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CHAPTER 1 

Puzzling about (mathematical) thinking 
 

One… fact must astonish us or would rather astonish us if we were not so much accustomed to 
it: How does it happen that there are people who do not understand mathematics? If this 

science invokes only the rules of logic, those accepted by well-formed minds, how does it 
happen that there are so many people who are impervious to it?  

Henri Poincaré
1
 

 
 

 

 

 

 

Full of puzzles, mathematics is a puzzle in itself. Anybody who knows anything about it is 

likely to have questions to ask.  Most of us marvel on how abstract mathematics is and 

wonder how one can come to grips with anything as complex and as detached from anything 

tangible as this. The concern of those who do manage the complexity, as did the French 

mathematician and philosopher of science Henri Poincaré is just the opposite: The fortunate 

few who “speak mathematics” as effortlessly as they converse in their mother-tongue have a 

hard time trying to understand other people’s difficulty. From a certain point in our lives, it 

seems, mathematical understanding becomes the “all or nothing” phenomenon – either you 

have it, or you don’t, and being in any of these two camps appears so natural that you are 

unable to imagine what it means to be in the other.  

But the bafflement with regard to mathematics goes further than that. Literature about 

human thinking is teeming with resilient mathematics-related puzzles. Some of these puzzles 

are well-known and have been fueling vocal debates for a long time now; some others are 

still waiting for broader attention. Let me instantiate both types of quandaries with a number 

of examples. Each of the five stories that follow begins with a brief description of a well-

documented controversy and continues with additional teasing questions that must occur to 

us the moment we manage to see a familiar situation in unfamiliar light. No solutions will be 

proposed at this time, and when the chapter ends, some readers may feel left midair, and 

rather annoyingly so. May I thus beg for your patience: Grappling with the conundrums that 

follow is going to take this whole book. In this chapter, my aim is to present the maladies of 

the present research on thinking and prepare the ground for diagnosing their sources. The 

attempt to follow with a cure will be made in the remaining chapters. I do hope that the long 

journey toward a better understanding of thinking will be not any less rewarding than the 

prizes that wait at its end.   
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1. The quandary of number 

Puzzling phenomena related to mathematics can be observed already in the earliest stages 

in child’s development. Some of the best known and most discussed of such phenomena 

were first noticed and documented by the Swiss psychologist Jean Piaget.2 To put it in 

Piaget’s own language, young children do not conserve number, that is, they are not aware 

of the fact that mere spatial rearrangements do not change cardinality of sets of objects (or, 

to put it simpler, as long as nothing was added or taken away, the counting process, if 

repeated, always ends with the same number-word).  

A child’s awareness of the conservation of number is tested with the help of specially 

designed tasks. In one of such tasks the child is shown two numerically equivalent sets of 

counters arranged in parallel rows of equal length and density. The one-to-one 

correspondence of the counters is thus readily visible when the child is asked “Which of the 

rows has more marbles?” In this situation, even young interviewees are reported to give the 

expected answer. One of the rows is then stretched so as to become longer without 

becoming more numerous. The child is then asked the same question again. On the basis of 

their performance, most of 4 and 5-year old children are believed to be at “pre-conservation” 

stage: When requested to compare the rows of the unequal length, even those of them who 

previously answered that “no row has more” now point to the one that has been stretched. 

This phenomenon appears particularly surprising in the view of the fact that by the age of 4 

the majority of children have already mastered the art of counting up to 10 or 20.3  Why is it 

that children who can count properly do not turn to counting when presented with the 

question “Which of the two rows has more marbles?” “They do not yet conserve number” is a 

traditional Piagetian answer. Piaget’s perplexing finding, as well as his diagnoses, led to a 

long series of additional studies in which 4 and 5 year old children were presented with tasks 

best to be solved with the help of counting, such as set comparison or construction of 

numerically equivalent sets. All these studies confirmed at least one of Piaget’s observations: 

Although skillful in counting, children tend to perform certain tasks with non-numerical 

methods, which more often than not lead them to “nonstandard” results.   

Over the last several decades these phenomena and their Piagetian interpretation 

generated much discussion.4 For example,  Margret Donaldson  and James McGarrigle5 

speculated that children may have at least two good reasons to modify their answers 

following the change in the arrangement of sets, with none of these reasons translating into 

the young learners’ “inability to conserve number.” First, it seemed plausible that rather than 

relating the words has more to the cardinality of sets, the children attend to the immediately 

visible properties of the rows, such as length. Second, according to the rules of the learning-

teaching game widely practiced both in schools and at children’s home, the very reiteration of 



Chapter 1 – puzzling about mathematics thinking  From Thinking as communicating, 2008 

 

                     3 

the question may be interpreted by the young interviewees as a prompt for a change in the 

answer 6.    

In the attempt to have a closer look at this phenomenon, my colleague Irit Lavi and I 

have launched an Incipient Numerical Thinking Study,7 in which we intended to check the 

numerical skills of Irit’s four-year old daughter, Roni, and of Roni’s seven-months-older friend 

Eynat. Our intention was to conduct an experiment not unlike those described above: We 

would ask the girls to compare sets of counters.  Although our study led to findings not unlike 

those obtained by Piaget and his followers, it also became a source of new, previously 

unreported quandaries. One vignette from this study suffices to exemplify certain striking, 

previously unreported, aspects of the children’s performances.  Episode 1, presented below, 

is the beginning of the first, 20-minute-long conversation between the two girls and Roni’s 

mother.  The event took place in Roni’s house. Two sets of marbles were presented to the 

girls in identical closed boxes, with the marbles themselves invisible through the opaque 

walls.8  

 

 

 

 

 

 

 

 

 

 

 

Episode 1.1: Comparing sets of marbles 

Speaker What is said What is done 

1.   Mother I brought you two boxes. Do you 
know what is there in the boxes? 

Puts two identical closed opaque 

boxes, A and B, on the carpet, next to 

the girls. 

2.   Roni Yes, marbles.  

3a.  Mother Right, there are marbles in the 
boxes.  

 

3b.  Mother I want you to tell me in which box 
there are more marbles. 

While saying this, points to box A close 

to Eynat, then to box B. 

3c. Eynat  Points to box A, which is closer to her. 

