometric mon-
odromy construction [27]. It is possible that only these particular Deligne–Mostow construc-
tions yield virtually large lattices in SU.n; 1/, but here we only ask a weaker question.

Question 3.16. Let M be a finite-volume complex hyperbolic manifold. If the fundamental
group of M is large, does M admit a holomorphic retract to a totally geodesic Riemann
subsurface?
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We remark here that by a result of Delzant and Py, complex hyperbolic manifolds
of (complex) dimension at least 2 are not cubulated, so the approach to a negative answer to
Question 3.14 is not available in this context [26].

3.2. Dynamics and (non)arithmeticity
The work in [5, 6] gives a broader set of tools for determining when a manifold is

arithmetic. We discuss some further repercussions of these ideas here, though they have
less decisive corollaries than the main results of those papers. We restrict here to the real
hyperbolic setting for simplicity, so throughout this section G D SO.n; 1/ with n > 2. We
will write W D SO.n � 1; 1/, though for some technical results below, there are analogous
statements when W D SO.k; 1/ for any 1 < k < n � 1.

It is known that, given a lattice� < G, there exists a number field ` and an ` structure
on G such that � < G.`/. We note that there is a collection of valuations on `, and we write
�0 for the valuation for which G.`�0/ D SO.n; 1/ in such a way that we get the given lattice
embedding of � into SO.n; 1/.

Definition 3.17. Given a valuation � on ` not equivalent to �0, the arithmeticity obstruction
defined by � is the embedding �� W � ! G.`�/ D H .We say that the arithmeticity obstruction
vanishes if � is precompact in H .

It was observed by Margulis that if all arithmeticity obstructions vanish, then � is
arithmetic. If all nonarchimedean arithmeticity obstructions vanish, then � is called integral.
Note that � is automatically Zariski dense in any G.`�/. The standard and surprising tech-
nique for showing that arithmeticity obstructions vanish is to assume they do not and use a
superrigidity theorem to see that this implies that �� extends to a continuous representation
from G to H . This is easily seen to be impossible.

We now state the superrigidity theorem from [6] that is used there to show that
arithmeticity obstructions vanish. We restrict attention to the case of SO.n; 1/ for simplic-
ity. This theorem is stated in terms of the existence of a certain W -invariant measure on
a certain flat bundle over G=� . The goal of this section is to explain that it is possible to
use other dynamical results to weaken that hypothesis. Finding optimal hypothesis and more
applications seems potentially important to understanding the questions discussed in the last
subsection.

In this theorem we consider a local field k and a k-algebraic group H satisfying
one additional condition. Let P be a minimal parabolic subgroup of G and U its unipotent
radical. A pair consisting of a local field k and a k-algebraic group H is said to be compat-
ible with G if for every nontrivial k-subgroup J < H and any continuous homomorphism
� W P ! NH.J/=J.k/, where NH.J/ is the normalizer of J in H, we have that the Zariski
closure of �.U 0/ coincides with the Zariski closure of �.U / for every nontrivial subgroup
U 0 < U . That this condition is satisfied by any group arising in an arithmeticity obstruction
for a lattice in SO.n; 1/ is a key point in [6]. The fact that this is already no longer true for
SU.n; 1/ introduces new difficulties to overcome in [5] that we do not discuss here.
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Theorem 3.18. Let G be SO0.n; 1/ for n � 3, W < G be a noncompact simple subgroup,
and� < G be a lattice. Suppose that k is a local field andH is a connected k-algebraic group
such that the pair consisting of k and H is compatible with G. Finally, let � W � ! H.k/ be
a homomorphism with unbounded, Zariski dense image. If there exist a k-rational faithful
irreducible representation H ! SL.V / on a k-vector space V and a W -invariant measure
� on .G � P .V //=� that projects to Haar measure on G=� , then � extends to a continuous
homomorphism from G to H.k/.

We retain the assumptions made on k and H and discuss how one can weaken the
assumption in Theorem 3.18 using results of Eskin–Bonatti–Wilkinson. We first motivate
the connection by stating a variant that follows easily.

Theorem 3.19 (BFMS reformulated). Take the assumptions of Theorem 3.18 and replace
the assumption of the existence of the invariant measure with the assumption that the W

action on .G � V /=� is not irreducible. Then � extends to a continuous homomorphism
from G to H.k/.

The two statements are equivalent by standard techniques. The point is that either
the W -invariant measure or the W -invariant subspace are used to produce a �-equivariant
measurable map � W W nG ! .H=L/.k/ for some proper algebraic subgroup L < H. The
existence of this map is in fact equivalent to the existence of either such a subspace for some
choice of V or such a measure for some (a priori different) choice of V . In this language, the
first step of the work in [6] is using the existence of infinitely many maximalW orbit closures
to produce an invariant measure for the W action on .G � P .V //=� for some well chosen
V . It is worth pointing out that there are other criteria for irreducibility in the literature, here
we focus on one due to Bonatti, Eskin, and Wilkinson [15]. To obtain a simple statement,
we let A < P be the Cartan subgroup and choose the H representation on V such that the
first Lyapunov exponent for A on V -bundle .G � V /=� is simple. It is easy to verify that
one can choose such a V using tensor constructions. We let P < G be the parabolic and
PW D P \ W the parabolic in W . Combining the main result of [15] with those of [6], we
obtain the following:

Theorem 3.20. With the common assumptions of the last two theorems, if there is more than
one PW -invariant measure on .G � P .V //=� projecting to Haar measure on G=� , then �

extends to a continuous homomorphism from G to H.k/.

This is a straightforward concatenation of [15, Theorem 1.1] and Theorem 3.19.
Observe first that the V -bundle .G � V /=� is G irreducible by hypothesis. The assumption
of the second invariant measure in Theorem 3.20 and [15, Theorem 1.1] imply that this bundle
is not irreducible for W . We then apply Theorem 3.19.

Let E1.x/ be the subspace of V corresponding to the first Lyapunov exponent for
A and write .G � E1/=� for the corresponding subbundle of .G � V /=� . It is observed
in [15] that .G � E1/=� is P -invariant. Using that E1 is one-dimensional, this yields a
P -invariant section s of the bundle .G � P .V //=� , and we can push the Haar measure on
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G=� forward along this section to build a P -invariant measure on .G � P .V //=� . We note
that this measure cannot be W -invariant since P and W together generate G and it is easy
to see that there is no G-invariant measure on .G � P .V //=� . Since PW < P , this shows
the existence of a W -invariant measure on .G � P .V //=� projecting to Haar measure and
implies the existence of at least two PW -invariant measures on .G � P .V //=� projecting
to Haar measure. It seems a priori easier to produce PW -invariant measures since PW is
amenable and therefore one can average. Producing a measure that is not also P -invariant
becomes the challenge.

We also note here that this entire discussion on varying hypotheses applies in any
case where G is a rank-one group and W < G is a simple subgroup, we only require
G D SO.n; 1/ to use the superrigidity theorem from [6] to extend the representation. So
the discussion adapts easily to the case of SU.n; 1/ by the results of [5]. There is one addi-
tional fact that is special to SO.n; 1/ and relates to Questions 3.10 and 3.14, namely if the
hyperbolic manifold KnG=� has no totally geodesic manifolds of codimension-one and
W D SO.n � 1; 1/ then the PW action on G=� is uniquely ergodic. So in this setting we
have the following.

Corollary 3.21. Adding the assumption on totally geodesic submanifolds above to Theo-
rem 3.20, if PW is not uniquely ergodic on .G � P .V //=� then � extends.

It is somewhat surprising that arithmeticity is in this context associated with the
existence of additional ergodic measures. Since � is finitely generated, it is easy to see that
only finitely many valuations of ` are relevant to arithmeticity of � . So arithmeticity of �

follows from the failure of unique ergodicity for PW in finitely many dynamical systems
for G. We note that the paper of Bonatti–Eskin–Wilkinson gives somewhat more explicit
information than just about the number of measures. There is one “obvious” ergodic measure
supported on the line in P.V / corresponding to the first Lyapunov exponent. Forcing the
vanishing of the arithmeticity obstruction simply requires finding anyPW -invariant measure
where disintegration along fibers is not supported on that line.

In the context of Question 3.14, the possibilities for applying Corollary 3.21 are
much broader. Given a lattice � that is large, one has a homomorphism � ! F2 which one
can compose with any (irreducible) representation of F2 on a vector space V to obtain a G

space .G � P .V //=� to which one can attempt to apply Corollary 3.21. Since a representa-
tion factoring through F2 cannot extend, the corollary actually asserts that largeness implies
unique ergodicity of PW in many dynamical systems. Of course, all lattices in PSL.2; C/

are known to be virtually large and there are many where the locally symmetric space has no
closed totally geodesic surfaces, so for that choice of G all of these constructions build many
dynamical systems with a unique invariant measures for the corresponding PW . In this case
PW is just the ax C b group. It is not at this moment clear what structure one would like to
exploit to show a difference between dimension 3 and higher dimensions.

One also might attempt to use Theorem 3.20 to either reprove the arithmeticity of
lattices in Sp.n; 1/ and F �20

4 by ergodic-theoretic methods or to reprove Theorem 3.6 by
ergodic-theoretic methods. In addition, one could attempt a proof of Mostow rigidity using
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this circle of ideas. Certainly, the ideas are close to those that allowed Margulis to prove
Mostow rigidity as a consequence of superrigidity in higher rank.

We note that whileMargulis andMohammadi suggested an alternate approach to the
theorem in [6] and showed that their approach could succeed in the case whereG D SO.3;1/,
their approach does not yield any of the observations in this subsection, but only produces
results in the presence of infinitely many maximal closed totally geodesic submanifolds.
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1. Introduction. State-of-the-art

This article deals with Sarnak’s conjecture [34] from 2010, also called the Möbius
Orthogonality Conjecture, MOC for short, see (1.2) below. More precisely, the aim of this
article is to give an account on the progress concerning MOC caused by the proof of Veech’s
conjecture [38] from 2016 in the recent article [24]. In order to do it, we will present a
panorama of earlier concepts and results concerning the new interactions between ergodic
theory and analytic number theory caused by MOC, especially relating MOC to the cel-
ebrated Chowla conjecture [5] from 1965. We will be concentrated on the directions of
research on the ergodic theory side, with a special focus on projects in which the author of
the article took part. In this extended introduction, we present the state-of-the-art of the sub-
ject. To keep this presentation reasonably short, some elementary definitions and facts from
dynamics are postponed to Sections 2 and 3, while some facts (especially around entropy)
are treated as “commonly” known and can be found in the ergodic theory literature, see, e.g.,
[9,16,39]. On the analytic number theory side, basic facts can be found, e.g., in [19,23].

Möbius function. Each natural number n 2 N WD ¹1; 2; : : :º has its (unique) decomposition
into a product of primes which is the basic fact about the not finitely generatedmultiplicative
structure of N. The set P of primes is believed to behave like a “random” subset of natu-
ral numbers. This randomness should be reflected in the properties of arithmetic functions
u W N ! C that preserve the multiplicative structure of N, that is, they are themselvesmulti-
plicative, u.mn/ D u.m/u.n/ whenever .m; n/ D 1 (in other words, they are determined by
their values on the powers of the primes). One of most prominent multiplicative functions is
the Möbius function � W N ! ¹�1; 0; 1º for which �.1/ D 1, �.n/ D .�1/k , with n being
the product of k distinct primes, and �.n/ D 0 for the remaining n 2 N. Is this function
“random”? If so, this should be reflected in the phenomenon of cancelations of ˙1s like
for a sample from an independent process. It is then classical that the Prime Number Theo-
rem (PNT), i.e., j¹p � N W p 2 Pºj �

N
logN

, is equivalent to limN !1
1
N

P
n�N �.n/ D 0,

and the Riemann Hypothesis is equivalent to a quantitative version of the above, namelyP
n�N �.n/ D O.N

1
2 C"/ for each " > 0.

The Chowla conjecture. Another way to express the randomness of � is the Chowla con-
jecture [5] from 1965 claiming that the autocorrelations of the Möbius function, unless they
are correlations of �2, vanish:1

lim
N !1

1

N

X
n�N

�s1.n C a1/ � � � �sk .n C ak/ D 0 (1.1)

1 Originally, the Chowla conjecture was formulated for the Liouville function � W N !

¹�1; 1º and concerned all correlations. Liouville function depends on the parity of all prime
factors (counted with multiplicities) and clearly satisfies � D � � �2.
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for each k � 1, 0 � a1 < � � � < ak , and sj 2 ¹1; 2º, not all sj being 2.2 We will see later
(see Section 3) that the Chowla conjecture is precisely the fact that � is a generic point for a
kind of Bernoulli measure over the so-called Mirsky measure, for which �2 is generic, i.e.,
intuitively, relative to the positions of zeros, in � we observe a replacement of 1s in �2 by
˙1s with equal probability.

Sarnak’s conjecture (MOC). Another way of talking about the randomness of � could
be in terms of correlations with other sequences. In [23], this is expressed by the Möbius
Randomness Law: � is so random that it does not correlate with any “reasonable” bounded
sequence. In 2010, P. Sarnak [34] formulated a much more precise form of this vague ran-
domness principle, namely

lim
N !1

1

N

X
n�N

f .T nx/�.n/ D 0; (1.2)

for each zero (topological) entropy homeomorphism T of a compact metric space X , all
f 2 C.X/, and all x 2 X .3 In other words, � is random because � does not correlate with
any deterministic sequence,4 we also say that � is orthogonal to all (bounded) deterministic
sequences or to all deterministic systems. Of course, in (1.2), we can consider other (always
bounded though) arithmetic functions u W N ! C and consider an analogous problem of
orthogonality to a selected class of topological systems (for example, it is well known that
if we replace the Möbius function � with the Liouville function �, then the corresponding
Sarnak’s conjectures are equivalent; see, e.g., [10]).5

Proposition 1.1 (Sarnak [34], for proofs see [1, 35]). Chowla conjecture implies Sarnak’s
conjecture.

Whether the converse is true remains open, but we have the following:

Proposition 1.2 ([17]). Sarnak’s conjecture implies the Chowla conjecture along a subse-
quence (i.e., in (1.1) we need to consider .Ns/ instead of N 6).

2 If all sj D 2 then the limit exists but need not be zero: �2 is the characteristic function of
the set of square-free numbers whose natural density is 6=�2. In fact, the frequencies of all
blocks of 0; 1s on �2 exist – �2 is a generic point for a shift-invariant measure ��2 called
the Mirsky measure – see Section 3 for details.

3 It is “for all x 2 X” which is the core of Sarnak’s conjecture: the “x-almost every” version
of (1.2) holds for every dynamical system (in particular, regardless of the entropy [34], see
also [1]).

4 In the theory of dynamical systems, zero-entropy systems are also called deterministic
and the corresponding continuous observables .f .T nx//n2Z are precisely deterministic
sequences.

5 The reader can notice that if u is orthogonal to all deterministic sequences, then for any
bounded deterministic sequence .a.n//, the arithmetic function v.n/ WD u.n/a.n/ is also
orthogonal to all deterministic sequences. Of course, such an operation in general “kills” the
multiplicativity of u.

6 Tao in [37] strengthened this result by showing that .Ns/ can be selected to have full loga-
rithmic density.
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We will detail more on that at the end of the introduction when we consider the
logarithmic versions of the Chowla and Sarnak’s conjectures.

Two strategies to “attack” Sarnak’s conjecture. Returning to the original Sarnak’s con-
jecture, we can view (1.2) as a classical Cesàro (ergodic) sum with multiplicative weights
(this point of view leads to the MW-strategy) or we can reverse the roles and consider Cesàro
sums of �7 with ergodic weights (this point of view leads to the EW-strategy). Both strate-
gies lead sooner or later to an interplay between analytic number theory and the theory of
joinings in dynamics, in particular, the disjointness theory of Furstenberg in ergodic theory.
Let us now say a few words on these strategies; more details, especially on the EW-strategy,
will be provided later.

MW-strategy. DDKBSZ criterion. The core of the MW-strategy (in which we only use the
fact that � is multiplicative) is the following numerical DDKBSZ criterion:8

Theorem 1.3 ([4,27]). Assume that .fn/n2N � C is bounded. If

lim
N !1

1

N

X
n�N

fpnf qn D 0 (1.3)

for all distinct, sufficiently large primes p; q 2 P , then

lim
N !1

1

N

X
n�N

fnu.n/ D 0

for each bounded multiplicative function u W N ! C.

Then, the DDKBSZ criterion is used in the following manner. Take any dynamical
system .X; T / with a unique invariant measure � (which must also be unique for all nonzero
powers of T ) and let x 2 X . In the space M.X � X/ of probability measures on X � X

consider the sequence of empiric measures . 1
N

P
n�N ı.T pnx;T qnx// (see Section 3 for more

details). By the compactness of the weak-�-topology, there exists a subsequence .Nk/ such
that

lim
k!1

1

Nk

X
n�Nk

ı.T pnx;T qnx/ D �;

where necessarily the measure � is T p � T q-invariant and if f 2 C.X/ then

lim
k!1

1

Nk

X
n�Nk

f .T pnx/f .T qnx/ D

Z
X�X

f ˝ f d�:

By our assumption, the two projections of � on X are �. If we are able to show that � is the
product measure � ˝ �, then we can easily apply the DDKBSZ criterion for the continuous
zero-mean (for the measure�) functions f and the sequences .f .T nx// (i.e., fn D f .T nx/

in Theorem 1.3). A spectacular case when this approach works was first demonstrated in the

7 In analytic number theory, the problem of studying means of multiplicative functions is
classical, cf. Halász theorem.

8 DDKBSZ stands for Daboussi, Delange, Kátai, Bourgain, Sarnak, and Ziegler.

3511 Furstenberg disjointness, Ratner properties, and Sarnak’s conjecture



case of horocycle flows in [4] using Ratner’s theory. However, a “typical” playground for the
MW-strategy is when the automorphisms T p and T q considered with the same T -invariant
measure � are disjoint (see Section 2 for definition) in the Furstenberg sense, as in this case
� ˝ � is simply the only T p � T q-invariant measure. (Note that this is not applicable to the
horocycle flows themselves as all positive time automorphisms are isomorphic, so there are
many T p � T q-invariant measures.) As we can see, the MW-strategy leads to pure ergodic
theory problems. While a list of papers in which the disjointness of powers has been proved
can be found in the surveys [10,28], in Section 4, we will detail more on the answer to Ratner’s
question about the validity of MOC for smooth time changes of horocyclic flows. Namely,
while for the algebraic actions the underlying configuration space is homogeneous, once the
time is changed (in a nontrivial way), the configuration space becomes nonhomogeneous for
the action of the time-changed flow which surprisingly leads to another extreme: the new
flows enjoy formidable internal disjointness properties which allows us to use Theorem 1.3
to answer positively Ratner’s question and go beyond.

MW-Strategy. The AOPproperty. There is a pure ergodic theory counterpart of DDKBSZ
criterion, namely the notion of AOP (Asymptotic Orthogonality of Powers) introduced in
[3]: a measure-theoretic (ergodic) dynamical system .X; B; �; T / has the AOP property
(J e.T p; T q/ below stands for the set of ergodic joinings between T p and T q/ if

lim sup
p¤q;P3p;q!1

sup
�2J e.T p ;T q/

ˇ̌̌̌Z
X�X

f ˝ g d�

ˇ̌̌̌
D 0

for each f; g 2 L2
0.X; �/. Obviously, AOP takes place if the prime powers of an automor-

phisms are disjoint but an AOP automorphism can have all nonzero powers isomorphic. AOP
implies zero entropy and total ergodicity, i.e., all nonzero powers are ergodic. All ergodic
quasidiscrete spectrum automorphisms [3], and also ergodic nil-automorphisms enjoy this
property [12]. Let us see why AOP is useful when proving Möbius orthogonality. Suppose
that we want to prove Möbius orthogonality for all (uniquely ergodic) models of totally
ergodic rotations. Well, the Möbius orthogonality can first be easily established in some
models of such rotations.

Namely, let X stand for any compact Abelian monothetic group with Haar measure
�X . Then �X is the only (ergodic) invariant measure for any rotation T x D x C x0, with
¹nx0 W n 2 Zº being dense in X . If � W X ! S1 is any nontrivial character of X then

1

N

X
n�N

�.T pnx/�.T qnx/ D
1

N

X
n�N

�
�.x0/p�q

�n
! 0

whenever p ¤ q (remembering that, by total ergodicity, �.x0/ is not a root of unity). Since
the dual group OX is linearly dense in C.X/, all totally ergodic rotations are Möbius orthogo-
nal by virtue of Theorem 1.3. But now take any topological system .Z;R/ which is uniquely
ergodic (with a unique invariant measure �) and suppose that .Z; �; R/ and .X; �X ; T / are
measure-theoretically isomorphic. Since the eigenfunctions in L2.Z; �/ need not be con-
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tinuous,9 using DDKBSZ criterion does not seem to be possible. We can prove, however,
(see [3]) that the AOP property holds. Moreover, once a uniquely ergodic system satisfies
AOP, it must be orthogonal to any (bounded) multiplicative function [3]. Now, AOP being a
measure-theoretic invariant must be satisfied in all uniquely ergodicmodels of totally ergodic
rotations. In fact, AOP implies something which looks much stronger.

MW-strategy. The strong MOMO property. A dynamical system .X; T / is said to sat-
isfy the strong MOMO10 property (see [2]) if for each increasing sequence .bk/ of natural
numbers, bkC1 � bk ! 1, and each f 2 C.X/, we have

lim
K!1

1

bK

X
k<K

 X
bk�n<bkC1

�.n/f ı T n


C.X/

D 0:

We have the following:

Theorem 1.4 ([2]). The following holds:

(i) The strongMOMO property of a topological systems .X;T / implies its Möbius
orthogonality.

(ii) The strong MOMO property of a topological system .X; T / implies uniformity
(in x 2 X ) in the definition of Möbius orthogonality property.

(iii) Sarnak’s conjecture is equivalent to the fact that all zero-entropy systems sat-
isfy the strong MOMO property.

(iv) No system with positive entropy satisfies the strong MOMO property.11

Moreover, we have the following:

Proposition 1.5 ([2]). Let .Z; D ; �; R/ be any totally ergodic measure-theoretic system. If
it satisfies the AOP property then each of its uniquely ergodic models satisfies the strong
MOMO property. In particular, all such uniquely ergodic models are Möbius orthogonal.

Short interval behavior. The reader certainly noticed that by putting f D 1 in the definition
of the strong MOMO property, we obtain that, whenever bkC1 � bk ! 1,

lim
K!1

1

bK

X
k<K

ˇ̌̌̌ X
bk�n<bkC1

�.n/

ˇ̌̌̌
D 0:

It is not hard to see that this property is equivalent to the following:
1

M

X
M �m<2M

1

H

ˇ̌̌̌ X
m�n<mCH

�.n/

ˇ̌̌̌
! 0;

9 Topological system .Z; R/ can be even topologically mixing, which excludes the possibility
of continuous eigenfunctions.

10 The acronym comes from Möbius Orthogonality of Moving Orbits.
11 In [8] there are examples of positive entropy systems which are Möbius orthogonal. As

Theorem 1.4 (iv) shows, this cannot happen for the strong MOMO property (assuming the
Chowla conjecture).
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whenever H ! 1 and H D o.M/. This tells us that on a “typical” short interval (i.e.,
of length H ) we have cancelations of 1s and �1s. This is a special property of the Möbius
function proved in the breakthrough paper [30] byMatomäki and Radziwiłł in 2015. Together
with the subsequent paper [31], it allowed in [3] to prove Sarnak’s conjecture for all uniquely
ergodic models of finite rotations12 and all totally ergodic rotations. The fact, that all dynami-
cal systemswhose all invariant measures yield automorphismswith discrete spectrum satisfy
Sarnak’s conjecture was first proved in [20,21].

EW-strategy. Let us now pass to the second strategy which consists in the following.
Using combinatorial properties of �, we count on deriving special ergodic properties of
the Furstenberg systems (see Section 3.1 for this crucial definition) of � (we recall that the
Chowla conjecture predicts that there is only one Furstenberg system of � given by O��2 , i.e.,
by the relatively independent extension of the Mirsky measure of �2). We then expect that
Furstenberg systems will display “enough” of disjointness with at least a subclass of zero
entropy systems to advance on MOC or else, expressing MOC as some ergodic property
of them, when translated it back to �, will tell us which new combinatorial properties of
� are needed to prove Sarnak’s conjecture. So, of course, the crucial question is whether
Sarnak’s conjecture can be expressed in the language of Furstenberg systems of �. This
was conjectured by Veech [38] and finally proved in [24] (….�/ below stands for the Pinsker
� -algebra of .X�; B.X�/; �; S/, i.e., the largest zero-entropy factor of the system, while
�0 W ¹�1; 0; 1ºZ ! R, �0.y/ D y0).

Theorem 1.6 ([24]). Sarnak’s conjecture holds if and only if, for all Furstenberg systems �

of �, we have �0 ? L2.….�//.

(This theorem also holds in the logarithmic case.) The above put across the intuition
that the Chowla conjecture in ergodic theory corresponds to the Bernoulli property (maxi-
mal chaos), while Sarnak’s conjecture is rather related to the weaker property, namely the
Kolmogorov property (K-property) of a measure-preserving system, meant “locally”, i.e.,
for the single function �0. It is classical in ergodic theory that the K-property is equivalent
to K-mixing (called also uniform mixing). We will see in Section 5.4 that K-mixing property
applied “locally” to �0 yields a combinatorial condition on � equivalent to MOC. Roughly,
this condition is about cancelations of C1s and �1s along larger and larger shifts of the
sets of return times of blocks which can also be interpreted as the intuition that the multi-
plicative and additive structures of N are independent. While due to the MW-strategy many
examples of classes of zero-entropy systems for which the MOC holds were given, to apply
the DDKBSZ criterion, the arguments were provided ad hoc, depending on the class under
consideration which shows its certain weakness.13 In contrast, the EW-strategy aims at gen-
eral results and some spectacular successes were obtained for the logarithmic versions of the
Chowla and Sarnak’s conjectures which we now present.

12 In other words, before 2015, we had no chances to prove Sarnak’s conjecture, as we were
already stuck in a relatively simple class of dynamical systems with zero entropy.

13 On the other hand, this strategy leads to the study of internal disjointness properties of
measure-preserving systems which is of independent interest in ergodic theory.
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The logarithmic versions of the Chowla and Sarnak’s conjectures. When we replace
Cesàro sums in (1.2) and (1.1) by their logarithmic versions,

lim
N !1

1

LN

X
n�N

1

n
f .T nx/�.n/ D 0

and
lim

N !1

1

LN

X
n�N

1

n
�s1.n C a1/ � � � �sk .n C ak/ D 0;

where LN D
P

n�N
1
n
, we obtain logarithmic Sarnak’s and the Chowla conjectures, respec-

tively. The first striking result was obtained by Tao in 2015 (cf. the corresponding knowledge
about MOC, i.e., Proposition 1.2):

Theorem 1.7 ([36]). The logarithmic Chowla conjecture and the logarithmic Sarnak’s con-
jecture are equivalent.

Hence Sarnak’s conjecture implies the logarithmic Chowla conjecture, and in [17]

it is proved that the logarithmic Chowla conjecture implies the Chowla conjecture along
a subsequence, hence Proposition 1.2 follows. The logarithmic Sarnak’s conjecture is still
open, but a significant progress has been achieved by Frantzikinakis and Host in [14] (in
2018). In that paper, the authors were able to relate logarithmic Furstenberg systems of the
Möbius function (andmany other strongly aperiodicmultiplicative functions) to the theory of
strongly stationary processes. They basically observed the following principle: either such a
system is ergodic and then it must be O��2 or the corresponding Furstenberg system is disjoint
from all ergodic systems. By proving new disjointness theorems in ergodic theory, this led
them to the following remarkable result:

Theorem 1.8 ([14]). All zero-entropy systems .X; T / for which the set M e.X; T / of ergodic
invariant measures is countable are logarithmically Möbius orthogonal. In particular, all
zero-entropy uniquely ergodic systems are logarithmically Möbius orthogonal.

In Tao’s proof of Theorem 1.7 an important step was to show the equivalence with
the third condition which resembles the strongMOMO property (which we discussed above)
uniformly with respect to all nil-rotations of a fixed nil-manifold. In fact, one of surprising
consequences of Theorem 1.6, which also uses previous results by Tao [35] and Frantziki-
nakis [13] reduces the logarithmic Sarnak’s conjecture to “merely” algebraic situation.

Theorem 1.9 ([24]). The logarithmic Sarnak’s conjecture holds if and only if all systems
.X; T / for which each member of M e.X; T / yields a nil-system are logarithmically Möbius
orthogonal.

Sarnak’s conjecture – where are we stuck? Returning to the original MOC, we would
like first to notice that there is no result comparable to Frantizkinakis–Host’s theorem (The-
orem 1.8). In fact, only few general results concerning large classes of zero entropy systems
which are Möbius orthogonal are known, namely, besides the already mentioned discrete
spectrum case, MOC holds for systems whose all invariant measures yield rigid systems
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(with some arithmetic limitations on the arithmetics of rigidity sequences) [25] (the polyno-
mial mean complexity characterization from [22] is for the logarithmic case).

A quick look at [24] shows that, at the moment, we are stuck with MOC since (sur-
prisingly) we are not able to prove the strong MOMO property for zero-entropy algebraic
automorphisms of the tori.We speak about very special unipotent systems, the simplest (non-
trivial) one beingX D T 2 and T .x;y/ D .x;x C y/.14 It is almost obvious that such systems
areMöbius orthogonal (apply, for example, the DDKBSZ criterion) but the situation changes
dramatically if we try to prove the strong MOMO property for T (cf. Theorem 1.4 (iii)). In
fact, the (potential) strong MOMO property applied to the function .x; y/ 7! e2�iy gives the
following:

lim
K!1

1

bK

X
k<K

sup
x2T

ˇ̌̌̌ X
bk�n<bkC1

�.n/e2�inx

ˇ̌̌̌
D 0;

for each sequence .bk/ satisfying bkC1 � bk ! 1. This reminds of a version of the clas-
sical Davenport’s estimate15 [7] but the sup inside makes it completely open (see also the
discussion on the averaged form of Chowla conjecture in [31]).

2. Ergodic theory – basic concepts

Given a standard Borel probability space .X; B; �/, we consider automorphisms
T of it and the quadruple .X; B; �; T / is often called a dynamical system. That is, T W

X ! X is invertible, bi-measurable,16 and �.A/ D �.T �1A/ D �.TA/ for each A 2 B.
If S is another automorphism (acting on .Y; C ; �/) then S is a factor of T if there exists a
measurable � W X ! Y which is equivariant, i.e., � ı T D S ı �, pushing forward � onto
�, i.e., ��.�/ D �.17 Then, we obtain a (unique) disintegration of � over �:

� D

Z
Y

�y d�.y/ (2.1)

with �y being probability measures on .X; B/ concentrated on ��1.y/ (it is not hard to see
that T�.�y/ D �Sy for �-a.e. y 2 Y ). If � is invertible, then T and S are isomorphic.

An automorphism T is called ergodic if whenever T �1A D A (a.e.) then �.A/

equals zero or one. But in general, of course, T is nonergodic. In this situation, we con-
sider its ergodic decomposition, which is simply the distintegration (2.1) of � over the factor
.X=I; I; �jI; Id/, where I stands for the � -algebra of invariant sets.

14 The reader can notice that the ergodic measures for T yield either irrational rotations or
finite (cyclic) rotations. There are uncountably many ergodic measures.

15 The estimate is supt2T j
P

n�N �.n/e2�int j D O.N= logA N / for each A > 0.
16 More precisely, if needed, we complete B, and we can also assume that T is well defined

only on a T -invariant subset X0 � X of full measure. Generally, in what follows we do not
distinguish between sets, functions, etc., if they differ on a subset of measure zero.

17 Note that, setting A D ��1.C/, we can represent S as T acting on .X=A; A; �jA), where
“points” in X=A are cosets of the relation on X of being indistinguishable by the sets of A.
By that reason, factors of T are identified with T -invariant sub-� -fields of B.
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With T we can associate a unitary operator UT , called Koopman operator, acting
on L2.X; B; �/ by the formula UT .f / D f ı T . Studying the properties of Koopman oper-
ators is the spectral theory of dynamical systems. It is not hard to see that ergodicity means
precisely that the only invariant functions of UT are the constants. An automorphism T is
called weakly mixing if its Cartesian square T � T acting on .X � X; B ˝ B; � ˝ �/ is
ergodic. This is equivalent to the fact that the spectral measure18 of each zero mean f , i.e.,
of f 2 L2

0.X; B; �/, is atomless. If the Fourier transforms of elements from L2
0 vanish at

infinity, we speak about mixing of T .
Given two automorphisms T and S acting on .X; B; �/, .Y; C ; �/, respectively, by

a joining between them we mean any measure � on .X � Y;B ˝ C/with the coordinate pro-
jections �, �, respectively, and being T � S -invariant. Denote the set of joinings by J.T; S/

which is always nonempty as � ˝ � 2 J.T; S/. If T and S are additionally ergodic, we
can ask about the subset J e.T; S/ of ergodic joinings. This set is nonempty as the ergodic
decomposition of any joining consists (a.e.) of joinings. A crucial concept here is that of dis-
jointness introduced by Furstenberg [15] in 1967: we say that T and S are disjoint, T ? S ,
if J.T; S/ D ¹� ˝ �º. One should stress that to have disjointness of T and S , at least one of
these automorphisms must be ergodic. Note also that if T and S are disjoint then they cannot
have a nontrivial common factor (the converse to this implication does not hold). It is not hard
to see that if T and S are spectrally disjoint, that is, if their maximal spectral types on the cor-
responding L2

0-spaces are mutually singular, then T ? S . This yields, in particular, classical
disjointness results: identity Id is disjoint with all ergodic automorphisms, discrete spectrum
automorphisms (i.e., those whose Koopman operators possess an orthonormal basis consist-
ing of eigenvectors) are disjoint from weakly mixing automorphisms. For more classical
examples of automorphisms and instances of disjointness, see [16].

We can repeat the above concepts almost word for word in case of actions of the
group R (or other locally compact Abelian groups) on .X; B; �/, remembering that we
consider only measurable actions of R, called flows T D .Tt /t2R: the map

X � R 3 .x; t/ 7! Tt x 2 X

is measurable. This assumption yields that t 7! UTt f is continuous in the strong topology
for each f 2 L2.X; B; �/. We also recall that the spectral measures of the corresponding
Koopman representations are defined on the dual of the acting group, hence on R in case of
flows.

Given p 2 RC, the flow Tp WD .Tpt /t2R is a rescaling of the original flow T . It is
not hard to see that the disjointness of the rescaling flows Tp and Tq (0 < p < q) is equivalent
to the disjointness of the time-p and time-q automorphisms, i.e., of Tp and Tq .

18 A spectral measure �f is a finite (nonnegative) Borel measure on the circle S1 whose
Fourier transform is given by

O�f .n/ WD

Z
zn d�f .z/ D

˝
U n

T f; f
˛
D

Z
X

f
�
T nx

�
f .x/ d�.x/

for each n 2 Z. Among the spectral measures there are the maximal ones (in the sense of
absolute continuity of measures); each of them is a measure of maximal spectral type.
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3. Measure-theoretic dynamical systems – constructions

and examples

3.1. Topological dynamics. Subshifts. Invariant measures for
homeomorphisms
In topological dynamics we study homeomorphisms T acting on compact metric

spaces X ; .X; T / is a topological dynamical system. Such a system is called transitive if
there is a point x0 2 X whose orbit ¹T nx0 W n 2 Zº is dense. When all orbits are dense,
the system is called minimal. The latter is equivalent to the fact that .X; T / has no proper
subsystems. If A is a compact metric space, then AZ considered with the product metric is
also compact and .AZ; S/ with S the left shift, S..xn/n2Z/ D .xnC1/n2Z, is a topological
dynamical system called the full shift (with the set of states A). Then every closed subset
X � AZ which is S -invariant yields a subsystem .X; S/ of the full shift, so called subshift.
By taking first y D .yn/n2Z 2 AZ and setting

Xy WD
®
Sny W n 2 Z

¯
;

we obtain .Xy ; S/ a transitive subshift. In particular, we obtain .X�2 ; S/, called the square-
free system, where X�2 � ¹0; 1ºZ, and .X�; S/, called the Möbius subshift, where X� �

¹�1; 0; 1ºZ.
The notions of a (topological) factor and isomorphism (conjugacy) are defined simi-

larly to the measure-theoretic category remaining in the class of continuous maps. An impor-
tant invariant of topological conjugacy is that of entropy h.T / D h.X;T /.We refer the reader
to [39] for general definitions, however, if A is finite and .X; S/ is a subshift, then

h.X; S/ D lim
N !1

1

N
log
ˇ̌
L.X/ \ AN

ˇ̌
;

where L.X/ is the language of X , i.e., the set of all words (blocks) appearing in x 2 X .
Clearly, if X D Xy , it is enough to compute only words appearing in y.

A topological dynamical system .X;T / yieldsmeasure-theoretic dynamical systems
through Borel T -invariant measures: ifM.X;T / stands for the set of Borel T -invariant mea-
sures and � 2 M.X; T /, then it yields a measure-theoretic dynamical system .X; B; �; T /,
where B D B.X/ denotes the � -algebra of Borel subsets of X . We will detail slightly on
that. LetM.X/ denote the space of probability measures onX . With the weak-�-topology, it
becomes a metrizable compact space:�n ! � if and only limn!1

R
X

f d�n D
R
X

f d� for
each f 2 C.X/. If x 2 X then the measures of the form 1

N

P
n<N ıT nx are called empiric

measures. Note that any limit � of a convergent subsequence of empiric measures,
1

Nk

X
n<Nk

ıT nx ! �; (3.1)

must be a T -invariant measure (one says also that x is quasi-generic for �). This is the
classical Krylov–Bogoljubov theorem which tells us that the set M.X; T / is nonempty. It
automatically yields that the set M e.X; T / of ergodic measures is also nonempty. Note that
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another way to obtain an invariant measure is to change the Cesàro way of summation into
the logarithmic one,

1

LNk

X
n<Nk

1

n
ıT nx ! �;

where the limit measure is also T -invariant. We say that x 2 X is generic for � 2 M.X; T /

along .Nk/ if (3.1) holds. For example, �2 is generic (along the whole sequence of natural
numbers) for the so-called Mirsky measure ��2 and if the Chowla conjecture holds then �

is generic for the relatively independent extension O��2 of the Mirsky measure, where

O��2.C / D
1

2supp.C /
��2.C 2/

for each block C of �1, 0, 1s. We recall that each ergodic measure has a generic point. The
set of measures (called also “visible”) for which x is quasi-generic is denoted by V.x/ and it
is compact. Note that either jV.x/j D 1 (we say then that x is generic for this uniquemeasure)
or V.x/ is uncountable as it is also connected. Note also that

M e.X; T / � V.X; T / WD

[
x2X

V.x/:

If y 2 AZ and � 2 V.y/ then the measure-theoretic system .Xy ; B.Xy/; �; S/ is called a
Furstenberg system of y.

We can introduce similar notions (and prove similar facts) for the logarithmic way
of averaging. In general, there is no relation between V.x/ and V log.x/ unless x is generic
for � 2 V.x/ (it is then logarithmically generic for the same measure).

A topological system .X; T / is uniquely ergodic if jM.X; T /j D 1. The unique
invariant measure is then necessarily ergodic. Uniquely ergodic and minimal systems are
called strictly ergodic. The classical Jewett–Krieger theorem tells us that each ergodic system
has a strictly ergodic model.

3.2. Flows, special flows, change of time
Let us first see how, given a flow, to produce new flows with the same orbits but

(potentially) representing completely different (even disjoint!) dynamics. Assume that R D

.Rt / is a flow on .Z; D ; �/ and let v W Z ! R, v � "0 > 0 and v 2 L1.Z; D ; �/. Then, for
�-a.e. z 2 Z and all t 2 R, there is a unique solution u D u.t; z/ ofZ u

0

v.Rsz/ ds D t:

Then we set QRv
t .z/ D Ru.t;z/.z/ and obtain a new flow fRv D . QRv

t / which preserves the
measure . vR

v d�
/d� for which u.t; z/ is a cocycle. On the other hand, .u;x/ 7!

R u

0
v.Rsx/ds

defines a cocycle for R. If v0 W Z ! R is another time change and, for some measurable
� W Z ! R, Z u

0

v.Rsz/ ds D

Z u

0

v0.Rsz/ ds � �.z/ C �.Ruz/

for �-a.e z 2 Z and all u 2 R (that is, the two cocycles for R are cohomologous), then the
two time changes fRv , eRv0 are isomorphic. If v0 D c is additionally a constant (that is, the
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cocycle given by v0 is a quasi-coboundary), then eRv0

D fRc D .Rt=c/t2R, so this time change
is isomorphic to a rescaling of the original flow R.

We now invoke a construction transforming Z-actions (automorphisms) into R-
actions (flows) which is a kind of inducing representation.19 Assume that .X; B; �; T / is
a dynamical system and let f W X ! RC be an L1-function. Consider the probability space
.Xf ; Bf ; �f /, where

Xf
D
®
.x; r/ 2 X � R W x 2 X; 0 � r < f .x/

¯
with Bf being the restriction of the product � -algebra, and �f WD .� ˝ �R/jXf =

R
X

f d�.
We now define the special flow over T under the roof function f by setting

T
f
t .x; r/ D

�
T nx; r C t � f .n/.x/

�
;

where n 2 Z is unique such that

f .n/.x/ � r C t < f .nC1/.x/

and f .n/.x/ D f .x/ C f .T x/ C � � � C f .T n�1x/ if n > 0, f .0/.x/ D 0 and f .mCn/.x/ D

f .m/.x/ C f .n/.T mx/ for m; n 2 Z.
If f D 1 then we speak about the suspension flow OT over T ,

OTt .x; r/ D
�
T ŒtCr�x; ¹t C rº

�
;

for .x; r/ 2 X � Œ0; 1/. Note that for k 2 N,Z k

0

f
�

OTs.x; 0/
�

ds D

Z k

0

f
�
T Œs�x

�
ds D f .k/.x/

allows us to see the special flow T f as a time change of the suspension flow over T . It
follows that, given two special flows over the same automorphism T , we can obtain one
from the other by a time change.

The Kakutani–Ambrose theorem tells us that each flow has a special representation.
Representing a flow as a special flow (over a “known” automorphism) is a useful operation,
and finding T , especially in the smooth case, leads to seeking a good transversal to orbits of
the original flow. For example, in the case of smooth flows on surfaces it often leads to the
study of special flows over interval exchange transformations and interesting roof functions
having “controllable” singularities.

4. Ratner’s question, MW-strategy, and MOC for smooth

time changes of horocycle flows

4.1. Horocycle flows and MOC
One of the most important zero-entropy classes in dynamics is given by horocycle

flows whose definition we now recall. Let � � PSL2.R/ be a discrete subgroup with finite

19 The reader can check that the Koopman representation of the special flow defined below
is indeed the genuine induced representation of the Koopman operator associated to the
automorphism.
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covolume, in fact, we consider only the case � is cocompact, so that the homogeneous space
M D �n PSL2.R/ is compact and then the system is uniquely ergodic. Let us consider the
corresponding horocycle flow .ht /t2R and the geodesic flow .gt /t2R on M given by

ht .�x/ D � �

 
x �

"
1 t

0 1

#!
and gt .�x/ D � �

 
x �

"
e�t 0

0 et

#!
:

Since
gsht g

�1
s D he�2s t for all s; t 2 R; (4.1)

the flows .ht /t2R and .he�2s t /t2R are measure-theoretically isomorphic for each s 2 R (in
particular, all positive time automorphisms are isomorphic). In 2011, Bourgain, Sarnak, and
Ziegler proved the following:

Theorem 4.1 ([4]). Each time-t automorphism ht is Möbius orthogonal.

The main idea is to use the MW-strategy, and to show that, in fact, these time-t
automorphisms are orthogonal to any (zero mean, bounded) multiplicative function. It works
here because of the famous Ratner’s theory: given x 2 PSL2.R/, any point .�x; �x/ is
generic for a measure � (which must be a joining by unique ergodicity: � 2 J.T p; T q/,
where T D ht ) and, moreover, this joining is ergodic and of algebraic nature. As shown in
[4], this algebraic nature yields that, perhaps except for finitely many primes, we must obtain
the product measure.20 The proof really depends on some algebraic properties of horocycle
flows and because of that M. Ratner asked in 2013 what happens if we (smoothly) change
time and study MOC in this class.

4.2. Time changes of horocycle flows and MOC
In general, especially for flows which are mixing, it is difficult to decide whether or

not they are disjoint. Horocycle flows are mixing and so are their smooth time changes. In
1983, M. Ratner [32] discovered a new property of horocycle flows which basically gave a
quadratic way of divergence of distinct orbits of nearby points, which allows one to observe
some drift of these orbits. This geometric property has surprisingly strong rigidity joining
consequences. Ratner also showed that smooth time changes of horocycle flows enjoy this
divergence property [33]. It took more than 20 years to understand how to variate her original
property (keeping the joining consequences) to now commonly called Ratner’s properties, to
observe quantitatively the drift phenomenon also beyond the horocyclic world, in particular
to see it in dimension 2 (e.g., for some smooth flows on surfaces). A kind of a breakthrough
new disjointness criterion has been recently proved in [26]. It is tailored for flows (with a
Ratner’s property) having different speed of divergence (polynomial or subpolynomial) of
distinct orbit of close points. It fits to nontrivial smooth time changes . Qhv

t / of horocycle flows
as one of the main results of [26] shows:

20 This might suggest that we have the AOP property, but, in fact, as noticed in [3], (4.1)
applied to some compact regions implies that AOP fails for horocycle flows.
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Theorem 4.2 ([26]). Assume that the cocycle determined by a positive v 2 W 6.M/ has a
nontrivial support outside of the discrete series21 and is not a quasi-coboundary. Then, for
any real numbers 0 < p < q, the rescalings . Qhv

pt /t2R and . Qhv
qt /t2R are disjoint.

The situation looks a little bit paradoxical as, for the horocycle flows themselves, we
know that they are Möbius orthogonal, but the problem of whether the convergence in (1.2)
is uniform (in x 2 M ) is open, the strong MOMO property is open, and we also do not know
whether the Möbius orthogonality takes place in all uniquely ergodic models of horocycle
flows. On the other hand, when we change time (as above), for the flows whose dynamics
intuitively become more complicated, the answers to these questions are simply positive due
to Theorem 4.2, Proposition 1.5, and Theorem 1.4 (ii).

Using the same disjointness criterion, other disjointness results concerning some
mixing locally Hamiltonian flows (on surfaces), considered most often in their special repre-
sentations over irrational rotations (Arnol’d special flows) are proved in [26] to enjoy similar
internal disjointness properties. Hence, the Möbius orthogonality for them is also estab-
lished.

5. Sarnak’s conjecture and Furstenberg systems

It is not clear at all that the MOC can be expressed in terms of Furstenberg systems
of the Möbius function. In fact, following [24], we will consider a general problem in which
� is replaced by a function u W N ! D (the unit disc). We want to characterize those uwhich
are orthogonal to all zero-entropy systems,

lim
N !1

1

N

X
n�N

f .T nx/u.n/ D 0; (5.1)

for each .X; T / of zero entropy, all f 2 C.X/, and x 2 X . One can now wonder what is
special in the zero (topological) entropy class. For that we need to recall some classical
facts, namely the variational principle, which tells us that h.X; T / D 0 if and only if the
measure-theoretic entropy of each T -invariant measure is zero. By a convexity property of
the entropy, this is still equivalent to the fact that all ergodic measures have zero entropy. In
this way, we replaced the original assumption on .X; T / by an assumption on the measure-
theoretic systems determined by invariant measures. More than that, while thinking about
problem (5.1), we only care about properties of systems determined by visiblemeasures � 2

V.X; T /. Finally, one can wonder what is special in the class of measure-theoretic systems
with zero entropy. Classical ergodic theory tells us that this is a class which is closed under
taking joinings and factors and for each automorphism .Z; D ; �; R/ there exists a largest
factor ….�/ � D of zero entropy, called the Pinsker factor of R. All this leads us to the
concept of a characteristic class and the problem of orthogonality to such.

21 This assumption is dropped in [11]. Flaminio and Forni used more directly Ratner’s work
[33] and show that the cocycles determined by v and v ı gr , where r D �

1
2 log.q=p/ are

not jointly cohomologous.
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5.1. Characteristic classes and the problem of orthogonality
A class F of automorphisms (it is implicit that this class is closed under isomor-

phism) is called characteristic if it is closed under taking (countable) joinings and factors.
Classical classes, like the zero-entropy class, the class of systems with discrete spectrum, and
the class of automorphismswhich are distal, are characteristic classes (manymore classes are
listed in [24]). OnceF is fixed, we consider the classCF of those topological systems .X;T /

for which .X; B.X/; �; T / 2 F for each � 2 V.X; T /. The following theorem establishes
the most useful ergodic properties following the concept of a characteristic class.

Theorem 5.1 ([24]). Assume that F is a characteristic class then, for each automorphism
.Z; D ; �; R/, there exists a largest factor DF � D belonging to F . Moreover, any joining
of .Z; D ; �; R/ with an automorphism from F is uniquely determined by its restriction to a
joining with DF .

With each class F , we can associate the class Fec consisting of the automorphisms
whose all ergodic components are in F .

Proposition 5.2 ([24]). If F is characteristic, then also Fec is characteristic.

In general, we then have CF � CFec , but the reader can check that if F is the zero-
entropy class then we have equality. Moreover,

CFec D
®
.X; T / W

�
X; B.X/; �; T

�
2 F for each � 2 M e.X; T /

¯
:

The zero-entropy class turns out to be special in the family of characteristic classes:

Proposition 5.3 ([24]). The zero-entropy class is the largest proper characteristic class.

It is also shown in [24] that there exists the smallest nontrivial characteristic class (it
consists of all identities of standard Borel probability spaces).

5.2. Orthogonality to characteristic classes. Veech’s conjecture
Given a classC of topological systems, we can now consider the problem of orthog-

onality of u W N ! D to C , that is,

lim
N !1

1

N

X
n�N

f .T nx/u.n/ D 0 (5.2)

for each .X;T / 2 C , all f 2 C.X/ and x 2 X . If orthogonality takes place, we write u ? C .
The central result of [24] is the following:

Theorem 5.4 ([24]). Assume that F is a characteristic class and u W N ! D. Then u ? CFec

if and only if

�0 ? L2
��

B.Xu/; �
�

Fec

�
for each Furstenberg system � 2 V.u/: (5.3)

Remark 5.5. Condition (5.3) will be called the Veech condition as Veech formulated it in
[38], in a form of a conjecture, as a statement equivalent to MOC in case of u D � and F
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equal to the (measure-theoretic) zero-entropy class. Theorem 5.4 proves in particular Veech’s
conjecture but, clearly, goes beyond it.

In the subsequent subsections we will say a fewwords on the tools that are employed
for the proof of Theorem 5.4 and briefly indicate some consequences of it.

5.3. Proof of Theorem 5.4
The sufficiency in Theorem 5.4 follows from a more general result:

Theorem 5.6 ([24]). If u W N ! D satisfies the Veech condition with respect to a character-
istic class F then u ? CF .

The proof of this theorem is purely ergodic, belongs to joining theory, and is based
on a fundamental non-disjointness lemma [29].22

The necessity requires more tools. The first relies on the existence of the so-called
Hansel’s models, being a counterpart of the classical Jewett–Kieger theorem in the noner-
godic case. Namely, if .Z; D ; �; R/ is a measure-theoretic dynamical system and we fix a
set of full measure of ergodic components then a Hansel model [18] of it is any topological
system .X; T / for which there exists � 2 M.X; T / yielding a measure-theoretic isomorphic
copy of R and such that each x 2 X is generic for one of the chosen ergodic components.
The next major step is a new lifting lemma23 (going largely beyond the context considered in
[6]) on quasi-generic points for joinings, and tailored to be applicable for the strong MOMO
property:

Lemma 5.7 ([24]). Assume that .Y;S/ and .X;T / are topological systems. Let � 2 M.X;T /,
u 2 Y be generic along an increasing sequence .Nm/ for � 2 M.Y;S/, and � 2 J.�;�/. Then
there exist a sequence .xn/ � X and a subsequence .Nm`

/ such that .Snu; xn/ is generic
along .Nm`

/ for � and the set ¹n � 0 W xnC1 ¤ T xnº is of the form .bk/with bkC1 � bk ! 1

when k ! 1.

We then use some joining techniques and Lemma 5.7 to Hansel models of the largest
Fec-factors of Furstenberg systems of u. Finally, the reason why we useFec (and notF itself)
is that the orthogonality of u to CFec is equivalent to the strong MOMO property (relative to
u) of all systems in CFec (such a result, in full generality, is unknown for F ).

5.4. Some consequences of Theorem 5.4
We now come back to the problem of orthogonality of u W N ! D to the zero

(topological) entropy class (MOC is a particular case of this). In this case, Theorem 5.4
describes a kind of relativeKolmogorov propertywhich, by some ergodic considerations, can

22 Veech in [38], only for the zero entropy class, gives a rather complicated proof based on
the concept of quasi-factors by Glasner and Weiss. For this particular class, the proof is also
implicit in [1].

23 The lemma is also valid for the logarithmic way of averaging, which seems to be the first
result of that type in the literature.
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be replaced by so called (relative) K-mixing. We will now write a combinatorial reformula-
tion of the latter property assuming (for sake of simplicity) that there is only one Furstenberg
system of u:

Corollary 5.8 ([24]). If u W N ! D is generic then u is orthogonal to all zero-entropy systems
if and only if

lim
m!1

lim
N !1

ˇ̌̌̌
1

N

X
n�N

u.n/1u.mCn/;u.mCnC1/;:::;u.mCnC`�1/2C

ˇ̌̌̌
D 0

uniformly in ` � 1 and in C, a set of blocks of length `.

The above corollary is, of course, about cancelations of C1s and �1s along larger
and larger shifts of return times to a fixed set of blocks (of a fixed length). By a rather stan-
dard argument, it can be replaced with a conditional cancelation phenomenon for a single
“typical” block.

Another consequence of Theorem 5.4 is a purely ergodic proof of the so-called
averaged Chowla property shown first (even in the quantitative version) in [31] for theMöbius
function: for eachu W N ! D, for which all circle rotations satisfy the strongMOMO (relative
to u) property,24 we have

lim
H!1

1

H k

X
h1;:::;hk�H

lim
k!1

1

Nk

ˇ̌̌̌
ˇ X
n�Nk

u.n/

kY
iD1

ci .n C hi /

ˇ̌̌̌
ˇ D 0

for all sequences ci W N ! D, i D 1; : : : ; k.
The strength of Theorem 5.4 also follows from the fact that it is valid in the logarith-

mic context which is better understood. As we have already mentioned in the introduction,
using it together with some earlier results by Tao and Frantzikinakis yields Theorem 1.9.
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1. Introduction

Dynamical systems have become a major player in several unexpected areas in
modern mathematics. Homogeneous spaces and the moduli spaces of compact Riemann
surfaces serve as two hubs where techniques from dynamical systems and analysis duel in
a nearly magical fashion with the structure provided by the rich geometric, algebraic, and
arithmetic properties of the underlying space.

Investigations in these directions have resulted in several breakthrough results with
striking applications in other areas of mathematics. However, most of these celebrated
achievements share the lacuna that they are not quantitative. It is much anticipated and a
challenging task to develop finitary arguments in these contexts; this article aims at provid-
ing an overview of some of the quantitative results in this setting.

Let us begin by recalling the general frame work of homogeneous dynamics. Let
G � SLd .R/ be a connected linear Lie group, and let � �G be a lattice (a discrete subgroup
with finite covolume). Let W � G be a closed connected subgroup of G. The following
problem has proven to be of fundamental importance:

Describe the behavior of the orbit Wx for every point x 2 G=� .

Note that we demand information about the orbit of every point in the space not merely
a typical point, which is a more common theme in ergodic theory. Note also that in the
above generality, one cannot expect a meaningful answer to this problem. For example, if
G D SL2.R/ andW is the group of diagonal matrices in G, then individual orbits can have
very complicated behavior and in particular the closure of orbits can be a fractal set, see,
e.g., [64].

If W is generated by unipotent elements,1 however, Raghunathan had conjectured
that for every x 2G=� there exists a connected subgroupW �L�G so thatLx is periodic
and the closure ofWx equalsLx; an orbitLx is periodic if the stabilizer of x inL is a lattice
in L, see Section 2.

Raghunaths’s conjecture in its full generality was proved by Ratner [88–90]. Prior to
Ratner’s seminal work, some important special cases of this conjecture were established by
Margulis [74], and Dani and Margulis [25,26].

As was alluded to above, these fundamental results are not quantitative, e.g., they
do not provide any rate at which the orbit fills up its closure. Indeed Ratner’s work relies
on the pointwise ergodic theorem which is hard to effectivize. The work of Dani and Mar-
gulis uses minimal sets, which though formally ineffective, can be effectivized with some
effort. However, this a rather challenging task; moreover, the rates one obtains are often
poor, see Section 6 for further discussion.

We note that good effective bounds for equidistribution of unipotent orbits can have
far reaching consequences. Indeed, the Riemann hypothesis is equivalent to giving an error

1 An d � d matrix is called unipotent if all its complex eigenvalues are 1. A connected sub-
group of SLd .R/ is called unipotent if all its elements are unipotent.
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term of the form O".y
3
4 C"/ for equidistribution of periodic horocycles of period 1=y on the

modular surface [91, 100]. Motivated by related but less dramatic applications, one is inter-
ested in obtaining rates which have polynomial nature. In the generality that will be discussed
in Section 6, however, such bounds seem beyond the reach of the current technology. That
said, there have been some exciting developments in this direction which will be discussed
in the sequel.

We bring this introduction to a close bymentioning that there have also been ground-
breaking works in a similar vein to the rigidity phenomena which lie at the heart of this
paper, but in different contexts: In fact, the papers [30, 68] concern higher rank diagonaliz-
able flows; the papers [5–7,12] concern the classification of stationary measures; the papers
[40,41] concern the action of SL2.R/ on moduli spaces and apply also the method developed
for stationary measures; and [4, 66, 79, 80] concern the case where � has infinite covolume.
These works, with the exception of [12], are all qualitative and any effective account of these
would be very intriguing.

2. Complexity of periodic orbits

Let L � G be a closed subgroup. A point x 2 X D G=� is called L-periodic if

StabL.x/ D ¹g 2 L W gx D xº

is a lattice in L. A periodic L-orbit (or simply a periodic orbit if L is clear from the context)
is an orbit Lx where x is an L-periodic point. Note that a periodic L-orbit is always closed
in X , see [87].

The rigidity results we will discuss here assert that the closure of an orbit Wx is a
periodic orbit Lx of an intermediate subgroupW � L � G. It is therefore natural to expect
that quantitative statements in this context will in general depend on delicate properties of
the point x and the acting group W . Indeed, already for an irrational rotation of a circle,
Diophantine properties of the angle of rotation dictate the rate of equidistribution. In the
more general context at the heart of our discussions here, periodic orbits of intermediate
subgroups will play the role of rational numbers. Consequently, it is crucial to fix a measure
of complexity for the periodic orbits which are obstructions to the density of an orbit in X .

Fix some open bounded neighborhood � of the identity in G. For a periodic orbit
Lx � X , define

vol.Lx/ D
mL.Lx/

mL.�/
; (2.1)

where mL is an arbitrary Haar measure on L and mL.Lx/ is the covolume of StabL.x/ in
L with respect tomL. This notion of volume will serve as our measure of the complexity of
the periodic orbit,

We refer the reader to [31, §2.3] for basic properties of the above definition. Here we
only mention that even though this notion depends on the choice of�, two different choices
of� give rise to comparable definitions of vol, in the sense that their ratio is bounded above
and below. Therefore, we ignore the dependence on � in the notation.
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Given a periodic orbit Lx, we let �Lx denote the probability L-invariant measure
on Lx. The G-invariant probability measure on X will be denoted by mX .

The general theme of a finitary statement will be a dichotomy as follows: Unless
there is an explicit obstruction with low complexity, the orbitWx fills up X with an explicit
rate—as we will see, the quality of this rate varies in different situations.

3. Effective equidistribution of nilflows

Perhaps the first natural place to seek quantitative density theorems is the case of
nilflows. LetX be a nilmanifold. That is,X DG=� whereG is a closed connected subgroup
of the group of strictly upper triangular d � d matrices and � � G is a lattice.

Rigidity results in this setting have been known for quite some time thanks to works
of Weyl, Kronecker, L. Green, and Parry [2,85], and more recently Leibman [67].

Quantitative results, with a polynomial error rate, have also been established in
this context and beyond the abelian case, see [46, 53]. The complete solution was given by
B. Green and T. Tao [53]. The following is a special case of the main result in [53].

Theorem 3.1 ([53]). Let X D G=� be a nilmanifold as above. There exists some A � 1

depending on dimG so that the following holds. Let x 2 X , let ¹u.t/ W t 2 Rº be a one-
parameter subgroup ofG, let 0 < � < 1=2, and let T > 0. Then at least one of the following
holds for the partial trajectory ¹u.t/x W t 2 Œ0; T �º:

(1) For every f 2 C1.X/, we haveˇ̌̌̌
ˇ 1T

Z T

0

f
�
u.t/x

�
dt �

Z
X

f dmX

ˇ̌̌̌
ˇ �X;f �;

where the dependence on f is given using a certain Lipschitz norm.

(2) For every 0� t0 � T , there exist some g 2G and someH ¨G so thatH�=� is
periodic with vol.gH�=�/�X ��A and for all t 2 Œ0; T � with jt � t0j � �AT ,
we have

distX
�
u.t/x; gH�=�

�
�X �;

where distX is a metric onX induced from a right invariant Riemannian metric
on G.

We refer the reader to [33] for this formulation and the deduction of it from the main
result in [53]. Let us, however, highlight here the aforementioned dichotomy: either the orbit
¹u.t/x W t 2 Œ0; T �º is effectively equidistributed, part (1) in Theorem 3.1, or there is an
explicit obstruction of low complexity which prevents this, part (2) in Theorem 3.1.
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4. Horospherical groups

Let G be a connected semisimple Lie group. A subgroup W � G is called horo-
spherical if there exists an (R-diagonalizable) element a 2 G so that

W D W C.a/ WD
®
g 2 G W anga�n

! e as n ! �1
¯
:

It is well known that W � G is horospherical if and only if it is the unipotent rad-
ical of a proper parabolic subgroup of G. In particular, a horospherical subgroup is always
unipotent,2 but not vice versa; indeed, if W is horospherical, then G=NG.W / is compact
where NG.W / denotes the normalizer of W in G.

The study of the action of a horospherical subgroup ofG onG=� has a long history,
and rigidity theorems á la Ratner in this case were established by Hedlund, Furstenberg,
Veech, and Dani [20, 21, 24, 48, 59, 97] prior to Ratner’s theorems. Indeed, thanks to the fact
that the behavior of individual orbits of a horospherical subgroup can be related to the decay
of matrix coefficients, effective equidistribution, with a polynomial error rate, can also be
established. The first works in this direction we are aware of are [16,64,91], as well as the more
recent [45,93,95], and this has now been established in much greater generality [62,63,78,82].
Closely related is the case of translates of orbits of subgroups of G which are fixed by an
involution [3,29,39].

We refer the reader to [78, Thm. 3.1] for the case of SLn.R/= SLn.Z/ and to [62,

Thm. 1.11] for the general case. Let us only mention here that in this case, obstructions to
effective equidistribution of Wx, where W D W C.a/, can be described using the rate of
excursion of ¹a�nx W n 2 Nº to infinity. Consequently, quantitative nondivergence of unipo-
tent flows [22,23,27,65,73] plays a crucial role in the analysis, see also the discussion in Sec-
tion 6.2. In particular, when X D G=� is compact, Wx is equidistributed in .X;mX / with
a polynomial rate for every point x 2 X .

Another class of examples where one may attempt to bring properties of horospher-
ical subgroups to bear are provided by semidirect product constructions. Let G D H Ë V
where H is a noncompact semisimple Lie group and V is an irreducible representation of
H . One then investigates the action of a horospherical subgroup W � H on G=� . This
case is significantly more complicated that the case of horospherical subgroups, and only
partial progress has been made in this direction. Indeed, Strömbergsson [96] used analytic
methods to settle the case of G D SL2.R/ Ë R2 with the standard action of SL2.R/ on R2,
� D SL2.Z/ Ë Z2, and W the group of unipotent upper triangular matrices in SL2.R/; his
method has also been used to tackle some other cases.

We end this section by mentioning that ideas developed in the homogeneous setting
have also found applications in the study of horospherical foliation (strong unstable foliation)
in the space of translation surfaces, see, e.g., [42,70].

2 The fact that a horospherical subgroup is unipotent follows readily from the definition.
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5. Periodic orbits of semisimple groups

Until roughly 15 years ago, the source of quantitative treatments in this context
could essentially be traced back to the settings discussed in Sections 3 and 4. However, the
situation has recently improved. In the remaining parts of this article, we discuss some of
these advances.

One of the earliest works in this new wave was the landmark paper of Einsiedler,
Margulis, and Venkatesh [32] concerning the periodic orbits of semisimple groups. Let G

be a connected, semisimple algebraic Q-group, and let G be the connected component of
the identity in the Lie group G .R/. Let � � G be a congruence subgroup of G .Q/, and put
X D G=� . LetH � G be a semisimple subgroup without any compact factors which has a
finite centralizer in G.

The following is the main equidistribution theorem proved in [32].

Theorem 5.1 ([32]). There exists some ı D ı.G; H/ so that the following holds. Let Hx
be a periodic orbit. For every V > 1, there exists a subgroup H � S � G so that Sx is
periodic, vol.Sx/ � V , andˇ̌̌̌ Z

X

f d�Hx �

Z
X

f d�Sx

ˇ̌̌̌
�G;�;H �.f /V �ı for all f 2 C1

c .X/;

where �.f / denotes a certain Sobolev norm.

Theorem 5.1 is an effective version (of a special case) of a theorem by Mozes and
Shah [84]. The polynomial nature of the error term, i.e., a (negative) power of V , in The-
orem 5.1 is quite remarkable—effectivizations of dynamical arguments often yield much
worse rates, see Section 6. The source of this polynomial rate is the uniform spectral gap for
congruence quotients, which is used as a crucial input in [32].

As it was alluded to already, the fact that one deals with periodic orbits of semisim-
ple groups in arithmetic quotients is an indispensable features of the ideas developed in [32],
namely the uniform spectral gap for congruence quotients. However, some of the other
assumptions made in Theorem 5.1 may be relaxed. Indeed, in a subsequent work, Einsiedler,
Margulis, Mohammadi, and Venkatesh [31] proved an adelic statement which lifts two of
the restrictions imposed in Theorem 5.1: the fact that H is assumed fixed (the estimates in
Theorem 5.1 depend onH ) and splitting assumption onH at the archimedean place (H has
no compact factors).

Let G be a connected, semisimple, algebraic Q-group3 and set X D G .A/=G .Q/

where A denotes the ring of adeles. Then X admits an action of the locally compact group
G .A/ preserving the probability measure mX . Let H be a semisimple, simply connected,
algebraic Q-group, and let g 2 G .A/. Fix also an algebraic homomorphism � W H ! G
defined over Q with finite central kernel. For example, let G D SLd and H D Spin.Q/ for
an integral quadratic formQ in d variables.

3 The paper [31] allows for any number field, F , but unless X is compact, ı in Theorem 5.2
will depend on dimG and ŒF W Q�.

3535 Finitary analysis in homogeneous spaces



To this algebraic data and any g 2 G .A/, one associates a homogeneous set

Y WD g�
�
H .A/=H.Q/

�
� X

and a homogeneous probability measure �.
The following is a special case of the main theorem in [31].

Theorem 5.2 ([31]). Assume further that G is simply connected. There exists some ı > 0,
depending only on dim G , so that the following holds. Let Y be a homogeneous set and
assume that �.H / � G is maximal. Thenˇ̌̌̌ Z

X

f d� �

Z
X

f dmX

ˇ̌̌̌
�G �.f / vol.Y /�ı for all f 2 C1

c .X/;

where �.f / is a certain adelic Sobolev norm.

The flexibility that Theorem 5.2 provides has interesting number theoretic applica-
tions. Indeed, the following generalization of Duke’s theorem is proved in [31].

LetQd D POd .R/nPGLd .R/=PGLd .Z/ be the space of positive definite quadratic
forms on Rd up to the equivalence relation defined by scaling and equivalence over Z.
Equip Qd with the push-forward of the normalized Haar measure on PGLd .R/=PGLd .Z/.

LetQ be a positive definite integral quadratic form on Zd , and let genus.Q/ (resp.
spin genus.Q/) be its genus (resp. spin genus).

Theorem 5.3 ([31]). Suppose ¹Qnº varies through any sequence of pairwise inequivalent,
integral, positive definite quadratic forms. Then the genus (and also the spin genus) of Qn,
considered as a subset of Qd , equidistributes as n! 1 (with speed determined by a power
of j genus.Qn/j).

It is worth mentioning that when d D 3; 4, this theorem even in its qualitative form
is new. When d > 5, the qualitative version of this theorem follows from an equidistribution
theorem proved in [52], see also [43] for related analysis in the presence of a splitting condition
at the archimedean place

Another application of Theorem 5.2 is an independent proof of property .�/ except
for groups of type A1. In particular, the paper [31] provides an alternative proof of the main
result of Clozel in [19], albeit with weaker exponents, see [31, §4].

In addition to the ingredients involved in [32], the proof of Theorem 5.2 relies on
Prasad’s volume formula [86] and the work of Borel and Prasad [9]. These fundamental inputs
are responsible for liberties supplied by Theorem 5.2.

The main problem which remains open in this direction is to prove an analogue of
Theorem 5.2 which allows �.H / to have an infinite centralizer; such a theorem would have
quite interesting number theoretic applications, see [36]. Some progress has been made in
this direction recently, the reader is invited to consult [1,34,35], for instance.
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6. Effective unipotent dynamics

In view of Theorem 3.1, let us assume that G has noncompact semisimple sub-
groups, e.g.,G is a noncompact semisimple linear Lie group. In light of the results discussed
in Section 4, the analysis of the quantitative behavior of unipotent orbits inG=� is reduced to
orbits of groups which are not horospherical. Not surprisingly, however, this task has proven
quite challenging. In this section, we will discuss some recent progress made in this direc-
tion. The general theme of results in this section revolves around exploiting and effectivizing
the polynomial like behavior of unipotent orbits.

6.1. Effective versions of the Oppenheim conjecture
The Oppenheim conjecture, proved by Margulis [74], states that if Q is a nonde-

generate, indefinite quadratic form which is not a rational multiple of a form with integer
coefficients, then for every " > 0, there exists some v 2 Z3 n ¹0º so that jQ.v/j < ". Gener-
alizations were also proved by Dani and Margulis prior to Ratner’s theorems.

Later, Eskin, Margulis, andMozes [37,38] proved quantitative (equidistribution) ver-
sions of theOppenheim conjecturewhich relies onRatner’s equidistribution theorem [88–90],
linearization techniques of Dani and Margulis [28], and a system of inequalities for a certain
Margulis function—an ingenious idea introduced in [37]which has become an indispensable
tool in homogeneous dynamics and beyond, see Section 7.2. Similar results for inhomoge-
neous forms have also been established [75,76].

Effective results in this context have also been actively pursued. Indeed, the analytic
approach (using the Hardy–Littlewood circle method) which had been employed prior to
Margulis’ work is by its nature effective. However, this approach is generally only applicable
if either the number of variables is large or the form has special features, see, e.g., [60].
More recently, Buterus, Götze, Hille, and Margulis [18] have proved effective version of
the Oppenheim conjecture (as well as the equidistribution versions [37]), with polynomial
error rates, provided that the number of variable is at least 5. Their proof combines ana-
lytic techniques with ideas from geometry of numbers in the form of inequalities which are
reminiscent of [37]. Analytic methods were also used in [92] and [11] to obtain polynomial
estimates for almost every form in certain families of forms in dimensions 3 and 4. The
case of general forms in 3 and 4 variables, however, seem to be out of the reach of analytic
methods.

Lindenstrauss and Margulis [69] proved an effective version of the Oppenheim con-
jecture for ternary form with polylog error rates.

Theorem 6.1 ([69]). There exist absolute constants A � 1 and � > 0 so that the following
holds:

LetQ be an indefinite, ternary quadratic form with detQ D 1 and let " > 0. There
exists T0."/ > 0 so that for any T � T0."/kQkA at least one of the following holds:
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(1) For every � 2 Œ�.logT /� ; .logT /� �, there is a primitive integer vector v 2 Z3

with 0 < kvk < T A satisfyingˇ̌
Q.v/ � �

ˇ̌
� .logT /�� :

(2) There is an integral quadratic formQ0 with j detQ0j < T " so thatQ � �Q0
 � kQkT �1

where � D j detQ0j�1=3.

The implied multiplicative constants are absolute and k � k denotes a norm onMat3.R/.

Note in particular that if Q is a reduced, indefinite, ternary quadratic form which
is not proportional to an integral form but has algebraic coefficients, then part (1) in Theo-
rem 6.1 holds true forQ, see [69, Cor. 1.12].

The aforementioned dichotomy is again present in Theorem 6.1: unless there is an
explicit obstruction (part (2) in Theorem 6.1), one obtains an effective density result.

The proof in [69] is rather involved and is based on effectivizing Margulis’ original
proof of the Oppenheim conjecture, as well as the subsequent works by Dani and Margulis.
This approach, is based on the study of the action of SO.Q/, the isometry group of Q, on
X D SL3.R/=SL3.Z/, and relies on the notion of minimal sets from topological dynamics.
Minimal sets are not suitable for quantitative arguments. Indeed, the paper [69] replaces this
qualitative notion with a Diophantine condition in terms of the rate of escape to infinity under
a certain one-parameter R-diagonalizable subgroup. This novel ingredient plays a crucial
role in obtaining an effective account—similar elements in more general contexts will be
discussed in Section 6.2. It is worth mentioning that relying only on this input, one gets a
rate that is � log.log T /. The stronger bound obtained in [69] is made possible thanks to a
combinatorial lemma [69, §9] which is of independent interest.

6.2. Linearization of unipotent orbits
As it was mentioned before, Margulis and Dani developed a topological approach to

settle certain special cases of Raghunathan’s conjecture which relied on the notion of mini-
mal sets. One of the first steps in effectivizing this topological argument would therefore be
to replace minimal sets with an explicit Diophantine condition. This was established by Lin-
denstrauss, Margulis, Mohammadi, and Shah in [72] which may be thought of as an effective
version of the linearization technique of Dani and Margulis [28].

The linearization technique has its roots in the techniques developed by Margulis
[73] in his proof of the nondivergence of unipotent orbits. These nondivergence results are
effective. Indeed, they were sharpened by Dani in [22,23] and have been given a very explicit
and effective form by Kleinbock and Margulis in [65]. However, the author is not aware of
an effective treatment of the main results in [28] prior to [72].

Let us recall the setting in [72]. Let G be a connected Q-group, and putG D G .R/.
We assume that � � G is an arithmetic lattice. More specifically, fix an embedding � W G !
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SLN defined over Q so that �.�/ � SLN .Z/. Using �, we identify G with �.G / � SLN , and
hence will always assume that G � SLN .R/.

Define the following family:

H D
®
H � G W H is a connected Q-subgroup and R.H / D Ru.H /

¯
;

where R.H / (resp. Ru.H /) denotes the solvable (resp. unipotent) radical of H . Alterna-
tively, H 2 H if and only if H is a connected Q-subgroup which is generated by unipotent
subgroups over the algebraic closure of Q. By a theorem of Borel and Harish-Chandra,
H .R/ \ � is a lattice in H .R/ for every H 2 H . We always assume that G 2 H .

LetU �G be a (connected) unipotent subgroup ofG, and putX DG=� . For every
H 2 H , putH D H .R/. Define

NG.U;H/ WD ¹g 2 G W Ug � gH º:

Note that NG.U; H/ is an R-subvariety of G. Moreover, if H C G and U � H , then
NG.U;H/ D G.

Put

�.U / D

� [
H2H
H¤G

NG.U;H/

�
=� and G .U / D X n �.U /:

Points in �.U / are called singular with respect to U , and points in G .U / are called generic
with respect toU . These are, a priori, different from the measure-theoretically generic points
in the sense of Furstenberg for the action of U on X equipped with mX (see, e.g., [50, p. 98]
for a definition); however, any measure theoretically generic point is generic in this explicit
sense as well. The aforementioned remarkable theorem of Ratner [90] states that for every
x 2 G .U /, we have Ux D X .

Dani and Margulis [28] proved that U orbits of points in G .U / avoid �.U /. The
paper [72] makes this principle quantitative with polynomial rates.

We need somemore notation to state this quantitative result. Let g D Lie.G/ and put
g.Z/ WD g \ slN .Z/. Let k � k denote the max norm on slN .R/ with respect to the standard
basis. This induces a family of norms on ^slN .R/, which we continue to denote by k � k.

Let H 2 H be a nontrivial proper subgroup of G , and put

�H WD ^
dimH Ad and VH WD ^

dimH g.

The representation �H is defined over Q.
Let vH be a primitive integral vector in ^dimH Lie.G / corresponding to the Lie

algebra of H , i.e., we fix a Z-basis for Lie.H/ \ slN .Z/, and let vH be the corresponding
wedge product. The vector vH embeds diagonally in ^dimH g; we denote this diagonally
embedded vector by vH . Define

�H .g/ WD �H .g/vH for every g 2 G:

In order to simplify the exposition, let us assume thatU is a one-parameter unipotent
subgroup of G. Fix some z 2 g with kzk D 1 so that U D ¹u.t/ D exp.tz/ W t 2 Rº. With
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this notation, for an element H 2 H , we have

NG.U;H/ D
®
g 2 G W z ^ �H .g/ D 0

¯
:

As it was observed before, NG.U;H/ is a variety; therefore, it could change drasti-
cally under small perturbations of U . However, effective notions must be stable under small
perturbations. One of the innovations of [72] is the introduction of the following effective
notion of generic points:

Definition 6.2. Let " W RC ! .0; 1/ be a monotone decreasing function, and let t 2 RC.
A point g� is called ."; t/-Diophantine for the action of U D ¹exp.tz/ W t 2 Rº if for all
H 2 H with ¹eº ¤ H ¤ G ,z ^ �H .g/

 � "
�
k�H .g/k

�
if

�H .g/
 < et : (6.1)

A point is "-Diophantine if it is ."; t/-Diophantine for all t > 0.

Note that this is a condition on the pair .U; g�/. Unless U � H .R/ for some
(proper) H C G , the set G .U / is nonempty; moreover, any x 2 G .U / is "-Diophantine
for some " as above. In most interesting examples, the singular set �.U / is a dense subset
of X . Therefore, G .U / is usually a Gı -set without any interior points. For any t 2 RC, on
the other hand, the set of ."; t/-Diophantine points in Definition 6.2 is a nice closed set with
interior points (indeed, it is the closure of its interior points).

As was discussed in Section 2, andwe have seen in prior sections, finitary statements
require a measure of complexity for obstructions. In [72], the following measure of arithmetic
complexity for subgroups in H is used. Define

ht.H / WD kvH k: (6.2)

That is, the height of a Q-group H is given by the height of the corresponding point in
the Grassmanian of Lie.G /, see [8, §1.5]. It is worth mentioning that for subgroups H 2 H ,
ht.H / is closely related to the volume of the periodic orbitH�=� as it was defined in Sec-
tion 2, see [32, §17], [31, App. B], and [81, §6.2].

The spaceX is not necessarily compact; to deal with this issue, we fix an exhaustion
of X by compact subsets as follows. For every � > 0, define

X� D

°
g� 2 X W min

0¤v2g.Z/

Ad.g/v � �
±
:

By (a generalization of) Mahler’s compactness criterion,X� is compact for every � > 0, see,
e.g., [72, Lemma 2.8]. Moreover,

S
�>0X� D G=� .

For every g 2 SLN .R/, in particular for every g 2 G, we let

jgj D max
®
kgk;

g�1
¯
;

where k � k denotes the max norm on SLN .R/ with respect to the standard basis.
The following is the main result in [72] in the case of real groups.
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Theorem 6.3 ([72]). There are constantsA;D > 1 depending only onN , andE > 1 depend-
ing on N , G, and � , so that the following holds. Let g 2 G, t > 0, k � 1, and 0 < � < 1=2.
Assume " W RC ! .0; 1/ satisfies for every s > 0 that

".s/ � �As�A=E:

Then at least one of the following three possibilities holds:

(1) ˇ̌®
� 2 Œ�1; 1� W u.ek�/g� 62 X� or

u.ek�/g� is not ."; t/-Diophantine
¯ˇ̌
< E�1=D :

(2) There exist a nontrivial proper subgroup H 2 H with

ht.H / � E
�
jgj

A
C eAt

�
��A

so that the following hold for all � 2 Œ�1; 1�:�H

�
u.ek�/g

� � E
�
jgj

A
C eAt

�
��A;z ^ �H

�
u.ek�/g

� � Ee�k=D
�
jgj

A
C eAt

�
��A;

where U D ¹exp.tz/ W t 2 Rº.

(3) There exist a nontrivial proper normal subgroup H C G with

ht.H / � EeAt��A

so that
kz ^ vH k � "

�
ht.H /1=A�=E

�1=A
:

Indeed, the paper [72] proves versions of this theorem for friendly measures [72,

Thm. 1.7] as well as S -arithmetic versions of this theorem [72, §3]. In particular, in view of [72,
Thm. 3.2], and by using the restriction of scalars from number fields to Q, the results in [72]

are applicable also in the case of groups defined over a general number field.
The arguments in [72] rely on polynomial behavior of unipotent orbits as did the

arguments in [28]. However, in addition to being polynomially effective, the results also
differ from [28] in the following sense. They provide a compact subset of G .U / which is
independent of the base point and to which a unipotent orbit returns unless there is an alge-
braic obstruction, see [72, Thms. 1.1 and 1.5]. Regarding nondivergence properties of unipotent
orbits, such uniformity is well known and is due to Dani (see [23,27]), but in this context it
was not known prior to [72].

These features have been made possible using two main new ingredients. First is the
use of an effective notion of a generic point, Definition 6.2. The second ingredient is the use
of a certain subgroup in H which controls the speed of unipotent orbits in the representation
space VH , see [72, §4.7]. In addition, the arguments in [72] rely on effective versions of Null-
stellensatz [77, Thm. IV], as well as some local nonvanishing theorems related to Lojasiewicz
inequality [15,54,55].
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6.3. Effective density of unipotent orbits
The paper [72] is the first in a series of papers which provide a general effective orbit

closure theorem for unipotent orbits on arithmetic quotients. The second paper, which is in
preparation, crucially relies on the results of [72].

The rate we obtain (for density of a unipotent orbit) are an iteration of logarithms
in the size of the flow parameter where the number of iterations depends on dimG.

7. Arithmetic combinatorics and polynomial bounds

The discussion in Section 6 allude to the fact that effectivizing the existing argu-
ments from unipotent dynamics often does not yield a polynomial rate. Indeed, beyond the
notable settings we discussed in Sections 3–5, polynomial rates of density or equidistribu-
tion in this context are rather rare. In this section we discuss some recent progress made in
this direction.

7.1. Random walks by toral automorphisms
Let � � SLd .Z/ be a Zariski-dense subgroup which acts strongly irreducibly on

Rd (that is, no nontrivial subspace of Rd is invariant under a finite index subgroup of �).
Let � be a finitely supported probability measure on � whose support generates � .

Furstenberg [47] showed that

�1.�/ D lim
n!1

1

n
log kg1 � � �gnk �N-a.s.

is positive.
In a landmark paper [12], Bourgain, Furman, Lindenstrauss, and Mozes proved an

equidistribution theorem for randomwalks onT d corresponding to �, with polynomial rates.

Theorem 7.1 ([12]). For every 0 < � < �1.�/, there exists a constant C D C.�; �/ so that
if for a point x 2 T d the measure �n D �.n/ � ıx satisfies that for some a 2 Zd n ¹0º,ˇ̌b�n.a/

ˇ̌
> t > 0 with n > C log

�
2kak=t

�
;

then x admits a rational approximation p=q where p 2 Zd and q 2 N satisfyingx �
p

q

 < e��n and jqj < .2kak=t/C :

Indeed, the main results in [12] allow for a more general class of subgroups � and
measures �. Let us also mention that the results in [12] have been further generalized in
subsequent works, see, e.g., [57,58].

The argument in [12] is quite involved and relies on several ingredients. Here we
only highlight one the main steps in the proof, which concerns bootstrapping the informa-
tion about one large Fourier coefficient to a (large scale) structure for the set of large Fourier
coefficients. Suppose jb�n.a/j > t for some large n and some nonzero a. Then using quanti-
tative theory of random matrix products, one can show that for a suitable choice of n1 � n
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the measure �n1 has Fourier coefficients which are > t=2 on a subset with a (small) posi-
tive dimension [12, Prop. 6.2]. The next task is to deduce from this a possibly smaller scale
n2 < n1, so that �n2 has large (polynomial in t ) Fourier coefficients on a set whose large
scale dimension is d . This is carried out in two steps, the first, and arguably more difficult,
step is to bootstrap the dimension to d � " for a small " (depending on �) [12, Prop. 6.3]. The
paper [12] uses ideas from additive combinatorics, namely discretized ring conjecture [10] to
establish this improvement. After this is obtain, one can use more or less classical estimates
from Fourier analysis to improve the dimension from d � " to d , [12, Props. 6.5 and 6.11].

The three stages in the above outline, namely the initial dimension, bootstrapping the
dimension, and from high dimension to positive density, are reminiscent of the three stages
present in the work of Bourgain and Gamburd on random walks on compact groups [13,

14]—these three stages will be revisited in the next section.

7.2. Quotients of SL2.C/ and SL2.R/ � SL2.R/

Wenow turn to the question of density (ormore ambitiously equidistribution) results
in quotients of semisimple groups, with polynomial rates. For reasons we already discussed,
this has proven quite a challenging task.

Lindenstrauss and Mohammadi [71] have very recently obtained first results in the
literature which provide a polynomial rate for density of general orbits in a homogeneous
space of a semisimple group, beyond the settings we discussed in Sections 4 and 5.

Let us fix some notation. Let

G D SL2.C/ or G D SL2.R/ � SL2.R/;

and let � � G be a lattice. Put X D G=� .
Let dist be the right-invariant metric on G which is defined using the killing form.

This metric induces a metric distX on X . The injectivity radius of a point x 2 X may be
defined using this metric. For every � > 0, let

X� D ¹x 2 X W injectivity radius of x is � �ºI

this is closely related to the definition in Section 6.2, see, e.g., [71, §3] and references there.
LetH � G be one of the following:

SL2.R/ � SL2.C/ or
®
.g; g/ W g 2 SL2.R/

¯
� SL2.R/ � SL2.R/:

Let P � H be the group of upper triangular matrices inH .
As before, let k � k denote the maximum norm on Mat2.C/ or Mat2.R/ � Mat2.R/

with respect to the standard basis. For every R > 0 and every subgroup L � G, let

BL
R D

®
g 2 L W kg � Ik � R

¯
:

The following is one of the main results in [71]:

Theorem 7.2 ([71]). Assume that � is an arithmetic lattice. For every 0 < ı < 1=2, every
x0 2 X , and large enough T (depending explicitly on ı and the injectivity radius of x0), at
least one of the following holds:
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(1) For every x 2 XT ��ı , we have

distX
�
x;BP

T A :x0

�
� CT ��ı :

(2) There exists x0 2 X such thatHx0 is periodic with vol.Hx0/ � T ı , and

distX .x0; x0/ � CT �1:

The above A, �, and C are positive constants depending on X .

The proof of Theorem 7.2 has a similar flavor to [49] by Gamburd, Jakobson, and
Sarnak, as well as to the work of Bourgain and Gamburd [13, 14] and the aforementioned
work of Bourgain, Furman, Lindenstrauss, and Mozes [12], see Theorem 7.1.

In particular, the three stages of the proof which were discussed in Section 7.1 are
present here as well: in the first step, a Diophantine condition (in the form of a closing lemma)
is used to show that unless part (2) in Theorem 7.2 holds, one can produce positive dimension
at a certain scale (initial dimension). The arithmeticity of � is used in this step.

The second step, is the bootstrap phase in the following form: by passing to a larger
scale and translating BP

T ı :x0 with a random element of controlled size, one can obtain a
set with large dimension. This step is carried out using a Margulis function argument. As it
was mentioned before, Margulis functions were introduced in the context of homogeneous
dynamics in [37] by Eskin, Margulis, and Mozes, and have become an indispensable tool in
homogeneous dynamics and beyond.

The third step is to deduce effective density from large dimension. Two main ingre-
dients are present in this step: first is a projection theorem which is based on the works
of Wolff and Schlag [94,99] and is an adaptation of [61]. This is used to move the additional
dimension supplied by the bootstrap phase to the direction of a horospherical subgroup ofG.
The second ingredient is an argument due to Venkatesh [98] and is based on the following
quantitative decay of correlations for the ambient space X : There exists �X > 0 so thatˇ̌̌̌ Z

'.gx/ .x/ dmX �

Z
' dmX

Z
 dmX

ˇ̌̌̌
�G �.'/�. /e��Xdist.e;g/ (7.1)

for all ';  2 C1.X/, where � is a certain Sobolev norm and dist is our fixed right G-
invariant metric on G.

See, e.g., [64, §2.4] and references there for (7.1); we note that �X is an absolute
constant if � is a congruence subgroup, see [17,19,51].

Periodic orbits
The techniques developed in [71] can also be used to prove an effective density the-

orem for periodic orbits ofH .
Let us first recall the following nondivergence result: there exists some �X > 0 so

that for every periodic orbit Y , we have

�Y .X�X
/ � 0:9; (7.2)

where �Y denotes theH -invariant probability measure on Y , see, e.g., [71, Lemma 3.6].
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Theorem 7.3 ([71]). Let Y � X be a periodic H -orbit in X . Then for every x 2 Xvol.Y /�� ,
we have

distX .x; Y / � C vol.Y /�� ;

where � � �2
X=L (for an absolute constant L) and C depends explicitly on �X , vol.X/, and

the minimum of the injectivity radius of points in X�X
. If � is congruence, � is absolute.

If � is an arithmetic lattice, Theorem 7.3 is a rather special case of the results we
discussed in Section 5. Note, however, that Theorem 7.3 does not require� to be arithmetic—
recall that arithmeticity of � was only used in the first step of the proof of Theorem 7.2. In
particular, unlike [31,32], Theorem 7.3 does not rely on property .�/.

We also draw the reader’s attention to the use of Margulis functions in establishing
isolation properties for periodic (or more generally intermediate) orbits in [41] and [83].

We end this exposition with the following application of Theorem 7.3.

Totally geodesic planes in hybrid manifolds
Gromov and Piatetski-Shapiro [56] constructed examples of nonarithmetic hyper-

bolic manifolds by gluing together pieces of noncommensurable arithmetic manifolds. Let
�1 and �2 be two torsion free lattices in Isom.H3/—recall that Isom.H3/ is an index 2
subgroup of O.3; 1/ and that SL2.C/ is locally isomorphic to O.3; 1/. Let Mi D H3=�i .
Assume further that for i D 1; 2, there exists 3-dimensional submanifolds with boundary
Ni � Mi so that

• The Zariski closure of �1.Ni / � �i contains O.3; 1/ı where O.3; 1/ı is the con-
nected component of the identity in O.3; 1/.

• Every connected component of @Ni is a totally geodesic embedded surface inMi

which separatesMi .

• @N1 and @N2 are isometric.

Let M be the manifold obtained by gluing N1 and N2 using the isometry between @N1

and @N2. ThenM carries a complete hyperbolic metric; thus, we consider �1.M/ as a lattice
in O.3; 1/. Let � 0 D �1.M/ \ O.3; 1/ı, and let � denote the inverse image of � 0 in G D

SL2.C/.
If �1 and �2 are arithmetic and noncommensurable, thenM is nonarithmetic, i.e.,

� is a nonarithmetic lattice in G. A totally geodesic plane in M lifts to a periodic orbit of
H D SL2.R/ in X D G=� .

Theorem 7.4. LetM be a hyperbolic 3-manifold obtained by gluing the pieces N1 and N2

from noncommensurable arithmetic manifolds along † D @N1 D @N2 as described above.
The number of totally geodesic planes inM is at most

L
�
area.†/ vol.X/��1

X ��1
X

�L=�2
X ;

where L is absolute and X D G=� is as above.
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In qualitative form, this finiteness theorem was proved by Fisher, Lafont, Miller, and
Stover [44, Thm. 1.4], see also [4, §12].
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Abstract

In this survey we shall consider Hamiltonian dispersive partial differential equations on
compact manifolds and discuss the existence, close to an elliptic fixed point, of special
recursive solutions, which are superpositions of oscillating motions, together with their
stability/instability properties. One can envision such equations as chains of harmonic
oscillators coupled with a small nonlinearity, thus one expects a complicated interplay
between chaotic and recursive phenomena due to resonances and small divisors, which
are studied with methods from KAM theory.
We shall concentrate mainly on the stability properties of the fixed point, as well as the
existence and stability of quasiperiodic and almost periodic solutions. After giving an
overview on the literature, we shall present some promising recent results and discuss pos-
sible extensions and open problems.
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1. Introduction

A huge variety of physical systems is modeled by Hamiltonian dispersive partial
differential equations (PDEs), such as the nonlinear Schrödinger (NLS) and wave (NLW)
equations, Euler and water wave equations, KdV, etc. A good point of view, which has pro-
duced many advancements in the last 30 years, is to take a dynamical systems perspective
and understand qualitative behavior by studying special invariant objects, such as finite- and
infinite-dimensional tori, chaotic and diffusion orbits, etc. This perspective is particularly
uselful for PDEs on compact domains, where one expects a complicated interplay between
chaotic and recursive phenomena. For concreteness, we shall concentrate on NLS equations
on a compact Riemannian manifold .M; g/ without boundary, namely

iut ��guC V.x/uC f
�
juj

2
�
u D 0 (NLS)

where f .y/ is analytic in a neighborhood of zero, with f .0/ D 0, and V is an appropriately
regular, real potential V W M ! R, so that u D 0 is an elliptic fixed point.

Of course, (NLS) is still a simplified model, since more physical examples have
derivatives in the nonlinearity; this is true for most PDEs modeling hydrodynamics and,
indeed, there are results in this more general setting, mostly confined to spheres or flat tori
T n WD Rn n Zn. In fact, in all the results we discuss, we shall impose some simplifying
condition, such as choosing simplemanifolds (for instance, tori or spheres, or more generally,
simple compact Lie groups), and/or simplify the model, for instance, by using a convolution
(instead of multiplicative) potential.

In studying the dynamics of (NLS) close to zero, one expects a complicated inter-
play between chaotic and recursive phenomena, with the qualitative behavior of solutions
depending in a subtle way on the geometry of M and on V . For instance, for stability results
one typically needs to use V as a “source of parameters,” say by modulating V so that the
eigenvalues of the elliptic operator��g C V satisfy some nonresonance conditions (such as
lower bounds on the integer combinations of eigenvalues). At the same time, to deal with the
nonlinearity, one needs rather precise information on products of eigenfunctions, particularly
on the coefficients that give the representation in the eigenfunction basis of the product of
two eigenfunctions. As a drawback, it is usually very difficult to get results for a fixed value
of V , for instance, V D 0.

Recalling that��g CV.x/ is self-adjoint andwith pure point spectrum, let . j /j 2I

be its eigenfunctions (I is some countable index set) and !j the corresponding eigenvalues.
Then we pass to the “Fourier side,” uD

P
j 2I uj j . Writing NLS in terms of this basis, we

have an infinite chain of harmonic oscillators coupled by a nonlinear term. It is easily verified
that the associated equations are Hamiltonian with respect to the standard symplectic form
� WD i

P
j 2I duj ^ d Nuj , with Hamiltonian

HNLS WD

X
j 2I

!j juj j
2

C P.u/; u D .uj /j 2I ; (1)

where P is a suitable nonlinearity with a zero of order at least four.
If we ignore the nonlinearity, the dynamics is very simple. All the linear actions

juj j2 are constants of motion and the dynamics is uj .t/D uj .0/e
i!j t , hence all solutions are
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superpositions of oscillations. For typical V ’s, the linear frequencies !j are rationally inde-
pendent and the solutions live on tori, with dimension depending on the number of nonzero
actions.

Now if we take into account the nonlinearity, the uj ’s interact, exchanging energy;
we want to study how, close to the origin, the dynamics differs from the linear one and over
which time scales. To make this quantitative, we fix a phase space h �L2 of sufficiently reg-
ular functions M ! C (typically, a spectrally defined Sobolev space prescribing sufficiently
fast decay of the linear actions juj j2 as j ! 1). If h is sufficiently regular then NLS is at
least locally well posed and one expects the dynamics to be close to the linear one at least
close to zero and for finitely long time.

If we look at a finite-dimensional truncation of (1), then the classical Kolmogorov–
Arnold–Moser (KAM) theory gives a rather clear picture: under some (generic) nondegen-
eracy assumptions,1 close to the origin most of the phase space is foliated by Lagrangian
invariant tori (with dimension half of that of the phase space). In particular, the system is
not ergodic and most initial data give rise to quasiperiodic solutions that densely fill some
invariant torus and are, therefore, perpetually stable.2 Possible chaotic behavior is restricted
outside a set of asymptotically full measure at the origin. Moreover, the origin and the max-
imal tori are stable, with nearby trajectories staying close for exponentially long times. All
the finite-dimensional results strongly depend on the dimension, and one cannot naïvely
perform finite-dimensional truncations in (1) and then take limits. In fact, in the infinite-
dimensional setting, the general picture is so far rather obscure and the main questions still
remain unanswered. All linear solutions are perpetually stable and typical ones lie on max-
imal infinite-dimensional invariant tori. What is their fate under perturbation? Is it still true
that typical initial data produce perpetually stable solutions? What are the stability times?

Of course, even the concept of a “typical solution” depends on our choice of the
measure on the phase space. Moreover, even at the linear level, simple topological issues
such as whether the maximal tori give a foliation, or whether the dynamics on the tori is
dense, depend strongly on the choice of the phase space and its topology.

In this survey we discuss some partial answers to these fundamental questions. We
concentrate on three issues:

1. Stability of zero. A good way to capture the transfer of energy between Fourier
modes is to study the time evolution of the norm j � jh; indeed, if h is sufficiently regular, a
growth in the norm represents transfers between low and high modes. With this in mind, we
take any initial datum u0 2 Bı.h/ and give estimates on the time T .ı/ such that the flow
u.t; �/ of the NLS equation is well defined and belongs to u0 2 B2ı.h/. A rough estimate3

gives T .ı/ � ı�2; to get better lower bounds, a good strategy is to find a change of vari-
ables on Bı.h/ which conjugates the Hamiltonian to N C R, where N is the normal form
preserving the norm j � jh while R is the remainder which is small and affects the dynamics

1 On ! and/or on the nonlinearity.
2 Namely the linear actions have a small variation for all times.
3 Coming from well posedness and the fact that the nonlinearity is at least cubic.
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over very long times. In constructing such a change of variables, one encounters small divi-
sors, i.e., in their analytic expression one has integer combinations of linear frequencies in
the denominator, so a major point will be to impose sufficiently strong irrationality condi-
tions and ensure some lower bounds. This is done by appropriately modulating the external
parameters.

2. Small quasiperiodic solutions. We look for special global solutions living on
finite-dimensional invariant tori. More precisely, we look for a sufficiently regular map U W

T n ! h and a frequency ! 2 Rn such that U.T n/ is invariant under the NLS dynamics,
which, when restricted to the torus, is the linear translation by !t . We work close to zero
in order to take advantage of the fact that all the solutions of the linearized equation which
are supported on finitely many Fourier modes are indeed quasiperiodic. Then starting from
such approximately invariant tori, one wishes to prove that nearby there exist truly invariant
ones. This is done by iterative approximations using a quadratic scheme. Again one needs
to control small divisors by modulating the external parameters (typically, one only needs as
many parameters as the dimension of the torus but there are a number of results where one
only needs one parameter, or even none). Note that these solutions are very special, even in
the case of an integrable PDE they are not typical.

3. Small almost-periodic solutions. Starting from quasiperiodic solutions with an
arbitrary number n of frequencies, it is very natural to wonder whether one can pass to the
limit as n ! 1 thus obtaining an almost-periodic solution. Since almost-periodic solutions
are “typical” for integrable systems, a main question is how rare such solutions are in a
nonintegrable setting. Unfortunately, up to now all results are for PDEs on the circle and
show the existence of few and very regular solutions.

Having proved the existence of these special global solutions, an interesting point is
to study their stability properties, thus giving an insight on the nearby dynamics for finite but
long times. A strategy is to perform changes of variables to put the system in normal form
in a neighborhood of the solution. A dual point of view is to look for unstable/chaotic orbits
driven by the presence of resonant terms in the nonlinearity.

We shall concentrate on (NLS); however, all the questions described above are
tied mainly to the Hamiltonian formulation (1), thus they can be reformulated for PDEs on
unbounded domains, when��g C V.x/ has a pure point spectrum !j ! 1. An interesting
(and widely studied) example is the harmonic oscillator, namely M D Rn and V.x/ D jxj2.

In the next sections we shall give a brief (and necessarily incomplete) survey on the
three questions described above, together with some open problems.

2. Long time stability

The problem of long-time stability for infinite-dimensional dynamical systems has
been studied by many authors, starting from [13] for infinite chains with a finite range cou-
pling. In the PDE context, after the first results in [5,6,28], a breakthrough was in the papers
[7,9]where the authors proved polynomial bounds on the stability times for a rather wide class
of tame-modulus PDEs depending on parameters. Their result applies to the NLS equations

3555 Stability and recursive solutions in Hamiltonian PDEs



on tori, where they show that for any N � 1 there exist many values of the parameters for
which any ı-small initial datum inHp (with p D p.N/ tending to infinity as N ! 1) stays
2ı small for times T � C.N; p/ı�N.

An interesting question is how such results perform in applications to PDEs with
derivatives in the nonlinearity; a series of results in this direction were proved for the Klein–
Gordon equation on Zoll manifolds in [8,41–43]. Themethod developed in these papers, based
on a good control of the small divisors, together with ideas from paradifferential calculus,
does not apply to the case where the PDE has a superlinear dispersion relation.

Recently there has been a lot of progress regarding4 quasilinear and fully nonlin-
ear PDEs on M D S1, we mention [20,21] on the water waves and [52] for quasilinear NLS.
Regarding higher-dimensional quasilinear PDEs, we mention [50,53] for Klein–Gordon and
Schrödinger equations on higher-dimensional tori. While most results deal with parameter
families of PDEs (and hold for most values of the parameters), we mention [14] on perturba-
tions of the integrable 1D NLS.

If one wants to go beyond polynomial bounds, up to now the literature is restricted
to PDEs on tori, with initial data which are at least C1. In [47] the authors considered the
case of analytic initial data and proved subexponential bounds of the form T � ec ln. 1

ı
/1Cˇ for

classes of NLS equations in T d . Such bounds have been discussed also in [25,36] in Gevrey
class for the 1D NLS.

In order to describe the results more in detail, let us restrict to the simplest possible
case of a translation invariant NLS with a convolution potential whenM D S1 so the Fourier
decomposition is u.x/ D

P
j 2Z uj e

ijx . We consider

iut � uxx C V ? uC f
�
juj

2
�
u D 0; V ? u WD

X
j 2Z

ujVj e
ijx ; .Vj /j 2Z 2 `1.Z;R/;

(2)
so the NLS Hamiltonian (1) has frequencies !j D !j .V / D j 2 C Vj and P WDR

T F.ju.x/j
2/dx with F.y/ WD

R y

0
f .s/ds. An important feature is that the equation now

has two constants of motion

L D

X
j 2Z

juj j
2; M D

X
j 2Z

j juj j
2;

corresponding respectively to gauge invariance u.x/ ! ei�u.x/ and translation invariance
u.x/ ! u.x C �/.

As we have explained before, the stability results depend on imposing sufficiently
good nonresonance conditions, otherwise one can produce counterexamples where the
actions have a fast drift; see, for instance, [57]. For this purpose, we shall assume a very strong
condition, proposed by Bourgain in [32], which is tailored to 1D PDEs and gives good esti-
mates for many choices of the phase space. More precisely, recalling that !j .V /D j 2 C Vj ,

4 We say that a PDE is semilinear if the highest order derivatives occur in the linear part,
quasilinear if the same order derivatives appear in the linear and nonlinear parts but with
degree one, otherwise fully nonlinear if the highest derivative has degree higher than one.
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for  > 0 we define the set of Diophantine frequencies

D WD

²
V 2

�
�
1

2
;
1

2

�Z

W
ˇ̌
!.V / � `

ˇ̌
> 

Y
j 2Z

1

1C j j̀ j2hj i2
; 8` 2 ZZ

W 0 < j`j<1

³
: (3)

It results (see [25,31]) that D is large with respect to the natural probability product measure
on Œ� 1

2
; 1

2
�Z. From now on we shall assume that V 2 D .

Theorem 1 (Sobolev stability, [9]). For anyp large enough and any initial datum u.0/D u0

satisfying
ju0jH p WD ju0jL2 C

ˇ̌
@p

xu0

ˇ̌
L2 � ı � ı0 � p�3p; (4)

the solution u.t/ of .NLS/V with initial datum u.0/ D u0 exists and satisfiesˇ̌
u.t/

ˇ̌
Hp

� 4ı for all times jt j � T � p�5pı�
2.p�1/

�S : (5)

An interesting feature of this result is that the stability time is related to the regular-
ity. The estimates given here are those for (2) with the Diophantine conditions (3); however,
a similar phenomenon appears in all the known literature.

Let us now increase the regularity and consider Gevrey initial data, let us fix 0 <
� < 1, and define the function space

Hs;a WD

²
u.x/ D

X
j 2Z

uj e
ijx

2 L2
W juj

2
s;a WD

X
j 2Z

juj j
2
hj i

2e2ajj jC2shj i�

< 1

³
; (6)

with the assumption a� 0, s > 0.We remark that if a > 0, this is a space of analytic functions,
while if a D 0 the functions have Gevrey regularity.

Theorem 2 (Gevrey stability, [25,36]). Fix any a � 0, s > 0. For any u0 such that

ju0js;a � ı � ı0 � 1;

the solution u.t/ of (2) with initial datum u.0/ D u0 exists and satisfiesˇ̌
u.t/

ˇ̌
s;a

� 2ı for all times jt j �
T0

ı2
e.ln ı0

ı
/
1C�=4

:

As can be expected, as s ! 0 one has ı0; T
�1
0 ! 0, on the other hand, modulating

the parameter a does not give significantly improved bounds. This leads to two very natural
questions: Can one get better bounds for analytic initial data? Conversely, can we lower the
regularity still obtaining superpolynomial stability times?

A reasonable strategy for tackling the second question is proposed in [25] where we
discussed a BNF approach for (2) on abstract weighted functions spaces. Given a positive
sequence w D .wj /j 2Z, with 1 � wj % 1, let us consider the Hilbert space

`2
w WD

²
u WD .uj /j 2Z 2 `2.C/ W juj

2
w WD

X
j 2Z

w2
j juj j

2 < 1

³
: (7)

By the Fourier transform, such spaces identify corresponding function spaces of periodic
functions. For instance, if wj D hj ip , then5 F .`2

w/ identifies with the Sobolev space Hp .
Similarly, if wj WD hj ieajj jCshj i� , we are in the Gevrey/analytic case ofHs;a.

5 The Fourier transform F identifies sequences with functions F ..uj /j 2Z/D
P

j 2Z uj e
ijx .
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In this context we gave some computationally heavy, but very explicit conditions
on w which ensure that a BNF theorem can be applied and allows computing the stability
times. We concentrated on the two cases above, but if one runs the same computations with
wj WD hj iep log.1Chj i/2 then one gets times of order ı� ln ln.ı�1/.

It would be interesting to understand whether such bounds are optimal. A natural
strategy would be to construct solutions to (NLS) whose Sobolev norm increases in time.
There has been a lot of interest in this question and in particular on whether one can construct
solutionswhose norm becomes arbitrarily large, or even diverges as t ! 1. Amechanism for
ensuring finite, but arbitrarily large growthwas constructed in [33] for the cubic parameterless
NLS onT 2 (see also [61] for the noncubic case and [59] for a case with convolution potential).
The idea is to look for solutionswhich are approximately supported on Fouriermodes � � Z2

which are resonant (i.e., some linear combinations of!j ’s with j 2 � are zero or very small).
Then the interactions between Fourier modes due to the nonlinearity become dominant and
the Sobolev norm varies. The very beautiful approach of [33] seems strongly tied to the
NLS equation, if one only wants to find solutions which only, say, double their Sobolev
norm then there are more robust mechanisms. One idea, see [63], is to prove the existence
of secondary tori which transfer energy between two sets of Fourier modes periodically in
time. Another very interesting approach, see [58], is to construct chaotic orbits generalizing
“Arnold diffusion” to infinite dimension.

2.1. Questions and open problems
Q1. Can one obtain stability times on a fixed Sobolev spaceHp , with T .ı/ growing

faster than polynomially as ı ! 0?

Q2. Can one prove stability for most V for the NLS with a multiplicative potential?
This was considered in [9]. However, in order to obtain a stability time of order ı�N,

the authors had to restrict the potential to a small ball (in an appropriate norm) with radius
going to zero as N ! 1. The delicate point here is what kind of irrationality conditions can
be imposed on the linear frequencies !j , which in this case are the periodic spectrum of the
Sturm–Liouville operator �@xx C V.x/ where V is an analytic function.

Q3. Can one extend the stability results to general manifolds in higher dimension?

Q4. Can one extend the subexponential Gevrey bounds to quasilinear PDEs?

Q5. What kind of bounds can be given on instability times?

2.2. An idea of the strategies
To conclude this section, let us briefly illustrate the Birkhoff normal form procedure

in its simplest form applied to (2). For this purpose, we consider an analytic translation-
invariant Hamiltonian written as an absolutely convergent power series

H.u/ D

X
.˛;ˇ/2M

H˛;ˇu
˛

Nuˇ ; u˛
WD

Y
j 2Z

u
j̨

j ; (8)
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where M WD ¹.˛; ˇ/ 2 NZ � NZ j j˛j D jˇj < C1;
P

j 2Z j. j̨ � ǰ / D 0º, satisfying
the reality conditionH˛;ˇ D Hˇ;˛ , 8 .˛; ˇ/ 2 M.

Given a Hamiltonian as in (8), we denote by XH its Hamiltonian vector field with
respect to the symplectic form� WD i

P
j 2I duj ^ d Nuj . We say thatH 2 Hr .`

2
w/ for r > 0

if the Hamiltonian vector field XH of the Cauchy majorant of the Hamiltonian is a bounded
analytic map Br .`

2
w/ ! `2

w:

jH jr;`2
w

WD
1

r

�
sup

juj
`2
w

�r

jXH j
`2

w

�
< 1; H.u/ WD

X
.˛;ˇ/2M

jH˛;ˇ ju˛
Nuˇ : (9)

The space Hr .`
2
w/ is closed with respect to Poisson brackets and, moreover, if

S 2 Hr .`
2
w/ has a sufficiently small norm then it generates a well-defined time-one flow

Br .`
2
w/ ! `2

w. Finally, we say that a HamiltonianH has scaling (degree) d.H/ � d if6

H D

X
.˛;ˇ/2MWj˛jCjˇ j�dC2

H˛;ˇu
˛

Nuˇ
I

note that the scaling degree is additive with respect to Poisson brackets.
Now we recall that the NLS Hamiltonian (1) has the formH D D! C P with P of

scaling � 2 andD! WD
P

j 2Z !j juj j2 having scaling zero.
Let us conjugateH by the time-one flowˆ1

S with generating Hamiltonian S . Denot-
ing7 adS W H 7! ¹S;H º, the Lie exponentiation formula reads

H ıˆ1
S D e¹S;�ºH D D! C P C ¹S;D!º C

1X
hD2

adh�1
S

hŠ
¹S;D!º C

1X
kD1

adk
S

kŠ
P:

Now at least at the level of formal power series, the last two summands have scaling � 4

(just by the additivity of the scaling degree), so our goal is to cancel the term P C ¹S;D!º

(which has scaling � 2) up to a remainder which is either action preserving or of scaling
� 4. Let

Rr

�
`2

w

�
WD

²
H 2 Hr

�
`2

w

� ˇ̌̌
H D

X
˛¤ˇ

H˛;ˇu
˛

Nuˇ

³
; (10)

introduce the decomposition Hr .`
2
w/ D Rr .`

2
w/ ˚ Kr .`

2
w/ and the continuous projections

…KH WD
P

˛Dˇ H˛;ˇu
˛ Nuˇ ,…RH WD

P
˛¤ˇ H˛;ˇu

˛ Nuˇ . Now all Hamiltonians inKr .`
2
w/

are action preserving while for any R 2 Rr .`
2
w/, at least formally, one has

RC ¹S;D!º D 0 , S D �i
X

.˛;ˇ/2M

R˛;ˇ

! � .˛ � ˇ/
u˛

Nuˇ ;

this is called the “homological equation.” Thus we choose S0 so that ¹S0;D!º C…RP D 0

and, provided that we can show that it is well defined and has a sufficiently small norm, we
have found a change of variables eadS0 W D! C P  D! C Z1 C P1 where Z is action

6 Note that saying thatH has scaling � d means that its Taylor series has minimal degree of
homogeneity � d C 2.

7 The Poisson brackets are defined as ¹S;H º WD dS.XH /.
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preserving and now P1 has scaling � 4. Following the same scheme, if we choose S1 so that
¹S1; D!º C…RP1 D 0 and again S1 has sufficiently small norm then, composing the two
changes of variables, we conjugateD! C P  D! CZ2 C P2 where now P2 has scaling
� 6.

Assuming that P 2 Hr0.`
2
w0
/, for some r0; w0 D .w0;j /j 2Z, does not imply that

S1; S2 are such. We have reduced the problem to finding a correct weighted space such that
S1; S2 2 Hr .`

2
w/ for r small. Note that since they have scaling � 2 and � 4, respectively,

once S1; S2 are well defined their norm can be made arbitrarily small by just taking r small.
Let us consider the simple example of w D ws D .hj i2eshj i�

/j 2Z. Direct computa-
tions show that P 2 Hr0.`

2
w0
/, for some r0 > 0. Now there are two key points:

Immersions. If H 2 Hr0.`
2
w0
/ then H 2 Hr .`

2
ws
/ for all r � r0 and s � 0 and the

norm is decreasing in s and increasing in r .
Homological equation. IfR 2 Hr .`

2
ws
/ then the solution S of the homological equa-

tion belongs to Hr .`
2
wsC�

/ for all � > 0 and

jS j`2
wsC�

� eC�
� 3

�
jRj`2

ws
: (11)

Thus for any given � > 0, there exists r2 such that, for jr j � r2, both S1; S2 are well defined
and small and the composition of their time-one flows maps Br .`

2
w2�
/ ! `2

w2�
. This gives

all the necessary estimates and one can repeat this procedure N times. At the end, for jr j �

rfin, we get a change of variables Br .`
2
wN�
/ ! `2

wN�
which conjugates the Hamiltonian to

D! CZN CRN whereZN depends only on the actions andRN has scaling 2N C 2. Of course,
we have also estimates on the norms ofZN, RN, and RN � r2NC2. Now if we want a stability
estimate in `2

ws
, we first leave N as a free parameter and fix � D sN�1. This gives a stability

estimate � r�.2NC2/. Finally, by optimizing N, one gets the subexponential bounds. Now if
we take any weight w and follow the same strategy, we only need to verify the immersions
and control the homological equation, this is what we do in [25].

The main difference in the Sobolev case is that in solving the homological equation,
if R 2 H .`2

w/ with wj D hj ip , then S 2 H .`2
w0/ with w0

j D hj ipC� with � fixed. This is
a typical feature in the setting with finite regularity, in this context it produces the relation
between stability time appearing in [9].

3. Quasiperiodic solutions

There is by now a vast literature on quasiperiodic solutions forNLS (mainly confined
to the case when M is a torus or a sphere), covering also PDEs without external parameters
and quasilinear PDEs. The first results in this direction (in the early 1990s, we mention,
for example, Kuksin, Wayne, Craig, Bourgain, Pöschel) were for semilinear 1D PDEs with
with periodic or Dirichlet boundary conditions. There were essentially two approaches, both
quadratic iteration schemes generalizing Newton’s steepest descent method:

.1/ Extend KAM theory of elliptic tori to the infinite-dimensional setting (see [67–70,73,80])
thus proving not only existence but also linear stability.
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This amounts to looking for an analytic symplectic change of variables which con-
jugates the Hamiltonian to a normal form where the invariant torus is flat, namely there exist
a set of indexes � � Z of cardinality n and a set of symplectic variables such that the torus
in these variables is uj D 0 for all j … � and juj j D const. for j 2 � . Finally, the dynamics
on the torus is a linear translation (with Diophantine frequency) and linearized dynamics in
the normal directions to the torus is diagonal and elliptic.

.2/Look for the torus embeddingU W T n 7! h (the phase space) as the solution of a nonlinear
functional equation F.U /D 0. Apply a Newton method to construct successive approxima-
tions, provided that one has some control on the left inverse for the linearized operatordF.U /

at an approximate quasiperiodic solution. The main difficulty is that dF.U / is a small per-
turbation of a diagonal operator whose spectrum accumulates to zero, thus there is a small
divisor problem which is dealt with by a multiscale analysis. This is the so-called Craig–
Wayne–Bourgain (CWB) approach, see [28, 40] and the papers [16, 18] for a more modern
point of view. Of course, these two approaches have many similarities and can be combined
in an effective way; see, for instance, [17].

To make the statements more concrete, let us restrict to the NLS equation (2). We
fix a set � � Z of cardinality n and assume, for simplicity, that Vj D 0 for all j … � ; finally,
we fix an appropriate phase space (say, `2

w for some weight, e.g., wj D hj i). We look for
solutions close to the n-dimensional approximately invariant torus Tn such that juj j D 0 for
all j … � and juj j2 D Ij > 0 otherwise. In a neighborhood of such torus, we can pass to
“elliptic-action angle variables” � W .�;y; z/! u, with uj D

p
Ij C yj e

i�j , for j 2 � while
zj D uj for j … � . In these variables the NLS Hamiltonian reads

HNLS D

X
j 2�

�
j 2

C Vj

�
yj C

X
j …�

j 2
juj j

2
C P : (12)

Now the KAM scheme ensures, for many values of V , the existence of a bounded symplectic
change of variables, defined in a neighborhood of Tn, which conjugates the Hamiltonian toe!.V / � y C

X
j 2Zn�

�j .V /jzj j
2

C Pfin; Pfin D O.y2
C yz C z3/; (13)

wheree!;� are appropriate real functions of V . This means not only that Tn is now invariant,
but also that the dynamics in the normal directions zj is (at least at the linear level) the
rotation by ei�j t .

Conversely, with the CWB method one can conjugate the NLS Hamiltonian to a
normal form like (12), but where the quadratic terms in z are neither diagonal nor indepen-
dent of � .

While the first approach is technically simpler and gives a stronger result, it requires
stronger hypotheses which give some control on the difference of distinct eigenvalues of
the linearized equation at an approximately invariant torus, that are not verified for many
physically interesting PDEs. Indeed, in the case of manifolds of dimension greater than one,
the first results were by the CWB method, we mention, for instance, [29,31] for the NLS on
tori and [19] for a forced NLS on simple compact Lie groups.
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Regarding linear stability issues, note that if one proves existence of solutions (via
CWB) then one can prove the linear stability a posteriori, for instance, by proving that the
PDE linearized at the quasiperiodic solution is “reducible,” i.e., can be conjugated to constant
coefficients (or even diagonalized) via a time quasiperiodic change of variables on the phase
space. Then the stability can be inferred by solving the linear dynamics, which becomes triv-
ial. In this setting if one wants to conjugate via a close to identity change of variables (since
the solution is small, the linearized operator is close to diagonal, and one hopes to apply
some perturbative argument), one has to deal with small divisors related to the differences
of eigenvalues, just as in the KAM case. This is just like diagonalization algorithms for finite-
dimensional matrices close to a diagonal one, where one needs distinct eigenvalues in order
to apply perturbative arguments. Of course, in infinite dimension, differences of eigenvalues
may also accumulate to zero (and typically do in our setting), so the best hope is to impose
some nonuniform lower bound. Thus, proving linear stability for the solutions of PDEs in
dimension higher than one is typically a rather difficult question, due to the multiplicity of
the eigenvalues, the idea is to introduce a partition of the eigenvalues into clusters so that one
has control on the difference of eigenvalues in different clusters while the dynamics inside a
cluster is stable.

A breakthrough was in [44, 45] where the authors proved reducibility for the NLS
equation with a convolution potential on T d . This requires a subtle analysis and the intro-
duction of the class of Töplitz–Lipschitz functions. Their approach is based on a good control
of the asymptotics of eigenvalues of operators of the form ��C V.x; !t/ where V is peri-
odic in all its variables and x 2 T d , see also [12] for a discussion on general flat tori. As far
as I am aware, the only other manifolds on which there are reducibility results are spheres
(see [51] for Zoll manifolds). Instead of the reducibility, one can concentrate on the control
of Sobolev norms for the corresponding linear operator. This has been discussed by many
authors, see [10,11,24,30,41].

Regarding the question of parameterless PDEs, most results are in the 1D case start-
ing from [70, 75]. Let us briefly discuss the completely resonant (NLS) with V D 0 and
M D T d . The idea is to first perform one step of Birkhoff normal form in order to extract
parameters from the initial data. Unfortunately, if d > 1, the normal form is not integrable
and actually has a rather complicated structure. This is well known and used, for instance,
in [33] in order to prove explosion of Sobolev norms. Building on the paper [56] for the case
d D 2, in [76–78] we discussed this problem and showed that in the neighborhood of appro-
priately chosen initial data the NLS Hamiltonian after one step of BNF is indeed integrable,
satisfies the twist condition, and has appropriately controlled distinct eigenvalues.

Interestingly, the good initial data are found by first choosing the Fourier support
� � Z in a generic way (i.e., outside the zero set of some nontrivial polynomial) and then by
choosing the actions on such support in some Cantor set. This allows proving the following
theorem for any equation of the type (NLS) with M D T d and V D 0 (see also [79]):

Theorem ([78]). Fix any n and any choice of generic frequencies S D ¹j1; : : : ;jd º � Zn.
For " sufficiently small, there exists a compact set C" 2 Œ"=2; "�n of positive measure,
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parametrizing bijectively a set of analytic quasiperiodic solutions of NLS of the type

C" 3 � 7! u.�; x; t/ D

X
j 2�

q
�j e

it.jj j2C!j .�//eij �x
CO.�2/:

Moreover, the linearized NLS operator at a quasiperiodic solution is conjugated to a constant
coefficient block-diagonal form with uniform bounds on the dimension of the blocks.

In (NLS), the nonlinearity is analytic and so the quasiperiodic solutions we have dis-
cussed are at least C1. If one considers nonlinearities with finite (but rather high) regularity
then one can obtain analogous results (both KAM and Nash–Moser) for finite regularity
solutions.

All the results described above are for semilinear PDEs. In order to deal with the
quasilinear case, where the derivatives in the nonlinearity have the same order of the linear
part, one needs to introduce new perspectives. A real breakthrough appeared in [2], where the
authors introduced ideas from pseudodifferential calculus (see also [64]) to produce a general
method applicable to PDEs on the circle, we mention [2,3,49,54], as well as [1,22,48] for the
water wave equation. There have been some extensions of these results to higher dimensions;
we mention [4,38,71].

3.1. Questions and open problems
Q6. Can one develop a “general” pseudodifferential approach to deal with quasilin-

ear dispersive PDEs in high dimension?
Even on tori, the results up to now rely on special features of the equations. An

interesting strategy was developed in [11] for a linear NLS (see also [72]).

Q7. Can one study the NLS with external parameters or even a multiplicative poten-
tial as in [16] when M is a compact Lie group? And having done this, can one prove a
reducibility result? Can one deal with the parameterless case?

These questions are largely open and interesting even in the case when M is an
irrational torus.

Q8. It is expected that the solutions described in this section are linearly stable or
have at most a finite number of linearly unstable directions. What kind of normal form can be
achieved close to the tori? This was discussed, for instance, in [15]. What can be said about
nonlinear stability/instability?

In [46] the authors discuss polynomial stability times close to a periodic plane wave
solution. For the NLS on T 2, there are a number of instability results, stemming from
the paper [33]; we mention [62] close to the plane wave solutions and [60] close to one-
dimensional quasiperiodic solutions.

4. Almost periodic solutions

By definition, almost-periodic solutions are solutions which are limits (in the uni-
form topology in time) of quasiperiodic solutions. A very naïve approach would be to find
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them by just constructing quasiperiodic solutions supported on invariant tori of dimension
n and then take the limit n ! 1. Unfortunately, the KAM procedure (of, say, [70,74]) is not
uniform in the dimension n, and, by taking the limit, one just falls on the elliptic fixed point.

A refined version of this very natural idea is to construct a sequence of invariant tori
of growing dimension using at each step the invariant torus of the previous one as an unper-
turbed solution: in this way, the .nC 1/th and nth tori are extremely close, leading to very
regular solutions. This was done by Pöschel [75] by using the KAMmethod and by Bourgain
[28] via the Nash–Moser approach, getting solutions which decay at least superexponentially
(see also [55] for solutions with exponential decay).

A different approach was proposed by Bourgain in [32] to study the translation-
invariant NLS (2). The idea is to construct a converging sequence of infinite-dimensional
approximately-invariant manifolds and prove that the limit is the support of the desired
almost-periodic solution. The fact that one does not restrict to neighborhoods of finite-
dimensional tori allows for a better control of the small-divisors and hence the construction
of more general, i.e., less regular solutions in spaces of Gevrey regularity. A drawback of
Bourgain’s approach is that it works only for “maximal tori,” namely one has to impose some
lower bounds on the actions of the approximately invariant 1-dimensional tori. His state-
ment concerns the quintic NLS on S1, i.e., (2) with f .y/ D 3y2. Here we give a slightly
more general version taken form [35], where the authors prove also stability of the tori.

Theorem (Gevrey almost periodic solutions, [32]). Fix s > 0, 0 < � < 1. For all 0 < r � 1

small enough, and any “approximate initial datum”

u0.x/ D

X
j 2Z

p
Ij e

ijx such that r=2 <
p
Ij e

shj i
�

hj i
2 < r; (14)

there exists a set of positive measure in Œ�1=2;1=2�Z (depending on u0) such that for all V in
such a set there exists one almost-periodic solution with j

p
Ij � juj .t/jj � re�shj i

�

hj i�2.

Similar results were proved in [37] for the wave equation.
In [26] we gave a more precise description of these solutions, proving that for all

frequencies ! 2 D and for any approximate initial datum u0 in a small ball in `1
ws

WD

¹u W .eshj i�
hj i2uj /j 2Z 2 `1º, there exists a potential V D V.!; u0/ 2 `1 such that the

corresponding NLS equation has an almost periodic solution of frequency ! close to
p
I .

Furthermore, in [26] we developed a strategy which allows constructing in a unified context
tori of Gevrey regularity and of any dimension essentially supported on the Fourier modes
belonging to any subset � � Z. Essentially, this amounts to Bourgain’s result, but in (14)
we only need

p
Ij e

shj i
�

hj i2 < r . This is an interesting novelty because, with Bourgain’s
condition, the acceptable u0 are of zero measure.

In [26] we discussed Gevrey solutions, but one can find even less regular solutions,
see [34]. However, the question of finding maximal tori which are not C1 is still open. If
one looks for “nonmaximal” tori, approximately supported on an infinite set � , then one can
reach very low regularity. Again, just as in the quasiperiodic case, the choice of the support
can be used as a precious additional source of parameters. Given a function u W R2 ! C
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which is 2�-periodic in x and such that the map t 7! u.t; �/ 2 F .`1/ is continuous,8 we say
that u is a weak solution of (2) if, for any smooth compactly supported function � W R2 ! R,
one has Z

R2

.�i�t C �xx/u �
�
V � uC f

�
juj

2
�
u

�
�dx dt D 0: (15)

Theorem ([27]). For almost every Fourier multiplier V , there exist infinitely many small-
amplitude weak almost-periodic solutions of (2). Infinitely many of such solutions are not
classical and infinitely many are classical.

Unfortunately, such solutions are not in any way typical and, in fact, correspond to
very special infinite-dimensional elliptic tori.

The question whether full-dimensional tori exist in the Sobolev class is still open.
Apart from the interest per se, these low regularity solutions could be used in order to find
solutions for parameterless PDEs. Essentially one wants to solve the “countertem equation”
V.!; u0/ D 0 by finding u0 D u0.!/.

4.1. Questions and open problems
Q9. Are almost-periodic solutions generic in some Banach space? For example, is

it true that for many convolution potentials the tori cover a positive measure set (with respect
to the probability product measure in the Gevrey space Br .`

1
ws
/)?

Q10. Can one construct maximal tori with Sobolev regularity?

Q11. Can one construct almost-periodic solutions for the NLS on higher-dimen-
sional manifolds?

At least in the case of tori, most of the strategy proposed by Bourgain can be gener-
alized, the main point here seems to be the choice of a smart Diophantine condition.

Q12. Can one construct almost-periodic solutions for parameterless NLS equations?
Here even the case of 1D NLS with generic multiplicative potentials would be interesting.

Q13. Can one deal with unbounded nonlinearities?
This has been discussed in the case of a forced quasilinear Airy equation in [39],

generalizing the approach for the quasiperiodic case.

Q14. Can one construct almost-periodic solutions for small perturbations of inte-
grable PDEs?

In the case of quasiperiodic solutions, there are a number of results, we mention
[23,65,66,68]. In order to cover the almost-periodic case, the main point is to control convexity
properties for the Hamiltonian in action angle variables.

4.2. An idea of the strategies
Let us first discuss the linear case. Recall that we are restricting to 1DNLSwith con-

volution potential so that the linear actions juj j2 are constants of motions and the dynamics

8 Here F is the usual Fourier transform.
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is
uj .t/ D uj .0/e

i!j t ; j 2 Z; ! D .!j /j 2Z; !j WD j 2
C Vj :

Let us call �0 WD ¹j 2 Z j uj .0/ ¤ 0º.
If �0 is a finite set, the corresponding solution u.t; x/ WD

P
j 2Z uj .t/e

ijx is quasi-
periodic and analytic both in time and space.

If �0 is infinite, the regularity of u.t; x/ obviously depends on that of the initial
datum. If u.0/ WD .uj .0//j 2Z 2 `1 then u.t; x/ is a weak solution of (2). Moreover, such
a solution is a time almost-periodic function, being the limit of the quasiperiodic trunca-
tions

P
jj j�n uj .0/e

i!j tCijx as n ! 1. Note, finally, that the regularity (in any reasonable
weighted space) is that of the initial datum. The support of each solution is an invariant
torus: given an initial datum u.0/, set I WD .Ij /j 2Z with Ij D juj .0/j

2, then the motion is
supported on TI WD ¹u W juj j2 D Ij 8j 2 Zº.

Now the nature of these invariant tori strongly depends on the choice of the phase
space. When discussing the stability of zero, a natural context was to work with the Hilbert
spaces `2

w, which induce on the tori the product topology. In this context, however, this
produces a number of problems, related to the density of finite-dimensional tori. In KAM
algorithms, one typically wants to “Taylor expand” close to the approximately-invariant tori,
but this requires a Banach manifold structure, so even though the product topology is the
natural one with respect to the group structure, the KAM algorithm seems to require a finer
choice, e.g., weighted spaces based on `1,

`1
w WD

°
u WD .uj /j 2Z 2 `1.C/ W jujw WD sup

j 2Z
wj juj j < 1

±
: (16)

Given a sequence I D .Ij /j 2Z with Ij � 0 and
p
I WD .

p
Ij /j 2Z

2 `1
w , we consider the

torus
TI WD

®
u 2 `1

w W juj j
2

D Ij 8j 2 Z
¯
: (17)

Now the map

i W T �0 ! TI � wp; ' D .'j /j 2�0
7! i.'/; ij .'/ WD

8<:
p
Ij e

i'j for j 2 �0;

ij .'/ WD 0 otherwise;
(18)

is an analytic immersion provided that we endow T �0 with the `1-topology. Note that,
assuming also that infj

p
Ij wj > 0, the map i is an embedded torus, in a neighborhood

of which one can construct local action angle variables. By construction, the linear dynam-
ics on the torus TI is ' ! ' C !t .

Since the map t 7! !t 2 T �0 is not even continuous (endowing T �0 with the `1-
topology and recalling that !j � j 2), the regularity of t 7! i.!t/ depends on the choice of
the actions Ij . If we assume infj

p
Ij wj > 0, then it is not continuous with respect to the

strong9 topology.

9 Note that the map is continuous with respect to the product topology, which coincides with
the weak-� topology on bounded sets.
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In contrast with the finite-dimensional case, even if ! has rationally independent
entries, it is not straightforward to understand whether this invariant torus is densely filled10

by the solution’s orbit or not. In fact, this issue is related to the asymptotic behavior of !.
For example, if we require that �0 is a very sparse set then the density follows, see [27].

We say that TI is a KAM torus of frequency ! 2 RZ for the Hamiltonian N if it
has the form

P
j 2Z !j juj j2 C P , with P D O.juj2 � I /2, so that the Hamiltonian vector

field XP vanishes on the torus TI . Indeed, under the hypotheses above, TI is invariant and
the restricted dynamics is linear with frequency !, namely

uj .t/ D uj .0/e
i!j t ;

ˇ̌
uj .0/

ˇ̌2
D Ij ; j 2 Z: (19)

Note that in this definition the only relevant frequencies are those corresponding to nonzero
actions.

Let us now fix the support of the solution by taking a subset � � Z and consider
p
I 2 NBr .`

1
w / with Ij D 0 for j 2 �c . We say that the torus TI is an elliptic KAM torus

of frequency � 2 R� for the Hamiltonian N with normal frequency .�j /j 2Zn� if, setting
for notational convenience uj D vj for j 2 � and uj D zj otherwise, one has (compare
with (13) with y D jvj2 � I )

N D

X
j 2�

�j jvj j
2

C

X
j 2Zn�

�j jzj j
2

CR; R D O
��

jvj
2

� I
�2

C
�
jvj

2
� I

�
z C z3

�
:

We can now state our version of KAM theorem for infinite tori. We shall concentrate on
the elliptic tori and in particular on the low regularity case. To this purpose, for p > 1, we
consider the Sobolev space `1

wp
where now wp D hj ip . In order to work in this low regularity

setting, we need to impose some conditions on � requiring that it is sufficiently sparse (for
instance, � D 2N). For any such � , for all r > 0 sufficiently small, for every

p
I 2 Br .`

1
wp
/

with Ij D 0 for j 2 �c , we have

Theorem (Sobolev case [27]). There exists a positivemeasure Cantor-like set in Œ�1=2;1=2�Z

and for all V in this set there exists a close to identity change of variablesˆ W Br .`
1
wp
/! `1

wp

such that TI is an elliptic KAM torusHNLS ıˆ.

To give an idea of the proof, let us restrict to the maximal case. By the very definition
of a KAM torus, we wish to decompose a regular Hamiltonian as a sum of regular terms with
an increasing “order of zero” at TI . Namely, given a HamiltonianH 2 Hr .`

1
w /, we wish to

write it as sum of three terms, all in Hr .`
1
w /,

H D H .�2/
CH .0/

CH .�2/

so that XH .�2/ is not tangent to TI ,H .0/ vanishes at TI and its vector field is tangent but not
necessarily null, whileH .�2/ DO.juj2 � I /2 (this means that the corresponding vector field
vanishes at TI ). The main point is to make a power series expansion centered at I without
introducing a singularity at zero. Start from a regular HamiltonianH.u/ expanded in Taylor

10 In the product topology such solutions are always dense.
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series at u D 0 and rewrite every monomial as juj2mu˛ Nuˇ with ˛; ˇ with distinct support.
Then define an auxiliary Hamiltonian H.u; w/ (here w D .wj /j 2Z are auxiliary “action”
variables) by the substitution juj2mu˛ Nuˇ  wmu˛ Nuˇ .

Since we are considering functions on an `1 space, it turns out that H.u; w/ is
analytic in both u and w. In particular, we can Taylor expand with respect to w at the point
w D I , with I being in the domain of analyticity.

Then we setH .�2/.u/ WD H.u; I /,H .0/.u/ WDDwH.u; I /Œjuj2 � I �, andH .�2/.u/

is what is left. As an example, the Hamiltonian H D ju1j2ju2j4 Re.u1 Nu3/ has auxiliary
Hamiltonian H.u;w/ D w1w

2
2 Re.u1 Nu3/ and decomposes into

H .�2/
WD I1I

2
2 Re.u1 Nu3/; H .0/

WD
�
I 2

2

�
ju1j

2
� I1

�
C 2I1I2

�
ju2j

2
� I2

��
Re.u1 Nu3/;

H .�2/
WD

�
ju1j

2
�
ju2j

2
� I2

�
C 2I2

�
ju1j

2
� I1

���
ju2j

2
� I2

�
Re.u1 Nu3/:

The above decomposition is, at a formal level, the same introduced by Bourgain in [32], but
in [26] we show that it is, in fact, a direct sum decomposition Hr .`

1
w / D H

.�2/
r .`1

w / ˚

H
.0/
r .`1

w /˚ H
.�2/
r .`1

w /, with explicit control on the projections. An important point is that
all our construction works independently of the “dimension” of TI , namely it never requires
conditions of the form Ij ¤ 0.

Let us compare this decomposition with that used for finite-dimensional tori. Note
that in this case � D Z so there are no “normal variables” z.

We consider the example above and pass to action–angle variables � W .�; y/ ! u,
with uj D

p
Ij C yj e

i�j . Then the terms canceled in a classical KAM scheme would be the
first two terms in the Taylor expansion at y D 0 of P .�; y/ WD H ı � D .I1 C y1/.I2 C

y2/
2
p
.I1 C y1/.I3 C y3/ cos.�1 � �3/, namely

P .�; 0/ D I
3
2

1 I
2
2

p
I3 cos.�1 � �3/;

Py.�; 0/Œy� D

�
3

2
I2

p
I3y1 C 2I1

p
I3y2 C

I1I2

2
p
I3

y3

�
I2

p
I1 cos.�1 � �3/:

Direct computations show that

H .�2/
ı �CH .0/

ı � D I1I
2
2

p
.I1 C y1/.I3 C y3/ cos.�1 � �3/

C
�
I 2

2 y1 C 2I1I2y2

�p
.I1 C y1/.I3 C y3/ cos.�1 � �3/

D P .�; 0/C Py.�; 0/Œy�CO.y2/;

and, obviously, H .�2/ ı � is at least quadratic in y. In conclusion, we are canceling more
terms than is strictly necessary, but in doing so we avoid introducing the singularity I D 0.

Now our result is proved by an iterative procedure. To get a feeling of the proof, let
us consider the 1D NLS case (2) (recalling that H D D! C P , with P small and D! DP
!j juj j2) and perform the first step. Just like in the case of the stability of zero and of

quasiperiodic solutions, once we have identified the terms P .�2/; P .0/ (which are the obsta-
cles to TI being a KAM torus), we perform a change of variables eadS to cancel them. It is
convenient to look for S D S .�2/ C S .0/ (namely such that the component of degree � 2 is
zero).
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Our aim is to make the projections ….�2/; ….0/ of the new Hamiltonian,
eadS .D! C P /, “quadratically smaller” with respect to P .�2/; P .0/.

Now one can directly verify that this is achieved by choosing S as the solution of a
homological equation, which now is (recall the projections on R defined in (10))

…RP
.�2/

C
®
S .�2/;D!

¯
D 0; (20)

…RP
.0/

C
®
S .0/;D!

¯
C…0;R

®
S .�2/; P�2

¯
D 0: (21)

Now P .�2/; P .0/ 2 Hr .`
1
w / (they are analytic in a neighborhood of zero). If we chose

Gevrey regularity w D ws D hj i2eshj i� , this allows us to solve the homological equation,
using the estimates (11), which hold in `1 as well. We reach a new Hamiltonian of the formP

j 2Z.!j C �j /juj j2 CP1, with � 2 `1 and for r1 < r and �1 > 0, one has thatP .�2/
1 ;P

.0/
1

are quadratically smaller in the (nested) space Hr1.`
1
w�1
/. At the next step one repeats this

procedure just with a slightly different frequency, decreasing at each step n the radius rn and
increasing �n in a summable way. Actually, in [26] we write all the equations in terms of the
final frequency, and use a counterterm theorem á la Herman.
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surface flows
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Abstract

We survey some recent advances in the study of (area-preserving) flows on surfaces,
in particular on the typical dynamical, ergodic, and spectral properties of smooth area-
preserving (or locally Hamiltonian) flows, as well as recent breakthroughs on linearization
and rigidity questions in higher genus. We focus in particular on the Diophantine-like
conditions which are required to prove such results, which can be thought of as a gener-
alization of arithmetic conditions for flows on tori and circle diffeomorphisms. We will
explain how these conditions on higher genus flows and their Poincaré sections (namely
generalized interval exchange maps) can be imposed by controlling a renormalization
dynamics, but are of more subtle nature than in genus one since they often exploit features
which originate from the nonuniform hyperbolicity of the renormalization.
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1. Introduction

Flows on surfaces are among the most basic and fundamental examples of dynam-
ical systems. First of all, they are among the lowest possible dimensional smooth systems;
furthermore, many models of systems of physical origin are described by flows on surfaces,
starting from celestial mechanics, up to solid state physics or statistical mechanics models.
The beginning of the study of surface flows can be dated back to Poincaré [63] at the end
of the 19th century, and coincides with the birth of dynamical systems as a research field.
Poincaré was in particular interested in the study of flows on tori, or surfaces of genus one.
Several famous systems in physics lead naturally to the study of flows on surfaces of higher
genus, which, in this survey, will mean genus g � 2. Examples include the Ehrenfest model
in statistical mechanics (related to a linear flow on a translation surface of genus five), or
the Novikov model in solid state physics, which is described by locally Hamiltonian flows,
a class which will be one of the central themes of this survey (see Section 3.1).

There is a rich history of results on the topological and qualitative behavior of tra-
jectories (see, for example, [60] and the references therein), as well as on the ergodic theory
of certain well-studied classes of flows (for example, in genus one, in relation with KAM
theory, see Section 2, and linear flows on translation surfaces, whose study is intertwined
with Teichmüller dynamics, see Section 3). Many fundamental problems, though, in partic-
ular on the mathematical characterization of chaos (such as dynamical, spectral, and rigidity
questions) in various natural classes of surface flows, in particular smooth flows preserv-
ing a smooth measure, were only recently understood and many others are still open (see
Section 3.1).

One of the reasons for this late development is perhaps that, in order to investigate
fine chaotic or rigidity properties of flows in higher genus, one needs to impose quite delicate
assumptions on the behavior of orbits on different scales. To capture these multiscale fea-
tures, the concept of renormalization plays a crucial role (see Section 4). In the case of genus
one, the assumptions on the flow often take the form ofDiophantine conditions or, more gen-
erally, of arithmetic conditions on the rotation number (see Section 5) and control how well
the flow orbits are approximated by periodic orbits. The renormalization point of view on
these conditions is that they can be described in terms of continued fraction theory and there-
fore studying the dynamics of the Gauss map, or, equivalently, geometrically, studying the
geodesic flow on the modular surface, both of which are classically well understood.

In higher genus, on the other hand, one had to wait for the development of the rich
and fruitful theory of renormalization in Teichmüller dynamics (see Section 4). This theory
provides a renormalization framework (initially developed to study ergodic properties of
rational billiards, interval exchange transformations, and translation flows), which can be
exploited to understand when a surface flow is renormalizable (see Sections 3.2 and 4) and
when it preserves a smooth invariant measure; in the latter case, then, it allows imposing con-
ditions on a (smooth) surface flows to guarantee the presence of particular chaotic properties
(see Section 3.1). The type and nature of what we refer to as Diophantine-like conditions in
higher genus, which is much more delicate than in genus one and often involves assumptions
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on hyperbolicity of the renormalization, will be the leading theme of this survey. These con-
ditions are sometimes also called arithmetic conditions, by analogy with the genus one case,
even though the relation with classical arithmetic and Diophantine equations is lost when
the genus is greater than one.

In what follows, we first start in the next Section 2 with the classical case of flows
on genus one surfaces, recalling some of the classical results on the linearization problem
and ergodic properties and discussing the related arithmetic conditions. Then, in Section 3,
we will briefly overview some of the rapid developments in our understanding of ergodic,
spectral, and disjointness properties of (smooth) area-preserving flows on higher genus sur-
faces (see Section 3.1), as well as linearization and rigidity problems in higher genus (in
Section 3.2). After having introduced the notion of renormalization in this setting (see Sec-
tion 4), we then focus in Section 5 on the Diophantine-like conditions behind these results.

2. Flows on surfaces of genus one and classical

arithmetic conditions

A central idea introduced by Poincaré was that the study of a surface flow can be
often reduced to the study of a one-dimensional discrete dynamical system, by taking what
we nowadays call a Poincaré section and considering the Poincaré first return map of the
flow to the section (when and where it is defined). If we start from a flow 'R WD .'t /t2R

on a torus, i.e., on a compact, orientable surface S of genus one, and assume that it does
not have fixed points, or closed orbits (or, more generally, Reeb components, see [60]),
there is a (global) section given by a closed transverse curve and the Poincaré first return
map to it is a diffeomorphism f W S1 ! S1 of the circle S1 Š R=Z. The simplest exam-
ple of circle diffeomorphism (or circle diffeo for short) is a (rigid) rotation, i.e., the map
R˛.x/ D x C ˛ mod 1 on R=Z D Œ0; 1�= �. A key concept associated to circle diffeomor-
phisms is that of rotation number: if� is an invariant probabilitymeasure for the circle diffeo
f (which always exists by Krylov–Bogolyubov theorem), the rotation number �.f / of f can
be seen as an average displacement of points, namely �.f / D

R 1

0
.F.x/ � x/ d�.x/ mod 1

where F W R ! R is a lift of f W R=Z ! R. The rotation R˛ can be seen as the linear model
of a circle diffeo with rotation number ˛.

The topological behavior of trajectories of .'t /t2R can be completely understood
and classified exploiting the rotation number (this is essentially the content of Poincaré clas-
sification theorem, see [36] for an expository account): when �.f / 2 Q, there exist periodic
orbits (which either foliate the surface S , or are attracting or repelling). On the other hand,
when �.f / … Q, the dynamics of .'t /t2R is either minimal on the whole surface (i.e., all
orbits are dense), or minimal when restricted to a Cantor-like invariant limit set (locally
a product of a Cantor set with R). In the latter case, we speak of Denjoy-counterexamples;
their existence is ruled out when the diffeo (and the flow) is sufficiently smooth, for example,
C2 in view of Denjoy’s work [15] (less regularity, in particular C1 with bounded variation
derivative, suffices, see, e.g., [36] for more details).
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Arithmetic conditions for linearization of circle diffeomorphisms. To gain a finer under-
standing of the dynamics and describe the ergodic behavior of almost-every trajectory with
respect to a smooth measure, one has to address the linearization problem, a classical ques-
tion which is at the heart of the theory of circle diffeomorphisms. Namely, one wants to
understand when a circle diffeomorphism T is linearizable, i.e., conjugate to a rigid rota-
tion R˛ (i.e., when there exists a homeomorphism h W S1 ! S1, called the conjugacy, such
that R˛ ı h D h ı T ) and what is the regularity of the conjugacy h. To address this question,
one needs to put further assumptions both on the regularity of the diffeo and, in relation to
it, the irrationality of the rotation number.

We recall that arithmetic conditions are conditions that prescribe how well (or how
badly) the irrational rotation number ˛ 2 R is approximated by rational numbers andmorally
control how well the flow orbits are approximated by periodic orbits. The best known such
condition is perhaps the (classical) Diophantine condition (or DC, for short): ˛ 2 RnQ is
said to be Diophantine (of exponent � � 0) iff there exists C > 0 such thatˇ̌̌̌

˛ �
p

q

ˇ̌̌̌
�

C

q2C�
; for all p; q 2 Z; q ¤ 0:

If the above condition holds for � D 0, we say that ˛ is badly approximable or bounded-
type. Equivalently, the DC can be rephrased in terms of the continued fraction expansion
Œa0; a1; : : : ; an; : : : � of ˛: if qn denotes the convergents of ˛, namely the denominators of
the partial approximations pn=qn WD Œa0; a1; : : : ; an�, the DC is equivalent to the growth
control anC1 D O.q�

n/. In particular, ˛ is of bounded type iff an are uniformly bounded.
The local theory of linearization of circle diffeos, which treats the case of diffeos

f W S1 ! S1 which are C1-close (or analytically, or C r -close) to a circle rotation R˛ ,
where ˛ D �.f /, is a rather classical application of KAM theory. The prototype result is
the local rigidity theorem of Arnold [1], who showed that if ˛ is Diophantine, circle diffeos
which are a sufficiently small analytic deformations of R˛ and have rotation number equal
to ˛, must be analytically conjugate to R˛ . Among the few global results (which do not
assume that f is close to a rotation), we recall the celebrated theorem by Michael Herman
[30] and Jean-Christophe Yoccoz [77], answering a question by Arnold, showing that if f

is C1 (or analytic) and its rotation number �.f / satisfies the DC, the conjugacy is C1

(resp. analytic). Furthermore, the DC turns out to be the optimal arithmetic condition for
global smooth linearization. Another, more subtle arithmetic condition, called “conditionH”
in honor of Herman, was introduced by Yoccoz as the optimal condition for global analytic
linearization of analytic diffeos, see [79].

Another famous arithmetic condition is the Roth-type condition, which is satisfied
by irrationals ˛ 2 RnQ such that an D O".q"

n/ for all " > 0. A crucial step in the KAM
approach developed by Arnold for circle diffeomorphisms is to solve a linearized version of
the conjugacy equationR˛ ı h D h ı T , namely the cohomological equation: given a smooth
� W I ! R, one looks for a smooth solution ' W I ! R to the equation ' ı R˛ � ' D �.
The Roth-type condition turns out to be the optimal one needed to solve this cohomological
equation with optimal loss of differentiability: for any r > s C 1 � 1, one can find a solution
' 2 C s for any � 2 C r as long as

R
� D 0 (which is a trivial necessary condition) if and only
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if ˛ is Roth-type: this equivalent characterization provides a remarkable connection between
dynamical and arithmetical properties.

We remark that the Diophantine condition, the H condition, and the Roth-type con-
dition can all be proved to have full measure, namely they hold for a set of ˛ 2 Œ0; 1� of
Lebesgue measure one (the set of badly approximable ˛ 2 Œ0; 1�, on the other hand, has
Lebesgue measure zero, although full Hausdorff dimension). While full measure of the Dio-
phantine and Roth conditions can be proved in an elementary way, it is an instructive exercise
to derive it from the properties of the Gauss map G W Œ0; 1� ! Œ0; 1� and of the Gauss invari-
ant measure dx=log 2.1 C x/, since this point of view can be applied to show full measure
of other arithmetic conditions as well and it can be furthermore generalized to higher genus
(see Sections 4 and 5).

In view of this remark, we conclude this section with a reinterpretation of Herman’s
linearization theorem in the language of foliations into flow trajectories. In this setting, the
linear model of a flow on a torus is a linear flow on R2=Z2 (i.e., the flow which arises as
solution of . Px1; Px2/ D .�1; �2/, which moves points with unit speed along lines of slope
�2=�1).

Theorem 2.1 (Reformulation of Herman’s global theorem [30]). For a full measure set of
real numbers ˛, a foliation on a genus one surface which is topologically conjugate to the
foliation given by a linear flow with rotation number ˛ is also C1-conjugate to it.

Since the regularity of a conjugacy between foliations, which sends leaves into
leaves, is defined in terms of the transverse structure, this result is just a restatement of
the result for the Poincaré maps of the two flows (which are circle diffeomorphisms and
rotations respectively).

Ergodic properties in genus one and exceptional behavior. From the existence (and abun-
dance) of smooth (or at least continuously differentiable, i.e.,C1) linearizations, one can infer
many of the smooth measure-theoretical ergodic properties of flows of genus one. In partic-
ular, one sees that, for a full measure set of rotation numbers, flows in genus one are ergodic
(since irrational rotations are) with respect to a smooth invariant measure of full support (the
C1-regularity of the conjugacy allows us indeed to transport the Lebesgue invariant measure
to obtain the invariant measure for the diffeo, which in turns gives a transverse measure for
the flow). Furthermore, they are uniquely ergodic (in view of Kronecker–Weyl theorem for
rotations, e.g., [14]), i.e., this natural invariant measure is the unique invariant measure (up
to scaling).

We remark that exceptional ergodic behaviors in genus one (smooth) surface flows,
can be constructed for flows whose rotation numbers are irrational but not Diophantine,
i.e., the so-called Liouvillean (rotation) numbers. When ˛ is Liouville, exploiting the abun-
dance of good rational approximations .pn=qn/n to ˛, for example, using the method of
periodic approximations pioneered by Anosov and Katok and later revived by Fayad, Katok
et al. (see [36] or the survey [18]), one can construct many examples with pathological behav-
ior, for example, flows with a singular invariant measures and time-reparametrizations (also
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Figure 1

Pictorial representation of locally Hamiltonian flows on a surfaces: in (a) an Arnold flow (g D 1) and in (b) a flow
in g D 3 with two minimal components and 3 periodic components.

called time-changes) which are weakly mixing or which have mixed spectrum (see [18] and
the references therein).

Finally, before moving to higher genus, we remark that another possible way to
introduce interesting dynamical features for typical rotation numbers is to consider flows on
tori with singularities. The simplest type of singularity is a stopping point. Already such a
simple perturbation, which is only a time-reparametrization of the flow, can lead to flows
which are typically mixing (see [43]) and even to flows with Lebesgue spectrum (see [17]).
Smooth measure preserving flows on a torus with one center and one simple saddle (see
Figure 1a) were first studied by Arnold in [2] and constitute one of the most studied examples
in the class of flows known as locally Hamiltonian: we return to them and to their typical
ergodic properties in Section 3.1.

3. Dynamics of flows on surfaces of higher genus

Let us now consider the higher genus case, namely consider now a (smooth) flow
'R WD .'t /t2R on a compact, connected orientable (closed) surface S of genus g � 2. Notice
that in this case, by Euler characteristic restrictions, the flow always has fixed points (see
Figure 2 for some examples). We require that singularities be isolated (so that in particular,
by compactness, the set Fix.'R/ of fixed points is finite).

Topological dynamics and quasiminimal sets. The topological classification of the possi-
ble behavior of trajectories of a flow on a surface (and, more generally, of surface foliations
which are not necessarily orientable) has been a topic of research in the 20th century (start-
ing from the 1930–1940s, up to the 1970s). In particular, through the works of Maier, Levitt,
Gutierrez, Gardiner et al. (see [60] for references), one could obtain results on what possible
orbit closures are, as well as a classification of quasiminimal sets, which can be defined as
possible !-limit sets of nontrivial recurrent trajectories, i.e., set of accumulation points of
trajectories different from a fixed point or a closed, periodic orbit. Quasiminimal sets can be
the whole surface, subsurfaces with boundary, or a Cantor-like invariant sets. Moreover, one
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Figure 2

Type of singularities of a locally Hamiltonian flow: a center in (a), a simple saddle in (b) and a multisaddle in (c).
Decelerations and shearing near a Hamiltonian saddle in (d).

can prove decomposition theorems showing that one can cut the surface S into subsurfaces
each of which contains at most one quasiminimal set (see in particular the work by Levitt
[49]). We do not enter here into the details of these topological results, but refer the interested
reader, for example, to the monograph [60] and the references therein.

Interval exchanges and generalized IETs as Poincaré sections. As in the case of genus
one, an essential tool to study a higher genus flow is to consider a (local) transversal I � S

to the flow and the Poincaré first return map T of the flow on I (when it is defined, for
example, almost everywhere when the flow preserves a finite measure with full support; for
more general situations, see [60]). Such first return maps T W I ! I are one-to-one piecewise
diffeomorphisms known as generalized interval exchange transformations: a map T W I ! I

is a generalized interval exchange transformations or, for short, a GIET, if one can partition
I into intervals I1; : : : ; Id (finitely many since we are assuming that 'R has finitely many
fixed points) so that the restriction Ti of T to Ii , for each 1 � i � d , is a diffeomorphism
onto its image which extends to a diffeo of the closure I i (see, e.g., [55]). We say in this case
that T is a d -GIET. We say, furthermore, that T is of class C r if the restriction of T to each
Ii extends to a C r -diffeomorphism onto the closed interval I i . The adjective generalized
is used to distinguish them from the more commonly studied (standard) interval exchange
transformations (or simply IETs), which are one-to-one piecewise isometries, namely GIETs
such that the derivative T 0

i of each branch is constant and equal to one.
Standard IETs are a generalization of circle rotations (since an IET is a rotationwhen

d D 2) and play an analogous role in higher genus, providing the natural linear model of a
GIET (see Section 3.2). Furthermore, as rotations are Poincaré maps of linear flows on the
torus R2=Z2, IETs arise naturally as Poincaré maps of linear flows on translation surfaces
(see the ICM proceeding [12] for an introduction to the latter).

3.1. Locally Hamiltonian flows
Wewill bemostly concernedwith flowswhich preserve a (probability) measure� of

full support, for example, an area-form, since this is a natural setup for ergodic theory. Given
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a surface S with a fixed smooth area form !, a smooth area-preserving flow 'R D .'t /t2R

on S is a smooth flow on S which preserves the measure � given integrating a smooth
density with respect to !. The interest in the study of these flows and, in particular, in their
ergodic and mixing properties, was revived by Novikov [61] in the 1990s, in connection with
problems arising in solid-state physics, as well as in pseudoperiodic topology (see, e.g., the
survey [84] by A. Zorich). Smooth area-preserving flows are also called locally Hamiltonian
flows or multivalued Hamiltonian flows in the literature, in view of their interpretation as
flows locally given by Hamiltonian equations: one can find local coordinates .x1; x2/ on
each open set U ¨ S in which 'R is given by the solution to the equations:8<: Px1 D @H=@x2;

Px2 D �@H=@x1;

where H W U ! R is a real-valued (local) Hamiltonian. For simplicity, we will assume here
that H is infinitely differentiable, even though for several results C3 (or also C2C" for every
" > 0) suffices. It turns out that such smooth area-preserving flows on S are in one-to-one
correspondence with smooth closed real-valued differential 1-forms: given such a 1-form �,
we can associate to it the integral flow '

�
R of the vector field X such that � D iX !, where iX

denotes the contraction operator. Since � is closed, '
�
R is area-preserving; conversely, every

smooth area-preserving flow can be obtained in this way.

Topology and measure class. Let F denote the set of smooth closed 1-forms on S with
isolated zeros. On F (which we can think of as the space of locally Hamiltonian flows) one
can define a topology as well as a measure class. The topology is obtained by considering
perturbations of closed smooth 1-forms by (small) closed smooth 1-forms. We will often
restrict our attention to the subset M � F of Morse closed 1-forms (i.e., forms which are
locally the differential of a Morse function), which is open and dense in F with respect to
this topology (see, e.g., [64]). Locally Hamiltonian flows corresponding to forms in M have
only nondegenerate fixed points, i.e., centers and simple saddles (as in Figures 2a and 2b), as
opposed to degenerate multisaddles (as in Figure 2c). Furthermore, if Fs;l denote the flows
which correspond to flows in M with s saddle points and l centers, each Fs;l is open and
their union is dense in F (see [64]).

Ameasure-theoretical notion of typical can be defined on each Fs;l using the Katok
fundamental class (introduced by Katok in [35], see also [60]), i.e., the cohomology class of
the 1-form � which defines the flow. Let Fix.'R/ denote the set of fixed points (also called
singularities) of the flow 'R and let k D s C l be its cardinality (recall that it is finite since
the flow is in F and k � 1 when g � 2). If we fix a base 1; : : : ; n of the relative homology
H1.S; Fix.'R/; R/ (where n D 2g C k � 1 D 2g C s C l � 1) and consider the period
map Per given by Per.�/ D .

R
1

�; : : : ;
R

n
�/ 2 Rn, we say that a property holds for a typical

locally Hamiltonian flow inFs;l if it holds for all � such that Per.�/ belongs to a full measure
set with respect to the Lebesgue measure on Rn.

Minimal components and ergodicity. To describe (typical) chaotic behavior in locally
Hamiltonian flows, it is crucial to distinguish between two open sets (complementary, up
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to measure zero, see [75] or [64] for more details): in the first open set, which we will denote
by Umin, the typical flow is minimal (the term quasiminimal is also used in the literature),
in the sense that the orbits of all points which are not fixed points are dense in S ; flows
in Umin have only saddles, since the presence of centers prevents minimality. On the other
open set, that we call U:min, the flow is not minimal (there are saddle loops homologous to
zero which disconnect the surface), but one can decompose the surface into a finite number
of subsurfaces with boundary Si , i D 1; : : : ; N such that for each i either Si is a periodic
component, i.e., the interior of Si if foliated into closed orbits of 'R (in Figure 1b one can
see three periodic components, namely two disks and one cylinder), or Si is such that the
restriction of 'R to Si is minimal in the sense above, as pictured in the remaining two sub-
surfaces in Figure 1b. These are called minimal components and there are at most g of them
(where g is the genus of S ), see Section 3.1.

Notice that minimality and ergodicity of a (minimal component of a) locally Hamil-
tonian flow are equivalent to minimality or respectively ergodicity of an (and hence any)
interval exchange transformationwhich appears as the Poincarémap. Classical results proved
in the 1980s guarantee that almost every IET (with respect to the Lebesgue measure on the
interval lengths, assuming that the permutation is irreducible) is minimal (as showed by
Keane [37], see also [35]) and (uniquely) ergodic (as proved in the works by Masur [50] and
Veech [76], considered early milestones of the successful application of Teichmüller dynam-
ics to the study of IETs and translation surfaces, see the ICM proceeding [12] or the survey
[85]). It then follows from definition of Katok measure class that a typical local Hamiltonian
flow in Umin is minimal and ergodic and, given a typical local Hamiltonian flow in U:min,
its restriction on each minimal component is ergodic.

Classification of mixing properties. Finer chaotic features of locally Hamiltonian flows,
in particular mixing and spectral properties, change according to the type of singularities
and depend crucially on the locally Hamiltonian parametrization of saddle points. For a
(nongeneric) locally Hamiltonian flow with at least one degenerate saddle (an example of
such a saddle is shown in Figure 2c), mixing (for the definition, see (3.1) with n D 2) was
proved in the 1970s by Kochergin [43]. When, on the other hand, � 2 M is a Morse 1-form,
so that all saddles are simple, one has a dichotomy: inside the open set Umin in which the
typical flow is minimal, almost every locally Hamiltonian flow is weakly mixing, but it is
not mixing; both results follow from work by the author [72,73]. On the other hand, for a full
measure set of flows in U:min, the restriction to each of minimal components is mixing (as
proved by Ravotti [64] extending the previous work [71] by the author).

The question of mixing in higher genus was raised by V. Arnold in the 1990s, when
he conjectured (see [2]) that the restriction of a typical smooth flow on a torus with one
center and one simple saddle to its minimal component (namely for what we nowadays call
an Arnold flow) was indeed mixing. His conjecture was proved shortly after by Khanin and
Sinai in [67], who showedmixing under the assumption that the rotation number ˛ is such that
the entries an of the continued fraction expansion of ˛ do not grow too fast, namely there exist
a power 1 < � < 2 andC > 0 such that janj � C n� . One can show (for example, exploiting the
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Gauss map G and the finiteness of
R 1

0
a0.x/d �G.x/, where �G is the Gauss measure, via a

standard Borel–Cantelli argument) that this arithmetic condition holds for a full measure set
of ˛. The condition was later improved by Kocerghin, see [44]. Also in the case of absence of
mixing, a prototype result for flows over a full measure set of rotation numbers was proved by
Kochergin [42] already in the 1970s (and much more recently extended in [45] to all irrational
rotation numbers), much earlier than results in higher genus [65,70,73].

In higher genus, the above mentioned results on mixing/absence of mixing require
the introduction of Diophantine-like conditions, which describe the full measure set of
locally Hamiltonian flows for which the results hold. In [71], for example, we introduced
a condition on a IET (see Section 5 for more details) called Mixing Diophantine Condition
(or MDC, for short). Let us say that the restriction of a locally Hamiltonian flow 'R to one
of its minimal components Si satisfies the MDC if one can find a section I � Si (in good
position in the sense of [55]) such that the IET which arises as Poincaré map of 'R to I

satisfies the MDC. One can then prove:

Theorem 3.1 (Ulcigrai [71], Ravotti [64]). Let 'R be a flow in U:min and let Si be a minimal
component. If the restriction of 'R to Si satisfies the Mixing Diophantine Condition, then
'R restricted to Si is mixing.

We then show in [71] (exploiting results from [3], see Section 5) that the MDC is
satisfied by a full measure set of IETs. Similarly, to prove that a typical flow in Umin is not
mixing, a Diophantine-like condition is introduced and proved to be of full measure in [73].
Special cases of the absence of mixing result for surfaces with g D 2 and two isometric
saddles were proved in [70] and by Scheglov in [65]. We remark that in Umin there exist,
nevertheless, exceptionalmixing flows, as shown byChaika andWright in [13], who produced
sporadic examples in g D 5.

Parabolic dynamics and slow chaos. Smooth area-preserving flows on surfaces also pro-
vide one of the fundamental classes of parabolic, or slowly chaotic, dynamical systems (see,
e.g., the survey [75]). In systems which display sensitive dependence on initial conditions
(the so-called butterfly effect), one can find many nearby initial conditions whose trajec-
tories diverge with time. Contrary to hyperbolic systems, where this divergence happens
(infinitesimally) at exponential speed, in parabolic systems the divergence speed is slow,
namely subexponential, and in all known examples polynomial or subpolynomial. Slow
divergence in locally Hamiltonian flows is created by Hamiltonian saddles, which create
different deceleration rates of nearby trajectories and produce a form of (local) shearing, by
tilting in the flow direction the image under the flow of arcs initially transverse to the dynam-
ics, as illustrated in Figure 2d. Shearing happens not only locally, near a saddle, but globally
for typical flows in U:min, which (in view of the presence of saddle loops) display a global
asymmetry in the prevalent direction of shearing. It is this geometric mechanism which is
behind the proof of mixing (in this setting, but also for many other classes of parabolic flows,
see the survey [74] and the references therein). Under the assumption that the restriction of
'R to a minimal component Si satisfies the Mixing Diophantine Condition, one can produce
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quantitative estimates on shearing of transverse arcs and, as shown by Ravotti in [64], prove
quantitative mixing estimates, which show that mixing happens (at least) at subpolynomial
speed, i.e., for any two smooth observables f; g W Si ! R supported outside the saddles in
Fix.'R/ \ Si ,̌ˇ̌̌Z

Si

f
�
't .x/

�
g.x/d� �

Z
Si

f d�

Z
Si

f d�

ˇ̌̌̌
�

Cf;g

.log t /
; t � 0:

This is expected to be also the optimal nature of the estimates, namely the decay is not
expected to be polynomial or faster in this setting, but no lower bounds on the decay of
correlations are currently available.

Ratner’s forms of shearing. Striking consequences of shearing (such as measure and join-
ing rigidity) were proved for another famous class of parabolic flows, namely horocycle flows
on hyperbolic surfaces and their time-changes, by exploiting a quantitative shearing property
introduced byMarina Ratner and nowadays known as Ratner property (or RP). In view of its
importance, in the study of horocycle flows and, more generally, unipotent flows in homo-
geneous dynamics, it is natural to ask whether this property can be proved and exploited
in other parabolic (non homogeneous) settings. For locally Hamiltonian flows, which are
natural candidates, the original Ratner property is believed to fail due to the presence of
singularities (see [16]). Nevertheless, a variant of the RP which has the same dynamical con-
sequences, called Switchable Ratner Property (or SRP, for short), was introduced byB. Fayad
and A. Kanigowski [16] and showed to hold for typical Arnold flows (as well as some flows
in genus one with one degenerate singularity). As an abstract consequence of the SRP prop-
erty, one can conclude that typical Arnold flows are not only mixing, butmixing of all orders,
namely for any n � 2 and any n-tuple A0; : : : ; An�1 of measurable sets,

�
�
A0 \ 't1.A1/ \ � � � \ 't1C���Ctn�1.An�1/

� t1;t2;:::;tn�1!1
�����������! �.A0/ � � � �.An�1/: (3.1)

Notice that this definition reduces to the classical definition of mixing in the special case
n D 2; whether mixing implies mixing of all orders in general is still an open problem,
known as Rohlin conjecture.

To prove the SRP property, one needs to assume that the rotation number ˛ D

Œa0; a1; : : : ; an; : : : � satisfies an ad hoc arithmetic condition, namely, if qn are the denomi-
nators of ˛, one requires that, for some 0 < � , � < 1 (taken to be � D � D 7=8 in [16]) the
following series is finite:X

k…K.˛/

1

.log qn/�
< C1; where K.˛/ WD

®
k 2 N; akC1 � C.log qk/�

¯
: (3.2)

In a joint work with A. Kanigowski and J. Kułaga-Przymus [33], we were able to gener-
alize this result to higher genus. To do so, it is once again crucial to introduce a suitable
Diophantine-like condition, which we called in [33] the Ratner Diophantine Condition (or
RDC) and we describe in Section 5. The main result we prove is the following.

Theorem3.2 (Kanigowski, Kułaga-Przymus, Ulcigrai [33]). If the restriction of 'R 2 U:min

to aminimal componentSi satisfies the Ratner Diophantine Condition, 'R W Si ! Si satisfies
the Switchable Ratner Property and is mixing of all orders.
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We then show that the RDC is satisfied by almost every IET and therefore can con-
clude that, for a full measure set of locally Hamiltonian flows in U:min, each restriction to
a minimal component is mixing of all orders.

Quantitative estimates on slow, Ratner-type shearing were recently used (in the joint
work [34]with A. Kanigowski andM. Lemańczyk) to study disjointness of rescalings, a prop-
erty that has recently received a revival of attention in view of its role as possible tool to prove
Sarnak Möbius orthogonality conjecture (see the ICM proceedings survey [48] and the ref-
erences therein). In [34] we introduce a disjointness criterium based on Ratner shearing and
use it (as one of the applications) to show that, in genus one, typical Arnold flows have dis-
joint rescalings and satisfy Moebius orthogonality. Disjointness of rescalings seems to be
an important feature of parabolic dynamics: while specific parabolic flows may fail to be
disjoint from their rescalings (primarily the horocyle flow on a hyperbolic surface), several
recent results seem to indicate that this property is indeed widespread among parabolic flows
(see, e.g., the results in [34] on time-changes of horocycle flows). In the context of surface
flows, disjointness of rescalings has been verified in [4] for von Neumann flows (which can
be realized as translation flows on surfaces with boundary). Whether one can extend the dis-
jointess result proved in [34] for Arnold flows to higher genus smooth flows, remains an open
problem and is likely to require a delicate control of Diophantine-like properties.

