
January 1, 2020 

1 

 

Chapter 23: Research in Mathematics Education: What Can it Teach 

us about Human Learning? 

Anna Sfard Paul Cobb 

University of Haifa Vanderbilt University 

 

Among the diverse domains of human knowing, mathematics stands out as a hothouse 

for insights about teaching and learning in general.  This chapter summarizes the ways that 

research on mathematics learning contributes to our understanding of how people learn. We 

begin with a brief historical overview, which explains what it is about mathematics that has 

made it the content area of choice for the study of human learning.  We then focus on two 

approaches in education research, the acquisitionist and the participationist approaches, which 

have influenced our understanding of learning and of the practices of teaching in all content 

areas. Mathematics education research affected learning sciences at large by challenging the 

first approach (which is still dominant in much education research) and helping to introduce and 

develop the second one.  

Mathematics Education Research – A Historical Overview 

Mathematics education research is an applied discipline aiming at improving the 

practice of learning and teaching mathematics. It established itself as full-fledged academic 

discipline about 60 years ago. However, various scholars began studying mathematical learning 

at the end of the 19th century, when the influential idea of evidence-based pedagogy first came 

to the fore. The first half of the 20th century saw numerous experimental and quasi-

experimental studies (see Campbell & Stanley, 1963, for a review) in which researchers 
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endeavored to compare and evaluate the effectiveness of different teaching approaches. That 

research, conducted mainly by mathematics educators, attracted the attention of professional 

mathematicians. Whereas successful mathematical learning was commonly regarded as 

requiring special abilities, it was the frequent failure that puzzled mathematicians: “How does it 

happen that there are people who do not understand mathematics?” (Poincaré, 1929/1952, p. 

47).  The early studies proved unable to answer the mathematicians’ query, in large part 

because they focused on an “input-output” model that assumed simple causal relations 

between teaching methods (inputs) and student achievement (outputs), that is, relied on a 

transmission and acquisition conception of teaching and learning. This approach gave little 

attention to processes of learning in the context of instruction (on processes, see Chinn & 

Sherin, this volume).  

A small number of psychologists studied processes of mathematics learning that had 

been ignored by mathematics educators during the first part of the 20th century. The 

psychologists hoped that this particular, discipline-specific case of learning would bring insights 

into human learning in general. Their efforts aimed at identifying and describing the 

development of those aspects of cognition that were common to all humans, regardless of their 

sociocultural backgrounds and personal histories. With this goal in mind, psychologists focused 

their empirical studies on human skills and understandings that they assumed would be more or 

less the same in every culture. Mathematics, hailed as “the only true universal language” (Rees, 

2009), seemed to be ideally suited.  

By the 1960s, a reasonable merger was achieved between three academic communities 

interested in mathematics teaching and learning: psychologists, mathematicians, and 

mathematics educators. This was the origin of the modern discipline of mathematics education 

research. Since the 1960s, most studies tended to focus either on teaching or on learning, with 
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the researchers asking questions such as ‘How do people learn mathematics?’, ‘How can our 

understanding of human cognition inform the way we teach math?’, ‘What learning 

environments and curricula are more effective in producing desired learning outcomes?’. These 

questions have been studied within two very different conceptual frameworks that reflect 

contrasting interpretations of what mathematics is, and consequently, what it means to learn 

mathematics (Sfard, 1998). The first framework comprises approaches that portray mathematics 

as pre-given structures and procedures, and view learning mathematics as the acquisition of 

these structures and procedures.  The acquired entities may be called knowledge, schemes or 

conceptions, and the process of acquisition can be either passive, happening through mere 

“transmission”, or active, achieved by the learner’s own constructive efforts. We call this 

framework acquisitionism. The second framework portrays mathematics as a form of human 

activity rather than as something to be “acquired”, and views learning mathematics as the 

process of becoming a full-fledged participant in this distinct type of activity. We call this 

framework participationism.  

Acquisitionism holds that mathematics was discovered or constructed by 

mathematicians and is acquired or reconstructed by the learner. In contrast, participationism 

holds that mathematics is one of many human ways of doing things, and that it has evolved 

historically and continues to undergo change.  As will be shown in the review that follows, each 

of these two frameworks has very different consequences for both research on mathematics 

learning and for pedagogy.   

 

Acquisitionist Research in Mathematics Education 

Learning as constructing conceptions 
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Beginning in the middle of the 20th century, educational researchers considered the 

then well-developed Piagetian theory of learning to be the perfect framework for conducting 

studies that aimed to “look inside the human head” in a theoretically-sound manner. 