3d.  Roni  Points to box A 

4.   Mother In this one? How do you know? Points to box A 

5.   Roni Because this is the biggest than While saying “than this one” points to 

Fig. 1: 
Roni, 4 (left) and 
Eynat, 4 (7) 
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this one. It is the most. box B, which is closer to her 

6.  Mother Eynat, how do you know?  

7.  Eynat Because… cause it is more huge 
than that. 

Repeats Roni’s pointing movement to 

box B when saying “than that” 

8.  Mother Yes? This is more huge than 
that? Roni, what do you say? 

Repeats Roni’s pointing movement to 

box B when saying “than that” 

9.  Roni That this is also more huge than 
this.  

Repeats Roni’s pointing movement to 

box B when saying “than that” 

…… ……  …… 

10a. 
Mother 

Do you want to open and 
discover? Let’s open and see 
what there is inside. Take a look 
now.  

 

10b. Roni  Abruptly grabs box A, which is nearer 

to Eyant and which was previously 

chosen as the one with more marbles.   

11. Roni 1.. 1.. 1.. 2, 3, 4, 5, 6, 7, 8. Opens box A and counts properly.  

12. Eynat 1, 2, 3, 4, 5, 6. Opens box B and counts properly. 

13. Mother So, what do you say?  

14. Roni 6.  

15. Mother Six what? You say 6 what? What 
does it mean “six”? Explain.  

 

16. Roni That this is too many.  

17. Mother That this is too much? Eynat, 
what do you say? 

 

18. Eynat That this too is a little.  

19. Mother That it seems to you a little? 
Where do you think there are 
more marbles? 

 

20. Roni I think here. Points on the box, which is now close 

to her (and in which she found 8 

marbles) 

21. Mother You think here? And what do you 
think, Eynat? 

 

22. Eynat Also here.   

 

As predicted by the mother, the girls have shown full mastery of counting. In spite of 

this, they did not bother to count the marbles or even to open the boxes when asked to 

compare the invisible contents. Their immediate response was the choice of one of the 

closed boxes ([3c], [3d]). Not only did they make this instant move and agreed in their 

decision, but they were also perfectly able to “justify” their action in the way that could have 

appeared adequate if not for the fact that the girls had no grounds for the comparative 

claims, such as “this is the biggest than this one” ([5]), “It is the most” ([7]) and “it is more 

huge than that” ([9]). If the startled mother had hoped that her interrogation about the 

reasons for the choices ([4], [6], [8]) would stimulate opening the boxes and counting the 



Chapter 1 – puzzling about mathematics thinking  From Thinking as communicating, 2008 

 

                     5 

marbles, she was quickly disillusioned: Nothing less than the explicit request to open the 

boxes ([10a]) seemed to help.  

By now, we are so familiar with the fact that “children who know how to count may not 

use counting to compare sets with respect to number,”9 that the episode may fail to surprise 

us, at least at the first reading. And yet, knowing what children usually do not do is not 

enough to account for what they actually do. Our young interviewees’ insistence on deciding 

which box “has more marbles” without performing any explorations is a puzzle, one that has 

not been noted or accounted for in the previous studies. Unlike in conservation tasks, Roni 

and Eynat made their claims about the inequality without actually seeing the sets, so we 

cannot ascribe their choices to any visible differences between the objects of comparison. 

Neither can the children’s surprising decision be seen as motivated by the rule “Repeated 

question means ‘Change your answer!’”: The girls chose one of the indistinguishable boxes 

already the first time round, before the parents had a chance to reiterate their request. Well, 

they were playing a guessing game, somebody may say. This would mean that the children 

knew they would have to verify their guess by counting the contents of the two boxes. 

However, neither of them seemed inclined to actually perform such a verifying procedure, 

and when they eventually did, there was no sign they were concerned with the question of 

whether the present answer matches the former direct choice. Moreover, the hypothesis of a 

guessing game, even if confirmed, still leaves many questions unanswered: Why were the 

girls in such perfect accord about their choices even though these choices seemed arbitrary? 

What was it that evidently made the chosen box so highly desirable? (note that each of the 

girls wanted this box for herself, see e.g., [10d]). Why after making the seemingly 

inexplicable decisions were the children able to answer the request for justification? On what 

grounds did they claim that what they chose is “the biggest” or “more huge”? Many different 

conjectures may be formulated in an attempt to respond to all these queries, but it seems 

that a real breakthrough in our understanding of children’s number-related actions is unlikely 

to occur unless there is some fundamental change in our thinking about numerical thinking. 

It seems that in order to come to grips with these and similar phenomena, one needs 

to go beyond the Piagetian frame of mind. Indeed, if there is little in the past research to help 

us account for what we saw in this study, it is probably because theory-guided researchers 

used to attend to nothing except for those actions of their interviewees which they have 

classified in advance as relevant to their study, and for the Piagetian investigator, the 

conversation that preceded opening of the boxes would be dismissed as a mere ‘noise’. The 

analysis of the remaining half of the event might even lead her to the claim that Roni and 

Eynat had a satisfactory command over numerical comparisons, although this is not the 

vision that emerges when the second part of the episode is analyzed in the context of the 

first.  
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2.  The quandary of abstraction (and transfer)  

The most common explanation of the wide-spread failure in the more advanced school-type 

mathematics is its highly abstract character. Abstracting, the specialty of scientists at large 

and of mathematicians in particular, has always been a highly valued activity, appreciated for 

its power to generate useful generalizations. It has been believed that if people engage in 

abstract thinking in spite of its difficulty, it is because of the natural tendency of the human 

mind for organizing one’s experience with the help of unifying patterns and structures. It may 

be thus surprising that the notion of abstraction has been getting bad press lately. True, the 

troubles did not really start today. The idea of abstraction boggled the minds of philosophers 

and of psychologists ever since the birth of their disciplines, and critical voices, pointing to 

abstraction-engendered conceptual dilemmas, could be heard for centuries. And yet, never 

before was it suggested, as it is now, that the term abstraction be simply removed from the 

discourse on learning.10   

To get a flavor of the phenomena that shook researchers’ confidence in the human 

propensity for abstracting, let us look at the brief episode that comes from the study of 

Brazilian street vendors conducted by Teresa Nunes, Annalucia Schliemann and David 

Carraher.11 The 12 year-old child, M, selling coconuts at the price of 35 cruzeiros per unit, is 

approached by a customer.  

CUSTOMER:        I’m going to take four coconuts. How much is 

that? 

M, THE CHILD: There will be one hundred five, plus thirty, 
that’s one thirty-five… one coconut is thirty-
five… that is… one forty!  

Some time later, the child is asked to perform the numerical calculation 4·35 without any 

direct reference to coconuts or money. 