Polynomial deviations of ergodic averages. Slow chaotic behavior manifests itself not
only through slow mixing, but also through slow convergence of ergodic integrals: given
an ergodic area-preserving flow 'R (or its restriction to an ergodic minimal component
S 0 � S ) and a real valued observable f with zero-mean, the ergodic integrals
IT .f; x/ WD

R T

0
f .'t .x// dt decay to zero polynomially with some exponent 0 < � < 1

for almost every initial point, i.e., jIT .f; x/j � O.T �/ in the sense that

lim sup
T !1

log jIT .f; x/j

logT
D �:

This phenomenon, known as polynomial deviations of ergodic averages, was discovered
experimentally in the 1990s by A. Zorich and explained (for linear flows on translation sur-
faces and observables corresponding to cohomology classes) in seminal work byKontsevitch
and Zorich [46,83] relating power deviations to Lyapunov exponents of renormalization (see
Section 4). Forni in [23] could extend this result to integrals of sufficiently regular func-
tions over translation flows and show that ergodic integrals can display a power spectrum of
behaviors, i.e., there are exactly g positive exponents 0 < �g � � � � � �2 < �1 WD 1 (which
correspond to the positive Lyapunov exponents of renormalization) and for each a subspace
of finite codimension of smooth observables that present polynomial deviations as above
with exponent � D �i . A finer analysis of the behavior of Birkhoff sums or integrals, beyond
the size of oscillations, appears in the works [7, 54]: Bufetov in [7] shows in particular that
(for typical translation flows and sufficiently regular observables) the asymptotic behavior of
ergodic integrals can be described in terms of g (where g is the genus of the surface) cocy-
cles ˆi .t; x/, 1 � i � g (also called Bufetov functionals): each ˆi W R � S 0 ! R is a cocycle
over the flow 'R (in the sense that ˆi .t C s; x/ D ˆi .t; x/ C ˆi .s; 't .x// for any x 2 S 0
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and t 2 R), ˆ1.T; x/ � T and each ˆi has power deviations jˆi .T; x/j � O.T �i / with
exponent �i . Together, the cocycles encode the asymptotic behavior of the ergodic integrals
up to subpolynomial behavior, in the sense that, for some constants ci D ci .f /,Z T

0

f
�
't .x/

�
dt D c1T C c2ˆ2.T; x/ C � � � C cgˆg.T; x/ C Err.f; T; x/; (3.3)

where for almost every x 2 S 0 the error term Err.f; T; p/ is subpolynomial, i.e., for any
" > 0 there exists C" > 0 such that jErr.f; T; p/j � C"T ". In a joint work with Frączek,
we recently gave a new proof of this result in [26], which extends the result to the setting of
smooth observables over locally Hamiltonian flows withMorse singularities (inUmin as well
as in U:min) and also shows that the set of locally Hamiltonian flows for which the result
holds can be described in terms of a Diophantine-like condition. More precisely, we define
in [26] the Uniform Diophantine Condition (or UDC, for short; see Section 5) and show that
it has full measure. We then prove the following.

Theorem 3.3 (Frączek–Ulcigrai [26]). If the restriction of the locally Hamiltonian flow
'R 2 M on a minimal component S 0 satisfies the Uniform Diophantine Condition, for each
C3 observable f W S 0 ! R, there exist g exponents �i and corresponding cocycles ˆi such
that the expansion (3.3) holds.

Spectral theory. The study of the spectrum of the unitary operators acting on L2.S; �/

given by f 7! f ı 't can shed further light on the chaotic features of the dynamics of the
flow 'R WD .'t /t2R and is at the heart of the study of spectral theory of dynamical systems
(see [48] or [75] and the references therein). While the classification of mixing properties
of locally Hamiltonian flows is essentially complete, very little is known about their spec-
tral properties beyond the case of genus one (and some sporadic examples, such as Blokhin
examples, essentially built gluing genus one flows, see the work [25]). The recent result [17]
by Fayad, Forni, and Kanigowski for genus one suggests that it may be possible to prove that
the spectrum is countable Lebesgue also in higher genus when in presence of degenerate,
sufficiently strong (multisaddle) singularities. In the nondegenerate case, though, we recently
proved in joint work with Chaika, Frączek, and Kanigowski [10] that a typical locally Hamil-
tonian flow on a genus two surface with two isomorphic simple saddles has purely singular
spectrum. This result does not use explicit Diophantine-like conditions, but rather geometry
and, in particular, a special symmetry (the hyperelliptic involution) that surfaces in genus
two are endowed with; Liouville-type Diophantine conditions are here imposed by request-
ing the presence on the surface of large flat cylinders close to the direction of the flow, whose
existence for typical flows is then proved by a Borel–Cantelli-type of argument (see [10] for
details). Extending this result beyond genus two, though, will probably require the use of
Rauzy–Veech induction (see Section 4) and the introduction of new Diophantine-like con-
ditions, which impose some controlled form of degeneration. The nature of the spectrum
of minimal components of locally Hamiltonian flows in U:min (even in genus one, i.e., for
Arnold flows) is a completely open problem.
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3.2. Linearization and rigidity in higher genus
A different line of problems in which Diophantine-like conditions in higher genus

play a crucial role are conjectures concerning linearization and rigidity properties of higher
genus flows and their Poincaré sections, GIETs (defined in Section 3). In analogy with the
case of circle diffeos, we say that a GIET T is linearizable if it is topologically conjugate to
a linear model, namely to a (standard) IET T0.

Topological conjugacy and wandering intervals. To generalize Poincaré and Denjoy
work, one needs first of all a combinatorial invariant which extends the notion of rota-
tion number. Such an invariant can be constructed by recording the combinatorial data of a
renormalization process, as we explain in Section 4. One of the crucial differences between
GIETs and circle diffeomorphisms, though, is the failure of a generalization of Denjoy
theorem: there are smooth GIETs that are semiconjugate to a minimal IET for which the
semiconjugacy is not a conjugacy; in other words, they have wandering intervals (see the
examples found in [6,8] in the class of periodic-type (affine) IETs and, more generally, [54]).
It is important to stress that this is not a low-regularity phenomenon, nor is it related to spe-
cial arithmetic assumptions: as shown by the key work [54] by Marmi, Moussa, and Yoccoz,
wandering intervals exist even for piecewise affine (hence analytic) GIETs (called AIETs),
for almost every topological conjugacy class. The presence of wandering intervals is on the
contrary expected to be typical (see, e.g., the conjectures in [27,55]) and it is closely interknit
with the absence of a Denjoy Koksma inequality and, more generally, a priori bounds for
renormalization, see [29].

Local obstructions to linearization. As an important first step towards local linearization,
we already mentioned the cohomological equation ' ı T � ' D � in Section 2, where
T D R˛ was a rotation. Whether the cohomological equation could be solved when T is
an IET, under suitable assumptions, was unknown until the pioneering work of Forni [21],
who brought to light the existence of a finite number of obstructions to the existence of
a (piecewise finite differentiable) solution. We remark that obstructions to solve the coho-
mological equation have been since then discovered to be a characteristic phenomenon in
parabolic dynamics (e.g., their existence have been proved by Flaminio and Forni for horo-
cycle flows [19] and nilflows on nilmanifolds [20], see also the ICM talk [22]). Forni’s work
is a breakthrough that paved the way for the development of a linearization theory in higher
genus.

Another breakthrough, which put the stress on the arithmetic aspect of linearization
in higher genus, was achieved by Marmi–Moussa–Yoccoz in their work [55] (and related
works [53, 57]). In [53], in particular, they reproved and extended Forni’s result using the
IETs renormalization described in Section 5 and introduced the Roth-type condition (see
also Section 5), as an explicit Diophantine-like condition on the IET needed to solve the
cohomological equation ' ı T � ' D � � �, where � is a piecewise constant function which
embodies the finite-dimensional obstructions. This result, combined with a generalization
of Herman’s Schwarzian derivative trick, then led to the proof in [55] by the same authors
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that, for any r � 2, the C r local conjugacy class of almost every IET T (more precisely, of
any T of restricted Roth-type, see Section 5) is a submanifold of finite codimension. Marmi,
Moussa, and Yoccoz also conjectured that for r D 1 it is a submanifold of codimension
.d � 1/ C .g � 1/, where d is the number of exchanged intervals and g the genus of the
surface of which T is a Poincaré section. For the measure zero class of IETs of hyperbolic
periodic type (see Section 5), this conjecture has recently been proved by Ghazouani in [28].
The proof of this result for almost every IET will require the introduction of a new suitable
Diophantine-like condition on IETs.

Rigidity of GIETs. We say that a class of (dynamical) systems is geometrically rigid (or
also C1-rigid), if the existence of a topological conjugacy between two objects in the class
automatically imply that the conjugacy is actually C1. The global linearization results by
Herman and Yoccoz recalled in Section 2 shows that the class of (smooth, or at least C3)
circle diffeomorphisms with Diophantine rotation number is geometrically rigid (and actu-
ally C1-rigid, i.e., if a smooth circle diffeo is conjugated via a homeomorphism h to R˛

with ˛ satisfying the DC, then h is C1). We already saw that this can be reinterpreted as
a rigidity result for flows on surfaces of genus one (see Theorem 2.1). In joint work with
S. Ghazouani, we recently proved a generalization of this result to genus two.

Theorem 3.4 (Ghazouani, Ulcigrai [29]). Under a full measure Diophantine-like condition,
a foliation on a genus two surface which is topologically conjugate to the foliation given by
a linear flow with Morse saddles is also C1 conjugate to it.

Here full measure refers to the Katok measure class on the linear flow models (see
the definition given earlier in this section). For simplicity, we stated the result for flows with
simple, Morse-type saddles; degenerate saddles can also be considered, but then one has
to further assume that the foliations are locally C1 conjugated in a neighborhood of the
multisaddle. Both these results can be reformulated at level of Poincaré sections: we intro-
duce more precisely a rather subtle Diophantine-like conditions on (irreducible) IETs of any
number of intervals d � 2, that we call the Regular Diophantine Condition, or RDC (we
comment on it in Section 3) and show that it is satisfied by almost every (irreducible) IET
on d . We then prove:

Theorem 3.5 (Ghazouani, Ulcigrai [29]). If an irreducible d -IET T0 with d D 4 or d D 5

satisfies the RDC, then any C3-generalized interval exchange map T which is topologically
conjugate to T0, and whose boundary B.T / vanishes, is actually conjugated to T0 via a C1

diffeomorphism.

The boundary operator B.T / which appears in this statement is a C1-conjugacy
invariant introduced in [55]; it encodes the holonomy at singular points of the surface ofwhich
T is a Poincaré section. Requesting that B.T / vanishes is therefore a necessary condition for
the existence of a conjugacy of class C1. Theorem 3.5 solves for d D 4; 5 one of the open
problems suggested by Marmi, Moussa, and Yoccoz in [55], where they conjecture the result
to hold also for any other larger d . The result which is missing to prove the conjecture in
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Figure 3

Renormalization algorithms for rotations and IETs.

its generality is a generalization of an estimate used in [54] to show existence of wandering
intervals in affine IETs. The main result in [29], on the other hand (namely a dynamical
dichotomy for the orbit of T under renormalization) is already proved for IETs which satisfy
the RDC for any d � 2.

4. Renormalization and cocycles

In this section we introduce the renormalization dynamics which is used as main
tool to impose Diophantine-like conditions in higher genus. Renormalization in dynam-
ics is a powerful tool to study dynamical systems which present forms of self-similarity
(exact or approximate) at different scales. A map T W I ! I of the unit interval which is
(infinitely) renormalizable is such that one can find a (infinite) sequence of nested subin-
tervals InC1 � In � � � � � I such that the induced dynamics Tn W In ! In (obtained by
considering the first return map of T on In) is well defined and, up to rescaling, belongs to
the same class of dynamical systems of the original T . Here, the rescaling, which is done
so that the rescaled (or renormalized) map acts again on an interval of unit length, is given
by the map x 7! Tn.jInjx/=jInj. We will now describe renormalization in the context of
rotations first and then IETs. In both cases, at the level of (minimal) flows (or equivalently
orientable foliations) on surfaces, the inducing process corresponds to taking shorter and
shorter Poincaré sections of a given surface flow (on the torus or on a higher genus surface).

Renormalization algorithms. If T D R˛ is a rotation by an irrational ˛ and qn, n 2 N, are
the denominators of the convergents pn=qn of ˛, then one can consider as sequence .In/n2N

the shrinking arcs on S1 which have as endpoints R
qn
˛ .0/ and R

qnC1
˛ .0/. These endpoints

correspond dynamically to consecutive closest returns of the orbit of 0 (see Figure 3a). The
induced map Tn is then again a rotation R˛n , with rotation number ˛n D G n.˛/, where G is
the Gauss map G .x/ D ¹1=xº and ¹ � º denotes the fractional part.

Similarly, for a d -IET T , one wants to choose the nested sequence .In/n2N of
inducing intervals so that the induced maps Tn are all IETs of the same number d of subin-
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tervals. Given any minimal T (or more generally any IET satisfying the Keane condition
[37], i.e., such that the orbits of its discontinuity points are infinite and distinct), classical
algorithms which produce such an infinite sequence .In/n2N are the Rauzy–Veech induc-
tion algorithm (see Veech [76] or [81] and the references therein) and Zorich induction, an
acceleration of the same algorithm introduced by Zorich in [82]. For the definitions of these
algorithms, whichwewill not use in the following, we refer the interested reader to the lecture
notes [81]. One can show that, for d D 2, Zorich induction corresponds to the renormalization
of rotations given by the Gauss map.

On the parameter space Id of all d -IETs, these algorithms induce renormalization
operators R W Id ! Id , which associate to T the d -IET R.T / obtained by applying one
step of the corresponding induction and then renormalizing the induced map to act on Œ0; 1�.
Veech showed that Rauzy–Veech renormalization admits a conservative absolutely continu-
ous invariant measure, that induces a finite invariant measure for the Zorich acceleration, as
proved in [82]. The ergodic properties of the renormalization dynamics in parameter space
have been intensively studied and are by now well understood, see, e.g., [80] and the refer-
ences therein for a brief survey.

Rohlin towers and matrices. After n steps of induction, one can recover the original
dynamics through the notion of Rohlin towers as follows: if I i

n is one of the subinter-
vals of Tn and r WD r i

n is its first return time to In under the action of T , the intervals
I i

n; T .I i
n/; : : : ; T r�1.I i

n/ are disjoint. Their union is called a Rohlin tower of step n and each
of them is called a floor (see Figure 3b for a graphical depiction of floors and towers). Given
an infinitely renormalizable T , for any n one can see Œ0; 1� as a union of d Rohlin towers of
step n, as shown in Figure 3b. Rohlin towers thus produce a sequence of partitions of Œ0; 1�

(into floors of towers of step n).
Renormalization produces also a sequence of d � d matrices An, n 2 N, with inte-

ger entries, which should be thought of as multidimensional continued fraction digits and
describe intersection numbers of Rohlin towers. The matrices .An/n2N are defined so that
the entries of the product An WD An � � � A1 have the following dynamical meaning: the .i; j /

entry .An/ij is the number of visits of the orbit of any point x 2 I
j
n to the initial subinterval

I i
0 until its first return time r

j
n ; in other words, .An/ij is the number of floors of the j th

tower of level n which are contained in I i
0 . These entries generalize the classical continued

fraction digits: for d D 2, indeed, the matrices .An/n2N associated to R˛ , for n of alternate
parity, have respectively the form 

1 an

0 1

!
or

 
1 0

an 1

!
;

where an are the entries of the continued fraction expansion ˛ D Œa0; a1; : : : ; an; : : : �.
Diophantine-like conditions for IETs are defined by imposing conditions on these matrices,
on their growth as well as on their hyperbolicity, see in Section 5. The matrices .An/n2N are
produced by the renormalization dynamics: for rotations, the entries .an/n2N of the contin-
ued fraction expansion of ˛ satisfy an D a.G n.˛//, where a.�/ is an integer-valued function
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on Œ0; 1�. Similarly, one has now thatAn D A.Rn.T //, whereA W Id ! SL.d;Z/ is a matrix-
valued function on the space Id of d -IETs, i.e., a cocycle (known as theRauzy–Veech cocycle,
or Zorich cocycle if considering the Zorich acceleration).

Positive and balanced accelerations. It turns out though that Zorich acceleration is often
not sufficient (see, for example, [41] and [40] where it is shown that the classical Diophantine
notions of bounded- [41] and Diophantine-type [40] do not generalize naturally when using
Zorich acceleration). Two accelerations which play a key role in Diophantine-like conditions
are the positive and the balanced acceleration. By accelerations we mean here an induction
which is obtained by considering only a subsequence .nk/k2N of Rauzy–Veech times. The
associated (accelerated) cocycle is then obtained considering products

A.nk ; nkC1/ WD AnkC1�1 � � � AnkC1Ank
:

The positive acceleration appears in the works by Marmi, Moussa, and Yoccoz [53, 55, 57].
They showed that if T satisfies the Keane condition, for any n there exists m > n such that
A.n;m/ is a strictly positive matrix. The accelerated algorithm then corresponds to choosing
the sequence .nk/k2N setting n0 WD 0 and then, for k � 1, choosing nk to be the small-
est integer n > nk�1 such that A.nk�1; n/ is strictly positive. On the other hand, to define
the balanced acceleration, one considers a subsequence .nk/k2N of Rauzy–Veech times n

for which the corresponding Rohlin towers are balanced, in the sense that ratios of widths
jI i

nj=jI
j
n j and heights r i

n=r
j
n are uniformly bounded above and below.We will return to these

accelerations and some instances in which they are helpful in Section 5.

Combinatorial rotation numbers. We remark that the definition of Rauzy–Veech induc-
tion can be extended also to a GIET T (under the Keane condition, which guarantees that
Rn.T / can be defined for every n 2 N) and then exploited to give a combinatorial notion of
rotation number as well as a definition of irrationality in higher genus (following [55,57], see
also [81]). As one computes the induced maps .Tn/n2N , one can indeed record the sequence
.�n/n2N of permutations of the GIETs .Tn/n2N : this sequence provides the desired com-
binatorial rotation number for d > 2. We say that a GIET is irrational if the sequence of
matrices .An/n2N have a positive acceleration (or equivalently, in the terminology intro-
duced byMarmi, Moussa, and Yoccoz, the path described by .�n/n2N is infinitely complete).
One can then show that two irrational GIETs with the same rotation number are semicon-
jugated (see, e.g., [81]), a result that generalizes a property of rotations numbers and circle
diffeos and hence explains the choice of calling this higher genus combinatorial object the
“rotation number” of a GIET.

Renormalization of Birkhoff sums. Given T W I ! I and a function f W I ! R, we denote
by Snf WD

Pn�1
kD0 f ı T k the nth Birkhoff sum (of the function f under the action of T ).

When T D R˛ is a rotation (or a circle diffeo), it is standard to study first Birkhoff sums
of the form Sqnf for qn convergent of ˛, corresponding to closest returns, and then use
them to decomposemore general Birkhoff sums. Similarly, renormalization for (G)IETs can
be exploited to produce special Birkhoff sums, namely Birkhoff sums of a special form that
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can be understood first, exploiting renormalization, and then used to decompose and study
general Birkhoff sums. For each n 2 N, if Tn W In ! In is the induced map after n steps
of renormalization, the nth special Birkhoff sum is the induced function S.n/f W In ! In,
defined by S.n/f .x/ WD Sr i

n
f .x/ if x 2 I i

n. Thus, since r i
n is the height of the Rohlin tower

over I i
n, the value S.n/f .x/ is obtained summing the orbit along the tower which has x

in the base, see Figure 3b. Notice that for d D 2, when considering Zorich acceleration,
these reduce to sums of the form Sqnf .x/. The associated special Birkhoff sums operators
S.n/, n 2 N, map f W I ! R to S.n/f W In ! R. When f is piecewise constant and takes
a constant value fi on each I i , S.n/ can be identified with a linear operator given by the
(studied acceleration of the) Rauzy–Veech cocycle An D An � � � A1 as follows: one can show
that S.n/f takes constant values f i

n on each I i
n and the column vectors f WD .f i /d

iD1 and
fn WD .f i

n /d
iD1 are related by fn D An f . Thus, special Birkhoff sums operators can be seen

as infinite-dimensional extensions of the Rauzy–Veech cocycle (and its accelerations).
When considering a rotation R˛ , to decompose Snf .x/ into Birkhoff sums of the

form Sqk
f .y/where y 2 Ik , one can write n D

Pkn

kD0
bkqk , where kn is the smallest integer

k such that n < qk and bk are integers such that 0 � bk � ak (a presentation sometimes known
as Ostrowsky decomposition). Correspondingly, recalling that Sqk

f .y/ D S.k/f .y/ when
y 2 Ik , we can write

Snf .x/ D

knX
kD0

bk�1X
j D0

S.k/f
�
xk

j

�
; where xk

j 2 Ik ; for all 0 � j < bk : (4.1)

For IETs one can also get an analogous decomposition of any Birkhoff sumsSnf .x/ into spe-
cial Birkhoff sums, which has the same form (4.1), but where 0 � bk � kAnk WD

P
i;j .An/ij

and the decomposition is obtained dynamically, by decomposing the orbit of x until time n

into blocks, each of which is contained in a tower and hence corresponds to a special Birkhoff
sums.

Renormalization in moduli spaces. We conclude this section mentioning that these renor-
malization algorithms (for rotations and IETs) describe a discretization of a renormalization
dynamics on the moduli space of surfaces. In genus one, the Gauss map is well known to be
related to the geodesic flow on the modular surface (which can be seen as the moduli space of
flat tori), see, e.g., [66]. Similarly, (an extension of) Rauzy–Veech induction can be obtained
as Poincaré map of the Teichmüller geodesic flow on the moduli space of translation surfaces
(see, e.g., [85]).

The full measure Diophantine-like conditions that we discuss in this survey are sat-
isfied by (Poincaré maps of) linear flows in almost every direction on almost every translation
surface in these moduli space (with respect to the Lebesgue, or Masur–Veech measure, see
[12]). A different question is whether these properties hold for a given surface in almost
every direction, in particular if the surface has special properties, for example, is a torus
cover (i.e., it is a square-tiled surface), or has special symmetries (e.g., it is a Veech surface
or it belongs to an SL.2; R/-invariant locus, see [12]). In these settings, while some results
can be obtained by general measure-rigidity techniques (in particular, from the work [9] by
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Chaika and Eskin, see also the ICM proceedings [12] and the references therein), to describe
explicit Diophantine-like conditions, it is often helpful to exploit or develop ad hoc renor-
malization algorithms (for example, one can use finite extensions of the Gauss map to study
square-tiled surfaces, see, e.g., [59], or construct Gauss-like maps for some Veech surfaces,
see, e.g., [69]).

5. Diophantine-like conditions in higher genus

We finally describe in this section some of the Diophantine-like conditions which
were introduced to prove some of the results on typical ergodic and spectral properties of
smooth area-preserving flows on surfaces (see Section 3.1) and on linearization (such as
solvability of the cohomological equation and rigidity questions in higher genus, see Sec-
tion 3.2).

5.1. Bounded-type IETs and Lagrange spectra
We start with two important classes of IETs, namely periodic-type and bounded-

type IETs, both of which have measure zero in the space Id of IETs (although full Hausdorff
dimension in the case of bounded-type IETs), but often constitute an important class of IETs
in which dynamical and ergodic properties can be tested.

One of the simplest requests on a (G)IET is that its orbit under renormalization is
periodic, so that the sequence of Rauzy–Veech cocycle matrices .An/n2N introduced in the
previous Section 4 is periodic, i.e., there exists p > 0 such that AnCp D An for every n 2 N.
We will furthermore request that the period matrix A WD Ap � � � A2A1 is strictly positive.
These IETs are called in the literature periodic-type IETs (see, e.g., [68]), in analogy with
periodic-type rotation numbers (quadratic irrationals like the golden mean .

p
5 � 1/=2 D

Œ1; 1; : : : ; 1; : : : � which have a periodic continued fraction expansion). By construction they
are self-similar, and one can also show that they arise as Poincaré section of foliations which
are fixed by a pseudo-Anosov surface diffeomorphism. Notice that d -IETs of periodic type
form a measure zero set in Id (they are actually countable). One can show (in view of a
Perron–Frobenius argument, e.g., following [76]) that periodic-type IETs are always uniquely
ergodic with respect to the Lebesgue measure.

Periodic-type IETs are often the very first type of IETs used to construct explicit
examples; see, e.g., the explicit examples of weakly mixing periodic-type IETs in [68] or the
explicit examples of Roth-type IETs build in the Appendix of [53]. On the other hand, among
periodic-type IETs one can also find examples with exceptional behavior. A further request,
that is used to guarantee that a periodic-type T displays features similar to those of typical
(in the measure theoretical sense) IETs is that T is of hyperbolic periodic-type: this means
that the periodic matrix A has g eigenvalues of modulus greater than 1, where g is the genus
of the surface of which T is a Poincaré section. Notice that g is the largest possible number
of such eigenvalues, as it can be shown by either geometric or combinatorial arguments (in
particular, exploiting the symplectic features of the cocycle matrices, which come from their
interpretation as action of renormalization on the relative homologyH1.S;Fix.'R/;R/, one
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can show thatA has also g eigenvalues of modulus less than 1, while the transposeAT acts as
a permutation on a subspace of dimension k WD d � 2g which gives rise to a k-dimensional
central space).

Bounded-type IETs equivalent characterizations. Periodic-type IETs are a special case
of so called bounded-type IETs: we say that a (Keane) IET T is of bounded-type if the matri-
ces of the positive acceleration Pk WD A.nk ; nkC1/ are uniformly bounded, i.e., there exists
a constant M > 0 such that kPkk � M for every k 2 N. From this point of view, bounded-
type IETs can be seen as a generalization of bounded-type rotation numbers (which, recalling
Section 2, are ˛ D Œa0; a1; : : : ; an; : : : � such that for some M > 0 we have janj � M ). It
turns out that this renormalization-based definition characterizes a natural class of IETs (and
corresponding surfaces) from the combinatorial and geometric point of view: bounded-type
IETs are linearly recurrent (i.e., satisfy an important notion of low complexity in word-
combinatorics) and surfaces which have a bounded-type IET as a section give rise to bounded
Teichmüller geodesics in the moduli space of translation surfaces (see, e.g., [31] for the proof
of the equivalences). These natural characterizations show once more how the positive accel-
eration (and not simply Zorich acceleration) is the good one to use in this setting (see also [41]

where it is shown that asking that Zorich matrices are bounded leads to a different, strictly
larger class).

Furthermore, from the point of view of renormalization, the uniform bounds on the
norm of the matrices Pk imply that the partitions into Rohlin towers produced by Rauzy–
Veech renormalization are all balanced (see Section 4). From a purely dynamics perspective,
the orbits of a bounded-type IET are well-spaced: there are uniform constants c; C > 0 such
that, for any point x and any n, the gaps (i.e., the distances between closest point) of the
orbit ¹T i x; 0 � i < nº are all comparable to n, i.e., are bounded below by c=n and above by
C=n. Yet another characterization is in terms of orbits of discontinuities: if ın.T / denotes
the smallest length of a continuity interval for Tn, lim infn2N nın.T / > 0, see [31] and the
reference therein.

Several results in the literature were proved first assuming bounded-type (for exam-
ple, the absence of mixing for flows inUmin, see [70], preceding [73]) and some properties are
currently known only under the assumption of being bounded-type, for example, absence of
partial rigidity and mild-mixing (see [47] and [32], respectively) for flows in Umin (it is pos-
sible, but an open question, that these two properties fail without assuming that a Poincaré
section is of bounded-type), or ergodicity of typical skew-product extensions of IETs by
piecewise constant cocycles (see [11]).

Bounded-type uniform contraction and deviations estimates. One of the way in which
the bounded-type assumption can be exploited is the following. It is well known that iterates
of a positive d � d matrix A > 0 act on the positive cone Rd

C as a strict contraction (e.g.,
with respect to the Hilbert projective metric): this is the phenomenon behind the proof of
Perron–Frobenius theorem, showing thatA has a unique (positive) eigenvector with maximal
eigenvalue. More generally, the projective action of any matrix Ai with kAi k � M has a
contraction rate which depends onM only; this, in view of the connection between the entries
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of the cocycle products An WD An � � � A1 and (special) Birkhoff sums (see Section 4), can be
used, given a bounded-type IET, to prove unique ergodicity and to give uniform estimates
on the rate of convergence of ergodic averages: one can, for example, show that there is a
uniform constant (which can be taken to be 1) and a uniform exponent M such that, for
any bounded-type IET with kPkk � M and any mean zero (piecewise) smooth f W I ! R,
jSnf .x/j � nM for all x 2 I (see the Appendix of [11]).

The role of bounded-type conditions in the study of Lagrange spectra. Periodic-type and
bounded-type rotation numbers play a central role in the study of the Lagrange spectrum
L � R [ ¹C1º, a classical object in both number theory and dynamics (see, for exam-
ple, [31] or [58] and the reference therein). It is defined as the set L WD ¹L.˛/; ˛ 2 Rº where
L.˛/ WD lim supq;p!1 1=qjq˛ � pj; one can show that L.˛/ < 1 exactly when ˛ is of
bounded-type, in which case L.˛/�1 provides the smallest constant such that j˛ � p=qj <

L.˛/�1=q2 has infinitely many integer solutions p;q 2 Z, q ¤ 0 (and it has also an interpre-
tation in terms of depths of excursions into the cusp of hyperbolic geodesics on the modular
surface). Among the many geometric and dynamical extensions of the notion of Lagrange
spectrum (see some of the references in [31]), a natural generalization to higher genus leads
to Lagrange spectra of IETs and translation surfaces, which we introduced in joint work
with Hubert and Marchese in [31]. The finite values of these spectra are achieved exactly by
bounded-type IETs and can be computed using renormalization. We show furthermore in
[31] that these spectra can be obtained as the closure of the values achieved by periodic-type
IETs.

5.2. Roth-like conditions and type
The Roth-type condition, to the best of our knowledge, was historically the first full

measure “arithmetic” condition to be defined and exploited in higher genus.

Roth-type condition. In the seminal paper [53], Marmi, Moussa, and Yoccoz show first
of all that (a predecessor of) the positive acceleration of Rauzy–Veech induction (refer to
Section 4) is well defined for all Keane IETs and use this acceleration to define the Roth-type
condition and prove that it has full measure; they then show that this condition is sufficient
to solve the cohomological equation after removing obstructions (see Section 3.2). Since
bounded-type IETs have measure zero, to describe a full measure set of IETs, one needs to
allow the norms kPkk of the matrices .Pk/k of the positive acceleration to grow. Marmi,
Moussa, and Yoccoz show in [53] that, for almost every d -IETs in Id , the matrices .Pk/k

grow subpolynomially, i.e., for any " > 0 there exists C" > 0 such that

kPkC1k � C"kQkk
"; where Qk WD Pk � � � P1: (5.1)

This condition should be seen as a higher genus generalization of the classical Roth-type con-
dition, see Section 2. A d -IETs is called Roth-type if it satisfies (5.1) (which is equivalent
to condition (a) in [53], see [57]), and two additional conditions, which concern the contrac-
tion properties of the cocycle (condition (b) in [53] imposes that the operators S.k/ act as
contractions on mean-zero functions and guarantees unique ergodicity and the existence of
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a spectral gap, while the last one, condition (c) or coherence, concerns the contraction rate
of the stable space and its quotient space). The presence of additional requests that concern
not only the growth of the matrices but also their hyperbolicity properties seems to be an
important and new feature of several Diophantine-like conditions in higher genus, see Sec-
tion 5.4. While the proof that the latter two conditions are satisfied by almost every IET is
a simple consequence of Forni’s work [23] and Oseledets theorem (which can be applied in
view of the work by Zorich [82]), the proof that the growth condition (5.1) is typical takes
a large part of [53]; a simpler proof can be now deduced (as explained in [52]) from a later
result by Avila–Gouezel–Yoccoz [3].

Variations of the Roth-type condition. As we saw, the periodic-type condition can be
refined to the more restrictive condition of hyperbolic periodic-type. In a similar way, one
may further request, given a Roth-type IET T , that the stable space, i.e., the space �s.T /

of vectors v 2 Rd such that Anv ! 0 exponentially as n grows (which, in the case of a
periodic-type IET with period matrix A, is generated by the eigenvectors corresponding to
the eigenvalues of A which have modulus greater than 1) has maximal dimension, namely
g. The condition that one gets was called restricted Roth-type in [55]; it has full measure
in view of [23] and was used to study the structure and codimension of local C r conjugacy
class of a (G)IET for r > 2. In the joint work [56] with Marmi and Yoccoz, we introduced
a further weakening of the (restricted) Roth-type condition, the absolute (restricted) Roth
type condition, expressed only in terms of the cocycle action on a 2g-dimensional subspace
which can be identified with the absolute homology H1.S; R/ of the surface S of which T

is section (in contrast, the original condition involves the whole cocycle, which describes the
action on the relative homology H1.S;Fix.'R/; R/). Exploiting [9], one can also show that
this absolute (restricted) Roth-type condition holds on every translation surface for almost
every direction (see [9] and [56]). A generalization of the restricted Roth-type condition, the
quasi-Roth-type condition, was introduced in [24] to extend the results of [53] and [55] to
Poincaré maps of surfaces for which the stable space has dimension less than g (see [24] for
details). Let us also mention that a Roth-type condition can also be imposed on the backward
rotation number (of a translation flow), requesting a growth rate similar to (5.1) for the dual
cocycle. The corresponding dual Roth-type condition was used in [56] to study the asymp-
totic oscillations of the error term in (3.3) (which we describe in terms of a distributional
cocycle or distributional limit shape, see [56] for details).

Type and recurrence for IETs. It is not surprising that Diophantine-like conditions can
also be used to study recurrence questions. While for rotations these reduce to Diophantine
properties in the classical arithmetic sense (namely how well a number can be approximated
by rationals), given an IET T , one can study either how frequently the successive iterates
.Tn.x//n2N return close to x (see, e.g., [5]), or how close the iterates of a discontinuity come
to other discontinuities, see, e.g., [51]. The (Diophantine) type � of a rotationR˛ is defined to
be � WD sup¹ˇ W lim infn!1 nˇ ¹n˛º D 0º. Bounded- and Roth-type numbers have type � D 1

(while Liouville ones have type � D 1). One can show (see [40] and [55]) that requesting
an IET T be of Roth-type is equivalent to asking that sup¹ˇ W lim inf nˇ ın.T / D 0º D 1,
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where here ın.T / is the minimum spacing between discontinuities of Tn. It also implies (but
without equivalence) that the first return time �r .x/ of x to a ball of radius r > 0 satisfies
the logarithmic law limr!0 log �r .x/= log.1=r/ D 1 for almost every x 2 Œ0; 1� (see [40]).

5.3. Controlled growth Diophantine-like conditions
Any balanced acceleration of Rauzy–Veech induction (as defined in Section 4), pro-

duces, given a typical IET T , a sequence of times .nk/k which correspond to occurrences
of positive matrices Ank

whose norm kAnk
k � M is uniformly bounded (these are, further-

more, return times to a compact subset K of the parameter space for the natural extension).
As for bounded-type IETs, occurrences of these positive bounded matrices give very good
control of the convergence of (special) Birkhoff sums of characteristic functions �

I
j
0
(see

the end of Section 5.1). More generally, if x0 2 I
j
n belongs to the inducing interval In of

a balanced return time n WD nk and q WD r
j
n is the height of the corresponding tower, the

orbit ¹x0; T .x0/; : : : ; T q�1.x0/º along a tower is so regularly spaced that one can get good
estimates of the Birkhoff sums Sqf .x0/ also for other classes of observables f . In order to
estimate Birkhoff sums Snf .x/ for other times n 2 N and points x 2 Œ0; 1�, one can then
interpolate these estimates by using the decomposition (4.1) into special Birkhoff sums. It is
clear now that for this interpolation to provide good estimates for any time n 2 N, one needs
to impose that the balanced times .nk/k are sufficiently frequent so that kA.nk ; nkC1/k

grows in a controlled way. Notice that by balance the tower heights r
j
nk

for 1 � j � d are
all comparable and if we set qn WD maxj r

j
n , the norm kA.nk ; nkC1/k is proportional to

qnkC1
=qnk

.

Mixing Diophantine condition. The main requirement of the mixing Diophantine condi-
tion introduced in [71] is that there exist a (good) positive acceleration and C > 0 such thatA.nk ; nkC1/

 � C k� ; 8k 2 N; for some 1 < � < 2: (5.2)

This condition should be seen as a higher-genus generalization of the Khanin–Sinai condi-
tion jakj � C k� for mixing of Arnold flows, see Section 2. The proof that it is satisfied by
a full measure set of IETs follows from a Borel–Cantelli argument analogous to that which
can be used in genus one, but the input in higher genus are the highly nontrivial integrabil-
ity estimates for balanced accelerations proved by Avila, Gouezel, and Yoccoz (which the
authors proved to show in [3] that the Teichmüller geodesic flow is exponentially mixing):
it is proved in [3] that for any 0 < � < 1, there exists a suitable compact set K such thatR

K
kAKk�d� is finite (where AK is the accelerated cocycle and � the Zorich measure).

In order to prove mixing of (minimal components of) locally Hamiltonian flows
in U:min (i.e., Theorem 3.1), one needs good quantitative estimates on shearing: these are
given by estimates of Birkhoff sums Snf over an IET which arise as Poincaré map, for a
particular observable f (namely, f is taken to be the derivative of the roof function in the
special flow representation of 'R), which turns out not to be in L1 (indeed, the function f

has singularities of type 1=x, which are not integrable). When n D nk is a balanced time, one
can control the corresponding special Birkhoff sums S.nk/f and show that each Birkhoff
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sum along a tower Sqf .x/, where q D q
j
nk

and x 2 I
j
nk
, can be controlled after removing

the closest point contribution that, in this case, is simply 1=x. One can indeed show that the
trimmed Birkhoff sum Sqf .x/ � 1=x is asymptotic to C q log q. The mixing Diophantine
condition allows to interpolate these estimates and to show that, also for any other n 2 N,
Snf .x/ grows asymptotically as C n logn for all points x with the exception of points which
belong to a set †n � Œ0; 1� of measure going to zero. The set †n of points which needs to
be removed to get the desired control contains points whose orbits may be resonant, in the
sense that it may contain a close-to-arithmetic progression near one of the singularities of f ,
with step qnk

=qnkC1
(which can be a very small step if qnkC1

is much larger than qnk
).

Ratner Diophantine condition. In order to prove that (minimal components of) locally
Hamiltonian flows inU:min have the switchable Ratner property (e.g., Theorem 3.2, see Sec-
tion 3), one needs more delicate quantitative shearing estimates. Such estimates are proven
assuming first of all the mixing Diophantine condition, but the MDC is not sufficient. While
mixing is an asymptotic condition and therefore it is sufficient, for all large n, to prove
estimates for the Birkhoff sums Snf .x/ (introduced in the previous subsection) on sets of
measure tending to 1 (and hence one can remove a set †n whose measure goes to zero), the
(switchable) Ratner property requires estimates on arbitrarily large sets of initial points, for
all large times n � n0. If the series

P
n2N Leb.†n/ were finite, the tail sets of the formS

n�n0
†n would have arbitrarily small measures, and thus one could throw away these

unions for n0 large. Unfortunately, one can check that the measures .Leb.†n//n2N are not
summable. Instead, we consider a subset K � N such that

P
n…K Leb.†n/ < C1 and

exploit the additional freedom given by the switchable Ratner condition to deal with points
x 2 †n when n 2 K. This requires the introduction of a suitable Diophantine-like condition.

We say that an IET T satisfies theRatner Diophantine condition (RDC) if T satisfies
the mixing DC along the sequence .nk/k2N of balanced induction times and there exist
0 < � , � < 1 such that, if Bk WD A.nk ; nkC1/ are the matrices of the accelerated cocycle and
qk WD maxj r

j
nk

the maximum height of the corresponding towers, then we haveX
k…K

1=.log qk/� < C1; where K WD
®
k 2 N W kBkk � k�

¯
: (5.3)

The assumption (5.3) guarantees in particular the summability of
P

n…K Leb.†n/, so that
tail sets of this series can be removed. When k 2 K, using that nk is a balanced time and
qk=qk�1 � kBkk is not too large, one can show that an arbitrarily large set of points x

do not get close of order c=qk�1 to a singularity twice in time of order qk , so by either
going forward or backward in time one can avoid getting O.q�1

k
/ close to singularities.

This suffices to provide the control of Snf .x/ (and therefore of shearing) required by the
switchable Ratner property for all times.

Notice that if an IET T is of bounded type (so kBkk are bounded) then the RDC is
automatically satisfied (since the complement of K in N is finite and therefore the series is a
sum of finitely many terms). The Ratner DC imposes that the times k for which kBkk is large
are not too frequent: in a sense if an IET satisfies the RDC, it behaves like an IET of bounded
type modulo some error with small density (as a subset of N), but this relaxation allows the
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property to hold for almost every IETs: we prove in [33] that, indeed, for suitable choices
of � and �, the RDC is satisfied by a full measure set of IETs. Formally (when using the
suitable acceleration), the assumption (5.3) looks like the Diophantine condition for rotations
introduced by Kanigowski and Fayad in [16], see (3.2). The proof of full measure of the RDC
is modeled on the proof of full measure of the arithmetic condition (3.2), with the role of
the Gauss map played by the renormalization operator in the parameter space corresponding
to the balanced acceleration. Key ingredients to make this proof work are once more the
integrability estimates by Avila–Gouezel–Yoccoz [3], as well as a quasi-Bernoulli property
of the balanced acceleration, see [33] for details.

Backward growth condition for absence of mixing. The Diophantine-like condition to
prove absence of mixing of typical locally Hamiltonian flows in Umin (see Section 3.1) is
not explicitly stated in [73], but, from the proof, one can see that one needs the existence
of a suitable acceleration of the balanced acceleration, whose matrices will be denoted by
.Bk/k2N , of a subsequence .kl /l and of a constant M > 0 such that

klX
kD0

kBkk

�kl �k
D

klX
j D0

kBkl �j k

�j
� M < C1; for all k 2 N; (5.4)

where � is some constant with � > 1. Such a condition has two interesting features: it requires
a backward control of the growth of the matrices of an accelerated cocycle, which has to
happen infinitely often. Indeed, for the series (5.4) to converge and be uniformly bounded
by M , one needs to ask that the norms kBkk when k belongs to the sequence .kl /l2N are
uniformly bounded; furthermore, it is sufficient to then impose that, going backward in time,
they grow slower than the denominator, namely that kBkl �j k � Ceıj for 0 � j � kl where
ı is chosen so that eı < �. These conditions can be shown to be of full measure by exploiting
Oseledets integrability (for the dual cocycle).

Such backward conditions seem to appear naturally when one wants to provide good
control of the deviations of the points in a finite segment ¹x; T .x/; : : : ; TN .x/º of an IET
orbit from an arithmetic progression: one would like to show, for example, that, if we relabel
the points in the orbit segment so that 0 < x1 < x2 < � � � < xN < 1, the points xi display
polynomial deviations from an arithmetic progression, i.e., there exist C > 0 and 0 <  < 1

such that jxi � i=N j � C.i=N / . These estimates (which are used in [70,73] to show, through
a cancelations mechanism, that there is a subsequence of times with no shearing and, as a
consequence, that mixing fails) can be proved for all times for bounded type IETs (see [70]),
but, for typical IETs, even for orbits along a balanced tower of some renormalization level
nk0

, it may not be possible to choose a constantC uniformly in i . Heuristically, the reason for
this is that, to estimate the location of xi , one can use a spatial decomposition of the interval
Œ0; xi � into floors of renormalization towers which involves the entries of backward cocycle
matrices (a decomposition similar to that in (4.1), but with the role of time now played by
space; geometrically this can also be interpreted as swapping the role of the horizontal and
vertical flows on a translation surface). The presence of an exceptionally large kAkk, even
if k is much smaller than k0, can still spoil the deviations control, since it may correspond
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in the spatial decomposition to a clustering of points, close to an arithmetic progression of
a very small step.

We point out that phenomena of similar nature, where the whole backward history
of the continued fraction entries matters to control orbits, appears also in genus one, in the
theory of circle diffeomorphisms. For example, in the paper [39] (in which the Herman’s
theory of linearization briefly recalled in Section 2) is revisited, following [38], through the
renormalization perspective and optimal results are achieved for low regularity), the finite-
ness of a series of the form

P1

nDn0
anC1

�Pn
iD0

ln

ln�i
.ln�i�1/�

�
, where .an/n2N are the CF

entries of ˛ D Œa0; a1; : : : � ln WD jqn˛ � pnj and 0 < � < 1, is used to control the spatial
decomposition of orbit segments. It would be interesting to know if the analogy, which at this
level is only formal and on the nature of the conditions, hides a more profound similarity.

5.4. Effective Oseledets Diophantine-like conditions
To conclude, we briefly describe the uniform and regular Diophantine-like con-

ditions (UDC and RDC, for short), introduced and used to prove Theorems 3.5 and 3.3,
respectively (see Sections 3.2 and 3.1). Both these conditions present a novel aspect: not only
they impose conditions which control the growth of cocycle matrices of a suitable acceler-
ation (as all the conditions we have seen in Section 5.3), as well hyperbolicity assumptions
(as, for example, the hyperbolic periodic-type or the restricted Roth-type condition, in Sec-
tions 5.1 and 5.2), but they also impose quantitative forms of hyperbolicity, by asking for
effective bounds on the convergence rates in the conclusion of Oseledets theorem, as we now
detail.

Effective Oseledets control and the UDC. Let us say that a sequence of balanced return
times .nk/k2N satisfies an effective Oseledets control if one can find a sequence of invariant
splittingsRd D En

s ˚ En
c ˚ En

u , with dimEn
s D g, such that, for some � > 0 and any k 2 N;A.nk ; n/j

E
nk
s


1

� Ce��.n�nk/ for every n � nk I (5.5)A.n; nk/�1
j
E

nk
u


1

� Ce��.nk�n/ for every 0 � n � nk : (5.6)

Thus, the cocycle contracts the stable space E
nk
s in the future and the unstable space E

nk
u in

the past with a uniform rate � and a uniform constant C . These times can be produced, for
example, by considering returns to a set (for the natural extension) where the conclusion of
Oseledets theorem (for the cocycle and its inverse) can be made uniform. An IET satisfies
the uniform Diophantine condition (UDC) if there exists balanced times .nk/k with effec-
tive Oseledets control and, furthermore, for every " > 0 there exist C; c > 0, � > 0 and a
subsequence .kl /l2N which is linearly growing (i.e., such that lim infl!1 kl=l > 0), for
which A.nk ; nkl

/
 � C"e"jk�kl j for all k � 0 and l � 0I (5.7)

ce�k
�
A.0; nk/

 � Ce.�C"/k for all k � 0: (5.8)

One can show that assuming that T satisfies the RDC implies, in particular that T is of
(restricted) Roth-type (see [26]); on the other hand, (5.5) and (5.6) are assumptions of a new
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nature, and furthermore (5.8) clearly excludes IETs of bounded type; thus this is a more
restrictive Diophantine-like condition, although still of full measure (see [26]).

The RDC and conditions on Diophantine series. In the regular Diophantine condition
(used to study rigidity of GIETs in [29] and, in particular, to prove Theorem 3.5), we assume
that T is Oseledets generic and require the existence of a special sequence of balanced times
.nk/k such that the two following forward and backward series (involving the accelerated
matrices Bk WD A.nk ; nkC1/, their products B.k; l/ WD BlBl�1 � � � BkC1, as well as the pro-
jections …k

s and …k
u to E

nk
s and E

nk
u , respectively) are uniformly bounded by some constant

M > 0 along a linearly growing subsequence .kl /l2N , namely, for every l 2 N,
klX

kD1

B.k; kl /jE
nk
s

…k
s

kBk�1k � M;

1X
kDkl C1

B.kl ; k/�1

jEk
u

…k
u

kBk�1k � M:

(5.9)
We also require a uniform lower bound on the angles between the subspaces En

s ; En
u , and

En
c of the splitting along the subsequence .nkl

/l and subexponential growth of B.kl ; klC1/.
The convergence of these series can be proved assuming that the sequence .nk/k provides
effective Oseledets control; the subsequence .kl /l is then selected so that the uniform upper
bound holds.We remark that also the UDC can be used to prove the convergence and uniform
boundedness (along a linearly growing subsequence) of some series of similar (although sim-
pler) nature (that we call Diophantine series, see [26] for details). Notice also the similarity
between the backward series in (5.9) and the series (5.4) used to prove absence of mixing,
even though the latter involves only the norm of the matrices and not their hyperbolic prop-
erties.

Examples of arithmetic conditions on classical rotation numbers which do not
depend only on the asymptotic behavior of the continued fraction entries (as Diophan-
tine or Roth-type conditions) but instead depend on values or finiteness of series involving
continued fraction entries include the Brjuno-condition (see, e.g., [78]) and the Perez–Marco
condition [62]. Conditions which require recurrence to a set of rotation numbers with this
type of control in the theory of circle diffeos seem to appear in global rigidity results, see,
for example, Condition .H/ defined by Yoccoz [79].

Final remarks and questions. We saw that advancements in our understanding of both
chaotic properties and linearization and rigidity questions in the context of surface flows in
higher genus depend crucially on sometimes delicate Diophantine-like conditions, imposed
to control the renormalization dynamics.While some of these resemble the classical counter-
parts, others are of new nature and involve in particular hyperbolicity features which become
visible only in higher genus. A downside of this new aspect is that conditions that require
Oseledets genericity assumptions are not easily checkable. If there is a way of producing
explicit examples with such properties which are not of periodic type, even within a locus,
remains a challenge. Since many developments are still quite recent, it is possible that some
conditions can be simplified or weakened and still yield the same results; furthermore, the
interdependence or inclusions between the various conditions have not been fully inves-
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tigated. Finally, even though, all the conditions we described, with the only exception of
bounded-type conditions, are of full measure, they are likely not to be the optimal ones
required for the results for which they were introduced (we know this, for example, for the
absence of mixing condition, in view of [13]). Finding optimal conditions for each of these
problems is certainly interesting, but probably very difficult.
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We discuss the problem of determining the dimension of self-similar sets and measures
on R. We focus on the developments of the last four years. At the end of the paper, we
survey recent results about other aspects of self-similar measures including their Fourier
decay and absolute continuity.
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A (self-similar) iterated function system, IFS for short, is a finite collection

ˆ D ¹'i W i 2 ƒº

of contractive similarities of Rd . A contractive similarity is a map x 7! � � Ux C t , where
� 2 .0;1/,U 2O.d/ is a rotation, and t 2R. We call � the contraction factor of the similarity.
Given such an IFS, there is a unique self-similar set, that is, a compact set K � Rd such that

K D

[
i2ƒ

'i .K/:

This set K is also known as the attractor of the IFS. Furthermore, given an IFS and a proba-
bility vector ¹pi W i 2 ƒº, there is a unique self-similar measure, that is, a probability measure
� on Rd such that

� D

X
i2ƒ

pi 'i .�/:

Here 'i .�/ denotes the push-forward of� under 'i . In other words,� is the unique stationary
measure for the Markov chain on Rd with transitions 'i executed with probability pi . The
support of � equals the self-similar set K provided pi > 0 for all i .

Self-similar sets and measures are central objects of interest in fractal geometry and
they include many classical examples of fractals. For example, the attractor of the IFS

¹x 7! �x � 1; x 7! �x C 1º

is (a scaled copy of) the middle 1 � 2� Cantor set for � 2 .0; 1=2/, while for � � 1=2,
the attractor is an interval. The self-similar measure associated to the same IFS with equal
probability weights pi D 1=2 is called the Bernoulli convolution and is denoted by ��. They
can also be defined as the distribution of the random variables

1X
nD0

˙�n;

where the ˙ are independent fair coin tosses. The study of these measures go back at least to
Wintner and his collaborators in the 1930s. See [38] for more on Bernoulli convolutions.
Other classical self-similar sets include the Sierpiński triangle and (a side of) the Koch
snowflake curve.

The systematic study of self-similar sets and measures was initiated by Hutchin-
son [25]. We refer to his paper and Falconer’s book [15, Chapter 9] for thorough treatments of
the fundamental properties of these objects.

Determining the dimension of self-similar sets and measures is a central problem
in fractal geometry. While there are several competing notions of dimension for sets and
measures, most of them coincide in the self-similar case. In this paper, for self-similar sets,
by dimension we mean the common value of the Minkowski and Hausdorff dimensions.

The local dimension of a measure � in Rd at a point x is

lim
r!0

log�.B.x; r//

log r
;
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provided the limit exists, where B.x; r/ is the ball of radius r around x. We say that the mea-
sure is exact dimensional if its local dimension exists and is constant �-almost everywhere.
By the dimension of an exact dimensional measure � we mean this �-almost constant value
of its local dimension. It is known that self-similar measures are exact dimensional (see [18]).

Before we state the main conjectures in the dimension theory of self-similar sets
and measures on R, which will be the main focus of this paper, we make some simple obser-
vations to motivate them. Let K be the attractor of a self-similar IFS ¹'i W i 2 ƒº. We write
H s for the s-dimensional Hausdorff measure. Now suppose that the sets 'i .K/ are pairwise
disjoint for i 2 ƒ and that 0 < H s.K/ < 1 for some s. Then we can write

H s.K/ D

X
i2ƒ

H s
�
'i .K/

�
D H s.K/

X
i2ƒ

�s
i ;

where �i is the contraction factor of 'i . It follows that s must be the unique solution of

1 D

X
i2ƒ

�s
i : (1)

While an s with 0 < H s.K/ < 1 may not exist in general, if it does, then it must
equal the Hausdorff dimension of K. Therefore, the above considerations suggest that a rea-
sonable guess for dim.K/ is the unique solution of the equation (1). It is a classical result
going back to Moran [35] in some form, that this guess is correct when the IFS satisfies the
so-called open set condition, which is a mild relaxation of requiring that the sets 'i .K/ are
pairwise disjoint. See [15, Chapter 9] for a precise definition.

It turns out that the unique solution of (1) is always an upper bound for dim.K/

and it is natural to ask to what extent it is possible to drop the open set condition without
turning this upper bound into a strict inequality. There are two immediate obstructions to
this. First, the solution of (1) may be larger than d , but the dimension of K will never exceed
d which is the dimension of the ambient space Rd . Second, (1) depends on the IFS and not
only on the set K. It may be possible to realize K as the attractor of another IFS such that
the corresponding (1) has a smaller solution. This happens, for example, if the IFS contains
exact overlaps, which we define now.

Definition 1. An IFS ¹'i W i 2 ƒº contains exact overlaps if there is some n 2 Z�1 and
.i1; : : : ; in/ ¤ .Qi1; : : : ; Qin/ 2 ƒn such that

'i1 ı � � � ı 'in D 'Qi1
ı � � � ı 'Qin

: (2)

In other words, the IFS contains no exact overlaps if and only if the semigroup
generated by the maps in the IFS with respect to the composition operation is free. We note
that it does not make a difference in the definition whether or not we require that we have
the same number of composition factors on the two sides of (2).

The next conjecture due to Simon (see [47]) predicts that apart from the above two
obstructions, dim.K/ equals the unique solution of (1) in the d D 1 case.

Conjecture 2. Let K be the attractor of a self-similar IFS ¹'i W i 2 ƒº on R that contains
no exact overlaps. Let �i be the contraction factor of 'i . Then

dimK D min.1; s/;
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where s is the unique solution of the equationX
i

�s
i D 1:

The conjecture also has a counterpart for measures.

Conjecture 3. Let � be the self-similar measure on R associated to an IFS ¹'i W i 2 ƒº

without exact overlaps and a probability vector ¹pi º. Let �i be the contraction factor of 'i .
Then

dim� D min
�

1;

P
i pi logp�1

iP
i pi log��1

i

�
:

Self-similar measures are of interest in their own right, but a major motivation for
Conjecture 3 is that it implies Conjecture 2. To see this, recall that if a setK supports an exact
dimensional measure � of dimension s, then the Hausdorff dimension of K is at least s, see
[15, Principle 4.2]. This is a commonway of giving lower bounds on theHausdorff dimension.
Now let s be the solution of (1), and consider the probability weights pi D �s

i . Observe that
this choice yields

s D

P
i pi logp�1

iP
i pi log j�i j

�1
;

showing that Conjecture 3 indeed implies Conjecture 2.
Almost all of this paper is concerned only with self-similar measures on R. Some

difficulties arise when one tries to formulate versions of Conjectures 2 and 3 for self-similar
sets and measures in higher-dimensional ambient spaces due to the presence of affine sub-
spaces of intermediate dimension. For a discussion of these issues and results in higher
dimension, we refer to [22].

The purpose of this paper is to survey results towards Conjectures 2 and 3. Since this
subject has already been exposed by Hochman in his ICM lecture in 2018 [24], we focus on
the developments of the last four years and discuss earlier results only to the extent necessary
to keep our presentation self-contained.

We will outline some ideas from the proofs of these results; however, we will not
give full details, and some of our discussion will be imprecise. Our aim is to overview the
theory and give insight into the role played by its components. For details and a rigorous
discussion of the proofs we refer to the original papers.

In the final section, we briefly survey some further recent developments on Fourier
decay and absolute continuity of self-similar measures.

1. Exponential separation property

The exponential separation property was introduced by Hochman [23] who showed
that Conjectures 2 and 3 hold when the IFS satisfies this property. This property can be
verified in many cases of interest. While these results have been already discussed in [24], we
recall them now because they are of crucial importance to later developments both logically
and for the motivation of ideas.
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We begin with the definitions. We introduce a distance function on the group of
similarities on R. Let 'i W x 7! �i x C ti be similarities for i D 1; 2. We define

dist.'1; '2/ D

8<: jt1 � t2j if �1 D �2;

1 if �1 ¤ �2:

Given an IFS ˆ WD ¹'i W i 2 ƒº, we define its level n separation by

�n.ˆ/ WD min
.i1;:::;in/¤.Qi1;:::;Qin/2ƒn

dist.'i1 ı � � � ı 'in ; 'Qi1
ı � � � ı 'Qin

/:

We say that the IFS satisfies the exponential separation property if there is a constant c > 0

such that �n.ˆ/ > cn for infinitely many n’s.
We observe that the IFS contains exact overlaps if and only if �n D 0 for some

and hence for all sufficiently large n. The exponential separation property is a quantitative
strengthening of the condition that the IFS contains no exact overlaps. Hochman proved that
Conjectures 2 and 3 hold under this strengthening of the hypothesis.

Theorem 4 (Hochman [23]). Let ¹'i W i 2 ƒº be an IFS that satisfies the exponential sepa-
ration property and let K be its attractor. Write �i for the contraction factor of 'i . Then

dimK D min.1; s/;

where s is the unique solution of the equationX
i

�s
i D 1:

Let � be the self-similar measure associated to the above IFS and a probability
vector ¹pi º. Then

dim� D min
�

1;

P
i pi logp�1

iP
i pi log��1

i

�
:

It can be shown that the exponential separation property holds in parametric families
of IFSs for all but possibly a (packing or Hausdorff) codimension 1 subset of exceptions. This
shows that Conjectures 2 and 3 hold generically in a very strong sense. We refer to [23] for
details and more precise results.

We also note that a stronger version of Conjecture 3 involving the Lq dimension
instead of local dimension of measures was established subsequently by Shmerkin [46] under
the exponential separation property. This result has very important and far reaching applica-
tions, see also [45] and Shmerkin’s paper in this volume.

Our main focus here are explicit cases and families of IFSs for which the exponential
separation property can be verified. We first observe that the exponential separation property
holds always whenever all contraction and translation parameters in the IFS are rational and
the IFS contains no exact overlaps. Indeed, writing Q for the least common denominator
of all parameters, a simple calculation shows that the translation parameters of n-fold com-
positions of maps in the IFS have denominators that divide Qn. This means that for all n,
we have �n � Q�n or �n D 0. The second possibility is excluded by the absence of exact
overlaps.
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In fact, the above reasoning can be extended to the case when the parameters are
algebraic numbers and not necessarily rational. To do this, one need to work with heights
instead of denominators, or see [23, Theorem 1.5] for a more elementary argument. This leads
to the following result

Corollary 5 (Hochman). Conjectures 2 and 3 hold for IFSs in which all contraction and
translation parameters are algebraic numbers.

The exponential separation property can be verified also for certain IFSs that involve
transcendental parameters. One such example is the family IFSs²

x 7!
x

3
; x 7!

x

3
C 1; x 7!

x

3
C t

³
; (3)

where t 2 R is a parameter. It can be seen that the attractors of these IFSs are the linear
projections of the Sierpiński triangle.

Another corollary of Theorem 4 is the following.

Corollary 6 (Hochman). Conjectures 2 and 3 hold for the IFS (3) for all values of the param-
eter t 2 R.

We sketch the proof of the exponential separation property for the family (3), as these
ideas will recur later. For details, see [23, Theorem 1.6], where this argument is attributed to
Solomyak and Shmerkin. The translation component of an n-fold composition of maps from
the above IFS is of the form

n�1X
j D0

j̨ 3�j ;

where each j̨ is equal to 0, 1, or t . Based on this observation, it can be seen that for each
t and for each n, there are some integers a1; a2 2 Z not both 0 with ja1j; ja2j � 3n�1 such
that

�n D
a1

3n�1
�

a2

3n�1
t:

Assuming a2 ¤ 0, which holds whenever �n � 3�nC1, we getˇ̌̌̌
t �

a1

a2

ˇ̌̌̌
� 3n�n:

Now fix the value of the parameter t such that the IFS (3) contains no exact overlaps.
Suppose �n < 27�n�1 for some n. Then there is a rational number a1=a2 as above such that
jt � a1=a2j < 9�n�1. Let Qn be such that 9�Qn�1 < jt � a1=a2j � 9�Qn. (Note that t ¤ a1=a2,
for otherwise we would have �n D 0 and the IFS would contain exact overlaps.) We observe
that there is no rational Qa1= Qa2 with jt � Qa1= Qa2j < 9�Qn�1 and j Qa1j; j Qa2j � 3Qn�1. Indeed, if
such a rational existed, we would haveˇ̌̌̌

a1 Qa2 � a2 Qa1

a2 Qa2

ˇ̌̌̌
D

ˇ̌̌̌
a1

a2

�
Qa1

Qa2

ˇ̌̌̌
�

ˇ̌̌̌
a1

a2

� t

ˇ̌̌̌
C

ˇ̌̌̌
t �

Qa1

Qa2

ˇ̌̌̌
� 2 � 9�Qn:
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Since ja2 Qa2j � 9Qn�1, this would yield a1 Qa2 � a2 Qa1 D 0, leading to a1=a2 D Qa1= Qa2 and
contradicting ˇ̌̌̌

t �
Qa1

Qa2

ˇ̌̌̌
< 9�Qn�1 <

ˇ̌̌̌
t �

a1

a2

ˇ̌̌̌
:

This shows that �Qn � 27�Qn�1, and the exponential separation property follows.
A key property of the IFS (3) exploited in the above argument is that exact overlaps

occur for certain special values of the parameter t , in this case certain rational numbers, and
these special values are very well separated from each other. This will be a recurrent concern
for us in what follows.

A similar argument can be made when the contraction factor 1=3 in (3) is replaced
by another algebraic number. We omit the details.

2. Bernoulli convolutions

In this section, we consider the one parameter family of IFSs

ˆ� WD ¹x 7! �x; x 7! �x C 1º;

where � 2 .0; 1/. Instead of 0 and 1 we could take any other pair of distinct real numbers as
the translation parameters; we would get the same IFS up to a change of coordinates. In fact,
it is more customary to take ˙1 instead of 0 and 1, but the above choice will make notation
more consistent with the rest of this note.

In this case, the resulting self-similar sets have a simple structure. For � < 1=2, it
is the middle .1 � 2�)th Cantor set, while for � � 1=2 it is an interval. In both cases, Con-
jecture 2 is easily verified. However, the associated self-similar measures called Bernoulli
convolutions are more difficult to understand. The purpose of this section is to summarize
the developments that lead to the following result.

Theorem 7. Conjecture 3 holds for the IFS ˆ� for any value of the parameter � 2 .0; 1/.

For algebraic parameters, this result is due to Hochman as it falls under the scope of
Corollary 5. For transcendental parameters, the result has been established in [54]. Strictly
speaking, only the case of uniform .1=2; 1=2/ probability weights is treated there, but the
arguments can be extended to the general case. Moreover, one can even allow more general
IFSs with an arbitrary number of maps as long as the contraction factors are the same and
the translation parameters are rational. This has been demonstrated in the Appendix of [41].

To simplify the exposition, we assume in our discussion that the probability weights
are uniform. We write �� for the self-similar measure associated to the IFS ˆ�. We note that
�� is the law of the random variable

P1

nD0 �n�n, where .�n/ is a sequence of independent
random variables taking the values 0 and 1 with equal probability.

In the algebraic case, Hochman’s results yield more information, which allows com-
puting the dimension even in the presence of exact overlaps. This is in terms of the entropy
rate of the IFS ˆ�, which we define now, and which will also play an important role later
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on. The entropy rate is defined as

h.ˆ�/ WD lim
n!1

H.
Pn�1

j D0 �j �j /

n
;

where H.�/ stands for Shannon entropy of a discrete random variable. The numerator on the
right can be shown to be a subadditive sequence, hence the limit exists and, moreover,

h.ˆ�/ �
H.
Pn�1

j D0 �j �j /

n

for each n.
See [9, Section 3.4] for the details of how the following follows from the main result

of Hochman [23].

Theorem 8 (Hochman). Let � 2 .0; 1/ be an algebraic number. Then

dim �� D min
�

1;
h.ˆ�/

log��1

�
: (4)

This result, together with Theorem 7, gives an almost complete solution to the
problem of determining the dimension of Bernoulli convolutions. In addition, there are
numerical algorithms to compute dim �� with arbitrary precision for any given algebraic
�, see [1,17,21,29]. However, it is still not known precisely what is the set of algebraic param-
eters � 2 .1=2; 1/ for which dim �� < 1.

We turn to the case of transcendental parameters in Theorem 7. If the IFS ˆ� sat-
isfied the exponential separation property whenever it does not contain exact overlaps, then
Theorem 7 would follow at once from Theorem 4. This very well could be true; however,
this is still an open problem, which seems to be beyond reach of existing methods.

In fact, the decay rate of�n.ˆ�/ is very closely related to a problem in Diophantine
approximation, which is the separation between the elements of the set

E.n/
WD ¹� W P.�/ D 0 for some polynomial P 2 P .n/

º;

where P .n/ is the set of polynomials of degree at most n � 1 with coefficients �1; 0; 1. As
it will be clear from what follows, the set

E WD

[
n

E.n/
\ .0; 1/

is precisely the set of parameters for which ˆ� contains exact overlaps.
We begin our discussion of the proof of Theorem 7 by explaining the connection

between the behavior of �n.ˆ�/ and the separation properties of the sets E.n/ following
Hochman [23, Question 1.10]. This can be formalized as follows.

Lemma 9. If it is true that the elements of E.n/ are separated by at least C �n for some
constantC for all n, then the exponential separation property holds for the IFSˆ� whenever
it lacks exact overlaps.

Sketch of proof. Fix some " > 0 and assume � 2 ."; 1 � "/. We first observe that if
�n.ˆ�/ < C �n for some C D C."/, then there is some � 2 E.n/ with

j� � �j < �n.ˆ�/˛
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for some ˛ D ˛."/ > 0. This follows from the fact that the translation component of an n-fold
composition of the maps in ˆ� in some order is a polynomial in � of degree at most n � 1

with coefficients 0;1. This means that�n.ˆ�/ D P.�/ for someP 2 P .n/ that also depends
on �. To complete the proof of our observation, we need to argue that the only way P.�/

can be very small is if � is close to a root of P . For more details, see [52, Lemma 5.2].
Now suppose that � is such that �n.ˆ�/ < C

�2n=˛
2 for some n, where ˛ is as in

the previous paragraph and C2 is the constant C in the assumption about the separation
between the elements of En. Then there is �n such that j� � �nj < C �2n

2 . If ˆ� contains
no exact overlaps, then � … E so � ¤ �n. Now we take the smallest integer Qn > n such that
j� � �nj > C �2Qn

2 . It follows by the assumed separation property on E.Qn/ that there is no
�Qn 2 E.Qn/ with j� � �Qnj < C �2Qn

2 . This means that �Qn.ˆ�/ � C
�2Qn=˛
2 , and the exponential

separation property follows.

It is not known whether or not the elements of E.n/ are exponentially separated. The
best lower bound known for the minimal distance of the elements of E.n/ is exp.�C n logn/

for some constant C (one could take, e.g., C D 4), which is due to Mahler [33]. This yields
via the argument in the proof of Lemma 9 that for all � such that ˆ� contains no exact
overlaps, there are infinitely many values of n with

�n.ˆ�/ � exp.�C n logn/ (5)

for some (other) constant C .
One may wonder if this weaker separation condition could be used in a refined form

of Hochman’s argument in place of exponential separation. This has been done in [8], how-
ever, the argument requires that there are several values of n sufficiently close to each other
such that the separation (5) holds. Such a condition can be satisfied if we assume that � is
not approximated too closely by elements of E.n/. Indeed, in the above argument the size of
Qn is controlled by the distance between � and E.n/. More precisely, the following was proved
in [8].

Theorem 10 (Beruillard, Varjú). Let � 2 .1=2; 1/ be such that Conjecture 3 does not hold
for ˆ�. Then there is ı > 0 and there are infinitely many values of n such that there is
�n 2 E.n/ \ .1=2; 1/ with

j� � �nj < exp.�n100/;

dim ��n < 1 � ı:

The exponent 100 can be replaced by any other number, or even by a slowly growing
function of n, see [8] for details. This result along with Theorem 4 are major ingredients in
the proof of Theorem 7. Given some � 2 .1=2; 1/ such that ˆ� lacks exact overlaps, it can
be shown that � has only finitely many approximants �n as in the conclusion of Theorem 10
or else ˆ� satisfies the exponential separation property. In either case, Conjecture 3 follows
for ˆ� from one of Theorems 4 or 10.

Before we discuss the details of how this can be done, a further remark about Theo-
rem 10 is in order. We have seen that if�n.ˆ�/ < C �n for some n and �with an appropriate
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constant C , then � is approximated by some � 2 E.n/. However, we claim some additional
properties of this � in Theorem 10, most importantly that dim �� < 1 � ı. Now we indicate
how this can be deduced. This leads us to a somewhat lengthy digression; however, it also
gives us the opportunity to introduce several concepts and ideas that will be needed later on.

Already in Theorem 4, the exponential separation property can be relaxed (see
[23, Theorems 1.3 and 1.4]). Instead of assuming �n.ˆ/ > C �n, it is enough to know that
there are not too many pairs of n-fold compositions of maps in ˆ whose translation compo-
nents are closer than C �n. Likewise in the proof of Theorem 10, we work with a similarly
relaxed version of (5).

To properly quantify this, we use entropy. Let X be a bounded real valued random
variable and let r 2 R>0. The entropy of X at scale r is defined as

H.X I r/ D H
��

r�1X
˘�

;

where H.�/ on the right is Shannon entropy. This is the entropy of X with respect to a parti-
tion of R into consecutive intervals of length r . The choice of this partition is not canonical,
and we obtain different values of H.X I r/ by translating X . There are advantages of aver-
aging over translations of X in the definition of H.X I r/, as it is done, e.g., in [8, 53] and
subsequent papers; however, we ignore this point here for the sake of simplicity.

By definition, �n.ˆ�/ > r implies that the points in the support of
Pn�1

j D0 �j �j are
separated by a distance of at least r , hence

H

 
n�1X
j D0

�j �j
I r

!
D log.2/ � n:

In the proof of Theorem 10, instead of working with lower bounds on �n.ˆ�/ like (5), we
work with bounds of the type

H

 
n�1X
j D0

�j �j
I r

!
� ˇn (6)

with suitable ˇ and r .
Now consider some � > 1=2 that lacks the approximations �n as described in the

conclusion in Theorem 10. We discuss how this assumption can be used to show that bounds
of the type (6) hold for suitably many different values of n. Using such bounds and arguments
based on Hochman’s proof of Theorem 4, which we do not discuss in this paper, it can be
shown that dim �� D 1 proving (the contrapositive of) Theorem 10.

In short, the failure of (6) with a suitably small r implies that � can be approximated
by some �n 2 E.n/ such that ˆ�n has enough exact overlaps to force dim ��n � ˇ= log ��1

n .
We give some more details. For every pair of numbers x1; x2 in the support ofPn�1

j D0 �j �j such that jx1 � x2j � r , there is a polynomial P 2 P .n/ such that

jx1 � x2j D
ˇ̌
P.�/

ˇ̌
� r:

As we have already seen, all such polynomials have a root near � provided r < C �n for a
suitable constantC . If r < exp.�C n logn/ for another suitableC , then all the roots obtained
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this way as .x1; x2/ goes over all pairs of points in the support of
Pn�1

j D0 �j �j that are at dis-
tance not more than r can be shown to coincide. This follows fromMahler’s aforementioned
bound on the separation of elements in E.n/. For an alternative argument, see [8, Section 3].

Now it follows that if

H

 
n�1X
j D0

�j �j
I r

!
< log.2/ � n

for some r < exp.�C n logn/, then there is some �n 2 E.n/ close to � (the common root of
the polynomials discussed in the previous paragraph) such that

H

 
n�1X
j D0

�j �j
n

!
� H

 
n�1X
j D0

�j �j
I r

!
: (7)

Notice that on the left there is no designated scale, so H.�/ stands for Shannon entropy there.
Provided H.

Pn�1
j D0 �j �j I r/ is sufficiently small, this can be turned into a bound on dim ��n

with the help of Theorem 8. Indeed, combining our observations, we see that

H

 
n�1X
j D0

�j �j
I r

!
� ˇn

implies

dim ��n �
h.ˆ�n/

log ��1
n

�
H.
Pn�1

j D0 �j �
j
n/

n log ��1
n

�
H.
Pn�1

j D0 �j �j I r/

n log ��1
n

�
ˇ

log ��1
n

:

By the assumption that � lacks the approximations as in the conclusion of Theo-
rem 10, we conclude j� � �nj > exp.�n100/. As we have already discussed, this implies
that we can find an Qn not larger than n100 such that even (5) holds with Qn in place of n. This
provides a sufficiently plentiful supply of numbers n such that at least a bound of the type (6)
holds.

We return to the proof of Theorem 7.We suppose to the contrary that � 2 .1=2; 1/ is
a counterexample to Conjecture 3. By Theorem 10, there are infinitely many approximants
�n to � satisfying the conclusion of that theorem. We fix such an �n corresponding to a
suitably large n.

By virtue of (4), we have h.ˆ�n/ � .1 � ı/ log �n. Our next step is to convert this
information to something that is easier to exploit with the methods of Diophantine Approx-
imation. We introduce a definition for this purpose. The Mahler measure of an algebraic
number � with minimal polynomial ad .x � �.1// � � � .x � �.d// 2 ZŒx� is defined as

M.�/ D jad j

dY
j D1

max
�
1;
ˇ̌
�.j /

ˇ̌�
;

i.e., it is the product of the absolute values of the leading coefficient and the roots outside the
unit disk. This quantity is widely used in number theory as a measure of the “complexity” of
�. Notice that if � 2 Q, then M.�/ is the maximum of the absolute values of the numerator
and the denominator of �.
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Breuillard and Varjú [9] found a connection between the entropy rate and theMahler
measure. A form of this most suited for the proof of Theorem 7 is the following.

Theorem 11 (Breuillard, Varjú). For any h 2 .0; log 2/, there is a number C.h/ such that
h.ˆ�/ � h implies M.�/ < C.h/ for all algebraic numbers �.

See [54, Theorem 9] for the details of how this follows from the technical results of [9].
Using this theorem, we conclude thatM.�n/ < C for a constantC that only depends

on �, but not on n. Furthermore, recall that we have j� � �nj < exp.�n100/. Now we use
the following, which follows easily from a more general result of Mignotte [34].

Theorem12 (Mignotte). Let � be an algebraic number of degree at mostn. Let Qn > n.logn/2

be an integer, and lete� ¤ � 2 E.Qn/. Then there is an absolute constant C , such that

j� �e�j � C �QnM.�/�2Qn:

We finish our discussion of the proof of Theorem 7. Thanks to the approximation
of � by �n this theorem acts as a substitute for the separation condition between elements
of E.Qn/ in the proof of Lemma 9, and we can conclude that �Qn.ˆ�/ > C �Qn for a suitable
choice of Qn for some C independent of n. Now we are in a position to apply Theorem 4 to
show that Conjecture 3 holds for �, which is our desired contradiction proving Theorem 7.

The original argument in [54] used an alternative variant of Theorem 12, which was
deduced from an observation of Garsia [20] and a transversality argument of Solomyak [49].
It was pointed out by Vesselin Dimitrov that the transversality argument can be replaced by
a simpler version based on Jensen’s formula. This has the advantage that it is applicable in
greater generality. See [41, Lemmata 2.3 and 4.6] for details.

3. Failure of exponential separation

As we discussed in the previous section, it is not known whether Bernoulli convo-
lutions without exact overlaps satisfy the exponential separation property. However, they are
known to satisfy a slightly weaker lower bound on �n, and this played an important role in
the proof of Conjecture 3 for this class of IFS’s.

On the other hand, there are some IFS’s without exact overlaps for which it is known
that the exponential separation property fails, and moreover, �n converges to 0 in an arbi-
trarily fast prescribed way.

Theorem 13 (Baker; Bárány, Käenmäki). Let .�n/ � R>0. Then there is an IFS ˆ without
exact overlaps such that �n.ˆ/ � �n for all n.

The first examples of such IFSs were given by Baker [4] in the form²
x 7!

x

2
; x 7!

x C 1

2
; x 7!

x C s

2
; x 7!

x C t

2
; x 7!

x C 1 C s

2
; x 7!

x C 1 C t

2

³
for suitable choices of the parameters t; s, and by Bárány, Käenmäki [5] in the form

¹x 7! �x; x 7! �x C 1; x 7! �x C tº
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for suitable choices of �; t . Baker’s example was modified by Chen [11], who disposed of
the last two maps and replaced the denominator 2 by an arbitrary real algebraic number not
smaller than 2. These constructions were further extended by Baker [3].

In what follows we give a heuristic argument to show why such IFSs with very
small separation may be expected to exist. Our purpose (due to limitation of space) is not
to give insight to the proofs of Theorem 13, which are based on a variety of tools, such as
continued fraction expansions in [4] and the transversality method in [5]. Instead, we just aim
to highlight the difference between families of IFSs depending on a single parameter, such
as Bernoulli convolutions, or the examples covered by Corollary 6, and families depending
on more than one parameter, which will be discussed in the next two sections.

Let
ˆx;y D ¹'i;x;y W i 2 ƒº

be a family of IFS’s (smoothly) depending on two parameters. Let n 2 Z>0, and we write
�.n/ for the collection of curves in the parameter space, which arise as the solution sets of
equations of the form

'i1;x;y ı � � � ı 'in;x;y D 'Qi1;x;y ı � � � ı 'Qin;x;y

in .x; y/ where i1; : : : ; in and Qi1; : : : ; Qin are two distinct sequences of indices in ƒ. Note
that the union of all these curves is the set of all parameter points for which the IFS contains
exact overlaps.

The key difference between this setting and a family depending on a single parameter
is that exact overlaps occur along curves in the parameter space rather than at isolated points.
These curves may intersect each other, and then there is no separation between them, which
rules out the arguments presented for the proof of Corollary 6 and later in Section 2.

We now give the heuristic suggesting the existence of the IFS’s claimed in The-
orem 13. We give a recursive construction. After the kth step, we will have a sequence
n1; : : : ; nk 2 Z�1, a sequence 1; : : : ; k , where j is a segment of a curve in �.nj /, and a
sequence ı1; : : : ; ık�1 2 R>0. These will satisfy the property that k is contained in the ıj

neighborhood of j for all j < k.
We begin the process by setting 1 to be any segment (of positive length) of a curve

in �.1/. Suppose now that 1; : : : ; k and ı1; : : : ; ık�1 are given for some k � 1. We choose a
curveekC1 2 �.nkC1/ for some nkC1 > nk that intersects k . The existence of such a curve is
plausible, but requires proof, and this is why this construction is only a heuristic. We observe
that �n.ˆx;y/ D 0 for all n � nk and .x; y/ 2 k . By continuity, there is a choice of ık so
that �n.ˆx;y/ � �n holds for all n 2 Œnk ; nkC1/ and .x; y/ in the ık neighborhood of k .
Finally, we set kC1 to be a suitable segment ofekC1 contained in the ıj neighborhood of
j for all j � k.

It is immediate from the construction that there is a point .x; y/ which is contained
in the (closed) ık neighborhood of k for all k, and that �n.ˆx;y/ � �n for all n.

With a small modification of the construction, we can ensure that ˆx;y contains
no exact overlaps for the resulting parameter point .x; y/. Indeed, observe that

S
�.n/ is
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a countable set, and let �
1 ; �

2 ; : : : be an enumeration of it. In the construction, we have
considerable liberty in choosing the curve segment k so we can make sure that it does
not intersect �

k
. (This requires, in particular, that we choose ek not to coincide with �

k
.

The possibility of this is again plausible, but requires proof.) Then in the next step of the
construction, we can ensure that ık is chosen to be sufficiently small so that �

k
is entirely

outside the ık neighborhood of k . This way we can ensure that the resulting parameter point
.x; y/ at the end of the process is not contained in �

k
for any k, and hence ˆx;y is without

exact overlaps.

4. IFSs with algebraic contraction factors

In this section we discuss the following result of Rapaport [39].

Theorem 14 (Rapaport). Conjectures 2 and 3 hold for all IFSs in which all contraction
parameters are algebraic numbers.

This is a far reaching common generalization of Hochman’s Corollaries 5 and 6. We
discuss some of the main ideas in the special case of the family of IFSs

ˆs;t D

²
x 7!

x

3
; x 7!

x

3
C 1; x 7!

x

3
C s; x 7!

x

3
C t

³
with uniform probability weights. This is perhaps the simplest family not contained in the
results of Hochman, and as was shown by Chen (see Section 3), this family contains IFSs
without exact overlaps that fail the exponential separation property (in a very strong sense).

Let �1; �2; : : : be a sequence of independent random variables taking the values
0; 1; s; t with equal probabilities. As we discussed in Section 2, the exponential separation
property can be relaxed in Hochman’s results. Instead of a lower bound on �n, it suffices to
have bounds of the form

H

 
n�1X
j D0

�j � 3�j
I C �n

!
� .log 3 � "n/n (8)

for infinitely many values of n with some constant C and a sequence "n ! 0. (See Section 2
for the definition of this notation.)

Theorem 14 is proved by verifying condition (8). With this aim in mind, we examine
what happens when (8) fails for some n, C and "n. We write L.n/ for the family of (inho-
mogeneous) linear forms of the form a1 � 1 C a2Y1 C a3Y2, where each ai is a sum of a
subset of the numbers 1; 3�1; : : : ; 3�nC1 and each term 3j is allowed in at most one of the
ai . This definition is designed so that the values taken by the random variable

Pn�1
j D0 �j � 3�j

are precisely the values of the linear forms in L.n/ evaluated at s and t .
We write L.n/ � L.n/ for the set of linear forms that can be written as the differ-

ence of two elements of L.n/. We also fix some parameter point .s0; t0/ such that the IFS
lacks exact overlaps. We consider pairs of elements in the support of

Pn�1
j D0 �j � 3�j that

are at distance no more than C �n. Then for any such pair, there corresponds a linear form
L 2 L.n/ � L.n/ such that jL.s0; t0/j � C �n. We write A.n/ for the collection of linear
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forms in L.n/ � L.n/ that arise in this way. (This definition depends on C , s0 and t0, which
we suppress in our notation.)

Let n be such that (8) fails (for some choice of "n and C ). We distinguish two cases
depending on the rank of A.n/. The first case arises when there are at least two linearly
independent forms in A.n/, and the second case is when the elements of A.n/ are all scalar
multiples of each other.

In the first case, we take two linearly independent L1; L2 2 L.n/ � L.n/. Provided
C is sufficiently large, the lines determined by L1 and L2 cannot be parallel. Indeed, if that
was the case, their distance would be a rational number with denominator bounded by an
exponential in n, which we can force to be 0 by taking C sufficiently large. Since the lines
are not parallel, we can solve the equations

L1.sn; tn/ D 0;

L2.sn; tn/ D 0;

and find that their solution .sn; tn/ is a pair of rational numbers with denominators bounded
by an exponential in n. Moreover, the distance of .sn; tn/ from .s0; t0/ will be an arbitrarily
small exponential in n if C is chosen sufficiently large.

The points .sn; tn/ have the same repellency property as those in the proof of Corol-
lary 6. We discuss next how to show that the second case, that is when the elements of A.n/

are proportional, arises for only finitely many values of n. Then the argument for Corollary 6
can be carried over to prove (8).

We begin by extending the definition of entropy rates. Let ` be a line in R2

(that does not necessarily contain 0). We denote by Y
.n/

`
the random ` ! R function

.s; t/ 7!
Pn�1

j D0 �j .s; t/ � 3�j . We define the entropy rate of the line ` by

h.`/ WD lim
n!1

H.Y
.n/

`
/

n
:

Here H.Y
.n/

`
/ stands for the Shannon entropy of Y

.n/

`
, which is a random element taking

finitely many values. It can be shown that H.Y
.n/

`
/ is subadditive, hence the limit exists and

is equal to the infimum. The quantity h.`/ measures the amount of exact overlaps that occur
simultaneously for all parameter points .s; t/ 2 `.

Now suppose that the second case occurs for some n in our above discussion, that
is the linear forms in A.n/ are proportional. Let ` be the line on which all elements of A.n/

vanish. It is immediate from the definition of A.n/ that

H.Y
.n/

`
/ � H

 
nX

j D0

�j 3�j
I C �n

!
:

Supposing

H

 
nX

j D0

�j 3�j
I C �n

!
� .log 3 � "/n (9)

for some " > 0, we can conclude

h.`/ � log 3 � ":
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In light of all this, the next proposition—implicit in [39]—implies that the second
case and (9) for some fixed " > 0 may occur for only finitely many n’s.

Proposition 15. Let .s0; t0/ be some parameters such that the IFS ˆs0;t0 contains no exact
overlaps. Fix some " > 0. Then there is a neighborhood of .s0; t0/ that is not intersected by
any lines ` with h.`/ � log 3 � ".

We end this section by discussing the proof of this result. Suppose to the contrary
that the result is false, that is, there is a sequence `1; `2; : : : of lines passing closer and closer
to .s0; t0/ with h.`n/ < log 3 � ". We suppose as we may that the lines `n converge (in any
reasonable topology) to a line `1. We also suppose for simplicity that none of `1; `2; : : : ; `1

is parallel to either of the s or t axes, and none of them goes through the origin.
We associate a self-similar measure in R2 to each line j̀ . For j D 1; 2; : : : ; 1, let

�j and �j be the unique numbers such that j̀ is spanned by .�j ; 0/ and .0; �j /. For �; � 2 R,
we define the IFS

‰�;� WD

²
.x; y/ 7!

�
x

3
;

y

3

�
; .x; y/ 7!

�
x

3
C 1;

y

3
C 1

�
;

.x; y/ 7!

�
x

3
C �;

y

3

�
; .x; y/ 7!

�
x

3
;

y

3
C �

�³
;

and write ��;� for the associated self-similar measure (with equal probability weights).
It is immediate from the definitions that the same exact overlaps occur for the random

variables Y
.n/

j̀
as for the IFS ‰.�j ; �j /. It follows that

h.‰�j ;�j
/ D h. j̀ / � log 3 � "

for j < 1. Using this, it can be shown that

dim ��j ;�j
�

log 3 � "

log 3
D 1 � "= log 3:

It is a general phenomenon that the dimension of self-similar measures depends
lower semicontinuously on the parameters, see, e.g., [16] for results of this type covering
even self-affine measures. Using this, it follows that

dim ��1;�1
� 1 � "= log 3:

The proof of Proposition 15 is now finished by establishing a suitable analogue of
Conjecture 3 for the IFSs ‰�;� , which shows that ‰�0;�0

and hence ˆs;t for all .s; t/ 2 `

including .s0; t0/ contains exact overlaps. This can be done along the lines of the proof
of Corollary 5 discussed in Section 1 using a higher dimensional version of Hochman’s
theorem, which can be found in [22]. The crucial difference between the IFSs ˆs;t and ‰�;�

is that the ambient space is 2-dimensional for the latter and this matches the number of
parameters. This means that exact overlaps occur at single points (as opposed to along lines),
which have the required repellency property.
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5. Homogeneous IFSs of three maps

In this section, we discuss the IFSs

ˆ�;t D
®
.x 7! �x; x 7! �x C 1; x 7! �x C t /

¯
:

Rapaport and Varjú [41] made some partial progress towards extending the results for
Bernoulli convolutions discussed in Section 2 to this setting and to some more general
IFSs (see [41, Section 3]).

Before we can state these results, we need to introduce some relevant notation and
terminology. We write ��;t for the self-similar measure associated to the IFS ˆ�;t and
uniform probability weights. Let �1; �2; : : : be a sequence of independent random R ! R
functions taking the values t 7! 0, t 7! 1 and t 7! t with equal probability. LetU � .0;1/ �R,
n 2 Z�0, and write A

.n/
U for the random U ! R function

.�; t/ 7!

nX
j D1

�j .t/�j :

We define the entropy rate

h.U / WD lim
n!1

H.A
.n/
U /

n
D inf

H.A
.n/
U /

n
:

We abbreviate A
.n/

¹�;tº
as A

.n/

�;t
, and h.¹�; tº/ as h.�; t/. One should think about h.�; t/ as a

quantity expressing the amount of exact overlaps contained in the IFS ˆ�;t and h.U / aims
to quantify the amount of exact overlaps occurring simultaneously for the parameter points
in U .

We writeR for the set of meromorphic functions on the unit disc that can be written
as ratios of two power series with coefficients �1; 0; 1. We denote by � the set of curves
 � .0; 1/ � R that are either of the following two forms:

•  D ¹.�; t/ 2 .0; 1/ � R W t D R.�/º for some R 2 R,

•  D ¹.�0; t / W t 2 Rº for some fixed �0 2 .0; 1/.

It can be shown that exact overlaps occur in the family of IFSs ˆ�;t along finite unions of
curves in � , but not all elements of � arises in this way.

The next result is an analogue of Theorem 10 in the setting of the IFS ˆ�;t .

Theorem 16 (Rapaport, Varjú). Suppose that Conjecture 3 does not hold for the IFS ˆ�;t

for some choice of parameters � and t . Then for every " > 0 and N � 1, there exist n � N

and .�; s/ 2 .0; 1/ � R such that

(1) j� � �j; jt � sj � exp.�n"�1
/,

(2) 1
n log��1 H.A

.n/
�;s/ � dim��;t C ",

(3) h./ � min¹log 3; log��1º � " for all  2 � with .�; s/ 2  .
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Item (2) in the conclusion means that the IFS ˆ�;s contains enough overlaps after
n iteration to force the dimension of ��;s below dim ��;t C ". Item (3) in the conclu-
sion implies that not all of these exact overlaps occur along the same curve  . From these
properties it can be deduced in particular that � and s are algebraic numbers and roots of
polynomials of low degree with small integer coefficients. (For a precise statement, see [41,

Theorem 1.3].) This yields a bound on the number of possible points that can arise as .�; s/

in the conclusion and together with Item (1), this shows that the Hausdorff dimension of the
set of exceptional parameters for which Conjecture 3 fails is 0. This improves Hochman’s
bound, which is 1, albeit that bound is given for the stronger notion of packing dimension,
which may exceed the Hausdorff dimension.

It is still an open problemwhether an analogue of Theorem 11 holds for the IFSˆ�;t .
One possible formulation is the following.

Question 17. Is it true that for all " > 0, there is M such that the following holds? Let
.�; t/ 2 ."; 1 � "/ � R be such that h.�; t/ � min.log3; log��1/ � " and h./ � min.log3;

log��1/ � M �1 for all  2 � with .�; t/ 2  . Then M.�/ � M .

We note that a condition about the entropy rate of curves passing through .�; t/ is
necessary. Indeed, we have, for example, h./ D log 3 � .2=3/ log 2 for the curve
 D ¹.�; 1/ W � 2 .0; 1/º, and hence h.�; 1/ � log 3 � .2=3/ log 2 for all � 2 .0; 1/.

We also have the following conditional result towards Conjecture 3.

Theorem 18 (Rapaport, Varjú). Suppose that the answer to Question 17 is affirmative. Then
Conjecture 3 holds for the IFSˆ�;t with equal probability weights for all� 2 .0;1/ and t 2R.

Using ideas from [9], one can answer Question 17 affirmatively if we restrict � to
be near 1. This allows for the following unconditional partial resolution of Conjecture 3.

Theorem 19 (Rapaport, Varjú). Conjecture 3 holds for the IFS ˆ�;t with equal probability
weights for all .�; t/ 2 .2�2=3; 1/ � R.

The key new ingredient in the proof of Theorem 16 compared to that of Theorem 10
is the following result, whose role is similar to that of Proposition 15 in the proof of Theo-
rem 14.

Proposition 20. Let .�; t/ 2 .0; 1/ �R be such that the IFS ˆ�;t contains no exact overlaps.
Then for all h < min.log��1; log3/, there is a neighborhood of .�; t/ that is not intersected
by a curve  2 � with h./ � h.

The proof of this result like Proposition 15 is done by attaching suitable fractal
objects to curves and relating their dimension to the entropy rates of the curves. Then the
proposition is proved using lower semicontinuity of dimension and a limiting argument. The
fractal measures used in the paper [41] are analogues of self-similar measures in function
fields. A suitable notion of dimension is introduced for these objects and Hochman’s the-
orem is generalized to this setting. The analogue of the exponential separation property is
verified using an argument similar to that used in the proof of Corollary 6. An additional dif-
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ficulty compared to the setting of Section 4 is caused by the fact that the curves in � are not
necessarily lines and they may develop singularities, which complicates limiting arguments.

The proofs of Theorems 18 and 19 is complicated by the fact that like in the case of
Bernoulli convolutions, the parameter points with exact overlaps have a weaker than expo-
nential repellency property. To address this, an argument similar to that discussed at the end
of Section 2 is used. This is the reason why we need to assume an affirmative answer to
Question 17. The argument also requires a stronger form of Proposition 20 with a modified
entropy rate. The precise statement requires some preparation. For this reason, we omit it
and refer to [41, Proposition 2.4].

6. Other developments

We survey some recent results about aspects of self-similar measures other than
their dimensions. Due to limitation of space, our discussion will be very brief.

6.1. Fourier decay
We first discuss Fourier decay of self-similar measures. Specifically, we discuss the

following three properties:

• A measure � on R is Rajchman if its Fourier transform vanishes at infinity, that
is,

lim
j�j!1

ˇ̌b�.�/
ˇ̌

D 0:

• A measure � on R has polylogarithmic Fourier decay if there is a constant a > 0

such that for all sufficiently large �, we haveˇ̌b�.�/
ˇ̌

<
ˇ̌
log j�j

ˇ̌�a
:

• A measure � on R has power Fourier decay if there is a constant a > 0 such that
for all sufficiently large �, we haveˇ̌b�.�/

ˇ̌
< j�j

�a:

There are various motivations for studying these properties. The Rajchman property
is closely related to an old subject in the theory of trigonometric series about the so-called
sets of uniqueness and sets of multiplicity, see [27] for more. Fourier decay has also appli-
cations in metric Diophantine approximation. For example, polylogarithmic Fourier decay
is sufficient to guarantee that almost all numbers with respect to the measure are normal in
every bases. (In the case of self-similarmeasures onR, even the Rajchman property is enough
for this, see [2, Theorem 1.4].) Power decay is very useful in proving absolute continuity of
the measure, which we discuss more in the next section.

Results about these properties of self-similar measures come in two flavors. In the
first category, properties are proved for most self-similar measures in a parametric family, in
the second the properties are proved for explicit self-similar measures, that is, the hypotheses
of the results are testable in concrete examples.
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We begin by discussing results in the first category. Erdős [14] proved that Bernoulli
convolutions (see Section 2) have power Fourier decay for almost all choices of the param-
eter � 2 .0; 1/. His argument was revisited by Kahane [26] who showed that the exceptional
set of parameters where the power decay fails is, in fact, of 0 Hausdorff dimension. This
method was exposed in the survey [38], where the exponent a was also studied, and the term
Erdős–Kahane argument was coined. Recently Solomyak [50] showed that nondegenerate
self-similar measures on R have power Fourier decay if the vector of contraction parameters
avoid an exceptional set of 0 Hausdorff dimension. See the references in [50, Section 1.1] and
[51] for more recent applications of the Erdős–Kahane method.

The first results in the second category are also in the setting of Bernoulli con-
volutions. Erdős [13] proved that Bernoulli convolutions are not Rajchman when ��1, the
reciprocal of the parameter, is a Pisot number, except when the probability weights are uni-
form and � D 1=2m for an odd integer m. Recall that a Pisot number is an algebraic integer
all of whose Galois conjugates lie inside the complex unit disk. Salem [43] proved the con-
verse of Erdős result by showing that Bernoulli convolutions are Rajchman when ��1 is not
Pisot.

The Rajchman property of general self-similar measures has been understood more
recently. Sahlsten and Li [31] proved that self-similar measures are Rajchman whenever the
semigroup generated by the contraction parameters is not lacunary, that is, it is not contained
in ¹�n W n 2 Z�0º for some n. Their work is based on a newmethod relying on renewal theory
originating in [30]. See also [2], where this result is extended to self-conformalmeasures using
a different method. The lacunary case was analyzed by Brémont [7], see also Varjú, Yu [55].
Finally, the problem was solved by Rapaport [40] for self-similar measures on Rd .

For Bernoulli convolutions, polylogarithmic Fourier decay follows from a result of
Bufetov and Solomyak [10, Proposition 5.5] for algebraic parameters � provided ��1 is nei-
ther Salem nor Pisot, that is, it has another Galois conjugate outside the complex unit disk,
see also [19]. Under a mild Diophantine condition for the contraction parameters, Sahlsten
and Li [31] proved polylogarithmic Fourier decay for self-similar measures. Informally speak-
ing, their condition requires that the semigroup generated by the contraction parameters is
not approximated by lacunary semigroups in a suitable quantitative sense. See [2] for a sim-
ilar result under a different Diophantine condition. Polylogarithmic Fourier decay was also
established by Varjú and Yu [55] for certain self-similar measures in the lacunary case.

It is an important open problem to characterize which self-similar measures have
power Fourier decay. Very little is known about this. See [12] for explicit examples of
Bernoulli convolutions with power Fourier decay and [32] for results about self-similar mea-
sures on Rd for d � 3.

6.2. Absolute continuity
Let � be a self-similar measure on R associated to an IFS with contraction factors

¹�i º that contains no exact overlaps, and probability weights ¹pi º. One may expect that � is
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not only of dimension 1 if P
pi logp�1

iP
pi log��1

i

> 1; (10)

as predicted by Conjecture 3, but it is also absolutely continuous. When there is equality
in (10), the self-similar measure is almost always singular, see [37, Theorem 1.1].

In general, this expectation is false. Simon and Vágó [48] showed that in some fam-
ilies of IFSs, there is a dense Gd set of parameters, which violate the above statement. See
[36] for earlier related results in a different setting. However, it could still be true that (10)
and the lack of exact overlaps imply absolute continuity for some families of self-similar
measures, for example for Bernoulli convolutions.

Nevertheless, it is expected that self-similar measures are absolutely continuous for
almost all choices of the parameters in parametric families when (10) holds. For Bernoulli
convolutions, this was proved by Erdős for � near 1, as a consequence of power Fourier decay
with parameter a > 1. The result has been extended to the optimal range � 2 Œ1=2; 1� by
Solomyak [49] using the transversality method. See [6,37,38] and their references for further
developments. Shmerkin [44] proved that the set of exceptional parameters in Œ1=2; 1� that
make the Bernoulli convolution singular is of Hausdorff dimension 0. His method is based
on a result of his that the convolution of a measure of dimension 1 and another one with
power Fourier decay is absolutely continuous. He used this in conjunction with Hochman’s
theorem and the Erdős-Kahane method. See [42, 46] and the references therein for further
developments using this method.

Explicit examples of absolutely continuous self-similar measures are rare. The first
examples were given by Garsia [20] as the Bernoulli convolutions with parameters of Mahler
measure 2. See [12] for a generalization of this construction, and see [56] for an improvement
on the regularity of the density function using Shmerkin’s method. Varjú gave new exam-
ples of absolutely continuous Bernoulli convolutions in [53]. This paper relies on a similar
method to Hochman’s in a quantitatively refined form. A crucial point is that it requires the
separation condition to hold at all sufficiently small scales rather than just at infinitely many
of them. This restricts the method to algebraic parameters currently. A recent improvement
was given by Kittle [28], who gave further new examples of absolutely continuous Bernoulli
convolutions.While all the new examples in [53] are very close to 1, e.g., 1 � 10�50, this is not
the case for [28], which includes, e.g., one near 0:799533 : : : The paper [28] also introduces
a new tool to quantify the smoothness of measures at scales.

See [32] for results about absolute continuity of self-similar measures on Rd for
d � 3.
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Abstract

In this paper we review the authors’ recent work [1] which gives a complete description
of the formation and development of singularities for the compressible Euler equations in
two space dimensions, under azimuthal symmetry. This solves an open problem posed by
Landau and Lifshitz, which was previously open even in one space dimension. Our proof
applies mutatis mutandis in the drastically simpler situations of one-dimensional flows, or
multidimensional flows with radial symmetry. We prove that for smooth and generic ini-
tial data with azimuthal symmetry, the 2D compressible Euler equations yield a local in
time smooth solution, which in finite time forms a first gradient singularity, the so-called
C 1=3 preshock. We then show that a discontinuous entropy producing shock wave instan-
taneously develops from the preshock. Simultaneous to the development of the shock,
two other characteristic surfaces of higher-order cusp-type singularities emerge from the
preshock. These surfaces have been termed weak discontinuities by Landau and Lifshitz
[17, Chapter IX, §96], who conjectured their existence. We prove that along the character-
istic surface moving with the fluid, a weak contact discontinuity is formed, while along the
slowest surface in the problem, a weak rarefaction wave emerges. The constructed solution
is the unique solution of the Euler equations in a certain class of entropy-producing weak
solutions with azimuthal symmetry and with regularity determined by the fact that it arises
from a generic preshock.
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1. Introduction

The compressible Euler equations are the fundamental mathematical model of fluid
dynamics. Their mathematical analysis has a very rich history, see, for instance, the classical
books of Courant and Friedrichs [10], or Landau and Lifshitz [17]. The unknowns of the
model are the velocity u W Rd � R ! Rd , the mass density � W Rd � R ! RC, the total
energyE W Rd � R ! RC, where d � 1 is the spatial dimension. The quasilinear system of
conservation laws describing their evolution is given by

@t .�u/C div.�u˝ uC pI/ D 0; (1.1a)

@t�C div.�u/ D 0; (1.1b)

@tE C div
�
.p CE/u

�
D 0; (1.1c)

representing the conservation of momentum, mass, and energy. Here p W Rd � R ! RC is
the pressure which may be computed in terms of .u; �; E/ as

p D . � 1/

�
E �

1

2
�juj

2

�
; (1.1d)

where  > 1 denotes the adiabatic exponent. The pressure may alternatively be computed in
terms of the (specific) entropy S W Rd � R ! R via

p.�; S/ D
1


�eS : (1.2)

Note that in regions of spacetimewhere the fields .u;�;E/ are smooth, onemay replace (1.1c)
by the transport of specific entropy

@tS C u � rS D 0: (1.3)

The system (1.1) is supplemented with smooth Cauchy data .u0; �0; E0/.
At least since the middle of the 19th century and the work of Riemann [21], it is

known that the compressible Euler equations exhibit solutions which have smooth initial
data and develop a finite-time singularity. The nonlinear interactions in (1.1) cause a gradual
steepening of the density and velocity profiles, eventually leading to a first spacetime point
at which their slope becomes infinite (the preshock). A shock wave then forms and propa-
gates through the fluid according to the so-called Rankine–Hugoniot jump conditions, which
ensure that the evolution gives an entropy-producing weak solution of (1.1).

A rigorous mathematical understanding of the above described process of shock for-
mation and shock development, from smooth initial data, is partially available only in one
space dimension [10,11,17], or equivalently, in the presence of radial symmetry for d � 2. We
emphasize, however, that even for d D 1 a complete understanding of these phenomena was
not available as of 2019. Indeed, regarding the 1D shock formation process, a rigorous proof
of the expectation (see Eggers and Fontelos [13]) that the first singularity is asymptotically
self-similar, and a stability analysis of the associated self-similar profiles within the Euler
evolution (1.1), was unavailable. This issue was settled in our work [3]. Regarding the shock
development process, Landau and Lifshitz note in [17, Chapter IX, §96] that simultaneously to
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the development of the discontinuous shock wave, other surfaces of higher-order singulari-
ties are expected to form. Landau and Lifschitz termed these surfaces weak discontinuities,
but stopped short of describing their nature: “The irregularity may be of various kinds. For
example, the first spatial derivatives of �; p; u, etc., may be discontinuous on a surface, or
these derivatives may become infinite or higher derivatives may behave in the same manner.”
In spite of the huge literature on compressible flows, we are not aware of any analysis of these
weak discontinuities for the Euler system (1.1). Providing a resolution to the problem raised
by Landau and Lifschitz is the purpose of our work [1].

We emphasize that the arguments in our works [3] and [1] are able to treat not just the
case d D 1, or d � 2with radial symmetry, but a more general situation: d D 2 for flows with
azimuthal symmetry and nonzero vorticity. We view the analysis of solutions with azimuthal
symmetry as a key step in our program of understanding shock formation and development
for the full Euler system (1.1) in multiple space dimensions (d � 2), from smooth initial data,
in the absence of any symmetry assumptions, which is considered to be the outstanding open
problem in the field.

2. Prior results for Euler shock formation and

development

Themathematical literature on the compressible Euler equations is too vast to review
here. The majority of results have been focused on either the one-dimensional problem, or
on the theory of weak solutions, or on the Riemann problem. See, for instance, the book
of Dafermos [11] for an extensive modern review. In spite of this, there are very few results
devoted to the mathematical analysis of shock formation for smooth initial data, and even
less so to the shock development problem.

For the one-dimensional p-system (which models 1D isentropic Euler), Lebaud [18]

was the first to prove shock formation and development. Chen and Dong [5], and also
Kong [16], revisited the proof of Lebaud and established the formation and development
of shocks for the 1D p-system with slightly more general initial data. However, as explained
in Remark 3.3 below, the use an isentropic system cannot produce weak solutions to the
Euler equations, even for d D 1. The first work to address the formation and development
problem for the nonisentropic Euler equations was Yin [22], who considered the 3� 3 system
under spherical symmetry (which makes the problem one-dimensional). Independently of
Yin, shock development for the barotropic Euler equations under spherical symmetry was
established by Christodoulou and Lisbach [8]. Since isentropic dynamics cannot yield weak
solutions to the Euler equations (see Remark 3.3), the analysis in [8] has been termed the
restricted shock development. Christodoulou [7] has established restricted shock develop-
ment for irrotational and isentropic 3D Euler equations, outside of symmetry assumptions.
We note, however, that besides the inability of the isentropic model to capture the correct
shock jump conditions, outside of radial symmetry the usage of an irrotational model can
also not be justified; regular shock solutions produce entropy and generically create vorticity
(see Remark 4.1 below).
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As noted above, Landau and Lifshitz conjectured in [17, Chapter IX, §96] that at the
same time that the discontinuous shock wave develops, other surfaces of weak singularities
are expected to simultaneously form. For the full Euler system (1.1), with or without sym-
metry, even in one space dimension, the analysis of these surfaces of weak singularities has
been heretofore nonexistent. In [1] we have proven that for the Euler equations in azimuthal
symmetry, two such surfaces emerge from the preshock and move with the slower sound-
speed characteristic (s1), and respectively with the fluid velocity (s2). We shall refer to this
s2 surface as a weak contact because it moves with the fluid velocity, and both the normal
velocity and pressure are one degree smoother than the density and entropy across this sur-
face. The shall also refer to s1 as aweak rarefaction because the normal velocity to this curve
is decreasing in the direction of its motion.

The precise analysis of the shock development problem in [1] is made possible
by a very detailed understanding of the preshock which arises from smooth generic initial
data. In multiple space dimensions and in the absence of symmetries, such a comprehensive
description of the first singularity is currently unavailable. The constructive proofs of shock
formation by Christodoulou [6], Christodoulou and Miao [9], and by Luk and Speck [19,20]

yield the existence of at least one point in spacetime where a shock must form, and a bound is
given for this blow up time; however, since the construction of the shock solution is a pertur-
bation of a simple plane wave, there are numerous possibilities for the type of singularities
that actually form; the blowup could potentially occur at one point, at multiple points, on a
curve, or along a surface. The first step towards the precise characterization of the preshock
in three space dimensions, without symmetries and for the full Euler equations, has been
obtained recently by the first and last two authors [2,4]. We prove in [2,4] that the first singu-
larity which arises from smooth and nondegenerate initial data develops at a single point in
spacetime, it forms in an asymptotically self-similar way, and the corresponding similarity
profiles are stable. This first singularity has been termed a point-shock, and it is given by the
intersection of the preshock surface with the time slice ¹t D T1º, where T1 is the first time
a gradient blowup occurs.

3. Classical vs regular shock solutions

Given a sufficiently smooth initial datum .u0; �0; E0/ defined on Rd � ¹T0º, the
existence of a unique local in time smooth solution to the Euler system (1.1) defined on
Rd � ŒT0; T0 C ı/ for some ı > 0 is classical. For a proof, see, for instance, theH s energy
estimates of Kato [14]. This solution may be continued uniquely on a maximal time interval
ŒT0; T1/, characterized by the fact that T1 is the first time at which the solution has an infinite
gradient. Thus, there is no ambiguity in the notion of solution to (1.1) on Rd � ŒT0; T1/

since all the fields are differentiable in space and time, and so the solution is classical. The
evolution on the time interval ŒT0; T1/ is called shock formation, leading to a first singularity
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at time T1, the so-called preshock,1 which we shall prove is generically of cusp-type, with
the solution retaining Hölder 1=3 regularity.

The evolution (1.1) may be continued past the time of the first singularity, say on
an interval .T1; T2�, in what is known as shock development. The preshock instantaneously
evolves into a discontinuous entropy producing shock wave, and we shall prove that in addi-
tion two other families of weak characteristic singularities simultaneously emerge from the
preshock. In order to discuss shock development, we first need a suitable notion of solution
to (1.1) on Rd � .T1; T2�, which in turn requires the introduction of the Rankine–Hugoniot
jump conditions and of the entropy condition.

The Rankine–Hugoniot jump conditions are a manifestation of the fact .u;�;E/ is a
weak solution of (1.1), and thus the shock speed is related to the jumps of various quantities
across the shock surface. More precisely, suppose that the shock front � � Rd � .T1; T2� is
an orientable spacetime hypersurface across which the velocity, density, and energy jump.
For t 2 .T1; T2�, the shock front at time t locally separates space into two sets �˙.t/, and
we denote the values of the fields in these sets by .u˙; �˙;E˙/. We consider the case where
this surface is parametrized as � WD ¹s.x; t/ D 0º, and denote the spacetime normal to this
surface as �.rxs; @t s/j� DW .n;�Ps/. We let n.�; t / point from��.t/ to�C.t/, which is the
direction of propagation of the shock front. We denote by Ps the shock speed, while the jump
of a quantity f across the shock is written as ŒŒf ��D f � � f C, where f ˙ are the traces of f
along � in the regions�˙. Let un D u � njnj�1 be the projection of the velocity field in the
direction of the normal vector n. The tangential components of the velocity are continuous
across the shock, i.e., ŒŒu � unnjnj�1�� D 0. The Rankine–Hugoniot jump conditions state
that

Psjnj
�1ŒŒ�un�� D

��
�u2

n C pI
��
; (3.1a)

Psjnj
�1ŒŒ��� D ŒŒ�un��; (3.1b)

Psjnj
�1ŒŒE�� D

��
.p CE/un

��
: (3.1c)

Note that only one of the equations in (3.1) are used to compute the shock speed, while the
remaining equations yield two constraints for the variables .uC

n ; �
C; EC/j� and

.u�
n ; �

�; E�/j� .
The entropy condition is nothing but the second law of thermodynamics, and states

that the entropy �S , which in view of (1.3) satisfies the conservation law @t .�S/ C r �

.�uS/ D 0 as long as the solution is smooth, must increase in the presence of a shock
singularity. With the above choice of orientation of the normal vector n, the mass flux
j D �.un � Psjnj�1/ is negative, mass is passing across the shock from �C.t/ into ��.t/,
and so the physical entropy condition becomes

ŒŒS�� > 0: (3.2)

1 To be precise, this first singularity is called a preshock only for one-dimensional problems,
or in the presence of azimuthal symmetry, discussed here. For d � 2, in the absence of any
symmetry, this first singularity occurs at a single point in spacetime, the point-shock. The
point-shock is the intersection of the preshock with the time slice ¹t D T1º.
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Remark 3.1 (The physical entropy condition and the geometric Lax entropy conditions).
The negativity of the mass flux j D �.un � Psjnj�1/ immediately gives

u�
� n < Ps; uC

� n < Ps: (3.3)

The Lax geometric entropy conditions are given by (3.3) along with

uC
� n C cC < Ps < u�

� n C c�; (3.4)

where c� and cC are the sound speeds behind and in front of the shock. Condition (3.4)
states that the shock discontinuity is supersonic relative to the state in front (the “C” phase)
and subsonic relative to the state behind (the “�” phase) the shock. It turns out that for an
ideal gas, and under the assumption that .u; �; E/ has a weak shock, i.e.,

sup
t2ŒT1;T2�

ˇ̌��
u.t/

��ˇ̌
C

ˇ̌��
�.t/

��ˇ̌
C

ˇ̌��
E.t/

��ˇ̌
� 1;

the physical entropy condition (3.2) is equivalent to the Lax geometric entropy conditions.
Moreover, in this setting one may show that the Rankine–Hugoniot jump conditions imply

ŒŒS�� D O
�
ŒŒp��3

�
; (3.5)

with a positive prefactor; it follows that the entropy production postulated in (3.2) implies
the positivity of the jumps ŒŒp�� > 0, ŒŒ��� > 0, andŒŒun�� > 0. See Landau and Lifshitz [17,

Chapter IX] or [1, Section 2] for details.

Having defined the Rankine–Hugoniot conditions (3.1) and the entropy condi-
tion (3.2), we are now ready to define the physically relevant notion of solution to the
development problem for (1.1), evolving from the preshock data.

Definition 3.2 (Regular shock solution). We say that .u; �; E/ and a shock front � is a
regular shock solution on Rd � ŒT1; T2� if the following conditions hold:

• .u; �; E/ is a weak solution of (1.1) and � � �min > 0;

• the shock front � � Rd � ŒT1; T2� is an orientable codimension 1 hypersurface;

• .u; �; E/ are Lipschitz continuous in space and time on the complement of the
shock surface .Rd � ŒT1; T2�/ n � ;

• .u; �;E/ have discontinuities across the shock which satisfy the Rankine–Hugo-
niot jump conditions (3.1);

• entropy is produced at the shock, so that (3.2) holds.

Remark 3.3 (Regular shock solutions cannot be isentropic). Definition 3.2 shows that one
cannot study the physical shock development problem within the isentropic Euler model
(S � 0). Indeed, while the isentropic Euler system is perfectly justifiable prior to the first
singularity since S jtDT0 D 0 implies by (1.3) that S.�; t /D 0 for all t 2 ŒT0; T1�, as soon as a
shock front develops entropy must be generated according to (3.5). That is, the flow becomes
nonisentropic in order to satisfy the Rankine–Hugoniot jump conditions, or equivalently, in
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order for .u; �; E/ to be a weak solution of the Euler system (1.1). Consistency with the
production of entropy (3.2) is a secondary condition, which is meant to rule out the physically
incorrect weak solutions.

4. Azimuthal symmetry

In the regions of spacetime where the fields .u; �; E/ are differentiable, the diver-
gence form of the Euler equations (1.1) is equivalent to a more symmetric version, in which
the conservation of the energy is replaced by the transport of specific entropy S , and the
conservation of mass is replaced by the evolution of the rescaled sound speed � , defined as

� D
1

˛

p
@p=@� D

1

˛
e

S
2 �˛; where ˛ D

 � 1

2
: (4.1)

With this notation, the ideal gas equation of state (1.2) becomes p D
˛2


��2, while the Euler

equations (1.1), as a system for .u; �; S/, are given by

@tuC .u � r/uC ˛�r� D
˛

2
�2

rS; (4.2a)

@t� C .u � r/� C ˛� divu D 0; (4.2b)

@tS C .u � r/S D 0: (4.2c)

Note that the system (4.2) is valid away from the shock surface, and that the Rankine–
Hugoniot conditions need to be determined from the conservation law form of the Euler
equations (1.1). Additionally, we note that the Rankine–Hugoniot jump conditions, defined
in terms of the jumps of normal velocity, density, and energy (3.1), may be translated into
jump conditions for the variables .u; �;E/, by appealing to (4.1) andE D

1
2
�juj2 C

˛
2
��2.

A fundamental quantity to the analysis of (4.2) is the vorticity, defined as!D r? � u

for d D 2 and ! D r � u for d D 3. Then, the specific vorticity � D
!
�
solves

@t� C .u � r/� D

8<: ˛


�
�

r?� � rS; d D 2;

.� � ru/C
˛


�
�

r� � rS; d D 3;
(4.3)

and the analysis of (4.3) is of fundamental importance to our works [1–4].

Remark 4.1 (Regular shock solutions generically create vorticity). The baroclinic torque
term on the right side of (4.3) shows that a misalignment of density and entropy gradients
creates vorticity. Combining this observation with Remark 3.3, it is thus expected that even
when one starts the shock formation process with isentropic irrotational flow, as soon as
the shock surface is formed, generically not just entropy is created, but vorticity is created as
well. Thus, for generic smooth initial data, the shock development problem cannot be studied
in the class of irrotational flows. The only two exceptions we are aware of are d D 1 or the
conceptually equivalent situation d � 2 under the reduction of radial symmetry, when there
is no vorticity to speak of in the first place.

The above remark motivates our introduction of the class of solutions to the Euler
equations with azimuthal symmetry. This class of solutions may be defined for d D 2 by
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the requirement that the velocity and sound speed are linear functions of r with nonlinear
dependence of .�; t/, while the entropy is only a function of .�; t/. Here .r; �/ are the polar
coordinates on R2. This class of solutions is formally maintained under the Euler evolu-
tion (1.1). These solutions have nonzero vorticity, both velocity components are nontrivial
and strongly affect the shock formation and development, and the system has three distinct
wave-speed families. As such, we view azimuthal symmetry as a multidimensional interme-
diary case between one-dimensional problems, and multidimensional problems without any
symmetry. More precisely, by introducing the unknowns .a; b; c; k/ via

.ur ; u� ; �; S/.r; �; t/ DW
�
ra.�; t/; rb.�; t/; rc.�; t/; k.�; t/

�
; (4.4)

and canceling all powers of r , the Euler system (4.2) becomes

.@t C b@� /aC a2
� b2

C ˛c2
D 0; (4.5a)

.@t C b@� /b C ˛c@�c C 2ab D
˛

2
c2@�k; (4.5b)

.@t C b@� /c C ˛c@�b C ac D 0; (4.5c)

.@t C b@� /k D 0: (4.5d)

For smooth initial data .u0; �0;E0/ or .u0; �0; S0/ at t D T0 which has azimuthal symmetry,
one may define via (4.4) suitable initial data .a0; b0; c0; k0/ for the system (4.5). Then, solv-
ing (4.5) gives a unique solution .a; b; c; k/ on a maximal time interval ŒT0; T1/ on which the
solution remains smooth. On this time interval, the unique solution .u; �; S/ to (4.2) is then
given by the identification (4.4). That is, as long as solutions remain smooth, the azimuthal
symmetry of the data is preserved, and systems (1.1), (4.4), and (4.5) are all equivalent. As
we shall see below, we may in fact continue the solution .a; b; c; k/ of (4.5) past t D T1

in a unique way as a physical shock solution by translating the Rankine–Hugoniot jump
conditions (3.1) and the entropy condition (3.2) into corresponding azimuthal jump/entropy
conditions. The resulting solution .u; �; S/ (or equivalently .u; �;E/) obtained via the iden-
tification (4.4) can be shown to be a regular weak solution of the full Euler system (4.4)
(equivalently (1.1)) in the sense of Definition 3.2. The uniqueness of this regular weak solu-
tion to (1.1) is only known to hold if we assume that the solution has azimuthal symmetry.

4.1. Riemann-like variables in azimuthal symmetry
For simplicity of presentation, for the remainder of this review, as was done in [1],

we shall work with the adiabatic exponent

 D 2; or equivalently ˛ D
1

2
: (4.6)

We also note that it is convenient to rescale time, letting

t D
3

4
Qt ; so that @t 7!

4

3
@Qt ; (4.7)

and for notational simplicity, we continue to write t for Qt . More importantly, it is convenient
for the subsequent analysis to work with Riemann-like variables w and z which symmetrize
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(in a certain sense) the b and c evolutions (4.5). These Riemann variables are defined by

w D b C c; z D b � c; (4.8)

so that b D
1
2
.w C z/ and c D

1
2
.w � z/. We shall refer to w as the dominant Riemann

variable, and to z as the subdominant Riemann variable.
With the adiabatic exponent from (4.6), the temporal rescaling (4.7), and using the

Riemann variables from (4.8), the system (4.5) can be equivalently written as

@tw C �3@�w D �
8

3
aw C

1

24
.w � z/2@�k; (4.9a)

@tz C �1@�z D �
8

3
az C

1

24
.w � z/2@�k; (4.9b)

@tk C �2@�k D 0; (4.9c)

@taC �2@�a D �
4

3
a2

C
1

3
.w C z/2 �

1

6
.w � z/2: (4.9d)

where the three distinct wave speeds are given by

�1 D
1

3
w C z; �2 D

2

3
w C

2

3
z; �3 D w C

1

3
z: (4.10)

The Cauchy problem for (4.9) is considered with initial conditions given by
.w0; z0; a0; k0/.�/ D .w; z; a; k/.�; T0/. We shall henceforth refer to (4.9)–(4.10) as the
azimuthal Euler system.

Remark 4.2 (Specific vorticity in azimuthal symmetry). Using the azimuthal symmetry
ansatz (4.4), the specific vorticity � may be written as

�.r; �; t/ D $.�; t/ D
�
4.w C z � @�a/c

�2ek
�
.�; t/; (4.11)

and we may show that it solves the evolution equation

@t$ C �2@�$ D
8

3
a$ C

4

3
ek@�k: (4.12)

Remark 4.3 (Motivation for the choice of  in (4.6)). The choice of adiabatic exponent
 D 2 was made in order to emphasize that the shock wave produces not just entropy, but it
also generates the subdominant Riemann variable z. In order to clearly emphasize this, for
the shock formation process we choose initial data at time t D T0 which satisfies

k.�; T0/ D 0; and z.�; T0/ D 0: (4.13)

The entropy transport (4.9c) ensures that for any t 2 ŒT0; T1�, where T1 is the time of the
first singularity, we have k.�; t / D 0. The Rankine–Hugoniot conditions (cf. (4.16) below)
guarantee that entropy must be produced at the shock, resulting in k.�; t/ > 0 in a certain
region of points .�; t/ 2 T � .T1; T2�. The choice of k0 D 0 in (4.13) emphasizes the pro-
duction of entropy in the clearest possible way. The choice  D 2 (˛ D

1
2
) is related to the

evolution of the subdominant Riemann variable z. Since we have that k � 0, the right-hand
side of (4.9b) simplifies to �

8
3
az, but we note that for general values of  , this term would

simplify to �
3C2˛
1C˛

az �
1�2˛
1C˛

aw. As such, even if z0 D 0, the term �
1�2˛
1C˛

aw would ensure
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that z 6� 0 for t > T0. For ˛ D
1
2
, this term, however, does not exist, and so the choice of

k0 D 0 in (4.13) ensures that z.�; t / D 0 for all t 2 ŒT0; T1�. The remarkable fact is that the
Rankine–Hugoniot conditions (cf. (4.16) below) imply that we must have z < 0 for a certain
region of points .�; t/ 2 T � .T1; T2�. Thus, the choice z0 D 0 is made in order to most
clearly emphasize the breaking of the symmetry b D c at the shock.

As noted in Remark 4.3, the choice of initial datum in (4.13) implies that during the
shock formation process, we have that k � 0 and z � 0, so that the system (4.9) becomes

@tw C w@�w D �
8

3
aw; (4.14a)

@taC
2

3
w@�a D �

4

3
a2

C
1

6
w2: (4.14b)

The preshock, which will be shown to be smooth away from a unique blowup point �� 2 T ,
inherits the property that k.�;T1/ and z.�;T1/ vanish onT , but these symmetries are broken
instantaneously during the shock development process. The presence of a shock necessitates
that we supplement the system (4.9) with Rankine–Hugoniot jump and entropy conditions.

4.2. Rankine–Hugoniot jump and entropy conditions
In azimuthal symmetry, with the adiabatic exponent from (4.6) and the temporal

rescaling (4.7), the shock hypersurface is given as

� D
®
.r; �; t/ W s.t/ � � D 0

¯
:

The spatial normal to this hypersurface is n D
1
r

Ee� . We have that Ps > 0 and so the shock is
moving from left to right when the angular variable � is viewed as being defined on Œ��;�/.
To see this, note that since zD 0 by (4.8) we have thatwD 2c, and since wewish to stay away
from vacuum, we must have c � cmin > 0 on T ; therefore, w is strictly positive on T , which
implies that the three wave speeds defined in (4.10) are all strictly positive, and ordered as
�1 < �2 < �3 onT � ŒT0; T1� (by continuity this also holds onT � .T1; T2� if T2 � T1 � 1).
The negativity of the mass flux in (3.3) then yields Ps > 0. According to the orientation of
n, we denote by .wC; zC; aC; kC/.t/ the limiting values on the shock curve s.t/ from the
right (or front) of the shock, and by .w�; z�; a�; k�/.t/ the limiting values from the left
(or back) of the shock. As discussed in [1, Remark 2.5], the Lax geometric entropy inequal-
ities (3.3)–(3.4) imply that the characteristics of the three wave speeds ¹�i º

3
iD1 in front of

the shock (the “C” phase) impinge on the shock front, carrying with them the data from the
¹t D T1º Cauchy hypersurface. In particular, since k.�; T1/ D z.�; T1/ D 0, this implies that
during the development process we have

kC.t/ D zC.t/ D 0; for all t 2 .T1; T2�; (4.15)

so that ŒŒk�� D k� and ŒŒz�� D z�. Using (4.15) and the observation that u˙
n D rb˙.s.t/; t/

the Rankine–Hugoniot jump conditions (3.1) may be shown to be equivalent to a system of
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two equations which are used to determine the values of z� and k� in terms of wC and w�

.ek� � 1/.w� � z�/
4
�
3w2

Ce
k� � .w� � z�/

2
�

D
�
.w� � z�/

2
� ek�w2

C

�3
; (4.16a)�

.w� � z�/
2.w� C z�/

2
C
1

8
.w� � z�/

4
�
9

8
ek�w4

C

��
.w� � z�/

2
� ek�w2

C

�
D

�
.w� � z�/

2.w� C z�/ � ek�w3
C

�2
; (4.16b)

and an evolution equation for Ps given by

Ps.t/ D
2

3

e�k�.w� � z�/
2.w� C z�/ � w3

C

e�k�.w� � z�/2 � w2
C

: (4.16c)

To summarize, the values of the dominant Riemann variable, wC in the front and w� in the
back of the shock, determine the values of z� and k� via (4.16a)–(4.16b), which in turn
allows one to compute the location of the evolving shock front. We note that the dominant
Riemann variable w travels according to the fastest wave-speed in the system (4.9), namely
�3. Thus, the values of wC and w� are carried from the ¹t D T1º Cauchy hypersurface via
the characteristics of �3, which impinge on the shock front from the left and right.

Remark 4.4 (The entropy condition in azimuthal symmetry). The system of three
equations (4.16) is in one-to-one correspondence with the Rankine–Hugoniot jump condi-
tions (3.1). So the natural question is: What is the equivalent of the physical entropy condi-
tion (3.2) in azimuthal symmetry? To answer this question, we first note that (4.16a)–(4.16b)
are a coupled system of sixth-order polynomials in the variableswC;w�; z�; e

k� . The second
observation is that at the preshock we have wC.T1/ D w�.T1/ and z�.T1/ D k�.T1/ D 0,
which solves (4.16a)–(4.16b). The natural question then is whether in the weak shock regime
0 < ŒŒw�� D w� �wC � 1, with hhwii D

1
2
.w� CwC/ > 0, the system (4.16a)–(4.16b) has

a unique solution or not. For the sixth-order equations with real coefficients, the presence of
one real solution implies the presence of at least one more solution. Indeed, one may verify
that in the weak shock regime the system (4.16a)–(4.16b) has exactly two real solutions with
jz�j C jk�j � 1, the other roots being complex. The remarkable fact is that only one of
these two solutions is entropy producing, k� > 0. Thus, the role of the physical entropy con-
dition (3.2), which is equivalent in view of (4.15) to k� > 0, is to select the unique physically
relevant root of the system of equations (4.16a)–(4.16b).

We conclude this section by revisiting the notion of a regular shock solution, as
defined in Definition 3.2, in the context of the azimuthal Euler equations. During the
formation part of our result, i.e., for t 2 ŒT0; T1/, we have that the solution .w; z; k; a/
of (4.9)–(4.10) is smooth, so that the notion of solution is the classical one: the system (4.9) is
satisfied in the sense of C 1-functions of space and time. On the time interval ŒT1; T2�, which
covers the development part of our result, the notion of regular shock solution becomes:

Definition 4.5 (Regular azimuthal shock solution). We say that .w;z;k;a/ and a shock front
parametrized as � D ¹s.t/ D �º is a regular azimuthal shock solution on T � ŒT1; T2� if
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• .w; z; k; a/ are C 1
�;t

smooth, and$ is C 0
�;t

smooth, on the complement of � ;

• on the complement of the shock curve, .w;z;k;a/ solve the equations (4.9)–(4.10)
pointwise, and$ solves (4.12) pointwise;

• .w; z; k/ have jump discontinuities across the shock curve which satisfy the alge-
braic equations (4.16a)–(4.16b);

• the shock location s W ŒT1; T2� ! T is C 1
t smooth and solves (4.16c);

• entropy is produced at the shock so that ŒŒk��.t/ > 0 for t 2 .T1; T2�.

5. Main results

The main result of [1] is stated first in terms of the azimuthal variables .w; z; k; a/.
The result may be best visualized by inspecting Figures 1, 2, 3, 4. A condensed statement is
as follows; for details, see [1, Theorems 3.2, 5.5, 6.1].

Figure 1

The initial conditions .w; z; k; a/jtDT0
satisfying (4.13) are represented in (red, green, blue, orange) as functions

of the angular variable � 2 Œ��; �/. The function w.�; T0/ is strictly positive and has has a nondegenerate most
negative slope of size � �

1
" at a unique point in T . The function a.�; T0/ is O.1/ in C 4.T /.

Figure 2

At the time of the first singularity, the functions .w; z; k; a/jtDT1
are sketched in the figure on the left, using the

same color scheme as in Figure 1. In the image on the right, we have plotted the function @�a, which also develops
a singularity at t D T1. More precisely, the shock formation process for the system (4.14) results in the formation
of the preshock at time T1, manifested as a C

1
3 cusp at a unique distinguished angle �� 2 T for the functions w

and @�a. At T1 we have that z and k remain equal to 0.
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Figure 3

Three distinct families of singularities instantaneously emerge from the the preshock located at .��; T1/. Across
the classical shock curve s the fields .w; z; k; @�a/ jump, and the Rankine–Hugoniot conditions are satisfied. A
weak rarefaction singularity develops across the curve s2 which travels along characteristics of �2. Here the
quantities .w; z; k/ have regularity C 1;1=2 and no better. A weak contact singularity forms across the curve s1

which travels with the characteristics of �1. Here the function z has regularity C 1;1=2 and no better. The functions
z and k are equal to 0 on the left-hand side of s1 and on the right-hand side of s.

Figure 4

On the left-hand side, we have a schematic representation of the functions .w; z; k; a/jtDT2
using the color scheme

from Figure 1. On the right-hand side, a schematic representation of the functions .@�w; @�z; @�k; @�a/jtDT2
is

given. In both images, the vertical lines represent the location of s1.T2/ < s2.T2/ < s.T2/ using the color
scheme from Figure 3. The image on the left emphasizes that all quantities except for a jump across the shock, and
that z and k remain equal to 0 on T n Œs1.T2/;s.T2/�. The image on the right emphasizes that the one-sided
cusps form at the weak contact and weak rarefaction, and that @�a jumps across the shock.

Theorem 5.1 (Main result in azimuthal symmetry). From smooth isentropic initial data at
time T0 with vanishing subdominant Riemann variable, as described in the first paragraph
of Section 6, there exist smooth solutions to the azimuthal Euler system (4.9) that form a pre-
shock singularity, at a time T1 > T0. The first singularity occurs at a single point in space,
��, and this first singularity is shown to have an asymptotically self-similar shock profile
exhibiting a C 1=3 cusp in the dominant Riemann variable and a C 1;1=3 cusp in the radial
velocity. A series expansion for w.�; T1/ in terms of .� � ��/

1=3 may be computed explicitly.
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After the preshock is formed, the solution to (4.9)–(4.10) is continued uniquely for
a short time .T1; T2� as a regular azimuthal shock solution (cf. Definition 4.5) with the fol-
lowing properties:

• Across the shock curve s, for all t 2 .T1; T2�, the state variables jump

ŒŒw�� � .t � T1/
1
2 ; ŒŒ@�a�� � .t � T1/

1
2 ; ŒŒz�� � .t � T1/

3
2 ; ŒŒk�� � .t � T1/

3
2 :

• Across the characteristic s2 emanating from the preshock and moving with the
fluid velocity, the Riemann variables and the entropymakeC 1;1=2 cusps approach-
ing from the right. Limiting from the left, these variables are C 2 smooth.

• Across the characteristic s1 emanating from the preshock and moving with the
sound speed minus the fluid velocity, the entropy is zero while the subdominant
Riemann variable makes a C 1;1=2 cusp from the right. Limiting from the left, all
fields are C 2 smooth.

We note that the proof of Theorem 5.1, which is the bulk of our paper [1], applies
with minor modifications to the case of the Euler equations for d D 1, or in the case of radial
symmetry d � 2. In fact, as mentioned already in Remark 4.1, these two cases are simpler
than the azimuthal symmetry considered here, since the vorticity vanishes identically.

Via the identification (4.4), Theorem 5.1 implies the following result for the Euler
system in terms of hydrodynamic variables. We only state a condensed result here, and refer
the interested reader to [1, Theorems 1.2, 7.1, 7.2] for details. The pictorial representation of this
result is given in Figure 5 below.

Figure 5

Values of the density written in polar coordinates �.r; �; t/, and plotted for r 2 Œ1; 2�. The image on the left
represents the smooth data at time T0. The center image shows the preshock formed at time T1, at one specific
value of the angular coordinate; we marked the corresponding line in red. The image on the right represents the
density at time T2, where we have represented in red the line along which the shock discontinuity occurs, in blue
the line containing the weak contact, and in green the line corresponding to the weak rarefaction.

3649 Singularities in compressible Euler with smooth data



Theorem 5.2 (Main result for 2D Euler). For smooth isentropic initial data at time T0 with
azimuthal symmetry, there exist smooth solutions to the 2D Euler equations (1.1) that form a
preshock singularity at a time T1 > T0. The first singularity occurs along a half-infinite ray
and the blowup is asymptotically self-similar, exhibiting a C 1=3 cusp in the angular velocity
and mass density, and a C 1;1=3 cusp in the radial velocity. Moreover, the blowup is given by
a series expansion whose coefficients are computed as a function of the initial data.

Past the preshock, the solution is continued on .T1; T2�, as an entropy-producing
regular shock solution (cf. Definition 3.2) of the full 2D Euler equations (1.1). The solution
is unique in the class of entropy producing weak solutions with azimuthal symmetry, with a
certain weak shock structure and suitable regularity off the shock (see the space X" defined
in (7.8) below). The following properties are established for t 2 .T1; T2�:

• Across the classical shock hypersurface, all the state variables jump:

ŒŒu� �� � .t � T1/
1
2 ; ŒŒ��� � .t � T1/

1
2 ;

ŒŒ@�ur �� � .t � T1/
1
2 ; ŒŒS�� � .t � T1/

3
2 :

• Across the characteristic emanating from the preshock and moving with the fluid
velocity, the entropy, density, and radial velocity all have a C 1;1=2 one-sided cusp
from the right, while from the left, they are all C 2 smooth. The second derivatives
of the angular velocity and pressure are bounded across this curve, justifying the
name weak rarefaction.

• Across the characteristic emanating from the preshock and moving with sound
speed minus the fluid velocity, the entropy is zero while the angular velocity and
density have C 1;1=2 one-sided cusps from the right, while from the left, they are
C 2 smooth. The second derivative of the radial velocity is bounded across this
curve, justifying the name weak contact singularity.

Theorem 5.2 yields a full propagation of singularities result for regular shock solu-
tions of the Euler equations, capturing both the jump discontinuity and the weak singularities
emanating from the initial cusp in the preshock. This gives an answer to the problem raised
by Landau and Lifschitz in [17, Chapter IX, §96], at least in the context of flows with azimuthal
symmetry (or one-dimensional flows).

Remark 5.3 (Anomalous entropy production). Theorem 5.2 provides an example of an
entropy producing weak solution .u; �; E/ 2 L1

t .BV \ L1/loc � L1
t .B

1=p
p;1/loc, for all

p � 1. This regularity class encodes the emergence of a regular shock, obtained by continu-
ing the past the first singularity. This proves that the Onsager-criterion proven by the second
author and Eyink in [12, Theorem 3], which states that if .u; �; E/ 2 L1

t .B
1=3C

3;1 \ L1/loc

then there is no entropy production, is in fact sharp.

Remark 5.4 (Uniqueness and entropy). Theorem 5.2 establishes the uniqueness of solutions
in a class of weak solutions with azimuthal symmetry, with weak shock structure, and which
have regularity consistent with the fact that they emanate from a C 1=3 preshock (cf. (7.8)
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below), which in turn is the generic regularity that should be expected to arise at the first
singularity from a smooth initial datum. The role of the entropy condition in establishing this
uniqueness was explained in Remark 4.4. We contrast our uniqueness statement to the ill-
posedness of the Euler systemwithin the class of bounded, entropy-producingweak solutions
emanating from 1D Riemann data, cf. Klingenberg et al. [15] and references therein.

6. Outline: the formation of the preshock

Fix a constant �0 > 1 sufficiently large and let " > 0 be sufficiently small. Consider
the azimuthal Euler system (4.9)–(4.10) with initial data given at time T0 D �", satisfy-
ing (4.13), and with w.�; T0/ and a.�; T0/ which lie in a certain open subset of C 4.T /

described roughly as follows. The initial data for the radial velocity is taken to satisfy
ka.�;�"/kL1 � ", k@�a.�;�"/kL1 . 1

20
�0, and k@n

�
a.�;�"/kL1 . 1 for 2� n� 4. The initial

data for the dominant Riemann variable is described in detail in [1, Equations (4.17)–(4.25)].
The most important property is thatw.�;�"/ 2 C 4.T / has a nondegenerate global minimum
at a single point of T , labeled for convenience by 0, where it holds that

w.0;�"/ D �0; @�w.0;�"/ D �"�1; @2
�w.0;�"/ D 0; @3

�w.0;�"/ D 6"�4: (6.1)

Other conditions are that 7
8
�0 � w.�;�"/ �

9
8
�0 which ensures that the density is bounded

away from vacuum, that w.�;�"/ � �0 is compactly supported B"1=2.0/, and that the func-
tion W.y/ WD "�1=2.w.y"3=2;�"/ � �0/ lies in a certain "-dependent open ball in the C 4

topology centered at the stable global self-similar solution of the 1D Burgers equation, W ,
which is defined implicitly as the analytic solution of W .y/CW .y/3 C y D 0.

For such datum, the formation of the first gradient singularity for (4.9)–(4.10) was
previously established in [3]. This singularity is characterized as a stable asymptotically self-
similar C 1=3

�
cusp for the dominant Riemann variable w, the so-called preshock, which

occurs at a precisely computable spacetime location .��; T1/, with �� � �0" and T1 D

O."3/. The subdominant Riemann variable z and entropy � remain identically equal to 0 on
T � Œ�";T1�, while radial velocity and specific vorticity satisfy a 2 L1.�";T1IC 1;1=3.T //

and$ 2 L1.�"; T1IC 0;1.T //. From here, one may show that asymptotically as � ! ��:

w.�; T1/ D � � b.� � ��/
1
3 C o

�
.� � ��/

1
3
�
; (6.2a)

a.�; T1/ D a0 C a1.� � ��/C a2.� � ��/
4
3 C o

�
.� � ��/

4
3
�
; (6.2b)

for suitable constants computable constants b � 1, ai , and � such that j� � �0j . "2.
While the description of the preshock given by (6.2) would be likely sufficient to

describe the classical shock singularity s emerging from the preshock, in order to rigorously
capture the formation of higher order characteristic singularities emerging along the curves
s1 and s2 in Figure 3, a much finer understanding of the dominant Riemann variable w at
the preshock is required. This information is not available in [3], and it is the subject of the
analysis in [1, Section 4]. In particular, [1, Theorem 4.1] proves that

w.�; T1/ D � � b.� � ��/
1
3 C c1.� � ��/

2
3 C c2.� � ��/C O

�
.� � ��/

4
3
�

(6.3)
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holds for all � in an "-dependent ball around ��, for explicitly computable constants ci . More
importantly, we prove that the fractional series expansion (6.3) holds in aC 3 sense, meaning
that the first three derivatives of the left-hand side in (6.3) equal to the first three derivatives
of the expansion on the right-hand side, with error bounds stable under differentiation.

The proof of (6.3) is based on a fully-Lagrangian characterization of the preshock,
and a subtle interplay between the characteristics of the speeds �3 Dw and �2 D

2
3
w present

in (4.14), and which are defined by

@t� D �3

�
�.x; t/; t

�
D w

�
�.x; t/; t

�
; �.x;�"/ D x;

@t� D �2

�
�.x; t/; t

�
D
2

3
w

�
�.x; t/; t

�
; �.x;�"/ D x:

By (4.14a), it is clear that � is the natural flow of the w evolution, while (4.14b) and (4.12),
which simplify here to @t$ C

2
3
w@�$ D

8
3
a$ , show that � is the natural flow for a and$ .

The first and most important observation is that the spacetime location of the first
singularity .��; T1/ is characterized by �� D �.x�; T1/, where .x�; T1/ are the unique
Lagrangian label and the first time, respectively, which simultaneously solve the system

@x�.x�; T1/ D @xx�.x�; T1/ D 0: (6.4)

In fact, as part of the proof it is crucial that we establish

@x�.x; t/ D
�
1C O."

1
2 /

�
"�1.T� � t /C

�
3C O."

1
8 /

�
"�3.x � x�/

2;

@xx�.x; t/ D .T� � t /O."�2/C
�
6C O."

1
8 /

�
"�3.x � x�/;

@xxx�.x; t/ D
�
6C O."

1
8 /

�
"�3;

for all labels jx � x�j � "2 and all t 2 Œ�";T1�. This asymptotic description of the Lagrangian
flow may be traced back to the initial datum assumption (6.1).

The second ingredient in the proof is that the fields �, w ı �, a ı �, $ ı � remain
C 4 smooth as functions of the Lagrangian label x, uniformly in time on the interval Œ�";T1�.
Roughly speaking, this is achieved by appealing to the identities

�.x; t/ D x C

Z t

�"

w ı �.x; s/ds; (6.5a)

w ı �.x; t/ D w.x;�"/e� 8
3

R t
�" aı�.x;s/ds; (6.5b)

which show that the regularity of a ı � implies the regularity of � and w ı �, and to the
one-derivative gains provided by the relations @�a D w �

1
16
w2$ and

@x�.x; t/ D

�
w.x;�"/

w ı �.x; t/

�2

e� 16
3

R t
�" aı�.x;s/ds;

$ ı �.x; t/ D $0.x;�"/e
8
3

R t
�" aı�.x;s/ds;

which in turn allows us to establish the desired higher order regularity of a and$ .
The third ingredient in the proof concerns the invertibility of the map x 7! �.x;T1/.

Using (6.4) and a Taylor series expansion justified by the regularity of �, we have that

� D �.x; T1/ D �� C
1

6
@xxx�.x�; T1/.x � x�/

3
C

1

24
@xxxx�. Nx; T1/.x � x�/

4;
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where �� D �.x�;T1/, and Nx is a point between x� and x. As such, with‚D � � �� andX D

x � x�, we are left to invert the quartic polynomial‚D g1X
3 C g2X

4, where g1 � "�3 > 0

and jg2j D O."�4/. This inversion via a Newton iteration results in a fractional power series
X D f1‚1=3 C f2‚2=3 C f3‚ C O.‚4=3/, with explicitly computable real coefficients fi .
This fractional power series is then directly translated into a power series expansion for the
inverse map ��1.�; T1/ in powers of .� � ��/

1=3, valid for � sufficiently close to ��. At last,
we insert this expansion into (6.5b), to obtain

w.�; T1/ D w
�
��1.�; T1/;�"

�
e� 8

3

R T1
�" aı�.��1.�;T1/;s/ds :

Using the known expansion for ��1.�; T1/ and the regularity of a ı �, we deduce (6.3).

7. Outline: the development of shocks and weak

singularities

We next turn to the development problem, within the class of regular azimuthal
shock solutions, cf. Definition 4.5. The initial datum for this development problem are the
functions .w; z; k; a/ at which we have arrived in the formation process at time T1. For
simplicity of the presentation, let us shift the preshock location .��; T1/ to .0; 0/, and let us
denote the values of the azimuthal fields at the preshock by .w0; z0;k0;a0/. By the analysis in
Section 6, we have that z0 � k0 � 0 onT , a0 2C 1;1=3.T /with ka0kW 1;1 . �0,$0 2Lip.T /
with 1 < �0$0.�/ . 1, and the dominant Riemann variable is given by

w0.�/ D � � b�
1
3 C c1�

2
3 C c2� C O.�

4
3 /; (7.1)

equality which holds in a C 3 sense, with � � �0 > 1, b � 1, and c D O."1=2/. The shock
development problem from this initial data is solved on the interval Œ0; "�, i.e., T2 D T1 C "

in the language of Theorem 5.1, for a " which is sufficiently small in terms of the data. The
detailed analysis is carried out in [1, Sections 5 and 6], and here we only give the main ideas.

Given a smooth shock curve sW Œ0; "� ! T , we shall denote the spacetime comple-
ment of the shock as D" D .T � Œ0; "�/ n .s.t/; t/t2Œ0;"�, and for any function f W D" ! R

we denote the left and right traces at the shock by f˙.t/D lim�!s.t/˙ f .�; t/, and the jump
and mean across the shock as ŒŒf ��.t/ D f�.t/ � fC.t/ and hhf ii.t/ D

1
2
.f�.t/C fC.t//,

respectively. Note that since " is chosen to be sufficiently small, we have that t � 1 is a small
parameter.

To leading order in 0 < t � 1 and for j� j � 1, the intuition behind the shock devel-
opment problem is as follows. First, from the Rankine–Hugoniot jump conditions one has
that to leading order the speed of propagation of weak shock waves (relative to the fluid) is
equal to the sound speed, which in the context of azimuthal symmetry means that

Ps � b C c D w � w0 C .small error for t � 1/

� � C .small error for j� j � 1/C .small error for t � 1/:

Thus, to leading order we may expect that s.t/ � �t .
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Second, we note that although entropy k and the subdominant Riemann variable z
are strictly positive for t > 0, for short time they are expected to be small. As such, to leading
order one may expect that the evolution of the dominant Riemann variablew (cf. (4.9a)) may
be approximated as

@tw C .w C small error/@�w D .small errors involving entropy gradients/;

w0 D � � b�
1
3 C .small error near for j� j � 1/:

Thus, we may hope to view the dominant Riemann variable w as being a perturbation of an
inviscid Burgers solution wB with associated Lagrangian �B, namely

wB.�; t/ D w0

�
�B

�1.�; t/
�
; �B.x; t/ D x C tw0.x/: (7.2)

Here we denote Eulerian space variable by � and the Lagrangian label by x. There is an
important caveat in the standard-looking definition (7.2). Since the initial data w0 is a
preshock (recall (7.1)), the map �B

�1.�; t/ is not well defined for � which is very close
to s.t/; indeed, in this region the map is two-valued. This is natural since these characteris-
tics are expected to impinge upon the shock from either the left or the right, which ensures
that the Lax entropy conditions (3.4) are satisfied. To overcome this, given any t 2 .0; "�, and
given a shock curve s.t/, we compute two Lagrangian labels x˙.t/ D �B

�1.s.t/˙; t / such
that the associated particle trajectories �B.x˙.t/; s/ fall into the shock exactly at time s D t .
This allows us to define �B

�1.�; t /WT n ¹s.t/º ! T n Œx�.t/;xC.t/� as a bijectivemap, giving
ameaning to (7.2). Note that to leading order onemay compute �B.x; t/� xC �t � .bt /x1=3,
and since to leading order s.t/ � �t , we deduce that x˙.t/ � .bt /3=2. It follows that we
may expect the jump of the dominant Riemann variable across the shock curve to be given,
to leading order in t , by

ŒŒw��.t/ � ŒŒwB��.t/ D w0

�
x�.t/

�
� w0

�
xC.t/

�
� 2b

3
2 t

1
2 : (7.3)

Third, in analogy to how (3.5) was derived, we may show that in the weak shock
regime jŒŒw��j � 1 (justified in view of (7.3)) the smallest root (in absolute value) of the
system of equations (4.16a)–(4.16b) (which were derived from the azimuthal form of the
Rankine–Hugoniot conditions) is given to leading order by

ŒŒz��.t/ � �
9ŒŒw��.t/3

16hhwii.t/2
� �

9b
9
2

2�2
t

3
2 and ŒŒk��.t/ �

4ŒŒw��.t/3

hhwii.t/3
�
32b

9
2

�3
t

3
2 : (7.4)

Just as (7.3), (7.4) may be shown to hold in a C 2
t sense. The jump relations show that posi-

tive entropy and negative subdominant Riemann variable must be produced instantaneously
along the shock in order for mass, momentum, and energy not to be lost.

Fourth, we need to carefully analyze the three characteristic families present in the
azimuthal Euler equations (4.9)–(4.10). These flows are defined naturally as

@t� D �3 ı �; @t� D �2 ı �; @t D �1 ı  ; .�; �;  /.x; 0/ D x:

Our heuristics indicate that to leading order in t � 1 and jxj � 1 we have that

�.x; t/ � �B.x; t/ � x C �t � .bt /x
1
3 ; �.x; t/ � x C

2�

3
t;  .x; t/ � x C

�

3
t;

(7.5)
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which confirms our intuition that the �3 characteristic � impinges on the shock curve s.t/�

�t only after we look at the next order term in t and x, and also that the �2 and �1 character-
istics � and  are transversal to the shock. Note that the two characteristic surfaces of weak
singularities are nothing but the images under these slow flows of the point-shock

s2.t/ D �.0; t/ �
2�

3
t; s1.t/ D  .0; t/ �

�

3
t:

The transversality of characteristic families mentioned above plays a crucial role in our
analysis: it may be combined with the fact that we stay away from the vacuum state in
order to interchange a space derivative with a time derivative in terms which are composed
with � or  . For example, it allows us to heuristically replace the statements ŒŒz�� � �t3=2

and ŒŒk�� � t3=2 from (7.4), with asymptotic descriptions z.�; t/ � �.� � s1.t//
3=2 and

k.�; t/� .� � s2.t//
3=2 asymptotically as � ! s1.t/

C and � ! s2.t/
C, respectively. Thus,

the jump relations (7.4) and transversality imply that the fields z and k form C 1;1=2 cusps at
s1 and s2, when approaching from the right.

Besides determining the location of the weak singularities, the flows �; �;  also
paint a detailed picture as to how information is carried from the ¹t D 0º initial data surface,
respectively how information about the jumps at the shock are propagated through the fluid
in spacetime. A schematic description is provided by Figure 6 below.

Figure 6

The three distinct wave families �, �, and  are represented in red, blue, and respectively green, for various initial
labels. The most interesting such labels are marked with black dots: these do not lie on the time-slice ¹t D 0º, but
instead they lie on the shock curve s at various values of time; at these points the values of k� and z� are
computed according to (7.4). To leading order, the entropy k is propagated off the shock curve along the �2

characteristics �, while the subdominant Riemann variable z is also propagated off the shock curve s, but along
the �1 characteristics  . The �3 characteristics � initiated at ¹t D 0º, represented in red, impinge on the shock
curve from the left side, determining w in terms of w0 on both sides of the shock.

Fifth, we note that according to (4.9d) and (4.12), the fluid velocity �2 and its associ-
ated characteristic � are the natural ones for carrying information about the radial velocity a
and the specific entropy$ . In particular, since � is transversal to s, we are able to use (4.12)
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in order to show that the specific vorticity is continuous across the shock curve. As such,
the relation (4.11) implies that it is @�a and not a which has a jump discontinuity at s, and,
moreover, to leading order we have

ŒŒ@�a��.t/ � ŒŒw��.t/ � 2b
3
2 t

1
2 : (7.6)

Sixth, concerning the characterization of the higher order singularities across the
curves s1 and s2, the intuition regarding the precise regularity of the fields .w; z; k; a/ stems
from the jump relations (7.3), (7.4), (7.6), a detailed description of the Lagrangian flows �
and similar to (7.5), and the structure of the forcing terms in (4.9) and (4.12). For instance,
we have already mentioned in the paragraph below (7.5) that the transversality of � and  to
s, along with the jump relations (7.4) allow us to precisely compute the regularity of z and k
approaching s from the left. This matter is, however, more subtle near s1 and s2. To see this,
we may inspect Figure 6 and note that an Eulerian point .�; t/ with 0 < � � s2.t/ � 1 is
traced backwards in time along the blue characteristics � to a point which lies on the shock
curve at some time T.�; t/ � � � s2.t/ � 1 (shock-intersection times are defined precisely
in [1, Definitions 5.15 and 5.16]). Thus, singular information about the derivatives of the jumps
of k at a time T.�; t/ � t is carried via the � characteristics to the point .�; t/, resulting in
infinite terms as � ! s2.t/

C.
An additional difficulty in analyzing the higher-order singularities is that, if we

naively consider the evolution equations for @�w or @�z, cf. (4.9a) and respectively (4.9b),
we note the emergence of the forcing term 1

24
.w � z/2@��k, resulting in what seems to be a

derivative loss. In order to overcome this issue, we introduce the good unknowns

qw
WD @�w �

1

4
c@�k; qz

WD @�z C
1

4
c@�k;

which satisfy the evolution equations

.@t C �3@� /q
w

C

�
@��3 C

8

3
a

�
qw

D �
8

3
@�aw C

�
4

3
ac C

1

6
c@��2

�
@�k; (7.7a)

.@t C �1@� /q
z

C

�
@��1 C

8

3
a

�
qz

D �
8

3
@�az �

�
4

3
ac C

1

6
c@��2

�
@�k: (7.7b)

The remarkable feature of the system (7.7) is that the second derivatives of k do not appear in
the equations, allowing us to close estimates. The unknowns qw and qz are useful because
they involve only the first derivative of the entropy, @�k, and this term makes a C 1

2 cusp
along the curve s2. On the other hand, the natural flows in the system (7.7) are � and  ,
respectively, which are transversal to the flow � along which the singularities of k are carried
through the flow. This geometric structure of (7.7) and of the good unknowns qw and qz

analytically result in a one-derivative regularization effect, which is not apparent if we were
to inspect (4.9)–(4.12) directly. Another outcome of this derivative gain is that qw C qz D

@�z C @�w D
2
3
@�u� is smoother than the naive expectation C 1

2 because the @�k terms
cancel. This translates into at least C 2 regularity for the angular velocity u� along the curve
s2; in contrast, the entropy S , the density � and the radial velocity ur are precisely C 1;1=2

across s2, which justifies the name weak contact singularity.
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In closing, we note that making the six-step heuristic outlined in this section rigorous
requires a good functional framework and a number of analytical tricks for the analysis of
Lagrangian flows. In broad terms, we proceed as follows. We build an iteration scheme in
which we start with a C 2 smooth shock curve s with js.t/ � �t j . t2, use it to construct a
Burgers solution wB adapted to this particular shock curve (as described in Step 2), and then
use a contraction mapping principle to build a solution .w; z; k; a/ of the azimuthal Euler
equations (4.9)–(4.12) which has jump discontinuities across s that satisfy the algebraic
system (4.16a)–(4.16b) resulting from the Rankine–Hugoniot jump conditions, and such that
the regularity of the solution is consistent with the fact that the solution emanates from aC 1=3

preshock. More precisely, there exists a sufficiently small " such that the solution lies in the
functional space

X" D
®
.w; z; k; a/ 2 C 1

�;t .D"/ W .w; z; k; a/jtD0 D .w0; 0; 0; a0/;ˇ̌̌̌ˇ̌
.w � wB; z; k; a/

ˇ̌̌̌ˇ̌
"

� 1
¯

(7.8)

where the norm jjj.v; z; k; a/jjj" is defined byˇ̌̌̌ˇ̌
.v; z; k; a/

ˇ̌̌̌ˇ̌
"

D sup
.�;t/2D"

max
®
m1t

�1
ˇ̌
v.�; t/

ˇ̌
;m2

�
b3t3 C

�
� � s.t/

�2� 1
6
ˇ̌
@�v.�; t/

ˇ̌
;

m3t
� 3

2

ˇ̌
z.�; t/

ˇ̌
;m3t

� 1
2

ˇ̌
@�z.�; t/

ˇ̌
;m4t

� 3
2

ˇ̌
k.�; t/

ˇ̌
;

m4t
� 1

2

ˇ̌
@�k.�; t/

ˇ̌
;m5

ˇ̌
a.�; t/

ˇ̌
;m5

ˇ̌
@�a.�; t/

ˇ̌¯
where mi are sufficiently large constants. In particular, we note that the space X" encodes
precisely how close w is to the Burgers solution wB.

So far, we have thus defined a map s 7! .w; z; k; a/, but we are missing one key
ingredient: the shock curve was just a given curve with js.t/ � �t j . t2, it did not satisfy
the evolution equation (4.16c) imposed by the Rankine–Hugoniot jump conditions. This,
however, gives us a natural way of updating the shock curve: we solve for Qs the ODE (4.16c)
with data Qs.0/ D 0 and fields .wC; w�; z�; k�/ given by the restrictions of .w; z; k; a/ on
the old curve s. Then, we prove that Qs is C 2 smooth and satisfies j Qs.t/ � �t j . t2. Lastly,
we prove that above described iteration s 7! Qs is in fact a contraction in C 2, resulting in a
unique fixed point which is the desired shock curve. Associated to this curve, we also prove
that there is a unique regular azimuthal shock solution .w; z; k; a/ 2 X", as soon as " > 0 is
sufficiently small. This completes the proof of Theorem 5.1.
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Selected topics in
mean field games
Pierre Cardaliaguet and François Delarue

Abstract

Mean field game theory was initiated a little more than 15 years ago with the aim of sim-
plifying the search for Nash equilibria in games with a large number of weakly interacting
players. Since then, a lot has been done. Numerous equilibrium existence results have
been obtained, using different characterizations and in various contexts. The analysis of
the master equation, which describes the evolution of the value of the game, has also seen
significant progress, which has, for example, allowed establishing in certain cases the con-
vergence of games with a finite number of players. However, mean field games remain of
a complex nature. For instance, the typical lack of uniqueness of solutions raises selection
issues that are still poorly understood. The objective of the note is to present some of the
latest advances, as well as some avenues to address further challenging questions.
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The theory of mean field games (MFG) aims at providing an asymptotic description
of differential games with a large number of interacting players. The number of applications
of the theory is huge, ranging from macroeconomics to crowd motions, and from finance
to power grid models. In all these models, each player controls his/her own dynamical state
which evolves in time according to a deterministic or stochastic differential (or difference
if the state space is at most countable) equation. The individual goal is to minimize some
cost depending on his/her own control but also on the behavior of the whole population of
agents, which is described through the empirical distribution of their states. In this setting, the
central concept is the notion of Nash equilibria, which explains how agents play in an optimal
way by taking into account the others’ strategies. The MFG theory is precisely intended to
simplify the search for these Nash equilibria. In this respect, the key idea is to postulate that,
asymptotically, the single theoretical (and not empirical) statistical distribution of the states
is sufficient to compute the individual goal of each player.

The MFG theory was introduced and largely developed by Lasry and Lions through
a series of papers around 2005 and during the famous lectures of Lions at the Collège de
France [85–88]. At about the same time, Caines, Malhamé, and Huang discussed similar
models under the terminology of “Nash certainty equivalence principle” [73,74]. The MFG
theory is also reminiscent of the so-called heterogenous agent models developed in eco-
nomics at the end of the 1990s byAiyagari [7] and byKrusell and Smith [79] or, more recently,
by Lucas and Moll [91]. One of the main achievements of the MFG theory—though not dis-
cussed here—is a better formulation and understanding of these models (see, for instance,
Achdou et al. [1]). After a decade and a half of research, the theory has answered—at least
partially—several important questions and has developed a number of mathematical tech-
niques and tools for this purpose. A large part of the material can be found in the monographs
or in the surveys [6,15,25,35,36,71].

From a mathematical perspective, the MFG theory lies at the intersection of proba-
bility and partial differential equations (PDEs). The connection between games with finitely
many players and MFGs is addressed by means of statistical averaging arguments, which are
made possible by the symmetric structure of the interactions. This approach is, of course,
reminiscent of the very typical issues and techniques underpinning the standard mean field
theory and the related propagation of chaos properties for large weakly interacting parti-
cle systems (see [76,92] for the earliest papers in the field and [101] for a review). However,
unlike the standard mean field theory, in which the interacting particles obey a given dynam-
ics, the dynamics of the agents is not given a priori in the MFG theory but rather is obtained
after an optimization procedure. This seemingly innocuous difference dramatically increases
the level of complexity of the problem, as it introduces several nonlinearities in the equa-
tions describing the mean field models. These nonlinearities manifest themselves in several
ways, depending on the formulation used to characterize the equilibria and, implicitly, on
the approach chosen to manage the optimization step in the definition of these equilibria.
In this respect, let us say that both probabilistic and PDE arguments have been successfully
developed. In short, the probabilistic approach aims at following the dynamics of a reference
player in the population, while the PDE one aims at following the dynamics of the statistical
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state of the whole population. The key feature is that both approaches lead to the study of a
form of forward–backward system that couples either two stochastic differential equations or
two PDEs: the probabilistic system is usually referred to as a forward–backward McKean–
Vlasov system and the PDE system is usually known as the “MFG system.” Regardless of the
system, the strong coupling between the forward and backward components therein raises
many issues. Obviously, one knows in general how to pass from one approach to the other
and, generally speaking, PDE tools are useful to obtain better regularity of the solutions. Very
importantly, these two systems can be regarded as the characteristics of a common infinite-
dimensional PDE of hyperbolic type set on the space of probability measures. It is called the
“master equation.” This master equation has become a challenging object in the field and has
attracted much attention in analysis, probability, and calculus of variation. At present, it is
only well-understood in certain cases where the solutions are known to be regular. A theory
allowing less regular solutions and thus covering a wider scope is totally lacking. Needless
to say, this is a very exciting area of research.

In addition to the analysis of mean field games themselves, the study of the conver-
gence problem, namely the convergence of games with a finite number of players to a mean
field game, is another challenge, which has also required the development of appropriate
arguments. As already mentioned, this asks for a nontrivial adaptation of the existing results
on the convergence of weakly interacting particle systems. Among others, a key idea is to
test classical solutions of the master equation onto the equilibria of the games with finitely
many players. The main contributions in this direction are presented in the notes, but many
questions remain open. To wit, solutions to mean field games are typically nonunique and
identifying those that are selected by taking the limit in large games is a fascinating, but
really difficult question.

Before presenting the rest of the contents of these notes in amore exhaustive way, we
insist on the fact that theMFG theory provides a concept that has proven to be effective in the
analysis of some typical examples of game theory. However, the same concept can be applied
to many other cases. We give an overview of some of them at the very end of the notes. For
example, mean field games with common noise is an extension of the original concept that
has stimulated many recent works. In short, this corresponds to the case where the state of
the population itself is random. Understanding the precise impact of noise on equilibria is
another challenge in the field. To emphasize the importance of this research direction, we
have therefore decided to write these notes by systematically including common noise in the
models we present. We hope that this will help the reader to grasp the essence of it.

Contents. After a short presentation of the PDE formulation of MFGs in Section 1, we
concentrate ourselves on the following three fundamental aspects of the theory:

1) The analysis of the convergence problem, which, as we have said, investigates
how Nash equilibria in differential games with finitely many players converge
to MFG equilibria. This point is essential to justify the MFG models and is
one of the main mathematical achievement of the MFG theory. We provide an
overview in Section 2, which includes a presentation of the master equation.
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2) The long time behavior of theMFG equilibria. Since time-dependentmodels are
difficult to handle and to approximate numerically, the analysis of “stationary
models” and their robustness is essential in both theory and application. For
instance, economists often concentrate on these stationary solutions.We present
the main results in Section 3.

3) The regularizing aspect of the common noise in MFG. Since the MFG equilib-
ria are in general not unique, it is crucial to understand the extent to which a
common noise can force uniqueness. This question is addressed in Section 4.

We complete the notes by providing in the final Section 5 a general overview of other topics
from MFG theory that are not discussed in the first four sections. We give some references
that may be useful for the reader and we provide some open problems.

Notation. We denote by P2.Rd / the set of Borel probability measures on Rd with a
finite second order moment, endowed with the Wasserstein distance (see, for instance, [9]).
If x 2 Rd , we denote by ıx the Dirac mass at x. For X a random variable, we denote by
L.X/ the law of X .

1. The MFG equilibria

In this section we introduce the main problems of the MFG theory. The simplest for
this is to start with a game with a large number of players and then to pass (at least formally)
to the limit as the number of players tends to infinity.

1.1. The N -player problem
The N -player game. Let N 2 N, with N � 1 being the (large) number of players. Player i

(where i 2 ¹1; : : : ; N º) controls her own state X i
t , which is an element of Rd and evolves in

time according to the stochastic differential equation (SDE)

dX i
t D ˛i

t C
p

2dB i
t C

p
2�dWt ;

for prescribed initial conditions .X i
0/iD1;:::;N . Here the processes ..B i

t /t�0/iD1;:::;N and
.Wt /t�0 are independent d -dimensional Brownian motions. The noise .B i

t /t , which affects
only the dynamics of player i , is called the idiosyncratic (or the individual) noise. The Brow-
nianmotion .Wt /t , on the contrary, impacts all the dynamics and is called the common noise;
the nonnegative real � denotes (up to the square root) the intensity of the effective common
noise that is felt by all the players. The initial conditions .X i

0/i�1 are independent and iden-
tically distributed (i.i.d.) random variables with common distribution Qm0 2 P2.Rd /. We
assume that the random variables .X i

0/iD1;:::;N and the Brownian motions ..B i
t /t /iD1;:::;N

and W are independent. Player i chooses a bounded control .˛i
t /t that takes values in Rd

and that is adapted to the filtration .Ft D �¹X
j
0 ; B

j
s ; Ws; s � t; j D 1; : : : ; N º/.
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The cost of player i is given by

JN
i

�
˛i ; .˛j /j ¤i

�
D E

"Z T

0

�
1

2

ˇ̌
˛i

t

ˇ̌2
C F.X i

t ; m
N;i
X t

/

�
dt C G.X i

T ; m
N;i
XT

/

#
;

where X t D .X1
t ; : : : ; XN

t / and m
N;i
X t

D
1

N �1

P
j D1;:::;N;j 6Di ı

X
j
t
. To fix the ideas, we work

here with a finite-horizon problem (where T > 0 is the horizon) and we assume the maps
F W Rd � P2.Rd / ! R and G W Rd � P2.Rd / ! R to be continuous and bounded. Here
we make the assumption that the running cost of player i depends only on her own control,
her own position, and on the distribution of the other players’ positions, while the terminal
cost depends only on her position and on the distribution of the other players’ positions at
terminal time. The important point is the symmetry of the problem: for a player, the other
players play exactly the same role. The specific form of the cost and dynamics is made here
for simplicity.

Nash equilibria. In that setting, a natural notion of equilibrium is the the notion of Nash
equilibrium. We say that a family . N̨1; : : : ; N̨ N / of (time-dependent stochastic) controls is a
Nash equilibrium of the N -player game if, for any i 2 ¹1; : : : ; N º and any control ˛i ,

JN
i

�
N̨

i ; . N̨
j /j ¤i

�
� JN

i

�
˛i ; . N̨

j /j ¤i

�
:

We are intentionally fuzzy in the definition of what a control is. There are actually many
possibilities and we feel better to restrict ourselves to two of them. The controls can be
either (i) open-loop, which means that they are regarded as adapted functions of the initial
conditions .X i

0/i and of the noises ..B i
t /t /i andW , or (ii) closed-loop controls, in which case

they are considered as adapted functions of the trajectories ..X i /t /i (when the closed-loop
structure is Markov, the dependence just occurs through the current states of the players).
The main difference between the two notions is as follows: when one player deviates, the
function underpinning the definition is kept fixed. As such, the controls played by the other
players remain the same in the open-loop case while they change in the closed-loop case.
In the rest of the note, we always mean Markov closed-loop control when speaking about a
closed-loop control.

The Nash system. A key fact with games involving closed-loop controls is that they have
a PDE interpretation, in the form of a system of equations for the equilibrium value of the
game. In our setting, one can show that if vN W Œ0;T � � .Rd /N ! RN is the classical solution
to the following backward parabolic system (called here the Nash system)8̂̂̂̂
ˆ̂̂̂<̂
ˆ̂̂̂̂̂̂
:

�@t v
N;i
t �

NX
j D1

�xj
v

N;i
t � �

NX
j;kD1

Tr.D2
xj xk

v
N;i
t / C

1

2

ˇ̌
Dxi

v
N;i
t

ˇ̌2
C

X
j ¤i

Dxi
v

N;i
t � Dxj

v
N;j
t D F.xi ; mN;i

x / in .0; T / � .Rd /N ; i 2 ¹1; : : : ; N º;

v
N;i
T .x/ D G.xi ; mN;i

x / in .Rd /N ; i 2 ¹1; : : : ; N º;

(1.1)
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then . N̨ i .t; x/ WD �Dxi
v

N;i
t .x//iD1;:::;N is a Nash equilibrium of the N -player game in

closed-loop form. Here, the notation x stands for an N -tuple .x1; : : : ; xN /, in which case xi

is the entry number i in x. The existence and uniqueness of the solution to the above system,
called the Nash system, is classical under suitable assumptions on F and G and discussed,
for instance, in [84]. Under similar assumptions on F and G, this equilibrium can be shown
to be unique (within the class of bounded Markov closed-loop controls); see, for instance,
[36, Chapter 6].

The main question raised by MFG theory is the characterization of the limit, as N

tends to infinity, of the Nash equilibria of the game (or of the Nash system) and the analysis
of the resulting limit.

1.2. The MFG equilibria
In this part we derive from the N -player problem several (equivalent) formulations

of an MFG equilibrium. The derivation is formal at this stage, but will be justified more
rigorously in Section 2.