Constructivism, as an elaborated version of this approach became known (von Glasersfeld, 1989; 

Kafai, 2006), was the predominant framework until the end of the 1980s. The central 

assumption of constructivism is that learners build their understanding of the world primarily 

through direct interaction with their environment. In constructivist pedagogy, the teacher is 

portrayed as a provider of opportunities for learning rather than as someone who delivers 

information to a passive learner. This characterization of learning in instructional situations 

pushed the individual learner to center stage and seemed to suggest that there was little need 

to study instruction per se.  

Two complementary lines of constructivist research have made systematic contributions 

to mathematics education. The first has investigated the non-canonical student conceptions that 

often emerge as the products of mathematics learning. The second has modeled the processes 

of conceptual change with the help of empirical data from clinical studies, the most insightful of 

which are known as teaching experiments.  

Studying Learners’ Conceptions  

This strand of research started in science education with studies of student 

misconceptions (see diSessa, this volume), a notion derived from Piaget’s contention that 

inadequate understandings of reality can be found consistently across situations and people 

(Piaget, 1962). The term misconception referred to student’s “own meanings—meanings that 

are not appropriate at all” (Davis, 1988, p. 9). The assumption that learners’ meanings were 

inappropriate, and the term “misconception” itself, began to be questioned by science 

educators in the 1970s (Driver & Easley, 1978). Resilient student conceptions that seemed to 
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violate the scientific canon were later described more charitably as alternative or naïve 

conceptions, and were characterized as possibly inevitable early version of formal concepts. In 

mathematics education, researchers spoke in terms of tacit models (Fischbein, 1989) or of 

students’ concept-images, which were contrasted with concept-definitions (Tall & Vinner, 1981). 

There is hardly a mathematical concept learned in school that has not been studied using this 

framework.  

Researchers who engaged in this kind of study found surprising consistencies in 

alternative conceptions across classrooms, schools, and even nations. This was taken as 

evidence that idiosyncrasies in how students deal with mathematical concepts were not just a 

matter of faulty teaching. For instance, research on student conceptions has repeatedly shown 

that many high school students identify as functions only those mappings that can be 

represented by simple formulas. This is often the case even for learners who can recite the 

formal definition of function and know that this definition does not require a formula (Malik, 

1980; Vinner & Dreyfus,1989). Similarly, young children were found to resist the idea that 

multiplication can yield a value lower than either of the multiplied numbers (think, for instance, 

about  ½∙6, which is 3) or that division can do the opposite (as is the case with 3 divided by ½; 

Fischbein, 1989; Harel, Behr, Post, & Lesh, 1989).  

Misconceptions research has been widely disseminated in teacher education programs 

and has been quite influential, in part due to its methodological simplicity. Initially, research on 

misconceptions used surveys composed of open-ended questions, or sometimes multi-choice 

questions that could be administered to large groups of people and processed statistically.  

Later, surveys were complemented or replaced by structured and semi-structured interviews.  

The pedagogical implications of these studies were also enticingly simple: to repair a 

misconception, the teacher was advised to elicit a cognitive conflict, a situation in which 
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students’ current conceptions clash with empirical evidence or with a mathematical definition. It 

was believed that when faced with such conflicts, students would come to realize that their 

current conception was not accurate.  

Investigations of students’ conceptions have been central in science education for some 

time (see diSessa, this volume). In mathematics education, misconceptions research began 

relatively late, peaked in the 1980s, and started to decline in the early 1990s. It was at this point 

that mathematics education research began parting company with research in science 

education. Science education researchers were aware of various foundational weaknesses of 

misconceptions studies, including discrepancies with constructivist principles and the lack of a 

sound theoretical basis (Smith, diSessa, & Rochelle, 1993). However, they opted for repair rather 

than replacement, and the study of learners’ scientific misconceptions evolved into theoretically 

grounded research on conceptual change (see diSessa, this volume). In contrast, mathematics 

educators gradually began to reject the misconceptions approach, possibly as a result of insights 

they gained through investigating processes of concept formation that we review next.   

Studying Processes of Constructing Conceptions  

In mathematics education, research on students’ conceptions has been accompanied 

almost from the beginning by studies of the cognitive processes that take place as the 

conceptions develop. The pioneers of this research in mathematics education translated Piaget’s 

theory of human development into discipline-specific research frameworks (see e.g. Skemp, 

1971). Their followers proposed a number of homegrown theories of mathematical thinking and 

its development, among them the theory of conceptual fields (Vergnaud, 1990), theories of 

process-object duality of mathematical conceptions (Sfard, 1991; Dubinsky, 1991; Gray & Tall, 

1993), and a theory of the growth of mathematical understanding (Pirie & Kieran, 1994). The 

ultimate purpose of the resulting studies was to produce models of students’ evolving 
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conceptions (Steffe, Thompson, & von Glassersfeld, 2000). In these studies, students’ progress 

through a sequence of developmental levels was characterized as process of individual 

construction that can be precipitated by interactions with others.  