CHILD:       Four times five is twenty, carry the two; two plus three is five, times four 
     is twenty. [Answer written: 200]  

The new result, so dramatically different from the former, may seem puzzling to anybody who 

knows a thing or two about mathematics. To put it in the researchers’ own words, “How is it 

possible that children capable of solving a computational problem in the natural situation will 

fail to solve the same problem when it is taken out of context?”12 Solving “the same problem” 

in different situations means being able to view the two situations as, in a sense, the same, 

or at least as sufficiently similar to allow for application of the same algorithm. Being able to 

notice the sameness (or just similarity) is the gist of abstracting, and the capacity for 

abstracting is said to be part and parcel of the human ability to “transfer knowledge” – to 

recycle old problem-solving procedures in new situations. What puzzled the implementers of 
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the Brazilian study was the fact that this latter ability seemed to be absent in M, as well as in 

practically all the other young street vendors whom they interviewed. 

One may try to account for these findings simply by saying that the main reason for 

the disparity between the Brazilian children performances in the street and in school-like 

situations was their insufficient schooling. M’s inability to cope with the abstract task is 

understandable in the view of his almost complete lack of school learning. And yet, the 

question remains why it did not occur to the child to use in the school-like situation the very 

same algorithm that made him so successful in the street. This query becomes even more 

nagging in the view of the results of other cross-cultural and cross-situational studies, most of 

which indicated that people who are extremely skillful in solving everyday mathematical 

problems may have considerable difficulty with learning abstract equivalents of the real-life 

procedures. Consider, for example, the findings of the study conducted by Michael Cole and 

his colleagues in the early 1960s in Liberia. Although the Kpelle people, whom the 

researchers observed, have shown the great agility in operating on quantities of rice and in 

money transactions, they seemed almost impervious to school mathematics. “Teachers 

complained that when they presented a problem like 2+6=? as an example in the classroom 

and then asked 3+5=? on a test, students were likely to protest that the test was unfair 

because it contained material not covered in the lesson”.13 Even in retrospect, Cole cannot 

overcome his bafflement:  

The question aroused by these observations remains with me to this day. Judged by 
the way they do puzzles or study for mathematics in school, the Kpelle appeared 
dumb; judged by their behavior in markets, taxis, and many other settings, they 
appeared smart (at least, smarter than one American visitor). How could people be so 
dumb and so smart at the same time.14 

These findings are not unlike the results of many other cross-cultural and cross-

situational studies, notably those on dairy warehouse workers,15 on American shoppers and 

weight-watchers,16 and on Nepal shopkeepers.17 In our own study, we have seen that a child 

may have difficulty putting together everyday and abstract mathematical procedures even if 

she has a reasonable knowledge of school mathematics. Consider, for example, two 

excerpts from an interview with a 12 year-old 7th-grader,18 whom I shall call Ron. In the first 

part of the conversation, the child was playing the part of a shop attendant and the 

interviewer presented herself as a client. The products were represented by cards featuring 

their names along with their authentic prices. The “vendor” and the “buyer” had a certain 

amount of real coins and banknotes at their disposal. In the episode that follows, the 

shopkeeper is calculating the sum to be paid by the buyer, who is asking for 3 cans of tuna 

fish for 4.99 shekel each and for two bottles of mineral water, for 1.10 shekel each.19  
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Episode 1.2: Utilizing rounding procedure and distributivity 

67.  Interviewer: Three cans of tuna and two bottles of 
water. 

The necessary operation:  
3 · 4.99IS + 2 · 1.10IS 

68.  Ron: [….]20 Two twenty [2.20] 
[…………………] Can I round the sums 
up?  

 

69.  Interviewer: Just tell me how much I am supposed to 
pay. 

 

70.  Ron: [……………….] I think it is 17 [IS] and 17 
agoras. [17.17] 

[…..] Perhaps not. 

Let me see. I calculated this as 5…. It 
makes 15, because I multiplied by 3. 
Minus three agoras from the 99, and it 
makes 14 and 97 agoras. I added 97 
agoras and the 20 agoras of the water 
and this means I have to add shekel and 
17 agoras. It is already 15 and 17 
agoras. I added the 2 shekels of the 
water and this made 17 shekels and 17 
agoras.  

 

 

 

Performs: 

3 · 5IS = 15IS 

15IS  - 3 ag = 14.97IS 

97ag + 20 ag = 1.17IS 

14IS + 1.17IS = 15.17IS 

15.17IS + 2IS = 17.17IS  

 

 

The shopping tasks were followed by purely numerical assignments, one of which was the 

multiplication 24 · 9. Ron performed the operation based on distributive property and without 

using the rounding procedure, which might have given the result quicker. 

192. Ron: [reads] 24 times 9 […...] 

20 times 9 is 180. 9 times 4 is 36. 80 plus 
36 is […..…..] 116. 180 plus 36 is 226. 

24 · 9 

 

In spite of his skillfulness in applying the rounding procedure and in taking advantage of 

distributivity, which he displayed both here and in the previous task with money, Ron did not 

have recourse to these methods while trying to perform a more complex calculation, 49 · 16:  

196. Ron: 40 times 16. 40 times 10 is 400.  

9 times 6 is 54. It’s 454. 

40 · 10 = 400 

9 · 6 = 54 

400 + 54 = 454 

197. Interviewer: Is this reasonable?  

198. Ron: Why not?  

 

The interviewer waited for a few moments and then decided to clue the boy toward the use of 

the rounding procedure.  

 

199.  Interviewer: Look again at the expression. Are there 
other similar numbers you could.. 

49 · 16 

200. Ron: What do you mean?  

201.  Interviewer: 49 is like…  
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202. Ron: […..] 64?  64 was a number obtained in 
one of the former purely 
numerical tasks. 

203.  Interviewer: Do you remember what we did while 
shopping?  

 

204. Ron: [……..]  

 

When we had 99 agoras? 

looks at the prices written on 
the product-cards 

205.  Interviewer: Yes. What did we do then?  

206. Ron: We took 1 agora away… It is 50 times 10 
minus [….] I turned 49 into 50 [….] 50 
times 10 is 500 [….] and 50 times six is 
300. It is 800 [….]; and then… 166? No, 
346.  

50 · 10 - … 

50 · 10 = 500 

50 · 6 = 300 

500 + 300 = 800 

800 - 166? 

800 - 346?  

207.  Interviewer: You subtract 346?  

208. Ron: Yes, 346.  

Ron’s present difficulty with utilizing the rounding procedure and the distributive 

property, which clearly contrasts with the facility he demonstrated while applying both of 

them in the ‘real life’ situation, may be due to the difference in the numbers involved. 

However, it may also be a result of the fact that this time, the calculations were performed on 

the “bare” numbers and not on the familiar notes and coins which evidently mediated – either 

in their real or only imagined form – the earlier real-life calculation. Not to speak about the 

possibility that Ron might simply have no reason to associate the paper-and-pencil numerical 

tasks with the money transactions. After all, numerical tasks are performed in schools to 

show one’s mastery of formal computational procedures, not merely to produce an answer. 