MFG equilibria without common noise (� D 0). The are several ways to guess and write
the limit of the Nash equilibrium or of the Nash system as N tends to infinity. We start with
the problem without common noise, which is easier to grasp. As players are symmetric, one
can expect, using classical ideas of mean field theory [101], that the in-equilibrium trajec-
tories ..X

N;i

t /t /i associated with the Nash equilibrium identified right above become more
and more decorrelated as N increases and eventually become asymptotically independent.
In this case the empirical measure m

N;i

X
N
t

should become asymptotically deterministic and,

as N gets larger and larger, the impact of the deviation of a player over m
N;i

X
N
t

should be neg-

ligible. Therefore players can solve their own optimization problem as if m
N;i

X
N
t

were given
and independent of i . Implementing this idea, one finds the notion of MFG equilibrium in
its probabilistic formulation:

Probabilistic formulation of the MFG equilibrium (� D 0). One searches for a pair
.m; ˛/, where m D .mt /t 2 C 0.Œ0; T �; P2.Rd //, and ˛ D .˛t /t is a control such that

(i) ˛ is optimal for the control problem

inf
ˇ

E

"Z T

0

�
1

2
jˇt j

2
C F.X

ˇ
t ; mt /

�
dt C G.X

ˇ
T ; mT /

#
; (1.2)

where the infimum is taken over the controls ˇ D .ˇt /t (that are .X1
0 ; .B1

t /t /-
progressively measurable) and where Xˇ is the solution to

dX
ˇ
t D ˇt dt C

p
2dB1

t ; X
ˇ
0 D X1

0 : (1.3)

(ii) For any t 2 Œ0; T �, the law of X˛
t is mt .

Other probabilistic formulations of MFG equilibria are possible: Carmona and
Delarue discuss in [34] a formulation involving the stochastic maximum principle. Mainly,
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the optimizers in item (i) are described by means of a forward–backward stochastic differen-
tial equation depending on the input .mt /t . Under the fixed point condition (ii), this input is
identified with the marginal law of the solution of the forward equation, which gives rise to a
so-called forward–backward system of McKean–Vlasov type. While Pontryagin’s principle
provides the dynamics of an equilibrium feedback along a corresponding equilibrium tra-
jectory, an alternative approach is to provide a representation of the equilibrium value. This
approach is usually known as the weak formulation as it may rely on a convenient change of
noise in the dynamics. In short, it provides another form of the forward–backward system of
McKean–Vlasov type, see Carmona and Lacker [39] and [35, Chapter 3]. The latter is useful
for proving existence results. In comparison, the stochastic Pontryagin principle provides, in
general, only sufficient conditions satisfied by an arbitrary equilibrium.

PDE formulation of the MFG equilibria: the MFG system (� D 0). Another character-
ization of the MFG equilibria goes through a forward–backward system of PDEs known as
the MFG system: the unknown are .u; m/ where u corresponds to the value function asso-
ciated with the optimal control problem described in the probabilistic formulation while m

solves the Kolmogorov equation satisfied by the marginal law of the equilibrium. It reads
therefore 8̂̂̂̂

<̂
ˆ̂̂:

�@t ut .x/ � �ut .x/ C
1

2

ˇ̌
Dut .x/

ˇ̌2
D F.x; mt / in .0; T / � Rd ;

@t mt .x/ � �mt .x/ � div.mt .x/Dut .x// D 0 in .0; T / � Rd ;

m0.x/ D Qm0; uT .x/ D G.x; mT / in Rd :

(1.4)

This system is unusual: the first equation (a Hamilton–Jacobi equation) is backward in time,
while the Kolmogorov equation is forward in time. The main issue is that both equations are
strongly coupled, in the sense that each of the two unknowns shows up in the other equation.
Since the two equations are set in opposite time directions, this creates a conflict which
makes the spice of the analysis. The existence of a solution has been proved by Lasry and
Lions [85–87] under suitable assumptions on the coupling functions F and G (regularity and
growth conditions). In general, there is no uniqueness: this is a typical feature of equilibria in
game theory (in contrast, uniqueness holds in the finite game because of the smoothing effect
of the Laplacians in the related Nash system (1.1); we will come back to this observation in
Section 4). However, the solution of (1.4) is unique if the following monotonicity condition,
introduced in [85–87], is satisfied:Z

Rd

�
F.x; m/ � F.x; m0/

�
.m � m0/.dx/ � 0;Z

Rd

�
G.x; m/ � G.x; m0/

�
.m � m0/.dx/ � 0:

(1.5)

There is by now a huge literature on the MFG system, including different types of coupling
functions, different types of boundary conditions, etc. We briefly present some aspects of
this literature in Section 5.1.
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The MFG equilibria with common noise (� > 0). In the presence of common noise, the
heuristic analysis of the limit problem is more subtle. Indeed, even if the players do not take
into account the idiosyncratic noises of the other players, their dynamics are perturbed by
the common noise .Wt /t . Therefore, the limit .mt /t (if it exists) of the marginal empirical
measure .m

N;i

X
N
t

/t associatedwith the equilibrium trajectories ..X
N;j

t /t /j 6Di becomes random

and is typically expected to be adapted to the Brownian motion .Wt /t (very much as before,
this limit is expected to be independent of i ).

Probabilistic formulation of the MFG equilibrium with common noise (� > 0). One
searches for a pair .m; ˛/, where the stochastic process .mt /t is adapted to .Wt /t and takes
values in C 0.Œ0; T �; P2.Rd // and ˛ D .˛t /t is a control such that

(i) ˛ is optimal for the control problem

inf
ˇ

E

"Z T

0

�
1

2
jˇt j

2
C F.X

ˇ
t ; mt /

�
dt C G.X

ˇ
T ; mT /

#
; (1.6)

where the infimum is taken over the controls ˇ D .ˇt /t (that are .X1
0 ;

.B1
t ; Wt /t /-progressively measurable) and where Xˇ is the solution to

dX
ˇ
t D ˇt dt C

p
2dB1

t C
p

2�Wt ; X
ˇ
0 D X1

0 : (1.7)

(ii) For any t 2 Œ0; T �, the (conditional) law of X˛
t given .Ws/s is mt .

In general, it is difficult to prove the existence of MFG equilibria because the fixed-
point condition (ii) is defined, in the presence of common noise, on a very wide space. To
overcome this issue, a possible path is to discretize the common noise into a noise with
finitely many outcomes (see [38]). In that case, it is much easier to adapt the arguments used
when � D 0. However, much may be lost when passing to the limit over the discretization
of the common noise. Very similar to weak solutions to stochastic differential equations,
equilibria that are obtained in this way may no longer be adapted with respect to the original
common noise .Wt /t . This requires a relevant notion of weak MFG equilibria, in which the
flow of measures .mt /t is adapted to a larger filtration than that generated by .Wt /t . When
the monotonicity property (1.5) is in force, it can be proved that these weak solutions are in
fact strong, i.e., they are adapted with respect to .Wt /t .

PDE formulation of the MFG equilibria with common noise: the stochastic MFG
system (� > 0). In the probabilistic formulation of the MFG equilibria with a common
noise, the optimal control problem (1.6)–(1.7) (which is solved by a reference player in the
population) is driven by random coefficients (because .mt /t is random). The associated
value function is no longer deterministic. Following Peng [96], it should be regarded as the
solution of a backward stochastic Hamilton–Jacobi equation. Moreover, the Kolmogorov
equation satisfied by the random flow .mt /t is stochastic. The resulting MFG system there-
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fore reads:8̂̂̂̂
ˆ̂̂̂<̂
ˆ̂̂̂̂̂̂
:

dut D

�
�.1 C �/�ut C

1

2
jDut j

2
� F.x; mt / � 2� div.vt /

�
dt

C vt �
p

2�dWt in .0; T / � Rd ;

dmt D
�
.1 C �/�mt C div.mt Dut /

�
dt � div.mt

p
2�dWt / in .0; T / � Rd ;

m0.x/ D Qm0; uT .x/ D G.x; mT / in Rd :

(1.8)

Note that now the unknown is the triplet .u; v; m/. As explained in Peng [96], the role of the
random field v is to ensure the solution u to the backward Hamilton–Jacobi equation to be
adapted to the common noise .Wt /t . The existence of a solution for (1.8) is subtle and has
been achieved, under suitable conditions on F and G including monotonicity, in [25] (see
also [36]).

2. The master equation and the convergence of the Nash

system

In this part we address the rigorous derivation of the MFG equilibria and the con-
vergence of the Nash system. This analysis requires the introduction of a new equation,
the master equation, which is a nonlinear equation stated on the infinite-dimensional space
P2.Rd /. In order to restrict the technicality of the exposition, we will often be fuzzy in the
assumption and in the statement of the results and refer to [25,36], that we follow closely, for
details.

2.1. Derivatives of maps defined on the space of probability measures
There are several notions of derivatives for a map U W P2.Rd / ! R: we refer, for

instance, to [8,9,25,35] and the references therein for several possible notions together with
an overview of the connections between all of them. Here we mostly discuss an idea of Lions
which consists in lifting the map U to a suitable space of random variables.

Let us consider the space L2 WD L2..�; F ; P /; Rd / of square-integrable random
variables on Rd , with � being a Polish space, F its Borel � -algebra, and P an atomless
probability measure. The space L2 is endowed with the usual Hilbert scalar product. It is
known that, for any m 2 P2.Rd /, there exists a random variable X with law m.

Given a map U W P2.Rd / ! R, we lift U to L2 by setting

QU .X/ D U
�
L.X/

�
8X 2 L2:

Definition 2.1 (The L-derivative). We say that U is L-differentiable at m 2 P2.Rd / if there
exists a random variable X 2 L2 with law m such that QU is Fréchet differentiable at X (we
denote by r QU .X/ its gradient).

Theorem 2.1 (Structure of the L-derivative). Assume that U is L-differentiable at
m 2 P2.Rd /. Then there exists a map DmU.m; �/ W Rd ! Rd which is Borel measurable
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and such that
r QU .X/ D DmU.m; X/

for any random variable X with L.X/ D m. We call the map DmU.m; �/ the L-derivative
of U at m.

The first version of this result goes back to Lions [88]. The version given here is due
to Gangbo and Tudorascu [65], who also explain the connection with the notion of subdiffer-
ential introduced in [9].

Finite dimensional projection. A key principle to establish the link between the Nash
system and the master equation is to associate with any function defined on P2.Rd / a finite
dimensional projection, whose definition is as follows.

Given a continuous map U W P2.Rd / ! R and a nonzero integer N , we define the
projection U N of U as the map U N W .Rd /N ! R defined by

U N .x1; : : : ; xN / D U.mN
x /; where mN

x WD
1

N

NX
iD1

ıxi
; x D .x1; : : : ; xN / 2 .Rd /N :

The following statement clarifies the meaning of the derivative Dm:

Proposition 2.2. Assume that U is L-differentiable with a Lipschitz-continuous derivative.
Then U N is of class C 1 and

Dxi
U N .x1; : : : ; xN / D

1

N
DmU.mN

x ; xi /;

for .x1; : : : ; xN / 2 .Rd /N .

One can, of course, introduce higher-order derivatives of a map U W P2.Rd / ! R

in a similar way and extend Proposition 2.2 to higher-order derivatives, see [35, Chapter 5].

Itô’s formula along a flow of conditional measures. The following Itô’s formula, needed
in the proofs below and of independent interest, is a generalization of Itô rule for flows of
measures and functions defined on the space of measures. Let .Xt /t�0 be an Itô process of
the form

dXt D bt dt C �t dBt C �0
t dWt ; t � 0; (2.1)

with a given (possibly random) initial condition X0, where .Bt /t and .Wt /t are two
d -dimensional Brownian motions, X0, .Bt /t , and .Wt /t being independent. Above, .bt /t ,
.�t /t , and .�0

t /t are progressively-measurable processes with respect to the filtration gener-
ated by X0, .Bt /t , and .Wt /t , with values in (respectively) Rd , Rd�d , and Rd�d .
For simplicity, we assume that that the probability space is given in a product form
.�0 � �1;F0 ˝ F1;P0 ˝ P1/, where .�0;F0;P0/ supports W , while .�1;F1;P1/ supports
.X0;B/. We denote by E0 the expectation with respect to P 0 and by E1 the expectation with
respect to P 1. We assume that

E

"
jX0j

2
C

Z T

0

�
jbt j

2
C j�t j

4
C
ˇ̌
�0

t

ˇ̌4�
dt

#
< C1;

where E D E0E1.
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The following result is taken from [36] (see also [20,45]).

Theorem 2.3. Let .Xt /t be as in (2.1) and, for any t � 0, let mt be the conditional law of
Xt given .Ws/s . Then, for U W P2.Rd / ! R a sufficiently smooth mapping on P2.Rd /,

U.mt / D U.m0/ C

Z t

0

E1
�
DmU.ms; Xs/ � bsds

�
C

Z t

0

E1
�
.�0/�DmU.ms; Xs/

�
� dWs

C
1

2

Z t

0

E1
�
Tr.DyDmU.ms; Xs/

�
�s��

s C �0
s .�0

s /�
��

ds

C
1

2

Z t

0

E1 QE1
�
Tr
�
D2

mU.ms; Xs; QXs/�0
s . Q�0

s /�
��

ds;

where QXs and Q�0
s are independent copies of Xs and �0

s defined on �0 � Q�1, for a copy Q�1

of �1 equipped with the expectation QE1.

Briefly, DyDmU is the y-derivative of the function y 7! DmU.m;y/ for a fixed m.
Similarly, D2

m is the m-derivative of the function m 7! DmU.m; y/ for a fixed y, which
implies that D2

mU can be written in the form .m; y; y0/ 7! D2
mU.m; y; y0/. Under the reg-

ularity assumptions mentioned in the statement, all these derivatives exist implicitly and
are jointly continuous. They also satisfy appropriate growth conditions that permit giving a
meaning to the various expectations appearing in the expansion. The symbol Tr is for the
trace.

Potential games. We feel it useful to provide another application of the derivative Dm.
There is indeed one special class of mean field games, for which the corresponding MFG
system coincides with the first-order condition (or equivalently, with the Pontryagin system)
of a control problem. Such games are called potential games, and the control problem lying
above a potential game is usually called a mean field control problem. The connection
between both can be thus formulated in this way: The minimizers to the mean field control
problem are equilibria of the corresponding potential game. This was noted in the earlier
articles by Lasry and Lions [85–87], see also [88].

The potential structure turns out to be very useful in practice for the simple reason
that it might be easier to work with minimizers than with Nash equilibria. We provide a
longer discussion in Section 4 about possible applications to the selection of equilibria when
there is no uniqueness.

In the simple framework of (1.2)–(1.4), the potential game typically requires that
the cost coefficients F and G derive from a potential, namely

@xF.x; m/ D DmF .m; x/; @xG.x; m/ D DmG .m; x/; (2.2)

for two smooth functionals F and G on P2.Rd /. With the trajectory .X
ˇ
t /t as in (1.3), we

can associate the cost

J
�
.ˇt /0�t�T

�
D

Z T

0

�
F
�
L.Xt /

�
C

1

2
E
�
jˇt j

2
��

dt C G
�
L.XT /

�
:

The following statement may be found under more precise assumptions in
[35, Chapter 6]:
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Proposition 2.4. Under suitable regularity properties on F and G , and for given ini-
tial distribution Qm0 2 P2.Rd / for X0 in (1.3), the optimal trajectories of J with respect
to .X0; .Bt /t /-progressively measurable controls .ˇt /t are solutions of the mean field
game (1.2)–(1.3).

When .ˇt /t is identified with a feedback function ˇ W Œ0; T � � Rd ! Rd , equa-
tion (1.3) becomes a stochastic differential equation whose marginal law solves the Kol-
mogorov equation

@t mt � �mt C div.ˇt mt / D 0;

with m0 D Qm0. It is then possible to write J as

J
�
.ˇt /0�t�T

�
D

Z T

0

�
F .mt / C

1

2

Z
Rd

ˇ̌
ˇt .x/

ˇ̌2
mt .dx/

�
dt C G .mT /;

which is more in line with the formulation (1.4) of the mean field game. Although the result-
ing class of controls is obviously smaller when restricted to feedback controls, the infimum
of J is the same, see Lacker [82].

2.2. The master equation
The master equation was first derived by Lions in [88] as the formal limit of the Nash

system (1.1). It is a PDE with unknown U W Œ0; T � � Rd � P2.Rd / ! R (with U writing
.t; x; m/ 7! U.t; x; m/) and reads8̂̂̂̂

ˆ̂̂̂̂̂̂
ˆ̂̂̂̂̂̂
ˆ̂̂<̂
ˆ̂̂̂̂̂̂
ˆ̂̂̂̂̂̂
ˆ̂̂̂̂̂:

(i) �@t Ut � .1 C �/�xUt

C
1

2
jDxUt j

2
C

Z
Rd

DmUt .t; x; m; y/ � DxUt .t; y; m/m.dy/

� .1 C �/

Z
Rd

divy.DmUt .t; x; m; y//m.dy/

� 2�

Z
Rd

divx.DmUt .t; x; m; y//m.dy/

� �

Z
Rd �Rd

Try.D2
mmUt .t; x; m; y; y0//m.dy/m.dy0/ D F.x; m/

in .0; T / � Rd
� P2.Rd /;

(ii) UT .x; m/ D G.x; m/ in Rd
� P2.Rd /:

(2.3)

This is a kind of hyperbolic equation stated on the infinite-dimensional space P2.Rd /.
Indeed, when F and G are monotone (recall (1.5)), the solution can be (at least formally)
built by the method of characteristics. To ease the presentation, let us explain this when there
is no common noise (� D 0). Let .t0; m0/ 2 Œ0; T / � P2.Rd / and .ut ; mt /t be the unique
solution of theMFG system (1.4) stated on .t0;T / � Rd with initial conditionmt0 D Qm0. Let
us set Ut0.x; m0/ D ut0.x/. Assuming that U is sufficiently smooth, one can easily check
that U solves (2.3) by expanding it along the path .mt /t (see [25]). The main issue is to
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prove that U is indeed smooth. When there is a common noise (� > 0), similar ideas can be
implemented, using the stochastic MFG system (1.8) instead of the deterministic one.

Let us loosely summarize the main result concerning (2.3) (see [25,36]).

Theorem 2.5. Assume that F and G are smooth enough and are monotone in the sense
of (1.5). Then there exists a unique classical solution to (2.3).

By “a classical solution,” we mean a map U for which all the derivatives in (2.3)
exist, are bounded and globally Lipschitz continuous. This strong notion of solution is needed
below for the convergence results.

It is known that, if one removes themonotonicity condition, then the solution of (2.3)
exists on a short time interval but may develop a discontinuity after a while. Most formal
properties of the master equation have been introduced and discussed by Lions in [88], who
also introduced the so-called Hilbertian approach (lifting the equation to the space of random
variables). The actual proof of the existence of a solution of the master equation is a tedious
verification that the map U , as defined above from the MFG system, actually gives rise to a
classical solution. This required several steps in the literature before the proof was completed:
The first paper in this direction is [20], where the classical solutions to the linear Kolmogorov
equation associated with a standard Fokker–Planck equation are studied; Gangbo and Swiech
[64] address the master equation in short time and without any diffusion term; Chassagneux
et al. [45] obtain the existence and uniqueness for the master equation without common noise;
Cardaliaguet et al. [25] establish the existence and uniqueness of solutions for the master
equation with common noise under the monotonicity condition (see also [36]). Since then,
there have been many works on the subject. We provide some references in Section 5.1.

2.3. Convergence of the Nash system
One key feature of the master equation is that it allows building approximate solu-

tions of the Nash system (1.1) whose regularity is independent of the number of players.

Proposition 2.6. Assume that U is a classical solution of (2.3) and let .uN;i /i2¹1;:::;N º be
its finite-dimensional projections:

u
N;i
t .x1; : : : ; xN / D Ut .xi ; mN;i

x /; where mN;i
x WD

1

N � 1

X
j D1;:::;N Wj 6Di

ıxj
:

Then uN almost solves the Nash system (1.1):8̂̂̂̂
ˆ̂̂̂̂̂̂
<̂
ˆ̂̂̂̂̂̂
ˆ̂̂:

�@t u
N;i
t �

NX
j D1

�xj
u

N;i
t � �

NX
j;kD1

Tr.D2
xj xk

u
N;i
t / C

1

2

ˇ̌
Dxi

u
N;i
t

ˇ̌2
C

X
j ¤i

Dxi
u

N;i
t � Dxj

u
N;j
t D F.xi ; mN;i

x / C r
N;i
t .x/

in .0; T / � .Rd /N ; i 2 ¹1; : : : ; N º;

u
N;i
T .x/ D G.xi ; mN;i

x / in .Rd /N ; i 2 ¹1; : : : ; N º;
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where ˇ̌
r

N;i
t .x/

ˇ̌
�

1

N

 
1 C

1

N

NX
iD1

jxi � xj j

!
:

The proof relies on Proposition 2.2 and on its extension to higher-order derivatives.
Note, however, that the result does not show directly that uN is close to the solution vN

of (1.1) because each uN;i solves (1.1) only up to an error term of size 1=N while the system
counts exactly N equations.

The main convergence result of [25] and [36] is the following:

Theorem 2.7. Let vN be the solution of the Nash system and assume that U is a classical
solution of (2.3) with bounded derivatives. Then there exists a constant C > 0 such that, for
all i 2 ¹1; : : : ; N º and all .t; x/ 2 Œ0; T � � .Rd /N ,

ˇ̌
Ut .xi ; mN;i

x / � v
N;i
t .x/

ˇ̌
�

C

N

 
1 C jxi j

2
C

1

N

NX
j D1

jxj j
2

!1=2

:

Theorem 2.7 provides an obvious comparison between the equilibrium values of
the finite game and of the mean field game. Even though it is not obvious at first sight, the
statement is in fact reminiscent of earlier results on the convergence of classical mean field
particle systems to Fokker–Planck equations. An alternative strategy to the standard coupling
argument for proving propagation of chaos (see [101]) consists indeed in studying the action
of the semigroup generated by the McKean–Vlasov equation onto the marginal empirical
measure of the particle system (see Kolokoltsov [78] and the works of Mouhot, Mischler,
and Wennberg [94]). In comparison, the game setting involves an additional optimization
step, which makes the analysis really difficult. In order to account for this optimization step,
we work instead with forward–backwardMcKean–Vlasov equations, following the approach
developed in [34,36]. We describe the main lines below.

Sketch of the proof of Theorem 2.7. The first step is to provide a probabilistic representa-
tion of the solution vN of the Nash system. This goes through the representation of the
equilibrium paths. To this end, we recall that . N̨ i .t; x/ WD �Dxi

vN;i .t; x//iD1;:::;N is the
Nash equilibrium of the N -player game in closed-loop form. For a given starting point
x D .x1; : : : ; xN / 2 .Rd /N , the equilibrium trajectories X�N

D .X�N;i /i2¹1;:::;N º asso-
ciated to the Nash equilibrium are the solutions to the system8<: dX

�N;i
t D �Dxi

v
N;i
t .X�N

t /dt C
p

2dB i
t C

p
2�dWt ;

X
�N;i
0 D xi :

(2.4)

Adopting a Lagrangian point of view, we may then follow the evolution of the cost and of
the control along the system, which prompts us to let

Y
�N;i
t D v

N;i
t .X�N

t /; Z
�N;i;j
t D Dxj

v
N;i
t .X�N

t /:
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Classical Itô’s formula, combined with the form of the Nash system, leads to the following
expansion:

dY
�N;i
t D �

�
1

2

ˇ̌
Z

�N;i;i
t

ˇ̌2
C F.X

�N;i
t ; m

N;i

X�N
t

/

�
dt C

p
2

NX
j D1

Z
�N;i;j
t � .dB

j
t C

p
�dWt /:

(2.5)
In order to test, as suggested before, the action of the solution U to the master equation
(which is somehow the analogue of the semigroup generated by a McKean–Vlasov equation
but in the nonlinear setting induced by the game structure) on the Nash equilibrium of the
N -player game, we need to perform a similar computation, but for the processes

Y
�N;i
t D uN;i .t; X�N

t /; Z
�N;i;j
t D Dxj

u
N;i
t .X�N

t /; t 2 Œ0; T �;

with .uN;i /i being as in Proposition 2.6. In fact, Proposition 2.6 now permits expanding
.Y

�N;i
t /t . We get

dY
�N;i
t D �

�
1

2

ˇ̌
Z

�N;i;i
t

ˇ̌2
C F.X

�N;i
t ; m

N;i

X�N
t

/ C r
N;i
t .X

�N;i
t /

�
dt

C

NX
j D1

Z
�N;i;j
t � .Z

�N;j;j
t � Z

�N;j;j
t /dt C

p
2

NX
j D1

Z
�N;i;j
t � .dB

j
t C

p
�dWt /:

Importantly, the two processes .Y
�N;i
t /t and .Y

�N;i
t /t satisfy the same boundary conditions

at time T , namely Y
�N;i

T D Y
�N;i
T D g.X

�N;i
T ; m

N;i

X�N
T

/, which prompts us to address the

difference process .Y
�N;i
t � Y

�N;i
t /0�t�T . We get

d.Y
�N;i
t � Y

�N;i
t / D �

�
1

2

ˇ̌
Z

�N;i;i
t

ˇ̌2
�

1

2

ˇ̌
Z

�N;i;i
t

ˇ̌2
C r

N;i
t .X

�N;i
t /

�
dt

C

NX
j D1

Z
�N;i;j
t � .Z

�N;j;j
t � Z

�N;j;j
t /dt

C
p

2

NX
j D1

.Z
�N;i;j
t � Z

�N;i;j
t / � .dB

j
t C

p
�dWt /: (2.6)

The last term yields a stochastic integral. If there were no dt -term in the right-hand side, then
the simple fact that the terminal condition is equal to 0 would say that the stochastic integral
is also null. In turn, this would say that Z

�N;i;j
t � Z

�N;i;j
t D 0 for any t . In other words,

the noise provides a strong form of stability in the above equation. This is consistent with
the fact that, in the Nash system, the Laplace operator dissipates the energy when time runs
backwards. The sum on the second line is also challenging, at least at first sight. However,
Proposition 2.2 says that, except when j D i , all the terms are of order 1=N , which guaran-
tees that the whole sum is of order 1. On the first line of the right-hand side, the remainder
r

N;i
t is also known to be of order 1=N on compact sets. In the end, we are thus left with a
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backward stochastic differential inequation of the form

d.Y
�N;i
t � Y

�N;i
t / D �

"
1

2

ˇ̌
Z

�N;i;i
t

ˇ̌2
�

1

2

ˇ̌
Z

�N;i;i
t

ˇ̌2
C O

 
1

N
C

1

N 2

NX
i;j D1

ˇ̌
X

�i;N
t � X

�j;N
t

ˇ̌!#
dt

C O

 
1

N

NX
j D1

ˇ̌
Z

�N;j;j
t � Z

�N;j;j
t

ˇ̌
C
ˇ̌
Z

�N;i;i
t � Z

�N;i;i
t

ˇ̌!
dt

C
p

2

NX
j D1

.Z
�N;i;j
t � Z

�N;i;j
t / � .dB

j
t C

p
�dWt /:

Above, the symbol O.�/ is used for the Landau notation, the underlying constant being (in
our setting) deterministic and independent of N and t . Obviously, the goal is to provide a
stability analysis of this equation. Needless to say, the main difficulty in this regard is the
difference of the two quadratic terms on the first line of the right-hand side. Invoking Propo-
sition 2.2 once again and using the fact that the solution to the master equation is assumed to
have bounded derivatives, it is pretty easy to getL1-bounds on the process .Z

�N;i;i;
t /t , inde-

pendently of i and N . However, there are no similar inequalities for the process .Z
�N;i;i;
t /t .

This is in fact the main challenge in this proof: Known estimates on the regularity of vN;i ,
and in particular on its gradient, depend onN . Accordingly, most of the analysis relies on the
sole properties of the solutionU to the master equation. In words, there is no easy way here to
linearize the difference of the two quadratic terms in the backward equation. The idea is then
to adapt some of the tricks that have been developed in the literature on backward stochas-
tic differential equations with a quadratic dependence on the martingale representation term
(here denoted by .Z

�N;i;j
t � Z

�N;i;j
t /t ). In the analysis of the well-posedness of a backward

stochastic differential equation, quadratic growth (with respect to the same martingale rep-
resentation term) is indeed known to be a threshold. This is consistent with the results on
nonlinear parabolic PDEs: quadratic growth in the gradient of the solution is also known to
be a threshold. Noticeably, the unknown in the backward equation should be in fact regarded
as being multidimensional since it comprises all the coordinates .Y

�N;i
t � Y

�N;i
t /iD1;:::;N .

In general, this is known to render the analysis in the quadratic case even more challeng-
ing. Anyway, the symmetric structure of the equation here is very helpful and somehow
permits thinking as if the equation were set in dimension 1. In the end, a suitable form of
exponential transform (very much inspired from the Cole–Hopf transform in the analysis of
Hamilton–Jacobi–Bellman equations, see [36, Chapter 6] for the details) allows transforming
the quadratic equation into a linear one, and then concluding by using standard stability argu-
ments from the theory of backward stochastic differential equations. Essentially, the size of
the difference terms ..Y

�N;i
t � Y

�N;i
t /t /iD1;:::;N is dictated by the remainder in the equation

and is thus of order 1=N . It then remains to observe that that, at time t D 0,

Y
�N;i
0 � Y

�N;i
0 D u

N;i
0 .x/ � v

N;i
0 .x/ D U0.xi ; mN;i

x / � v
N;i
0 .x/:
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Our sketch of proof hence shows that the left-hand side is of order 1=N . In fact, a careful
inspection would permit tracking the dependence on the initial conditions and recovering the
same rate as in the statement.

2.4. Propagation of chaos for the N -player game
In fact, the proof of Theorem 2.7 kills two birds with one stone. Indeed, it also per-

mits addressing the large-N behavior of the equilibrium trajectories of the N -player game.
Recall indeed from (2.4) that these equilibrium trajectories solve the system of stochastic
differential equations

dX
�N;i
t D �Dxi

v
N;i
t .X�N

t /dt C
p

2dB i
t C

p
2�dWt ; (2.7)

for a given choice of initial conditions. In order to state propagation of chaos in a proper
manner, we assume, as in our preliminary description of a mean field game in Section 2,
that these initial conditions are given as independent samples X1

0 ; : : : ; XN
0 from a common

distribution Qm0 2 P2.Rd /.
Noticeably, the drift in (2.7) may be rewritten in terms of the notations introduced in

the proof of Theorem 2.7. Indeed, this drift is nothing but .�Z
�N;i;i
t /0�t�T , which is a key

quantity in the proof of Theorem 2.7. It is then worth emphasizing that stability arguments
for backward stochastic differential equations like those we used in this proof provide more
than what is eventually contained in the result. They also provide a similar bound on the
quadratic variation (or, equivalently, on the energy) of the martingale representation term
in (2.6). Using the fact that Qm0 is square-integrable, we end up with the fact that

E

Z T

0

ˇ̌
Z

�N;i;i
t � Z

�N;i;i
t

ˇ̌2
dt �

C

N 2
;

for a constant C that is independent of N . Implicitly, the constant C depends on Qm0 through
its second-ordermoment.Moreover, it is worth recalling that, on the left-hand side,Z�N;i;i

t D

�DxUt .X
�N;i
t ; m

N;i

X�N /. In turn, this says that, up to an error of order 1=N , we can replace
the drift in (2.7) by �DxUt .X

�N;i
t ; m

N;i

X�N /. Equivalently, by using the regularity properties
of DxU , we have

sup
iD1;:::;N

E
h

sup
0�t�T

ˇ̌
X

�N;i
t � X

�N;i
t

ˇ̌2i
�

C

N 2
; (2.8)

where 8<: dX
�N;i
t D �DxUt .X

�N;i
t ; m

N;i

X�N
t

/dt C
p

2dB i
t C

p
2�dWt ;

Xi
0 D X i

0:

(2.9)

Very differently from (2.7), whose structure is made intricate by the presence of vN , (2.9) is
a standard weakly interacting particle system. As such, it is known to converge to the solution
of the conditional McKean–Vlasov equation8<: dXi

t D �DxUt

�
Xi

t ; L.Xi
t jW /

�
dt C

p
2dB i

t C
p

2�dWt ;

Xi
0 D X i

0:
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The analysis of the above equation is standard. Under our standing assumptions on U , it fol-
lows from a classical contraction argument. In particular, uniqueness for the above equation
implies that the conditional law L.Xi

t jW / that appears in the dynamics is in fact indepen-
dent of i . Sznitman’s coupling argument [101] then allows estimating the distance between the
solution of (2.9) and the solution of the above conditional McKean–Vlasov equation. We get

Theorem 2.8. For any � > 0, there exists a constant C� > 0 such that, for all N � 1 and
for all i 2 ¹1; : : : ; N º,

E
h

sup
t2Œ0;T �

ˇ̌
X�N;i

� X i
t

ˇ̌i
� C�N �1=max¹d;2C�º:

When d � 3, we can choose � D 0.

Noticeably, the rate in Theorem 2.8 is much weaker than the rate in (2.8). In fact, the
bound in Theorem 2.8 is the same as the bound for the mean 1-Wasserstein distance between
a probability distribution in P2.Rd / and the empirical law of an independent sample of it.
We refer to Fournier and Guillin’s idea [62] for a complete review of the subject.

Some bibliographical comments on the propagation of chaos in Nash equilibria are
now in order. The first results concerning this question are due to Fischer [61] and Lacker
[81] for open-loop controls (in which players observe only the initial states and the Brownian
motions) in problemswithout common noise: Lacker [81], in particular, identified completely
the possible limits, which are always MFG equilibria (in a weak form, with a notion of weak
solution similar to [38]). The question of convergence of closed-loop equilibria ismore subtle.
As shown in a counterexample in [36, I.7.2.5] (inspired from [56]), this convergence does not
hold in full generality. At present, the minimal conditions to obtain it are still not clear.
Theorem 2.8, proved first in the periodic setting in [25] and then extended to the Euclidean
framework in [35], shows that the convergence holds if there exists a classical solution (with
bounded derivatives) to the master equation (which implies that equilibria are unique) and
if the idiosyncratic noise is nondegenerate (which implies that it is not null). In the same
framework (and with Rd as state space), Delarue et al. [51] and [50] established a central
limit theorem and a large deviation principle, using the same idea as in the proof of Theo-
rem 2.8: the main point is to show that the fluctuations and the deviations in the convergence
of the N -player game equilibria are mainly due to the fluctuations and the deviations in the
convergence of the standard particle system (2.9). In a beautiful work, Lacker [83] extended
the result by establishing convergence without assuming the existence of the master equa-
tion or any monotonicity property (but keeping the assumption that the idiosyncratic noise
is nondegenerate): the limit points are weak MFG equilibria. The main difference with The-
orem 2.8 is that [83] is based on a compactness argument (obtained by using the theory of
relaxed controls, in which controls are regarded as being measure-valued) and provides no
convergence rate. The result relies on the fact that, in some average sense, the deviation of
a player barely affects the distribution of the players when N is large. Heuristically, this is
due to the presence of the noise, which prevents the players to guess if another has deviated
or not. However, in Lacker’s approach, there might be a lot of (weak) MFG equilibria, apart
from themonotone case where they are unique. This raises subtle questions of selection since

3677 Selected topics in mean field games



only some of these equilibria may be selected when passing to limit: this is what happens in
the examples discussed in Bayraktar and Zhang [14], Cecchin, Dai Pra, Fischer, and Pelino,
[44], and Delarue and Foguen [52]. We provide more details in Section 4. Let us underline
another limitation: The result presented above, as well as Lacker’s approach, rely in a crucial
way on the presence of a nondegenerate idiosyncratic noise and, to date, nothing is known
outside this framework.

Finally, it is important to note that, historically, another approach was first imple-
mented to relate the N -player and mean field games. In short, any solution to the mean field
game gives rise to an approximate Nash equilibrium to the N -player game, with an accuracy
that gets better and better as N increases. This idea dates back to the earliest papers in the
field [73,75]. We refer to [36, Chapter 6] for a complete review.

3. The long-time behavior

In this section we discuss the behavior of MFG equilibria (without common noise)
as the time horizon T tends to infinity. This is an interesting question both in terms of theory
and applications: for instance, in economics, it is related to the existence of stationary equi-
libria or business cycles. On the other hand, the answer is not obvious because the MFG
system has two boundary conditions, one at the initial time and one at the terminal time.
One can therefore expect that convergence holds only far from the initial and terminal times.
In order to perform this analysis, it is necessary to require that the solution of the stochastic
control problem remains confined in an appropriate sense: the simplest setting in which this
is possible is the spatially periodic one.Wemake this assumption here: we setT d WD Rd =Zd

and denote by P .T d / the set of Borel probability measures on T d endowed with the corre-
sponding 2-Wasserstein distance. We consider the solution .uT ; mT / D .uT

t ; mT
t /0�t�T of

the MFG system (1.4), now stated on .0; T / � T d , in which F; G W T d � P .T d / ! T are
“smooth.”

3.1. The ergodic MFG system
As explained by Lions in [88], the limit of the MFG system (1.4), as the time horizon

T tends to infinity, is expected to be given by the ergodic MFG system8̂̂̂̂
<̂
ˆ̂̂:

N� � � Nu C
1

2
jD Nuj

2
D F.x; Nm/ in T d ;

�� Nm � div. Nm D Nu/ D 0 in T d ;R
Td Nm D 1;

R
Td Nu D 0:

(3.1)

Here the unknowns are . N�; Nu; Nm/, where N� 2 R is the so-called ergodic constant. The inter-
pretation of the system is the following: each player wants to minimize her ergodic cost

J.x; ˛/ WD inf
˛
lim sup
T !C1

E

"
1

T

Z T

0

²
1

2
j˛t j

2
C F.Xt ; Nm/

³
dt

#
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where .Xt /t�0 is the solution to8<: dXt D ˛t dt C
p

2dBt ;

X0 D x:

The measure Nm in (3.1) is then understood as the invariant ergodic measure associated to the
optimal trajectory (the existence of which is much easier to prove in the periodic setting). The
solution to (3.1) is known to exist under fairly general assumptions on F and to be unique
when the coupling function F is monotone (i.e., satisfies (1.5)); see [85,87].

3.2. The convergence in the monotone setting
In this part we assume that F is smooth and monotone. Under this monotonicity

assumption, one can show that the “long-time stability” takes the form of a turnpike pattern;
namely, the solution .uT ; mT / of (1.4) becomes nearly stationary for most of the time. The
strongest way to formulate this type of behavior is the following exponential estimate:

Theorem 3.1. There exist K; ! > 0 such that for .uT ; mT / and . Nu; Nm/ solving respec-
tively (1.4) and (3.1),mT .t/ � Nm


1

C
DuT .t/ � D Nu


1

� K.e�!t
C e�!.T �t//; 8t 2 .0; T /: (3.2)

The readermay notice that the initial condition Qm0 formT and the terminal condition
G for uT are lost at the limit (as . N�; Nu; Nm/ does not depend on Qm0 or G). This result was
first stated in Cardaliaguet, Lasry, Lions, and Porretta [29]when the coupling F is monotone
and local and in [30] when this coupling is monotone and regularizing. The proof is based
in a crucial way on uniform (in t and T ) semiconcavity estimates for uT and on the energy
identity established by Lasry and Lions [87]:Z T

0

Z
Td

1

2
.mT

t C Nm/.x/
ˇ̌
DuT

t .x/ � D Nu.x/
ˇ̌2

dtdx

D �

Z T

0

Z
Td

�
F.x; mT

t / � F.x; Nm/
�
.mT

t � Nm/.x/dtdx

�

Z
Td

�
G.x; mT

T / � Nu.x/
�
.mT

T � Nm/.x/dx C

Z
Td

.uT
0 � Nu/.x/.mT

0 � Nm/.x/dx:

This energy identity shows the role of the monotonicity property (1.5) in the analysis.
A consequence of the exponential estimate (3.2) is the existence of a constant C

such that ˇ̌
uT .t; x/ � Nu.x/ � N�.T � t /

ˇ̌
� C:

Following ideas of weak KAM theory (see, for instance, the ICM proceeding by Fathi
[60] in the calculus of variation framework), one could expect the existence of a limit for
uT .t; x/ � N�.T � t / as T tends to 1; moreover, this limit should be given (up to an addi-
tive constant) by Nu. However, this heuristic is not completely correct and the description
of the asymptotic behavior of uT (eventually established in the paper by Cardaliaguet and
Porretta [33]) happens to be more subtle.
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To overcome the difficulty that the MFG system is forward–backward, a possible
path (towards a long-time expansion of uT ) is to use the master equation (2.3), which is
just backward in time. One of the main results of [33] states that the solution of the master
equation converges to the solution of the following ergodic master equation:

� � �x�.x; m/ C
1

2

ˇ̌
Dx�.x; m/

ˇ̌2
�

Z
Td

divy.Dm�.x; m; y//dm.y/

C

Z
Td

Dm�.x; m; y/ � Dx�.y; m/dm.y/ D F.x; m/ in T d
� P .T d /: (3.3)

Concerning the existence of (3.3), the following result holds:

Theorem 3.2. There is a unique constant � 2 R for which the master cell problem (3.3)
has a (weak) solution. The constant � coincides with the unique constant N� for which the
ergodic MFG problem (3.1) has a solution. Besides, if � is a solution to (3.3), then �.�; m/

is of class C 2 (in space) for any m 2 P .T d / and

Dx�.x; Nm/ D D Nu.x/ 8x 2 T d ;

where . Nu; Nm/ is the solution to (3.1).

As in many constructions of a solution to an ergodic problem, the first step consists
in building solutions to approximating compact problems and then in proving uniform esti-
mates on these solutions. Here, the compact problems are discountedmaster equations which
can be solved by a method of (infinite-dimensional) characteristics (as for (2.3)). The main
issue is to prove estimates on these solutions, independently of the discount rate. In contrast
with standard constructions in this area (see Lions–Papanicolau–Varadhan [90] or [60], which
analyze the ergodic behavior of (pure) Hamilton–Jacobi equations with a coercive Hamilto-
nian), the proof of these estimates cannot rely on the coercivity properties of the equation,
but must use in a very strong way the bound (3.2), which describes the long-time behavior
of the characteristics.

We are now ready to discuss the convergence, as t ! �1, of the solution U of
the master equation (2.3) (now defined in the time interval .�1; 0� with terminal condition
U.0; x; m/ D G.x; m/).

Theorem 3.3. Let � be a weak solution to the master cell problem (3.3). Then, there exists
a constant c 2 R such that

lim
t!�1

U.t; x; m/ C N�t D �.x; m/ C c;

uniformly with respect to .x; m/ 2 T d � P .T d /.
Moreover, we also have that DxU.t; x; m/ ! Dx�.x; m/ as t ! �1, uniformly

with respect to .x; m/.

This result looks like an extension of the famous Fathi’s result on the convergence
of the Lax–Oleinik semigroup in weak-KAM theory [60]. This parallel is not completely cor-
rect since the master equation is not a Hamilton–Jacobi equation in an infinite-dimensional
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setting: the comparison principle does not hold, for instance. One has to rely instead on the
energy identity described above.

From Theorem 3.3 one can derive the full convergence of the solution .uT ; mT / of
the MFG system:

Corollary 3.4. Let c be the constant given in Theorem 3.3. For T > 0 and Qm0 2 P .T d /,
let .uT ; mT / be the solution to (1.4). Then, for any t � 0,

lim
T !C1

�
uT .t; x/ � N�.T � t /

�
D �

�
x; m.t/

�
C c;

where the convergence is uniform in x and m solves

@t m � �m � div
�
mDx�.x; m/

�
D 0; m.0/ D Qm0:

In the recent paper [47], Cirant and Porretta managed to show the above corollary
without relying on the master equation.

Among many open problems in this area, let us point out the following ones: we
have explained in Section 2 that the master equation can be obtained as the limit of the
Nash system (1.1). Now that we understand the behavior of the master equation on long time
intervals, it would be interesting to see if this convergence holds uniformly in time. Similar
results have been obtained, for instance, by Mischler and Mouhot [93] in the framework of
kinetic theory. Another very intriguing issue is the long-time behavior of the MFG system in
the presence of a common noise: the existence of stationary measures is a completely open
problem.

3.3. The long-time behavior without monotonicity
The long-time behavior of the MFG equilibria when the coupling is not monotone

is poorly understood and only partial results are known.

The potential case. When theMFG is potential (see (2.2)), then one can extend weak-KAM
theory to the infinite-dimensional setup and describe the possible !-limit sets of the solution
of the time-dependent MFG system minimizing a natural energy in terms of a “Mather set.”
The main point is that this set may not contain an ergodic MFG equilibrium (i.e., an Nm 2

P .T d / for which there exists . N�; Nu/ such that . N�; Nu; Nm/ solves (3.1)): this shows that the !-
limit set of the solutions of the time-dependent MFG system (1.4) that additionally minimize
the natural energy may not contain an MFG ergodic equilibrium. In other words, the ergodic
MFG system (3.1) may not describe the long-time behavior of these trajectories.

Periodic solutions. The existence of a periodic solution to the MFG system is a fascinating
topic on which little is known. The main result in that direction is the analysis by Cirant [46]
of a class of examples. It relies on local and global bifurcation methods based on the analysis
of eigenfunction expansions of solutions to a suitable linearized problem. Note, however, that
the stability of these solutions is not known.

Traveling waves. Intimately related to the notion of equilibria and to periodic solutions,
the question of traveling waves has been discussed in the framework of an MFG problem
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of knowledge growth, first introduced in economics by Lucas and Moll [91]. In this setting
the construction of a traveling wave solution is crucial (it is called a balanced-growth path
solution in economics) and has been documented by Papanicolaou, Ryzhik and Velcheva
[95] and by Porretta and Rossi [98]. The convergence of the solution of the time-dependent
problem to this solution remains an open problem.

4. Smoothing effect of the common noise

A natural question is to address the impact of the common noise on the well-
posedness of a mean field game. It is indeed useful to observe that, most often, standard mean
field games (without common noise) have multiple solutions. In this respect, condition (1.5)
is rather restrictive. Just as an additive Brownian motion can restore uniqueness of differ-
ential equations driven by nonsmooth vector fields, we can then wonder whether a form of
common noise could force equilibria to be unique in a fairly large class of mean field games.

4.1. The linear–quadratic case as a warm-up
It is pretty clear that the form of common noise that is inserted into (1.8) is cer-

tainly not sufficient to reach such an aim in full generality. Indeed, the noise is just finite-
dimensional whereas the model is infinite-dimensional because of the mean field struc-
ture. For sure, we could think of some hypoelliptic structure that could allow the finite-
dimensional noise to be transmitted to all the components of the space of probability mea-
sures, but this looks a very challenging question. A much easier (but much less ambitious)
alternative is to restrict oneself to mean field games whose equilibria are a priori known to
live in a finite-dimensional subset or, using a standard concept from statistics, to belong to
a parametric model of statistical distributions. The typical example in this direction is the
class of linear–quadratic mean field games, which has been studied with a lot of attention (see
Bardi [10], Bensoussan, Sung, Yam and Yung [16], Carmona, Delarue, and Lachapelle [37],
and the works [73, 75] by Caines, Huang, and Malhamé for a tiny example). In short, it cor-
responds to the case when F and G in (1.8) have the form

F.x; m/ D
1

2

ˇ̌
Qx C f .m/

ˇ̌2
; G.x; m/ D

1

2

ˇ̌
Rx C g.m/

ˇ̌2
; (4.1)

where Q and R are matrices of size d � e (with e being another integer), f , g are Borel
functions from Rd to Re and m is the mean of m, i.e., m D

R
Rd xdm.x/ (which implicitly

requires m to have a finite first moment). Referring back to Section 1.2, we see that the con-
trol problem (1.2)–(1.3) ((1.6)–(1.7) in the presence of common noise) becomes a stochastic
control problem with linear–quadratic coefficients depending on the (possibly random) path
.mt /t 2 C 0.Œ0; T �; P2.Rd // injected into the coefficients. The key point is that this stochas-
tic control problem has a unique solution (depending on .mt /t ), with the optimal feedback
being affine (regardless of the value of the intensity of the noises). In turn, this implies that
the equilibrium trajectories must be Gaussian processes (conditional on the initial condition
whenever the latter is random). Therefore, for the above choice of F and G, the equilibria
are necessarily Gaussian (once again, conditional on the initial condition). Even more, since
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the volatility coefficient is prescribed in the state dynamics, the variances of the marginal
conditional laws of the equilibria given the initial condition are also fixed. In the end, only
the means count for determining the equilibria: As expected, the model is parametric. It
is then an interesting question to address the impact of the common noise in this specific
framework and to see whether the existing well-posedness results can be improved under the
action of .Wt /t . A very convenient approach is to use the Pontryagin principle, which pro-
vides, under the standing x-convex structure of F and G, a characterization of the equilibria
in the form of a forward–backward system of the McKean–Vlasov type. Standard computa-
tions (see the aforementioned references together with [35, Chapter 3]) then show that, for a
given .Wt /t -adapted path .mt /t with values in C 0.Œ0; T �; P2.Rd //, the optimal control in
the stochastic control problem described in (1.6)–(1.7) has the following feedback form:

˛�
t D �.�t X

�
t C ht /; (4.2)

where .�t /t is the solution of an autonomous deterministic Riccati equation (the form of
which is completely independent of the input .mt /t ) and .ht /t solves the finite-dimensional
backward stochastic differential equation

ht D R�g.mT / C

Z T

t

�
Q�f .ms/ � �shs

�
ds �

Z T

t

ksdWs; t 2 Œ0; T �: (4.3)

Obviously, this equation should be regarded as a finite-dimensional version of the backward
equation in (1.8) when the value function therein is sought in a quadratic form.

Forcing uniqueness. Inserting the relationship (4.2) for the optimal feedback into the
dynamics (1.7), taking the conditional mean of .X�

t /t (with the exponent � being used
to denote the optimal trajectory) given the common noise .Wt /t , and then identifying
EŒX�

t j.Ws/s� with mt (in full consistency with the probabilistic fixed-point formulation
of a mean field game), we end up with the following forward–backward system (which is
now the finite-dimensional analogue of the whole system (1.8)):8<: dmt D �.�t mt C ht /dt C

p
2�dWt ; m0 D E.X0/;

dht D �
�
Q�f .mt / � �t ht

�
dt C kt dWt ; hT D R�g.mT /:

(4.4)

Similar to .vt /t in (1.8), the .Wt /t -adapted process .kt /t is here designed to render the
solution .ht /t .Wt /t -adapted. Remarkably, system (4.4) just involves the conditional expec-
tation .mt /t . This is in line with the fact that equilibria are known to belong to a parametric
model. It then remains to interpret the forward–backward system (4.4) as the system of char-
acteristics of a parabolic PDE. We obtain

ht D �t .mt /;

where � solves

@t �t .x/ C ��2
x�t .x/ �

�
�t x C �t .x/

�
� rx�t .x/ C Q�f .x/ � �t �t .x/ D 0; (4.5)

for .t; x/ 2 .0; T / � Rd , with the terminal condition �T .x/ D g.x/. This PDE is a finite-
dimensional version of the master equation (2.3). Obviously, it is much easier to solve.
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In particular, when � > 0, the sole presence of the Laplacian forces the existence of a clas-
sical solution when f and g are bounded and regular coefficients. In turn, this forces the
well-posedness of the system of characteristics (4.4) (see Foguen [102] or [36, Chapter 3]):

Proposition 4.1. Let the cost coefficients F and G be of the same form as in (4.1), with f

and g therein being bounded and sufficiently regular coefficients. Then, for any � > 0, the
mean field game has a unique solution.

It must be stressed that the statement becomes false when � D 0 (see the same
references for explicit examples). One must then assume more about the coefficients f

and g to force uniqueness. For instance, it is easy to reformulate the monotonicity con-
dition (1.5) in terms of f and g: The point is then to require Q�f and R�g to satisfy
.Q�f .x0/ � Q�f .x// � .x0 � x/ � 0 for any x; x0 2 Rd , and similarly for R�g. Regarding
the explicit conditions of regularity that f and g must satisfy in Proposition 4.1, a typical
instance is to assume that f is bounded and Hölder continuous on the whole space and g,
together with its first and second-order derivatives, are bounded and Hölder continuous on
the whole space.

4.2. Finite-state mean field games
Another obvious manner to get a parametric model is to force the state space to be

finite, in which case the space of probability measures itself becomes finite-dimensional.
This requires, however, a modicum of care since the state dynamics can no longer be formu-
lated as in (1.3)–(1.7). In particular, the common noise cannot be chosen in a mere additive
fashion.

Games without common noise. When the state space is finite (and is thus chosen as a finite
set E), the dynamics of the reference player are usually postulated in the form of a Markov
controlled process taking values in E. Typically, the transition rates are explicitly prescribed
as functions of the control (see Gomes, Mohr, and Souza [66,67] and Guéant [70]). A simple,
but convenient, choice is then to identify the control with the entire transition matrix. In that
case, using the same notation .Xt /t as in (1.3) to denote the trajectory of the reference player,
the transition probabilities read (with P being implicitly identified with P 1 since there is no
common noise at this stage of the discussion)

P .XtCdt D j jXt D i/ D ˇ
i;j
t dt C o.dt/; i 6D j;

P .XtCdt D i jXt D i/ D 1 C ˇ
i;i
t dt C o.dt/;

(4.6)

with ..ˇ
i;j
t /i;j 2E /t standing for a deterministic path with values in the set of E-indexed

matrices satisfying the following two standard prescriptions:8<:ˇ
i;j
t � 0; i 6D j;

ˇ
i;i
t D �

P
j 6Di ˇ

i;j
t :

(4.7)

This formulation is reminiscent of (1.3) in the sense that the transitions do not depend on the
choice of the environment .mt /t that underpins the cost functional (1.2). In particular, the
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Fokker–Planck equation for the marginal law of the .ˇt /t -controlled process .Xt /t can be
written as

d

dt
pi

t D

X
j 2E

p
j
t ˇ

j;i
t ; t 2 Œ0; T �; i 2 E; (4.8)

with pi
t being understood as P .Xt D i/. As for the cost functional, we may choose it as

in (1.2) provided that the functions F and G are now defined on E � P .E/, with P .E/

denoting the space of probability measures (which can be obviously identified with the sim-
plex of dimension jEj � 1). To give a clear account that the state space is finite, we will write
(in this subsection) F x.m/ and Gx.m/ instead of F.x; m/ and G.x; m/. Of course, there is
another slight difference with (1.2), which lies in the interpretation of .ˇt /t . In (1.2), ˇt is
implicitly chosen as a control in feedback form: Loosely speaking, we write Q̌

t .Xt / for a
d -dimensional vector field Q̌

t ; In other words, the quadratic cost in (1.2) is calculated from
the pointwise value of the feedback function at Xt . Differently, ˇt in (4.7) encodes the entire
feedback function: Somehow, it coincides with the entire function Q̌

t . In this framework, the
cost functional (1.2) should read

E

�Z T

0

�
1

2

X
j 6DXt

ˇ̌
ˇ

X
ˇ
t ;j

t

ˇ̌2
C F X

ˇ
t .mt /

�
dt C GX

ˇ
T .mT /

�
D

X
i2E

�Z T

0

pi
t

�
1

2

X
j 6Di

ˇ̌
ˇ

i;j
t

ˇ̌2
C F i .mt /

�
dt C pi

T Gi .mT /

�
WD J

�
.ˇt /t I .pt /t I .mt /t

�
; (4.9)

for a given continuous (and here deterministic) path .mt /t with values in P .E/.
It it then quite standard to compute the corresponding HJB equation. Since E is

finite, it becomes a mere ordinary differential equation. Accordingly, the MFG system (1.4)
becomes8̂̂̂̂

<̂
ˆ̂̂:

�@t u
i
t C

1

2

X
j 2E

.ui
t � u

j
t /2

C D F i .mt /;

@t m
i
t �

X
j 2E

�
m

j
t .u

j
t � ui

t /C � mi
t .u

i
t � u

j
t /C

�
D 0; i 2 E; t 2 Œ0; T �:

(4.10)

Once the system (4.10) is solved, the optimal feedback is given by ˛
i;j
t D .ui

t � u
j
t /C, i 6D j .

Consistently with the notation introduced in (4.8), the probability measure mt is identified
with the collection of nonnegative weights .mi

t /i2E , with the latter satisfying
P

j 2E m
j
t D 1.

Adding a common noise. Differently from (1.4), (4.10) is a finite-dimensional forward–
backward system. The question is then how to find a suitable form of finite-dimensional
common noise that forces existence and uniqueness. Although it is very similar to the ques-
tion addressed in Section 4.1 for linear–quadratic quadratic mean field games, the problem
is in fact formulated in a different way. Indeed, the analysis carried out in Section 4.1 mostly
relies on the probabilistic formulation of the mean field game or, equivalently, on the equa-
tion for the dynamics of the reference player. Instead, we want to use here the equation for
the dynamics of the population, as it is more adapted to the model in hand. This raises some
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subtle issues on the structure of the common noise as we want the resulting Fokker–Planck
equation to preserve the simplex. In other words, we want to find a form of simplex-valued
diffusion process. A very famous instance is the so-called Wright–Fisher process, origi-
nally introduced in stochastic models for population genetics (see Kimura [77]). Recast in
our framework (the analysis of which is taken from Bayraktar, Cecchin, Cohen, and Delarue
[13]), it leads to the following stochastic version of the MFG system (4.10):8̂̂̂̂
ˆ̂̂<̂
ˆ̂̂̂̂̂:

dt u
i
t D

�
1

2

X
j 2E

.ui
t � u

j
t /2

C � F i .mt / �
p

�
X
j 2E

q
mi

t m
j
t .v

i;i;j
t � v

i;j;i
t /

�
dt

C
P

j;k2E v
i;j;k
t dW

j;k
t ;

dt m
i
t D

X
j 2E

�
m

j
t .u

j
t � ui

t /C � mi
t .u

i
t � u

j
t /C

�
dt C

p
�
X
j 2E

q
mi

t m
j
t d
�
W

i;j
t � W

j;i
t

�
;

(4.11)

for i 2 E and t 2 Œ0; T �. In the above, .Wt /t D ..W
i;j
t /0�t�T /.i;j /2E2 is a collection of

independent Brownian motions. Following the notations introduced in the statement of
Theorem 2.3, it is very useful to distinguish the space carrying .Wt /t from the space carrying
the idiosyncratic noise underpinning the transition rates (4.6): The former will be denoted
by .�0;F0;P0/ and the latter by .�1;F1;P1/. Accordingly, the expectations are respectively
denoted by E0 and E1. The product measure on the product space is denoted by P and the
corresponding expectation by E. Intuitively, the process .vt /t in the above backward equa-
tion plays the same role as the process .vt /t in (1.8). In particular, it is worth observing that,
in both cases, the process .vt /t appears in the dt term of the backward equation.

Before we provide the interpretation of the above system in terms of a mean field
game, we write down the resulting form of the master equation (see again [13]):

@t U
i
t .m/ C �

X
j;k2E

.mj ıj;k � mj mk/@2
mj mk

U i
t .m/

C

X
j;k2E

pk

�
U k

t .m/ � U
j
t .m/

�
C

�
@mj

U i
t .m/ � @mk

U i
t .m/

�
C 2�

X
j 2E

pj

�
@mi

U i
t .m/ � @mj

U i
t .m/

�
�

1

2

X
j 2E

�
U i

t .m/ � U
j
t .m/

�2
C

C F i .m/ D 0; (4.12)

with the boundary condition U i
T .m/ D gi .m/. The terms induced by the common noise are

those featuring the prefactor �. In particular, the master equation without common noise is
obtained by letting � D 0. The main impact of the common noise is to generate the second-
order differential operator

�
X

j;k2E

.mj ıj;k � mj mk/@2
mj mk

; (4.13)

which is called a (purely second-order) Kimura operator on the simplex of dimension
jEj � 1. In both (4.12) and (4.13), the derivatives should be formally regarded as intrin-
sic derivatives on the simplex, with gradients being of dimension jEj � 1. However, it is
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also possible to assume that U has a smooth extension to an jEj-dimensional subset of
the simplex and then to consider the derivatives as standard jEj-dimensional derivatives. It
is worth noticing that the resulting derivative used in (4.12) and (4.13) does not coincide
with the derivative Dm introduced in Theorem 2.1. The infinite-dimensional analogue of
the derivative used in (4.12) and (4.13) is the so-called flat, or linear, functional derivative.
In short, it is the restriction, to the space of probability measures, of the derivative on the
space of signed measures. It is a potential of the derivative Dm.

Forcing uniqueness. A key feature of the Kimura operator (4.13) lies in the structure of the
diffusion matrix: it degenerates near the boundary of the simplex. This is somehow the price
to pay to construct a diffusion process that does not leave the simplex. As an issue, it makes
much more difficult any attempt to prove smoothing properties (which are precisely what
we need in order to force uniqueness to the system (4.11), in full analogy with the result
stated in Proposition 4.1). However, a relevant form of Schauder’s theory was established
in the monograph by Epstein and Mazzeo [59]. In short, it says that linear equations driven
by Kimura operators have classical solutions (with a suitable behavior at the boundary) if
the first-order and source terms are just Hölder continuous in time and space. This is, how-
ever, not sufficient to get similar results for the nonlinear equation (4.12), as the first-order
term therein is driven by the solution itself. As U is easily shown to be bounded from a
straightforward application of the maximum principle, the next step to fill the gap is thus to
prove the following form of a priori estimate: For some Hölder exponent, the Hölder norm
of a classical solution to a homogeneous parabolic equation driven by a Kimura operator is
bounded in terms of theL1-norm of the solution and the Hölder norm of the initial condition
(if the equation is set forward) or of the terminal condition (if the equation is set backward
as (4.12) is). Nevertheless, it is not possible to prove this in full generality. In short, the best
results that are known require the presence in (4.13) of a first-order termwith strictly positive
components along inward normal directions to the boundary. When applying this principle
to (4.12), we are led to consider the following modified version of the master equation:

@t U
i
t .m/ C �

X
j;k2E

.mj ıj;k � mj mk/@2
mj mk

U i
t .m/

C

X
j;k2E

pk

�
'.mj / C

�
U k

t .m/ � U
j
t .m/

�
C

��
@mj

U i
t .m/ � @mk

U i
t .m/

�
C 2�

X
j 2E

mj

�
@mi

U i
t .m/ � @mj

U i
t .m/

�
�

1

2

X
j 2E

�
U i

t .m/ � U
j
t .m/

�2
C

C F i .m/ C

X
j 2E

'.mj /
�
U

j
t .m/ � U i

t .m/
�

D 0; (4.14)

with the terminal condition U i
T .m/ D gi .m/, for a smooth function ' from Œ0; 1/ into itself

that is nonzero in the neighborhood of 0. This function ' should be regarded as a penalty:
when inserted in the transition rates (4.6), it forces the corresponding solution to the Fokker–
Planck equation (4.8) to leave the boundary of the simplex (here and below, the notions of
boundary and interior of the simplex are understood when P .E/ is regarded as a subset of

3687 Selected topics in mean field games



RjE j�1). Notice that this additional penalty ' appears in the first-order term on the second
line, which is consistent with our preliminary discussion, but also in the zeroth-order term
on the last line, which is necessary to have a relevant interpretation of (4.14) as the master
equation of a mean field game (see Definition 4.1 below).

The next statement is also taken from [13]:

Theorem 4.2. We can find a threshold �0 > 0, only depending on � (� > 0), kF k1, kGk1,
and T , such that, if '.0/ > �0, and ifF andG are smooth enough, then equation (4.14) has a
classical solution, with first-order derivatives in space that are bounded on the whole domain
and second-order derivatives in space that are bounded on Œ0; T � � K , for any compact
subset K included in the interior of P .E/.

The existence of a classical solution is then shown to force uniqueness to the cor-
responding system of characteristics. Due to the presence of the penalty ', this system does
not exactly fit (4.11). The right-version is8̂̂̂̂
ˆ̂̂̂̂̂̂
ˆ̂̂<̂
ˆ̂̂̂̂̂̂
ˆ̂̂̂̂̂:

dt u
i
t D

�
1

2

X
j 2E

.ui
t � u

j
t /2

C � F i .mt / �
p

�
X
j 2E

q
mi

t m
j
t .v

i;i;j
t � v
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t /

�
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�

X
j 2E
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j
t /.u

j
t � ui

t / C

X
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i
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X
j 2E

�
m

j
t

�
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t / C .u
j
t � ui

t /C

�
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t

�
'.m

j
t / C .ui
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j
t /C

��
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C
p

�
X
j 2E

q
mi

t m
j
t d
�
W

i;j
t � W

j;i
t

�
;

(4.15)

for i 2 E and t 2 Œ0; T �. In line with Theorem 4.2, we have (see again [13]):

Theorem 4.3. We can find a threshold �0 > 0, only depending on � (� > 0), kF k1, kGk1,
and T , such that, if '.0/ > �0, and if F and G are smooth enough, then the forward–
backward system (4.15) has a unique solution when the initial condition m0 D .mi

0/i2E

is prescribed in the interior of the simplex.

To be fair, we should mention that uniqueness holds within a class of solutions with
suitable integrability properties. We refer to [13] for the complete version of the statement.
As for the constraint on the initial condition, it says that mi

0 > 0 for any i 2 E. The resulting
solution .mt /t is then shown to stay away from the boundary (which is helpful since the
diffusion coefficient in the dynamics of .mt /t becomes singular on the boundary). Implicitly,
all the statements below are also limited to initial conditions in the interior of the simplex.

It now remains to provide an interpretation of the two systems (4.11) and (4.15) in
terms of a mean field game. This goes through the following definition:

Definition 4.1. We say that a .Wt /t -adapted continuous stochastic process .mt /0�t�T with
values in the interior of P .E/ is a solution to the mean field game with common noise of
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intensity
p

� (and without the penalization ') if .mt /0�t�T satisfies an equation of the form

dmi
t D

X
j 2E

m
j
t ˛

j;i
t dt C

p
�
X
j 2E

q
mi

t m
j
t d.W

i;j
t � W

j;i
t /; t 2 Œ0; T �; (4.16)

for a bounded .Wt /t -progressively-measurable process ..˛
i;j
t /i;j 2E /t satisfying (4.7) and,

for any other bounded .Wt /t -progressively-measurable process ..ˇ
i;j
t /i;j 2E /t satisfy-

ing (4.7), the solution of the equation

dpi
t D

X
j 2E

p
j
t ˇ

j;i
t dt C

p
�pi

t

X
j 2E

s
m

j
t

mi
t

d.W
i;j
t � W

j;i
t /; t 2 Œ0; T �; (4.17)

satisfies the inequality

E0
�
J
�
.ˇt /t I .pt /t I .mt /t

��
� E0

�
J
�
.˛t /t I .mt /t I .mt /t

��
;

with J being defined as in (4.9).

A similar definition holds for the mean field game with common noise of intensity
p

� in the presence of the penalization '. It suffices to replace .˛
j;i
t /t by .'.mi

t / C ˛
j;i
t /t

in (4.16) and .ˇ
j;i
t /t by .'.pi

t / C ˇ
j;i
t /t in (4.17).

In fact, Definition 4.1 is rather subtle. Differently from the formulation (1.6)–(1.7)
used for continuous state spaces, the current one does not provide an explicit formulation of
the (private) dynamics of the reference player within the population. In short, Definition 4.1
is missing an equation similar to (1.7). Instead, equation (4.17) should be regarded as a form
of Fokker–Planck equation for some marginal statistics of the reference player given the
common noise. Actually, it can be proven that there exists a stochastic process .Xt ; Yt /0�t�T

with values in the space E � RC such that

pi
t D E1ŒYt1¹Xt Diº�; t 2 Œ0; T �; i 2 E;

with .Yt /t satisfying E0E1ŒYt � D 1. In this formulation, Xt should be regarded as the phys-
ical state, at time t , of the reference player, with the latter being also assigned a mass Yt .
The mass of the tagged particle is in fact a density on the entire probability space carrying
both types of noise. It is a density accounting for the way the reference player perceives the
world. In this respect, it is important to note that the process .pt /t does not take values in
the simplex, but only in the orthant .RC/jE j. This follows from the linear structure of equa-
tion (4.17) (with .pt /t as unknown). The linear structure, here with stochastic coefficients,
is consistent with the linear structure of the Fokker–Planck equation (4.8). In order to obtain
solutions in a relevant space, integrability conditions on these stochastic coefficients are thus
necessary, whence the assumption that ..˛

i;j
t /i;j 2E /t and ..ˇ

i;j
t /i;j 2E /t are bounded.

4.3. Vanishing viscosity
Following the latter two subsections, a natural question is to address the vanish-

ing viscosity limits of the solutions to the mean field game with common noise and to the
corresponding parabolic master equation. Both for linear quadratic mean field games and
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finite state mean field games, uniqueness of the equilibria may be lost in the framework of
Proposition 4.1 and Theorem 4.3 when the common noise is removed. This is the same for
the corresponding master equation: Classical solutions may cease to exist and, accordingly,
weaker notions of solutions are needed; Uniqueness is then a challenging question.

For sure, we could think of other methods for selecting equilibria. For instance,
we could think of returning back to the game with N players and then identifying which
equilibria coincide with a limit point of the N -equilibrium as N tends to infinity. This is,
however, a very difficult road. As easily seen from the uniformly parabolic structure of the
system (1.1), the N -player game (at least in the form studied there) satisfies a form of non-
degeneracy that is asymptotically lost when N tends to infinity. The study of the large-N
limit thus combines two difficulties at the same time: The whole system becomes more and
more degenerate (this is a vanishing viscosity limit) and, meanwhile, some propagation of
chaos is expected to occur (this is the mean field limit). In contrast, taking the small noise
limit in a mean field game with common noise just raises one of these two issues since the
mean field limit has already been taken.

Earlier selection results can be found in Bayraktar and Zhang [14], Cecchin, Dai Pra,
Fischer, and Pelino, [44] and Delarue and Foguen [52]. Generally speaking, they are stated
for mean field games whose equilibria are known to belong to a one-dimensional parametric
model. This covers the following two examples: Linear–quadratic mean field games of the
same type as in Section 4.1, but with d therein being equal to 1 (which implies in particular
that, conditional on the initial state, the equilibria followGaussian distributions with a known
variance but an unknown mean); Finite state mean field games on a set E containing two
elements only (in which case the simplex is one-dimensional). In all these aforementioned
works, selection is directly proved by taking the large-N limit in the finite game. Basically,
this is possible thanks to the totally ordered structure of R. Moreover, the master equation
then reduces to a scalar conservation law and the selected solution is the entropy solution.

When the effective dimension of the model is greater than or equal to 2, things
become much more challenging. A way to make the problem simpler is to address the so-
called potential case. As explained in Proposition 2.4, potential games are a special kind of
mean field games that coincide with the first-order condition of a mean field control problem.
When the state space E is finite, this corresponds to the case where F and G satisfy

F i .x; m/ D @mi
F .m/; Gi .x; �/ D @mi

G .m/; i 2 E; (4.18)

for two real-valued functions F and G defined on P .E/. In words, F and G are identified
with (respectively) the gradient of F and the gradient of G . The identification is, however,
a bit subtle since, formally, these two gradients should be identified with vectors of dimen-
sion jEj � 1. In turn, this says that the above condition could be slightly relaxed: In short,
it would suffice to identify the projections of F and G onto the orthogonal complement
of .1; : : : ; 1/ (which should be regarded as the tangent space to the simplex) with the cor-
responding intrinsic gradient. Anyway, given F and G , we can consider the deterministic
optimal control problem

inf
.ˇt /t

J
�
.ˇt /0�t�T

�
;
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associated with the cost functional

J
�
.ˇt /0�t�T

�
D

Z T

0

�
1

2

X
i;j 2E Wi 6Dj

pi
t

ˇ̌
ˇ

i;j
t

ˇ̌2
C F .pt /

�
dt C G .pT /; (4.19)

and with the dynamics (4.8) (for a given initial condition .pi
0/i2E ), the function .ˇt /t satis-

fying the constraint (4.7) at any time. Then, very similar to Proposition 2.4, we have

Proposition 4.4. Let m0 D .mi
0/i2E be an initial condition in the interior of the sim-

plex. Under condition (4.18), any bounded minimizer ..ˇ
i;j
t /i;j 2E /0�t�T of the cost func-

tional (4.19), with .pi
0/i2E D .mi

0/i2E as initial condition in (4.8), yields a solution to the
mean field game (4.9).

The proof follows from a standard application of the Pontryagin principle. The
adjoint variable then identifies with .ui

t /i2E in the system (4.10). In the statement, the
two constraints on .pi

0/i2E (which is required to have strictly positive coordinates) and
on ..ˇ

i;j
t /i;j 2E /0�t�T (which is required to be bounded) force the corresponding trajec-

tory (4.8) to stay away from the boundary of the simplex (when the latter is viewed as an
open subset of dimension of jEj � 1). This guarantees that, along the trajectory (4.8), the
extended Hamiltonian has a unique minimizer, as required in the application of the Pontrya-
gin principle.

Selection of equilibria. Obviously, there is no converse to Proposition 4.4: The set of equi-
libria of a potential mean field game may be strictly larger than the set of minimizers to the
corresponding mean field control. In this respect, a natural selection principle would consist
in ruling out the equilibria that are not minimizers of the corresponding mean field control.
Very interestingly, this principle is consistent with the results mentioned above when the
state space E is of cardinality 2. Indeed, any mean field game on a finite state space with two
elements is potential. As such, it derives from a mean field control problem. In particular,
a natural question is to ask whether the solutions to the mean field game that are selected by
taking the large-N limit in the finite game associated with (4.8)–(4.9) are also minimizers of
the corresponding mean field control problem. The answer is yes. The same result remains
open when jEj � 3. However, a simpler (but still interesting) question is to ask whether,
under the same property (4.18) as before, the vanishing viscosity limits of the mean field
game with common noise, as defined in Section 4.2, are minimizers of the corresponding
mean field control problem. Formulated in this way, this question is also open. The main
issue is that, in the presence of the common noise (and of the additional penalization ' that
is necessary to guarantee the conclusion of Theorem 4.3), the mean field game is no longer
potential. In order to get a potential form in (4.15), an additional penalization is necessary.
Once the game with common noise is potential, it is pretty easy to take the vanishing vis-
cosity limit in the mean field control problem that lies above. The following result is taken
from Cecchin and Delarue [43]:
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Theorem 4.5. Let m0 D .mi
0/i2E be an initial condition in the interior of the simplex. For

any � > 0, we can find two functions '� W Œ0; C1/ ! Œ0; C1/ and .F �;i W P .E/ ! R/i2E ,
with '� converging to 0 uniformly on any compact subset of .0; C1/, such that:

(1) The system (4.11) obtained by replacing .F;'/ by .F �;'�/ is uniquely solvable,
the solution of the forward equation being denoted by ..m

�;i
t /0�t�T /i2E ;

(2) Any weak limits of the sequence of the laws of the processes ..m
�;i
t /t /i2E has

a support included in the set of minimizers of J in (4.19) (with the same initial
condition);

(3) There exists a family of positive reals .ı�/� , satisfying lim�!0 ı� D 0, such
that the trajectories ..m

�;i
t /t /i2E form .ı�/�-approximate solutions of the mean

field game with common noise of intensity
p

� and with penalty '� , as defined
in Definition 4.1. In clear, if ..pi

t /0�t�T /i2E solves (4.17) (with .ˇ
j;i
t ; mt /t

being replaced by .'�.pi
t / C ˇ

j;i
t ; m�

t /t and with the prescription that .ˇt /t is
bounded by a fixed constant), thenˇ̌̌̌

ˇE0
X
i2E

"Z T

0

pi
t F

i .m�
t /dt

#
� E0

X
i2E

"Z T

0

pi
t F

�;i .m�
t /dt

#ˇ̌̌̌
ˇ � ı�:

Obviously, item (3) says that the additional penalization in the definition of F � has
a limited impact: The solution to the mean field game associated with the cost functional
driven by F � is almost a solution of the same mean field game but associated with the cost
functional driven by F . For sure, the notion of approximated solution is here consistent
with the standard notion of approximated Nash equilibria: when the reference player in the
population chooses a feedback function different from that chosen by the others, the best
possible improvement (in the cost functional) tends to 0 with �.

Interestingly, uniqueness of the minimizers (and thus of the limit points) in the
second item of Theorem 4.5 is in fact the typical situation. Indeed, standard control theory
says that the control problem (4.19)–(4.8) has in fact a unique minimizer at any point in
time and space where the corresponding value function, which we denote by V , is differen-
tiable (see [23]). However, it is a standard exercise to prove that V is Lipschitz continuous,
hence the fact that uniqueness holds for almost every starting point (in time and space) when
the simplex is equipped with the .jEj � 1/-dimensional Lebesgue measure. Obviously, in
the formulation (4.19)–(4.8), the initial time is 0, but there is no difficulty in adapting the
definition to any other time t 2 Œ0; T �.

Selection of solutions to the master equation. In fact,V plays an even more important role
in the analysis of the vanishing viscosity limit as it also permits characterizing the limit of
the solutions to the second-order master equation (4.14) associated with the common noise
of intensity

p
�, with the penalty '� and with the penalization F � (for the same choices '�

and F � as in the statement of Theorem 4.5). The next statement result is also taken from [43]:
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Theorem 4.6. With the same notation as in the statement of Theorem 4.5 and withU � denot-
ing the solution to equation (4.14) when ' � '� and F � F � therein, the limit

lim
�!0

�
U �;i .t; q/ � U �;j .t; q/

�
D @mi

V.t; q/ � @mj
V.t; q/

holds for almost-every .t; q/ 2 Œ0; T � � P .E/ and for any i; j 2 E, where V is the value
function of the control problem (4.19)–(4.8).

As we have already explained, the gradient of the value function exists almost-
everywhere in time and space. It also important to note that the argument in the limit is
not the solution of the master equation itself but the finite differences of it. In short, the limit
of the master equation is just identified in dimension jEj � 1, which is fully consistent with
the fact that the gradient of V is a vector of dimension jEj � 1. Alternatively, the above
statement provides the limiting form of the feedback function used in the mean field game
with a common noise of intensity

p
�. The jEj-dimensional limit of the function U � itself

can be found by computing the minimal in cost (4.9) when the environment .mt /t therein is
the solution of the control problem (4.19)–(4.8).

In accordance with the program outlined above, it is a natural question to ask
whether the limit established in Theorem 4.6 can be characterized in terms of the orig-
inal master equation itself (i.e., the master equation (4.12) but with � D 0 therein). The
answer is positive. As shown in [43], the master equation can be written in a conservative
form. Following earlier results of Kružkov [80] and Lions [89], this conservative form has a
unique solution that is bounded and satisfies a weak one-sided Lipschitz condition in space.
It coincides the gradient of the value function V . This recovers the existing results when
jEj D 2.

4.4. Complements and open problems
Even when the state space is finite, the extension of the above results to the nonpo-

tential case is a highly difficult problem.
Another interesting problem is to extend the same results to mean field games

on continuous state spaces. The main issue is to define a suitable form of common noise.
In short, this requires addressing stochastic processes with values in the infinite-dimensional
spaceP2.Rd / andwith sufficiently strong smoothing properties, which is known to be a chal-
lenging problem in the literature. There are earlier results in this direction, but they are not
sufficient to handle the nonlinearities that make the spice of mean field games: We refer, for
instance, to Stannat [100] for smoothing estimates of the Fleming–Viot process, which is an
infinite-dimensional version of theWright–Fisher noise underpinning the forward–backward
system. In short, the Dirichlet form of the Fleming–Viot process is driven by the aforemen-
tioned linear-functional derivative (which provides a potential of the derivative Dm). In the
meantime, the construction of a process with a Dirichlet form associated with the deriva-
tive Dm has been addressed in a series of works initiated in von Renesse and Sturm [103],
but no canonical definition has yet been given. Another strategy in order to force unique-
ness consists in embedding the problem in some L2 space: following the idea underpinning
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Definition 2.1, we can indeed see the unknown in a mean field game as a flow of random
variables and not as a flow of probability measures. This makes it possible to use noises in
Hilbert spaces. However, this destroys the mean field structure of the problem. We refer to
Delarue [49] for results in this direction.

From another perspective, it is important to note that common noises in finite state
mean field games can be defined a manner different from (4.11). We refer in particular to
Bertucci, Lasry, and Lions [19], the key idea of which is to force the finite-player system to
have many simultaneous jumps at some random times prescribed by the common noise. The
reader may also have a look at [6], which provides a discrete point of view on the system (1.8).
As far as the formulation (4.11) is concerned, a study of the convergence problem, very much
in the spirit of Theorem 2.7, is available in [12].

5. Further prospectives and related open problems

We will now briefly review some aspects of the theory that we have not covered so
far. This is only a summary presentation which demonstrates (if needed) that the field has
diversified into many active branches.

5.1. Analysis of the MFG system and of the master equation
The MFG system. In the last two decades there has been a large amount of research on
MFG systems of the type (which generalize (1.4)):8̂̂<̂
:̂
(i) �@t ut .x/ � �ut .x/ C H

�
t; x; Dut .x/; mt

�
D 0 in .0; T / � Rd ;

(ii) @t mt .x/ � �mt .x/ � div
�
mt .x/DpH

�
t; x; Dut .x/; mt

��
D 0 in .0; T / � Rd ;

(iii) m0.x/ D Qm0.x/; u.T; x/ D g.x; mT / in Rd ;

and of more general (fully nonlinear) MFG systems (where DpH is the derivative of the
Hamiltonian H.t; x; p; m/ with respect to p). It is impossible to give a complete overview
of this literature: we refer to the survey [6] and to the references therein for a general pre-
sentation of this literature. The question of the existence and regularity of the solutions has
been investigated in several frameworks: When the dependence of the Hamiltonian is local
(depending on the pointwise value of the density), existence of classical solutions is dis-
cussed, for instance, by Cardaliaguet, Lasry, Lions, and Porretta in [29] and by Gomes,
Pimentel, and Voskanyan in [68]; Porretta introduced in [97] a notion of a weak solution
for these problems and proved uniqueness in this framework. The MFG system can also
be set with other boundary conditions: for instance, Neumann boundary condition (Bardi
and Cirant [11]), optimal stopping (Bertucci [17]), state constraints (Cannarsa, Capuani, and
Cardaliaguet [22]). Mean field games can be also stated in networks (Camilli and Marchi
[21] or Achdou, Dao, Ley, and Tchou [3]). Problems with congestion or with density con-
straints are discussed by Lions [88], Achdou and Porretta [5] and Cardaliaguet, Mészáros,
and Santambrogio [32].
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Variational aspects. In general, the analysis of the MFG system relies on fixed point tech-
niques. In some frameworks (the local coupling case, for instance) it is possible to use
variational methods. This turns out to be very useful for problems in which the diffusion
is degenerate and for which this approach allows building weak solutions; see, for instance,
the papers by Cardaliaguet and Graber [26] (first-order problems with a local coupling) and
by Cardaliaguet, Graber, Porretta, and Tonon [27] (for degenerate second-order problems
with a local coupling). Refining earlier result by Lions [88], Santambrogio [99] combined
variational techniques with ideas from optimal transport to obtain nice regularity results of
first-order MFG systems (system without diffusion). Many other references and results can
be found in the survey by Santambrogio in [6].

The master equation. The analysis of the master equation has attracted some attention in
the recent years, refining the earlier results [25,36,45,64,88]. Without trying to be exhaustive,
one can quote the recent papers: Bertucci [18] for a notion of a weak solution under mono-
tonicity conditions; Cardaliaguet, Porretta, and Cirant [24] for the construction of solutions to
general master equations (with common noise or for a major player, see the paragraph below)
on short time intervals using a kind of Trotter–Kato scheme; Gangbo, Mészáros, Mou, and
Zhang [63] for the existence of a classical solution to the master equation outside the classical
monotone framework, obtained by using instead conditions related with displacement con-
vexity. Let us underline that a suitable notion of weak (discontinuous) notion of solution for
the master equation is still missing (see, however, Section 4 and [43] by Cecchin and Delarue
in the finite-state framework and for potential problems).

MFG problem with a major player. In general, mean field games address problems with
a single homogeneous population. It is, of course, not the only interesting configuration.
Among the many possible generalizations, one can mention the MFG problems with a major
player, in which a controller (the major player) interacts with a population. This problem, first
introduced by Huang [72], has been studied (among many other references) by Carmona and
Zhu [42] by a probabilistic approach, and in [24] using the master equation. It is related with
the principal–agent problems with one principal and infinitely many agents, as explained by
Elie, Mastrolia, and Possamaï [57].

5.2. Mean field games of control
Mean field games of controls (sometimes also called extended mean field games)

are mean field games in which players interact through the joint distribution of their positions
and their controls. Many models in economics are of this type (for instance, agents interact
through the price of a good that depends directly on their collective decisions to buy or sell).
This kind of problem was first discussed by Gomes and Voskanyan [69]. Weak solutions have
been built through a probabilistic approach by Carmona and Lacker [39]. In [35, Chapter 4],
Carmona and Delarue pointed out the specific structure of the corresponding MFG system,
which involves two fixed point problems (the classical one and a static one used to build
the distribution of positions and controls from the distribution of positions and the control
feedback). This MFG system was also studied in Cardaliaguet and Lehalle [31] (existence
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of weak solutions for problems with degenerate diffusions) and in Achdou and Kobeissi [4]
(classical solution in the diffusive case and with very general interactions). Very recently
Djete [54] proved the convergence of open-loop Nash equilibria for the N -player game as N

tends to infinity.

5.3. Numerical methods and learning
The fixed-point nature of MFG equilibria makes them difficult to approximate and

implement in practice. In the work by Achdou and Capuzzo Dolcetta [2], the authors explain
how to reproduce numerically the forward–backward nature of the MFG system in order to
obtain convergent numerical schemes, thus starting a series of works of the subject. An up-to-
date literature on the numerical methods for mean field games, including effective methods
for decoupling the two equations, can be found in Achdou’s survey on this topic [6]. Recently,
other works have also demonstrated the possible efficiency of tools from machine learning
within this complex framework: standard equations for characterizing the equilibria may be
approximately solved by means of a neural network; see, for instance, Carmona and Laurière
[40,41].

Intimately related to the numerical approximation, the intriguing question of learn-
ing (“how do the MFG equilibria actually appear?”) has attracted some attention. One of
the first results in this direction is the transposition to MFG games of the classical fictitious
play by Cardaliaguet and Hadikhanloo [28]: assuming that players know the model and that
the MFG problem is potential, the method explains how players could converge to an MFG
equilibrium after playing the game many times. Elie, Pérolat, Laurière, Geist, and Pietquin
[58] study the effects of diverse reinforcement learning algorithms for agents with no prior
information on an MFG equilibrium and learn their policy through repeated experiments.
The very recent paper Delarue and Vasileiadis [53] shows that common noise may also serve
as an exploration noise for learning the solution of a mean field game.

5.4. Mean field control
Mean field control (MFC) is a distinct theory from mean field games, but both theo-

ries are connected in many ways. For instance, potential games are a typical instance of mean
field games that are solved by the minimizers of an MFC problem, see Proposition 2.4. The
very aim ofMFC theory is to address minimization problems set over Kolmogorov equations
(when formulated by means of PDEs) or over McKean–Valsov equations (when formulated
in a probabilistic fashion). From a particle point of view, MFC problems provide an asymp-
totic description of large systems of weakly interacting controlled agents who cooperate
in order to minimize some common cost. Therefore, in contrast with MFGs, the agents no
longer compete, and the solutions of the two problems are different. As such, this asks for a
new proof of the corresponding convergence problem. We refer, for instance, to Lacker [82]
for a proof based on compactness arguments, and to Djete [55] for a similar result but for
models including the law of the control in the mean field interaction. As for the analysis of
MFC themselves, the related value function satisfies a form of Hamilton–Jacobi equation.
Similar to the master equation, the Hamilton–Jacobi equation is set on the space of prob-
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ability measures, but Lions’ lifting procedure allows lifting it onto an L2 space (see [88]).
This observation can be used in order to adapt the notion of viscosity solutions and thus to
handle less regular solutions. We refer to [65] for a recent contribution in this direction in the
first-order case, namely when the dynamics of the players are deterministic. In the presence
of an idiosyncratic noise in the dynamics (so-called second-order case), the theory is still in
progress and a complete theory of existence and uniqueness of viscosity solutions has not
yet been achieved. We refer to Cosso and Pham [48] for an overview of the stakes.
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Macroscopic limits of
chaotic
eigenfunctions
Semyon Dyatlov

Abstract

We give an overview of the interplay between the behavior of high energy eigenfunc-
tions of the Laplacian on a compact Riemannian manifold and the dynamical properties
of the geodesic flow on that manifold. This includes the Quantum Ergodicity theorem,
the Quantum Unique Ergodicity conjecture, entropy bounds, and uniform lower bounds
on mass of eigenfunctions. The above results belong to the domain of quantum chaos and
use microlocal analysis, which is a theory behind the classical/quantum, or particle/wave,
correspondence in physics. We also discuss the toy model of quantum cat maps and the
challenges it poses for Quantum Unique Ergodicity.
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1. Introduction

This article is an overview of some results on macroscopic behavior of eigenstates
in the high energy limit. A typical model is given by Laplacian eigenfunctions:

��gu� D �2u�; u� 2 C 1.M/; ku�kL2.M/ D 1:

Here we fix a compact connected Riemannian manifold without boundary .M;g/ and denote
by �g � 0 the corresponding Laplace–Beltrami operator. It will be convenient to denote the
eigenvalue by �2, where � � 0. The high-energy limit corresponds to taking � ! 1.

One way to study the macroscopic behavior of the eigenfunctions u� as � ! 1 is
to look at weak limits of the probability measures ju�j2 d volg where d volg is the volume
measure on .M; g/:

Definition 1. Let �2
j be a sequence of eigenvalues of ��g going to 1. We say that the

corresponding eigenfunctions u�j
converge weakly to some probability measure � on M , ifZ

M

a.x/
ˇ̌
u�j

.x/
ˇ̌2

d volg.x/ !

Z
M

a.x/ d�.x/ as j ! 1 (1.1)

for all test functions a 2 C 1.M/.

Definition 1 can be interpreted in the context of quantum mechanics as follows.
Consider a free quantum particle on the manifold M . Then the eigenfunctions u� are the
wave functions of the pure quantum states of the particle. The left-hand side of (1.1) is the
average value of the observable a.x/ for a given pure state; if we let a be the characteristic
function of some set � � M then this expression is the probability of finding the quantum
particle in� (this choice is only allowed if �.@�/ D 0). Taking � ! 1 gives the high-energy
limit.

The statement (1.1) is macroscopic in nature because we first fix the observable a

and then let the eigenvalue go to infinity. This is different frommicroscopic properties such as
the breakthrough work of Logunov and Malinnikova on the area of the nodal set ¹x 2 M j

uj .x/ D 0º, see the review [38]. Ironically, the methods used in the macroscopic results
described here aremicrolocal in nature (see Section 2 for a review), with the global geometry
of M coming in the form of the long time behavior of the geodesic flow.

The results reviewed in this paper address the following fundamental question:

For a given Riemannian manifold .M; g/, what can we say

about the set of all weak limits of sequences of eigenfunctions?
(1.2)

It turns out that the answer depends on the dynamical properties of the geodesic flow
on .M; g/. In particular:

• If .M; g/ has completely integrable geodesic flow then there is a huge variety of
possible weak limits. For example, if .M; g/ is the round sphere, then there is a
sequence of Gaussian beam eigenfunctions converging to the delta measure on
any given closed geodesic (see Section 2.2 below).
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• If the geodesic flow instead has chaotic behavior, more precisely it is ergodic
with respect to the Liouville measure, then a density 1 sequence of eigenfunctions
converges to the volume measure d volg = volg.M/. This statement, known as
Quantum Ergodicity, is reviewed in Section 3.

• If the geodesic flow is strongly chaotic, more precisely it satisfies the Anosov
property (i.e., it has a stable/unstable/flow decomposition), then the limiting mea-
sures have to be somewhat spread out. This comes in two forms: entropy bounds
and full support. See Section 4 for a description of these results. The Quantum
Unique Ergodicity conjecture states that in this setting any sequence of eigenfunc-
tions converges to the volume measure; it is not known outside of arithmetic cases
(see Section 4) and there are counterexamples in the related setting of quantum
cat maps (see Section 5).

• Finally, there are several results in cases when the geodesic flow is ergodic but
not Anosov, or it exhibits mixed chaotic/completely integrable behavior; see Sec-
tion 3.

The present article focuses on the last three cases above, which are in the domain of quan-
tum chaos. The general principle is that chaotic behavior of the geodesic flow leads to
chaotic/spread out macroscopic behavior of the eigenfunctions of the Laplacian. See Figure 1
for a numerical illustration.

In particular, we will describe full support statements for weak limits – see Theo-
rems 11 and 16 – proved in [18–20]. The key component is the fractal uncertainty principle
first introduced by Dyatlov–Zahl [21] and proved by Bourgain–Dyatlov [10]. It originated in
open quantum chaos, dealing with quantum systems where the underlying classical system
allows for escape to infinity and has chaotic behavior.We refer to the reviews of the author [15,
16] for more on fractal uncertainty principle and its applications.

The above developments use microlocal analysis, which is a mathematical theory
underlying the classical/quantum, or particle/wave, correspondence in physics. In particular,
one typically obtains information on the semiclassical measures, which are probability mea-
sures � on the cosphere bundle S�M which are weak limits of sequences of eigenfunctions
in a microlocal sense. These measures are sometimes called microlocal lifts of the weak
limits, because the pushforward of � to the base M is the weak limit of Definition 1. One of
the advantages of these measures compared to the weak limits on M is that they are invari-
ant under the geodesic flow. We give a brief review of microlocal analysis and semiclassical
measures in Section 2 below.

2. Semiclassical measures

Let us write the left-hand side of (1.1) asZ
M

a.x/
ˇ̌
u�j

.x/
ˇ̌2

d volg.x/ D hMau�j
; u�j

iL2.M/
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Figure 1

(Top) Typical eigenfunctions (with Dirichlet boundary conditions) for two planar domains. The picture on the left
(courtesy of Alex Barnett, see [7] and [8] for a description of the method used and for a numerical investigation of
Quantum Ergodicity) shows equidistribution, i.e., convergence to the volume measure in the sense of Definition 1.
The picture on the right (where the domain is a disk) shows the lack of equidistribution, with the limiting measure
supported in an annulus. This difference in quantum behavior is related to the different behavior of the
billiard-ball flows on the two domains (which replace geodesic flows in this setting). (Bottom) Two typical
billiard-ball trajectories on the domains in question. On the left we see ergodicity (equidistribution of the
trajectory for long time), and on the right we see completely integrable behavior.

where Ma W L2.M/ ! L2.M/ is the multiplication operator by a 2 C 1.M/. To define
semiclassical measures, we will allow for more general operators in place of Ma. These
operators are obtained by a quantization procedure, which maps each smooth compactly
supported function a on the cotangent bundle T �M to an operator on L2.M/ depending on
the small number h > 0 called the semiclassical parameter:

a 2 C 1
c .T �M/ 7! Oph.a/ W L2.M/ ! L2.M/; 0 < h � 1: (2.1)

2.1. Semiclassical quantization
We briefly recall several basic principles of semiclassical quantization referring to

the books of Zworski [49] and Dyatlov–Zworski [22, Appendix E] for the full presentation and
pointers to the vast literature on the subject:
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• The function a, often called the symbol of the operator Oph.a/, is defined on
the cotangent bundle T �M , whose points we typically denote by .x; �/ where
x 2 M and � 2 T �

x M . The canonical symplectic form on T �M induces the Pois-
son bracket

¹f; gº WD @�f � @xg � @xf � @�g; f; g 2 C 1.T �M/:

In physical terms, this corresponds to using Hamiltonian mechanics for the “clas-
sical” side of the classical/quantum correspondence, where x is the position vari-
able and � is the momentum variable.

• One can work with a broader class of smooth symbols a, where the compact
support requirement is changed to growth conditions on the derivatives of a

as � ! 1. The resulting operators act on (semiclassical) Sobolev spaces, see,
e.g.. [22, §E.1.8].

• If a.x; �/ D a.x/ is a function of x only, then

Oph.a/ D Ma (2.2)

is the corresponding multiplication operator.

• If a.x; �/ is linear in �, that is, a.x; �/ D h�; Xxi for some vector field X 2

C 1.M I TM/, then, up to lower-order terms, the operator Oph.a/ is a rescaled
differentiation operator along X ,

Oph.a/u.x/ D �ihXu.x/ C O.h/: (2.3)

This explains why a should be a function on the cotangent bundle T �M : linear
functions on the fibers of T �M correspond to vector fields on M . (Quantization
procedures do not depend on the choice of a Riemannian metric on M .)

• If u 2 C 1.M/ oscillates at some frequency R, then differentiating u along a
vector field X increases its magnitude by about R. One takeaway from (2.3) is
that Oph.a/u has roughly the same size as u if the function u oscillates at fre-
quencies � h�1. Thus we treat the semiclassical parameter h as the effective
wavelength of oscillations of the functions to which we will apply Oph.a/. We
will apply Oph.a/ to an eigenfunction u�, which oscillates at frequency � �, so
we will make the choice

h WD ��1: (2.4)

• If M D Rn and a.x; �/ D a.�/ is a function of � only, then Oph.a/ is a Fourier
multiplier,

3Oph.a/u.�/ D a.h�/ Ou.�/; u 2 S .Rn/: (2.5)

Thus in addition to being the momentum variable, we can interpret � as a
Fourier/frequency variable.
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• For general manifoldsM , one cannot define a quantization procedure canonically:
a typical construction involves piecing together quantizations on copies of Rn

using coordinate charts, see, e.g., [22, §E.1.7]. However, different choices of coor-
dinate charts, etc., will give the same operator modulo lower-order terms O.h/.

Several items above allude to “lower-order terms.” We will consider the operators Oph.a/

in the semiclassical limit h ! 0 and will often have remainders of the form O.h/, etc.,
which are operators on C 1.M/. (More generally, semiclassical analysis gives asymptotic
expansions in powers of h with the remainder being O.hN / for any N .) This is understood
as follows: if the symbols involved are compactly supported in T �M , then the remainders
are bounded in norm as operators on L2 (with constants in O.�/, of course, independent
of h). For more general symbols, one has to take correct semiclassical Sobolev spaces and
we skip these details here. We note that in the basic version of semiclassical calculus used
in this section, the symbol a does not depend on h, which reflects the macroscopic nature of
the results presented below.

Semiclassical quantization has several fundamental algebraic and analytic proper-
ties; once these are proved, one can use it as a black box without caring too much for the
precise definition of Oph.a/. Of particular importance are the product, adjoint, and commu-
tator rules:

Oph.a/Oph.b/ D Oph.ab/ C O.h/; (2.6)

Oph.a/�
D Oph. Na/ C O.h/; (2.7)�

Oph.a/;Oph.b/
�

D �ihOph

�
¹a; bº

�
C O.h2/; (2.8)

and the L2 boundedness statement: if a 2 C 1
c .T �M/ then kOph.a/kL2!L2 is bounded

uniformly in h.

2.2. Semiclassical measures for eigenfunctions
We can now introduce the main object of study in this article, which are semiclas-

sical measures associated to high frequency sequences of eigenfunctions of the Laplacian.
Semiclassical measures were originally introduced independently by Gérard [27] and Lions–
Paul [37]. We refer to [49, Chapter 5] for a detailed treatment.

Following (2.4), we write the eigenvalue as h�2 where h is small. Let .M; g/ be a
Riemannian manifold and consider a sequence of Laplacian eigenfunctions:

��guj D h�2
j uj ; hj ! 0; uj 2 C 1.M/; kuj kL2 D 1:

Definition 2. We say that the sequence uj converges semiclassically to a finite Borel mea-
sure � on the cotangent bundle T �M , if˝

Ophj
.a/uj ; uj

˛
L2 !

Z
T �M

a.x; �/ d�.x; �/ as j ! 1 (2.9)

for all test functions a 2 C 1
c .T �M/. Ameasure� onT �M is called a semiclassical measure

if it is the limit of some sequence of Laplacian eigenfunctions.
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The statement (2.9) actually applies to a broader class of symbols a with polynomial
growth as � ! 1. By (2.2), if a.x; �/ D a.x/ depends only on the position variable x, then
the left-hand side of (2.9) is the integral

R
M

ajuj j2 d volg . Comparing (2.9) with (1.1), we
see that if uj converges semiclassically to �, then it converges weakly to the pushforward of
� to the base M . Thus we can think of semiclassical measures as (microlocal) lifts of the
weak limits of Definition 1.

A quantum-mechanical interpretation of semiclassical measures is as follows: if a 2

C 1.T �M/ is a classical observable (a function of position and momentum) then Oph.a/

is the corresponding quantum observable and the expression hOph.a/u; uiL2 is the average
value of the observable a on the quantum particle with wave function u. Thus (2.9) gives
macroscopic information on the concentration of the particle in both position andmomentum
in the high-energy limit. Recalling (2.5), we can also interpret semiclassical measures as
capturing the concentration of uj simultaneously in the position and frequency.

One important property ofDefinition 2 is the presence of compactness: any sequence
of eigenfunctions has a subsequence converging semiclassically to some measure; see [49,

Theorem 5.2] and [22, Theorem E.42]. Other basic properties of semiclassical measures are
summarized in the following

Proposition 3. Let � be a semiclassical measure for a Riemannian manifold .M; g/. Then:

• � is a probability measure;

• � is supported on the cosphere bundle

S�M WD
®
.x; �/ 2 T �M W j�jg D 1

¯
I

• � is invariant under the geodesic flow

't
W S�M ! S�M:

Here the geodesic flow is naturally a flow on the sphere bundle SM , which is
identified with S�M using the metric g.

We give a sketch of the proof of Proposition 3 to show how the fundamental prop-
erties (2.6)–(2.8) can be used. The first claim follows by taking a D 1 in (2.9), in which
case Oph.a/ is the identity operator. To see the second claim, we use that the semiclassically
rescaled Laplacian�h2�g is a quantization of the quadratic function j�j2g (giving the square
of the length of the cotangent vector � 2 T �

x M with respect to the metric g), so

P.h/ WD �h2�g � 1 D Oph

�
j�j

2
g � 1

�
C O.h/; P.hj /uj D 0:

Now if a 2 C 1
c .T �M/ vanishes on S�M , we can write a D b.j�j2g � 1/ for some b 2

C 1
c .T �M/. By the product rule (2.6),

Ophj
.a/uj D Ophj

.b/P.hj /uj C O.hj / D O.hj /;

which by (2.9) gives
R

T �M
a d� D 0. Since this is true for any a vanishing on S�M , we see

that supp� � S�M as needed.
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The last claim is also simple to prove: if b 2 C 1
c .T �M/ is arbitrary, then

0 D
˝�

P.hj /;Ophj
.b/
�
uj ; uj

˛
L2 D �ihj

˝
Ophj

�®
j�j

2
g ; b

¯�
uj ; uj

˛
L2 C O

�
h2

j

�
:

Here the first equality follows from the fact that P.hj /uj D 0 and P.hj / is self-adjoint;
the second one uses the commutator rule (2.8). Now (2.9) shows that the Poisson bracket
¹j�j2g ; bº integrates to 0 with respect to �. But the Hamiltonian flow of j�j2g=2, restricted to
S�M , is the geodesic flow 't , so we getZ

S�M

@t jtD0.b ı 't / d� D 0 for all b 2 C 1
c .T �M/;

from which it follows that
R

S�M
b ı 't d� is independent of t and thus � is invariant under

the flow 't .
We now give the microlocal formulation of the question (1.2) asked at the beginning

of the article:
For a given Riemannian manifold .M; g/, what can we say

about the set of all semiclassical measures?
(2.10)

The general expectation is that

• when the geodesic flow on .M; g/ is “predictable,” i.e., completely integrable,
there are semiclassical measures which can concentrate on small flow-invariant
sets;

• on the other hand, when the geodesic flow on .M; g/ has chaotic behavior, semi-
classical measures have to be more “spread out.”

One of the results supporting the first point above is the following theorem of Jakobson–
Zelditch [33]: if M is the round sphere then any measure satisfying the conclusions of
Proposition 3 is a semiclassical measure. See also the work of Studnia [46] and Arnaiz–
Macià [6] in the related case of the quantum harmonic oscillator.

The rest of this article presents various results which support the second point above,
in particular giving several ways of defining chaotic behavior of the geodesic flow and the
way in which a measure is “spread out.”

3. Ergodic systems

Wefirst describe what happens under a “mildly chaotic” assumption on the geodesic
flow 't W S�M ! S�M , namely that it is ergodicwith respect to the Liouville measure. Here
the Liouvillemeasure�L D cd volg.x/dS.�/ is a natural flow-invariant probabilitymeasure
on S�M , with dS denoting the volume measure on the sphere S�

x M corresponding to g and
c some constant. By definition, the flow 't is ergodic with respect to�L if every 't -invariant
Borel subset � � S�M has �L.�/ D 0 or �L.�/ D 1.

We say that a sequence of eigenfunctions uj equidistributes if it converges to �L in
the sense of Definition 2, that is, in the high-energy limit the probability of finding the corre-
sponding quantum particle in a set becomes proportional to the volume of this set. A central
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Figure 2

Two Dirichlet eigenfunctions for a Bunimovich stadium, courtesy of Alex Barnett (see the caption to Figure 1):
the right one shows equidistribution, but the left one does not. Quantum Ergodicity implies that most
eigenfunctions look from afar like that on the right.

result in quantum chaos is the following Quantum Ergodicity theorem of Shnirelman [44],
Zelditch [47], and Colin de Verdière [14], which states that when the geodesic flow is ergodic,
most eigenfunctions equidistribute:

Theorem 4. Assume that the geodesic flow is ergodic with respect to the Liouville measure.
Then for any choice of orthonormal basis of eigenfunctions ¹ukº there exists a density 1

subsequence ukj
which converges semiclassically to �L in the sense of Definition 2.

See [49, Chapter 15] and the review of Dyatlov [17] for more recent expositions of
the proof. The version of Theorem 4 for compact manifolds with boundary was proved by
Gérard–Leichtnam [28] for convex domains in Rn with W 2;1 boundaries and Zelditch–
Zworski [48] for compact Riemannian manifolds with piecewise C 1 boundaries. In this
setting one imposes (Dirichlet or Neumann) boundary conditions on the eigenfunctions, and
the geodesic flow is naturally replaced by the billiard-ball flow (reflecting off the boundary).
See Figures 1 and 2 for numerical illustrations.

A natural question is whether the entire sequence of eigenfunctions equidistributes,
i.e., whether �L is the only semiclassical measure. For general manifolds with ergodic clas-
sical flows this is not always true, as proved by Hassell [32]. In particular, for the case of the
Bunimovich stadium shown on Figure 2, the paper [32] shows that for almost every choice
of the parameter of the stadium (i.e., the aspect ratio of its central rectangle) there exist
semiclassical measures which are not the Liouville measure.

Another natural question is what happens when the classical flow has mixed behav-
ior, e.g., S�M is the union of two flow-invariant sets of positive Lebesgue measure such that
the flow is ergodic on one of them and completely integrable on the other. Percival’s Conjec-
ture claims that this mixed behavior translates to macroscopic behavior of eigenfunctions,
namely one can split any orthonormal basis of eigenfunctions into three parts: one of them
equidistributes in the ergodic region, another has semiclassical measures supported in the
completely integrable region, and the remaining part has density 0. A version of this conjec-
ture for mushroom billiards was proved by Gomes in his thesis [29, 30]; see also the earlier
work of Galkowski [26] and Rivière [41].
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4. Strongly chaotic systems

We now describe what is known when the geodesic flow on M is assumed to be
strongly chaotic. The latter assumption is understood in the sense of the following Anosov
property:

Definition 5. Let .M; g/ be a compact Riemannian manifold without boundary. We say that
the geodesic flow 't W S�M ! S�M has the Anosov property if there exists a flow/unsta-
ble/stable decomposition of the tangent spaces

T�.S�M/ D E0.�/ ˚ Eu.�/ ˚ Es.�/; � 2 S�M;

where E0 is the one-dimensional space spanned by the generator of the flow, while Eu; Es

depend continuously on �, are invariant under the flow 't , and satisfy the exponential decay
condition for some � > 0:ˇ̌

d't .�/v
ˇ̌

� Ce�� jt j
jvj;

8<: v 2 Eu.�/; t � 0;

v 2 Es.�/; t � 0:

A large family of manifolds with Anosov geodesic flows is given by compact Rie-
mannian manifolds of negative sectional curvature, see the book of Anosov [5]. An important
special case is given by hyperbolic surfaces, which are compact, oriented Riemannian man-
ifolds of dimension 2 with Gauss curvature identically equal to �1. See Figure 3 for a
numerical illustration.

The Anosov property implies that the geodesic flow is ergodic with respect to the
Liouville measure, so Quantum Ergodicity applies to give that most eigenfunctions equidis-

Figure 3

Two Laplacian eigenfunctions on a hyperbolic surface, courtesy of Alex Strohmaier (see Strohmaier–Uski [45]).
Here we view the surface as a quotient of the hyperbolic plane by a group of isometries, or equivalently as the
result of gluing together appropriate sides of the pictured fundamental domain. On a microscopic level the two
eigenfunctions look different, but the macroscopic features are the same – both show equidistribution.
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tribute. The major open question is the following Quantum Unique Ergodicity conjecture
which claims equidistribution for the entire sequence of eigenfunctions:

Conjecture 6. Assume that .M;g/ is a compact Riemannian manifold with Anosov geodesic
flow. Then �L is the only semiclassical measure.

Conjecture 6 was originally stated by Rudnick–Sarnak [42] in the context of hyper-
bolic surfaces. It is known in the special case of arithmetic hyperbolic surfaces, which have
additional symmetries commuting with the Laplacian, called Hecke operators, and we con-
sider a joint basis of eigenfunctions of the Laplacian and a Hecke operator; see Linden-
strauss [36] and Brooks–Lindenstrauss [13]. In general, in spite of significant partial progress
described below, the conjecture is open. One of the issues with a potential proof is that Quan-
tum Unique Ergodicity fails in the related setting of quantum cat maps; see Theorem 14
below.

4.1. Entropy bounds
A major step towards Quantum Unique Ergodicity (Conjecture 6) are entropy

bounds, originating in the work of Anantharaman [1]:

Theorem 7. Assume that the geodesic flow on .M; g/ has the Anosov property. Then any
semiclassical measure � has positive Kolmogorov–Sinai entropy, hKS.�/ > 0.

Here the Kolmogorov–Sinai entropy hKS.�/ is a nonnegative number associated
to each flow-invariant measure �; roughly speaking, it expresses the complexity of the flow
from the point of view of that measure, and is one way to measure how “spread out” the mea-
sure is—measures which are more concentrated have lower entropy, and measures which are
more spread out have higher entropy. Theorem 7 in particular implies the following conjec-
ture of Colin de Verdière [14]:

On a hyperbolic surface, no semiclassical measure

can be supported on a closed geodesic
(4.1)

since the entropy of a measure supported on a closed geodesic is zero.
The lower bound on entropy in Theorem 7 is in general complicated. However, in

the case of hyperbolic (i.e., constant negative curvature) manifolds Anantharaman–Nonnen-
macher [3] gave the following easy to state bound:

Theorem 8. Assume that .M; g/ is an n-dimensional hyperbolic manifold. Then any semi-
classical measure � satisfies

hKS.�/ �
n�1

2
: (4.2)

We remark that the Liouville measure in this setting has entropy n � 1, so (4.2)
in some sense excludes “half” of all invariant measures as possible semiclassical measures.
For other entropy(-type) bounds, see the works of Anantharaman–Koch–Nonnenmacher [2],
Rivière [39,40], and Anantharaman–Silberman [4].
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The constant in the bound (4.2) matches (in the case of surfaces) the counterexam-
ples for quantum cat maps given in Theorem 14 below. Thus an important milestone on the
way to Quantum Unique Ergodicity would be to prove the following:

Conjecture 9. Let � be a semiclassical measure on an n-dimensional hyperbolic mani-
fold .M; g/. Then hKS.�/ > n�1

2
.

We conclude this subsection with another conjecture which would go a long way
towards Quantum Unique Ergodicity but does not exclude the counterexample of Theo-
rem 14:

Conjecture 10. Let � be a semiclassical measure on a compact manifold .M; g/ with
Anosov geodesic flow. Then we have � D ˛�L C .1 � ˛/�0 for some ˛ 2 .0; 1�, where �L

is the Liouville measure and �0 is some probability measure on S�M .

4.2. Full support property
Another way to characterize how much a measure � is “spread out” is by looking at

its support, supp� � S�M . For surfaces with Anosov geodesic flows, Dyatlov–Jin [19] (in
the hyperbolic case) and Dyatlov–Jin–Nonnenmacher [20] (in the general case) showed that
the support of every semiclassical measure is the entire S�M :

Theorem 11. Let � be a semiclassical measure on a compact surface .M; g/ with Anosov
geodesic flow. Then supp � D S�M , that is, �.U / > 0 for every nonempty open set
U � S�M .

Theorem 11 and entropy bounds give different restrictions on the set of possible
semiclassical measures. On the one hand (assuming .M; g/ is a hyperbolic surface for sim-
plicity), the entropy bound (4.2) implies that the Hausdorff dimension of supp� is at least 2,
but there exist flow-invariant measures supported on proper subsets of S�M of dimension
arbitrarily close to 3. On the other hand, there exist measures which have full support and
small entropy: one can, for example, take a convex combination of the Liouville measure and
a measure supported on a closed geodesic.

The key new ingredient in the proof of Theorem 11 is the fractal uncertainty prin-
ciple of Bourgain–Dyatlov [10]. We state the following version appearing in [20]:

Theorem 12. Let �;h 2 .0;1/ and assume thatX;Y � R are �-porous up to scale h, namely
for any interval I � R of length jI j 2 Œh; 1�, there exists a subinterval J � I of length
jJ j D �jI j such that X \ J D ; (and similarly for Y ). Then there exist constants C; ˇ > 0

depending only on � such that for all f 2 L2.R/,

supp Of � h�1Y ) k1X f kL2.R/ � C hˇ
kf kL2.R/: (4.3)

One should think of the parameter � in Theorem 12 as fixed and h as going to 0.
The sets X; Y can depend on h as long as they are �-porous; a basic example is given by
h
10
-neighborhoods of some sets which are porous up to scale 0 (e.g., Cantor sets). The esti-

mate (4.3) can be interpreted as follows: if a function f lives in the (semiclassically rescaled)
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frequency space in a porous set Y , then only a small part of theL2-mass of f can concentrate
on the porous set X . We refer the reader to the review [15] for more details.

The proof of Theorem 11 can be roughly summarized as follows (restricting to the
case of hyperbolic surfaces for simplicity): assume that a sequence of eigenfunctions ¹uj º

converges semiclassically to a measure � such that �.U/ D 0 for some nonempty open
set U � S�M . Using microlocal methods, one can show that uj is in a certain sense con-
centrated on both of the sets

�˙.hj / WD
®
� 2 S�M j '�t .�/ 62 U for all t 2

�
0; log.1=hj /

�¯
of geodesics which do not cross the set U in the future or in the past for time log.1=hj /.
Here one can barely make sense of localization in the position–frequency space on each of
the sets �˙.hj /, i.e., construct operators A˙ which localize to these sets and write uj D

ACuj C o.1/ D A�uj C o.1/. However, the sets �˙.h/ have porous structure (see Figure 5
below for the related case of quantum cat maps), and one can use the Fractal Uncertainty
Principle to show that kACA�kL2!L2 D o.1/, giving a contradiction. We refer to [15] for a
detailed exposition of the proof.

Theorem 11 only applies to surfaces because the Fractal Uncertainty Principle is
only known for subsets of R. A naïve generalization of Theorem 12 to higher dimensions is
false: for example, the sets

X D Œ0; h=10� � Œ0; 1�; Y D Œ0; 1� � Œ0; h=10� � R2

are both 1
10
-porous up to scale h (where we replace intervals by balls in the definition of

porosity), but they do not satisfy an estimate of type (4.3): the Fourier transform of the indi-
cator function of h�1Y has large L2 mass on X . (See [16, §6] for a more detailed discussion.)
However, this does not translate to a counterexample for semiclassical measures, leaving the
door open for the following:

Conjecture 13. Let � be a semiclassical measure on a compact manifold .M; g/ with
Anosov geodesic flow. Then supp� D S�M .

An analog of Conjecture 13 is known for certain quantum cat maps, see Theorem 16
below.

5. Quantum cat maps

We finally discuss quantum cat maps, which are toy models in quantum chaos
with microlocal properties similar to Laplacians on hyperbolic manifolds (though the exten-
sive research on them demonstrates that they are a “tough toy to crack”). They were origi-
nally introduced by Hannay and Berry in [31]. We start with two-dimensional quantum cat
maps which are analogous to hyperbolic surfaces. These maps quantize toral automorphisms
(a.k.a. “Arnold cat maps”)

x 7! Ax mod Z2; x 2 T 2
D R2=Z2 (5.1)
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where A 2 SL.2; Z/ is a 2 � 2 integer matrix with determinant 1. We make the assumption
that A is hyperbolic, i.e., it has no eigenvalues on the unit circle. A basic example of such a
matrix is

A D

 
2 1

1 1

!
: (5.2)

Quantizations of the map (5.1) are not operators onL2 of a manifold, instead they are unitary
N � N matrices, where the integer N is related to the semiclassical parameter h as follows:

2�N h D 1:

The semiclassical limit h ! 0 studied above now turns into the limit N ! 1.
Before introducing quantizations of cat maps, we briefly discuss the adaptation of

the quantization procedure (2.1) to this setting, which has the form

a 2 C 1.T 2/ 7! OpN .a/ W CN
! CN : (5.3)

That is, functions on the 2-torus are quantized to N � N matrices. The quantization proce-
dure also depends on a twist parameter � 2 T 2, but we suppress this in the notation. (If N

is even, then we can always just take � D 0 in what follows.) See, for example, [18, §2.2] for
more details.

Now, for A 2 SL.2; Z/, its quantization is a family of unitary N � N matrices
BN W CN ! CN which satisfies the following exact Egorov’s theorem:

B�1
N OpN .a/BN D OpN .a ı A/ for all a 2 C 1.T 2/: (5.4)

Such BN exists and is unique modulo multiplication by a unit length scalar. The state-
ment (5.4) intertwines conjugation by BN (corresponding to quantum evolution) with pull-
back by the map (5.1) (corresponding to classical evolution). It is analogous to Egorov’s
Theorem for Riemannian manifolds (see, e.g., [49, Theorem 15.2]), which states that

e�ith�g =2 Oph.a/eith�g =2
D Oph.a ı 't / C O.h/

where the geodesic flow 't W S�M ! S�M is extended to T �M as the Hamiltonian flow of
j�j2g=2. Thus the quantum cat map BN should be thought of as an analog of the Schrödinger
propagator eith�g =2, eigenfunctions of BN are analogous to Laplacian eigenfunctions, and
the dynamics of the geodesic flow in this setting is replaced by the dynamics of the map (5.1).

Using the quantization (5.3), we can define similarly to (2.9) semiclassical measures
associated to sequences of eigenfunctions

BNj
uj D �j uj ; uj 2 CNj ; kuj k`2 D 1; Nj ! 1:

These are probability measures on T 2 which are invariant under the map (5.1) (as can be
seen directly from Egorov’s theorem (5.4)).

When the matrix A is hyperbolic, the map (5.2) is ergodic with respect to the
Lebesgue measure on T 2. Using this fact, Bouzouina–de Bièvre [11] showed Quantum
Ergodicity in this setting: if we put together orthonormal bases of eigenfunctions of BN
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for all N , then there exists a density 1 subsequence of this sequence which converges to the
Lebesgue measure.

On the other hand, Faure–Nonnenmacher–De Bièvre [25] showed that Quantum
Unique Ergodicity fails for quantum cat maps:

Theorem 14. Let A 2 SL.2; Z/ be a hyperbolic matrix. Fix any periodic trajectory  � T 2

of the map (5.1). Then there exists a sequence of eigenfunctions uj of the quantum cat
map BNj

, for some Nj ! 1, which converge semiclassically to the measure

1
2
ı C

1
2
�L (5.5)

where ı is the delta probability measure on the trajectory  and�L is the Lebesgue measure
on T 2.

We remark that the choice of Nj in Theorem 14 is highly special: one takes them so
that the matrix Akj is the identity modulo 2Nj where kj is very small, namely kj � logNj .
This implies that the quantum cat map BNj

also has a short period, namely B
kj

Nj
is a scalar.

See the papers of Dyson–Falk [23] and Bonechi–De Bièvre [9] for more information on the
periods of the cat map. A numerical illustration of Theorem 14 is given on Figure 4.

The entropy of the measure (5.5) is equal to half the entropy of the Lebesgue mea-
sure. This matches the constant in the entropy bound of Theorem 8. Since from the point of
view of microlocal analysis quantum cat maps have similar properties to hyperbolic surfaces,

Figure 4

Phase space concentration for two eigenfunctions of the quantum cat map with A given by (5.2) and N D 1292.
More specifically, we plot the absolute value of a smoothened out Wigner transform of the eigenfunction on the
logarithmic scale (see, e.g., [18, §2.2.5]). On the left is a typical eigenfunction, showing equidistribution. On the
right is a particular eigenfunction of the type constructed in [25], corresponding to a measure of the type (5.5)
featuring the closed trajectory ¹. 1

3 ; 0/; . 2
3 ; 1

3 /; . 2
3 ; 0/; . 1

3 ; 2
3 /º. The existence of such an eigenfunction relies on the

careful choice of N : A18 is the identity matrix modulo 2N .
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significant new insights would be needed to show that a counterexample of the kind (5.5)
cannot occur for hyperbolic surfaces.

Faure–Nonnenmacher [24] showed that the constant 1
2
in (5.5) is sharp: the mass of

the pure point part of any semiclassical measure for a quantum cat map is less than or equal
to the mass of its Lebesgue part. Brooks [12] generalized this to a statement that the mass of
lower entropy components of any semiclassical measure is less than or equal to the mass of
higher entropy components; this in particular implies an entropy bound analogous to (4.2).

There is also an analogue of arithmetic Quantum Unique Ergodicity in the setting
of cat maps: Kurlberg–Rudnick [35] introduced Hecke operators which commute with BN

and showed that any sequence of joint eigenfunctions of BN and these operators converges
to the Lebesgue measure. This does not contradict the counterexample of Theorem 14 since
for the values of Nj chosen there, the map BNj

has eigenvalues of high multiplicity.
We now discuss the recent results on support of semiclassical measures for cat maps,

proved using the fractal uncertainty principle. For two-dimensional cat maps, Schwartz [43]

showed the following:

Theorem 15. Let � be a semiclassical measure for a quantum cat map associated to some
hyperbolic matrix A 2 SL.2; Z/. Then supp� D T 2.

Similarly to Section 4.2, the proof uses that no function can be localized simultane-
ously on the two sets

�˙.N / WD

²
� 2 T 2

ˇ̌̌̌
A�j .�/ 62 U for all j D 0; : : : ;

logN

log j�Cj

³
where �C is the eigenvalue of A such that j�Cj > 1. Here U � T 2 is some nonempty open
set. See Figure 5.

Figure 5

A set U � T2 (center picture, in white) and the corresponding sets �C.N /, ��.N / (left/right picture). The set
�C.N / is “smooth” in the unstable direction of the matrix A and porous in the stable direction, with the porosity
constant depending only on U. Same is true for ��.N / but switching the roles of the stable/unstable directions.
The fractal uncertainty principle of Theorem 12 can be used to show that no function can be localized on both
�C.N / and ��.N /.
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We finally discuss the quantum cat map analog of the higher-dimensional Conjec-
ture 13, by considering quantum cat maps associated to symplectic integer matrices A 2

Sp.2n; Z/. In this setting Dyatlov–Jézéquel [18] proved

Theorem 16. Let � be a semiclassical measure for a quantum cat map associated to a
matrix A 2 Sp.2n; Z/ such that:

• A has a simple eigenvalue �C such that all other eigenvalues satisfy j�j < �C;
and

• the characteristic polynomial of A is irreducible over the rationals.

Then supp� D T 2n.

Here the first condition makes it possible to still use the one-dimensional Fractal
Uncertainty Principle in the proof.

We remark that there are examples of semiclassical measures which do not have full
support for some matrices A satisfying the first condition of Theorem 16 but not the second
condition. In particular, there exist semiclassical measures supported on tori associated to
any A-invariant rational Lagrangian subspace of R2n. See the work of Kelmer [34] and the
discussion in [18, Appendix A].
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1. Introduction

Homogenization, a subject with a long and rich history, deals with the macrobehav-
ior of a medium as a large-scale average of its microscopic properties. The earliest inves-
tigations seeking such effective models, appear to go back to Maxwell [76], Lord Rayleigh
[84], and others, around the start of the 20th century. For instance, in [84] Lord Rayleigh con-
siders an arrangement of cylindrical rods of constant thermal conductivity in a rectangular
array within an otherwise uniform medium. Assuming that the conductivity of the rods is
significantly different from that of the background medium, the subject of homogenization
addresses questions such as: on length-scales much larger than the period of the arrangement
of the rods, can one approximate the heat distribution in the composite material, by instead
studying an effective, homogeneous material? Remarkably, in [84] Lord Rayleigh discovers
an explicit formula for the effective conductivity in the case of the above planar arrangement.

The study of homogenization has witnessed immense growth in the last half century,
and continues to flourish. As it supplies tools for analysis of situations that involve multi-
ple spatio-temporal scales, it is not surprising that homogenization plays an important role
in such diverse fields as materials science [2, 88], fluid mechanics and mixing [54], climate
modeling [35], biology [15, 16, 68], machine learning and data science [91]. The ubiquity of
homogenization, on the one hand, and the intractability of direct computational approaches
for large, multiscale problems, on the other, renders the analytical study of homogenization
vitally important. The goal of this survey is to report progress, and the state-of-the-art, in
one segment of this vast subject, focusing on the contributions of the authors to variational
methods in homogenization. In particular, we do not discuss the recent burst of activity
in stochastic homogenization [8, 69], applications of homogenization to study discrete and
possibly random structures such as point clouds [89], optimal control theory and numerical
analysis associated with homogenization [91].

The main thrust of this article is on variational methods. As a concrete example, we
consider the benchmark problem in homogenization8̂<̂

: �r �

�
a

�
x

"

�
ru"

�
D 0 in �;

u" D g on @�:
(1.1)

Here, � � RN is a bounded Lipschitz domain, a W RN ! .0;1/ is a given periodic,
measurable, bounded, uniformly elliptic, symmetric matrix field, 0 < " � 1 represents the
length-scale of the heterogeneities, and g 2 L2.@�/ is a given Dirichlet datum. Homoge-
nization seeks to find an “effective” constant matrix a that is independent of the domain �
and of the boundary condition g, such that the limit of solutions ¹u"º" to (1.1) exists (call it
u0), and solves the “homogenized” partial differential equation (PDE)8<: �r � aru D 0 in �;

u D g on @�:
(1.2)

It is, of course, of interest to also study quasiperiodic, or random choices of a. Early works
that addressed the question of justification of the formal two-scale asymptotic expansion
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led to the development of important functional analytic tools that rely on the structure of the
PDE. These include [14], methods of compensation compactness [87], G- and H-convergence
[48], Bloch decomposition [34], among others. When the matrix field a is symmetric, the
problem (1.1) has a variational formulation. Indeed, solutions to (1.1) are the unique mini-
mizers to the sequence of variational problems

min
uj@�Dg

E".u/ WD
1

2

ˆ
�

�
a

�
x

"

�
ru � ru

�
dx: (1.3)

The notion of �-convergence is well suited for the study of the " ! 0C asymptotics of the
energies E" in (1.3). This notion of convergence of a family of functionals defined on a
Banach space was introduced by De Giorgi in 1975 (see [49]). As such, along with appro-
priate compactness, this scheme of convergence of functionals is the weakest notion that
ensures that global minimizers of the approximating functional converge to a global mini-
mizer of the limiting functional. In the example in (1.3) above, the limiting energy takes the
form

E0.u/ WD
1

2

ˆ
�

haru;rui dx:

�-convergence is stable under continuous perturbations, and is therefore well adapted to the
multiscale analysis of nonlinear problems that have variational structure. More crucially, it is
sufficiently robust to allow for the limiting problem to be defined on a different space than the
approximating problems (see Section 4 for an example). Being based on soft compactness
and lower-semicontinuity arguments, approaches based on �-convergence are particularly
well-suited when fine information that is uniform in the small parameter (such as a spec-
tral gap) is difficult or even impossible to obtain. There is, however, a price to pay using
�-convergence techniques in that the underlying arguments do not often yield rates of con-
vergence.

2. An overview of contributions to homogenization

In [60], Fonseca and Francfort consider a quasistatic model aiming at understanding
the interaction between damage and fracture. To prove that a certain incremental problem
at a fixed time step is well posed, they state and use a homogenization conjecture (see [60,

Conjecture 3.15]), known at the time to be true in some important convex examples (cf. [60,
Remark 3.16]). This conjecture was then proved to be true in the general convex case in [10],
while the nonconvex case, including the quasiconvex one, remains open.

In [20], Fonseca, Bouchitté, andMascarenhas introduced the so-called globalmethod
for relaxation, which is central to the study of minimization problems via the direct method
in the calculus of variations. This method provides a unified pathway to identify the integral
representation of the lower-semicontinuous envelope of certain functionals that naturally
arise in several applications, such as in phase transitions, fracture mechanics, plasticity, and
image segmentation. Moreover, as an application of their methodology, they address in [20,

Section 4.3] a homogenization problem associated with integral energies coupling bulk and
surface terms, which generalized several results in the literature, including [23].
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In [24], Fonseca, Braides, and Francfort study dimension reduction problems for
heterogeneous thin domains in the context of nonlinear elasticity. The domains considered
are of the type

�" WD
®
.x0; x3/ 2 R2

� R W x0
2 !; jx3j < "h".x

0/
¯
;

where ! � R2 is a bounded domain and h" is a smooth "-dependent profile, while the elastic
integral energy of the system involves a p-growth Carathéodory function f" � f".x

0; x3I �/.
As one of the main applications of their general asymptotic analysis, they consider the
homogenization problem corresponding to the case where the profile h" is assumed to be
periodic, and the elastic density f" is assumed to be independent of x3 and periodic with
respect to x0, with the same period as h". They obtain an integral representation for the
effective energy on the middle section !.

Another contribution to the study of minimization problems via the direct method
in the calculus of variations is that of Fonseca and Müller in [63], where they address the
study of lower semicontinuity and relaxation of functionals of the type

.u; v/ 7!

ˆ
�

f
�
x; u.x/; v.x/

�
dx;

where, for N , m, d 2 N, � � RN is an open and bounded domain, u W � ! Rm, and
v W�! Rd satisfies a partial differential constraint of the typeAvD 0. Here,A is a constant-
coefficient linear partial differential operator of the form

Av WD

NX
iD1

A.i/ @v

@xi

with A.i/
2 Rl�d for all i 2 ¹1; : : : ; N º and some l 2 N (2.1)

(see Section 3 for amore detailed description of these operators). In the literature, this context
is nowadays referred as the A-free setting. A typical example of such operators is A D curl,
in which case v D rw for some potential w. In particular, for w D u we are led to the
so-called gradient case, where the integral energies take the form

u 7!

ˆ
�

f
�
x; u.x/;ru.x/

�
dx:

Though relevant in many applications, the curl case does not cover some important ones in
which v must satisfy other linear partial differential constraints, such as Maxwell’s equations
in the case of electromagnetism, or, in the case of linear elasticity, v is the symmetric part of
a gradient. Therefore, the A-free fields setting offers a unified abstract approach to several
of these PDE constraints.

In [25], besides further developing the analysis in [63], Fonseca, Braides, and Leoni
address an homogenization problem in the A-free setting. More precisely, they characterize
the effective behavior of integrals energies of the form

v 7!

ˆ
�

f

�
x

"
; v.x/

�
dx subjected to Av D 0;

where " > 0 is the usual homogenization small parameter, and the integrand f is periodic
in the first variable and satisfies certain continuity, p-growth, and coercivity conditions.
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The periodic homogenization result in [25] was generalized by Fonseca and Krömer
[61] by working under weaker continuity assumptions and, most importantly, without assum-
ing coercivity on f . Moreover, they extended the widely used two-scale convergence method
(see [1,82]) to the A-free setting.

Also in the context of periodic homogenization in the general A-free framework,
Fonseca and Davoli consider in [42, 43] operators with variable coefficients, which is not a
straightforward extension of the constant coefficient case. More precisely, these two papers
are devoted to the study of the effective behavior, as " ! 0, of integral energies of the form

v 7!

ˆ
�

f

�
x;
x

"˛
; v.x/

�
dx; (2.2)

subject to periodically oscillating differential constraints of the type

A"v WD

NX
iD1

Ai

�
�

"ˇ

�
@v

@xi

! 0 strongly in W �1;p.�I Rl / (2.3)

or, in divergence form,

A"v WD

NX
iD1

@

@xi

�
Ai

�
�

"ˇ

�
v

�
! 0 strongly in W �1;p.�I Rl /; (2.4)

where p 2 .1;C1/, Ai .x/ 2 Rl�d for all x 2 RN and i 2 ¹1; : : : ;N º, ˛;ˇ > 0 are param-
eters, and f is assumed periodic in the second variable. Different asymptotic regimes are
expected according to the ratio between ˛ and ˇ. The case in which ˇ > 0 and ˛ D 0 with
f independent of the first two variables (f .x; y; �/ � f .�/) is addressed in [43] under the
A-constraint (2.4). Also, Fonseca and Davoli consider in [43] the ˛ > 0 and ˇ > 0 case
under the A-constraint (2.3). The remaining cases are announced in [42,43] to be treated in
forthcoming works.

In [59], Fonseca, Ferreira, and Venkatraman initiated a similar research project to
that of Fonseca and Davoli [42,43] but, in contrast with the works mentioned above, outside
of the periodic setting. In a nutshell, [59] addresses the effective behavior, as "! 0, of integral
energies as in (2.2), withA as in (2.1), assuming a quasicrystalline assumption on the second
variable of f in place of periodicity, which poses new challenges. We refer to Section 3 for
a more detailed motivation and description of this work.

Next, we mention some authors’ contributions concerning the gradient case,
A D curl, or related cases. In [66], Fonseca and Zappale consider first and second order-
derivatives in the multiscale case aimed at composites that may feature periodic properties
at more than one microscale. The integral energies are of the form

u 7!

ˆ
�

f

�
x

"
;
x

"2
;Dsu.x/

�
dx;

where s 2 ¹1; 2º, and f is assumed to be convex in the last variable and continuous. Besides
considering general convex energies in the multiscale setting, one of the main novelties of
[66] is the characterization of multiscale limits of second-order derivatives. Prior to [66], this
characterization was only known for first-order derivatives.
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Later, Fonseca and Baía [11] address the effective behavior, as " ! 0, of integral
energies of the form

u 7!

ˆ
�

f

�
x;
x

"
;ru.x/

�
dx

without assuming any convexity-type condition on f . This work extends those in the litera-
ture by not requiring uniform continuity in space.

In [57,58], Fonseca and Ferreira revisit the multiscale framework in the case where
f grows at most linearly. These studies fall within the realm of the space of functions of
bounded variation, BV, and are aimed at identifying effective energies for composite mate-
rials in the presence of fracture or cracks. Precisely, they generalize in [58] the notion of
two-scale convergence for sequences of Radon measures with finite total variation in [3] to
the case of multiple periodic length scales of oscillations. The main result concerns the char-
acterization of the multiscale limit of ¹.u"LN

b�;Du"b�/º" � M.�I Rd / � M.�I Rd�N /

whenever ¹u"º" is a bounded sequence in BV.�I Rd /, where M.�I Rm/ with m 2 N is
the Banach space of bounded Radon Rm-valued measures, endowed with the total varia-
tion norm j � j. This result requires considerable modifications of the single microscale case
treated in [3], and is based on fine analytical and measure-theoretic arguments. Using this
characterization, Fonseca and Ferreira treat in [57] multiscale homogenized problems in the
space BV of functions of bounded variation of the form

u 7!

ˆ
�

f

�
x

%1."/
; : : : ;

x

%n."/
;ru.x/

�
dx

C

ˆ
�

f 1

�
x

%1."/
; : : : ;

x

%n."/
;
dDsu

djDsuj
.x/

�
d
ˇ̌
Dsu

ˇ̌
.x/

for u 2 BV.�I Rd /. Here, the distributional derivative of u, Du, is decomposed into its
absolutely continuous part with respect to theN -dimensional Lebesgue measure,ruLN

b�,
and its singular part,Dsu. Moreover, f 1.y1; : : : ;yn; �/ WD lim supt!1 f .y1; : : : ;yn; t�/=t

is the recession function of a function f W RnN � Rd�N ! R, separately periodic in the
first n variables, and %1; : : : ; %n are positive functions on .0;1/, representing the length-
scales, such that for all i 2 ¹1; : : : ; nº and j 2 ¹2; : : : ; nº, lim"!0 %i ."/ D 0, lim"!0 %j ."/=

%j �1."/ D 0. In the case of one microscale, Fonseca and Ferreira recover the result in [3]

under more general conditions, as well as the results in [19,45]. For two or more microscales,
they obtain new results in the literature.

In [28], Fonseca and Bufford extend toL1.�/ the paramount two-scale compactness
property, which asserts that from every bounded sequence, one can extract a subsequence
that two-scale converges, with the average over the periodic cell coinciding with the usual
weak two-scale limit. This L1-extension is obtained under an equiintegrability condition on
the sequence, and is proved in [28] using three different approaches: an adaptation of the Lp

case with p > 1, a measure-theoretic argument, and the periodic-unfolding method.
In [27], Fonseca, Bufford, and Davoli address a multiscale homogenization prob-

lem in the context of dimension reduction in nonlinear elasticity, aiming at characterizing
effective energies for thin, elastic plate-type composites. The energies considered are of the
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form
u 7!

1

h

ˆ
�h

f

�
x0

".h/
;
x0

"2.h/
;ru.x/

�
dx DW Fh.u/

for u 2 W 1;2.�hI R3/, where�h WD ! � .� h
2
; h

2
/ � R2 � R, x D .x0; x3/ 2 ! � .� h

2
; h

2
/,

h > 0, f is periodic in its first two arguments, and satisfies both common assumptions in
nonlinear elasticity and a nondegeneracy condition in a neighborhood of the set of proper
rotations. The main result in [27] concerns the characterization of the effective energy asso-
ciated with the rescaled energies 1

h2Fh.�/ depending on the values of

1 WD lim
h!0

h

".h/
and 2 WD lim

h!0

h

"2.h/
;

where limh!0 ".h/D limh!0 "
2.h/D 0. This rescaling of the energies corresponds to Kirch-

hoff’s nonlinear bending theory for plates, and the values of 1 and 2 represent the relative
ratios between the thickness parameter h and the two homogenization length-scales, " and "2.
These authors obtain different limit models depending on these ratios. Their results extend
those in [72, 90] to the multiscale case, and a key and nontrivial step in [27] is the charac-
terization of the three-scale limit of the sequence of linearized elastic stresses. Indeed, the
presence of three scales increases the technicality of the problem in all scaling regimes.

Very recently, in [36, 37], Fonseca, Cristoferi, Hagerty, and Popovici study a vari-
ational model for fluid–fluid phase transitions with small scale heterogeneities in the case
where the small heterogeneities are of the same order of the scale governing the phase tran-
sition, and characterized by a small parameter " > 0. The main result is the limit behavior,
as " ! 0, of integral energies of the form

u 7!

ˆ
�

�
1

"
W

�
x

"
; u.x/

�
C "

ˇ̌
ru.x/

ˇ̌2
�
dx;

whereW W RN � Rd ! Œ0;C1/ is a double-well potential that is periodic in the first variable
and has two zeros. This limit behavior is given not by an isotropic interfacial energy as one
might expect given the isotropy of the surface energy penalization, "jruj2, but instead it
has an anisotropic interfacial energy. This anisotropy results from the intricate interaction
between homogenization and the phase transitions, and is encoded in the limit cell problem.
In [32], the authors study fine properties on the minimizers of the family of problems defining
the asymptotic cell formula obtained in [36, 37]. They also obtain bounds for the limiting
anisotropic surface tension in terms of the large-scale behavior of the distance function to
hyperplanes in certain periodic Riemannian metrics. This work, along with a discussion of
[36], is the content of Section 5.2.

3. Homogenization of quasicrystalline functionals via

two-scale-cut-and-project convergence

The work [59] addresses a homogenization problem aimed at understanding com-
posites with a quasicrystalline microstructure. Such composites have been playing a central
role in materials science and other areas of engineering [9,18,53,70,73,74,81,93]; for example,
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Al–Cu–Fe quasicrystalline materials in polymer-based composites have significantly shown
to improve wear-resistance to volume loss, and a two-fold increase in the elastic moduli. The
2011 Nobel Prize in Chemistry was awarded to Dan Shechtman for the striking discovery of
quasicrystals, which was announced in the early 1980s.

A key feature of a quasicrystalline structure is that its properties are ordered but
are neither periodic nor random. In particular, the mathematical study of quasicrystalline
composites does not fit within the classical periodic homogenization theory, while almost-
periodic and stochastic homogenization approaches do not take full advantage of the quasi-
crystalline feature of the problem, often leading to asymptotic formulas that pose compu-
tational difficulties and are not stable under perturbations. Instead, in [59], a homogeniza-
tion procedure based on the two-scale-cut-and-project convergence, introduced in [21] and
recently revisited in [92], is adopted and further developed. This two-scale-cut-and-project
homogenization procedure leads to a more tractable (even if higher-dimensional) cell prob-
lem.

To describe the problem and the results in [59], we first recall the cut-and-project
method to model quasicrystals. This method was introduced by de Bruijn [44] and further
developed by Duneau and Katz [52], and extends Penrose’s ideas of aperiodic tilings of the
plane [83] to higher dimensions (also see [21]). Roughly speaking, we canmodel anN -dimen-
sional quasicrystalline patterns by cutting periodic tilings in an m-dimensional space, with
m > N , through an N -dimensional subspace with irrational slope. To be precise, given an
N -dimensional quasicrystal R and representing by �R W Rn ! R a constitutive property
ofR, we can findm 2 N, withm>N , a Y m-periodic function � W Rm ! R with Y m � Rm

a parallelotope, and a linear map R W Rn ! Rm such that

�R.x/ D �.Rx/: (3.1)

In the homogenization literature, the structural condition (3.1) is referred to as quasi-
periodicity [30, 75]. We refer to [21, 59] for relevant examples of such linear maps R. Here,
and in the sequel, we do not distinguish the linear map from its associated matrix in Rm�N ,
and denote both by R. Also, we do not distinguish between the transpose matrix and the
adjoint of R, and denote both by R�.

In general, there are multiple choices for m, � , and R (see [21]). However, the
homogenization analysis in this cut-and-project setting does not depend on R provided it
satisfies the following diophantine condition

R�k 6D 0 for all k 2 Zm
n¹0º; (3.2)

where R� denotes the transpose of R. This condition implies that some entries of R must
be irrational, justifying the expression irrational slope used above.

In [59], we address the homogenization problem of characterizing the asymptotic
behavior, as " ! 0C, of integral energies of the form

F".u/ WD

ˆ
�

fR

�
x;
x

"
; u.x/

�
dx (3.3)
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for u 2 Lp.�I Rd / satisfying Au D 0, where p 2 .1;1/ and

Au WD

NX
iD1

A.i/ @u

@xi

with A.i/
2 Rl�d for all i 2 ¹1; : : : ; N º:

The precise meaning of the preceding condition Au D 0, in which case we say that u is
A-free, is by duality, i.e., ˆ

�

u � A�� dx D 0

for all � 2C 1
c .�IRl /, whereA� is the formal adjoint ofAwithA�� WD �

PN
iD1.A

.i//T @�
@xi

.
As usual within studies involving A-free vector fields, we assume that A satisfies

the constant-rank property [63,80,87]; that is, there existsr 2 N such that for allw 2 Rn n ¹0º,
we have

rankA.w/ D r; (3.4)

where A W Rn ! Rl�d denotes the symbol of A, and is defined by A.w/ WD
PN

iD1 A
.i/wi

for w 2 Rn.
A key step to study the asymptotic behavior of the integral energies in (3.3) via

the two-scale-cut-and-project convergence is the characterization of the two-scale-cut-and-
project limits (or, for brevity, R-two-scale limits) associated with Lp-bounded sequences
of A-free vector fields. As we mentioned before, this method has the benefit of taking full
advantage of the quasicrystalline feature of the problem and, in contrast with the random
homogenization case, leads to a simple and more tractable cell formula (see (3.13) below).
Before stating our main homogenization result associated with the integral energies in (3.3),
Theorem 3.9 below, we revise the main definitions and results regarding the cut-and-project-
two-scale convergence obtained in [59], which are of interest on their own.

The notion of R-two-scale convergence was introduced in [21] (also see [92]) as an
extension of the usual notion of two-scale convergence [1,82] to enable the study of compos-
ites whose underlying microstructure has a quasicrystalline feature. In [21, 92], the authors
consider sequences in L2 and their arguments are based on Fourier analysis, relying heavily
on Parseval’s and Plancherel’s identities. Also, in [21] the authors characterize the R-two-
scale limit of bounded sequences in W 1;2, while in [92] the authors characterize the limit
associatedwith bounded sequences inL2 that are divergence-free or curl-free. In [59], besides
generalizing these results to the more general setting of Lp with p 2 .1;1/, we provide a
unified approach to all the previous cases by considering bounded sequences in Lp that are
A-free, in the spirit of [61] concerning the periodic case.

We start by introduction the definition of R-two-scale convergence. In what fol-
lows, we assume that " takes values on an arbitrary sequence of positive numbers that
converges to zero. Moreover, we use the subscript # within function spaces to highlight an
underlying periodicity, in which case the domain indicates the periodicity cell. For instance,
C#.Y

m/ D ¹u 2 C.Rm/ W u is Y m-periodicº and, for a parallelotope in Rn, … � Rn,
L

p
# .…/D ¹u 2L

p
loc.R

n/ W u is…-periodicº. Also, given a Lebesguemeasurable setB � Rk ,
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with k 2 N, we use the average notation
ffl

B
� in place of 1

Lk.B/

´
B

�, where Lk.B/ denotes
the k-dimensional Lebesgue measure of B .

Definition 3.1 (R-two-scale convergence). A sequence ¹u"º" � Lp.�I Rk/ is said to
R-two-scale converge to a function u 2 Lp.� � Y mI Rk/, and we write u"����*

R-2sc
����* u if

for all ' 2 Lp0

.�IC#.Y
mI Rk// we have

lim
"!0C

ˆ
�

u".x/ � '

�
x;

Rx

"

�
dx D

ˆ
�

 
Y m

u.x; y/ � '.x; y/ dx dy: (3.5)

The next proposition states some basic properties of R-two-scale convergence in
Lp.�I Rk/, and we refer to [59, Remarks 3.2 and 3.3 and Propositions 3.4 and 3.5] for its
proof.

Proposition 3.2. Let ¹u"º" �Lp.�IRk/, u2Lp.�� Y mIRk/, and Nu2Lp.�IRk/. Then,

(i) (uniqueness of R-two-scale limits) There exists at most a function
Qu 2 Lp.� � Y mI Rk/ such that u"����*

R-2sc
����* Qu.

(ii) (on the test functions) If ¹u"º" is bounded in Lp.�I Rk/, then u"����*
R-2sc
����* u if

and only if (3.5) holds for all ' 2 C1
c .�IC1

# .Y mI Rk//.

(iii) (R-two-scale and weak limits) If u"����*
R-2sc
����* u, then u" * Nu0 weakly in

Lp.�I Rk/, where Nu0.�/ WD
ffl

Y m u.�; y/dy. In particular, ¹u"º" is bounded in
Lp.�I Rk/.

(iv) (R-two-scale and strong limits) If u" ! Nu in Lp.�I Rk/, then u"����*
R-2sc
����* Nu.

The next proposition provides an important example of sequences that R-two-scale
converge, which is at the core of several homogenization results using the R-two-scale con-
vergence. In particular, it is used to prove the compactness property with respect to the
R-two-scale convergence stated in Proposition 3.4.

Proposition 3.3. Let  2 L1.�I C#.Y
mI Rk//, and assume that R satisfies (3.2). Then

¹ .�; R �

"
/º" is an equiintegrable sequence in L1.�I Rk/ such that �

�;
R �

"

�
L1.�IRk/

6 k kL1.�IC#.Y mIRk// D

ˆ
�

sup
y2Y m

ˇ̌
 .x; y/

ˇ̌
dx (3.6)

and
lim

"!0C

ˆ
�

 

�
x;

Rx

"

�
dx D

ˆ
�

 
Y m

 .x; y/ dx dy: (3.7)

In particular, if  2 Lp.�IC#.Y
mI Rk//, then ¹ .�; R �

"
/º" is a p-equiintegrable sequence

in Lp.�I Rk/ that R-two-scale converges to  .

The proof of Proposition 3.3 can be found in [59, Proposition 3.7 and Corollary 3.8],
while the proof of the following compactness result can be found in [59, Proposition 3.9].

Proposition 3.4. Let ¹u"º" � Lp.�I Rk/ be a bounded sequence, and assume that R satis-
fies (3.2). Then, there exist a subsequence "0 � " and a function u 2 Lp.� � Y mI Rk/ such
that u"0����*

R-2sc
����* u.
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As shown in [21, Remark 2.8], this compactness property may fail in the case in which
R does not satisfy (3.2).

To characterize the R-two-scale limits associated with Lp-bounded sequences of
A-free vector fields, we recall below the notion of .A;Ay

R�/-free vector fields introduced in
[59] (see [59, Definition 3.7 and Remark 3.6]).

Definition 3.5 (.A; A
y

R�/-free fields). Let w 2 Lp.�I L
p
# .Y

mI Rd //, and define
Nw0 2 Lp.�I Rd / and Nw1 2 Lp.�I L

p
# .Y

mI Rd // by setting Nw0 WD
ffl

Y m w.�; y/ dy and
Nw1 WD w � Nw0. We say that w is .A;Ay

R�/-free if the two following conditions hold:

.i/ for all � 2 C 1
c .�I Rl /, we have

ˆ
�

w0 � A�� dx D 0, (3.8)

.ii/ for a.e. x 2 � and for all  2 C 1
# .Y

m
I Rl /,

we have
ˆ

Y m

Nw1.x; y/ � A�
R .y/ dy D 0, (3.9)

where

A�
WD �

NX
iD1

.A.i//T
@

@xi

and A�
R WD �

NX
iD1

mX
mD1

.A.i//T Rmi

@

@ym

:

For brevity, we write A Nw0 D 0 and A
y

R� Nw1 D 0 to mean (i) and (ii), respectively.

Next, we state our main result regarding the characterization of the limits of bounded
sequences in Lp that are A-free.

Theorem 3.6. Let R 2 Rm�n satisfy (3.2). A function u 2 Lp.� � Y mI Rd / is the R-two-
scale limit of an A-free sequence ¹u"º" � Lp.�I Rd / if and only if u is .A;Ay

R�/-free in
the sense of Definition 3.5, that is,

A Nu0 D 0 and A
y

R� Nu1 D 0 (3.10)

in the sense of (3.8) and (3.9), respectively, where Nu0 WD
ffl

Y m u.�; y/ dy and Nu1 WD u � Nu0.

The proof of Theorem 3.6 in [59] uses similar arguments to those in [61] concerning
the periodic case (see [61, Theorem 2.12]). The sufficient part in Theorem 3.6, which guaran-
tees that (3.10) fully characterizes the R-two-scale limits, is new in the literature even for
p D 2 and A WD curl or A WD div treated in [21,92]. Furthermore, in [59, Section 5], we give
an alternative proof of Theorem 3.6 for theA WD curl case using arguments based on Fourier
analysis that differ from those in [21,92] because Parseval’s and Plancherel’s identities do not
hold for p 6D 2. This alternative proof provides the equivalent alterative characterization for
the R-two-scale limit of bounded sequences inW 1;p in Theorem 3.7 below, and we believe
it provides useful arguments to study homogenization problems involving quasicrystalline
functionals in the A WD curl case.

Theorem3.7. LetR 2 Rm�n satisfy (3.2) and letY m � Rm be a parallelotope. Then, a func-
tion v 2Lp.�� Y mIRn/ is the R-two-scale limit of a sequence ¹rv"º" with ¹v"º" bounded
in W 1;p.�/ if and only if there exist v0 2 W 1;p.�/ and v1 2 Lp.�I G

p
R
/ such that

v D rv0 C v1;
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where

G
p
R

WD
®
w 2 L

p
# .Y

m
I Rn/ W Owk D �kR�k for some ¹�kºk2Zm � C with �0 D 0

¯
(3.11)

with Owk WD
ffl

Y m w.y/e
�2�ik�y dy, k 2 Zm, denoting the Fourier coefficients of w.

Remark 3.8. We recall that if u" 2 Lp.�I Rn/ is curl-free in Rn with� simply connected,
then there exists v" 2W 1;p.�/ such that u" D rv". Thus, in terms of the notations in the two
previous results with d D N , we have Nu0 D rv0 and Nu1 D v1. In particular, (3.11) provides
an alternative characterization of AR� - and A

y

R� -free vector fields (see Definition 3.5) in
the A WD curl case (also see [59, Remark 5.7] for a more detailed analysis).

Finally, we state the main homogenization result in [59] associated with the
integral energies in (3.3), proved under the following assumptions on the Lagrangian,
fR W � � Rn � Rd ! Œ0;1/:

(H1) (quasicrystallinity) there existm 2 N, withm > N , a matrix R 2 Rm�n sat-
isfying (3.2), and a continuous function f W � � Rm � Rd ! Œ0;1/ such
that the function f .x; �; �/ is Y m-periodic for each .x; �/ 2�� Rd , with Y m

denoting a parallelotope in Rm, and

fR.x; z; �/ D f .x;Rz; �/

for all .x; z; �/ 2 � � Rn � Rd .

(H2) (growth) there exist p 2 .1;1/ and C > 0 such that

0 6 fR.x; z; �/ 6 C
�
1C j�jp

�
for all .x; z; �/ 2 � � Rn � Rd .

For the proof in [59] of the �-liminf inequality in Theorem 3.9 below, we require, in addition,

(H3) (convexity) for all .x; y/ 2 � � Rm, the function � 7! f .x; y; �/ is convex
and C 1.

Theorem 3.9. Let�� Rn be an open and bounded set, let fR W�� Rn � Rd ! Œ0;1/ be
a function satisfying (H1)–(H3), let F" be the functional introduced in (3.3), and assume
that (3.4) holds. Then, the sequence ¹F"º" �-converges on UA WD ¹u 2 Lp.�I Rd / W

Au D 0º as " ! 0C, with respect to the weak topology in Lp.�I Rd /, to the functional
Fhom defined, for u 2 UA, by

Fhom.u/ WD inf
w2WA

ˆ
�

 
Y m

f
�
x; y; u.x/C w.x; y/

�
dx dy;

where

WA WD

²
w 2 Lp

�
�IL

p
#

�
Y m

I Rd
��

W w is
�
A;A

y

R�

�
-free in the sense of Definition 3.5,

with
ˆ

Y m

w.�; y/ dy D 0

³
:

(3.12)
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Precisely, given an arbitrary sequence ¹"nºn2N � RC converging to 0, the following pair
of statements holds:

(1) (�-liminf inequality) Let ¹unºn2N � UA be a sequence such that un * u in
Lp.�I Rd / for some u 2 Lp.�I Rd /. Then, u 2 UA and

lim inf
n!1

F"n.un/ > Fhom.u/:

(2) (recovery sequence) For every u 2 UA, there exists sequence ¹unºn2N � UA

such that un * u in Lp.�I Rd / and

lim sup
n!1

F"n.un/ 6 Fhom.u/:

Moreover, for all u 2 UA, we have

Fhom.u/ D

ˆ
�

fhom
�
x; u.x/

�
dx;

where
fhom.x; �/ WD inf

v2VA

 
Y m

f
�
x; y; � C v.y/

�
dy (3.13)

with

VA WD

²
v 2 L

p
# .Y

m
I Rd / W v is AR� -free in the sense of (3.9) and

ˆ
Y m

v.y/ dy D 0

³
:

(3.14)

Remark 3.10 (On the hypotheses of Theorem 3.9, cf. [59, Remark 1.2]). (i) In the homog-
enization literature, measurability of f with respect to the fast-variable is often preferred
over continuity. As we discuss in [59, Section 2], measurability of fR requires, in general,
Borel-measurability of f . A common approach to deal with lack of continuity is to com-
bine periodicity with Scorza–Dragoni’s-type results that, up to a set of small measure, allow
reducing the problem to the continuity setting. Here, however, we cannot use such an argu-
ment because a set of smallm-dimensional Lebesgue measure, the ambient space for the fast
variable in terms of (the periodic function) f , may not have smallN -dimensional Lebesgue,
the ambient space for the fast variable in terms of (the quasicrystalline function) fR. (ii) The
nonconvex case raises nontrivial difficulties in the quasicrystalline setting, and will be the
subject of a forthcoming work. (iii) In the Sobolev setting, homogenization of integral ener-
gies of the form (3.3) under nonperiodic assumptions was undertaken in [22, 41, 71] in the
A WD curl case, assuming coercivity. Within the quasicrystalline framework, Theorem 3.9
extends these results to the general A-free setting and without coercivity.

The proof in [59] of Theorem 3.9, which we sketch next, is based on �-convergence
and on two-scale convergence adapted to the quasicrystalline setting, also called two-scale-
cut-and-project convergence.

Proof of Theorem 3.9. We refer to [59] for a detailed proof of the assertions in Theorem 3.9.
Here, we only present a sketch of the proof. Let ¹"nºn2N � RC be an arbitrary sequence
converging to 0.
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Step 1. Fix u 2 UA and assume that w 2 WA \ C 1.�I C 1
# .Y

mI Rd //. For
.x; y/ 2 � � Y m, define

 .x; y/ WD f
�
x; y; u.x/C w.x; y/

�
:

Using (H1), (H2), the continuity of f , and the regularity of w, we conclude that
 2 L1.�IC#.Y

m//. Then, by Proposition 3.3, we have

lim
n!1

ˆ
�

fR

�
x;
x

"n

; wn.x/

�
dx D

ˆ
�

 
Y m

f
�
x; y; u.x/C w.x; y/

�
dy dx; (3.15)

where, for x 2 �,
wn.x/ WD u.x/C w

�
x;

Rx

"n

�
:

It can be checked that
¹wnºn2N is a p-equiintegrable sequence in Lp.�I Rd /;

wn * u weakly in Lp.�I Rd /; Awn ! 0 in W �1;p.�I Rl /:

Then, using an A-free periodic extension lemma established in [63, Lemma 2.15] (also see [61,

Lemma 2.8] and [59, Lemma 2.3]), we can find a sequence ¹unºn2N � Lp.�I Rd / such that

¹unºn2N is p-equiintegrable; Aun D 0 in Lp.�I Rl /; un � wn ! 0 in Lp.�I Rd /:

(3.16)

In particular, un * u weakly in Lp.�I Rd /. Moreover, from (3.15) and a continuity-type
result for fR under (3.16) proved in [59, Lemma 4.2], we have

lim
n!1

ˆ
�

fR

�
x;
x

"n

; un.x/

�
dx D lim

n!1

ˆ
�

fR

�
x;
x

"n

; wn.x/

�
dx

D

ˆ
�

 
Y m

f
�
x; y; u.x/C w.x; y/

�
dy dx:

Using the preceding arguments and a density argument, we can show that for each
ı > 0, u 2 UA, and w 2 WA, there exists a sequence ¹unºn2N � UA such that un * u

weakly in Lp.�I Rd / as n ! 1, and

lim
n!1

ˆ
�

fR

�
x;
x

"n

; un.x/

�
dx 6

ˆ
�

 
Y m

f
�
x; y; u.x/C w.x; y/

�
dy dx C ı: (3.17)

Hence, taking the infimum over w 2 WA first, and then letting ı ! 0 in (3.17), we get

�- lim sup
n!1

F"n.u/ 6 Fhom.u/;

where

�- lim sup
n!1

F"n.u/ WD inf
°
lim sup

n!1

F"n.u"/ W un * u in Lp.�I Rd / as n ! 1;

Aun D 0 for all n 2 N
±
:

Step 2. Here, we prove the �-liminf inequality. Let ¹unºn2N � UA be a sequence
such that un * u in Lp.�I Rd / for some u 2 Lp.�I Rd /.

Because un 2 UA for all n 2 N and convergence un * u in Lp.�I Rd /, we have
u 2 UA. Moreover, by the sufficient part in Theorem 3.6 and by Proposition 3.2, we have
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un����*
R-2sc
����* v for a vector-field v that is .A;Ay

R�/-free in the sense of Definition 3.5, with´
Y m v.�; y/ dy D u.�/. In particular, we have the decomposition

v D uC v1; v1 2 Lp
�
�IL

p
# .Y

m
I Rd /

�
; A

y

R�v1 D 0;

ˆ
Y m

v1.�; y/ dy D 0:

Let ¹ j ºj 2N � Cc.�I C#.Y
mI Rl // be a sequence converging to v in

Lp.� � Y mI Rd / and pointwise in � � Y m. By (H3), we have, for all n; j 2 N,

f

�
x;

Rx

"n

; un.x/

�
> f

�
x;

Rx

"n

;  j

�
x;

Rx

"n

��
C
@f

@�

�
x;

Rx

"
;  j

�
x;

Rx

"

��
�

�
un.x/ �  j

�
x;

Rx

"

��
:

Integrating this estimate over � and passing to the limit as n ! 1, Proposition 3.3 and
(H2)–(H3) yield

lim inf
n!1

F"n.un/ D lim inf
n!1

ˆ
�

f

�
x;

Rx

"n

; un.x/

�
dx

>
ˆ

�

 
Y m

f
�
x; y;  j .x; y/

�
dx dy

C

ˆ
�

 
Y m

@f

@�

�
x; y;  j .x; y/

�
�
�
v.x; y/ �  j .x; y/

�
dx dy (3.18)

for all j 2 N. Letting j ! 1 in this inequality, we obtain from Fatou’s lemma and (H1)
that

lim inf
n!1

F"n.un/ >
ˆ

�

 
Y m

f
�
x; y; v.x; y/

�
dy dx

D

ˆ
�

 
Y m

f
�
x; y; u.x/C v1.x; y/

�
dy dx

> inf
w2WA

ˆ
�

 
Y m

f
�
x; y; u.x/C w.x; y/

�
dx dy D Fhom.u/:

Step 3. From Steps 1 and 2, we conclude that for all u 2 UA, we have

Fhom.u/ D �- lim inf
n!1

F"n.u/ D �- lim sup
n!1

F"n.u/; (3.19)

where

�- lim inf
n!1

F"n.u/ WD inf
°
lim inf
n!1

F"n.un/ W un * u in Lp.�I Rd / as n ! 1;

Aun D 0 for all n 2 N
±
:

Formula (3.19) asserts that ¹F"º" �-converges as "! 0C, with respect to the weak topology
inLp.�IRd /, to Fhom onUA, and is equivalent to proving that both the �-liminf inequality
and the recovery sequence properties in Theorem 3.9 hold (see [39]).

Step 4. Fix u 2 UA, and let w 2 WA. It can be checked that

x 2 � 7! fhom
�
x; u.x/

�
(3.20)

is a measurable map. Moreover, for a.e. x 2 �, we have w.x; �/ 2 VA. Thus, for a.e. x 2 �,

inf
v2VA

 
Y m

f
�
x; y; u.x/C v.y/

�
dy 6

 
Y m

f
�
x; y; u.x/C w.x; y/

�
dy:
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Integrating this estimate over �, and then taking the infimum over w 2 WA, we conclude
that ˆ

�

fhom
�
x; u.x/

�
dx 6 Fhom.u/:

The proof of the converse inequality makes use of a measurable selection criterion
proved in [61, Lemma 3.10] (also see [31]), and we refer to [59, Proposition 4.6] for the details.

4. Phase transitions in heterogeneous media

Heterogeneous media abound in nature, ranging from biological tissues [68] to geo-
logical formations [4]. An essential thermodynamic feature of such systems is phase transi-
tions. The presence of heterogeneities during phase transformations is, in general, expected
to lead to complex interactions such as pinning and depinning phenomena of interfacial
structures, and stick–slip behaviors for possibly anisotropic interface motion [17]. In [36],
Fonseca, Cristoferi, Hagerty, and Popovici initiate a project to understand the interaction of
the dynamics of phase transitions with heterogeneities. Further progress is made in [32], and
the goal of this section is to outline these developments.

The study of pattern formation in equilibrium configurations phase separation is an
extremely complex phenomenon, which has attracted the interest of many mathematicians.
In the case of homogeneous substances, variational models such as the Modica–Mortola
functional (see [78, 79,86]) and its vectorial (see [12,65]), anisotropic (see [13,64]), and non-
isothermal variants (see [38]), have been proven capable of describing the stable configura-
tions observed in experiments. For composite materials, it has been realized experimentally
(see [17]) that the microscopic scale heterogeneities can affect the macroscopic equilibrium
configurations, as well as the dynamics of interfaces. Therefore, physics requires the math-
ematical models to include these microscopic effects.

In this paper, we consider a variational approach to the study of phase transitions in
heterogeneous media in the case where the scale of the heterogeneities is the same as those
at which the phase transitions phenomenon takes place. In particular, we study a Modica–
Mortola like phase field model where the heterogeneities are modeled by oscillations in the
potential. To be precise, let d; N > 1, fix an open bounded set � � RN with Lipschitz
boundary and, for " > 0, define the energy F" W H 1.�I Rd / ! Œ0;1� as

F".u/ WD

ˆ
�

�
1

"
W

�
x

"
; u.x/

�
C "

ˇ̌
ru.x/

ˇ̌2
�
dx: (4.1)

Here u 2 H 1.�I Rd / represents the phase field variable. The assumptions that the double-
well potential W W RN � Rd ! Œ0;1/ has to satisfy differ according to the questions
addressed, and therefore we will present them in each section.

We are interested in understanding what is the sharp interface limit as the parameter
" ! 0. Local minimizers of this limit under a mass constraint will describe equilibrium
configurations.
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Previous investigations on models related to the one considered in this paper have
been undertaken by several authors. In particular, in [6] (see also [5]) Ansini, Braides, and
Chiadò Piat considered the case where oscillations are in the forcing term f .ru/ (which gen-
eralizes jruj2), while in [50] and [51] by Dirr, Lucia, and Novaga investigated the interaction
of the fluid with a periodic mean zero external field. Moreover, in [26], Braides and Zeppieri
studied the � expansion of the scalar one-dimensional case, allowing the zeros of the poten-
tial to jump in a specific way. Finally, the case of higher-order derivatives is examined in [67]

by Francfort and Müller.

5. Phase field model

In this section, we present the results obtained in [32,33,36,37].

5.1. Sharp interface limit
In order to study the sharp interface limit of the energy (4.1), we assume that the

double-well potential W W RN � Rd ! Œ0;1/ satisfies the following properties:

(A1) For all p 2 Rd , x 7! W.x; p/ isQ-periodic, whereQ WD .�1=2; 1=2/N ;

(A2) W is a Carathéodory function, i.e.,

(i) for all p 2 Rd , the function x 7! W.x; p/ is measurable,

(ii) for a.e. x 2 Q, the function p 7! W.x; p/ is continuous;

(A3) There exist z1; z2 2 Rd such that, for a.e. x 2 Q,W.x; p/ D 0 if and only if
p 2 ¹z1; z2º,

(A4) There exists a continuous function eW W Rd ! Œ0;1/, vanishing only at
p D z1 and at p D z2, such that eW .p/ 6 W.x; p/ for a.e. x 2 Q;

(A5) There exist C > 0 and q > 2 such that
1

C
jpj

q
� C 6 W.x; p/ 6 C

�
1C jpj

q
�

for a.e. x 2 Q and all p 2 Rd .

Remark 5.1. Assumption (A2)(i) above is the strongest we can ask when modeling peri-
odic inclusions of different materials. Indeed, when each cell Q is composed of k different
inclusions of materials each in a region E1; : : : ; Ek � Q, the potential W takes the form

W.x; p/ WD

kX
iD1

Wi .p/�Ei
.x/;

whereWi W Rd ! Œ0;1/ are continuous functions with quadratic growth at infinity and such
that Wi .p/ D 0 if and only if p 2 ¹z1; z2º. Therefore the function W in the first variable
is, in general, only measurable. Moreover, the continuity of W in the second variable, the
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nondegeneracy of the potential (A4), and the growth at infinity in the second variable (A5)
are compatible with what is usually assumed in the physical literature.

The limiting functional will be an interfacial energy whose energy density is defined
via a cell formula as follows.

Definition 5.2. For � 2 SN �1, let u0;� W RN ! Rd be the function

u0;�.x/ WD

8<: z1 if x � � 6 0;

z2 if x � � > 0;

and denote byQ� the family of cubes centered at the origin with unit length sides and having
two faces orthogonal to �. For T > 0,Q� 2 Q� , and � 2C1

c .B.0;1//with
´

RN �.x/dx D 1,
where B.0; 1/ is the unit ball in RN , consider the class of functions

C.�;Q� ; T / WD
®
u 2 H 1.TQ� I Rd / W u D u0;� � � on @.TQ�/

¯
:

We define the function � W SN �1 ! Œ0;1/ as

�.�/ WD lim
T !1

g.�; T /;

where, for each � 2 SN �1 and T > 0,

g.�; T / WD
1

T N �1
inf

²ˆ
TQ�

�
W

�
y; u.y/

�
C jruj

2
�
dy W Q� 2 Q� ; u 2 C.�;Q� ; T /

³
:

The main properties of the function � W SN �1 ! Œ0;1/ that are relevant for our
study are collected in the following result. For the proof, see [36, Lemma 4.1, Remark 4.2,

Lemma 4.3, Proposition 4.4].

Lemma 5.3. The following hold:

(i) For every � 2 SN �1, the quantity �.�/ is well defined and finite;

(ii) The value of �.�/ does not depend on the choice of the mollifier �;

(iii) The map � 7! �.�/ is upper semicontinuous on SN �1;

(iv) The infimum in the definition of g.�; T / may be taken with respect to one fixed
cubeQ� 2 Q� , i.e., given � 2 SN �1, for anyQ� 2 Q� it holds

�.�/D lim
T !1

1

T N �1
inf

²ˆ
TQ�

�
W

�
y;u.y/

�
C jruj

2
�
dy W u 2 C.�;Q� ; T /

³
:

We are now in position to introduce the limiting functional.

Definition 5.4. Define the functional F0 W L1.�I Rd / ! Œ0;1� as

F0.u/ WD

8<:
´

@�A
�.�A.x// dH N �1.x/ if u 2 BV.�I ¹z1; z2º/;

C1 else;
(5.1)

where A WD ¹u D z1º, and �A.x/ denotes the measure theoretic external unit normal to the
reduced boundary @�A of A at the point x.
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Figure 1

The source of anistropy for the limiting functional. If �A.x/ is oriented with a direction of periodicity of W , the
(local) recovery sequence would simply be obtained by using a rescaled version of the recovery sequence for
�.�A.x// in each yellow cube and by setting z1 in the green region, and z2 in the pink one. If, instead, �A.x/ is
not oriented with a direction of periodicity of W , the above procedure does not guarantee that we recover the
desired energy, since the energy of such functions is not the sum of the energy of each cube.

Remark 5.5. Note that by Lemma 5.3 (i), it holds thatF0.u/<1 for allu2BV.�I¹z1;z2º/,
and, by Lemma 5.3 (ii), the definition does not depend on the choice of the mollifier �.

Theorem 5.6. Let ¹"nºn2N � .0; 1/ be a sequence such that "n ! 0C as n ! 1. Assume
that (A1), (A2), (A3), (A4), and (A5) hold.

(i) If ¹unºn2N � H 1.�I Rd / is such that

sup
n2N

F"n.un/ < C1

then, up to a subsequence (not relabeled), un !u inL1.�IRd /, for some func-
tion u2 BV.�I ¹z1; z2º/.

(ii) The functional F0 is the �-limit in the L1 topology of the family of functionals
¹F"nºn2N .

Remark 5.7. The most interesting aspect of the above result is the anisotropic character
of the limiting functional. This might come as a surprise since the initial functional F" is
isotropic in its penalization of gradients, but there is a hidden anisotropy: the possible mis-
match between the directions of periodicity of W and the local orientation of the limiting
interface @�A (see Figure 1).