This line of inquiry has made two lasting contributions. First, it has produced a number 

of models of mathematical learning that have informed researchers’ thinking about how 

students learn a range of different mathematical topics. Second, it produced methodological 

innovations that, with time, became stepping stones to current research methods, notably to 

that of teaching experiments and design based research (Barab, this volume; see the next 

section).  

Models that describe how learners gradually construct different mathematical 

conceptions differ widely in their scope. Probably the best known model, proposed by the Dutch 

researchers Dina and Pierre van Hiele, portrayed development of students’ geometric thinking 

(van Hiele, 2004/1959). In the spirit of Piaget’s staged theories of development, this model was 

predicated on the assumption that five qualitatively different levels of understanding are 

successively attained as students advance in learning geometric concepts.  However, the van 

Hieles departed from Piaget in one important respect. They argued that although progress from 

one level to the next is as inevitable as the transitions between Piagetian stages, these changes 

result from teaching rather than from the learners’ independent construction. According to the 

van Hieles, it is in the context of proper instruction that the student proceeds from the level of 

visualization, where she can recognize a shape as a whole, to that of analysis, where she can 

also name its parts; to that of abstraction, where she recognizes the role of a formal definition in 

establishing the name of a shape; and to that of deduction, where she can also derive and justify 

her claims with the help of the rules of logic. Eventually, the learner may reach the level of rigor, 

where the whole edifice of geometry becomes a formal theory, derivable from a small set of 
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axioms. The van Hieles’ model spurred a flurry of research that indicated that very few 

secondary school graduates reach the fourth level, deduction, and the great majority end at the 

second level, analysis, or the third level, abstraction (Battista, 2007).  

The van Hiele model of mathematical concept construction is particularly robust, and 

today, it remains as influential as ever. This is remarkable, given that the Piagetian approach 

that inspired this model has declined in influence. The key to this resiliency may be the van 

Hieles’ emphasis on the critical role of teaching in cognitive change, together with their focus on 

developmental changes in language. As a consequence, the van Hiele model can be reconciled 

with current sociocultural approaches (see below, in the section on participationist framework).    

The study of learners’ development of arithmetical and algebraic conceptions, inspired 

by Piaget’s pioneering work on numerical thinking, has been a particularly active area of 

research. Researchers have zoomed in on specific, clearly delineated forms of mathematical 

activity such as counting (Gelman & Gallistel, 1978), using fractions (Kieren, 1992), and solving 

problems with unknowns (Filloy & Rojano, 1989). This research typically provides meticulous 

descriptions of how the relevant conceptions and skills evolve (for comprehensive reviews see 

Kilpatrick, Swafford, & Findell, 2001 and Kieran, 2007).  

Finally, the method of the teaching experiment was introduced in the 1980s by 

researchers who were trying to map trajectories in the development of students’ mathematical 

conceptions. This technique is premised on the assumption that it is only through teaching that 

researchers can come into contact with those critical moments when students reorganize their 

thinking (Steffe et al., 2000). And if so, researchers must engage in a long-term process of 

teaching individual students one-on-one in order to study the process of concept construction. 

Consistent with the constructivist principles that inspired this work, the pedagogies used in 

teaching experiments involved designing special mathematical tasks and pressing students to 

https://nam04.safelinks.protection.outlook.com/ap/w-59584e83/?url=https%3A%2F%2Fadminliveunc-my.sharepoint.com%2Fpersonal%2Frksawyer_ad_unc_edu%2FDocuments%2FDocuments%2FBooks%2FCHLS%2FCHLS%25203E%2FProduction%2F9781108840989_Chapter-23-Tracked.docx%23ref_ch23_58&data=04%7C01%7CPaul.Cobb%40Vanderbilt.Edu%7C25d9b71c2c6e467ed3be08d9a303fc6f%7Cba5a7f39e3be4ab3b45067fa80faecad%7C0%7C0%7C637720060671470948%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C3000&sdata=YXIK5qHwL7ZbBV7tP3dWhc5ERsLQLwgk%2Fo6fyL9%2BWP8%3D&reserved=0
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reflect on their problem-solving activity. Video-recorded interactions were analyzed after each 

teaching session to inform the selection of tasks for subsequent sessions (also see Chinn & 

Sherin, this volume, on microgenetic methods). Once the experiment was completed, 

retrospective analyses of video-recordings and transcriptions were conducted to model the 

participating students’ learning “in terms of coordinated schemes of actions and operations” 

(Cobb & Steffe, 1983/2010, p. 24). In spite of its focus on a small number of individual learners, 

the models were intended to be “both general and specific” (ibid, p. 27). The impact of the 

method of teaching experiments has extended beyond mathematics education and marked the 

beginning of the intensive study of learning processes in instructional situations.  

To summarize, research on the learner’s mathematical conceptions and on their 

development has extended our knowledge of mathematical learning in two important ways. 