Whichever the reason, the question is what can be done to overcome this 

compartmentalization of techniques.  

According to many researchers, the bulky findings that indicate the strong 

dependence of human actions on the situations in which the actions take place seem to 

undermine the underlying assumption that abstract concepts and procedures, once learned, 

will readily “transfer” to new situations whenever such possibility offers itself:  

recent investigations of learning.. challenge.. separating of what is learned from how it 
is learned and used.  The activity in which knowledge is developed and deployed, it is 
now argued, is not separable or ancillary to learning or cognition. Nor is it neutral. 
Rather, it is an integral part of what is learned. Situations might be said to co-produce 
knowledge through activity. Learning and cognition, it is now possible to argue, are 
fundamentally situated.21 

The resulting criticism of the ideas of abstraction and transfer goes from moderate to 

radical – from one that focuses on common faults in our understanding of the concept to one 

that posit its outright untenability. In the radical version, the notion of abstraction, seen as 
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practically inseparable from the issue of the generality of knowledge and from the concept of 

learning transfer, is being accused of bringing into cognitive research tacit assumptions that 

are bound to lead this research astray. Thus, for example, the first theorists who proposed to 

conceptualize learning in terms of participation in certain well-defined practices rather than in 

terms of “acquiring knowledge” declared that they “challenge… the very meaning of 

abstraction and/or generalization” and “reject conventional readings of the generalizability 

and/or abstraction of ‘knowledge’.” 22  In the moderate version, the proposal is not so much to 

abandon the idea of abstraction as to be more aware of the hazards of its careless 

conceptualization and of its perfunctory applications. Referring to the heated controversies 

between those who oblige abstraction and those who reject it, says James Greeno:23 “On the 

issue of abstraction… the disagreement … is about theoretical formulations, rather than 

being about empirical claim.” And further, while  

abstract representations can facilitate learning when students share the interpretive 
conventions that are intended in their use…., [a]bstract instruction can also be 
ineffective regarding some important purposes if what is taught in the classroom does 
not communicate important meanings and significance of symbolic expressions and 
procedures.   

Whether phenomena such as those described above should be taken as showing the 

inherent, insurmountable situatedness of learning remains a moot point. The discussion on 

the nature and place of abstraction in human thinking is going on and on and does not show 

any signs of approaching definite conclusions.24 Whatever the interpretation and conclusions 

drawn from the cross-cultural and cross-situational studies, however, one thing is certain: 

These studies’ findings face us with the dilemma. On the other hand, we seem to have good 

reasons to doubt the effectiveness of what Greeno calls “abstract learning,” well exemplified 

by the type of learning that takes place in mathematics classrooms; on the other hand, even 

if often disappointing in its immediate results, this type of learning still seems to be the 

quickest path toward useful reorganization of practices that constitute our lives.25  Indeed, 

neither the human civilization, nor our everyday activities would have developed the way they 

did if not for our capacity for abstracting and generalizing.26  

3. The quandary of misconceptions  

Some difficulties with mathematics are wide-spread and well-known to every teacher. In spite 

of their commonness, many of them are a constant source of wondering and bewilderment. 

Among the most intriguing phenomena commonplace in a mathematical classroom are those 

that came to be known as misconceptions. We are said to be witnessing a misconception 

whenever a student is using a certain concept, say function, in a way which, although 

systematic and invariant across contexts, differs from how this concept is used by experts. 

Researchers describe this phenomenon as showing that children, in the process of learning 

mathematics, tend to  “create their own meanings—meanings that are not appropriate at 
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all.”27 The words “not appropriate” refer not so much to the inner coherence of student’s 

thinking as to possible disparities between students’ conceptions and the generally accepted 

versions of the same ideas. Thus, for example, studies have repeatedly shown that the 

overwhelming majority of high school students tend to believe that any function must have an 

underlying algorithm. This conviction persists in spite of the fact that the definition, which 

most of the learners can repeat without difficulty, does not require any kind of behavioral 

‘regularity’.28 Similarly, young children are known to believe that the operation of 

multiplication must increase the multiplied number, while division must make it smaller.29 A 

child’s idiosyncratic notions tend to be consistent one with another and are sometimes very 

difficult to change. All this has been widely documented in literature.30  

Although today our knowledge about the ways in which children think about numbers, 

functions, proofs and other mathematical ideas is impressively rich, there are many 

questions that the theory of misconceptions leaves open. For example, one cannot stop 

puzzling in the face of the fact that the same misconceptions are held by children speaking 

different languages, learning with different teachers and according to different curricula, and 

using different textbooks. How is it that the “misconceiving” children agree among 

themselves about how to disagree with the definition? Such a well-coordinated rebellion 

against generally accepted rules of words use cannot be dismissed as just accidental 

“erring”.  

The phenomenon of misconceptions is known in other domains of knowledge as well, 

notably in science, but in mathematics, the striking regularity of the “mistaken” ways of 

thinking  is particularly perplexing. Indeed, the fact that many children hold misconceptions 

about earth can be accounted for by saying that the classroom is not the only, perhaps even 

not the most influential, source of one’s knowledge about earth. A child’s own experiences in 

the world are the primary type of “material” of which her ideas about earth are forged. Since 

these experiences are similar in different individuals, no wonder that people’s “private” 

misconceptions are similar one to another as well. And yet, this explanation does not seem 

to hold for mathematical concepts, many of which are unknown to children at the time they 

begin learning about them in school. Thus, how can one account for the well coordinated 

‘distortion’ of such a notion as, say, function which, when first encountered in school, does 

not have any obvious “real world” counterpart? One becomes even more bewildered when 

one notices the strange similarity between children’s misconceptions and the early historical 

versions of the concepts. Thus, for example, the first definitions presented functions simply 

as formulas.31 In this case, it was justified to claim that functions express certain algorithmic 

regularities – a claim that today counts as misconception. How do abstract mathematical 

concepts created by mathematicians get life of their own and start dictating to their creators 

what to think? Why do today’s children think like the mathematicians of the past?  
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The trouble with the idea of misconception does not stop here. In addition to its being 

insufficiently understood, the notion turns out to be of only limited value as an explanatory 

tool, supposed to help in accounting for what is actually happening when children grapple 

with mathematical problems. The classroom episode that follows, taken from the Montreal 

Algebra Study, 32 presents one unsuccessful problem-solving attempt that, although it seems 

to be involving misconceptions, cannot be explained by this fact alone. In the episode, two 

12-year-old boys, Ari and Gur, are grappling together with one of a long series of problems 

supposed to usher them into algebraic thinking and to help them in learning about function. 