Wewould like to comment on themain ideas behind the proof of Theorem 5.6. Com-
pactness follows by using classical arguments (see [65]), since the nondegeneracy assumption
(A4) allows reducing to the case of a nonoscillating potential

F"n.un/ >
ˆ

�

�
1

"n

eW �
un.x/

�
C "n

ˇ̌
rnu.x/

ˇ̌2
�
dx:
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The liminf inequality (see [36, Proposition 6.1]) is based on a standard blow-up argu-
ment (see [62]) at a point x0 2 @�A to reduce to the case where the limiting function is u0;�

and the domain isQ� 2 Q� , where � D �A.x0/. Then, a technical lemma (see [36, Lemma 3.1])
in the spirit of De Giorgi’s slicing method (see [46]) allows modifying the given sequence
¹unºn2N � H 1.Q� I Rd / into a new sequence ¹vnºn2N � H 1.Q� I Rd / with vn ! u0;� in
L1 such that

lim inf
n!1

F"n.un/ > lim sup
n!1

F"n.vn/;

and vn D �n � u0;� on @Q� , where �n.x/ WD "�N
n �.x="n/. The required inequality then fol-

lows by using a change of variable, and the definition of �.�/ together with Lemma 5.3 (iv).
The main challenges are related to the proof of the limsup inequality (see [36, Propo-

sition 7.1]) for a function u 2 BV.�; ¹a; bº/, which requires new geometric arguments. The
idea is first to prove the result for functions u 2 BV.�I ¹a; bº/, whose outer normals to
the reduce boundary have rational coordinates, and then use the density of this class of
functions in BV.�I ¹a; bº/ together with Reshetnyak’s upper semicontinuity theorem (by
Lemma 5.3 (iii) the function � 7! �.�/ is upper semicontinuous on SN �1) to conclude in
the general case. In order to tackle the first step, we use a general strategy developed by De
Giorgi, which can be seen as a sort of reverse blow-up argument: we consider the localized
�-limsup as a map on Borel sets and we prove that it is indeed a Radon measure �. This is
done by using a simplification of the De Giorgi–Letta coincidence criterion for Borel mea-
sures (see [47]) by DalMaso, Fonseca, and Leoni (see [40, Corollary 5.2]). Next, we show that
� is absolutely continuous with respect to the measure � WD H N �1

b@�A. The result follows
by proving that the density of � with respect to � at a point x0 2 @�A is bounded above by
�.�A.x0//. It is in this step that we exploit the fact that �A.x0/ 2 SN �1 \ QN �1. Indeed,
by using the fact that W is periodic (with a different period) also as a function on any cube
Q whose faces are normal to directions in SN �1 \ QN �1, we can estimate the energy of a
configuration similar to that in Figure 1 on the left.

Remark 5.8. The strategy used to prove the above result is robust enough to be easily
adapted to prove the analogous result when a mass constraint is enforced. Moreover, as a
consequence of the �-limit result, we get that the function � W SN �1 ! Œ0;1/ is continu-
ous, and its 1-homogeneous extension is convex.

The upshot of the foregoing result is that microscopic heterogeneities during phase
transitions result in anisotropic surface tensions at the macroscopic level. Natural follow-up
questions are:

(1) Beyond convexity, what can one say about the effective surface tension �?What
functions � are attainable as effective surface tensions of phase transitions in
periodic media?

(2) Considering the gradient flow dynamics of an energy as in (4.1), what are the
" ! 0 asymptotics? Does one indeed obtain a suitable weak formulation of
anisotropic mean curvature flow, by analogy with the isotropic setting? Further-
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more, what happens to the asymptotics of the gradient flow when the length-
scales of homogenization and phase transitions differ?

In [32], we provide partial answers to the first question above, by relating it to a geometry
problem. In the sequel, we assume the product form of the potential W :

W.y; �/ WD a.y/.1 � u2/2; y 2 RN ; u 2 R: (5.2)

Here a W RN ! R isQ-periodic, and nondegenerate in the sense that

� 6 a.y/ 6 ‚; y 2 RN ; (5.3)

for some 0 < � < ‚ < 1. Note that assumptions (A1)–(A5) of Section 5.1 are satisfied
with z1 D �1, z2 D 1, and eW .p/ WD .1 � p2/2. The fact that u is scalar-valued is crucial
for a number of the results proven in [32, 33] since we use arguments based on the maxi-
mum principle. However, this is not the case of all the results, and we will indicate this as
appropriate.

5.2. Bounds on the anisotropic surface tension �

5.2.1. A geometric framework
Consider the periodic Riemannian metric on RN that is conformal to the Euclidean

one, defined as follows: given points x; y 2 RN , we set

dp
a.x; y/ WD inf



ˆ 1

0

p
a..t/

ˇ̌
P.t/

ˇ̌
dt;

where the infimum is taken over Lipschitz continuous curves  W Œ0; 1� ! RN such that
.0/ D x, .1/ D y. It is easily seen that the formula defining dp

a is independent of the
parameterization of the competitor curves  . Furthermore, standard arguments via the Hopf–
Rinow theorem imply thatRN with the metric dp

a is a complete metric space. Equivalently,
geodesically complete: given any pair of points x;y 2 RN there exists a distance-minimizing
geodesic joining them, whose length is equal to dp

a.x; y/ (see [86] for details). Now fix a
direction � 2 SN �1, and consider the plane †� through the origin with normal �,

†� WD
®
y 2 RN

W y � � D 0
¯
:

Next, define the signed distance function in the dp
a-metric to the plane †� , via

h�.y/ WD sgn.y � �/ inf
z2†�

dp
a.y; z/;

where the signum function is defined as

sgn.t/ WD

8<: 1; t > 0;

�1; t < 0:

It can be shown (see [32, Lemma 2.2]) that h� is Lipschitz continuous, withˇ̌
rh�.y/

ˇ̌
D

p
a.y/ at a.e. y 2 RN : (5.4)
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These observations, together with (5.3), yield
p
�.y � �/ 6 h�.y/ 6

p
‚.y � �/; y � � > 0;

p
‚.y � �/ 6 h�.y/ 6

p
�.y � �/; y � � < 0:

(5.5)

In order to explain the relationship that the dp
a-metric bears with the anisotropic surface

tension � , it is useful to revisit the case a � 1, and the celebrated Modica–Mortola example.
Then,

�.�/ D lim
T !1

1

T N �1
inf

²ˆ
TQ�

�
W

�
u.y/

�
C jruj

2
�

W u 2 C.�;Q� ; T /

³
:

Elementary algebraic manipulations that effectively boil down to completing the square,
yield that the infimum above is asymptotically reached by the one-dimensional profile satis-
fying equipartition of energy. In the model case of (5.2), this entails that the optimal cost is
achieved by the choice u.y/ D q ı .y � �/, where q WD tanh. The associated cost is given by

�.�/ � �0 WD

ˆ 1

�1

�
W

�
q ı .y � �/

�
C

ˇ̌
r

�
q ı .y � �/

�ˇ̌2�
d.y � �/ D 2

ˆ 1

�1

p
W.s/ ds:

(5.6)

To make the connection to the
p
a-metric, we begin by noting that when a � 1 we have

h�.y/ � y � �. Our main motivation, then, is to obtain a similar formula that is exact when
a is nonconstant, or at least supplies reasonable bounds for the nonconstant � 7! �.�/. We
do so by encoding the heterogeneous effects of a into the geometry of the underlying space,
i.e., by working in the

p
a-metric. We turn to making these comments precise.

Fix � 2 SN �1. Then, the cell formula defining �.�/, proven in [36,37] and specialized
to our setting, reads (see Lemma 5.3 (iv))

�.�/ D lim
T !1

1

T N �1
inf

²ˆ
TQ�

�
a.y/W.u/C jruj

2
�
dy W u 2 H 1.TQ�/;

u D � � u0;� on @.TQ�/

³
:

Here, we recall that u0;�.y/ WD sgn.y � �/ and � is any standard smooth normalized mollifier
(it is shown in Lemma 5.3 (ii) that �.�/ is independent of this choice). A preliminary step is
to observe, by De Giorgi’s slicing method (see [32, Lemma A.1]), that, equivalently,

�.�/ D lim
T !1

1

T N �1
inf

²ˆ
TQ�

�
a.y/W.u/C jruj

2
�
dy W u 2 H 1.TQ�/;

u D q ı h� along @.TQ�/

³
: (5.7)

For each fixed T � 1, by the direct method of the calculus of variations, the variational
problem inside the limit has a minimizer. Such a minimizer is, perhaps, not unique, but
for each T we select one, and call it uT . We discuss various properties of uT below in
Section 5.2.2. In light of (5.7), it is clear by energy comparison that

�.�/ 6 lim inf
T !1

1

T N �1

ˆ
TQ�

�
a.y/W.q ı h�/C

ˇ̌
r.q ı h�/

ˇ̌2�
dy:
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Towards proving the opposite bound, we introduce the function � W R ! R, by

�.z/ WD 2

ˆ z

0

p
W.s/ ds:

This function plays a fundamental role in the Modica–Mortola analysis corresponding to
a � 1. For any T � 1, using (5.4) and completing squares, we find
1

T N �1

ˆ
TQ�

�
a.y/W.uT /C jruT j

2
�
dy

D
2

T N �1

ˆ
TQ�

rh� �
p
W.uT /ruT dy C

1

T N �1

ˆ
TQ�

ˇ̌
ruT �

p
W.uT /rh�

ˇ̌2
dy

>
1

T N �1

ˆ
TQ�

rh� � r
�
�.uT /

�
dy

D
1

T N �1

ˆ
TQ�

rh� � r
�
�.q ı h�/

�
dy C

1

T N �1

ˆ
TQ�

rh� � r
�
�.uT / � �.q ı h�/

�
dy

D
1

T N �1

ˆ
TQ�

jrh� j
2�0.q ı h�/q

0.h�/ dy

C
1

T N �1

ˆ
TQ�

rh� � r
�
�.uT / � �.q ı h�/

�
dy

D
1

T N �1

ˆ
TQ�

2a.y/W.q ı h�/ dy C
1

T N �1

ˆ
TQ�

rh� � r
�
�.uT / � �.q ı h�/

�
dy

D
1

T N �1

ˆ
TQ�

�
a.y/W.q ı h�/C

ˇ̌
r.q ı h�/

ˇ̌2 �
dy

C
1

T N �1

ˆ
TQ�

rh� � r
�
�.uT / � �.q ı h�/

�
dy; (5.8)

where in the last line we used the fact that the function q ı h� achieves equipartition of
energy. Indeed, by the definition of h� , we haveˇ̌

r.q ı h�/.y/
ˇ̌2

D .q0
�
h�.y/

�2 ˇ̌
rh�.y/

ˇ̌2
D a.y/W.q

�
h�.y/

�
:

Provided we can control the error term

lim sup
T !1

ˇ̌̌̌
1

T N �1

ˆ
TQ�

rh�.y/ � r
�
�.uT / � �.q ı h�/

�
dy

ˇ̌̌̌
WD �0.�/;

we observe that the test function q ı h� gives two-sided bounds on �.�/. Controlling the term
�0 is complicated by the fact that it couples a product of weakly converging sequences (on
expanding domains). Indeed, rescaling using y D T x in order to work in a fixed domainQ� ,
the two weakly converging factors making up the above product are

(1) the oscillatory factor: by (5.4) and (5.3), the term ¹rh�.T �/ºT , which is
bounded in L1, converges weakly-*; and

(2) the concentration factor: the terms r�.uT .T �// and r�.q ı h�.T �/ converge
weakly-* to measures (see Section 5.2.2 for precise statements).

In particular, as one of the factors converges to a measure, standard tools such as compen-
sated compactness, used traditionally to pass to the limit in products of weakly converging
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sequences, are unavailable, and we must control this term “by hand.” In Section 5.2.2 below,
we obtain fine information on the concentration effects, and in Section 5.2.3 we deduce par-
tial results concerning the oscillatory effects. Finally, we put these together in Section 5.2.4,
where we obtain bounds on �0.�/.

5.2.2. Structure of minimizers of the cell formula
For fixed T � 1, let uT 2 C 2.TQ�/ (by elliptic regularity) a minimizer of the

energy ˆ
TQ�

�
a.y/W.u/C jruj

2
�
dy;

among competitors that equal q ı h� along the boundary @.TQ�/, and set

vT .x/ WD uT .T x/; x 2 Q� :

which minimizes the energy.

Lemma 5.9. The functions vT converge in L1 to u0;� W Q� ! ¹˙1º.

The proof of this lemma (see [32, Lemma 3.1]) is a nice application of the convexity
of the one-homogeneous extension of � (see Remark 5.8), using Jensen’s inequality. The
argument, without any changes, holds in the complete generality of the setting of [36] on
the potential (vectorial, coupled, measurable dependence on the fast variable), and does not
rely on the specific structure requested in (5.2). Combining Lemma 5.9 with the results of
Caffarelli–Cordoba [29], we find that the level sets of vT , for T sufficiently large, converge
uniformly to †� \Q� .

Restricting ourselves to the scalar setting of (5.2), an argument using the strong
maximum principle yields that, for all T < 1, we have

�1 < uT .y/ < 1;

(see [32, Lemma 3.2]). In particular, wT WD
1p
2
tanh�1 uT is well defined, finite, and smooth

in TQ� . Further, the function wT verifies the elliptic boundary value problem8<:�wT D
4p
2
tanhwT .jrwT j2 � a.y//; y 2 TQ� ;

wT .y/ D h�.y/; y 2 @.TQ�/:

Proposition 5.10. Let wT be as above, and let T � 1. There exist universal constants ˛0

and �0 > 0 such that the following holds:8<:
p
‚.y � �/ � ˛0 > wT .y/ >

p
�.y � �/ � �0; if wT .y/ > 0;

�
p
�.y � �/C �0 > wT .y/ > �

p
‚.y � �/C ˛0; if wT .y/ < 0:

(5.9)

Proposition 5.10 asserts that, up to universal constants, the function wT satisfies
exactly the same growth rates as the function h� , see (5.5). To prove Proposition 5.10, con-
sider, for instance, the lower bound in the first of the two inequalities in (5.9). The main
observation is that the function y 7! �T .y/ WD

y��
wT .y/C�0

satisfies an elliptic PDE that ver-
ifies a maximum principle. The remaining inequalities follow from similar arguments, and
we refer the reader to [32, Proposition 3.4] for details.
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5.2.3. The planar metric problem
Our results on the distance function h� concern its large-scale behavior. The bounds

on � that we discuss in Section 5.2.4 below, depend solely on the large-scale behavior of the
distance functions h� for which one can readily invoke efficient numerical algorithms, for
example fast marching and sweeping methods [85].

A natural question concerns the large-scale homogenized behavior of h� , i.e., the
characterization of the limit

lim
T !1

h�.Ty/

T
; y 2 RN ;

in a suitable topology of functions. We completely answer this question.

Theorem 5.11. Let � 2 SN �1. There exists a real number c.�/ 2 Œ
p
�;

p
‚� such that for

each K � RN compact, we have

lim
T !1

sup
y2K

ˇ̌̌̌
1

T
h�.Ty/ � c.�/.y � �/

ˇ̌̌̌
D 0:

Moreover, for all compact subsets K of RN n†� , we have

lim
T !1

sup
y2K

ˇ̌̌̌
1

T .y � �/
h�.Ty/ � c.�/

ˇ̌̌̌
D 0:

We can interpret Theorem 5.11 as a homogenization result for the eikonal equation
in half-spaces. Indeed, it is well known (see, for example, [77]) that for each fixed � 2 SN �1,
the functions kT .y/ WD T �1h�.Ty/ and `.y/ WD c.�/.y � �/ are the unique viscosity solu-
tions to8<: jrkT j D

p
a.Ty/ in ¹y � � > 0º;

kT D 0 on †� ;
and

8<: jr`j D c.�/ in ¹y � � > 0º,

` D 0 on †� :
(5.10)

Theorem 5.11 shows that viscosity solutions of the heterogeneous eikonal equations, i.e.,
kT in (5.10), converge locally uniformly to `. A viscous and stochastic version of these equa-
tions (termed the “planar metric problem”) was introduced by Armstrong and Cardaliaguet
[7], and studied by others [55, 56] in the context of stochastic homogenization of geomet-
ric flows. Small modifications of our arguments, in fact, yield homogenization theorems for
first order Hamilton–Jacobi equations in almost periodicmedia in half-spaces, with Lipschitz
dependence on the fast variable, and convex dependence on the gradient variable.

5.2.4. Bounds on the anisotropic surface tension
As explained in the string of inequalities (5.8), the function q ı h� provides tight

upper and lower bounds for the effective anisotropy �.�/. To be precise, we have

Theorem 5.12. Let � W SN �1 ! Œ0;1/ be the anisotropic surface energy as in (5.2). Let
q W R ! R be defined by

q.z/ WD tanh.z/; z 2 R:
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For � 2 SN �1, define

�.�/ WD lim inf
T !1

1

T N �1

ˆ
TQ�

�
a.y/W.q ı h�/C

ˇ̌
r.q ı h�/

ˇ̌2�
dy;

�.�/ WD lim sup
T !1

1

T N �1

ˆ
TQ�

�
a.y/W.q ı h�/C

ˇ̌
r.q ı h�/

ˇ̌2�
dy:

There exist ƒ0 > 0 and �0 W SN �1 ! Œ0;ƒ0� such that

�.�/ � �0.�/ 6 �.�/ 6 �.�/:

We remark that in general, �0.�/ is never zero, unless a � 1.
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We review recent results on functional inequalities for systems of orthonormal functions.
The key finding is that for various operators the orthonormality leads to a gain over a
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1. Introduction

For more than four decades, Lieb–Thirring inequalities have played an important
role in various areas of mathematical physics and analysis. The progress that has been made
towards the conjectures in the area and many extensions and generalizations of the original
inequalities have been reviewed in the surveys [5,19,38,42,43,49], the textbooks [51,52], as well
as in the forthcoming book [27]. In order to avoid too large an overlap with these existing
works, the present contribution, which was invited by the organizers of the International
Congress of Mathematicians 2022, to whom the author is most grateful, focuses only on one
single aspect of these inequalities. Namely, we will consider Lieb–Thirring inequalities from
the point of view of Sobolev-type inequalities for systems of orthonormal functions, and we
discuss recent extensions, in particular, to the Strichartz and Stein–Tomas inequalities from
harmonic analysis. We will also briefly comment on selected applications of these newly
obtained bounds.

1.1. The general setup
Let H be a (typically complex) Hilbert space with norm denoted by k � k and let X

be a measure space, with measure denoted simply by dx and with corresponding Lebesgue
spacesLq.X/. Assume that T is a bounded linear operator fromH toLq.X/ for some q > 2.
That is, for all f 2 H , Z

X

jTf j
q dx . kf k

q : (1.1)

As a consequence, if f1; : : : ; fN are normalized in H , thenZ
X

 
NX

nD1

jTfnj
2

!q=2

dx . N q=2:

This is a consequence of (1.1) and the triangle inequality in Lq=2. The power N q=2 is best
possible, as can be seen by taking all fn to be equal.

The question that interests us here is whether for a given operator T there is a power

˛ < q=2

such that for all N and all f1; : : : ; fN 2 H satisfying the orthonormality constraint

.fn; fm/ D ın;m for all 1 � n;m � N

one has Z
X

 
NX

nD1

jTfnj
2

!q=2

dx . N ˛: (1.2)

As explained, for instance, in [19,50,52], such bounds, if true, have important consequences
in the mathematical physics of large fermionic quantum systems, density functional theory,
and the theory of nonlinear evolution equations. Their study is also interesting from a purely
analytical point of view and reveals aspects of the underlying operator T which go beyond
its boundedness.
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At the moment there is no general principle that determines the exponent ˛ directly
from the operator T . Rather, inequalities of the form (1.2), if true, have been verified on a case
by case basis.Most of the existing results concern the casewhereT is (at least approximately)
translation invariant. Finding a regime of orthonormal functions f1; : : : ; fN with N ! 1

where the power ˛ in the bound (1.2) is saturated often relies on techniques of semiclassical
and microlocal analysis.

1.2. Example: the HLS inequality
The above principle is most clearly illustrated on the example of the Hardy–Little-

wood–Sobolev (HLS) inequality, also know as the weak Young inequality or the theorem of
fractional integration; see, e.g., [51, Theorem 4.3]. A particular case of this inequality states
that for 0 < s < d=2 the operator of convolution with jxj�dCs is bounded from L2.Rd / to
Lq.Rd / with q D 2d=.d � 2s/.

Its extension to systems of orthonormal functions is due to Lieb [48] and reads as
follows.

Theorem 1. Let 0 < s < d=2. Then, if f1; : : : ; fN are orthonormal in L2.Rd /,Z
Rd

 
NX

nD1

ˇ̌
jxj

�dCs
� fn

ˇ̌2!d=.d�2s/

dx . N:

Remarks 2. (a) The power 1 of N on the right side is best possible.

(b) The bound is equivalent (in a certain weak sense) to the Cwikel–Lieb–Rozen-
blum (CLR) bound

N
�
.��/s C V

�
.
Z

Rd

V d=.2s/
� dx

on the number N..��/s C V / of negative eigenvalues of the generalized
Schrödinger operator .��/s C V in L2.Rd /. Here V.x/� D max¹�V.x/; 0º.
The meaning of “equivalent” will be explained in the next subsection. It is a
“weak” form of equivalence, because this argument does not mean that the
sharp constant in Theorem 1 is in one-to-one correspondence with the sharp
constant in the CLR bound. This is in contrast to a form of duality that we will
encounter later.

(c) The proof of Theorem 1 in [48] proceeds by reducing it to Cwikel’s theorem
[11]. Alternative, direct proofs of Theorem 1 were given in [17,58]. We present
a different, unpublished proof in Subsection 1.5 below.

(d) Just like the HLS inequality, the bound in Theorem 1 is conformally invariant.
This leads to a natural conjecture for its optimal constant [17].

1.3. The duality argument
Let us return to the general setting described in Subsection 1.1 and consider a

bounded operator T W H ! Lq.X/ for some q > 2. By Hölder’s inequality, this bound-
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edness is equivalent to having, for any W 2 L2q=.q�2/.X/ and any f 2 H ,Z
X

jW j
2
jTf j

2 dx . kW k
2
2q=.q�2/kf k

2;

which, in turn, is equivalent to the boundedness of the operatorW T from H to L2.X/ with
norm

kW T k . kW k2q=.q�2/:

Here, as usual, we do not distinguish in the notation between the functionW and the operator
of multiplication by W . Moreover, k � k on the left side denotes the operator norm.

Let us now reformulate the desired inequality (1.2) in terms of the operator W T .
We assume that ˛ < q=2. Again by Hölder’s inequality, we see that (1.2) is equivalent to

NX
nD1

Z
X

jW j
2
jTfnj

2 dx . N 2˛=q
kW k

2
2q=.q�2/: (1.3)

In order to state this previous inequality succinctly, we recall the notion of Schatten
spaces. Background can be found, for instance, in [36,62]. For a compact operatorK between
two Hilbert spaces, we denote by .sn.K//n2N the sequence of its singular values, that is,
the square roots of the eigenvalues of the operator K�K in nonincreasing order, repeated
according to multiplicities. Then, by definition, for any 0 < r < 1, the Schatten class �r

consists of all compact operators K with s�.K/ 2 `r . This is a normed linear space with
respect to

kKkr WD

�X
n2N

sn.K/
r

�1=r

:

Also, we will need the weak variant of this space, �r
weak, consisting of all compact K with

s�.K/ 2 `r
weak. For 2 < r < 1, the following norm will appear naturally in our analysis:

kKkr;w WD sup
N 2N

N�1=2C1=r

 
NX

nD1

sn.K/
2

!1=2

:

It follows from the variational principle for sums of eigenvalues that
NX

nD1

sn.K/
2

D sup

´
NX

nD1

kKfnk
2

W f1; : : : ; fN orthonormal

µ
:

From this and the triangle inequality inRN it follows that k � kr;w defines, indeed, a norm. It is
also easy to see that k � kr;w is equivalent to the more standard quasinorm in �r

weak defined by

kKk
0
r;w WD sup

n2N
n1=rsn.K/:

The constants in this equivalence depend on r > 2 and their explicit values can be found, for
instance, in [17, Lemma 2.3], where another expression for kKkr;w is used.

Returning to the above setting, we now see that (1.3) is equivalent to the fact that
W T belongs to the weak Schatten class �

2q=.q�2˛/
weak with

kW T k2q=.q�2˛/;w . kW k2q=.q�2/: (1.4)

3759 Lieb–Thirring inequalities and other functional inequalities for orthonormal systems



To summarize, we have seen that the desired inequality (1.2) is equivalent to a quantitative
compactness property of the operatorW T , expressed in terms of a weak Schatten norm. The
exponent ˛ in (1.2) is in one-to-one correspondence with the Schatten exponent. What we
have gained through this reformulation is, for instance, that we can use interpolation methods
to prove trace ideal properties of the operators T W .

At this point we can present Lieb’s proof of Theorem 1. Namely, Cwikel’s theorem
[11] says that, for 2 < p < 1,a.X/b.�ir/

p;w . kakpkbkp;w: (1.5)

Here a.X/ denotes the operator of multiplication by a function a 2 Lp.Rd / in position
space and b.�ir/ denotes the operator of multiplication by a function b 2 L

p
weak.R

d / in
momentum space. The operator T relevant for Theorem 1 is convolution with jxj�dCs which
corresponds to multiplication by (a constant times) j�j�s in Fourier space. The latter function
belongs toLd=s

weak.R
d /. Thus, (1.5) implies (1.4) with˛D 1 and qD 2d=.d � 2s/, as claimed.

The proof of Cwikel’s theorem in [17] goes in some sense the other way around.
Namely, first Theorem 1 (or rather a slight generalization of it) is established, using the
method of [58], and then the above duality argument is used to deduced (1.5).

We can now also explain the notion of weak equivalence in Remark 2 (b). Namely,
by the Birman–Schwinger principle, the bounds there for negative eigenvalues of generalized
Schrödinger operators are the same as bounds on the operatorW.��/�s=2 in the quasinorm
k � k0

d=s;w, whereas by the above argument the bound in Theorem 1 is the same as a bound
on this operator in the norm k � kd=s;w.

1.4. A generalization
There is a far reaching generalization of Theorem 1. Namely, if X is a sigma-finite

measure space and A is a nonnegative operator in L2.X/ with heat semigroup satisfying,
for some � > 2, exp.�tA/

L2!L1 . t��=4 for all t > 0;

then for all u1; : : : ; uN 2 domA1=2 satisfying .A1=2un;A
1=2um/D ın;m for 1 � n;m � N ,Z

X

 
NX

nD1

junj
2

!�=.��2/

dx . N:

This is shown in [17], improving earlier results in [30, 45] that require nonnegativity of the
heat kernel.

This more general result reduces to Theorem 1withAD .��/s and un D a constant
times .��/�s=2fn. Another application concerns the case where A is the Laplace–Beltrami
operator on certain noncompact manifolds. For a compact manifold, the above assumption
on the semigroup is not satisfied because of the zero eigenvalue, but one can add a positive
constant to the Laplace–Beltrami operator.
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1.5. Appendix: proof of Theorem 1
We present here an unpublished proof of Theorem 1. It is neither the most elemen-

tary one, nor one giving particularly good constants, but we think it is conceptually rather
clear and might allow for interesting generalizations. In view of the previous subsection it
provides an alternative proof of the CLR inequality and is based on some ideas of Conlon [9].

By the duality argument in Subsection 1.3, we need to prove (1.4) with T equal
to convolution with jxj�dCs , ˛ D 1, and q D 2d=.d � 2s/. Since the weak Schatten norm
of W T equals that of .W T /� D TW , it suffices to consider the latter operator. We have,
using

R
jx � zj�dCsjz � yj�dCs dz D const jx � yj�dC2s and the Fefferman–de la Llave

decomposition [13],

kTW f k
2

D const
“

Rd �Rd

f .x/W.x/W.y/ f .y/

jx � yjd�2s
dx dy

D const
Z

Rd

da

Z 1

0

dr

r2dC1�2s

“
Br .a/�Br .a/

f .x/W.x/W.y/ f .y/ dx dy:

We apply this with f D fn for some orthonormal fn in L2.Rd / and sum over n. For fixed
a and r , we estimate the double integral over x and y in two different ways. First, since the
operator  with kernel

P
n fn.x/fn.y/ has operator norm one, we haveˇ̌̌̌

ˇ NX
nD1

“
Br .a/�Br .a/

fn.x/W.x/W.y/ fn.y/ dx dy

ˇ̌̌̌
ˇ D

ˇ̌
.W 1Br .a/; W 1Br .a//

ˇ̌
�

Z
Br .a/

ˇ̌
W.x/

ˇ̌2
dx

. rd
�
M
�
jW j

2
��
.a/;

whereM is the maximal function. Second, since  � 0,ˇ̌̌̌
ˇ NX
nD1

fn.x/fn.y/

ˇ̌̌̌
ˇ �

p
�.x/

p
�.y/; where �.x/ WD

NX
nD1

ˇ̌
fn.x/

ˇ̌2
;

so ˇ̌̌̌
ˇ NX
nD1

“
Br .a/�Br .a/

fn.x/W.x/W.y/ fn.y/ dx dy

ˇ̌̌̌
ˇ �

�Z
Br .a/

p
�.x/

ˇ̌
W.x/

ˇ̌
dx

�2

. r2d
�
M
�
jW j

p
�
��
.a/2:

Inserting this into the above formula, we find
NX

nD1

kTW fnk
2 .

Z
Rd

da

Z 1

0

dr

r2dC1�2s
min

®
rd
�
M
�
jW j

2
��
.a/; r2d

�
M
�
jW j

p
�
��
.a/2

¯
D const

Z
Rd

da
�
M
�
jW j

p
�
��
.a/2.1�2s=d/

�
M
�
jW j

2
��
.a/2s=d

� const
�Z

Rd

�
M
�
jW j

p
�
��
.a/2d=.dC2s/da

�1�.2s=d/2

�

�Z
Rd

�
M
�
jW j

2
��
.a/d=.2s/ da

�.2s=d/2

:
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By the boundedness of the maximal function on Lp , 1 < p < 1, this is bounded by a
constant times�Z

Rd

jW j
2d=.dC2s/�d=.dC2s/da

�1�.2s=d/2�Z
Rd

jW j
d=s da

�.2s=d/2

�

�Z
Rd

jW j
d=s da

�2s=d�Z
Rd

� da

�1�2s=d

:

To summarize, we have shown that
NX

nD1

kTW fnk
2 . kW k

2
d=sN

1�2s=d :

If we take the fn to be the eigenfunctions of W T 2W corresponding to its N largest eigen-
values, the previous inequality becomes

NX
nD1

sn.TW /
2 . kW k

2
d=sN

1�2s=d :

This is the claimed bound on TW in the Schatten space �
d=s
weak.

2. Sobolev-type inequalities for orthonormal functions

Before turning to themore recent bounds related to Fourier restriction, in this section
we review some classical inequalities for orthonormal functions that are related to Sobolev
inequalities. Those include, in particular, the classical Lieb–Thirring inequality in Theorem 4
below.

2.1. Bessel-potential bounds
The bounds in Theorem 1 concern jxj�dCs � f , which is a constant multiple of the

Riesz potential .��/�s=2f . We present a generalization, due to Lieb [48], of these bounds
to the Bessel potentials .��Cm2/�s=2f with m > 0.

Theorem 3. Let s > 0 and let8̂̂<̂
:̂
2 � q � 1 if s > d=2;

2 � q < 1 if s D d=2;

2 � q � 2d=.d � 2s/ if s < d=2:

Then, if f1; : : : ; fN are orthonormal in L2.Rd /, NX
nD1

ˇ̌�
��Cm2

��s=2
fn

ˇ̌2
q=2

. md�2s�2d=qN 2=q :

The bound for q D 2d=.d � 2s/ if s < d=2 follows as before using Cwikel’s theo-
rem (1.5). The remaining bounds follow similarly, but using the simpler bounda.X/b.�ir/

p
� .2�/�d=p

kakpkbkp (2.1)
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for 2� p � 1. The latter bound is due to Kato, Seiler, and Simon (see, e.g., [62, Theorem 4.1])
and can also be inferred from the Lieb–Thirring matrix inequality [54].

Since (2.1), in contrast to (1.5), involves a strong instead of a weak Schatten norm,
a generalization of the bound in Theorem 3 to sums of the form

P
n �nj.��Cm2/�s=2fnj2

is possible provided, if s > d=2, q < 2d=.d � 2s/. We discuss this in the next section.
Using bounds due to Solomyak [64] (and their natural extension to odd dimensions)

it seems plausible that in the case s D d=2 there is an endpoint bound in the Orlicz space
expL in the spirit of a Moser–Trudinger inequality. For instance, the bounds in [24] can be
dualized to yield that, if � � R2 is open and of finite measure, then for any u1; : : : ; uN 2

H 1
0 .�/ satisfying

R
�

run � rum dx D ın;m for all 1 � n;m � N ,Z
�

A

 
.CLN /

�1

NX
nD1

junj
2

!
dx � j�j;

where A.t/ D et � 1 � t , LN D
PN

nD1 n
�1, and where C is a universal constant.

2.2. The Lieb–Thirring inequality
The original LT inequality in its form for orthonormal functions reads as follows.

Theorem 4. Let d � 1 and s > 0. Then, if u1; : : : ; uN 2 H s.Rd / are orthonormal in
L2.Rd /,

NX
nD1

Z
Rd

ˇ̌
.��/s=2un

ˇ̌2
dx &

Z
Rd

 
NX

nD1

junj
2

!1C2s=d

dx:

Remarks 5. (a) The main point is that the implicit constant can be chosen inde-
pendently of N .

(b) The bound is equivalent to the boundX
j

jEj j .
Z

Rd

V 1Cd=.2s/
� dx

on the sum of the negative eigenvalues (counted with multiplicities) of the gen-
eralized Schrödinger operator .��/s C V in L2.Rd /. This equivalence is, for
instance, in the sense that the sharp constants in the two inequalities are in one-
to-one correspondence.

(c) It is important in applications that the inequality in Theorem 4 extends to density
matrices, namely, for any sequence 0 � � 2 `1,X

n

�n

Z
Rd

ˇ̌
.��/s=2un

ˇ̌2
dx &

�
sup

n
�n

��2s=dZ
Rd

 X
n

�njunj
2

!1C2s=d

dx:

(d) Theorem 4 in d D 3 with s D 1 is due to Lieb and Thirring [53] and was the
crucial ingredient in their proof of stability of matter; see also [52]. Their proof
of Theorem 1 in [54] for s D 1 extends to general s. Alternative proofs are due
to [59], [56] and [61].
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(e) Lieb and Thirring [54] made a famous conjecture about the optimal constant in
the inequality in Theorem 4 for s D 1; see, for instance, [19] for details. This pre-
dicts, in particular, that there is a fundamental difference between dimensions
d � 2 and d � 3. This conjecture is open in any dimension.

(f) The currently best constants in Theorem 4 are due to [23]. A bound with
“almost” the semiclassical constant and a gradient remainder term appears
in [57].

(g) As a step towards the Lieb–Thirring conjecture, one can study the best constant
in the inequality in Theorem 4 with fixedN . For s D 1, it is shown in [20] that in
dimensions d � 3 this constant is always strictly less than the optimal constant
that works for arbitraryN . This is consistent with the Lieb–Thirring conjecture.
For further results in this direction, see also [21,22].

In the spirit of the generalization discussed in Subsection 1.4, Theorem 4 has been
extended to abstract operators satisfying certain heat kernel bounds or Sobolev inequalities;
see [30].

2.3. A more general Lieb–Thirring inequality
The following theorem provides a Sobolev inequality with exponent q less than

2.1C 2s=d/, the exponent in Theorem 4. The bound is deduced in [55] via a duality argument
from a bound of Lieb and Thirring [54]. Note that the functions here are orthogonal, not
necessarily orthonormal.

Theorem 6. Let d � 1, s > 0 and 2 < q < 2.1C 2s=d/. Then, if u1; : : : ; uN 2 H s.Rd /

are orthogonal in L2.Rd /,
NX

nD1

Z
Rd

ˇ̌
.��/s=2un

ˇ̌2
dx

&

 
NX

nD1

kunk

2.2d�.d�2s/q/
2dC4s�dq

2

!�
2dC4s�dq

d.q�2/
 Z

Rd

 
NX

nD1

junj
2

! q
2

dx

! 4s
d.q�2/

:

Remarks 7. (a) The implicit constant can be chosen independently of N .

(b) The bound is equivalent to the boundX
j

jEj j
 .

Z
Rd

V Cd=.2s/
� dx

on the sum of the negative eigenvalues (counted with multiplicities) of the
generalized Schrödinger operator .��/s C V in L2.Rd /. Here  > 1 and
q < 2.1C 2s=d/ are related by

q D
2. C

d
2s
/

 C
d
2s

� 1
;  D

2d � .d � 2s/q

2s.q � 2/
:
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(c) For s D 1, Lieb and Thirring [54] made a famous conjecture about the optimal
constant in the eigenvalue inequality in (b), which translates into a conjecture
for the constant in Theorem 4. This conjecture was proved by Laptev and Weidl
[44] for  � 3=2, that is, q � 2.d C 3/=.d C 1/.

(d) The analysis mentioned in Remark 5 (f) concerning truncated versions of the
inequality is applicable as well in the situation of Theorem 6 with s D 1; see
[20–22].

3. Fourier restriction inequalities for orthonormal

functions

We now turn to inequalities for systems of orthonormal functions that are mathe-
matically related to the question of restricting the Fourier transform to hypersurfaces. Such
a restriction is possible under certain curvature assumptions on the hypersurface and has
important applications to partial differential equations.

3.1. Strichartz inequality for orthonormal functions
The Strichartz inequality [39,66] concerns solutions eit� of the free Schrödinger

equation and quantifies their dispersive behavior. It states that if d � 1, 2 � q � 1 if d D 1,
2 � q < 1 if d D 2, and 2 � q � 2d=.d � 2/ if d � 3, and 2=p C d=q D d=2, then for
all  2 L2.Rd /, Z

R

�Z
Rd

ˇ̌
eit� 

ˇ̌q
dx

�p=q

dt . k k
p
2 : (3.1)

Here is a version of this inequality for systems of orthonormal functions.

Theorem 8. Let d � 1, 2 � q < 2.d C 1/=.d � 1/ and 2=p C d=q D d=2. Then, if
 1; : : : ;  N 2 L2.Rd / are orthonormal in L2.Rd /,Z

R

 Z
Rd

 
NX

nD1

ˇ̌
eit� n

ˇ̌2!q=2

dx

!p=q

dt . N p.qC2/=.4q/:

Remarks 9. (a) The power of N is best possible, as can be deduced from [28].

(b) The bound in Theorem 8 can be slightly improved, namely, for any sequence
0 � � 2 `2q=.qC2/,Z

R

�Z
Rd

�X
n

�n

ˇ̌
eit� n

ˇ̌2�q=2

dx

�p=q

dt .
�X

n

�2q=.qC2/
n

�p.qC2/=.4q/

:

The bound in the theorem corresponds to the case �n 2 ¹0; 1º and is equivalent
to a bound for � in the Lorentz space `2q=.qC2/;1. It is remarkable that, while
in the extension of the bound in Theorem 1 the Lorentz space `s;1 is optimal,
here it can be improved to the space `s . The assumption � 2 `2q=.qC2/ cannot
be relaxed to � 2 `s for any s > 2q=.q C 2/ [28].
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(c) Theorem 8 appears in [28] for q � 2.d C 2/=d and in [31] in the full range. The
proof in [31] uses a duality argument, similarly to that in Subsection 1.3. In fact,
it is slightly simpler, since the duality between �r and �r 0 is more straightfor-
ward than that between �r

weak and the Lorentz space �r 0;1, which is at the core of
Subsection 1.3. On the other hand, the fact that here we work in a mixed norm
space Lp=2

t L
q=2
x does not really complicate the argument.

(d) It is conjectured in [28] that Theorem 8 remains valid for q D 2.d C 1/=

.d � 1/. At the same time it is shown there that the strengthening in (b) with the
`2q=.qC2/-norm fails at q D 2.d C 1/=.d � 1/. This conjecture was disproved
in [2] in dimension d D 1, but is still open for d � 2.

(e) There is a “semiclassical” version of the inequality where the Schrödinger equa-
tion is replaced by a transport equation for densities on the phase space. The
proof in [28] can be adapted to this setting, as shown in [1]. For more on the
connection between the two equations, see [60]. The disproof of the conjecture
mentioned in (d) for d D 1 was by disproving the corresponding conjecture
in this simpler setting. It uses the existence of a Kakeya set of arbitrary small
measure. The validity of this analogue conjecture for d � 2 is still open.

(f) There is a natural “one-particle constant,” namely the sharp constant in (3.1).
This was determined in the diagonal case q D p in [14] for d D 1; 2. Besides,
there is a semiclassical constant related to the inequality in (e). To which extent
these two constants play a role for the sharp constant in Theorem 8, in analogy
with the Lieb–Thirring conjecture, has not been investigated.

The restriction q < 2.d C 1/=.d � 1/ in Theorem 8 is not present for the single
function inequality (3.1). It is known that for orthonormal functions the case q � 2.d C 1/=

.d � 1/ behaves differently, but there are several open questions. The following is known.

Theorem 10. Let d � 2, 2.d C 1/=.d � 1/ � q < 2d=.d � 2/, and 2=p C d=q D d=2.
Let ˇ < 2q=.d.q � 2//. Then, if  1; : : : ;  N 2 L2.Rd / are orthonormal in L2.Rd /,Z

R

 Z
Rd

 
NX

nD1

ˇ̌
eit� n

ˇ̌2!q=2

dx

!p=q

dt . N p=.2ˇ/:

Remarks 11. (a) It is known that the bound in the theorem does not hold with an
exponent ˇ > 2q=.d.q � 2//, as can be deduced from [33], but it is not known
whether or not it holds with exponent ˇ D 2q=.d.q � 2//.

(b) Similarly as in the case of Theorem 8, the bound in Theorem 10 can be slightly
improved, namely, for any sequence 0 � � 2 `ˇ with ˇ < 2q=.d.q � 2//,Z

R

�Z
Rd

�X
n

�n

ˇ̌
eit� n

ˇ̌2�q=2

dx

�p=q

dt .
�X

n

�ˇ
n

�p=.2ˇ/

:

The bound is known to fail, in general, if � 2 `ˇ for ˇ > 2q=.d.q � 2// [33].
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(c) Theorem 10 appears in [33] (see the discussion there after Proposition 1). It is
obtained by interpolation between Theorem 8 with q near 2.d C 1/=.d � 1/

and the bound (3.1) with q near its maximal value 2d=.d � 2/.

(d) If the conjecture mentioned in Remark 9 (d) is true, an interpolation argument
(at least in dimensions d � 3) might yield Theorem 10with ˇD 2q=.d.q � 2//.

(e) Let us discuss the endpoints q D 2d=.d � 2/ in d � 3 and q D 1 in d D 1,
which are excluded in Theorem 10. At the endpoint q D 2d=.d � 2/ in d � 3, it
is known that there is no gain due to orthonormality over the triangle inequality,
that is, the bound in (b) holds with ˇ D 1 and not with any larger power [33]. At
the endpoint q D 1, in d D 1 it is known that the bound in (b) does not hold
for ˇ � 2 (see [28] and also [33, Proposition 1]) and one may wonder whether it
holds for ˇ < 2. In [3] it is shown that the bound holds for ˇ � 4=3 and that the
slightly weaker inequality with the L2;1

t L1
x -norm instead of the L2

tL
1
x -norm

holds for all ˇ < 2.

Strichartz inequalities for orthonormal system have been proved for more general
operators than �� (see, e.g., [4,31]) and for more regular functions (see, e.g., [2–4]).

One application of the Strichartz inequality for orthonormal functions concerns the
nonlinear, time-dependent Hartree equation for infinite quantum systems. (Here “infinite”
means that the initial data are allowed to have infinite trace.) Using Theorem 8, one can
show global well-posedness and, for small initial data, dispersion for large time; see [31,60].
For the more involved case of a positive background density, see [46,47].

Another application of the Strichartz inequality for orthonormal functions concerns
Besov-space improvements of inequality (3.1) for single functions; see [31, Corollary 9].
While these bounds can be derived using deep results from bilinear restriction theory, it is
interesting to note that the proof via Theorem 8 is much more elementary.

3.2. Stein–Tomas inequality for orthonormal functions
The Fourier restriction problem is whether the Fourier transform of a function on

Rd has a well-defined restriction to a hypersurface and, if so, to establish corresponding
Lp bounds. Sometimes it is helpful to study the equivalent, adjoint problem of Fourier
extensions. From a harmonic analysis perspective, the Strichartz inequality corresponds to
a Fourier extension inequality for the hypersurface ¹.�;�j�j2/ W � 2 Rd º in RdC1 endowed
with a natural measure. Another paradigmatic case concerns the Fourier extension for the
sphere. The corresponding result, due to Tomas [67] and Stein [65], states that, if f 2

L2.Sd�1/, thenZ
Rd

ˇ̌̌̌Z
Sd�1

ei!�xf .!/ d!

ˇ̌̌̌2.dC1/=.d�1/

dx . kf k
2.dC1/=.d�1/

L2.Sd�1/
: (3.2)

The inequality extends trivially to exponents greater than 2.d C 1/=.d � 1/ on the left side,
but a counterexample due to Knapp shows that 2.d C 1/=.d � 1/ is the smallest possible
exponent. Here is a version for orthonormal functions.
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Theorem 12. Let d � 2. Then, if f1; : : : ; fN are orthonormal in L2.Sd�1/,Z
Rd

 
NX

nD1

ˇ̌̌̌Z
Sd�1

ei!�xfn.!/ d!

ˇ̌̌̌2!.dC1/=.d�1/

dx . N d=.d�1/:

Remarks 13. (a) The power of N is best possible, as can be deduced from [31].

(b) Similarly as Theorem 8, the bound in Theorem 12 can be slightly improved,
namely, for any 0 � � 2 `.dC1/=d ,Z

Rd

�X
n

�n

ˇ̌̌̌Z
Sd�1

ei!�xfn.!/ d!

ˇ̌̌̌2�.dC1/=.d�1/

dx .
�X

n

�.dC1/=d
n

�d=.d�1/

:

The assumption � 2 `.dC1/=d cannot be relaxed to � 2 `r for any r > .d C 1/=d

[31].

(c) Theorem 12 appears in [31], where it is proved using a duality argument similarly
as in Subsection 1.3.

(d) In analogy to Remark 9 (f), the optimal constant in (3.2) is only known for
d D 3 [15]; see also [29] for a connection between the optimal constants in (3.2)
and (3.1). As far as we know, a “semiclassical inequality” corresponding to that
in Theorem 12 has not been investigated.

One application of Theorem 12 concerns trace ideal bounds for the scattering matrix
for Schrödinger operators ��C V in L2.Rd / [31]. These bounds are universal in the sense
that they only depend on the “energy” parameter and an Lp norm of V , and the trace ideal
exponent is shown to be optimal.

To motivate the discussion in the following subsection, we note that by the duality
argument in Subsection 1.3 and by scaling, the bound in Theorem 12 (or rather in Remark 13
(b)) can be written as

kRkW k2.dC1/ . k
d�1

2.dC1/ kW kdC1;

whereRk denotes restriction of the Fourier transform to the sphere ¹j�j D kº. Integrating this
bound with respect to k between � and �C 1, we obtain, in terms of the spectral projection
…� D 1.�2 � �� � .�C 1/2/ with � � 1,…�jW j

2…�


dC1

D kW…�W kdC1 �

Z �C1

�

kWRkW kdC1 dk . �
d�1
dC1 kW k

2
dC1:

Dualizing back, we find that if .fn/ are orthonormal in L2.Rd / and satisfy supp Ofn � ¹� �

j�j � �C 1º with � � 1 and if 0 � � 2 `.dC1/=d , then�Z
Rd

�X
n

�njfnj
2

� dC1
d�1

dx

� d�1
dC1

. �
d�1
dC1

�X
n

�
dC1

d
n

� d
dC1

: (3.3)
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3.3. Spectral cluster bounds
As shown by Sogge [63], the version (3.3) of the Stein–Tomas inequality has a

generalization to closed manifolds. Here is a generalization of this theorem to the case of
orthonormal functions from [32].

Theorem 14. Let .M; g/ be a smooth compact Riemannian manifold without boundary of
dimension d � 2. Denote by ��g the Laplace–Beltrami operator onM and, for any � � 1,
let…� WD 1.�2 � ��g < .�C 1/2/. Then, if .fn/�…�L

2.M/ are orthonormal inL2.M/

and if .�n/ � Œ0;1/,X
n

�njfnj
2


Lq=2.M/

. �2s.q/

�X
n

�˛.q/
n

�1=˛.q/

;

where 8<: s.q/ WD d.1
2

�
1
q
/ �

1
2
; ˛.q/ D

q.d�1/
2d

if 2.dC1/
d�1

� q � 1;

s.q/ WD
d�1

2
.1

2
�

1
q
/; ˛.q/ D

2q
qC2

if 2 � q �
2.dC1/

d�1
:

Remarks 15. (a) If there is a single nonzero �n, the bound in Theorem 14 reduces
to Sogge’s bound [63]. Therefore, according to known results about this inequal-
ity, for each .M; g/ the exponent 2s.q/ of � is best possible. As shown in [32],
for each .M; g/ the exponent ˛.q/ is also best possible. Moreover, on S2 with
its standard metric it can be shown that the inequality can be saturated even with
�n 2 ¹0; 1º and an arbitrary prescribed sequence #¹n W �n D 1º [32].

(b) The proof of Theorem 14 relies on Schatten norm bounds for oscillatory integral
operators satisfying the Carleson–Sjölin condition, which are of independent
interest, but somewhat technical to state. They imply, for instance, Theorem 12.

3.4. Kenig–Ruiz–Sogge inequalities
In this final subsection we discuss resolvent bounds that are close in spirit to the

Stein–Tomas theorem. The original result due to Kenig, Ruiz, and Sogge [40] states that, if
2d=.d C 2/ � p � 2.d C 1/=.d C 3/ (and p > 1 if d D 2), then for all z 2 C n Œ0;1/,.�� � z/�1f


p0 . jzj�d=2Cd=p�1

kf kp: (3.4)

For the case d D 2, see, e.g., [16]. We mention that similar inequalities are valid also on
Riemannian manifolds; see, e.g., [8,12,34]. A notable feature of the bounds (3.4) is that they
do not deteriorate as z approaches the positive real half-line and, for that reason, they are also
known as “uniform” Sobolev inequalities. Note that the endpoint exponent p D 2.d C 1/=

.d C 3/ is the dual of the exponent in the Stein–Tomas Fourier extension inequality (3.2)
and, in fact, (3.2) is an easy consequence of (3.4).

For p greater than this exponent, the uniformity is lost, in general. It can be restored,
up to p D 2d=.d C 1/ by using mixed norms involving an L2-norm over angular variables
[35]. A nonuniform inequality valid for 2.d C 1/=.d C 3/ < p � 2 is.�� � z/�1f


p0 . jzj

�. 1
p � 1

2 / dist.z;RC/
�1C.dC1/. 1

p � 1
2 /

kf kp:
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This bound follows by interpolation between the case p D 2.d C 1/=.d C 3/ and the triv-
ial bound at p D 2. It appeared in an equivalent, dual form in [18]. Remarkably, it is best
possible [41].

Inequality (3.4) is somewhat different from the others treated in this paper since it
does not involve a Hilbert space norm and, since the operator .�� � z/�1 for z 62 .�1; 0�

is not positive definite, it cannot be rewritten in such a form. Consequently, we cannot state
a version for orthonormal functions, but we will directly state trace ideal bounds, similar to
what is behind the proofs of the other bounds in this paper. The following two theorems are
from [31] and [18], respectively.

Theorem 16. Let d � 2 and let 8=3 � q � 3 if d D 2 and d � q � d C 1 if d � 3. Then,
for all z 2 C n Œ0;1/,W1.�� � z/�1W2


.d�1/q=.d�q/

. jzj�1Cd=q
kW1kqkW2kq :

Theorem 17. Let d � 1 and let q > d C 1. Then, for all z 2 C n Œ0;1/,W1.�� � z/�1W2


q

. jzj�1=q dist
�
z; Œ0;1

�
/�1C.dC1/=q

kW1kqkW2kq :

The trace ideal exponent in Theorem 16 is best possible, as follows from the cor-
responding result for the Stein–Tomas inequality [31]. The optimal form of Theorem 16 for
d D 2 and 2 < q < 8=3 is not known and we refer to [31] for some partial results.

The main application of Theorems 16 and 17 is to Lieb–Thirring inequalities for
eigenvalues of Schrödinger operators with complex-valued potentials; see, e.g., [18,31]. This
is an active area of research with many open question and we refer, for instance, to [6, 7, 10,

25,26,37] for more on this.
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On the nonlinear
stability of shear
flows and vortices
Alexandru D. Ionescu and Hao Jia

Abstract

In this article we present some of the main ideas in our recent work on the asymptotic
stability of shear flows and vortices among solutions of the Euler equations in two dimen-
sions. More precisely, we discuss the following results:

(1) a theorem on the nonlinear asymptotic stability of a large class of shear flows
.b.y/; 0/ in the finite channel T � Œ0; 1�, defined by strictly increasing Gevrey
smooth functions b, which are linear outside a compact subset of the interval
.0; 1/ and satisfy suitable spectral conditions;

(2) a theorem on the nonlinear asymptotic stability of point vortex solutions of
the Euler equation in R2;

(3) heuristic analysis showing that the mechanism of inviscid damping is unlikely
to work to produce global solutions of the ˛-generalized SQG equation in two
dimensions, for any parameter ˛ > 0.
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1. Introduction

In this paper we present some of our recent results on the asymptotic stability of
solutions of the two-dimensional incompressible Euler equation.More precisely, we consider
solutions u W Œ0;1/ � D ! R2 of the equation

@tuC u � ruC rp D 0; divu D 0; (1.1)

where the domain D is either the entire plane D D R2 or the finite channel D D T � Œ0; 1�.
Letting ! WD �@yu

x C @xu
y denote the vorticity field, equation (1.1) can be written as

@t! C u � r! D 0; u D r
? D .�@y ; @x /; � D !: (1.2)

In the case of the finite channel D D T � Œ0; 1�, we impose also the boundary conditions

 .x; 0/ � 0;  .x; 1/ � C0; (1.3)

where C0 is a constant preserved by the flow.
The two-dimensional incompressible Euler equation is globally well posed for

smooth initial data, by the classical result of Wolibner [48]. The long-time behavior of gen-
eral solutions is, however, very difficult to understand, due to the lack of a global relaxation
mechanism. A more realistic goal is to study the global nonlinear dynamics of solutions
that are close to steady states of the 2D Euler equation. Coherent structures, such as shear
flows and vortices, are particularly important in the study of the 2D Euler equation, since
numerical simulations and physical experiments, such as those of [2,3,9,21,34,35,40,41], show
that they tend to form dynamically and become the dominant feature of solutions.

The main topic in this article is the study of asymptotic stability of shear flows and
vortices. This is a classical subject and a fundamental problem in hydrodynamics. Early
investigations were started by Rayleigh [38], Kelvin [27], Orr [37], Taylor [44], among many
others, with a focus on mode stability. More detailed understanding of general spectral prop-
erties and suitable linear decay estimates were obtained later, see, for example, [8,10,17,42].
In the direction of nonlinear results, Arnold [1] proved a general stability theorem, using the
energy method, but this does not give asymptotic information on the global dynamics.

The full nonlinear asymptotic stability problem has only been investigated in recent
years, starting with the work of Bedrossian–Masmoudi [7], who proved nonlinear stability in
the simplest case of perturbations of the Couette flow, i.e., showing that small perturbations
of the Couette flow on the infinite cylinder T � R converge weakly to nearby shear flows.
This result was extended by the authors [23] to the finite channel T � Œ0; 1�, in order to
be able to consider solutions with finite energy. In [24] the authors also proved asymptotic
stability of point vortex solutions inR2, showing that small perturbations converge to a radial
profile, and the position of the point vortex stabilizes rapidly at the center of the final radial
profile. Finally, in [25] the authors proved nonlinear asymptotic stability of a large family
of monotonic shear flows (a similar theorem was proved slightly later and independently by
Masmoudi–Zhao [33]). In this article we discuss the main ideas of our papers [23–25].

The linearized equations around other stationary solutions were also investigated
intensely in the last few years, and linear inviscid damping and decay was proved in many
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cases of physical interest, see, for example, [4, 15, 20,45–47,49, 50]. However, it also became
clear that there are major conceptual difficulties in passing from linear to nonlinear stability,
such as the presence of “resonant times” in the nonlinear problem, which require refined
Fourier analysis techniques, and the fact that the final state of the flow is determined dynam-
ically by the global evolution and cannot be described in terms of the initial data.

Nonlinear inviscid damping is a very subtle mechanism of stability that has only
been established in 2 dimensions and for Euler-type equations. In fact, the heuristic analysis
we present in Section 3 of this article suggests that this mechanism fails to produce global
solutions of the ˛-generalized SQG equation in 2 dimensions, for any parameter ˛ > 0.

The Euler equations can also be viewed as the limiting case of the Navier–Stokes
equations with small viscosity � > 0. In the presence of viscosity, one can have much more
robust stability results, both in 2 and 3 dimensions, for initial data that is sufficiently small
relative to �. See the recent papers [5,6,12,18] and references therein.

We note also that the problem of nonlinear inviscid damping is connected to the
well-known Landau damping effect for the Vlasov–Poisson equations. We refer to the cele-
brated work of Mouhot–Villani [36] for the physical background and more references.

1.1. Monotonic shear flows
We consider a perturbative regime for the Euler equation (1.1), with velocity field

given by .b.y/; 0// C u.x; y/ and vorticity given by �b0.y/ C !. We define the Gevrey
spaces G �;s.T � R/ as the spaces of L2 functions f on T � R defined by the norm

kf kG �;s.T�R/ WD
e�hk;�is

Qf .k; �/


L2
k;�

< 1; s 2 .0; 1�; � > 0: (1.4)

In the above .k; �/ 2 Z � R and Qf denotes the Fourier transform of f in .x; y/. More
generally, for any interval I � R we define the Gevrey spaces G �;s.T � I / by

kf kG �;s.T�I/ WD kEf kG �;s.T�R/; (1.5)

where Ef .x/ WD f .x/ if x 2 I and Ef .x/ WD 0 if x … I . The use of Gevrey spaces is
necessary in the context of inviscid damping, mainly due to loss of regularity during the
flow.

We will assume that the background shear flow b 2 C1.R/ satisfies the following:

(A) For some #0 2 .0; 1=10� and ˇ0 > 0

#0 � b0.y/� 1=#0 for y 2 Œ0; 1� and b00.y/� 0 for y … Œ2#0; 1� 2#0�;

(1.6)
and

kbkL1.0;1/ C
b00


G ˇ0;1=2 � 1=#0: (1.7)

(B) The associated linear operator Lk W L2.0; 1/! L2.0; 1/, k 2 Zn¹0º, given by

Lkf D b.y/f � b00.y/'k ; where @2
y'k � k2'k D f; 'k.0/ D 'k.1/ D 0;

(1.8)
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has no discrete eigenvalues and, therefore, by the general theory of Fredholm
operators, the spectrum of Lk is purely continuous spectrum Œb.0/; b.1/� for
all k 2 Zn¹0º.

For any functionH DH.x;y/ W T � R ! C, let hH i D hH i.y/ denote the average
ofH in x. Our main result in [25] is the following theorem:

Theorem 1.1. Assume that ˇ0; #0 > 0 and b satisfies the assumptions above. Then there are
constants ˇ1 > 0 and " > 0 such that the following statement is true:

Assume that !0 has compact support in T � Œ2#0; 1 � 2#0�, and satisfies

k!0kG ˇ0;1=2.T�R/ D " � ";

Z
T
!0.x; y/ dx D 0 for any y 2 Œ0; 1�: (1.9)

Let ! W Œ0;1/ � T � Œ0; 1� ! R denote the global smooth solution to the Euler equation8<: @t! C b.y/@x! � b00.y/@x C u � r! D 0;

u D .ux ; uy/ D .�@y ; @x /; � D !;  .t; x; 0/ D  .t; x; 1/ D 0;

(1.10)
with initial data !0. Then we have the following conclusions:

(i) For all t � 0, supp!.t/ � T � Œ#0; 1 � #0�.

(ii) There exists F1.x; y/ 2 G ˇ1;1=2 with suppF1 � T � Œ#0; 1 � #0� such that!�
t; x C tb.y/Cˆ.t; y/; y

�
� F1.x; y/


G ˇ1;1=2.T�Œ0;1�/

.ˇ0;#0;�

"

hti

(1.11)

for all t � 0, where

ˆ.t; y/ WD

Z t

0

˝
ux

˛
.�; y/ d�: (1.12)

(iii) We define the smooth functions  1; u1 W Œ0; 1� ! R by

@2
y 1 D hF1i;  1.0/ D  1.1/ D 1; u1.y/ WD �@y 1.y/: (1.13)

Then the velocity field u D .ux ; uy/ satisfies the bounds˝
ux

˛
.t; y/ � u1.y/


G ˇ1;1=2.T�Œ0;1�/

.
"

hti2
(1.14)

and

hti
ux.t; x; y/ �

˝
ux

˛
.t; y/


L1.T�Œ0;1�/

C hti2
uy.t; x; y/


L1.T�Œ0;1�/

. ":

(1.15)

1.1.1. Remarks
The simplest case b.y/ D y (the Couette flow) was treated earlier in [7, 23]. We

discuss now some of the assumptions and conclusions of our main theorem.
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(1) Equation (1.10) for the vorticity deviation is equivalent to the original Euler
equations (1.1)–(1.3). The condition

R
T !0.x; y/ dx D 0 can be imposed without loss of

generality, by replacing the shear flow b.y/ with the nearby shear flow b.y/C hux
0i.y/.

(2) The assumption on the compact support of !0 is likely necessary to prove scat-
tering in Gevrey spaces. Indeed, Zillinger [49] showed that scattering does not hold in high
Sobolev spaces unless one assumes that the vorticity vanishes at high order at the bound-
ary. This is due to what is called “boundary effect,” which is not consistent with inviscid
damping. Investigating the boundary effect in the context of asymptotic stability of Euler or
Navier–Stokes equations is an interesting topic by itself, but we will not address it here.

(3) The assumption on the support of b00 is necessary to preserve the compact
support of !.t/ in T � Œ#0; 1� #0�, due to the nonlocal term b00.y/@x in (1.10). Assump-
tion (1.6) on the uniform monotonicity of the function b is also important for our proof, to
ensure a uniform rate of inviscid damping. It is an open question to investigate what happens
in the case of nonmonotone shear flows which are linearly stable, such as Kolmogorov or
Poiseuille flows.

(4) There is a large class of shear flows b satisfying our assumptions, for instance,
functions b.y/ satisfying b0.y/ � 1 and jb000.y/j < 1, y 2 Œ0; 1�.

(5) The Gevrey regularity assumption (1.9) on the initial data !0 is likely sharp.
See the recent construction of nonlinear instability of Deng–Masmoudi [16] for the Couette
flow in slightly larger Gevrey spaces, and the more definitive counterexamples to inviscid
damping in low Sobolev spaces by Lin–Zeng [30].

(6) The most important statement in Theorem 1.1 is (1.11), which provides strong
control on the “profile” of the vorticity and fromwhich the other statements follow easily.We
note that the convergence (1.11) of the profile for vorticity holds in a slightly weaker Gevrey
space, since ˇ1 < ˇ0. This is connected with the use of energy functionals with decreasing
time-dependent weights to control the profile, and is a reflection of the phenomenon that
“decay costs regularity” in inviscid damping.

(7) At the qualitative level, our main conclusion (1.11) shows that the vorticity !
converges weakly to the function hF1i.y/. This is consistent with a far-reaching conjecture
regarding the long-time behavior of solutions of the 2D Euler equation, see [43], which
predicts that for general generic solutions the vorticity field converges, as t ! 1, weakly
but not strongly in L2

loc to a steady state. Proving such a conjecture for general solutions is,
of course, well beyond the current PDE techniques, but the nonlinear asymptotic stability
results we have so far in [7,23–25] are consistent with this conjecture.

(8) One can gain some intuition and explain the more technical conclusions in The-
orem 1.1 by examining a simple explicit case, corresponding to the Couette flow b.y/ D y.
In this case b00.y/ D 0 and the linearization of the main equation (1.10) is

@t! C y@x! D 0; (1.16)

which was studied by Orr in a pioneering work [37]. To simplify the discussion, assume
that x 2 T , y 2 R (to avoid the boundary issue which is not our main concern here). By
direct calculation, we have !.t; x; y/ D !0.x � yt; y/. The stream function is given by
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� .t; x; y/ D !.t; x; y/ for .x; y/ 2 T � R, so in the Fourier space we have the formulas

e!.t; k; �/ D f!0.k; � C kt/; e .t; k; �/ D �
f!0.k; � C kt/

k2 C j�j2
: (1.17)

We remark that the conclusions in the full nonlinear Theorem 1.1 are consistent with these
explicit formulas. Indeed, if !0 is smooth, so f!0.k; �/ decays fast in .k; �/, then:

(i) The main contribution comes from the frequencies � D �kt C O.1/, there-
fore e .t; k; �/ decays like jkj�2hti�2 if k ¤ 0. Similarly, since ux D �@y 

and uy D @x , we see that fux decays like jkj�1hti�1 and fuy decays like
jkj�1hti�2, as claimed in (1.15).

(ii) It can be seen from (1.17) that the functions !.t; x; y/ and  .t; x; y/ are not
uniformly smooth as t ! 1, in the coordinates x;y. To identify smooth “pro-
files,” we need to make changes of coordinates, i.e., we define

z D x � tv; v D y; F.t; z; v/ D !.t; x; y/; �.t; z; v/ D  .t; x; y/:

(1.18)
Notice that F.t; z; v/ D !0.z; v/ (independent of t ), while �.t; z; v/ is uni-
formly smooth for all t provided that !0 is smooth. Taking the Fourier trans-
form in z; v, we have the formula

e�.t; k; �/ D �
f!0.k; �/

k2 C j� � kt j2
: (1.19)

An important observation of Orr is that for k ¤ 0 and large �, the normalized
stream function � (as well as the velocity field) experiences a transient growth
as t approaches the “critical time” tc D �=k before decaying to zero. This can
be seen easily from the formula (1.19). This transient growth on the linearized
level turns out to be crucial for the nonlinear analysis as well, and leads to the
high regularity assumptions (Gevrey spaces) that are required for the nonlinear
perturbation theory.

1.2. Point vortices
Vortices (radial functions) are stationary solutions of the Euler equation in R2 in

vorticity formulation (1.2). The stability of vortices is a major open problem for 2D Euler
equations, which is challenging even at the linear level as shown in [4] in the case of radially
decreasing vortices.

In [24]we initiated the rigorous study of the full nonlinear asymptotic stability prob-
lem for vortices of the Euler equation in R2. We consider the simplest class of vortices,
called point vortices, which are ı-functions centered at points in R2. Such solutions (and
more generally the so called N -vortex solutions) are models of general solutions with vor-
ticity concentrated sharply in small neighborhoods, and have been studied by many authors.
See, for instance, the classical work of Kirchhoff [28], C. C. Lin [29], and the book of Majda–
Bertozi [31] for more references.
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To state our main conclusions, consider solutions of the form

vorticity field D � ı
�
P.t/

�
C !; velocity field D r

?��1ı
�
P.t/

�
C u; (1.20)

where � 2 Rn¹0º is the strength of the point vortex, ı.P.t// is the Dirac mass centered at
P.t/ D .P1.t/; P2.t// 2 R2. We assume that P.t/ is not in the support of !, which will be
satisfied as part of our analysis. Then the perturbation ! satisfies the equation

@t! C U � r! C u � r! D 0; for .x; y; t/ 2 R2
� Œ0;1/; (1.21)

where
U D r

?��1ı
�
P.t/

�
D

�

2�
r

? log
ˇ̌
.x; y/ � P.t/

ˇ̌
: (1.22)

The velocity field u and the stream function  are determined through

u D r
? D .�@y ; @x /;

� D !; lim
j.x;y/j!1

²
 .x; y/ �

c0

2�
log

ˇ̌
.x; y/

ˇ̌³
D 0;

(1.23)

where
c0 WD

Z
R2

!.t; x; y/dxdy (1.24)

is a constant preserved by the flow for all times (as long as the support of !.t/ is away from
P.t/). In addition, the center P.t/ satisfies the transport ODE

P 0.t/ D r
? 

�
t; P.t/

�
: (1.25)

Equations (1.21)–(1.25) can be derived rigorously when the vortex P.t/ lies outside of the
support of !.t/, see, for example, [32]. In our case, this support condition is propagated
dynamically by the flow, as a consequence of the proof of stability.

In [24] we prove axisymmetrization around a point vortex. More precisely, we prove
that small, Gevrey smooth, and compactly supported perturbations symmetrize around the
point vortex whose location changes in time and converges fast as t ! 1.

Theorem 1.2. Assume that � 2 Rn¹0º, � 2 .0;1/,M 2 .1;1/, and!0 2C1
0 .R2/ satisfies

the support property supp!0 � ¹x 2 R2 W jxj 2 Œ1=M;M�º. Assume thatZ
R2

e�h�;�i1=2 ˇ̌f!0.�; �/
ˇ̌2
d�d� � "2; (1.26)

for a sufficiently small constant " � ".�;M; �/, where f!0 denotes the Fourier transform of
!0. Then there is a unique smooth global solution .!; P / of the system (1.21)–(1.25) such
that P.t/ stays outside of the support of !.t/ for all t � 0. Moreover,ˇ̌

P.t/ � P1

ˇ̌
. " e�chti1=2

for all t � 0; (1.27)

for some P1 2 R2 and c D c.�;M; �/ > 0, and the vorticity !.t/ converges weakly to a
Gevrey-2 regular function !1 2 C1.R2/ which is radial with respect to P1, as t ! 1.
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1.2.1. Adapted polar coordinates and precise results
To understand the mechanism of convergence in Theorem 1.2, we need to analyze

the Euler equations in the polar coordinates, recentered around themoving point vortexP.t/.
Let

.x; y/ D P.t/C r.cos �; sin �/: (1.28)

In .r; �/ coordinates, we set the functions u0
r , u0

�
,  0, !0 as follows:

!0.t; �; r/ D !.t; x; y/;  0.t; �; r/ D  .t; x; y/;

u0
r .t; �; r/er C u0

� .t; �; r/e� D u.t; x; y/;
(1.29)

where er WD .cos �; sin �/, e� WD .� sin �; cos �/. Equation (1.21) can be rewritten as

@t!
0
�

�
P 0.t/; er

�
@r!

0
�
1

r

�
P 0.t/; e�

�
@�!

0
C

�

2�r2
@�!

0
�
@� 

0@r!
0 � @r 

0@�!
0

r
D 0;

(1.30)
where the stream function  0.t; �; r/ can be calculated through

@2
r 

0
C
1

r
@r 

0
C
1

r2
@2

� 
0
D !0; lim

r!1

²
 0.t; r; �/ �

c0

2�
log r

³
D 0: (1.31)

In the above,

P 0.t/ D
1

2�

Z 1

0

Z 2�

0

.sin �;� cos �/ !0.t; �; r/d�dr; (1.32)

and .P 0.t/; er /, .P 0.t/; e� / denote the scalar products between the vectors P 0.t/, er , and e� .
The velocity field .u0

�
; u0

r / can be calculated according to the formulas

u0
� .t; �; r/ D @r 

0; u0
r .t; �; r/ D �.1=r/@� 

0: (1.33)

The following theorem is the full quantitative version of our main result in [24]:

Theorem 1.3. Assume that ˇ0; #0 2 .0; 1=8�, � 2 .0;1/, and assume !0
0 is smooth initial

data, satisfying the support condition supp!0
0 � T � Œ#0; 1=#0� and the smallness condition!0

0


G ˇ0;1=2.T�R/

D " � "; (1.34)

where " D ".ˇ0; #0; �/ > 0 is sufficiently small and the Gevrey spaces G ˇ0;1=2.T � R/ are
defined as in (1.4). We have the following conclusions:

(i) (global regularity) There exist ˇ1 D ˇ1.ˇ0; #0; �/ > 0 and a unique global
solution !0 2 C.Œ0;1/ W G ˇ1;1=2.T � R// of the system (1.30)–(1.32) with
initial data !0.0/D !0

0 such that supp!0.t/� T � Œ#0=2; 2=#0� and jP.t/j<

#0=100 for any t 2 Œ0;1/.

(ii) (asymptotic stability)There exist�1 2G ˇ1;1=2.T �R/ andP1 D.P 1
1;P

2
1/2

R2 with supp�1 � T � Œ#0=2; 2=#0� and jP1j � #0=100 such that!0
�
t; � C �t=

�
2�r2

�
Cˆ.t; r/; r

�
��1.�; r/


G ˇ1;1=2.T�R/

. "hti�1;

(1.35)ˇ̌
P.t/ � P1

ˇ̌
. " e�ˇ1t1=2

; (1.36)
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for any t � 0. Here

ˆ.t; r/ WD

Z t

0

hu0
�
i.�; r/

r
d� D

Z t

0

h@r 
0i.�; r/

r
d�: (1.37)

(iii) (control of the velocity field) The velocity field u0 satisfies the asymptotic
bounds ˝

u0
�

˛
.t; r/ � u0

1.r/


G ˇ1;1=2.R/
. "hti�2; (1.38)

hti
u0

� .t; �; r/ �
˝
u0

�

˛
.t; r/


L1.T�R/

C hti2
u0

r .t; �; r/


L1.T�R/
. ";

(1.39)
where the function u0

1 2 G ˇ1;1=2.R/ is defined by

@r

�
ru0

1.r/
�

D r�1.r/; u0
1.r/ D

8<: 0 if r � #0=2;

c0=.2�/ if r � 2=#0:

1.2.2. Remarks
(1) We notice the similarities between Theorem 1.1 (in the Couette case b.y/ D y)

and Theorem 1.3. In the point vortex case, the inviscid damping is generated by the term
�

2�r2 @�!
0 in (1.30), � ¤ 0. Indeed, at the linearized level, equation (1.30) is

@t!
lin

C
�

2�r2
@�!

lin
D 0; (1.40)

with the explicit solution

! lin.t; �; r/ D ! lin
0

�
� � �t=.2�r2/; r

�
: (1.41)

Using now (1.31), we can express  lin
k
, k 2 Zn¹0º, as

 lin
k .t; r/ D

Z
R
Gk.r; �/!

lin
0;k.�/e

�ik�t=.2��2/ d�; (1.42)

where  lin
k

and ! lin
0;k

denote the kth Fourier modes of the functions  lin and ! lin
0 in � and

Gk is the associated Green function for the operator @2
r C @r=r � k2=r2. These formulas

and integration by parts in � lead to pointwise decay in time for the velocity field ulin D

.ulin
�
; ulinr / D .@r 

lin;�@� 
lin=r/, consistent with the bounds (1.39). In other words, the

main conclusions of Theorem 1.3 can be verified for the linearized flow as a consequence of
the explicit formulas (1.41)–(1.42), as expected.

(2) The main difference between Theorems 1.1 and 1.3 comes from the global shift
caused by the movement of the vortex P.t/. It is very important to prove that the point
vortex stabilizes rapidly, according to (1.36), which gives just the right amount of decay to
compensate for the loss of regularity caused by changes of variables and mixing.

(3) Finally, we note that the assumption that the point vortex lies outside the support
of the perturbation is necessary for inviscid damping in Gevrey spaces. This is analogous to
the “boundary effect” discussed earlier in the context of shear flows.
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1.3. Organization
The rest of this paper is organized as follows: in Section 2 we discuss the main

ideas in the proofs of Theorems 1.1 and 1.3. In Section 3 we discuss the limitations of the
mechanism of inviscid damping, showing that it cannot be used to prove global regularity of
solutions of the generalized SQG equations.

2. Main ideas

In this section we discuss some of the main ideas involved in the proofs of The-
orems 1.1 and 1.3. Most of our discussion will be focused on the harder case of general
monotonic shear flows, but some of the key ideas apply also in the case of point vortices.

2.1. Renormalization and the new equations
We introduce now a nonlinear change of variables and define the main quantities

we need to control uniformly in time. We need to unwind the transportation in x. Assume
that ! W Œ0; T � � T � Œ0; 1� is a sufficiently smooth solution of the system (1.10),

@t! C b.y/@x! � b00.y/@x C u � r! D 0;

.ux ; uy/ D .�@y ; @x /; � D !;  .t; x; 1/ D  .t; x; 0/ D 0; (2.1)

which is supported in T � Œ#0; 1 � #0� at all times t 2 Œ0; T �, satisfying kh!i.t/kH 10 � 1.
We make the nonlinear change of variables

v D b.y/C
1

t

Z t

0

˝
ux

˛
.�; y/ d�; z D x � tv: (2.2)

The point of this change of variables is to eliminate two of the nondecaying terms in the
evolution equation in (2.1), namely the terms b.y/@x! and huxi@x!. The change of variable
y ! v is crucial for our analysis, and it allows us to link the renormalized stream function �
to the profile F using the elliptic equation (2.7). The point is that this equation has constant
coefficients at the linear level, so it is compatible with Fourier analysis.

Then we define the functions

F.t; z; v/ WD !.t; x; y/; �.t; z; v/ WD  .t; x; y/; (2.3)

V 0.t; v/ WD @yv.t; y/; V 00.t; v/ WD @yyv.t; y/; PV .t; v/ WD @tv.t; y/; (2.4)

B 0.t; v/ WD @yb.y/; B 00.t; v/ WD @yyb.y/: (2.5)

The evolution equation in (2.1) becomes

@tF � B 00@z� � V 0@vP¤0� @zF C . PV C V 0@z�/ @vF D 0; (2.6)

where P¤0 is projection off the zero mode, P¤0H.t; z; v/ D H.t; z; v/ � hH i.t; v/. The
renormalized vorticity � satisfies the elliptic-type equation

@2
z� C .V 0/2.@v � t@z/

2� C V 00.@v � t@z/� D F; (2.7)
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The functions V 0, V 00, B 0, B 00, PV also satisfy suitable evolution or elliptic equations
in the new variables .t; v/, which can be derived from (2.1) and the definitions, such as

@tB
0.t; v/C PV @vB

0.t; v/ D @tB
00.t; v/C PV @vB

00.t; v/ D 0; (2.8)

@t .V
0
� B 0/C PV @v.V

0
� B 0/ D H=t; (2.9)

@t H C PV @vH D �H=t � V 0
h@vP¤0� @zF i C V 0

h@z� @vF i; (2.10)

where
H .t; v/ WD tV 0.t; v/@v

PV .t; v/ D B 0.t; v/ � V 0.t; v/ � hF i.t; v/: (2.11)

Equations (2.6)–(2.11) are the main equations we analyze in our proof.

2.2. Energy functionals and imbalanced weights
Themain idea is to control the regularity ofF for all t � 0, as well as other quantities

such as �, V 0, V 00, B 0, B 00, PV , using a bootstrap argument involving energy functionals and
space-time norms. These norms depend on families of weightsAk.t; �/,ANR.t; �/,AR.t; �/,
k 2 Z, � 2 R, which have to be designed carefully to control the nonlinearities.

To identify the main issue and motivate the choice of weights, assume first that F
and � satisfy the simplified closed system

@tF � @vP¤0� @zF D 0; @2
z� C .@v � t@z/

2� D F; (2.12)

for .z; v; t/ 2 T � R � Œ0;1/. Compared to the original equations (2.6)–(2.7), we assume
that b00 � 0 (the Couette flow) and keep only one nonlinear term, the “reaction term”
@vP¤0� � @zF . We would like to control, uniformly in time, an energy functional of the
form

E.t/ WD

X
k2Z

Z
R
A2

k.t; �/
ˇ̌

QF .t; k; �/
ˇ̌2
d�; (2.13)

where QF denotes the spacial Fourier transform of F , for a suitable weight Ak.t; �/ which
decreases in t . Let Z� D Z n ¹0º and notice that

B@vP¤0�.t; k; �/ D �
i�

k2

QF .t; k; �/

1C jt � �=kj2
1Z�.k/: (2.14)

When j�j � k2, the factor �=k2 in (2.14) indicates a loss of one full derivative in v in the
resonant region ¹.t; k; �/ W jt � �=kj � j�j=k2; k2 � j�jº. This is a major obstruction to
proving stability, which cannot be removed by standard symmetrization techniques.

The key original idea of Bedrossian–Masmoudi [7] is to use imbalanced weights
Ak.t; �/ to absorb this derivative loss, taking advantage of the favorable structure of the
nonlinearity that does not allow for contributions to the resonant region to come from bilinear
interactions of small frequencies and frequencies in the resonant region (due to the factor
@zF in the reaction term). More precisely, the weights have to satisfy the unusual property

A`.t; �/

Ak.t; �/
�

ˇ̌̌̌
�

`2

ˇ̌̌̌
1

1C jt � �=`j
; (2.15)
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when k ¤ `, `¤ 0, � D �CO.1/, k D `CO.1/, and 1C jt � �=`j � j�j=`2. In addition,
these weights have to decrease in time, in the quantitative form,

�
@tA`.t; �/

A`.t; �/
&

1

ht � �=ki
; (2.16)

if k 2 Zn¹0º, ht � �=ki . j�j=k2, and j`j � h�i, in order to be able to control some of the
nonlinear terms using the Cauchy–Kowalevski terms coming from time differentiation of the
energy functional E . This leads to loss of regularity of the profile F during the evolution,
which is the price to pay to prove nonlinear decay of the stream function �.

2.2.1. The weights ANR , AR , Ak

For the sake of completeness, we summarize here the construction of our main
imbalanced weights AR, ANR, Ak in [23–25]. Given ı0 D ı0.ˇ0; #0/ > 0, we define first
the decreasing function � W Œ0;1/ ! Œı0; 3ı0=2� by

�.0/ D
3

2
ı0; �0.t/ D �

ı0�
2
0

hti1C�0
; (2.17)

for small positive constant �0 (say �0 D 0:01). Then we define

AR.t; �/ WD
e�.t/h�i1=2

bR.t; �/
e

p
ıh�i1=2

; ANR.t; �/ WD
e�.t/h�i1=2

bNR.t; �/
e

p
ıh�i1=2

; (2.18)

Ak.t; �/ WD e�.t/hk;�i1=2

�
e

p
ıh�i1=2

bk.t; �/
C e

p
ıjkj1=2

�
; (2.19)

where ı > 0 is a small constant and k 2 Z.
To construct the main functions bk , bNR, bR that appear in (2.18)–(2.19), we start by

defining two functions wNR;wR W Œ0;1/ � R ! Œ0; 1�, which distinguish between resonant
and nonresonant regions and play a key role in the analysis. Resonance is measured in terms
of the size of the denominators ht � �=ki, which appear in formula (2.14). The intervals Ik;�

defined below, where this factor is small are called “resonant” intervals. Notice the imbalance
in (2.24) between the weights wR.t; �/ and wNR.t; �/, especially around the center of the
resonant intervals, consistent with the loss of derivative discussed earlier.

Assume that ı > 0 is small, ı � ı0. For j�j � ı�10, we define simply

wNR.t; �/ WD 1; wR.t; �/ WD 1: (2.20)

For � > ı�10, we define k0.�/ WD b
p
ı3�c. For l 2 ¹1; : : : ; k0.�/º, we define

tl;� WD
1

2

�
�

l C 1
C
�

l

�
; t0;� WD 2�; Il;� WD Œtl;�; tl�1;��: (2.21)

Notice that jIl;�j � �=l2 and

ı�3=2p
�=2 � tk0.�/;� � � � � � tl;� � �=l � tl�1;� � � � � � t0;� D 2�:

We define

wNR.t; �/ WD 1; wR.t; �/ WD 1 if t � t0;� D 2�: (2.22)
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Then we define, for k 2 ¹1; : : : ; k0.�/º,

wNR.t; �/ WD

8̂̂̂<̂
ˆ̂:

�
1Cı2jt��=kj

1Cı2jtk�1;���=kj

�ı0

wNR.tk�1;�; �/ if t 2 Œ�=k; tk�1;��;�
1

1Cı2jt��=kj

�1Cı0

wNR.�=k; �/ if t 2 Œtk;�; �=k�:

(2.23)

We define also the weight wR by the formula

wR.t; �/ WD

8<:wNR.t; �/
1Cı2jt��=kj

1Cı2�=.8k2/
if jt � �=kj � �=.8k2/;

wNR.t; �/ if t 2 Ik;�; jt � �=kj � �=.8k2/;
(2.24)

for any k 2 ¹1; : : : ; k0.�/º and notice that for t 2 Ik;� ,
@twNR.t; �/

wNR.t; �/
�
@twR.t; �/

wR.t; �/
�

ı2

1C ı2jt � �=kj
: (2.25)

For small values of t D .1 � ˇ/tk0.�/;� , ˇ 2 Œ0; 1�, we define wNR and wR by the formulas

wNR.t; �/ D wR.t; �/ WD
�
e�ı

p
�
�ˇ
wNR.tk0.�/;�; �/

1�ˇ : (2.26)

If � < �ı�10, then we define wR.t; �/ WD wR.t; j�j/, wNR.t; �/ WD wNR.t; j�j/,
and Ik;� WD I�k;�� . To summarize, the resonant intervals Ik;� are defined for .k; �/ 2 Z � R

satisfying j�j > ı�10, 1 � jkj �
p
ı3j�j, and �=k > 0.

Finally, we define the weights wk.t; �/ by the formula

wk.t; �/ WD

8<:wNR.t; �/ if t 62 Ik;�;

wR.t; �/ if t 2 Ik;�:
(2.27)

If particular, wk.t; �/ D wNR.t; �/ unless j�j > ı�10, 1 � jkj �
p
ı3j�j, �=k > 0, and

t 2 Ik;� .
The functions wNR, wR, and wk have the right size but lack optimal smoothness in

the frequency parameter �, mainly due to the jump discontinuities of the function k0.�/. This
smoothness is important in symmetrization arguments (energy control of the transport terms)
and in commutator arguments. To correct this problem, we fix ' W R ! Œ0; 1� an even smooth
function supported in Œ�8=5; 8=5� and equal to 1 in Œ�5=4; 5=4�, and let d0 WD

R
R '.x/ dx.

For k 2 Z and Y 2 ¹NR;R; kº, let

bY .t; �/ WD

Z
R
wY .t; �/'

�
� � �

Lı 0.t; �/

�
1

d0Lı 0.t; �/
d�;

Lı 0.t; �/ WD 1C
ı0h�i

h�i1=2 C ı0t
; ı0

2 Œ0; 1�:

(2.28)

The length Lı 0.t; �/ in (2.28) is chosen to optimize the smoothness in � of the functions
bY .t; �/, while not changing significantly the size of the weights. The parameter ı0 is fixed
sufficiently small, depending only on ı.

These definitions can be used to prove the key properties (2.15)–(2.16), as well as
many other properties needed in the nonlinear analysis. We notice also that

e�.t/h�i1=2

� ANR.t; �/ � AR.t; �/ � e�.t/h�i1=2

e2
p

ıh�i1=2

;

e�.t/hk;�i1=2

� Ak.t; �/ � 2e�.t/hk;�i1=2

e2
p

ıhk;�i1=2

;
(2.29)
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for any k 2 Z, t � 0, and � 2 R. Finally, to prove commutator estimates in the context of
our problem, we need to know that the weights vary sufficiently slowly in � . In our case the
weights satisfy the key inequalitiesˇ̌

Ak.t; �/ � Ak.t; �/
ˇ̌

.
�

C.ı/

hk; �i1=2
C

p
ı

�
max

®
Ak.t; �/; Ak.t; �/

¯
(2.30)

if h� � �i . 1 � min¹hk; �i; hk; �iº. Such bounds are suitable to control the commutators
by letting ı small enough, due to the gain of

p
ı at large frequencies.

2.3. The auxiliary nonlinear profile
In the case of general shear flows, an essential new difficulty that is not present in the

Couette case, is the additional linear term B 00@z� in (2.6). This linear term cannot be treated
as a perturbation if b00 is not assumed small. On the linearized level, one can understand
the evolution by using spectral analysis, especially the regularity analysis of generalized
eigenfunctions corresponding to the continuous spectrum. However, it is still a challenge
to combine the linear spectral analysis with the more sophisticated Fourier analysis tools
needed for controlling the nonlinearity. We deal with this basic issue in two steps: first, we
define an auxiliary nonlinear profile F �.t/ given by

F �.t; z; v/ D F.t; z; v/ �

Z t

0

B 00.0; v/@z�
0.s; z; v/ ds: (2.31)

Thus F � takes into account the linear effect accumulated up to time t and can be bounded
perturbatively, using the methods outlined in the previous subsection. The function �0 is a
small but crucial modification of �, defined as the unique solution to the elliptic equation

@2
z�

0
C .B 0

0/
2.@v � t@z/

2�0
C B 00

0 .@v � t@z/�
0
D F;

�0
�
t; b.0/

�
D �0

�
t; b.1/

�
D 0;

(2.32)

onT � Œb.0/; b.1/�. This equation is obtained by freezing the coefficients of the main elliptic
equation (2.7) at time t D 0 to gain additional smoothness.

On a heuristic level, we expect that the full evolution of F consists of two contri-
butions: the main, linear evolution that changes the size of the profile most significantly,
and a small but rough (compared with the linear evolution) nonlinear correction. We can
view (2.31) as a bounded linear transformation in both space and time from F to F � which
takes into account the bulk linear evolution. The key point is that this transformation can be
inverted to get bounds on the full profile F from bounds on F �.

2.4. Control of the full profile
We still need to recover the bounds on F and the improved bounds on F � F �.

This is a critical step where we need to use our main spectral assumption and the precise
estimates on the linearized flow. To link F � F � with the linearized flow, we define an aux-
iliary function ��, which can be approximately viewed as a stream function associated with
F �, and set g D F � F �, ' WD �0 � ��. The functions g and ' satisfy the inhomogeneous
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linear system with trivial initial data

@tg � B 00
0 .v/@z' D H; g.0; z; v/ D 0;

B 0
0.v/

2.@v � t@z/
2' C B 00

0 .v/.@v � t@z/' C @2
z' D g.t; z; v/;

(2.33)

where .t; z; v/ 2 Œ0;1/ � T � Œb.0/; b.1/�. The functions B 0
0.v/ D B 0.0; v/ and B 00

0 .v/ D

B 00.0; v/ are time-independent, very smooth, and can be expressed in terms of the original
shear flow b. The source termH is given byH D B 00

0 .v/@z�
�.

The function �� is determined by the auxiliary profile F �. Since we have already
proved quadratic bounds on the profile F �, we can use elliptic estimates to prove quadratic
bounds on ��, and then on the source termH . Therefore, we can think of (2.33) as a linear
inhomogeneous system with trivial initial data, and adapt the linear theory to our situation.

Decomposing in modes, conjugating by e�ikvt , and using Duhamel’s formula, we
can further reduce to the study of the homogeneous initial-value problem

@tgk C ikvgk � ikB 00
0'k D 0; gk.0; v/ D Xk.v/e

�ikav;

.B 0
0/

2@2
v'k C B 00

0 .v/@v'k � k2'k D gk ; 'k

�
b.0/

�
D 'k

�
b.1/

�
D 0:

(2.34)

for .t; v/ 2 Œ0;1/ � Œb.0/; b.1/�, where k 2 Z n ¹0º and a 2 R.

2.5. Analysis of the linearized flow
Equation (2.34) was analyzed, at least when aD 0, by Wei–Zhang–Zhao in [45] and

by the second author in [26]. We follow the approach in [26]. The main idea is to use the
spectral representation formula and reduce the analysis of the linearized flow to the analysis
of generalized eigenfunctions corresponding to the continuous spectrum.

More precisely, using general spectral theory, we can express the stream function
as an oscillatory integral of the spectral density function (which depends both on the phys-
ical and the spectral variables). As a consequence, given data Xk smooth and satisfying
suppXk � Œb.#0/; b.1 � #0/� we find a representation formulaegk.t; �/ D fXk.� C kt C ka/ (2.35)

C ik

Z t

0

Z
R

fB 00
0 .�/

f…0
k.� C kt � � � k�; � C kt � �; a/ d� d�

for the solution gk of the linear evolution equation (2.34), where…0
k
.�;�;a/ can be expressed

in terms of a family of generalized eigenfunctions. As proved in [26], these eigenfunctions
cannot be calculated explicitly, but can be estimated very precisely in the Fourier space,�

jkj C j�j
�
Wk.�C ka/f…0

k.�; �; a/


L2
�;�

.ı

Wk.�/fXk.�/


L2
�
; (2.36)

for any a 2 R, for a large family of weightsWk that satisfy a slow variation property similar
to (2.30). This leads to suitable control on the functions gk D Fk � F �

k
, which allows us to

close the bootstrap argument.
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2.6. Energy functionals and the bootstrap proposition
We are now ready to summarize our main argument: given a solution ! W Œ0; T � �

T � Œ0; 1� ! R of equation (2.1), we define first the functions F , �, V 0, V 00, PV , B 0, B 00, H

as in (2.3)–(2.5) and (2.11). To construct useful energy functionals, we need to modify the
functions V 0, B 0, B 00 which are not “small,” so we define the new variables

B 0
0.v/ WD B 0.0; v/ D .@yb/

�
b�1.v/

�
; B 00

0 .v/ WD B 00.0; v/ D .@2
yb/

�
b�1.v/

�
;

V 0
� WD V 0

� B 0
0; B 0

� WD B 0
� B 0

0; B 00
� WD B 00

� B 00
0 :

(2.37)

Our main goal is to control the functions F and �. For this we need to consider two
auxiliary functions F � and �0, defined as in (2.31)–(2.32). Then we define the renormalized
elliptic profiles

‚.t; z; v/ WD
�
@2

z C .@v � t@z/
2
��
‰.v/ �.t; z; v/

�
;

‚�.t; z; v/ WD
�
@2

z C .@v � t@z/
2
��
‰.v/

�
�.t; z; v/ � �0.t; z; v/

��
;

(2.38)

where ‰ W R ! Œ0; 1� is a Gevrey class cut-off function, satisfying

keh�i3=4 e‰.�/kL1 . 1;

supp‰ �
�
b.#0=4/; b.1 � #0=4/

�
; ‰ � 1 in

�
b.#0=3/; b.1 � #0=3/

�
:

(2.39)

Our bootstrap argument is based on controlling simultaneously energy function-
als and space-time integrals. For this we need carefully chosen weights ANR, AR, and Ak ,
defined as in Section 2.2.1. Let PAY .t; �/ WD .@tAY /.t; �/ � 0, Y 2 ¹NR;R; kº, and define,
for any t 2 Œ0; T �,

Ef .t/ WD

X
k2Z

Z
R
A2

k.t; �/
ˇ̌

Qf .t; k; �/
ˇ̌2
d�; f 2

®
F;F �

¯
;

Bf .t/ WD

Z t

1

X
k2Z

Z
R

ˇ̌
PAk.s; �/

ˇ̌
Ak.s; �/

ˇ̌
Qf .s; k; �/

ˇ̌2
d�ds;

(2.40)

EF �F �.t/ WD

X
k2Z�

Z
R

�
1C hk; �i=hti

�
A2

k.t; �/
ˇ̌ C.F � F �/.t; k; �/

ˇ̌2
d�;

BF �F �.t/ WD

Z t

1

X
k2Z�

Z
R

�
1C hk; �i=hsi

�ˇ̌
PAk.s; �/

ˇ̌
Ak.s; �/

ˇ̌ C.F � F �/.s; k; �/
ˇ̌2
d�ds;

(2.41)

Eˆ.t/ WD

X
k2Z�

Z
R
A2

k.t; �/
jkj2hti2

j�j2 C jkj2hti2

ˇ̌ê.t; k; �/ˇ̌2
d�; ˆ 2

®
‚;‚�

¯
;

Bˆ.t/ WD

Z t

1

X
k2Z�

Z
R

ˇ̌
PAk.s; �/

ˇ̌
Ak.s; �/

jkj2hsi2

j�j2 C jkj2hsi2

ˇ̌ê.s; k; �/ˇ̌2
d�ds;

(2.42)

Eg.t/ WD

Z
R
A2

R.t; �/
ˇ̌
Qg.t; �/

ˇ̌2
d�; g 2

®
V 0

�; B
0
�; B

00
�

¯
;

Bg.t/ WD

Z t

1

Z
R

ˇ̌
PAR.s; �/

ˇ̌
AR.s; �/

ˇ̌
Qg.s; �/

ˇ̌2
d�ds;

(2.43)
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EH .t/ WD K2

Z
R
A2

NR.t; �/
�
hti=h�i

�3=2 ˇ̌
QH .t; �/

ˇ̌2
d�;

BH .t/ WD K2

Z t

1

Z
R

ˇ̌
PANR.s; �/

ˇ̌
ANR.s; �/

�
hsi=h�i

�3=2 ˇ̌
QH .s; �/

ˇ̌2
d�ds;

(2.44)

where Z� WD Z n ¹0º and K � 1 is a large constant that depends only on ı.
Our main bootstrap proposition is the following:

Proposition 2.1. Assume T � 1 and! 2C.Œ0;T � W G 2ı0;1=2/ is a sufficiently smooth solution
of the system (2.1), with the property that !.t/ is supported in T � Œ#0; 1 � #0� and that
kh!i.t/kH 10 � 1 for all t 2 Œ0; T �. Define F , F �, ‚, ‚�B 0

�, B 00
� , V 0

�, H as above. Assume
that "1 is sufficiently small (depending on ı),X

g2¹F; F �; F �F �; ‚; ‚�; V 0
�; B 0

�; B 00
� ; Hº

Eg.t/ � "3
1 for any t 2 Œ0; 1�; (2.45)

and X
g2¹F; F �; F �F �; ‚; ‚�; V 0

�; B 0
�; B 00

� ; Hº

�
Eg.t/C Bg.t/

�
� "2

1 for any t 2 Œ1; T �: (2.46)

Then for any t 2 Œ1; T �, we have the improved boundsX
g2¹F; F �; F �F �; ‚; ‚�; V 0

�; B 0
�; B 00

� ; Hº

�
Eg.t/C Bg.t/

�
� "2

1=2: (2.47)

Moreover, we also have the stronger bounds for t 2 Œ1; T �, namelyX
g2¹F; ‚º

�
Eg.t/C Bg.t/

�
.ı "

3
1: (2.48)

This proposition is the main ingredient in the proof of Theorem 1.1 in [25]. Its proof
is based on implementing the steps outlined in Sections 2.2–2.5. It is important to control
not only the main variables F , ‚, F � and ‚�, but also the variables V 0

�, B 0
�, and B 00

� which
are connected to the change of variables y ! v. These variables appear in many nonlinear
terms, so it is important to control their smoothness precisely, as part of a combined bootstrap
argument, in a way that is consistent with the smoothness of the functions F and ‚.

The functionH plays a different role, as it is the only variable that decays in time and
encodes the convergence of the system as t ! 1. This function decays at a rate of hti�3=4,
in a weaker topology, which shows that the function @v

PV decays fast at an integrable rate of
hti�7=4, again in a weaker topology.We remark also that the bootstrap control on the variable
F � F � is slightly stronger than on the variables F and F � separately, which is needed to
compensate for the lack of symmetry in some of the transport terms.

3. An unstable model: the generalized SQG equation

We consider now the generalized surface quasigeostrophic equations (gSQG)8<: @t� C u � r� D 0; .t; x/ 2 Œ0; T / � D ;

u D �r?.��/�1C˛=2�;
(3.1)
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where ˛ 2 Œ0; 2� and D is a domain in R2. The case ˛ D 1 corresponds to the surface quasi-
geostrophic (SQG) equation, introduced by Constantin–Majda–Tabak [13] as a model for the
full 3D Euler equations. Notice that the case ˛ D 0 corresponds to the 2D incompressible
Euler equations and the case ˛ D 2 produces stationary solutions.

These are the so-called active scalar equations, which have been analyzed exten-
sively both in the setting of smooth solutions � and in the setting of the so-called ˛-patches,
which are solutions for which � is a step function. The local regularity theory is generally
well understood: as expected, suitable initial data lead to local in time unique solutions that
propagate the regularity of the initial data, both in the smooth and the patch setting (see, for
example, [13,19,22,39] for regularity results of this type).

The construction of nontrivial global solutions for the gSQG equations is a very
challenging open problem for all parameters ˛ 2 .0; 2/, both in the smooth and in the patch
case (the construction of solutions that blow up in finite time is also a challenging open prob-
lem, but we will not discuss it here). In fact, the only known nonstationary global solutions of
finite energy, both in the smooth and the patch setting, are special rotating solutions, periodic
in time. See the recent work [11] for the construction of such solutions in the harder smooth
case, and more references. See also [14] for the construction of a stable class of global solu-
tions in the patch case, using the mechanism of dispersion, but which have infinite energy.

It is tempting to try to use the mechanism of inviscid damping to construct families
of nontrivial global solutions of the gSQG equations, at least for some parameters ˛ 2 .0; 2/,
by perturbing around stationary solutions. The easiest would be to perturb around shear
flows on the finite channel domain D D T � Œ0; 1�, in particular around the Couette flow
corresponding to �.t; x; y/ D �1. The fractional Laplacian .��/�1C˛=2 on the domain
D D T � Œ0; 1� can be defined using explicit spectral theory. The vorticity deviation ! D

� C 1 W Œ0; T � � T � Œ0; 1� ! R satisfies the system

@t! C @ya.y/@x! � @y @x! C @x @y! D 0;

 D �.��/�1C˛=2!;  .t; x; 1/ D  .t; x; 0/ D 0;
(3.2)

where a D a.y/ is given by .�@2
y/

1�˛=2a.y/ D �1, a.0/ D a.1/ D 0. Notice that if ˛ D 0

this is the same as the Euler equation (2.1) for the Couette flow b.y/D y � 1=2, as expected.
At first glance it seems plausible to adapt the ideas described in Sections 2.1–2.2

to prove global regularity of the system (3.2), at least for some ˛ > 0 small. One can still
perform a nonlinear change of variables and derive a system of equations for a profile F , as
in Section 2.1. A simplified version of this system is the closed equation

@tF � @vP¤0ˆ@zF D 0; AP¤0ˆ.t; k; �/ D
QF .t; k; �/

Œk2 C .� � tk/2�1�˛=2
1Z�.k/ (3.3)

for the smooth function F W Œ0; T �� T � R ! R, which is analogous to the simplified equa-
tion (2.12) considered in Section 2.2.
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Surprisingly, our analysis (in collaboration also with Javier Gómez-Serrano) reveals
that the system (3.3) is unstable, for any ˛ > 0. To see this, let

EF .t/ WD

X
k2Z�

Z
R
W 2

k .t; �/
ˇ̌

QF .t; k; �/
ˇ̌2
d�;

BF .t/ WD

X
k2Z�

Z t

0

Z
R

ˇ̌
PWk.s; �/

ˇ̌
Wk.s; �/

ˇ̌
QF .s; k; �/

ˇ̌2
d�;

(3.4)

where Z� D Z n ¹0º. We will show below that it is not possible to find a family of weights
Wk , decreasing in t and compatible with nonlinear analysis, for which one could control the
energy functional EF for uniformly all times.

Indeed, we calculate
d

dt
EF .t/ D

X
k2Z�

Z
R
2 PWk.t; �/Wk.t; �/

ˇ̌
QF .t; k; �/

ˇ̌2
d�

C 2<
X

k2Z�

Z
R
W 2

k .t; �/@t
QF .t; k; �/ QF .t; k; �/ d�: (3.5)

Therefore, since @tWk � 0, for any t 2 Œ1; T �, we have

EF .t/C 2BF .t/ D EF .0/C

Z t

0

²
2<

X
k2Z�

Z
R
W 2

k .s; �/@s
QF .s; k; �/ QF .s; k; �/ d�

³
ds:

(3.6)

Using equation (3.3), the cubic term on the right-hand side of (3.6) is equal to

C

ˇ̌̌̌
ˇ2<

´ X
k;`2Z�

Z t

0

Z
R2

W 2
k .s; �/i�

ê.s; `; �/i.k � `/ QF .s; k � `; � � �/ QF .s; k; �/ d�d�ds

µˇ̌̌̌
ˇ

D C

ˇ̌̌̌
ˇ2<

´ X
k;`2Z�

Z t

0

Z
R2

W 2
k .s; �/

� QF .s; `; �/ QF .s; k; �/

Œ`2 C .� � s`/2�1�˛=2
.k � `/

� QF .s; k � `; � � �/ d�d�ds

µˇ̌̌̌
ˇ

D C

ˇ̌̌̌
ˇ X
k;`2Z�

Z t

0

Z
R2

�
�W 2

k
.s; �/

Œ`2 C .� � s`/2�1�˛=2
�

�W 2
`
.s; �/

Œk2 C .� � sk/2�1�˛=2

�
� QF .s; `; �/ QF .s; k; �/.k � `/ QF .s; k � `; � � �/ d�d�ds

ˇ̌̌̌
ˇ; (3.7)

where in the last identity we use symmetrization in .k; �/ and .`; �/, based on the fact that
F is real-valued.

We restrict ourselves to the range

�; � D N CO.1/; k D 2; ` D 1; (3.8)

whereN is very large. This corresponds to the main “reaction term” in the original equation
(3.3), where the frequency of ˆ in the nonlinearity is large and the frequency of F is small.
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To estimate the right-hand side of (3.6) using the bulk term BF defined in (3.4), we need
that the weights satisfy the inequalityˇ̌̌̌

�W 2
2 .s; �/

Œ1C .� � s/2�1�˛=2
�

�W 2
1 .s; �/

Œ4C .� � 2s/2�1�˛=2

ˇ̌̌̌
.

q
j PW2.s; �/jW2.s; �/

q
j PW1.s; �/jW1.s; �/; (3.9)

for all �; � D N CO.1/ and s 2 Œ0;1/.
Assume that we are further restricting to a neighborhood of the largest resonant time

s DN CO.1/. We notice that in this case the two terms on the left-hand side of (3.9) cannot
have a meaningful cancelation because the denominator of the first term varies uniformly
between 1 and C if � and s are fixed and � D N CO.1/, while all the other numerators and
denominators vary much less. So we would need

�W 2
2 .s; �/

Œ1C .� � s/2�1�˛=2
C

�W 2
1 .s; �/

Œ4C .� � 2s/2�1�˛=2

.
q

j PW2.s; �/jW2.s; �/

q
j PW1.s; �/jW1.s; �/;

for all �; �; s D N CO.1/. In other words, the symmetrization performed in (3.7) does not
help in the resonant case �; �; s D N CO.1/. In particular, for all �; s D N CO.1/,

NW 2
2 .s; �/CN�1C˛W 2

1 .s; �/ . W2.s; �/W1.s; �/

s
j PW2.s; �/j

W2.s; �/

j PW1.s; �/j

W1.s; �/
: (3.10)

Using the mean inequality twice, this can only be satisfied if

N ˛=2 .
j PW2.s; �/j

W2.s; �/
C

j PW1.s; �/j

W1.s; �/
; if s; � D N CO.1/: (3.11)

Unfortunately, it is not possible to find suitable weights that satisfy a bound like
(3.11), for any ˛ > 0. This is because the weights also need to satisfy basic bounds like

Wk.s; �/ � Wk.s; �/ (3.12)

for any s 2 Œ0;1/, k 2 ¹1; 2º, and �; � 2 R, j� � �j � 1. These bounds are essential in order
for the weights to be compatible with nonlinear analysis. LettingWk.s; �/D e�k.s;�/, k 2 Z,
and �D �1 C �2, it follows from (3.11)–(3.12) that � W Œ0;1/� R ! Œ0;1/ is a decreasing
function in s satisfying

h�i˛=2 .
ˇ̌
.@s�/.s; �/

ˇ̌
;

ˇ̌
�.s; �/ � �.s; �/

ˇ̌
. 1 (3.13)

if � � 1, j� � sj � 2, and j� � �j � 2. We use these inequalities with s D � D N � 1 and
recall that ˛ > 0 to see that

�.N � 1;N � 1/ � �.N;N /C cN ˛=2: (3.14)

We can then apply this inductively to conclude that �.N � n;N � n/ � �.N;N /C cnN ˛=2

for nD 1; : : : ;N=2. In particular, �.N=2;N=2/� cN 1C˛=2, which would force �.0;N=2/�

cN 1C˛=2 (since � is decreasing in s). However, this is not compatible with the bounds (3.12)
when s D 0, giving the final contradiction.
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Notice that most of this argument applies in the Euler case ˛ D 0, except that (3.13)
does not imply (3.14) (in fact, our weights Ak constructed in Section 2.2.1 satisfy (3.13) but
not (3.14)). To summarize, these calculations show that the main construction used in the
proof of global stability of the Couette flow for the 2D Euler equations does not extend to
any more singular generalized SQG equations.
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Abstract

We consider the linear Schrödinger equation describing N quantum (bosonic) particles at
equilibrium and study its behavior as N tends to infinity. We place the system in the mean-
field regime, in which the particles are very tightly packed but interact weakly. In this limit
we prove that they become essentially independent and identically distributed according to
a nonlinear partial differential equation. Our main tool is the quantum de Finetti theorem,
an abstract result about how independence can arise due to symmetry in such systems.
By considerably increasing the randomness in the system, we can also obtain nonlinear
Gibbs measures. Those are probability measures over an infinite-dimensional space, which
play a major role in different areas of mathematics. The two- and three-dimensional cases
are particularly challenging due to the necessity of using a renormalization procedure to
cancel infinities.
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1. Introduction

Mathematics is efficient in describing some aspects of our world [63]. Many com-
plicated natural phenomena are well reproduced using rather simple equations. More than
that, abstract results or principles can sometimes even be used to predict new phenomena,
later confirmed by experiments. This happened many times in physics in the 20th century,
in particular through arguments based on symmetry. Several elementary particles were dis-
covered this way (such as the positron predicted by Dirac in 1928 and discovered later by
Anderson in 1932 or, more recently, the Higgs boson). In this respect, mathematics is not
just an efficient tool to model our world, it can sometimes also be used to explore it.

Quantum mechanics is certainly one of the physical theories relying the most on
mathematics. This is in part due to the strong influence of Hilbert in Göttingen, where
Heisenberg and Born invented the “new quantum mechanics” around 1925 [56,58]. In fact,
several mathematical concepts used all the time today (such as the Hilbert space) have been
invented in this context [62]. This is a culmination of Hilbert’s program to axiomatize physics,
his 6th problem at the International Congress of Mathematics in 1900 [31].

At about the same time that quantum mechanics was being formalized, Bose [10]

and Einstein [19] predicted the existence of a new state of matter, now called a Bose–Einstein
condensate. Their argument was again mainly based on symmetry. Under the assumption
that the wave function of a set of N particles is invariant under the action of the permutation
groupSN , they found that those particles would have to behave rather strangely whenN gets
large, at very low temperatures. When the temperature passes below some critical value, they
start traveling through the whole system at macroscopic distances, and all adopt the exact
same behavior on average. A condensate is thus a macroscopic piece of quantum matter,
where quantum effects can almost be observed with the human eye. The particles respecting
this symmetry are now called bosons; famous examples include photons and helium atoms.
Even if Bose–Einstein condensation (BEC) was suspected to play a role in many experiments
(e.g., for the superfluidity of liquid helium), it was only in 1995 that a condensate could finally
be realized in the laboratory [4,13]. This was recognized by a Nobel prize in 2001 and is still
a very active subject of research in theoretical and experimental physics.

The argument of Bose and Einstein concerned noninteracting particles, and it can be
made rigorous. However, real particles interact with each other and providing amathematical
proof of condensation in this case turned out to be very difficult, even at zero temperature.
This was finally achieved in a series of works by Lieb, Seiringer, and Yngvason [43–46,50]

starting in 1998. These works belong to a large trend of research in analysis andmathematical
physics which was stimulated by the numerous experimental discoveries starting from 1995.

In this paper I present the results obtained on the subject with my collaborators in the
four articles [37,38,41,42] published in the period 2014–2021. In [37] we realized with Phan
Thành Nam and Nicolas Rougerie that BEC can, to some extent, be understood through a
purely abstract result, the quantum de Finetti theorem. A version of this theorem was proved
in 1969 [33,60] within the framework of operator algebras, and it currently plays an impor-
tant role in quantum information theory. Its use for the condensation of bosons had, however,
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been rather anecdotal. The classical version of de Finetti’s theorem dates back to 1931 and
is often called the Hewitt–Savage theorem [14,30]. It plays a central role in probability and
statistics. Loosely speaking, the latter says that a sequence of infinitely many exchangeable
random variables is essentially automatically independent and identically distributed (i.i.d.).
More precisely, its law must be the convex combination of i.i.d. random variables. Similarly,
we will see that the emergent macroscopic i.i.d. behavior of the bosons in a condensate is a
consequence of their indistinguishability, which implies a certain symmetry under permuta-
tions.

This point of view allowed us to push forward the mathematical analysis of conden-
sates. In particular, in [38, 41] we started to look at a new situation where the randomness
between the condensed particles is considerably increased, due to the temperature. This cor-
responded to looking at how the condensate is forming, just before the phase transition. We
showed that the condensed bosons are then described by nonlinear Gibbs measures. These
probability measures in infinite dimension play a major role in several areas of mathematics.
They, for instance, appear in the study of rough stochastic partial differential equations and
of deterministic equations with random initial data (as promoted by Bourgain [11, 12] and
now studied by many authors). Our new program has generated some interest and important
achievements followed, in particular by Fröhlich, Knowles, Schlein, and Sohinger [22–24].

We shall restrict here our attention to a particular regime, called themean-field limit.
The system is assumed to be very dense (hence the particles meet very often) but the particles
interact only a little. The many-particle interaction then gets replaced by an effective nonlin-
ear interaction, seen by all the particles in the system, which leads to a nonlinear partial dif-
ferential equation. This is not the most common regime in experiments [4,13]. The system is
often rather dilute such that the particles instead meet rarely. The Lieb–Seiringer–Yngvason
analysis in this case is more involved and requires more assumptions [43–46,50].

In the next section we introduce the Schrödinger model for N bosons. In Sec-
tion 3 we review our main results on Bose–Einstein condensation in the mean-field limit
from [37, 42]. We then turn in Section 4 to a different mean-field regime where nonlinear
Gibbs measures appear [38, 41]. Due to space limitations, we will avoid entering too much
into the technical details. We will also not be able to cite all the existing literature. In addition
to [37,38,41,42], we refer to a previous proceedings [36] for more references (in particular on
the physics side), and to [57] for a recent and detailed review of known results.

2. The N-particle quantum model

We consider a system composed of N identical particles evolving in Rd . Physically
d 2 ¹1;2;3º, but for themoment any d > 1 is allowed.We assume that interactions take place
by pairs and are described with an even potential w W Rd ! R. We ignore more complicated
events involving three or more particles at a time. We also submit our system to an external
potential V W Rd ! R, which is typically used to ensure that the particles do not escape.

In classical mechanics, our particles would be described byN vectors ¹.xj ;pj /ºN
j D1

in Rd � Rd , where xj is the position of the j th particle and pj D mvj is its momentum
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(mass times velocity). The time evolution is a Hamiltonian system based on the energy

Hcl.x1; p1; : : : ; xN ; pN / D

NX
j D1

jpj j2

2m
C

NX
j D1

V.xj / C �
X

16j <k6N

w.xj � xk/;

with the usual symplectic form on the phase space. The three terms are respectively the
kinetic energy, the potential energy, and the interaction energy. We have inserted a cou-
pling constant � which we will later use to tune the strength of the interaction between the
particles. The usual Hamilton equations lead to Newton’s equations that the acceleration
is proportional to the forces felt by each particle (which depend on the positions of all the
others). Stationary states correspond to critical points of Hcl. Those always have all the pj

equal to 0 (the particles do not move!). Equilibrium states are those where Hcl is a local
minimum. Of interest are also measures on the phase space .Rd � Rd /N which are glob-
ally invariant under the Hamiltonian flow. This is the case of any function of the conserved
Hamiltonian Hcl but an important example is given by the Gibbs measures

P .x1; p1; : : : ; xN ; pN / D Z�1e�T �1Hcl.x1;p1;:::;xN ;pN /;

Z WD

Z
R2dN

e�T �1Hcldx1 � � � dpN ;
(2.1)

where T is a temperature used to model the amount of randomness in the system. In the limit
T ! 0C, the probability measure P concentrates on the minimum of Hcl.

For microscopic particles such as atoms, the classical model is not sufficiently pre-
cise and one has to switch to quantum mechanics. The basic principle is to give up the
idea that one can know the exact positions and momenta of the particles. Instead, quan-
tum mechanics provides us with two probability measures on .Rd /N corresponding to the
possible positions and momenta, respectively. These two probability measures are not inde-
pendent, on account of Heisenberg’s uncertainty principle which states that positions and
velocities cannot be known simultaneously to an arbitrary precision. This principle is math-
ematically expressed using the Fourier transform. Namely, our N quantum particles are
represented by a square-integrable function ‰ 2 L2.RdN ; C/ called the wave function, nor-
malized in the manner

R
RdN j‰j2 D 1, and it is postulated that

• j‰.x1; : : : ; xN /j2 is the probability density that the particles are at x1;

: : : ; xN 2 Rd ;

• jb‰.p1; : : : ; pN /j2 is the probability density that they have the momenta p1;

: : : ; pN .1

Integrating the above two probability densities against the classical energy and using that
2�i@xj

‰ D pj
b‰, we find that the quantum energy can be expressed in terms of ‰ as

E.‰/ D
1

2m

Z
RdN

jr‰j
2

C

NX
j D1

Z
RdN

V.xj /j‰j
2

C �
X

16j <k6N

Z
RdN

w.xj � xk/j‰j
2:

(2.2)

1 Hereb‰.p1; : : : ; pN / D .2�/� dN
2

R
RdN ‰.x1; : : : ; xN /e�i

PN
j D1 xj �pj dx1 � � � dxN .

3803 Mean-field limits and nonlinear Gibbs measures



This is the quadratic form associated with the operator

HN;� WD

NX
j D1

��xj

2m
C

NX
j D1

V.xj / C �
X

16j <k6N

w.xj � xk/ (2.3)

which is our main object of interest. We will work in a system of units so that 2m D 1.
Since our N particles are all the same, the two probability densities j‰j2 and jb‰j2

must be symmetric functions, that is, invariant if we permute their variables. Some additional
constraints are thus needed on‰. Only two possible choices can preserve the linear character
of quantummechanics, namely‰ must itself be either symmetric or antisymmetric. This cor-
responds to the two types of quantum particles existing in Nature, respectively called bosons
and fermions. In this paper we exclusively consider the bosonic case, and hence restrictHN;�

to the subspace of symmetric square-integrable functions, denoted by

L2
s

�
.Rd /N ; C

�
D

®
‰ 2 L2

�
.Rd /N ; C

�
W ‰.x�.1/; : : : ; x�.N // D ‰.x1; : : : ; xN /; 8� 2 SN

¯
:

We emphasize that each xj is inRd .We are not permuting the coordinates of a given particle.
The quantum model is again a Hamiltonian system, in infinite dimension. Equi-

librium states are critical points of the quantum energy E in (2.2), on the unit sphere of
L2

s ..Rd /N ; C/. Those are exactly the symmetric eigenfunctions of the Hamiltonian HN;�,
which solve Schrödinger’s equation

HN;�‰ D E‰: (2.4)

We will be particularly interested in what is called the ground state (the equilibrium state of
lowest possible energy), that is, the first eigenfunction. The corresponding energy is

E.N; �/ WD min �.HN;�/ D infR
j‰j2D1

E.‰/

where �.H/ denotes the spectrum of an operator H . Other states of interest are quantum
Gibbs states, which are given by a formula similar to the classical case (2.1) by

�T;N;� WD Z�1
T;N;�e�T �1HN;� ; ZT;N;� D Tr.e�T �1HN;�/; (2.5)

with the trace taken only over the symmetric subspace L2
s ..Rd /N ; C/. Those are compact

operators which involve the whole spectrum of the quantum operatorHN;�. The correspond-
ing free energy of the system is then given by

F.T; N; �/ WD �T logZT;N;� (2.6)

and it converges toE.N;�/ in the limit T ! 0C. We postpone the presentation of the precise
assumptions on the potentials V and w which ensure that this is all well defined.

Finding the equilibrium states (2.4) or the Gibbs state (2.5) requires diagonalizing
the operator HN;�. Due to the high dimensionality of the problem, this is impossible in most
physical situations, even numerically at a sufficiently high precision. It is therefore important
to rely on simpler approximations that are both precise enough and suitable to numerical
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investigation. One of the most famous is the mean-field model, which consists in assuming
that the particles are independent but evolve in an effective, self-consistent, potential which
replaces the many-particle interaction. The linear many-body Schrödinger equation (2.4) on
RdN is then replaced by a more tractable nonlinear equation in Rd . Introduced by Curie
and Weiss to describe phase transitions in the classical Ising model, the mean-field method
is now extremely popular in many areas of physics, and has even spread to other fields like
biology and social sciences. We explain in the next section how the N -particle quantum
system in fact converges to such a nonlinear problem in a specific limit.

3. Mean-field limit to the Gross–Pitaevskii equation

Gross–Pitaevskii theory. In a fully condensed system, the N bosons are by definition
i.i.d. and the corresponding wave function is factorized, that is,

‰.x1; : : : ; xN / D u˝N .x1; : : : ; xN / WD u.x1/ � � � u.xN /; (3.1)

for some normalized u 2 L2.Rd ; C/. After some computation, one finds that the energy of
such a state equals E.‰/ D N EGP.u/where EGP is theGross–Pitaevskii (GP) energy [28,54],

EGP.u/ D

Z
Rd

ˇ̌
ru.x/

ˇ̌2 dx C

Z
Rd

V.x/
ˇ̌
u.x/

ˇ̌2 dx

C
�.N � 1/

2

“
Rd �Rd

w.x � y/
ˇ̌
u.x/

ˇ̌2 ˇ̌
u.y/

ˇ̌2 dx dy: (3.2)

It is often also called “Hartree” when w is a smooth function. When w is proportional to
a Dirac delta, one often uses the acronym NLS for “nonlinear Schrödinger.” Historically
designed to describe quantized vortices in superfluid helium (in which it applies to only a
small fraction of the particles), the Gross–Pitaevskii model is now the main tool to study
Bose–Einstein condensates. If we minimize over all normalized u, we obtain the smallest
possible energy per particle of a fully condensed system

eGP WD infR
Rd juj2D1

EGP.u/: (3.3)

An associated minimizer u0, when it exists, solves the nonlinear eigenvalue equation�
�� C V.x/ C �.N � 1/ju0j

2
� w.x/

�
u0.x/ D "0u0.x/; (3.4)

where "0 is a Lagrange multiplier associated with the normalization constraint in L2.Rd /.
The nonlinearity is only through the “mean-field potential” ju0j2 � w. Equation (3.4) has
been used with impressive success to describe Bose–Einstein condensates. A famous exam-
ple is the vortices appearing in rotating gases, see Figure 1. Note that EGP also provides a
Hamiltonian system, whose dynamics is given by the nonlinear Schrödinger equation

i@t u D
�
�� C V C �.N � 1/juj

2
� w

�
u: (3.5)
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Figure 1

(Left) Experimental pictures of the density of fast rotating Bose–Einstein condensates from [1] (©AAAS with
permission). (Right) Numerical calculation of ju0j2 for the Gross–Pitaevskii solution u0 of (3.4) with additional
terms describing the rotation, using GPELab [5] (©Antoine & Duboscq with permission). The dots are small
vortices appearing under the effect of rotation, which seem to be placed on a triangular lattice [2].

Mean-field limit. The proof of Bose–Einstein condensation requires understanding how
independence arises in an interacting system. The interactions will have to be weak and
there are (at least) two ways this could happen. The first is when they are rare, which is the
dilute regime appropriate for many experiments. Another situation is when the interactions
are small in amplitude, that is,� is small. In order to have them play a role, many collisions are
then needed. This corresponds to a high density regime where the particles meet very often
but interact only a little bit each time. The latter is our mean-field regime. Surprisingly, very
similar theorems are expected in the two opposite regimes.

The mean-field regime corresponds to taking N ! 1, with the potential V used to
confine most particles to a finite region of space. At the same time, we take � ! 0. From the
formula (3.2) of the GP energy and the GP equation (3.4), we see that the interesting regime
is � � 1=N . This makes the quantum Hamiltonian HN;� essentially of order N . To simplify
some expressions including (3.2) and (3.4), we simply choose

� D
1

N � 1

and denote HN WD HN;�, E.N / D E.N; �/, etc. Then eGP is independent of N . Using
E.N / 6 E.u˝N / D N EGP.u/ and minimizing over u, we obtain the simple upper bound

E.N / 6 NeGP: (3.6)

We need technical assumptions on the potentials V andw to make everything mean-
ingful. In the whole paper we distinguish two situations:

• (confined case) w and V� D max.0; �V / are in Lp.Rd ; R/ C L1.Rd ; R/ with
p D 1 if d D 1, p > 1 if d D 2 and p D d=2 if d > 3, VC is in L1

loc.R
d ; R/ and

diverges at infinity;
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• (unconfined or locally-confined case) V and w are in Lp.Rd ; R/ C L1.Rd ; R/

with p as above, and tend to 0 at infinity.

These conditions are not optimal and can be weakened in several ways. The most important
is that we make no assumption on the sign of w or its Fourier transform Ow. The interaction
can be repulsive, attractive, or both.

Theorem 1 (Convergence of energy [37]). Under the previous assumptions, we have

lim
N !1

E.N /

N
D eGP: (3.7)

In the confined case, if, in addition,
R

Rd e�T �1V.x/dx < 1 for all T > 0, then we have the
same limit for F.T; N / in (2.6), for all T > 0.

Similar results have been shown in many particular situations, but Theorem 1 is, to
my knowledge, the first generic result. Important previous works in the same spirit include [6,

49] for unconfined systems, and [20,55,61] in the confined case. The limit for F.T; N / says
that the temperature plays no role at the considered scale. In Section 4 we look at the case
where T ! 1 and get a different limit. A simple proof of Theorem 1, different from that
of [37], is provided in the appendix. The argument is inspired of [34,49] and was first written
in the proceedings [36] but, unfortunately, never published. It is also described in [57, Chap. 2].

The reader should think that our model is expressed at themacroscopic scalewhere
condensation happens. But interactions typically take place at the microscopic scale. After
changing units, in d D 3 the more physical dilute limit corresponds to replacing w.x/ by
N 3w.Nx/ in our model. That the interaction becomes N -dependent generates many diffi-
culties. Under further assumptions on w, the same limit (3.7) was proved in [43,44,46], with
w replaced by 8�aı in EGP, with a > 0 the scattering length of w and ı the Dirac delta. The
positive temperature case is handled in [16,17].

Our next goal is to prove that the system is really condensed, that is, the bosons are
essentially independent. Unfortunately, one cannot expect that ‰N will be close in norm to a
factorized state such as (3.1). Changing one of the u’s in the tensor product (that is, exciting
one particle out of the condensate) would only affect the total energy to an O.1/ hence not
change the main result. The proper way to express Bose–Einstein condensation is, following
Penrose and Onsager [53], through the corresponding k-particle density matrices. Those are
the quantum equivalent of marginals in probability theory, which appear for events involving
only k particles at a time. They are defined for all k > 1 through their integral kernel by

�
.k/
‰N

.x1; : : : ;xk ;y1; : : : ;yk/ WD
N Š

.N � k/Š

Z
Rd.N �k/

‰N .x1; : : : ;xk ;Z/‰.y1; : : : ; yk ; Z/dZ:

This is a compact operator with trace equal to N Š
.N �k/Š

, hence an operator norm bounded by�
.k/
‰N

 6
N Š

.N � k/Š
�

N !1
N k : (3.8)

For large bosonic systems in normal conditions (such as a gas or a solid), �
.k/
‰N

will stay of
order one. Penrose and Onsager [53] suggested that a signature of Bose–Einstein condensa-
tion is when some eigenvalues are of orderN k . In fact, factorized states such as (3.1) saturate
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the bound in (3.8) since their k-particle density matrices are all of rank one:

�
.k/

u˝N D
N Š

.N � k/Š

ˇ̌
u˝k

˛˝
u˝k

ˇ̌
:

Here we use the bra-ket notation for the operator jf ihgju WD hg; uif . The following says
that, in the mean-field limit, condensation happens precisely on the set of minimizers of the
Gross–Pitaevskii energy.

Theorem 2 (Convergence of states [37]). Under the previous assumptions on V and w, let
‰N be any sequence such that h‰N ; HN ‰N i D E.N / C o.N /. In the confined case, there
exist a subsequence Nj ! 1 and a probability measure � on M D ¹minimizers for eGPº,
invariant under multiplication by phase factors, such that

lim
Nj !1

�
.k/
‰Nj

.Nj /k
D

Z
M

ˇ̌
u˝k

˛˝
u˝k

ˇ̌
d�.u/; 8k > 1; (3.9)

strongly in trace norm. In the unconfined or locally-confined case, the result is the same
except that M D ¹weak limits of minimizing sequences for eGPº and the limit in (3.9) a priori
only holds weakly-� in the trace class.

The simplest case is when M D ¹ei� u0; � 2 Œ0; 2�/º, that is, the GP minimizer is
unique modulo phase. Then there will always be complete Bose–Einstein condensation on
u0 and no need to extract subsequences. One should probably think of� as a probability over
experiments, where only one GP minimizer u0 is usually observed at a time. Note that it is
possible to construct sequences‰N converging to any chosen probability� onM. The exact
ground state ofHN might converge to a definite�, but this is not addressed in the theorem. In
the unconfined or locally-confined case, the result only gives condensation for the particles
that stay in a neighborhood of the origin (due to the weak limits in the statement). All the
information about the particles escaping to infinity is lost.

The main tool for proving Theorems 1 and 2 is the quantum de Finetti theorem.
The following is our version of this result from [37], which involves weak limits and is thus
stronger than the historical theorem from [33,60].

Theorem 3 (Quantum de Finetti [33, 37, 60]). Let ‰N be any sequence of normalized sym-
metric wave functions in L2

s ..Rd /N ; C/. Assume that the k-particle density matrices satisfy

�
.k/
‰N

N k
*
�

‡ .k/; 8k > 1; (3.10)

weakly-� in the trace class. Then there exists a probability measure � on the unit ball B D

¹u 2 L2.Rd /; kukL2 6 1º, invariant under multiplication by phase factors, such that

‡ .k/
D

Z
B

ˇ̌
u˝k

˛˝
u˝k

ˇ̌
d�.u/; for all k > 1.

Convergence holds in trace norm in (3.10) for one (hence all) k > 1 if and only if � is
supported on the unit sphere S D ¹u 2 L2.Rd /; kukL2 D 1º.

The result is, in fact, valid in any separable Hilbert space, but we used L2.Rd / to
avoid introducing any new notation. A similar theorem appeared earlier in [3] but it was
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formulated differently. Note that since the k-particle density matrices are bounded in trace
norm after dividing byN �k , the limit (3.10) always holds for a subsequence, by the Banach–
Alaoglu theorem. Theorem 3 says that whatever converges at the scale N k has to come
from factorized states, that is, condensates. This abstract result is only a consequence of the
symmetry of bosonic states and it is valid for any sequence ‰N , irrespective of the physical
context. This justifies and goes much further than the theory of Penrose and Onsager [53].

The above quantum de Finetti theorem makes the proof of Theorems 1 and 2 very
simple for confined systems. The main observation is that the energy can be written in terms
of the two-particle density matrix as follows:

E.‰N /

N
D

Tr.H2�
.2/
‰N

/

2N.N � 1/
:

After extracting a subsequence, we can assume that N �k
j �

.k/
‰Nj

*� ‡ .k/ weakly-�, for some
‡ .k/ and all k > 1. For confined systems,H2 has a compact resolvent and the energy bounds
can be used to show that the limit holds in trace norm. Using Fatou’s lemma for the trace and
the quantum de Finetti Theorem 3 for �.2/, we infer that

lim inf
N !1

E.N /

N
D lim inf

Nj !1

Tr.H2�
.2/
‰Nj

/

2Nj .Nj � 1/
>

1

2
Tr

�
H2‡ .2/

�
D

Z
S

hu˝2; H2u˝2i

2
d�.u/

D

Z
S

EGP.u/ d�.u/ > eGP

Z
S

d�.u/ D eGP: (3.11)

The upper bound (3.6) implies that there is equality everywhere, hence E.N /=N ! eGP

and � is supported on the set of minimizers for eGP. This concludes the proof of Theorems 1
and 2 for confined systems. An argument of the same kind appeared before in [20,55,61].

For unconfined systems, some particles can escape to infinity and the argument is
much more complicated. The weak limit in (3.10) might not provide sufficient information.
In [37] we treated separately the particles staying in a neighborhood of 0 (for which the
quantum de Finetti theorem is valid) and those that escape. All the possible cases of K

particles escaping and N � K staying, with K of the order of N have to be considered.
These different events are handled using a technique introduced in [35] together with the
concentration–compactness method. This is, in fact, also the idea of the proof of Theorem 3.

The Bogoliubov correction. The convergence of the density matrices says very little about
the behavior of the wave function ‰N itself. This problem requires determining the next
order in the energy expansion, called the Bogoliubov correction. We quickly present here
the results obtained in this direction in [42]. Our idea was to concentrate on the excitations
outside of the condensate. We noticed that, given a reference normalized function u0 in
L2.Rd / – for instance, a GP minimizer – any N -particle wave function can be uniquely
decomposed in the form

‰N D '0u˝N
0 C '1 ˝s u˝N �1

0 C � � � C 'N �1 ˝s u0 C 'N (3.12)

where the 'j are completely orthogonal to u0, that is, belong to .¹u0º?/˝j . Here ˝s is a
notation for the symmetrized tensor product, whose precise definition can be found in [42].
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The map ‰N 7! '0 ˚ '1 ˚ � � � ˚ 'N �1 ˚ 'N is a unitary operator from the N -particle
space L2

s ..Rd /N ; C/ to the truncated bosonic Fock space

F 6N
C D C ˚

NM
nD1

nO
s

¹u0º
?

which later became known as the excitation map. In the mean-field regime the 'j ’s will
converge to a limit in the full Fock space FC WD F 61

C and describe the excitations.
We have seen that the leading order of the energy is given by the Gross–Pitaevskii

minimization. Bogoliubov predicted in [9] that the next order can be expressed using the
Hessian of EGP at the GP minimizer u0, a bit like in a Taylor expansion (the gradient of
EGP does not appear since u0 is a critical point of EGP on the unit sphere). More precisely,
the Hessian has to be second-quantized on the Fock space FC, which provides the so-called
Bogoliubov Hamiltonian, defined using creation and annihilation operators by

H0 D

Z
a�.x/

�
�� C V C ju0j

2
� w � "0

�
a.x/ dx

C

“
u0.x/u0.y/w.x � y/a�.x/a.y/ dx dy

C
1

2

“
w.x � y/

�
u0.x/u0.y/a�.x/a�.y/ C u0.x/u0.y/a.x/a.y/

�
dx dy: (3.13)

It would take us too far to explain this formula in detail and we refer to [42]. The form of
the spectrum of the operator H0 is important to explain the superfluidity of cold Bose gases.
This spectrum occurs in the mean-field limit, as specified in the following result.

Theorem 4 (Validity of Bogoliubov’s theory [42]). Wework in the confined case and assume
that eGP admits a unique and nondegenerate minimizer u0 (modulo phase), which satisfies“

Rd �Rd

w.x � y/2
ˇ̌
u0.x/

ˇ̌2 ˇ̌
u0.y/

ˇ̌2 dx dy < 1:

Then, for every fixed j , the j th eigenvalue (counted with multiplicity) satisfies

lim
N !1

�
�j .HN / � NeGP

�
D �j .H0/: (3.14)

The first eigenvalue �1.H0/ is always simple, with corresponding normalized ground state
denoted by ˆ D ¹'nºn>0 2 FC (defined up to a phase factor). The lowest eigenfunction ‰N

of HN is also simple and, with a correct choice of phase, we have

lim
N !1

‰N �

NX
nD0

'n ˝s .u0/˝N �n

 D 0: (3.15)

A similar convergence holds for the higher eigenfunctions, up to subsequences in case of
degeneracy.

The limit (3.15) provides the exact behavior of ‰N , which involves the condensate
u0 and all its excitations 'n. That a second-quantized model arises for the excitations is well
explained using the excitation map associated with the decomposition (3.12). Our result was
stimulated by [25,27,48,59]. Many other works followed. The similar result in the much more
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complicated dilute regime has been open for a long time and was only solved very recently in
several groundbreaking works [7,8,21,51]. At a fixed temperature T > 0, Bogoliubov theory
also predicts the O.1/ correction to NeGP in the expansion of F.T; N; �/ in (2.6) [37].

4. Derivation of nonlinear Gibbs measures

We have seen in Theorem 2 that the condensed particles can be represented by a
probability measure � concentrated on the set M of minimizers of the Gross–Pitaevskii
energy. This naturally raises the question of whether one can get other kinds of measures �

in a mean-field limit. Introducing a fixed temperature T as in Theorem 1 will not change
anything at that scale. In [38] we proposed that taking T ! 1 at a proper speed (depending
on N ) should lead to a nonlinear Gibbs measure � and proved this in dimension d D 1. The
much more complicated dimensions d 2 ¹2; 3º were only solved later in [41] and, simulta-
neously, in [24] with a completely different method.

Note that since we are working at the macroscopic scale, the parameter T is not the
real thermodynamic temperature of the system. After reexpressing everything inmicroscopic
units, our limit rather corresponds to looking just above the critical temperature, right before
the condensation has started to appear [41, App. B]. Thus the nonlinear Gibbs measures are
describing the way that the Bose–Einstein condensate forms.

The nonlinear Gibbs measure is formally given by

d�.u/ D z�1e�EGP.u/��
R

Rd juj2 du; (4.1)

where z is a normalization factor used to make � a probability, and where we have perturbed
the GP energy by a multiple of the mass

R
Rd juj2, for convenience. This is the same as chang-

ing V into V C �. The constant�� has the physical interpretation of a chemical potential and
we have � D �"0 in the GP equation (3.4). From a Hamiltonian system point of view, we are
considering the linear combination of two conserved quantities (energy and mass), which
are both constants along the nonlinear GP flow (3.5). We could also insert a temperature
in (4.1), but we have taken it equal to one to avoid introducing too many parameters.

The formula (4.1) is completely formal. There is nothing such as du for functions u

in infinite dimension. Things are a little bit easier if we look at the noninteracting problem,
that is, take w D 0. In the confined case, we call .�� C V /vj D �j vj the eigenfunctions
and eigenvalues of �� C V . We then choose the constant � so that �� C V C � > 0, that
is, � > ��1.�� C V /. The formal probability measure

d�0.u/ D z�1
0 e�hu;.��CV C�/ui du (4.2)

is a Gaussianmeasure in infinite dimension. It is by definition the unique probability measure
whose cylindrical projection to the finite-dimensional space span.v1; : : : ; vJ / equals the
normalized Gaussian on CJ , that is,

d�0;J .u/ WD

JY
j D1

.�j C �/e�.�j C�/juj j2

�
duj ;
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where uj WD hvj ; ui, for any J > 1. Under appropriate growth assumptions on V , this
provides a well-defined probability measure. Note, however, that we always have
hu; .�� C V /ui D C1 �0-almost surely, which is why (4.2) is purely formal.

In dimension d D 1, the Gaussian measure �0 concentrates on functions in L2.R/,
and we can then define � using �0 as reference in the form

d�.u/ D z�1e�I.u/ d�0.u/; (4.3)

where

I.u/ WD
1

2

“
Rd �Rd

ˇ̌
u.x/

ˇ̌2 ˇ̌
u.y/

ˇ̌2
w.x � y/dxdy; z WD

Z
e�I.u/ d�0.u/: (4.4)

Wewill always assume that I.u/ > 0, which, for instance, follows ifw > 0 or Ow > 0 (defocus-
ing case). If I.u/ is not infinite�0-almost surely, we conclude that 0 < z < 1 and hence� is
a well-defined probability measure, absolutely continuous with respect to �0. The situation
is much more complicated in dimensions d > 2, since �0 always concentrates on distribu-
tions. Then ju.x/j2 does not make any sense and thus I.u/ is not defined. It is necessary to
remove infinities in I by a renormalization procedure.

The one-dimensional case. We first discuss the mean-field limit in dimension d D 1, fol-
lowing [38]. The Gibbs measure � in (4.3) lives on the whole space L2.Rd /. It is not
restricted to the unit sphere as was the case in Theorem 2. To obtain �, we need to work
grand-canonically, that is, average over all possible numbers of particles in a kind of Laplace
transform. The corresponding quantum state takes the form, in Fock space,

��;�;T WD Z�1
�;�;T

M
n>0

e�T �1.Hn;�C�n/; Z�;�;T D 1 C

X
n>1

e�T �1�n Tr.e�T �1Hn;�/;

and its density matrices are given by

�
.k/

�;�;T
.X; Y / WD Z�1

�;�;T

X
n>k

nŠ

.n � k/Š
e�T �1�n

Z
.Rd /n�k

e�T �1Hn;�.X; ZI Y; Z/ dZ; (4.5)

with X D .x1; : : : ; xk/ and Y D .y1; : : : ; yk/. In statistical mechanics, it is frequent to
work in the grand-canonical setting, which has a much simpler algebra. It is often easy to
subsequently infer a result without any average over N , but we have not yet investigated this
question.

Theorem 5 (Derivation of nonlinear Gibbs measures in dimension d D 1 [38]). Let d D 1.
We work in the confined case and assume, in addition, that Tr.�� C V C �/�1 < 1 for
some (hence all) � > ��1.�� C V /. Let w D w1 C w2 with w1 a finite positive Borel
measure on R and 0 6 w2 2 L1.R/. For any � > ��1.�� C V / and any k > 1, we have
the convergence

lim
�!0C

�T !1

�k�
.k/

�;�;T
D

Z ˇ̌
u˝k

˛˝
u˝k

ˇ̌
d�.u/ (4.6)

in trace norm, where � is the nonlinear Gibbs measure defined in (4.3).
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Note the assumption that w is nonnegative, which implies I.u/ > 0. Since the
number of particles has been averaged over, hence is not at our disposal anymore, the
limit (4.6) involves the parameter � with T � ��1 ! 1. In fact, the limit (4.6) also says
that the average number of particles in the Gibbs state is of order ��1:

Z�1
�;�;T

X
n>1

ne�T �1�n Tr.e�T �1Hn;�/ D Tr
�
�

.1/

�;�;T

�
� ��1

Z
kuk

2
L2.Rd /

d�.u/:

The same limit as (4.6) is expected for the N -particle Gibbs state in (2.5), when T � N and
� is replaced by its restriction to the unit sphere. The assumptions of the theorem have been
weakened in [39].

Renormalization in two and three dimensions. In physics, renormalization is not just
about removing undesired infinities. The removal of the bad terms must be justified by only
changing physical parameters in the system [15,18]. This is unfortunately often neglected in
mathematical works on the subject. Here we will see that the theory can be made finite by
only adjusting the constant �. For simplicity, we explain the construction at the level of the
GP energy, by formally manipulating infinite quantities. This will better motivate the final
result in the quantum case.

Let V0 be any potential (to be specified later) and �0 be the associated Gaussian
measure as in (4.2) with V replaced by V0 and � > ��1.�� C V0/. We can renormalize the
undefined ju.x/j2 usingWick ordering [26], which formally amounts to replacing ju.x/j2 by

W
ˇ̌
u.x/

ˇ̌2
W�0D

ˇ̌
u.x/

ˇ̌2
�

Z ˇ̌
u.x/

ˇ̌2 d�0.u/ D
ˇ̌
u.x/

ˇ̌2
� .�� C V0 C �/�1.x; x/: (4.7)

We hope here that the divergence of ju.x/j2 is essentially independent of u, so that sub-
tracting the average can remove it for �0-almost every u. Of course, the counter term is
also infinite. In dimensions d > 2, the kernel .�� C V0 C �/�1.x; y/ of the resolvent of
�� C V0 C �, called the Green function, diverges when x ! y, at a speed depending on d .
In the lower dimensions d 2 ¹2; 3º, the limit

lim
x!y

�
.�� C V0 C �/�1

� .�� C �/�1
�
.x; y/ (4.8)

exists for all � > max.0; ��1.�� C V0//, under suitable assumptions on V0, hence the
divergence is the same as that of .�� C �/�1.x; y/. Since .�� C �/�1 is a translation-
invariant operator, its integral kernel depends on x � y. It is known to diverge like log jx �

yj�1 in dimension d D 2 and jx � yj�1 in dimension d D 3. In dimensions d > 4, .�� C

V0 C �/�1.x; y/ diverges like jx � yj2�d but there are lower divergences which remain
after subtracting .�� C �/�1.x; y/. With the Wick ordering (4.7), we can formally define
the renormalized interaction energy by

Ir.u/ WD
1

2

“
Rd �Rd

W
ˇ̌
u.x/

ˇ̌2
W�0 W

ˇ̌
u.y/

ˇ̌2
W�0 w.x � y/ dx dy: (4.9)

The proper mathematical definition requires to first project u onto the finite-dimensional
space spanned by the J first eigenfunctions of �� C V0, subtract the average against �0

and then take the limit J ! 1, see [41]. This limit exists �0-almost surely in dimensions
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d 2 ¹2; 3º, under suitable assumptions on V0 and w described below. In addition, Ir.u/ > 0

for Ow > 0 and this allows us to define a renormalized Gibbs measure by

d�r.u/ D z�1
r e�Ir.u/ d�0.u/; zr WD

Z
e�Ir.u/ d�0.u/: (4.10)

Our initial goal was to construct and derive the (formal) measure � in (4.1). If we
just pick V0 D V , then the newmeasure�r seems very different from�. It contains undesired
additional terms in the interaction. More precisely, �r involves a modified GP energy which,
after expanding Ir, can formally be expressed as˝

u; .�� C V0 C �/u
˛
C Ir.u/ D

˝
u; .�� C V0 � W�;V0 C � � ˛/u

˛
C I.u/ C ˇ; (4.11)

where we have introduced the two infinite constants

˛ D

Z
Rd

w.x � y/.�� C �/�1.y; y/ dy D .�� C �/�1.0; 0/

Z
Rd

w D C1;

ˇ D
1

2

“
Rd �Rd

.�� C V0 C �/�1.x; x/.�� C V0 C �/�1.y; y/w.x � y/dx dy D C1;

(4.12)
as well as the finite potential

W�;V0.x/ D

Z
Rd

w.x � y/
�
.�� C V0 C �/�1

� .�� C �/�1
�
.y; y/ dy:

The computation (4.11) suggests to search for a potential V0 solving the nonlinear equation

V0 � W�;V0 D V; (4.13)

called the counter-term problem in [22]. Then we have the formal equality˝
u; .�� C V0 C �/u

˛
C Ir.u/ D EGP.u/ C .� � ˛/

Z
Rd

juj
2

C ˇ: (4.14)

Adding the infinite constant ˇ has no effect since it is then removed when we divide by z

in (4.1). Our renormalizedmeasure�r thus formally coincides with the desired� in (4.1), but
with � shifted by the infinite constant˛. This shows that it is, in principle, possible to only rely
on �, if we choose a reference potential V0 solving the nonlinear equation (4.13). A similar
situation was encountered before in [29,47]. For an interpretation in terms of quasifree states,
see [41]. When � ! 1, the nonlinear potential W�;V0 tends to 0 and the following could be
proved using a Banach fixed point.

Theorem 6 (Counter-term problem [22,41]). Let d 2 ¹2; 3º. Assume that V satisfies
1 C jxjs

C
6 V.x/ 6 C

�
1 C jxj

s
�
; for some C > 0 and s >

2d

d � 4
, (4.15)

and that w is an even function in L1.Rd ; .1 C jxj2s/ dx/ such that Ow is nonnegative and
belongs to L1.Rd ; .1 C jkj2/ dk/. Then there exists N� such that equation (4.13) admits a
unique solution V0 satisfying V=2 6 V0 6 3V=2, for all � > N�.

On the quantum side, there are no infinities and everything is perfectly well defined.
However, we need to take a divergent sequence of constants � in the mean-field limit, in order
to account for the above renormalization of the chemical potential.
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Theorem 7 (Derivation of nonlinear Gibbs measures in dimension d 2 ¹2; 3º [24,41]). Let
d 2 ¹2; 3º and V; w as in Theorem 6. For any � > N�, define

�� WD � �

R
Rd w

.2�/d

Z
Rd

� dk

e�.jkj2C�/ � 1

D

8<: � �
log.��/�1

4�

R
Rd w C o.1/�!0 for d D 2,

� �
�

�.3=2/

8�
3
2

p
�

�

p
�

4�

� R
Rd w C o.1/�!0 for d D 3.

(4.16)

The density matrices in (4.5) satisfy

lim
�!0C

�T !1

�k�
.k/

��;�;T
D

Z ˇ̌
u˝k

˛˝
u˝k

ˇ̌
d�r.u/ (4.17)

in Hilbert–Schmidt norm, where �r is the nonlinear Gibbs measure (4.10) with �0 defined
using the solution V0 of the nonlinear equation (4.13) in place of V .

The case d D 2 was announced earlier in [40]. We emphasize that the quantum
problem in (4.5) does not contain any ad hoc counter term. Only the constant �� is taken to
�1 as in (4.16) in order to properly renormalize the interaction. The integral

�

.2�/d

Z
Rd

dk

e�.jkj2C�/ � 1
D �.e�.��C�/

� 1/�1.0; 0/

appearing in (4.16) is a kind of bosonic regularization of the Green function. Note that
�.e�.��C�/ � 1/�1 ! .�� C �/�1 in the sense of operators, so that we formally obtain
the desired infinite shift ˛ in (4.12) in the limit. We also remark that (4.16) is universal. It
only depends on

R
Rd w and is otherwise completely independent of V and of the specific

form of w. The same result holds if the o.1/ are dropped on the right side of (4.16).
Theorem 7 was simultaneously proved in [24], but with an approach completely

different from [41]. Our proof of Theorem 7 is variational, like for Theorems 1 and 2. We
use that the Gibbs quantum state and the measure � are the unique minimizers of the Gibbs
variational principle, and our goal is to prove the convergence of the quantum problem to
the classical one. The link is via the quantum de Finetti Theorem 3. Passing to the limit is
very delicate and requires a fine understanding of the way that singularities appear in the
measure �r when � ! 0C. To this end, we proved new quantum correlation inequalities to
control the localization to low momenta and reduce the problem to finite dimensions. But it
would take us too far to describe this in detail here and we refer the reader to [41].

Conclusion. Bose–Einstein condensates offer a source of interesting and difficult mathe-
matical problems. The quantum de Finetti theorem provides both a new physical interpreta-
tion of condensation and a practical mathematical tool to prove it. It also naturally led us to
consider nonlinear Gibbs measures, which appear at the phase transition and describe how
the condensate forms. These measures play an important role in many different mathematical
and physical situations.
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Appendix: An elementary proof of Theorem 1

Let us start with the case wherew is continuous and has a positive Fourier transform
Ow > 0. The argument is based on the following two lemmas.

Lemma 7.1 (Hoffmann–Ostenhof inequality [32]). For every symmetric ‰N 2

H 1..Rd /N ; C/ Z
RdN

jr‰N j
2 > N

Z
Rd

jr
p

�‰N
j
2 (4.18)

with the one-particle density �‰N
.x/ D

R
Rd � � �

R
Rd j‰N .x; x2; : : : ; xN /j2 dx2 � � � dxN .

Proof. Compute r
p

�‰N
and use the Cauchy–Schwarz inequality.

Lemma 7.2 (Onsager inequality [52]). If Ow > 0 is in L1.Rd /, then, for all � 2 L1.Rd /,X
16j <k6N

w.xj � xk/ >
NX

j D1

� � w.xj / �
1

2

“
R2d

w.x � y/�.x/�.y/ dx dy �
N

2
w.0/:

(4.19)

Proof. Expand
’

R2d w.x � y/f .x/f .y/ dx dy D .2�/d=2
R

Rd Ow.k/j Of .k/j2 dk > 0 with
f D

PN
j D1 ıxj

� �.

With this we can prove (3.7). The potential energy can be expressed as
NX

j D1

Z
RdN

V.xj /j‰N j
2

D N

Z
Rd

V.x/�‰N
.x/ dx:

Taking � D N�‰N
in (4.19) and using (4.18) provides the lower bound

E.‰N / > N EGP.
p

�‰N
/ �

Nw.0/

2.N � 1/
> NeGP �

Nw.0/

2.N � 1/
: (4.20)

Minimizing over ‰N and recalling the upper bound (3.6), we obtain

eGP �
w.0/

2.N � 1/
6

E.N /

N
6 eGP; for Ow > 0, (4.21)

which clearly concludes the proof of Theorem 1, provided that 0 6 Ow 2 L1.Rd /. If Ow is
nonnegative but not integrable, the proof is done by approximation.

We next turn to the case of an arbitrary w. The idea, inspired by [34,49], is to use
auxiliary classical particles repelling each other, in order to model the attractive part of the
interaction. For simplicity, we consider 2N particles which we split in two groups of N . The
positions of the N first will be denoted by x1; : : : ; xN whereas those of the others will be
denoted by y1 D xN C1; : : : ; yN D x2N . Of course, the separation is completely artificial
and in reality the 2N particles are indistinguishable. We pick a 2N -particle state ‰2N and
use its bosonic symmetry in the 2N variables to rewrite

1

2N

Z
R2dN

jr‰2N j
2

D
1

N

*
‰2N ;

NX
j D1

.��/xj
‰2N

+
:
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In a similar fashion, we decomposew D w1 � w2 where cw1 D . Ow/C > 0 and cw2 D . Ow/� > 0

and write the repulsive part using only the xj ’s as
1

2N.2N � 1/

�
‰2N ;

X
16j <k62N

w1.xj � xk/‰2N

�
D

1

N.N � 1/

�
‰2N ;

X
16j <k6N

w1.xj � xk/‰2N

�
:

On the other hand, we express the attractive part as the difference of two terms, involving
respectively only the y`’s and both species:

�
1

2N.2N � 1/

�
‰2N ;

X
16j <k62N

w2.xj � xk/‰2N

�
D

1

N.N � 1/

�
‰2N ;

X
16`<m6N

w2.y` � ym/‰2N

�
�

1

N 2

*
‰2N ;

NX
j D1

NX
`D1

w2.xj � y`/‰2N

+
:

This means that h‰2N ; H2N ‰2N i=2N D h‰2N ; QH N ‰2N i=N with

QHN D

NX
j D1

.��/xj
C V.xj / C

1

N � 1

X
16j <k62N

w1.xj � xk/

C
1

N � 1

X
16`<m6N

w2.y` � ym/ �
1

N

NX
j D1

NX
`D1

w2.xj � y`/:

This Hamiltonian describes a system of N quantum particles repelling through the potential
w1=.N � 1/ and N classical particles repelling through w2=.N � 1/, with an attraction
�w2=N between the two species. In order to bound QHN from below, we first fix the positions
y1; : : : ; yN of the particles in the second group and consider QHN as an operator acting only
over the xj ’s. Let ˆN be any bosonic N -particle state in the N first variables. Using (4.18)
and (4.19) for the repulsive potential w1 as in the previous proof, we obtain

hˆN ; QHN ˆN i

N
>

Z
Rd

jr
p

�ˆN
j
2

C V�‰N
C

1

2

“
Rd �Rd

�ˆN
.x/�ˆN

.y/w1.x � y/ dx dy

�
w1.0/

2.N � 1/
C

1

N.N � 1/

X
16`<m6N

w2.y` � ym/

�
1

N

NX
`D1

�ˆN
� w2.y`/:

Next we use again (4.19) for w2 with � D .N � 1/�ˆN
and obtainX

16`<m6N

w2.y` � ym/ � .N � 1/

NX
`D1

�ˆN
� w2.y`/

> �
.N � 1/2

2

Z
Rd

Z
Rd

�ˆN
.x/�ˆN

.y/w2.x � y/ dx dy �
Nw2.0/

2
:
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Therefore, we have shown that
hˆN ; QHN ˆN i

N
> EGP.

p
�ˆN

/ �
w1.0/ C w2.0/

2.N � 1/
> eGP �

w1.0/ C w2.0/

2.N � 1/
:

Since the right-hand side is independent of the y`’s, we have proved the operator bound
QHN

N
> eGP �

w1.0/ C w2.0/

2.N � 1/
:

Minimizing over ‰2N gives

eGP �
w1.0/ C w2.0/

2.N � 1/
6

E.2N /

2N
6 eGP:

Note that w1.0/ C w2.0/ D .2�/�d=2
R

Rd j Owj. We have considered an even number of par-
ticles for simplicity, but the proof works the same if we use two groups of N and N C 1

particles. Another possibility is to use that N 7! E.N /=N is nondecreasing, which gives,
for N > 4,

eGP �
.2�/� d

2

R
Rd j Owj

N � 3
6

E.N /

N
6 eGP: (4.22)

Nonintegrable Ow can be handled using an approximation argument.

Note that the two error bounds in (4.21) and (4.22) are of the optimal orderO.N �1/,
due to Theorem 4. If the GP minimizer exists and is unique, the convergence of the density
matrices can be proved using a perturbation argument described in [57, Chap. 2].
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1. Introduction

Nonlinear dispersive equations describe space-time evolution of waves in various
physical phenomena, which are governed mainly by dispersion and nonlinear interactions of
waves. A representative example is the nonlinear Schrödinger equation (NLS)

i Pu � �u D �juj
p�1u; u.t; x/ W R1Cd

! C; (1.1)

where d 2 N, p > 1, and � 2 R are constants. Depending on the balance or competition
between the dispersion and interaction, which differs equation by equation, as well as the
initial data, the solutions of each equation exhibit a wide range of behavior in space-time.
The three major types of solutions are

• scattering solutions which are dominated by dispersion—spreading waves with
decaying amplitude;

• blow-up solutions which are dominated by nonlinearity—focusing waves with
diverging amplitude;

• solitons for which dispersion and nonlinearity are in balance to keep a fixed shape
of the wave.

Most of the equations are in the Hamiltonian form. For example, NLS may be written as

Pu D iE 0
S .u/; ES .u/ WD

Z
Rd

jruj2

2
�

�jujpC1

p C 1
dx; (1.2)

where E 0
S .u/ denotes the Fréchet derivative. The Hamiltonian or energy ES is well defined

on H 1.Rd / if the nonlinear part is controlled by the Sobolev inequality, namely d � 2 or
p C 1 �

2d
d�2

DW 2?. Then it is natural to consider solutions in the energy space H 1.Rd /,
where the energy ES .u/ is conserved.

Nonlinear dispersive equations have been intensively studied since the late 20th cen-
tury, so that we have by now a fair amount of knowledge on the fundamental questions from
the PDE viewpoint, such as the unique existence of local solutionswithwide range of regular-
ity, of solutions with typical behavior, as well as their qualitative and quantitative properties,
including asymptotic profiles.

In this century, there has been more progress in the study on large solutions for
long time, in which the dispersion and nonlinearity have stronger and more complicated
interplay, generating more diverse solutions. It is, however, in most cases too difficult to
look at all general solutions and their long-time behavior, as there are so many possibilities
while our method of analysis is still quite limited. Then the solitons are the natural first target
to attack among all the solutions, as they are expected to indicate the balance or the threshold
of dominance between the dispersion and nonlinearity. The soliton resolution conjecture has
been the major slogan to promote this direction of study, which roughly asserts that:Generic
global solutions are asymptotic to a superposition of solitons getting away from each other
and a dispersive decaying wave as t ! 1. In the case of NLS (for appropriate p), the
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asymptotic formula should take the form

u.t/ �

NX
nD1

ei�n.t/'n

�
x � cn.t/

�
� v.t/ ! 0; (1.3)

in the energy space H 1.Rd / as t ! 1, for some soliton profiles 'n 2 H 1.Rd / with some
�n W R ! R and cn W R ! Rd satisfying jcm.t/ � cn.t/j ! 1 form 6D n, and some dispersive
component v.t; x/ solving the free equation i Pv D �v.

On the one hand, the conjecture is a natural extension from the case of completely
integrable equations (e.g., d D 1 and p D 3 for NLS), where solitons are very stable and
rigid: they are unchanged both by initial perturbation and collisions, up to a change of the
parameters. The genericity condition in the conjecture is to eliminate some exceptional solu-
tions, such as breathers, which appear already in the integrable case.

On the other hand, most of the nonlinear dispersive equations are not integrable,
where most of solitons are unstable with respect to initial perturbations. Although this insta-
bility makes it more difficult to capture and maintain the solitons in reality and numerics,
it does not diminish the importance of solitons in the study of global dynamics, especially
regarding the role of a threshold. In fact, in the space of solutions or initial data, typically in
the energy space, instability means that the soliton is a limit point of other types of solutions,
while stability means that there is no nearby solution with much different behavior. Hence
unstable solitons are naturally expected to play more distinct roles in classifying the other
solutions. Even if the solitons are unstable, the threshold between different types of solutions
should be clearly observed both in numerics and experiments, as one looks at a collection
of solutions rather than the individual ones. Such structures among solutions may well be
stable and robust with respect to perturbations of the equation, even if the behavior of each
solution is changed.

Therefore, in studying the global dynamics, it is not sufficient to know merely that
a soliton is unstable, we should investigate in which directions the instability appears, and
in what types of behavior of solutions. In other words, we should look at all solutions in
a neighborhood of solitons. Note that stability is an answer to this question, but instability
(negation of stability) may not be a complete answer by itself. Determining the stability is,
of course, the most important starting point, which has a vast amount of literature, but there
has been more recent progress in getting to the next stage.

Instability means that some solutions starting nearby a soliton become eventually
very different or far from the soliton in the solution space. While those solutions are still
near the soliton, their behavior may be well approximated by the linearized operator, which
is well described in terms of its spectrum. However, after the solutions go far away from the
soliton, which is often the case, then the linearized operator tells little about their behavior.
To see the essential features of those solutions, and thus the threshold nature of the unstable
soliton, it is necessary to look at those solutions after they get far from the soliton. The recent
research is getting also into this stage of study.

Also in practice, the solutions at t D 1 do not have so much meaning, but the
asymptotic descriptions as t ! 1 should be regarded as an approximation for what hap-
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pens in finite time. However, if the solitons are unstable, the asymptotic decomposition into
them is useless by itself for a finite-time approximation, since unstable solitons may keep
disappearing and appearing along the evolution. Hence we should look at the behavior of
solutions not only as t ! 1, but also for all intermediate t 2 R. The oscillatory scenario is
an obstruction also in studying the asymptotic behavior, but the investigation for all time is
even more demanding. Nevertheless, the recent research is getting also into this stage.

In short, to investigate the global dynamics of nonlinear dispersive equations, it is
desired to describe the solutions for all time and for all initial data in a neighborhood of
unstable solitons. The main interest is on transitions of behavior both in time evolution and
for initial perturbations. The purpose of this article is to review a few results in this direction,
as well as open questions.

2. Ground states as the dynamical threshold

Among all the solitons, the most important ones are those with the least energy,
namely the ground states, as its energy is the necessary amount to produce the balance
between the dispersion and nonlinearity. This article is mostly focused on the ground states
and their variants, even though some of them will be called excited states. For a concrete
explanation, we take the nonlinear Klein–Gordon equation (NLKG)

Ru � �u C mu D juj
p�1u; u.t; x/ W R1Cd

! R; (2.1)

where d 2 N, p > 1, and m � 0 are constants. It is the Hamiltonian flow with the energy

EK

�
Eu.t/

�
WD

Z
Rd

j Puj2 C jruj2 C mjuj2

2
�

jujpC1

p C 1
dx; (2.2)

similar to NLS in (1.2); in the energy space

Eu.t/ WD
�
u.t; x/; Pu.t; x/

�
2 H WD H 1.Rd / � L2.Rd /: (2.3)

In the case m D 0 of the nonlinear wave equation (NLW), H 1 should be replaced with the
homogeneous Sobolev space PH 1. The ground state Q 2 H 2.Rd / is a nontrivial stationary
solution of

��Q C mQ D jQj
p�1Q (2.4)

with the least energy. Its study has a long history for the stationary equation and the evo-
lution equations, including the NLS case and the heat equation. By the existence result of
Strauss [56] and the uniqueness result of Kwong [37], the entire set of the ground states is
¹˙Q.x � c/ºc2Rd for a unique radial positive function Q.x/ D Q.jxj/ > 0. In the massless
case (NLW), the Pohozaev identity [54] implies that the ground state exists if and only if
d � 3 and the nonlinear power is p C 1 D

2d
d�2

DW 2?, namely the energy-critical exponent,
and the ground state Q is the explicit Aubin–Talenti function [2,57], maximizing the Sobolev
inequality for PH 1.Rd / � L2?

.Rd /.
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2.1. Below the ground states
The instability of Q follows from its min–max property:

EK. EQ/ D min
'2H 1.Rd /n¹0º

max
�>0

EK.� E'/

D min
®
EK. E'/ j ' 2 H 1.Rd / n ¹0º; K.'/ D 0

¯
; (2.5)

where EQ WD .Q; 0/, and the Nehari functional [50] is defined by

K.'/ WD
d

d�

ˇ̌̌̌
�D1

EK.� E'/ D

Z
Rd

jruj
2

C mjuj
2

� juj
pC1dx: (2.6)

A similar characterization is given by using the dilation '.�x/, leading to Derrick’s the-
orem [11]. Another option is the L2-invariant scaling �d=2'.�x/, which yields the virial
functional (see [28] for their relations including the dynamics). Thus the energy space below
the ground state is split into two open sets,

H< WD
®
' 2 H j EK.'/ < EK. EQ/

¯
D H C

< [ H �
< ;

H C
< WD

®
' 2 H< j K.'1/ � 0

¯
; H �

< WD
®
' 2 H< j K.'1/ < 0

¯
: (2.7)

It is easy to see that H C
< is bounded and H �

< is unbounded. Since EK.Eu/ is conserved and
H ˙

< are separated from each other, both regions H ˙
< are invariant with respect to the NLKG

flow. Then all the solutions in H C
< are global in time as soon as the Cauchy problem is

locally well posed in H with a uniform lower bound on the existence time (which is the case
for p C 1 < 2? by Ginibre–Velo [25]).

Payne–Sattinger [52] proved (in the bounded domain case) that all solutions in H �
<

blow up in finite time for NLKG, as well as for the heat equation. Thus all the solutions
with the energy below the ground state are split into the cases of global existence and blow-
up, as two disjoint open sets in H , which are distinguished by the initial data explicitly by
signK.u.0//. The openness means that both properties are stable, and the ground states are
the joint boundary of the two regions®

˙Q.x � c/
¯

c2Rd D H C
< \ H �

< : (2.8)

More recently, Kenig–Merle [31, 32] proved this type of dichotomy in the energy-
critical case p C 1 D 2? (d � 3) for NLW, as well as for NLS (in the radial case), proving
moreover that all the solutions in H C

< are scattering as t ! ˙1, namely

lim
t!˙1

Eu.t/ � Ev˙.t/


H
D 0 (2.9)

for some v˙ solving the free equation Rv � �v D 0. Their method has been applied to
many other equations, including NLKG [28,33] and NLS [12,13,21,27,34,35] with the energy-
(sub)critical and mass-(super)critical power, namely for 2 C

4
d

� p C 1 � 2?.

2.2. Above the threshold
Although the dichotomy into scattering and blow-up is a very simple, explicit, and

complete classification of the global dynamics, there seems to be no intrinsic reason in the
equations to restrict the solutions below the ground statesEK.Eu/ < EK. EQ/, as those ground
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states are not local extrema, but rather saddle points for the energy. It also seems impossible
to impose such a strict condition (inequality) both in numerical experiments and in physical
ones. It is therefore more natural to impose a condition of the form

EK.Eu/ < EK. EQ/ C " (2.10)

for some small " > 0, which includes in particular a full neighborhood of the ground states.
As soon as the energy is above the ground state, however, the topological separation

is lost betweenK.u/ > 0 andK.u/ < 0, or between the scattering and blow-up, which enables
a transition between different types of behavior. One may expect that this transition could
make the global dynamics very complicated and even chaotic, as it can possibly happen for
many times. Nakanishi–Schlag [47, 49] showed that it is not the case, and the complication
remainsminimal for small " > 0, at least for NLKGwith d D p D 3, which has been extended
to NLS and NLW in [36,48]. That is because the transition is allowed only for one time for
each solution from the scattering region to the blow-up region (or vice versa), taking place
only in a small neighborhood of the ground states, and described well by the linearized
equation around the ground states. The behavior of solutions away from the ground states is
essentially the same as in the case below the ground state, in the sense that both the scattering
and blow-up are characterized by monotonicity of the virial identity. Thus all the solutions
with EK.Eu/ < EK. EQ/ C " are classified into 9 D 3 � 3 sets of global behavior, depending
whether it is scattering, blowing-up, or asymptotic to the ground states in t > 0 and t < 0.
In the simple case of NLKG with p D d D 3 under the radial symmetry, the classification
reads as follows. For any ' 2 H and X � H , let '� WD .'1; �'2/ and X� WD ¹'� j ' 2 Xº

denote the time inversion.

Theorem 2.1 ([47]). Let p D d D 3, m > 0, and

H";r WD
®
'.x/ D '.jxj/ 2 H j EK.'/ < EK. EQ/ C "

¯
(2.11)

for " > 0. If " > 0 is small enough, then there is a C 1-manifold M � H";r of codimension 1

with the following properties: H";r n .M [ �M/ is a union of two domains � and B. Let
u be any solution of (2.1) with Eu.0/ 2 H";r . If Eu.0/ 2 � , then u is scattering as t ! 1. If
Eu.0/ 2 B, then u blows up in finite time for t > 0. If Eu.0/ 2 M, then u � Q is scattering as
t ! 1. Moreover, M and M� intersect transversely, while M� \ .�M/ D ¿.

The transversal intersection of M \ M� implies that all the 9 D 3 � 3 combina-
tions of behavior in t > 0 and t < 0 are nonempty. The above result clarifies the important
role of the center-stable manifold M and the center-unstable manifold M� of the ground
states ˙Q, which had been constructed by Bates–Jones [3], while the scattering on the man-
ifolds to the ground states had been established by Schlag [55] and Beceanu [4] for NLS. The
key ingredient for the above classification is the fact that the transition cannot happen more
than once, which is called the one-pass theorem. It may be regarded as a small perturbation
from the threshold dynamics onEK.Eu/ D EK. EQ/, in particular the nonexistence of a homo-
clinic orbit for the ground states, which had been established by Duyckaerts–Merle [19] for
the energy-critical NLS, and extended to other cases [18, 20]. More precisely, the one-pass
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theorem prohibits solutions from reentry into a small neighborhood of the ground states
after escaping from there. If we distinguish between the positive ground states Q and the
negative �Q, then the number of classification sets is 14 D 4 � 4 � 2, as follows:

��
\ � ; B�

\ B; ˙.M�
\ M/; .˙M�/ \ � ; .˙M�/ \ B;

��
\ .˙M/; B�

\ .˙M/; ��
\ B; B�

\ � ;
(2.12)

The subtraction of �2 from 4 � 4 is due to the absence of .˙M�/ \ .�M/, namely con-
necting orbits between Q and �Q, which is also precluded by the one-pass theorem.

2.3. Higher energy
The next question is what if the energy is much bigger than the ground state, namely

EK.Eu/ > EK. EQ/ C ". Actually, the more general statement of the above result in the
nonradial case [49], taking account of the Lorentz invariance and conserved momentum
P.Eu/ WD

R
Rd Purudx, is in a bigger region�

EK.Eu/2
�
ˇ̌
P.Eu/

ˇ̌2�1=2
< EK. EQ/ C "

�
Œz�˛ WD jzj

˛�1z
�
; (2.13)

which includes the ground state solitons of any traveling speed (slower than the light), but
the classification is essentially the same as above. The main interest is how and where the
dynamics change essentially.