First, it resulted in thorough records of most common idiosyncrasies of the learner’s 

mathematical thinking, and second, it yielded important insights about mechanisms of learning 

mathematics. In addition, this research gave rise to several quandaries, with the surprising 

resilience of student non-standard ideas, or “misconceptions,” being perhaps the most puzzling.  

Research findings indicated that students’ non-standard ideas are often impervious to both 

preventive and remedial efforts of the teacher. The vision of learning as “acquisition of 

conceptions” seemed ill-suited for dealing with this phenomenon. Indeed, when conceptions 

are understood as discrete entities “transmitted” to or “reconstructed” by learners, it is difficult 

to explain the non-linear nature of learning, the fact that it often cannot proceed by a simple 

extension of what the student already knows. In the next section, we present additional reasons 

for the emergence of the alternative participationist approach in mathematics education and 

beyond.   
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Re-conceptualizing learning: From Acquisitionism to 

Participationism  

By the early 1990s, some researchers concluded that it would not be possible to answer 

certain core questions about mathematics learning without a thorough revision of the tacit 

assumptions underpinning their work. Mathematics-related critiques of the acquisitionist 

approach came from a variety of cross-cultural and cross-situational studies, all of which 

indicated the untenability of Piagetian claims about universality of human intellectual 

development and about the primacy of development over learning. Piagetians reserved the 

term development for changes that happen spontaneously and are common to all people. 

Numerical thinking, considered to be a universal human capability, was an obvious candidate for 

cross-cultural and cross-situational examination. However, numerical thinking soon proved to be 

anything but culturally invariant. In fact, the very idea of cross-cultural comparisons proved 

problematic. Investigations of numerical thinking often led to one conclusion if the participants 

were presented with school-like numerical tasks, and to quite a different one if they were asked 

to solve mathematically-equivalent everyday problems (Cole, 1996, p. 74).  

Evidence about the diversity rather than universality of numerical thinking, and thus 

about its cultural rather than developmental sources, came from numerous investigations, 

including studies of the counting practices of Oksapmin people in Papua New Guinea (Saxe, 

1982), the money transactions and paper-and-pencil arithmetic of unschooled Brazilian street 

vendors  (e.g., Nunes, Schliemann, & Carraher, 1993), and the use of numbers and 

measurement in a range of work (e.g., Scribner, 1997) and everyday tasks (e.g., Lave, 1988). 

These studies suggested that mathematics learning is fundamentally situated, that is, people 

tend to recruit what they once learned only in situations highly reminiscent of those in which 
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the learning originally took place (see Engeström, this volume; also Brown, Collins, & Duguid, 

1989). Furthermore, the findings of these studies strong indicate that contextual changes that 

appeared mathematically irrelevant frequently result in previously successful students 

becoming helpless, and that the diversity of learning and its outcomes is much greater than 

anticipated by Piaget and his followers. Many researchers saw this as a challenge to the idea of 

primacy of development over learning.  

Mathematics education researchers voiced their own doubts about some of the tenets 

of constructivism and their findings called for revision of the limited role attributed to 

instruction. In one of these studies (Erlwanger, 1973), the researcher followed a 6th grader 

learning on his own as he worked through a "teacher-proof" series of mathematics booklets. 

The findings shocked mathematics educators by showing that the child produced correct 

answers by inventing ingenuous, locally effective but mathematically faulty solution procedures. 

Such findings led many scholars to conclude that mathematics education research had to 

acknowledge the central role of the teacher in learning.  

Growing dissatisfaction could also be felt among researchers who favored the teaching 

experiment methodology over other investigative techniques. They felt that the restricted role 

of the teacher in one-on-one teaching experiments was at odds with research on teaching that 

highlighted the importance of teachers proactively supporting students learning. In addition, it 

was becoming increasingly apparent that interactions in one-on-one teaching experiments 

might be qualitatively different from what occurs in the classroom as the teacher and multiple 

students interact (Cobb, 2012).   

Another reason for concern was that acquisitionist researchers, who assumed the 

primacy of development over learning, seemed unable to account for either the cross-cultural 

and cross-situational diversity of individual learning, or for learning that occurs at the level of 
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society. This latter type of learning expresses itself in the historical change of human ways of 

thinking and acting and in the incessant growth of their complexity. A solution to both these 

problems, to be found mainly in the work of Lev Vygotsky and his associates, was to 

reconceptualize learning as a process of becoming capable of acting in uniquely human ways 

(see Nathan & Sawyer, this volume). An important aspect of human activities is that they are 

mediated by artifacts, that is, are performed with the help of material tools--such as hammers 

or computers on the one hand, and of symbolic systems, such as language, counting systems, 

and writing, on the other. The artifacts, and thus the activities themselves, are constantly 

refined and passed from one generation to the next. The activities are historically constituted 

rather than predetermined, and they can differ from one culture to another. For Vygotsky, 

therefore, to learn meant to become a competent participant in activities that characterize the 

times and the culture into which people are born. From this theoretical perspective, learning 

mathematics is reconceptualized as becoming a competent participant in mathematical activity.   