The boys are dealing with the first of the three questions in Figure 1. On the worksheet, 

function g(x) has been introduced with the help of the partial table of values and the question 

requires finding the value of g(6), which does not appear in the table. Before proceeding, the 

reader is advised to take a good look at Ari and Gur’s exchange and try to answer some 

obvious questions: Do the boys’ know how to cope with the problem? Do they display 

satisfactory understanding of the situation? Does the collaboration contribute in any visible 

way to their learning? If any of the students experiences difficulty, what is the nature of the 

problem? How could he be helped? What would be an effective way of overcoming – or 

preventing altogether – the difficulty he is facing? 

 

Fig. 2: Slope episode -- The activity sheet 

      A function g(x) is partly represented by the table below. Answer the questions in the box: 

 

x g(x) 

0 -5 

1 0 

2 5 

3 10 

4 15 

5 20 

(1)  What is g(6)?  _________ 

(2)  What is g(10)? _________ 

(3)  The students in grade 7 were asked to write an 
expression for the function g(x). 

Evan wrote g(x) = 5(x - 1) 

Amy wrote g(x) = 3(x - 3) + 2(x - 2) 
Stuart wrote g(x) = 5x - 5 

Who is right?  Why? 
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Episode 1.3: Finding a value of a function 

1.   Ari: Wait, how do we find out the slope again? 
No, no, no, no.  Slope, no, wait, 
intercept is negative 5.   
Slope 

is trying to get the 
expression from the 
table 

2.   Gur: What are you talking about?  

3.   Ari: I'm talking about this….  points to the -5 in the 
right column 

It's 5. moving his eyes to the 
next row 

4.   Gur: It doesn't matter if it's on (mumble)  

5.   Ari: 5x.  Right?  

6.   Gur: What's that?   

7.   Ari: It's the formula, so you can figure it out.   

8.   Gur: Oh.  How'd you get that formula?   

9.   Ari: and you replace the x by 6.  to do the next task: find 
g(6) 

10. Gur: Oh.  Ok, I…  

11. Ari: Look.  Cause the, um the slope, is the 
zero. Ah, no, the intercept is the zero. 

 

12. Gur: Oh, yeah, yeah, yeah.  So you got your   

13. Ari: And then you see how many is in between 
each, like from zero to what 

"each": A. points to both 
columns, indicating that 
you have to check both 
"from zero to what": he 
points to the x column 

14. Gur: And the slope is, so the slope is 1. the left counterpart of the 
right-column 0 is 1 

15. Ari: Hum?  No, the slope, see you look at 
zero,  
  

"zero": he circles the 
zero in the x column on 
Gur's sheet 

16. Gur: Oh that  zero, ok. So the slope is minus 5  
 

-5 is the f(x) value when 
x = 0 

17. Ari: Yeah.  And 
 

 

18. Gur: How are you supposed to get the other 
ones? 

 

19. Ari: You look how many times it's going down, 
like we did before.   So it's going down by 
ones.  So then it's easy.  This is ah.. by 
fives.  See, it's going down by ones, so 
you just look here 

first points to x column 
("going down by ones"), 
then the f(x) column ("by 
fives"), and again to f(x) 
column ("look here") 

20. Gur: Oh.  So it's 5 
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21. Ari: Yeah.  5x plus  

22. Gur: Negative 5.    

23. Ari: Do you understand? 
 

 

24. Gur: Negative 5.  Yeah, yeah, ok. So what is g 
6? 
 

 

25. Ari: 5 times 6 is 30, plus negative 5 is 25. So 
we did get it right. 
 

 

26. Gur: No, but it's - in this column there? "this column": he points 
to x column  

27. Ari: Yeah   

28. Gur: Oh, then that makes sense. 
It's 30 
What is g 10? ... 40 

 

Writes ‘30’ 

29. Ari: 20, ah 40.  No, 45.   
 

 

30. Gur: No,   

31. Ari: 45  

32. Gur: because 20  

33. Ari: 10 times 5 is 50, minus  

34. Gur: Well, 5 is 20, so 10 must have 40 points to the two entries 
in the last row 

35. Ari: times 5 circles the 10 in g(10) on 
Gur's sheet 

36. Gur: Oh, we do that thing.  Ok, just trying to 
find it.  
 

 

37. Ari: Yeah  

38. Gur: Cause I was thinking cause 5 is 20,  points again to the last 
row of the table 

39. Ari: It's 45.  Yeah  

40. Gur: (mumble)  So it's 45.  

 

A cursory glance at the transcript suffices to see that Ari proceeds smoothly and effectively, 

whereas Gur is unable to cope with the task. Moreover, in spite of Ari’s apparently adequate 

algebraic skills, the conversation that accompanies the process of solving does not seem to 

help Gur.  

So far so good: The basic question about the overall effectiveness of the students’ 

problem-solving efforts does not pose any special difficulty. A difficulty begins when we 

attempt a move beyond this crude evaluation and venture a quest for a deeper insight into 

the boys’ thinking. Let us try, for example, to diagnose the nature of Gur’s problem. The first 

thing to say would be that “Gur does not understand the concept of function” or, more 

precisely, “He does not understand what the formula and the table are all about, what is their 
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relation, and how they should be used in the present context”. Although certainly true, this 

statement has little explanatory power. What Tolstoy said about unhappiness, seems to be 

true also about the lack of understanding: Whoever lacks understanding, fails to understand 

in his or her own way. We do not know much if we cannot say anything specific about the 

unique nature of Gur’s incomprehension.  

Rather than asking whether students understand, we now ask how they understand. 

It is here that the notion of misconception comes handy. We could say, for example, that 

Gur’s conception  of function, unlike his partner’s, is still quite faulty. One look at the 

transcript now, and we identify the familiar nature of the inadequacy: The sequence [28]-[34] 

shows that Gur holds the ill-conceived idea of proportionality, according to which values of a 

function should be proportional to the values of the argument.33 “Misconception of 

proportionality” is so common that it even made its way to a popular TV sitcom, Friends. In 

one episode, a person tries to prevent an 18-year-old boy from marrying a 44-year-old 

woman. He says: “She is so much older than you are. And think about the future: when you 

are 36, she will be 88”. “Yeah, I know,” says the boy. 