There are at least two obvious candidates for the next energy level. One is the other
stationary solutions, namely the excited state, and the other is multisolitons. Note that the
excited states have at least twice the ground state energy EK.Eu/ > 2EK. EQ/, because they
have to be sign-changing due to the uniqueness of positive solutions by Gigas–Ni–Nirenberg
[24] and Kwong [37], then both the positive and negative parts must have more energy than
EK. EQ/ due to the characterization (2.5). On the other hand, if a solution u is asymptotic
to a sum of N 2 N ground states moving away from each other, as in the soliton resolution
conjecture, then EK.Eu/ � NEK. EQ/, where the equality EK.Eu/ D NEK. EQ/ happens only
if the asymptotic speeds of the solitons are all zero. Asymptotic multisolitons were con-
structed by Martel–Merle [39] for NLS with positive speeds in the stable case, which has
been extended to the unstable case [6], as well as to NLKG [9], and with zero speed for NLS
[51] and NLKG [1]. Therefore, in view of the soliton resolution conjecture, it is natural to
expect that the classification in Theorem 2.1 should extend up to EK.Eu/ < 2EK. EQ/, at least
concerning the asymptotic behavior.

If one looks at the full-time dynamics, however, there is another candidate for an
essential change of the dynamics. It is a heteroclinic orbit connecting the two distinct ground
states Q and �Q in a weak sense: more precisely, a solution u satisfying

lim
t!˙1

Eu.t/ ˙ EQ � Ev˙.t/


H
D 0 (2.14)

for some free solutions v˙, which may be called heteroscattering. The one-pass theorem
precludes such solutions for EK.Eu/ < EK. EQ/ C ", which is M� \ .�M/ D ¿, but it is
not difficult to construct such a solution with the energy close to 2EK. EQ/, by superposing
in space-time two heteroscattering solutions, from Q to 0, and from 0 to �Q, respectively.
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A simple numerical experiment indicates that such solutions appear at a much lower energy
level than 2EK. EQ/. Then it seems natural to conjecture that there is a threshold energy
E� 2 .EK. EQ/; 2EK. EQ// such that for EK.Eu/ < E� the 14-set classification (2.12) is valid,
while forEK.Eu/ > E� there are solutions satisfying (2.14), increasing the number of solution
sets to 4 � 4 D 16 at least. Related questions are if there is heteroscattering between Q and
�Q with the minimal energy E�, and what the complete classification of dynamics is for
EK.Eu/ < E� C ", or for EK.Eu/ < 2EK. EQ/.

A remarkably successful method to go to higher energy is the channel-of-energy by
Duyckaerts–Kenig–Merle [16], which settled the soliton resolution conjecture for the energy-
critical NLW in the radial 3D case, including the blow-up solutions with a bounded energy
norm. It has recently been extended to the higher odd dimensions [17], as well as to the 4D
case [15] and to the wave maps under rotational symmetry. Without the rotational symmetry,
there are also similar results [14] along time sequences. It seems, however, that this method
depends heavily on the special property of the wave equation, that is, the single speed of
propagation, while dispersive equations in general have wide ranges of group velocity. It is
a challenging and important problem to extend the method or find a similar one for the more
dispersive equations such as NLKG and NLS.

3. Transition between solitons

Since solitons are the key junctions of global dynamics for nonlinear dispersive
equations, it is an important problem to understand the behavior of the solutions migrating
from a neighborhood of one soliton to another. In fact, when the equation has both stable and
unstable solitons, it is generally expected that solutions starting near the unstable oneswill get
away from them and eventually approach some of the stable ones. However, the conservation
laws prohibit the solutions to approach the latter solitons in the energy norm, unless the two
solitons happen to be close to each other in the conserved quantities. In general, the approach
should be only in the weak or local topology, where the excessive energy is radiated away in
a dispersive wave component.

This type of transition from one soliton to another should happen also between
unstable solitons. Trying to include such a behavior into a classification as above seems
still a bit too ambitious, as the complete classification for NLKG or NLS is yet much below
all the excited state solitons. However, we can make a model problem by adding some spatial
inhomogeneity, which is an easy way to create standing waves. Specifically, the nonlinear
Schrödinger equation with a potential (NLSP)

i Pu � �u C V u D juj
2u; u.t; x/ W R1C3

! R; (3.1)

is a good model to consider a classification of solutions including two different solitons,
both stable and unstable ones. The standing waves for NLSP are solutions in the form
u.t; x/ D e�it!'.x/ for some ! 2 R, for which the equation is reduced to

��u C !u C V u D juj
2u: (3.2)
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More precisely, let V W R3 ! R be “nice” enough, e.g., a radial Schwartz function, such that
the linear Schrödinger operator �� C V has only one eigenvalue, denoted by e0 < 0. Let
�0 2 H 2.R3/ be the corresponding eigenfunction or the ground state of �� C V , normal-
ized in L2.R3/. Let EV be the Hamiltonian of NLSP, defined by

EV .u/ WD ES .u/ C

Z
R3

V juj2

2
dx: (3.3)

Then one may construct two different types of standing waves for NLSP. One family is gen-
erated from the linear ground state �0 by bifurcation, which is small and stable with negative
energy in the asymptotic form (see [26])

ˆŒz� D z
�
�0 C O

�
jzj

2
��

in H 1.R3/; !Œz� D e0 C O
�
jzj

2
�
;

EV

�
ˆŒz�

�
D e0jzj

2=2 C O
�
jzj

4
�
; M

�
ˆŒz�

�
D jzj

2=2 C O
�
jzj

4
�
;

(3.4)

with a small parameter z D .ˆŒz�j�0/ 2 C, where

M.u/ WD

Z
Rd

juj2

2
dx (3.5)

denotes the conserved mass. The other family is generated from the scaling limit of the
ground state Q of NLS (V D 0), which is large and unstable with positive energy, in the
asymptotic form (see [45])

‰Œ�� D �Q.j�jx/ C O
�
j�j

�3=2
�

in H 1.R3/; !Œ�� D j�j
2;

EV

�
‰Œ��

�
D j�jES .Q/ C O

�
j�j

�1
�
; M

�
‰Œ��

�
D j�j

�1M.Q/ C O
�
j�j

�3
�
;

(3.6)

with a large parameter � 2 C. Since both the families converge to 0 in L2.R3/ in the limits
z ! 0 and � ! 1, respectively, the asymptotic regimes are contained in the small mass
region M.u/ � 1. We can prove that for each fixed M.u/ � 1, there is a unique jzj � 1

such thatˆŒz� are the least energy standingwaves, namely the ground states for the prescribed
mass M.u/, and also there is a unique j�j � 1 such that ‰Œ�� are the second least energy
ones, or the first excited states.

Actually, both of them are the ground state solutions of (3.2) for the corresponding
! > 0, which may be obtained by the min–max variational argument. From the dynamical
viewpoint, however, it seems more appropriate to compare them in terms of the energy and
mass, without fixing parameter !, which is not intrinsic in the equation.

Gustafson–Nakanishi–Tsai [26] proved the scattering to the ground statesˆ for small
solutions in H 1.R3/, that is,

lim
t!˙1

u.t/ � ˆ
�
z.t/

�
� v˙.t/


H 1 D 0; (3.7)

for some free solutions v˙ and some function z W R ! C with convergent jz.t/j as t ! ˙1.
The exceptional case jz.t/j ! 0 is also included. This result has been extended by Nakanishi
[45, 46] to the energy slightly above the first excited solitons ‰ under the radial symmetry
restriction (which was not imposed in [26]), with a classification of the global dynamics
similar to Theorem 2.1, or more closely to the NLS case in [48].
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More precisely, let EV .�/ D EV .‰Œ��/ be the first excited energy for the mass
M.‰Œ��/ D �. Then for sufficiently small " > 0, all the radial solutions with

M.u/ < "; EV .u/ � EV

�
M.u/

�
C "=M.u/; (3.8)

are classified into 9 D 3 � 3 sets characterized by their behavior in t > 0 and t < 0, either scat-
tering to the ground states ˆ as in (3.7), blowing-up, or staying around the excited states ‰.
Moreover, the solutions in the last case make the center-stable manifold of ‰ for t > 0, and
the center-unstable manifold for t < 0.

Note that the restriction M.u/ < " may be removed if V D 0, trivially by using the
scaling invariance. Then the above result is reduced to [48], except that the scattering to the
excited states is not established in [45]. The same problem with the defocusing nonlinearity

i Pu � �u C V u D �juj
2u; (3.9)

was also studied in [46], for which all solutions in H 1.R3/ with small mass scatter to the
ground states ˆ as t ! ˙1, while there is no other standing wave in H 1.R3/.

3.1. Threshold dynamics
As mentioned above, the scattering to the first excited states ‰ remains to be proven

on the center-stable manifold. This is mainly because of the lack of complete information
on the spectrum of the linearized operator. It is a highly nontrivial problem even without the
potential, which was solved by Marzuola–Simpson [43] by a computer-assisted proof.

In the nonradial case, however, a notable difference appears from the case without
the potential, where Beceanu [4] proved the scattering to the solitons generated by the Galilei
and translation invariance from the ground state Q. Both invariances are destroyed by the
potential, and thus the only remaining soliton is fixed at the origin, provided that the poten-
tial has a simple shape, e.g., V.x/ D ae�jxj2 with some constant a < 0. Then the natural
conjecture on the dynamics on the center-stable manifold of ‰ is the following:

(1) For EV .u/ < E0.M.u//, all solutions on the manifold scatter to ‰.

(2) For EV .u/ D E0.M.u//, there are solutions with the asymptotic behavior

lim
t!1

ku.t/ � e�i�.t/Q!

�
x � c.t/

�
kH 1 D 0 (3.10)

for some � W R ! R and c W R ! R3 satisfying P� ! !, jcj ! 1, and Pc ! 0

as t ! 1, where Q! is the ground state of (3.2) with V D 0 for some ! > 0

satisfying M.Q!/ D M.u/. The other solutions on the manifold scatter to ‰.

(3) For EV .u/ > E0.M.u//, there are also scatterings into a sum of the Galilei
transforms of some Q! and the ground states ˆ.

In short, the solutions on the center-stable manifold scatter either to the excited states ‰

trapped by the potential at x D 0, or to the ground state solitons without potential escaping
to jxj ! 1. The threshold between the two cases is the solitons escaping to jxj ! 1 but
with the zero asymptotic speed, for which the minimal energy is as in the case (2).
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The scattering to‰ for the solutions initially away from x D 0 requires the attractive
force of the potential, which may be derived by the Newtonian approximation, but it is valid
only on a finite-time interval. Extending it to t ! 1 requires the dissipative effect by the
radiation of dispersive waves. Such a scattering result was established by Gang–Sigal [23]
in the case of stable solitons for initial data close to the origin. The scattering described
above in the case of (3) is also complicated as it contains three different components. Such a
scattering result was established by Cuccagna–Maeda [10], also in the stable case for initial
data that are already escaping. Classifying all the solutions on the manifold may well require
more ideas than the combination of those results.

3.2. Higher mass
Another problem is to extend the classification to M.u/ > ". This sounds plausible

at least in the simple defocusing case, where ˆ may be extended to all mass as the unique
energy minimizers. However, the argument in [45, 46] does not simply extend, because it
relies heavily on the smallness of ˆ, as well as on M.u/, to control all the interactions
with the ground states, especially during the concentration–compactness argument for the
dispersive component. In the focusing case, the problem does not seem easy even for the
smaller potentials, e.g., V.x/ D �ae�jxj2 with 0 < a � 1 such that �� C V > 0. In this
case, there are no small solitons and so the ground states are the perturbations of Q! for all
mass. Hence it is natural to expect that the same results as in Kenig–Merle [31] (or Holmer–
Roudenko [27] for the cubic NLS), and in Nakanishi–Schlag [48] should hold without the
small mass condition. It may an option to rely on the stability of the threshold structure with
respect to the change of equation (here by the parameter a), including the case of bigger a.

4. Transition between multisolitons

In view of the soliton resolution conjecture, it is an important and necessary step
in the study of global dynamics to understand the behavior of solutions migrating between
neighborhoods of multisolitons, where the neighborhood may be in the weaker sense as in
the previous section. Obviously, this is an even harder problem, so it seems natural to seek
for simpler models which admit similar dynamics. The nonlinear Klein–Gordon equation
with the damping term

Ru C 2˛ Pu � �u C u D juj
p�1u; u.t; x/ W R1Cd

! R; (4.1)

for some constants ˛ > 0, p > 1, turns out to be a good model. In fact, Burq–Raugel–Schlag
[5] proved the soliton resolution conjecture for all radial solutions in the energy space for the
energy-subcritical power p C 1 < 2?. In this case, solutions asymptotic to solitons are those
exponentially converging to some (radial) stationary solutions. The major difference from
the conservative NLKG comes from the energy decay

@t EK.Eu/ D �2˛k Puk
2
L2 ; (4.2)

which makes the analysis much simpler, both in the linear and nonlinear parts. The stable and
unstable manifolds had been constructed much earlier by Keller [30] around general station-
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ary solutions. The soliton resolution along time sequences had been established by Feireisl
[22] without the radial restriction (but for smaller p), as a consequence of the concentration–
compactness due to Lions [38] for the stationary problem. The soliton resolution in the
general case takes, as t ! 1, the form of

Eu.t/ D

NX
nD1

E'n

�
x � cn.t/

�
C o.1/ in H ; (4.3)

where 'n are some stationary solutions and cn W Œ0; 1/ ! Rd are some functions satisfying
jcm � cnj ! 1 for each m 6D n. The existence of such solutions with polygonal symmetry
was also proven by Feireisl [22]. This allows us to discuss the dynamics around, away, and
between multisolitons, as a model case for the more difficult conservative case (NLKG).

More recently, Côte–Martel–Yuan–Zhao [8] characterized the set of asymptotic 2-
solitons consisting of the ground state Q of NLKG, namely

Eu.t/ D EQ
�
x � c1.t/

�
� EQ

�
x � c2.t/

�
C o.1/ in H .t ! 1/ (4.4)

as a manifold with codimension 2 in the energy space H , together with the asymptotic for-
mula for cn.t/, as well as nonexistence of similar solutions with the same sign on EQ.

Moreover, Côte–Martel–Yuan [7] proved the soliton resolution conjecture in the 1D
case without any restriction in the energy space. That is, for any initial data inH , the solution
either blows up in finite time, or is asymptotic to a form

Eu.t/ D ˙

NX
nD1

.�1/n EQ
�
x � cn.t/

�
C o.1/; (4.5)

in H , for some N 2 Z with cn � cn�1 ! 1 as t ! 1. The existence of such solutions for
every N is also proven in [7]. To the best of the author’s knowledge, this is the first and only
result so far of soliton resolution in the entire energy space with no restriction for the full
limit t ! 1 that contains moving solitons, provided that the damping is acceptable for the
conjecture.

Then it is natural to ask the questions raised in the first section, namely the global
dynamics in the full neighborhood of such solutions for all t � 0. In particular, it is a good
place to investigate the migration between different numbers of multisolitons. Ishizuka–
Nakanishi [29] considered the simplest case, namely a neighborhood of 2-solitons and tran-
sition to 1-solitons, and established a classification into 5 sets of different behavior. To state
the precise result, some notation is needed. Let

L WD �� C 1 � pQp�1 (4.6)

be the linearized operator for the static NLKGaround the ground stateQ, and let � 2 H 2.Rd /

be its normalized ground state with L� D ��2� for some constant � > 0. Define operators
acting on H in the matrix form

J WD

 
0 1

�1 0

!
; L˛ WD

 
L 2˛

0 1

!
: (4.7)
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Then the linearization of (4.1) around EQ is written as @t Eu D J L˛ Eu. The damped linearized
operator J L˛ has eigenfunctions of the form

�˙
WD �˛ ˙

p
�2 C ˛2; Y ˙

WD .1; �˙/� H) J L˛Y ˙
D �˙Y ˙: (4.8)

For any z D .z1; z2/ 2 .Rd /2, let H?.z/ � H be the energy subspace defined by

H?.z/ WD
®
' 2 H j

˝
J'
ˇ̌
Y �.x � zk/

˛
D 0 .k D 1; 2/

¯
; (4.9)

where h�j�i denotes the inner product of .L2.Rd //2. Then it is easy to see that for
jz1 � z2j � 1 (depending on ˛ > 0), the energy space is decomposed into a direct sum

H D RY C.x � z1/ ˚ RY C.x � z2/ ˚ H?.z/: (4.10)

Let H?.zI ı/ WD ¹' 2 H?.z/ j k'kH < ıº be the open ball in the subspace. Then

Theorem 4.1 ([29]). For any d 2 N, ˛ > 0 and p 2 .2; 2? � 1/, there is a small ı > 0

such that for any z 2 .Rd /2 satisfying jz1 � z2j > 1=ı, there are two Lipschitz functions
G1;G2 W .�ı;ı/ � H?.zIı/ ! .�ı;ı/with the following properties. For any h1;h2 2 .�ı;ı/

and any ' 2 H?.zI ı/, let u be the solution of (4.1) with the initial data

Eu.0/ D

X
nD1;2

.�1/n
�

EQ C hnY C
�
.x � zn/ C ': (4.11)

Then its global behavior is classified by the initial data as follows. Let n� WD 3 � n.

(1) If hn < Gn.hn� ; '/ for both n D 1; 2, then u is global with kEu.t/kH ! 0 as
t ! 1; we have the global decaying case.

(2) If hn D Gn.hn� ; '/ and hn� < Gn�.hn; '/ for one of n D 1; 2, then u is global
with Eu.t/ ! .�1/n EQ.x � z1/ in H , for some z1 2 Rd , as t ! 1; this is the
1-soliton case with .�1/nQ.

(3) If hn D Gn.hn� ; '/ for both n D 1; 2, then u is global with

Eu.t/ C EQ.x � z1.t// � EQ.x � z2.t// ! 0

in H , for some zn W Œ0; 1/ ! Rd satisfying jz1.t/ � z2.t/j ! 1, as t ! 1;
this is the 2-soliton case.

(4) Otherwise, u blows up in finite time.

The 2-soliton case (3) may be characterized as h D G0.'/ by another Lipschitz function
G0 W H?.zI ı/ ! .�ı; ı/2.

Moreover, we obtain a full-time description for all those solutions. In particular, in
the 1-soliton case (2), the soliton component starting from .�1/n�

EQ.x � zn�/ decays due
to the instability, while the other component from .�1/n EQ.x � zn/ remains for all time,
moving in space and eventually converging to .�1/n EQ.x � z1/.

The above classification of dynamics is for all initial data in a small neighborhood
of any superposition of ˙ EQ with sufficient distance from each other. For each sign of ˙ EQ,
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there is a Lipschitz manifold of codimension 1 consisting of solutions convergent to ˙ EQ,
translated in space. The two manifolds are joined together at their boundary by the manifold
of codimension 2 consisting of solutions asymptotic to 2-solitons, moving away from each
other. The connected union of those three manifolds separates the rest of the neighborhood
into the open set of global decaying solutions and the open set of blow-up solutions.

The 2-soliton case of (3) was already established by Côte–Martel–Yuan–Zhao [8].
The above theorem extends the dynamics description to the full neighborhood. Note that
the manifolds of 1-solitons in (2) are far from those constructed by Keller [30], or by any
general method to construct local invariant manifolds, because the manifolds in the above
theorem are in a neighborhood of 2-solitons. In other words, it describes the transition from
the 2-solitons to the 1-solitons with respect to initial perturbations. In the proof, we also
need to describe the transition in time for each initial data on the 1-soliton manifolds. The
transition time tends to infinity as the initial data approaches the 2-soliton manifold, so the
global dynamics is not at all uniform or continuous within the small neighborhood.

The structure or relation of those three manifolds is in the simplest form as one may
expect, by a small perturbation in the energy space from the superposition of two ground
states, each having one unstable direction. However, proving this is not so simple as it may
appear, because we need to control the two unstable modes with the same eigenvalue, namely
Y ˙.x � zn.t// with n D 1; 2. The difficulty comes from the fact that the solitons are get-
ting away from each other, but very slowly, namely jz1.t/ � z2.t/j � j log t j, and the soliton
interactions are of order O.1=t/ and not integrable in time. In fact, this changes the growth
order of the unstable modes from the linearized approximation, making the unstable dynam-
ics far from the superposition of the 1-soliton case. The coupling of the two unstable modes
could be even more complicated because the interaction can possibly change the direction of
instability, too. It may be illustrated by a simple ODE model with a small parameter " 2 R,
namely

d

dt

 
h1

h2

!
D

 
�C "2e�t

"2e�t �C C
"

1Ct

! 
h1

h2

!
; (4.12)

which mimics the linearized interaction of the two unstable modes hn.t/Y C.x � cn.t//. It
is easy to check for the above ODE that

" > 0;
�
h1.0/; h2.0/

�
D .1; 0/ H) lim

t!1
h2.t/=h1.t/ D 1;

" < 0;
�
h1.0/; h2.0/

�
D .0; 1/ H) lim

t!1
h1.t/=h2.t/ D 1;

(4.13)

so the direction of h.t/ 2 R2 is completely changed by the interaction. If such a transfer
were to happen for the 2-soliton interactions, then the structure of the neighborhood could
be more complicated than the above result.

Fortunately, it is not the case because we can prove that nonintegrable interactions
are essentially in the scalar part of the above matrix, and the remainder, namely the nonscalar
part of the matrix, is uniformly integrable and small. This follows from the reflection sym-
metry of the equation and the 2-solitons, together with a detailed description of the behavior
of solutions in the full neighborhood and all time.
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4.1. 3-solitons and soliton merger
It is natural to expect a similar structure for more than 2 solitons (N � 3 in (4.5)),

namely the joint boundary of manifolds with less solitons. However, to prove or disprove
such a result seems to be fundamentally more difficult, as the full-time dynamics in the full
neighborhood should include a new and more dramatic phenomenon, which may be called
soliton merger. The distinction betweenN � 2 andN � 3 stems from the fact that the soliton
interaction is attractive for the same sign and repulsive for the opposite sign. It is essential
for the proof of the above result; 2-solitons with opposite signs are repelling each other as
long as both of them exist.

If we start from a small neighborhood of the 3-soliton in the form of (4.5), then the
situation is different. Even though the solitons initially have alternating signs, if the middle
soliton is destroyed by the instability and the other two survive, then the remaining 2-solitons
have the same sign and so start attracting each other. The result of Côte–Martel–Yuan [7]

implies that they cannot remain to be 2-solitons, but the solution either blows-up, decays
to 0, or is asymptotic to 1-soliton. The transition in the last case from 2-solitons to 1-soliton
is very different from the case in Theorem 4.1. As the simplest case, consider the initial data
with the even symmetry

Eu.0/ D EQ.x C c/ C hY C.x C c/ C EQ.x � c/ C hY C.x � c/ (4.14)

with a small parameter h 2 R and a large parameter c > 1. It is easy to see that if 0 < h � 1

and c � 1 is large enough depending on h, then the solution u blows up, and similarly if
0 > h � �1 with c � 1 then the solution is globally decaying to 0. Since both types of
behavior are stable (in 1D), there must be some intermediate h 2 R for a fixed large c such
that the solution u converges to˙Q. For such solutions, the even symmetry implies that both
the soliton components from x D ˙c are destroyed, but afterward another soliton emerges
at x D 0. Because of the energy damping, the latter component has to absorb some energy, at
least half of E. EQ/ from each of the two destroyed solitons, before they are dissipated. This
may be regarded as a sort of collision, but very far from the elastic ones in the completely
integrable case.

Inelastic collisions have been studied for the generalized KdV by Mizumachi [44]
and Martel–Merle [40, 41], where the inelasticity is in a small radiation. For perturbation
from the integrable NLS, Perelman [53] proved that the collision splits the smaller soliton
into two pieces. For the energy-critical NLW in 5D, Martel–Merle [42] showed the existence
of radiation after collision. The above phenomenon looks quite different also from those
cases.

Describing the soliton merger and determining the manifold structure around the 3-
solitons (or more) seem to be challenging problems. It does not look obvious even whether
the merged soliton can take both signs ˙Q or only one. Another question is whether there
exists a similar solution in the conservative case such as NLKG. Those questions may be
difficult also for numerical experiments because the merger requires some balance between
the two dynamics of different orders, namely the exponential instability and the logarithmic
movement of solitons.
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Fractional Laplacians (FLs for brevity) and equations with them have been actively
studied in last decades throughout the world in various fields of mathematics (analysis, par-
tial differential equations, the theory of random processes) and its applications (in physics,
biology). Hundreds of articles have been written on this topic. Note that the study of such
operators and equations is complicated not only by the fact of nonlocality itself, but also by
the existence of several nonequivalent definitions of a fractional Laplacian.

Historically, the first FL was the fractional Laplacian of order s > 0 in Rn defined
(say, on the Schwartz class �.Rn/) as

.��/su WD F �1
�
j�j2sF u.�/

�
;

where F is the Fourier transform

F u.�/ D
1

.2�/
n
2

Z
Rn

e�ih�;xiu.x/ dx:

For s 2 .0; 1/, the following relation holds:

.��/su.x/ D cn;s � V:P:
Z

Rn

u.x/ � u.y/

jx � yjnC2s
dy;

where

cn;s D
22ss

�
n
2

�.nC2s
2
/

�.1 � s/
:

We recall the definitions of the classical Sobolev–Slobodetskii spaces in Rn (see
[21, Subsection 2.3.3] or [7]),

H s.Rn/ D
®
u 2 � 0.Rn/ W

�
1C j�j2

� s
2 F u.�/ 2 L2.R

n/
¯
;

and corresponding spaces in a (say, Lipschitz and bounded) domain � (see
[21, Subsection 4.2.1] and [21, Subsection 4.3.2]),

H s.�/ D
®
uj� W u 2 H s.Rn/

¯
I QH s.�/ D

®
u 2 H s.Rn/ W supp.u/ � �

¯
:

Notice that the quadratic form of .��/s is naturally defined onH s.Rn/ by1�
.��/su; u

�
D

Z
Rn

j�j2s
ˇ̌
F u.�/

ˇ̌2
d�; (1)

and define the restricted Dirichlet FL as the positive self-adjoint operator with quadratic
form (see, e.g., [1, Chap. 10])

QDR
s Œu� �

�
.���/

s
DRu; u

�
WD

�
.��/su; u

�
I Dom.QDR

s / D QH s.�/:

Remark 1. For s 2 .0; 1/, the following relation evidently holds:

QDR
s Œu� D

cn;s

2

“
Rn�Rn

ju.x/ � u.y/j2

jx � yjnC2s
dx dy:

1 As usual, we denote by .�; �/ the duality generated by the scalar product in L2.
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Notice that for s 2 .0; 1/ one can also define the restricted Neumann (or regional) FL by the
quadratic form

QNR
s Œu� WD

cn;s

2

“
���

ju.x/ � u.y/j2

jx � yjnC2s
dx dyI Dom.QNR

s / D H s.�/:

For some “intermediate” fractional Laplacians of this type, see, e.g., [16] and the references
therein.

Now we turn to a different type of FLs, namely, to the spectral ones. Recall that
the spectral Dirichlet and Neumann FLs are the sth powers of conventional Dirichlet and
Neumann Laplacian in the sense of spectral theory. In a Lipschitz bounded domain �, they
can be defined as the positive self-adjoint operators with quadratic forms

QDSp
s Œu� �

�
.���/

s
DSpu; u

�
WD

1X
j D1

�s
j

ˇ̌
.u; 'j /

ˇ̌2
; (2)

QNSp
s Œu� �

�
.���/

s
NSpu; u

�
WD

1X
j D0

�s
j

ˇ̌
.u;  j /

ˇ̌2
; (3)

where �j , 'j and �j ,  j are eigenvalues and (normalized) eigenfunctions of the Dirichlet
and Neumann Laplacian in �, respectively. Notice that �0 D 0 and  0 � const.

For s 2 .0; 1/, the domains of these quadratic forms are

Dom.QDSp
s / D QH s.�/I Dom.QNSp

s / D H s.�/:

For s > 1, the domains of spectral quadratic forms are more complicated. However, the
following relations hold ([21, Theorem 1.17.1/1] and [21, Theorem 4.3.2/1]; see also [12, Lemma 1]

and [14, Lemma 2]):

QH s.�/ D Dom.QDSp
s /; 0 < s <

3

2
I QH s.�/ ¨ Dom.QDSp

s /; s �
3

2
I

QH s.�/ D Dom.QNSp
s /; 0 < s <

1

2
I QH s.�/ ¨ Dom.QNSp

s /; s �
1

2
:

It follows from the well-known Heinz inequality ([10]; see also [1, §10.4]) that for
u 2 QH s.�/, s 2 .0; 1/, the following inequality holds:

QDSp
s Œu� � QNSp

s Œu�: (4)

On the other hand, the inequalityQDR
s Œu� � QNR

s Œu� for u 2 QH s.�/, s 2 .0; 1/, is trivial.
Belowwe provide a wide generalization and sharpening of (4). To this end, we recall

the basic facts on the generalized harmonic extensions related to fractional Laplacians of the
order � 2 .0; 1/ and of the negative order �� 2 .�1; 0/.

It was known long ago that the square root of Laplacian is related to the harmonic
extension and to theDirichlet-to-Neumannmap. In the breakthrough paper [4], the FL .��/�

(and therefore .���/
�
DR) for any � 2 .0;1/was related to the generalized harmonic extension

and to the generalized Dirichlet-to-Neumann map.
Namely, let u2 QH � .�/. Then there exists a unique solutionwDR

� .x;y/ of the bound-
ary value problem in the half-space

� div.y1�2�
rw/ D 0 in Rn

� RCI wjyD0 D u;
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with finite energy (weighted Dirichlet integral)

ER
� .w/ D

Z 1

0

Z
Rn

y1�2�
ˇ̌
rw.x; y/

ˇ̌2
dxdy;

and the relation

.���/
�
DRu.x/ D �C� � lim

y!0C
y1�2�@yw

DR
� .x; y/ (5)

with
C� D

4��.1C �/

�.1 � �/

holds in the sense of distributions in � and pointwise at every point of smoothness of u.
Moreover, the function wDR

� .x; y/ minimizes ER
� over the set

WDR
� .u/ D

®
w.x; y/ W ER

� .w/ < 1; wjyD0 D u
¯
;

and the following equality holds:

QDR
� Œu� D

C�

2�
� ER

� .w
DR
� /: (6)

In [20] this approach was substantially generalized. In particular, for u 2 QH � .�/ (for
u 2 H � .�/) there is a unique solution of the boundary value problem in the half-cylinder

� div.y1�2�
rw/ D 0 in � � RCI wjyD0 D u;

satisfying, respectively, the Dirichlet or the Neumann boundary condition on the lateral sur-
face of the half-cylinder and having finite energy

ESp
� .w/ D

Z 1

0

Z
�

y1�2�
ˇ̌
rw.x; y/

ˇ̌2
dxdy:

Denote these solutionswDSp
� .x;y/ andwNSp

� .x;y/, respectively. The following relations hold
in the sense of distributions in � and pointwise at every point of smoothness of u:

.���/
�
DSpu.x/ D �C� � lim

y!0C
y1�2�@yw

DSp
� .x; y/; (7)

.���/
�
NSpu.x/ D �C� � lim

y!0C
y1�2�@yw

NSp
� .x; y/: (8)

Moreover, these solutions minimize E
Sp
� over the sets

W
DSp
�;� .u/ D

®
w.x; y/ W ESp

� .w/ < 1; wjyD0 D u; wjx2@� D 0
¯
;

W
NSp
�;� .u/ D

®
w.x; y/ W ESp

� .w/ < 1; wjyD0 D u
¯
;

respectively, and the following equalities hold:

QDSp
� Œu� D

C�

2�
� ESp

� .w
DSp
� /I QNSp

� Œu� D
C�

2�
� ESp

� .w
NSp
� /: (9)
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Nowwe set s D �� 2 .�1; 0/. The operators .���/
��
DR , .���/

��
DSp, and .���/

��
NSp

are defined by corresponding quadratic forms (1)–(3)2 with domains

Dom.QDR
�� / D

8<: QH�� .�/ if either n � 2 or � < 1
2
I

¹u 2 QH�� .�/ W .u; 1/ D 0º if n D 1 and � �
1
2
I

Dom.QDSp
�� / D H�� .�/I Dom.QNSp

�� / D
®
u 2 QH�� .�/ W .u; 1/ D 0

¯
:

The first two equalities were proved in [14, Lemma 1]; the third follows from [21, Theo-

rem 2.10.5/1]. We notice that .���/
��
NSpu is defined up to an additive constant which can

be naturally fixed by assumption ..���/
��
NSpu; 1/ D 0.

Remark 2. By [21, Theorems 4.3.2/1 and 2.10.5/1], for 0< � �
1
2
we have QH�� .�/�H�� .�/

(even QH�� .�/DH�� .�/ if 0 < � < 1
2
) whereas in the case 1

2
< � < 1,H�� .�/ is a sub-

space of QH�� .�/. However, in the latter case we can consider an arbitrary f 2 Dom.QDR
�� /

as a functional on H � .�/, put Qf D f j QH �� .�/ 2 Dom.QDSp
�� / and define QDSp

�� Œf � WD

Q
DSp
�� Œ Qf �.

Next, we connect FLs of the negative order with the generalized Neumann-to-
Dirichlet map. It was done in [5] for the spectral Dirichlet FL and in [3] for the FL in Rn (and
therefore for the restricted Dirichlet FL). Variational characterization of these operators was
given in [14]. The spectral Neumann FL was considered in [17].

Let u 2 QH�� .�/ (for n D 1 and � �
1
2
assume in addition that .u; 1/ D 0). We

consider the problem3

QER
�� .w/ WD ER

� .w/ � 2.u;wjyD0/ ! min (10)

on the set WDR
�� , that is, the closure of smooth functions on Rn � NRC with bounded support,

with respect to ER
� .�/.

If n > 2� (this is a restriction only for n D 1) then the minimizer is determined
uniquely. Denote it by wDR

�� .x; y/. Then (5) and (6) imply

.���/
��
DRu.x/ D

2�

C�

wDR
�� .x; 0/I QDR

�� Œu� D �
2�

C�

� QER
�� .w

DR
�� / (11)

(the first relation holds for a.a. x 2 �).
In case n D 1 � 2� , the minimizer wDR

�� .x; y/ is defined up to an additive constant.
However, by assumption .u;1/D 0, the functional QER

�� .w
DR
�� / does not depend on the choice

of the constant, and the second relation in (11) holds. The first equality in (11) also holds if
we choose the constant such that wDR

�� .x; 0/ ! 0 as jxj ! 1.
Notice that the function wDR

�� solves the Neumann problem in the half-space

� div.y1�2�
rw/ D 0 in Rn

� RCI lim
y!0C

y1�2�@yw D �u

(the boundary condition holds in the sense of distributions). So, we can consider .���/
��
DR

as the Neumann-to-Dirichlet map, and (10) gives the “dual” variational characterization of
negative restricted Dirichlet FL.

2 We emphasize that .���/
��
DR is not the inverse to .���/

�
DR.

3 Notice that by the result of [4] the duality .u;wjyD0/ is well defined.
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In a similar way we provide the “dual” variational characterization of the operators
.���/

��
DSp and .���/

��
NSp. Namely, let u 2 QH�� .�/ (for the spectral Neumann operator

assume in addition that .u; 1/ D 0). Consider the problem
QESp
�� .w/ D ESp

� .w/ � 2.u;wjyD0/ ! min

respectively on the sets

W
DSp
��;� D

®
w.x; y/ W ESp

� .w/ < 1; wjx2@� D 0
¯
;

W
NSp
��;� D

®
w.x; y/ W ESp

� .w/ < 1
¯
:

Denote corresponding minimizers wDSp
�� .x; y/ and w

NSp
�� .x; y/, respectively4. Then (7)–(9)

imply

QDSp
�� Œu� D �

2�

C�

� QESp
�� .w

DSp
�� /I .���/

��
DSpu.x/ D

2�

C�

wDSp
�� .x; 0/I (12)

QNSp
�� Œu� D �

2�

C�

� QESp
�� .w

NSp
�� /I .���/

��
NSpu.x/ D

2�

C�

wNSp
�� .x; 0/ (13)

(the second equalities in (12) and (13) hold for a.a. x 2 �; in the latter case, we should
choose the additive constant such that wNSp

�� .x; y/ ! 0 as y ! C1).
Also the functions wDSp

�� and wNSp
�� solve the boundary value problem in the half-

cylinder
� div.y1�2�

rw/ D 0 in � � RCI lim
y!0C

y1�2�@yw D �u

with the Dirichlet or the Neumann boundary condition on the lateral surface @��RC,
respectively (the Neumann boundary condition on the bottom holds in the sense of dis-
tributions).

Nowwe are in a position to formulate the first group of our main results, namely, the
comparison of various FLs in the sense of quadratic forms. These statements were proved in
[12, Theorem 2], [14, Theorem 1], and [17, Theorem 3] (for some partial results see also [6,9,19]).

Theorem 3. Let s > �1 and s … N0. Suppose that5u 2 QH s.�/, u 6� 0. Then the following
relations hold:

QDSp
s Œu� > QDR

s Œu� > QNSp
s Œu�; if s 2 .2k; 2k C 1/; k 2 N0I (14)

QDSp
s Œu� < QDR

s Œu� < QNSp
s Œu�; if s 2 .2k � 1; 2k/; k 2 N0: (15)

Proof. We prove the theorem in three steps.

1. Let s 2 .0; 1/. Notice that we can assume any function w 2 W
DSp
s;� .u/ to be extended by

zero to .Rn n�/ � RC. Then evidently

W
DSp
s;� .u/ � WDR

s .u/ and ESp
s D ER

s j
W

DSp
s;� .u/

:

4 Notice that wNSp
�� .x; y/ is defined up to an additive constant. By assumption .u; 1/ D 0, the

functional QE
Sp
�� .w

NSp
�� / does not depend on the choice of the constant.

5 We assume in addition that .u; 1/ D 0 in two cases:

(1) for the left inequality in (15), if n D 1 and s � �
1
2 ;

(2) for the right inequality in (15), if s < 0.
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Therefore, formulae (6) and (9) provide

QDSp
s Œu� D

Cs

2s
� min

w2W
DSp
s;� .u/

EDSp
s .w/ �

Cs

2s
� min

w2WDR
s .u/

EDR
s .w/ D QDR

s Œu�;

and the first inequality in (14) follows with the “�” sign.
To complete the proof, we observe that for u 6� 0 the corresponding extensionwDSp

s

(extended by zero) cannot be a solution of the homogeneous equation in the whole half-space
Rn � RC since such a solution should be analytic in the half-space. Thus, it cannot provide
minw2WDR

s .u/ EDR
s .w/.

Since wDR
s j��RC

2 W
NSp
s;� .u/, the proof of the second inequality in (14) is even

simpler.

2. Now let s D �� 2 .�1; 0/. We again extend functions in W
DSp
��;� by zero and obtain

W
DSp
��;� � WDR

�� and QESp
�� D QER

�� j
W

DSp
��;�

:

Therefore, formulae (11) and (12) provide

Q
DSp
s;� Œu� D �

2�

C�

� min
w2W

DSp
��;�

QESp
�� .w/ � �

2�

C�

� min
w2WDR

��

QER
�� .w/ D QDR

s Œu�;

and the left part in (15) follows with the “�” sign. To complete the proof, we repeat the
argument of the first part. The proof of the right part is similar.

3. Now let s > 1, s … N. We put k D b
sC1

2
c and define for u 2 QH s.�/,

v D .��/ku 2 QH s�2k.�/; s � 2k 2 .�1; 0/ [ .0; 1/:

Note that v 6� 0 if u 6� 0, and

.v; 1/ D F v.0/ D j�j2kF u.�/j�D0 D 0:

Then we have

Q
DSp
s;� Œu� D Q

DSp
s�2k;�

Œv�; QDR
s Œu� D QDR

s�2k Œu�; QNSp
s Œu� D Q

NSp
s�2k

Œu�;

and the conclusion follows from steps 1 and 2.

The second group of our results is related to the pointwise comparison of FLs. These
statements were proved in [12, Theorem 1], [14, Theorem 3], and [17, Theorem 4] (a partial result
can be found in [8]).

Theorem 4. A. Let s 2 .0;1/, and let u2 QH s.�/, u� 0, u 6� 0. Then the following
relation holds in the sense of distributions:

.���/
s
DSpu > .���/

s
DRu in �: (16)

B. Let s 2 .�1;0/ for n� 2, and let s 2 .� 1
2
; 0/ for nD 1. Suppose that u2 QH s.�/,

u � 0 in the sense of distributions, u 6� 0. Then the following relation holds:

.���/
s
DSpu < .���/

s
DRu in �: (17)
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C. Suppose that � is convex. Let s 2 .0; 1/, and let u 2 QH s.�/, u � 0, u 6� 0.
Then the following relation holds in the sense of distributions:

.���/
s
DRu > .���/

s
NSpu in �: (18)

Proof. A. We introduce the function

Ws.x; y/ WD wDR
s .x; y/ � wDSp

s .x; y/:

Note that formulae (5) and (7) imply

.���/
s
DSpu � .���/

s
DRu D C� � lim

y!0C
y1�2s@yWs.x; y/ (19)

in the sense of distributions.
By the strongmaximum principle, the assumptions u� 0, u 6� 0 imply thatwDR

s > 0

in Rn � RC. Thus, wDR
s > w

DSp
s at @� � RC and, again by the strong maximum principle,

Ws > 0 in � � RC.
After changing of the variable t D y2s , the functionWs satisfies the following rela-

tions:

�xWs.x; t
1
2s /C 4s2t

2s�1
s @2

ttWs.x; t
1
2s / D 0 in � � RCI WsjtD0 D 0: (20)

The differential operator in (20) satisfies the assumptions of the boundary point lemma [11]

at any point .x; 0/ 2 � � ¹0º. Therefore, we have for any x 2 �,

lim inf
y!0C

y1�2s@yWs.x; y/ D 2s lim inf
t!0C

Ws.x; t
1
2s /

t
> 0:

This gives (16) in view of (19).

B. Put � D �s 2 .0; 1/ and consider extensions wDR
�� and wDSp

�� . Making the change of the
variable t D y2� , we rewrite the boundary value problem for wDR

�� .x; t
1

2� / as follows:

�xw
DR
�� C 4�2t

2��1
� @2

ttw
DR
�� D 0 in Rn

� RCI @tw
DR
�� jtD0 D �

u

2�
: (21)

Since wDR
�� vanishes at infinity, wDR

�� .x; t
1

2� / > 0 for t > 0 by the maximum principle.
Further, the function wDSp

�� .x; t
1

2� / satisfies the equalities in (21) for x 2 �. Since
w

DSp
�� jx2@� D 0, we infer that the function

OWs.x; t/ WD wDR
�� .x; t

1
2� / � wDSp

�� .x; t
1

2� /

verifies the following relations:

�x
OWs C 4�2t

2��1
� @2

tt
OWs D 0 in � � RCI @t

OWsjtD0 D 0I OWsjx2@� > 0:

Now the boundary point lemma [11] implies OWs.x; 0/ > 0, which gives (17) in view of (11)
and (12).

C. This statement is more complicated and requires the representation formulae for wDR
s

and wNSp
s , see [4] and [20], respectively:

wDR
s .x; y/ D const �

Z
Rn

y2su.z/ dz

.jx � zj2 C y2/
nC2s

2

I
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wNSp
s .x; y/ D

1X
j D0

.u;  j /L2.�/ � Qs.y
p
�j / j .x/; Qs.�/ D

21�s� s

�.s/
Ks.�/

(here Ks.�/ stands for the modified Bessel function of the second kind).
First of all, these formulae imply for u � 0, u 6� 0 that

lim
y!C1

wDR
s .x; y/ D 0I lim

y!C1
wNSp

s .x; y/ D .u;  0/L2.�/ �  0.x/ > 0I

the second relation follows from the asymptotic behavior (see, e.g., [20, (3.7)])

Ks.�/ � �.s/2s�1��s; as � ! 0I

Ks.�/ �

�
�

2�

� 1
2

e��
�
1CO.��1/

�
; as � ! C1:

Next, for x 2 @� we derive by convexity of � that

@nw
DR
s .x; y/ D const �

Z
Rn

y2sh.z � x/;niu.z/ dz

.jx � zj2 C y2/
nC2sC2

2

< 0:

Thus, the difference QWs.x; y/D w
NSp
s .x; y/�wDR

s .x; y/ has the following proper-
ties in the half-cylinder � � RC:

� div.y1�2s
r QWs/ D 0I QWsjyD0 D 0I QWsjyD1 > 0I @n QWsjx2@� > 0:

By the strong maximum principle, QWs > 0 in�� RC. Finally, we apply again the boundary
point lemma [11] to the function QWs.x; t

1
2s / and obtain for x 2 �,

lim inf
y!0C

y1�2s@y
QWs.x; y/ D 2s lim inf

t!0C

QWs.x; t
1
2s /

t
> 0:

This gives (18) in view of (5) and (8).

Notice that for nonconvex domains, the relation (18) does not hold in general. We
provide a corresponding counterexample.

Example 5. Put temporarily�D�1 [�2 where�1 \�2 D ;. If u� 0 is a smooth func-
tion supported in�1 then easily .���/

s
NSpu � 0 in�2. On the other hand, wDR

s .x; y/ > 0

for all x 2 Rn, y > 0, and the boundary point lemma gives .���/
s
DRu < 0 in�2. Now we

join �1 with �2 by a small channel, and the inequality .���/
s
DRu < .���/

s
NSpu in �2

holds by continuity.

The last group of results in our survey is related to an obvious identity

.��u; u/ D

Z
�

jruj
2 dx D

Z
�

ˇ̌
rjuj

ˇ̌2
dx D .��juj; juj/; u 2 QH 1.�/:

The following statement was proved in [13, Theorem 3].6

6 The proof was given for the Dirichlet operators (restricted and spectral); however, it is men-
tioned in [22, Proposition 1] that for the spectral Neumann FL the proof runs without
changes.

3850 A. I. Nazarov



Theorem 6. Let s 2 .0; 1/. Then

A. For any u 2 QH s.�/, we have juj 2 QH s.�/ and

QDR
s Œu� � QDR

s

�
juj

�
I QDSp

s Œu� � QDSp
s

�
juj

�
I

B. For any u 2 H s.�/, we have juj 2 H s.�/ and

QNR
s Œu� � QNR

s

�
juj

�
I QNSp

s Œu� � QNSp
s

�
juj

�
:

For a sign-changing u, all inequalities are strict.

Proof. For s 2 .0; 1�, the Nemytskii operator u 7! juj is a continuous transform ofH s.Rn/

into itself, see, e.g., [18, Theorem 5.5.2/3].
There are several proofs of the inequality for QDR

s ; in particular, its representation
in Remark 1 provides this inequality immediately. This proof works forQNR

s as well.
We show another proof that works also for spectral quadratic forms.
Let u be sign-changing. Consider the extension wDR

s and notice that
jwDR

s j 2 WDR
s .juj/. Therefore,

2s

Cs

�QDR
s

�
juj

�
D min

w2WDR
s .juj/

ER
s .w/ � ER

s

�
jwDR

s j
�

D ER
s .w

DR
s / D

2s

Cs

�QDR
s Œu�:

Moreover,wDR
s is sign-changing, so jwDR

s j cannot be a solution of the homogeneous equation
by the maximum principle and thus cannot be a minimizer for the energy.

What happens for s > 1? If s 2 .1; 3
2
/ then the operator u 7! juj is a bounded

transform of H s.Rn/ into itself, see, e.g., [2, Section 4]. To the best of our knowledge, its
continuity is still an open problem. Moreover, it is easy to show that the assumption s < 3

2

cannot be improved, see, e.g., [15, Example 1].
So, the question about the behavior of quadratic forms of FLs under the transform

u 7! juj seems reasonable for s 2 .1; 3
2
/. The following statement was proved in [15].

Theorem 7. Let s 2 .1; 3
2
/, and let u 2 QH s.�/ be sign-changing. Then

QDR
s Œu� < QDR

s

�
juj

�
: (22)

The sketch of proof. Define u˙ D
1
2
.juj ˙ u/ and assume for a moment that uC and u� are

smooth and have disjoint supports. Then

QDR
s

�
juj

�
�QDR

s Œu� D 4
�
.���/

s
DRu

C; u�
�

D 4
�
.���/

s�1
DR u

C; .��/u�
�
:

By Remark 1,�
.���/

s�1
DR u

C; .��/u�
�

D
cn;s�1

2

“
Rn�Rn

.uC.x/ � uC.y//.��u�.x/C�u�.y//

jx � yjnC2s�2
dx dy

D cn;s�1

“
Rn�Rn

uC.x/�u�.y/

jx � yjnC2s�2
dx dy

(notice that uC.x/u�.x/ � 0).
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Since the supports of uC and u� are disjoint, we can integrate by parts. Using the
definition of cn;s , we derive

�y

cn;s�1

jx � yjnC2s�2
D
2s.nC 2s � 2/cn;s�1

jx � yjnC2s
D �

cn;s

jx � yjnC2s

and obtain

QDR
s

�
juj

�
�QDR

s Œu� D �4cn;s

“
Rn�Rn

uC.x/u�.y/

jx � yjnC2s
dxdy:

It remains to observe that cn;s < 0 for s 2 .1; 2/, and (22) follows.
In the general case, the result was obtained in [15] using a quite nontrivial approxi-

mation procedure.

Conjecture 8. For s 2 .1; 3
2
/, the inequalities similar to (22) should hold for spectral

quadratic forms.
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Abstract

This contribution addresses the problem of singularity formation in nonlinear dispersive
equations. Despite significant progress made in the last 20 years, for most even simplest
canonical models our understanding of the question is far from being complete. The aim
of this note is to give a selection of results and open questions illustrating the present state
of the problem in the context of some basic model equations, mostly of Schrödinger type,
such as the semilinear Schrödinger and Schrödinger map equations, putting an emphasis
on the role of solitons in the mechanisms of singularity formation.
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1. Introduction

Many physical processes involving nonlinear evolution of wave-like objects are
modeled by semilinear Hamiltonian PDEs of dispersive type. Among the canonical examples
are the nonlinear Schrödinger equation (NLS)

iut D ��u C �juj
2pu; .t; x/ 2 R � Rd ;

and the nonlinear wave equation (NLW)

ut t D �u � �juj
2pu; .t; x/ 2 R � Rd ; (1.1)

wherep > 0 and� 2 ¹�1;1º. The equations are said to be focusing if� D �1 and defocusing
if � D 1.

Other important examples are the wave and Schrödinger map equations. They are
respectively the hyperbolic and Schrödinger analogues of the harmonic map heat flow, which
is the gradient flow associated to the Dirichlet energy

R
Rd jru.x/j2dx for maps u from Rd

to an embedded Riemannian manifold1 M � Rn. We will limit ourselves to the case of
M D S2 � R3, where the equations take a particular simple form:

ut t D �u C u
�
jruj

2
� jut j

2
�

(1.2)

for wave maps,
ut D u � �u

for Schrödinger maps, and
ut D �u C ujruj

2

for the heat flow. Here u is a map from Rt � Rd
x to S2 � R3.

Of course, the first question in the theory of such equations is the local well-
posedness of the corresponding Cauchy problem (including existence, uniqueness, and
continuous dependence of solutions on initial data). But once the local well-posedness is
understood, which is often the case at least for the simplest models, the next step is to
study the qualitative behavior of solutions, and in particular to answer the following ques-
tions:

• Do all maximal solutions exist globally in time or does finite time blow-up occur?
If yes, for what classes of initial data?

• If the solution blows up in finite time, can one determine when, where, and how
the singularities form?

• If the solution is global, can one determine its behavior as t ! 1?

Despite substantial progress made in the last 20–30 years, a complete answer to most of
these questions remains an open problem even for the relatively simple models. The gen-
eral belief is that in nonlinear dispersive equations the linear dispersion tends to stabilize
the dynamics, leading to a kind of universality in the long-time behavior: global solutions

1 For the Schrödinger map equation, one needs M to be a Kähler manifold.
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are expected to decompose asymptotically as t ! 1 into a sum of decoupled nonlinear
bound states, such as solitary wave solutions, plus a radiation that disperses to zero, typi-
cally as a free linear wave. This prediction is known as the soliton resolution conjecture and
is motivated by the theory of completely integrable equations such as the one-dimensional
cubic NLS, KdV, and mKdV equations, for which this kind of behavior can be justified
by means of the inverse scattering method at least for some classes of initial data. For the
nonintegrable equations, this conjecture remains largely open. Most of the available results
concern either the soliton-free dynamics typical for the defocusing nonlinearities or small
data (usually below some threshold determined by the ground state of the equation), or the
perturbative regimes near a single soliton or near a superposition of well-decoupled solitons.
The only exceptions are wave-type models, such as the energy critical NLW equation ((1.1)
with p D

2
d�2

, d � 3) and the energy critical wave maps into the two sphere ((1.2) with
d D 2), for which satisfactory global results begin to emerge starting from the breakthrough
work of Duyckaerts, Merle, and Kenig [25], where a resolution into solitons was established
for all energy bounded radial solutions of the energy critical nonlinear wave equation in
dimension 3 (see Section 5). For the Schrödinger-type models, such results are still out of
reach. The only known global results in this setting correspond to a much weaker version of
the soliton resolution conjecture as that proved by Tao [106] for the nonlinear Schrödinger
equations with mass supercritical and energy subcritical nonlinearities in high dimensions.
This weak version gives a decomposition of any global, energy bounded solution into a dis-
persive part that evolves according to the linear Schrödinger equation, a sum of decoupled
pieces, each piece evolving (modulo the space translations) on a compact invariant set, and
a remainder going to zero as t ! 1 in the energy space, thus reducing the problem to a
classification of solutions with a compact trajectory, the question which is largely open for
the NLS equations.

In the case of finite time blow-up, even less is known. For the Schrödinger-type
equations, the theory is still on the level of searching for possible blow-up mechanisms and
studying their stability. Below we give a selection of corresponding results. The choice of
the results is unavoidably related to those aspects of the problem which are most familiar to
the author, the list of the references is by no means complete.

2. Overview of the well-posedness theory for the NLS

equation

Consider the nonlinear Schrödinger equation on Rd :

iut D ��u C �juj
2pu; .t; x/ 2 R � Rd ; p > 0; � 2 ¹�1; 1º; (2.1)

with initial condition
ujtD0 D u0 2 H s.Rd /: (2.2)
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The solutions to (2.1), (2.2) satisfy formallymass, energy, andmomentum conservation laws:

M
�
u.t/

�
�

Z
Rd

ˇ̌
u.t; x/

ˇ̌2
dx D M.u0/;

E
�
u.t/

�
�

Z
Rd

�ˇ̌
ru.t; x/

ˇ̌2
C

�

p C 1

ˇ̌
u.t; x/

ˇ̌2pC2
�

dx D E.u0/;

P
�
u.t/

�
� Im

Z
Rd

u.t; x/ru.t; x/dx D P.u0/:

The NLS equation is invariant with respect to time translations, spatial translations and
rotations, and phase rotations. A less evident symmetry is the invariance under Galilei trans-
formations, u.t; x/ 7! e�i

jvj2

4 tCi v
2 �xu.t; x � vt/, v 2 Rd . In the case of p D

2
d
, there is an

additional symmetry

u.t; x/ 7!
1

jt j
d
2

ei
jxj2

4t u

�
�

1

t
;

x

t

�
; t ¤ 0; (2.3)

called pseudoconformal symmetry.
The NLS equation (2.1) is also invariant with respect to the scaling, u.t; x/ 7!

�
1
p u.�2t; �x/, � > 0, that preserves the homogeneous Sobolev norm ku0k PH sc .Rd / with

sc D
d
2

�
1
p
. This defines a notion of criticality: the Cauchy problem (2.1), (2.2) is said to

be subcritical if s > sc , critical if s D sc , and supercritical if s < sc . As we will see below,
the notion of criticality plays a fundamental role in the well-posedness theory of (2.1). Of a
particular interest are the mass critical case sc D 0 and the energy critical case sc D 1 when
the critical regularity coincides with one of the conservation laws.

The local well-poseness of the NLS equation is well understood (see, e.g., [10,105]
and the references therein). The Cauchy problem (2.1), (2.2) is locally well-posed in H s for2

s � max¹0; scº, and typically, also in PH sc if sc � 0. In the latter case the solutions arising
from PH sc small initial data are global and scatter both forward and backward in time (i.e.,
converge to a linear solution as t ! ˙1).

In the subcritical case s > sc , the lifespan of the solutions admits a lower bound
depending only on the H s norm of initial data,3 which in a standard way implies that the
solution of (2.1), (2.2) is either global or its H s norm becomes unbounded in finite time. By
the mass and energy conservation, this ensures global well-posedness in H s for s � 0 in the
mass subcritical range p < 2

d
independently of the sign of �, and in H s with s � 1 in the

defocusing energy subcritical case p < 2
d�2

.
The critical well-posedness (s D sc � 0) is more subtle. In this case the lifespan

of solutions given by the local theory depends on the profile of the initial data, not only on
its PH sc norm. In the defocusing case, however, typically the uniform boundedness of the
solution in PH sc on its maximal interval of existence implies that the solution is global and
scatters. In particular, one has global well-posedness and scattering in PH sc for the defocusing

2 In the case when p is not an integer, one has also to assume that s is compatible with the
smoothness of the nonlinear term.

3 In fact, typically one has a slightly stronger result including the persistence of regularity: if
u0 2 H s0 with s0 > s, then the solution stays in H s0 as long as it exists in H s .
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energy critical (sc D 1) and mass critical (sc D 0) NLS equations. In the energy critical
case, this was proved by Bourgain [6], Grillakis [34], Tao [104] for spherically symmetric
initial data, and by Colliander, Keel, Staffilani, Takaoka, and Tao [12], Ryckman and Visan
[98], and Visan [111] for general data. We also refer to the seminal paper of Kenig and Merle
[48] where the powerful concentration compactness/rigidity method was introduced. The
corresponding result for the mass critical NLS was proved by Killip, Tao, Visan, and Zhang
[50,53,109] in the case of spherically symmetric initial data, and by Dodson for general initial
data, see [17] and the references therein. In the energy supercritical case sc > 1, the fact
that the PH sc bounds imply global existence and scattering was established by Killip and
Visan [51] in dimension d � 5. We also refer to Miao, Murphy, and Zheng [84] for the case
of d D 4. Similar results hold in the mass supercritical, energy subcritical range, see, e.g.,
Kenig and Merle [49], although in this case unconditional global existence and scattering in
PH sc is expected, see Dodson [19] for some partial results in this direction as well as for the
history of the problem. In the energy supercritical case, finite time blow-up may occur. This
has been recently proved by Merle, Raphaël, Rodnianski, and Szeftel [79], see Section 6.

For the focusing NLS, the picture is different. On the one hand, large initial data
may lead to finite time blow-up as soon as 0 � sc , and, on the other hand, if sc � 1, the
equation admits solitary wave solutions, which shows that even for global in time solutions
scattering may not occur.

The existence of finite time blow-up for the focusing NLS with p �
2
d
follows from

the virial identity [33]:

d 2

dt2

Z
jxj

2
ˇ̌
u.x; t/

ˇ̌2
dx D 8E.u/ �

4.dp � 2/

p C 1

Z
Rd

ˇ̌
u.t; x/

ˇ̌2pC2
dx;

which holds for finite variance H 1 \ H sc solutions of (2.1), and shows that if E.u/ < 0,
then the solution breaks down in finite time. Note that in the mass critical case, any blow-
up solution is trivially bounded in the critical Sobolev space. For the energy critical NLS,
one also might have blow-up solutions with bounded PH 1 norm. In the case 0 < sc < 1, the
situation is different: solutions that stay bounded in PH sc are expected to be global. In the
radial case this property was proved by Merle and Raphaël [76].

As mentioned above, the focusing NLS with sc � 1 admits a family of solitary wave
solutions. In the energy subcritical range 0 < p < 2

d�2
, they have the form

u.t; x/ D ei.!� v2

4 /tCi v
2 �xQ!.x � vt/;

where v 2 Rd , ! > 0, and the profile Q! solves the elliptic equation

��Q! C !Q! � jQ! j
2pQ! D 0;

which after the rescaling Q!.y/ D !
1

2p Q.!
1
2 x/ takes the form

��Q C Q � jQj
2pQ D 0: (2.4)

For any 0 < p < 2
d�2

, there is a unique positive radially symmetric H 1 solution to this
equation, called ground state (see, e.g., [10,105] and the references therein); the ground state
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solution is smooth and exponentially decaying. In the one-dimensional case, the ground state

is explicit, namely Q.x/ D
.pC1/

1
2p

cosh
1
p .px/

. If d � 2, equation (2.4) has also radial H 1 solutions

which change sign (called exited states).
In the energy critical case, solitary wave solutions are given by

u.t; x/ D e�i v2

4 tCi v
2 �xW.x � vt/;

where v 2 Rd and W is a stationary solution, satisfying

�W C jW j
4

d�2 W D 0; W 2 PH 1.Rd /: (2.5)

The radial solutions of this elliptic equation are completely classified: they are of the form
W˛;�.x/ D ei˛�

d�2
2 W.�x/, where

W.x/ D

�
1 C

jxj2

d.d � 2/

�� d�2
2

: (2.6)

3. Mass critical focusing NLS

In this section we consider the mass critical NLS8<: iut D ��u � juj
4
d u; .t; x/ 2 R � Rd ;

ujtD0 D u0:
(3.1)

3.1. Global existence and scattering below the ground state
For p �

2
d
, the local well-posedness theory ensures global existence and scattering

for initial data with small PH sc norm. Typically, in the range 0 � sc � 1, this smallness can
be related to the ground state of the problem. In the case of the mass critical NLS, one has:

Theorem 3.1 (Global existence and scattering below the ground state). For any u0 2

L2.Rd / with ku0kL2 < kQkL2 , the solution to (3.1) is global and scatters forward and
backward in time (that is, there exist u�; uC 2 L2 such that ku.t/ � ei�t u˙kL2 ! 0 as
t ! ˙1).

This result has a long history. In the case of H 1 solutions, the global existence
follows from the variational characterization of the mass critical ground state proved by M.
Weinstein in [112]:

kf k
2C 4

d

L
2C 4

d

�
d C 2

d

�
kf k

4
d

L2

kQk
4
d

L2

�
krf k

2
L2 ; 8f 2 H 1; (3.2)

the equality being achieved if and only if f .x/ D zQ.�.x � a// for some z 2 C, � > 0 and
a 2 Rd . Inequality (3.2) shows that the H 1 norm of the solutions is controlled by their mass
and energy as soon asM.u/ < M.Q/. Global existence and scattering forL2 data with finite
invariance is also classical, see, e.g., [10]. The general L2 result is much more difficult and
has been proved only recently, see Killip, Tao, Visan, Zhang [50,53] and Dodson [16].
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Applying the pseudoconformal transformation to the soliton eit Q gives an explicit
blow-up solution

S.t/ D
1

t
d
2

ei
jxj2

4t �i 1
t Q

�
x

t

�
(3.3)

that has the same mass as the ground state Q. Thus the bound M.u/ < M.Q/ is optimal not
only for scattering but also for global existence.

The minimal mass dynamics is also well understood. In [72] Merle proved that up
to the symmetries of the equation, S.t/ is the only H 1 minimal mass finite time blow-up
solution, see also Hmidi, Keraani [40] for a simplified proof. By the pseudoconformal invari-
ance, this result also implies that any global minimal mass nonscattering H 1 solution with
finite variance is a ground state solitary wave. The L2 case was studied by Dodson [20, 21]

who proved:

Theorem 3.2 (Threshold dynamics, Dodson [20, 21]). Let 1 � d � 15 and consider
u0 2 L2.Rd / with ku0kL2 D kQkL2 . Then either the solution of (3.1) is global and scatters
as t ! ˙1 or it coincides with eit Q up to the symmetries of the equation (including the
pseudoconformal symmetry).

We next turn to the case M.u/ > M.Q/. In this case the virial identity ensures
the existence of a large set of initial data leading to finite time blow-up both forward and
backward in time, but gives no information on the structure of the singularity, and for general
large mass data little is known in this direction. Essentially, only two general results are
available. First, one has the following lower bound on the blow-up rate of H s solutions,
which is a direct consequence of the scaling invariance of the problem: if u0 is in H s with
s > 0, such that the corresponding solution u blows up in finite time T > 0, thenu.t/


PH s �

C.u0/

.T � t /
s
2

; 8t 2 Œ0; T Œ:

Second, it is known that any blow-up solution concentrates at the blow-up time at least the
mass of the ground state. This is a consequence of Theorem 3.1. We refer to [50] and to
the references therein for the precise statements and for the history of the L2 concentra-
tion results. For masses slightly above the critical mass, more can be done. We discuss the
corresponding results in the next subsection.

3.2. Near ground state blow-up dynamics
In this subsection, we focus on the H 1 blow-up solutions with mass slightly above

the critical mass:

u0 2 H 1.Rd /; kQkL2 < ku0kL2 � kQkL2 C ˛; 0 < ˛ � 1: (3.4)

The mass and energy conservation, together with the variational characterization of the
ground state (3.2), ensures that near the blow-up time these solutions behave as a modu-
lated ground state, admitting a decomposition of the following form:

u.t; x/ D �
d
2 .t/ei�.t/

�
Q.z/ C r.t; z/

�
; z D �.t/

�
x � q.t/

�
;
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with �.t/ � kru.t/kL2 , kr.t/kH 1 � 1. Although giving no information on the blow-up
rate �.t/ and on the blow-up location q.t/, this variational result is conceptually important,
showing that the blow-up profiles arising from initial data (3.4) are close to the ground state,
and thus providing a starting point for their perturbative analysis. Such analysis was initiated
in [90] where we considered the one-dimensional mass critical NLS with even initial data
of the form u0 D Q C �0, k�0kH 1 C kx�0kL2 � 1, and showed that for an open set of
initial perturbations �0 the corresponding solution u blows up in finite time T > 0 with the
following asymptotic behavior as t ! T :

u.t; x/ D ei�.t/�
1
2 .t/

�
Q

�
�.t/x

�
C r

�
t; �.t/x

��
;

r.t/


H 1 � 1;
r.t/


L1 D o.1/;

�.t/ D

�
ln j ln.T � t /j

2�.T � t /

�1=2�
1 C o.1/

�
:

(3.5)

The existence of a stable blow-up regime with the log-log blow up rate (3.5) was predicted
by numerical computations and formal arguments in a number of works, see, e.g., Landman,
LeMesurier, Papanicolaou, Sulem, and Sulem [62, 64], Smirnov and Fraiman [99], Sulem
and Sulem [102] and the references therein. In the H 1 setting the log-log blow-up regime
was studied in details by Merle and Raphaël. Assuming some coercivity property of the lin-
earization aroundQ, they proved the following (see [66,73–75,93], and the references therein).

Theorem 3.3 (Merle, Raphaël). (i) Any solution arising from initial data (3.4)
and blowing up in finite time T admits a representation of the form

u.t/ D ei�.t/�
d
2 .t/Q

�
�.t/

�
� � q.t/

��
C u�

C oL2.1/; t ! T;

with limt!T �.t/ D C1, limt!T q.t/ D q� 2 Rd , and u� 2 L2.Rd /. Fur-
thermore, one of the following alternatives holds:

• either the blow-up rate �.t/ satisfies the log-log law (3.5) and then
the limiting profile u� does not belong to4 H 1,

• or

�.t/ �
c.u0/

T � t
(3.6)

and then u� 2 H 1.

(ii) The set of initial data satisfying (3.4) and such that the corresponding solution
blows up in finite time in the log-log regime (3.5) is open in H 1 and contains
the initial data (3.4) with E.u0/ � 0.

The coercivity property required in Theorem 3.3 was proved in dimension 1 in [73]

and checked numerically for 2 � d � 4 in [30], and for 5 � d � 10 in [113].

4 More precisely, in this case one has
R

jx�q.t/j�R ju�.x/j2dx �
C

.ln j lnRj/2 , as R ! 0.
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The log-log blow-up regime of Theorem 3.3 is known to remain stable under H s

perturbations of initial data for all s > 0, see Colliander and Raphaël [13]. An interesting
open question is wether this stability persists in the L2 setting.

The set of initial data (3.4) such that the corresponding solution blows up satis-
fying (3.6) is nonempty. A large class of solutions with the pseudoconformal blow-up rate
kru.t/kL2 �

1
T �t

was constructed by Bourgain andWang [7] in dimensions 1 and 2, starting
from perturbations of the minimal blow-up solution (3.3) by smooth rapidly decaying limit-
ing profiles u� vanishing at zero to a sufficiently large order, see also Krieger and Schlag [58].
In [82] Merle, Raphaël, and Szeftel proved that the Bourgain–Wang solutions with slightly
supercritical mass are unstable, belonging to the boundary of the H 1 open sets of global
solutions that scatter both forward and backward in time, and solutions that blow up in finite
time in the log-log regime. It is not known whether blow-up solutions with a blow-up rate
strictly greater than the pseudoconformal rate exist in the regime (3.4). For larger masses, an
example of such solutions was constructed by Martel and Raphaël [68] in the 2D case. The
solutions of [68] are obtained by considering the interaction ofK solitary waves concentrated
at the vertices of a K-sided regular polygon and showing that this leads to a KM.Q/-mass
solution blowing up at infinity with the rate kru.t/kL2 � ln t as t ! C1, and thus, after
applying the pseudoconformal transformation (2.3), to a solution that blows up as t ! 0with
the rate kru.t/kL2 �

j ln t j

t
.

We also refer to [66, 67] and references therein for the results on the near soliton
blow-up dynamics for the mass-critical gKdV equation where the picture is more complete.

The regimes discussed above correspond to a single point finite time blow-up. The
examples of multipoint blow-up solutions can be also constructed using as building blocks
either the explicit blow-up solution (3.3) (see Merle [71]), or the log-log blow-up solutions
of Theorem 3.3 (see Fan [28]). The general conjecture is that for any finite time blow-up
solution, the singular set is given by a finite number of points, each point concentrating at
least the mass of the ground state, see, e.g., [74].

4. Mass supercritical, energy subcritical NLS

In this section we discuss briefly the known blow-up regimes for the focusing NLS
in the range 2

d
< p < 2

d�2
.

4.1. Self-similar blow-up
Numerical simulations and formal arguments (see, e.g., Sulem and Sulem [102] and

the references therein) strongly suggest the existence of stable blow-up solutions of the fol-
lowing self-similar form:

u.t; x/ �
1

.2b.T � t //
1

2p

e�i 1
2b

ln.T �t/V

�
x

.2b.T � t //
1
2

�
; b > 0: (4.1)
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Substituting this ansatz into the NLS equation leads to the following elliptic equation for the
profile V.y/:

��V C V � ib

�
1

p
C y � r

�
V � jV j

2pV D 0; y 2 Rd : (4.2)

It is expected that for a discrete set of values of b, this equation admits nontrivial zero-
energy radial solutions, although these solutions fail to belong to PH sc (in accordance with
the growth of the PH sc norm proved in [75]) due to a slow decay at infinity, V.y/ �

C

jyj
1
p C i

b

, as

jyj ! 1. Thus, to obtain, say, H 1 solutions, one has to view (4.1) as a local approximation
near the blow-up point (x D 0), and then to extend it to the region jxj �

p
T � t by a well-

localized time-independent profile, smooth away from the origin and behaving as C

jxj
1
p C i

b

near the origin.
Rigorous results justifying the above self-similar blow-up scenario are currently

available only in the case 0 < sc � 1 where bifurcation-type arguments starting from the
mass critical case can be used, see Merle, Raphaël, and Szeftel [81], Bahri, Martel, and
Raphaël [2].

4.2. Standing sphere and contracting sphere blow-up solutions
In addition to the self-similar blow-up (4.1), which is expected to be generic, two

other blow-up regimes are known for the mass supercritical NLS. The first is given by the so-
called standing sphere blow-up solutions discovered by Raphaël [94] in the context of the two-
dimensional quintic NLS and later on generalized to the quintic NLS in higher dimensions
d � 3 by Raphaël and Szeftel [96]. Standing sphere blow-up solutions are radial, stable in
their symmetry class solutions that blow up in finite time on a fixed sphere in the 1D log-log
regime. The heuristic behind these solutions is that in the radial setting the quintic NLS takes
the following form:

iut D �@2
r u �

d � 1

r
@ru � juj

4u; r D jxj;

where for solutions concentrated near a fixed sphere r D r0 > 0 the second term on the
right-hand side can be viewed as a lower order term. Thus, one can expect the dynamics to
be governed by the one-dimensional quintic NLS,

iut D �@2
r u � juj

4u;

for which one has a stable log-log blow-up regime. The above idea of reduction to a lower
dimensional mass critical NLS was adapted to the 3D cylindrically symmetric cubic NLS
by Holmer and Roudenko [43] and Zwiers [114], yielding the existence of finite time blow-up
solutions concentrating on a fixed circle in the 2D log-log regime. These are the only known
examples of blow-up solutions with a nontrivial blow-up set.

Another blow-up scenario occurs in the range d � 2, 2
d

< p < 5. In this case there
exist radial solutions, called contracting sphere blow-up solutions, that blow up in finite time
by concentration of the corresponding 1D ground state on a sphere of radius5 � t

˛
1C˛ at the

5 With blow-up time set to t D 0.
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rate � t
1

1C˛ with ˛ D
2�p

p.d�1/
:

u.t; x/ � ei�.t/Civ.t/r=2�.t/Q.�.t/
�
r � q.t/

�
; r D jxj;

where
q.t/ � t

˛
˛C1 ; �.t/ � t� 1

˛C1 ; v.t/ � t� 1
˛C1 ; � � t

˛�1
˛C1 ;

and Q.y/ D
.pC1/

1
2p

cosh
1
p .py/

. The contracting sphere blow-up was predicted numerically and
heuristically in [29,42], see also the references therein. Rigorously, the existence of contract-
ing sphere blow-up solutions was proved for the 3D cubic NLS in [41], and in the range
d � 2, 0 < sc < 1, p < 5 by Merle, Raphaël, and Szeftel in [83].

Both the standing sphere and contracting sphere blow-up are L2-concentration
mechanisms in a contrast to the self-similar collapse where no mass concentration occurs.

5. Type II blow-up in the energy critical models

In the last 15–20 years there have been significant developments in the study of the
blow-up phenomenon for the energy critical equations and, more specifically, in the study of
energy bounded blow-up solutions (the so-called type II blow-up), including their construc-
tions and in some cases their classification. Below we review some of these developments.

5.1. Blow-up for Schrödinger maps from R2 to S2

Consider the Schrödinger flow for maps from R2 to S2:

ut D u � �u; x D .x1; x2/ 2 R2; t 2 R;

ujtD0 D u0;
(5.1)

where u.t; x/ D .u1.t; x/; u2.t; x/; u3.t; x// 2 S2 � R3. Equation (5.1) is a special case of
the Landau–Lifshitz equation

ut D a1u � �u C a2

�
�u C jruj

2u
�
; a1 2 R; a2 � 0; (5.2)

arising in the theory of ferromagnetism. In the case a1 D 0, a2 D 1, one recovers the har-
monic map heat flow.

Schrödinger map equation (5.1) conserves the energy

E.u/ D
1

2

Z
R2

dxjruj
2: (5.3)

The problem is energy critical since both the equation (5.1) and energy (5.3) are invariant
with respect to the scaling u.t; x/ ! u.�2t; �x/, � 2 RC.

The local/global well-posedness of (5.1) has been extensively studied. Local exis-
tence for smooth initial data goes back to Sulem, Sulem, and Bardos [103], see also McGa-
hagan [70]. The case of small data of low regularity was studied in several works. Global
existence for equivariant small energy initial data was established by Chang, Shatah, and

3864 G. Perelman



Uhlenbeck in [11]. We recall that a map u W R2 ! S2 � R3 is called equivariant if it has the
form

u.x/ D em�Rv.r/; v W RC ! S2
� R3; (5.4)

for some m 2 Z. Here .r; �/ are the polar coordinates in R2, x1 C ix2 D ei� r , and R is the
generator of the horizontal rotations,

R D

0B@ 0 �1 0

1 0 0

0 0 0

1CA ;

or equivalently,Ru D k� u, k D .0;0;1/. Them-equivariance is preserved by the Schrödin-
ger flow (5.1). Global existence and scattering for general small energy initial data was proved
by Bejenaru, Ionescu, Kenig, and Tataru in [3]. For large data, such a result cannot hold
because of the existence of a rich family of finite energy stationary solutions, i.e., harmonic
maps. The lowest energy giving rise to a nontrivial harmonic map is 4� , the corresponding
harmonic map is, up to the symmetries, the stereographic projection

�1.x/ D e�RQ.r/; Q D

�
2r

r2 C 1
; 0;

r2 � 1

r2 C 1

�
: (5.5)

The stereographic projection is a member of a family of equivariant harmonic maps �m,
m 2 ZC:

�m.x/ D em�RQm.r/; Qm
D .hm

1 ; 0; hm
3 / 2 S2;

hm
1 .r/ D

2rm

r2m C 1
; hm

3 .r/ D
r2m � 1

r2m C 1
:

(5.6)

All these maps are minimizers of the energy in their homotopy class. Namely, one has

deg�m D m; E.�m/ D 4�m:

The general threshold conjecture is that global existence and scattering hold for all zero
homotopy data with energies E.u/ < 8� . The corresponding result for the wave map equa-
tion (1.2) follows from the works of Sterbenz and Tataru [100], where the wave maps from
R2 into general compact target manifold were considered, and it was shown that any smooth
finite energy solution to the wavemap equation is either global and scatters in a suitable sense
or concentrates a nontrivial harmonic map at its maximal time of existence; see Lawrie and
Oh [63]. Under symmetry reductions, the results of this type were obtained earlier, see, e.g.,
Struwe [101] and the references therein. To the best of author’s knowledge, for the Schrödinger
map equation (5.1) in full generality, the threshold conjecture is open. In the equivariant set-
ting, global existence and scattering for initial data withE.u0/ < 4� was proved by Bejenaru,
Ionescu, Kenig, and Tataru [4].

Local existence for the Scrödinger map equation (5.1) in the energy space in the
case of nontrivial homotopy equivariant initial data with energies slightly above the energy
of the ground state,

u0 2 †m; E.u0/ � 4�m C "2; 0 < " � 1; (5.7)
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where †m D ¹u.x/ D em�Rv.r/ 2 S2 � R3 W E.u/ < 1; v.0/ D �v.1/ D �kº, was
established by Gustafson, Kang, and Tsai [36]. The conservation of energy, together with
the inequality [35]

dist2
PH 1

.u; �m/ . E.u/ � 4�m; 8 u 2 †m;

where �m D ¹e˛R�m.�x/; ˛ 2 R; � > 0º, ensures that the Schrödinger maps with initial
data (5.7) have the form u.t; x/ D e˛.t/R�m.�.t/x/ C O PH 1."/, which reduces the problem
to understanding the behavior of the functions �.t/ and ˛.t/. It was shown by Gustafson,
Kang, and Tsai [36], as well as Gustafson, Nakanishi, and Tsai [37], that if m � 3, then the
initial data (5.7) lead to global solutions that, for all t , remain PH 1-close to the initial soliton
e˛.0/R�m.�.0/x/ and, furthermore, scatter as t ! 1 to a nearby member of the family �m

(in fact, in [37] this is proved for the general Landau–Lifshitz equation (5.2)). The paper [37]
treats also the case ofm D 2 for the harmonic map heat flow under further restriction v2 D 0,
showing that global existence persists in this case while the stability may fail: as t ! C1,
the solutions still converge to the family �2 but the evolution along this family described by
the parameter �.t/ does not necessarily converge or stay close to a particular harmonic map,
more complicated asymptotics of �.t/ occur as well. It is natural to expect similar behavior
for the 2-equivariant Schrödinger maps. The case of m D 1 was studied by Bejenaru and
Tataru in [5] where it was proved that �1 is unstable in PH 1 but stable within its equivariant
class in some smaller space that includes H 1.

The question of existence of finite time blow-up for both the wave and Schrödinger
maps fromR2 toS2 has been a long standing problem. The bubbling results mentioned above
show that for the wavemaps the only possible scenario for singularity formation is by concen-
tration of a nontrivial harmonic map. The first rigorous confirmations of this scenario were
obtained by Krieger, Schlag, and Tataru [60], Rodnianski–Sterbenz [97], and Raphaël– Rod-
nianski [95]. Krieger, Schlag, and Tataru considered the equivariant wave maps (that is, the
wave maps of the form (5.4) with v.t; r/ D .sin'.t; r/; 0; cos'.t; r//) of corotation index 1

and showed that for any � > 1
2
there exist initial data arbitrary close to �1 in PH 1, leading

to finite time blow-up solutions of the form u.t; x/ � �1.�.t/x/ with �.t/ D .T � t /�1�� .
The specificity of these solutions is that they are of finite Sobolev regularity depending on
the blow-up rate. Namely, one has u 2 PH 1C��. The construction of [60] was extended to the
whole range � > 0 by Gao and Krieger [32] (� � 0 is precluded by the concentration results
of [100,101]). Similar results were obtained for the focusing energy critical wave equation in
dimension 3 by Krieger, Schlag, and Tataru [59,61], see also [22] for the case of more exotic
scales, and Donninger–Krieger [23] for the case of infinite time blow-up. We also refer to
Jendrej [45] for the construction of near ground state blow up solutions for the energy critical
wave equation in dimension 5.

In a contrast to the Krieger–Schlag–Tataru solutions, the blow-up regimes exhibited
in [95, 97] arise from C 1 finite energy initial data and are characterized by some specific
blow-up rates. Namely, the following was proved in [95]: for any m � 1, there exists a set
of C 1 m-equivariant initial data arbitrary close to �m in the energy space such that the
corresponding solution blows up in finite time T and, as t ! T , has the form u.t; x/ �
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�m.�.t/x/ with

�.t/ D

8<: .T � t /�1e
p

j ln.T �t/jCO.1/ if m D 1;

cm.T � t /�1j ln.T � t /j
1

2m�2 .1 C o.1// if m � 2;
as t ! T:

Furthermore, it was shown that these blow-up regimes are stable under smooth equivariant
perturbations of the initial data. Similar results were obtained for the focusing energy critical
nonlinear wave equation in dimension d D 4 by Hillairet and Raphaël [39].

Compared to [95], the construction of [60] gives no information on the stability/insta-
bility of the corresponding solutions. Recently, Krieger andMiao [54] proved that for � small,
these solutions are stable under sufficiently smooth corotational initial perturbations. Further-
more, Krieger, Miao, and Schlag [55] showed that this stability persists under nonequivariant
smooth perturbations that vanish near the light cone. See also Burzio and Krieger [9] for the
related results for the 3D energy critical nonlinear wave equation.

While for m-equivariant Schrödinger maps with m � 3 the possibility of blow-up
near �m is excluded by the stability results of Gustafson, Kang, Nakanishi, and Tsai, for
m D 1 near �1 blow-up does occur. This was proved by Merle, Raphaël, and Rodnianski
[77].

Theorem 5.1 (Merle, Raphael, Rodnianski [77]). There exists a set of C 1 1-equivariant ini-
tial data with elements arbitrary close to �1 in the energy space such that the corresponding
solution to the Schrödinger map equation (5.1) blows up in finite time T and, as t ! T , one
has

u.t/ D e˛.t/R�1

�
�.t/�

�
C u�

C o PH 1.1/;

�.t/ D c
j ln.T � t /j2

T � t

�
1 C o.1/

�
; ˛.t/ D ˛0

�
1 C o.1/

�
;

with some u� 2 PH 1 \ PH 2, ˛0 2 R, and c > 0.

In contrast to the wave map result of [95], the initial data in Theorem 5.1 form a set
of codimension one.

In [91] we complemented the result of [77] by showing that (5.1) admits Krieger–
Schlag–Tataru-type blow-up solutions as well. Namely, we proved:

Theorem 5.2 ([91]). For any � > 1, ˛0 2 R, there exist 1-equivariant initial data arbitrary
close to �1 in PH 1 \ PH 3 such that the corresponding solution to the Schrödinger map equa-
tion (5.1) blows up in finite time T and, as t ! T , one has

u.t/ D e˛.t/R�1

�
�.t/�

�
C u�

C o PH 1\ PH 2.1/; (5.8)

where �.t/ D .T � t /�1=2�� , ˛.t/ D ˛0 ln.T � t /, and u� 2 H 1C2��. Furthermore,
u�.x/ D e�Rv�.r/, v� D .v�

1 ; v�
2 ; v�

3 /, is compactly supported, C 1 away from x D 0 and,
as jxj ! 0, behaves as

v�
1 .r/ C iv�

2 .r/ � c˛;�r2i˛0C2� ln r:

3867 Formation of singularities in nonlinear dispersive PDEs



In fact, the solutions constructed in [91] belong to PH 1C2��. Observe that the regu-
larity of the limiting profile u� in (5.8) is also related to the blow-up rate (as in the case of
the mass critical NLS, see Section 3.2).

As in [60,61], the proof of Theorem 5.2 relies on obtaining an approximate solution to
an arbitrary high order O..T � t /N /, which we construct using matching asymptotic expan-
sions. We also refer to [31] for some closely related constructions in the parabolic setting. To
convert the approximate solution into an exact solution, one then solves the problem for the
small remainder backward in time with zero initial data at t D T . Once one can solve the
equation up to any order, some very rough energy estimates are enough to control the remain-
der, in contrast to the approach of [77] that requires more advanced mixed energy/Morawetz
estimates. Of course, a drawback of this procedure is that it gives no information on the
stability of the constructed solutions.

Although we do not discuss the parabolic problems in this note, let us stress that as
far as slow blow-up is concerned, there are a lot of direct connections between Schrödinger-
type equations and their parabolic counterpart.

5.2. Energy critical NLS
In this subsection, we consider the energy critical focusing nonlinear Schrödinger

equation

iut D ��u � juj
4

d�2 u; x 2 Rd ; d � 3; (5.9)

restricting ourselves to the case of radial solutions

ujtD0 D u0 2 PH 1
rad.R

d /: (5.10)

Recall that this equation admits a family of stationary states W˛;�.x/ D ei˛�
d�2

2 W.�x/,
˛ 2 R, � > 0, with W given by (2.6). We denote by � the two-dimensional manifold of
these solutions, � D ¹W˛;�; ˛ 2 R; � > 0º.

The dynamics for the energies below the ground state energywas classified byKenig
and Merle [48] for radial data in dimensions 3, 4, 5, and by Killip–Visan [52] (d � 5) and
Dodson [18] (d D 4) for general initial data in dimension d � 4. The results of [48, 52]

ensure that for u0 2 PH 1
rad.R

d / with E.u0/ < E.W / one has global existence and scatter-
ing if kru0kL2 < krW kL2 , and finite time blow-up both forward and backward in time if
kru0kL2 > krW kL2 and u0 2 L2.

A classification of radial solutions with critical energyE.u0/ D E.W /was obtained
by Duyckaerts and Merle [27] in dimensions 3, 4, 5, and by Li and Zhang [65] in dimension
d � 6. In this case, in addition to scattering in both directions if kru0kL2 < krW kL2 and
finite time blow-up in both directions if kru0kL2 > krW kL2 and u0 2 L2, there exist solu-
tions that converge to W in one direction and scatter or blow-up in the opposite direction.
More precisely, there exist unique, up to the symmetries, solutions W �, W C that converge
to W in PH 1 as t ! C1 satisfying kW �kL2 < krW kL2 , kW CkL2 > krW kL2 ; W � is
global and scatters as t ! �1, and W C blows up in finite negative time, at least if d � 5.
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The dynamics of the radial solutions with the energies slightly above E.W / in the
3D case was studied by Nakanishi and Roy [86]. In continuation of the previous results of
Nakanishi and Schlag [87,88] for the energy subcritical Klein–Gordon and Schrödinger equa-
tions andKrieger, Nakanishi, and Schlag [56] for the energy critical wave equation, Nakanishi
and Roy proved that any radial PH 1 solution to (5.9) with E.u/ � E.W / C "2, " � 1, can
stay PH 1-close to the ground state family � only on an interval of time, although it can be
the entire lifespan. Once the solution leaves a neighborhood of � , it either scatters or blows
up (in the latter case, one has to assume in addition that u0 2 L2). Furthermore, all four
combinations of scattering and blow-up forward/ backward in time occur for large sets of
initial data. One might expect a similar result to hold in higher dimensions. The solutions
that stay PH 1-close to � forward (backward) in time are expected to form a codimension one
center-stable (center-unstable) manifold that divides a neighborhood of � into two regions
exhibiting blow-up and scattering, respectively, forward (backward) in time (see Krieger,
Nakanishi, and Schlag [57] for the corresponding result for the energy critical nonlinear
wave equation). In low dimensions, the near ground state solutions can exhibit nontrivial
dynamical behavior, including, along with scattering to the ground states, finite and infinite
time type II blow-up. In dimension 3, the examples of infinite time near ground state blow-up
at prescribed power law rate were constructed in [89]. Combining the linear analysis around
W that we developed in [89] with the construction of approximate solutions of [91], one gets
also H 1

rad.R
3/ \ PH 1C��.R3/ finite time blow-up solutions of the form

u.t/ D W˛.t/;�.t/ C u�
C o PH 1.1/; as t ! 0;

�.t/ D t�1=2�� ; ˛.t/ D ˛0 ln t;
u�


PH 1\ PH 1C�� � 1; � > 0; ˛0 2 R:

Similar results can be proved for d D 4. As in the case of Schrödinger maps (5.1), these blow-
up dynamics are closely related to the slow decay of the ground state in low dimensions and
are expected to disappear starting from d D 7 (for d D 5; 6, finite or infinite near ground
state concentration is still expected). Some partial results in this direction were obtained
in [92], where we showed that for any d � 7, radial solutions staying in a neighborhood
of � are global and scatter to a fixed ground state as soon as the linearization around W

satisfies some suitable spectral assumptions that we were able to prove for d sufficiently
large. In the parabolic setting, much more complete results are available. Namely, for the
energy critical nonlinear heat equation in dimension d � 7, Collot, Merle, and Raphaël [15]
obtained a complete classification of the dynamics for initial data PH 1 close to W (without
radial symmetry assumption), showing that both the set of initial data leading to blow-up in
the ODE type I regime and the set of initial data leading to global solutions that dissipate
as t ! C1 are open in PH 1 and are separated by a codimension one set of global solutions
that converge as t ! C1 to a fixed ground state.

5.3. Radial multibubble dynamics
In the breakthrough paper [25], Duyckaerts, Kenig, and Merle obtained a complete

classification of radial, energy bounded solutions of the 3D focusing energy critical nonlinear
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wave equation:

ut t D �u C u5; .t; x/ 2 R � R3;

.u; @t u/jtD0 D .u0; u1/ 2 PH 1
rad.R

3/ � L2
rad.R

3/;
(5.11)

showing that they asymptotically decompose into a finite sum of scale separated ground
states and a radiation term which solves the linear wave equation. More precisely, one has

Theorem 5.3 (Soliton resolution for (5.11), Duyckaerts, Kenig, Merle [25]). Let .u0; u1/ 2

PH 1
rad � L2

rad and .u; @t u/ 2 C. �T�; TCŒ; PH 1 � L2/ be the corresponding maximal solution
to (5.11). Then one of the following holds:

(i) Type I blow-up: TC < C1 and k.u.t/; @t u.t//k PH 1�L2

t!TC

�! 1.

(ii) Type II blow-up: TC < C1 and there exist .v0; v1/ 2 PH 1 � L2, an integer
J 2 N n ¹0º, and for each 1 � j � J , a sign "j 2 ¹�1;1º and a positive function
�j .t/ defined for t close to TC, verifying

�j

�j C1

.t/
t!TC

�! 1; 81 � j � J; �J C1.t/ D .TC � t /�1;

such that

u.t/ D

JX
j D1

"j �
1=2
j .t/W

�
�j .t/�

�
C v0 C o PH 1.1/; @t u.t/ D v1 C oL2.1/;

as t ! TC:

(iii) Global solution: TC D C1 and there exist a solution vL of the linear wave
equation, an integer J 2 N, and for each 1 � j � J , a sign "j 2 ¹�1; 1º and
a positive function �j .t/ defined for t sufficiently large, verifying

�j

�j C1

.t/
t!C1
�! 1; 81 � j � J; �J C1.t/ D t�1;

such that

u.t/ D

JX
j D1

"j �
1=2
j .t/W

�
�j .t/�

�
C vL.t/ C o PH 1.1/;

@t u.t/ D @t vL.t/ C oL2.1/; as t ! C1:

Later similar results were proved for the radial energy critical NLW equation in all
odd dimensions and in dimension 4, and for critical equivariant wave maps, see Duyckaerts,
Kenig, and Merle [26], Duyckaerts, Kenig, Martel, and Merle [24], Jendrej and Lawrie [47],
as well as the references therein.

In view of the above results, a natural question is to determine which type of con-
figurations of solitons and radiation can really occur. A similar question can be asked the
NLS equation. In dimensions d D 3; 4; 5, for both the radial energy critical wave and radial
energy critical Schrödinger equations, no examples with J � 2 are known. For the energy
critical wave equation in dimension d � 6 and for the energy critical Schrödinger equation
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in dimension d � 7, global (TC D C1) radial pure (vL D 0/ two-bubble solutions, with one
bubble developing at scale 1 and the other concentrating at infinite time, were constructed
by Jendrej [44,46].

5.4. Further generalizations
Blow-up by concentration of stationary states can also occur in the energy super-

critical models. Among the known examples are the focusing energy supercritical NLS and
NLW equations. The focusing energy supercritical NLS,

iut D ��u � juj
2pu; x 2 Rd ; d � 3; p >

2

d � 2
; (5.12)

has a two-parameter family of smooth radial stationary solutions '˛;�.x/ D ei˛�
1
p '.�x/,

˛ 2 R, � > 0, where ' solves

�' C '2pC1
D 0; ' > 0; '.0/ D 1;

and has the following behavior at infinity:

'.x/ �
cp;d

jxj
1
p

; c
2p

p;d
D

.d � 2/p � 1

p2
; as jxj ! 1:

Merle, Raphael, and Rodnianski [78] proved that in dimension d � 11, for generic integers p

satisfying p > p�.d/ D
2

d�4�2
p

d�1
, equation (5.12) admits radial blow-up solutions of the

form
u.t; x/ � �

1
p .t/'

�
�.t/x

�
; �.t/ � .T � t /��.p;d/l ; l 2 N n ¹0º;

arising from C 1 compactly supported initial data. Here �.p; d/ > 0 is an explicit constant.
The H s norms of these solutions remain bounded if 0 � s < sc , while the critical norm
blows up logarithmically, kukH sc �

p
j ln.T � t /j, as t ! T . The corresponding result for

the energy supercritical nonlinear heat equation (in the same range of parameters and with
the same sequence of blow-up rates) goes back to the work of Herrero and Velázquez [38], see
alsoMizoguchi [85]. The numerology d � 11, p > p�.d/ is related to the stability properties
of '; for the radial energy supercritical heat equation, it is known (under somemild additional
assumptions) that no type II blow-up occurs outside this range, see Matano– Merle [69] and
the references therein. The analysis of [78] was extended to the energy supercritical wave
equation by Collot [14]. One can also use the approach of [60,91] to construct near ' blow-up
solutions of finite Sobolev regularity with a continuum of power-type blow-up rates for both
energy supercritical NLS and NLW equations.

Another example that we would like to mention is the hyperbolic vanishing mean
curvature flow in the Minkowski space R2n;1 that we considered in [1] in the case of n D 4.
The minimal hypersurfaces in R2n are stationary solutions of the corresponding Cauchy
problem. It is known that R8 is foliated by a scaling-invariant family of smooth birotational
invariant minimal hypersurfaces asymptotic at infinity to the Simons cone:

C4 D
®
.x1; : : : ; x8/ 2 R8; x2

1 C � � � C x2
4 D x2

5 C � � � C x2
8

¯
:
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In [1], we showed that this family of minimal hypersurfaces generates finite time blow-up for
the hyperbolic vanishing mean curvature flow, again with a continuum of prescribed power-
type blow-up rates. In the parabolic setting, that is, for the mean curvature flow, a similar
result (but with a sequence of specific blow-up rates) was proved much earlier by Velázquez
[110].

6. Finite time blow-up for the energy supercritical

defocusing NLS

Consider the energy supercritical defocusing nonlinear Schrödinger equation

iut D ��u C juj
2pu; x 2 Rd ; p >

2

d � 2
; d � 3: (6.1)

The question whether finite time blow-up occurs for (6.1) remained completely open up to
very recently. On the one hand, numerical simulations, global well-posedness results for
the log-supercritical equations (see, e.g., Tao [107]), the nonexistence of soliton-like solu-
tions, and the expected nonexistence of the self-similar blow-up supported the hypothesis
of global well-posedness. On the other hand, in [108] Tao exhibited examples of the energy
supercritical defocusing NLS systems for which finite time blow-up does occur.

A decisive breakthrough has been achieved recently byMerle, Raphaël, Rodnianski,
and Szeftel [79]who showed that in dimension 5 � d � 9 the energy supercritical NLS (6.1),
at least for certain choices of p, admits finite time blow-up solutions arising from C 1 well-
localized initial data. The construction of [79] employs the hydrodynamic formulation of the
NLS equation that relates (6.1) to a compressible Euler equation via theMadelung transform,
u D

p
�ei' . In a companion paper [80], Merle, Raphaël, Rodnianski, and Szeftel proved that

the underlying compressible Euler equation has a family of self-similar blow-up solutions
with C 1 profiles that well approximate the NLS dynamics and thus can be used to construct
finite time blow-up solutions for (6.1). The smoothness of the Eulerian self-similar solutions
plays an important role in the analysis of [79]. In contrast to the focusing energy supercritical
blow-up regime discussed in Section 5.4, where all subcritical H s norms remain bounded,
the solutions constructed in [79] satisfyu.t/


H s

t!T
�! C1; 8s > s�; (6.2)

for some 1 < s� < sc , the growth in (6.2) being polynomial. The recent results of Bulut [8]
indicate (6.2) as a general feature of the energy supercritical defocusing blow-up.
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Abstract

We discuss the asymptotic behavior of minimizers for a Donaldson functional of interest
in Teichmüller theory. For example, such minimizers allow one to parametrize the moduli
space of constant mean curvature immersions of a closed surface S of genus g � 2 into a
3-manifold with sectional curvature �1, by elements of the tangent bundle of the Teich-
müller space of S . The minimizers are governed by a system of PDEs which include a
Gauss equation of Liouville type and a holomorphic �-differential.
In our asymptotic analysis, we face the difficulty to describe the possible blow-up behavior
of minimizers, especially when it occurs at a point where different zeroes of the holo-
morphic �-differential coalesce. Therefore, we need to pursue accurate estimates of the
blow-up profile of solutions for Liouville type equations, in the “collapsing” case.
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1. Introduction

In this note we discuss the asymptotics for minimizers of a Donaldson-type func-
tional whose relevance in Teichmüller theory was pointed out in [29] and [33]. Such mini-
mizers are governed by the system of equations (1.3) below, which includes a Liouville-type
equation (as a Gauss consistency condition) and a holomorphic �-differential, � � 2, over a
closed surface of genus g � 2.

Since such a holomorphic �-differential admits 2�.g � 1/ zeroes counted with mul-
tiplicity, to pursue the asymptotics of such minimizers, we must keep handy the detailed
blow-up analysis and profile estimates developed for solutions of Liouville-type equations
involving a weight function with a finite number of zeroes of integral multiplicity (see [3,10,

11,67]).
We recall that Liouville-type equations arise in many contexts of interest in mathe-

matics and physics, and have attracted much attention after their first encounter by Liouville
in his model of Field Theory. Since then, a rich literature is now available revealing the many
facets of Liouville-type equations and the crucial role they played towards a successful devel-
opment of Liouville Field Theory, see [54].

In [47], Liouville furnished a local formula for solutions of Liouville equations in
terms of a meromorphic complex function, the so-called “developing map.” In this way,
Liouville equations were introduced into the realm of Complex Analysis and Algebraic
Geometry. In fact, exploring the solvability of Liouville equations has led to tackle many
fundamental issues about modular functions and forms, normal families, Fuchsian, Lamé,
and Painlevé equations, and about various moduli spaces, see [7, 13–18, 28, 40, 42] and the
references therein.

One may focus also on Liouville equations involving Dirac measures, whose poles
replace the role of the zeroes. Indeed, the poles will correspond to the zeroes of the weight
function which appears in the equation governing the “regular” part of the solution.

In (bidimensional) abelian Gauge Field Theory, at a self-dual regime, we have that
vortex configurations are governed by the Bogomolny equations. They involve a (gauge
invariant) Cauchy–Riemann equation for the (complex valued) Higgs field. Thus, the (gauge
independent) zeroes of the Higgs field are isolated with integral multiplicity and identify
the so-called “vortex-points.” As a consequence, around a vortex-point we can confirm the
“quantization” properties for the electric and magnetic fields, as already observed experi-
mentally (e.g., in superconductivity).

Taubes showed how to express Bogomolny’s self-dual equations in the form of Liou-
ville-type equations with Dirac measures supported exactly at the vortex points, see [34]. By
virtue of Taubes’ approach, it has been possible to obtain a rigorous description of self-
dual vortices for various models proposed in the context of Maxwell–Chern–Simons–Higgs
theory, Electroweak theory, Comics strings, etc. We refer to the monographs [59, 68] for
details.

3881 On the asymptotics for minimizers of Donaldson functional in Teichmüller theory



We mention that, the analytical construction of physically meaningful vortices has
motivated the accurate blow-up analysis and profile estimates for solutions of (singular) Liou-
ville equations, contained in [8–11,38].

From the geometrical side, such an analysis has helped also tackle the classical
“uniformization” problem of surfaces with conical singularities prescribed along a given
“divisor.” In this direction, the most delicate situation occurs when the prescribed conical
angle is bigger than 2� . For smaller angles, a complete description of conical metrics with
constant Gauss curvature is contained in [48, 62, 63]. On the other hand, for the standard 2-
sphere S2 D C [ ¹1º, it is yet not clear when a spherical metric with prescribed conical
singularities and relative angles (bigger than 2�) exists. Clearly, beside the constraint dic-
tated by the Gauss–Bonnet theorem, there are other less obvious obstructions to prevent the
existence of such (spherical) metrics. For example, in the case of two singularities, only the
“American” football is possible, where both conical angles must coincide.

There is a rich literature concerning spherical metrics on S2 (see, e.g., [12,19,22–27,
49–51, 57, 65, 69, 70] and the references therein), where different points of view have been
adopted and yielded to interesting (partial) results. Only recently Mondello–Panov [52, 53]

have identified (almost) sharp necessary and sufficient conditions on the conical angles so
that a corresponding spherical metric exists. The sharp results in [52,53] are established using
strategies and techniques developed in algebraic geometry. At the moment, such results seem
out of reach by mere analytical techniques. On the other hand, a blow-up approach to solu-
tions of the singular Liouville equation over the flat torus has permitted to reveal surprising
results, where nonexistence or (sharp) existence results may hold, according to the “geom-
etry” of the periodic cell domain. Thus, for example, a flat torus with a square lattice and a
single singularity with conical angle 4� cannot admit a metric with constant Gauss curva-
ture, while this is possible for a rhombus lattice, see [42]. Many other surprising phenomena
have been identified for the moduli space of tori and their metrics with conical singularities
and constant Gauss curvature, see [15] and [42].

For those and other reasons, it has emerged the need to describe what happens when
singularities (i.e., vortex or conical points) coalesce into a single point. Naturally, such an
investigation furnishes a better grasp about the uniformization problem, see [51]. But also it
helps in the understanding of non-abelian self-dual vortices which are described in terms
of systems of Liouville equations (see [4,36,37,43–46]). Indeed, it is difficult to have a firm
grasp about the blow-up of solutions for systems, especially when various components blow-
up at the same point, but with different blow-up rates. In such a situation, “concentration”
phenomena introduce terms in the equations which behave as Dirac measures whose poles,
however, may “collapse” together, see [35,41].

We encounter an analogous “collapsing” issue in the asymptotic description ofmin-
imizers for the Donaldson functional, considered in [29] and [33]. Such a functional is inspired
by [20,21,56], and relates to the representation of the fundamental group of a closed surface
into various character varieties, or to the parametrization of the moduli space of minimal
or constant mean curvature (CMC) immersions into a 3-manifold with constant sectional
curvature �1, see [29,33].
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To be more precise, for a given oriented closed surface S with genus g � 2, we
denote by Tg.S/ the Teichmüller space of conformal structures on S , modulo biholomor-
phisms in the homotopy class of the identity.

For minimal immersions, Uhlenbeck in [64] proposed a parametrization of the cor-
responding moduli space in terms of elements of the cotangent bundle of Tg.S/, described
by pairs .X;˛/ 2 Tg.S/ � C2.X/, whereC2.X/ is the space of holomorphic quadratic differ-
entials on X . In this way, minimal immersions are sought with assigned second fundamental
form II D Re.˛/, simply by solving the Gauss equation of Liouville type for the conformal
factor of the pullback metric on X from the minimal immersion. However, as discussed in
[31,32], such an immersionmay not exist, or when it exists, it may not be unique (see also [30]).
So, by this approach, one does not obtain a one-to-one correspondence between a minimal
immersion and the pair .X; ˛/.

On the contrary, as we shall see below, we have a better chance when we choose to
parametrize minimal or (CMC) immersions of S in terms of elements of the tangent bundle
Tg.S/.

To this purpose, for given X 2 Tg.S/, we let T
1;0

X denote the holomorphic tangent
bundle of X and define E D ˝��1T

1;0
X with � � 2. Moreover, letting A0.E/ be the space of

smooth sections of E and A0;1.X; E/ the space of .0; 1/-forms of X valued on E, we con-
sider the .0; 1/-Dolbeault cohomology group H 0;1.X; E/ D A0;1.X; E/=@.A0.E//, where
@ W A0.E/ ! A0;1.X; E/ is the d-bar operator.

Using the Hodge star operator �E W A0;1.X; E/ ! A1;0.X; E�/ and Serre duality
theorem, we know that C�.X/, the space of holomophic �-differential on X , satisfyies:

C�.X/ ' .H 0;1.X; E//�;

see ([66]). Therefore, for � D 2, we can use the pair .X; Œˇ�/ 2 Tg.S/ � H 0;1.X; E/ to
parametrize the tangent bundle of Tg.S/.

At this point, we consider onX the unique hyperbolic metric gX with induced norm
j � j and volume element dA. Also for ˇ 2 A0;1.X; E/ the corresponding norm (in local
coordinates) is given by kˇk D jˇj.z/.gX /

��2
2 .

Moreover, every ˇ 2 A0;1.X; E/ admits the (unique) decomposition ˇ D ˇ0 C @�,
with harmonic ˇ0 2 A0;1.X; E/ and � 2 A0.E/. Therefore the class Œˇ� 2 H 0;1.X; E/ is
uniquely identified by its harmonic representative ˇ0 with respect to the metric gX .

Thus, for any pair .X; Œˇ�/ and t > 0, we define the Donaldson functional:

Dt .u; �/ D

ˆ
X

�
1

4
jruj

2
� u C teu

C 4e.��1/u
kˇ0 C @�k

2

�
dA; (1.1)

with the function u and the section � in the appropriate Sobolev spaces.
As observed in [29], it is possible to construct a (CMC) immersion with constant c,

directly from a critical point of the Donaldson functional Dt with

t D 1 � c2 > 0 and � D 2: (1.2)
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Indeed, in this case, if .u; �/ is a critical point of Dt , then it satisfies´
�u C 2 � 2teu � 8.� � 1/e.��1/ukˇ0 C @�k2 D 0 in X;

@.e.��1/u �E .ˇ0 C @�// D 0:
(1.3)

Therefore, one may check that, if (1.2) holds, then .X; eugX / can be immersed as a (CMC)
surface with constant ˙c into a suitable hyperbolic 3-manifold M 3 ' S � R with second
fundamental form given by IIDRe.˛/ and ˛ D 8eu �E .ˇ0 C @�/ 2 C2.X/, see [29,32,33] for
details. Interestingly, as discussed in [33], system (1.3) can be recasted as Hitchin’s selfduality
equations for a suitable nilpotent SL.2; C/-Higgs bundle (of rank 2) and for this reason we
refer to Dt as a Donaldson functional.

As also anticipated in [29], the following holds:

Theorem 1 ([33]). For given c 2 .�1; 1/, there is a one-to-one correspondence between
the space of constant mean curvature c immersions into a 3-manifold of constant sectional
curvature �1 and the tangent bundle of Tg.S/, the latter parametrized by the pairs�

X; Œˇ�
�

2 Tg.S/ � H 0;1.X; E/; E D T
1;0

X :

Theorem 1 is a particular case of a more general result established in [33], showing
that, for all t > 0 and Œˇ� 2 H 0;1.X;E/, the Donaldson functionalDt admits a unique critical
point .ut ; �t /, which is smooth and corresponds to the global minimum of Dt .

Such a uniqueness result yields also several interesting algebraic consequences. For
example (for � D 2 and c D 0), we derive a one-to-one correspondence between minimal
immersions of S into a (germ of) hyperbolic 3-manifold and the irreducible representation
of �1.S/ into the group PSL.2; C/ of the (orientation preserving) isometry group of H3.

On the grounds of Theorem 1, we can adventure to investigate the existence of
(CMC) immersions with constant c reaching the limiting values c D ˙1. Thus, for .uc ; �c/,
the (unique) global minimum of Dt with t D 1 � c2 and � D 2, we can investigate if it
survives the passage to the limit, as jcj ! 1�. But we run immediately into trouble, since
uc could “blow up”, as jcj ! 1�. In fact, by using the blow-up analysis developed for solu-
tions of Liouville equations, we find that actually blow-up can only occur around a finite
number of (blow-up) points. We face a particularly delicate situation, when the blow-up
point occurs at the “collapsing” of different zeroes of the holomorphic quadratic differential
˛c D euc �E .ˇ0 C @�c/ 2 C2.X/. Recall that any holomorphic quadratic differential admits
4.g � 1/ � 4 zeroes in X (counted with multiplicity).

Thus, we devote the following sections to illustrate such a new scenario where, as
pointed out in [35] and [41], we have to handle the new phenomenon of “blow-up without
concentration.”We present the recent results contained in [60,61]. Interestingly, when we deal
with blow-up solutions carrying the least possible ‘blow-up”mass 8� (see (3.19) and (3.20)),
the pointwise estimates we obtain in the collapsing case are in striking analogy with the sharp
“single bubble” estimates obtained in [8] and [38] for the nonvanishing (hence noncollapsing)
case. Observe that no “bubble” is available in the “collapsing” situation.
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By using the full power of the whole system (1.3), beyond the information encom-
passed by the mere Liouville equation, we are able to provide a useful description of (CMC)
immersions with constant c “close” to ˙1 in some interesting cases, see Theorems 8 and 9.

In particular, we show that, for genus g D 2 and Œˇ� ¤ 0, the Donaldson functional
at t D 0 is always bounded from below. This is a nontrivial information, since for Œˇ� D 0

and t D 0, DtD0 is always unbounded.
The seminal contribution contained in this note awaits improvements and some geo-

metrical interpretation. We hope that our discussion will stimulate further investigation and
new ideas in the pursuit of more complete results.

2. Blow-up at collapsing zeroes: local analysis

Let � � R2 be an open, bounded, and regular set, and consider the sequence:

�k 2 C 2.�/ \ C 0.�/;

satisfying the following Liouville-type problem:8̂̂̂̂
<̂
ˆ̂̂:

���k D Wke�k in �; (2.1)

max
@�

�k � min
@�

�k � C; (2.2)
ˆ

�

Wke�k � C; (2.3)

with a weight function Wk � 0.
After the pioneering work of Brezis–Merle [6], a vast literature is now available,

concerning the asymptotic behavior of �k (possibly along a subsequence), as k ! C1,
according to various assumptions on Wk and its vanishing behavior, see [2, 9, 11, 39, 55, 59].
Motivated by our applications, here we shall take Wk to satisfy

Wk � 0 and kWkkL1.�/ C

ˆ
�

1

.Wk/"0
� C; for some "0 > 0: (2.4)

As in [6], we say that �k admits a blow-up point at z0 2 �, if

9zk ! z0 with �k.zk/ ! C1; as k ! 1 (2.5)

(possibly along a subsequence), and the value

�.z0/ D lim
r!0

lim inf
k!C1

ˆ
Br .z0/

Wke�k (2.6)

is called the “blow-up mass” of �k at z0.
The following result was pointed out in [61], as a general version of previous results

contained in [2,6,55,59]. We hope it can be useful in other contexts as well.

Proposition 2.1. Let �k satisfy (2.1)–(2.3) with Wk ! W uniformly in C 0
loc.�/, and assume

that (2.4) holds. Then (along a subsequence) �k satisfies one of the following alternatives,
as k ! C1:
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(i) �k ! �1 uniformly on compact sets of �;

(ii) �k ! �0 in C 0
loc.�/, with �0 satisfying8<:���0 D We�0 in �;´

�
We�0 � C I

(iii) (blow-up) there exists a finite set � of blow-up points of �k in �. Moreover,
either

(“concentration”) Wke�k *
X
q2�

�.q/ıq weakly in the sense of measures,

and in particular �k ! �1; uniformly on compact

sets of � n � I

or
(“no concentration”) �k ! �0 in C 0

loc.� n �/;

Wke�k *
X
q2�

�.q/ıq C We�0

weakly in the sense of measures, and �0 satisfies8<:���0 D We�0 C
P

q2� �.q/ıq in �;´
�

We�0 � C:
(2.7)

Moreover, the blow-up mass satisfies �.q/ � 4� , 8q 2 � .

Clearly, when alternative (iii) holds, in order to better understand the behavior of �k

around a blow-up point q 2 � , it is crucial to identify the specific value of the blow-up mass
�.q/ in (2.6).

In this respect, we recall the result of Li–Shafrir [39] and Bartolucci–Tarantello [2]

in case,
Wk.x/ D jx � pkj

2˛k hk.x/ in Br .q/; (2.8)

for r > 0 sufficiently small, with pk 2 Br .q/ and

hk ! h uniformly with 0 < a � h � b and jrhkj � AI

0 � ˛k ! ˛; pk ! q; as k ! C1:
(2.9)

Theorem 2 ([2,39]). If �k in Proposition 2.1 satisfies alternative (iii) and for some q 2 � the
weight function Wk satisfies (2.8)–(2.9), then (iii)(a) holds, in the sense that blow-up occurs
with a “concentration” property. Furthermore,

(i) if W.q/ > 0 (i.e., ˛k � 0 and (2.9)) then �.q/ D 8� ,

(ii) if ˛ > 0 in (2.9) then �.q/ D 8�.1 C ˛/.

Therefore, we focus on a blow-up point q 2 � with W.q/ D 0 and q being the
accumulation point of different zeroes of Wk (collapsing zeroes). In view of the applications
we have in mind, we assume that the zeroes of Wk have integral multiplicity.
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In [35] this situation was handled in case only two zeroes of Wk coalesce at q, while
the general case was treated in [61], see also [36], [37]. The following “quantization” property
for the “blow-up” mass holds:

Theorem 3 ([35,61]). Suppose that �k in Proposition 2.1 satisfy alternative (iii). Let q 2 �

and assume that, for r > 0 sufficiently small, we have

Wk.x/ D

 
sY

j D1

jx � pj;kj
2 j̨

!
hk.x/; for x 2 Br .q/ and s � 2; (2.10)

and hk satisfies (2.9) in Br .q/, j̨ 2 N and pj;k ! q, as k ! C1, 8j D 1; : : : ; s. Then
�.q/ 2 8�N.

The “local” results above can be used to describe the asymptotic behavior of solu-
tions for Liouville-type equations on a compact Riemann surface .X; g/. Denote by dg.�; �/

the distance in .X; g/. We consider a sequence �k 2 C 2;˛.X/ satisfying

� ��k D Rke�k � fk in X; (2.11)

where

Rk.z/ D

 
NY

j D1

�
dg.z; zj;k/

�2 j̨

!
gk.z/; z 2 X I (2.12)

gk 2 C 1.X/ W a � gk � b; jrgkj � A and gk ! g0 in C 0.X/I (2.13)

zj;k 2 X W zj;k ¤ zl;k ; j ¤ l 2 ¹1; : : : ; N º and zj;k ! zj ; j D 1; : : : ; N I (2.14)

fk 2 C 0;˛.X/; fk ! f0 in Lp.X/; p > 1;

ˆ
X

f0 dA ¤ 0: (2.15)

As before, we assume that
j̨ 2 N; j D 1; : : : ; N: (2.16)

In particular, we have that Rk ! R0 uniformly in X , as k ! C1, with

R0.z/ D

 
NY

j D1

�
dg.z; zj /

�2 j̨

!
g0.z/:

We denote by
Z D

®
z 2 X W R0.z/ D 0

¯
(2.17)

the zero set of R0. Clearly, Z D ¹z1; : : : ; zN º with the point zj given in (2.14) for
j D 1; : : : ;N . Wemust keep in mind that such points are not necessarily distinct, as different
zeroes ofRk could coalesce to the same zero ofR0. Therefore, we letZ0 be the set (possibly
empty) of such “collapsing” zeroes, namely

Z0 D
®
z 2 Z W 9s � 2; 1 � j1 < � � � < js � N such that

z D zj1 D � � � D zjs and z 62 Z n ¹zj1 ; : : : ; zjs º
¯
: (2.18)

By combining the “local” results stated above, we can establish the following:
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Theorem 4 ([61]). Let �k satisfy (2.11) and assume (2.12)–(2.16). Then, along a subse-
quence, one of the following alternatives holds:

(i) (compactness) �k ! �0 in C 2.X/ with

� ��0 D R0e�0 � f0 in X; (2.19)

(ii) (blow-up) there exists a finite blow-up set

� D
®
q 2 X W 9qk ! q and �k.qk/ ! C1; as k ! C1

¯
such that �k is uniformly bounded in C 2

loc.X n �/ and, as k ! C1,

(a) either (blow-up with concentration)

�k ! �1 uniformly on compact sets of X n � I

Rke�k *
X
q2�

�.q/ıq weakly in the sense of measures; �.q/ 2 8�N:

(2.20)

In particular,
´

X
f0 dA 2 8�N in this case.

(b) or (blow-up without concentration)

�k ! �0 in C 2
loc.X n �/I

Rke�k * R0e�0 C

X
q2�

�.q/ıq weakly in the sense of measures;

� ��0 D R0e�0 C

X
q2�

�.q/ıq � f0 in X; �.q/ 2 8�N:

Furthermore, in case alternative (ii)(b) holds, � � Z0 and so any blow-up point
occurs at a collapsing of zeroes of Rk .

See [61] for details. As discussed in [35] and [41], all the alternatives of Theorem 4
can actually occur.

Remark 2.1. If in (ii) we have � n Z0 ¤ ;, then blow-up always occurs with the “concen-
tration” property. So (2.20) holds and, by Theorem 2, for q 2 � n Z0, we have:

(1) �.q/ D 8� , if q 62 Z;

(2) �.q/ D 8�.1 C j̨ /, if q D zj 2 Z n Z0.

As a direct consequence of Theorem 4, we may extend to the “collapsing” case the
“compactness” result, well known to hold in the “non-collapsing” situation:

Corollary 2.1. Under the assumption of Theorem 4, if

lim sup
k!C1

ˆ
X

Rke�k dA < 8�;

then alternative (i) holds.
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Next, we wish to provide more precise information around q 2 � \ Z0, a blow-up
point of “collapsing” zeroes of Rk . To this purpose, we “localize” our analysis by intro-
ducing in X local holomorphic coordinates around q centered at the origin. Thus, with the
obvious manipulations (see, e.g., [1, 2, 38]), and with abuse of notation, for r > 0 small, in
Br D ¹x 2 R2 W jxj < rº we may consider a sequence �k 2 C 2;˛.Br / \ C.Br / satisfying8̂̂̂̂

<̂
ˆ̂̂:

���k D Wke�k in Br ; (2.21)

max
@Br

�k � min
@Br

�k � C;

ˆ
Br

Wke�k � C; (2.22)

max
Br

�k D �k.0/ ! C1; as k ! C1; (2.23)

with

Wk.x/ D

 
sY

j D1

jx � pj;kj
2 j̨

!
hk.x/; where hk satisfies (2.9) in Br I

s � 2; j̨ 2 N; pj;k ¤ pl;k for j ¤ l I

pj;k ! 0; as k ! C1; 8j D 1; : : : ; s:

(2.24)

Let us just recall that the bounded oscillation property stated in (2.22) follows from the global
problem (2.11) by means of the Green representation formula. We have

jrWkj � A and Wk ! W in C 0
loc.Br /; as k ! C1; (2.25)

with

W.x/ D jxj
2˛h.x/ and ˛ D

sX
j D1

j̨ 2 N: (2.26)

Furthermore, by taking r > 0 smaller if necessary, we may assume that zero is the only
blow-up point of �k in Br , that is,

80 < ı < r 9Cı > 0 W max
Br nBı

�k � Cı : (2.27)

Clearly, under the assumptions above, Theorem 3 applies to �k and implies the following for
the “blow-up” mass:

� WD lim
ı!0C

�
lim

k!C1

ˆ
Bı .0/

Wke�k

�
2 8�N: (2.28)

Here, we focus on the case of the least “blow-up” mass, namely when (2.28) holds with

� D 8�: (2.29)

Interestingly, in this case we are able to provide sharp pointwise estimates for �k in Br .
This should be considered a first relevant step. Indeed, the analysis of multiple “blow-up,”
where � D 8�m with m 2 N and m � 2, typically reduces to the case � D 8� after multiple
rescaling, unless one ends up with a blow-up point at a “noncollapsing” zero ofW , described
in (ii) of Theorem 2. But in the latter case one can take advantage of the recent estimates in
[3] and [67] to complete the analysis. Also we mention [35], where blow-up was analyzed
when “collapsing” occurs between two zeroes, i.e., when s D 2 in (2.24).
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The following estimates were derived in [61].

Theorem 5 ([61]). Let �k satisfy the assumptions above. If (2.29) holds, then

(i) �k.0/ D �.min@Br
�k C 2

Ps
j D1 2 j̨ log jpj;kj/ C O.1/;

(ii) �k.x/ D log e�k .0/

.1C 1
8 Wk.0/e�k .0/jxj2/2

C O.1/;

(iii)
´

Br
jr�kj2 D �16�.min@Br

�k C
Ps

j D1 2 j̨ log jpj;kj/ C O.1/.

It is interesting to compare the above estimates with those available in [8] and [38]

(see, e.g., Theorem 0.3 in [38]) for solutions of (2.21)–(2.23), when (2.25) holds with
W.0/ > 0 (instead of (2.26) as considered here). In this case, (2.29) is automatically sat-
isfied (see (i) of Theorem 2) and the estimate (ii) of Theorem 5 is the striking exact analogue
of the pointwise estimate provided in Theorem 0.3 of [38]. Furthermore, by considering the
sequence

uk.x/ D �k.x/ C

sX
j D1

2 j̨ log jx � pj;kj;

satisfying � �uk D hkeuk � 4�

sX
j D1

j̨ ıpj ;k in Br ;

we realize that the estimate (i) stated for �k in Theorem 5 reduces just to the following
“supC inf” estimate of Harnack type [5] for uk :

uk.0/ C min
@Br

uk D O.1/; (2.30)

which was established in this form in [58] when the origin is a “noncollapsing” zero of W .
Therefore, we expect that the estimate (2.30) should remain valid in the “collapsing” case as
well, without the assumption (2.29).

We shall use those estimates to describe the asymptotic behavior of minimizers of
the Donaldson functional, considered in [29,33].

3. Asymptotics for minimizers of the Donaldson

functional

Let S be a smooth, closed, oriented surface of genus g � 2, and denote by Tg.S/ the
Teichmüller space of conformal structures on S , modulo biholomorphisms in the homotopy
class of the identity.

We fix a conformal structureX 2 Tg.S/ and denote by gX the corresponding hyper-
bolic metric on X , which will be used as the background metric, with norm j � j and volume
element dA.

On .X; gX / we consider a Donaldson functional assigned in terms of a pair of (con-
formal) data .X; Œˇ�/ 2 Tg.S/ � H 0;1.X;E/, whereE D ˝k�1T

1;0
X with � � 2 and T

1;0
X the

holomorphic tangent bundle of X and H 0;1.X; E/ D A0;1.X; E/=@.A0.E// is the .0; 1/-
Dolbeault cohomology group. We recall that A0;1.X; E/ is the space of .0; 1/-forms in X
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valued in E, A0.E/ is the space of smooth sections of E and @ W A0.E/ ! A0;1.X; E/ is
the d -bar operator. For ˇ 2 A0;1.X; E/, we have the decomposition ˇ D ˇ0 C @�, with ˇ0

a unique harmonic .0; 1/-form valued on E and � 2 A0.E/. So the class Œˇ� 2 H 0;1.X; E/

is uniquely identified by its harmonic representative ˇ0. We also recall that, by means of
the Hodge star operator �E W A0;1.E/ ! A1;0.E�/ and by Serre’s duality theorem (see
[66]), for any class Œˇ� D Œˇ0 C @�� 2 H 0;1.X; E/ with ˇ0 harmonic, we can uniquely iden-
tify �E ˇ0 with a holomorphic �-differential on X . In other words, denoting by C�.X/ the
space of �-holomorphic differentials, we have that C�.X/ ' .H 0;1.X; E//�. Moreover, the
linear complex space C�.X/ is finite dimensional and dimC C�.X/ D .2� � 1/.g � 1/.
Since Tg.S/ is a complex cell of dimension 3.g � 1/, we find that, for � D 2, the pair
.X; Œˇ�/ 2 Tg.S/ � H 0;1.X; E/ can be used to parametrize the tangent bundle of Tg.S/.

In addition, recall that in local holomorphic coordinates ¹zº, any ˛ 2 C�.X/ takes
the expression ˛ D h.dz/k , with h holomorphic. In this way, a zero for ˛ is well understood,
and actually, it is known that ˛ admits 2�.g � 1/ zeroes in X , counted with multiplicity.

At this point, for a given pair .X; Œˇ�/ and t > 0, we define theDonaldson functional

Dt .u; �/ D

ˆ
X

�
jruj2

4
� u C teu

C 4e.��1/u
kˇ0 C @�k

2

�
dA (3.1)

with “natural” (convex) domain

ƒ D

²
.u; �/ 2 H 1.X/ � W 1;2.X; E/ W

ˆ
X

e.��1/u
kˇ0 C @�k

2 dA < C1

³
:

Here, H 1.X/ and W 1;2.X; E/ are the usual Sobolev spaces. Clearly, the functional Dt is
bounded from below in ƒ.

In [33], the authors have shown that, for any Œˇ� 2 H 0;1.X; E/ and t > 0, the func-
tional Dt attains its infimum on ƒ at a smooth pair .ut ; �t / satisfying´

�u C 2 � 2teu � 8.� � 1/e.��1/ukˇ0 C @�k2 D 0 in X;

@
�
e.��1/u �E .ˇ0 C @�/

�
D 0:

(3.2)

More importantly, it is possible to show the unique solvability of (3.2).

Theorem 6 ([33]). For given t > 0 and Œˇ� 2 H 0;1.X;E/, the functional Dt admits a unique
critical point .ut ; �t /, which corresponds to its global minimum in ƒ. Furthermore, .ut ; �t /

is smooth and it is the only solution of (3.2).

Such a uniqueness result implies relevant information about the moduli space of
minimal, constant mean curvature, and Lagrangean immersions into hyperbolic 3-manifolds,
and also about the irreducible representation of the fundamental group �1.S/ in various
character varieties. We refer to [33] and the references therein for more details. Here, we
only mention the following consequence of Theorem 6 about the immersion of constant
mean curvature (CMC) surfaces:

Corollary 3.1 ([29, 33]). For a given c 2 .�1; 1/, there is a one-to-one correspondence
between the space of constant mean curvature c immersions of S into 3-manifolds of con-
stant sectional curvature �1 and the tangent bundle of Tg.S/, the latter parametrized by the
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pair �
X; Œˇ�

�
2 Tg.S/ � H 0;1.X; E/:

Clearly, Corollary 3.1 is a direct consequence of Theorem 6, once we take � D 2

and t D 1 � c2 > 0. We refer the reader to [33] for details.
For X 2 Tg.S/ fixed, by this approach, one may be tempted to look for (CMC)

immersions of X with constant c D ˙1, simply by taking t D 1 � c2 and by following the
solution .ut ; �t / to the limit, as t ! 0C. However, this requires a rather delicate analysis.
Indeed, it is not even clear for which data .X; Œˇ�/, the functional D0 D DtD0, given by

D0.u; �/ D

ˆ
X

�
jruj2

4
� u C 4e.��1/u

kˇ0 C @�k
2

�
dA; (3.3)

is bounded from below in ƒ. Notice, for example, that for t > 0 and Œˇ� D 0 (i.e., ˇ0 D 0),

ut D log
1

t
; �t D 0 and Dt .ut ; �t / D log t ! �1; as t ! 0C:

Obviously, for ˇ0 D 0 and t D 0, the system of equations (3.2) admits no solutions.
On the other hand, for Œˇ� ¤ 0, the following has been established in [60].

Theorem 7 ([60]). Let Œˇ� ¤ 0 and assume that D0 admits a critical point .u0; �0/ (or
equivalently, the system (3.2) for t D 0 is solvable). Then D0 is bounded from below in ƒ

and .u0; �0/ is unique, smooth, and it corresponds to the global minimum of D0 in ƒ.

Therefore, as anticipated, to find out ifD0 admits a critical point, we need to analyze
the convergence of .ut ; �t / (the global minimum of Dt ), as t ! 0C. We shall see that the
failure of convergence of .ut ; �t / (along a subsequence) is due to “blow-up” phenomena.

For � D 2, such an asymptotic analysis allows us to obtain information about
(CMC)-immersions, when the constant c approaches the limiting values ˙1. On the other
hand, when � � 2, such an asymptotic analysis permits to follow the behavior of the global
minimizer .u�; ��/ of the Donaldson functional

D.u; �/ D

ˆ
X

�
jruj2

4
� u C eu

C 4e.��1/u
k�ˇ0 C @�k

2

�
dA (3.4)

along the .0; 1/-Dolbeault cohomology classes Œ�ˇ�, as � varies in .0; C1/ and Œˇ� ¤ 0 is
fixed in H 0;1.X; E/. Indeed, via the transformations

t D �� 2
��1 ; ut D u� C

2

� � 1
log�; �t D

1

�
��; and

Dt .ut ; �t / D D.u�; ��/ � 4�.g � 1/ log�
2

��1 ;

(3.5)

we can recast the analysis of .u�; ��/ (the global minimum of D in (3.4)), as � ! C1, to
the analysis of .ut ; �t / (the global minimum of Dt in (3.1)), as t ! 0C.

To start, we notice that, by the strict positivity of the Hessian D00
t at .ut ; �t / (see

[29,33]) and the Implicit Function Theorem, we can show theC 2-dependence of .ut ; �t /with
respect to t 2 .0; C1/. We refer for details to [60], where it is also shown that the expression

3892 G. Tarantello



t
´

X
eut dA is increasing, as a function of t 2 .0; C1/. Since, after integration over X of

the first equation in (3.2), we have

t

ˆ
X

eut dA C 4.� � 1/

ˆ
X

e.k�1/ut kˇ0 C @�t k
2 dA D 4�.g � 1/; (3.6)

we may conclude that

�t

�
Œˇ�
�

WD 4.� � 1/

ˆ
X

e.��1/ut kˇ0 C @�t k
2 dA 2

�
0; 4�.g � 1/

�
(3.7)

is decreasing in .0; C1/. These facts lead us to ask the following question:

Question 1. Can we identify the value

�
�
Œˇ�
�

D �.ˇ0/ D lim
t!0C

4.� � 1/

ˆ
X

e.��1/ut kˇ0 C @�t k
2 dA (3.8)

in terms of the given cohomology class Œˇ� D Œˇ0 C @�� 2 H 0;1.X; E/?

To emphasize the relevance of the value �.Œˇ�/ in (3.8), we observe that, for
Œˇ� D Œˇ0 C @�� ¤ 0, the interval .0; �.Œˇ�// provides the range of the (decreasing) function

�t

�
Œˇ�
�

D 4.� � 1/

ˆ
X

e.��1/ut kˇ0 C @�t k
2 dA; as t varies in .0; C1/:

We summarize the following consequences of the above discussion:

Proposition 3.1. Given Œˇ� 2 H 0;1.X; E/, there hold:

(i) �.Œˇ�/ 2 Œ0; 4�.g � 1/� and �.Œˇ�/ D 0 ” Œˇ� D 0;

(ii) If Œˇ� ¤ 0, then for every 0 < � < �.Œˇ�/, there exists a unique � 2 .0; C1/

such that � D 4.� � 1/
´

X
e.��1/u�k�ˇ0 C @��k2 dA, where .u�; ��/ is the

global minimum (and unique critical point) for D in (3.4).

Letting ct D Dt .ut ; �t / D minƒ Dt , we see that it is increasing for t 2 .0; C1/

and therefore,

D0 is bounded from below on ƒ ” inf
t>0

ct D lim
t!0C

ct D c0 > �1 (3.9)

and infƒ D0 D c0. More importantly, it has been proved in [60] that the following holds:

Proposition 3.2 ([60]). If D0 is bounded from below on ƒ then �.Œˇ�/ D 4�.g � 1/.

Now the delicate questions are the following:

Question 2. (i) If �.Œˇ�/ D 4�.g � 1/, is it true that D0 is bounded from below
in ƒ?

(ii) IfD0 is bounded from below inƒ, for which Œˇ� ¤ 0 is the infimum attained?

In order to investigate the questions raised above, we set

ˇt D ˇ0 C @�t 2 A0;1.X; E/ and ˛t D eut �E ˇt : (3.10)
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By virtue of the second equation in (3.2), we know that

˛t 2 C�.X/ D
®
˛ 2 A1;0.X; E�/ W @˛ D 0

¯
; ˛t ¤ 0;

namely ˛t ¤ 0 is a holomorphic �-differential in X , and so it admits 2�.g � 1/ zeroes in X ,
counted with multiplicity. Moreover, since C�.X/ is finite dimensional, all norms of ˛t are
equivalent. Let

st 2 R W e.��1/st D k˛t k
2
L1 and Ǫ t D

˛t

k˛t kL1

D e�
.k�1/st

2 ˛t : (3.11)

Then, as t ! 0C (along a subsequence), we have Ǫ t ! Ǫ0 with

Ǫ0 2 C�.X/ and k Ǫ0kL1 D 1:

So, also Ǫ0 must vanish at 2�.g � 1/ points (counted with multiplicity), which correspond to
the limits of the zeroes of Ǫ t (along a subsequence). Obviously, different zeroes of Ǫ t could
coalesce into the same zero of Ǫ0. It is shown in [60] that, in order to describe the asymptotic
behavior of .ut ; �t / satisfying (3.2), it is possible to use the blow-up analysis discussed in
Section 2 for (a subsequence of)

�t D �ut C st : (3.12)

With this information, it is possible to obtain the following (nontrivial) lower bound:

Proposition 3.3 ([60]). For Œˇ� 2 H 0;1.X; E/ n ¹0º, there holds:

�
�
Œˇ�
�

�
4�

� � 1
with �.Œˇ�/ in (3.8).

For details, we refer the interested reader to [60].
Next, along a suitable sequence tk ! 0C, we are going to analyze more closely the

sequence �k D �tk in (3.12). To reduce technicalities, from now on we focus on the case

� D 2: (3.13)

We let uk D utk , �k D �tk , sk D stk , and ˛k D ˛tk , so that the function

�k D �.uk � sk/ (3.14)

satisfies
� ��k D 8k Ǫkk

2e�k � fk in X; (3.15)

with fk D 2.1 � tkeuk / and Ǫk D e�
sk
2 ˛k satisfying k ǪkkL1 D 1. By the maximum princi-

ple, we also know that kfkkL1.X/ � 2. So, along the given sequence, we can further assume
that

fk ! f0 in Lp.X/; p > 1; and Ǫk ! Ǫ0 2 C2.X/; k Ǫ0kL1 D 1:

So, for N D 4.g � 1/ (recall (3.13)), we let Z D ¹z1; : : : ; zN º be the set of zeroes of Ǫ0,
repeated according to their multiplicity. Clearly, the set Z is formed by the limit points of the
zeroes of Ǫk , which may coalesce into the same zero of Ǫ0. Thus, we let Z0 the set (possibly
empty) of such “collapsing” zeroes of Ǫk , as defined in (2.18).

Theorem 4 applies to �k and (possibly along a subsequence) implies that:

(i) either (compactness) �k ! �0 in C 2.X/, as k ! C1, and D0 is bounded
from below and attains its infimum in ƒ;
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(ii) or (blow-up) �k admits a finite blow-up set

� D ¹q1; : : : ; qn W 1 � n � g � 1º;

and we may have “blow-up with concentration,” or “blow-up without con-
centration,” as described respectively in parts (ii)(a) and (ii)(b) of Theorem 4
(with Rk D 8k Ǫkk2 and R0 D k Ǫ0k2).

At this point, by exploiting the full power of the whole system (3.2), it is possible
to provide a careful description of the minimizer .uk ; �k/ of Dtk in case of blow-up.

We start to discuss the case where we assume that � \ Z D ;, namely no blow-
up point coincides with a zero of Ǫ0. In this situation, by Remark 2.1, we know that only
“blow-up with concentration” occurs [6,38]. Therefore,

8euk k˛kk
2

D 8k Ǫkk
2e�k * 8�

nX
lD1

ıql
; and we obtain �

�
Œˇ�
�

D 4�n:

To proceed further, we follow [60], and for a given set P D ¹x1; : : : ; x�º � X with 1 � � �

.g � 1/, we introduce the following subspace of C2.X/:

Q2ŒP � D Q2

�
¹x1; : : : ; x�º

�
D
®
˛ 2 C2.X/ W ˛ vanishes exactly at the set P

¯
:

By the Riemann–Roch theorem, we have

dimC Q2

�
¹x1; : : : ; x�º

�
D 3.g � 1/ � �:

In [60] it has been shown that the following holds:

Theorem 8 ([60]). Assume that �k blows up (in the sense of (ii) above). If (3.13) holds and

� \ Z D ;; (3.16)

then (along a subsequence), as k ! C1,

˛k ! ˛0 2 C2.X/ with ˛0 ¤ 0 vanishing exactly at Z;

e�uk * 4�
X
q2�

1

k˛0k2.q/
ıq weakly in the sense of measures; (3.17)

ck D Dtk .uk ; �k/ D �4�.g � 1 � n/dk C O.1/; with dk D

 
X

uk dA ! C1;

ˆ
X

ˇ0 ^ ˛ dA D 0; 8˛ 2 Q2Œ� �: (3.18)

Furthermore, �.Œˇ�/ D
´

X
ˇ0 ^ ˛0 dA D 4�n.

Remark 3.1. Since dimC Q2Œ� � D 3.g � 1/ � n, the orthogonality condition (3.18), together
with the estimate (3.17) for the global minimizer of Dtk , seems to indicate that �k should
admit only one blow-up point (n D 1), where the holomorphic quadratic differential �E ˇ0

does not vanish.

When (3.16) holds, the estimate (3.17) allows us to answer Question 2 posed above.
Indeed, if �.Œˇ�/ D 4�.g � 1/ then n D g � 1, and therefore, by using (3.17), we find that
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D0 is bounded from below in ƒ. However, the analysis above seems to suggests that D0 may
not attain its infimum in ƒ.

Next we wish to acquire some useful information about the blow-up behavior of
.uk ; �k/ when we no longer assume (3.16). By taking advantage of the blow-up analysis
developed in Section 2, we focus to the case where blow-up occurs with the “least” blow-up
mass. More precisely, for the blow-up mass

�.q/ D lim
r!0C

�
lim

k!C1

ˆ
Br .q/

euk kˇ0 C @�kk
2dA

�
2 8�N; 8q 2 � ; (3.19)

we assume that
�.q/ D 8�; 8q 2 � : (3.20)

Remark 3.2. When (3.20) holds, it is shown in [60] that every blow-up point q 2 � \ Z

must correspond to a collapsing of zeroes, that is,

� \ Z D � \ Z0: (3.21)

For ql 2 � and r > 0 sufficiently small, let

xk;l 2 Br .ql / W �k.xk;l / D max
Br .ql /

�k ! C1 and xk;l ! ql ; as k ! C1; (3.22)

and set
�k;l D k˛kk

2.xk;l /: (3.23)

In [60], it is shown that the following holds:

Theorem 9 ([60]). Assume (3.20) and suppose that � \ Z ¤ ;. Then (along a subsequence)

sk ! C1; as k ! C1:

Moreover, there exists a set of indices J � ¹1; : : : ; nº such that, as k ! C1,

(i) 8l 2 J we have ql 2 � \ Z D � \ Z0 and �k;l ! �l > 0,

e�uk * 4�
X
l2J

1

�l

ıql
weakly in the sense of measures;

(ii)
´

X
ˇ0 ^ ˛ dA D 0, 8˛ 2 C2.X/ vanishing at �0 D ¹ql 2 � W l 2 J º � Z0.

In particular,
´

X
ˇ0 ^ Ǫ0 dA D 0;

(iii) �k;l ! C1, as k ! C1, 8l 2 ¹1; : : : ; nº n J (if not empty),

ck D Dtk .uk ; �k/ D �4�.g � 1 � n/dk �

X
l2¹1;:::;nºnJ

log.�k;l / C O.1/;

with dk D

 
X

uk dA ! C1: (3.24)

We can reveal a clearer relation between Theorems 8 and 9, when J covers the full
set of possible indices, namely when J D ¹1; : : : ; nº, which is reasonable, as we expect that
n D 1. With the above notations, the following holds:
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Corollary 3.2. Under the assumptions of Theorem 9, if in part 2 we have

J D ¹1; : : : ; nº;

then � � Z0. Moreover, as k ! C1,

(i) e�uk ! 4�
Pn

lD1
1

�l
ıq weakly in the sense of measures;

(ii) ck D �4�.g � 1 � n/dk C O.1/ with dk D
ffl

X
uk dA ! C1,

and

(iii)
´

X
ˇ0 ^ ˛ dA D 0, 8˛ 2 Q2Œ� �.

When g D 2, � contains at most one single point (n D 1), and by virtue of Propo-
sitions 3.1 and 3.3, we know that

�
�
Œˇ�
�

D 4�; for every Œˇ� 2 H 0;1.X; E/ n ¹0º:

Thus, as a consequence of Corollary 2.1 or Theorem 8 and Corollary 3.2, we obtain

Corollary 3.3. For the genus g D 2, the functional D0 in (3.3) is bounded from below,
whenever Œˇ� ¤ 0.

As a final observation, we add that in Theorem 9 it should be possible to remove
the assumption (3.20). However, when (3.20) is no longer valid then also (3.21) cannot be
expected to hold (recall Remark 3.2) and sowe could end upwith a blow-up point q 2 Z n Z0.
Namely, blow-up can occur at a zero of Ǫ0 which does not coincide with a “collapsing”
of zeroes of Ǫk . As well known, in this case one needs to deal with a “multiple bubble”
situation where, after rescaling, the “bubbles” are symmetrically placed (see [3]). This fact
causes some “cancelation” phenomena that prevents to obtain, as in [60], a nice control on
the sequence sk . It is likely that the new sharper estimates obtained by Wei–Zhang in [67]

may help resolve such difficulties.
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Hydrodynamic
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Reynolds number
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Abstract

The hydrodynamic stability theory is mainly concerned with how laminar flows become
unstable and transit to turbulence at high Reynolds number. To shed some light on the tran-
sition mechanism, Trefethen et al. [Science 261(1993)] proposed the transition threshold
problem: how much disturbance will lead to the instability of the flow and the dependence
of disturbance on the Reynolds number. Many effects such as 3D lift-up, inviscid damping,
enhanced dissipation, and boundary layer play a crucial role in determining the transition
threshold. In this note, we will first survey some important progress on linear inviscid
damping and enhanced dissipation for shear flows. Then we will outline key ingredients
in our proof of transition threshold for the 3D Couette flow in a finite channel.
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1. Introduction

The hydrodynamic stability has been an active field in the fluid mechanics since
Reynolds’s experiment in 1883 [43]. This field focuses on how the laminar flows become
unstable and transit to turbulence [20,46,57]. A fundamental model describing the motion of
the incompressible fluid is the Navier–Stokes (NS) equations:´

@tv � ��v C v � rv C rp D 0;

r � v D 0;
(1.1)

where v D .v1.t; x;y; z/; v2.t; x;y; z/; v3.t; x;y; z// is the velocity, p.t;x;y; z/ is the pres-
sure, and � D Re�1 > 0 (Re Reynolds number) is the viscosity coefficient. Let us recall some
well-known laminar solutions of (1.1): the plane Couette flow .y; 0; 0/, the plane Poiseuille
flow .1 � y2; 0; 0/, and the pipe Poiseuille flow .0; 0; 1 � r2/ with r2 D x2 C y2. Our aim
is to study the stability of these laminar flows at high Reynolds number, i.e., Re � 1.

The plane Couette flow is spectrally stable for any Reynolds number Re � 0 [44].
It has been a folklore conjecture that the pipe Poiseuille flow is spectrally stable for any
Reynolds number. Recently, we (jointly with Chen) [15] proved that the pipe Poiseuille flow is
spectrally stable at high Reynolds number. On the other hand, the experiments and numerics
observed that these flows could be unstable and transit to turbulence for small but finite per-
turbations when the Reynolds number exceeds some critical number [13,22,42]. In addition,
some laminar flows such as plane Poiseuille flow become turbulent at a much lower Reynolds
number than that predicted by the eigenvalue analysis. These are the so-called Sommerfeld
paradoxes. The resolution of these paradoxes is a long-standing problem in fluid mechanics.
For many works dedicated to resolving these paradoxes, see [13] and references therein.

Trefethen et al. [48] provided an explanation about the linear instability via the "-
pseudospectra of the linearized NS operator L defined by

�".L/ D
®
� 2 C W

.� � L/�1
 � "�1

¯
:

For the plane Couette flow, the spectrum of the linearized operator lies in the stable lower
half-plane, but the pseudospectrum extends significantly into the upper half-plane. The pseu-
domode may be excited to a substantial amplitude by a very small input. This phenomenon
is due to the nonnormality of the linear operator. Now the psuedospectrum has become an
important concept in the study of nonnormal operators [47]. Li and Lin [35] provided a reso-
lution from the following point of view: there is a sequence of linearly unstable shears which
approach the linear shear in the kinetic energy norm but not in the enstrophy norm, and such
linear instabilities offer an initiator for the transition from the linear shear to turbulence.

To shed some light on the transition mechanism to turbulence, Trefethen et al. [48]
proposed the transition threshold problem: how much disturbance will lead to the insta-
bility of the flow and the dependence of disturbance on the Reynolds number. This idea
may be traced back to Kelvin [30]. The following mathematical version was formulated by
Bedrossian, Germain, and Masmoudi [7]:
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Given a norm k � kX , find a ˇ D ˇ.X/ so that

ku0kX � Re�ˇ
) stability;

ku0kX � Re�ˇ
) instability:

The exponent ˇ is referred to as the transition threshold. It was conjectured in [48] that

“Notwithstanding these qualifications, we conjecture that transition to turbulence
of eigenvalue-stable shear flows proceeds analogously to our model in that the
destabilizing mechanism is essentially linear in the sense described above and the
amplitude threshold for transition is O.Re / for some  < �1.”

Later on, a lot of works were devoted to estimating ˇ (see [13] and the references therein). To
the best of our knowledge, the community never reached a consensus on what the thresholds
should be. Numerical results by Lundbladh, Henningson, and Reddy [38] indicated that for
the plane Couette flow, ˇ D 1 for streamwise perturbation and ˇ D

5
4
for oblique pertur-

bation; for the plane Poiseuille flow, ˇ D
7
4
for both streamwise and oblique perturbations.

Asymptotic analysis results by Chapman [13] showed that for the plane Couette flow, ˇ D 1

for streamwise and oblique perturbation; for the plane Poiseuille flow, ˇ D
3
2
for streamwise

perturbation and ˇ D
5
4
for oblique perturbation.

In the absence of a physical boundary, Bedrossian, Germain, andMasmoudi (BGM)
made important progress on the transition threshold problem for the 3D Couette flow in a
series of works [5, 6, 8]. It was shown that ˇ � 1 for the perturbations in Gevrey class and
ˇ �

3
2
for the perturbations in Sobolev space. In [52], we improved the result of [6] to ˇ � 1

in Sobolev space, which means that the regularity of the initial data (at least above H 2-
regularity) does not play an important role in determining the transition threshold. In the
presence of a physical boundary, the boundary layer could affect the stability of the flow
at the high Reynolds number regime. To understand the boundary layer effect, we (jointly
with Chen and Li) [14] studied the transition threshold problem for the 2D Couette flow in a
finite channelT � Œ�1;1�. We established various space–time estimates for the linearized NS
system by developing the robust resolvent estimate method. Based on this work and [52], we
(jointly with Chen) [16] proved that the transition threshold ˇ � 1 in the Sobolev space for the
3D Couette flow in a finite channel T � Œ�1; 1� � T . Therefore, the transition threshold for
the 3DCouette flow is inconsistent with the value (someˇ >1) conjectured in [48] even in the
presence of the boundary layer effect. The main reason may be that the infinite-dimensional
mixing effects and special null structures in the nonlinearity suppress most of the nonlinear
interactions rather than giving what could be predicted by the toy model in [48].

Both BGM’s and our works show that these linear effects, namely 3D lift-up, invis-
cid damping, enhanced dissipation, and boundary layer, play a crucial role in determining
the transition from a laminar to turbulent flow at high Reynolds number. In this note, we will
first survey some recent important progress about linear inviscid damping and enhanced dis-
sipation for shear flows. Then we will outline some key ingredients in our proof of transition
threshold for the 3D Couette flow in a finite channel.
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2. Linear inviscid damping for shear flows

We consider the 2D linearized Euler equation around shear flow .u.y/; 0/ in a finite
channel � D ¹.x; y/ W x 2 T ; y 2 Œ�1; 1�º:

@t! C L! D 0; !jtD0 D !0.x; y/; (2.1)

where L D u.y/@x C u00.y/@x.��/
�1 and ! is the vorticity. Taking the Fourier transform

with respect to x, the linearized Euler equation (2.1) in terms of the stream function  (i.e.,
� D !) is reduced to

@t
b C i˛R˛

b D 0; (2.2)

where R˛
b D �.@2

y � ˛2/�1.u00.y/ � u.@2
y � ˛2//b .

For the Couette flow (i.e., u.y/ D y), Orr [41] observed an important phenomenon
that the velocity will tend to 0 as t ! 1, although the Euler equation is a conserved system.
This phenomenon is the so-called inviscid damping, which is the analogue in hydrody-
namics of Landau damping [32]; see [45] for similar phenomena in various systems. For
general shear flows, the problem is challenging due to the presence of the nonlocal operator
u00.y/@x.��/

�1. In this case, the linear dynamics is associated with the singularities at the
critical layer u D c of the solution of the Rayleigh equation

.u � c/.ˆ00
� ˛2ˆ/ � u00ˆ D f:

Based on the Laplace transform and singularity analysis of the solution � at the critical layer,
Case [12] gave the first prediction of linear damping for monotone shear flows. However,
Case’s argument does not work for nonmonotone flows. Bouchet and Morita [11] may be
the first to study the linear damping for nonmonotone shear flows. Based on Laplace tools
and numerical computations, they found a new dynamic mechanism, i.e., vorticity depletion
phenomena. Assume that for large timeb!.t; ˛; y/ � !1.y/ exp

�
�i˛u.y/t

�
CO.t� /:

The vorticity depletion means that !1.y/ vanishes at stationary points of u.y/. This is
another important mechanism leading to the damping for nonmonotone shear flows. Based
on this observation and using stationary phase expansion, they predicted similar decay rates
of the velocity as in the monotone case.

In a series of works [53–55], we (jointly with Zhao) confirmed Case’s prediction on
linear damping for monotone shear flows and Bouchet–Morita’s prediction for nonmonotone
shear flows, including Poiseuille and Kolmogorov flows. Let us review these results. The first
result is the linear inviscid damping for monotone flows [53].

Theorem 2.1. Let u.y/ 2 C 4.Œ0; 1�/ be a monotone function. Suppose that the linearized
operator L has no embedding eigenvalues. Assume that

R
T
!0.x; y/dx D 0 and PL!0 D 0,

where PL is the spectral projection to �d .L/. Then it holds that

1. If !0.x; y/ 2 H�1
x H 1

y , thenV.t/
L2 �

C

hti
k!0kH �1

x H 1
y
I
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2. If !0.x; y/ 2 H�1
x H 2

y , thenV 2.t/


L2 �
C

hti2
k!0kH �1

x H 2
y
:

Now we introduce a class of nonmonotone flows denoted by K , which consists
of the functions u.y/ satisfying u.y/ 2 H 3.�1; 1/ and u00.y/ ¤ 0 for critical points (i.e.,
u0.y/ D 0) and u0.˙1/ ¤ 0. For the flows in K , we prove the following linear inviscid
damping result and confirm the vorticity depletion phenomenon [54].

Theorem 2.2. Assume that u.y/ 2 K and the linearized operator R˛ has no embedding
eigenvalues. Assume that b!0.˛; y/ 2 H 1

y .�1; 1/ and PR˛
b 0.˛; y/ D 0, where  0 is the

stream function and PR˛
is the spectral projection to �d .R˛/. Then it holds that OV .�; ˛; �/


L2
t L2

y
C
@t

OV .�; ˛; �/


L2
t L2

y
� C˛

b!0.˛; �/


H 1
y
:

In particular, limt!C1 k OV .t; ˛; �/kL2
y

D 0. If u0.y0/ D 0, then

lim
t!C1

b!.t; ˛; y0/ D 0:

Remark 2.1. For a class of symmetric shear flows, including the Poiseuille and Kolmogorov
flows, we can obtain the explicit decay estimates as in the monotone case [54, 55]. A very
interesting question is to prove the explicit decay estimates for general flows in K .

The proof of Theorem 2.1 is based on the representation formula of the solution. Let
�� be a simply connected domain including the spectrum �.R˛/ of R˛ . Then the solutionb .t; ˛; y/ is given by the following Dunford integral:

b .t; ˛; y/ D
1

2�i

Z
@��

e�i˛tc.c � R˛/
�1b .0; ˛; y/dc:

Let ˆ.˛; y; c/ be the solution of the inhomogeneous Rayleigh equation with f .˛; y; c/ Db!0.˛;y/
i˛.u�c/

and c 2 ��:

ˆ00
� ˛2ˆ �

u00

u � c
ˆ D f; ˆ.�1/ D ˆ.1/ D 0: (2.3)

Then we find that

.c � R˛/
�1b .0; ˛; y/ D i˛ˆ.˛; y; c/:

Therefore, we have b .t; ˛; y/ D
1

2�

Z
@��

˛ˆ.˛; y; c/e�i˛ctdc: (2.4)

Thus, the key ingredient of the proof is reduced to solving the inhomogeneous Rayleigh
equation (2.3) and deriving uniform estimates of the solution ˆ in �. For this, we need to
construct two independent solutions to the homogeneous Rayleigh equation for c 2 ��:

�00
� ˛2� �

u00

u � c
� D 0:
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Our idea is as follows. Let � D .u.y/ � c/�1. Then �1 satisfies��
u.y/ � c

�2
�0

1

�0
D ˛2�1

�
u.y/ � c

�2
:

If �1.yc ; c/ D 1 and �0
1.yc ; c/ D 0 at yc , then we have

�1.y; c/ D 1C

Z y

yc

˛2

.u.y0/ � c/2

Z y0

yc

�1.z; c/
�
u.z/ � c

�2
dzdy0

D 1C ˛2T�1.y; c/:

Assume that u is monotone and let yc D u�1.cr / with cr D Rec. The following estimate is
crucial: there exists a constant C independent of A so that Tf .y; c/

coshA.y � yc/


L1

y;c

�
C

A2

 f .y; c/

coshA.y � yc/


L1

y;c

:

Then �1.y; c/ D
P1

kD0.˛
2T /k.1/ by taking A large enough.

The proof of Theorem 2.2 is based on the limiting absorption principle. Consider
the inhomogeneous Rayleigh equation:

.u � c/.ˆ00
� ˛2ˆ/ � u00ˆ D !; ˆ.�1/ D ˆ.1/ D 0;

where c 2 � nD0, D0 D Ranu. Using blow-up analysis and a compactness argument, we
prove the limiting absorption principle for shear flows u 2 K .

Proposition 2.1. If R˛ has no embedding eigenvalues, then there exists an �0 such that for
c 2 ��0 nD0, ˆ has the the following uniform bound:

kˆkH 1.�1;1/ � Ck!kH 1.�1;1/:

Here C is a constant independent of �0. Moreover, there existsˆ˙.˛; y; c/ 2H 1
0 .�1; 1/ for

c 2 Ranu, such that ˆ.˛; �; c ˙ i�/ ! ˆ˙.˛; �; c/ in C.Œ�1; 1�/ as � ! 0C andˆ˙.˛; �; c/


H 1.�1;1/
� Ck!kH 1.�1;1/:

From (2.4) and Plancherel’s formula, we infer that OV .t; ˛; y/
2

H 1
t L2

y
D

Z
R

� OV .t; ˛; �/
2

L2
y

C
@t

OV .t; ˛; �/
2

L2
y

�
dt

� C

Z
Ranu

ê.˛; �; c/2

H 1
y
dc � C

b!0.˛; �/
2

H 1
y
:

For monotone shear flows, we (jointly with Zhu) also developed the vector field
method in the sprit of wave equation [56]. The idea is as follows. We first proved the space–
time estimate of the velocity via the limiting absorption principle. Consider

@t! C i˛R0
˛! D f; R0

˛! D �
�
u00
�
@2

y � ˛2
��1

� u
�
!:

Using the limiting absorption principle, we can prove that!.T /2

L2 C ˛2

Z T

0

�@y .t/
2

L2 C ˛2
 .t/2

L2

�
dt

� C
!.0/2

L2 C C˛�2

Z T

0

�@yf .t/
2

L2 C ˛2
f .t/2

L2

�
dt D RHS: (2.5)
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Moreover, if f .t; 0/ D f .t; 1/ D 0, then we also have

˛

Z T

0

�ˇ̌
@y .t; 0/

ˇ̌2
C
ˇ̌
@y .t; 1/

ˇ̌2�
dt � RHS: (2.6)

Then we introduce the vector field X D .1=u0/@y C i˛t , which commutes with @t C i˛u.
We denote

!1 D X!;  2 D �
�
@2

y � ˛2
��1�

@y!=u
0
�
;  3 D  2 � @y =u

0:

Then we have

@t!1 C i˛R0
˛;ˇ!1 D �i˛.u000=u0/ C i˛u00 3:

Based on the space–time estimate (2.5) and (2.6), we can obtain a uniform estimate for
kX!kL2 , which implies that kV.t/kL2 �C hti�1.Morework is needed to prove kV 2.t/kL2 �

C hti�2. See Section 2 in [56] for the details.
Finally, let us mention some recent important results on linear inviscid damping

[4,23,58,59] and nonlinear inviscid damping [10,19,27–29,37,39]. However, when the boundary
effect is involved, nonlinear inviscid damping is still a challenging problem [58].

3. Linear enhanced dissipation for Kolmogorov flow

Let us first consider the diffusion–convection equation in T � R:

@t! � ��! C y@x! D 0:

Introduce new variables . Nx; y/D .x � ty; y/ and sete!.t; Nx; y/D !.t; x; y/. Then the solu-
tion be!.t; k; �/ D

R
T�Re!.t; x; y/e�2�ikx�i2��ydxdy takes the formbe!¤.t; k; �/ D e��.2�/2

R t
0 .k2C.��k�/2/d�b!¤.0; k; �/:

Due to
R t

0
.k2 C .� � k�/2/d� � k2t3=12, we deduce that!¤.t/


L2 � e�c�t3!¤.0/


L2 � Ce�c�1=3t

!¤.0/


L2 :

Here the exponent �t3 gives a dissipation time scale ��1=3, which is much shorter than the
dissipation time scale ��1. We refer to this phenomenon as the enhanced dissipation, which
is also due to the mixing mechanism.

We are concerned with the enhanced dissipation phenomenon for the linearized
Navier–Stokes equations around shear flows. In this note, we will review some progress on
the enhanced dissipation estimates for the linearized 2D NS equations in the torus T2�ı �

T2� around the Kolmogorov flow .�e��t cos y; 0/, which is a solution of the 2D NS equa-
tions:

@t! C L�.t/! D 0; !jtD0 D !0.x; y/; (3.1)

where L�.t/D ���� e��t cosy@x.1C��1/. Beck and Wayne [2] considered the follow-
ing model equation by removing the nonlocal part ��1 of L�.t/:

@t! � ��! � e��t cosy@x! D 0:
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Using the hypocoercivity method in [49], they proved the enhanced dissipation rate of the
solution in some Banach space X (see (3.7) in [2] ): for any t 2 Œ0; �=��,!.t/

X
� Ce�M

p
�t

k!0kX :

Based on numerical results, Beck and Wayne [2] conjectured that the same decay result
should hold for L�.t/. In a series of works [34,51,55], we have developed three approaches to
solve this conjecture: resolvent estimate method, wave operator method, and hypocoercivity
method.

In [51], by developing the hypocoercivity method from [2], we proved the following
enhanced dissipation results.

Theorem 3.1. Given ı 2 .0; 1/ and � > 0, there exist constants c1 > 0, C > 0 such that if !
satisfies (3.1) with !0 2 L2 and

R
T2�ı

!0.x; y/dx D 0, then it holds that, for 0 < t � �=�,!.t/
L2 � Ce�c1

p
�t

k!0kL2 ;V.t/ PH 1
x L2

y
�
Ce�c1

p
�t

p
1C �t3

k!0kL2 :

When ı D 1, it holds that, for 0 < t � �=�,.I � P1/!.t/


L2 � Ce�c1
p

�t
.I � P1/!0


L2 ;.I � P1/V .t/


PH 1

x L2
y

�
Ce�c1

p
�t

p
1C �t3

.I � P1/!0


L2 :

Here P1 is the orthogonal projection to the space W1 spanned by ¹cos x; sin xº.

Remark 3.1. Here the enhanced dissipation rate is smaller than that for the Couette flow.
This leads to conjecture that, for stable monotone shear flows to the Euler equations, the
enhanced dissipation rate should be � 1

3 , and the rate should be � 1
2 for stable shear flows with

nondegenerate critical points.

Remark 3.2. In addition to the important application to the transition threshold problem
[34,36,55], the enhanced dissipation also plays an important role for the suppression of blow-
up in the Keller–Segel system [9, 24,31] and axisymmetrization of 2D viscous vortices [21].
Let us refer to [3,17,18,23] and the references therein for more relevant works.

Taking Fourier transform with respect to x to (3.1), we obtain

@tb! C L�.˛; t/b! D 0; L� D �
�
�@2

y C ˛2
�

� i˛e��t cosy
�
1C

�
@2

y � ˛2
��1�

:

We write

A D siny
�
1C

�
@2

y � ˛2
��1�

; B D cosy
�
1C

�
@2

y � ˛2
��1�

; .t/ D ˛e��t :

Next we introduce an important inner product structure

hu;wi� D
˝
u;w �

�
˛2

� @2
y

��1
w
˛
:
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An important observation is that under this inner product, the operators A and B are sym-
metric, i.e.,

hu;Awi� D hAu;wi�; hu;Bwi� D hBu;wi�:

Moreover, for j˛j > 1, the norm kuk� D hu; ui
1
2
� is equivalent to the usual L2-norm:

.1 � ˛�2/kuk
2
L2 � kuk

2
� � kuk

2
L2 :

We introduce the energy functional:

E0.t/ D
b!.t/2

�
; E1.t/ D

@yb!.t/2

�
; E2.t/ D

@2
yb!.t/2

�
;

E1.t/ D Re
˝
@yb!.t/; iAb!.t/˛�; E2.t/ D

b!.t/2

�
�
Bb!.t/2

�
:

Then we construct the total energy functional as follows:

ˆ.t/ D E0.t/C ˛0�tE1.t/C ˇ0�t
2E1.t/C 0�t

3E2.t/

with the constants ˛0, ˇ0, 0 depending on .0/ so that

ˆ0.t/ � �c
ˇ̌
.0/

ˇ̌2
�2t3E0.t/; ˆ.t/ � E0.t/:

Then the bound

E0.t/ �
�
1C c2

ˇ̌
.0/

ˇ̌2
�2t4

��1
E0.0/

follows from the fact that E0.t/ is decreasing in t . Once the polynomial decay is obtained,
the exponential decay can be proved by iteration. Compared with [2], the key difference is
that we introduce the new inner product and time dependent weights. This modification is
also very effective in removing the logarithmic loss in [2] when achieving the dissipation in
the usual L2-norm.

In [55], we (jointly with Zhao) used the wave operator method. This idea was first
introduced in [33] to study the pseudospectral bound of the Oseen vortices operator. The aim
is to construct a wave operator D so that

D cosy
�
1C

�
@2

y � ˛2
��1�

! D cosyD!:

Then w D D! satisfies

@tw � �
�
@2

y � ˛2
�
w � i˛e��t cosyw D ��

�
@2

y ;D
�
!:

Moreover, the wave operator D we constructed has the following important properties:

• kD.!/k2
L2 D h!;! C .@2

y � ˛2/�1!i;

• There exists a constant C independent of ˛ so thatsinyD.!/
2

L2 � k@y k
2
L2 C .˛2

� 1/k k
2
L2 ;@yD.!/


L2 � C j˛j

1
2 k!kH 1 ;@2

yD.!/


L2 � C j˛j
3
2 k!kH 2 ;

where �.@2
y � ˛2/ D !;
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• Commutator estimate holds:siny�@2
y ;D

�
!


L2 � C
�
j˛jk!kL2 C k@y!kL2

�
:

The construction of the wave operator wasmotivated by our study of linear inviscid damping.
More precisely, we may write the solution of (2.2) in the form

e�i˛tR˛ 0 D
1

2�i

Z
Ranu

e�i˛tc�.y; c/ QDŒ!0�.c/dc:

An important observation is that

� QD
��
@2

y � ˛2
�
e�i˛tR˛ 0

�
.c/ D e�i˛tc QDŒ!0�.c/:

Taking the time derivative at t D 0, we get

� QD
��
@2

y � ˛2
�
R˛ 0

�
.c/ D c QDŒ!0�.c/;

which implies, by taking c D u.y/, that

D
�
u!0 C u00 0

�
D u.y/DŒ!0�:

Here u.y/ D � cos y, DŒ!0�.y/ D ƒo.y/ QDŒ!0�.u.y// if !0 is odd and DŒ!0�.y/ D

ƒe.y/ QDŒ!0�.u.y// if !0 is even. See Section 2.2 in [55] for the details.
In [34], we (jointly with Li) used the resolvent estimate method developed in [33]

to prove the enhanced dissipation estimates for the linearized NS equations with time-
independent coefficient:

@t! C L�! D 0; L� D ��� � siny@x.1C��1/:

The key ingredient is to establish the following resolvent estimate: given 0 < � � 1 and
jˇj > 1, there exists a constant C > 0, independent of �; �; ˇ, such that.L� � i�/w


L2 � C�

1
2 jˇj

1
2 .1 � ˇ�2/kwkL2 ; (3.2)

where L�w D ��@2
yw C iˇ.sinyw C siny'/ with .@2

y � ˇ2/' D w.
In order to deduce the semigroup bound from (3.2), we use Gearhart–Prüss-type

lemma for an m-accretive operator proved by the first author [50].

Lemma 3.2. LetH be an m-accretive operator in a Hilbert space X . Then it holds that, for
any t � 0, e�tH

 � e�t‰C�=2;

where ‰.H/ D inf¹k.H � i�/ukIu 2 D.H/; � 2 R; kuk D 1º.

Now the operator L� is m-accretive with respect to the new inner product h�; �i�.
From (3.2), we infer that‰.L�/ � c�

1
2 jˇj

1
2 .1� ˇ�2/. Then it follows from Lemma 3.2 that

ke�tL� k � Ce�t�
1
2 . In [26], the authors also derive the semigroup bound via establishing the

pseudospectral bound of the linearized operator.
Next we give a simple sketch of the proof of (3.2). Notice that

.L� � iˇ�/w D ��@2
yw C iˇ

�
siny.w C '/ � �w

�
:
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We introduce u D w C '. Then it suffices to show that

kL�ukL2 � C j�ˇj
1
2 kukL2 ;

where .@2
y � Q̌2/' D u with ˇ2 � 1 D Q̌2 and

L�u D iˇ
�
.siny � �/uC �'

�
� �@2

yu:

Consider the case of � > 1. Integration by parts givesˇ̌
ImhL�u; ui

ˇ̌
D ˇ

 Z 2�

0

.� � siny/juj
2dy C �

'0
2

L2 C � Q̌2
k'k

2
L2

!
;

which impliesZ 2�

0

.� � siny/juj
2dy C �

'0
2

L2 C � Q̌2
k'k

2
L2 � ˇ�1

kL�ukL2kukL2 :

Let ı 2 .0; 1�. Then we have

kuk
2
L2 � kuk

2

L2. �
2 Cı; 5�

2 �ı/
C 2ıkuk

2
L1 . ı�2

Z 2�

0

.� � siny/juj
2dy C ıkuk

2
L1

. ˇ�1ı�2
kL�ukL2kukL2

C �� 1
2 ıkL�uk

1
2

L2kuk
3
2

L2 C ıkuk
2
L2 :

Here we used the fact that

kukL1 �
u0
 1

2

L2kuk
1
2

L2 C kukL2 � �� 1
4 kL�uk

1
4

L2kuk
3
4

L2 C kukL2 ;

due to �ku0k2
L2 D jRehL�u; uij. Taking ı D ˇ� 1

4 �
1
4 � 1, we infer

kuk
2
L2 . .ˇ�/�

1
2 kL�ukL2kukL2 C .ˇ�/�

1
4 kL�uk

1
2

L2kuk
3
2

L2 ;

which implies that

kL�ukL2 & jˇ�j
1
2 kukL2 :

The case of j�j < 1 is much more difficult. Let 0 � y1 �
�
2

� y2 � � so that � D siny1 D

sin y2. Let ı D ˇ� 1
4 �

1
4 � 1. Then we need to consider the following four types of energy

estimates:

ImhL�u; �.y1;y2/ui; Im
�
L�u; �.y1Cı;y2�ı/

u

siny � �

�
;

ImhL�u; �.y2;y1C2�/ui; Im
�
L�u; �.y2Cı;y1C2��ı/

u

siny � �

�
:

See Section 3 in [34] for the details.

3912 D. Wei and Z. Zhang



4. Transition threshold problem for the 3D Couette flow

We consider the transition threshold problem for the 3D Couette flow U�.y/ D

.y;0;0/ in a finite channel�D T � Œ�1;1�� T .We introduce the perturbationu.t;x;y;z/D

v.t; x; y; z/ � U�.y/, which solves8̂̂<̂
:̂
@tu � ��uC y@xuC .u2; 0; 0/C rpL

C u � ruC rpNL
D 0;

r � u D 0;

u.t; x;˙1; z/ D 0; u.0; x; y; z/ D u0.x; y; z/:

(4.1)

Here the pressure pL and pNL are determined by8̂̂<̂
:̂
�pL

D �2@xu
2;

�pNL
D �div.u � ru/ D �@iu

j @ju
i ;�

@yp
L

� ��u2
�
jyD˙1 D 0; @yp

NL
jyD˙1 D 0:

(4.2)

We define

P0f D Nf D
1

2�

Z
T
f .x; y; z/dx; P¤f D f¤ D f � P0f:

In [16], we prove the following stability result, which implies that the transition threshold
ˇ � 1 for the 3D Couette flow in a finite channel.