To sum up, the contemporary theories we call participationist emphasize joint 

participation in shared cultural activities. As will be illustrated in the review that follows, 

participationist researchers focus on social, predominantly linguistic interaction (see Enyedy and 

Stevens, this volume), and they study learning, as it occurs in classroom interaction or in 

everyday activities (see Engestrom, this volume). 

 

 

Participationist Research in Mathematics Education 
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In this section, an introduction to participationist research is followed by summaries of 

this strand’s contributions to what is known today on processes of learning and teaching 

mathematics and on factors that shape these processes.  

Participationist researchers view personal growth as originating on “the social plane” 

(Vygotsky, 1987, p. 11) rather than in the direct encounter of a person with the world. These 

researchers thus emphasize the importance of the learner’s interactions with more 

knowledgeable others, such as parents and teachers, and more generally, refuse to investigate 

mathematical learning in separation from its social context. The systematic study of learning 

processes occurring in such diverse settings as classrooms, children’s homes and playgrounds, 

museums and workplaces has been supported by new technologies with which one can 

document these processes in all their complexity and then analyze them at any level of detail.   

Participationist researchers distinguish between several types of learning occurring in 

the classroom. In addition to individual student learning, there is the type of learning that can be 

called collective because it involves overall changes in what is considered in the classroom as 

acceptable ways of doing things; and there is teacher learning, which had previously been given 

only marginal attention. Collective learning is often conceptualized as a change in practice, 

whereas individual students’ and the teacher’s learning are seen as a change in ways of 

participating in collective practices (cf. Rogoff, 1990). Practice, the term that refers to the unit of 

analysis accepted by most participationist researchers, is understood as referring to a patterned, 

historically established form of human activity. Mathematics can be seen as a particular set of 

historically established practices.   

Participationist researchers study mathematics learning that takes place in different types of 

settings and involves different forms of practices. While much effort is invested in observing learning that 

occurs in daily circumstances, sometimes without intentional teaching, the study of school learning is still 
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the leading strand of this research. Inspired by philosophers who suggested that human knowledge 

should be viewed as “a kind of discourse” (Lyotard, 1993, p. 3), some participationist researchers 

conceptualize mathematics learning as the process of mastering the communicational practices of the 

mathematical community. Mathematics education researchers who adopted this conceptualization 

(Lerman, 2001; Kieran, Forman,& Sfard, 2001; Sfard 2008) treat mathematics learners’ talk as an object of 

study in its own right, and not just as a “window” to something else – conceptions, mental schemes, and 

so forth. From this perspective, studying mathematics learning is synonymous with investigating 

processes of discourse development. In its most “radical” version, this discursive approach rejects the 

strict ontological divide between what is going on “inside” the human mind and what is happening 

“outside” (see Enyedy & Stevens, this volume; Nathan & Sawyer, this volume; Abrahamson & Lindgren, 

this volume). To forestall misunderstanding, let us stress that equating mathematics with discourse does 

not entail the denial of processes that happen inside human heads. It only means that discourse becomes 

the superordinate category, with mental phenomena no longer considered as belonging to separate 

ontological category. Admittedly, not all discursively-oriented researchers embrace this uncompromising, 

“radical” form of non-dualism). 

Two important principles guide participationist studies of classroom learning. First, this 

learning cannot be investigated without considering what happens on both the collective and 

the individual level; or, to use Vygotsky’s language, without considering the interaction between 

the social and individual planes (note the parallels with the distinction between elemental and 

systemic approaches described by Nathan & Sawyer, this volume). Second, learning and 

teaching are two sides of one process, and as such, must always be studied in tandem. True, the 

researcher can choose whether to focus on the student and the process of learning or the 

teacher and the process of teaching. Yet, she must also keep in mind that none of these aspects 

of learning-teaching processes stands on its own and none can be ignored, whatever the focus 

of the study.  
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To investigate the interdependence of collective and individual learning and to modify 

instruction in response to evolving classroom mathematical practices, participationist 

researchers developed a method called design based research or sometimes the design 

experiment (see Barab, this volume). This method involves both instructional design and 

research. Throughout the investigation, the researchers assume the responsibility for a class and 

its mathematical learning (Cobb, Confrey, diSessa, Lehrer, & Schauble. 2003; Stephen, McClain, 

& Gravemeijer, 2001).  Rather than planning the entire teaching unit in advance, they prepare 

for instruction by specifying learning goals, anticipating a possible collective learning trajectory, 

and identifying possible types of learning tasks and tools. Decisions about what will actually be 

done during each lesson are then grounded in ongoing analyses of what happened in prior 

classroom sessions.  