The fact that Gur holds the well-known misconception about function, as significant as 

it surely is, does not seem to satisfy our need for explanation. The misconception-based 

account leaves us in the dark about many aspects of the above conversation and, more 

specifically, about the reasons for Gur’s choices and responses. The misconception that 

certainly plays a role in the last part of the exchange does not account for Gur’s earlier 

responses to the notion of formula. These responses seem as unexpected as they are 

unhelpful. Moreover, although it is obvious that Gur does struggle for understanding, and 

although the ideas he wishes to understand do not appear to be very complex (indeed, what 

could be more straightforward than the principle of plugging a number into the formula in 

order to calculate the value of the function for this number?), all his efforts prove strangely 

ineffective – they do not seem to make him one step closer to the understanding of the 

solution that Ari repeatedly tries to explain. It is not easy to decide what kind of action on the 

part of the more knowledgeable peer could be of some genuine help. 

This example seems to reinforce the conclusion drawn from our two former dilemmas: 

In order to make sense of what people are doing while engaging in mathematical thinking (or 

in any thinking at all, for that matter), we need not just additional data, but also, and above 

all, more developed ways of looking, organized into more penetrating theories of thinking and 

learning.  

4. The quandary of learning disability  

Within the current tradition, failure in learning is believed to stem from certain inadequacies in 

one’s cognitive processes. Some of these inadequacies, such as those that produce the 
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common misconceptions described above, are regarded as “normal,” that is, as natural, 

almost inevitable, relatively mild perturbations in the otherwise linear growth of knowledge. 

Some other difficulties are seen as indicating a more serious condition known as learning 

disability or LD, for short. Historically, this distinction has its roots in the old nature/nurture 

dichotomy that assumes the possibility of setting apart phenomena originating in biological 

factors from those that have their roots in environmental influences. Indeed, the decision to 

distinguish certain cases of unsuccessful learning from all the others stems from the belief 

that some difficulties indicate a neurologically grounded “cognitive defect.”34 Over time, this 

approach has proved problematic in several respects, and the resulting research has 

stumbled upon difficulties. 

First, as a result of the proposed distinction, learning difficulties in mathematics have 

been studied by two different professional communities who do not really communicate with 

one another. Specialists in LD speak about deficient cognitive and meta-cognitive skills and 

insufficient neurological functioning as the main characteristics of students with persistent 

difficulties in mathematics35. In contrast, specialists in mathematics education frame 

mathematics learning difficulties in the neo-Piagetian language of misconceptions36, faulty 

mental schemes or tacit models37, flawed concept images38, and buggy algorithms39. The lack 

of a common language between these two communities reduces their chances of engaging 

in useful exchanges of ideas or building upon each other’s research.   

Second, the notion of LD, which some researchers consider indispensable in 

accounting for more extreme cases of mathematical failure, seems inherently problematic. 

“Many of the difficulties experienced by the LD field emanate from a failure to answer the 

seeming straightforward question, ‘What is a learning disability?,’” admit the authors of a 

recent article. 40 The reasons for confusion are many. As long as cerebral mechanisms are 

not directly investigable, descriptions that speak about the existence of neurological faults 

cannot be truly operative. Aware of this difficulty, LD researchers have been trying to bypass 

any explicit mention of neurological factors. At present, the most widely accepted definition of 

LD, proposed by developmental psychologists, refers to children “who possess ‘normal’ 

intellectual ability – they are not mentally retarded – but do not seem to profit from sound 

instruction despite the fact that they are motivated to learn.”41  However, even those who 

adopt this definition are well aware of its numerous pitfalls. Many of them acknowledge that 

the distinction between difficulty experienced despite instruction and difficulty that develops 

because of instruction is not as straightforward as the definition seems to imply. No wonder, 

then, that the results attained with diagnostic methods based on this distinction are regarded 

by many as debatable.42 Some authors argue that psychologists who “locate [a] child’s 

problem beneath his skin and between his ears”43 engage in practices that, through their very 

dynamics, construct rather than merely identify LD. This latter criticism is in tune with more 
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general attacks on the epistemological premises underlying both LD research and the study 

of misconceptions.44 I expand on these epistemological issues in the next chapter.  

To shed some additional light on the dilemma of learning disability and to present the 

problem in more concrete terms, let me introduce two 18-year-old high school students, Mira 

and Talli, who participated in the Learning Difficulty Study45 (LD study) conducted by Miriam 

Ben-Yehuda, Ilana Lavie, Liora Linchevski and myself. At the time we met them, Mira and 

Talli were grade 11 students in a special vocational school for adolescents with long histories 

of maladjustment, low achievement, and distinct learning difficulties. Due to discontinuous 

educational histories, both were older than the norm for their class. Mira had prepared 

herself for a secretarial job and Talli expected to become a hairdresser. Both girls were 

described by their mathematics teacher as "extremely weak" in arithmetic. While interviewing 

them, we had ample opportunity to see that, indeed, the state of their arithmetic fell well 

below what one would expect from an 18 year old. Even simple multiplication of whole 

numbers seemed to exceed their computational capacities. 

Mira, when asked to tell us the history of her mathematics learning, asserted that as a 

young child she did not experience any difficulty with calculations. She claimed that her 

difficulties began some time later: 

In the fourth grade, when we started to multiply… I lost the way… I thought it was not 
for me... I did want to know how to do it… Sometimes I can do things and succeed…. 
But when I have to think hard, I give up.... The multiplication table… no use in trying to 
remember. It is so confusing.  

The interviewer followed with the question: “How much is 7·16?” When Mira 

experienced difficulty multiplying 6 by 7, the following exchange took place: 

Episode 1.4a: Mira calculates 7·16 

Interviewer: Do you know how much 6 times 7 is?     

Mira: No. 

Interviewer: And if I asked you to figure it out, what would you do? 

Mira: I would use my fingers. Would count seven times. 

Interviewer: Show us. 

Mira: No. 

Interviewer: Please do. 

Mira: No. I do it silently, so that people won’t see. 

 

Later, when Talli tackled the same question, “How much is 7·16?” her computational 

skills did not appear to be much more advanced: 

Episode 1.4b: Talli calculates 7ּ16 

53. Talli: I’m not good at multiplication table.  

56.  Interviewer: [How much is it], 100? 3000? 500? 
5? It does not need to be exact. 

 

 Talli: I don’t know….  
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 Talli: I take down the 7, multiply the 6 
with the 7 and the 7 with the 1 and 
get the answer. 

 

 Interviewer: Do it, please.   

 Talli: 6 multiplied by 7 is 36. Okay? I am 
asking you. [laughs]. 

6·7 = 36? 

 Talli: I take it down. [mumbling] 1 
multiplied by 7, it gives 7. So it 
gives 742. 