Theorem 4.1. Assume that u0 2 H 1
0 .�/ \H 2.�/ with div u0 D 0. There exist constants

�0; c0; �; C > 0, independent of �, so that if ku0kH 2 � c0�, 0 < � � �0, then the solution u
of the system (4.1) is global in time and satisfies the following stability estimates:

• (Uniform bounds and decay of the background streak) Nu1.t/


H 2 C
 Nu1.t/


L1 � C��1 min.�t C �2=3; e��t /ku0kH 2 ; Nu2.t/


H 2 C

 Nu3.t/


H 1 C
. Nu2; Nu3/.t/


L1 � Ce��t

ku0kH 2 I

• (Rapid convergence to a streak).@x ; @z/@xu¤.t/


L2 C
.@x ; @z/ru

2
¤
.t/


L2 C
�@2

x C @2
z

�
u3

¤
.t/


L2

C �1=4
u2

¤
.t/


H 2 C �1=3
�u1

¤
; u3

¤

�
.t/


H 1 C
u2

¤
.t/


L1

C �1=6
�u1

¤
; u3

¤

�
.t/


L1 � Ce�2��1=3t
ku0kH 2 ;

ku¤kL1L2 C
p
�
t�u1

¤
; u3

¤

�
L2L2 C

ru2
¤


L1L2

C
ru2

¤


L2L2 � Cku0kH 2 :

Let us give some remarks on our result.

1. Global stability estimates in particular imply thatu.t/
L1 � Cc0e

��t
! 0 as t ! C1:

This means that the 3D Couette flow is nonlinearly stable in theL1-sense when
the perturbation is o.�/ inH 2.
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2. Our rigorous analysis shows that various linear effects (including 3D lift-up
effect, boundary layer effect, inviscid damping, and enhanced dissipation) play
a crucial role in determining the transition threshold. Surprisingly, the tran-
sition threshold obtained in this paper is consistent with that for the case of
� D T � R � T obtained in [52]. This shows that the 3D lift-up may be the
main mechanism leading to the instability of the flow even in the presence of the
boundary layer effect. Our explanation of this surprise result is that weak non-
linear interaction (or null structure of nonlinear terms) and good linear mecha-
nisms (inviscid damping and enhanced dissipation) counteract the bad effect of
the boundary layer.

3. The transition threshold problem is very interesting in an infinite channel � D

R � Œ�1; 1�� T . In this case, we need to understand the long wave effect in the
x variable. In fact, we conjecture that the threshold may be strictly less than 1
in this case.

4. The asymptotic analysis conducted in [13] indicates that the profile of shear flows
may affect the transition threshold. From the results in [13], it seems reasonable
to conjecture that the threshold ˇ �

3
2
for the plane Poiseuille flow. In [34], Li,

Wei, and Zhang proved that the threshold ˇ �
7
4
for the 3D Kolmogorov flow.

It is unclear whether one can improve it to ˇ �
3
2
.

5. The transition threshold problem for the pipe Poiseuille flow is completely open.
This flow is probably the most interesting and important because it is close to
the setting of the experiment conducted by Reynolds in 1883. The experimen-
tal result carried out by Hof, Juel, and Mullin [25] conclude that the minimum
amplitude of a perturbation required to cause transition scales as the inverse of
the Reynolds number, i.e., O.Re�1/. The subsequent numerical result in [40]

agrees with the experiment result in [25] for Re & 4000.

Now we give a sketch of some key ingredients of the proof.
First of all, we decompose the solution u into the zero mode Nu and nonzero mode

u¤ due to their different behaviors. The zero mode Nu satisfies

.@t � ��/ Nu1
C Nu2

C u � ru1 D 0; (4.3)

.@t � ��/ Nuj
C @j Np C

�
Nu2@y C Nu3@z

�
Nuj

C u¤ � ru
j

¤
D 0; j D 2; 3: (4.4)

To estimate nonzero modes, we will use a formulation in terms of the shearwise velocity u2

and vorticity !2 D @zu
1 � @xu

3:8̂̂̂̂
<̂̂
ˆ̂̂̂:
@t .�u

2/ � ��2u2
C y@x�u

2
C
�
@2

x C @2
z

�
.u � ru2/

� @y

�
@x.u � ru1/C @z.u � ru3/

�
D 0;

@t!
2

� ��!2
C y@x!

2
C @zu

2
C @z.u � ru1/ � @x.u � ru3/ D 0;

@yu
2.t; x;˙1; z/ D u2.t; x;˙1; z/ D 0; !2.x;˙1; z/ D 0:

(4.5)
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The idea of using �u2 may go back to Kelvin’s original paper [30]. The main advantage of
using �u2 is that the equation of �u2 does not destroy the linear structure. This important
point has played an important role in the works [6,52].

The linearized system of zero mode Nu becomes

.@t � ��/ Nu1
C Nu2

D 0; .@t � ��/ Nuj
C @j Np D 0; j D 2; 3:

Then it is easy to see that k Nu1.t/kL2 � C.1 C t /e��t ku0kL2 . When t . ��1, Nu1 grows
linearly in time. This phenomenon is referred to as the 3D lift-up. To keep Nu1 small, the
perturbation u0 should be as small as o.�/. From this point of view, our result seems optimal.
It also turns out that the 3D lift-up is the worst mechanism leading to the instability.

To estimate �u2 and !2, we need to establish the space–time estimates for the
following linearized system:´

@t! � �
�
@2

y � �2
�
! C iky! D �ikf1 � @yf2 � i f̀3 � f4;

!jyD˙1 D 0; !jtD0 D !in;
(4.6)

and 8̂̂<̂
:̂
@t! � �

�
@2

y � �2
�
! C iky! D F;�

@2
y � �2

�
' D !; @y'jyD˙1 D 'jyD˙1 D 0;

!jtD0 D !in:

(4.7)

Here �2 D k2 C `2. In [16], we establish the following space–time estimates.

Theorem 4.2. Let ! be a solution of (4.6) with f4.t;˙1/D 0 and !in.˙1/D 0. Then there
exists �1 > 0 so that, for any a 2 Œ0; �1�,ea�1=3t!

2

L1L2 C �
ea�1=3t!0

2

L2L2 C
�
��2

C .�k2/1=3
�ea�1=3t!

2

L2L2

� C
�
k!ink

2
L2 C ��1

ea�1=3tf2

2

L2L2 C
�
�jkj

��1ea�1=3t@yf4

2

L2L2

C �jkj
�1
ea�1=3tf4

2

L2L2 C min
�
.��2/�1; .�k2/�1=3

�ea�1=3t .kf1 C f̀3/
2

L2L2

�
:

Moreover, we haveea�1=3t!0
2

L1L2 C �
ea�1=3t!00

2

L2L2 C ��2
ea�1=3t!0

2

L2L2

� C
!0

in

2

L2 C C�� 2
3 jkj

2
3
�
k!ink

2
L2 C

�
�jkj

��1ea�1=3t@yf4

2

L2L2

C �jkj
�1
ea�1=3tf4

2

L2L2

�
C C��1

�ea�1=3t .kf1 C f̀3/
2

L2L2

C �� 2
3 jkj

2
3

ea�1=3tf2

2

L2L2 C
ea�1=3t@yf2

2

L2L2

�
:

Here !0 D @y! and !00 D @2
y!.

Theorem 4.3. Let ! solve (4.7) with @y'injyD˙1 D 0 and F D ikf1 C @yf2 C i f̀3. Then
there exist �1 > 0, �0 > 0 so that, for any a 2 Œ0; �1�, � 2 .0; �0/,

jk�j
1
2

ea�
1
3 t .@y ; �/'


L2L2 C �

3
4

ea�
1
3 t@y!


L2L2 C �

1
2 �
ea�

1
3 t!


L2L2

C �
ea�

1
3 t .@y ; �/'


L1L2 C �

1
4

ea�
1
3 t!


L1L2

� C�� 1
2

ea�
1
3 t .f1; f2; f3/


L2L2 C C

�
��1

k@y!inkL2 C k!inkL2

�
:
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The proofs of Theorems 4.2 and 4.3 used the resolvent estimate method developed
in [14]. The main idea is to separate the resolvent problem into two subproblems:

1. The inhomogeneous problem with favorable boundary conditions
The good boundary conditions avoid the boundary terms caused by the integra-
tion by parts argument so that we can establish various resolvent estimates via
the direct energy method by choosing suitable multipliers.

2. The homogenous problem with nonvanishing boundary conditions
This step is to match the boundary conditions.We can first use the Airy function
or the solution of a simple elliptic problem to construct an approximate solution.
Then we can construct the solution to the homogenous problem via solving a
perturbation problem with favorable boundary conditions.

The space–time estimates established in Theorems 4.2 and 4.3 encompass four
kinds of important linear effects: heat diffusion, enhanced dissipation, inviscid damping, and
boundary layer. These estimates should be enough to prove a transition threshold ˇ �

5
3
. To

achieve the sharp threshold, we have to handle the problem in a quasilinear way. That is, we
need to consider the full linearized 3D Navier–Stokes system around the flow .V .y; z/; 0; 0/,
which is a small perturbation of the Couette flow, i.e.,

kV � ykH 4 � "0; V .y; z/ � yjyD˙1 D 0;

with "0 small enough but independent of �. We denote

A�;V u D P
�
��u � V @xu �

�
@yV.u

2
C �u3/; 0; 0

��
;

here P is the Leray projection and � D @zV =@yV . Then we study the following linearized
system:

@tu¤ � A�;V u¤ C Eg D 0: (4.8)

The key point is to exclude the unstable eigenvalues of the operator A�;V . This problem is
highly nontrivial. Even for the following linearized equation:´

@tw � ��w C V @xw D f;

�' D w; 'jyD˙1 D @y'jyD˙1 D 0;

the linear stability when V D V.y/ is close to y was just proved by Almog and Helffer [1].
After applying the Fourier transform with respect to .t; x/ and introducing W D u2 C �u3

and U D u3, the problem is reduced to the following linearized system in terms of .W;U /:8̂̂̂̂
<̂̂
ˆ̂̂̂:

� ��W C ik
�
V.y; z/ � �

�
W � a.�k2/1=3W C .@y C �@z/p

L1

CG1 C �.��/U C 2�r� � rU D 0;

� ��U C ik
�
V.y; z/ � �

�
U � a.�k2/1=3U CG2 C @zp

L1
D 0;

W jyD˙1 D @yW jyD˙1 D U jyD˙1 D 0;

(4.9)

where � 2 R and

�pL1
D �2ik@yV W; @xW D ikW; @xU D ikU; @xp

L1
D ikpL1:
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Theorem 4.4. LetW 2H 4.�/, U 2H 2.�/ be a solution of (4.9). Then there exist �1 > 0,
�0 > 0 so that, for any a 2 Œ0; �1�, � 2 .0; �0/,

�
1
3
�@2

xU
2

L2 C
@x.@z � �@y/U

2

L2

�
C �

�r@2
xU
2

L2 C
r@x.@z � �@y/U

2

L2

�
C �

1
3 k@xrW k

2
L2 C �k@x�W k

2
L2 C �

5
3 k@x�U k

2
L2

� C��1
�
krG1k

2
L2 C k@xG2k

2
L2

�
:

In particular, this result shows that the 3D linearized Navier–Stokes system (4.8)
around the Couette flow is linearly stable. This theorem is the key and most difficult part in
the proof of nonlinear stability. The proof was motivated by our work [52]. The key point
is to introduce a good unknown Wg D W �Ws , where Ws is the singular part of W . Then
wg D �Wg satisfies

���wg C ik
�
V.y; z/ � �

�
wg � a.�k2/1=3wg D good terms:

For nonlinear stability, we introduce the following energy functionals, which are
suitable adaptations of those introduced in [52].

(1) Energy functional of zero mode. We first decompose Nu1 D Nu1;0 C Nu1;¤ with

.@t � ��/ Nu1;0
C Nu2

C Nu2@y Nu1;0
C Nu3@z Nu1;0

D 0;

.@t � ��/ Nu1;¤
C Nu2@y Nu1;¤

C Nu3@z Nu1;¤
C u¤ � ru1

¤
D 0;

Nu1;0
jtD0 D 0; Nu1;¤

jtD0 D Nu1.0/; Nu1;0
jyD˙1 D 0; Nu1;¤

jyD˙1 D 0:

The main reason for making this decomposition is that Nu1;¤ has better decay in �, and thus
Nu1;¤@x could be viewed as a perturbation. In this way, we avoid estimating the higher-order
derivatives of nonzero modes. Then we introduce the following energy functional to control
the zero mode:

E1 D E1;0 C ��2=3E1;¤;

where

E1;0 D
 Nu1;0


L1H 4 C ��1

@t Nu1;0


L1H 2 C �� 1
2

@t Nu1;0


L2H 3 ;

E1;¤ D
 Nu1;¤


L1H 2 C �

1
2

r Nu1;¤


L2H 2 ;

and the energy E2 is defined by

E2 D
� Nu2


L1L2 C �

1
2

r� Nu2


L2L2 C �
1
2

� Nu2


L2L2 C �� 1
2

@t r Nu2


L2L2

C
r Nu3


L1L2 C �

1
2

� Nu3


L2L2 C �
1
2

r Nu3


L2L2 C �� 1
2

@t Nu3


L2L2

C
min�.� 2

3 C �t/
1
2 ; 1 � y2

�
� Nu3


L1L2

C �� 1
2

min�.� 2
3 C �t/

1
2 ; 1 � y2

�
r@t Nu3


L1L2

C �
1
2

min�.� 2
3 C �t/

1
2 ; 1 � y2

�
r� Nu3


L2L2 :

The estimates of E1 and E2 are based on direct energy estimates for the system (4.3)
and (4.4).
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(2) Energy functional of nonzero mode (semilinear part). We consider

E3 D E3;0 CE3;1;

where E3;0 and E3;1 are defined by

E3;0 D �
1
2

e2��
1
3 t .@x ; @z/�u

2
¤


L2L2 C �

3
4

e2��
1
3 t

r�u2
¤


L2L2

C
e2��

1
3 t .@x ; @z/ru

2
¤


L1L2 C

e2��
1
3 t@xru2

¤


L2L2

C
e2��

1
3 t
�
@2

x C @2
z

�
u3

¤


L1L2 C �

1
2

e2��
1
3 t
�
@2

x C @2
z

�
ru3

¤


L2L2 ;

E3;1 D �
1
3
�e2��

1
3 t

r!2
¤


L1L2 C �

1
2

e2��
1
3 t�!2

¤


L2L2

�
:

The estimate of E3 is based on the space–time estimates for the coupled system (4.5) of
.�u2; !2/ via Theorems 4.2 and 4.3.

(3) Energy functional of nonzero mode (quasilinear part). We now treat

E5 D �1=6
e3��1=3t@2

xu
2
¤


L2L2 C �1=6

e3��1=3t@2
xu

3
¤


L2L2 ;

which is vital to control some nonlinear interaction terms with the lift-up effect such as
Nu1@xu¤ and uj

¤
@j Nu1.j D 2; 3/. The estimate of E5 relies on Theorem 4.4.

Based on the linear space–time estimates, combined with a nonlinear interaction
estimate, we can derive the following uniform energy estimates:

E1;0 � C��1
�
ku0kH 2 CE2 CE2E1;0

�
;

E1;¤ � C
�
ku0kH 2 C ��1E2E1;¤ C �� 4

3E2
3

�
;

E2 � C.1C ��1E2/
2
�
ku.0/kH 2 C ��1E2

3

�
;

and

E2
3;0 � Cku0k

2
H 2 C C

�
E4

3=�
2

CE2
2E

2
3=�

2
CE2

1E3E5 CE2
1E

3
2
3 E

1
2
5

�
;

E2
3;1 � C

�
ku0k

2
H 2 C ��2E4

3 C �� 4
3E2

2E
2
3 CE2

1E3E5 CE2
1E

7
4
3 E

1
4
5 CE2

1E
3
2
3 E

1
2
5

�
;

as well as

E2
5 � CE2

6 � Cku0k
2
H 2 C C

�
E2

1 C ��2E2
2

�
E2

6 C C��2E4
3 ;

where E6 is an auxiliary energy functional (see Section 14 in [16] for the definition of E6).
When the perturbation ku0kH 2 � c0�, E1 is small due to the lift-up effect, while E2, E3,
and E5 are as small as o.�/.
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1. Introduction

The objective of this article is to describe recent progress in the mathematical anal-
ysis of the Einstein equations of general relativity. General relativity is the theory of gravita-
tion postulated by Einstein in 1915. It superseded the Newtonian theory and rose to one of the
best experimentally tested physical theories we have. The Einstein equations can accurately
describe violent astrophysical processes happening in our universe (such as the merger of
black holes), they provide a model for the evolution and dynamics of our entire universe in
cosmology, and they are also central for the functioning of the ubiquitously used GPS system
on Earth. Recent experimental breakthroughs such as the detection of gravitational waves, a
prediction of Einstein’s theory, have inspired new developments in mathematics and physics
some of which we shall discuss below.

This article consists of three main parts, which are aimed at readers with potentially
different levels of expertise. The first part (Section 1) contains an introduction to some of
the basic geometric and analytic principles governing the study of general relativity (with
emphasis on the issue of diffeomorphism invariance of the governing equations). It also
includes examples of black hole solutions and a discussion of their geometry. This part is
intended for mathematicians who are perhaps familiar with the theory of partial differential
equations but have otherwise little prior knowledge of general relativity.

The second and main part (Section 2) contains a review of recent mathematical
results that have been obtained in the study of the stability of black holes. This part is aimed
mostly at readers who have had some previous experience with the study of wave equations
on curved backgrounds; familiarity with the Einstein equations will be useful for the results
on nonlinear or linearized gravity. Research during the past 15–20 years pioneered the tech-
niques that led in particular to the powerful nonlinear results which have been obtained in
the past five years and that we shall describe in more detail. We have kept the discussion
rather informal: theorems are often stated rather loosely in order to avoid introducing too
much notation; additional details are provided in the text. We hope that our descriptions of
the main ideas of the proofs can serve as an invitation to delve into the papers in this area in
some more detail.

The third part (Section 3) is concerned with the issue of singularities. We shall
discuss the structure of singularities appearing inside black holes as well as their stability,
which is related to Penrose’s famous Strong Cosmic Censorship conjecture. We also discuss
results concerning naked singularities, which are related to Weak Cosmic Censorship.

Unfortunately, in this overview we cannot do justice to the wide range of devel-
opments in mathematical relativity. The choice of topics is influenced both by our personal
expertise and taste. In particular, we almost exclusively focus on the vacuum equations. There
are many exciting developments that we will not be able to discuss: these include recent
progress on the weak limit of the Einstein equations (e.g., Burnett’s conjecture [32,123], also
[155]) and the structure and dynamics of cosmological singularities (stable big bang forma-
tion [82,83,181]), among others.
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1.1. The Einstein equations
From a mathematical point of view, the Einstein equations constitute a set of non-

linear partial differential equations formulated in the language of differential geometry with
the dynamical variable being a Lorentzian manifold .M; g/:

Ric.g/ �
1

2
Rg Cƒg D 8�T : (1.1)

Here Ric.g/ andRD trg Ric denote the Ricci tensor and scalar curvature of .M; g/,ƒ is the
cosmological constant, and T is the stress–energy–momentum tensor of the matter present
in the spacetime. Below we shall mostly restrict attention to the vacuum case T D 0 for
which the equations (1.1), unlike their Newtonian analogue, already exhibit extremely rich
dynamics, although comments will be made about the analysis of spacetimes with matter.
Furthermore, we will focus on the physical case dimM D 4.

Applying the trace reversal operatorGg W T 7! T �
1
2
g trg T to equation (1.1) yields

the following equivalent form of the Einstein equations:

Ric.g/ �ƒg D 8�

�
T �

1

2
g trg T

�
.D 0 in vacuum/: (1.2)

1.2. The Cauchy problem and generalised harmonic gauges
While not immediate from the coordinate independent formulation (1.1), from a

PDE point of view (1.1) should be viewed as a hyperbolic system of equations, i.e., as a
system admitting an appropriate initial value problem. The geometric notion of initial data
is as follows:

Definition 1. A triple .†; g; K/ consisting of a smooth Riemannian manifold .†; g/ and
a smooth symmetric 2-tensor K on † is called a (smooth) vacuum initial data set for (1.1)
(i.e., with T D 0) if it satisfies the constraint equations

RC .trK/2 � jKj
2
g D 2ƒ; divK � d trK D 0: (1.3)

Theorem 1 ([39,40,180,187]). Let .†; g;K/ be a smooth vacuum initial data set. Then there
exists a unique smooth maximum Cauchy development, i.e., an .M; g/ with the property that

(1) .M; g/ solves (1.1) with T D 0.

(2) There exists an embedding i W†! M such that i.†/ is a Cauchy hypersurface
in .M; g/ and such that the induced metric and second fundamental form of the
embedding agree with g and K.

(3) If . QM; Qg/ also satisfies (1) and (2), then there exists an isometric embedding
. QM; Qg/ ! .M; g/ commuting with the embeddings of †.

We remark that the constraint equations (1.3) are the Gauss and Gauss–Codazzi
equations induced by (1.1) on † and thus necessary conditions. We also note that for sim-
plicity we have stated the theorem in the smooth category although one typically proves
Sobolev versions of the result. Finally, the manifold M is diffeomorphic to R �† [21].
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Theorem 1 allows one to talk sensibly about the dynamics of solutions to the Einstein
equations. This will allow us to formulate the problem of stability in Section 2.

Proving Theorem 1 requires fixing a gauge. This is a mechanism to eliminate the
diffeomorphism covariance of (1.1), i.e., the fact that for any diffeomorphism � W M ! M,
the pullback ��g is a solution of (1.1) whenever g is. Consider first a local problem in which
† D B.0; 1/ � R3 is the unit ball, and we aim to construct, in a neighborhood of
i.†/ D ¹0º �† � M0 WD R � B.0; 1/, a solution g of (1.1) which induces the data .g;K/
at the hypersurface ¹0º � B.0; 1/. In local coordinates .t; x/ D .z0; z1; z2; z3/ on M0,
equation (1.2) for the metric g D .gij /1�i;j�4 takes the form

Ric.g/ij �ƒgij D �
1

2
gk`@k@`gij C

1

2

�
@iWj .z; g; @g/C @jWi .z; g; @g/

�
CNij .z; g; @g/ D 0 (1.4)

(with summation over repeated indices), where .gij / is the matrix inverse of .gij /, further-
more Nij .z; g; @g/ is a nonlinear expression in the coefficients of g and its first coordinate
derivatives, and finally

Wi .z; g; @g/ D gi`g
jk�`jk ;

with � i
jk

D � i
jk
.g/ denoting the Christoffel symbols of g. Given any gauge source func-

tions Fi D Fi .z; g/, we then aim to solve equation (1.4) in the generalized harmonic gauge
Wi .z; g; @g/ D Fi .z; g/. (The special case Fi D 0 is the wave coordinate gauge.1) Inserting
this gauge condition into (1.4), one obtains a system of quasilinear wave equations for the
metric coefficients gij , with principal part given by �

1
2
�ggij . We can write this system in

the compact form

P.g/ WD Ric.g/ �ƒg � ı�
g.W � F / D 0; (1.5)

whereW D Widzi and F D Fidzi , and ı�
g is the symmetric gradient defined by .ı�

g!/ij D

1
2
.!i Ij C !j Ii / where !i Ij WD .r@j!/.@i /. For future purposes, note that P.g/ D 0 is a

quasilinear wave equation when g is Lorentzian, whetherW � F D 0 or not. Equation (1.5)
is called the gauge-fixed Einstein (vacuum) equation.

One now solves the initial value problem in the gauge W � F D 0 as follows:

(1) One constructs (algebraically, i.e., without having to solve any differential equa-
tion) smooth Cauchy data .g0; g1/, where g� D .g

�
ij .x// is a spacetime sym-

metric 2-tensor (symmetric 4 � 4 matrix) on †, in such a way that g, resp. K
are the induced metric, resp. second fundamental form of ¹0º � † induced by
any spacetime metric g on M0 with .g0; g1/D .gjtD0; @tgjtD0/. Moreover, the
flexibility in the choice of .g0; g1/ is used to ensure that the gauge condition
W � F D 0 is satisfied at t D 0; the verification of this condition indeed only
requires knowledge of the Cauchy data .g0; g1/.

1 The terminology arises from the fact that W i D �gz
i where �g D jgj�1=2@i jgj1=2gij @j

is the scalar wave operator. That is, in the wave coordinate gauge, the coordinate functions
zi satisfy the homogeneous wave equation.
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(2) One solves the initial value problem P.g/ D 0, .g; @tg/jtD0 D .g0; g1/ for g.
Since this is a quasilinear wave equation, one has local existence and uniqueness
of solutions (but solutions may develop singularities in finite time).

(3) The constraint equations (1.3) together with P.g/D 0 andW � F D 0 at i.†/
can be shown to imply, via a direct computation, that also @t .W �F /D 0 at†.

(4) The second Bianchi identity is equivalent to the statement that for any metric g,
one has divg GgRic.g/ D 0. Applying divg Gg to equation (1.5) thus produces
a decoupled equation for W � F ,

divg Ggı�
g.W � F / D 0:

This is a homogeneous wave equation with principal part �
1
2
�g.W � F /.

SinceW � F has trivial Cauchy data at i.†/, we conclude thatW � F � 0 in
the domain of dependence of i.†/ with respect to the metric g.

(5) Plugging W � F D 0 into (1.5) shows that also Ric.g/ �ƒg D 0 in the same
domain.

This argument also shows that solutions of the Einstein vacuum equations obey finite
speed of propagation. Thus, passing from local solutions to the maximal Cauchy develop-
ment can be accomplished by carefully gluing together local solutions.

We point out that different choices of gauge source functions Fi may cause sin-
gularities to form at different subsets of spacetime. For controlling the global evolution of
spacetimes, it is thus of central importance to make a well-informed choice of Fi ; there is no
knownmethod to make an optimal or even a good choice in general. A particularly geometric
choice can bemade whenM D R �† is already equipped with a “backgroundmetric” g0: in
this case one can takeFi D gi`g

jk�`
jk
.g0/, and the gauge conditionW �F D 0 is equivalent

to the requirement that the pointwise identity map .M; g/ ! .M; g0/ be a wave map [93].
An attractive feature of (1.5) is that it highlights the principally scalar (albeit ten-

sorial) character of the gauge-fixed Einstein equation. Thus, many aspects of its analysis are
no more difficult than for the linear scalar wave equation, while one retains the flexibility to
work in particular coordinates, or splittings of the tangent or cotangent bundles, wherever
needed. Further aspects of (variants of) (1.5) and of generalized harmonic gauges will be
discussed in Section 2.4.2.

1.3. Double null gauge and the characteristic initial value problem
A particularly geometrically adapted gauge to write the Einstein equation in is the

double null gauge. The idea is to foliate the spacetime by ingoing and outgoing null hypersur-
faceswhich intersect in (spacelike) 2-manifolds. From a physical perspective, onemay expect
that this will reveal important structure in the equations as gravitational waves propagate
along null hypersurfaces. Indeed, the double null gauge has been successfully employed in
several seemingly unrelated contexts, for instance, the formation of black holes [44], the sta-
bility of black holes (see Section 2.4.1), the theory of impulsive gravitational waves [153,154]
and the construction of naked singularities (see Section 3.2).
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Let W � R2 be a nonempty open subset. A double null gauge on a manifold
M D W � S2 is a coordinate system .u; v; �1; �2/ such that the metric takes the form

g D �4�2du dv C =gAB.d�
A

� bA dv/.d�B � bB dv/; (1.6)

where� is a spacetime function, b W M ! TM an S2u;v-vector and =g the induced metric on
the spheres S2u;v D ¹.u; v/º � S2.2 We remark that any Lorentzian metric can be locally put
into this form by solving the eikonal equation associated with the metric g.

Associated with a double null foliation is a local double null frame given by

e3 D
1

�
@u; e4 D

1

�
.@v C bA@�A/; eA D @�A : (1.7)

The vectors e3 and e4 are null, and the frame satisfies the normalization conditions
g.e3; e4/ D �2, g.e3; eA/ D 0 D g.e4; eA/, and g.eA; eB/ D =gAB .

Given a double null gauge, one can define Ricci coefficients and curvature compo-
nents with respect to the above frame (all these are the coefficients of S2u;v-tensors)

�AB D g.rAe4; eB/; �
AB

D g.rAe3; eB/; � D �
1

2
g.re3eA; e4/;

O! D
1

2
g.re4e3; e4/; O! D

1

2
g.re3e4; e3/; � D �

1

2
g.re4eA; e3/;

˛AB D R.eA; e4; eB ; e4/; ˛AB D R.eA; e3; eB ; e3/; ˇ D
1

2
R.eA; e4; e3; e4/;

� D
1

4
R.e4; e3; e4; e3/; � D

1

4
?R.e3; e4; e4; e3/; ˇ D

1

2
R.eA; e3; e3; e4/;

andwrite out the null-structure equations (which relate the intrinsic and extrinsic geometry of
the spacetime foliation) in terms of S2u;v-tensors; this leads to a system of transport equations
along the null cones, and elliptic equations on the spheres. An example of a transport equation
is (note that ˛; ˛ are =g-traceless as a consequence of the Einstein equations)

=r4 O�C .tr�/ O� � O! O� D �˛; (1.8)

where O� denotes the =g-traceless part of � and =r4 denotes the projected covariant derivative
in the e4 direction. An example of an elliptic equation is

=div O� D �
1

2
O� � .� � �/C

1

4
tr�.� � �/C

1

2
=r tr� � ˇ; (1.9)

where =div denotes the =g-divergence on S2u;v . The analytical content of the Einstein equa-
tions (1.1) is then captured by these structure equations in conjunction with the Bianchi
equations, which capture the essential hyperbolicity of (1.1). An example of two such null-
decomposed equations is

=r3˛ C
1

2
.tr�/˛ C 2 O!˛ D �2 =D

?
2ˇ � 3� O� � 3? O�� C

1

2
.9� � 2�/ Ő ˇ; (1.10)

=r4ˇ C 2.tr�/ˇ � O!ˇ D =div˛ C � � ˛; (1.11)

where =D?
2 denotes the symmetric traceless part of the covariant derivative =r on .S2u;v; =g/,

Ő the symmetric traceless tensor product, and ? is the Hodge-star operator.

2 Tensors S2u;v can be canonically identified with spacetime tensors having the property that
any contraction with the null directions in (1.7) is identically zero.
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Figure 1

The characteristic initial value problem and the double null foliation. Data is specified on the green ingoing and
outgoing cones and the solution exists in the grey shaded region.

As mentioned above, given a solution of the Einstein equations, we can locally put
the metric into a double null gauge. Conversely, one can construct local solutions to the
Einstein equations in a double null gauge by solving a characteristic initial value problem,
where initial data are prescribed on two intersecting null cones (see Figure 1).

Theorem 2 ([130, 149, 178]). Consider suitable smooth vacuum initial data prescribed on
two (what will be) null hypersurfaces intersecting transversally on a spacelike 2-sphere
S0 D N1 \ N2. Then there exists a nonempty maximum development .M; g/ which is
bounded in the past by a neighborhood of S0 in N1 [N2.

The proof of the theorem reduces the problem to the situation of Theorem 1 (the
hypersurface S0 can in fact be any two-dimensional spacelike surface).

As we shall see, the relevance of the double null gauge is most apparent in (semi)-
global problems through the way it allows to estimate the solution. We mention explicitly
already Luk’s result [149] which provides estimates on the size of the corresponding maxi-
mum development in Theorem 2 by means of exploiting the null structure in the equations.

We have not given a precise notion of a vacuum initial data set prescribed on inter-
secting null hypersurfaces in Theorem 2. The definition and the procedure to construct such
data can be found in [44]. Roughly speaking, in canonical coordinates (1.6) and using stere-
ographic coordinates on the sphere, the free data correspond to prescribing, in a smooth
fashion, a symmetric traceless 2 � 2-matrix along each of the initial cones as well as the
mean curvatures and the torsion at the sphere of intersection. All remaining geometric quan-
tities are then determined by solving ordinary differential equations along the initial cones.

1.4. Explicit solutions
1.4.1. Maximally symmetric solutions
The simplest solution to (1.1) for ƒ D 0 is Minkowski space .R4; �/, where

� D �dt2 C
P3
jD1.dxj /2 in standard coordinates .t; x1; x2; x3/ on R4. It is geodesically

complete and maximally symmetric in that the spacetime admits the maximum number of
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Killing vectors, namely 10. These correspond to the infinitesimal generators of the Poincaré
group of special relativity (spacetime translations, spatial rotations, Lorentz boosts). Pass-
ing to polar coordinates .r; �; �/ on R3 and denoting by V=g D d�2 C sin2 � d�2 the standard
metric on S2, we have

� D �dt2 C dr2 C r2 V=g D �dU dV C r2.U; V / V=g; U D t C r; V D t � r;

with r.U; V / D
1
2
.U � V /, and .U; V / 2 .�1;1/ � .�1;1/ is restricted to the subset

where r.U; V / � 0. Since � is spherically symmetric, we can give a simple description of
the causal geometry by depicting the .U;V / plane, compactified atU D 1 and at V D �1.
See Figure 2. The ideal boundary at U D 1, resp. V D �1, is called future, resp. past null
infinity (JC, resp. J�).

Figure 2

Penrose diagram of the Minkowski spacetime.

Certain approaches [116] to the analysis of wave equations on the Minkowski space-
time (or suitable perturbations thereof [18,19]) instead focus first on the fact that � is homo-
geneous of degree �2 with respect to scaling in .t; x/. Thus, one attaches an ideal boundary
at j.t; x/j D 1 by passing to the radial (or projective) compactification R4 of R4, which
is a closed 4-ball. All forward light cones intersect the ideal boundary in the same 2-sphere
(analogously for backward light cones). Resolving these by means of real blow-up produces,
as front faces, future and past null infinity. The resulting manifold with corners can also be
regarded as a blow-up of the Penrose diagram at i0 and i˙, see Figure 3.

Themaximally symmetric analogue ofMinkowski space forƒ>0 is called de Sitter
space. This can be defined as the cylinder

M D

�
�
�

2
;
�

2

�
s

� S3; g D ��2g; �2 D
ƒ

3
cos2 s; g D �ds2 C gS3 : (1.12)

The boundary at s D ˙
�
2
is called the future/past conformal boundary. Since null-geodesics

of conformally related metrics are the same up to reparametrization, the causal structure of
.M; g/ is the same as that of M equipped with the smooth (down to s D ˙

�
2
) metric g. See

Figure 4.
Due to the finite speed of propagation for solutions of wave equations, one can con-

sider wave equations in a static patch of de Sitter space, which is the intersection of the
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Figure 3

Resolution (blow-up) of the radial compactification R4.

Figure 4

(Global) de Sitter space. Also shown is part of the backwards light cone from a point p on the future conformal
boundary IC.

timelike past of a point p D .�
2
; q/ and the timelike future of .��

2
; q/. One can introduce

coordinates in such a domain in which the de Sitter metric is static,

g D �

�
1 �

ƒ

3
r2

�
dt2 C

�
1 �

ƒ

3
r2

��1

dr2 C r2 V=g: (1.13)

The singularity of this expression at the cosmological horizon r�1.
p
3=ƒ/ (which in s > 0

is the backwards light cone with vertex p) is a coordinate singularity.
Finally, the maximally symmetric spacetime with ƒ < 0 is called anti-de Sitter

space (AdS). This is the manifold R4 equipped with the metric (1.13) where now ƒ < 0.
Using the transformation r D tan (with  2 .0; �=2/) the metric (1.13) can be written as
g D

1
cos2 .�dt

2 C d 2 C sin2  V=g/ from which it becomes apparent that AdS is con-
formal to R � S3

h
� R � S3 (S3

h
denoting a hemisphere of S3), equipped with the metric

�dt2 C gS3 , i.e., conformal to one “half” of the Einstein static cylinder. The timelike bound-
ary  D

�
2
in the conformal picture corresponds to the timelike conformal infinity (r D 1)

of anti-de Sitter space. The spacetime is not globally hyperbolic and boundary conditions
will have to be imposed to get a well-posed evolution for hyperbolic equations on or near
these backgrounds. See Figure 5.

1.4.2. The Schwarzschild manifold
A nontrivial solution to the Einstein equations was found by Schwarzschild in 1915.

The Schwarzschild solution describes what we (today) call a black hole solution.We follow a
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Figure 5

The Penrose diagram of anti-de Sitter space with its timelike conformal boundary J.

Figure 6

The causal geometry of the maximally extended Schwarzschild manifold.

somewhat revisionist approach in presenting the metric which however emphasizes directly
its geometric nature and its connection to the double null gauge introduced in Section 1.3.

Given M > 0, equip M D .�1;1/U � .�1;1/V � S2 \ ¹UV < 1º with the
metric

gM D �4�2KdU dV C r2.U; V / V=g; �2K D
8M 3

r
exp

�
�
r

2M

�
;

where r W .�1;1/ � .�1;1/ ! RC is defined implicitly by�
r.U; V /

2M
� 1

�
exp

�
r.U; V /

2M

�
D �UV:

We time-orient .M; gM / by declaring @U C @V to be future directed. The metric is spheri-
cally symmetric, and we can give a simple depiction of the causal geometry by depicting the
.U; V /-plane below. We observe that for the region U < 0, V > 0 we must have r < 2M ;
moreover, any future directed curve causal curve emanating from this region remains in
this region, has finite affine length, and terminates on the asymptotic boundary UV D 1,
where r ! 0 and the Kretschmann scalarR����R���� blows up like r�6. It follows that the
spacetime is geodesically incomplete and C2-inextendible (in fact, C0-inextendible [188]) as
a Lorentzian manifold. One may compactify the U and the V coordinates to produce the
well-known Penrose-diagram of the Schwarzschild metric, see Figures 6 and 7.
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Figure 7

Penrose diagram of the Schwarzschild manifold.

The set r D 1 is now realized as a (null) boundary of the spacetime, and we can
define the black hole region as M n J�.JC/, i.e., as the set of observers that cannot commu-
nicate with asymptotic observers in the far away region of spacetime. The black hole region
is bounded by the set r�1.2M/, which is a union of null hypersurfaces.

We finally note that if we restrict to the black hole exterior regionU > 0, V > 0, then
the sequence of coordinate transformations U D �e� u

2M , V D e
v
2M , u D

t�r?

2
, v D

tCr?

2
,

where dr?
dr

D
1

1� 2M
r

, brings the metric into the standard (static) form where the area radius
r is used as a coordinate:

g D �

�
1 �

2M

r

�
dt2 C

�
1 �

2M

r

��1

dr2 C r2 V=g: (1.14)

This coordinate system breaks down when r equals the Schwarzschild radius r D 2M ; coor-
dinates valid across r D 2M (besides the Kruskal coordinates U; V above) are discussed
in Section 1.4.3. Expression (1.14) shows that the Schwarzschild metric is stationary (@t is
a Killing vector field and timelike for large r , or indeed for all r > 2M ).

An important feature of the Schwarzschild metric and other black hole spacetimes
discussed below is the existence of trapped null-geodesics in the exterior region r > 2M , i.e.,
future and past inextendible null-geodesics which when quotienting out by time translations
(i.e., projecting to the .r; �; �/ variables) remain in a compact subset of ¹r > 2M º. The
trapped set is defined as the subset of phase space T �M consisting of all .z; �/ so that the
null-geodesic with initial position z and initial momentum � 2 T �M, � ¤ 0, is trapped.
Writing

� D � dt C � dr C �; � 2 T �S2;

the trapped set of the Schwarzschild spacetime is the conic set

� D
®
� 2 T �M n o W r D 3M; � D 0; j�j2

V=g
�1 D 27M 2�2

¯
: (1.15)

Its projection to the base manifold M is the hypersurface r D 3M . The trapped set is unsta-
ble, and indeed �-normally hyperbolic for all � [118], as will be discussed in more detail in
Section 2.3.4.

We finally mention the important red-shift effect [171], which is in fact a general
feature of nondegenerate black hole horizons. In the geometric optics approximation, it mani-
fests itself by the frequency of waves (measuredwith respect to an appropriate notion of time)
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being shifted towards longer (i.e., less energetic) frequencies as they propagate near the event
horizon. For hyperbolic equations, the red-shift effect can be captured by a physical space
energy identity with good coercive properties near the horizon [63]. From the viewpoint of
microlocal analysis these are the radial estimates of [201] (see Section 2.3.4).

1.4.3. Further spherically symmetric spacetimes
The Schwarzschild solution generalizes to the Reissner–Nordström–((anti)-de Sitter)

solution of the Einstein–Maxwell equations with cosmological constant (1.1) (we omit the
explicit formulas for the electromagnetic field here). The line element in so-called static
coordinates is

g D �

�
1 �

2M

r
C
Q2

r2
�
ƒ

3
r2

�
dt2 C

�
1 �

2M

r
C
Q2

r2
�
ƒ

3
r2

��1

dr2 C r2 V=g: (1.16)

Near the zeros ofF.r/D 1�
2M
r

C
Q2

r2
�
ƒ
3
r2, one needs to pass to other coordinate systems

to unravel the maximally extended spacetimes shown in the Penrose diagrams below. For
instance, near the event horizon r D rC whereF changes sign from� toC, one can introduce
ingoing Eddington–Finkelstein coordinates, v D t C

R
F �1 dr , in which

g D �F.r/ dv2 C 2 dv dr C r2 V=g:

For ƒ D 0 but nonzero subextremal charge 0 ¤ jQj < M , the Penrose diagram
of the Reissner–Nordström spacetime differs dramatically from that of the Schwarzschild
spacetime in the black hole region: while there still is an event horizon at r D rC WD

M C
p
M 2 �Q2, there is now also a future/past inner horizon (or Cauchy horizon) at

r D r� WD M �
p
M 2 �Q2 across which the metric extends analytically. The Cauchy

horizon is the boundary of the maximal Cauchy development of the initial data at the hyper-
surface † indicated in Figure 8. For ƒ > 0 and Q D 0, the metric (1.16) is a vacuum

Figure 8

A piece of the maximal analytic extension of the Reissner–Nordström spacetime.

solution of (1.1) and called the Schwarzschild–de Sitter (SdS) metric; we consider only the
subextremal case 0 < 9Mƒ2 < 1. Its geometry near the black hole and near the event hori-
zon r D r� (the smaller positive root of 1 �

2M
r

�
ƒ
3
r2 D 0) is then the same as for the
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Schwarzschild metric, but now there is also a second horizon, called cosmological horizon,
at the larger positive root r D rC of 1�

2M
r

�
ƒ
3
r2 D 0; this is analogous to the cosmolog-

ical horizon of the static patch of de Sitter space. The metric extends analytically past this
horizon and asymptotes to the de Sitter metric as r ! 1. See Figure 9.

Figure 9

(Left) Penrose diagram of a neighborhood r� � " < r < rC C " of the domain of outer communications of a
subextremal Schwarzschild–de Sitter (SdS) spacetime near the causal future of a hyperboloidal spacelike slice †.
(Right) An illustration of a SdS black hole with a focus on its asymptotically de Sitter geometry far from the black
hole; HC denotes the cosmological horizon.

The (subextremal) Reissner–Nordström–de Sitter spacetime has an event horizon
and a cosmological horizon just like the Schwarzschild–de Sitter spacetime. Only the struc-
ture of the black hole interior depends on whetherQ D 0 (in which case there is a terminal
singularity as in the Schwarzschild case) orQ ¤ 0 (in which case there is a Cauchy horizon
across which the metric extends analytically).

Forƒ< 0 andQ D 0, the metric (1.16) is a vacuum solution of (1.1) and called the
Schwarzschild–anti-de Sitter metric. Its crucial geometric features are the timelike conformal
boundary at infinity (which is future complete) and the future complete event horizon located
at the unique real zero of F.r/.

All these spherically symmetric black hole spacetimes have trapped sets of the same
form as (1.15), with 3M and 27M 2 replaced by appropriate constants.

1.4.4. The Kerr metric and related metrics
In 1963 Roy Kerr found a generalization of the Schwarzschild family of metrics to a

family of vacuum solutions of (1.1) (with ƒ D 0) which incorporates also angular momen-
tum. For parametersM > 0 and a 2 Œ�M;M�, and setting rC DM C

p
M 2 � a2, the Kerr

family of metrics, in Boyer–Lindquist coordinates t 2 R, r 2 .rC;1/, � 2 .0;�/, � 2 .0;2�/,
takes the form

gM;a D �
�

%2
.dt � a sin2 � d�/2 C %2

�
dr2

�
C d�2

�
C

sin2 �
%2

�
a dt � .r2 C a2/ d�

�2
;

� D r2 � 2Mr C a2; %2 D r2 C a2 cos2 �:
(1.17)

For a D 0, this reduces to (1.14).
For now, we focus on the subextremal range a 2 .�M;M/. For a ¤ 0, the Pen-

rose diagram of suitable two-dimensional timelike slices of the maximal analytic extension
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of the Kerr spacetime has the same form as that of the Reissner–Nordström spacetime,
see Figure 8. In particular, there is an event horizon at r D rC and a Cauchy horizon at
r D r� WD M �

p
M 2 � a2.

Furthermore, there is a trapped set� , which as in the Schwarzschild case is a smooth
(in fact, analytic) conic submanifold� � T �M n o of phase space over the black hole exterior
r > rC; it is an �-normally hyperbolic (for every �) invariant submanifold for the lift of the
null-geodesic flow to T �M, as first noted by Wunsch–Zworski [210] and proved in the full
subextremal range by Dyatlov [76]. The projection of � to the base M is however no longer
a smooth submanifold, but rather a full-dimensional closed set (with compact intersection
with any t -level set) with non-empty interior.

Another novel feature of rotating Kerr metrics is the presence of superradiance.
This means that the energy �gM;a. P; @t / of a future lightlike geodesic  with respect to
the generator @t of time translations may be negative; here @t is the unique (up to scaling)
Killing vector field which for sufficiently large r=M is future timelike. This is the basis of
the Penrose effect for energy extraction from rotating black holes. On the level of analysis,
this problem is overcome by means of so-called red-shift or radial point estimates.

We mention a geometric and an algebraic fact about the Kerr metric. Firstly, there
exists a global double null foliation on the Kerr manifold (constructed in [174]). Secondly,
there exists a (nonintegrable) null-frame, called the algebraically special frame, on the Kerr
manifold with respect to which all but the curvature components � and � (defined as in
Section 1.3 but for the null frame being the algebraically special frame) vanish.

Finally, we note that for extremal Kerr black holes, with jaj DM , the event horizon
at r DM degenerates (the function� in (1.17) has a double zero). Furthermore, the trapped
set now extends down to the horizon and ceases to be normally hyperbolic [76].

The generalization of (1.17) allowing for the presence of a cosmological constant
ƒ and an electric charge Q was found by Carter [36], following the discovery [170] of the
charged analogue in the caseƒD 0. It is called the Kerr–Newman–((anti)-de Sitter) metric,

gM;a;ƒ;Q D �
�

.1C �/%2
.dt � a sin2 � d�/2 C %2

�
dr2

�
C

d�2

�

�
C

� sin2 �
.1C �/2%2

�
a dt � .r2 C a2/ d�

�2
;

� D
ƒ

3
a2; � D 1C � cos2 �; %2 D r2 C a2 cos2 �;

� D .r2 C a2/

�
1 �

ƒ

3
r2

�
� 2Mr C .1C �2/Q2:

(1.18)

(We again omit the explicit expression for the electromagnetic field.) ForQ D 0 and ƒ > 0

(ƒ < 0), this is called the Kerr–(anti-)de Sitter metric. For simplicity, in these notes we
restrict attention to the case of small angular momenta a and small chargesQ; in this case,
the Penrose diagram of suitable two-dimensional slices of a neighborhood of the black hole
exterior region of Kerr–Newman–de Sitter spacetimes is the same as the one of a SdS space-
time, as shown in Figure 9. Again, there is a trapped set with the same (phase space and
physical space) structure as in the subextremal Kerr case.
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1.5. Matter models
In the notation of equation (1.1), we have so far restricted ourselves to the vacuum

case T D 0. However, real world physical systems typically involve matter. We briefly dis-
cuss the most common matter models studied in connection with the Einstein equations. In
each of these cases, the stated expression for T arises by direct calculation from the Euler–
Lagrange equation for a suitable Lagrangian (the Einstein–Hilbert action plus additional
terms describing the matter).

For real-valued scalar fields � with mass m, one takes

T�� D .@��/.@��/Cm2�2 �
1

2
g�� jr�j

2
g : (1.19)

The second Bianchi identity implies that for a solution of (1.1) with this energy–momentum
tensor, � necessarily solves the Klein–Gordon equation (for m D 0 the wave equation)

.�g �m2/� D 0:

For electromagnetic fields F D F��dx� ^ dx� , one takes

T�� D g˛ˇF˛�Fˇ� �
1

4
F ˛ˇF˛ˇg�� : (1.20)

The second Bianchi identity gives as the equations of motion the Maxwell equations

dF D 0; divg F D 0:

On spacetimes with nonzero electromagnetic fields F D dA, one can also consider charged
scalar fields; they are sections of a complex line bundle satisfying a wave equation defined
with respect to the connection d � iA.

Finally, uncharged collisionless (“Vlasov”) matter with mass m � 0 is described
by a density distribution f W TM ! Œ0;1/ with support in the set of future causal v with
g.v; v/ D �m2; the energy–momentum tensor at the point p 2 M is

T��.p/ D

Z
TpM

f .p; v/v�v� ; v� D g��v
� : (1.21)

The equation of motion for the density f is the transport equation Xf D 0, where X is the
geodesic vector field on TM.

2. The stability of black hole solutions

Before we turn to the discussion of the stability of the black hole solutions (de-
scribed in Section 1.4) in Section 2.2, we record what is known about the stability of the
maximally symmetric solutions.

2.1. Prelude: stability of maximally symmetric solutions
The sign of the cosmological constant has a dramatic effect on the global structure

of the maximally symmetric solutions, and thus we discuss the three cases separately.
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2.1.1. ƒ D 0

For ƒ D 0, we have the following seminal result:

Theorem 3 ([45]). Minkowski spacetime .R4; �/ is nonlinearly asymptotically stable.

We note earlier work of Friedrich [87] proving a version of the above theorem for
initial data which are exactly Schwarzschildean outside a compact set (such data were later
constructed in [47,48]) or prescribed on a hyperboloidal slice ending at null infinity.

While the original proof of Theorem 3 is closer in spirit to the analysis of the equa-
tions in double null form (in particular, [45] estimates curvature and Ricci coefficients instead
of metric components), a simplified proof of the theorem (with weaker conclusions regarding
the asymptotics) was later given in harmonic gauge by Lindblad–Rodnianski [146].

Studying the stability of flat space is still an active area of research with many new
developments regarding regularity [23], optimal asymptotic decay rates [116, 145], and cou-
pling to various matter models. A particularly interesting direction is to consider flat space as
a solution to the (massive or massless) Einstein–Vlasov system. Unlike for the scalar field or
electromagnetic radiation, the matter does not satisfy wave-type equations but instead trans-
port equations (see Section 1.5). This requires a several new ideas including the construction
of various lifts of geometrically adapted vector fields to the mass-shell to identify a suitable
version of the null condition in the nonlinearities. In summary we have:

Theorem 4 ([24, 79, 147, 199]). Minkowski spacetime .R4; �/ is nonlinearly asymptotically
stable as a solution of the coupled Einstein–Vlasov system.

2.1.2. ƒ > 0

The first general nonlinear stability result for the Einstein vacuum equations was
obtained for perturbations of de Sitter space .��

2
; �
2
/s � S3 by Friedrich [87]: the metric

evolving from small and sufficiently regular perturbations of de Sitter initial data at
† D ¹s D 0º can be written as ��2g where � is positive near † and vanishes simply
at what becomes the future and past conformal boundary, cf. (1.12). (Thus, the spacetime is
not asymptotic to de Sitter spacetime as � & 0.) Moreover, such asymptotically de Sitter
spacetimes can be characterized via suitable asymptotic initial data (two scalar functions
and a symmetric 2-tensor K on a Riemannian 3-manifold .S3; h/) at the future conformal
boundary which satisfy linear constraint equations (K must be trace- and divergence-free).
See Section 4.1 for a recent result making use of this fact on a conceptual level. Extensions of
[87] to general dimensions were proved in [4,179]. A different perspective on the stability of
small neighborhoods of the static patch of de Sitter space (in generalized harmonic gauges)
was given in [115], see also Section 2.5.2 below.

2.1.3. ƒ < 0

The least understood case is ƒ < 0. Here the Einstein equations become a nonlin-
ear initial boundary value problem for which well-posedness was established in [88]. The
question of global stability or instability depends on the boundary conditions imposed at the
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conformal boundary. The most interesting case are reflective boundary conditions as they
preclude any mechanism for energy to be radiated away. (In the case of dissipative boundary
conditions, [119] established strong decay for the linearized problem.) The fact that linear
fields do not decay lead [55] to conjecture the nonlinear instability of AdS. The problem was
first investigated heuristically and numerically for the spherically symmetric scalar field in
the influential [25]which proposed a mechanism of energy transfer from low to high frequen-
cies based on resonant interactions. After a large body of works in the theoretical physics
literature (see [17, 53, 69] and also the discussion and references in [169]) trying to extend
the range of validity of non-linear perturbation theory, Moschidis succeeded in proving the
following result:

Theorem 5 ([169]). Anti-de Sitter spacetime is dynamically unstable as a solution to the
spherically symmetric Einstein–Vlasov system.

The proof proceeds by constructing a one-parameter family of initial data D", con-
sisting of a collection of carefully arranged (both in physical and inmomentum space) Vlasov
beams, which converges in a suitable topology to the trivial (anti-de Sitter) data as " ! 0

and is such that for all " > 0 the maximum development contains a black hole region. Hence,
remarkably, (the proof of) Theorem 5 controls the dynamics all the way to the formation of
a black hole!

The proof discovers and exploits a nonlinear growth mechanism in physical space
(which has no linear analogue and is quite different from the heuristic mechanisms based on
resonances for nonlinear perturbations) which relies on the observation that the beams trans-
fer energy to one another when they pass through each other and that this transfer depends on
where in spacetime the interaction happens. This observation is at the root of constructing
the initial configuration of the beams.

The next natural step is to generalize Theorem 5 to the spherically symmetric Ein-
stein scalar field system. A proof of singularity formation for the Einstein vacuum equation
without symmetry assumptions may then be well within reach; this would complete the pic-
ture of the vacuum (in)stability of the maximally symmetric solutions.

We finally remark that it is not clear whether instability holds for all (small) data.
The existence of geons and “islands of stability” has been widely discussed in the physics
literature [94, 122, 184]. For the problem of constructing small data time-periodic solutions
in this setting mathematically rigorous progress has recently been made (for semilinear toy
problems) in [1].

2.2. The formulation of the stability problem and overview of the results
To formulate the exterior stability problem for black holes it will be useful to dis-

tinguish informally the following concepts:3

3 These concepts can be modified in a straightforward manner so that they apply for ƒ > 0 or
ƒ < 0 as well.
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Figure 10

Penrose diagram of a (dynamical) black hole spacetime.

(1) Nonlinear stability: Given suitable (i.e., characteristic or spacelike and of suf-
ficient regularity) initial data near those of a member of the Kerr family, the
associated maximum development .M; g/ has the following properties:

(i) It contains a subset of the form given in Figure 10. In particular, future
null-infinity JC is complete and J�.JC/ is bounded to the future by a
regular future complete event horizon H C.

(ii) Orbital stability (g remains close to gM;a on M0).

(iii) Asymptotic stability (g ! g QM;Qa with jM � QM j < ", ja � Qaj < " as an
appropriate notion of time goes to infinity).

(2) Linear stability:Linearize equations (1.1) in themetricg around a fixedmember
of the Kerr family; this produces the equations of linearized gravity. Given
suitable initial data for this linearized system, prove that, in a suitable gauge,
solutions remain bounded (orbital stability) and indeed decay in time to a lin-
earized (in the parameters .M; a/) Kerr metric (asymptotic stability) on the
black hole exterior.

(3) Toy stability: Given suitable initial data for the toy problem �gM;a D 0, prove
that solutions remain bounded (orbital stability) and decay in time (asymptotic
stability) on the black hole exterior.

While the seminal works in the physics literature, starting with [177], concern aspects
of the linear stability problem, the first rigorous theorems are due to Wald and Kay [133,207]

on toy stability. The results on toy stability have reached a rather complete state in the past
decade; this is the content of Section 2.3. With the conceptual and technical insights thus
gained, linear and nonlinear black hole stability problems have become accessible, at least
in the caseƒ � 0, in the past five years. We discuss the current state of knowledge regarding
linear stability in Section 2.4, and regarding nonlinear stability in Section 2.5.

2.3. Toy stability
The following theorem summarizes the picture that has been obtained for the anal-

ysis of the toy problem in the various black hole geometries.
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Theorem 6. Consider a solution to the scalar wave equation

�gM;a;ƒ D 0 (2.1)

on the black hole exterior of a Kerr–((A)dS) spacetime arising from suitable initial data
(and, in the Kerr–AdS case, with Dirichlet boundary conditions at the conformal boundary).
Then

(1) If ƒ > 0 and jaj � M then  decays exponentially in time to a constant [73].

(2) If ƒ D 0 and jaj < M then  decays inverse polynomially in time [66]. (See
Theorem 7 below for the extremal case jaj D M .)

(3) If ƒ < 0 and the parameters .M; a;ƒ/ satisfy the Hawking–Reall bound then
 decays logarithmically in time [120].

There are three main geometric phenomena associated with black holes that are
directly relevant for understanding the global behavior of hyperbolic equations on black hole
backgrounds and which play a crucial role in the proof of Theorem 6. These are (see the
discussion in Section 1.4.4):

(1) the red-shift effect;

(2) the presence of trapped null geodesics;

(3) superradiance.

While the above phenomena are present for all black hole geometries discussed in
Section 1.4.4, their strength, coupling, and the large scale geometry of the underlying space-
time lead to the quite different dynamical behaviors exhibited by Theorem 6. We provide a
short discussion of these phenomena and how they enter the proof of Theorem 6.

2.3.1. ƒ D 0. The classical vector field approach
In the simplest case ƒ D 0, a D 0, the phenomenon of superradiance is absent

and the problem can be entirely understood in physical space. As mentioned at the end of
Section 1.4.2, the trapped geodesics are all concentrated at r D 3M , and one may prove
(using appropriate multipliers) the following two estimates [26,27,63]:

EŒ �.�/ � EŒ �.0/ for all � � 0 (boundedness); (2.2)

IdegŒ �.�1; �2/ � EŒ �.0/ for all �2 � �1 � 0 (local integrated energy decay); (2.3)

where

EŒ �.�/ D

Z
†t?

.@t? /
2

C

�
1 �

2M

r

�
.@r /

2
C j=r j

2

IdegŒ �.�1; �2/ D

Z �2

�1

d�

Z
†�

1

r3

�
.R? /2 C

�
1 �

3M

r

�2
�

�
.@t? /

2
C

�
1 �

2M

r

�
.@r /

2
C j=r j

2

��
:
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These energies are defined in .t?; r; �; �/ coordinates in which the Schwarzschild metric
takes the regular form g D �.1 �

2M
r
/.dt?/2 C

4M
r
dt?dr C .1 C

2M
r
/dr2 C r2 V=g.

Furthermore, †� denotes a slice (which intersects the horizon) of constant � , and
R? D

2M
r
@t C .1 �

2M
r
/@r .

The degeneration at r D 3M in the estimate (2.3) is necessary (although it can be
weakened to logarithmic degeneration using microlocal techniques) and a manifestation of
the trapped null geodesics. The red-shift effect allows one to eliminate the degeneration at
r D 2M for the transversal (@r in these coordinates) derivatives in (2.2) and (2.3) and can
be realized as a physical space multiplier. From the resulting nondegenerate version of the
estimates (2.2) and (2.3) one can prove, using a very general physical space method that
merely uses the asymptotically flatness of the spacetimes (introduced in [65], see also [168])
inverse polynomial decay rates for the solutions which are in particular sufficiently strong
for nonlinear applications.

Forƒ D 0, jaj � M , superradiance is present and the Killing field @t will not pro-
duce a coercive energy on spacelike slices. The naive estimate (2.2) fails as energy associated
with the vector field @t on a later slice can be larger than that of the initial slice. Moreover,
trapped null geodesics now exist on a set of full measure (near r D 3M ) in spacetime. The
estimate (2.3) fails and it is not clear how to prove the required analogue. One approach—
which was also the one that was later generalized to the full subextremal case—was to use
the separability of equation (2.1) on Kerr and to exploit the fact that when one looks at pieces
of the solution supported on certain (angular and time) frequencies, then good uniform esti-
mates can be proven from the ordinary differential equations governing the behavior of the
frequency localized components. It is a tour de force to construct these frequency localized
multipliers which typically exploit a smallness parameter arising from the definition of the
frequency regimes. A key insight is that superradiance can be controlled by the red-shift
effect. Summing the estimates and the fact that the solution is a priori notL2 in time provide
further technical challenges. See [64]. Decay in the case jaj � M was also proved in [198]

by means of pseudodifferential multipliers near the trapped set and in [6] by exploiting the
second order Carter symmetry operator (related to a hidden symmetry of the spacetime not
related to Killing vector fields).

Two additional insights lead to a treatment of the full subextremal case ƒ D 0,
jaj < M in [66]. The first was that, in the frequency decomposition of the solution outlined
above, frequency triples that are affected by superradiance are nontrapped. Thus these two
obstacles for decay happen to be disjoint when viewed in frequency space (this breaks down
precisely in the extremal case jaj D M ). The second was a quantitative version of mode
stability for the wave equation established in [193] which allowed one to treat the range of
bounded frequencies (where roughly speaking no smallness factor is available). This also
allowed one to estimate precisely the amount of amplification of the solution through the
mechanism of superradiance, see also [67].

3943 Recent progress in general relativity



2.3.2. ƒ D 0: the extremal case
We have

Theorem 7 ([15]). Consider a solution to the scalar wave equation

�gM;aDM
 D 0 (2.4)

on the black hole exterior of an extremal Kerr spacetime. Then axisymmetric decay inverse
polynomially in time. However, along the event horizon H C higher transversal derivatives
of  generically grow in time (Aretakis instability).

Theorem 7 was first proved for the spherically symmetric extremal Reissner–Nord-
ström metric in [13, 14] (without the restriction on axisymmetric solutions). The main dif-
ficulty is that the aforementioned red-shift effect degenerates and one cannot remove the
degeneration at the horizon in the estimates. In fact, there are conservation laws on the event
horizon H C (discovered by Aretakis) which constitute direct obstructions to decay.

In the case of extremal Kerr, the problems of degenerate red-shift, trapping and
superradiance are now fully coupled and cannot be studied separately even at the frequency
decomposed level. This is the reason why the global behavior of solutions is only understood
for axisymmetric solutions (which are not subject to superradiance). The general case is
an open problem that has received a lot of attention from both theoretical physics (see, for
instance, [37]) and mathematics recently and is expected to exhibit additional instabilities.
See also [1, Gajic] for recent work in this direction.

2.3.3. ƒ D 0: sharp asymptotics
It is a natural question to ask about the precise decay rates in Theorem 6(2). This

problem has a long tradition in the physics literature going back to work of Price [175, 176],
with refinements given in [99].While this question is interesting in its own right, lower bounds
on the decay rate directly inform the behavior of solutions in the black hole interior (see Sec-
tion 3.1 below). The following result is the current state-of-the-art.

Theorem 8 ([11,106]). Consider a solution to the scalar wave equation

�gM;a D 0 (2.5)

on the black hole exterior of a subextremal (jaj < M ) Kerr spacetime. Then the following
uniform pointwise estimates hold for some � 2 .0; 1/:ˇ̌̌̌

 �
Q0.� C r/

�2.� C 2r/2

ˇ̌̌̌
�

E0

.� C 2r/�2C�
; (2.6)ˇ̌̌̌

r�` `D1 �
Q`.r; �; �/.� C r/

�3.� C 2r/3

ˇ̌̌̌
�

E0

.� C 2r/2�3C�
; (2.7)ˇ̌̌̌

r�` �` �
Q`.r; �; �/.� C r/

�2C`.� C 2r/2C`

ˇ̌̌̌
�

E0

.� C 2r/1C`�2C`C�
when a D 0: (2.8)

Here � is a coordinate corresponding to a hyperboloidal slicing of the exterior with the
slices ending at the horizon and future null infinity, and Q` is a bounded function in r
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tending as r ! 1 to an explicitly computable initial data quantity related to the Newman–
Penrose charges. Finally,  �` denotes the projection of  to the standard spherical har-
monics defined with respect to Boyer–Lindquist .�; �/ coordinates and E0 is a constant
determined from a weighted initial data Sobolev norm.

The asymptotics (2.8) were first proved for ` D 0, on a class of asymptotically
flat spherically symmetric spacetimes including Schwarzschild and Reissner–Nordström,
by Angelopoulos–Aretakis–Gajic [8]. Their subsequent work [9] extracts also a logarith-
mic subleading term in the large � expansion of the radiation field (defined as the limit
limr!1 r .�; r; �; �/) for spherically symmetric waves. On a class of asymptotically flat
spacetimes which include subextremal Kerr spacetimes, Hintz [106] gave the first proof
of (2.6). The proof is based on a careful spectral analysis near zero energy, see Section 2.3.4,
with direct antecedents in the work of Donninger–Schlag–Soffer [71] and Tataru [197] which
proved upper bounds of j j consistent with (but for `� 1weaker than) the asymptotics stated
above. The paper [106] also proves the estimate (2.8) in spatially compact sets and identifies
r`Q`.r; �; �/ as a generalized zero mode of the wave equation, namely the unique station-
ary solution of �gƒD0;M;aD0.r

`Q`/ D 0 with the property that r`Q`.r; �; �/ D q`.r/Y ,
q` D r` C O.r`�1C"/ as r ! 1, where Y is a suitable degree ` spherical harmonic (depend-
ing on the initial data).

Angelopoulos–Aretakis–Gajic [11, 12] gave a physical space proof of Theorem 8.
This interpolates a refinement (introducing carefully constructed higher order commutators
adapted to the angular modes) of the rp-method [65], which gets one close to the optimal
rates, with a clever way to exploit the conservation of the Newman–Penrose charges along
null infinity. In fact, the Newman–Penrose charges in Theorem 8 are not the ones associated
with  itself but that of a “time-inverted”  and generically nonvanishing, even for data of
compact support. Estimates analogous to (2.7) have been derived for higher modes but take
a more complicated form, which we do not present here. We merely remark that obtaining
the rates for higher modes in the case a ¤ 0 is very delicate due to the coupling of angular
modes (Kerr being only axisymmetric).

In the extremal spherically symmetric case (Section 2.3.2), the asymptotics are quite
different [10]. In fact, the extremality of the horizon can be seen in the expansion on null
infinity giving rise to speculations about the experimental detection of extremal black holes
in the universe [7].

2.3.4. ƒ D 0: spectral theoretic approach
Another approach to the proof of Theorem 6(2) is based entirely on spectral theory

and phase space analysis. The starting point is a foliation of the spacetime by level sets of a
time function t� which are transversal to the future event horizon and asymptote to t -level
sets as r ! 1. (In practice, it is more convenient to work instead with t� whose level sets
are transversal to future null infinity.) Since j j < CeCt� for some C > 0, one can write  
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as the inverse Fourier transform4

 .t�/ D

Z
=�DCC1

e�i�t� b�.�/�1 Of .�/ d�; � D �gM;a ; (2.9)

where Of .�/ is an explicit expression involving the Cauchy data of , and the spectral familyb�.�/ is obtained from � by replacing @t� by �i� . The inverse b�.�/�1 in (2.9) is the out-
going resolvent, with range comprised of functions which decay as r ! 1. The strategy is
now to shift the contour of integration down to the real axis =� D 0. Executing this relies
on several ingredients.

The first ingredient is the analyticity of the resolvent b�.�/�1 in =� > 0 as well as
the existence the limiting resolvent as =� & 0. This is established in two steps. The first step
is that for =� � 0, one can realize b�.�/ as a Fredholm operator between suitable function
spaces (based on weightedL2-Sobolev spaces), with locally uniform estimates; we only dis-
cuss this in the case � 2 R. The operator b�.�/ satisfies elliptic estimates except in the region
where @t� D @t is not timelike, which happens precisely in the ergoregion and the black hole
interior. But microlocally, i.e., in phase space, the flow of the Hamiltonian vector field asso-
ciated to the principal symbol of b�.�/—which here means the null-geodesic flow lifted to
phase space restricted to the annihilator of @t� , and projecting out the t�-coordinate—has
useful structure: there is a source atN �¹r D rCº n o (the conormal bundle of the event hori-
zon); this is related to the classical red-shift effect. There, one gets free microlocal estimates
for u solving b�.�/u D f (2.10)

in terms of f , called radial point estimates [201, §2.4]. These take the form

kAukH s � C
�Gb�.�/u

H s�1 C k�ukH�N

�
whereA;G 2‰0 are pseudodifferential operators localizing to suitable conic neighborhoods
of N �¹r D rCº, and � localizes near r D rC in the base M. The classical Duistermaat–
Hörmander theorem on the propagation of regularity [72] allows one to propagate this control
on u along the null-geodesic flow, which in the case a ¤ 0 enters the black hole exterior, but
which in any case ultimately enters the black hole interior.

Another source of nonellipticity of b�.�/ for real � ¤ 0 is due to the presence of an
asymptotically flat end of the spatial slice t�1� .0/, and concerns the lack of arbitrary decay
rather than regularity; indeed one has to allow for u in (2.10) to have outgoing asymptotics
u � r�1ei�r . This can be captured microlocally in Melrose’s scattering calculus [162] and
indeed historically was the first instance of a microlocal radial point estimate.

Altogether, one obtains locally uniform estimates in the punctured upper half-plane

kukH s;` � C
�b�.�/u

H s�1;`C1 C kukH�N;�N

�
; =� � 0; � ¤ 0; (2.11)

4 The choice of sign of � in this formula (and thus also in the corresponding formula for the
Fourier transform) is conventional.
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where H s;` D r�`H s is a weighted Sobolev space. Analogous estimates on dual function
spaces for the adjoint b�.�/� give the claimed Fredholm property of b�.�/. The invertibility
of b�.�/, together with sharp mapping properties of the inverse, follows from the triviality
of the kernel. This is the place, finally, where the mode stability results [193, 209] enter the
analysis. Direct differentiation in � then gives high regularity of b�.�/�1 in � ¤ 0.

Uniform analysis near � D 0 is delicate due to the degeneration of b�.�/ at spatial
infinity when � & 0. Sharp Fredholm estimates were obtained by Vasy [202, 204] using a
second microlocal combination of the scattering calculus (for � ¤ 0) and the b-calculus (for
� D 0) [161], following direct resolvent estimates [29] and (in a restricted geometric setting)
direct constructions of the resolvent kernel [95–97,101]. While bounds and mild (conormal)
regularity of the resolvent near zero energy are sufficient to obtain some decay, Hintz [106]

developed a method to obtain the first few terms of a polyhomogeneous (generalised Taylor)
expansion of b�.�/�1 Of .�/ at � D 0. This uses resolvent identities and, in turns, the inver-
sion of b�.0/ and a rescaled model problem5 capturing the transition from zero to non-zero
spectral parameters. The expansion, upon restriction to bounded spatial subsets, takes the
schematic formb�.�/�1 Of .�/ D [holomorphic] C �2 log.� C i0/c C [more regular error terms] (2.12)

for some constant c 2 C. Upon taking the inverse Fourier transform, the strongest singular
term will give rise to the leading order long time asymptotics as t� ! 1, given by 2ct�3� ;
the regularity of the error terms determines the decay rate of the remainder.

The second ingredient required to execute the contour shifting in the integral (2.9)
concerns high energy estimates, i.e., quantitative bounds on b�.�/�1 as <� ! 1 (locally
uniformly in =� � 0). It is in this high frequency regime that the structure of the trapping
becomes relevant. To explain this in rough terms, consider the semiclassically rescaled equa-
tion

Ph;zu WD h2b�.h�1z/u D f; h D j� j
�1; z D

�

j� j
D 1C O.h/: (2.13)

As a guiding example, consider briefly theMinkowskian wave operator� D �D2
t�

C
P
D2
xj
;

then Ph;z D
P
.hDxj /

2 � 1 C O.h/, and thus according to geometric optics, high fre-
quency (� h�1) oscillations have momenta in ¹

P
�2j � 1 D 0º and propagate along lifted

geodesics, which are the projections to spatial coordinates and momenta of Minkowskian
null-geodesics. Generalizing to the Kerr case, high frequency oscillations of u solving (2.13)
are localized in the characteristic set of spatial momenta � so that �dt� C � is lightlike, and
propagate along projections (to the spatial phase space) of lifted null-geodesics. The dynam-
ics of this projected lifted null-geodesic flow is more ornate than in the bounded frequency
regime: there is now a trapped set (in the Schwarzschild case: the restriction of � in (1.15) to
t D 0 and � D �1 if we take t� D t near r D 3M ) at which the flow is �-normally hyperbolic
for all �. However, purely based on the dynamical nature of the trapping and its interplay
with the symplectic structure of phase space, one can apply black box results [77, 210] (see

5 It is obtained by taking Or D �r and considering the limit � ! 0 with fixed Or .

3947 Recent progress in general relativity



also [108]) on the propagation of semiclassical regularity (i.e., bounds on amplitudes of high
frequency oscillations) for microlocal control of u there. Combining this with semiclassical
radial point estimates at the event horizon [201, §2.8] [78, Appendix E] and at spatial infin-
ity [203, 205], one ultimately obtains estimates in semiclassical function spaces (with each
derivative weighted by a factor of h) analogous to (2.11),

kuk
H
s;`
h

� C
�
h�1�"

kPh;zuk
H
s�1;`C1
h

C hN kuk
H

�N;�N
h

�
;

where the " > 0 loss can be sharpened to a logarithmic loss when =z � 0; this loss comes
from the trapping estimate. For small h > 0, the second, error, term on the right can be
absorbed into the left-hand side, and one obtains the invertibility (with quantitative bounds)
of Ph;z and thus of b�.�/.

Equippedwith these high energy estimates, one can justify the contour shifting down
to the real axis; the loss of powers of h�1 D j� j corresponds to a necessary loss [186] of
regularity of the solution (when estimated in decaying function spaces) relative to the initial
data.

Important precursors of the low frequency analysis of [106, 204] are the works by
Donninger–Schlag–Soffer [71] (based on direct resolvent kernel constructions in spherical
symmetry) and Tataru [197] on Price’s law (based on resolvent estimates and weak versions of
the expansion (2.12)). In Tataru’s approach, uniform resolvent control down to the real axis is
deduced from the assumption of a suitable form of local energy decay; this assumption needs
to be verified separately. (Thus, [197] upgrades weak to sharp decay.) In the full subextremal
range, local energy decay was first proved in the aforementioned [66], following earlier work
for slow angular momenta [6,64]. For more on the relationship between mode stability and
local energy decay, see [165,167].

2.3.5. ƒ > 0: exponential decay and quasinormal mode expansions
For linear scalar waves on slowly rotating Kerr–de Sitter black hole spacetimes

.M; gƒ;M;a/, Dyatlov [73–75] proved a full asymptotic expansion

 .t�; x/ D

X
=�j��˛

e�i�j t� tk� ajk.x/C O.e�˛t�/; x D .r; �; �/; (2.14)

for all ˛ 2 R avoiding the discrete set of accumulation points of ¹�=�j º. Here, the �j are the
resonances or quasinormal modes (QNMs);6 they are the poles of themeromorphic continu-
ation of the resolvent 2�gƒ;M;a.�/

�1 from=� � 1 to the complex plane in � . The structure of
the set ¹�j º was analyzed in great detail in [75]; here we only record that the only resonance
with =�j � 0 is �0 WD 0 (with multiplicity 1 and a00 a constant), and thus  decays expo-
nentially fast to a constant. The existence of a meromorphic continuation of the resolvent (as
opposed to the nonalgebraic singularity (2.12) in the case ƒ D 0) is due to the presence of
the cosmological horizon and the related fact that one work with a compact spatial manifold;

6 In the absence of multiplicities (k D 0), aj0 is a corresponding mode solution (or resonant
state).
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the general microlocal framework for the relevant spectral theory (both for bounded and high
frequencies) was provided in Vasy’s seminal work [201]. (The analyticity of the quasinormal
mode solutions, for analytic choices of time functions t�, was proved in [148], based on [89].)

In the Schwarzschild–de Sitter case, (2.14) was proved by Bony–Häfner [28] in the
black hole exterior, with uniformity down to the horizons provided in [164] using the rela-
tionship of SdS and asymptotically hyperbolic spaces [160, 163]. For results on the set of
resonances and mode solutions in the small black hole limit Mƒ2 & 0, see [117]. Results
on quasinormal modes on charged black hole spacetimes were proved in [22,127]. We remark
that energy methods [62] have thus far been successful in proving superpolynomial decay to
constants.

2.3.6. ƒ < 0: stable trapping and logarithmic decay
The existence of the conformal boundary (where null geodesics are reflected) in con-

junction with the existence of trapped geodesics leads to the phenomenon of stable trapping,
which gives rise to an inverse logarithmic rate for solutions provided the Hawking–Reall
bound is satisfied. (The Hawking–Reall bound ensures the existence of a globally causal
Killing field on the exterior and hence eliminates the difficulty of superradiance.) This rate
was established as an upper bound in [120] and is in fact optimal for general solutions, as
follows either from quasimode constructions [121] or the existence of quasinormal modes
exponentially close to the real axis [90,91]; see [208] for the development of a general theory
of quasinormal modes in this setting. (Inverse logarithmic decay rates are familiar from the
obstacle problem in Minkowski space [33].) Outside the Hawking–Reall bound, Dold [70]

constructed exponentially growing solutions using techniques from [192].
Finally, the behavior is expected to be radically different if dissipative boundary

conditions are imposed on the scalar field, in which case strong decay is likely to hold.

2.4. Linear stability
Here, we only discuss the case ƒ D 0. The reason is that there are currently no

rigorous results for ƒ < 0 in the case of reflecting boundary conditions, whereas for ƒ > 0

nonlinear stability was proved directly (see Section 2.5) without prior work on linear stability.

Theorem 9 ([5,100]). Linear stability holds for slowly rotating Kerr spacetimes.

A natural approach to Theorem 9 is to try to reduce it to the toy problem. How-
ever, both the generalized harmonic gauge (Section 1.2) as well as the double null gauge
(Section 1.3) lead to a highly coupled system of linearized equations. In the following, we
describe several different approaches to address this problem.

2.4.1. The double null approach
The first linear stability result was proved by Dafermos–Holzegel–Rodnianski in

[58] and concerns the linear stability of the Schwarzschild metric. The approach of [58] is
based on expressing (1.1) in a double null gauge and linearizing the resulting system with
respect to Schwarzschild. For clarity, we describe the main ideas more generally for the
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linearization aroundKerr. Let us fix the differentiable structure of the Pretorius–Israel double
null coordinates .u; v; �/ on the Kerr manifold with parameters .M; a/ and consider a one-
parameter family of metrics expressed in these coordinates

g."/ D �4�2."/du dv C =gAB."/
�
d�A � bA."/dv

��
d�B � bB."/dv

�
(2.15)

such that " D 0 corresponds to the Kerr metric of massM and specific angular momentum
a. In other words, we identify the ingoing and outgoing null cones of each member of the
family with the respective cones of the Kerr exterior.

If � is an S2u;v-tensor denoting an arbitrary Ricci coefficient or curvature component
associated with g."/ and � denotes the analogous component for g.0/, then � � � is a map
from R into the bundle of S2u;v-tensors on M and we can hence define

.1/

� WD
d
d"
.� � �/j"D0;

which we call a linearized Ricci coefficient or curvature component, respectively. Note that
we can indeed consider the difference of the two tensors as we have identified the notion of
S2u;v-tensors for the family (2.15), i.e., we have fixed the tensor bundle of S2u;v-tensors on
the manifold independently of ".

To produce the linearized Bianchi and null structure equations, one writes down the
null structure and Bianchi equations once for general " (in bold font) and once for " D 0

(in standard font) and then subtracts the two equations ignoring terms of order "2. This lin-
earization process is entirely straightforward and particularly simple in the Schwarzschild
case where all S2u;v-one-forms and symmetric traceless tensors vanish identically for the
(spherically symmetric) background. It produces a system of equations for S2u;v-tensors
representing linearized curvature components and Ricci coefficients on the Kerr manifold
with all differential operators being defined with respect to the Kerr background metric. For
instance, in the (algebraically simpler) Schwarzschild case aD 0, where the Pretorius–Israel
double null coordinates become the familiar Eddington–Finkelstein double null coordinates,
the linearization of (1.10), (1.11) reads

�=r3

�
r�2

.1/
˛

�
D �2�2r =D

?
2

�
�
.1/

ˇ
�

�
3M

r2
�3

.1/

O� ; (2.16)

�=r4

�
r4��1

.1/

ˇ
�

D �r3 =div
�
r
.1/
˛

�
; (2.17)

and the structure equation (1.8) becomes

�=r4

�
r2
.1/

O��
�

C
2M

r2

�
r2
.1/

O��
�

D �r2�2
.1/
˛ : (2.18)

We now collect an important result, which is due to Teukolsky [200]. For this we
recall from Section 1.4.4 the algebraically special frame of Kerr .eas3 ; eas4 ; eas1 ; eas2 /. We
define an "-dependent family of frames .eas3 ; eas4 ; eas1 ; eas2 / which is null with respect to
g."/ and reduces for " D 0 to .eas3 ; eas4 ; eas1 ; eas2 /. We then define the linearized quantities

.1/
˛ as.e

as
A ; e

as
B / WD lim

"!0

Riem.eas4 ; easA ; e
as
4 ; e

as
B /

"
; (2.19)
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.1/
˛ as.e

as
A ; e

as
B / WD lim

"!0

Riem.eas3 ; easA ; e
as
3 ; e

as
B /

"
: (2.20)

Note that these quantities are generally not S2u;v-tensors unless a D 0 but can be inter-
preted as horizontal tensors by identifying the horizontal structures (i.e., the spaces g."/-
orthogonal to the distribution .eas3 ;eas4 /) for different " just as we did for S2u;v-tensors earlier.
They can also be viewed as elements of a complex line bundle of spin-˙2-weighted func-
tions, see [200] and [57, §2.2]. Note that for a D 0 we have

.1/
˛ as.e

as
A ; e

as
B / D

.1/
˛ .eA; eB/ and

.1/
˛ as.e

as
A ; e

as
B / D

.1/
˛ .eA; eB/ as the double null frame agrees with the algebraically special

frame. Also one may check that (2.19) and (2.20) do not depend on the particular choice
of frame .eas3 ; eas4 ; eas1 ; eas2 / described above. In other words, there is a gauge invariance to
order " under g."/-frame rotations.

Proposition ([200]). The quantities
.1/
˛ as and

.1/
˛ as satisfy (individually) decoupled wave

equations, called the spin ˙2 Teukolsky equations.

In the case a D 0, the Teukolsky equation takes the simple form (as easily checked
from (2.16)–(2.18))

�=r4�=r3

�
r�2

.1/
˛

�
C
2�2

r2
r2 =D

?
2
=div

�
r�2

.1/
˛

�
C
4

r

�
1 �

3M

r

�
�=r3

�
r�2

.1/
˛

�
C
6M�2

r3

�
r�2

.1/
˛

�
D 0; (2.21)

which we will focus on to convey some of the main ideas that follow. The problem with
equation (2.21) is that because of the first order term, the standard physical space techniques
for the toy problem do not apply: there is no natural conserved energy and the standard
approach to prove (2.3) fails. Nevertheless, we have the following result:

Theorem 10. [57,58,157] Solutions to the spin ˙2 Teukolsky equations arising from suitably
weighted initial data on a Kerr spacetime with jaj � M decay inverse polynomially in time
on the black hole exterior.

Proof. For a D 0, one may apply the physical space transformations

r5
.1/

P D
r3

�
=r3

�.1/
 r3�

�
; r3�

.1/

 D �
1

2

r2

�
=r3

�
r�2

.1/
˛

�
(2.22)

introduced in [58]. These transformations are physical space versions of transformation intro-
duced by Chandrasekhar in [38] at the mode-decomposed level. The point is that the quantity
.1/

P satisfies the Regge–Wheeler equation

�=r3�=r4

�
r5
.1/

P
�

C
2�2

r2
r2 =D

?
2
=div

�
r5
.1/

P
�

C V
�
r5
.1/

P
�

D 0; (2.23)

where V is a potential with favorable properties. Equation (2.23) turns out to be an equation
for which the estimates (2.2) and (2.3) can be proven, i.e., the toy model theory applies.

Once (2.3) is proven for
.1/

P one may derive from (2.22) the identity
1

2
�=r3

�
r
ˇ̌
r3�

.1/

 
ˇ̌2�

C
1

2
�2

ˇ̌
r3�

.1/

 
ˇ̌2

D r4
.1/

P �2 �
.1/

 r3�: (2.24)
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Applying Cauchy–Schwarz inequality on the right and using the integrated decay estimate

for
.1/

P , this can be integrated forwards to produce boundedness and integrated decay esti-

mates for
.1/

 . Repeating the same procedure for the pair .
.1/

 ;
.1/
˛ /, one obtains the desired

estimates for
.1/
˛ . Obviously, this process loses derivatives but these can be recovered by

studying the wave equations for
.1/

 and
.1/
˛ with the just obtained a priori estimates on the

lower order terms.
For jaj �M , a straightforward modification of the transformations (2.22) produces

an analogue of (2.23), which is now a coupled wave equation schematically of the form

�RW;gM;a

.1/

P D aF
�.1/
 ;

.1/
˛

�
(2.25)

where �RW;gM;a is the Regge–Wheeler operator associated with the Kerr metric gM;a to

which again the techniques from the toy problem apply and F .
.1/

 ;
.1/
˛ / denotes an explicit

expression involving up to first derivatives of
.1/

 and
.1/
˛ . However, just as for the toy problem,

proving estimates for �RW;gM;a now requires frequency decomposition and a form of sep-
arability of the equations, which makes the problem technically more involved. Moreover,
the transport estimates for the lower order quantities are now directly coupled to (2.25) so all
estimates have to be proven at the same time. Key are the smallness of jaj in the coupling as
well as a special structure in the right-hand side of (2.25), which needs to be identified and
exploited.

In the full subextremal case jaj < M , we have the following recent milestone:

Theorem 11 ([194]). Theorem 10 holds for the full subextremal range jaj < M provided
solutions are a priori assumed to be future-integrable.

We remark that the assumption of future-integrability in Theorem 11 ensures that
one can take the Fourier transform in time and hence prove estimates at the level of the radial
ODE governing the dynamics of the frequency decomposed pieces of the solution. For the
wave equation, proving these estimates (i.e., Theorem 11) is the main difficulty in the proof
of Theorem 6. Removing the assumption of future integrability is expected to follow along
the lines of [66] and would lead to a proof of Theorem 10 for the full subextremal range and
complete our picture of the dynamics of the Teukolsky equation.

The proof of Theorem 11 adds several new ideas to the proof of Theorem 10. It
requires a much more subtle construction of the multipliers and various applications of the
Teukolsky–Starobinski identities since smallness of jaj cannot be exploited. We finally note
also the papers [80,81] for related results on the Teukolsky equation.

We pause for a moment to recap what we have achieved in proving Theorem 9. We
have obtained a linearized system of equations in double null gauge and we have shown
that certain quantities within this system satisfy decay estimates. In the a D 0 case, these
are precisely

.1/
˛ and

.1/
˛ . The second and equally important step is to identify a hierarchical

structure in the linearized system that allows proving boundedness and decay for all dynam-
ical quantities, preferably without loss of derivatives (the latter with the nonlinear problem
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in mind) from the quantities that have been shown to decay. This was achieved for a D 0 in
[58]. This part of the proof relies on a complete understanding of two important classes of
special solutions, which we again discuss in the a D 0 case:

(A) An explicit 4-dimensional family of solutions to the system arising from the
fact that the Schwarzschild solution sits as a one-parameter family inside
the Kerr family. Since to specify a nearby Kerr from the point of view of
Schwarzschild metric one needs to prescribe both a direction of rotation (i.e., a
3-vector) and a change of mass (a scalar), the corresponding family is indeed
4-dimensional.

(B) An infinite-dimensional family of pure gauge solutions, parametrized by a
set of spacetime functions fi .u; v; �/. These arise from the fact that certain
infinitesimal coordinate transformations preserve the double null form (2.15)
to order "2 while changing the dynamical quantities to order " in an explicit
fashion. For instance, the coordinate transformation

Qu D u; Qv D v C "f2.v; �/; Q�A D �A C "
2

r.u; v/
=g
AB@Af2.v; �/

is easily seen to preserve the double null form (2.15) to order ". These trans-
formations are the infinitesimal versions of a change of double null foliation,
i.e., perturbing the spheres and the foliations of the cones slightly. At the lin-
earized level they generate a special class of solutions which are called pure
gauge solutions. These solutions may be added to a given reference solution of
the linearized system to achieve a specific normalization of the linearized Ricci
coefficients on suitable chosen cones of the background. Finally, one observes
that pure gauge solutions always have

.1/
˛ D 0 D

.1/
˛ , i.e., the Teukolsky quan-

tities are gauge invariant.

With these observations, we can state the following slightly more specific version of Theo-
rem 9 for a D 0.

Theorem 12 ([58]). All solutions to the linearized vacuum Einstein equations around
Schwarzschild arising from regular asymptotically flat initial data

• remain uniformly bounded on the exterior and

• decay inverse polynomially (through a suitable foliation) to a standard linearized
Kerr solution (a 4-dimensional space) after adding a pure gauge solution which
can itself be estimated by the size of the data.

The point here is that in a gauge that is normalized with respect to the cones where
the initial data is prescribed (“initial data gauge”) one will only be able to prove bounded-

ness. In order to see decay, one needs to add a pure gauge solution that achieves��1
.1/

� D 0

onH C for the sum of the two solutions, i.e., one needs to normalize the solution with respect
to the future event horizon to see decay. This is the future gauge or teleological normaliza-
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tion. While the pure gauge solution required to do this has to be determined dynamically by
solving an ODE along the event horizon, it can still be bounded uniformly by initial data.

The reason that going to the teleological normalization is required to prove decay
can be understood from the fact that while the (linearized) Bianchi equations capture the
hyperbolic nature of the Einstein equations, the (linearized) null structure equations also
involve transport equations. Solutions to transport equations do generally not decay to zero
if integrated from initial data. On the other hand, integrating them backwards from the future
(in this case, the event horizon) with zero data captures the decay (provided the right-hand
side of the relevant transport equation has been shown to decay sufficiently fast, which is,
for instance, the case if it involves a Teukolsky quantity). Geometrically, one may say that in
the initial data normalized gauge the solution converges to a linearized Kerr but not in the
standard double null coordinates.

We note that while we have described parts of the argument for the case aD 0 (which
is the one treated in [58]), the double null approach can be pursued also in the case jaj �M

by treating the errors arising from non-vanishing a in the transport equation perturbatively
and using Theorem 10. This is a problem that is likely to be solved in the near future and
would provide a complete proof of Theorem 9 in double null gauge. Finally, generalizing
carefully the transformations (2.22), linear stability of the Reissner–Nordström solution to
the coupled Einstein–Maxwell system has been proven in [92].

2.4.2. Generalized harmonic gauge
Häfner–Hintz–Vasy [100] proved the linear stability of slowly rotating Kerr black

holes for initial data with standard decay bounds on the initial data (roughly pointwise o.r�1/

and o.r�2/). Their proof is based on a precise analysis of the resolvent of a linearized gauge-
fixed Einstein operator. More precisely, when studying the linear stability of gM;a, jaj �M ,
[100] uses the linearization of the generalized harmonic gauge 1-form

W� D g��g
��

�
�.g/��� � �.gM;a/

�
��

�
around g D gM;a, which maps h 7! divg Ggh. One then considers the linearization L of the
quasilinear wave operator

P.g/ WD Ric.g/ � .ı�
g C q/W

around g D gM;a. Here q is a suitable stationary bundle map (i.e., differential operator of
order 0) from 1-forms to symmetric 2-tensors, used to implement constraint damping below.
This linearization maps

L W h 7! DgRic.h/ � .ı�
g C q/ divg Ggh:

The principal part of L is �
1
2
�g , and thus the Fredholm theory for the spectral analysis

for the scalar wave operator sketched in Section 2.3.4 is available for the analysis of OL.�/,
=� � 0, as well. High energy estimates require the verification of a sign condition on the
subprincipal symbol at trapped set (required for application of the black box high energy esti-
mates [77]), whichwas first verified in [104], and which can be shown to amount to polynomial
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bounds for the length of vectors that are parallel transported along trapped null-geodesics (the
latter was proved in the general Kerr case in [159]).

Existence of the resolvent OL.�/�1 for nonzero � then reduces to the problem of
proving mode stability for metric perturbations; moreover, the behavior near � D 0 is com-
plicated due to the presence of stationary solutions (linearized Kerr metrics in a suitable
gauge). Furthermore, it is (for robustness under perturbations, and also for eventual nonlin-
ear purposes) important to not require the metric perturbations h to satisfy the linearized
constraint equations at the Cauchy hypersurface t� D 0. The analysis of OL.�/h D 0 (i.e.,
L acting on the metric perturbation e�i�t�h, with h outgoing) then starts off with the (lin-
earized) second Bianchi identity, which gives the decoupled equation

divg Gg.ı�
g C q/� D 0; � D divg Gg.e�i�t�h/:

This is a wave equation for the 1-form �, and for q D 0 it is indeed the tensor wave operator
on 1-forms. The latter satisfies mode stability by direct calculation similarly to [114], except
for the presence of a 0-mode corresponding to the Coulomb solution. The purpose of the
stationary map q is to perturb this stationary solution away, thus giving mode stability for
divg Gg.ı�

g C q/ in the full closed upper half plane.7 Thus, any mode solution h of OL.�/

with =� � 0 automatically verifies the linearized gauge condition

� D divg Gg.e�i�t�h/ D 0: (2.26)

Therefore, we also have a solution of the linearized Einstein equation without gauge condi-
tion,

DgRic.e�i�t�h/ D 0: (2.27)

Mode stability for this equation is well-known in the Schwarzschild case .M; a/ D .M0; 0/

[141,166,177,206,211], and [100] proceeds perturbatively off this case. Concretely, for nonzero
� , metric mode stability is the statement that e�i�t�hD ı�

g.e
�i�t�!/ is a symmetric gradient

(i.e., a Lie derivative when using vectors instead of 1-forms). Plugging this into the gauge
condition (2.26) gives another wave equation for the gauge potential ! itself,

divg Ggı�
g.e

�i�t�!/ D 0: (2.28)

Mode stability for this equation implies that ! D 0 and hence h D 0. This proves mode
stability for L in the punctured upper half-plane.

For stationary perturbations (� D 0), the mode stability for (2.27) in the Schwarz-
schild case implies that h is the sum of a linearized Kerr metric and a pure gauge term (i.e.,
a symmetric gradient). The gauge condition (2.28) then further restricts the pure gauge term
ı�
g! to a finite-dimensional space. Particular instances of such pure gauge terms, constructed

7 In fact, one can then show that solutions of divg Gg .ı�
g C q/� D 0 with sufficiently smooth

and decaying initial data decay in time to 0. Therefore, initial violations of the linearized
gauge condition � D 0 decay in time; equivalently, initial violations of the linearized
constraint equations for h decay in time. Hence, the addition of q implements constraint
damping, the roots of which go back to the numerics literature [31,98].
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in [100, §7], are symmetric gradients of asymptotic (as r ! 1) translations ! D dxi C o.1/

(note that dxi is a Killing 1-form for the Minkowski metric) and asymptotic rotations. There
are also generalized zeromodes which are first-order polynomials in time, arising from gauge
potentials ! which are asymptotic Lorentz boosts.

We stress that it is only at this point—i.e., where one needs to know the structure
(pure gauge, or linearizedKerr) ofmode solutions of the linearized Einstein vacuum equation
for individual values of � 2 C—that the highly delicate reductions of the linearized Einstein
equations to scalar “master equations” are used (here the Regge–Wheeler [177] and Zerilli
[211] equations). The a priori information, obtained by microlocal means which only rely on
qualitative features of the null-geodesic flow, of uniform Fredholm properties of OL.�/ acting
between suitable function spaces is then easily upgraded to invertibility, regularity in � , and
the precise structure at � D 0.

Altogether, one can then show that in the Schwarzschild case OL.�/�1 has a second-
order pole at � D 0 with explicit singular terms, plus a Hölder-regular remainder. This
structure persists in the slowly rotating Kerr case, essentially since one can construct a space
of generalized zero modes for small jaj of the same dimension as for a D 0. (We remark
that this construction requires, besides knowledge of the Kerr family of solutions, only soft
perturbative arguments, and does not involve the Teukolsky equation.) Altogether, we have

Theorem 13 ([100]). Let t� be a time function with level sets transversal to the future event
horizon and equal to the level sets of the Boyer–Lindquist time function t for large r . Con-
sider a neighborhood M D Œ0;1/t� �†, † D Œ2M0 � ";1/ � S2, of the domain of outer
communications of the massM0 Schwarzschild black hole restricted to the causal future of
the Cauchy surface t� D 0. Let ˛ 2 .0; 1/, and let h0; h1 2 C1.†IS2T �

†M/ be Cauchy data
with

jh0j . r�1�˛; jh1j . r�2�˛;

and similar bounds for 8 derivatives along r@r and spherical vector fields. For .M; a/ close
to .M0; 0/, let h denote the solution of the initial value problem

LM;ah D 0; .h;L@t�
h/jt�D0 D .h0; h1/:

Then there exist .M 0; a0/, and a vector field V lying in a 7-dimensional space VM;a of vector
fields on M so that

h D
d
ds
gMCsM 0;aCsa0 jsD0 C LV gM;a C Qh;

where j Qhj . t�1�˛
� in spatially compact regions. The space VM;a is spanned by asymptotic

translations and boosts, and an additional explicit vector field. (The latter vector field can
be eliminated by a small change of the gauge condition. Asymptotic rotations are the same
as infinitesimal changes of the black hole rotation axis.)

If the data .h0; h1/ arise from initial data for the linearized Einstein equations (i.e.,
satisfying the linearized constraint equations), this implies the linear stability of slowly rotat-
ing Kerr black holes. However, Theorem 13 is significantly more general, as it applies to
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general data .h0; h1/; this type of generality was crucial in the non-linear stability proof of
Kerr–de Sitter black holes, see Section 2.5.2.

Note that, unlike in the double null gauge, the linearized metric h typically grows
linearly in time due to the existence of asymptotic Lorentz boosts in the space VM;a. Decay
to a linearized Kerr metric can only be seen after subtracting a suitable element of the 7-
dimensional space LV gM;a, V 2 VM;a, of pure gauge solutions.

There have also been a number of works which employ vector field methods to prove
the linear stability of the Schwarzschild metric in generalised harmonic gauges (for initial
data satisfying the linearized constraints), see [124–126,131].

2.4.3. Other approaches: outgoing radiation gauge
Andersson–Bäckdahl–Blue–Ma [5] gave the first proof of linear stability, assum-

ing strong decay on the initial data. Their strategy is to assume suitable decay for solutions
.1/
˛ as;

.1/
˛ as (called  ˙2 in [5] in accord with classical Newman–Penrose notation) of the

Teukolsky equations and recover the full metric perturbation via successive integrations in
a suitable hierarchy. In order to accomplish this, [5] employs the outgoing radiation gauge.8

Decay for the metric perturbation is proved via weighted Hardy inequalities. Special care has
to be taken near null infinity, where the Teukolsky–Starobinsky identities (fourth-order dif-
ferential identities relating C2 and �2) play a key role for ensuring integrability at various
stages in the hierarchy. In order to obtain decay for the metric coefficients, the initial data for
the metric perturbation are required to have strong decay (roughly pointwise o.r�7=2/ and
o.r�9=2/ decay for the linearized metric and second fundamental form). This in particular
forces the linearized mass and angular momentum of the final linearized Kerr solution to
vanish [2], and hence a key feature of the (nonlinear) stability problem is suppressed.

Given that decay results [57,157] for the Teukolsky equation on slowly rotating Kerr
backgrounds are known (cf. Theorem 10 above), [5] gives an unconditional proof of the linear
stability (for strongly decaying data) in this regime.

2.5. Nonlinear stability
The first nonlinear stability result for any family of black hole spacetimes without

symmetry assumptions was proved for slowly rotating Kerr–de Sitter black holes (ƒ > 0)
by Hintz–Vasy [115]. The results in the asymptotically flat Kerr setting are not quite yet
complete, though stability under special symmetries [139] as well as the full codimensional
stability of the Schwarzschild family [59] are known. See also [137,138,140] for progress in the
slowly rotating case. Finally, we refer the readers to [59, §IV.2] for a discussion of (necessarily
codimension restricted) nonlinear stability statements that one could attempt to prove in the
extremal case.

8 The metric perturbation is trace-free (with respect to the background Kerr metric) and has
vanishing contraction with the ingoing principal null vector field.
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2.5.1. The case ƒ D 0

With the linear problem resolved, the road is open to address the non-linear problem,
that is to prove that the subextremal Kerr family is nonlinearly stable. Note that perturbations
of Schwarzschild initial data are generally expected to converge to a Kerr solution with small
angular momentum, so stability of the Schwarzschild family cannot hold without further
restrictions on the data. However, we have the following result, which proves the nonlinear
stability of Schwarzschild for the subset of data for which it actually holds:

Theorem 14 ([59]). Nonlinear stability holds for the Schwarzschild spacetime provided the
initial data lie on a codimension 3 submanifold of the moduli space of initial data.

We emphasize again that the codimension 3 assumption is necessary because the
Schwarzschild family is contained as the a D 0 subcase of the Kerr family. Outside the
codimension 3 submanifold, one expects solutions to necessarily asymptote to a Kerr solu-
tion with a ¤ 0, since the dimension of linearized Kerr solutions fixing the mass is equal
to 3 in our parametrization. It is in this sense that Theorem 14 encompasses all data near
Schwarzschild that converge back to a member of the Schwarzschild family. We note that
Theorem 14 had been proved previously for polarized axisymmetric initial data in [139].
That work already contains some of the difficulties of the full problem. See also [140] for
further discussion of their approach to the problem.

While capturingmany of the nonlinear difficulties such as identifying themass of the
final solution, constructing teleological gauges and identifying a version of the null condition
in them, the fact that the final state in Theorem 14 is Schwarzschild simplifies considerably
both the algebra and the analysis. In particular, Theorem 14 can be (and is) proven using
entirely physical space based techniques.

Before we provide a brief overview of the main ideas in the proof, we recall items
(i)–.iii/ from the characterization of nonlinear stability in Section 2.2. We remark that in
the proof of Theorem 14, the global closeness of statement .ii/ can be expressed at the top
order energy level with respect to the same quantity that measures a suitable “initial” energy
quantity, i.e., without loss of derivatives. In this sense, Theorem 14 contains a true orbital sta-
bility statement. Note also that Theorem 14 is indeed the nonlinear analogue of Theorem 12
as the latter can be viewed as the statement of linear asymptotic stability of Schwarzschild
up to a three-dimensional space of initial data, which, in the linear problem, can be directly
identified at the level of initial data.

Theorem 14 is proven by expressing the equations in a double null gauge and hence
the natural setup is to prescribe characteristic initial data intersecting in a topological 2-
sphere. There is a well-established procedure, indicated at the end of Section 1.3, to prescribe
initial data in this setting. We now decompose the space of initial data into disjoint 3-
parameter families D D D0 C

P1
mD�1 �mD

Kerr
m , where D0 varies over a suitable space

and is of size "0. Here DKerr
m essentially prescribes the three ` D 1 modes of the torsion on

the sphere of intersection and the vector .��1; �0; �1/ is a measure of the size of the angular
momentum of the data. We prove that given any d 2 D0 we can find a .�?�1; �?0 ; �?1/ such
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that the corresponding data setD converges to Schwarzschild. We emphasize that the vector
.�?�1; �

?
0 ; �

?
1/ (as well as the final mass of the solution) has to be determined teleologically,

i.e., from the entire dynamics of the solution.
We now come to the main ideas of the proof. One crucial ingredient, which we

already saw in the linear problem, is the use of a double null gauge which is normalized
from the future, i.e., certain Ricci coefficients have to take their Schwarzschild (with mass
to be determined!) values on the asymptotic hypersurfaces. The construction of such future
gauges, which geometrically corresponds to finding a nearby sphere and foliating the ingoing
and outgoing light cones in a prescribed fashion, is based on a implicit function theorem type
argument. This uses that in the linear case we can prescribe the desired values by adding a
pure gauge solution. However, the nonlinear argument is considerably complicated by the fact
that the `D 0 and `D 1modes (mass and angular momentum) require special treatment and
couple nonlinearly into the iteration.

Having proven the existence of the future gauges, we can consider a solution in the
initial data gauge with coordinates .udata; vdata; �data/ or in the future gauge with coordinates
.ufut; vfut; � fut/ with relations of the form ufut D udata C f1.u

data; vdata; �data/, etc., in the
region where both gauges are defined. As in the linear problem, we can estimate the f ’s
provided estimates on the Ricci and curvature components are available in both of the gauges.

The proof proceeds by a large scale bootstrap argument along the following lines.
Given our 3-parameter family, we consider the largest uf > 0 such that in the future gauge
normalized at the sphereS2uf ;v1

the following bootstrap assumptions hold in the correspond-
ing bootstrap region M0.uf / indicated in the picture below:

(I) We have jfi j � " in the shaded (“near initial data”) region of u-width � 1.
In particular, the ufut D 0 cone is "-close to the cone udata D 0.

(II) We have decay estimates for Ricci coefficients and null curvature compo-
nents minus their Schwarzschild value (which is determined from the spher-
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ical average of the curvature component � on S2uf ;v1
) in the future gauge,

for instance,ˇ̌̌̌
r2

�
� tr� � r�1

�
1 �

2M.uf /

r

��ˇ̌̌̌
�
"

u
;

ˇ̌
r4˛

ˇ̌
�
"

u
; etc.; (2.29)

as well as a hierarchy of higher order estimates (in L2 on spheres, null-
cones and spacetime regions) for all E� 2 R.uf / such that j.r5 =curlˇ/`D1.uf ;
v1/j �

"
uf

with equality on @R.uf /. (That is, for every uf we define a cor-

responding set R.uf / of admissible E� which satisfy this.)

The main task then is to show that uf D 1 by improving the above bootstrap assumptions.
This proceeds along the following lines:

(1) One shows that in the shaded region the curvature components ˛, ˛ defined with
respect to the future double null gauge agree with the components defined in the
initial data double null gauge up to quadratic error terms. This is a manifesta-
tion of the fact that ˛ is gauge invariant in linear theory, that is, comparing the
˛’s in the two gauges only produces terms quadratic in f which by bootstrap
assumption .I / are indeed O."2/.

(2) One estimates ˛ and ˛ in the future gauge from their (now nonlinear) Teukolsky
equations. The initial data are "0 CO."2/ by the previous step, with "0 denoting
the size of the initial data. Here the main challenge beyond linear theory is to
estimate the nonlinear error terms, which can be shown to exhibit a version of
the null condition. This improves the bounds on ˛ and ˛ from "

u
to "0C"2

u
.

(3) One estimates all Ricci and curvature coefficients in the future gauge from the
improved bounds on ˛ and ˛ and the gauge conditions on the asymptotic hyper-
surfaces. This improves all estimates from "

u
to "0C"2

u
. This step involves a

number of technical difficulties most of which are, however, present (in a milder
form) in the linear theory.

(4) One improves jf j � " from the fact that by the previous step one now has,
in the initial data region, bounds on the Ricci coefficients in the future gauge
.� "0 C "2/ and bounds on these coefficients in the initial data gauge (by Cauchy
stability). Since f can be estimated from these, we deduce jf j � "0 C "2. This
improves .II/. Note that the fact that the initial data remains close to the old
initial data is a nonlinear version of the fact that the pure gauge solution one
needed to add in Theorem 12 was uniformly bounded by initial data.

(5) Having improved all the estimates, we can extend the spacetime slightly to
retarded time uf C ı and construct a new future gauge from a new future sphere.
The key now is to show thatR.uf C ı/¨ R.uf /, i.e., that the set of admissible
� of our three parameter family shrinks. This strict monotonicity can be estab-
lished by carefully examining the evolution of angular momentum between the
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“old” sphere and the “new” sphere. Finally, it is the topological degree of the
map from the space of �’s (i.e., R.uf /) to the space of angular momenta in
the future that is bootstrapped and ensures that for every uf the set R.uf / con-
tains a tuple .��1; �0; �1/ that gets mapped to zero angular momentum. This in
turn implies that we can construct a sequence .uf /i ! 1 with corresponding
�i ! �? 2

T
R..uf /i /.

2.5.2. The case ƒ > 0

The proof of the nonlinear stability of slowly rotating Kerr–de Sitter (KdS) black
holes by Hintz–Vasy [115] applies spectral theoretic and microlocal methods to the analysis
of a variant of the quasilinear wave equation (1.5). Consider a neighborhood

M WD Œ0;1/t� �†; † D Œr1; r2� � S2 .r1 D r� � "; r2 D rC C "/

of the black hole exterior for a subextremal Schwarzschild–de Sitter metric gƒ;M0;0 in the
causal future of a spacelike hypersurface t�1� .0/Š†; here, r1; r2 are the radii of the event and
cosmological horizon, respectively, and t� is a time function whose level sets are transversal
to the future event and cosmological horizons. (See also Figure 9.) For .M; a/ near .M0; a/,
one can consider the KdS metric gƒ;M;a as a stationary metric on M with smooth depen-
dence on .M; a/; in particular, future affine complete pieces of the event and cosmological
horizons of these nearby KdS black holes are contained in M still.

The desired asymptotic stability statement suggests writing the spacetime metric g
as g D gƒ;M;a C Qg and regarding the final black hole parameters .M; a/ as unknowns; the
gravitational wave tail Qg is an unknown as well and required to be exponentially decaying.
The starting point for the gauge is the generalized harmonic gauge 1-form with coefficients
W.g/� D g��g

��.�.g/�
��

� �.g0/�
��
/ measuring the failure of .M; g/ ! .M; g0/ to be a

wave map; here we take
g0 D gƒ;M0;0:

Since a KdS metric gƒ;M;a for .M; a/ ¤ .M0; 0/ has no reason to satisfy the gauge con-
dition W.gƒ;M;a/ D 0, one should really use the gauge condition W.g/ �W.g0

ƒ;M;a/ D 0

depending on the unknown final parameters .M; a/; here

g0
ƒ;M;a D �gƒ;M0;0 C .1 � �/gƒ;M;a

interpolates between gƒ;M0;0 for t� � 1 and gƒ;M;a for t� � 2. For further flexibility, one
allows for a gauge source 1-form # with compact support (or appropriate decay) in time; #
will lie in a suitable finite-dimensional space of 1-forms.

The nonlinear equation solved in [115] is then

P.M; a; Qg; #/ WD Ric.g/ �ƒg � .ı�

g0
C q/

�
W.g/ �W.g0

ƒ;M;a/ � #
�

D 0;

g D g0
ƒ;M;a C Qg: (2.30)

Here, the stationary bundle map q is chosen so as to implement constraint damping, i.e., so
that homogeneous solutions of the wave operator divg0 Gg0.ı�

g0
C q/ decay exponentially

3961 Recent progress in general relativity



in time (i.e., it satisfies mode stability in an upper half plane =� � �˛ for some ˛ > 0).
Considerable effort is required to show the existence of such a q; see [115, §8], where q is
defined using a large parameter, and the required mode stability is proved using asymptotic
analysis in the large parameter.

In order to analyze (2.30), consider first the linearization of the right-hand side
of (2.30) in g around g D g0 D gƒ;M0;0: it maps

L W h 7! Dg0Ric.h/ �ƒh � .ı�

g0
C q/ divg0 Gg0 :

The spectral and mode analysis of this equation is in parts very close to that in the Kerr
case discussed previously, namely one combines constraint damping with the metric mode
stability for linearized perturbations of the Schwarzschild–de Sitter metric [141]. Unlike in
the Kerr case, however, mode stability for the 1-form wave equation

divg0 Gg0.ı
�

g0
!/ D 0 (2.31)

(governing those gauge potentials ! whose symmetric gradients satisfy the linearized gauge
condition) is not known, and indeed can be shown to fail in the de Sitter case (i.e., without
the presence of a black hole) due to the presence of a finite number of resonances in the
upper half-plane.9

Thus, solutions of Lh D 0 have a partial resonance expansion (ignoring multiplic-
ities) of the schematic form

h.t�; x/ D

�
d
ds
gƒ;M0CsM 0;sa0 jsD0 C [gauge correction]

�
C

NX
jD1

cj ı
�

g0
.e�i�j t�!j /

C O.e�˛t�/;

where the �j are the finitely many modes with =�j � 0 corresponding to the resonances
of the wave operator in (2.31); the !j are the corresponding mode solutions, and the cj are
suitable complex scalars depending on the initial conditions of h. The terms are then handled
as follows:

(1) The gauge correction is a pure gauge term ensuring that the first summand on
the right satisfies the linearized gauge conditionDg0W D 0; it would be absent
if we hadW.gƒ;M;a/ D 0 for all .M; a/ near .M0; 0/. Changing the final black
hole parameters from .M0; 0/ to .M0 CM 0; a0/, and correspondingly changing
the final gauge condition in (2.30) gives rise to essentially the same term.

(2) The nondecaying pure gauge contributions from the terms ı�

g0
.e�i�j t�!j / can

be eliminated for late times t� by an (explicit) change of the gauge condition,
i.e., by solving

Lh � .ı�

g0
C q/# D 0

9 This is another reason why the choice of q in (2.30) requires large parameter techniques: q
cannot be small if it is to shift these resonances all the way into the lower half-plane.
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with a suitable (explicit, depending on the cj and !j ) gauge source 1-form # ;
there is one such 1-form for each of the N pure gauge mode solutions.

(3) The O.e�˛t�/ tail contributes to the exponentially decaying tail Qg.

This can be rephrased as follows: the linearization of P.M;a; Qg; #/ at .M0; 0; 0; 0/

in the argument Qg is surjective if one supplements the range by a finite-dimensional space
consisting of

(1) linearized black hole parameter (and associated gauge) changes—i.e., the range
of the linearization of P in .M; a/; and

(2) gauge modifications—i.e., the range of the linearization of P in # acting on an
N -dimensional space of 1-forms # .

Perturbative arguments prove this surjectivity for .M;a; Qg;#/ near .M0; 0; 0; 0/. Thus, small
data initial value problems for P.M; a; Qg; #/ D 0 can be solved using a Newton iteration
scheme; due to a loss of derivatives due to trapping, [115] really uses a Nash–Moser iteration
in the simple form given by Saint-Raymond [185]. Once one has a solution of the Cauchy
problem for P.M; a; Qg; #/ D 0, the standard arguments sketched in Section 1.2 imply that
g D g0

ƒ;M;a C Qg is a solution of the initial value problem for Ric.g/ �ƒg D 0.

Theorem 15 ([115]). Let ƒ > 0 and Mi > 0, ai 2 R, jai j � Mi . Let t� (given by
t� D t � F.r/ in Boyer–Lindquist coordinates for suitable F ) be a time function whose
level sets are transversal to the future event and cosmological horizons. Let † � t�1� .0/

denote a spacelike hypersurface which extends a bit beyond the event and cosmological
horizons. Suppose g; K are solutions of the constraint equations (1.3) which are close
(in the norm of H 21.†I S2T �†/) to the initial data at † of the metric gƒ;Mi ;ai . Then on
M D Œ0;1/t� �† there exists a solution g of the initial value problem for Ric.g/�ƒg D 0

which decays exponentially fast to a Kerr–de Sitter metric: there existMf > 0 and af 2 R,
with .Mf ; af / close to .Mi ; ai /, and ˛ > 0 so that

g D gƒ;Mf ;af C Qg; Qg D O.e�˛t�/:

In particular, by the stable manifold theorem, the event and cosmological horizons
of the perturbed spacetime .M; g/ are exponentially decaying (as t� ! 1) perturbations of
the horizons of gƒ;Mf ;af ; in other words, .M; g/ contains these two future affine complete
horizons. For partial results on the stability of the cosmological (asymptotically de Sitter)
part of Kerr–de Sitter spacetimes, see [190,191].

To complete the discussion of the proof of Theorem 15, we explain a few aspects
of the (non-)linear analysis on asymptotically Kerr–de Sitter spaces. The nonlinear iteration
scheme used in the proof of Theorem 15 involves the global solution, at each step, of a linear
wave equation

LM;a; Qg;#h D [nonlinear error term]: (2.32)

Here LM;a; Qg;# is a wave operator (acting on symmetric 2-tensors) on the spacetime M

equipped with a metric gƒ;M;a C Qg that settles down exponentially fast to a KdS metric.
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Thus, the spectral methods which are effective for providing sharp asymptotics of stationary
problems need to be supplemented by estimates on the nonstationary spacetime which are
effective for proving the sharp regularity of linear waves. Roughly speaking, given a solu-
tion h of the linear wave equation (2.32) which, together with a large number of derivatives,
obeys a weak exponential bound hD O.eCt�/ for some fixedC (such estimates are discussed
below), one can rewrite this equation as

L0h D � QLh;

whereL0 D LM;a;0;0 is the stationary part and QLD LM;a; Qg;# �LM;a;0;0 the (second order)
remainder with exponentially decaying O.e�˛t�/ coefficients. Spectral methods for L0 thus
give precise asymptotics for h up to errors with an extra e�˛t� amount of decay relative to
the a priori information on h, i.e., QLh D O.e.C�˛/t�/. Full asymptotics for h can then be
obtained by iteration.

It thus remains to show (arbitrarily) high regularity of h in a space allowing for a
fixed amount of exponential growth. Energy estimates give a simple exponential bound in
H 1. Higher regularity of h (in the same exponentially weighted space in time) is then proved
by microlocal means: regularity of the initial data is propagated using the Duistermaat–
Hörmander theorem for finite times; uniform control as t� ! 1 requires the use of radial
point estimates (on exponentially weighted function spaces) near the horizons [111], and
simple (since we are allowing for exponential growth of solutions) estimates at the trapped
set [104, 110]. We remark that the use of Nash–Moser iteration requires the proof of tame
versions of all these microlocal estimates; these were first given in [112].

Theorem 15 was subsequently extended by Hintz to the setting of charged black
holes:

Theorem 16 ([105]). The family of Kerr–Newman–de Sitter black holes with subextremal
charge and small angular momenta is nonlinearly asymptotically stable. That is, the space-
time metric and electromagnetic 2-form evolving from a small perturbation of the initial data
of such a Kerr–Newman–de Sitter black hole settle down exponentially fast to the metric and
electromagnetic 2-form of a nearby Kerr–Newman–de Sitter metric in a suitable gauge (gen-
eralized harmonic gauge for the metric, generalized Lorenz gauge for the electromagnetic
field).

Previously, Hintz–Vasy [112] had shown the solvability of quasilinear wave equations
on slowly rotating Kerr–de Sitter spacetimes (by combining microlocal and spectral methods
as sketched above) assuming the absence of modes in the closed upper half-plane, following
earlier work on asymptotically de Sitter spacetimes [102,111].

2.5.3. The case ƒ < 0

As in the case of the maximally symmetric solutions in Section 2.1.3, the ƒ < 0

case (with reflective boundary conditions) may turn out to be the most difficult and consti-
tutes a major outstanding problem in the field. The slow logarithmic rate obtained for the
toy problem (see Section 2.3) lead [120] to conjecture nonlinear instability. However, there
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could be subtle cancelations entering the nonlinear dynamics that allow for some version
of orbital stability. Note that the nature of the slow decay (which disappears if only finitely
many modes are taken into account) makes detecting an instability in numerical simulations
difficult. Finding an appropriate nonlinear toy problem where some of the difficulties can be
understood seems to be a first step to attack this problem.

3. Singularities

We discuss results concerning singularities occurring in the interior of black holes
in Section 3.1. Recent progress on naked singularities is discussed in Section 3.2.

3.1. The interior of black holes
Whereas the exterior (or, indeed, suitable neighborhoods of the exterior) of subex-

tremal Kerr black holes is conjectured to be stable, the situation is different for the black
hole interior. Note in particular that Kerr black holes with nonzero angular momentum have
a nonempty Cauchy horizon, whereas Schwarzschild black holes have an entirely different
interior structure, namely they have a terminal spacelike singularity across which the metric
cannot be extended even as a continuous Lorentzian metric [188]. Regarding thus the interior
structure rotating Kerr black holes as a reference point, a heuristic due to Simpson–Penrose
[195] suggests that the Kerr Cauchy horizon is unstable, in the sense that for generic per-
turbations of the initial data the spacetime metric becomes singular at the Cauchy horizon.
This is the content of Penrose’s Strong Cosmic Censorship conjecture. The basic idea is that
linear waves falling into the black hole are more and more blue-shifted as one approaches
the Cauchy horizon, which when upgraded to the nonlinear setting is suggestive of the for-
mation of a singularity. This heuristic also suggests a direct relationship between decay of
perturbations in the black hole exterior and the regularity of the metric near the Cauchy
horizon.

The precise notion of singularity to be used depends on the context. One notion [44]

asks for the nonexistence of an extension of the spacetime with square integrable Christoffel
symbols since square integrability is sufficient to make sense of the Einstein equations in
a weak sense; other often used notions are C2-inextendibility, as it relates directly to the
blow-up of curvature invariants such as the Kretschmann scalar, or C0-inextendibility of the
metric. The current state-of-the-art in the vacuum case is the following regularity theorem;
its proof uses the double gauge (which is particularly convenient also for locating the Cauchy
horizon):

Theorem 17 ([60]). Assume quantitative decay rates10 of the metric and second fundamental
form, along a spacelike hypersurface†0 just beyond the event horizon, to the data of a subex-

10 These assumptions are compatible with the conjectured nonlinear stability of the Kerr
family.
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tremal Kerr metric with nonzero angular momentum. Then the future development of these
data has a nontrivial Cauchy horizon across which the metric is continuously extendible.

Related regularity results for the linear scalar wave equation were proved by Franzen
[85,86] and Hintz [103]. Reading Theorem 17 as a statement about the stability of the interior
structure of Kerr black holes, one may consider the analogous problem for the stability of
the Schwarzschild singularity (which necessarily requires working in a restricted symmetry
class to disallow Kerr behavior). This was tackled by Alexakis–Fournodavlos [3] in polarized
axial symmetry; see also [84] on the behavior of linear waves in the Schwarzschild interior.

For de Sitter black holes, waves decay in the exterior at an exponential rate, and
correspondingly the regularity of metrics or linear scalar waves is expected to be higher at
the Cauchy horizon. Quantitatively, linear waves with energy decaying like O.e�˛t�/ have
almostH 1=2C˛=�-regularity across the Cauchy horizon (and arbitrary regularity in the angu-
lar variables), where � is the surface gravity of the Cauchy horizon [113] (see also [49]). This
regularity can exceed H 1 for certain black hole parameters [34]; heuristically this corre-
sponds to the expectation that the analogue of Theorem 17 in such settings yields spacetimes
which, even upon perturbation, can be extended with square integrable Christoffel symbols.
For rigorous results in this direction, see [50–52].

The first result on the existence of singularities was obtained for the linear scalar
wave equation on Reissner–Nordström spacetimes with nonzero charge by Luk–Oh [150];
the key is the identification of a conserved quantity along null infinity, the nonvanishing of
which allows for the propagation of suitable lower bounds into the black hole interior which
imply blow-up of energy at the Cauchy horizon. The result by Luk–Sbierski [156] proves
blow-up under the assumption of pointwise lower bounds for the linear wave along the event
horizon of rotating Kerr black holes; these lower bounds were proved in [11,106], as discussed
in Section 2.3.3.

Singularity formation at the Cauchy horizon for solutions of the Einstein equation
is thus far only known in spherical symmetry for suitable matter models. Christodoulou [41]

proved the C0-formulation of the Strong Cosmic Censorship conjecture for the Einstein–
real scalar field system in spherical symmetry. In the presence of charge, Dafermos [54] with
Rodnianski [61], on the other hand, proved that C0-regularity does hold for the Einstein–
Maxwell–real scalar field system; this was complemented by the following result on the
genericity of C2-singularities (improved to C0;1 in [189]):

Theorem 18 ([151,152]). TheC2 formulation of the Strong Cosmic Censorship conjecture for
the Einstein–Maxwell–real scalar field system in spherical symmetry (with 2-ended asymp-
totically flat initial data on R � S2) is true.

On charged Reissner–Nordström–AdS black hole spacetimes (thus ƒ < 0), the
behavior of linear waves near the Cauchy horizon was understood only recently in a series of
works by Kehle who provedC0 bounds [135] and generic energy blow-up [134,136] depending
on the validity of a diophantine condition on the quasinormal modes. Part of the difficulty
here is the particularly slow (logarithmic) decay on the exterior.
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3.2. Naked singularities
The singularities discussed in Section 3.1—be they spacelike or null—all share the

feature of being “behind” an event horizon of a black hole exterior possessing a complete null
infinity. Penrose’sWeakCosmic Censorship conjecture asserts that this is generically the case
for solutions arising from asymptotically flat initial data: singularities always occur in the
causal future of an event horizon and can thus not communicate with asymptotic observers
at infinity. In [42,43] Christodoulou showed that the word “generic” is indeed necessary. He
constructed solutions to the spherically symmetric Einstein scalar field system containing
a naked singularity, i.e., spacetimes whose Penrose diagram looks as in Figure 11. In par-
ticular, the cone N is future null geodesically incomplete and does not extend to O. This
can be seen by the quantity 2m

r
being bounded uniformly from below by a positive constant

alongN , wherem denotes theHawkingmass and r the area radius function of the spherically
symmetric spacetime. In particular, one cannot make sense of the Einstein equations in any
reasonable sense (in particular, not in the class of bounded variation) on or to the future ofO.

Figure 11

The naked singularity spacetimes of [42]. Here � denotes the center of the spherical symmetry. Null infinity JC

is future incomplete.

Christodoulou’s construction relied on two fundamental ingredients. Let us denote
a solution to the spherically symmetric Einstein scalar field system by .g�� ; r; �/. First,
Christodoulou proved local well-posedness of the system in the (low regularity) class of
BV solutions. Secondly, he introduced the notion of a k-self-similar solution of the system.
This is a solution which admits a 1-parameter group of diffeomorphisms .fa/a�0 such that
f ?a g D a2g, f ?a r D ar and f ?a � D � � k loga. Imposing self-similarity and spherical sym-
metry reduces the Einstein equations to a two-dimensional autonomous dynamical system,
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Figure 12

The naked singularity spacetimes of [183] arising from solving a characteristic initial value problem. Null infinity
JC is future incomplete.

whose dynamics Christodoulou analyzed. A suitable subset of its solutions could be inter-
preted as BV solutions (in fact they have higher regularity) and could be described by the
above Penrose diagram. The key here is that the appearance of naked singularities funda-
mentally depends on k being nonzero.

In recent work, Rodnianski and Shlapentokh-Rothman transformed some of the
above ideas to prove a result for the vacuum equations without any symmetry assumptions:

Theorem 19 ([183]). There exists a large class of solutions to the vacuum Einstein equations
containing naked singularities.

The solutions of Theorem 19 are constructed directly by solving a characteristic
initial value problem as discussed at the end of Section 1.3 leading to a Penrose diagram of
the form shown in Figure 11.

The analogue of Christodoulou’s well-posedness result for BV solutions in the proof
of Theorem 19 is provided by the well-posedness theory that has been developed in recent
years to construct low regularity solutions of the Einstein equations in a double null gauge,
in particular the Luk–Rodnianski theory of impulsive gravitational waves [153,154]11 and the
results of [182]. The idea is that one can construct solutions with very limited regularity in the
null directions u and v but high regularity in the directions tangent to the double null spheres.

The analogue of Christodoulou’s k-self-similar solutions can be described as fol-
lows. Assume momentarily that the solution has already been constructed in double null
coordinates (note that the shift vector b has been put in the other null direction)

g D �2�2.du˝ dv C dv ˝ du/C =gAB.d�
A

� bAdu/.d�B � bBdu/

D �2�2v2�.1 � 2�/�1.du˝ d Ov C d Ov ˝ du/C =gAB.d�
A

� bAdu/.d�B � bBdu/;
(3.1)

11 In this theory, the components ˛ and ˛ are not even in L2u and L2v . They can, however, be
removed from the system of double null equations by a clever renormalization of the system.
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with the two sets of double null coordinates related by Ov D v1�2� for a small and positive �.
We say that a solution is self-similar if the scaling vector field S D u@u C v@v

satisfies LSg D 2g. This directly translates into constraints on the behavior of the metric
functions, for instance �.u; v; �A/ D L�. v

u
; �A/, etc. The �-self similarity now enters by

imposing the manner in which the metric and its derivatives extend to the cone N , i.e., the
hypersurface Ov D 0. A �-self similar solution with � ¤ 0 is defined in a way that the metric
and its derivatives extend regularly (C 1; ) to N in the .u; Ov; �/ coordinates. In the .u; v; �/
coordinates, however, quantities will then be singular with specific powers of v

u
; in other

words, .u; v; �/ coordinates are not regular on N .
To view this more geometrically, note the difference of the generator of the null cone

Ov D 0 given by e3j OvD0 D @u C QbA@�A and the restriction of the scaling field S j OvD0 D u@u. If
we can construct solutions with Qb¤ 0 alongN , then there will be a twisting of the generators
by the self-similar vector field along N . The point now is that if � D 0, then the constraint
equations alongN necessitate QbD 0 onN . If � ¤ 0, then extra terms appear in the constraint
equations which allow for nontrivial Qb; this is the main mechanism for the naked singularity
formation (and for proving the analogue of 2m

r
being bounded below along N ).

The proof itself has twomain steps. The constraint equations need to be solved along
the ingoing and outgoing light cones in a way that is consistent with the self-similarity of the
solution and in a way that the low regularity well-posedness results mentioned earlier still
apply. This requires (as expected from the nongenericity of naked singularities!) fine tuning
of the “free data” (Section 1.3) and a detailed analysis of the regularity at the intersection
of the two light cones. Once the data is constructed and the local well-posedness theorem
applied, the proof proceeds in a large scale bootstrap argument to complete the picture shown
in the Penrose diagram of Figure 12. This uses the familiar scheme of energy estimates for
the curvature components and transport equations for the connection coefficients; however,
many intricate renormalizations (subtracting the singular self-similar part of any dynamical
quantity) and careful choices of v

u
-weights in the estimates are required.

4. Further topics

We briefly discuss two more topics of continued or recent interest: the construc-
tion of multi-black-hole spacetimes, and inverse problems for nonlinear wave equations on
Lorentzian manifolds.

4.1. Black hole gluing
All spacetimes discussed so far contain at most a single black hole. There exist

explicit solutions of the Einstein–Maxwell equations without or with cosmological con-
stant, called Majumdar–Papapetrou [158, 172] and Kastor–Traschen [132] spacetimes. They
are, however, very rigid, being based on a special algebraic ansatz for the metric and electro-
magnetic field, in which the functions controlling the ansatz solve a linear Laplace equation
and indeed are shifted and scaled versions of 1=jxj. These spacetimes can be regarded as
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containing black holes each of which have charge equal to their mass. A construction due to
Brill–Lindquist [30] produces a many-black-hole vacuum solution by similar rigid means.

The first flexible construction of many-black-hole spacetimes with well-controlled
asymptotic structure glues any (finite) number of Kerr–de Sitter black holes into neighbor-
hoods of points on the future conformal boundary of de Sitter space.

Theorem 20 ([107]). Let ƒ > 0. Fix points p1; : : : ; pN 2 S3, masses M1; : : : ; MN , and
angular momenta a1; : : : ; aN ; assume that a certain balance condition holds. (When all aj
vanish, this balance condition reads

PN
jD1Mjpj D 0, where one regards S3 � R4 as the

unit sphere.) Then there exists a solution g of Ric.g/ �ƒg D 0 which near the point pj on
the future conformal boundary of de Sitter space is equal to gƒ;Mj ;aj , and away from the
points pj converges to the de Sitter metric at an exponential rate.

The gluing is accomplished via a backwards (or scattering) construction: a naively
glued ansatz for the metric (which is an exact solution near the pj ) is corrected, in the gluing
region (i.e., leaving neighborhoods of the pj unaffected) [68], in Taylor series at the confor-
mal boundary in a suitable generalised harmonic gauge, and the remaining error is solved
away exactly by solving the gauge-fixed Einstein equation backwards from the conformal
boundary. (See [56] for a loosely related scattering construction for asymptotically Kerr black
holes.) The balance condition arises as an obstruction (cokernel) to the existence of a par-
ticular term in the Taylor expansion which needs to satisfy a linear divergence equation and
yet have support away from the pj .

Previous gluing constructions took place on the level of initial data sets, starting
with Corvino’s seminal work [47,48] on localized gluing and followed by many variants and
generalizations (including wormholes, localized gluing in angular sectors) [35, 46, 128, 129].
For recent gluing results for the characteristic initial value problem, see [16].

Chruściel–Mazzeo succeeded, using Friedrich’s nonlinear stability result [87], in
describing parts of the global structure of the spacetime evolving from the many-black-
hole data of [46]; in particular, they show that the complement of the causal past of suitable
observers at null infinity has several connected components, corresponding to several black
hole regions. Analyzing the structure of compact subsets of these spacetimes is, however,
entirely out of reach; the same is true for the spacetimes evolving from the initial data con-
structed numerically and used in numerical relativity for the study of black hole mergers
[173].

The problem of constructing many-black-hole spacetimes with precise asymptotic
control in the asymptotically flat setting (e.g., two Kerr black holes moving apart at a positive
speed) is an interesting and challenging problem, (variants of) which may well be within
reach in the near future.

4.2. Inverse problems
A rather different topic of investigation concerns the determination of a spacetime

from measuring the propagation of waves inside the spacetime. This is typically phrased as
the problem of reconstructing as large a spacetime region as possible from the Dirichlet-to-
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Neumann map for boundary value problems for (nonlinear) wave equations on domains with
timelike boundary, or from the source-to-solution map for forcing problems. For the linear
wave equation on backgrounds with time-independent metrics, a complete solution of the
first class of problems was obtained by Belishev–Kurylev [20] using a unique continuation
result by Tataru [196].

A beautiful recent insight by Kurylev–Lassas–Uhlmann [143] is that nonlinearities
can actually simplify the solution of the inverse problem, in particular in settings where the
corresponding problem for the linear equation is not yet solved (e.g., for nonstationary met-
rics with nonanalytic time dependence).

The basic idea is that one can produce dimM D 4 small and mildly singular (dis-
torted) plane wave solutions by imposing suitable Dirichlet boundary conditions or specify-
ing suitable forcing terms. If these distorted plane waves interact nonlinearly at a spacetime
point q, a new spherical wave is produced at q in the sense that a (very weak) singularity
emanates from q; this singularity can be detected in the Neumann data or in some open set
of the spacetime where one makes measurements. In this manner, the inverse problem is
reduced to a geometric problem of reconstructing the Lorentzian structure (typically up to
conformal diffeomorphisms) of a causal diamond D � M from the collection of the light
observation sets—intersections of future light cones from points in q with the observation
region. This geometric problem was solved in [143] for measurements in open subsets of M,
and in [109] for measurements on timelike boundaries under a convexity assumption.

There exists by now a large literature on similar inverse problems; here we only
mention the results [142–144] on inverse problems concerned directly with the Einstein–scalar
field and Einstein–Maxwell equations.

5. Conclusions and outlook

The mathematical study of Einstein’s theory of General Relativity is very natural:
the main equation of the theory is “simple” despite being fundamental, i.e., not derived from
a more general (classical) theory via any sort of approximation or averaging. And yet the
structure of its solutions is fantastically rich, which thus provides a large arena for detailed
investigations of various aspects of the theory.

It is a remarkable feature of general relativity that the simplest nontrivial vacuum
spacetime—the Schwarzschild solution or its analogues in the presence of a nonzero cosmo-
logical constant—describes a black hole. (Moreover, even if the path of history was different,
the study of (stationary) perturbations of the Schwarzschild solution could well have hinted
at the existence of the Kerr family!) The study of perturbations of Schwarzschild or Kerr
black holes in the context of the initial value problem can be regarded as a theoretical explo-
ration of the question whether these solutions bear relevance as models for physical black
holes. As discussed in Section 2, this line of investigation led to the discovery of fascinating
geometric and analytic properties of Kerr spacetimes (such as the red-shift effect and super-
radiance, normally hyperbolic trapping, and mode stability), and inspired a vast amount of
work, especially in the theory of partial differential equations, aimed at exploiting these prop-
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erties (such as refined vector field methods, microlocal radial point and trapping estimates,
flexible gauge-fixing methods). The confluence of a large variety of techniques from several
areas of mathematics is the reason both for the recent success and for the excitement in the
field. Given the progress discussed in Section 2, we anticipate a full resolution of the nonlin-
ear stability problem for subextremal Kerr black holes in the near future. But even then will
there be plenty of room for developments, e.g., coupling the Einstein equations with matter.

Analyzing the structure of singularities, whether cosmological, naked, or hidden
behind event horizons of black holes, promises to continue being a fruitful area of research. In
particular, controlling or constructing spacetimeswith singularities requires the development
of tools for the study of large data regimes (i.e., far from explicit model spacetimes), or calls
for deep insights to find settings where large data regimes can still be regarded as perturbative
in some sense.

The study of many-black-hole spacetimes has barely started. Motivated in particu-
lar by the recent experimental discoveries of black hole mergers, as well as by the advanced
understanding of individual black holes, we anticipate this area of research to become promi-
nent soon.

As the field advances, the technical demands will of course increase; however, we
are confident that conceptual insights and the development of further elegant, yet powerful
mathematical tools will act in a counterbalancing manner, thus keeping the field accessible
and vibrant.
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Spin systems with hyperbolic symmetry originated as simplified models for the Anderson
metal–insulator transition, and were subsequently found to exactly describe probabilistic
models of linearly reinforced walks and random forests. In this survey we introduce these
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study, recent probabilistic results, and relations to other well-studied probabilistic models.
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1. Introduction

Classical spin systems with spherical symmetry, such as the Ising and classical
Heisenberg models, are basic models for magnetism and have been studied extensively over
the last century. It is well-understood that the associated symmetry groups play an impor-
tant role, particularly for the critical and low-temperature behaviour of these models. For
example, the discrete Z2 symmetry of the Ising model is spontaneously broken at low tem-
peratures, and in this phase truncated correlations decay exponentially. For models with con-
tinuousO.n/ symmetries, n� 2, low temperature truncated correlations instead decay poly-
nomially, a reflection of the fact that the symmetry is spontaneously broken to an O.n � 1/

symmetry.
Spin systems with hyperbolic symmetry groups are also studied in condensedmatter

physics, primarily because of their relevance for the Anderson delocalisation–localisation
(metal–insulator) transition of random Schrödinger operators and related random matrix
models [38, 69, 74]. A rigorous analysis of the Anderson transition remains an outstanding
challenge; see Section 3. The essential physical phenomena of the Anderson transition are
expected to be captured by the more tractable H2j2 model, a simplified spin system with
hyperbolic symmetry [76]. Surprisingly, the H2j2 model and its natural generalisations are
intimately connected to probabilistic lattice models. The H2 and H2j2 models, motivated by
theAnderson transition [34,72], are exactly related to (linearly) edge-reinforced randomwalks
and vertex-reinforced jump processes, introduced independently in the probability literature
in the 1980s [29] and early 2000s [26]. A similar connection exists between the related H0j2

model and random forests [11, 22]; random forests arose earlier (for example) in connection
with the Fortuin–Kasteleyn random cluster model [43]. The connections between hyperbolic
spin systems and probabilistic phenomena are the main topic of this survey.

More specifically, this survey focuses on probabilistic results in line with the original
physical motivation for studying hyperbolic spin systems. In particular, we focus on results
for Zd (and its finite approximations) for d � 2. Our perspective is that a central role is
played by the continuous symmetry groups of the spin systems. There are other perspectives
available, notably that of Bayesian statistics. While the latter perspective has played a role
in important results, e.g. [4,66], and has found use in statistical contexts [5,6,31], we will not
mention it further. Similarly, there are many related works we cannot discuss; fortunately,
many of these are discussed in recent surveys on closely related topics [49,61,70,71].

To set the stage, the remainder of this introduction recalls the magic formula for
edge-reinforced random walk that led to the discovery of the connections discussed in this
survey. Readers familiar with the magic formula may wish to jump to Section 2, where we
introduce hyperbolic spin systems, or to Section 3, which discusses the physical background.
The probabilistic representations and results for reinforced randomwalks and random forests
are discussed in Sections 4 and 5, respectively, along with questions for the future.

Magic formula for edge-reinforced randomwalk. Fix ˛ > 0, a graphG D .ƒ;E/, and an
initial vertex 0 2ƒ. Edge-reinforced randomwalk (ERRW)withX0 D 0 and initial weights ˛
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is the stochastic process .Xn/n�0 with transitions

PERRW.˛/
0

�
XnC1 D j j.Xm/m�n; Xn D i

�
D

.˛ C L
ij
n /1ij2EP

kWik2E .˛ C Likn /
; (1.1)

where Lijn is the number of times the edge ij has been crossed up to time n (in either direc-
tion). The transition rates change rapidly if ˛ is small, and hence this is called the strong
reinforcement regime. Weak reinforcement refers to ˛ being large. The definition can be
generalised to edge-dependent weights ˛ D .˛ij / in a straightforward manner.

Some intuition about ERRW can be gained by considering the case when G is a
path on three vertices. Call one edge blue, one edge red, and start an ERRW at the middle
vertex. If ˛ D 2 then the law of the vector 1

2
L2n of (half of) the number of crossings of the

edges at time 2n is the law of a Pólya urn. Pólya’s urn is the process that starts with an urn
containing one red and one blue ball, and then sequentially draws a ball and replaces it with
two balls, both of the same colour as the drawn ball. The fundamental fact about Pólya’s
urn is that 1

2n
L2n converges to .U; 1 � U/ where U is a uniform random variable on Œ0; 1�,

i.e. the fraction of crossings of the blue edge is uniform. This can be proven by induction.
Note that for an ordinary simple random walk this limit would be deterministic. A priori it
is hard to predict how ERRW behaves on more complicated graphs. For example, is ERRW
transient if simple random walk is transient? Does the answer depend on ˛?

It turns out that the connection to Pólya’s urn has a far reaching generalisation.
The theory of partial exchangeability guarantees that ERRW is a random walk in random
environment [30]. A consequence is that 1

n
Ln has a distributional limit: it is the law of the

random environment. Coppersmith and Diaconis discovered that one can give an explicit
formula for the limiting law on any finite graph. It is surprising that an explicit formula can
be obtained; this explains why it has been termed the magic formula, see [47,55].

To precisely formulate this result, recall that an environment is a set of conductances
C WE ! Œ0;1/ with

P
ij Cij D 1. Write Cij for the conductance of the edge ¹i; j º and

Ci i D �Ci D �
P
j Cij . Associated to C is a reversible Markov chain (simple random

walk) with transition probabilities Cij =Ci whose law we denote by P SRW.C/
0 when started

from 0.

Theorem 1.1 (Magic formula for ERRW). Let G D .ƒ; E/ be finite. Edge-reinforced
random walk with X0 D 0 and initial weights ˛ D .˛ij / is a random walk in random envi-
ronment:

PERRW.˛/
0 Œ�� D

Z
P SRW.C/
0 Œ�� d�˛.C /: (1.2)

The environment �˛ has density proportional to

C
1
2
0

Q
ij2E C

˛ij�1

ijQ
i2ƒ C

1
2 .˛iC1/

i

p
det0C (1.3)

with respect to Lebesgue measure on the unit simplex in Œ0;1/E , where ˛i D
P
j ˛ij and

det0C is the determinant of any principal cofactor of C .
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Note that the matrix-tree theorem implies the determinant in (1.3) can be written as
a weighted sum of spanning trees, reflecting that this term is non-local.

Sabot and Tarrès showed how to relate the density (1.3) to the H2j2 model that we
will introduce in the next section. This enabled them to leverage powerful results of Disertori,
Spencer, and Zirnbauer to establish the existence of a recurrence/transience phase transition
for ERRW on Zd for d � 3, see Section 4. In Section 5 we show that connection proba-
bilities in the arboreal gas, a stochastic-geometric model of random forests, can be written
in a form very similar to the magic formula. The derivation of this connection probability
formula was inspired by [12, 13], which (at least partially) revealed the inner workings of
the magic formula: horospherical coordinates (hyperbolic symmetry) and supersymmetric
localisation.

2. Hyperbolic spin systems

This section introduces the hyperbolic spin systems that we will discuss, briefly
explains their characteristic symmetries, and discusses how these symmetries manifest them-
selves if spontaneous symmetry breaking occurs. For precise definitions of the Grassmann
and Berezin integrals that are used see, e.g. [13, Appendix A].

The H2j0 model. The H2 D H2j0 model is defined as follows. We consider the hyperbolic
plane H2 realised as H2 D ¹uD .x; y; z/ 2 R3 W x2 C y2 � z2 D �1; z > 0º and equipped
with the Minkowski inner product u � u0 D xx0 C yy0 � zz0. For a finite graphG D .ƒ;E/,
we consider one spin ui 2 H2 per vertex i 2 ƒ and define the action

Hˇ;h.u/ D
ˇ

2

X
ij2E

.ui � uj / � .ui � uj /C h
X
i2ƒ

zi : (2.1)

The action also has a straightforward generalisation to edge- and vertex-dependent weights
ˇ D .ˇij / and h D .hi /, and we will sometimes consider this case. For ˇ > 0 and h D 0,
the minimisers ofHˇ;0 are constant configurations ui D uj for all i; j 2 ƒ. For h > 0, the
unique minimiser is ui D .0; 0; 1/ for all i . The H2 model is the probability measure on spin
configurations whose expectation is given, for bounded F W .H2/ƒ ! R, by

hF iˇ;h D
1

Zˇ;h

Z
.H2/ƒ

Y
i2ƒ

dui F.u/e
�Hˇ;h.u/ (2.2)

where dui stands for the Haar measure on H2 and Zˇ;h is a normalisation. Parametrising
ui 2 H2 by .xi ; yi / 2 R2 with zi D

q
1C x2i C y2i , we can explicitly rewrite (2.2) as

hF iˇ;h D
1

Zˇ;h

Z
.R2/ƒ

Y
i2ƒ

dxi dyi

zi
F.u/e�Hˇ;h.u/: (2.3)

The expectation is only normalisable if h > 0 (or, more generally, hi > 0 for some vertex i )
due to the non-compactness of H2. It is useful to construct a version with h D 0 in which
the field is fixed (pinned) at some distinguished vertex 0. We denote the pinned expectation
with pinning u0 D .0; 0; 1/ by h�i0

ˇ
.
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The H0j2 model. Nowwe consider the Grassmann algebra�ƒ generated by two generators
�i and �i per vertex i 2 ƒ and set

zi D
p
1 � 2�i�i D 1 � �i�i ; (2.4)

and unite these into the formal supervector ui D .�i ; �i ; zi /. Thus ui has two odd (anti-
commuting) components �i and �i and one even (commuting) component zi . We define
ui � uj D ��i�j � �j�i � zizj , which is again an element of�ƒ. These definitions are such
that ui � ui D �1, as in the case of H2 spins. Define

Hˇ;h D
ˇ

2

X
ij2E

.ui � uj / � .ui � uj /C h
X
i2ƒ

zi : (2.5)

For F a polynomial in the �i and �i set

hF iˇ;h D
1

Zˇ;h

Z � Y
i2ƒ

@�i @�i
1

zi

�
Fe�Hˇ;h ; (2.6)

where
R Q

i2ƒ @�i @�i stands for the Grassmann integral, i.e. the top coefficient of the element
of the Grassmann algebra to its right. For example,Z

@�@�e
���

D

Z
@�@�.1 � ��/ D

Z
@�@��� D 1: (2.7)

In (2.6) and (2.7) we have used the convention that smooth functions of commuting elements
of the algebra are defined by Taylor expansion. By nilpotency the expansion is finite, i.e. a
polynomial. The H0j2 model is the expectation (2.6); while this is not a probabilistic expec-
tation, we will soon see that it often carries probabilistic interpretations. Generalisations to
edge- and vertex-dependent weights and pinning are straightforward.

The H2j2 model. The H2j2 model is defined as the H0j2 model was, but now beginning
with three commuting components xi ; yi ; zi . Formally, this means the real coefficients of
the Grassmann algebra �ƒ of the previous section are replaced by smooth functions of xi
and yi . To each vertex i we associate a formal supervector ui D .xi ; yi ; �i ; �i ; zi /, where xi
and yi are commuting, �i and �i are generators of a Grassmann algebra, and

zi D

q
1C x2i C y2i � 2�i�i D

q
1C x2i C y2i �

�i�iq
1C x2i C y2i

: (2.8)

As for H0j2, smooth functions of commuting elements of this algebra are defined by Taylor
expansion, with the expansion now performed about .xi ; yi / 2 R2ƒ; the second equality
of (2.8) is an example.

The definition (2.8) ensures that zi has positive degree zero part, and that
ui � ui D �1 for the super inner product ui � uj D xixj C yiyj � �i�j � �j�i � zizj . As
previously, we define

Hˇ;h.u/ D
ˇ

2

X
ij2E

.ui � uj / � .ui � uj /C h
X
i2ƒ

zi ; (2.9)
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and the associated expectation

hF iˇ;h D
1

.2�/jƒj

Z � Y
i2ƒ

dxidyi@�i @�i
1

zi

�
Fe�Hˇ;h : (2.10)

This integral combines ordinary integration and Grassmann integration and is an instance
of the Berezin integral, sometimes called a superintegral [15]. One computes the Grassmann
integral to obtain the top coefficient of the element of the Grassmann algebra; this is a smooth
function on R2ƒ. One then computes the ordinary Lebesgue integral of this function. Again
the generalisation to edge- and vertex-dependent weights and pinning is straightforward.

Note that (2.10) does not have a normalising factor as in the definitions of the
H2 and H0j2 models, aside from the factor .2�/�jƒj that does not depend on the weights.
Nonetheless, the expectation is normalised: h1iˇ;h D 1 if h > 0. This is due to an internal
supersymmetry in the model, which impliesZˇ;h D .2�/jƒj. More generally, this supersym-
metry implies a powerful localisation principle first used in this context in [34].

Theorem 2.1 (SUSY localisation for H2j2). For F W Rƒ � Rƒ�ƒ ! R smooth and with
sufficient decay, and for all edge- and vertex-dependent weights ˇ D .ˇij / and h D .hi /

with some hi > 0, ˝
F

�
.zi /; .ui � uj /

�˛
ˇ;h

D F.1;�1/: (2.11)

On the right-hand side of (2.11), 1 stands for the vector in Rƒ with all entries equal
to 1, and �1 stands for the jƒj � jƒj matrix with all entries �1. For example, hzi iˇ;h D 1

and hui � uj iˇ;h D �1.

Beyond:Hnj2m. There is a natural generalisation of the abovemodels to the broader class of
Hnj2m models with nC 1 commuting coordinates and 2m anticommuting coordinates. Gen-
eralising Theorem 2.1, there is an exact correspondence between observables of the Hnj2m

and HnC2j2mC2 models, see [11, Section 2]. For developments when n D 0, see [25].

Symmetries. The Hnj2m models have continuous symmetries which are analogues of the
rotations of theO.n/models. For example, for the hyperbolic planeH2, these symmetries are
Lorentz boosts and rotations. The infinitesimal generator of Lorentz boosts in the xz-plane
is the linear differential operator T acting as

T z D x; T x D z; Ty D 0: (2.12)

If H2 is parametrised by .x; y/ 2 R2, then T D z@x . For the hyperbolic sigma models, there
is an infinitesimal boost Ti D zi@xi at each vertex i . Haar measure onH2 and the actionHˇ;0
with hD 0 are invariant under these symmetries, i.e.

P
i TiHˇ;0 D 0. Analogous symmetries

exist for H0j2 and H2j2. If h > 0 then
P
i TiHˇ;h ¤ 0, and the symmetries are said to be

explicitly broken by the external field. Important consequences of these symmetries areWard
identities. For example, when n > 0 (such as for the H2 and H2j2 models), for h > 0,

hzi iˇ;h

h
D

X
j

hxixj iˇ;h; (2.13)
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and when m > 0 (such as for the H2j2 and H0j2 models),
hzi iˇ;h

h
D

X
j

h�i�j iˇ;h: (2.14)

Here xi and .�i ; �i / stand for an even (bosonic) coordinate and pair of odd (fermionic) coor-
dinates when n;m > 0, respectively. The proofs of these identities boil down to integration
by parts; see, e.g. [34, Appendix B] or [11, Lemma 2.3].

Spontaneous symmetry breaking. For the H2 and H2j2 models on a fixed finite graph,
it is a consequence of the non-compactness of the hyperbolic symmetry that, for example,
hx20iˇ;h diverges as h # 0. Similarly, for the H0j2 model on a finite graph, symmetry implies
that hz0iˇ;h tends to 0 as h # 0. One of the main questions of statistical physics is whether
a symmetry survives in the infinite volume limit, or if it is spontaneously broken. To make
this precise, it is convenient to consider a finite volume criterion for this question. Consider
a sequence of finite graphs ƒ that approximate Zd in a suitable way (denoted ƒ ! Zd ),
and let h�iˇ;h be the corresponding finite volume expectations. For the H2 and H2j2 models,
there is spontaneous symmetry breaking (SSB) for a given ˇ if

lim
h#0

lim
ƒ!Zd

˝
x20

˛
ˇ;h

< 1; (2.15)

and similarly for the H0j2 model there is SSB if

lim
h#0

lim
ƒ!Zd

hz0iˇ;h > 0: (2.16)

These notions can be understood by noticing that when the two limits are exchanged the
inequalities do not hold: in finite volume the h D 0 symmetries are restored in the h # 0

limit, while they are not in infinite volume if SSB occurs. There are other notions of SSB
for hyperbolic spin models, but those in (2.15)–(2.16) capture the relevant phenomena from
the perspective of the Anderson transition [34, Section 4.2], as well as from the perspective
of the associated probabilistic models, as will be discussed in Sections 4 and 5.

We briefly summarise when SSB occurs for the H2, H0j2, and H2j2 models. In
d D 2, (2.15) and (2.16) do not hold for any ˇ > 0. These results are versions of theMermin–
Wagner theorem [12,50,56,57,64]. The situation is different in d � 3. For the H2 model, SSB
occurs for any ˇ > 0 as a result of convexity [49]. The H2j2 and H0j2 models, however, have
phase transitions: SSB in the form of (2.15) and (2.16), respectively, occurs in d � 3 if and
only if ˇ is sufficiently large [10,34]. Once SSB is known to occur (or not), it is interesting
and physically relevant to ask more precise questions, e.g. about the asymptotics of the cor-
relation functions hxixj iˇ;h. Sections 4 and 5 will discuss SSB and sharper questions for the
H2j2 and H0j2 models.

Horospherical coordinates. An important tool for the study of the above models are horo-
spherical coordinates for the superspaces Hnj2m with n� 2 [33,34]. For the hyperbolic plane
H2 these are coordinates .t; s/ 2 R2 such that

x D sinh.t/ �
1

2
et jsj2; y D ets; z D cosh.t/C

1

2
et jsj2: (2.17)
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For the space Hn, these coordinates generalise by taking s D .si / 2 Rn�1. For the super-
spaces Hnj2m, in addition there are m pairs Grassmann coordinates  D . i /, N D . N i /

such that

x D sinh.t/ �
1

2
et jsj2 � et N ; y D ets; � D et ; � D et N ;

z D cosh.t/C
1

2
et jsj2 C et N ;

(2.18)

where we are using the abbreviation  N D
Pm
iD1  

i N i if there are m Grassmann compo-
nents. In these coordinates the action becomes

Hˇ;h D ˇ
X
ij

��
cosh.ti � tj / � 1

�
C
1

2
etiCtj jsi � sj j

2
C etiCtj . i �  j /. N i � N j /

�
C h

X
i

��
cosh.ti / � 1

�
C
1

2
eti jsi j

2
C eti i N i

�
; (2.19)

and the hyperbolic reference measure is dt ds @ N @ e
.n�2m�1/

P
i ti , where @ N @ denotes

Grassmann integration if m > 0. A crucial feature of (2.19) is that the s and  ; N variables
appear quadratically in Hˇ;h and hence can be integrated out via exact Gaussian computa-
tions. The t -marginal is thus proportional to the positive measure e� QHˇ;h dt where

QHˇ;h.t/ D ˇ
X
ij

�
cosh.ti � tj / � 1

�
C h

X
i

�
cosh.ti / � 1

�
C
n � 2m � 1

2

�
log det

�
��ˇ.t/ C h.t/

�
� 2

X
i

ti

�
: (2.20)

In (2.20), ��ˇ.t/ C h.t/ is the t -dependent matrix acting as�
��ˇ.t/f C h.t/f

�
i

D �

X
j�i

ˇetiCtj .fj � fi /C hetifi : (2.21)

The t -dependent weights ˇij .t/D ˇetiCtj and hi .t/D heti generalise immediately to edge-
and vertex-dependent reference weights. The determinant in (2.20) arises from the Gaus-
sian integration over the s and  ; N variables. Since the t -field is distributed according to a
positive measure, one can use standard tools from analysis. This is useful since, e.g. for all
Hnj2m models,

hzi iˇ;h D hzi C xi iˇ;h D
˝
eti

˛
ˇ;h
; (2.22)

where the first identity used that hxi iˇ;h D 0, by symmetry. For the pinned expectations,
analogous representations hold with h D 0 and t0 D 0.

3. Physical background: Anderson transition

This section briefly discusses the origins of hyperbolic spin systems as simplified
models for the Anderson delocalisation–localisation transition. For a more detailed survey
about this, we refer in particular to [71]. Further excellent surveys include [70] and [38,58] for
a physics perspective. For general background on the Anderson transition, see [1].
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Consider a random matrixH D .H.i; j //i;j2ƒ such as the Anderson Hamiltonian
H D Hˇ D �ˇ�C V where V D .Vi /i2ƒ is an i.i.d. Gaussian potential, ƒ is a discrete
torus approximating Zd , and � is the lattice Laplacian on ƒ. The fundamental question is
to determine whether or not the spectrum of H contains an absolutely continuous part in
the infinite volume limit, and very closely related to this, if the eigenfunctions (often called
states in this context) ofH are extended or localised. Extended states correspond to ametallic
phase while localised states correspond to an insulating phase. To discuss this further, define
the two-point correlation function

�ˇ;E;h.j; k/ D E
ˇ̌
.Hˇ �E � ih/�1.j; k/

ˇ̌2
; j; k 2 ƒ; (3.1)

where i D
p

�1. The existence of extended states for energies near E is essentially implied
by limh#0 limƒ!Zd �ˇ;E;h.j; j / < 1. For the Anderson model, it is a long-standing con-
jecture that this occurs in d � 3 for E inside the spectrum of �ˇ� when ˇ is sufficiently
large. In the same setting, the more precise quantum diffusion conjecture asserts

lim
h#0

lim
ƒ!Zd

�ˇ;E;h.j; k/ � D.E; ˇ/.��/�1.j; k/ � C.E; ˇ/jj � kj
�.d�2/; j; k 2 Zd

(3.2)
for some constants C;D, and where the asymptotics hold for jj � kj ! 1. This gives a hint
that the conjecture might be difficult: the two-point function decays slowly, like that of the
massless Gaussian free field. Such behaviour also occurs for fluctuations of spontaneously
broken continuous symmetries (Goldstone modes). In [38, 74] it was argued that the origin
of extended states is the existence of SSB for a (complicated) spin model with hyperbolic
symmetry, and that quantum diffusion is exactly the associated Goldstone mode. The spin
model is based on the supersymmetric approach to the replica trick for computing the two-
point function.

We briefly indicate some parallels between the present discussion and Section 2.
The elementary identity

1

h
E Im.Hˇ �E � ih/�1.j; j / D

X
k

E
ˇ̌
.Hˇ �E � ih/�1.j; k/

ˇ̌2
; (3.3)

which is also valid without expectations, is analogous to the Ward identities (2.13)–(2.14).
Thus the role of hzj i is played by E Im.Hˇ � E � ih/�1.j; j /. In the limit h # 0 this is
� times the density of states �.E/, i.e. the asymptotic eigenvalue distribution. The role
of the two-point functions hxjxki or h�j�ki is played by �ˇ;E;h.j; k/ D Ej.Hˇ � E �

ih/�1.j; k/j2. The absolute values in the latter correlation function are essential and the
origin of the hyperbolic symmetry [71, Section 2.3]. The non-compactness of the hyperbolic
symmetry manifests itself in the high temperature phase: the unboundedness of �ˇ;E;h.j; k/
as h # 0 signals an absence of delocalisation. The stronger notion of localisation corresponds
to

�ˇ;E;h.j; k/ �
e�cjj�kj

h
: (3.4)

The divergence as h # 0 is analogous to the behaviour of the H2j2 model, see Section 2,
and is different from that of spin systems with compact symmetry. For further discussion,
see [71].
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Dictionary. The analogies between the expected behaviours of the Anderson model and the
probabilistic models described in the next two sections are summarised below. In d D 2,
ˇc D 1, while ˇc < 1 for d � 3.

ˇ < ˇc ˇ > ˇc

Anderson Model localised (insulating) phase extended (metallic) phase
VRJP positive recurrent phase transient phase
Arboreal gas subcritical percolation phase percolating phase

Logically, there is the possibility of non-extended states that are not localised, which
would correspond to a null-recurrent phase for the VRJP and a phase of the arboreal gas
where infinite clusters do not occur, but the cluster size distribution has infinite mean.

4. Linearly reinforced walks and H2j2

Formulas arising in the study of the H2j2 model (e.g. (2.21)) have interpretations in
terms of random walks, and similarities with ERRW did not go unnoticed [34, Section 1.5].
This was given an explanation by Sabot and Tarrès [65]; the explanation passes through
another reinforced random walk, which we now introduce. Fix edge weights ˇij > 0 for
each edge ij 2 E, and set ˇij D 0 if ij 62 E. The vertex-reinforced jump process (VRJP)
withX0 D 0 is the continuous-time self-interacting randomwalkwith transition probabilities

PVJRP.ˇ/
0

�
XtCdt D j j.Xs/s�t ; Xt D i

�
D ˇijL

j
t ; L

j
t D 1C

Z t

0

1XsDj ds: (4.1)

The quantity Ljt is the local time at j at time t , up to the shift by 1. In words, then, condi-
tionally on the shifted local times at time t and that Xt D i , a VRJP jumps to site j with
probability proportional toˇijLjt . Thus previously vertices visited are preferred. The amount
of local time accrued at i before jumping away has the distribution of an exponential random
variable with rate

P
j ˇijL

j
t . With this in mind, large edge weights ˇij heuristically corre-

spond to weak reinforcement: jumps occur quickly and do not alter the local time profile too
much.

Sabot and Tarrès gave an exact formula for the (properly scaled) limiting local times
of the VRJP, and explained that this distribution is also the distribution of the t -field of
the H2j2 model. They further showed that the magic formula for the ERRW follows from
this result, see Section 4.4 below. Similarly to the ERRW, the VRJP can be expressed as
a continuous-time random walk in a random environment. The next theorem is a slightly
informal statement of this result. The precise formulation requires looking at the VRJP in the
correct time parameterisation; see [65]. For a symmetric squarematrixAwith

P
j Aij D 0 for

all rows i , we write det0.A/ for the value of any principal cofactor ofA, e.g. the determinant
with the first row and column of A removed.
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Theorem 4.1 (Magic formula for VJRP [65]). Let G D .ƒ; E/ be a finite graph with
jƒj D N . In the exchangeable time parameterisation of the VRJP,

PVJRP.ˇ/
0 Œ��D .2�/�

N�1
2

Z
Rƒn0

P SRW.c.t//
0 Œ��e�

ˇ
2

P
i;j cosh.ti�tj /

�
det0.��ˇ.t//

� 1
2

Y
k2ƒn0

e�tk dtk ;

(4.2)
where P SRW.c.t//

0 is the distribution of a continuous-time simple random walk with conduc-
tances c.t/ij D ˇetiCtj started at 0.

The measure on the right-hand side of (4.2) is exactly the horospherical t -marginal
of the H2j2 model (with hD 0 and pinned at 0). The existence of a phase transition between
a transient and a recurrent phase of the VRJP on Zd for d � 3 now essentially follows from
the following earlier results for the H2j2 model (and extensions to the pinned model):

Theorem 4.2 (SSB for H2j2 [34]). Let d � 3 and ˇ � ˇ1. There exists Cˇ > 0 such that

lim
h#0

lim
ƒ!Zd

˝
cosh.ti /8

˛
ˇ;h

� Cˇ : (4.3)

Similar statements hold for other observables and for the pinned model.

Theorem 4.3 (Localisation for H2j2 [33]). Let d � 1 and ˇ � ˇ0. There exist Cˇ ; cˇ > 0
such that

hxixj iˇ;h �
Cˇ

h
e�cˇ ji�j j: (4.4)

Similar statements hold for other observables and for the pinned model.

The existence of a recurrent phase for small ˇ has also been proved more directly
from the definition of the VRJP [4]. A proof of transience that only uses the random walk
point of view seems challenging, and would be of interest.

4.1. Hyperbolic symmetry and the VRJP
A more direct and general connection between hyperbolic spin systems and the

VRJP was found later [12]. Towards this, observe (as was already done in [65]) that the joint
process .Xt ; Lt / of the VRJP and its local time is a Markov process, where Lt D .L

j
t /j2V .

The infinitesimal generator L of the joint process acts on gWV � Œ0;1/V ! R by

Lg.i; `/ D

X
j

ˇij j̀

�
g.j; `/ � g.i; `/

�
C
@g.i; `/

@`i
: (4.5)

Write EVRJP.ˇ;`/
i for the expectation of the joint process with initial vertex i and local times

` D .`i /i2ƒ. The definition (4.1) corresponds to `i D 1 for all i .
To connect the VRJP to hyperbolic symmetry, consider the H2 model, for example,

and recall the infinitesimal generator Ti of Lorentz boosts in the xizi -plane acting at vertex i
from (2.12). Then under mild hypotheses on G, integration by parts and (2.12) yield

�

X
j

Z
.H2/ƒ

�
LG.j; z/

�
xixj e

�Hˇ;0.u/
Y
k2ƒ

duk D

Z
.H2/ƒ

.Tixi /G.j; z/e
�Hˇ;0.u/

Y
k2ƒ

duk :

(4.6)
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Thus boosts are adjoint to the generator of the VJRP. A consequence is the next theorem.

Theorem 4.4. Consider the H2 model. If F W Rƒ ! R decays fast enough, then˝
xixjF.z/

˛
ˇ;0

D

*
zi

Z 1

0

dt EVRJP.ˇ;z/
i

�
F.Lt /1XtDj

�+
ˇ

: (4.7)

Sketch of proof. Normalise (4.6) and choose G.j; `/ D Gt .j; `/ D EVRJP.ˇ;`/
j F.Lt /. Since

.Xt ;Lt / is a Markov process with generatorL, we haveLGt D @tGt . Integrating the result-
ing identity over t in .0;1/ gives the result.

Theorem 4.4 shows that H2 quantities can be computed in terms of the averages of
VRJP quantities, the average being over the initial local time of the VRJP. This average is
inconvenient for studying the VRJP itself. The computations above, however, immediately
generalise to other hyperbolic spin models. For the H2j2 model, one can in addition use
Theorem 2.1 to exactly compute the undesirable average. The result is the following theorem.

Theorem 4.5. Consider the H2j2 model. Then for any F W Rƒ ! R that decays fast enough,˝
xixjF.z/

˛
ˇ;0

D

Z 1

0

dt EVRJP.ˇ/
i

�
F.Lt /1XtDj

�
: (4.8)

In particular, hx2i iˇ;h is the expected time the VRJP started from i spends at i
when killed at rate h > 0. This relation can be used to prove the VRJP is recurrent in two
dimensions, irrespective of the reinforcement strength ˇ > 0, by proving a Mermin–Wagner
theorem for the H2j2 model [12]. Informally, Mermin–Wagner theorems assert that contin-
uous symmetries cannot be spontaneously broken in d D 1; 2. As discussed earlier, for the
H2j2 model SSB corresponds to a finite variance, i.e. transience.

Isomorphism theorems. Theorems 4.4 and 4.5 are examples of isomorphism theorems,
meaning identities relating the local time field of a stochastic process to a spin system. The
first example of such a result related simple random walk to the Gaussian free field and was
obtained by Brydges, Fröhlich, and Spencer [19]. They were inspired by Symanzik [73]. The
formulation as a distributional identity is due to Dynkin [36]; sometimes the result is called
the BFS–Dynkin isomorphism. A host of other isomorphism theorems have been found in
Gaussian settings, see [53]. Other isomorphism theorems for the VRJP can be obtained by the
approach above, and it is possible to obtain Theorem 4.1 in this way, see [13]. Isomorphisms
for the VRJP can also be obtained by expressing the VRJP as a mixture of Markov processes
and using isomorphism theorems for the Markov processes; see [23].

4.2. Random Schrödinger representation and STZ field
In [33], it was observed that after conjugation by the diagonal matrix e�t D .e�ti /i ,

the matrix��ˇ.t/ C h.t/ in (2.21) becomes a Schrödinger operator with t -dependent poten-
tial:

e�t
ı

�
��ˇ.t/ C h.t/

�
ı e�t

D ��ˇ CV.t/; Vi .t/D

X
j

ˇij .e
tj�ti � 1/C hie

�ti : (4.9)
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This point of view led to the proof of Theorem 4.3. It was later recognised that this random
Schrödinger point of view can be used to obtain a powerful representation of the t -field [67].
For the pinned H2j2 model with h D 0 and t0 D 0, the t -field measure (2.20) can be written
in terms of ��ˇ C V.t/ using that

e� QHˇ .t/ D e� 1
2

P
i Vi .t/

�
det

�
��ˇ C V.t/

��1=2
: (4.10)

This suggests it might be useful to change variables from t to V.t/. This change of variables
is not directly well-defined when t0 D 0 since the set of V such that .��ˇ C V / is posi-
tive definite is jƒj-dimensional. This can be sidestepped by treating V as the fundamental
variable, i.e. considering

e� 1
2

P
i Vi

�
det.��ˇ C V /

��1=21.��ˇ C V is positive definite/ dV: (4.11)

The random vectorBi D
1
2
.Vi C

P
j ˇij / is often called the ‘ˇ-field,’ but since we use ˇ for

edge weights (inverse temperature), we will denote it by B instead and call it the STZ field.

Theorem 4.6. The Laplace transform of the STZ field is given by

Ee�.�;B/
D

Y
i

1

.�i C 1/1=2

Y
ij

e�ˇij .
p
�iC1

p
�jC1�1/: (4.12)

Moreover, the t -field (pinned at any vertex) can be recovered in distribution from B .

In particular, the theorem implies the STZ field is 1-dependent. In [68], this remark-
able property of the STZ field was used to construct an infinite volume version on Zd , and
applied to characterise transience and recurrence of the VRJP in terms of a 0=1 law.

4.3. Phase diagram of the VRJP
Themost basic qualitative question one can ask about theVRJP is whether it is recur-

rent or transient for a given reinforcement strength ˇ > 0. This may in principle depend on
the precise notion of recurrence used, as the VRJP is non-Markovian. As discussed above,
for d � 3 the existence of a phase in which the VRJP is almost surely recurrent was estab-
lished in [4, 65], and an almost surely transient phase in [65]. For d D 2, recurrence for all
ˇ > 0 in the sense of infinite expected local time at the initial vertex was established in [12].
Proofs of almost sure recurrence followed shortly [50,64]. Similar results had previously been
established for the ERRW [12,56,68].

The qualitative behaviour of the VRJP is almost completely understood on Zd due
to the following remarkable correlation inequality of Poudevigne.