One of the overall goals of a design experiment is to see how students become capable 

of performing such mathematical tasks as finding and justifying solutions, evaluating the 

reasonableness of solutions, generalizing from solutions, and making connections between 

multiple representations of a mathematical idea (Kilpatrick, Swafford, & Findell, 2001). The 

design experiment methodology makes it possible for the researchers to both support and 

observe successive patterns in the development of these mathematical capabilities, and to tie 

the patterns to the specific means used to support the students’ learning. The analyses of the 

data collected in an experiment therefore emphasize that both the process of students’ 

mathematical learning and the mathematical capabilities they develop are situated with respect 

to the classroom learning environment, and are highly dependent on the students’ interactions 

with the teacher.   

In participationist research, the basic type of data is the carefully transcribed 

communicational event. Its methods of analysis are mainly adaptations of techniques developed 
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by applied linguists or by discursively-oriented social scientists (see Enyedy & Stevens, this 

volume). There is also a rapidly expanding assortment of analytic tools that are tailor-made to fit 

the particular needs of mathematics education research (Moschkovich, 2010). In spite of their 

disciplinary specificity, most of these techniques can be easily transferred to the study of other 

subjects. 

Learning mathematics 

Participationist research has already brought many important insights on learning-

teaching processes. In one of the most comprehensive participationist studies, Cobb and his 

colleagues introduced the notion of classroom norms, unwritten rules that define acceptable 

ways of acting in a classroom. Three types of norms have been identified and studied. The social 

and sociomathematical norms differ in the degree of generality: social norms regulate students’ 

and teachers' social conduct and are discipline-independent, whereas sociomathematical norms 

are unique to the learning of mathematics (Yackel & Cobb, 1996). The third type of norms, those 

collectively labeled mathematical practices of the classroom, pertain to mathematical ways of 

doing things and encompass the purpose for engaging in mathematical activity, standards of 

mathematical argumentation, and ways of reasoning with tools and symbols (Cobb et al., 2001).  

These practices have been shown to evolve in the course of classroom interactions (Cobb et al., 

2001). The notion of norm has proved useful both in describing collective learning and in 

explaining individual participants’ actions and interactions. In fact, all types of classroom 

learning may be thought of as resulting from the mutual shaping of collective norms and the 

teacher’s and students’ individual actions.  

The discursive strand of participationist research has been generating a high-resolution 

picture of the development of mathematical discourses, as this development takes place in a 

classroom and beyond. Discursive methods, while demanding and time-consuming, allow the 
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analyst to see what often escapes the teacher’s attention during a real-time classroom 

conversation. By making these interactional details visible, discursive analyses often reveal 

differences between things or situations that previously appeared identical. When this 

difference is recognized, students’ discursive actions that so far did not seem to make much 

sense may appear reasonable, even if non-standard.   

An important insight generated by discursive research is that historical and ontogenetic 

developments of mathematical discourse both involve two types of transformations.  Object-

level developments extend what is known about already constructed mathematical objects. This 

type of discoruse growth is mainly accumulative: it expresses itself in systematic addition of 

endorsed narratives, and possibly of routines. Meta-level developments are those that involve 

changes in the rules of the discourse. The transition from the discourse of unsigned numbers to 

the discourse of signed numbers is a good example of this latter type of change. The need for 

meta-level learning poses special challenges for the learner, which are likely to be aggravated by 

their invisibility not only to the learner, but also to the teacher.  

The term identity, which can be described as referring to a collectively built image of an 

individual, has been introduced to participationist research in the recognition of the inherently 

social nature of learning.  Although identity does not have an agreed operational definition, 

there seems to be a consensus about a number of descriptors that, when taken together, 

delineate this concept and its possible uses (Darragh, 2016). In informal terms, a person’s 

identity is a set of features that one is likely to consider when answering the question of who 

this person is. While building identities, either their own or those of others, people draw on an 

assortment of identity templates available in their social milieu. These templates reflect what is 

valued in the given society and what may be expected from its members. In societies that 

appreciate mathematical competence, learning mathematics becomes an important part of the 
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process of building students’ identities. In research on learning, thinking about interpersonal 

processes in terms of identity and power relations makes it possible to deal with emotional, 

social, and political aspects of educational processes under a single, well-integrated conceptual 

and methodological umbrella, one that can also accommodate epistemological and ontological 

issues of mathematics learning.  

Clearly, different people may attribute different identities to the same person. Another 

important trait of identities is their being in a constant flux. Whereas omnipresent, identity 

transformations are a matter of interpersonal dynamics and as such, cannot be attained at will. 