                                     

Writes:                           

           4 
     16 
     · 7 
     ---- 
    122 
                                  

 

Their common difficulty with multiplication notwithstanding, the girls differed in more 

than one way. The teacher told us that Talli, in spite of her problems, was a student “with a 

genuine potential.” In contrast, she described Mira as the “weakest student” in her class who 

clearly did not have “much chance.”  The teacher also warned us that any effort on our part 

to perform arithmetic with Mira would be “a waste of time.”  The teacher’s assessment 

seemed to be in tune with the girls' appearance and demeanor. Mira wore provocative 

clothes and heavy makeup, and she behaved and spoke like a helpless child. In contrast, 

Talli's stern look and plain dark clothes gave the impression of a no-nonsense, mature 

person who knew exactly what she wanted. And yet later, while listening to the girls at length, 

we became skeptical about the teacher’s remarks on their “mathematical potential.”  

To understand the nature of the conundrum with which we were faced, let us take a 

look at what was known about Mira and Talli before our investigation began. Our two 

interviewees’ stories, as told by the rich records we found in their school files, may have 

differed in details but resembled one another in several important respects.  

According to these records, in the course of the first 18 years of their lives, both girls 

experienced more misfortune and suffering than can be found in other people’s entire 

lifespans. Mira, who was the sixth and last child in her family, and whose father stopped 

working when she was still very young, was subject to sexual assault at the age of 7. The 

case had no legal follow-up, but the girl received professional assistance and some time later 

moved to her married brother’s house. Talli, the oldest of three siblings, was 8 years old 

when her mother began a struggle with a terminal illness. Orphaned from her mother 5 years 

later, she was sent by the deeply religious father to a boarding school, never to return home. 

She never agreed to see her father again.  

The two girls’ educational histories were rather discontinuous. Both were frequently 

moved from one school to another, never spending more than a couple of years in one place, 

and sometimes having to join classes with children younger than themselves. Under the 

occasional care of social workers and psychologists, each of our interviewees underwent 
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certain diagnostic examinations at one time or another. In the girls’ school files, we found the 

results of IQ tests, in which they both scored around average, with their IQ performance 

scores slightly surpassing their verbal scores. In addition, each file contained a number of 

general evaluations written at different times by psychologists, social workers, and teachers. 

In these documents, Mira was described as “having normal intellectual ability, with certain 

emotional impediments and slight learning disabilities.” The LD diagnosis was supported with 

statements about limitations in Mira's “short term and long term memory” and her “difficulties 

in areas requiring automation.” Although Talli was found to have similar difficulties and 

limitations, in her case the findings did not lead to an explicit claim about LD. Both girls were 

said to have a “deficiency in acquired knowledge” and to possess “much unrealized 

potential.”  In addition, Mira was described as suffering from occasional “attacks of anxiety” 

and from a “fear of failure” that manifested itself at times of crisis in withdrawal and in 

“extreme avoidance.” She was also said to be “mentally strong and prepared to invest in 

those areas in which she had genuine interest.” Talli was described as “strongly motivated” 

to learn, but also as occasionally turning to “suppression mechanisms” while trying to 

overcome anxieties or to cope with her sense of loneliness.  

Finally, the two files contained numerous records about the girls’ mathematics. 

Various tests and teachers’ assessments invariably pointed to a serious deficiency in both 

Mira’s and Talli’s arithmetical skills. This general agreement notwithstanding, the two girls did 

differ in the quality of their mathematical performance, at least according to their teachers. In 

vocational tests that she underwent at age of 16, Mira received the lowest possible score. No 

mention of this kind of test appeared in Talli’s file, but a current teacher’s assessment 

described Talli as “strong in comparison to the school average” and as having a “good 

command over the four basic arithmetical operations.” Both in 10th and 11th grade, her final 

grades in arithmetic were 95%. In contrast, Mira scored only 75% in both cases.  

The stories of Mira and Talli left us with many disquieting questions. First, how can 

one explain the teachers’ positive evaluation of Talli’s arithmetic skills?  This assessment 

contrasted strongly with what we saw ourselves in the course of the interview. Second, and 

more importantly, why is it that the girls did not manage to learn the most basic arithmetic 

even though they were clearly given many opportunities over the years? They were 

preoccupied with other, more important problems, somebody might say. This is certainly true, 

and yet, this obvious answer did not seem to delve deeply enough. Indeed, what is the exact 

nature of the interplay between life hardships and the ability to learn? In this context, what is 

the status of Mira's LD diagnosis? Was the LD offered as an independent reason for her 

failure in learning, preexisting her misfortunes, or was it considered as, in a sense, a result of 

her life adversities? The list of questions remains long. Most of them may probably be 

summarized as follows: “What is it that made arithmetic so difficult a target for the two girls, 
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and how was this difficulty related to other spheres of their lives?” Dilemmas such as these 

continue to perplex teachers, remedial specialists, and researchers, whereas the notion of 

learning disability, rather than help in solving these quandaries, seems to complicate the 

matters even further.  

5. The quandary of understanding 

One theme common to all the four dilemmas presented above is that of understanding. Each 

of the quandaries could have been formulated as a question about whether, how or why 

people do or do not understand mathematics, sometimes even under most favorable of 

circumstances. The interest in the issue of understanding has been pervading psychological, 

anthropological and educational literature ever since the landmark call for meaningful 

learning, or learning-with-understanding which, more than seven decades ago, signaled the 

end of the behaviorist era and the beginning of the all new direction in the study of human 

cognition. When W.A. Brownell issued the plea for the “full recognition of the value of 

children’s experiences” and for making “arithmetic less a challenge to pupil’s memory and 

more a challenge to his intelligence,”46 his words sounded innovative, and even defiant. 

Eventually, these words helped to lift the behaviorist ban on the inquiry into the 'black box' of 

mind. Once the permission to look “inside human head” was given, the issue of 

understanding turned into one of the central topics of research. Cognitive psychology 

equated understanding with perfecting mental representations and defined learning-with-

understanding as one that effectively relates new knowledge to knowledge already 

possessed. With its roots in Piaget's theory of mental schemes and with its many branches in 

the quickly developing new science of cognition, this approach had been flourishing for a few 

decades, spawning a massive flow of research.47  

In spite of the impressive advances, researchers agree today that pinpointing the 

exact meaning of the word understanding and finding ways to make the principle of learning-

with-understanding operative are extremely difficult tasks. The difficulty begins with the 

elusiveness of the experience that makes us say “I understand”: this experience is difficult to 

achieve and to sustain, and it is even more difficult to capture and to explain. Let me give a 

personal example. I can clearly remember the event which, for the first time, made me aware 

of the degree of my ignorance in this respect. I was a beginning teacher and I discovered to 

my surprise that students who had a good command over systems of linear equations might 

still be unable to deal with such questions as "For what value of parameter q the given 

system of linear equations has no solution?" I approached the difficulty nonchalantly, 

confident that the students will be able to overcome the problem in an hour or two. Contrary 

to my expectations, several days passed before I felt that the class could cope with 

parameters. But even then the situation was not as good as I hoped for: at the final test only 
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one student managed to produce fully satisfactory solutions to all the problems. In a private 

conversation with him I remarked, “It seems that you are the only one in this class who really 

understood the subject.” To my distress, the praise was greeted with an angry response, 

"I didn't understand anything! I did what I did but I don't know why it worked". I tried to prove 

him wrong. I presented him with several other problems, one quite unlike the other, and he 

solved all of them without visible difficulty. I claimed that this kind of questions just cannot be 

answered by mechanical application of an algorithm. He kept insisting that he "did not 

understand anything". We ended up frustrated and puzzled. He felt he did not understand 

parameters, I sensed that I did not understand understanding. 