Theorem 4.7. For the H2j2 model and any convex function f , the expectation hf .etj /i0
ˇ
is

increasing in all weights ˇ D .ˇij /.

The proof of Theorem 4.7 relies on the STZ field [62]. This inequality implies that
transience is a monotone property with respect to the constant initial reinforcement param-
eter ˇ. Combined with the results of the previous paragraph, this implies that the VRJP
has a sharp transition from almost sure recurrence to almost sure transience on Zd for con-
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stant ˇ: recurrence for ˇ < ˇc.d/ and transience for ˇ > ˇc.d/. The behaviour at ˇc is open.
Poudevigne’s correlation inequality also leads to a proof of recurrence in d D 2.

4.4. Further discussion
Back to edge-reinforced randomwalk. The connection of the ERRW to the H2j2 model is
somewhat less direct than for the VRJP: it turns out that the ERRW is an average of VRJPs
[65]. Somewhat more precisely, ERRW with initial edge weights ˛ can be obtained from the
VRJP with initial edges weights ˇ if the ˇij are chosen to be independent Gamma random
variables with mean ˛ij . While this additional randomness presents some difficulties, the
existence of a transient phase for the ERRW in d � 3 was obtained by similar methods
to that of the VRJP [32]. In terms of the spin model, the Gamma-distributed random edge
weights correspond to replacing the exponential e

P
ij ˇij .ui �ujC1/ by

Q
ij .�ui � uj /

�˛ij in the
(super)measure. Such a product weight is often called a Nienhuis interaction.

Interestingly, the recurrence of the ERRW in two dimensions was obtained before
the recurrence of the VRJP. This was possible due to insights of Merkl and Rolles, who
directly proved a Mermin–Wagner-type theorem for the ERRW by making use of the magic
formula [57]. Merkl and Rolles were able to conclude recurrence of the ERRW on Z2 for
strong reinforcement if each edge of the lattice was replaced by a long path. Sabot and Zeng’s
proved recurrence on Z2 for all reinforcement strengths by obtaining a characterisation of
recurrence in terms of the STZ field [68], and showing that an estimate from [57] implies
recurrence. The ergodic properties of the STZ field play a crucial role in this argument.

Beyond Zd . There are also results for the VRJP beyondZd . The existence of a transition on
trees was proven in [27], and on non-amenable graphs in [4]. A fairly complete understanding
on trees has been obtained, see [7] and references therein.

Future directions. There remain many open questions. What is the critical behaviour of the
VRJP and the H2j2 model on Zd , d � 3? Is there an upper critical dimension? For d D 3

aspects of this question were studied numerically in [35], and evidence was found for the
existence of a multifractal structure in theH2j2 model. Multifractal structure is also expected
near the Anderson transition for random Schrödinger operators. For the regular tree (Bethe
lattice), further remarkable critical behaviour was observed, in part numerically, in [75]. This
reference concerns a more complicated sigma model, but the main predictions also apply to
the H2j2 model [35]. On Z2 the VRJP is believed to be positive recurrent, i.e. exponentially
localised, but this important conjecture about the H2j2 model and the VRJP remains open.
The heuristic for positive recurrence is based on the (marginal) renormalisation group flow
and goes along with the prediction of asymptotic freedom at short distances [34, Section 4.3].
Analogous predictions based on similar heuristics exist for the 2d Heisenberg model, the
2d Anderson model, 4d non-abelian Yang–Mills theory, and the 2d arboreal gas (discussed
below). Another question is to understand the VRJP in d � 3 with non-constant initial local
times: Theorem 4.4 and results of [72] suggest the VRJP is always transient if started with
initial local times given by the z-field of the H2 model. Understanding the properties of the
z-field that destroy the phase transition would be interesting.
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5. The arboreal gas and H0j2

The arboreal gas is the uniformmeasure on (unrooted spanning) forests of aweighted
graph. More precisely, given an undirected graph G D .ƒ; E/, a forest F D .ƒ; E.F // is
an acyclic subgraph of G having the same vertex set as G. Given an edge weight ˇ > 0

(inverse temperature) and a vertex weight h � 0 (external field), the probability of an edge
set F under the arboreal gas measure is

Pˇ;hŒF � D
1

Zˇ;h
ˇjE.F /j

Y
T2F

�
1C h

ˇ̌
V.T /

ˇ̌�
1.F is a forest/ (5.1)

where T 2 F denotes that T is a tree in the forest F , i.e. a connected component of F . We
write Pˇ D Pˇ;0. As for the VRJP, the generalisation to edge- and vertex-dependent weights
ˇ D .ˇij / and h D .hi / is straightforward, and is sometimes useful.

The arboreal gas arises naturally in the context of the q-state random cluster model
(q-RCM), which we recall is the model defined by (5.1) by omitting the indicator function
and instead weighting each component by a factor q > 0. In particular, q D 1 is Bernoulli
bond percolation. On a finite graph, the arboreal gas edge weight ˇ0 is the limit of the q-RCM
as q; ˇ ! 0 such that ˇ=q ! ˇ0, and it is natural to think of the arboreal gas as the 0-RCM.
The most fundamental question about the arboreal gas is whether or not it has a percolation
phase transition. It is straightforward to establish a subcritical phase when ˇ is small: the
arboreal gas can be stochastically dominated by bond percolation [43, Theorem 3.21], and for
ˇ small the domination is by subcritical percolation.

5.1. Phase transitions for the arboreal gas
The existence of a supercritical phase for the arboreal gas is a more subtle question

than for the q-RCM with q > 0. One way to see this subtlety is based on symmetries. To
discuss this, recall that for q 2 ¹2; 3; : : : º there is a connection between the q-RCM and
the q-state Potts model [40]. In particular, spin–spin correlations in the q-state Potts model
are equivalent to connection probabilities in the q-RCM. The results of [22, 45] extend this
relationship to q D 0: the H0j2 model is a spin representation of the arboreal gas.

Theorem 5.1. Let h�iˇ and Pˇ denote the H0j2 and arboreal gas measures on a finite graph.
For vertices i; j 2 ƒ,

Pˇ Œi $ j � D �hui � uj iˇ : (5.2)

Moreover, the partition functions of the H0j2 model and the arboreal gas coincide.

Strictly speaking, the H0j2 formulation of Theorem 5.1 first occurred in [11] as a
reformulation of [22, 45]; the hyperbolic point of view plays an important role in the proof
of Theorem 5.3 below. Theorem 5.1 suggests the existence of a supercritical phase for the
arboreal gas may depend on the dimension, as strong connection probabilities corresponds
to a symmetry breaking phase transition for the H0j2 model. Unlike the q-Potts models with
q 2 ¹2;3; : : : º, this model possesses a continuous symmetry, so one might expect a Mermin–
Wagner theorem to prevent such a transition in d D 2. This is indeed true:
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Theorem 5.2 ([11, Theorem 1.3]). Let d D 2. For any ˇ > 0, there exists c.ˇ/ > 0 such that
Pƒ
ˇ
Œ0 $ j � � jj j�c.ˇ/ for any ƒ � Z2.

It is possible to predict Theorem 5.2 without knowing about the H0j2 spin represen-
tation as follows [28]. The critical value of ˇ for the q-RCM on Z2 with q � 1 is known to
be ˇc.q/D

p
q [14], and this self-dual point is predicted to be the critical point for all q > 0.

Since the arboreal gas Pˇ 0 is the limit of the q-RCM with ˇ D ˇ0q, if the location of the
critical point is continuous as q # 0, it follows that ˇc.0/ D 1. These heuristics support the
conjecture that connection probabilities of the 2d arboreal gas decay exponentially for any
ˇ > 0. Independent support for this conjecture can be obtained by renormalisation group
heuristics, almost exactly as for the 2d VRJP [22].

Turning the preceding paragraph into a rigorous proof would be very interesting. It
would also be interesting to have a probabilistic proof (in terms of forests) that the arboreal
gas does not have a phase transition on Z2. The proof of Theorem 5.2 given in [11] follows
different lines. A key step is the following, which reduces the proof to an adaptation of [64,
Theorem 1].

Theorem 5.3 (Magic formula for arboreal gas). LetG D .ƒ;E/ be a finite connected graph.
For vertices 0; j 2 ƒ,

Pˇ Œ0 $ j � D
1

Zˇ

Z
Rƒn0

etj e�
ˇ
2

P
i;k cosh.ti�tk/.det0.��ˇ.t///3=2

Y
k2ƒn0

e�3tk dtk ; (5.3)

where det0.��ˇ.t// denotes any principal cofactor of ��ˇ.t/.

In outline, the proof of Theorem 5.3 consists of three steps: Theorem 5.1, rewriting
the H0j2 expectation in terms of H2j4 by SUSY localisation, and then changing to horo-
spherical coordinates and integrating out all but the t -field. The magic formula for the VRJP
from Theorem 4.1 has a strikingly similar form, but with the two occurrences of 3s in (5.3)
replaced by 1s. This difference in powers is due to there being two additional Grassmann
Gaussian integrals for H2j4 as compared to H2j2.

In three and more dimensions the arboreal gas does, however, undergo a percolation
phase transition. To state a precise theorem, let ƒN D Zd=LNZd denote a torus of side-
length LN with L large. The next theorem immediately implies that there is a macroscopic
tree occupying most of the torus with large probability.

Theorem 5.4 ([10, Theorem 1.1]). Let d � 3. If ˇ is sufficiently large, then there exists
�d .ˇ/ D 1 �O.1=ˇ/,D.ˇ/ > 0, and � > 0 such that

PƒN
ˇ

Œ0 $ j � D �d .ˇ/
2

CD.ˇ/.��/�1.0; j /CO

�
1

ˇjj jd�2C�

�
CO

�
1

ˇL�N

�
: (5.4)

Similar asymptotics hold for other correlation functions.

The polynomial correction in Theorem 5.4 is the hallmark of critical behaviour in
statistical mechanics, and is a manifestation of the Goldstone mode associated with the
broken continuous symmetry of the H0j2 model at low temperatures. The proof of The-
orem 5.4 relies essentially on the H0j2 representation (Theorem 5.1), and is based on a
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combination of Ward identities and a renormalisation group analysis. The renormalisation
group analysis is based in part on methods developed previously in different contexts, in
particular [8,9,18,20,21].

5.2. Further discussion
In contrast to the VRJP, even the qualitative phase diagram of the arboreal gas

remains incomplete: we do not know the existence of a ˇc such that percolation occurs if
ˇ > ˇc , and does not if ˇ < ˇc . It is also more difficult to discuss the arboreal gas directly
in the infinite volume limit than the VRJP; the analogue of the STZ field does not have
finite dependence and is less obviously useful, and useful correlation inequalities to this end
remain conjectural, see below. Nonetheless, many open questions beckon.

Critical behaviour. There is strong evidence that the upper critical dimension of the arbo-
real gas is d D 6, just as for bond percolation, and that the critical behaviour is governed by
more conventional critical behaviour as compared to the H2j2 model [28], see also [39,48].

Comparison with percolation. Recall that the analogue of Theorem 5.4 for Bernoulli per-
colation has an exponentially decaying correction [24]. Informally, this means that super-
critical percolation with the giant removed behaves like subcritical percolation. This can be
given a more precise meaning in the simpler setting of the Erdős–Rényi random graph, i.e.
Bernoulli percolation on the complete graph KN , where it is known as the discrete duality
principle [2, Section 10.5].

The polynomial correction in Theorem 5.4 shows that the arboreal gas does not
satisfy a duality principle. Rather, its supercritical phase behaves like a critical model off the
giant. This can again be given a more precise formulation on the complete graphKN and on
the wired regular tree, where detailed results are known [37,51,54,63]. In particular, the exact
cluster distribution can be determined: on KN in the supercritical phase there is a unique
giant tree, and an unbounded number of trees of size ‚.N 2=3/.

It is natural to predict that the macroscopic behaviour of the arboreal gas on the
d -dimensional tori ƒN with d � 3 is similar to that on the complete graph. In particular,
one expects a unique giant tree. The next-order critical corrections can also be expected to be
similar, at least when d > 6. In particular, the second biggest tree should then have size com-
parable to jƒN j2=3. Similar results have been established for critical Bernoulli percolation
in high dimensions, see [44, Chapter 13]. More ambitiously, we expect the order statistics of
the rescaled cluster size distribution to be universal, i.e. the same as on the complete graph
as determined in [51,54]. This conjecture may be easier to explore in other settings first, e.g.
on expanders, where a phase transition can be established by elementary methods [42].

Infinite-volume geometry and the UST. There is a large body of literature in probability
theory concerning uniform spanning forests (USF), meaning weak infinite-volume limits
of uniform spanning tree (UST) measures on finite graphs, see [52, Chapter 10]. To avoid
confusion with the arboreal gas (sometimes also called the USF [46]), we will call these
infinite-volume limits the UST on Zd . While the component structure of the UST on a finite

4002 R. Bauerschmidt and T. Helmuth



graph is not particularly interesting, the infinite volume limit is: Pemantle proved that there is
a unique connected component on Zd for d � 4, and infinitely many connected components
on Zd for d > 4 [59]. This happens as ‘long connections’ can be lost in the weak limit.

On a finite graph, the UST measure is the limit ˇ ! 1 of the arboreal gas with
edge weights ˇ, and it is natural to wonder if the arboreal gas at low temperatures ˇ � 1

has similar properties to the UST in infinite volume. For global properties, this can evidently
only happen when there is a percolation transition. We are therefore lead to ask: for d � 3

at low temperatures, is it the case that for d D 3; 4 the infinite-volume arboreal gas has a
unique infinite tree, while for d > 4 there are infinitely many infinite trees? Is it the case that
the infinite components of the arboreal gas are topologically one-ended, as for the UST?

Negative correlation. A key tool in studying the q-RCM with q � 1 is that it is positively
associated: for increasing functions f; gW ¹0; 1ºE ! R, the covariance of f and g is non-
negative. This is a special case of the FKG inequality [41]. Positive association fails for q < 1
and for the arboreal gas. It is believed, but not known, that these models are in fact negatively
associated: for f; gW ¹0; 1ºE ! R depending on disjoint sets of edges, the covariance of f
and g is non-positive. Negative association is more subtle than positive association, and the
development of flexible, yet powerful, theoretical frameworks is an active subject [3,16,17,60].
While some of this theory applies to the arboreal gas, it remains open to prove even the special
case of negative correlation: for distinct edges e; f 2 E,

Pˇ Œe; f 2 F � � Pˇ Œe 2 F �Pˇ Œf 2 F �: (5.5)

Negative correlation for all weights is equivalent to all connection probabilitiesPˇ Œ0$ j �D

hetj i0
ˇ
being increasing in all weights ˇ D .ˇij /, where the right-hand side is in terms of the

t -field of the pinned H0j2 model. The analogue for the H2j2 model is precisely Poudevigne’s
inequality, Theorem 4.7. Does this inequality extend to other Hnj2m models?

6. Concluding remarks

This survey has focused on the connections between hyperbolic spin systems and
probabilistic models that share phenomenology with the Anderson transition, including a
number of open questions. It is also worth repeating a question from [49]: are there other
models of random walk that are related to spin systems? A partial answer was given in [13],
but we expect there is more to be discovered; see, e.g. [66]. Similarly, one may search for
probabilistic representations of Hnj2m models for values of n;m not discussed here.
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The Kac model:
variations on a theme
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Abstract

The Kac master equation provides a simple framework to understand systems of parti-
cles that interact through pairwise collisions. This article is a short review of results, chief
among them is the approach to equilibrium for a gas of particles that undergo energy and
momentum preserving collisions, as well as results on the entropy and information decay
for a one-dimensional Kac system coupled to a reservoir. The principles underlying the
Kac master equation can be extended to a Quantum Master Equation (QME) where the
time evolution acts on density matrices and is a completely positive trace-preserving map.
There is a rich set of equilibrium states and there is also a notion of propagation of chaos
that leads to the Quantum Kac–Boltzmann equation. Likewise, the gap of the generator of
the QME can be computed in certain special cases.
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1. Introduction

In 1956 Mark Kac published his influential paper “Foundations of kinetic theory”
[14] in which he laid out a program to explain various issues about the interaction of a large
number of particles. It is based on a model that, in its simplest form, describes a spatially
homogenous gas of N particles undergoing pair collisions. Using this simple probabilistic
model, he elucidated Boltzmann’s chaos hypotheses and its propagation and gave a derivation
of what is now known as the Kac–Boltzmann equation. He also formulated a quantitative
version of approach to equilibrium known as Kac’s conjecture.

The model can be described as follows: The states of the system are described by
the velocities of N particles Ev D .v1; : : : ; vN /. If Ti;j is the waiting time for the collision
of the pair .i; j / then the first collision occurs at time T D mini;j ¹Ti;j º. If we assume that
these variables are independent and that Pr¹Ti;j > tº D e�2t=.N�1/ then T is exponentially
distributed as well, with parameter N , i.e., Pr¹T > tº D e�Nt . This simply reflects the fact
that, on average, the collision time of a particular particle with any other particle is shortened
by a factor of 1=.N � 1/. With this choice, the average number of collisions per unit time
a given particle undergoes does not depend on N , as in the classical Grad–Boltzmann limit
for the realistic Boltzmann equation. At time T , the pair furnishing the minimum collides
and the velocity vector jumps

.v1; : : : ; vi ; : : : ; vj ; : : : ; vN / ! .v1; : : : ; v
�
i ; : : : ; v

�
j ; : : : ; vN /:

The velocities v�
i and v

�
j are then chosen according to the rule

.vi ; vj / !
�
v�
i .�/; v

�
j .�/

�
D .vi cos � � vj sin �; vi sin � C vj cos �/;

where � is picked randomly and uniformly in Œ0; 2�/. Obviously, the kinetic energy
PN
jD1 v

2
j

is preserved during this process (we assume that all particles have the same mass 2 and the
total energy is N ) and hence we may describe this process as an evolution on the space of
probability distributions F.Ev/ 2 L1.SN�1.

p
N/; d�N / (where �N is the uniform probabil-

ity measure on the sphere), given by the Kac master equation

@tF.Ev; t/ D �LNF.Ev; t/; F .Ev; 0/ D F0.Ev/; LN D N.I �QN /; (1.1)

where
QN�.Ev/ D

1�
N
2

� X
i<j

1

2�

Z 2�

0

�
�
: : : ; v�

i .�/; : : : ; v
�
j .�/; : : :

�
d�:

The solution can be written as

F.Ev; t/ D e�Nt

1X
kD0

.N t/k

kŠ
Qk
NF0.Ev/:

We shall henceforth assume that the initial condition and hence the solution are symmetric,
i.e., invariant under permutations of the particle labels.

On the sphere, the vj variables are not independent, but any finite collection is
asymptotically independent as the dimension N ! 1. Such an “asymptotic” indepen-
dence is known as “chaos” and this gets propagated by the Kac evolution. More precisely,
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a sequence of distributions ¹FN .v1; : : : ; vN /º
1
ND1 is chaotic with marginal f W R ! RC if

for any integer k and any bounded continuous function � W Rk ! R,

lim
N!1

Z
SN�1.

p
N/

FN .v1; : : : ; vN /�.v1; : : : ; vk/d�N

D

Z
Rk

kY
`D1

f .v`/�.v1; : : : ; vk/dv1 � � � dvk :

Kac’s theorem states that ifF0N .�/ is a chaotic sequencewithmarginal f0.�/ then the solution
of the Kac master equation FN .�; t / is chaotic with marginal f .�; t /, which is a solution of
the Kac–Boltzmann equation

@tf .v; t/ D
1

�

Z 1

�1

dw

Z 2�

0

d�

�
�
f .v cos � C w sin �; t/f .�v sin � C w cos �; t/ � f .v; t/f .w; t/

�
with initial condition f0.v/.

This model has several limitations. For one, it conserves only the energy since in one
dimension particles that undergo energy and momentum preserving collisions either keep
their velocities or exchange them. Moreover, in physical models, the likelihood of collision
outcomes depends on momentum transfer and the scattering angles, while in this simplest
version of the model, all energy conserving outcomes are equally likely.

The description of the Kac model for 3-dimensional momentum-preserving colli-
sions is more involved. The velocities are now vectors inR3 and the evolution will take place
on the spaceL1.�N;E;p; d�N /where �N;E;p consists of all vectors inR3N with total energy
NE and total momentum Np, i.e.,

1

N

NX
jD1

jvj j
2

D E;
1

N

NX
jD1

vj D p:

The measure �N is the normalized Euclidean measure induced from R3N on SN;E;p . The
inverse collision time for the pair .i; j / depends now on the velocities vi ; vj of the pair, and
we set it to be

�i;j D
N�
N
2

� jvi � vj j
˛:

The momentum transfer for hard spheres is jvi � vj j, i.e., ˛ D 1. To specify the collision
process, one must parametrize the collisions, and a convenient way is to set

v�
i .�/ D

vi C vj

2
C

jvi � vj j

2
�;

v�
j .�/ D

vi C vj

2
�

jvi � vj j

2
�; (1.2)

where � 2 S2. A particular kinematically possible collision is selected according to the fol-
lowing rule: in the specification of the process, there is a given nonnegative and even function
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b on Œ�1; 1� such that for any fixed � 0 2 S2, with d� denoting the uniform probability mea-
sure on S2, Z

S2
b.� � � 0/d� D 1 or, equivalently;

1

2

Z 1

�1

b.t/dt D 1: (1.3)

The most important case is
b.x/ D 1: (1.4)

When ˛ D 1 and b is given by (1.4), the Kac process models “hard sphere” or “billiard ball”
collisions [15]. There are two standard parameterizations of the set of energy and momentum
conserving collisions, the “� parameterization” given by (1.2), and the “En parameterization”.
While the latter is often used in physics texts and in [15], the former, used here, has advan-
tages: first, in this parameterization, b is constant, and second, it is not due to a nonconstant
Jacobian relating the two parameterizations. See Appendix A.1 of [4] for more information;
equation (A.18) of [4] is the formula relating the b functions for the two representations.

The generator of the Markov process is given by

LN;˛F.Ev/ D �N

 
N

2

!�1X
i<j

jvi � vj j
˛
�
F.Ev/ � ŒF �.i;j /.Ev/

�
where

ŒF �.i;j /.Ev/ D

Z
S2
b

�
� �

vi � vj

jvi � vj j

�
F.Ri;j;� Ev/d� (1.5)

and .Ri;j;� Ev/k D

8̂̂̂<̂
ˆ̂:
v�
i .�/; k D i;

v�
j .�/; k D j;

vk ; k ¤ i; j:

The corresponding master equation then takes the form

@tF D �LN;˛F with the initial condition F.�; 0/ D F0.�/.
For this model, propagation of chaos was proved by Mischler and Mouhot in [16].

This is much more complicated than for the previous model since, due to the dependence on
the velocities, the operatorLN;˛ is not uniformly bounded. For a general view on propagation
of chaos, see [17].

2. Kac’s conjecture

It is easy to see that the only equilibrium for the evolution given in (1.1) is the
constant function. The operator LN given in (1.1), as an operator inL2.SN�1.

p
N/;d�N /,

is self-adjoint. The eigenvalue 0 is nondegenerate and the gap, i.e, the first nonzero eigenvalue
�N , is a measure for the approach to equilibrium sinceF.t/ � 1


2

� e��N tkF0 � 1k2:

Kac conjectured that there exists a constant C > 0 independent of N such that�N � C for
all N . This conjecture was proved in [13] and shortly thereafter in [6] the gap was explicitly
computed to be

�N D
1

2

N C 2

N � 1
:
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The argument is an induction procedure and can be adapted to many other situations. It is
maybe useful to explain it in this simple case. It is easy to see that LN is self-adjoint. Then
the gap is defined to be

inf
F?1;kF k2D1

hF;LF i;

where h�; �i is the inner product in L2.SN�1.
p
N/; d�N /. An elementary argument shows

that

LN D
N

N � 1

NX
kD1

L
.k/
N�1;

where L
.k/
N�1 is the generator for the N � 1 particle Kac operator with particle k removed.

Denote byPk the orthogonal projection onto the space of functions on the sphere that depend
only on the variable vk . One can think of Pkf as taking the average of the function f over
all rotations that fix the k-axis. Then

hF;LNF i D
N

N � 1

1

N

NX
kD1

˝
F;L

.k/
N�1F

˛
D

N

N � 1

1

N

NX
kD1

˝
.F � PkF /;L

.k/
N�1.F � PkF /

˛
since L

.k/
N�1 does not act on functions that depend only on the variable vk . By the induction

assumption, ˝
.F � PkF /;L

.k/
N�1.F � PkF /

˛
� �N�1kF � PkF k

2
2

because F � PkF ? 1 on the sphere with the variable vk fixed. Hence we have the lower
bound

hF;LNF i �
N

N � 1
�N�1

1

N

NX
kD1

kF � PkF k
2
2 D

N

N � 1
�N�1

�˝
F; .I � P /F

˛�
;

where

P D
1

N

NX
kD1

Pk :

In other words, the gap�N is the product of the gap�N�1 multiplied by the gap of I � P .
Now one observes that the eigenfunction of P that belong to a nonzero eigenvalue must be
sums of functions of one variable. Using this, it is not very difficult to computeƒN , the gap
of I � P being

ƒN D
N � 1

N

�
1 �

3

N 2 � 1

�
;

(see, e.g., [6] and [7] for details), and hence

�N � �N�1

�
1 �

3

N 2 � 1

�
and, iterating this bound using the fact that �2 D 2, one obtains

�N �

NY
jD3

�
1 �

3

j 2 � 1

�
�2 D

1

2

N C 2

N � 1
:
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This strategy can be used to estimate the gap for the three-dimensional momentum-
preserving collisions [9]. Associated with the generatorLN;˛ is the quadratic formE.f;f /D

�hf;LN;˛f iL2.�N;E;p/, i.e.,

E.f; f / D

N

2

 
N

2

!�1X
i<j

Z
�N;E;p

Z
S2

jvi � vj j
˛b

�
� �

vi � vj

jvi � vj j

��
f .Ev/ � f .Ri;j;� Ev/

�2
d�d�N :

(2.1)

It is easy to see that for LN;˛ the constant function 1 is the only equilibrium. It
is straightforward to see that LN;˛ is self-adjoint on L2.�N;E;p/. The gap is the distance
between the lowest and the next lowest eigenvalue of LN;˛ , i.e.,

�N;˛.E; p/ D inf
®
E.f; f / W hf; 1iL2.SN;E;p/ D 0 and kf k

2
L2.SN;E;p/

D 1
¯
: (2.2)

Using a unitary transformation mapping L2.SN;1;0/ to L2.SN;E;p/ (see [9]), one writes

�N;˛.E; p/ D
�
E � jpj

2
�˛=2

�N;˛.1; 0/; (2.3)

and we call �N;˛.1; 0/ the “spectral gap for the Kac model.”

Theorem 2.1 (Spectral gap for the Kac model with 0 � ˛ � 2). For each continuous non-
negative even function b on Œ�1; 1� satisfying (1.3) and for each ˛ 2 Œ0; 2�, there is a strictly
positive constant K depending only on b and ˛, and explicitly computable, such that

�N;˛ � K > 0

for all N . In particular, this is true with b given by (1.4) and ˛ D 1, the 3-dimensional hard
sphere Kac model.

This theorem was conjectured by Kac [15]. The proof is considerably more involved
than that for the one-dimensional gas, and we refer the reader to [9] for the details. The
fundamental idea is to find a replacement for the operator .I �P /. On the spaceL2.SN;1;0/
consider the operator

OLN;˛f D �
1

N

NX
kD1

�
N 2 � .1C jvkj2/N

.N � 1/2

�˛=2
Œf � Pkf �; (2.4)

where Pk is the orthogonal projection defined by the map �.Ev/ ! f .vk/ given defined by
the relation Z

SN;1;0

�.Ev/g.vk/d�N D

Z
SN;1;0

f .vk/g.vk/d�N :

This operator is again self-adjoint on L2.SN;1;0/, has 0 as its lowest eigenvalue, and we
denote its gap by b�N;˛ . The reason for this operator is that it provides again an inductive
approach to the whole problem. We have

Theorem 2.2. For all N � 3,

�N;˛ �
N

N � 1
�N�1;˛

b�N;˛: (2.5)
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In a further step, one proves, and this is the main work,

Theorem 2.3. For all N � 3 and all ˛ 2 Œ0; 2�, b�N;˛ > 0. Moreover, there is a constant C
independent of N such that b�N;˛ � 1 �

1

N
�

C

N 3=2
: (2.6)

As a corollary, one obtains for any N large,

�N;˛ �

NY
jDN0C1

�
1 �

C

j 1=2.j � 1/

�
�N0;˛;

where N0 is chosen such that 1 �
C

N
1=2
0 .N0�1/

> 0. One now observes that

lim
N!1

NY
jDN0C1

�
1 �

C

j 1=2.j � 1/

�
DW D > 0:

3. Approach to equilibrium in entropy

For simplicity we restrict ourselves to the one-dimensional case. To measure the
approach to equilibrium in terms of the gap is unsatisfactory because the square norm of a
probability distribution in general grows exponentially with the dimension. The right quan-
tity is the entropy, relative to the uniform measure on the sphere,

SN .F / D

Z
SN�1.

p
n/

F.Ev/ logF.Ev/d�N ;

which is proportional to the number of particles for the case of approximate independence.
For the connection between the entropy and a strengthened notion of chaos know as entropic
chaos, we refer to [5].

The dissipation is defined as

DN .F / WD �
d

dt
SN
�
F.t/

�ˇ̌̌̌
tD0

D

Z
SN�1.

p
N/

LNF logFd�N :

It is not hard to see that the dissipation is positive. The entropy production is then defined by

�N D inf
F

DN .F /

SN .F /
:

It was shown by Villani [18] that
�N �

2

N � 1
; (3.1)

which leads to exponential decay of the entropy

SN
�
F.t/

�
� e� 2

N�1 tS.F0/:

Obviously, the rate vanishes as the particle number tends to infinity. It was shown by Einav
[11] that the entropy production estimate (3.1) is essentially correct by producing a trial func-
tion that yields an upper bound very close to Villani’s estimate. While such considerations
do not preclude the possibility that the entropy stays essentially constant for a time of order 1
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and then decays exponentially with a rate independent of N , this seems somewhat unlikely.
If one imagines a gas where few particles contain most of the energy, it will presumably take
a long time until these particles have imparted their energy to the others and the system is
near some equilibrium. This intuition was used in [11] to produce a state with very small
entropy production.

A reasonable approach is to consider a system of M particles that interact with a
reservoir of N particles that are initially at equilibrium. One envisions that N is large when
compared toM . The Kac evolution for this situation can be written as

@tF D �.�SLMF C �RLN C �IM;N /F;

whereF DF.Ev; Ew/ and EvD .v1; : : : ; vM / are the velocities of the particles in the system and
Ew D .w1; : : : ; wN / are the velocities of the particles in the reservoir; �S ; �R are constants
and the term�IM;N , describing the interaction between the system and the reservoir, is given
by

�IM;NF D
�

N

MX
iD1

NX
jD1

Ri;jF;

where
Ri;jF.Ev; Ew/ D

1

2�

Z 2�

0

F
�
: : : ; v�

i .�/; : : : ; w
�
j .�/; : : :

�
d�:

The factors �=N are chosen in such a way that the average collision time between a fixed
particle in the system with any particle in the reservoir is of order �. To keep the problem
simple, we consider distributions on RMCN and assume that the initial condition is of the
form

F0.Ev; Ew/ D f0.Ev/e
��j Ewj2 ;

where f0 is normalized. The quantity of interest is the relative entropy of the system at time t
which is defined by

S
�
f .t/j

�
D

Z
RM

f .Ev; t/ log
f .Ev; t/


d Ev;

where
f .Ev; t/ D

Z
RN

F.Ev; Ew; t/d Ew

and  D e��jEvj2 . The following theorem is proved in [1]

Theorem 3.1. For any positive integers N;M , we have that

S
�
f .t/j

�
�

�
M

N CM
C e�

�.NCM/
2N t N

N CM

�
S.f0j/:

This theorem states that for N � M the entropy decays with a rate approximately
�=2 to a very small fraction of the original entropy. The original proof in [1] is rather cum-
bersome using Brascamp–Lieb inequalities. Another, simpler, proof based on the concept
of information can be found in [2]. One should emphasize that the reservoir does not stay in
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equilibrium in this process, and it is interesting to compare the process with a system inter-
acting with a thermostat, i.e., a system interacting with an “infinite reservoir.” Such a model
can be described by the following master equation:

@tf D ��LMf � �

MX
jD1

.I �Rj /f;

where

Rjf .Ev/ D

Z
R
dw

1

2�

Z 2�

0

d�e��.�vj sin.�/Cw cos.�//2

� f
�
v1; : : : ; vj cos.�/C w sin.�/; : : : ; vM

�
:

This describes the collision between the particle with label j and a particle randomly picked
from the Gaussian ensemble with temperature 1

2�
. It is easy to see that e��jEvj2 is the equi-

librium for this process.
The following theorem is proved in [3]

Theorem 3.2. The relative entropy with respect to  satisfies the estimate

S
�
f .t/j

�
� e�

�
2 tS.f0j/:

It is satisfying to see that the result in Theorem 3.1 takes the form of Theorem 3.2
as N ! 1.

4. A quantum Kac model

In [8], the list of Kac models was extended by a Quantum Markov Semigroup that
describes pair collisions of quantum particles. The energy of a single particle is given by a
Hamiltonian h on a Hilbert space H which we take to be finite dimensional for simplicity.
A state of the system of N particles is described by a density matrix � on ˝NH , i.e., a
self-adjoint positive trace class operator with unit trace. One specifies the binary collisions
by a family of unitary operators U.�/ on the two particle Hilbert space H2 D H ˝ H that
commute with H2 D h˝ I C I ˝ h. Here � lives in a measure space .C ; �/. The precise
conditions will be given below. The collision operators Q W B.H2/ ! B.H2/ is given by

Q.A/ D

Z
C

d�.�/U.�/AU �.�/;

where B.H2/ denotes the space of bounded operators on H2.
The measure � is a probability measure and it is easily seen that Q is a trace-

preserving map that is positivity preserving, in fact completely positive. Since U.�/ com-
mutes withH2, this collision process preserves energy, i.e., if all the eigenstates of � have the
same energy so does Q.�/. Naturally, one wants that the collision of particle 1 with particle
2 and the collision of particle 2 with particle 1 leads to the same result. If V denotes the
swap operation

V.� ˝  / D  ˝ �
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then one imposes the condition that®
U.�/ W � 2 C

¯
D
®
V U.�/V �

W � 2 C
¯

and the map � ! � 0 is such that V U.�/V � D U.� 0/ is a measurable transformation that
leaves � invariant. It is also desirable that the collision satisfies local reversibility, i.e., that®

U.�/ W � 2 C
¯

D
®
U �.�/ W � 2 C

¯
and the map � ! � 0 is measurable and leaves � invariant. One easily sees that for any two
operators A;B on H2 one has

Tr
�
A�Q.B/

�
D Tr

�
Q.A/�B

�
;

i.e., the operation is self-adjoint on the Hilbert space B.H2/ with inner product .A; B/ D

Tr.A�B/. We call .C ; U; �/ satisfying these conditions a collision specification.
Denote byA2 the commutative subalgebra ofB.H2/ consisting of all operators that

are of the form f .H2/ where f W �.H2/! C is a continuous bounded function. Obviously,
A2 is a subset of ¹U.�/ W � 2 Cº0, the commutant of ¹U.�/ W � 2 Cº. We shall require that
the two particle collisions are ergodic, that is,

A2 D
®
U.�/ W � 2 C

¯0
:

4.1. Example
The following example taken from [8] is useful for understanding these concepts.

For the simplest possible example, take H D C2, so that H2 D .C2/˝2. Define the single
particle Hamiltonian h by h D

�
0 0
0 1

�
. Identify C2 ˝ C2 with C4 using the basis 

1

0

!
˝

 
1

0

!
;

 
0

1

!
˝

 
1

0

!
;

 
1

0

!
˝

 
0

1

!
;

 
0

1

!
˝

 
0

1

!
:

The standard physics notation for this basis is simply

j00i; j10i; j01i; j11i; (4.1)

which will be useful. With this identification of C2 ˝ C2 with C4,"
a1;1 a1;2

a2;1 a2;2

#
˝

"
b1;1 b1;2

b2;1 b2;2

#
DW A˝ B is represented by

"
b1;1A b1;2A

b2;1A b2;2A

#
:

(Switching the order of the second and third basis elements swaps the roles of A and B in
the block matrix representation of the tensor product A˝ B .)

In this basis,

H2 D

"
0 0

0 1

#
˝ I C I ˝

"
0 0

0 1

#
D

26664
0 0 0 0

0 1 0 0

0 0 1 0

0 0 0 2

37775 :
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Therefore, the spectrum ofH2 D ¹0; 1; 2º and

P0 D

26664
1 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

37775 ; P1 D

26664
0 0 0 0

0 1 0 0

0 0 1 0

0 0 0 0

37775 ; and P2 D

26664
0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 1

37775 :
Now define C D S1 � S1 � S1 � S1 identifying each copy of S1 with the unit circle

in C so that the general point in � 2 C has the form � D .ei' ; ei� ; ei ; ei�/. Then define

U.�/ WD

26664
ei� 0 0 0

0 ei cos � �ei' sin � 0

0 e�i' sin � e�i cos � 0

0 0 0 ei�

37775 :
Choosing � to be the uniform probability measure on C gives us a collision specification
.C ; U; �/.

A simple computation shows that for every operatorA onH2 D C2 ˝ C2 identified
as the 4 � 4 matrix with entries ai;j using the basis (4.1),

Q.A/ D

Z
C

d�.�/U.�/AU �.�/ D

26664
a1;1 0 0 0

0 1
2
.a2;2 C a3;3/ 0 0

0 0 1
2
.a2;2 C a3;3/ 0

0 0 0 a4;4

37775
D a1;1P0 C

a2;2 C a3;3

2
P1 C a4;4P2 2 A2:

Therefore, ®
U.�/ W � 2 C

¯0
� ran.Q/ � A2 �

®
U.�/ W � 2 C

¯0
;

showing that .C ; U; �/ is ergodic.
Using these preliminaries, it is now straightforward to write the corresponding

Quantum Master Equation (QME) as

@t� D �LN .�/;

with

LN .A/ D N

 
N

2

!�1X
i<j

�
A � Qi;j .A/

�
(4.2)

and where the unitaries in the definition of Qi;j act nontrivially only on the i th and j th
factors in the tensor product ˝NH . This is a trace preserving completely positive map, i.e.,
a Quantum Evolution.
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4.2. Propagation of chaos
A density matrix is symmetric if it is invariant under the swap operation between

any two factors in the tensor product ˝NH . A sequence of symmetric density matrices
¹�N º1

ND1 is chaotic with marginal %, or in short %-chaotic, if

lim
N!1

Tr2;:::;N�N D % and lim
N!1

TrkC1;:::;N�N D ˝
k%;

where TrkC1;:::;N is the trace taken in the factors kC 1; : : : ;N . A trivial example of a chaotic
sequence is ˝N%, but one can also construct chaotic sequences that have a sharply defined
energy for large N .

We have (see [8])

Theorem 4.1. Let ¹U.�/ W � 2 Cº be a set of collision operators and let � be a given
Borel probability measure on C . Let LN be defined in terms of these as in (4.2). Then
the semigroup PN;t D etLN propagates chaos for all t , meaning that if ¹�N ºN2N is a
%-chaotic sequence then, for each t , ¹PN;t%N ºN2N is a %.t/-chaotic sequence for some
%.t/ D limN!1.PN;t%N /

.1/, where in particular this limit of the one-particle marginal
exists and is a density matrix.

As expected, the marginal density matrix %.t/ satisfies a Quantum Kac–Boltzmann
equation

d

dt
%.t/ D 2

�
%.t/ ? %.t/ � %.t/

�
;

where, quite generally, for operators in B.H /,

A ? B D Tr2
�
d�.�/U.�/ŒA˝ B�U �.�/

�
D Tr2

�
Q.A˝ B/

�
is the Quantum Wild Convolution.

4.3. Equilibrium states
An equilibrium density matrix for the evolution (4.2) is given by all those density

matrices �N that satisfy
LN .�N / D 0:

Recall that the N -particle Hamiltonian is HN D
PN
jD1 hj where hj is the single particle

Hamiltonian acting on the j th factor. List the eigenvalues of h as e1; : : : ; eK counting their
multiplicities and denote the corresponding eigenvectors by �1; : : : ; �K . Using the multi-
index notation ˛ D .˛1; : : : ; ˛N / where j̨ 2 ¹1; : : : ;Kº, j D 1; : : : ; N , the eigenvalues of
HN are given by E˛ D

PN
jD1 e j̨

and ‰˛ D �˛1 ˝ � � � ˝ �˛N are the eigenvectors.
It is not very difficult to show that the setCN of equilibrium states form a commuta-

tive von Neumann algebra, and hence it is generated by the minimal projections. The algebra
AN consisting of all operators of the form f .HN /where f is a bounded continuous function
is a subalgebra of CN and it is generated by the spectral projections of the HamiltonianHN .
Define two multiindices ˛; ˛0 to be adjacent if for some pair .i; j /, e˛i C e

j̨
D e˛0

i
C e˛0

j

and ˛k D ˛0
k
; k 6D i; j . With this notion of adjacency the multiindices ˛ form a graph, the
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adjacency graph GN . We denote by 1; : : : ; n the connected components of GN . In [8] the
following theorem is proved.

Theorem 4.2. The minimal projections of CN are in one-to-one correspondence with the
connected components of the adjacency graph GN and are given by

Pk D

X
˛2k

ˇ̌
‰˛ih‰˛

ˇ̌
:

Ergodicity in our context is the notion that the only equilibrium states of the quan-
tum Kac model are given by the algebra AN . By the above theorem, this is the case if
the connected components of the adjacency graph are determined by the energies of the
HamiltonianHN . The occupation number representation is useful in this context. We write
E˛ D

PK
jD1 kj .˛/ej where kj .˛/ denotes the number of times the index j occurs in ˛. Thus,

if the energies of h, ¹e1; : : : ; eKº, are rationally independent then any eigenvalue of HN is
uniquely determined by the occupation numbers k1.˛/; : : : ; kK.˛/ (see below). Hence, in
this case we have that the minimal projections of CN are eigenprojections ofHN and hence
CN D AN .

Here is an example where CN 6D AN . Assume the single particle Hamiltonian has
the eigenvalues 1; 2; 4 with the corresponding eigenvectors  1;  2;  3. Then pick n1 to be
even integers and set

n2 D N �
3

2
n1; n3 D

1

2
n1:

Then
n1 C 2n2 C 4n3 D 2N; n1 C n2 C n3 D N:

The number e D 2N is an eigenvalue of the Hamiltonian HN and it is degenerate. The
eigenvectors are of the form ˛1 ˝ � � � ˝ ˛N where j̨ 2 ¹1;2; 3º. We set ˛ D .˛1; : : : ; ˛N /

and let n1.˛/ be the number of  1 factors, n2.˛/ the number of  2 factors, and n3.˛/ the
number of  3 factors. If ˛ and ˇ are adjacent then the condition e˛k C e˛` D eˇk C eˇ`
implies that either e˛k D eˇk and e˛` D eˇ` or e˛k D eˇ` and e˛` D eˇk ; anything else
is not possible. Hence for any of the indices ˛ and ˇ to be adjacent, we must have that
n1.˛/D n1.ˇ/, n2.˛/D n2.ˇ/, n3.˛/D n3.ˇ/. Thus, if these triples are different, but with
the same N and e, the two states are not adjacent and hence Ge;N , the adjacency graph for a
fixed energy e, is not connected. The number of elements in a connected component of Ge;N

is given by
NŠ

n1Šn2Šn3Š
;

where N D n1 C n2 C n3.
The Quantum Kac Master Equation, being a completely positive map, can be writ-

ten in terms of Kraus operators (see [10]). The collision specifications yield that the Kraus
operators are self-adjoint, and the hence the QKME can be brought into a Lindblad form
@t� D

P
k ŒVk ; ŒVk ; ���. An example, closely related to Example 4.1, is the following Lind-

blad equation @t� D LN .�/, where

LN .�/ D
1

N � 1

X
Œ˛;ˇ�2EN

�
L˛;ˇ ; ŒL˛;ˇ ; ��

�
:
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Here, EN is the edge set of the graph GN . With F˛;ˇ D j‰˛ih‰ˇ j, the “angular” momentum
operators L˛;ˇ are given by

L˛;ˇ D F˛;ˇ � Fˇ;˛:

Note that in Example 4.1 the operator given by the collision specifications is LN up to a
factor that commutes with the angular momenta L˛;ˇ . The interesting point is that the gap
of the generator LN is given by the gap of the combinatorial or graph Laplacian on GN .
To describe this we shall assume that the eigenvalues of h are rationally independent. The
energies of the HamiltonianHN are given by

E.˛/ D

KX
jD1

kj .˛/ej ;

where the kj .˛/ are integers and
PK
jD1 kj .˛/DN . Since the ej s are rationally independent,

the eigenvalues of HN are in a one-to-one correspondence with the “occupation numbers”
k.˛/ D .k1.˛/; : : : ; kK.˛//. Next, note that k.˛/ D k.ˇ/ if and only if ˛ and ˇ are related
by a finite sequence of pair transpositions. Thus, H‰˛ D E‰˛ and HN‰ˇ D E‰ˇ if and
only if ˛ and ˇ are adjacent in GN . In other words, there is a one-to-one correspondence
between the eigenspaces ofHN and the connected components of GN . This is precisely the
case in Example 4.1. Indeed, the energies of HN are given by

E.˛/ D k1.˛/ � 0C k2.˛/ � 1;

andwith k1.˛/C k2.˛/DN the occupation numbers determineE.˛/ uniquely. The vertices
of the graph GN are given by multiindices of length N consisting of 1s and 0s and if two
indices are connected then one can be transformed into the other by a series of transpositions.
Thus, in this case multiindices are adjacent if and only if they have the same number of 0s
and hence 1s and, clearly, the occupation numbers determine the connected components of
GN uniquely. The subgraphs given by the connected components are well known under the
name Johnson Graphs or Johnson Association Schemes. In particular, the eigenvalues of the
graph Laplacian of these graphs are all known as are the eigenvectors [12]. The following
theorem is a special case of a result that will appear in [10].

Theorem 4.3. Assume that the eigenalues of h are rationally independent andN > 2. Then
the gap of LN is

2N

N � 1
:
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Abstract

A fundamental problem in quantum mechanics is to understand the structure and the
energy of ground states of interacting systems of many particles. The quantum correla-
tions in ground states or low lying energy states are supposed to explain phenomena such
as superfluidity or superconductivity.
A long-standing conjecture in mathematical physics has been to establish a universal two-
term asymptotic formula for the ground state energy of a system of bosons in the dilute
limit of low density predicted by the theory of superfluidity. We discuss a recent proof of
this formula.
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1. Introduction

Physical systems of many interacting particles are highly complex and extremely
difficult to analyze due to the correlations between the particles.

Many-particle quantum systems are particularly difficult because of the added com-
plexity caused by entanglement leading to quantum correlations. Exotic phenomena such as
superfluidity and superconductivity are due to such quantum correlations. We are still very
far from being able to give a full mathematical explanation of these phenomena, but recent
years have seen some progress on these very fundamental issues.

We will give a short account of progress on a particularly fundamental aspect of the
analysis of quantum many-particle systems. The question is to understand the ground state,
i.e., the state of lowest energy, of an interacting quantum system of identical particles in
three dimensions. Consider a large, i.e., thermodynamic, system of density � > 0 of identical
nonrelativistic particles. The only assumption we make about the interaction between these
particles is that it is a repulsive two-body interaction. The question is what is the ground
state energy density of such a system. In a seminal paper from 1957 [12], Lee, Huang, and
Yang predicted that there is a universal asymptotic formula for the energy density e.�/ in the
dilute limit given by

e.�/ D .„2=2m/4��2a

�
1 C

128

15
p

�

p
�a3 C o.

p
�a3/

�
: (1.1)

The formula is referred to as universal because there is a two-term asymptotic expansion
depending on the interaction potential through only one parameter, the scattering length a.
We will define it below. Above „ is Planck’s constant and m is the mass of the particles.
The diluteness of the system is measured in terms of the dimensionless parameter �a3, i.e.,
the expected number of particles in a cube of size a. In [12] the prediction was based on a
heuristic analysis of the case of a hard core potential of radius a, i.e., particles move freely
except that they cannot get closer than a distance a from each other. Formula (1.1) can also
be understood heuristically from Bogolubov’s theory of superfluidity from 1947 [4]. We will
describe a recent proof [8, 9] that establishes the formula for a very large class of repulsive
interaction potentials. The Lee–Huang–Yang formula has been tested experimentally on a
gas of 7Li atoms in [18]. Here the coefficient which in the formula is 128

15
p

�
D 4:81 was

measured to be 4:5 ˙ 0:7 in excellent agreement with the theoretical value.
This paper is organized as follows. In Section 2 we explain the mathematical formu-

lation of many-particle quantum systems with two-body interactions.We, in particular, intro-
duce the thermodynamic limit of the ground state energy density for translation-invariant
systems. In Section 3 we consider the simple case of just two particles and use it to intro-
duce the scattering length and give the precise statements of the main theorems. In Section 4
we briefly introduce the second quantized formalism and give the heuristics behind Bogol-
ubov’s approximation that leads to his theory of superfluidity for weakly interacting Bose
gases. We will also explain how the Lee–Huang–Yang (LHY) formula can be heuristically
derived from the Bogolubov approximation. In Section 5 we sketch the ingredients of the
rigorous proof of the LHY formula. The details of what is being discussed here can be found
in [8,9].
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2. Quantum many-particle Hamiltonians with 2-body

interactions

We consider N identical particles moving in a box � D Œ0; L3� described by the
basic two-body Hamiltonian

HN D

NX
iD1

��i C

X
1�i<j �N

V.xi � xj / (2.1)

acting as a self-adjoint operator on an appropriate domain onHN D L2.�N / D
NN

L2.�/.
We have chosen units such that „ D 2m D 1, where m is the mass of the particles. The first
sum in the Hamiltonian describes the kinetic energy of the nonrelativistic particles. For sim-
plicity, we may assume that we have periodic boundary conditions such that � represents a
torus, but, as we shall see, this is not really important. In the periodic case we see that the
Hamiltonian above is translation invariant. The second sum in the Hamiltonian is the inter-
action. The only assumption we make about the interaction potential V is that it is repulsive,
i.e., it could be any measurable function V W R3 ! Œ0; 1�, spherically symmetric, and has
suffient decay. For simplicity, we will here assume that it has compact support, but this can
be relaxed considerably (see [9]).

A particularly interesting example is the hard core potential

V.x/ D

´
0; jxj > a;

1; jxj � a:
(2.2)

Since the Hamiltonian is symmetric under interchange of particles, it could also
be restricted to the fully symmetric subspace HB

N D
WN

L2.�/ or the fully antisymmetric
subspace H F

N D
VN

L2.�/. In the first case we describe bosons, while in the second case
we describe fermions.

The spectrum of the operator HN will be discrete. The lowest eigenvalue is referred
to as the ground state energy

E.N; �; V / D inf SpecHN
HN D inf SpecHB

N
HN : (2.3)

Note that for the ground state energy it does not play any role whether we consider
the full space HN or the bosonic subspace HB

N : By a classical theorem, the ground state
eigenvector will be symmetric. As physical particles are either bosons or fermions, we refer
to our analysis as the ground state of a Bose gas, but from a mathematical point of view this
restriction is not important. Nevertheless, we shall in Section 4.1 use the second quantized
techniques developed particularly for Bose gases.

The important quantity that we will analyze is the thermodynamic limit of the
ground state energy density

e.�; V / D lim
L!1;N=L3D�

L�3E.N; �; V /; (2.4)

where we have fixed the density of particles to be � � 0. It is not difficult to see that the
limit in (2.4) exists and it is indeed independent on the type of boundary condition that was
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chosen for the Hamiltonian. An alternative formulation would be not to fix the density but
to introduce a chemical potential � and define

egc.�; V / D lim
L!1;

L�3 inf
N �0

�
E.N; �; V / � �N

�
: (2.5)

This is referred to as the grand canonical (gc) formalism. The two “energy densities” are
related by a Legendre transform

e.�; V / D sup
�

�
egc.�; V / C ��

�
: (2.6)

3. The 2-particle case and the scattering length

In the case that we have only two particles N D 2 there exists a length a, called the
scattering length such that

E.2; �; V / D 8�aL�3
�
1 C O.a=L/

�
: (3.1)

The problem can be studied by analyzing the simple Schrödinger operator �� C
1
2
V

on L2.R3/. Indeed, we introduce the scattering solution, i.e., the unique function
' W R3 ! Œ0; 1/ satisfying the zero energy equation�

�� C
1

2
V

�
' D 0

with the limiting condition limx!1 ' D 1. Then, in terms of the scattering length, the scat-
tering solution satisfies '.x/ D 1 � a=jxj for x outside a ball containing the support of V .
Moreover, Z

V' D 8�a:

Since we also have 0 � ' � 1, we see that 8�a �
R

V . In the case of the hard core (2.2),
the scattering length is indeed the radius a of the core. In this case

R
V D 1, whereas the

scattering length is finite.
We are now in a position to state the main result on the Lee–Huang–Yang asymp-

totics. The asymptotic formula is proved by giving upper and lower bounds for the energy
density e.�; V /. The upper bound is proved by constructing approximate trial ground state
eigenfunctions that reproduce the asymptotics. Establishing a matching lower bound is usu-
ally considered more difficult as it requires ideas of how to control unimportant parts of the
Hamiltonian. The upper bound has, however, proved to be very difficult too, and today the
lower bound requires fewer assumptions on the potential than the upper bound.

The main results on the upper and lower bounds establishing the LHY formula are
given in the next two theorems.

Theorem 3.1 (The lower bound in the LHY formula). If V W R3 ! Œ0; 1� is measurable,
spherically symmetric with compact support then there exist a constant C > 0, depending
only on the support of V , and an explicit number � > 0 such that

e.�/ � 4��2a

�
1 C

128

15
p

�

p
�a3 � C.�a3/

1
2 C�

�
: (3.2)
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This lower bound was established in [8,9].

Theorem 3.2 (The upper bound in the LHY formula). If 0 � V 2 L3.R3/, spherically sym-
metric with compact support then there exists a constantC > 0 depending on the potential V
such that

e.�/ � 4��2a

�
1 C

128

15
p

�

p
�a3 C C.�a3/

1
2 C 1

10

�
: (3.3)

The upper bound as stated here was proved in [1]. The first proof of an upper bound
giving the first two terms was established in [19].

It is not difficult to heuristically understand the leading term as we shall now explain.
In the dilute limit, it is natural to expect to find the energy to be the energy of two particles
times the number of pairs. This would then, indeed, lead to an approximation for e.�; V /

given by
lim

L!1;N=L3D�
L�3 N.N � 1/

2
E.2; �; V / D 4��2a:

It is, however, already difficult to get an upper bound that reproduces this correctly. To illus-
trate this difficulty, notice that the simple constant trial state

‰L D L�3N=2 (3.4)

that minimizes the kinetic energy gives

lim
L!1;N=LD�

L�3
h‰L; HN ‰Li D

1

2
�2

Z
V

which, as we saw above, can bemuch bigger than 4��2a. The main difficulty is to understand
how to improve the large value

R
V with the smaller scattering length expression 8�a.

We end this section by giving a short review of the history of the formula which
has been a major open problem in mathematical physics for over 60 years. Additional details
can be found in [14]. The leading term in the LHY expansion (1.1) was predicted by Lenz
in [13]. The first to analyze it rigorously was Freeman Dyson in [6], i.e., in the same volume
of Physical Review in which the paper of Lee, Huang, and Yang appeared. Dyson, indeed,
proved an upper bound which gave the correct leading term for the hard sphere gas. In the
case of the hard sphere gas, Dyson’s upper bound still today gives the best known error
term of order .�a3/1=3, which is unfortunately not of the LHY order. Dyson also gave a
lower bound of the right leading order, but with a wrong constant. It took another 40 years
before Lieb and Yngvason in [17] established the lower bound with the correct constant. Ten
years later Erdős, Schlein, and Yau noticed in [7] that the Gaussian or quasi-free states in
Bogolubov’s theory of superconductivity can be used to give an upper bound that is correct
to leading order and has an error term of the same order as the second term in the LHY
formula but with a wrong constant. Later Yau and Yin [19] improved on the quasi-free states
to get the correct LHY formula as an upper bound. Both [7] and [19] require some regularity
of the potential and do not work for the hard core. In [5, 10] the correct second term in the
LHY formula was derived for sufficiently soft potentials, i.e., potentials that were allowed to
depend in particular ways on the diluteness parameter. Finally, the correct LHY lower bound
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was proved first for generalL1 potentials in [8] and then in the most general case stated above
in [9]. For gases confined to boxes of size .�a/�1=2, the LHY formula was derived in [2,3].
The length scale .�a/�1=2 is called the healing length and its relevance will become clear
when we discuss Bogolubov’s theory in the next section.

4. Bogolubov’s theory of superfluidity

The LHY formula for the ground state energy can heuristically be understood from
Bogoliubov’s theory of superfluidity [4]. Thus in some sense establishing the LHY formula
validates Bogolubov’s theory. We will briefly describe this here, but it will require us to take
a little detour into the second quantized formalism.

4.1. Second quantized formalism
For any function f 2 L2.�/, we introduce the bosonic annihilation operator

a.f / W HB
N ! HB

N �1

defined by�
a.f /‰

�
.x1; : : : ; xN �1/ D

p
N

Z
�

f .xN /‰.x1; : : : ; xN �1; xN / dxN :

The bosonic creation operator a�.f / W HB
N �1 ! HB

N is the adjoint a�.f / D a.f /� of a.f /.
We here use the standard notation in physics to indicate the adjoint with a �. We deliberately
did not put a subscript N on the creation or annihilation operators because we want to use
the same notation independently of N . Indeed, this will allow us to write the famous com-
mutation relations �

a.f /; a.g/
�

D 0;
�
a.f /; a�.g/

�
D .g; f /L2.�/:

Using the second quantization formalism, we can rewrite the Hamiltonian HN (at least for
L large enough) as

H D

X
p2 2�

L Z3

p2a�
pap C

1

2L3

X
p;q;k2 2�

L Z3

OV .k/a
�

pCk
a

�

q�k
aqap

D

X
p2 2�

L Z3

p2a�
pap C

N � 1

2
� OV .0/ C

1

2L3

X
0¤k2 2�

L Z3

X
p;q2 2�

L Z3

OV .k/a
�

pCk
a

�

q�k
aqap;

(4.1)

where we used the short hand notation ap D a.L�3=2 exp.ipx//. These operators satisfy the
commutation relations �

ap; aq

�
D 0;

�
ap; a�

q

�
D ıp;q : (4.2)

We have also introduced the Fourier transform

OV .k/ D

Z
R3

exp.�ipx/V .x/dx:
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4.2. The Bogolubov’s approximation
In his 1947 paper [4], Bogolubov introduces an approximation to the Hamilto-

nian HN , or in fact to the operator H in (4.1), that forms the basis of his theory of superflu-
idity. Bogolubov’s approximation may be divided into three steps.

Step 1. Condensation and c-number substitution. The assumption is that the ground state
or low lying energy states represent a condensate, i.e., have many particles with momentum
p D 0. If all particles hadmomentump D 0, wewould get the state (3.4) whichwe know does
not have the correct ground state energy. It is, however, still possible that the expectation of
the operator a

�
0a0 in the ground state is close to the total number of particles N . The second

ingredient in this first step of the approximation is to replace the operators a0 and a
�
0 by the

number
p

N in the Hamiltonian H in (4.1). This is referred to as c-number substitution.
It will lead to an operator that no longer maps HB

N to itself. We consider it instead as an
operator on the bosonic Fock space

L1

M D0 HB
M .

Step 2. The Bogolubov’s Hamiltonian. The first step results in a Hamiltonian that will
have terms containing zero, two, three, or four factors a

�
p or ap with p ¤ 0. There are no

terms with only one a
�
p or ap with p ¤ 0 because of momentum conservation. The second

step in the approximation is to assume that we may consider a
�
p or ap with p ¤ 0 to be small

and therefore ignore terms with three or more such factors. This will lead to the Bogolubov’s
Hamiltonian

HBog D

X
0¤p2 2�

L Z3

��
p2

C � OV .p/
�
a�

pap C
1

2
� OV .p/

�
a�

pa�
�p C a�pap

��
C

N � 1

2
� OV .0/:

(4.3)

Step 3. Diagonalizing the Bogolubov’s Hamiltonian. It is not difficult to diagonalize the
Bogolubov’s Hamiltonian if we apply the following simple lemma whose proof is elemen-
tary.

Lemma 4.1 (Simple case of Bogoliubov’s diagonalization). For A > 0, B 2 R satisfying
jBj � A; we have the operator identity

A.a�
pap C a�

�pa�p/ C B.a�
pa�

�p C a�pap/ D D.b�
pbp C b�

�pb�p/ � .A �

p

A2 � B2/;

(4.4)
where

D WD

p

A2 � B2; (4.5)

and

bp WD .1 � ˛2/�1=2.ap C ˛a�
�p/; b�p WD .1 � ˛2/�1=2.a�p C ˛a�

p/; (4.6)

with

˛ WD B�1.A �

p

A2 � B2/: (4.7)
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Note that the operators bp and b
�
p satisfy the same commutation relations (4.2) as

the operators ap and a
�
p . We see that the Bogolubov’s Hamiltonian may be rewritten as

HBog D

� X
p2 2�

L Z3

".p/b�
pbp

�
C EL (4.8)

with
".p/ D

q�
p2 C � OV .p/

�2
�

�
� OV .p/

�2
/; (4.9)

and where the ground state energy of HBog is

EL D
N � 1

2
� OV .0/ �

1

2

X
0¤p2 2�

L Z3

��
p2

C � OV .p/
�

�

q�
p2 C � OV .p/

�2
�

�
� OV .p/

�2�
:

(4.10)

The ground state of the Bogolubov’s Hamiltonian is the vacuum state for the operators bp .
Such vacuum states of general bosonic annihilation operators are referred to as (pure) quasi-
free or Gaussian states.

In the thermodynamic limit, we have limL!1;N=L3D�
EL

L3 D eBog.�; V /, where

eBog.�; V / D
1

2
�2

Z
V

�
1

2
.2�/�3

Z
R3

��
p2

C � OV .p/
�

�

q�
p2 C � OV .p/

�2
�

�
� OV .p/

�2�
dp:

(4.11)
We may rewrite this as

eBog.�; V / D 4��2.a0 C a1/

�
1

16�3

Z
p2

C � OV .p/ �

q
p4 C 2� OV .p/p2 � �2

OV .p/2

2p2
dp; (4.12)

where we have introduced the notation

a0 D
1

8�

Z
V; a1 D

�1

.8�/2

“
V.x/V .y/

jx � yj
dxdy D

�1

64�4

Z
OV .p/2

2p2
dp: (4.13)

In fact, a0 and a1 are the first two terms in what is called the Born series for the scattering
length a. In the last integral in (4.12), we can change variable p D

p
8��a0q and arrive atZ

p2
C � OV .p/ �

q
p4 C 2� OV .p/p2 � �2

OV .p/2

2p2
dp

D .8��a0/5=2

Z
q2

C W�.q/ �

q
q4 C 2W�.q/q2 �

W�.q/2

2q2
dq; (4.14)

where we wrote W�.q/ D .8�a0/�1 OV .
p

8��a0q/. In the dilute limit, we may assume that
.�a0/�1=2 is much longer than the range of the potential and hence we can, to leading order
in the integral, replace W�.q/ by W�.0/ D 1. SinceZ

R3

q2
C 1 �

p
q4 C 2q2 �

1

2q2
dq D �

32
p

2�

15
;
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we arrive at
eBog.�; V / � 4��2.a0 C a1/ C 4��2a0

128

15
p

�

q
�a3

0: (4.15)

If we replace the first two Born terms a0 C a1 by the scattering length a in the first term and
a0 by a in the second term above, we arrive at the Lee–Huang–Yang formula. We note that
the change of variable p D

p
8��a0q in the integral above shows that the relevant momenta

that contribute to the LHY formula are of order of the inverse healing length p
�a.

Understanding the validity of the Bogolubov’s approximation and the validity of
these last replacements above were the major challenges in establishing the LHY formula
rigorously. We address this in the next section. We will end this section with a few further
remarks about the Bogolubov’s approximation and Bogolubov’s theory of superfluidity.

In his treatment [11] of superfluidity in helium, Landau realized the importance of
a linear dispersion law, i.e., that the energies of excitations grow linearly with momentum.
The slope in the linear dispersion represents the critical velocity for superfluidity, i.e., the
velocity belowwhich objects can move through the fluid without creating excitations.We see
that the dispersion ".p/ in (4.9), indeed, has a nonvanishing linear slope limp!0 jr".p/j Dq

2� OV .0/. This is the central point in Bogolubov’s theory of superfluidity in weakly inter-
acting Bose gases.

5. Rigorous proof of the Lee–Huang–Yang formula

In this section we very briefly sketch the rigorous arguments, leading to the lower
bound in Theorem 3.1. The details can be found in [8,9].

An important ingredient in the Bogolubov’s approximation was the assumption of
condensation. It is still a great mathematical challenge to establish Bose condensation in
nontrapped translation invariant Bose gases. To circumvent this, the first step in the rigor-
ous derivation of the Lee–Huang–Yang formula in [8, 9] is a localization to boxes that are
essentially of the order of the healing length. On this scale, it turns out that the gas will look
sufficiently condensed. In other words, it is not possible to show that most particles in a ther-
modynamic box are in a state of momentum zero. We can, however, show that most particles
have momenta small compared to the inverse healing length.

For the rigorous lower bound, the localization is achieved by an operator estimate
on the Hamiltonian

HN � �N �

Z
hu du; (5.1)

where we introduced the chemical potential � that we will write � D 8���a. The reason for
this choice is that if we insert the leading term in the LHY formula 4��2a for the energy den-
sity then the choice of � that minimizes 4��2a � �� D 4��2a � 8���a� is indeed � D ��.
The operators hu above represent translations by u 2 R3 of a Hamiltonian h0 localized to
a box Œ0; `�3 with length ` D K`.��a/�1=2 for a sufficiently large constant K`, i.e., we are
localizing on scales that are large compared to the healing length.
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To describe the localized Hamiltonian h0, we introduce the orthogonal projectionP

that projects onto the one-dimensional space of constant functions in L2.Œ0; `�3/ and the
projection Q D I � P onto the orthogonal complement. We also introduce a sufficiently
regular function � W R3 ! Œ0; 1/ supported on Œ0; 1�3 and let �`.x/ D �.x=`/.

The localized Hamiltonian then has the form

h0 D

NX
iD1

Ti � ��

NX
iD1

Z
w1.xi ; y/dy C

X
1�i<j �N

w.xi ; xj /; (5.2)

where the localized kinetic energy is

T D Q�`K.�/�`Q C QG0Q (5.3)

with K.t/ being a function that is essentially the identity for t � `�2 and G0 an operator
that ensures a sufficient gap above zero in the kinetic energy, i.e., an important property is
G0 � .const/`�2. The exact forms of K and G0 are complicated and can be found in [8,9].
The potential function is

w.x; y/ D �`.x/
V .x � y/

� � �.x=`/
�`.y/; w1.x; y/ D w.x; y/'.x � y/; (5.4)

where we recall that ' is the scattering solution. For the potential part of the Hamiltonian,
it is not difficult to see that (5.1) is actually an identity. It is for the kinetic energy that it
becomes a lower bound.

In order to establish condensation, it is necessary to obtain an a priori lower bound
on the ground state energy of h0 of the correct LHY order. This is achieved in [8,9] by doing a
further localization that we shall not discuss here. Such an a priori lower bound establishes a
bound on the expectation of the number of noncondensed particles nC D

PN
iD1 Qi . Indeed,

the bound on the gap operator G0 and the a priori bound imply that any state that does not
already satisfy an LHY lower bound would have

.const/`�2
hnCi � hG0i � �2

�a

q
��a3`3;

i.e., hnCi � C�2
�a`5 D K2

`

p
��a3��`3. In other words, the expected number of noncon-

densed particles is smaller by the (small) factorK2
`

p
��a3 compared to the expected number

of particles ��`3 in the box. Unfortunately, it is not sufficient to control the expected number
of noncondensed particles. There are terms that require controlling powers of the number of
noncondensed particles. To achieve control of powers, we establish in [8] a stronger version
of condensation, namely that it is enough to restrict attention to the part of the Hilbert space
where we have the operator bound nC � M for some appropriately chosen parameter M.
Unfortunately, in order to treat the hard core potential, in [9] we had to work with a much
more complicated restriction, namely that nI

C � MI where nI
C represents the number of par-

ticles with kinetic energy in an interval I D .0; KI `�2/, for an appropriately large constant
KI . This means nI

C D
PN

iD1 1I .T /i . Note that nI
C would be equal to nC if KI D 1. The

point is that only restricting this operator allows us to choose a much smaller MI than we
would if we had to restrict nC. The argument required to restrict the Hilbert space uses a
method developed in [16] referred to as localization of large matrices.
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Having established control on the number of noncondensed particles we use c-
number substitution to treat the condensed particles. This can be done rigorously using the
method in [15].

A very central point in our analysis is a decomposition of the localized interaction
potential using in a very particular way the scattering solution '. As 0 � ' � 1, it is con-
venient to introduce the function ! D 1 � ' satisfying 0 � ! � 1 and tending to zero at
infinity. The following decomposition is an elementary, but crucial, identity from [8]:

���

NX
iD1

Z
w1.xi ; y/ dy C

X
1�i<j �N

w.xi ; xj / D Qren
0 C Qren

1 C Qren
2 C Qren

3 C Qren
4 ;

where

Qren
4 WD

1

2

X
i¤j

�
Qi Qj C .Pi Pj C Pi Qj C Qi Pj /!.xi � xj /

�
w.xi ; xj /

�
�
Qj Qi C !.xi � xj /.Pj Pi C Pj Qi C Qj Pi /

�
;

Qren
3 WD

X
i¤j

Pi Qj w1.xi ; xj /Qj Qi C h:c:;

Qren
2 WD

X
i¤j

Pi Qj w2.xi ; xj /Pj Qi C

X
i¤j

Pi Qj w2.xi ; xj /Qj Pi

� ��

NX
iD1

Qi

Z
w1.xi ; y/ dyQi C

1

2

X
i¤j

�
Pi Pj w1.xi ; xj /Qj Qi C h:c:

�
;

Qren
1 WD

X
i;j

Pj Qi w2.xi ; xj /Pi Pj � ��

X
i

Qi

Z
w1.xi ; y/ dyPi C h:c:;

Qren
0 WD

1

2

X
i¤j

Pi Pj w2.xi ; xj /Pj Pi � ��

X
i

Pi

Z
w1.xi ; y/ dyPi :

Here w2.x; y/ D w1.x; y/.1 C !.x; y//. The main observation is that the term Qren
4 is

nonnegative and can be ignored for a lower bound. We think of the terms with zero to four
Q’s as being similar to the corresponding terms in the Bogolubov’s analysis with zero to
four factors of ap or a

�
p with p ¤ 0. Note that in ignoring the term Qren

4 we are not simply
ignoring the term with four Q’s as Bogolubov did.

The term Qren
2 , together with the kinetic energy, can be rewritten in a form similar to

a Bogolubov’s Hamiltonian and can be diagonalized using a Bogolubov-type diagonalization
argument. Note thatQren

2 contains the potentialsw1 andw2. The potentialw1 is a localization
of V' that satisfies cV'.0/ D 8�a. This is the reason that our analysis will immediately lead
to the scattering length appearing and not only the Born approximations a0 and a0 C a1.

The appearance of w2 in Qren
2 means that the analysis of the Qren

2 does not directly
give the LHY formula. The additional contributions from the difference between w1 and
w2 will, however, be exactly canceled by a careful analysis of the term Qren

3 . This term can
again be approximately diagonalized, this time together with the excitation Hamiltonian from
the Bogolubov’s diagonalization, i.e., the analog of the first term in (4.8). This, however,
first requires estimating the operator PQw1QQ appearing in Qren

3 in terms of an operator
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PQLw1QH QH where QL essentially projects onto appropriately low (but still nonzero)
momenta and QH projects onto high momenta disjoint from the low momenta. Note that
the operator PQLw1QH QH is quadratic in QH which is why it allows for a Bogolubov’s
treatment similar to the treatment of Qren

2 .
In Bogolubov’s case there was no term corresponding toQren

1 because of momentum
conservation. Here our spatial localization breaks momentum conservation, and we therefore
have a term Qren

1 . This term can fairly easily be treated together with the Qren
2 term in the first

Bogolubov’s diagonalization.
Putting these ingredients together is rather technical but eventually leads to the rig-

orous lower bound in Theorem 3.1.
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Scaling limits
and universality
of Ising and dimer
models
Alessandro Giuliani

Abstract

After having introduced the notion of universality in statistical mechanics and its impor-
tance for our comprehension of the macroscopic behavior of interacting systems, I review
recent progress in the understanding of the scaling limit of lattice critical models, including
a quantitative characterization of the limiting distribution and the robustness of the limit
under perturbations of the microscopic Hamiltonian. Specifically, I focus on two classes
of non-exactly-solvable two-dimensional systems: nonplanar Ising models and interacting
dimers. In both settings, I describe the conjectures on the expected structure of the scaling
limit, review the progress towards their proof, and state some of the recent results on the
universality of the limit, which I contributed to. Finally, I outline the ideas and methods
involved in the proofs, describe some of the perspectives opened by these results, and
propose several open problems.
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1. Universality in Statistical Mechanics: a mathematical

challenge

Statistical Mechanics (SM) aims at explaining the macroscopic behavior of matter
in its different states, starting from a microscopic description of the system, which involves
an extremely large number of elementary components, such as atoms, molecules, or spins.
Due to the complexity of the microscopic structure of realistic materials and to the necessity
of handling models that are accessible to theoretical and numerical treatments, the mathe-
matical modeling of any system one may wish to study inevitably requires approximations
and simplifications, often quite drastic: essentially all the models studied in equilibrium and
nonequilibrium statistical mechanics are “toy models,” even the most challenging ones. As
illustrative examples, think to the description of magnets in terms of Ising, XY, or Heisen-
berg models; of disordered materials in terms of the Anderson model and the interacting
extensions thereof (in the context of electrical conduction in the presence of lattice defects)
or of the Edwards–Anderson model (in the context of spin glasses); of anisotropic liquids in
terms of monomer–dimer systems; and so on. The oversimplifications underlying the defini-
tions of these models cast a dark light on the physical reliability of their predictions. A priori,
there is no reason why the thermodynamic and correlation functions of real magnets, liquids,
or conducting materials should behave quantitatively (or even qualitatively) in the same way
as those of the Ising model, the Anderson model, the dimer–monomer model, etc.

Predictions based on these popular but oversimplified models can be reliable only
if they can be shown to be robust under the choice of the microscopic Hamiltonian, that is,
if they depend only upon general features such as symmetry, dimensionality, etc. Vaguely
speaking, robustness of the macroscopic behavior of SM systems is the content of the univer-
sality principle, which will be stated more precisely in two concrete mathematical settings
below. For the moment, let us just observe that, in view of the previous considerations, this
principle can be seen as the justification for the use of toy models in the description of com-
plex materials and, in a sense, it is what makes SM predictive and useful as a whole.

Away from the critical point, where, typically, the correlations among fluctuations
of local observables decay exponentially to zero at large distances, the universality of the
behavior of the system at the macroscopic and mesoscopic level is closely related to the Law
of Large Numbers and to the Central Limit Theorem (CLT) for weakly correlated random
variables: averages of local observables converge almost surely to their expectation (the
macroscopic value of the corresponding thermodynamic function), and their fluctuations
around the mean converge, after appropriate rescaling, to normal random variables.

Things are much more subtle and interesting in the vicinity of a phase transition,
where correlations among faraway fluctuations of local observables become so important
that the CLT has no a priori reason to hold, and will in general not hold. The understanding
of phase transitions is one of the central goals of SM since at least a hundred years. The
existence of several different kinds of phase transition and the characterization of the cor-
responding low- and high-temperature phases are among the great successes of the SM of
the 20th century. On the other hand, a complete understanding of the behavior of the system
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at, or close to, the critical point, is still missing, and poses several exciting challenges for
mathematical physics and probability. Let us focus here on the case of continuous phase
transitions. In such a case, do fluctuations of local observables admit an interesting, non-
Gaussian, mesoscopic limit? Is the limit robust under a large class of perturbations of the
interaction among the microscopic constituents of the system?

These are some of the most fundamental problems of equilibrium SM since the
1960s. The theory of Wilsonian Renormalization Group (RG) [94–96], which is among the
greatest success of theoretical physics in the last century, was developed for quantitatively
answering to these questions. It predicts that the “scaling limit” describing the large scale
behavior of correlations at a continuous phase transition is in great generality a Euclidean
Field Theory, which can be determined as the fixed point of an explicit semigroup (theWilso-
nian RG transformation), acting on an often vaguely-defined “space of Hamiltonians.” The
Gaussian, often dubbed “trivial,” fixed points of the Wilsonian RG transformations corre-
spond to off-critical systems or to the simplest critical ones. What about nontrivial, i.e.,
non-Gaussian, fixed points? By construction, any such fixed point turns out to be scale invari-
ant. It has been argued that, under some reasonable additional hypotheses on the structure of
the correlation functions and the locality of theory, such fixed points are conformally invari-
ant [84,85,98], i.e., described by a Euclidean Conformal Field Theory (CFT). If we trust this
picture, we can take an axiomatic point of view, i.e., we can try to classify the admissible non-
trivial fixed point by classifying all the possible CFTs and, whenever possible, characterize
their structure (by, e.g., computing their correlation functions); this task has been essentially
completed in two dimensions (2D), thanks to the rich structure of the 2D conformal group
(see, e.g., [13,66] for the case of the “discrete series” of models with central charge 0 < c < 1,
and [71] for the case of Liouville theory). In three dimensions (3D), this axiomatic point of
view recently led to some spectacular developments, which allowed to compute the critical
exponents associated with the non-Gaussian behavior of local observables for several non-
trivial fixed point theories, including one that is believed to describe the scaling limit of the
3D Ising model at its critical point [83].

Once that the candidate scaling limits have been constructed in this way, one is
left with identifying the right one for any given class of microscopic Hamiltonians. While
heuristically one can appeal, e.g., to symmetry considerations or to numerical constraints
on the decay exponents of correlation functions to guess the right scaling limit for a given
microscopic Hamiltonian, the tasks of mathematically proving that the scaling limit of the
critical theory exists and it is conformal invariant, that such limit coincides with one of the
candidate Euclidean CFTs, and that it is robust under a large class of perturbations of the
microscopic interaction, are among the great challenges of modern mathematical SM.

Even in very specific, simple, settings, many of the natural questions arising from the
above premises remain open to date. However, in the last decades there has been remarkable
progress from different viewpoints, which allowed to exhibit the first examples of confor-
mally invariant, universal, scaling limits, rigorously constructed starting from lattice micro-
scopic models. These mathematical results are mostly restricted to 2D, which is the case I
will focus on from now on. Two complementary approaches that have been, and are being,
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successfully used to rigorously understand universality and conformal invariance of 2D lat-
tice SM systems are: a probabilistic one, based on random geometry, percolation and discrete
holomorphicity; and a field theoretic one, based on constructive RG ideas.

The first, probabilistic, method led to the complete proof of conformal invariance
of the scaling limits of the 2D planar Ising [31–33,39,55,56,91] and dimer [3,67,68,70]models.
It has the advantage of being flexible in treating geometric deformations of the domain
and of the underlying lattice, thus leading to the first proofs of universality with respect
to these kinds of deformations. The limitation of this approach is that it is mostly restricted
to exactly solved models at the “free Fermi point” (i.e., exactly solvable models, whose solu-
tion can be expressed in determinant form, as for Ising and dimers) and it is not flexible
in dealing with perturbations of the microscopic Hamiltonian (there are a few important
exceptions, notably [5,90], which suggest possible directions for future extensions and devel-
opments). The second, field theoretic, method led to the construction of the bulk scaling
limit of several interacting, non-solvable, models, such as Ashkin–Teller and 8-vertex (8V)
models [14, 45, 74], interacting dimers and 6-vertex (6V) models [48–50], the sine-Gordon
model on the Kosterlitz–Thouless critical line [40], and many others [1, 9, 10, 17, 18, 24, 34]:
remarkably, many of these models have non-determinantal scaling limits, and the results are
robust under a large class of microscopic perturbations of the lattice Hamiltonian. Moreover,
this approach led to the proof of several CFT predictions, such as scaling relations among
critical exponents and amplitudes [14,20,50], bosonization identities [10, 15], and expression
for the universal subleading contributions to the critical free energy [46]. A limitation of this
approach is that it is restricted to “weakly interacting” cases, that is, to models that are close
to a Gaussian model or to a free Fermi model. Moreover, it is not yet flexible enough for
dealing with non-translationally-invariant situations, including geometric perturbations of
the domain or of the underlying lattice. However, recent progress in simple domains with
boundaries [6, 7] opens new perspectives for applications to general geometries and for an
effective combinations of constructive RG ideas with probabilistic ones.

In the following, I will review some of these advances in the specific contexts of non-
planar 2D Ising models and of non-integrable perturbations of 2D dimer models, focusing
on a selection of results obtained via the constructive RG, whose development and applica-
tion to the theory of universality in 2D SM systems I contributed to. In Section 2, I discuss a
class of non-planar Ising models: I will first define the setting, then state the conjectures on
the universality of the scaling limit at the critical point, and then, after having reviewed the
known results in the integrable, planar, model, I will state our main results on the existence
and universality of the scaling limit for the multipoint energy correlations in the plane and in
the cylinder, see Theorems 2.1 and 2.2 below. In Section 3, I discuss a class of non-integrable
dimer models; also in this case, after having defined the setting, stated the expected structure
of the scaling limit and reviewed some of the known results in the integrable case, I will
state our main results on the fine asymptotics of the dimer–dimer correlations and on the
universality of the scaling limit of the height fluctuations, see Theorems 3.1 and 3.2. In Sec-
tion 4, I will informally describe the methods of proof, and, in Section 5, I will comment on
perspectives and open problems.
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2. The scaling limit of nonplanar Ising models

Consider a finite, simply connected, region of the plane, � � R2, and let
�a D � \ aZ2 be its discretization on the square grid of lattice spacing a > 0. At each
site x of �a, we assign an Ising spin �x 2 ¹C;�º and, given the spin configuration � 2

¹C;�º�a � †a, we assume that its energy, or Hamiltonian, has the following form:

H
�I;

a;�.�/ D �J
X
hx;yi

�x�y � �
X
X��a

V.X/�X ; (2.1)

where J > 0; the first sum runs over (unordered) nearest neighbor pairs of sites in�a; in the
second sum, given a subsetX of�a, we denoted �X WD

Q
x2X �x , and V is a translationally

invariant interaction, supported on even setsX , of finite range proportional to a1. In general,
we will require V be neither a pair interaction (i.e., to be supported on sets of cardinality
2) nor ferromagnetic (i.e., non-negative). We will refer to the first term on the right-hand
side of (2.1) as to the nearest-neighbor interaction, of strength J (to be fixed once and for
all), and to the second term as to the multi-spin interaction, of strength � (to be thought of
as being small compared to J ). The model describes the magnetic properties of thin ferro-
magnetic films with an out-of-plane easy-axis of magnetization and short range “exchange”
interactions among the magnetic moments of the ions. For � D 0, the Hamiltonian reduces
to that of the planar, nearest-neighbor, Ising model, originally introduced by Lenz in 1920
[73], which in 2D is exactly solvable in a very strong sense, as originally proved by Onsager
[81], see Section 2.1 below. For � ¤ 0, the multispin interaction breaks planarity (i.e., the
interaction cannot be represented in terms of couplings associated with the edges of a planar
graph with edge set �a), as well as the integrability of the model.

The apex ; on H�I;

a;� refers to the boundary conditions (b.c.), which we implicitly
assumed to be “open,” or “free,” i.e., we assumed that there is no spin in the complement
of �a interacting with those in �a. In a similar way, we can define the HamiltoniansH�IC

a;�

(resp. H�I�

a;� ) with C (resp. �) b.c., by including in its definition the interactions between
the spins � in �a and a configuration of spins identically equal to C1 (resp. �1) in its
complement,�ca. Analogously, if� is a 2D torus (resp. a 2D cylinder), we denote by�a its
discretization of lattice spacing a > 0 and letH�Iper

a;� (resp.H�Icyl
a;� ) be the spin Hamiltonian

defined as in (2.1), with the first sum including the nearest neighbor pairs winding up over
the torus (resp. cylinder) and the interaction V being translationally invariant with respect
to the natural translations on the torus (resp. cylinder).

The finite volume Gibbs measure with inverse temperature ˇ > 0 and # b.c., with
# 2 ¹;;C;�; per; cylº, is characterized by the probability weight

P�I#
ˇ Ia;�

.�/ D
1

Z
�I#
a;�

e�ˇH
�I#
a;�.�/; 8� 2 †a; (2.2)

where Z
�I#
a;� D

P
�2†a

e�ˇH
�I#
a;�.�/ is the partition function. Given an observable

A W†a ! R, we denote its average with respect to the probability weight (2.2) byE�I#
ˇ Ia;�

.A/.

1 More precisely, we assume V.X/DV0.X=a/ for a fixed, finite range, potential V0 W Z2 ! R.
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“Truncated,” or “connected,” expectations are denoted by semicolons, e.g., E�I#
a;�.A1IA2/D

E�I#
a;�.A1A2/ � E�I#

a;�.A1/E
�I#
a;�.A2/.

It is well known that the system displays a phase transition, in the following sense.
Fix a > 0 and take � sufficiently small compared to J . Denote by � % R2 the “thermo-
dynamic limit” obtained by (say) centering � at the origin, rescaling its linear dimensions
by L, and letting L ! 1. Then:

• If ˇ is small enough, for any finite X � aZ2, the limit E�
ˇ Ia;R2.�X / WD

lim�%R2 E�I#
ˇ Ia;�

.�X / is independent of the b.c. #, it is translationally invari-
ant and characterized by the fact that E�

ˇ Ia;R2.�x/ D 0, 8x 2 aZ2, and that the
truncated correlationsE�

ˇ Ia;R2.�X I�Y / decay exponentially to zero as the distance
between the finite sets X; Y � aZ2 diverges.

• If ˇ is large enough, for any finite X � aZ2, the limits E�;˙
ˇ Ia;R2.�X / WD

lim�%R2 E�I˙

ˇ Ia;�
.�X / with b.c. C or � exist, they are translationally invariant,

but are different if jX j is odd: in particular, E�IC

ˇ Ia;R2.�x/ D �E�I�

ˇ Ia;R2.�x/ is pos-
itive and independent of x, and E�I˙

ˇ Ia;R2.�X I �Y / decay exponentially to zero as
the distance between the finite sets X; Y � aZ2 diverges.

The two scenarios described above are usually referred to as “high-temperature” and “low-
temperature” phases, respectively. If �V is a ferromagnetic pair interaction, it is known [4]

that they extend to two contiguous intervals .0; ˇc/ and .ˇc ;1/ separated by a critical
inverse temperature ˇc D ˇc.�/, at which, for any finiteX � aZ2, the limitE�

ˇc Ia;R2.�X / WD

lim�%R2 E�I#
ˇc Ia;�

.�X / is independent of #, and E�
ˇc Ia;R2.�x/ D 0, 8x 2 aZ2. The same is

expected to hold for a general (translationally invariant, even, of finite range / a) inter-
action V , provided that � is small enough. Moreover, it is expected that E�

ˇc Ia;R2.�X I �Y /

decays algebraically to zero as the distance among the finite setsX;Y � aZ2 diverges. Even
more, the scaling limit of the correlations is expected to exist and to be universal, in the fol-
lowing sense. Fix ˇ D ˇc , and let � be a prescribed subset of the plane, or a 2D torus, or a
2D cylinder. Define the rescaled spin and energy variables as

�.x/ D a�1=8�Œx�; "j .x/ D a�1
�
�Œx��Œx�Ca Oej � E�I#

ˇc Ia;�
.�Œx��Œx�Ca Oej /

�
; (2.3)

where, for x 2�, Œx�D aba�1xc, Oej is the unit coordinate vector in direction j 2 ¹1; 2º, and
# 2 ¹;;C;�;per;cylº. Then it is expected that, for any tuple of distinct points x1; : : : ; xn; y1;
: : : ; ym of � and any choice of j1; : : : ; jm 2 ¹1; 2º, the limit

lim
a!0

E�I#
ˇc Ia;�

�
�.x1/ � � � �.xn/"j1.y1/ � � � "jm.ym/

�
(2.4)

exists, it is conformally covariant under Riemannmappings of the domain� into an arbitrary
new domain �0 and, moreover, it depends on � in an extremely simple, multiplicative, way,
i.e., one expects that there exist two constants Z1 D Z1.�/ and Z2 D Z2.�/ such that the
limit in (2.4) equalsZn1Zm2 times the limit obtained in the nearest neighbor case �D 0. This
is what universality predicts in this context and whose proof represents a key challenge in
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mathematical SM for the incoming years. As anticipated in the introduction, lately there has
been remarkable progress towards its proof, as reviewed in the next subsections.

2.1. The nearest neighbor case
As mentioned above, for �D 0 the model is exactly solvable in a remarkably strong

sense [58, 60, 63, 65, 78–81, 88, 97]; in particular, the partition function can be written as the
Pfaffian of a suitable complex adjacency matrix K of a graph, known as the Fisher graph,
obtained by suitably decorating the one associated with �a [41, 64]; moreover, correlation
functions of local observables can be expressed in terms of Pfaffians of submatrices ofK�1.
The exact solution provides, among other things, closed formulas for the free energy, spe-
cific heat, magnetization, and the large distance asymptotics of the spin correlations. The
critical temperature is known to be ˇc D ˇc.0/ D .2J /�1 log.

p
2 C 1/, at which, letting

first� % R2 and then a ! 0, one finds, for any pair of distinct points x1; x2 2 R2 and any
choice of j1; j2 2 ¹1; 2º,

lim
a!0

lim
�%R2

E0I#
ˇc Ia;�

�
�.x1/�.x2/

�
D

A

jx � yj1=4
;

lim
a!0

lim
�%R2

E0I#
ˇc Ia;�

�
"j1.x1/I "j2.x2/

�
D

1

�2
1

jx � yj2
;

(2.5)

irrespective of the boundary conditions (in the first line, A D 0:70338016 : : : ). The exact
solution, in the form reviewed, e.g., in [79], also allows one to compute the multipoint energy
correlations in the infinite plane limit: for any n-tuple of distinct points x1; : : : ; xn and any
j1; : : : ; jn 2 ¹1; 2º, we have

lim
a!0

lim
�%R2

E0I#
ˇc Ia;�

�
"j1.x1/ � � � "jn.xn/

�
D ��n

ˇ̌
PfM.z1; : : : ; zn/

ˇ̌2
; (2.6)

irrespective of the boundary conditions, where zj D .xj /1 C i.xj /2 is the complex repre-
sentative of the point xj , andM.z1; : : : ; zn/ is the n � n antisymmetric matrix of elements
Mij .z1; : : : ; zn/ D

1i¤j
zi�zj

. While these results are classical, conformal covariance of the
limits in finite domain remained elusive for decades. In the case of the multipoint energy
correlations, a rigorous proof is due to Hongler [54], who proved that, for any open, simply
connected region� of the plane, letting ' W�! H be the conformal mapping from� to the
upper half-plane (both thought of as subsets of C), and defining E0I#

ˇc I�
.".z1/ � � � ".zn// WD

lima!0 E0I#
ˇc Ia;�

."j1.x1/ � � � "jn.xn// for any n-tuple x1; : : : ; xn 2 � and j1; : : : ; jn 2 ¹1; 2º

(here, as above, zj is the complex representative of xj ), then, for # 2 ¹;;C;�º,

E0I#
ˇc I�

�
".z1/ � � � ".zn/

�
D

 
nY
iD1

ˇ̌
'0.zi /

ˇ̌!
E0I#
ˇc IH

�
"
�
'.z1/

�
� � � "

�
'.zn/

��
: (2.7)

Moreover, the right side is explicit: in fact,

E0I;

ˇc IH

�
".z1/ � � � ".zn/

�
D .�1/nE0IC

ˇc IH

�
".z1/� � �".zn/

�
;

and
E0I˙

ˇc IH

�
".z1/ � � � ".zn/

�
D .i�/�n PfM.z1; : : : ; zn; zn; : : : ; z1/:
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The scaling limit of the multipoint spin correlations is more subtle. Kadanoff [61]

first guessed its expression in the special case of n colinear points. In the general case, the
result was conjectured on the basis of CFT methods: in fact, after the work of Belavin,
Polyakov, and Zamolodchikov [13], it became clear that the scaling limit of any mixed mul-
tipoint spin-energy correlation should coincide with the corresponding correlations of the
CFT minimal model with central charge c D 1=2, which can be explicitly computed via
Coulomb Gas methods. A rigorous proof of the validity of the expected formula is very
recent, compared with the history of the Ising model, and is due to Dubedat [36,37] and to
Chelkak, Hongler, and Izyurov [31, 32], who proved that for even n, letting again zj be the
complex representative of xj ,

lim
a!0

lim
�%R2

E0I#
ˇc Ia;�

�
�.x1/ � � � �.xn/

�
D

��
A

p
2

�n X
�1;:::;�nD˙W
�1C���C�nD0

Y
1�i<j�n

jzi � zj j
�i�j =2

�1=2
:

(2.8)

Even more, [31] proved that in a finite domain � with # 2 ¹;;C;�º boundary conditions,
the limiting spin correlations, E0I#

ˇc I�
.�.z1/ � � � �.zn// WD lima!0 E0I#

ˇc Ia;�
.�.x1/ � � � �.xn//

are conformally covariant in a sense analogous to (2.7), i.e.,

E0I#
ˇc I�

�
�.z1/ � � � �.zn/

�
D

 
nY
iD1

ˇ̌
'0.zi /

ˇ̌1=8!
E0I#
ˇc IH

�
�
�
'.z1/

�
� � ��

�
'.zn/

��
; (2.9)

and, again, the right-hand side is explicit, see [31, Eq. (1.2)].

2.2. The nonplanar case
The remarkable results reviewed in the previous subsection are crucially based on

the underlying exact solvability and discrete holomorphicity of the model. For �¤ 0, neither
of these properties holds, and completely different methods must be employed for construct-
ing the scaling limit. As explained in the introduction, the natural framework for treating the
effect of interactions are multiscale methods, rigorously implementing Wilson’s RG ideas in
the present context. A constructive approach based on these ideas was proposed in [82,92],
and successfully used in [14, 45, 74] to compute the large distance asymptotics of correla-
tion functions and prove several instances of universality in spin and vertex models such as
Ashkin–Teller, the 8V model and non-integrable variants thereof. See [76] for a review of
these developments until 2010. In the context of non-planar Ising models, a decade ago we
successfully employed these methods to compute and prove universality of the bulk energy
correlations, as summarized in the following theorem.

Theorem 2.1 ([44]). Fix a potential V that, besides being even and translationally invariant,
has finite range proportional to a and is invariant under discrete rotations and reflections.
Then there exist �0 > 0 and two functions ˇc D ˇc.�/ and Z2.�/, real-analytic in � for
j�j � �0, such that, if�D�L is a 2D torus of side L, for any n > 1, any n-tuple of distinct
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points x1; : : : ; xn 2 R2, and any choice of j1; : : : ; jn 2 ¹1; 2º,

lim
a!0

lim
L!1

E�Iper
ˇc Ia;�

�
"j1.x1/ � � � "jn.xn/

�
D Zn2�

�n
ˇ̌
PfM.z1; : : : ; zn/

ˇ̌2
; (2.10)

whereM.z1; : : : ; zn/ is the same defined after (2.6).

Note that the right-hand side of (2.10) is equal to Zn2 times the bulk scaling limit
of the nearest-neighbor model (2.6): therefore, this theorem proves the universality conjec-
ture for the full-plane multipoint energy correlations of a large class of perturbations of the
standard 2D Ising model. The proof of the theorem, which is based on multiscale cluster
expansion methods (see Section 4 below) gives much more information than that summa-
rized in its statement: for instance, it provides an explicit, and essentially optimal, speed of
convergence to the limit, as well as a constructive algorithm for computing ˇc.�/ andZ2.�/;
moreover, it can be adapted to more general cases, e.g., it requires neither that V is invariant
under discrete rotations and reflections (the assumption has just the effect of simplifying the
explicit expression on the right-hand side of (2.10)) nor that ˇ is fixed exactly at ˇc : choosing
ˇ D ˇc C am0, we prove in [44] that the scaling limit of the truncated energy correlations
is non-trivial (it realizes the so-called “massive scaling limit” in the temperature direction)
and it decays exponentially to zero at large distances, with rate proportional to m0.

Theorem 2.1 and its proof are restricted to a translational-invariant setting, which
guarantees, in particular, that the effective potentials used to describe the system at length
scales much larger than the lattice spacing, see Section 4 for details, can be parametrized by a
finite number of “relevant” and “marginal” scale-dependent couplings (using a terminology
borrowed from the Wilsonian RG jargon), which are in fact constants, rather than functions
of the position x in the domain where the system is defined on. If we are interested in con-
structing the scaling limit of the correlations in a finite domain �, then we need to keep
track of such x-dependence, and to control the boundedness of the relevant and marginal
couplings, as the length scale increases, uniformly in x. From a technical point of view, the
x-dependence of the scale-dependent couplings potentially induces additional logarithmic
divergences in the theory, arising from the integration of the degrees of freedom supported
in the vicinity of the boundary. To date, there are no systematic, well-developed methods for
dealing with these divergences and related technical issues: the multiscale cluster expansion,
which the proof of Theorem 2.1 is based on, is not well developed yet in the case of critical
theories in finite domains, where boundaries are present and affect the form of correlation
functions in the scaling limit. This is a severe limitation for the rigorous construction of
scaling limits in finite domains and for the study of their conformal covariance with respect
to deformations of the domain. Recently, we managed to overcome several of these techni-
cal issues and to provide the first construction of non-planar Ising models in a domain with
boundary, in cylindrical geometry:

Theorem 2.2 ([6,7]). Fix V as in Theorem 2.1 and let �0; ˇc D ˇc.�/ and Z2 D Z2.�/ be
the same introduced there. Let� be a 2D cylinder with arbitrary sides `1; `2 > 0, periodic in
the horizontal direction. Then, for any n > 1, any n-tuple of distinct points x1; : : : ; xn 2 R2,

4048 A. Giuliani



and any choice of j1; : : : ; jn 2 ¹1; 2º,

lim
a!0

E�Icyl
ˇc Ia;�

�
"j1.x1/ � � � "jn.xn/

�
D Zn2 lim

a!0
E0Icyl
ˇc Ia;�

�
"j1.x1/ � � � "jn.xn/

�
D Zn2 .��/

�n PfA.x1; : : : ; xn/: (2.11)

Here A.x1; : : : ; xn/ is the 2n � 2n antisymmetric matrix with elements A.i;a/;.j;b/.x1; : : : ;
xn/ D 1i¤jg

cyl
a;b
.xi ; xj /, where i; j 2 ¹1; : : : ; nº, a; b 2 ¹1; 2º,

g
cyl
a;b
.x; y/ D

X
n2Z2

.�1/n
�
ga;b.x � y C `n/C .�1/aga;b.x � Qy C `n/

�
; (2.12)

ga;b are the matrix elements of

g.x/ D jxj
�2

 
x1 x2

x2 �x1

!
;

`n D .n1`1; n2`2/, and Qy D .y1;�y2/.

Also in this case, as for Theorem 2.1, the proof of the theorem provides bounds on
the speed of convergence to the limit, and it does not rely on the assumptions that V is invari-
ant under discrete rotations and reflections, and that the inverse temperature is fixed exactly
at ˇc (these were made just to simplify the statement). The key new ingredients in the proof,
compared with that of Theorem 2.1, are the following (I use again the Wilsonian RG jargon,
for additional details see Section 4 below): (1) proof that the scaling dimension of boundary
operators is better by one dimension than their bulk counterparts, (2) a cancelation mecha-
nism based on an approximate image rule for the fermionic two-point function allows us to
control the RG flow of the marginal boundary terms. I expect that these novel ingredients
will play an important role in future developments in the mathematical construction of the
scaling limit of critical 2D SM models in domains with boundaries.

Let me emphasize that the result summarized in Theorem 2.2 is uniform in `1; `2.2

Letting `1; `2 ! 1, we obtain the correlations in the half-plane (or, if desired, those in the
full-plane, depending on the way in which we perform the limit). The proof can be general-
ized to the computation of the scaling limit of the boundary spin correlations, which can be
shown to be the Pfaffian of an explicit antisymmetric matrix. A limitation of our result, intrin-
sic in the multiscale cluster expansion method employed, is the restriction to small values
of �. A related result [5] is the recent proof that, if V is a ferromagnetic pair interaction, then
the scaling limit of the boundary spin correlations has a Pfaffian structure. The proof is based
on a random current representation and a multiscale application of Russo–Seymour–Welsh-
type bounds [86,89] on the crossing probabilities of the currents, and applies to ferromagnetic
pair interaction of any strength, i.e., remarkably, the result is nonperturbative. A limitation is
that the scaling limit of the boundary spin correlations constructed in [5] and the associated

2 Strictly speaking, the proof in [6] requires `1=`2 to be bounded from above and below. This
limitation can be easily overcome: if `1 � `2 or `1 � `2, one needs to separately study the
contributions from the intermediate length scales between `1 and `2, which is easy to do by
the multiscale methods of [6]: in fact, at these scales, the systems effectively behaves as a
1D Ising system (whose thermodynamic behavior is “trivial”) with dressed parameters.
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critical exponents are not explicit: in this sense, [5] offers a complementary perspective to
ours, both with respect to the results and of the techniques employed.

3. The scaling limit of interacting dimer models

Let us now consider a different setting, the one of 2D dimermodels, where the notion
of universality and the nature of the scaling limit is more subtle than for Ising models. Dimer
models (possibly in the presence of vacancies, called “monomers”) were introduced in the
equilibrium setting by Fowler and Rushbrooke in 1935 [42] as simplified models for liquids
of anisotropic molecules. Here we consider such models in the limit of no vacancies. Let us
define the setting precisely: similarly to the previous section, let � be a simply connected
region of the plane, or a 2D torus, or a 2D cylinder. Let L be the infinite square grid of lattice
spacing 1=

p
2 and axes tilted by 45ı with respect to the standard horizontal and vertical

axes, and let �a be a discretization of � on aL, a > 0. Note that the graph G�a associated
with �a, i.e., the one with vertex set �a and edge set consisting of the links connecting
nearest neighbor sites of �a, is bipartite, and we color its vertices black and white so that
neighboring vertices have different colors, with the convention that the origin is black. An
edge e of G�a is said to be of type r 2 ¹1; 2; 3; 4º if its white endpoint is to the NE, NW,
SW, SE of its black endpoint, respectively. For any e, we let r.e/ be its type and x.e/ the
coordinate of its black site (note that x.e/ 2 aZ2). A dimer covering, or “allowed dimer
configuration,” of the graph G�a is a subset of its edges that covers every vertex exactly
once. We denote by D D D.�a/ the set of allowed dimer configurations in �a, and we
assume that �a has been chosen in such a way that D ¤ ;. The class of dimer models we
are interested in are defined by the following probability measure on D :

P�a;�.D/ D
1

Z�a;�

�Y
e2D

tr.e/

�
e�V.D/; 8D 2 D ; (3.1)

where tr , with r 2 ¹1; 2; 3; 4º, are the weights of the 4 different dimer types; V is a transla-
tionally invariant interaction, of finite range proportional to a; � is the interaction strength,
to be thought of as “small”; Z�a;� D

P
D2D.

Q
e2D tr.e//e

�V.D/ is the partition function.
With no loss of generality, we can fix t4 D 1, and we shall do so in the following. For �D 0,
the model is exactly solvable in a very strong sense, as originally proved by Kasteleyn [64]

and by Temperley and Fisher [93], see Section 3.1 below. In general, for � ¤ 0, the model
is not exactly solvable anymore, even though there is a special choice of the interaction V ,
of nearest neighbor type, for which it reduces to the 6V model, which is solvable by Bethe
ansatz, see [50, Section 2.3] and [11].

In analogy with the notation of the previous section, we denote by E�a;�.A/ the
average of an observable A W D ! R with respect to the probability weight in (3.1); again,
truncated expectations are denoted by semicolons. Given an edge e, we denote by 1e the
corresponding “dimer observable,” i.e., the characteristic function of the event “e belongs
to the dimer configuration”; (truncated) expectations of products of dimer observables will
be referred to as (truncated) dimer correlations. Another important observable is the height
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function h, which is defined on the faces of G�a as follows: fix arbitrarily a face �0 of G�a ,
and set h.�0/ D 0; the value of the height on the other faces is fixed by letting the gradients
be

h.�0/ � h.�/ D

X
e2C�!�0

�e.1e � 1=4/; (3.2)

where C�!�0 is a nearest neighbor path on the dual ofG�a from the face � to the face �0, the
sum is over the edges crossed by this path, and �e is a sign, equal to C or � depending on
whether the oriented pathC�!�0 crosses e with the white site on the right or left, respectively.
The definition (3.2) is well posed because the right side does not depend3 on the choice of
the path C�!�0 .

The probability measure P�a;� depends on the parameters t1; t2; t3; � and on the
interaction V . Let us fix the latter once and for all. We are interested in identifying choices
of t1; t2; t3; � producing a nontrivial scaling limit as a ! 0 and/or� % R2. However, con-
trary to the Ising case, the properties of the limiting distribution are extremely sensitive to
the shape of �, to the choice of its discretization and on the boundary conditions. Let us
first consider the case that � D �L is a torus, centered at the origin, whose horizontal and
vertical sides are both of lengthL. In the limitL! 1, the expectation of the height function
converges to a linear profile with slope � D �.t1; t2; t3; �/ 2 R2:

lim
L!1

E�a;�
�
ah.�x/

�
D � � x; 8x 2 R2 (3.3)

where, for x 2 R2, �x is the face whose bottom vertex is black, of coordinate Œx� WD aba�1xc.
An alternative way of computing the function �.t1; t2; t3; �/ is via the Legendre transform
of the free energy of the system with respect to a suitable “magnetic field” B 2 R2: let
t1.B/ D t1e

�B1 , t2.B/ D t2e
�B1�B2 , t3.B/ D t3e

�B2 , and

F.B/ WD lim
L!1

L�2 logZ�a;�.B/; (3.4)

with Z�a;�.B/ D
P
D2D.

Q
e2D tr.e/.B//e

�V.D/ the partition function with B-dependent
weights, and define the surface tension � W R2 ! R [ ¹C1º as

�.s/ D sup
B

®
s � B � .B1 C B2/=2 � F.B/

¯
: (3.5)

Then the average slope � in (3.3) is the uniqueminimizer of � with respect to s. If � belongs to
the regionC where � is strictly convex and twice differentiable, we also expect that the height
fluctuations on top of the linear profile with slope � are universally described by a Gaussian
Free Field (GFF), in the sense that, for anyC1 compactly supported test function WR2!R

such that
R

R2 .x/dxD0 and any ˛2R, letting ha. /Da2
P
x2�a

 .x/.h.�x/� a�1� � x/,

lim
a!0

lim
L!1

E�a;�.e
i˛ha. // D e� ˛2

2

R
R2 dx

R
R2 dy  .x/ .y/G�.x;y/ (3.6)

3 More precisely, the values of the right-hand side of (3.2) computed along two paths C�!�0

and C 0
�!�0 are the same if the loop obtained by concatenating C�!�0 with the path

obtained by reversing the orientation of C 0
�!�0 is contractible. If � is a torus, then the two

values may differ by a quantity depending on the windings of such a loop.
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where G� is the Green’s function, i.e., the inverse of ��� WD �
P2
i;jD1 @i .�ij .�/@j /, with

�ij .�/ the elements of the Hessian of � at �.
We are now in the position of formulating a conjecture on the scaling limit of the

dimer model in more general domains, involving the surface tension � introduced above and
the region C of slopes where � is strictly convex and twice differentiable. Suppose, e.g., that
� is an open, finite, simply connected region of the plane. Let Nh W � ! R be a continuous
function that extends continuously to @�, which is a “dimer limit shape,” in the sense that it
is the unique minimizer of

R
�
�.rh/dx with boundary condition hj@� D Nhj@�, and suppose

that it has “no frozen regions,” in the sense that r Nh belongs to C for almost-every x 2 �.
Then we expect that there exists a sequence of discretizations�a of� such that the average
limiting height profile is exactly Nh, i.e., lima!0 E�a;�.ah.�x// D Nh.x/, 8x 2 �, and the
scaling limit of the height fluctuations around Nh is a GFF, in the sense that, for any C1

compactly supported test function  W � ! R,

lim
a!0

E�a;�
�
ei˛h

a. /
�

D e
� ˛2

2

R
R2 dx

R
R2 dy  .x/ .y/G Nh;�

.x;y/ (3.7)

where G Nh;� is the inverse of the operator �� Nh on � defined by

.�� Nhf /.x/ WD �

2X
i;jD1

@i
�
�ij
�

Nh.x/
�
@jf .x/

�
; (3.8)

with zero Dirichlet boundary conditions at @�. The expected structure of the scaling limit
is even richer than what emerges from the previous discussion, e.g., it turns out that the
GFF nature of the height fluctuations is strictly (and subtly) related to the mesoscopic and
macroscopic behavior of the dimer correlations, as it will become clearer from the discus-
sion in the next two subsections. Moreover, the conjectured GFF nature of the height field
comes together with complementary (and even harder-to-prove) predictions on the monomer
and “vertex,” or “electric,” correlation functions, whose precise description, however, goes
beyond the purpose of this review.

3.1. The non-interacting case
As anticipated above, and in analogy with what we saw for the Ising model, at �D 0

the dimer model is exactly solvable [64,93]. Let us review here a few aspects of the solution,
and let us focus for simplicity on the case that � D �L is a square torus of side L, as
described before (3.3). For any finite a and L, the partition function can be expressed as the
linear combination of the determinants of four variants of the so-called Kasteleyn matrix
K D K.t1; t2; t3/ (a complex adjacency matrix of G�a ), the four variants differing for the
boundary conditions along the edges “winding up” over the torus, which can be periodic or
antiperiodic in the horizontal and vertical directions. Moreover, the multipoint dimer corre-
lations are (linear combinations of four) determinants of minors ofK�1. Starting from these
explicit formulas, one can easily compute the limit of the dimer correlations asL! 1, thus
finding, in particular, that, for any two edges e; e0, letting r.e/ � r , r.e0/ � r 0, x.e/ � x,
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x.e0/ � x0:

lim
L!1

E0a;�.1e1e0/ D KrKr 0 det

 
K�1.x C avr ; x/ K�1.x C avr ; x

0/

K�1.x0 C avr 0 ; x/ K�1.x0 C avr 0 ; x0/

!
; (3.9)

where Kr D i r�1tr , v1 D .0; 0/, v2 D .�1; 0/, v3 D .�1;�1/, v4 D .0;�1/, and K�1 is
the inverse Kasteleyn matrix in the thermodynamic limit, which reads

K�1.x; y/ D

Z
Œ��;��2

dk

.2�/2
e�ia�1k�.x�y/

�.k/
; (3.10)

with �.k/ D t1 C i t2e
ik1 � t3e

i.k1Ck2/ � ieik2 being the “dispersion relation.” Using
also the fact that limL!1 E0a;�.1e/ D KrK

�1.x C avr ; x/ and limL!1 E0a;�.1e0/ D

Kr 0K�1.x0 C avr 0 ; x0/, one finds that the truncated dimer-dimer correlation reads:

lim
L!1

E0a;�.1eI 1e0/ D �KrKr 0K�1.x C avr ; x
0/K�1.x0

C avr 0 ; x/; (3.11)

whose large distance decay properties are dictated by those ofK�1. In turn, these depend on
the singularity structure of �.k/: if � has two simple zeros, denoted pC and p�, a simple
asymptotic computation shows that at large distances

K�1.x; y/ D
a

2�

X
!D˙

!
e�ia�1p! �.x�y/

�!.x � y/
CO

��
a=jx � yj

�2�
; (3.12)

where �!.x/D ˇ!x1 � ˛!x2, with ˛! D @k1�.p!/ and ˇ! D @k2�.p
!/. In view of (3.11),

lim
L!1

E0a;�.1eI 1e0/ D
a2

4�2

X
!D˙

K!;rK!;r 0

.�!.x � x0//2

C
a2

4�2

X
!D˙

K�!;rK!;r 0

j�!.x � x0/j2
eia

�1.p!�p�!/�.x�x0/

CO
��
a=
ˇ̌
x � x0

ˇ̌��3�
; (3.13)

whereK!;r DKre
�ip! �vr . Notice that both the first and second terms on the right-hand side

decay at large distances (compared to the lattice spacing) as .a=jx � x0j/2, but the second
term behaves differently from the first because it wildly oscillates on the lattice scale.

From these formulas, via (3.2), one can compute the average height profile and the
asymptotics of the height fluctuations around the average. In particular, using the expres-
sion for the dimer one-point function, we find that the two components of the average
slope at �D 0, in the sense of (3.3), are �j D

P
e2C�!�Ca Oej

�e.Kr.e/K
�1.x.e/ C avr.e/;

x.e//� 1=4/, with j D 1; 2, for any face � (here Oej , is the unit coordinate vector in direction
j 2 ¹1; 2º). Remarkably, � belongs to the region C where the surface tension � is strictly
convex and twice differentiable iff � has two distinct zeros. In this case, by computing the
asymptotics of the height fluctuations around the average height profile, we find, as expected,
a GFF behavior: consider, e.g., four distinct points in the plane, x1; : : : ; x4 2 R2; using (3.2),
write the covariance of the height differences between the faces at x1; x2, and at x3; x4 as

lim
a!0

lim
L!1

E0a;�
�
h.�x1/ � h.�x2/I h.�x3/ � h.�x4/

�
D lim
a!0

X
e2C�x1!�x2
e02C�x3!�x4

�e�e0 lim
L!1

E0a;�.1eI 1e0/; (3.14)
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and plug the asymptotic formula for the truncated dimer–dimer correlation (3.13) on the
right-hand side of this equation; using the independence of the right-hand side of (3.14)
from the choice of C�x1!�x2

; C�x3!�x4
, choose these lattice paths to be well separated: by

doing so, one finds that both the remainderO..a=jx � x0j/3/ and the wildly oscillating terms
in (3.13) give subdominant contributions to the right-hand side of (3.14), in the a ! 0 limit;
we are then left with the contribution from the first term on the right-hand side of (3.13) and,
using the remarkable fact that, for any x 2 R2 and j 2 ¹1; 2º,X

e2C�x!�xCaej

�eK!;r.e/ D �i!@j�!.x/; (3.15)

we finally get

lim
a!0

lim
L!1

E0a;�.h
�
�x1 � h.�x2/I h.�x3/ � h.�x4/

�
D �

1

2�2
Re
Z �C.x2/

�C.x1/

dz

Z �C.x4/

�C.x3/

dz0 1

.z � z0/2

D
1

2�2
Re log

.�C.x4/ � �C.x1//.�C.x3/ � �C.x2//

.�C.x4/ � �C.x2//.�C.x3/ � �C.x1//
: (3.16)

Similar computations can be performed for higher moments of the height fluctuations,
from which one finds that, for any n > 2 and any 2n-ple of distinct points x1; : : : ; x2n,
lima!0 limL!1 E0a;� .h.�x1/� h.�x2/I : : : Ih.�x2n�1/� h.�x2n// D 0. As a corollary, one
finds (3.6) at �D 0, withG�.x;y/D �

1
2�2

log j�C.x � y/j. Similar results can be extended
to the case of finite, simply connected, domains of arbitrary shape: in particular, the GFF
behavior of the height field in the sense of (3.7)–(3.8) has been proved in [69,72].

Note that, remarkably, the prefactor in front of the logarithm on the right-hand side
of (3.16) (the “stiffness” of the GFF) is independent of the slope; equivalently,
det �ij .�/ � �2, irrespective of �, provided � 2 C . This is a very special property of
the non-interacting model, related to the fact that the spectral curve is an algebraic Har-
nack curve [70], and it is not expected to be robust under the addition of interactions. More
in general, one expects that the GFF behavior of the height fluctuation relies on a subtle
relation between the “stiffness” coefficient of the GFF, equal to 1=.2 det �ij .�//, and the
critical exponent associated with the oscillating part of the dimer–dimer correlation. Such a
connection is a restatement, in the dimer context, of a deep universality relation predicted by
Kadanoff [62] and Haldane [53] for vertex models and Luttinger liquids, based on Coulomb
gas and bosonization methods. In the next section I will present a rigorous statement of the
Kadanoff–Haldane relation for interacting dimer models and I will discuss its role in the
proof of the GFF behavior of the height field.

3.2. Interacting dimer models
Let us now consider interacting dimers, described by (3.1) with � ¤ 0. In this case,

the exact solvability of the model and its underlying determinant structure break down, and
no thermodynamic or correlation function can bewritten explicitly, in closed form. This is the
same as for the Ising model, but actually, compared with the Ising case, here things are even
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more subtle: while in the class of non-planar perturbations of the Isingmodel the scaling limit
is expected to be described by the same critical exponents as the nearest-neighbor model,
the interacting dimer correlations are expected to display a complex behavior, with different
decay exponents associated with their oscillatory and non-oscillatory parts; in particular, the
decay exponent associated with the oscillatory part of the two-point dimer correlation (i.e.,
the analogue of the second term on the right-hand side of (3.13)) is expected to be anomalous,
i.e., to depend continuously and non-trivially on �, and to be related by a simple, universal,
relation to the stiffness coefficient of the height function.

As an illustration of the non-trivial large distance behavior of the correlation func-
tions of the interacting model, let me first state a result about the asymptotics of the two-point
dimer correlation, which generalizes equation (3.13) to the case � ¤ 0. Consider, again, the
case that � D �L is a torus of side L centered at the origin, and, given two edges e; e0, let
x.e/ � x, x.e0/ � x0, r.e/ � r , r.e0/ � r 0. Then the following holds:

Theorem 3.1 ([49,50]). Let t1; t2; t3 be such that �.k/ has two distinct nondegenerate zeros,
p˙. Then there exist constants C; �0 > 0 and functions K�!;r , H�

!;r , ˛�! , ˇ�! , p�! , �.�/,
analytic in � for j�j < �0, for which, letting ��!.x/ D ˇ�!x1 � ˛�!x2,

lim
L!1

E�a;�.1eI 1e0/ D
a2

4�2

X
!D˙

K�!;rK
�
!;r 0

.��!.x � x0//2

C
a2�.�/

4�2

X
!

H�
�!;rH

�
!;r 0

j��!.x � x0/j2�.�/
eia

�1.p�!�p��!/�.x�x0/

CO

��
a

jx � x0j

�3�C j�j�
: (3.17)

Moreover, K0!;r D H 0
!;r D K!;r , ˛0! D @k1�.p!/, ˇ0! D @k2�.p!/, p0! D p! , �.0/ D 1,

˛�! D �˛��! ; ˇ�! D �ˇ��! ; K�!;r D K��!;r ; H�
!;r D H�

�!;r ; p�C C p�� D .�; �/;

(3.18)

and, generically in the choice of the interaction V , �.�/ depends nontrivially on �, i.e.,
�0.0/ ¤ 0.

The proof of the theorem provides a constructive algorithm for computing the coef-
ficients of the convergent power series in � forK�!;r ;H�

!;r , etc., but does not provide closed
formulas for any of them. By comparing (3.17) with (3.13), it is apparent that the interaction
modifies the scaling of the oscillatory part of the dimer–dimer correlation, which acquires
the “anomalous” critical exponent �.�/: this may be larger or smaller than 1, depending on
the sign of �; therefore, depending on whether the dimer interaction is repulsive or attractive,
the oscillatory term, in absolute value, may be dominant or subdominant at large distances
with respect to the nonoscillatory term. Let us remark that an explicit computation [51] shows
that, generically, not only �0.0/ is different from zero, but it also depends explicitly upon the
average slope �j D �j .t1; t2; t3; �/ D

P
e2C�!�Ca Oej

�e.limL!1 E�a;�.1e/ � 1=4/.
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Once that the sharp asymptotics for the two-point dimer correlation is known,we can
compute the variance of height fluctuations, in analogy with (3.14) and following discussion.
With the same notation and assumptions as in (3.14), we write

lim
a!0

lim
L!1

E�a;�
�
h.�x1/ � h.�x2/I h.�x3/ � h.�x4/

�
D lim
a!0

X
e2C�x1!�x2
e02C�x3!�x4

�e�e0 lim
L!1

E�a;�.1eI 1e0/I (3.19)

then we plug the asymptotics (3.17) on the right-hand side of this equation, and by choosing
the paths C�x1!�x2

; C�x3!�x4
well separated, we find that the contributions to the variance

from the second and third terms on the right-hand side of (3.17) vanish as a ! 0. So also in
the interacting case, we are left with the contribution to the variance from the non-oscillating
term in (3.17), which we need to evaluate in the a ! 0 limit. In order for the involved sums
to converge to well-defined, path-independent integrals, we need the analogue of (3.15) to
hold in the interacting case, too. This is very hard, if not impossible, to check directly, due to
the fact that the coefficients of the convergent power series in � forK�!;r and ��! are defined
by extremely complicated, and different, algorithms. Nevertheless, we succeeded in proving
the validity of an interacting analogue of (3.15), by making use of lattice Ward Identities
(WI), in combination with hidden, chiral, WI for a continuum reference model that, in an
appropriate sense, describes the infrared fixed point of the interacting dimer model (see next
section for a few additional comments on the ideas of the proof):

Theorem 3.2 ([48,50]). Under the same assumptions as Theorem 3.1, one hasX
e2C�!�Ca Oej

�eK
�
!;r.e/ D �i!

p
�.�/ @j�

�
!.x/; (3.20)

where �.�/ is the same as in (3.17). Consequently,

lim
a!0

lim
L!1

E�a;�.h
�
�x1 � h.�x2/I h.�x3/ � h.�x4/

�
D
�.�/

2�2
Re log

.�C.x4/ � �C.x1//.�C.x3/ � �C.x2//

.�C.x4/ � �C.x2//.�C.x3/ � �C.x1//
: (3.21)

An elaboration of the proof also implies that, for any n > 2 and any 2n-tuple of
distinct points x1; : : : ; x2n, lima!0 limL!1 E�a;�..h.�x1/ � h.�x2//I : : : I .h.�x2n�1/ �

h.�x2n/// D 0, from which the asymptotic GFF behavior of the height field, in the sense
of (3.6), follows. The reader should not underestimate the fact that the proof of such GFF
behavior comes with an exact computation of the stiffness coefficient of the GFF, which
turns out to be the same as the critical exponent �.�/ of the dimer–dimer correlation. This is
a universal relation among critical exponents, equivalent to those predicted by Kadanoff and
Haldane in the closely related contexts of vertex, Ashkin–Teller, and Luttinger liquid models.
In particular, it is equivalent to the identity Xp D Xe=4 [62, Eq. (13a)] between the polariza-
tion critical exponent Xp and the energy critical exponent Xe of the Ashkin–Teller model,
an elusive exact scaling relation that Kadanoff predicted on the basis of formal bosonization
methods and Coulomb gas techniques. In this sense, our result is a rigorous confirmation of
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the predictions of bosonization in the context of interacting dimer models, and it is related
to the notion of “weak universality” discussed in Baxter’s book [11]; see also [48, Section 1]

and [76] for additional discussions on the notions of bosonization and weak universality in
the contexts of dimer, vertex, Ashkin–Teller and quantum spin chain models.

4. Methods and ideas behind the proofs

A common feature of the problems and results stated above is that they concern non-
solvable 2D models in the vicinity of an exactly solvable reference model at its free Fermi
point: this is a way of saying that the reference nearest-neighbor Ising and dimer models are
exactly solvable in terms of determinants of appropriate, explicit, matrices. As well known
[29,43,87], this allows us to express the partition and generating function of correlations of
the reference, solvable, models in terms of Gaussian Grassmann integrals: in particular, for
any a > 0 and finite�, the partition function of the dimer model at � D 0 can be written as

Z0a;� D

Z
D�e�.�C;K��/; (4.1)

where K is the Kasteleyn matrix, and � D ¹�C
x ; �

�
x ºx2�a � .�C; ��/ is a collection

of Grassmann variables; the Ising partition function can be written analogously, with K
replaced by a different, but still explicit, matrix, and � replaced by a collection of 4j�aj
“real” Grassmann variables. Similarly, the generating functions of the dimer or energy cor-
relations, in the two cases of dimers and Ising, can be also written as Gaussian Grassmann
integrals, from which one can easily get closed formulas for the corresponding multipoint
dimer or energy correlations, and prove that they satisfy an exact fermionic Wick rule at the
lattice level, i.e., that they have determinant, or Pfaffian, form.

Another common feature of the dimer and Ising models discussed in this paper is
that their interacting, non-solvable versions can be formulated exactly, at finite a and finite�,
in terms of non-Gaussian Grassmann integrals [7,44,50]. For instance, the partition function
of the interacting dimer model can be written as follows (again, the one of the non-planar
Ising model admits an analogous representation):

Z�a;� D Z0a;�

Z
P.D�/eV.�/; (4.2)

where P.D�/ D D�e�.�C;K��/=
R
D�e�.�C;K��/, and V is a “potential” of strength �,

which can be written as the sum of monomials in � of order 2, 4, 6, etc., with kernels that are
analytic in � in a small neighborhood of the origin and decay exponentially to zero at large
distances, with rate proportional to the inverse lattice spacing. The term in V that is quadratic
in � can be isolated from the rest of the potential and combined with the Gaussian “measure”
P.D�/; after this rearrangement, the potential contains a quartic term, plus higher order
subdominant terms. In this sense, both the interacting Ising and dimer models take the form
of Grassmannian �4

d
models in dimension d D 2, somewhat reminiscent of the �4

d
models

studied by the constructive Quantum Field Theory (QFT) community since the early 1970s
[52]. Note that (4.2) provides an explicit algorithm for computing all the coefficients of the
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perturbative series in � for the partition function (similar considerations hold for the free
energy and generating function of correlations): it is enough to expand the exponential and
compute term by term the expectation of V n with respect to the Gaussian measure P.D�/,
which can be easily done in terms of the fermionic Wick rule. What makes things non-
trivial is the fact that the covariance of the reference Gaussian measure, which for dimers
is the (finite volume analogue of the) inverse Kasteleyn matrix K�1 in (3.10), at criticality
decays algebraically to zero at large distances (criticality corresponds to the condition that
�.k/ has two simple zeros, for dimers; and to the condition that ˇ is set equal to the inverse
critical temperature, for Ising). This implies that the naive bounds one can easily derive on the
coefficient of the perturbative series are non-uniform in a and in the system size; in order to be
able to control the thermodynamic and a! 0 limits, one needs to exhibit subtle cancelations,
whose identification requires systematic, multiscale resummations of the perturbation series,
and which are very hard, if not impossible, to prove by direct inspection of the original series.

The approach developed over the years to identify these cancelations in critical sys-
tems is based on the ideas of Wilsonian RG. More specifically, the constructive RG approach
used in the proofs of Theorems 2.1 to 3.2 is that developed by Benfatto, Gallavotti, Mas-
tropietro, and coworkers [16, 17, 19] and reviewed in, e.g., [43, 75]; see also the more recent
works [7, 47, 49], which review and provide a pedagogical introduction to this method in
the specific contexts of non-planar Ising models, interacting dimer models, and fermionic
�4
d
theories with long-range interactions, respectively. At a very coarse level, the idea is

to compute (4.2) recursively, first integrating out the degrees of freedom at length scales
`02

�N ' a (here `0 is the length unit and �N D blog2.a=`0/c), then those at length scales
`02

�NC1; `02
�NC2; : : : ; `02

�hC1, etc. After each integration step, we re-express the par-
tition and generating functions in a form analogous to (4.2), with P.D�/ replaced by a
Gaussian measure with covariance supported on length scales & `02

�h and V.�/ replaced
by an effective interaction V .h/.�/ that, up to a rescaling, has a form similar to the original
V.�/, with modified coupling constants in front of the quadratic, quartic, sextic, etc., con-
tributions. A dimensional power counting shows that the terms that tend to expand under
iterations (and, therefore, to produce divergences in perturbation theory) are the quadratic
and quartic ones, which tend to grow linearly and logarithmically in 2N�h, respectively.
These are the terms to be monitored and carefully looked at, in order to identify the cance-
lations that, if present, allow one to define a resummed, convergent perturbation theory.

Let me describe the procedure at a slightly more technical level, focusing, for illus-
trative purposes, on the dimer case with � D �L a torus of side L, and neglecting in the
following discussion finite size effects, e.g., the difference between K�1 and its finite-L
counterpart. While the scheme described below has several similarities with that used in the
case of non-planar Ising models, there are also important differences (e.g., the presence for
dimers of a non-trivial effective quartic coupling, denoted �h in the following), which I will
comment about below.

In (4.2), we first rewrite the covariance K�1.x; y/ of the Gaussian measure as a
superposition of exponentially decaying “propagators,” each characterized by an exponen-
tial decay rate / 2h, h � N , that is, recalling (3.10) and (3.12), we rewrite K�1.x; y/ D
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P
!D˙

P
h�N e

�ia�1p! �.x�y/g
.h/
! .x; y/, with g.h/! .x; y/ ' 2hg

.0/
! .2hx; 2hy/, and g.0/! ,

! D ˙, two smooth functions, exponentially decaying to zero on scale `0. Next, we rewrite
the components of the random field � with reference distribution P.D�/ as �˙

x DP
!D˙ e

˙ia�1p!x�˙
!;x , and let �! D �

.N/
! C �

.�N�1/
! (equality to be understood in dis-

tribution), with �.N/! (resp. �.�N�1/
! ) a Grassmann Gaussian field with covariance g.N/!

(resp. g.�N�1/
! D

P
h�N�1 g

.h/
! ); for brevity, we shall denote by �.N/ the pair of fields

¹�
.N/
C ; �.N/� º, and similarly for �.�N�1/. Correspondingly, we re-express the interacting

partition function in (4.2) as follows (here V .N/ is the same as V , thought of as a function
of �.N/ C �.�N�1/ rather than of �):

Z�a;�=Z
0
a;� D

Z
P�N�1.D�

.�N�1//

Z
PN .D�

.N//eV
.N/.�.N/C�.�N�1//

D eL
2FN

Z
P�N�1.D�

.�N�1//eV
.N�1/.�.�N�1//; (4.3)

wherePN .D�/ andP�N�1.D�/ are the GrassmannGaussian integrations with covariancesR
PN .D�/�

�
!;x�

C

!0;yDı!;!0g
.N/
! .x;y/ and

R
P�N�1.D�/�

�
!;x�

C

!0;yDı!;!0g
.�N�1/
! .x;y/,

respectively, andL2FN C V .N�1/.�/D log
R
PN .D�

0/eV.�
0C�/, with V .N�1/.0/D 0;FN

is a single-scale contribution to the free energy, and V .N�1/ is called the effective potential
on scale 2�NC1. Remarkably, FN and the kernels of V .N�1/ are analytic functions of �,
uniformly in a and L, thanks to the Grassmann nature of the theory (the key idea is that
the nth order term in perturbation theory can be expressed in determinant form, thanks to
a smart interpolation identity due to Battle, Brydges, Federbush, and Kennedy [8, 22, 23],
and the determinants can be bounded in an optimal way, from the combinatorial point of
view, thanks to the Gram–Hadamard inequality [43]); moreover, the kernels of V .N�1/ decay
exponentially to zero at large distances, with exponential rate / 2N�1.

In the second line of (4.3), we isolate the quadratic terms of V .N�1/.�/ from
the quartic or higher-order terms, and we insert them in the reference Gaussian integra-
tion P�N�1.D�/, thus “dressing” it a little bit, the dressing corresponding to a small,
O.�/, change of the location of the zeros p! of �.k/, to an O.�/ change of the “veloc-
ities” ˛! D @k1�.p!/ and ˇ! D @k2�.p!/, and to an overall rescaling by a multiplicative
factor ZN�1 D 1 C O.�/, which can be conveniently reabsorbed by rescaling the field
� by

p
ZN�1. After the manipulation of these quadratic terms and this rescaling we are

left with a modified effective interaction which includes a local quartic term, of the form
�N�1Z

2
N�1

R
dx�C

C;x�
�
C;x�

C
�;x�

�
�;x , the constant �N�1 playing the role of the effective

interaction strength on scale 2�NC1, plus a remainder, which is nonlocal, or involves mono-
mials in � of higher order than four.

We now iterate the procedure, and integrate out in the same fashion the fields on
scales labeled by N � 1;N � 2; : : : ; hC 1, so that, for any h � N , we rewrite:

Z�a;�=Z
0
a;� D eL

2
PN
h0DhC1 Fh0

Z
P�h.D�

.�h//eV
.h/.

p
Zh�

.�h//; (4.4)

where, once again, the single-scale contributions to the free energy Fh0 and the kernels of
the effective potential V .h/ are analytic functions of �, uniformly in a; L (but, in general,
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non-uniformly inN � h). The constantZh in the argument of the effective potential is the so-
called wave-function renormalization, which plays the same role as the multiplicative factor
ZN�1 introduced above, after the integration of the first scale. Moreover, V .h/.

p
Zh�/ con-

sists of: (i) quadratic terms, which can be combined with the reference Gaussian integration
P�h.D�

.�h//, thus leading to an additional, iteratively defined, dressing of the effective
covariance; (ii) a local quartic term, of the form �hZ

2
h

R
dx�C

C;x�
�
C;x�

C
�;x�

�
�;x , with �h

playing the role of the effective interaction strength at length scales / 2�h; (iii) a remainder,
including non-local interactions, or interactions of order higher than four in �, called the
irrelevant terms.

As mentioned above, while well defined at each scale, the procedure sketched above
does not lead to bounds that, in general, are uniform in the number of iterations, N � h. Of
course, in order to perform the scaling limit a ! 0 (which corresponds to the removal of
the ultraviolet cutoffN ! 1) and/or the thermodynamic limitL! 1 (which corresponds
to the removal of an infrared cutoff hL D blog2.`0=L/c ! �1), we need to prove that the
construction is well defined uniformly inN � h. Remarkably, it turns out that the bounds on
the kernels of the effective potential are uniform in the number of iterations iff �h remains
bounded and small, uniformly in the scale index: if this is the case, then all the irrelevant
terms turn out to be bounded and small, too; in fact, they can be recasted in the form of
uniformly convergent expansions in the effective couplings ¹�h0ºh�h0�N . In other words,
all the potential sources of divergences are resummed into the scale-dependent couplings
¹�h0º and the problem of proving bounds on the free energy and correlation functions of
the dimer model that are uniform in the scale index translates into that of controlling the
boundedness of the sequence of effective couplings. This is an enormous conceptual simpli-
fication because �h can be written as the solution to a finite difference equation, induced by
the iterative integration procedure sketched above, known as the beta function equation, of
the form �h�1 D �h C ˇh.�h; : : : ; �N /, with ˇh.�h; : : : ; �N / D c2;h�

2
h
C higher orders.

A priori, the same general estimates leading to the aforementioned control on the irrel-
evant contributions to the effective potential tell us that jˇh.�h; : : : ; �N /j � C0"

2
h
, with

"h D maxh�h0�N j�h0 j and C0 independent of h; therefore, using the fact that �N D O.�/,
we find j�hj �C j�j.1C j�j.N � h// for some h-independent constantC ; the point now is to
look more closely at the beta function equation and to try to identify a structure guaranteeing
that �h behaves better than such a priori, general, bound. Explicit computations show that at
second and third order ˇh.�h; : : : ; �N / is bounded by (const.) 2h�N "2

h
and (const.) 2h�N "3

h
,

respectively. Analogous estimates at all orders would imply that j�hj � C j�j uniformly in
h, as desired. However, direct inspection of perturbation theory does not appear feasible, for
bounding in a similar manner the general nth order contribution to the beta function.

The idea is to prove the desired cancelation via an indirect route: we introduce
a reference model, which has the same beta function as the dimer model, asymptotically
as N � h ! 1, up to exponentially small corrections, smaller than "2

h
2�.h�N/, for some

� 2 .0; 1/. This reference model plays the role of the “infrared fixed point” of our Grass-
mann formulation of the dimer model and is a close relative of the Luttinger model, an
exactly solvable model of interacting fermions in one dimension, originally solved by rig-
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orous bosonization techniques by Mattis and Lieb [77]. The reference model we use is a
variation of the same model, formulated in the Grassmann functional integral setting, dif-
fering from the original Luttinger model “just” by the choice of the ultraviolet regulator
(this apparently innocent modification may a priori have serious consequences because exact
integrability of the model requires a specific regularization scheme). Such a model displays
additional symmetries as compared to the dimer model, most notably “local chiral gauge
invariance”, i.e., the model is formally (up to corrections due to the ultraviolet regulator)
invariant under independent gauge transformations of the two chiral fields �! , ! D ˙.
Chiral gauge invariance implies the validity of exact equations (“chiral Ward Identities”)
for the model’s correlation functions; such equations include the so-called “anomaly terms”,
i.e., terms that would naively be zero if one neglected the effects of the ultraviolet regulator,
which, remarkably, can be computed explicitly, in closed form. Combining such chiral Ward
Identities (WI) with the so-called Schwinger–Dyson equation for the correlation functions,
we are led to a closed formula for all the correlation functions of the model. Such closed for-
mulas imply, in particular, that the effective coupling strength �h;ref of the reference model is
uniformly close to the corresponding bare coupling; and, in turn, this implies the asymptotic
vanishing of the beta function both for the reference and the dimer model. They also imply
that the large distance asymptotic behavior of the dimer correlation functions are the same as
those of appropriate correlations of the reference model: from this we derive the asymptotic
formula (3.17) and prove Theorem 3.1.

Not only that: the chiral WI imply exact identities (“scaling relations”) relating dif-
ferent critical exponents, as well as critical exponents and the multiplicative prefactor in front
of the density–density correlation of the reference model. Such exact identities, if compared
and combined with the exact lattice WI satisfied by the dimer correlation functions, imply
analogous scaling relations for the dimer model; in turn, the exact lattice WI of the dimer
model are a consequence of the local conservation law for the number of incident dimers at
each vertex. This is, at a rough level, the way in which we prove the identity (3.20), from
which Theorem 3.2 and the GFF behavior of the height fluctuations follow.

Let me conclude this section by a brief discussion of how the previous strategy must
be modified in order to prove Theorems 2.1 and 2.2 for non-planar Ising models. The gen-
eral approach is the same: also the generating function of the energy correlations of these
models can be expressed as non-Gaussian Grassmann integral, similar to (4.2). At the criti-
cal temperature, the covariance of the reference Gaussian integration decays algebraically to
zero at large distances, and this implies that, in order to derive uniform bounds on the ther-
modynamic and correlation functions, we must appeal to a rigorous RG multiscale analysis.
Therefore, also for Ising, we compute the non-Gaussian Grassmann functional integral in
an iterative fashion, and we are led to the construction of a sequence of effective potentials
V .h/, in analogy with (4.4). However, a crucial difference is in the counting of the “crit-
ical” degrees of freedom of the effective theory. In the Ising case, the effective potential
V .h/ can be written as the function of a Grassmann field � with two components per site
rather than four (remember that in the dimer case, there were four Grassmann variables per

4061 Scaling limits and universality of Ising and dimer models



site, �C
C;x , ��

C;x , �C
�;x , ��

�;x ; in the Ising case, we have just two, �C;x and ��;x , no ˙ label
at the exponent): this implies that the local quartic term in the effective potential, the one
that was so hard to control in the dimer case, is automatically zero because there is no non-
vanishing quartic monomial that can be constructed (the Grassmann rule implies �2!;x D 0).
This makes the construction of the non-planar Ising theory in the full-plane limit easier than
that for interacting dimers (this also explain why Theorem 2.1, which involves non-planar
Ising models in the full-plane limit, was proved already 10 years ago [44]).

The problem now is the extension to finite domains with open, or cylindrical, bound-
ary conditions: in fact, the presence of boundaries produces an additional effective, scale-
dependent, coupling, localized at the boundary, which is potentially logarithmically diver-
gent, like the quartic effective coupling in the dimer setting. And, again, the proof that such
additional boundary scale-dependent coupling remains bounded and small, uniformly in
the scale index, requires to identify cancelations in its flow equation. In the Ising setting,
these cancelations follow from an approximate image rule for the fermionic covariance at
the boundary; once we identified this cancelation, we managed to extend the construction of
the scaling limit of energy correlations to the cylindrical setting, thus proving Theorem 2.2.
Our proof is currently restricted to a specific cylindrical geometry, which we need in order
to identify the required boundary cancelations, and in order to obtain optimal bounds on
the fermionic Green’s function in the vicinity of the boundary. However, the technique itself
underlying the proof of the theorem seems robust and I expect that it can be adapted, in
perspective, to domains of arbitrary shape (even more, I expect that it will be capable to con-
trol the scaling limit of models in the Luttinger liquid universality class, such as interacting
dimers, in finite domains). See next section for additional comments on these perspectives.

Due to space constraints, I cannot enter in more detail than this into the proofs of
the main theorems presented in this paper. The purpose of this section was just to convey the
main ideas we used and to highlight the strategy and main difficulties to be overcome in the
proofs. For additional details, I refer the reader to the original papers [6,7,44,48–50].

5. Further results, perspectives, and open problems

Let me conclude this review with a brief, certainly partial, discussion of related
results, perspectives and open problems, whose understandingwould represent inmy opinion
a major advance in our understanding of the scaling limit of 2D non-planar Ising models and
interacting dimers models (as well as of related classes of non-integrable statistical mechan-
ics models, such as Ashkin–Teller and vertex models). I will state explicitly only problems
that are more directly connected with the results and methods reviewed in this paper. Of
course, there are plenty of other challenging, extremely interesting, open problems, con-
cerning, e.g., the scaling limit of critical interfaces [12,30], the limiting validity of Virasoro
algebra for an appropriate class of “dressed” observables [55], and the construction of the
massive scaling limit in the magnetic field direction [25, 26] (for non-planar Ising models),
or the scaling limit of vertex and monomer correlations [37], the scaling limit of the cycle-
rooted spanning forest associated with the dimer configuration via the Temperley bijection
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[48, Sect. 2.1.2], the validity of Cardy’s formula [2,21,59] and, more generally, the computation
of the subleading corrections to the free energy [27] (for interacting dimers).

5.1. Non-planar Ising models
Let us first consider the class of non-planar Ising models described above, in Sec-

tion 2. There are a few extensions of the results of Theorems 2.1 and 2.2 which appear to
be feasible on the basis of relatively straightforward extensions of the techniques under-
lying their proofs. I refer, in particular, to the computation of boundary spin correlations
and boundary energy correlations (and mixed boundary spin, boundary energy, bulk energy
correlations): it should be easy to show, on the basis of a mild extension of the proof of The-
orem 2.2, that their scaling limit can be written as the Pfaffian of an explicit antisymmetric
matrix, whose elements (involving the two-point boundary spin–spin correlations) can be
written in closed form, and exhibit the expected boundary critical exponents. This would
complement the results of [5], by computing explicitly the scaling limit for a wide class of
nonplanar perturbations of the Ising model, not restricted to ferromagnetic pair interactions.

On the other hand, extension of Theorem 2.2, or of its expected analogue for bound-
ary spin correlations, to domains of more general shapes than flat cylinders, appears to be
much harder. Already in the � D 0 case, the construction of the scaling limit in domains
of arbitrary shape remained elusive for several decades, and has been completed in the last
ten years thanks to the use of the highly nontrivial methods of discrete holomorphicity, in
the form developed, among others, by Smirnov, Chelkak, Hongler, and Izyurov [31–33,56].
It would be extremely interesting to extend this construction to the interacting, non-planar
case.

Open Problem 1. Compute the scaling limit of the multipoint energy correlations of non-
planar Ising models in domains � � R2 of arbitrary shape, for different boundary condi-
tions, say open, C or �. As a corollary, prove conformal covariance of the limit.

One possibility to attack this problem is to extend the strategy sketched in the pre-
vious section to more general domains (already the case of the rectangle is non-trivial).
There are two key technical points to be understood: (1) how can we obtain sufficient control
on the fermionic Green’s function in situations where it cannot be diagonalized explicitly?
(By “control” here I mean: define its multiscale decomposition, with optimal bounds on
its asymptotic behavior in the bulk and close to the boundaries; moreover, derive a Gram
representation for the single-scale Green’s function, with optimal dimensional bounds on
the L1-norm of the Gram vectors); (2) how do we prove the required cancelations on the
boundary, “marginal,” scale-dependent couplings? I believe that the most serious technical
issue is the first. A solution may come from an effective combination of multiscale meth-
ods with those of discrete holomorphicity, which may lead to sharp bounds on the speed of
convergence to the scaling limit already at the level of the � D 0 theory.

In connection with this problem, I cannot avoid mentioning an exciting recent devel-
opment due to Duminil-Copin and collaborators [38], who proved rotational invariance for
the scaling limit (whenever it exists) of a wide class of 2D critical models, including Potts,
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6V, and the random cluster model. The proof is based on completely different ideas than
ours, and involve the coupling of different instances of these models on different isoradial
graphs, characterized by different discrete rotational invariance properties, via a sequence of
star-triangle transformations.

The first open problem, stated above, concerns energy correlations. Of course, anal-
ogous results for the spin correlations would also be extremely interesting. However, the
study of the scaling limit of spin correlations is notoriously difficult, already in the full-plane
limit, even in � D 0 case. The reason is that the spin observable is non-local in the Grass-
mann representation, and, already in the integrable case, their understanding requires the
use of special, sophisticated techniques. In the full-plane limit at �D 0, one can use Szego’s
lemma to extract the asymptotics of the spin–spin correlations in special directions [79]; or,
alternatively, one can use a set of quadratic finite difference equations, discovered byMcCoy,
Perk, and Wu [78], whose scaling limit is the Painlevé III equation. Multipoint spin correla-
tions, both in the full plane limit and in finite domains, were understood much more recently,
thanks to other, complementary techniques, namely discrete holomorphicity applied on a
two-sheet discrete Riemann surface, associated with the original graph which the model is
defined on, with cuts connecting the locations of the spin observables [31, 32, 36, 37]. It is
unclear whether these ideas can be extended, and in case how, to the interacting setting,
� ¤ 0.

Open Problem 2. Compute the scaling limit of the spin correlations of non-planar Ising
models, first in the full plane, then in finite domains.

Already the case of the two-point spin correlation in the full plane limit is highly
non-trivial, and its understandingwould represent a breakthrough in the field, with a potential
big impact on other problems that, at a heuristic level, are studied by formal bosonization
and Coulomb gas techniques.

Another interesting set of open problems is related to the computation of the sub-
leading corrections to the critical free energy of non-planar Ising models, which are expected
to display subtle universality properties [27, 35]. Fix ˇ D ˇc , fix �, and compute the free
energy for a small; it is expected that

logZ�ˇc Ia;� D a�2
j�jf .�/C a�1

j@�j�.�/C c�.a; �/; (5.1)

with f .�/ and �.�/ independent of �, and c�.a; �/ of smaller order than O.a�1/. More
precisely, it is expected that the behavior of this subleading term in the a ! 0 depends upon
the Euler characteristics � of� (recall that �D V �E C F with V;E;F being the number
of vertices, edges, and faces of any triangulation of�, e.g., �D 0 for� a torus or a cylinder,
and � D 1 for � a finite, simply connected domain). If � ¤ 0, it is expected that

lim
a!0

c�.a; �/

log.a�1j@�j/
D �

1

12
�; (5.2)

while, if � D 0, then

lim
a!0

c�.a; �/ D c0� independent of �: (5.3)
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For example, if � D �.�/ is a torus with aspect ratio �,

c0� D log.�2 C �3 C �4/ �
1

3
log.4�2�3�4/; (5.4)

where �i D �i .e
���/ are Jacobi theta functions.

Open Problem 3. Prove (5.2) and (5.4) with an explicit expression for c0� for non-planar
Ising models.

So far, the only known rigorous result related to this conjecture is a proof of “Cardy’s
formula” [2,21] for toroidal domains � D �.�/ with aspect ratio going to infinity:

lim
�!1

1

�
lim
a!0

c�.a; �/ D
�

12
: (5.5)

Here, the right-hand side is the � ! 1 limit of the right-hand side of (5.4) divided by
�. Equation (5.5) was proved in [46]. I believe that the methods developed in [6, 7, 50] for
controlling finite size effects within the rigorous RG scheme described in Section 4 should
be sufficient for proving (5.4) for the torus and the cylinder. Another story, which appears
more challenging, is the case of � ¤ 0. As far as I know, formula (5.2) is unproven even in
the � D 0 case (with the exception of the rectangle, in which case it was proved in [57]).

5.2. Interacting dimer models
Let us now consider the class of interacting dimer models discussed in Section 3.

All the problems stated in the previous subsection in the context of non-planar Ising models
have their counterparts for dimers. Due to the underlying “Luttinger liquid” nature [53] of
the scaling limit, and the presence of non-trivial, anomalous, exponents, I expect that their
solution will be even more challenging than the one for the corresponding Ising’s problems.

Open Problem 4. Prove the GFF nature of the scaling limit of the height fluctuations in
arbitrary finite, simply connected, domains, in the sense of (3.7).

In order to prove such a statement via the multiscale methods sketched in Section 4,
one will need to compute the dominant boundary corrections to the effective potentials, and,
in particular, control the flow of the effective, marginal, boundary couplings (the dimer ana-
logue of those discussed at the end of Section 4 for non-planar Ising). I expect that these
boundary couplings will diverge exponentially in the limit of a large number of RG itera-
tions, with a small,�-dependent exponent, playing the role of an anomalous boundary critical
exponent.

Open Problem 5. Compute the asymptotic behavior, in the sense of (3.17), for the two-point
dimer correlation in a domain�with boundary, in the case in which at least one of the dimer
observables is close to the boundary, and establish whether their oscillatory part exhibits an
anomalous critical exponent �@.�/ different from the bulk one �.�/; in case, compute such
boundary exponent.

Other interesting directions and open problems involve generalizations of the type
of dimer interactions. For instance, rather than the class of interactions discussed in Sec-
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tion 3, one could imagine to break planarity of the model, by adding non-planar, non-nearest-
neighbor, edges to the graph, which may be occupied by “long” dimers with small proba-
bility. Under appropriate conditions on the geometry of these nonplanar edges, e.g., if there
exist lattice paths connecting faces microscopically close to any two points of the domain
that never pass under the “bridges” formed by the non-planar edges4 then it should still be
possible to introduce a well-defined notion of height function. In such a situation, it would
be interesting to test whether the GFF nature of the scaling limit of the height field persists,
notwithstanding the loss of planarity of the model.

Open Problem 6. Same as Open Problem 4, for weakly non-planar dimer models.

I expect that, at least in the case of periodic models defined on a torus of side L,
in the limit L ! 1, a generalization of the method of proof of Theorem 3.2 will allow us
to prove the convergence of a suitably defined height field to the massless GFF, in the sense
of (3.6). Further extensions to different kind of dimer interactions appear more challenging.
For instance, an extremely interesting problem that I propose here as my last Open Problem,
is whether the GFF nature of the scaling limit of height fluctuations can be extended to the
case of the interface between C and � phases in the 3D Ising model with “tilted” Dobrushin
boundary conditions, at low enough temperatures. It is well known that the interface of the
3D Ising model with standard, flat, Dobrushin boundary conditions is rigid at low tempera-
tures. This is not expected to be the case if the boundary conditions are assigned so that the
interface has non-zero average slope. The problem of understanding the nature of fluctua-
tions of this interface, even if apparently very different from those considered in this review,
has surprisingly strict connections with that of the scaling limit of the height fluctuations
for interacting dimers [28]: in fact, it is well known that the monotone height profiles of a
tilted 3D Ising interface can be mapped exactly, in an invertible way, to those of the dimer
model on the hexagonal lattice; moreover, under this mapping, the height distribution of the
3D Ising model at zero temperature is the same as that of the standard, integrable, dimer
model. From this exact correspondence, the GFF nature of the height fluctuations for the 3D
Ising tilted interface at zero temperature readily follows. At positive temperatures, there is
no known coupling between the height distribution of the 3D Ising tilted interface with that
of a dimer model; however, it is tempting to guess that the effect induced by the temperature
is qualitatively the same as that of a weak, effective, interaction among dimers. If this were
the case, then the methods of Theorem 3.2 would provide a possible strategy for proving the
existence of a “rough phase” for the 3D Ising model.

4 A concrete way of realizing this may be the following: consider a 2D periodic graph
obtained by periodizing in two directions a planar fundamental cell G0. Now make this
non-planar by adding in each fundamental cell a number of non-planar bonds, with the
restriction that they should not pass over the “corridors” between different copies of G0.
Even though the graph is non-planar, the height difference between faces in the corridors is
well defined (use definition (3.2) with lattice paths passing only through the corridors).
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Open Problem 7. Prove that the fluctuations of the interface of the 3D Ising model with
tilted Dobrushin boundary conditions at low temperatures converges in the scaling limit to
a GFF.
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Abstract

We consider many-body quantum systems on a finite lattice, where the Hilbert space is the
tensor product of finite-dimensional Hilbert spaces associated with each site, and where
the Hamiltonian of the system is a sum of local terms. We are interested in proving uni-
form bounds on various properties as the size of the lattice tends to infinity. An important
case is when there is a spectral gap between the lowest state(s) and the rest of the spec-
trum which persists in this limit, corresponding to what physicists call a “phase of matter.”
Here, the combination of elementary Fourier analysis with the technique of Lieb–Robinson
bounds (bounds on the velocity of propagation) is surprisingly powerful. We use this to
prove exponential decay of connected correlation functions, a higher-dimensional Lieb–
Schultz–Mattis theorem, and a Hall conductance quantization theorem for interacting
electrons with disorder.
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1. Introduction

This paper considers lattice quantum systems.1 It is worth having some concrete
examples in mind. For one specific example, consider a Hilbert space .C2/˝L, i.e., the
tensor product ofLHilbert spaces, each of dimension 2. Index these two-dimensional Hilbert
spaces (called “spins” or “sites”) with an integer i , taken periodic modulo L, and consider
the Hamiltonian

H D J1
X
i

ESi � ESiC1 C J2
X
i

ESi � ESiC2; (1.1)

where ESi D .Sxi ; S
y
i ; S

z
i / denotes the spin operators on the i th such Hilbert space, i.e.,

Sx D

 
0 1=2

1=2 0

!
; Sy D

 
0

p
�1=2

�
p

�1=2 0

!
; Sz D

 
1=2 0

0 �1=2

!
:

For J2 D .1=2/J1 > 0, the lowest eigenvalue ofH is doubly degenerate for even L. A basis
of ground states consists of either pairing sites 2i; 2i C 1 in a singlet for all i or pairing
sites 2i; 2i � 1 in a singlet; this is called the Majumdar–Ghosh chain [16]. A slight perturba-
tion of the Hamiltonian, taking J2=J1 slightly different from 1=2, breaks the degeneracy
of the lowest eigenvalue, but there is an exponentially small difference between the two
lowest eigenvalues followed by a gap to the rest of the spectrum that remains nonvanish-
ing as L ! 1.

This system exemplifies some of the results that we will consider. The fact that for
all J1; J2 the lowest eigenvalue is either degenerate or has vanishing (in the large L limit)
difference to the next lowest eigenvalue is a corollary of the classic Lieb–Schultz–Mattis
theorem [15]. That theorem is applicable only to one-dimensional quantum systems with
periodic boundaries, meaning that sites can be arranged on a circle with short-range interac-
tions. We will explain a more general machinery that allows us to prove a similar theorem for
higher-dimensional quantum systems such as those on a two-dimensional square lattice [8].

Also, as J1; J2 vary, the properties of the Hamiltonian in (1.1) change, but for J2
close to J1=2, the connection correlation functions are exponentially decaying in the dis-
tance between the operators. Here a connected correlation function is hABi � hAPBiwhere
A;B are operators supported on some set of sites, P projects onto the two lowest (approx-
imately) degenerate eigenvalues, and h: : :i denotes the expectation value in an eigenvector
corresponding to such an eigenvalue. This decay follows from another theorem that we will
discuss, on exponential decay of correlation functions, again valid in any dimension under
some assumptions on the Hamiltonian.

The Hamiltonian of (1.1) obeys a symmetry, namely the Hamiltonian commutes
with the three operators

P
i S

x
i ,
P
i S

y
i , and

P
i S

z
i . Indeed, we will consider often Hamil-

tonians which just commute with a single operator, such as
P
i .S

z
i C 1=2/; here we add a

1 For simplicity, throughout we consider systems where the Hilbert space has a tensor
product structure. It is straightforward to extend these results to the case where fermions
obeying canonical anticommutation relations are present; roughly, this is done by replacing
certain commutators with anticommutators as needed. We omit this for simplicity in this
presentation.
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factor 1=2 so that the eigenvalues of Szi C 1=2 are integers and we can interpret this operator
as a “conserved charge.” Studying such Hamiltonians further in two-dimensions leads to the
question of quantum Hall conductance, also discussed here.

Surprisingly, the key to many of these results is to consider the dynamical properties
of the system, where we consider correlation functions of operators at different times, using
the technique of Lieb–Robinson bounds. Let us begin by defining the systems we consider
in some generality.

1.1. Lattice quantum systems
We consider quantum systems defined on a finite lattice. We have some finite setƒ

of sites. The setƒ is called the lattice. Associated with each site i is some finite-dimensional
Hilbert space, and the Hilbert space of the whole quantum system is the tensor product of
these Hilbert spaces. There is some metric dist.i; j / where i; j 2 ƒ. In many applications,
ƒ may indeed be a geometric lattice in Rn or in Tn for some n; in this case, we call the
system n-dimensional, and in this case the metric is inherited from the ambient space Rn

or Tn. However, in general ƒ may be an arbitrary set with arbitrary metric.
The HamiltonianH has the form

H D

X
X

hX ; (1.2)

where the sum ranges overX �ƒ, and each hX is self-adjoint and is supported on setX �ƒ.
We use kOk to denote the operator norm (largest singular value) of O . Our interest

is in local Hamiltonians; locality is expressed as some assumption on the norms khXk as a
function of the diameter of the sets X .

One typical assumption is that the Hamiltonian has bounded strength and range
and that the set of sitesƒ has bounded local geometry, meaning that all khXk � J for some
strength J and all setsX has diam.X/ � R for some rangeR and that for all i 2ƒ, we have
j¹j 2ƒ j dist.i; j /�Rºj bounded by some constant. Other assumptions considered include
exponential decay where khXk is exponentially small in diam.X/.

From certain such locality assumptions, one can derive a so-called Lieb–Robinson
bound, which can be thought of as bounding the velocity of excitations in such a lattice
quantum system. For an arbitrary operator A, let

A.t/ � exp.iHt/A exp.�iHt/ (1.3)

denote the operator A evolved for time t under HamiltonianH .
The first such bound was proven by Lieb and Robinson [14]. However, their proof

gave bounds that depended on the dimension of the Hilbert space. In Appendix A we give a
different proof that does not depend on the dimension, following the strategy in [8] as slightly
modified in [9]. Indeed, rather than proving a specific bound, we give a series expansion (A.1)
below which upper bounds kŒA.t/; B�k and different assumptions on khXk can be inserted
into this series. Using this series expansion, a typical result [9] is
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Lemma 1. Suppose there are positive constants �; s such that for all sites i we haveX
X3i

khXkjX j exp
�
� diam.X/

�
� s < 1:

Then, for any sets X; Y with dist.X; Y / > 0, and any operators A; B supported on X; Y ,
respectively, �A.t/; B� � 2kAkkBk

X
i2X

exp
�
�� dist.i; Y /

��
e2sjt j � 1

�
:

As a corollary, defining vLR D 4s=�, for dist.X; Y / � vLRt , we have�A.t/; B� � jX j � kAkkBk exp
�
�
�

2
dist.i; Y /

�
:

This quantity vLR, called the Lieb–Robinson velocity, can be thought of as defining
a “light-cone” [6], so that, up to exponentially small error, A.t/ is supported within distance
vLRt of X .

Note that Lemma 1 is applicable to the case of bounded strength and range with
bounded local geometry.

Remark 1. The fact that the commutator is not vanishing, but merely very small, outside the
light-cone is sometimes called “leakage.” In most applications of these bounds, the leakage
is negligibly small compared to the other terms. Indeed, for the rest of this paper, the leakage
terms will be negligible and we will avoid any detailed discussion of them. However, we
emphasize that the leakage really is nonzero in every case of interest; since the commutator
is an analytic function of time (this follows trivially since we have a finite-size system), if the
commutator were exactly zero on some interval of time, then it would vanish for all times.

We emphasize that we consider finite-size systems, so that many properties can be
defined in an elementary way. For example, the Hamiltonian is a finite-dimensional matrix;
the ground state energy is simply the smallest eigenvalue of the Hamiltonian; if the smallest
eigenvalue is nondegenerate, then the ground state is simply the corresponding eigenvector
(up to some arbitrary phase); and correlation functions are simply the trace of the projector
onto the ground state with some given other finite-dimensional matrices. This contrasts with
considering systems directly in the infinite size limit where one must take some care to define
an algebra of operators on an infinite system. However, although we consider finite-size sys-
tems, our interest is in bounds that are uniform in jƒj.

1.2. Outline of results and notation
We will survey some of the results that have been obtained using these methods.

A key role is played by the spectral gap. In this paper, unless stated otherwise, the spectral
gap is defined to be the absolute value of the difference between the ground state energy ofH
(assumed nondegenerate) and the next smallest eigenvalue. We denote the spectral gap�E.

We will be loose about estimates. In many cases we will simply state that a term is
small (perhaps exponentially small or some other decay), leaving the detailed proofs and pre-
cise bounds to the already-published literature. This is done to emphasize the ideas without
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getting too involved in the estimates. At the same time, we will give examples from physics
to motivate the constructions.

We use computer-science big-O notation such as �;O; : : : throughout, where we
implicitly consider a family of Hamiltonians defined on a family ofƒ with increasing cardi-
nality ƒ. The control parameter for the big-O notation may be jƒj or, in the higher dimen-
sional Lieb–Schultz–Mattis theorem later, may be some other distance scale.

We use j : : : j for the `2-norm of a state vector. We use I for the identity matrix. We
use A� to denote the Hermitian conjugate of an operator A.

When we refer to a quantum state, this will always be a normalized pure state (with
an arbitrary phase), rather than a mixed state.

In Section 2, we sketch the proof that connected correlation functions decay expo-
nentially in systems with a spectral gap [8,9]. This can be understood as a nonrelativistic ana-
logue of a familiar result in relativistic quantum field theory (where the speed of light plays
the role of vLR) that correlation functions decay exponentially in gapped theories. In Sec-
tion 3, we sketch the proof of the higher-dimensional Lieb–Schultz–Matthis theorem, proven
in [8]. In Section 4, we sketch the proof of Hall conductance quantization [10]. These last two
results have a certain topological flavor. In both cases, one of the physical ideas motivating
the mathematical proof is that although correlation functions decay exponentially in gapped
systems, it is still possible for there to be some kind of topological order in the ground state.

2. Exponential decay of connected correlation functions

In massive relativistic quantum field theories, connected correlation functions decay
exponentially. Here we consider similar results for lattice field theories. The Lieb–Robinson
velocity plays some role similar to that of the speed of light in a relativistic field theory, while
the spectral gap plays a role similar to that of a mass gap.

A typical result for exponential decay is

Theorem1. LetAX ;BY be supported on setsX;Y . Suppose the conditions of Lemma 1 hold.
Assume there is a unique ground state with spectral gap �E to the rest of the spectrum. Let
h: : :i denote the expectation value in the ground state. Then,

hAXBY i � hAX ihBY i � kAXk � kBY k

�
exp

�
��

�
dist.X; Y /�E

vLR

��
C � � �

�
;

where “: : :” denotes a leakage term from the Lieb–Robinson bound which is bounded by
jX j � kAXkkBY k times an exponentially decaying function of dist.X; Y /.

Remark 2. This result can be readily generalized to the case thatH has a q-fold degenerate
(or almost degenerate) smallest eigenvalue and then a gap �E to the rest of the spectrum.
Then, defining P0 to project onto the ground state subspace and hOi �

1
q
tr.P0O/, one may

derive a more general bound on hAXBY i � hAXP0BY i. In this case, there is an additional
term in the bound that vanishes in the limit that the q lowest eigenvalues become exactly
degenerate.
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Remark 3. The proof follows a general outline that we will use to derive the later results
also, and, after giving the proof, we will emphasize the ideas that will be repeated later.

Proof of Theorem 1. To ease notation, replace AX by AX � hAX i and BY by BY � hBY i,
so that both AX and BY have vanishing expectation value in the ground state. Also, let
` D dist.X; Y /.

Let‰n for nD 0; 1; : : : be an orthonormal basis of eigenstates ofH , with eigenval-
ues E0 < E1 � � � � . Let h ; �i denote the inner product between states  and �. Then,˝�

AX .t/; BY
�˛

D

X
n>0

h 0; AX‰nih‰n; BY 0i exp
�
�i.En �E0/t

�
�

X
n>0

h 0; BY nih n; AX 0i exp
�
Ci.En �E0/t

�
: (2.1)

Thus, to compute the desired correlation function hAX .t D 0/BY i, we want to extract the
“negative frequency” part of hŒAX .t/;BY �i, meaning the first sum in (2.1), evaluated at t D 0.
To do this, we use the following lemma [8, 9]. It shows a typical kind of technique in this
subject: we have some function (in this case a step function) which has a singularity, and we
construct some other function (or in this case, a limit of a family of functions) which is a
good approximation to that function when the argument has absolute value � �E, and we
show that that approximation has a fast decaying Fourier transform.

Lemma 2. Let E 2 R and ˛ > 0. Then

lim
T"1

lim
"#0

i

2�

Z T

�T

e�iEte�˛t2

t C i"
dt D

1

2�

r
�

˛

Z 0

�1

d! exp
�
�.! CE/2=.4˛/

�
D

8<: 1C O.expŒ��E2=.4˛/�/ for E � �E;

O.expŒ��E2=.4˛/�/ for E � ��E:

Using Lemma 2, one has

hˆ;AXBYˆi D lim
T"1

lim
"#0

i

2�

Z T

�T

dt
1

t C i"

˝�
AX .t/; BY

�˛
e�˛t2

C O
�
exp

�
��E2=.4˛/

��
:

(2.2)
Now we choose ˛ and apply the Lieb–Robinson bound. Fix ˛ D �EvLR=.2`/.

Then, O.expŒ��E2=.4˛/�/ D O.expŒ�`�E=.2vLR/�/. This bounds the second term on
the right-hand side of (2.2). To bound the first term, we break the integral over t into an
integral for jt j � `=vLR and an integral for jt j � `=vLR. The integral for jt j � `=vLR can
be bounded using the Lieb–Robinson bound, giving the leakage term in the theorem. The
integral for jt j � `=vLR is bounded by a triangle inequality by

2kAXk � kBY k lim
T"1

lim
"#0

1

2�

Z
`=vLR�jt j�T

dt
1

t C i"
e�˛t2 ;

which is bounded by 2kAXk � kBY k � O.expŒ�`�E=.2vLR/�/.
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3. Higher-dimensional Lieb–Schultz–Mattis

3.1. Review of one-dimensional Lieb–Schultz–Mattis theorem
One-dimensional quantum spin systems with SU.2/-invariant Hamiltonians exhibit

different behavior depending on whether the spin is integer or half-integer. For a half-integer
spin, it is found that either the ground state is degenerate or the gap vanishes in the thermo-
dynamic limit, while for an integer spin there may be a unique ground state with a gap.

One paradigmatic example is the spin-S Heisenberg spin chain,

H D J
X
i

ESi � ESiC1;

where J > 0 and the sites are labeled by integers i D 0; 1; : : : ; L � 1, which are periodic
modulo L, and corresponding to each site there is a .2S C 1/-dimensional Hilbert space
corresponding to a spin-S representation of SU.2/, and where ESi is a vector of spin opera-
tors on the i th spin. For J > 0 and spin-1=2, there is a continuous spectrum of excitations.
The spectral gap then vanishes polynomially in L. Another paradigmatic example is the
Majumdar–Ghosh chain mentioned at the start of this paper. On the other hand, for integer
spin the famous “Haldane conjecture” [7] asserts that there is a unique ground state with
a spectral gap which is �.1/, and the AKLT Hamiltonian [2] is an exactly solvable spin-1
Hamiltonian which shows this property.

This vanishing of the gap for half-integer spins is a corollary of the Lieb–Schultz–
Mattis theorem [3,15] in one-dimension. We will give the theorem in a more general setting
where the Hamiltonian isU.1/-symmetric, without using the full SU.2/ symmetry, and then
relate this to the case of spin chains.

Let us define some terms. Say that a system is one-dimensional with periodic bound-
ary conditions of sizeL, for some integerL, if the sites inƒ correspond to vertices of a cycle
graph with jƒj D L, with the shortest path metric on the graph being the distance, and if all
sites have the same Hilbert space dimension. We will label sites by integers. Define a trans-
lation operator T in the obvious way; T is a unitary operator, and conjugation by T maps
the algebra of operators supported on site i to those supported on site i C 1, and T L D I .
We say that a Hamiltonian is translationally invariant if THT �1 DH . We say that a system
has a conserved chargeQ ifQ D

P
i qi , with qi being an operator with integer eigenvalues

supported on site i with kqik � qmax for some qmax, so that qj D T j�iqiT
i�j and

ŒQ;H� D 0:

The proof that follows uses a trick of averaging over two choices of twist, to use the
minimum number of assumptions; this form of the proof seems to have first appeared in [12].

Theorem 2. Consider a one-dimensional system with periodic boundary conditions of
size L with a translation invariant Hamiltonian H and a conserved charge Q. Further,
assumeH has strength J and range R.

Let  0 be a ground state of H with j 0j D 1, and suppose that h 0;Q 0i

L
is not

integer. Then, if the ground state is nondegenerate, the spectral gap of H is bounded by
O.

Jq2maxR
2

L
/.

4080 M.B. Hastings



Proof. The proof is variational: construct another state, show that the state is orthogonal
to  0, and compute the expectation value ofH in this state. Let

ULSM D exp.˙iA/;

where we will pick the sign later and where

A �

L�1X
jD0

2�qj
j

L
:

The variational state used is
ˆ D ULSM 0:

Since the ground state of H is nondegenerate and since ŒT; H� D 0, we have
T 0 D z 0 for some scalar z with jzj D 1. Note that

Tˆ D T exp

"
˙i

L�1X
jD0

2�qj
j

L

#
 0

D exp

"
˙i

L�1X
jD0

2�
�
TqjT

�1
� j
L

#
T 0

D z exp

"
˙i

L�1X
jD0

2�
�
TqjT

�1
� j
L

#
 0

D z exp

"
˙i

L�1X
jD0

2�qjC1

j

L

#
 0

D z exp

"
˙i

L�1X
jD0

2�qj
j � 1

L

#
 0

D z exp
�
�i2�

Q

L

�
ˆ

D z exp
�
�i2�

h 0;Q 0i

L

�
ˆ: (3.1)

The equality on the fifth line is a change in the index of summation, replacing j by j � 1.
Here the assumption that qj has integer eigenvalues is used so that expŒi2�qLLL � D

expŒi2�q0 0L � D I . The equality on the final line uses the assumption that ŒQ; H� D 0

so that  0 is an eigenvector ofQ.
Using the assumption that h 0;Q 0i=L is noninteger, it follows thatˆ is an eigen-

vector of T with eigenvalue different from z, so it is orthogonal to  0.
Now we estimate the energy of this state. Write H D

PL�1
iD0 hi , with hj D

T j�ihiT
i�j and with each hi supported on the set of sites within distance R of i , with

khik � J .
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We average hˆ;Hˆi � h ;H i over the two choices of sign in ULSM , giving�
‰;

�
U
�
LSMHULSM C ULSMHU

�
LSM

2
�H

�
ˆ

�
D L

�
‰;

�
U
�
LSMh0ULSM C ULSMh0U

�
LSM

2
� h0

�
ˆ

�
� L

U �LSMh0ULSM C ULSMh0U
�
LSM

2
� h0


� L

�Œh0; A�; A�;
where the averaging over signs cancels terms Œh0; A�. Finally, kŒŒh0; A�; A�k D O.