Further, identities tend to function as self-fulfilling prophecies and may have a long-term effect 

on learning. Once a student is identified as “weak” in mathematics, she will be more likely to fail 

in the future; in contrast, the learner who has been labeled as “strong” will be more determined 

to achieve success. The result will reinforce the previously constructed identities, reducing the 

chances for a change in a reverse direction (Heyd-Metzuyanim, 2015). Aware of the co-

constitutive relation between the learning of mathematics and the processes of building the 

learner’s identity, some researchers propose that direct attempts to mold students’ 

mathematical identities may have positive impact on the students’ readiness and ability to 

participate in mathematics discourse.  According to those who promote critical mathematics 

education, templates for “identities of success” that have currency in today’s societies may 

stymie mathematics learning rather than be helpful (Gutierrez 2007). Disrupting the widely held 

views of what counts as desirable student identities may thus be a precondition for any decisive 

improvement in mathematics learning.   

Teaching mathematics 

Participationist research has contributed to the emergence of a broad consensus about 

how mathematics lessons should be organized to support students’ development of key 
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mathematical capabilities and productive identities as doers of mathematics (Hiebert & Grouws, 

2007; Langer-Osuna & Esmonde, 2017).  The findings of a number of studies indicate the 

value of the teacher introducing mathematical tasks that are challenging for students, then 

students working to solve the tasks individually or in small groups, and finally the teacher 

orchestrating a whole class discussion of the students’ solutions.  This strand of research has 

also made a significant contribution by analyzing the major aspects of productive classroom 

learning environments, including instructional tasks, classroom norms for each phase of lessons, 

the nature of classroom discourse, and students’ use of notations and other types of tools 

(Lehrer & Schauble, 2011).  It is apparent from this work that the various aspects of the 

classroom learning environment are interdependent.  For example, instructional tasks as they 

are actually implemented in the classroom and experienced by students depend on the tools 

that are available to students and on whether the teacher simply grades students’ solutions or 

leads a whole class discussion in which students are pressed to explain and justify their 

reasoning. In this regard, participationist research focuses on both the nature of instructional 

tasks and on the classroom activities within which the tasks come to have meaning and 

significance for students.  Although this work is content-specific, the conceptualization of 

classroom learning environment as composed of interdependent aspects can be adapted to 

inform research on learning in other content areas.   

Drawing on research on student learning, participationist researchers have made 

substantial progress in delineating key classroom instructional routines that are likely to give rise 

to significant learning opportunities for students.  As an illustration, let us consider a whole class 

discussion, the aim of which is to present, compare, and consolidate students’ solutions.  

Orchestrating such discussion is challenging because it involves drawing on students’ 

contributions while ensuring that classroom discourse supports students in deepening their 
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understanding of central mathematics ideas.  Stein, Engle, Smith, and Hughes (2008) found that 

accomplished teachers could anticipate the most common types of student solutions and that 

they purposefully sequenced the order in which solutions were discussed so that significant 

mathematical issues came to the fore.  In addition, these teachers treated student contributions 

differentially based on whether they would advance their instructional agenda, and also pressed 

students to explain and justify their reasoning, assess others’ solutions, and make connections 

between different solutions.  As this illustration indicates, analyses that identify specific 

instructional routines make a significant contribution by specifying potential goals for teachers’ 

learning and thus for teacher professional development.  

Discursive research provides insights on the proactive role of the teacher in supporting 

students’ learning. What has been learned from this research thus far casts doubt upon several 

widespread beliefs about teaching. For instance, at those times when a further development of 

mathematical discourse requires meta-level learning, the support of the teacher or of the “more 

knowledgeable other” cannot be limited to encouraging the learner’s own invention.  Instead, it 

is imperative that students are intentionally inducted into the discourse of the accomplished 

participant, and that they are encouraged to persist in participating in this discourse even 

though it is incompatible with their own. Such persistent guided participation is necessary if 

they are ever to fathom the reasons for the historical emergence and for the wide acceptance of 

the new discourse (see Reiser & Tabak, this volume).   

Learning to Teach Mathematics 

In recent years, participationist research has focused increasingly on teachers’ as well as 

students’ learning.  This development is a direct response to the realization that teachers’ 

development of the classroom instructional routines outlined above involves substantial 

learning, and that this learning requires sustained support.  Participationist research has clarified 
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the goals for teachers’ learning by identifying the types of knowing inherent in the enactment of 

instructional routines. An influential finding in this regard concerns what Hill and her colleagues 

have labeled as mathematical knowledge for teaching and involves much more than just solving 

the types of problems that they use with students (Hill, Sleep, Lewis, & Ball, 2007).  Researchers 

who study mathematical knowledge for teaching also ask whether teachers “understand 

mathematics in the particular ways needed for teaching, whether they know what their 

students are likely to make of the content, and whether they can craft instruction that takes into 

account both students and the mathematics” (p. 125).  Hill and colleagues’ finding that there is 

significant connection between teachers’ mathematical knowledge for teaching, the quality of 

instruction, and student achievement indicates the value of viewing teachers’ ways of knowing 

as situated with respect to the types of decisions and judgments that they make in the course of 

their work. 

More recent investigations have identified two additional aspects of teachers’ ways of 

knowing that appear to be critical if they are to develop the above instructional routines.  The 

first concerns teachers’ development of an initial vision or image of high-quality instruction that 

encompasses the types of cognitively demanding tasks that students are expected to solve, the 

nature of classroom discourse, and the role of the teacher in the successive phases of the lesson 

(Munter, 2014).  Intuitively, findings that indicate the importance of teachers developing an 

initial vision of high-quality instruction are reasonable in that it is difficult if not impossible for 

teachers to develop new forms of practice if they do not have a vision of their function in 

supporting students’ learning  The second aspect of teachers’ ways of knowing concerns their 

views of their students’ current mathematical capabilities, particularly students who they 

perceive are currently struggling (Jackson, Gibbons, & Sharp, 2017). This aspect is important 

because some teachers who have developed a relatively sophisticated vision of high quality 
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instruction nonetheless eschew opportunities to develop such instructional routines because 

they contend that their students are incapable of participating in and learning from such 

instruction.  These teachers appear to view the limited capabilities they attribute to their 

students as inherent, context independent characteristics of the students rather than as 

situated with respect to the instruction in which their students are currently participating.  In 

contrast, teachers who have developed what Jackson et al. term productive views of their 

students’ current capabilities anticipate that their students will be able to participate in and 

learn from high quality instruction that is organized around challenging tasks, provided they 

receive appropriate support.  As a consequence, these teachers typically capitalize on 

opportunities to develop such instructional routines.   

A closely related line of research has investigated designs for supporting teachers’ 

development of high-leverage instructional routines that are likely to give rise to significant 

learning opportunities for students (Kazemi, Franke, & Lampert, 2009). Examples include 

eliciting and responding to students’ contributions, managing small group work on challenging 

tasks, and leading whole-class discussions of students’ solutions to challenging tasks.  This line of 

research has made considerable progress in the last ten years or so and has deepened our 

understanding of high quality school- and system-level professional development, school-based 

teacher collaborative meetings, and one-on-one content-focused coaching in teachers’ 

classrooms.    

One of the key findings is that high quality supports for teachers’ learning connect 

student learning goals, students’ mathematical reasoning, and instruction.  As an illustration, 

meetings that coaches conduct with teachers to debrief on the enactment of lessons that they 

had planned together typically focus almost exclusively on the instruction during the lesson.  

However, the findings of two recent studies indicate the value of the coach and teacher first 
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analyzing students’ reasoning during the lesson to assess the extent to which they attained their 

goals for the students’ learning (Russell, Stein, & Correnti, et al., 2017; Kochmanski, 2020).  In 

productive debriefs, the coach and teacher do not focus on instruction during the lesson until 

they have completed this analysis, and they then do so in order to explain why the students 

learned what they actually learned in the lesson.  In the process, the coach and teacher identify 

weaknesses in the lesson and propose instructional changes that are justified in terms of their 

potential to support students’ learning.  Horn, Garner, Kane, and Brazel (2017) found that 

discussions in productive teacher collaborative meetings that have the potential to support 

substantial teacher learning have a similar structure, and Borko, Jacobs, and Koellner (2010) 

report parallel findings for professional development sessions.  Taken together, these findings 

highlight the interdependence of students’ learning and teachers’ learning.  This is a significant 

development given that research on students’ learning and research of teaching were, until 

quite recently, largely separate areas of investigation. 

The findings of participationist research on teacher learning have broad implications for 

our understanding of learning more generally.  They indicate both that learning is fundamentally 

situated and that people’s learning in one situation (e.g., professional development sessions) 

can influence what they do in another situation (e.g., the classroom).  These findings suggest 

that learning to use particular routines across a wide range of situations is a significant 

achievement and requires the support of more accomplished others who ensure that there is a 

bi-directional interplay between learners’ activity in the different settings (Kazemi & Hubbard, 

2008). 

Concluding remarks 
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Today, we know a great deal about what is likely to happen as students make their way 

into the world of mathematics and about how particular teachers’ instructional routines may 

support or hinder their learning. Moreover, mathematics education researchers now seem more 

capable than ever of dealing with the complexities of human learning without compromising the 

standards of scientific quality that such work is expected to meet. This said, much work still lies 

ahead, and there is the constant need for innovations that can make a significant difference 

both in research and in the practice of teaching and learning.  New opportunities seem to be 

opening, thanks to recent advances in brain-imaging technology and in methods of data 

collecting and analyzing.  Research in mathematics education, it seems, will continue to make 

contributions, the importance and applicability of which go beyond its own boundaries, to the 

sciences of learning in general.   
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