Jq2maxR
2

L2
/.

To apply this system to SU.2/-invariant spin chains with half-integer spin, we may
take qi D 1=2C Szi , where S

z
i is the z-component of the i th spin. Then, if the ground state

is nondegenerate, it has total spin 0, and hence h
P
i S

z
i i D 0, so hQi=L D 1=2, noninteger.

It is instructive to consider this variational state in the case of the Majumdar–Ghosh
chain (1.1). A basis of ground states corresponds to pairing neighboring sites in singlets in
one of twoways. Taking the sum of these states gives an eigenvector ofT with eigenvalueC1.
Applying ULSM to this sum gives the difference of these two states, up to an error of order
O.1=L/. The difference of these states is an eigenvector T with eigenvalue �1.

3.2. Higher-dimensional extensions: physics
One might try to extend this theorem beyond one-dimensional systems. Note first

that translation invariance is necessary for the theorem to hold: one can easily construct
spin-1=2 systems without translation invariance with a unique ground state and a gap such as

H D

X
i

ES2i � ES2iC1:

The higher-dimensional theorem will apply to n-dimensional quantum systems, for
n � 1. However, we will be able to state the theorem in greater generality, which will also be
convenient because it will emphasize the fact that we use translation invariance in only one
direction.

We say that a system has translation invariance in one direction with periodicity L
if the sites can be labeled by a pair .i; v/, where i is an integer labeling a vertex of a cycle
graph of length L and v is a vertex in some other graph G, so that the following hold. First,
the metric is the shortest path metric on the graph given by the Cartesian product of that
cycle graph withG. Second, the Hilbert space dimension of site .i; v/ is some dv depending
only on v. Given this, define a unitary operator T such that conjugation by T maps the
algebra of operators supported on site .i; v/ to those supported on site .i C 1; v/ for all v,
and T L D I . We say that a Hamiltonian is translationally invariant if THT �1 DH . We say
that a system has a conserved charge Q if Q D

P
i;v qi;v , with qi;v being an operator with

integer eigenvalues supported on site .i; v/ with kqi;vk � qmax, so that qj;v D T j�iqi;vT
i�j

and
ŒQ;H� D 0:
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For an n-dimensional quantum system,G may be an .n� 1/-fold Cartesian product
of cycle graphs, so that sites are labeled by n different integers, each periodic modulo some
other integer.

We then have [8]

Theorem 3. Consider a system with translation invariance in one direction with periodic-
ity L, with a Hamiltonian with strength and range J and R, respectively, both O.1/, and
such that ƒ has bounded local geometry. Assume that the number of sites is O.poly.L//.
Assume that there is a conserved charge with qmax D O.1/. Assume that the ground state
 0 is unique with h 0;Q 0i=L noninteger. Then, the gap �E is O.log.L/=L/, where the
constants hidden in the big-O notation depend on J; R; qmax, on the polynomial bounding
the number of sites, and on the local geometry of G.

Note that the theorem is slightly weaker than in the one-dimensional case, with a
bound O.log.L/=L/ rather than O.1=L/. Also, for simplicity, we have been less explicit
about the dependence of the bound on the constants.

Note also one slightly unsatisfactory feature: the theorem requires that h 0;Q 0i=L
be noninteger. Suppose that we consider a two-dimensional system, of size L-by-L0, with
h 0;Q 0i=.LL

0/D 1=2. This is a typical case of interest in spin systems. Then, the theorem
is only applicable if L0 is odd.

One might attempt to use the same proof as before. Suppose that H has bounded
strength and range. Applying the same variational argument, the change in the expectation
value of every term in the Hamiltonian (e.g., hˆ;hXˆi � h 0; hX 0i) is still O.1=L2/, but
the number of such terms now is not L but rather proportional to L times the number of
vertices in G. As a typical application of interest, let Lx D L and let G be a cycle graph of
length Ly so that vertices are labeled by a pair of integers .i; j /, with i periodic modulo Lx
and j periodic moduloLy . Then if the “aspect ratio”Ly=Lx is of order unity, the variational
state may have energy of order unity above the ground state [1].

The problems with this approach were given in a very insightful physics article [17].
Indeed, the problem is not purelymathematical. The problem is that a two-dimensional quan-
tum spin system can exhibit completely different behavior from a one-dimensional quantum
spin system. A one-dimensional system with spin-1=2 can have a state like the Heisenberg
chain with a polynomially small gap and power-law decaying correlations. Alternatively,
it can have a state like the Majumdar–Ghosh chain. In this exactly solvable example, two
choices of ground state correspond to two different ways of pairing neighbors into singlets,
either pairing site 2i with 2i C 1 or pairing site 2i with 2i � 1. These two choices each
break translation symmetry, though one may take symmetric and antisymmetric combina-
tions to obtain ground states which are eigenstates of T . There is a local order parameter
which distinguishes between these states,2 i.e., indeed, there is an operator supported on a
set of bounded diameter which has nonvanishing matrix elements between symmetric and

2 See [3] for results showing that, in a sense, these are the only two possibilities for a one-
dimensional system, either translational symmetry breaking or a continuous spectrum.

4083 Gapped quantum systems



Figure 1

Schematic illustration of a two-dimensional system. Individual sites are not shown. Left- and right-hand sides of
the system are identified to give a cylinder (or torus if top and bottom are also identified). Numbers indicate the
first coordinate. The operatorQleft is the total charge on sites between the left-hand side and the dashed line. Twist
� twists terms near the left-hand side of the figure, while � 0 twists terms near the dashed line. The twist � 0 is used
as a technical trick in the proof of the higher-dimensional Lieb–Schultz–Mattis theorem.

antisymmetric states. However, in two dimensions, there is a new possibility. Spins can pair
into singlets (or dimers as they are called) but these dimers can enter into a quantum spin
liquid state [20–22]. In this case, the physics is that there is still a “topological degeneracy,”
so that there is an exponentially small splitting between the two lowest eigenstates. However,
there is no local order parameter: any operator supported on a set of bounded diameter is
exponentially close to a scalar in the subspace of the two lowest eigenstates.

So, while these physics arguments provide some motivation to find a generalization
of the Lieb–Schultz–Mattis theorem to higher-dimensional systems, they also show that the
variational argument does not directly generalize. To prove the theorem, we need the tool of
“quasiadiabatic continuation,” described in the next subsection.

This tool is used to turn physics arguments based on an idea of twisting boundary
conditions into precise results.

AssumeH has finite range R, with L � R.
Given any site .i; v/, its first coordinate is the integer i . Let

Qleft D

X
0�i<L=2

X
v

qi;v

be the total charge on sites with the first coordinate 0 � i < L=2. This is the “left” half of
the system in Figure 1.

We say that a set has the first coordinate near i if it is within distance R of the set
of sites with the first coordinate i , treating the first coordinate periodic modulo L. Define a
two-parameter family of Hamiltonians (note the signs in the exponents)

H�;� 0 �

X
X near 0

exp.i�Qleft/hX exp.�i�Qleft/C

X
X near L=2

exp
�
�i� 0Qleft

�
hX exp

�
i� 0Qleft

�
C

X
remaining X

hX ;
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where �; � 0 are real parameters, periodic modulo 2� . The last sum is over X not near 0 or
L=2. Note that

H D H0;0

and
H�C�;� 0�� D exp.iQleft�/H�;� 0 exp.�iQleft�/: (3.2)

Physically, we can regard � as defining a “gauge field” along the line of sites with
the first coordinate 0, and � 0 as another gauge field along the lineL=2. Then (3.2) describes a
gauge transformation relating two different “choices of gauge,” with the sum � C � 0 invariant
under this. While this relation may seem trivial, it will be very useful in what follows.

Oshikawa [19] considered the effect of changing � from 0 to 2� in an attempt to
prove a higher-dimensional Lieb–Schultz–Mattis theorem. In [17], his argument was analyzed
in more detail, where it was found that what it proves is that the ground state must become
degenerate at some value of � if h 0; Q 0i=L is noninteger. Proof: suppose the ground
state is nondegenerate for all � . Then, the adiabatic evolution from � D 0 to 2� maps the
ground state to itself. However, one may show that if the ground state is an eigenvector of
the translation operator T with eigenvalue z, the adiabatically evolved state has eigenvalue
exp.i 2�

L
h 0;Q 0i/z ¤ z.
This kind of argument considering a change in boundary conditions is called a flux

insertion, and is related to Laughlin’s argument for Hall conductance quantization [13]. While
the adiabatic evolution using a flux insertion does not prove the desired result, this is still a
useful physical idea. The technical tool we use to make the idea of flux insertion rigorous is
called “quasiadiabatic continuation” [8].

3.3. Quasiadiabatic continuation
Suppose we have some family of Hamiltonians Hs which depend smoothly on a

real parameter s. Assume that for all s the ground state is nondegenerate and the spectral
gap is ��E. Let  a.s/ for a � 0 denote the (orthonormal) eigenstates ofHs , with energies
Ea.s/, with  0.s/ being the ground state.

Then, a familiar result of the first-order perturbation theory is that

@s 0.s/ D

X
a>0

1

E0.s/ �Ea.s/
 a.s/

˝
 a.s/; .@sHs/ 0.s/

˛
: (3.3)

We now use a trick similar to that used in the proof of exponential decay of correlations
above: we take some function of energy difference which has some singularity, i.e., in this
case, 1=.E0 � Ea/, and we approximate that function by a smooth function which gives a
good approximation when the energy difference is � �E. In the case of exponential decay
of correlations, the needed result is Lemma 2. Here a variety of different forms have been
used, and, rather than giving details, we simply give the approach outline.

Let f .�/ be some smooth function with some Fourier transform Qf .�/. Assume
f .x/ � �1=x for jxj � � and f .0/ D 0 and f .x/ D �f .�x/, where we will not be
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precise about the meaning of the approximation �. Then,

@s 0.s/ �

X
a>0

f .Ea �E0/ a.s/
˝
 a.s/; .@sHs/ 0.s/

˛
D

X
a

Z 1

�1

dt
2�

Qf .t/ exp
�
i.Ea �E0/t

�
 a.s/

˝
 a.s/; .@sHs/ 0.s/

˛
D

Z 1

�1

dt
2�

Qf .t/
�
exp

�
CiHs.t/

�
.@sHs/ exp

�
�iHs.t/

��
 0.s/

� iDs 0.s/; (3.4)

where the last line of the equation is interpreted as defining an operator iDs called the
quasiadiabatic continuation operator. The error in this approximation in (3.4) depends on
the error in the approximation f .x/ � �1=x and on the norm k@sHsk, and we do not go
into details here.

Since we have chosen f to be odd, Ds is Hermitian. We can integrate this quasia-
diabatic continuation operator along a path such as s 2 Œ0; 1� to give

 1.s/ � P exp

 
i

Z 1

0

Dsds

!
 0.s/;

where P denotes a path-ordered exponential and P exp.i
R 1
0

Dsds/ is a unitary.
The essential point of (3.4) is that if we choose f so that Qf is sufficiently rapidly

decaying in time, then (by the Lieb–Robinson bounds) the operatorDs enjoys certain locality
properties. In particular, if @sHs is supported on some given set (for example, @�H�;0 is
supported withinO.1/ of the line 0), then Ds can be approximated by an operator supported
within some distance ` that set, with the error in approximation depending on the choice
of Qf , and decreasing as ` is increased. Further, if @sHs is a sum of operators supported on
given sets then, by linearity,Ds can be approximated by a sum of operators supported within
some distances of those sets.

In the original application of quasiadiabatic continuation [8], there were two sources
of error. One came from the approximation in (3.4) since f .x/was not exactly equal to�1=x

for x � �, while the second came from the approximate locality of Ds .
In [18], Osborne introduced a different “exact” version where f .x/was exactly equal

to �1=x for jxj � �E, and he showed that one could choose Qf to decay superpolynomially
in time. Using an old result in analysis [11], it is possible to improve this superpolynomial
decay to an “almost exponential decay,” made more precise later.

The original formulation of quasiadiabatic continuation gives tighter bounds for the
higher-dimensional Lieb–Schultz–Mattis theorem. On the other hand, the “exact” quasiadi-
abatic continuation is more convenient for the proof of Hall conductance quantization. The
exact form has the particular advantage that one may choose it so that evolution under the
quasiadiabatic continuation operator also obeys a Lieb–Robinson bound.

We omit all the details of error estimates in this review.
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3.4. Sketched proof of higher-dimensional Lieb–Schultz–Mattis theorem
We now sketch the proof of Theorem 3. The proof is variational, like the one-

dimensional proof. It is also by contradiction. Let us assume that there is a gap �E, and
for large enough �E we will derive a contradiction.

Let  0 be the ground state of H . Since H is translation invariant, T 0 D z 0 for
some z with jzj D 1.

Let U be an operator that implements a quasiadiabatic continuation of H�;0 from
� D 0 to 2� , with the quasiadiabatic parameter chosen appropriately (we do not go into the
details) to make the following estimates work.

We emphasize that we do not make any assumption that H�;0 has a gap for � ¤ 0.
Indeed, by the arguments above, we know that the gap closes at some � . Nevertheless, we
define U by integrating the quasiadiabatic evolution operator as if there were a gap �E.

Our variational state will be ˆ D U 0. This is similar to the one-dimensional
construction with the operatorULSM replaced with a quasiadiabatic evolution. As in the one-
dimensional proof, we prove two things: we bound hˆ;Hˆi � h 0;H 0i, and we compute
hˆ; Tˆi to show that ˆ is orthogonal to  0.

To bound hˆ;Hˆi � h 0;H 0i, write

H D H1 CH2;

where H1 is the sum of terms hX such that X is closer to the set of sites with the first
coordinate 0 than it is to the set of sites with the first coordinate L=2, and H2 is the sum of
the remaining terms:

H1 �

X
X closer to 0

hX

and
H2 �

X
remaining X

hX :

The term H2 commutes with U up to exponentially small (in L�E=vLR) error by
locality of the quasiadiabatic evolution operator. At the same time, kH2k is only polynomi-
ally large in L, and so, for �E sufficiently large compared to log.L/=L, the commutator of
the second term with U is polynomially small (and indeed smaller than log.L/=L/.

To estimate hˆ;H1ˆi � h 0;H1 0i, define U 0 to implement quasiadiabatic evolu-
tion ofH0;� 0 as � 0 goes from 0 to �2� . DefineW to implement the quasiadiabatic evolution
ofH�;�� as � goes from 0 to 2� . Note the signs!

Since this is a sketched proof, we will write � to indicate that something holds up
to a polynomial in L times something exponentially small in L�E=vLR, so that, for �E
sufficiently large compared to log.L/=L, this � indicates a polynomially small error. One
may show the following:

hˆ;H1ˆi �
˝
U 0ˆ;H1U

0ˆ
˛

� hW 0;H1W 0i

� h 0;H1 0i; (3.5)
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where the first line is by the same locality of quasiadiabatic evolution argument as we used
in considering the commutator ŒH2; U �. The second line of (3.5) is from U 0U � W : this
result can be understood as the quasiadiabatic evolution operator that generates W is a sum
of two operators, one coming from the change in H�;� 0 with respect to � and the other the
change with respect to � 0, while the operators that generate U and U 0, respectively, come
from the change inH�;� 0 with respect to either � or � 0. This simple argument does not fully
justify the approximate equality, of course, as the evolutions are taken simultaneously inW
(� goes to 2� while � 0 goes to �2� in W ) and sequentially in U 0U , but using locality
one may show it is approximately true. The third line follows from (3.2): since H�;�� is
unitarily equivalent to H , the Hamiltonian H�;�� must also have the same gap �E and so
the quasiadiabatic evolution will approximately evolve the ground state ofH0;0 to the ground
stateH2�;�2� DH0;0, up to some phase. That is, while the gap will close forH�;0, it remains
open for H�;�� 0 . At this point in the proof, the phase is not important, since it cancels, but
in the next step a similar phase will be important.

This completes the sketch of the proof that hˆ;Hˆi � h 0;H 0i is small. We now
sketch the proof that ˆ has small overlap with  0. The ground state  0 is an eigenvector of
T with some eigenvalue z. We consider z�1hˆ; Tˆi and bound it away from 1. We have

z�1
hˆ; Tˆi D

˝
U 0; T UT

�1 0
˛
�
˝
U 0U 0; U

0
�
T UT �1

�
 0
˛
: (3.6)

We have, as discussed above, U 0U 0 � W 0, which is approximately equal to  0 up to
some phase. A similar result holds for U 0.T UT �1/: this operator can be considered as
describing the quasiadiabatic evolution in a family of Hamiltonians where instead the param-
eter � describes a gauge field near the line with the first coordinate 1, rather than the first
coordinate 0, while the parameter � 0 still describes a gauge field near the line with the first
coordinate L=2. So, U 0.T UT �1/ 0 is also equal to  0 up to a phase. However, analyzing
this phase (which is approximately the geometric phase of some adiabatic evolution) shows
that the two phases differ if h 0;Q 0i=L is noninteger, giving the desired result.

Remark 4. Note that if h 0;Q 0i=L is noninteger, then its difference from the nearest inte-
ger is�.1=L/ sinceQ has integer eigenvalues. So, even if the difference from h 0;Q 0i=L

to the nearest integer is o.1/, one may still bound the errors terms to show that the two phases
differ.

4. Hall conductance quantization

4.1. Introduction
In 1879, Edwin Hall performed an experiment in an attempt to determine the sign of

the charge of charge carriers in a metal. Was current caused by negative charge carriers flow-
ing in one direction or by positive charge carriers flowing in the opposite direction? Consider
a sample of some metal, which looks like a rectangle as viewed from above. He ran a current
from the left-hand side of the rectangle to the right-hand side, while applying a magnetic
field into the plane. Maxwell’s equations predicted that the charge carriers would experience
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a force, determined by their electric charge times the cross product of their velocity with the
magnetic field. This force is in the plane of the rectangle, and perpendicular to the direction
of current. The sign of this force is unchanged if one changes both the sign of the charge
carriers and the sign of their velocity. This force is expected to lead to an accumulation of
the charge carriers at the top or bottom edge of the rectangle, leading to a voltage between
the top and bottom edge. This effect, that a magnetic field can lead to a voltage perpendicular
to the current, is called the Hall effect.

The sign of the voltage for most materials agrees with what one would expect for
charge carriers with a negative electric charge (i.e., electrons), though in some semiconduc-
tors, the sign is reversed and it is more natural to think of holes in the band as carrying the
charge.

The Hall conductance has units of
current
voltage

D
charge
time

�
charge
energy

D
charge2

time � energy
;

so that it has the same units as e2=h where e is the charge of the electron and h is Planck’s
constant.

Surprisingly, in 1980, von Klitzing found experimentally that, in two-dimensional
semiconductors at low temperatures and large magnetic field, the Hall conductance was
quantized in integer multiples of e2=h to very high accuracy.3 The fundamental physi-
cal argument for this quantization was given by Laughlin [13] but a mathematical proof
remained open.

One surprising feature is that this very accurate quantization persists even though
the actual physical samples were disordered. In [5], noncommutative geometry techniques
were used to prove Hall conductance quantization for free (i.e., noninteracting) electrons
with disorder.

In [4], Avron and Seiler made another important advance, proving Hall conductance
quantization under a certain averaging assumption. They considered a system on a torus and
introduced two fluxes, � and �, on a longitude and meridian of the torus, respectively. See
Figure 2. We writeH�;� to denote a Hamiltonian as a function of these two parameters; both
� and � are periodic modulo 2� . The space of parameters �; � is called the flux torus.

They assumed that H�;� has a unique ground state for all �; �. Consider adiabati-
cally transporting the ground state around some infinitesimal loop in the flux torus near some
given �; �. The ground state acquires some Berry phase. This Berry phase is related, by the
Kubo formula, to the quantum Hall conductance at that �; �. Physically, we can understand
this relation as follows. If we imagine changing one parameter (say, � ), this corresponds to a
changing magnetic field which induces a voltage. This voltage induces a perpendicular cur-
rent proportional to the Hall conductance, and this current will couple to the other parameter
(in this case, �), changing the phase of the wavefunction.

3 There is also a fractional quantum Hall effect, where the Hall conductance is a rational
multiple of e2=h. This can occur if the ground state is (approximately) degenerate.
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Figure 2

Schematic illustration of a two-dimensional system. Individual sites are not shown. Left- and right-hand sides of
the figure are identified to give a cylinder, as well as top and bottom sides. Numbers indicate the first coordinate.
Twists �; � twist terms near the left-hand side and top side of the figure, respectively, and are used in the averaging
proof of [4]. Twists � 0; �0 twist terms near the dashed lines. Twists � 0; �0 are used as a technical trick in the proof
of [10].

The problem then is reduced to computing the Berry phase around such an infinites-
imal loop, i.e., computing a Berry curvature. The average of this curvature over the torus is
quantized in integer multiples of .2�/�1. Thus, Avron and Seiler proved that the average of
the Hall conductance over the torus is quantized.

However, this left open the question of quantization of the Hall conductance at a
specific values of �; �, assuming only a spectral gap at those �; �.

4.2. Results
We now state the results of [10], which proved Hall conductance quantization for

interacting electrons without the averaging assumption. The results are quantitative, giving
error bounds that decay almost exponentially fast as L! 1. A function f is called almost-
exponentially decaying, if for all c with 0 � c < 1 there is a constant C such that f .x/ �

C exp.�xc/ for all sufficiently large x, and a quantity is almost-exponentially small if it is
bounded by an almost-exponentially decaying function.

We consider a two-dimensional quantum system, with sites on a torus T , with sites
labeled by a pair .i; j / periodic modulo L for some L. We assume that there is a conserved
charge Q D

P
v qv as in the Lieb–Schultz–Mattis theorem and that the Hamiltonian has

bounded strength and range. We assume that the Hamiltonian has a unique groundstate, with
a spectral gap at least �E.

Specifically, one proves:

Theorem 4. For any fixed, L-independent R; J; qmax and spectral gap �E > 0, for any
Hamiltonian satisfying the above assumptions, the difference between the Hall conductance
�xy and the nearest integer multiple of e2=h is almost-exponentially small inL, where e2=h
denotes the square of the electron charge divided by Planck’s constant.

The proof of this theorem takes several steps. First, one replaces the Berry connec-
tion used to compute the Berry phase with the quasiadiabatic evolution operator, to relate the
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Hall conductance to the phase for quasiadiabatic evolution around a small loop. One con-
siders a quasiadiabatic evolution around a small, but not infinitesimal loop, on the flux torus
near .�; �/ D .0; 0/. Keeping the loop sufficiently small (the size of the loop polynomially
small in the system size), the gap remains open on evolution on this loop. Indeed, we may
assume that the gap remains at least .1 � o.1//�E, so that we may choose the function in
the quasiadiabatic evolution so that it matches the adiabatic evolution on this loop. Thus, the
ground state returns to itself after the quasiadiabatic evolution around this loop, up to a Berry
phase. For a small loop size, this phase is proportional to the area times the Berry curvature
plus higher-order corrections in loop size.

Second, one considers various other choices of .�;�/¤ .0;0/. For each such choice,
one defines a path from .0; 0/ to the given .�; �/, around a small loop, and back to .0; 0/.
Note that since we move now a large distance away from .0; 0/, the gap may become small,
or even vanish. So, we do not have a guarantee that we return to the ground state at the end of
the path. However, we canmake energy estimates to show that we indeed return to the ground
state. To do this, we use a similar trick to that done in the proof of the higher-dimensional
Lieb–Schultz–Mattis theorem. In that proof, we introduced an additional twist � 0 and used it
to show that our variational state had energy close to the ground state. Here we introduce two
extra twists � 0; �0, and we use them to show that the state at the end of the path has energy
close to the ground state. In this case, since we assume that the ground state is unique, this
proves that we do return to the ground state up to small error. Further, we may show that the
phase acquired is approximately independent of the choice of .�; �/.

Next, one takes a product of the evolution over several such paths (each path going
from .0;0/ to some .�;�/¤ .0;0/, around a loop, and back to .0;0/).We do this such that the
result is equivalent to evolution around a single large loop, i.e., certain segments of the paths
cancel, leaving just the evolution around the large loop. This large loop starts at .0; 0/, then
increases � from 0 to 2� , keeping � fixed. Then it increases � to 2� , keeping � fixed. Then,
it decreases � from 2� to 0, keeping � fixed. Finally, it decreases � from 2� to 0, keeping
� fixed. Each of those four segments of the evolution approximately returns the ground state
to itself, up to some phase; this again is shown by an energy argument. However, using
the 2� periodicity in the parameters �; �, the phases cancel. Thus, the combined evolution
gives a phase which is approximately an integer multiple of 2� , and since this phase is
approximately the product of the phases around the small loops, the phase for each small
loop is approximately an integer multiple of .2�/�1 times the area of the loop. This part of
the proof is, of course, very similar to one way to show that the average of the Berry curvature
over flux torus is quantized; essentially, it is a form of Stokes’ theorem. However, since we
have used a quasiadiabatic evolution so that all the small loops contribute approximately the
same phase, and since we have related the phase for the small loop near .�;�/D .0; 0/ to the
Berry curvature, it proves quantization without the averaging assumption and without any
assumption of the gap remaining open.
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A. Lieb–Robinson bounds

A.1. Lieb–Robinson bound
Here we show

Lemma 3. Given operators A supported on X and B supported on Y with X \ Y D ;, we
have�A.t/; B� � 2kAk � kBk

�
2jt j

� X
Z1WZ1\X¤;;Z1\Y¤;

khZ1k

C 2kAk � kBk
.2jt j/2

2Š

X
Z1WZ1\X¤;

khZ1k
X

Z2WZ2\Z1¤;;Z2\Y¤;

khZ2k

C 2kAk � kBk
.2jt j/3

3Š

X
Z1WZ1\X¤;

khZ1k
X

Z2WZ2\Z1¤;

khZ2k

�

X
Z3WZ3\Z2¤;;Z3\Y¤;

khZ3k

C � � � (A.1)

Remark 5. The kth term of the above series is equal to 2kAk � kBk
.2jt j/k

kŠ
times the sum

over sets Z1; : : : ; Zk with Z1 \X ¤ ;, Zj \ZjC1 ¤ ; for 0 � j < k, and Zk \ Y ¤ ;,
of the product

Qk
jD1 khZj k.

Proof. We assume t > 0 because negative t can be treated in the same way. Let " D t=N

with a large positive integer N , and let

tn D
t

N
n for n D 0; 1; : : : ; N:

Then we have�A.t/; B� �
�A.0/; B� D

N�1X
iD0

" �
kŒA.tnC1/; B�k � kŒA.tn/; B�k

"
: (A.2)

In order to obtain the bound (A.10) below, wewant to estimate the summand in the right-hand
side. To begin with, we note that the identity kU �OU k D kOk holds for any observable O
and for any unitary operator U . Using this fact, we have�A.tnC1/; B

� �
�A.tn/; B�

D
�A."/; B.�tn/� �

�A;B.�tn/�
�
�AC i"Œhƒ; A�; B.�tn/

� �
�A;B.�tn/�C O

�
"2
�

D
�AC i"ŒIX ; A�; B.�tn/

� �
�A;B.�tn/�C O

�
"2
�
; (A.3)

with
IX D

X
ZWZ\X¤;

hZ ; (A.4)

where we have used
A."/ D AC i"Œhƒ; A�C O

�
"2
�

(A.5)
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and the triangle inequality. Further, by using

AC i"ŒIX ; A� D ei"IXAe�i"IX C O
�
"2
�
; (A.6)

we have�AC i"ŒIX ; A�; B.�tn/
� �

�ei"IXAe�i"IX ; B.�tn/
�C O

�
"2
�

D
�A; e�i"IXB.�tn/e

i"IX
�C O

�
"2
�

�
�A;B.�ti / � i"

�
IX ; B.�tn/

��C O
�
"2
�

�
�A;B.�tn/�C "

�A; �IX ; B.�tn/��C O
�
"2
�
: (A.7)

Substituting this into the right-hand side in the last line of (A.3), we obtain�A.tnC1/; B
� �

�A.tn/; B� � "
�A; �IX ; B.�tn/��C O

�
"2
�

� 2"kAk
�IX .tn/; B�C O

�
"2
�
: (A.8)

Further substituting this into the right-hand side of (A.2) and using (A.4), we have�A.t/; B� �
�A.0/; B� � 2kAk

N�1X
nD0

" �
�IX .tn/; B�C O."/

� 2kAk

X
ZWZ\X¤;

N�1X
nD0

" �
�hZ.tn/; B�C O."/: (A.9)

Since hZ.t/ is a continuous function of the time t for a finite volume, the sum in the right-
hand side converges to the integral in the limit "# 0 (i.e.,N " 1) for any fixed finite latticeƒ.
In consequence, we obtain�A.t/; B� �

�A.0/; B� � 2kAk

X
ZWZ\X¤;

Z jt j

0

ds
�hZ.s/; B�: (A.10)

We define
CB.X; t/ WD sup

A2AX

kŒA.t/; B�k

kAk
; (A.11)

where AX is the algebra of observables supported on the set X . Then we have

CB.X; t/ � CB.X; 0/C 2
X

ZWZ\X¤;

khZk

Z jt j

0

ds CB.Z; s/ (A.12)

from the above bound (A.10). Assume dist.X; Y / > 0. Then we have CB.X; 0/ D 0 from
the definition of CB.X; t/, and note that

CB.Z; 0/ � 2kBk; (A.13)

for Z \ Y ¤ ;, and
CB.Z; 0// D 0 (A.14)
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otherwise. Using these facts and the above bound (A.12) iteratively, we obtain

CB.X; t/ � 2
X

Z1WZ1\X¤;

khZ1k

Z jt j

0

ds1 CB.Z1; s1/

� 2
X

Z1WZ1\X¤;

khZ1k

Z jt j

0

ds1 CB.Z1; 0/

C 22
X

Z1WZ1\X¤;

khZ1k
X

Z2WZ2\Z1¤;

khZ2k

Z jt j

0

ds1

Z js1j

0

ds2 CB.Z2; s2/

� � � � :

So,
CB.X; t/ � 2kBk

�
2jt j

� X
Z1WZ1\X¤;;Z1\Y¤;

khZ1k

C 2kBk
.2jt j/2

2Š

X
Z1WZ1\X¤;

khZ1k
X

Z2WZ2\Z1¤;;Z2\Y¤;

khZ2k

C 2kBk
.2jt j/3

3Š

X
Z1WZ1\X¤;

khZ1k
X

Z2WZ2\Z1¤;

khZ2k

�

X
Z3WZ3\Z2¤;;Z3\Y¤;

khZ3k C � � � :
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Abstract

1+1-dimensional integrable quantum field theories correspond to a sparse subset of
quantum field theories where the calculation of physically interesting observables can
be brought to explicit, closed, and manageable expressions thanks to the factorizability of
the S matrices which govern the scattering in these models. In particular, the correlation
functions are expressed in terms of explicit series of multiple integrals, this nonperturba-
tively for all values of the coupling. However, the question of convergence of these series,
and thus the mathematical well-definiteness of these correlators, is mostly open. This
paper reviews the overall setting used to formulate such models and discusses the recent
progress relative to solving the convergence issues in the case of the 1+1-dimensional
massive integrable Sinh-Gordon quantum field theory.
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1. Introduction

1.1. Scattering matrices for quantum integrable field theories
It was discovered in the early 20th century that the description of matter at low-

scales demands to wave-off some of the existing at the time paradigms governing the motion
and very structure of particles in interactions. This led to the development of the theory of
relativity on the one hand, and quantummechanics on the other. In the latter setting, the state
of a physical system is described by a vector, the wave function, belonging to some Hilbert
space and supposed to encapsulate all the physical degrees of freedom of that system. On
the classical level, the time evolution of particles’ momenta and positions is governed by a
set of generically nonlinear ordinary differential equations which can be written in the form
of Hamilton’s equations. In its turn, the time evolution of a wave function is governed by
a first-order ordinary linear differential equation driven by the Hamiltonian operator. This
operator is obtained through a quantization procedure: its symbol is given by the classical
Hamiltonian of the system or, said differently, it is obtained from the classical Hamiltonian
upon replacing the classical momenta and positions by operators. While the success of the
approach was astonishing relatively to the amount of experiments which could have been
explained, soon after the early development of the theory it became clear that in order to
describe physics at even smaller scales or higher energies, one needs to develop a quan-
tum theory of fields which would bring together the quantum and relativistic features in the
setting of uncountably many degrees of freedom. In loose words, such a theory would be
reached by producing operator valued generalized functions, viz. formal kernels of distribu-
tions, depending on the space-time coordinates which would satisfy analogues of nonlinear,
relativistically invariant, evolution equations arising in classical field theory. While it was
rather straightforward to construct the quantum theory of the free field (and nowadays such
a construction is fully rigorous), the construction of interacting theories which are the sole
relevant for physics appeared to be a tremendously hard task, this even on a formal level of
rigor. The various approaches that were developed quickly met serious problems: the most
prominent being the divergence of coefficients supposed to describe the formal perturba-
tive expansions of physical observables around the free theories. Eventually, these problems
could have been formally circumvented in certain cases by the use of the so-called renormal-
ization procedure. The latter, while being able to produce numbers which were measured
with great agreement in collider experiments, eluded for very long any attempts at making
it rigorous. Some progress was eventually achieved for several instances of truly interacting,
viz. nonfree, quantum field theories within the so-called constructive quantum field theory
approach, see [35] for a review. While successful in rigorously showing the existence and
certain overall properties of such theories, the approach did not lead yet to rigorous and
manageable expressions for the correlation functions, which are the quantities measured in
experiments and thus of prime interest to the theory.

Among the various alternatives to renormalization, one may single out the S-matrix
program which aimed at describing a quantum field theory directly in terms of the quantities
that are measured in experiments. This led to a formulation of the theory in terms of matrix-
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valued functions in n complex variables, with nD 0;1;2; : : : , that correspond to the entries of
the S-matrix between asymptotic states. The S-matrix program was actively investigated in
the 1960s and 1970s and numerous attempts were made to characterize the S-matrix which is
the central object in this approach, see, e.g., [14,17]. However, these investigations led to rather
unsatisfactory results in spacial dimensions higher than one, mainly due to the incapacity of
constructing viable, explicit, S-matrices for nontrivial models.

The interest in the S-matrix approachwas revived by the pioneeringwork of Gryanik
and Vergeles [16]. These authors set forth the first features of an integrable structure based
method for determining S-matrices for the 1+1-dimensional quantum field theories whose
classical analogues exhibit an infinite set of independent local integrals of motion. Indeed,
the existence of analogous conservation laws on the quantum level heavily constrains the
possible form of the scattering basically by reducing it to a concatenation of two-body pro-
cesses and hence making the calculations of S-matrices feasible. The work [16] focused on
the case of models only exhibiting one type of asymptotic particles, the main example being
given by the quantum Sinh-Gordon model. This 1+1-dimensional quantum field theory will
be taken as a guiding example from now on. It corresponds to the appropriate quantization of
the classical evolution equation of a scalar field '.x; t/ under the partial differential equation�

@2
t � @2

x

�
' C

m2

g
sinh.g'/ D 0; .x; t/ 2 R2: (1.1)

For this model, the asymptotic “in” states of the theory are described by vectors
f D .f .0/; : : : ; f .n/; : : : / which belong to the Fock Hilbert space

hin D

C1M
nD0

L2
�
Rn

>

�
with Rn

> D
®
ˇn D .ˇ1; : : : ; ˇn/ 2 Rn

W ˇ1 > � � � > ˇn

¯
: (1.2)

This means that f .n/ 2 L2.Rn
>/ has the physical interpretation of an incoming n-particle

wave-packet density in rapidity space. More precisely, on physical grounds, one interprets
elements of the Hilbert space hin as parameterized by n-particles states, n 2 N, arriving, in
the remote past, with well-ordered rapidities ˇ1 > � � � > ˇn prior to any scattering which
would be enforced by the interacting nature of the model.

For the 1+1-dimensional quantum Sinh-Gordon model, the S-matrix proposed in
[16] is purely diagonal and thus fully described by one scalar function of the relative “in”
rapidities of the two particles:

S.ˇ/ D
tanhŒ 1

2
ˇ � i�b�

tanhŒ 1
2
ˇ C i�b�

with b D
1

2

g2

8� C g2
: (1.3)

This S-matrix satisfies the unitarity S.ˇ/S.�ˇ/ D 1 and crossing S.ˇ/ D S.i� � ˇ/ sym-
metries. These are, in fact, fundamental symmetry features of an S-matrix and arise in many
other integrable quantum field theories. Within the physical picture, throughout the flow of
time, the “in” particles approach each other, interact, scatter and finally travel again as asymp-
totically free outgoing, viz. “out,” particles. Within such a scheme, an “out” n-particle state
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is then parameterized by n well-ordered rapidities ˇ1 < � � � < ˇn and can be seen as a com-
ponent of a vector belonging to the Hilbert space

hout D

C1M
nD0

L2
�
Rn

<

�
with Rn

< D
®
ˇn D .ˇ1; : : : ; ˇn/ 2 Rn

W ˇ1 < � � � < ˇn

¯
: (1.4)

The S-matrix will allow one to express the “out” state g D .g.0/; : : : ; g.n/; : : : /which results
from the scattering of an “in” state f D .f .0/; : : : ; f .n/; : : : / as

g.n/.ˇ1; : : : ; ˇn/ D

nY
a<b

S.ˇa � ˇb/ � f .n/.ˇn; : : : ; ˇ1/: (1.5)

Note that in this integrable setting, there is no particle production and that the scattering is
a concatenation of two-body processes.

Over the years, it turned out to be possible to characterize thoroughly the S-matrices
for more involved quantum field theories underlying to other integrable classical field theo-
ries in 1+1 dimensions. Such models possess several types of asymptotic particles which
can also form bound states. Then, the “in” Fock Hilbert space is more complicated and
takes the form

LC1

nD0 L2.Rn
>;˝nCp/ where the L2-space refers to ˝nCp valued func-

tions on Rn
>, with p corresponding to the number of different asymptotic particles in the

given theory. The most celebrated example corresponds to the Sine-Gordon quantum field
theory. Building on Faddeev–Korepin’s [22] semiclassical quantization results of the solitons
in the classical Sine-Gordon model, one concludes that the underlying quantum field theory
possesses two distinct types of asymptotic particles of equal mass, the soliton and the anti-
soliton, as well as a certain number, which depends on the coupling constant, of bound states
thereof. These all have distinct masses and are called breathers. Zamolodchikov argued the
explicit form of the S-matrix governing the soliton–antisoliton scattering [39] upon using the
factorizability of the n-particle S-matrix into two-particle processes, the independence of the
order in which a three particle scattering process arises from a concatenation of two-particle
processes as well as the fact that equal mass particles may solely exchange their momenta
during scattering, this due to the existence of many conservation laws. This enforces that the
S matrix satisfies the Yang–Baxter equation, which originally appeared in rather different
contexts [5, 37], and strongly restricts its form. We do stress that the Yang–Baxter equation
is the actual cornerstone of quantum integrability, so that it is not astonishing to recover it
also in this setting. The missing pieces of the Sine-Gordon S-matrix capturing the soliton–
breather and breather–breather scattering were then proposed in [18]. Nowadays, S-matrices
of many other models have been proposed, see e.g., [1,38].

1.2. The operator content and the bootstrap program
1.2.1. The basic operators
Having in mind the per se full construction of the quantum field theory, identifying

the content in asymptotic particles, viz. the “in” particles’ Hilbert space hin, and the S-matrix
which describes their scattering only arises as the first step. Indeed, one should build, in a way
that is compatible with the form of the scattering encapsulated in the S-matrix of interest, a
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family O˛ of operator-valued distributions, ˛ running through some set � . More precisely,
the O˛ should be distributions acting on smooth, compactly supported functions d.x/ of the
Minkowskian space-time coordinate

x D .x0; x1/ 2 R1;1 with x � y D x0y0 � x1y1: (1.6)

Then O˛Œd � is some densely defined operator on hin whose domain could, in principle,
depend on d . It is useful from the point of view of connecting this picture to physics to
express O˛ directly in terms of its generalized operator valued function

O˛Œd � D

ˆ
R2

d2x d.x/O˛.x/: (1.7)

In fact, in physics’ terminology, it is the O˛.x/s which correspond to the quantum fields of
the theory. Moreover, as will be apparent in the following, it turns out that in most handlings
O˛.x/ does actually make sense as a bona fide operator valued function on the Minkowski
space having a well-defined dense domain. Hence, unless it is mandatory so as to make an
appropriate sense out of the formula, we will make use of the generalized function notation
O˛.x/.

On top of being compatible with the scattering date, the operators O˛.x/ should
form an algebra, viz. the product O˛.x/O˛0.y/ should be a well-defined dense operator for
almost all x and y , and satisfy causality, viz. that for purely Bosonic theories as the Sinh-
Gordon model�

O˛.x/; O˛0.y/
�
� O˛.x/O˛0.y/ � O˛0.y/O˛.x/ D 0 if .x � y/2 < 0; (1.8)

namely when x � y is space-like. The family O˛.x/ should in particular contain the per se
quantized counterparts of the classical fields arising in the original evolution equation, for
instance, ˆ.x/ or eˆ.x/ in the Sinh-Gordon quantum field theory case. Moreover, these
operators should comply with the various other symmetries imposed on a quantum field
theory, such as invariance under Lorentz boosts of space-time coordinates or translational
invariance. In the quantum Sinh-Gordon field theory on which we shall focus from now on,
the latter means that the model is naturally endowed with a unitary operator UTy such that
for any operator O.x/

UTy � O.x/ � U�1
Ty
D O.x C y/: (1.9)

The operator UTy acts diagonally on hin given in (1.2):

UTy � f D
�
U.0/

Ty
� f .0/; : : : ; U.n/

Ty
� f .n/; : : :

�
with f D

�
f .0/; : : : ; f .n/; : : :

�
(1.10)

and where

U.n/
Ty
� f .n/.ˇn/ D exp

´
i

nX
aD1

p.ˇa/ � y

µ
f .n/.ˇn/; (1.11)

with p.ˇ/ D .m cosh.ˇ/; m sinh.ˇ// and ˇn D .ˇ1; : : : ; ˇn/.
Should the construction of quantum fields fulfilling to the above be achieved, the

ultimate goal would consist in computing in closed and explicit form the model’s vacuum-
to-vacuum n-point correlation functions:˝

O˛1.x1/ � � �O˛n.xn/
˛
D Trhin

�
P0O˛1.x1/ � � �O˛n.xn/P0

�
; (1.12)
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with P0 being the orthogonal projection on the 0-particle Fock space. We do stress that
the above objects are still generalized functions and, as such, should be considered in an
appropriate distributional interpretation. That will be made precise below.

1.2.2. The bootstrap program for the zero particle sector
By virtue of the above, in the case of the hin Hilbert space, one may represent an

operator O.x/ as an integral operator acting on the L2-based Fock space

O.x/ � f D
�
O.0/.x/ � f ; : : : ; O.n/.x/ � f ; : : :

�
(1.13)

with O.n/.x/ W hin ! L2.Rn
>/. Later on, we will discuss more precisely the structure of the

operators O.n/.x/ that one needs to impose so as to end up with a consistent quantum field
theory. However, first, we focus our attention on the 0th space operators whose action may
be represented, whenever it makes sense, as

O.0/.x/ � f D
X
m�0

ˆ
Rm

>

dmˇM
.O/
0Im.ˇm/

mY
aD1

®
e�ip.ˇa/�x

¯
f .m/.ˇm/: (1.14)

The oscillatory x-dependence is a simple consequence of the translation relation (1.9) along
with the explicit form of the action of the translation operator (1.11).

In order for O.0/.x/ to comply with the scattering data encoded by S, one needs to
impose a certain amount of constraints on the integral kernelsM

.O/
0Im.ˇm/. First of all, general

principles of quantum field theory impose that, in order for these to correspond to kernels
of quantum fields, the M

.O/
0Im.ˇm/ have to correspond to a C boundary value F

.O/
mIC.ˇm/ on

Rm
> of a meromorphic function F

.O/
m .ˇm/ of the variables ˇa belonging to the strip

S D
®
z 2 C W 0 < =.z/ < 2�

¯
: (1.15)

Traditionally, in the physics literature, the functions F
.O/

m .ˇm/ are called form factors.
Further, one imposes a set of equations on the F

.O/
m s. These constitute the so-called

form factor bootstrap program. On mathematical grounds, one should understand the form
factor bootstrap program as a set of axioms that one imposes as a starting point of the theory
given the data .hin; S/. Upon solving them, one has to check a posteriori that their solutions
do provide one, through (1.14) and (1.16), with a collection of operators satisfying all of the
requirements of the theory discussed earlier on.

The bootstrap program axioms take the form of a Riemann–Hilbert problem for a
collection of functions in many variables. In the case of the Sinh-Gordon model, since there
are no bound states, these take the below form.

Form Factor Axioms 1.1. Find functions F
.O/

n , n 2 N, such that, for each k 2 J1I nK and
fixed ˇa 2 S , a 6D k, the maps ˇk 7! F

.O/
n .ˇn/ are

• meromorphic on S ;

• admitC, resp. �, boundary values F
.O/

nIC on R, resp. F
.O/

nI� on RC 2i�;

• are bounded at infinity by C � cosh.`<.ˇk// for some n and k independent `.
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The F
.O/

n satisfy the multivariate system of Riemann–Hilbert problems:

(i) agreeing upon ˇab D ˇa � ˇb , one has F
.O/

n .ˇ1; : : : ; ˇa; ˇaC1; : : : ; ˇn/

D S.ˇaaC1/ � F
.O/

n .ˇ1; : : : ; ˇaC1; ˇa; : : : ; ˇn/;

(ii) For ˇ1 2 R, and given generic ˇ0
n D .ˇ2; : : : ; ˇn/ 2 S n�1, it holds

F
.O/

nI�.ˇ1 C 2i�; ˇ0
n/ D F

.O/
nIC.ˇ0

n; ˇ1/ D
Qn

aD2 S.ˇa1/ � F
.O/

nIC.ˇn/;

(iii) The only poles of F
.O/

n are simple, located at i� shifted rapidities and

� iRes
�
F

.O/
nC2.˛C i�;ˇ;ˇn/ � d˛;˛D ˇ

�
D

´
1�

nY
aD1

S.ˇ � ˇa/

µ
�F .O/

n .ˇn/I

(iv) F
.O/

n .ˇn C �en/ D e�sO � F
.O/

n .ˇn/ for some number sO and with
en D .1; : : : ; 1/.

Note that the reduction occurring at the residues of F
.O/

n .ˇn/ when ˇab D i� can
be readily inferred from .i/ and .iii/.

One may already comment on the origin of the axioms. The first one illustrates
the scattering properties of the model on the level of the operator’s kernel. The second and
third axioms may be interpreted heuristically as a consequence of the LSZ reduction [25],
and locality of the operator, see, e.g., [2, 34] for heuristics on that matter. Finally, the last
axiom is a manifestation of the Lorentz invariance of the theory. The number sO arising
in .iv/ is called the spin of the operator. Moreover, the number ` depends on the type of
operator being considered. Finally, for more complex models, one would also need to add an
additional axiom which would encapsulate the way how the presence of bound states in the
model governs certain additional poles in the form factors, cf. [34].

1.2.3. The bootstrap program for the multiparticle sector
It is convenient to represent the action of the operators O.n/.x/ in the form�

O.n/.x/ � f
�
.n/ D

X
m�0

nY
aD1

®
eip.a/�x

¯
� M.m/

O .x j n/
�
f .m/

�
: (1.16)

There M.m/
O .x j n/ are distribution-valued functions which act on appropriate spaces of

sufficiently regular functions in m variables. The regularity assumptions will clear out later
on, once that we provide the explicit expressions (1.18) for these distributions. In fact, it is
convenient, in order to avoid heavy notations, to represent their action as generalized integral
operators

M.m/
O .x j n/

�
f .m/

�
D

ˆ
Rm

>

dmˇM.O/
nIm.nIˇm/

mY
aD1

®
e�ip.ˇa/�x

¯
f .m/.ˇm/; (1.17)

in which one understands of the kernels M
.O/
nIm.nIˇm/ as generalized functions.

The last axiom of the bootstrap program provides one with a way to compute these
kernels. Heuristically, it can be seen as a consequence of the LSZ reduction [25]:
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(v)

M.O/
nIm.˛nIˇm/

DM
.O/
n�1ImC1

�
˛0

nI .˛1 C i�; ˇm/
�

C 2�

mX
aD1

ı˛1Iˇa

a�1Y
kD1

S.ˇk � ˛1/ �M
.O/
n�1Im�1

�
˛0

nI .ˇ1; : : : ; b̌a; : : : ; ˇm/
�
:

In the above expression, b̌a means that the variable ˇa should be omitted and ıxIy

refers to the Dirac mass distribution centered at x and acting on functions of y. Finally, the
evaluation at ˛1 C i� is understood in the sense of a boundary value of the meromorphic
continuation in the strip 0 � =.z/ � � from R up to RC i� . This axiom is to be comple-
mented with the initialization conditionM

.O/
0In.;Iˇn/DF

.O/
nIC.ˇn/when ˇn 2Rn

>. It is direct
to establish that the recursion may be solved in closed form allowing one to determine the
distributional kernel M

.O/
nIm.˛nIˇm/ in terms of F

.O/
n .ˇn/:

M.O/
nIm.˛nIˇm/ D

min.n;m/X
pD0

X
k1<���<kp

1�ka�n

X
i1 6D���6Dip
1�ia�m

pY
aD1

¹2�ı˛ka Iˇia
ºS
� �

˛ n j
 �
˛ .1/

n

�
� S

�
ˇ.1/

n j ˇn

�
� FnCm�2pI�

� �
˛ .2/

n C i�en�p; ˇ.2/
m

�
: (1.18)

There, we have used the shorthand notations ˛
.1/
n D .˛k1

; : : : ; ˛kp
/ and ˛

.2/
n D

.˛`1
; : : : ; ˛`n�p

/ where ¹`1; : : : ; `n�pº D J1InK n ¹kaº
p
1 , `1 < � � � < `n�p , and analogously

ˇ.1/
m D .ˇi1 ; : : : ; ˇip / and ˇ.2/

m D . ǰ1 ; : : : ; ǰm�p / where ¹j1; : : : ; jm�pº D J1ImK n ¹iaº
p
1 ,

j1 < � � � < jm�p . Moreover, we have introduced

S
� �

˛ n j
 �
˛ .1/

n

�
D

pY
aD1

n�pY
bD1

ka>`b

S.˛ka
� ˛`b

/;

S
�
ˇ.1/

n j ˇn

�
D

pY
aD1

mY
bD1
b<ia

S.ˇb � ˇia / �
Y
a>b
ia>ib

S.ˇia � ˇib /:

Finally, we agree upon � N D .N ; : : : ; 1/ for any N D .1; : : : ; N /.
It is clear on the level of the explicit expression (1.18) that this generalized function

is well defined, even though it involves a multiplication of distributions.

1.2.4. The road towards the bootstrap program
The first calculation of certain of the operators’ kernels was initiated by Weisz [36]

who built on the full characterization of the Smatrix of the Sine-Gordon model to argue with
the help of general principles of quantum field theory an expression for the kernelM.O/

1I1.˛Iˇ/

of the electromagnetic current operator only involving one-dimensional variables ˛; ˇ. The
setting up of a systematic approach allowing one to calculate all the collection of kernels
characterizing an operator starting from a given model’s S-matrix has been initiated by
Karowski and Weisz [19] who proposed a set of equation satisfied by that model’s equiv-
alent of F

.O/
n .ˇn/. These allowed them to provide closed-form expressions for two-particle
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form factors in several models. However, these equations were still far from forming the full
bootstrap program as described above.

After long investigations [30, 31, 33] which revealed a deeper structure of the form
factors of the Sine-Gordon model, Smirnov [32] formulated the equivalent of axioms .i/–.ii/
in that model. Subsequently, Kirillov and Smirnov [20] proposed the full set of the bootstrap
program axioms, exemplified in the case of the Massive Thirring model; see also [34].

2. Solving the bootstrap program

The resolution of the bootstrap program was systematized over the years and these
efforts led to explicit expressions for the form factors of local operators in numerous 1+1-
dimensional massive quantum field theories, see, e.g., [34]. The first expressions for the form
factors were rather combinatorial in nature. Later, a substantial progress was achieved in sim-
plifying the latter, in particular by exhibiting a deeper structure at their root. Notably, one can
mention the free field based approach, also called angular quantization, to the calculation of
form factors. It was introduced by Lukyanov [26] and allowed obtaining convenient represen-
tations for certain form factors solving the bootstrap program. In particular, the construction
lead to closed-form and manageable expressions [10, 27] for the form factors of the expo-
nential of the field operators in the Sinh-Gordon and the Bullough–Dodd models. Later,
Babujian, Fring, Karowski, Zapetal [2] and Babujian, Karowski [3, 4] developed the more
powerful K-transform approach which will be described below on the example of the Sinh-
Gordon model. The construction of [3,4] was improved in [15,24] so as to encompass more
complicated operators, the so-called descendants of the Sinh-Gordon exponential of the field
operator.

2.1. The 2-particle sector solution
The constructions of solutions to the bootstrap program starts from obtaining a spe-

cific solution to the equations .i/–.iv/ when n D 2, i.e., for two variables. This was first
achieved in [19].

Lemma2.1 ([19]). LetF .O/
2 .ˇ1;ˇ2/ solve .i/–.iv/ atnD2. Then, there exist k2¹1; : : : ;`=2º,

~a 2 C, a D 1; : : : ; k, such that, with ˇ12 D ˇ1 � ˇ2

F
.O/

2 .ˇ1; ˇ2/ D NO

kY
aD1

²
sinh

�
ˇ12 � ~a

2

�
� sinh

�
ˇ12 C ~a

2

�³
e

sO
2 .ˇ1Cˇ2/F.ˇ12/ (2.1)

for someNO 2C andwhere F is given by the integral representation valid for 0 <=.ˇ/ < 2�:

F.ˇ/ D exp

´
�4

ˆ C1

0

dx
sinh.xb/ � sinh.x Ob/ � sinh. 1

2
x/

x sinh2.x/
cos
�

x

�
.i� � ˇ/

�µ
; (2.2)

with Ob D 1
2
� b.

Proof. Axiom .iv/ ensures that F
.O/

2 .ˇ1; ˇ2/ D e
sO
2 .ˇ1Cˇ2/ QF.ˇ1 � ˇ2/ for some function

QF.ˇ/ that is holomorphic on the strip 0 < =.ˇ/ < 2� , bounded at infinity by C cosh.`ˇ/,
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and such that QF�.ˇC 2i�/D S.ˇ/ QFC.�ˇ/D QFC.ˇ/, ˇ 2R. One first looks for a particular
solution to this scalar Riemann–Hilbert problem, namely a holomorphic function F in the
strip 0 < =.ˇ/ < 2� which behaves as F.ˇ/ D 1C O.ˇ�2/ as <.ˇ/! ˙1 uniformly in
0 � =.ˇ/ � 2� and satisfies F�.ˇ C 2i�/ D S.�ˇ/FC.ˇ/ D FC.�ˇ/, ˇ 2 R.

Starting from the below integral representation

S.ˇ/ D exp

´
8

ˆ C1

0

dx
sinh.xb/ � sinh.x Ob/ � sinh. 1

2
x/

x sinh.x/
sinh

�
xˇ

i�

�µ
; (2.3)

one readily checks that the solution is provided by the below 2i�-periodic Cauchy transform

F.ˇ/ D exp

´ˆ
R

ds

4i�
coth

�
1

2
.s � ˇ/

�
lnS.s/

µ
: (2.4)

The s integral can then be taken by means of the integral representation (2.3) for lnS.s/ and
leads to (2.2). Now it is easy to check that the holomorphic function G.ˇ/ D QF.ˇ/=F.ˇ/ on
the strip 0 < =.ˇ/ < 2� admits˙ boundary values and satisfies G�.ˇC 2i�/D GC.ˇ/ for
ˇ 2 R and is bounded by C cosh.`<.ˇ// as <.ˇ/!1 in this strip. As a consequence, it
admits a unique extension into a 2i�-periodic entire function bounded by C cosh.`ˇ/ and
hence is of the form P`.eˇ /, where P` is a Laurent polynomial of maximal positive and
negative degree `. Since it is 2i�-periodic and even, P`.eˇ / necessarily takes the form

P`

�
eˇ
�
D

kY
aD1

²
sinh

�
ˇ � ~a

2

�
� sinh

�
ˇ C ~a

2

�³
for some 2k � `: (2.5)

2.2. The n-particle sector solution
Proposition 2.2. Consider the change of unknown functions

F .O/
n .ˇn/ D

nY
a<b

F.ˇab/ �K.O/
n .ˇn/ with ˇab D ˇa � ˇb; (2.6)

with F as defined through (2.2). Then F
.O/

n solves the bootstrap axioms .i/–.iv/ if any only if

(I) K
.O/
n is a symmetric function of ˇn;

(II) K
.O/
n is a 2i� periodic and meromorphic function of each variable taken

singly;

(III) the only poles of K
.O/
n are simple and located at ˇa � ˇb 2 i�.1C 2Z/. The

associated residues are given by

Res
�
K.O/

n .ˇn/ � dˇ1; ˇ12 D i�
�

D
i

F.i�/
�

1 �
Qn

aD3 S.ˇ2a/Qn
aD3¹F.ˇ2a C i�/F.ˇ2a/º

�K
.O/
n�2

�
ˇ00

n

�
(2.7)

where ˇ00
n D .ˇ3; : : : ; ˇn/;

(IV) K
.O/
n .ˇn C �en/ D e�sO �K

.O/
n .ˇn/.
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This first transformation simplifies the symmetry properties of the problem. How-
ever, the inductive reductions provided by the computation of the residues are still quite
intricate. The idea is then to proceed to yet another change of unknown function, this time
by means of a more involved transform. The latter will then lead to structurally much sim-
pler, and thus easier to solve, equations satisfied by the new unknown function. As already
mentioned, the dawn of this approach goes back to [10,27] and it was put in the present form
in [2–4]. In particular, we refer to [3] for the proof.

Proposition 2.3 ([3]). Let `n 2 ¹0; 1ºn and p
.O/
n .ˇn j `n/ be a solution to the below con-

straints:

(a) ˇn 7! p
.O/
n .ˇn j `n/ is a collection of 2i�-periodic holomorphic functions on

C that are symmetric in the two sets of variables jointly, viz. for any � 2 Sn it
holds p

.O/
n .ˇ�

n j `
�
n/ D p

.O/
n .ˇn j `n/ with ˇ�

n D .ˇ�.1/; : : : ; ˇ�.n//;

(b) p
.O/
n .ˇ2C i�;ˇ0

n j `n/D g.`1; `2/p
.O/
n�2.ˇ00

n j `
00
n/C h.`1; `2 j ˇ

0
n/where h does

not depend on the remaining set of variables `00
n and

g.0; 1/ D g.1; 0/ D
�1

sin.2�b/F.i�/
I (2.8)

(c) p
.O/
n .ˇn C �en j `n/ D e�sO � p

.O/
n .ˇn j `n/.

Then, its K-transform

Kn

�
p.O/

n

�
.ˇn/ D

X
`n2¹0;1ºn

.�1/`n

nY
a<b

²
1 � i

`ab � sinŒ2�b�

sinh.ˇab/

³
� p.O/

n .ˇn j `n/; (2.9)

in which `n D
Pn

aD1 `k , solves .I/–.IV/.

Note that arguments were given in [15] in favor of some form of bijection between
certain classes of solutions to .a/–.c/ and .I/–.IV/. However, we do stress that, so far, the
question whether there does exist a clear cut correspondence between all solutions to .a/–.c/
and .I/–.IV/ is still open.

3. Towards physical observables and the convergence

problem

The resolution of the bootstrap program provides one with the expressions for the
integral kernels of certain operators which are candidates for the quantum fields of the 1+1-
dimensional Sinh-Gordon quantum field theory. However, for this construction to really
provide one with the quantum field theory of interest, one should establish several facts.
First of all, the operators so constructed should form an algebra in the sense discussed in Sec-
tion 1.2.1. By virtue of the translational invariance (1.9), this means that, for any n; m 2 N,
the series of multiple integrals arising in the operator product U�1

Tx
PnO1.x/O2.0/Pm, where

Pk is the orthogonal projector on the k-particle Fock space, should converge in the weak
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sense. Namely, for any sufficiently regular functions ˛n 7! f .n/.˛n/ and ˇm 7! g.m/.ˇm/

belonging respectively to a dense subset of L2.Rn
>/ and L2.Rm

>/, and for any d 2 C1
c .R2/,X

`�0

ˆ
R`

>

d`

.2�/`

´ˆ
Rn

>

dn˛

.2�/n
f .n/.˛n/M

.O1/

nI`
.˛nI`/

µ

�

´ˆ
R2

d2xd.x/
Ỳ
aD1

e�ip.a/�x

µ
�

´ˆ
Rm

>

dnˇ

.2�/m
M

.O2/

`Im
.`Iˇm/g.m/.ˇm/

µ
(3.1)

should converge. The simplest case corresponds to establishing the convergence of the series
of multiple integrals subordinate to operator products P0O1.x/O0

2.0/P0, viz. for nD mD 0.
Since the zeroth Fock space is one-dimensional, this exactly amounts to the convergence
of the series of multiple integrals which represents the two-point generalized function
hO1.x/O0

2.0/i. However, even for this specific instance, proving this property on rigorous
grounds remained an open problem for a very long time. It has only recently been solved by
the author [23] in the case of space-like separation between the operators, viz. x2 < 0. The
scheme of proof of this result will be discussed in Section 4. From the proof’s structure, it
is rather clear that one can build on minor modifications of this method so as to establish
convergence in the time-like regime, i.e. when x2 > 0, although this has not been done yet.
Moreover, the combinatorial expressions for the kernels M

.O/
nIm.˛nIˇm/ in terms of the base

form factors F
.O/

p , 0 � p � m C n indicates that the method outlined below would also
allow one to tackle the convergence problem for general multipoint correlation functions.

Once that the convergence problem is solved in full generality, hence guaranteeing
that the operators O˛.x/ do form an algebra, one still needs to establish the local commuta-
tivity property of the quantum fields which ensures causality of the theory. The method for
doing so is now well established. Indeed, under the hypothesis of convergence of the han-
dled series of multiple integrals issuing from the operators products, Kirillov and Smirnov
showed this property in the Sine-Gordon case in [20, 21]. Their method readily applies to
the Sinh-Gordon case. Hence, convergence is the only remaining problem so as to set this
construction of quantum field theories on rigorous grounds.

3.1. The well-poised series expansion for two-point functions
First of all, by translation invariance, it is enough to focus on hO1.x/O2.0/i. Recall

that, at least in principle, this quantity is a generalised function and should thus be under-
stood, in the first place, as the formal integral kernel of the distribution hO1O2i. For d 2

C1
c .R2/, provided convergence holds, one has

hO1O2iŒd � D

ˆ
R2

d2xd.x/
˝
O1.x/O2.0/

˛
D

X
n�0

1

nŠ
I.O1;O2/

n Œd � (3.2)

with

I.O1;O2/
n Œd �D

ˆ
Rn

dnˇ

.2�/n
F .O1/

n .ˇn/M
.O2/
nI0 .ˇnI;/

ˆ
R2

d2xd.x/

nY
aD1

®
e�imŒt cosh.ˇa/�x sinh.ˇa/�

¯
:
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It is a direct consequence of the kernel reduction axiom .v/ and of Lorentz invariance .iv/

that
M

.O2/
nI0 .ˇnI ;/ D F .O2/

n .
 �
ˇ n C i�en/ D ei�sO2 F .O2/

n .
 �
ˇ n/: (3.3)

This identity, along with the growth bounds in each ˇa of the form factorsF
.O/

n .ˇn/, ensures
the well definiteness of the n-fold integrals since the space-time integral over x produces
a decay in each ˇa that is faster than any exponential e˙kˇa , <.ˇa/ ! ˙1. By virtue
of the Morera theorem, this rapid decay at infinity along with the holomorphy properties
of the integrands allow one to deform, simultaneously for each integration variable ˇa,
a D 1; : : : ; n, the integration curves to R C i�

2
sgn.x/ when x is space-like and, when x

is time-like, to .R/ where .u/D uC i#.u/, where # is smooth, j#j < �=4, and such that
there exists M > 0 large enough and 0 < " < �=2 so that #.u/ D �sgn.t/sgn.u/" when
juj �M . This operation turns the ˇn integrals into absolutely convergent ones irrespectively
of the presence of d.x/. In particular, for the space-like regime, one gets that

I.O1;O2/
n D e�.x/

ˆ
R2

d2xd.x/

ˆ
Rn

dnˇ

.2�/n
F .O1/

n .ˇn/F .O2/
n .
 �
ˇ n/

nY
aD1

e�mr cosh.ˇa/;

in which r D
p

x2 � t2, tanh.#/ D t=x while

�.x/ D i�sO2 C .i�
2
sgn.x/C #/.sO1 C sO2/:

Hence, provided convergence holds, one has the well-defined in the usual sense of numbers
representation for the two-point function˝

O1.x/O2.0/
˛
D e�.x/

X
n�0

1

nŠ

ˆ
Rn

dnˇ

.2�/n
F .O1/

n .ˇn/F .O2/
n .
 �
ˇ n/

nY
aD1

e�mr cosh.ˇa/: (3.4)

3.2. Convergence of series representation for two-point functions
Thus, the well-definiteness of the two-point functions boils down to providing an

appropriate upper bound for the below class of N -fold integrals for ~ > 0,

ZN .~/ D

ˆ
RN

dN ˇ

NY
a 6Db

e
1
2 w.ˇab/

�

NY
aD1

®
e�2~ cosh.ˇa/

¯
KN

�
p

.O1/
N

�
.ˇN /KN

�
p

.O2/
N

�
.
 �
ˇ N /:

(3.5)
The two-body potential w is defined through the relation F.�/F.��/ D ew.�/.

Theorem 3.1 ([23]). Assume that there exist C1; C2, and k 2 N such that given s 2 ¹1; 2º,ˇ̌
p

.Os/
N .ˇN j `N /

ˇ̌
� C N

1 �

NY
aD1

eC2ˇk
a for any `N 2 ¹0; 1ºN ; (3.6)

uniformly in N . Then, it holdsˇ̌
ZN .~/

ˇ̌
� exp

�
�

3�2b Ob �N 2

4 � .lnN /3

²
1C O

�
1

lnN

�³�
: (3.7)

The proof of this theorem was the goal of the author’s work [23]. The proof relies on
Riemann–Hilbert problem techniques for inverting singular integral operators of truncated-
Wiener–Hopf type along with the Deift–Zhou nonlinear steepest descent method [12, 13],
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concentration of measure, and large deviation techniques which were developed for dealing
with certain ˇ-ensembles multiple integrals [7,9,28], and some generalizations thereof to the
case of N -dependent integrands in N -dimensional integrals as it was developed in [8].

4. The proof of the convergence of the form factor series

In this section we shall describe the main steps of the proof. The details can be found
in Proposition 3.1 of [23].

4.1. An simpler upper bound
The starting point consists in obtaining a structurally simpler upper bound onZN .~/

when ~ > 0.

Proposition 4.1. There exists C > 0 such thatˇ̌
ZN .~/

ˇ̌
� .C � lnN /N

�maxp2J0IN KjZN;p.~/j; (4.1)

where ZN;p.~/ D
´

RN �p dN �p�
´

Rp dp�%N;p.�N �p; �p/ whose integrand is expressed as

%N;p.�N �p; �p/ D

pY
aD1

®
e�VN .�a/

¯
�

N �pY
aD1

®
e�VN .�a/

¯
�

pY
a<b

®
ewN .�ab/

¯
�

N �pY
a<b

®
ewN .�ab/

¯
�

pY
aD1

N �pY
bD1

®
ewtotIN .�a��b/

¯
: (4.2)

Above, we have used the N -dependent functions

VN .�/ D ~ cosh.�N �/; wN .�/ D w.�N �/; wtotIN .�/ D wtot.�N �/; (4.3)

with �N D lnN and

wtot.�/ D w.�/C v2�b;0C.�/ with v˛;�.�/ D ln
�
sinh.�C i˛/ sinh.� � i˛/

sinh.�C i�/ sinh.� � i�/

�
: (4.4)

4.2. Energetic bounds
Proposition 4.2. The partition function ZN;p.~/ admits the upper bound

ZN;p.~/ � exp
®
�N 2inf

®
EN;

p
N

Œ�; �� W .�; �/ 2M1.R/ �M1.R/
¯
C O

�
N�2

N

�¯
; (4.5)

in which the control is uniform in p 2 J0IN K, and where

EN;t Œ�; �� D
1

N

²
t

ˆ
VN .s/d�.s/C .1 � t /

ˆ
VN .s/d�.s/

³
�

t2

2

ˆ
wN .s � u/d�.s/d�.u/ �

.1 � t /2

2

ˆ
wN .s � u/d�.s/d�.u/

� t .1 � t /

ˆ
wtotIN .s � u/d�.s/d�.u/:

One may obtain such an upper bound within the standard approach to establishing
large deviation bounds for N -fold integrals as pioneered in [7], adjoined to the local regular-
ization of the empirical distribution of the integration variables proposed in [28], and some
fine bounds due to the N -dependence of the integrand which were also considered in [8].
The details can be found in Lemmata 4.2–4.3 of [23].

4109 Bootstrap approach to 1+1-dimensional integrable quantum field theories



4.3. Characterization of the minimizer and a lower-bound minimizer
The upper bound established in Proposition 4.2 does not allow one to conclude

directly on the convergence of the series. Indeed, even if one could prove that the infimum
in (4.5) gives a strictly positive number, the N -dependence of the energy functional could
make the infimum N -dependent and, in principle, the latter could give rise to a behaviour in
N which, whenmultiplied by theN 2 prefactor, could turn out to be subdominant with respect
to the corrections O.N�2

N /. Hence, the longest part of the proof is devoted to obtaining some
sharp and explicit lower bound for the infimum which can then be computed in closed form
so that one may explicitly check that the above scenario does hold.

For that purpose, one starts by showing

Proposition 4.3. For 0 < t < 1 EN;t admits a unique minimizer .�
.N;t/
eq ; �

.N;t/
eq / on

M1.R/ �M1.R/. Similarly, EN;0 and EN;1 admit unique minimizers on M1.R/.

This is established by showing that, for 0 < t < 1, EN;t is lower semicontinuous
and strictly convex on M1.R/ �M1.R/, has compact level sets, is not identicallyC1, and
is bounded from below. In principle, this result could be already enough to obtain sharp
in N estimates for EN;t Œ�

.N;t/
eq ; �

.N;t/
eq �. Indeed, by relying on the analogous to the case of

ˇ-ensembles variational characterization of the minimizers and showing that these are actu-
ally Lebesgue continuous with compact connected supports, one may establish a system of
two-coupled singular linear integral equations of truncated Wiener–Hopf type depending
on the large-parameter N . These may be analyzed within the method developed by Krein’s
school after generalizing the work [29] and solving the 4 � 4 associated Riemann–Hilbert
problem in the large-N regime by the Deift–Zhou nonlinear steepest descent method [12,13].
However, these steps would definitely lead to an extremely cumbersome and long clamber,
especially taken the minimal amount of information one needs, in the end, from such han-
dlings. Therefore, it is more convenient to reduce the numbers of minimizers which ought
to be thoroughly determined by providing a lower bound for EN;t Œ�

.N;t/
eq ; �

.N;t/
eq � whose esti-

mation would demand less effort while still leading to the desired result.
A direct calculation shows that one has a simpler representation for EN;t in terms

of functionals only acting on one copy of a space of bounded measures:

EN;t Œ�; �� D
X
�D˙

E
.�/
N

�
�

.�/
t

�
with �

.˙/
t D t� ˙ .1 � t /�; (4.6)

in which E
.C/
N is a functional onM1.R/while E

.�/
N is a functional onM

.2t�1/
s .R/, the space

of signed, bounded, measures on R of total mass 2t � 1. These take the form

E
.C/
N Œ�� D

1

N

ˆ
VN .s/ d�.s/ �

1

2

ˆ
w

.C/
N .s � u/ � d�.s/ d�.u/; (4.7)

E
.�/
N Œ�� D �

1

2

ˆ
w

.�/
N .s � t / � d�.s/ d�.u/: (4.8)

The two-body interactions appearing above involve w and v˛;� introduced in (3.5) and (4.4)

w
.˙/
N .u/ D w.˙/.�N u/ with

8<:w.C/.u/ D w.u/C 1
2
v2�b;0C.u/;

w.�/.u/ D �1
2
v2�b;0C.u/:

(4.9)
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By going to Fourier space, one observes that

E
.�/
N Œ�� D

1

2

ˆ
d�
ˇ̌
F Œ��.�/

ˇ̌2 sinh.�b�/ � sinh.� Ob�/

� sinh. �
2

�/
� 0; (4.10)

where F Œ��.�/ stands for the Fourier transform of the signed measure � . Thus,

EN;t

�
�.N;t/
eq ; �.N;t/

eq
�
� E

.C/
N

�
t�.N;t/

eq C .1 � t /�.N;t/
eq

�
� E

.C/
N

�
� .N /
eq

�
: (4.11)

In the last line, we have used that E
.C/
N is lower-continuous, has compact level sets, is strictly

convex on M1.R/, bounded from below, and not identically C1, so as to ensure the exis-
tence of a unique minimizer thereof: E

.C/
N Œ�

.N /
eq � D inf¹E.C/

N Œ�� W � 2M1.R/º.

4.4. Singular integral equation characterization of the minimizer �
.N/
eq

By using the variational characterization of the minimizer, see e.g., [11] for an expo-
sition in the ˇ-ensemble case, one reduces the construction of �

.N /
eq to finding a solution to

a singular integral equation on the Sobolev space Hs.ŒaN I bN �/ driven by the operator

�N Œ��.�/ D

 bN

aN

�
w.C/

�0�
�N .� � �/

�
� �.�/d�: (4.12)

Indeed, upon introducing the effective potential subordinate to a function � 2Hs.ŒaN IbN �/,

VN IeffŒ��.�/ D
1

N
VN .�/ �

 bN

aN

w.C/
�
�N .� � �/

�
� �.�/d�; (4.13)

one may formulate

Proposition 4.4. Let aN < bN and %
.N /
eq 2 Hs.ŒaN I bN �/, 1=2 < s < 1, solve

1

N�N

V 0
N .x/ D �N

�
%.N /
eq
�
.x/ on �aN I bN Œ; (4.14)

be subject to the conditions

%.N /
eq .�/ � 0 for � 2 ŒaN I bN �;

ˆ bN

aN

%.N /
eq .�/d� D 1; (4.15)

and

VN Ieff
�
%.N /
eq
�
.�/ > inf

®
VN Ieff

�
%.N /
eq
�
.�/ W � 2 R

¯
for any � 2 R n ŒaN I bN �: (4.16)

Then, the equilibrium measure �
.N /
eq is supported on the segment ŒaN I bN � and continuous

in respect to Lebesgue’s measure with density %
.N /
eq . Moreover, the density takes the form

%.N /
eq .�/ D

p
.bN � �/.� � aN / � hN .�/ with hN 2 C1

�
ŒaN I bN �

�
: (4.17)

The above proposition thus provides one with the following strategy for determining
the equilibrium measure. One starts by solving the singular integral equation (4.14) for any
endpoints aN and bN . The inversion should be carried out in an appropriate functional space
which is dictated by the local structure (4.17) of the equilibrium measure’s density, as can
be inferred from an analysis of the systems of loop equations associated with the probability
measure on RN naturally subordinate to the energy functional E

.C/
N . The fact that �N should
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be inverted on Hs.ŒaN I bN �/, 0 < s < 1, imposes a constraint on aN and bN . A second
constraint is obtained from the fact that the equilibrium measure has unit mass (4.15). This
is still not enough so as to be sure that the solution constructed in this way provides one with
the equilibrium measure. For that to happen, one still needs to verify that the two positivity
constraints (4.15)–(4.16) are fulfilled. The realization of such a program demands to have
a thorough control on the inversion of �N . The latter may be reached within the scheme
developed in [29], by solving an auxiliary 2 � 2 Riemann–Hilbert problem.

4.5. The Riemann–Hilbert based inversion of the operator
In the following, we adopt the shorthand notations

aN D �N aN ; bN D �N bN ; xN D �N .bN � aN /: (4.18)

Consider the Riemann–Hilbert problem for a 2 � 2 matrix function � 2M2.O.C nR//:

• � has continuous˙-boundary values on R;

• there exist constant matrices �.a/ with �
.1/
12 6D 0 such that when �!1,

�.�/ D

8̂̂̂̂
ˆ̂̂̂̂̂̂
<̂
ˆ̂̂̂̂̂̂
ˆ̂̂:

PLI".�/ �

 
�s� � ei�xN 1

�1 0

!
�

.�i�/
3
2 �3

e�i 3�
2 �3

� .I2 C
�.1/

�
C

�.2/

�2 C O.��3// � Q.�/; � 2 HC;

PLI#.�/ �

 
�1 s� � e�i�xN

0 1

!
� .i�/

3
2 �3

� .I2 C
�.1/

�
C

�.2/

�2 C O.��3// � Q.�/; � 2 H�;

in which the matrix Q takes the form

Q.�/ D

 
0 ��

.1/
12

¹�
.1/
12 º

�1 q1 C �

!
with q1 D .�

.1/
11 �

.1/
12 � �

.2/
12 / � ¹�

.1/
12 º

�1
I

• �C.�/ D G�.�/ � ��.�/ for � 2 R where

G�.�/ D

 
ei�xN 0

1
i� �R.�/ �e�i�xN

!
with R.�/ D 2

sinh.�b�/ � sinh.� Ob�/ � sinh. �
2

�/

cosh2. �
2

�/
:

Here s� D sgn.<�/, O.A/ stands for the ring of holomorphic functions on A, while the
O remainder appearing in matrix equalities should be understood entrywise. Moreover, we
point out that the matrix Q appearing in the asymptotic expansion for � is chosen such that
� has the large-� behavior

�.�/ D �
.1/

"=#
.�/ � .�i�/

1
2 �3 ; � 2 H˙; (4.19)

with �
.1/

"=#
.�/ bounded at1.
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The Deift–Zhou nonlinear steepest descent method [12,13] allows one to reduce the
above Riemann–Hilbert problem into one that is uniquely solvable by the singular integral
equation method of [6], provided that N is large enough and bN � aN > c > 0 uniformly
in N .

The solution � then provides one with a full description of the inverse of �N .

Proposition 4.5. Let 0 < s < 1. The operator �N W Hs.ŒaN I bN �/! Hs.R/ is continuous
and invertible on its image:

Xs.R/ D

´
H 2 Hs.R/ W

ˆ
RCi"0

�12.�/F ŒH �.�N �/e�i�bN �
d�

.2i�/2
D 0

µ
: (4.20)

More specifically, one has the left and right inverse relations

WN ı �N D id on Hs

�
ŒaN I bN �

�
and �N ıWN ŒH �.�/ D H.�/ a.e. on ŒaN I bN �

for any H 2Xs.R/. The operator WN WXs.R/!Hs.ŒaN IbN �/ is given, whenever it makes
sense, as an encased oscillatorily convergent Riemann integral transform

WN ŒH �.�/ D
�2

N

�

ˆ
RC2i"0

d�

2i�

ˆ
RCi"0

d�

2i�
e�i�N �.��aN /W.�; �/e�i�bN F ŒH �.�N �/;

(4.21)
where "0 > 0 is small enough. The integral kernel

W.�; �/ D
1

� � �

²
�

�
� �11.�/�12.�/ � �11.�/�12.�/

³
(4.22)

is expressed in terms of the entries of the matrix �.

These pieces of information, along with the explicit, uniform on C, large-N expan-
sion of the solution � to the above Riemann–Hilbert problem and several technical estimates
which allow one to check that (4.15)–(4.16) hold, allow one to formulate

Theorem 4.6. Let N � N0 with N0 large enough. Then the unique minimizer �
.N /
eq of the

functional E
.C/
N introduced in (4.7) is absolutely continuous in respect to the Lebesgue mea-

sure with density %
.N /
eq and is supported on the segment ŒaN I bN �. The endpoints are the

unique solutions to the equations

aN C bN D 0 and # �
.bN /2ebN

N
� t.2bN / �

®
1C O

�
.bN /5e�2bN .1�"/

�¯
D 1;

for any 1 > " > 0, and the remainder is smooth and differentiable in bN . Above, one has

# D
2~

3.2�/
5
2

�
�.b; Ob/

bb Ob Ob
;

while, upon using the constants wk introduced below in (4.24),

t.xN / D
6

.xN /2

²
2C w2 � w1 �

w1w3

w2

³
�

xN !C1
1C O

�
1

xN

�
: (4.23)

In particular, bN is uniformly away from zero and admits the large-N expansion

bN D lnN � 2 ln lnN � ln# C O
�
ln lnN

lnN

�
:
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Finally, the density %
.N /
eq of the equilibrium measure is expressed in terms of the

integral transform of the potential %
.N /
eq D WN ŒV 0

N �=.N�N /.

In the statement of the theorem, we made use of the coefficients wk arising in the
�! 0 expansion below

2i
b2ib� Ob2i Ob�2i�

�3b Obei�xN

�2

 
1
2
C i�

2

1
2
� i�

2

!
�

 
1 � ib�; 1 � i Ob�; 1 � i�

2

ib�; i Ob�; i�
2

!
D

3X
`D0

.�i/`w`

�3�`
C O.�/:

(4.24)

4.6. Estimation of the minimum
The closed-form expression for �

.N /
eq in terms of the solution � to the above Rie-

mann–Hilbert problem and the close relation between the two-body interaction in the poten-
tial and the �N operator’s kernel allow one to exploit the system of jumps for � so as to recast
E

.C/
N Œ�

.N /
eq � only in terms of N , bN , and � evaluated at special points:

E
.C/
N

�
� .N /
eq

�
D

~

2N
cosh.bN /C

~2e2bN

8�N 2

®
�2

12.i/C 2
�
�12.i/�0

11.i/ � �11.i/�0
12.i/

�¯
�

~ebN

4N

®
1C e�xN C �22I�.0/

�
2�11.i/C i�12.i/

�
� 2�21I�.0/�12.i/

¯
:

Once that one arrives to the above closed expression, it is amatter of direct calculationswhich
build on the uniform on C large-N asymptotic expansion for � provided by the nonlinear
steepest descent so as to infer the large-N asymptotics

Proposition 4.7. One has the large-N asymptotic behavior

E
.C/
N

�
� .N /
eq

�
D

3�4b Ob Qw1

4.bN /3 Qw2t.2bN /
C

9�4b Ob

8.bN /4t2.2bN /

²
1 �

2 Qw1

bN Qw2

³
C O

�
e�2bN .1�"/

�
;

(4.25)

where t is as introduced in Theorem 4.6 and we have rescaled the wk variables:

w1 D 2bN Qw1; w2 D 2.bN /2
Qw2; with Qwk D 1C O

�
1

bN

�
as N !C1: (4.26)

Together with Propositions 4.2–4.3 and the lower bound in (4.11), the above theorem
yields Theorem 3.1.

5. Conclusion

In this paper we reviewed the bootstrap program approach to the rigorous construc-
tion of 1+1-dimensional integrable quantum field theories arising as appropriate quantiza-
tions of integrable classical evolution equations of 1+1-dimensional field theory. This was
done on the example of the Sinh-Gordon quantum field theory which is the simplest and
nontrivial instance of such model. The approach starts by proposing an appropriate Hilbert
space on which such a model is realized. Then, it produces the form of the S-matrix which
governs the scattering in such a case. This S-matrix arises as a solution of certain symmetry
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constrains on the scattering in a relativistically-invariant theory along with the requirement
of the factorizability of scattering into a concatenation of two-particle processes. Then, the
quantum fields, which are operator-valued distributions on functions of the space-time vari-
ables, are constructed as integral operators whose integral kernels satisfy a set of equations,
the bootstrap program axioms .i/–.v/, which should be taken as the basic axioms of the
theory. These axiomatic equations strongly depend on the form of the S-matrix for the given
theory. It turns out that the bootstrap program equations can be solved explicitly with the
help of the algebraic setting provided by the quantum integrability of the model and, in par-
ticular, the Yang–Baxter equation satisfied by the S-matrix. Once one ends up with the set of
explicit solutions to .i/–.v/, it remains to check the consistency of the whole construction, in
particular, that the so-constructed quantum fields do form an algebra and that they commute
at space-like separations. The latter requirement is crucial for guaranteeing the causality of
the so-constructed theory and thus it being viable as a per se quantum field theory. To check
these last steps of the construction, one must show that the series of multiple integrals result-
ing from the integral operator’s multiplications do converge. This was a long standing open
question in this field and its solution [23], in the simplest case scenario, was discussed by the
author in the last section of this paper.

There are still numerous open questions related to these topic: first of all, to imple-
ment the method of [23], for establishing the convergence of form factor expansions for the
time-like separated two-point functions as well as the multipoint correlation functions in all
possible regimes of separation between the operators. These questions definitely seem to
be manageable within a finite time. Further, one would like to extend the methods of prov-
ing the convergence to more challenging but also more physically relevant models such as
the 1+1-dimensional integrable Sine-Gordon quantum field theory. There, the multitude of
asymptotic particles, along with the presence of bound states and equal mass asymptotic
particles, will definitely be a challenging, but hopefully surmountable task.

Last but not least, one should provide a thorough description of the correlation
functions in the infrared limit, viz. when the Minkowski separation between the operator
approaches zero. In the case of the two-point function given in (3.4) that would correspond
to extracting the r ! 0C limit.
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Abstract

We survey some recent mathematical progress in understanding singularities arising in
solutions to the Einstein equations. After some quick discussions of background material,
we focus on the following three topics:

• constructions of singular solutions to the Einstein vacuum equations,

• the singularity structure in the interior of generic dynamical black holes and the
relation to the strong cosmic censorship conjecture,

• the formation of trapped surfaces, instabilities for the Einstein vacuum equa-
tions, and the relation to singularities.
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1. Introduction

We study the Cauchy problem for the celebrated Einstein equations for a .3 C 1/-
dimensional Lorentzian manifold .M; g/ with appropriate matter fields:

Ric.g/ �
1

2
S.g/g C ƒg D 8�T; (1.1)

where Ric.g/ and S.g/ are, respectively, the Ricci- and scalar-curvature tensors of g, ƒ 2 R

is the cosmological constant, and T is the stress–energy–momentum tensor describing the
matter content inM. Equation (1.1) is already highly nontrivial in vacuum, i.e., when T � 0,
and with vanishing cosmological constant ƒ D 0, in which case (1.1) reduces to

Ric.g/ D 0: (1.2)

A fascinating feature of solutions to (1.2), or more generally (1.1), is the presence
of singularities, which can arise even from regular initial data. The most well-known sin-
gularities are those occurring at the big bang or in the interior of black holes, though more
exotic singularities are known. Viewing (1.1) as a system of partial differential equations,
it is desirable to give a complete description of all possible singularities, a goal which at
present seems far out of reach.

In this article, we instead survey some recent mathematical progress in the following
specific physically interesting settings:

(i) We first discuss some local constructions of different types of singular solutions
to (1.2) (Section 2).

(ii) We then turn to the discussion of singularities in the interior of dynamical black
holes. This is closely related to the strong cosmic censorship conjecture, stated
as Conjecture 1.3 below (Section 3).

(iii) Finally, we discuss how trapped surfaces form dynamically in solutions to (1.1).
As we will see below, the formation of trapped surfaces is closely related to
black holes and singularities (Section 4).

Before we turn to these topics, we first give some further context regarding singularities in
general relativity in the remainder of the introduction.

1.1. The Cauchy problem in general relativity
Any discussion of the Cauchy problem in general relativity beginswith the following

fundamental theorem (see also the earlier [30]):

Theorem 1.1 (Choquet-Bruhat–Geroch [12]). Let .†; Og/ be a Riemannian 3-manifold and
Ok be a symmetric 2-tensor. Suppose . Og; Ok/ are sufficiently regular and satisfy the constraint
equations. Then there exists a unique maximal Cauchy development .M; g/ such that

(1) the metric g solves (1.2),

(2) .†; Og/ ,! .M; g/ isometrically, and Ok is the induced second fundamental form,
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(3) any other development .M0; g0/ satisfying (1) and (2) embeds into .M; g/ iso-
metrically.

In general, Theorem 1.1 does not guarantee the maximal Cauchy development to be
geodesically complete. Thus, from the point of view of PDE theory, Theorem 1.1 should be
viewed as a local existence result.

Under suitable smallness assumptions, the Choquet-Bruhat–Geroch theorem can be
extended to a global result. More precisely, if the initial data are close to that of Minkowski
spacetime, then the maximal Cauchy development is geodesically complete and converges
to Minkowski for large times. This is the monumental stability of Minkowski theorem by
Christodoulou–Klainerman [19].

In general, however, one must face the possibility of singularities. In particular, as
we will see, singularities can arise from complete asymptotically flat initial data sets.

1.2. Singularities and black hole spacetimes
The simplest example of formation of singularity for (1.2) can be found in the

Schwarzschild solution .MM;0; gM;0/, where M > 0 is the mass parameter, MM;0 D R2 �

S2, and in a local coordinate system, gM;0 is given by

gM;0 D �

�
1 �

2M

r

�
dt2

C

�
1 �

2M

r

��1

dr2
C r2S2.1/;

where S2.1/ denotes the round metric on S2.1/. The Schwarzschild solution is depicted by
the Penrose diagram in Figure 1.

Figure 1

Schwarzschild as the maximal future Cauchy development of †.

Despite having smooth asymptotically flat initial data, the maximal future Cauchy
development of Schwarzschild data has singularity inside the black hole region, depicted as
the ¹r D 0º surface. What is a singularity? There are a few inequivalent ways to capture the
“singular nature” of ¹r D 0º of Schwarzschild:

(i) (Geodesic incompleteness) Any causal geodesic entering the black hole must
be incomplete and reach ¹r D 0º in finite time.

(ii) (Blowup of curvature) The curvature invariant R˛ˇ��R˛ˇ�� ! 1 as r ! 0.

(iii) (Infinitude of tidal deformation) Any observer heading towards the singularity
will be infinitely torn apart.
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1.3. Trapped surfaces and Penrose’s incompleteness theorem
At first, one may hope that the Schwarzschild singularity only arises because

Schwarzschild data are very special (e.g., because it is spherically symmetric). This was
initially supported by the heuristics of Lifshitz–Khalatnikov [56]: they considered a class of
asymptotically Kasner singularities (of which the Schwarzschild singularity is a particular
example) and showed that they have one fewer functional degree of freedom compared to
the Cauchy problem, which should mean that these singularities are highly nongeneric.

However, in a breakthrough work, Penrose [72] proved that singularities – at least in
the sense of geodesic incompleteness – is a stable phenomenon. More precisely, he proved

Theorem 1.2 (Penrose). If † is noncompact, and the maximal Cauchy development .M; g/

contains a compact trapped surface, then .M; g/ is future causally geodesically incomplete.

Since trappedness is a stable condition, and the Schwarzschild solution contains
many compact trapped surfaces, Theorem 1.2 implies that given any sufficiently small per-
turbations of Schwarzschild data, the corresponding maximal Cauchy development must be
future causally geodesically incomplete.

It should be noted that Penrose’s fundamental theorem (Theorem 1.2) only asserts
the geodesic incompleteness of the spacetime; indeed, one important goal of the subject is
to understand when the incompleteness is tied to stronger senses of singularities of cur-
vature or tidal deformation. Already for small perturbations of Schwarzschild data, the
geodesic incompleteness can look very different from Schwarzschild! To see this, one needs
not look further than the explicit Kerr family of solutions .MM;a D R2 � S2; gM;a/ for
jaj � M , M > 0. When a D 0, this reduces to the Schwarzschild subfamily. However, when
0 < jaj < M , the black hole region terminates with a smooth Cauchy horizon (see Figure 2);
in particular, the solution remains completely smooth despite being geodesically incomplete!

Figure 2

Kerr as the maximal future Cauchy development of †, with a non-unique extension.

1.4. The cosmic censorship conjectures
The further mathematical study of singularities is guided by two important conjec-

tures of Penrose known as the cosmic censorship conjectures. In a sense, both conjectures
assert that some desirable features of the Schwarzschild singularity should be generic.
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As we discussed above, the interior of the Kerr black hole does not have any singu-
larities. This poses a challenge to the deterministic nature of Einstein’s theory as it reflects
a breakdown of global uniqueness: the maximal Cauchy development of Kerr data (when
0 < jaj < M ) can be further extended (see Figure 2) – in infinitely many inequivalent ways
– as a solution to the Einstein vacuum equations (1.2) beyond the smooth Cauchy horizon.

From this point of view, therefore, the Schwarzschild singularity is preferable to the
smooth Kerr Cauchy horizon. Indeed, the first cosmic censorship conjecture asserts that the
Schwarzschild case – as opposed to the Kerr case – should be generic.

Conjecture 1.3 (Strong cosmic censorship conjecture [17, 76]). Maximal Cauchy develop-
ments of generic asymptotically flat initial data sets are inextendible as suitably regular
Lorentzian manifolds.

(See also [82,83] for interesting works on an analogous conjecture for cosmological,
i.e., compact, spacetimes. They will not be further discussed here.)

Conjecture 1.3, if true, would resolve the breakdown of determinism. In particular,
the smoothKerr Cauchy horizonwould be nongeneric. From the point of view of PDE theory,
Conjecture 1.3 can be viewed as a global uniqueness conjecture.

At this point, the formulation of Conjecture 1.3 is quite general: in the process of
proving the conjecture, one must make precise the notions of “genericity” and “suitable
regularity.” The regularity class in which the solution is inextendible can be thought of as
a convenient way to measure the strength of the singularity. We will refer to “the C k for-
mulation of Conjecture 1.3” when we mean to impose C k-inextendibility of the metric.
Note that C 2-inextendibility is related to curvature blowup, while C 0-inextendibility can be
thought of as a more severe blowup, related to the infinitude of the tidal deformation seen
in Schwarzschild. As we will see later (see Section 3), we must carefully distinguish the dif-
ferent formulations in order to capture the precise nature of the singularity in the interior of
generic dynamical black holes.

Another preferable feature of the Schwarzschild singularity is that it is hidden behind
an event horizon, and thus not visible to far-away observers. A mathematical reformula-
tion of this fact without explicitly referring to the singularities is to say that null infin-
ity of Schwarzschild is complete. In fact, the full Kerr family of black holes, not just the
Schwarzschild subfamily, possess a complete null infinity. This is conjectured to be generic:

Conjecture 1.4 (Weak cosmic censorship conjecture [17, 73]). Maximal Cauchy develop-
ments of generic asymptotically flat initial data sets possess a complete null infinity.

Conjecture 1.4 can be viewed as a conjecture on global existence in the large; indeed,
this is the best notion of global existence one can hope for in view of Theorem 1.2.

2. Construction of singularities

The first step towards understanding singularities in general relativity is to construct
specific classes of singular solutions. Explicit singular solutions (including Schwarzschild
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and Kasner) have, of course, been known for a long time. There are also many results where
singularities are constructed using simplifying assumptions of symmetry and analyticity.
However, more general constructions of singularities have only been achieved quite recently.

2.1. Spacelike singularities
While perhaps Schwarzschild or Kasner singularities are the simplest to write down,

Lifshitz–Khalatnikov (see Section 1.3) argued that such singularities depend only on three
functional degrees of freedom (i.e., one fewer than that for the Cauchy problem) and are thus
nongeneric. Nonetheless, one can construct the full class of such singular solutions:

Theorem 2.1 (Fournodavlos–Luk [31]). There exists a class of asymptotically Kasner sin-
gular solutions to (1.2) parametrized by three functional degrees of freedom.

See [44,51] and references therein for earlier works with symmetry and/or analyticity
assumptions.

The key realization here is that the Einstein vacuum equations are, in fact, locally
well-posed in a Gaussian coordinate system, i.e., in a gauge such that

g D �dt2
C

.3/gij dxi dxj

for some Riemannian metric .3/g, which is realized by considering the wave equation for
the second fundamental form and appropriate renormalizations. In this gauge, we can carry
out a Fuchsian-type analysis to construct an approximate solution, and then upgrade the
construction to a bona fide solution by performing singular energy estimates.

The singularities constructed in Theorem 2.1 are not expected to be stable. Nonethe-
less, these singularities are stable after restricting in suitable symmetry class:

Theorem 2.2 (Alexakis–Fournodavlos [1], Founodavlos–Rodnianski–Speck [32]). The sin-
gularities of Schwarzschild [1] and Kasner [32] are respectively stable under polarized
axisymmetry and polarized U.1/ symmetry.

Note that in these symmetry classes, the Cauchy data depend only on two functional
degrees of freedom. On the other hand, [32] treats a much more general case – the so-called
subcritical regime – which includes a large class of Kasner singularities (a) in vacuum in
high dimensions and (b) with matter fields in .3 C 1/ dimensions, without any symmetry
assumptions.

It should be remarked that the influential paper [4] suggests that there should be a
large class of spacelike singularities which are oscillatory (unlike the asymptotically Kasner
singularities). Some progress has been made for a class of spatially homogeneous solutions
[81]. However, its relevance in the spatially nonhomogeneous setting remains unclear.

2.2. Null singularities
It turns out that the Einstein vacuum equations admit a class of very different singu-

lar solutions which are much more stable! In contrast to Section 2.1, the singular hypersur-
faces are null in these spacetimes. These solutions were first discovered in the context of the
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study of strong cosmic censorship conjecture for various matter models; see Section 3 below.
Such singularities are often called “weak” null singularities, as the metric can be extended
continuously beyond the singularities and the tidal deformation remains finite. However,
they should also be thought of as “essential” singularities, since (at least conjecturally) they
cannot be extended in W 1;p for any p > 1.

Theorem 2.3 (Luk [57]). A class of stable weak null singularities exist for the vacuum equa-
tion (1.2) without any symmetry assumptions.

Analytic examples were previously constructed by Ori–Flanagan [71].
Like in the proof of Theorem 2.1 (and Theorem 2.2), the choice of coordinates lies

at the heart of the proof. The proof uses a local coordinate system .u; u; �1; �2/ adapted to
a double null foliation, i.e., the metric takes the form

g D �4�2dudu C AB.d�A
� bAdu/.d�B

� bBdu/; (2.1)

and the singular null hypersurface is a constant-u or constant-u hypersurface (or both in the
case of a bifurcate null singularity). The Einstein equations in this gauge have remarkable
– both linear and nonlinear – structure. First, by introducing appropriately “renormalized”
curvature components, one can recast the Einstein equations in the gauge (2.1) as a cou-
pled system of hyperbolic–elliptic–transport systemwhich avoids themost singular (non-L1)
components of curvature. Moreover, the system of equations have important nonlinear null
structure so that the potentially most dangerous singular terms do not appear.

The proof of Theorem 2.3 was inspired by earlier works [61,62] by Luk–Rodnianski
on the propagation and interaction of impulsive gravitational waves without symmetry
assumptions. These solutions to (1.2), first discovered in symmetry classes (see [43,74]), con-
tain null singularities which are weaker so that a local well-posedness theory still holds. (In
this context, note also the more recent work [65,66] which considers the interaction of three
impulsive gravitational waves, for which one needs geometric constructions beyond (2.1).)

2.3. �-self-similar singularities and naked singularities
Self-similar singularities play an important role in many evolutionary PDEs. For the

Einstein vacuum equations (1.2), Rodnianski–Shlapentokh-Rothman recently constructed
a class of (what they called) �-self-similar singularities. In fact, the singularities they con-
structed are naked singularities, i.e., spacetimes with incomplete future null infinities
(cf. Conjecture 1.4).

Theorem2.4 (Rodnianski–Shlapentokh-Rothman [84]). The Einstein vacuum equations (1.2)
admit solutions with naked singularities.

If Conjecture 1.4 is true, then the naked singularities in Theorem 2.4 (and indeed
any naked singularities) would be unstable. Nevertheless, Theorem 2.4 shows that in order
to resolve Conjecture 1.4, one must come to terms with understanding “genericity.”
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A closely related construction was previously achieved by Christodoulou for the
Einstein–scalar field system in spherical symmetry [15]. There are also numerical evidence
of other regimes of (discretely) self-similar singularities [11,53].

3. Black hole interiors and the strong cosmic censorship

conjecture

We now turn to the singularities that arise in black hole interiors. We have already
seen the example of the singularity in a Schwarzschild black hole. We will soon also
encounter black hole interiors with null singularities, just like those constructed in Sec-
tion 2.2. However, unlike in Section 2, our main concern here is not only the local structure
of the singularities (as in Sections 2.1, 2.2), but instead we are interested in what singularities
are formed in dynamical evolution inside black holes.

In particular, we will be interested in the question of strong cosmic censorship
(see Section 1.4), i.e., whether black hole interiors are indeed generically singular as in the
Schwarzschild case.

3.1. Spherically symmetric model problems
The first results concerning the issues of black hole interiors and strong cosmic cen-

sorship were obtained under the assumption of spherical symmetry. The spherical symmetry
assumption rules out the Kerr solution; nevertheless, if one couples the Einstein equations
with aMaxwell field, the two-parameter family (parametrized by the mass and chargeM ,Q)
of the Reissner–Nordström solution (when 0 < jQj < M ) also has a Penrose diagram given
by Figure 2. In particular, these solutions have a smooth global bifurcate Cauchy horizon
which can be extended nonuniquely as solutions to the Einstein–Maxwell system.

The early breakthroughs [37,78,79] concerned the Einstein–Maxwell–null dust sys-
tem in spherical symmetry. In these works of Hiscock, Poisson–Israel, it was already shown
that both stability and instability aspects are present: the perturbed solution still has a Cauchy
horizon, and the metric remains continuous up to the Cauchy horizon; it is only the higher
derivatives, for instance, the Hawking mass, that blow up.

A more satisfactory spherically symmetry model, which involves a wave-type
dynamical degree of freedom, is the Einstein–Maxwell–scalar field system:

Ric�� �
1

2
g��R D 2

�
T .sf/

�� C T .em/
��

�
;

T .sf/
�� D @��@�� �

1

2
g��.g�1/˛ˇ @˛�@ˇ �;

T .em/
�� D .g�1/˛ˇ F�˛F�ˇ �

1

4
g��.g�1/˛ˇ .g�1/� F˛ Fˇ� ;

(3.1)

where � is a real-valued scalar function and F is a 2-form satisfying

�g� D 0; dF D 0; r�F ��
D 0: (3.2)

It turns out that spherical symmetry breaks the supercriticality of the problem, and,
in fact, one can study the structure of the black hole interior for large data (i.e., not only those
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which are small perturbations of Reissner–Nordström). For this model, it was proven that the
Cauchy horizon is a generic feature!

Theorem 3.1 (Dafermos [20], Dafermos–Rodnianski [26]). Given any asymptotically flat,
spherically symmetric, admissible data on † D R � S2, if the initial charge is not identically
0, then the solution to (3.1) and (3.2) satisfies the following:

(1) each component of the black hole exterior converges to Reissner–Nordström,

(2) the black hole interior has a (null) Cauchy horizon as (at least) part of the
boundary,

(3) the solution is extendible up to the Cauchy horizon with a continuous metric.

In particular, the C 0-formulation of the strong cosmic censorship conjecture is
false.

In fact, it can be shown [21,52] based on Theorem 3.1 that when the initial charge is
nonvanishing, then the solution either has the Penrose diagram of Reissner–Nordström, or
else the boundary of the black hole interior has both null and spacelike components, as indi-
cated in Figure 3. Put differently, Theorem 3.1 shows that when the charge is nonvanishing,
the black hole interior, at least near timelike infinity iC, looks more like Reissner–Nordström
than Schwarzschild. This phenomenon is due to a subtle interplay between the amplification
effect in the black hole interior and the decay in the black hole exterior. On the one hand,
the local blue-shift effect present at the Reissner–Nordström Cauchy horizon [86] causes an
exponential growth of waves. On the other hand, [26] established that waves in the black hole
exterior decay with at least an inverse polynomial rate (as predicted by the linear heuristics of
Price [80]), by understanding the dispersion of waves in the far-away region and the red-shift
effect near the black hole event horizon. This decay competes with the exponential growth
induced by the blue-shift effect, resulting in a black hole interior which is stillC 0-extendible.

The C 0-extendibility result in Theorem 3.1, however, is not the end of the story.
While the solution is extendible for all data with nonvanishing charge, the result is consis-
tent with spacetime metrics arising from generic data having derivatives that blow up at the

Figure 3

A possible Penrose diagram for Theorem 3.1.
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Cauchy horizon. In fact, a conditional result was proven in [20], showing that the derivatives
of the metric indeed blow up assuming some pointwise inverse polynomial lower bound.

More recently, it was proven that in fact the following version of theC 2-formulation
of the strong cosmic censorship conjecture holds (unconditionally):

Theorem 3.2 (Luk–Oh [59,60]). There exists an open and dense subset of the set of initial
data in Theorem 3.1 such that the maximal future Cauchy development is future inextendible
as time-oriented Lorentzian manifold with a C 2-metric.

Like Theorem 3.1, the blowup in the interior proven in Theorem 3.2 results from
an interplay of the decay in the exterior and the growth in the interior. Indeed, the proof of
Theorem 3.2 proceeds by first showing that generically, waves in the black hole exterior obey
an inverse polynomial lower bound (slightly different from that in [20]), and then proving that
the solution is C 2-future inextendible whenever such a lower bound holds. In the course of
the proof, a condition at null infinity is identified: we define a functional L, which can be
computed only in terms of the radiation field and the Bondi mass at null infinity, such that
L ¤ 0 generically, and L ¤ 0 implies the desired inverse polynomial lower bound.

From the point of view of PDE theory, one may even hope that generic solutions
are inextendible in W

1;2
loc , so as to exclude the possibility of any extension as weak solutions

to the Einstein equations [18]. The estimates in Theorem 3.2 indeed suggest that this may be
true, though such a geometric statement is still unknown. Very recently, Sbierski [85] proved
that generic solutions as in Theorem 3.2 are C 1-inextendible.

3.2. C 0-stability of the Kerr Cauchy horizon
While the above results completed the story for (3.1) in the spherically symmetric

setting, it should be noted that the strong cosmic censorship conjecture concerns generic
data. Spherically symmetric data are, of course, by definition far from generic!

In order to make progress towards the strong cosmic censorship conjecture without
any symmetry assumptions, we investigate a perturbative regime near the Kerr solution. It
has been shown that the presence of Cauchy horizons is a generic feature even outside of
symmetry!

Theorem 3.3 (Dafermos–Luk [24]). Consider general vacuum initial data corresponding
to the expected induced geometry of a dynamical black hole settling down to Kerr (with
parameters 0 < jaj < M ) on a suitable spacelike hypersurface †0 in the black hole interior.
Then the maximal future development spacetime .M; g/ corresponding to †0 is globally
covered by a double null foliation and has a nontrivial Cauchy horizon CHC across which
the metric is continuously extendible.

If the Kerr exterior is stable – as is widely expected (see [23,50]) – then Theorem 3.3
in particular implies that any small perturbations of 2-ended Kerr initial data lead to a black
hole interior with a Cauchy horizon across which the metric is continuously extendible. In
fact, assuming stability of Kerr exterior, it can be proven that for small perturbations of two-
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ended Kerr data, the maximal future Cauchy development has a global bifurcate Cauchy
horizon, as in given by Figure 2 [25].

However, the implications of Theorem 3.3 go beyond small perturbations of Kerr
data. Indeed, it is sometimes conjectured – in the so-called final state conjecture [77] – that
generic solutions settle down to finitely many Kerr exterior solutions moving away from each
other. Moreover, one expects the asymptotically Schwarzschild (or asymptotically extremal;
see Section 3.3.3) solutions to occur only for nongeneric data [23]. If this is true, then Theo-
rem 3.3 would in fact apply to generic black hole interior near timelike infinity.

It should be noted that Theorem 3.3 does not indicate whether the Cauchy horizon is
actually singular. In fact, Theorem 3.3 is proven as a stability theorem. The proof, however,
relies only on very weak norms, consistent with the Cauchy horizon possibly being a weak
null singularity.

One of the challenges of the proof of Theorem 3.3 is to control solutions to the
Einstein vacuum equation using only weak norms consistent with the solution being only –
at least when measured in the worst direction – C 0 \ W 1;1. This is way below the thresh-
old for well-posedness for the Einstein equations. Instead, the proof relies on the estimates
developed in the construction of local weak null singularities without symmetry assumptions
(cf. Theorem 2.3). At the same time, Theorem 3.3 requires an understanding of the decay
towards timelike infinity in order to close the global problem. In particular, one needs to
extend ideas in Theorem 3.1 to a setting without symmetry assumptions.

Even though Theorem 3.3 by itself does not show any blowup, on the basis of The-
orem 3.2 and some model linear problems [3, 27, 35, 64], it seems reasonable to expect that
with generic data, the Cauchy horizon is a weak null singularity as in Theorem 2.3:

Conjecture 3.4. Generic small perturbations of two-ended Kerr data lead to a maximal
Cauchy development where the global bifurcate Cauchy horizon is a weak null singularity.

In a similar manner to Theorem 3.2, one expects that the key to Conjecture 3.4 is to
understand the precise rates of convergence in the black hole exterior.

3.3. Further problems concerning black hole interiors
While Theorem 3.3 (and Conjecture 3.4) gives the structure of the interior of generic

dynamic asymptotically flat black hole near timelike infinity, we survey some other situations
here, where the black hole interior is expected to be different. At the moment these are only
understood under spherical symmetry or even just in a linear setting.

3.3.1. Breakdown of weak null singularities
For astrophysical gravitational collapse, the initial hypersurface does not have two

ends. Instead, a black hole is expected to form from initial data on † D R3 (cf. Section 4).
These solutions are in particular not globally close to Kerr, though as discussed in Sec-
tion 3.2, Kerr is still relevant as they may arise as the asymptotic state for the black hole
exterior. In this case, Theorem 3.3 still applies to show that the metric is close to Kerr in C 0
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near timelike infinity. However, there are regions in the black hole which are far away from
Kerr and cannot be treated by perturbative arguments.

To gain some insight, one returns to spherical symmetry: a convenient model to
simultaneously study gravitational collapse and the (in)stability of the Cauchy horizons
in black hole interior in spherical symmetry is the Einstein–Maxwell–charged scalar field
system, i.e., unlike (3.1), the scalar field is complex-valued and charged.

With the above model, Van de Moortel considered that problem where the initial
data are posed on R3. He proved that if a black hole forms and converges to Reissner–
Nordström in the exterior with appropriate rates, then the Cauchy horizon in the black hole
interior is a weak null singularity as in Theorems 3.1 and 3.2 [89]. Even more interestingly,
he also proved that the null boundary in the black hole interior must break down [90]! Con-
jecturally, this would mean that the singular boundary in the black hole has a null component
and a spacelike component. See also the numerical works [7,10].

3.3.2. Other singularities in the presence of matter
Other singularities can occur in the interior of black holes; some of these singulari-

ties may be specific to the matter models involved. Some examples include highly oscillatory
null singularities arising in the interior of black holes when a charged scalar field oscillates
in the black hole exterior [42], and violent nonlinear spacelike singularities in the interior of
hairy black holes [34,91].

3.3.3. Extremal black holes
When jaj D M > 0 for Kerr or jQj D M > 0 for Reissner–Nordström, these black

hole spacetimes are known to be extremal. Though their black hole interiors have a somewhat
different global structure, they have a smooth Cauchy horizon as in the subextremal case.
Unlike their subextremal counterparts, however, the local blue shift at the Cauchy horizon
degenerates in the extremal case.

The degeneration of the local blue shift suggests that a dynamical black hole settling
down to an extremal black hole may in fact have a Cauchy horizon so that the solution is not
only C 0-extendible, but also extendible as a weak solution to the Einstein equations. For a
spherically symmetric model, this was studied numerically in [69] and has been later proven
by Gajic–Luk [33]. Amusingly, in order to go beyond symmetry, even though the nonlinear
theory is expected to be simpler than Theorem 3.3 in view of the weaker singularity, the
linear theory appears to be more complicated.

Notice that this phenomenon, by itself, does not pose a threat to strong cosmic
censorship, since asymptotically extremal black holes are only expected to arise from a non-
generic set of data!

3.3.4. Nonvanishing cosmological constant
When the cosmological constantƒ ¤ 0 (but still in vacuum), (1.1) admits the Kerr–

(anti-)de Sitter black hole solutions, which (when jaj ¤ 0) like Kerr, admit smooth Cauchy
horizons in the interior of the black hole. However, the stability properties of these Cauchy
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horizons may turn out to be quite different from the ƒ D 0 case in Theorem 3.3 and Con-
jecture 3.4!

Whenƒ > 0, at least when jaj is sufficiently small, the nonlinear stability of Kerr–de
Sitter has been established by Hintz–Vasy [36] and (unlike the Kerr case) is no longer a con-
jecture. Moreover, [36] shows that perturbations of Kerr–de Sitter data lead to solutions that
converge exponentially fast back to Kerr–de Sitter. Thus the proof of Theorem 3.3 applies,
mutatis mutandis, to show that the Kerr–de Sitter Cauchy horizon is C 0-stable.

However, the rapid exponential decay has the possibility to make Conjecture 3.4
false! To understand whether this happens seems to require determining the precise expo-
nential rate of decay. This problem has attracted much heuristic and numerical works; see
[6,9,28] and references therein.

When ƒ < 0, the situation is difficult (and interesting) for a different reason: even
linear waves on Kerr–anti-de Sitter spacetime decay only logarithmically [39]. Kehle [41] has
made some interesting progress for the linear (in)stability of the Cauchy horizon, showing
that the stability properties depend on the Diophantine properties of the black hole parame-
ters in a subtle way.

4. Gravitational collapse, formation of trapped surfaces,

and the weak cosmic censorship conjecture

As discussed in Section 1.3, Penrose’s theorem (Theorem 1.2) shows that geodesic
incompleteness is intimately related to the presence of trapped surfaces. In this final sec-
tion, we discuss how trapped surfaces are formed dynamically from initial data without
trapped surfaces. This is particularly relevant in gravitational collapse where black holes
form. Finally, in Section 4.4, we will discuss how trapped surface formation relates to the
weak cosmic censorship conjecture.

4.1. Formation of trapped surfaces by focussing of gravitational radiation
In the explicit Schwarzschild and Kerr solutions, either a (marginally) trapped sur-

face or an antitrapped surface is present in any initial hypersurface. Physically, one expects
that trapped surfaces may form dynamically in gravitational collapse, i.e., they may arise
even if the initial hypersurface has trivial topology and is far from having a trapped surface.

Examples of formation of trapped surfaces in the presence of matter have been con-
structed very early on [70, 75]. The problem is much harder for the vacuum equations since
any such construction is necessarily large data and (by Birkhoff’s theorem) outside spher-
ical symmetry. In a monumental breakthrough, Christodoulou constructed a large set of
(stable) solutions in vacuum where trapped surfaces form dynamically from dispersed data
via focussing of gravitational radiation.

Theorem 4.1 (Christodoulou [18]). Consider the characteristic initial value problem with
data on two intersecting null hypersurfaces H0 and H 0 such that

(1) the data on H 0 is that of an incoming cone in Minkowski space;
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(2) the data on H0 is given in a region where 0 � u � ı and the initial shear O�

obeys the upper bound X
iCj �10

ı
1
2

r
i
4r

j
O�


L1 � C;

(3) the initial O� on H0 obeys the lower bound

inf
#2S2

Z ı

0

j O�j
2.u0; #/ du0

� c > 0:

Then, for ı > 0 sufficiently small, a trapped surface forms in the causal domain of the data.

The significance of the breakthroughwork of Christodoulou goes beyond the trapped
surface formation problem, as it is also the first large data long time result regarding the
dynamics of the Einstein vacuum equationwithout any symmetry assumptions.What allowed
Christodoulou to handle a large data regime was a novel idea of “short pulse”: the incoming
radiation is concentrated in a region with a short length scale ı, so that despite the largeness,
the nonlinear structure of the equations allowed Christodoulou to propagate a hierarchy of
large and small estimates quantified by ı and to close all the estimates.

As was observed later in [63], as ı ! 0C, the spacetimes constructed by Christo-
doulou limit to a spacetime in which a null dust shell (i.e., the null dust is a delta measure
on a null hypersurface) collapses and trapped surfaces form (thus the limit metric solves the
Einstein equations with matter, even though for each ı > 0 the spacetime is vacuum). In other
words, after understanding that solutions to the Einstein–null dust system can, in fact, arise
as limits of vacuum solutions [8, 40], the Christodoulou construction can be conceptually
thought of as an approximation of the trapped surface formation examples with matter in
[75,87].

There are many subsequent simplifications and extensions of Theorem 4.1; see, for
instance, [48,54,55]. We record two results that strengthen Theorem 4.1. The first improve-
ment allows the focussing to occur only in some (as opposed to all) directions:

Theorem 4.2 (Klainerman–Luk–Rodnianski [46]). Suppose .1/ and .2/ of Theorem 4.1
hold, and the inf in .3/ is replaced by a sup, i.e.,

sup
#2S2

Z ı

0

j O�j
2.u0; #/ du0

� c > 0;

then a trapped surface forms in the causal domain of the data.

Theorem 4.2 is achieved by combining the existence theorem in [18] with a defor-
mation argument, which identifies a trapped surface by solving an elliptic inequality.

The second improvement allows the incoming radiation to be much weaker: on the
one hand, the incoming radiation is only required to be large in a scale-invariant norm; on
the other hand, in some situations the required lower bound can be much smaller than the
upper bound:
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Theorem 4.3 (An–Luk [2]). Assume .1/ of Theorem 4.1 and replace .2/ and .3/ by

(2) the data on H0 is given in a region where 0 � u � ı and the initial O� obeys the
upper bound X

iCj �10

ı
1
2

r
i
4r

j
O�


L1 � a
1
2 ;

(3) the initial O� on H0 obeys the lower bound

inf
#2S2

j O�j
2.u0; #/ du0

� 4ba
1
2 ı;

where b � a, ıa
1
2 b < 1, and b � b0 for some universal large constant b0. Then there exists

a trapped surface in the causal domain of the data.

The scale-invariant results in Theorem 4.3 are proven using weighted estimates cap-
turing the precise growth rate of the geometric quantities close to the vertex of H 0.

4.2. Instability of anti-de Sitter spacetime
In Theorem 4.1, Christodoulou arranged gravitational waves to focus so that the

nonlinear effect on the geometry causes a trapped surface to form dynamically. In spectacular
recent works, Moschidis has demonstrated – albeit only in a spherically symmetric setting –
a new trapped surface formation mechanism that goes beyond mere focussing of waves: he
showed that nonlinear interaction of waves can enhance the focussing effect, which finally
leads to trapped surface formation.

Moschidis’ work is in the context of the AdS stability problem. The anti-de Sitter
(AdS) spacetime .MAdS D R3C1; gAdS/, with gAdS given by

gAdS D �

�
1 �

ƒr2

3

�
dt2

C

�
1 �

ƒr2

3

��1

dr2
C r2S2.1/;

is a solution to the Einstein vacuum equations withƒ < 0. Since it is not globally hyperbolic,
one needs to impose boundary conditions to study its stability properties. AdS is conjec-
tured [22] to be unstable under reflective boundary conditions, and this has been studied
heuristically and numerically [5]. (Nevertheless, it is expected to be stable under maximally
dissipative conditions; see [38].)

In a series of remarkable recent works, Moschidis resolved the AdS instability con-
jecture for various matter models in spherical symmetry, showing that the AdS spacetime is
unstable against trapped surface formation.

Theorem 4.4 (Moschidis). There exist arbitrarily small spherically symmetric perturba-
tions of AdS data for

(1) the Einstein–null dust system with an inner mirror [67]

(2) the Einstein–massless Vlasov system [68]

(3) the Einstein–scalar field system [Moschidis, in preparation]

with reflective boundary conditions such that a trapped surface forms dynamically.
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In particular, viewed as a solution to the above Einstein–matter systems with reflec-
tive boundary conditions, the AdS solution is unstable.

The proof of Theorem 4.4 constructs small perturbations of AdS consisting of many
spherically symmetric matter beams with judiciously chosen widths and amplitudes. The
basic underlying instability mechanism is as follows: whenever two such matter beams inter-
act, the energy of the incoming beam is concentrated. Due to the reflective boundary condi-
tion, these beams interact many times, so much so that the nonlinear interaction eventually
causes a trapped surface to form.

4.3. The bounded L2-curvature theorem and beyond
Returning to the Einstein vacuum equations, we now know that the Moschidis insta-

bility – first established in spherical symmetry for various matter models in the AdS insta-
bility problem – can be adapted in the vacuum case without symmetry assumptions.

To provide some context for this instability in vacuum, we recall the celebrated
bounded L2-curvature theorem (first conjectured in [45]):

Theorem 4.5 (Klainerman–Rodnianski–Szeftel [49]). There exists �0 > 0 such that if the
initial data have H 2-norm � �0, then the solution has H 2-norm O.�0/ up to time O.1/.

As pointed out in [47, 49], H 2 is sharp for estimating the null conjugacy radius,
which is an important step in the construction of the parametrix. It turns out that not only
the techniques cannot be extended below H 2, but the result itself also cannot be improved:

Theorem 4.6 (Luk–Moschidis, in progress). There exists ı > 0 such that the following holds
for every s 2 Œ2 � ı; 2/: For any � > 0, there exist initial data such that the initial data have
H s-norms of size �, but the H s-norms at time O.1/ are & ��1.

Notice that this is not an ill-posedness result in a fixed gauge. For instance, it has
been previously proven in [29] that the Einstein vacuum equations in wave coordinates are
ill-posed in H 2. In contrast, in Theorem 4.6 we proved that the H s-norm becomes large in
any coordinate system so that the metric remains C 0-close to the Minkowski metric.

Theorem 4.6 is an instability result in a Sobolev space above scaling. (The scaling-
invariant norm would be H 3=2.) In particular, a corresponding instability result is false for
model problems such as wave maps [88] or for the Einstein–scalar field system in spherical
symmetry [14]. The underlying instability mechanism, which is based on quasilinear inter-
action of gravitational “wave packets,” is quasilinear and anisotropic, and is inspired by the
Moschidis mechanism used in Theorem 4.4.

Of course, Theorem 4.6 is only an instability result, and it does not say anything
about the formation of trapped surfaces per se. We remark, however, that it is not so difficult
to show that if smallness is imposed on the H s norm for s > 3

2
, then the initial hypersurface

does not contain any trapped surfaces [58]. Extending the ideas in Theorem 4.6, one may
imagine a scenario where the data are small in H s (for s 2 . 3

2
; 2/), but then there is an

evolutionary formation of trapped surfaces associated with the growth in the H s-norm:
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Problem 4.7. Is it possible to dynamically form a trapped surface with localized initial data
that are small in H s for some s 2 Œ 3

2
; 2/?

If the answer to Problem 4.7 is positive, then there would be a trapped surface for-
mation mechanism for data even weaker than in Theorems 4.2 and 4.3.

4.4. Weak cosmic censorship conjecture
In [17], Christodoulou proposed a program to tackle the weak cosmic censorship

conjecture (Conjecture 1.4). This program in particular relates weak cosmic censorship to
the formation of trapped surfaces.

The strategy suggested in [17] is inspired by the spectacular work [16]which resolved
the weak cosmic censorship conjecture for the Einstein–scalar field system in spherical sym-
metry. This latter work is, in fact, so far the only mathematical work which gives us some
insights as to why naked singularities should be nongeneric. The strategy in [16] combines
two ingredients: (i) a sharp trapped surface formation criterion [13], and (ii) a scale-invariant
breakdown criterion [14]. Using (ii), Christodoulou further showed that small perturbations
of naked singularities must be blue-shifted so that, using (i), he showed that trapped surfaces
must form arbitrarily close by in the perturbed spacetime. As a result, for generic data, first
singularities are preceded by trapped surfaces arbitrarily close by. From this, Christodoulou
deduced that weak cosmic censorship holds for this model.

To tackle the weak cosmic censorship conjecture in vacuum without symmetry
assumptions, Christodoulou introduced the following conjecture:

Conjecture 4.8 (Trapped surface conjecture, Christodoulou [17]). For generic asymptoti-
cally flat vacuum data on †, the maximal globally hyperbolic development has the following
property: Given a terminal indecomposable past set P , if P \ † has compact closure, then
for every † � U � P \ †, the domain of dependence of U contains a closed trapped sur-
face.

As pointed out in [17], Conjecture 4.8 has the advantage of being formulated locally,
without referring to future null infinity (as in Conjecture 1.4).

At present, Conjecture 4.8 is far out of reach. In spherical symmetry, a sharp trapped
surface formation result [13] has turned out to play a fundamental role for the analogue of
Conjecture 4.8. The analysis outside symmetry is of course fundamentally more difficult,
but one may hope that understanding the mechanisms for trapped surface formation (Sec-
tions 4.1–4.3) will likewise be relevant for Conjecture 4.8.
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1. Introduction

In quantum mechanics, physical models are determined in terms of some self-
adjoint operators called Hamiltonians. Recently, Hamiltonians whose spectrum has a gap
between the lowest eigenvalue (which coincides with the infimum of the spectrum) and the
rest of the spectrum attracted a lot of attention. Physically, these models are considered to
be in normal phases, where no critical phenomena occur. Despite that, it has turned out that
the structure of these normal gapped phases is actually mathematically interesting when we
introduce some equivalence relation to them. Roughly speaking, we say that two models are
equivalent if we can connect them smoothly within those normal phases. In spacial dimen-
sions higher than one, it is believed (and partially proven) that there are multiple phases
with respect to such classifications. If we further introduce some symmetry to the game, we
obtain interesting mathematical structures, even in one dimension. In this paper, we explain
the operator-algebraic approach to those problems.

2. Finite-dimensional quantum mechanics

In order to motivate us for the operator algebraic framework of quantum statistical
mechanics, we first recall finite-dimensional quantum mechanics in this section. In finite-
dimensional quantum mechanics, physical observables are represented by elements of Mn,
the algebra of n� n-matrices. Each positive matrix � with Tr�D 1 (called a density matrix)
defines a physical state by

!� W Mn 3 A 7! Tr.�A/ 2 C:

We call this map !� a state. Clearly, it is positive, i.e., !�.A�A/ � 0 and normalized
!�.I/ D 1. This corresponds to the procedure of taking expectation values of each phys-
ical observables A 2 Mn, in the physical state !�. Note that the set of all states forms a
convex compact set. Its extremal points are called pure states. A state !� is pure if and only
if � is a rank-one projection.

Time evolution (Heisenberg dynamics) is given by a self-adjoint matrix H , called
a Hamiltonian, via the formula

Mn 3 A 7! �t .A/ WD eitHAe�itH ; t 2 R: (2.1)

Let p be the spectral projection of H corresponding to the lowest eigenvalue. A state
!�.A/ WD Tr �A on Mn is said to be a ground state ofH if the support of � is under p. The
ground state is unique if and only if p is a rank one projection, i.e., if the lowest eigenvalue
ofH is nondegenerate. In this case, the unique ground state is of the form !p.A/ WD TrpA,
and it is pure because p has rank one.

Sometimes we consider time-dependent Hamiltonians H.t/. Then the time evolu-
tion of an observable A 2 Mn is given by a solution �t .A/ of the differential equation

d

dt
�t .A/ D i

�
H.t/; �t .A/

�
; �0.A/ D A; A 2 Mn:

When the Hamiltonian is time-dependent H.t/ D H , this reduces to the above Heisenberg
dynamics eitHAe�itH .
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Symmetry plays an important role in physics. Let G be a finite group and suppose
that there is a group action ˇ W G ! Aut.Mn/ given by unitaries Vg , g 2 G,

ˇg.A/ WD Ad.Vg/.A/; A 2 Mn; g 2 G:

Here and thereafter, Aut.A/ for a �-algebra A denotes the automorphism group of A. If a
Hamiltonian H satisfies ˇg.H/ D H for all g 2 G, we say that H is ˇ-invariant. If a ˇ-
invariant HamiltonianH has a unique ground state!p.A/ WD TrpA, then this unique ground
state !p is ˇ-invariant !p.ˇg.A// D !p.A/, A 2 Mn, because the spectral projection p is
ˇ-invariant, i.e., ˇg.p/ D p.

3. Quantum spin systems

Operator-algebraic framework of quantum statistical mechanics allows us to extend
the framework of finite-dimensional quantummechanical systems to infinite dimensions. Let
2� d 2 N and � 2 N be fixed. Physically, d�1

2
denotes the size of on-site spin (spin quantum

number) and � denotes the spacial dimension. We denote by SZ� the set of all finite subsets
of Z� . To each finite subset ƒ 2 SZ� we associate a finite-dimensional C �-algebra

Aƒ WD

O
ƒ

Md :

Here, Md is the algebra of d � d -matrices. The �-dimensional quantum spin system AZ� is
the C �-inductive limit of this inductive net, given by the natural inclusion. For each infinite
subset� , wemay defineA� in exactly the samemanner. TheC �-algebraA� can be naturally
regarded as a C �-subalgebra of AZ� . We say that an elementA has support in � if it belongs
toA� . If an automorphism˛ acts trivially onA�c for some� � Z� , we say that˛ has support
in � . The set of all elements in AZ� with finite support is called a local algebra and denoted
by Aloc.

A state ! on A� is defined to be a linear functional on A� with !.I/ D 1 which
is positive in the sense that !.A�A/ � 0 for any A 2 A� . The map A� 3 A 7! !.A/ 2 C

corresponds to the procedure of taking the expectation value of a physical observable A in
our physical state !. The set of all states on A� forms a convex weak�-compact set. Its
extremal points are called pure states. By the Krein–Milman theorem, the set of states is the
weak�-closure of the convex envelope of pure states. See [6] for more details.

For each state, we can associate a representation of A� essentially uniquely.

Theorem 3.1 (GNS representation). For each state ! on A� , there exist a representation
�! of A� on a Hilbert space H! and a unit vector �! 2 H! such that

!.A/ D
˝
�! ; �!.A/�!

˛
; A 2 A� ; and H! D �!.A�/�! : (3.1)

Here, � denotes the norm closure. It is unique up to unitary equivalence.

The triple .H! ; �! ; �!/ is called the GNS triple of !. We frequently consider the
commutant or bicommutant of �!.A�/. For a �-algebra M acting on a Hilbert space H ,
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we denote by M0 the set of all elements in B.H / (the set of all bounded operators on H )
commuting with every element in M. The algebra M0 is called a commutant of M, and the
commutant of M0 is called bicommutant and denoted by M00.

For a pure state!, it is known that�! is irreducible (i.e., there is no nontrivial closed
subspace of H! invariant under �!.A�/) and �!.A�/ is dense in B.H!/ with respect to
the strong operator topology. This property can be rephrased as �!.A�/

00 D B.H!/.
Given GNS representations, we can introduce some equivalence relation between

states. We say that two states !; ' on A� are equivalent (denoted ! ' ') if and only if the
corresponding GNS representations are unitarily equivalent. For a state ! and an automor-
phism ˛ on A� , if ! and ! ı ˛ are equivalent, then there is a unitary u on the GNS Hilbert
space H! implementing ˛ in the sense

Ad.u/ ı �! D �! ı ˛: (3.2)

This is because �! ı ˛ is a GNS representation of ! ı ˛. In our context of quantum spin
systems, we can see that two states !; ' are equivalent if they can be approximated by a
local perturbation of each other. More precisely, ! can be approximated arbitrarily well in
the norm topology of A�

Z2
by states of the form '.A� � A/, with A 2 Aloc, and vice versa.

Physically, it means that ! and ' are macroscopically the same.
There is yet another equivalence relation between states, which is called quasiequiv-

alence. Two states !; ' are said to be quasiequivalent if there is a �-isomorphism � W

�!.A�/
00 ! �'.A�/

00 such that �'.A/ D � ı �!.A/, for all A 2 A� . Note that if two
states are equivalent, they are quasiequivalent. The converse is not true in general, but if the
states are pure, it is true.

In the operator-algebraic framework of quantum spin systems, physical models are
specified with a map called interaction. An interactionˆ is a mapˆ W SZ� ! Aloc satisfying

ˆ.X/ D ˆ.X/� 2 AX

for all X 2 SZ� . Physically, this ˆ.X/ indicates an interaction term between spins inside
of X .

The easiest type of interaction is an on-site interaction, satisfying

ˆ.X/ D 0 if jX j ¤ 1: (3.3)

It means that the only possibly nonzero interaction terms are of the formˆ.¹xº/, with x2 Z� .
(Here and thereafter, jX j indicates the number of elements in X .) Note that all interaction
terms commute with each other for such interactions.

Physically, we aremore interested in interactions that have nonzero interaction terms
between different sites of Z� . For example, let ¹Sj ºjD1;2;3 be generators of the irreducible
representation of su.2/ on Cd . Then an interaction of AZ given by

ˆ
�
¹x; x C 1º

�
D

3X
jD1

S
.x/
j S

.xC1/
j ; x 2 Z; (3.4)

is called the antiferromagnetic Heisenberg chain, which has been extensively studied.
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Now, given an interaction, we would like to define a dynamics on AZ� out of it.
For this, we need to assume thatˆ is “suitably local.” The simplest condition among such is
the condition of the uniform boundedness and finite range. An interaction is of finite range if
there exists anm 2 N such thatˆ.X/D 0 forX with a diameter larger thanm. It is uniformly
bounded if it satisfies supX2SZ�

kˆ.X/k < 1. We can relax this restriction extensively.
More generally, we define norms on interactions and consider interactions with finite norms;
see [40].

Given a suitably local interaction, we may define a C �-dynamics, i.e., strongly con-
tinuous one-parameter group of automorphisms on AZ� . For an interaction ˆ and a finite
set ƒ � Z� , we define the local Hamiltonian on ƒ by

.Hˆ/ƒ WD

X
X�ƒ

ˆ.X/: (3.5)

Then we consider the Heisenberg dynamics given by the local Hamiltonian
eit.Hˆ/ƒAe�it.Hˆ/ƒ and take the thermodynamic limit. If our interaction ˆ is suitably
local, for example, if it is a uniformly bounded finite-range interaction, the limit

� tˆ.A/ D lim
ƒ!Z�

eit.Hˆ/ƒAe�it.Hˆ/ƒ ; t 2 R; A 2 AZ� (3.6)

exists and defines a dynamics �ˆ on AZ� . The reason why we consider the dynamics �ˆ
instead of Hamiltonians is because there is no mathematically meaningful limit of local
Hamiltonians .Hˆ/ƒ as ƒ ! Z� , while the limit (3.6) makes sense. For this reason, in
the operator-algebraic framework of quantum statistical mechanics, we talk about dynamics
instead of Hamiltonians.

For the same reason, a ground state is defined in terms of the dynamics �ˆ. Let ıˆ
be the generator of �ˆ. A state ! on AZ� is called a �ˆ-ground state if the inequality

�i!
�
A�ıˆ.A/

�
� 0 (3.7)

holds for any element A in the domain D.ıˆ/ of ıˆ. We occasionally say a ground state of
ˆ instead of a �ˆ-ground state. We denote by Gˆ the set of all ground states of ˆ. Clearly,
Gˆ is a weak�-compact convex set, and it is known that its extremal points ex Gˆ consists
of pure states (see [7, Theorem 5.3.37]).

Let .H! ; �! ; �!/ be the GNS triple of a �ˆ-ground state !. Then there exists a
unique positive operatorH!;ˆ on H! such that eitH!;ˆ�!.A/�! D �!.�

t
ˆ.A//�! , for all

A 2 AZ� and t 2 R. We call this H!;ˆ the bulk Hamiltonian associated with !. Note that
�! is an eigenvector ofH!;ˆ with eigenvalue 0 (see [7, Proposition 5.3.19]).

Let us consider the corresponding condition for a finite quantum system Mn with
dynamics given by a HamiltonianH (2.1). Let p be the spectral projection ofH correspond-
ing to the lowest eigenvalue E0. Recall that a state ! on Mn is given by a density matrix �
with the formula !.A/ D Tr �A. Let s.�/ be the support projection of this �. Then one can
check that ! is a � -ground state if and only if s.�/ satisfies s.�/ � p. Recall that the last
condition is the very definition of the ground state in finite-dimensional quantummechanics.
In fact, note that the generator ı of � in (2.1) is ı.A/ D i ŒH;A�. If s.�/ � p, then we have

�i!
�
A�ı.A/

�
D !

�
A�.H �E0/A

�
� 0; A 2 Mn;
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hence ! is a � -ground state. Conversely, suppose that ! is a � -ground state. For any unit
eigenvectors �; � ofH withH� D E0�,H� D E�, for E > E0, set A 2 Mn to be a matrix
satisfying A� D h�; �i� for any � 2 Cn. Substituting this A, we get

0 � �i!
�
A�ı.A/

�
D .E0 �E/h�; ��i:

Because E0 � E < 0, this means that h�; ��i D 0 for any such �. Hence we conclude that
p�p D �, namely, s.�/� p. It means that our definition in the operator-algebraic framework
can be regarded as a natural generalization of the usual definition of a ground state to infinite
systems.

Note, in general, that there can be many states satisfying condition (3.7). Namely,
the ground state need not be unique. If the ground state is unique, it is automatically an
extremal point of Gˆ. As a result, it is pure.

The systems we are interested in, in this paper, are those with gapped ground states.

Definition 3.1. We say that ˆ has gapped ground states in the bulk if the following hold:

(i) The bulk HamiltonianH!;ˆ of any pure �ˆ-ground state ! has 0 as its nonde-
generate eigenvalue.

(ii) There exists a constant  > 0 such that

�.H!;ˆ/ n ¹0º � Œ;1/; (3.8)

for any pure �ˆ-ground state !. Here �.H!;ˆ/ denotes the spectrum ofH!;ˆ.

We denote by P the set of all uniformly bounded finite-range interactions with
gapped ground states in the bulk.

An interaction ˆ is said to have a unique gapped ground state if its ground state is
unique and gapped in the sense of Definition 3.1; see [1, 17, 18, 42–44] for examples of such
models. If we consider the corresponding condition for a finite system Mn with dynamics
(2.1). This condition corresponds to the situation that “the lowest eigenvalue ofH is nonde-
generate and the difference between the lowest eigenvalue and the second-lowest eigenvalue
is at least  .” One remarkable property of the unique gapped ground state is the exponential
decay of correlation functions.

Theorem 3.2 ([22, 37, 39]). Let ˆ be a uniformly bounded finite-range interaction with a
unique gapped ground state !ˆ. Then the correlation functions of !ˆ decay exponentially
fast: there exist constants � > 0 and C > 0 such that for all A 2 AX , B 2 AY , with finite
X; Y � Z� , ˇ̌

!ˆ.AB/ � !ˆ.A/!ˆ.B/
ˇ̌

� CkAkkBkjX je��d.X;Y /

holds. Here d.X; Y / denotes the distance between X and Y .

This means !ˆ is “almost like a product state.”
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4. Paths of automorphisms generated by time-dependent

interactions

In the previous section, we considered time-independent interactions, and derived
a C �-dynamics out of them. The same procedure can be carried out for time-dependent
interactions to derive strongly continuous paths of automorphisms. (Recall that in finite-
dimensional quantum mechanics, we also considered time-dependent Hamiltonians.) Let
ˆ W Œ0; 1� 3 t !ˆt D .ˆ.X I t // be a piecewise-continuous path of interactions. Namely, for
each finiteX , the matrix-valued function Œ0;1�3 t !ˆ.X I t /2 AX is piecewise continuous.
We then define the path of local Hamiltonians .Hˆt /ƒ WD

P
X�ƒ ˆ.X I t / for each finite

subset ƒ of Z� and consider the solution ˛ˆ;t;ƒ.A/ of the differential equation

d

dt
˛ˆ;t;ƒ.A/ D i

�
.Hˆt /ƒ; ˛ˆ;t;ƒ.A/

�
; ˛ˆ;0;ƒ.A/ D A:

If the interactions along this path are suitably local, analogous to those considered in the
previous section, then the thermodynamic limit

˛ˆ;t .A/ D lim
ƒ!Z�

˛ˆ;t;ƒ.A/; A 2 AZ�

exists and defines a strongly continuous path of automorphisms ˛ˆ;t . We denote by
QAut.AZ� / the set of all automorphisms ˛ D ˛ˆ;t generated by some time-dependent
interactions ˆ in this manner. It forms a subgroup of the automorphism group Aut.AZ� /

on AZ� .
Due to the fact that ˛ 2 QAut.AZ� / is given out of local interactions, it shows some

nice locality properties. The most famous one is the Lieb–Robinson bound, which has been
extensively studied and used [4,22,37,39,40]. It gives an estimate on kŒ˛.A/;B�k forA 2 AX ,
B 2 AY , which decays as the distance between finite subsets X and Y goes to infinity.

The other property that is satisfied by ˛ 2 QAut.AZ� / is the factorization property.
It basically says that we can split ˛ into two along any cut of the system modulo some error
terms localized around the boundary. For example, in one-dimensional systems, if we cut
the system into two parts at the origin, we have

˛ D Ad.v/ ı .˛L ˝ ˛R/; (4.1)

where ˛L is an automorphism on the left infinite chain AL WD A.�1;�1�\Z, while ˛R is
an automorphism on the right infinite chain AR WD AŒ0;1/\Z. The term Ad.v/ is an inner
automorphism given by some unitary v in AZ, which corresponds to the “error around the
boundary.” In a two-dimensional system, for example, we have the following when we cut
the system into two by the y-axis. For 0 < � < �

2
, we define a double cone C� by

C� WD
®
.x; y/ 2 Z2 j jyj � tan � � jxj

¯
: (4.2)

Furthermore,HL,HR,HU ,HD denotes left/right and upper/lower half-planes, andC�;L WD

C� \HL, C�;R WD C� \HR. For any 0 < � < �
2
, there is ˛L 2 AutAHL , ˛R 2 AutAHR ,

and ‚ 2 AutA.C� /
c such that

˛ D Ad.v/.˛L ˝ ˛R/ ı‚: (4.3)
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Actually, ˛ can be cut in many directions simultaneously. The factorization property is a
simple but strong analytical property, which turns out to be useful in the analysis of gapped
ground state phases [36,45–47,49].

Another property we note about ˛ 2 QAut.AZ� / is that it does not create a long-
range entanglement. For example, it satisfies the following property. If A and B are observ-
ables localized in finite regions far away from each other, then ˛ almost preserves the tensor
product form of A ˝ B , namely, there are operators QA; QB strictly localized in some finite
disjoint areas such that QA˝ QB approximates ˛.A˝ B/ in the norm topology. In fact, our ˛
can be regarded as a version of a quantum circuit with finite depth, which is regarded as a
quantum circuit which does not create long-range entanglement [3]. From this point of view,
we say a state has a short-range entanglement if it is of the form� O

x2Z�

�x

�
ı ˛; (4.4)

with infinite tensor product state
N

x2Z� �x and an automorphism ˛ 2 QAut.AZ� /. Other-
wise, we say it has a long-range entanglement.

In the physics literature, the classification of states with respect to local unitaries is
considered [14]. Two states are equivalent if there is a local unitary connecting them. In our
framework, these local unitaries can be understood as automorphisms in QAut.AZ� /, and
the classification in [14] can be reformulated as follows. For two states !1; !0 on AZ� , we
write !1 �l:u: !0 if there is an automorphism ˛ 2 QAut.AZ� / such that !1 D !0 ı ˛. This
gives some equivalence relation. From the fact that automorphisms in QAut.AZ� / do not
create long-range entanglement, this is one physically natural criterion of classification of
states.

5. The classification of gapped ground state phases

The automorphisms in QAut.AZ� / are of fundamental importance in the classi-
fication problem of gapped ground state phases. In a word, ground state spaces of two
interactions ˆ0; ˆ1 2 P (Definition 3.1) are connected to each other via such automor-
phisms if they are equivalent in the classification of gapped ground state phases. In this
section, we introduce such a theorem, called the automorphic equivalence. The automor-
phic equivalence started as Hasting’s adiabatic lemma [23] in finite-dimensional quantum
mechanical system. There have been seminal mathematical improvements and generaliza-
tions after that [4, 40] in the context of the thermodynamic limit of quantum spin systems.
Here we introduce a version from [33], where we require the spectral gap only in the infinite
systems (i.e., the setting in Section 3).

The classification problem of gapped ground states in infinite systems can be
roughly described as follows.

We say that two interactions ˆ0; ˆ1 2 P are equivalent if there is a path of inter-
actions ˆ W Œ0; 1� ! P satisfying the following conditions:

(1) ˆ.0/ D ˆ0 and ˆ.1/ D ˆ1;
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(2) Œ0; 1� 3 s 7! ˆ.X I s/ 2 AX is continuous and piecewise C 1. The interaction
ˆ.s/ and its derivative are of finite range, bounded with respect to some norm
uniformly in s 2 Œ0; 1� (see (ii)–(iv) of Assumption 1.2 in [33]);

(3) For each pure �ˆ0 -ground state '0, there is a unique smooth path of states 's
where each 's is a pure �ˆ.s/-ground state. (Here, smooth means the expecta-
tion value of some class of elements in AZ� with respect to 's is differentiable,
and its derivative is not too large compared to some norm; see [33, Assump-

tion 1.2(vii)].) For each s 2 Œ0; 1�, the map exGˆ0 3 '0 7! 's 2 exGˆs gives a
bijection;

(4) The gap is uniformly bounded from below by some  > 0 along the path, i.e.,
�.H s ;ˆ.s// n ¹0º � Œ;1/ for all s 2 Œ0; 1� and a pure �ˆs -ground state  s .

We write ˆ0 � ˆ1 if ˆ0; ˆ1 2 P are equivalent in this sense.
The automorphic equivalence in this setting is given as follows.

Theorem 5.1 ([33]). If ˆ0 � ˆ1, then there is an ˛ 2 QAut.AZ� / such that

Gˆ1 D Gˆ0 ı ˛: (5.1)

Proof. We use the notation above for ˆ0 � ˆ1. From Remark 1.4 of [33], there is a path
of automorphisms ˛s 2 QAut.AZ� / satisfying 's D '0 ı ˛s for each state '0; 's in (3).
This ˛s is independent of the choice of '0. Because Gˆ.s/ is a convex weak�-compact set, it
coincides with the weak�-closure of the convex hull of extremal points of Gˆ.s/. Hence we
see that this ˛s maps Gˆ.0/ to Gˆ.s/ bijectively.

Hence automorphisms in QAut.AZ� / connect ground state spaces of ˆ0 and ˆ1.
For this reason, this class of automorphisms is of fundamental importance. The point here is
that it is not only that there is some automorphism connecting the ground state spaces, but
also that we know the details of the automorphisms.

Note that for interactionsˆ1;ˆ0 2 P with unique ground states!ˆ1 ,!ˆ0 ,ˆ1 �ˆ0

implies !ˆ1 �l:u: !ˆ0 by Theorem 5.1. At the moment of writing, it is not clear to us if the
converse is true.

We call an on-site interaction (defined in (3.3)) with a unique gapped ground state
a trivial interaction. The unique ground state !ˆ0 of a trivial interaction ˆ0 is of infinite
tensor product form. One can easily see that any two trivial interactions are equivalent. The
equivalence class P0 of interactions including these trivial interactions is called a trivial
phase. Any interactionˆ in the trivial phase has a unique ground state, and, by Theorem 5.1,
it has a short-range entanglement (4.4).

6. Symmetry protected topological (SPT) phases

The trivial phaseP0 consists of interactions that are connected to trivial interactions,
and as a result, its ground state has a short-range entanglement which is basically the same
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as product states. From this point of view, the trivial phase itself may not be that interesting.
However, if we introduce some symmetry to the game, we can extract some interesting math-
ematical structure out of it. This is so-called symmetry protected topological (SPT) phases,
which were introduced by Gu and Wen [12, 13,21]. Throughout this section, !ˆ for ˆ 2 P0

indicates the unique ground state of ˆ.
In this talk, as a symmetry, we consider an on-site finite group symmetry, which is

defined as follows. (A study on the global reflection symmetry in one-dimensional systems
can be found in [46].) We fix a finite group G and a (projective) unitary representation U of
G on Cd . Then there is a unique automorphism ˇg satisfying

ˇg.A/ D

�O
x2ƒ

U.g/

�
A

�O
x2ƒ

U.g/�
�
; g 2 G; A 2 Aƒ; ƒ 2 SZ� :

Clearly, this gives an action of G on AZ� , i.e., ˇgˇh D ˇgh for g; h 2 G. We call this
action of G, an on-site symmetry given by G and U . We say an interaction ˆ is ˇ-invariant
if ˇg.ˆ.X// D ˆ.X/ for all X 2 SZ� and g 2 G. For a ground state ' of a ˇ-invariant
interactionˆ, one can check that ' ıˇg is also a ground state ofˆ. Therefore, if aˇ-invariant
interaction ˆ has a unique ground state !ˆ, the ground state is ˇ-invariant, !ˆ ı ˇg D !ˆ.

What we are interested in, in this section, is the set of all ˇ-invariant interactions
in the trivial phase P0. We denote the set of all such interactions by P0;ˇ . We would like
to classify them with respect to the following criterion. Two interactions ˆ0, ˆ1 are ˇ-
equivalent if there is a smooth path of interactions in P0;ˇ satisfying the conditions (1)–(4)
we saw in Section 5. We write ˆ0 �ˇ ˆ1 in this case. The difference between � and �ˇ

is that we require the symmetry to be preserved along the path. Because of this additional
condition, there can be interactions ˆ0; ˆ1 2 P0;ˇ , which satisfy ˆ0 � ˆ1 (by definition)
but notˆ0 �ˇ ˆ1. In other words,P0;ˇ may split into possibly multiple equivalence classes.
The resulting equivalence classes are the symmetry-protected topological (SPT) phases.

For this SPT classification problem, physicists and algebraic topologists have a con-
jecture [26, 56]. They say that SPT-phases should be understood in terms of the invertible
quantum field theory. As a result, for a finite group G, SPT-phases should be classified by
the Pontryagin dual of bordism group on the classifying space BG of G. In one and two
dimensions, these Pontryagin duals are H 2.G;U.1//, H 3.G;U.1//. In fact, we can derive
these group-cohomology-valued invariants out of our general microscopic models of in those
dimensions.

Theorem 6.1 ([45,47]). There is anH 2.G;U.1//-valued invariant for one-dimensional SPT-
phases. There is anH 3.G;U.1//-valued invariant for two-dimensional SPT-phases.

For the rest of this section, we explain how to find such invariants out of general
models. In the analysis of gapped ground state phases, there is a general guiding principle
to find an invariant. That is, cut the system into two and look at the edge. This principle is
sometimes called the bulk-edge correspondence. In order to derive the invariant in Theo-
rem 6.1, we follow this principle and restrict our group action ˇ to the half of the system.
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Namely, we consider the group actions

ˇRg WD idAL
˝

O
x�0

Ad
�
U.g/

�
; ˇUg WD idAHD

˝

O
.x;y/2HU

Ad
�
U.g/

�
; (6.1)

in one and two dimensions, respectively. We investigate the effect of these actions on our
unique ground state !ˆ for ˆ 2 P0;ˇ .

Let us start with one-dimensional systems. Recall that !ˆ has a short-range entan-
glement, and is ˇ-invariant. From these facts, we expect that the effect of ˇR is not much
recognizable on the left infinite chain, far away from the origin. On the other hand, on the
right infinite chain, far away from the origin, the differences between ˇ and ˇR are not much
recognizable. Combining this and the fact that !ˆ is ˇ-invariant, we conclude that the effect
of ˇR is not much recognizable on the right infinite chain, far away from the origin. As a
result, we expect that the effect of ˇR on !ˆ should be localized around the origin. In other
words,!ˆ and!ˆ ıˇRg aremacroscopically the same. It turns out to be true, mathematically,
in the following sense.

Proposition 6.1. The states !ˆ and !ˆ ı ˇRg are equivalent.

This can be seen very easily. Recall from the definition that ˆ 2 P0 means ˆ �

ˆ0 with some trivial interaction ˆ0. By Theorem 5.1, we have !ˆ D !ˆ0 ı ˛ with some
˛ 2 QAut.AZ/. Recall that, as a trivial interaction, ˆ0 has a unique ground state of infinite
tensor product form. In particular, we can write !ˆ0 as !ˆ0 D !L ˝!R with pure states !L,
!R on the left and right infinite chains AL, AR, respectively. Recall also that our ˛ satisfies
the factorization property (4.1). Combining these facts, we conclude that

!ˆ ' .!L ˝ !R/ ı .˛L ˝ ˛R/; (6.2)

with some automorphisms ˛L; ˛R onAL,AR. From this and the invariance of!ˆ under ˇg ,
we see that !L˛LˇLg ˝ !R˛Rˇ

R
g ' !L˛L ˝ !R˛R, where ˇL, ˇR are the restrictions of ˇ

to the left and right infinite chains, respectively. This implies !R˛RˇRg ' !R˛R, hence we
get

!ˆˇ
R
g ' !L˛L ˝ !R˛Rˇ

R
g ' !L˛L ˝ !R˛R ' !ˆ; (6.3)

proving the claim.
Note from Section 3 that Proposition 6.1 means ˇRg is implementable by a unitary

ug in the GNS representation .H!ˆ ; �!ˆ/ of !ˆ, i.e.,

Ad.ug/ ı �!ˆ D �!ˆ ı ˇRg : (6.4)

Because ˇR is a group action, we have

Ad.uguh/ ı �!ˆ D �!ˆ ı ˇRg ˇ
R
h D �!ˆ ı ˇRgh D Ad.ugh/ ı �!ˆ ; g; h 2 G: (6.5)

Recall that !ˆ is a unique ground state ofˆ, hence it is pure. As a result, �!ˆ.AZ/ is dense
in B.H!ˆ/ with respect to the strong operator topology. From this, (6.5) implies that there
is some �.g; h/ 2 U.1/ such that

uguh D �.g; h/ugh; g; h 2 G: (6.6)
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In other words, .ug/ forms a projective representation. As a result, we obtainH 2.G;U.1//-
valued index out of it.

Using the automorphic equivalence Theorem 5.1 and the factorization property of
the automorphism therein, one can show that it is in fact an invariant of our classification �ˇ

[45]. The point of the proof is, when ˆ0 �ˇ ˆ1, that the time-dependent interactions giving
˛ 2QAut.AZ/ in Theorem 5.1 can be taken to be ˇ-invariant. Proposition 6.1 itself holds for
general ˇ-invariant unique gapped ground state. This is thanks to the theorem by Matsui [31]
showing the split property for unique gapped ground states. Projective representations asso-
ciated to split states have been known since the year 2000 [30] among operator algebraists.
What is new here is that the associated cohomology class is an invariant of our classification.
In fact, thisH 2.G;U.1//-valued index is a complete invariant of pure ˇ-invariant split states
with respect to some classification [48]. This index can be used to showLieb–Schultz–Mattis-
type theorems [2,29,30,38] (no-go theorems for the existence of unique gapped ground state
under some symmetry), for finite groups symmetries [50,51].

For two dimensions, !ˆ ı ˇUg is not equivalent to !ˆ in general. However, an anal-
ogous argument as in the one-dimensional case lets us expect that the effect of ˇUg should
be localized around the x-axis. In fact, it turns out to be true mathematically.

Proposition 6.2. For any 0 < � < �
2
, there are �g;L 2 Aut.AC�;L/ and �g;R 2 Aut.AC�;R/

such that

!ˆ ı ˇUg ' !ˆ.�g;L ˝ �g;R/:

It means macroscopically that the effect of ˇUg on !ˆ is localized around C�;L and
C�;R for any 0 < � < �

2
. This �g;R is our source of theH 3.G;U.1//-valued index.

Now we fix some 0 < � < �
2
, and set Rg WD ˇURg ı ��1

g;R, 
L
g WD ˇULg ı ��1

g;L with
�g;R, �g;L for this � . Here, ˇURg , ˇULg are group actions of G given by

ˇURg WD id.HU\HR/c ˝

O
.x;y/2HU\HR

Ad
�
U.g/

�
;

ˇULg WD id.HU\HL/c ˝

O
.x;y/2HU\HL

Ad
�
U.g/

�
:

From Proposition 6.2, we have

!ˆ ı
�
Lg ˝ Rg

�
' !ˆ; g 2 G: (6.7)

On the other hand, recall from the definition thatˆ 2 P0 meansˆ� ˆ0 with some
trivial interaction ˆ0. By Theorem 5.1, we have !ˆ D !ˆ0 ı ˛, with ˛ 2 QAut.AZ� / sat-
isfying the factorization property, i.e.,

˛ D Ad.v/ ı .˛L ˝ ˛R/ ı‚; ˛L 2 AutAHL ; ˛R 2 AutAHR ; ‚ 2 AutAC c
�
; (6.8)

for our fixed � . Recall that as a trivial interaction, ˆ0 has a unique ground state !ˆ0 of
infinite tensor product form. In particular, we can write !ˆ0 as !ˆ0 D !L ˝ !R with pure
states !L, !R on AHL , AHR , respectively. Combining these, we conclude that

!ˆ ' .!L ˝ !R/ ı .˛L ˝ ˛R/ ı‚: (6.9)
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Repeated use of (6.7) gives

!ˆ ı
�
Lg 

L
h

�
Lgh

��1
˝ Rg 

R
h

�
Rgh

��1�
' !ˆ: (6.10)

Applying (6.9) to this, we obtain

.!L ˝ !R/ ı .˛L ˝ ˛R/ ı‚ ı
�
Lg 

L
h

�
Lgh

��1
˝ Rg 

R
h

�
Rgh

��1�
' .!L ˝ !R/ ı .˛L ˝ ˛R/ ı‚: (6.11)

Note that

Rg 
R
h

�
Rgh

��1
D

�
ˇURg ��1

g;R

�
ˇURg

��1��
ˇURgh �

�1
h;R�gh;R

�
ˇURgh

��1�
2 Aut.AC�;R/: (6.12)

Similarly, we have Lg Lh .
L
gh
/�1 2 Aut.AC�;L/. Therefore, they commute with ‚ 2

Aut.AC c
�
/. From this and (6.11), we obtain

.!L ˝ !R/ ı .˛L ˝ ˛R/ ı
�
Lg 

L
h

�
Lgh

��1
˝ Rg 

R
h

�
Rgh

��1�
' .!L ˝ !R/ ı .˛L ˝ ˛R/;

which implies

!R˛R
R
g 

R
h

�
Rgh

��1
' !R˛R: (6.13)

Recall from Section 3 that this means the automorphism Rg Rh .
R
gh
/�1 is implementable by

a unitary u.g; h/ in the GNS representation .HR; �R/ of !R˛R, i.e.,

Ad
�
u.g; h/

�
�R D �R

R
g 

R
h

�
Rgh

��1
: (6.14)

Note also that (6.9) and (6.7) imply

.!L ˝ !R/ ı .˛L ˝ ˛R/ ı‚ ı
�
Lg ˝ Rg

�
' .!L ˝ !R/ ı .˛L ˝ ˛R/ ı‚: (6.15)

Therefore, with .HL;�L/ a GNS representation of!L˛L, there is a unitaryWg onHL ˝ HR

implementing ‚ ı .Lg ˝ Rg / ı‚�1 in the GNS representation .HL ˝ HR; �L ˝ �R/ of
!L˛L ˝ !R˛R, i.e.,

Ad.Wg/.�L ˝ �R/ D .�L ˝ �R/ ı‚ ı
�
Lg ˝ Rg

�
ı‚�1: (6.16)

For these u.g; h/ (6.14) and Wg (6.16), we claim that there are c.g; h; k/ 2 U.1/
such that

Ad.Wg/
�
IL ˝ u.h; k/

�
�
�
IL ˝ u.g; hk/

�
D c.g; h; k/

�
IL ˝ u.g; h/u.gh; k/

�
; g; h; k 2 G: (6.17)

To see this, consider �L ˝ �R
R
g 

R
h
R
k
. On the one hand, with the repeated use of (6.14),

we have

�L ˝ �R
R
g 

R
h 

R
k D Ad

�
IL ˝ u.g; h/

��
�L ˝ �R

R
gh

R
k

�
D Ad

�
IL ˝ u.g; h/u.gh; k/

��
�L ˝ �R ı Rghk

�
: (6.18)
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On the other hand, note that both of R
h
R
k
.R
hk
/�1 and Rg .Rh 

R
k
.R
hk
/�1/.Rg /

�1 commute
with ‚ as before. Hence we have

idL ˝ Rg
�
Rh 

R
k

�
Rhk

��1��
Rg

��1

D ‚
�
Lg ˝ Rg

�
‚�1

�
idL ˝ Rh 

R
k

�
Rhk

��1�
‚

�
Lg ˝ Rg

��1
‚�1: (6.19)

From this and repeated use of (6.14), (6.16), we have

�L ˝ �R
R
g 

R
h 

R
k

D .�L ˝ �R/‚
�
Lg ˝ Rg

�
‚�1

�
idL ˝ Rh 

R
k

�
Rhk

��1�
‚

�
Lg ˝ Rg

��1

�‚�1
�
idL ˝ Rg 

R
hk

�
D Ad

�
Wg

�
IL ˝ u.h; k/

�
W �
g

�
IL ˝ u.gh; k/

���
�L ˝ �R

R
ghk

�
: (6.20)

Comparing this and (6.18), we have

Ad
�
IL ˝ u.g; h/u.gh; k/

�
.�L ˝ �R/

D Ad
�
Wg

�
IL ˝ u.h; k/

�
W �
g

�
IL ˝ u.gh; k/

��
.�L ˝ �R/: (6.21)

Note that, because .HL ˝ HR; �L ˝ �R/ is a GNS representation of a pure state !L˛L ˝

!R˛R, .�L ˝ �R/.AZ2/ is dense in B.HL ˝ HR/ with the strong operator topology. As a
result, (6.21) implies our claim (6.17).

The situation in (6.14), (6.17) is prettymuch similar to that of cocycle actions [15,24].
In fact, following the argument in [24], we can show that c.g; h; k/ satisfies the 3-cocycle
relation. Hence, out of it, we obtain an H 3.G;U.1//-valued index. Using the automorphic
equivalence Theorem 5.1 and the factorization property of the automorphism therein, one
can show that it is in fact an invariant of our classification �ˇ .

A derivation of indices for SPT-phases was initially carried out in tensor network
models, matrix product states MPS [52–54] in one dimension, and projected entangled pair
states [32]. Our indices coincide with theirs in those models. In other words, thanks to those
works, there are many examples. Our approach introduced in this section is operator alge-
braic. Recently, some quantum information based approaches were reported [25,55].

7. Anyons in topological phases

In this section, we consider the classification �l:u: in two dimensions. Recall that
states which are equivalent to an infinite tensor product state with respect to �l:u: are said to
have a short-range entanglement, and otherwise they are said to have a long-range entangle-
ment. It is frequently said that in the two-dimensional systems, the existence of an “anyon”
means the long-range entanglement of the state [28]. In this section, we formulate this state-
ment in our operator-algebraic setting.

An anyon is a string-like excitation with a braiding structure. How to formulate an
anyon mathematically is a nontrivial question of mathematical physics. Our answer, moti-
vated by AQFT [27] and studies of Kitaev models [10, 19,34,35] is that it is a superselection
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sector. It is defined in terms of cones. By a cone we mean a subset of Z2 of the form

ƒa;�;' WD
®
x 2 Z2 j .x � a/ � e� > cos' � kx � ak

¯
;

with some a 2 R, � 2 R, and ' 2 .0; �/. Here we set e� WD .cos �; sin �/. For a cone
ƒ WDƒa;�;' and b 2 R2, " > 0, we setƒ" C b WDƒaCb;�;'C", jargƒj WD 2', and eƒ WD e� .

Definition 7.1. Let .H ; �0/ be an irreducible representation of AZ2 . We say that a repre-
sentation � of AZ2 on H satisfies the superselection criterion for �0 if

�jAƒc
'u:e: �0jAƒc

;

for any cone ƒ in Z2. (Here, 'u:e: means that the two representations are unitarily equiva-
lent.) Such representations are called superselection sectors for �0.

Superselection sectors are objects studied extensively in AQFT. In the context of
quantum spin systems, P. Naaijkens and his coauthors carried out studies on Kitaev’s quan-
tum double model from the point of view of superselection sectors [10,19,34,35], where they
drove a braiding structure.

We can see the importance of the sector theory for us from the fact that it is an
invariant of �l:u:.

Theorem 7.1 ([36]). Let .H ; �0/ be an irreducible representation and let ˛ 2 QAut.AZ2/.
Suppose that a representation � satisfies the superselection criterion for �0. Then � ı ˛

satisfies the superselection criterion for �0 ı ˛.

Let !1, !0 be pure states such that !1 �l:u: !0 with !1 D !0 ı ˛, ˛ 2 QAut.AZ2/.
Then, by Theorem 7.1, ˛ gives a bijection between the set of all superselection sectors of
�!0 and the set of all superselection sectors of �!1 .

The proof of Theorem 7.1 is a simple argument using the factorization property. For
" > 0, analogous to (4.3), we have a decomposition

˛ D Ad.v/ ı„ ı .˛ƒ ˝ ˛ƒc /; (7.1)

where ˛ƒ, ˛ƒc , „ are automorphisms on Aƒ, Aƒc , Aƒ" , respectively. (We choose " > 0
small enough so that ƒ" is still a cone.) Then for a superselection sector � for �0, we have

� ı ˛jAƒ
�u:e: � ı„ ı ˛ƒjAƒ

D �jAƒ"
ı„ ı ˛ƒjAƒ

�u:e: �0jAƒ"
ı„ ı ˛ƒjAƒ

�u:e: �0 ı ˛jAƒ
; (7.2)

proving the claim.
We say that �0 has a trivial sector theory if any representation satisfying the super-

selection criterion for �0 is quasiequivalent to �0. Otherwise, we say �0 has a nontrivial
sector theory. One can show that for a pure state of infinite tensor product form, its GNS
representation has a trivial sector theory [36]. Combing this and Theorem 7.1, we obtain the
following.

Corollary 7.1. If a pure state has a short-range entanglement, then its GNS representation
has a trivial sector theory.
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In other words, the existence of nontrivial superselection sectors implies the long-
range entanglement. If we regard superselection sectors as anyons, it is a mathematical
realization of the folklore saying that the existence of anyons implies long-range entangle-
ment of the state.

The reason why we expect superselection sectors to be related to anyons comes from
AQFT. Using the tools from AQFT, in [11] Cha–Naaijkens–Nachtergaele derived a braiding
structure in a general setting of semigroup of almost localized endomorphisms in quantum
spin systems. It is well known that anyons show up in AQFT surprisingly naturally [5, 8, 9,

16, 20, 27]. More precisely, under some condition called Haag duality, a braided C �-tensor
category can be associated to the irreducible representation with nontrivial sector theory.
The Haag duality is the property �0.Aƒc /

0 D �0.Aƒ/
00, for all cones ƒ in Z2.

The problem for us about introducing this condition in quantum spin systems is
that it does not look to be plausible that this condition is stable under automorphisms in
QAut.AZ2/. Recalling that automorphisms in QAut.AZ2/ are the fundamental operations
in the classification problem of gapped ground state phases, this situation is not convenient
for us. For this reason, we introduce a weaker version of Haag duality.

Definition 7.2 (Approximate Haag duality [49]). Let .H ; �0/ be an irreducible representa-
tion of AZ2 . We say that .H ; �0/ satisfies the approximate Haag duality if the following
conditions hold: For any ' 2 .0; 2�/ and " > 0 with ' C 4" < 2� , there is some R';" > 0
and decreasing functions f';";ı.t/, ı > 0 on R�0 with limt!1 f';";ı.t/ D 0 such that

(i) for any cone ƒ with j argƒj D ', there is a unitary Uƒ;" 2 U.H / satisfying

�0.Aƒc /
0
� Ad.Uƒ;"/

�
�0.A.ƒ�R';"eƒ/"/

00
�
; (7.3)

and

(ii) for any ı > 0 and t � 0, there is a unitary QUƒ;";ı;t 2 �0.Aƒ"Cı�teƒ/
00 satisfying

kUƒ;" � QUƒ;";ı;tk � f';";ı.t/: (7.4)

The good point about this weaker version is that we know it is stable under auto-
morphisms in QAut.AZ2/.

Proposition 7.1. Let .H ;�0/ be an irreducible representation ofAZ2 satisfying the approx-
imate Haag duality. Then for any automorphism ˛ 2 QAut.AZ2/, .H ; �0 ı ˛/ also satisfies
the approximate Haag duality.

It turns out that even with this weaker version of Haag duality and the setting of
gapped ground state phases (which is different from that of AQFT), we can still derive a
braided C �-tensor category (see [41] for the definition) out of superselection sectors where,
unlike endomorphisms, the multiplication rule is not a priori given [49]. The proof is a mod-
ification of the argument in AQFT and some additional argument using the gap condition
Definition 3.1. More precisely, let ˆ be a uniformly bounded finite range interaction on
AZ2 with gapped ground states. Let ! be a pure �ˆ-ground state with a GNS representation
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.H ; �0; �/. We assume that �0 has a nontrivial sector theory, and �0 satisfies the approxi-
mate Haag duality. Fix some � 2 R and ' 2 .0; �/, and denote by C.�;'/ the set of all cones
whose angle does not intersects with Œ� � '; � C '�. We set

B.�;'/ WD

[
ƒ2C.�;'/

�0.Aƒc /0: (7.5)

Here � denotes the norm closure. Using the approximate Haag duality, using the argument
in [9], each superselection sector � W AZ2 ! B.H!/ for �0 extends to an endomorphism
on B.�;'/. We denote the extension by the same symbol �. Via these extensions, we can
introduce compositions between superselection sectors. With this composition as a tensor,
the superselection sectors of �0 are the objects of our braided C �-tensor category. Our mor-
phisms are given by the intertwiners. Namely, for objects �; � , the morphisms from � to �
are bounded operators R on H such that R�.A/ D �.A/R, for any A 2 AZ2 . The set of all
morphisms from � to � is denoted by .�; �/. Note that .�; �/ is a Banach space and .�; �/ is
a C �-algebra. Following AQFT, the tensor of morphisms R1 2 .�1; �1/, R2 2 .�2; �2/ are
defined by

R1 ˝R2 WD R1�1.R2/ 2 .�1 ˝ �2; �1 ˝ �2/: (7.6)

In fact, each intertwiner belongs to B.�;'/ such that �1.R2/ is well-defined. Using the
gap inequality and the nontriviality of the sector theory, we can show for any cone ƒ that
�0.Aƒ/

00 is either type II1 or type III factor. It means that there are isometries uƒ; vƒ 2

�0.Aƒ/
00 such that uƒu�

ƒ C vƒv
�
ƒ D I. Using this, for any superselection sectors �; � , we

can define their direct sum �
L
� W AZ2 ! B.H0/ by�

�
M

�
�
.A/ WD uƒ�.A/u

�
ƒ C vƒ�.A/v

�
ƒ; A 2 AZ2 : (7.7)

From the same fact, we can also define subobjects. Namely, if p 2 .�; �/ is a nonzero pro-
jection, we can find some superselection sector � and an isometry v such that vv� D p and
�.A/v D v�.A/ for all A 2 AZ2 . Hence we obtain the following theorem.

Theorem 7.2 ([49]). In the above setting, superselection sectors of �0 form a braided C �-
tensor category. If two of such states !ˆ1 ; !ˆ2 satisfy !ˆ1 �l:u: !ˆ2 , then corresponding
braided C �-tensor categories are monoidally equivalent.
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