Reflections on my own history helped, but only to some extent. I could remember 

myself as a graduate mathematics student passing exams, often quite well, but not always  

having the sense of true understanding. Some time later I was happy to find out that even 

people who grew up to become well-known mathematicians were not altogether unfamiliar 

with this kind of experience. For example, Paul Halmos recalls in his "automatography": 

... I was a student, sometimes pretty good and sometimes less good. Symbols 

didn't bother me. I could juggle them quite well... [but] I was stumped by the 

infinitesimal subtlety of epsilonic analysis. I could read analytic proofs, remember 

them if I made an effort, and reproduce them, sort of, but I didn't really know what 

was going on.48  

 
Halmos was fortunate enough to eventually find out what the 'real knowing' was all about:49 

... one afternoon something happened. I remember standing at the blackboard in 

Room 213 of the mathematics building talking with Warren Ambrose and suddenly I 

understood epsilon. I understood what limits were, and all of that stuff that people 

were drilling in me became clear. I sat down that afternoon with the calculus 

textbook by Granville, Smith, and Longley. All of that stuff that previously had not 

made any sense became obvious... 

 
As implicated in this story, what people call 'true' understanding must involve 

something that goes beyond the operative ability of solving problems and of proving 

theorems. But although a person may have no difficulty with diagnosing the degree of her 

understanding, he or she does not find it equally easy to name the criteria according to which 

such assessment is made. Many articles and books have already been written in which an 

attempt was made to understand what understanding is all about, but we still seem to be 

groping in the dark while trying to capture the gist of this fugitive something that makes us 

feel we had grasped an essence of a concept, a relation or a proof. 

Yet another illustration for the elusiveness of the notion of understanding, at large, 

and of the term learning-with-understanding, in particular, comes from the following 

conversation between a pre-service teacher and Noa, the 7 year old girl:  

Episode 1.5: What is the biggest number? 

1.   Teacher:     Can you count to 10? 
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2.   Noa:   Yes. 1, 2, 3, 4, 5, 6, 7, 8, 9, 10. 

3.  Teacher:   Do you know more than ten? 

4.   Noa:   Yes. 1, 2, 3, 4, 5, 6, 7, 8, 9, 10,11, 12, 13, 14, 15, 16, 17, 18, 19, 20. 

5.   Teacher:   What is the biggest number you can think of? 

6.   Noa:   Million. 

7.  Teacher:   What happens when we add one to million? 

8.   Noa:   Million and one. 

9.  Teacher:   Is it bigger than million? 

10. Noa:   Yes. 

11. Teacher:   So what is the biggest number? 

12. Noa:   Two millions. 

13. Teacher:   And if we add one to two millions? 

14. Noa:   It’s more than two millions. 

15. Teacher:   So can one arrive at the biggest number? 

16. Noa:   Yes. 

17. Teacher:   Let’s assume that googol is the biggest number. Can we add one to 
googol? 

18. Noa:   Yes. There are numbers bigger than googol. 

19. Teacher:   So what is the biggest number? 

20. Noa:   There is no such number! 

21. Teacher:   Why there is no biggest number? 

22. Noa:   Because there is always a number which is bigger than that? 

Clearly, this very brief exchange becomes for Noa an opportunity for learning. The girl 

begins the dialogue convinced that there is a number that can be called “the biggest” and 

she ends emphatically stating the opposite: “There is no such number!” The question is 

whether this learning may be regarded as learning-with-understanding, and whether it is 

therefore the desirable kind of learning. To answer this question, one has to look at the way 

in which the learning occurs. The seemingly most natural thing to say if one approaches the 

task from the traditional perspective is that the teacher leads the girl to realize the 

contradiction in her conception of number: Noa views the number set as finite, but she also 

seems aware of the fact that adding one to any number leads to an even bigger number. 

These two facts, put together, lead to what is called in literature “a cognitive conflict”50 – a 

situation supposed to push a person toward revision of her number schema. This is what 

Noa eventually does. On the face of it, the change occurs as a result of rational 

considerations, and may thus count as an instance of learning with understanding. 

And yet, something seems missing in this explanation. Why is it that Noa stays quite 

unimpressed by the contradiction the first time she is asked about the number obtained by 

adding one? Why doesn’t she modify her answer when exposed to the discrepancy for the 

second time? Why is it that when she eventually puts together the two contradicting claims – 

the claim that adding one is always possible and always leads to a bigger number, on the 
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one hand, and the claim that there is such a thing as the biggest number, on the other hand 

– her conclusion ends with a question mark rather than with a firm assertion (see [22])? Isn’t 

the girl aware of the logical necessity of this conclusion?  

In light of the above observations, it is hardly surprising that methods of “meaningful” 

teaching “are still not well known, and most mathematics teachers probably must rely on a 

set of intuitions about quantitative thinking that involves both the importance of meaning – 

however defined – and computation”.51 James Hiebert and Thomas Carpenter echo this 

concern when saying that promoting learning with understanding “has been like searching for 

the Holy Grail;” and they add: “There is a persistent belief in the merits of the goal, but 

designing school learning environments that successfully promote learning with 

understanding has been difficult.”52 The mild complaint by researchers who belong to the 

traditional cognitivist school of thought turns into an essential doubt in the mouth of 

adherents of alternative conceptual frameworks. The difficulty seems so pervasive, they say, 

one begins wondering whether finding answers to the nagging questions is only a matter of 

time. Some representatives of new schools of thought go so far as to consider the possibility 

that the very idea of understanding may be, in fact, theoretically intractable and thus 

essentially inapplicable either in research or in everyday schooling practice.53  Like in the 

previous four cases, one may conclude that nothing less than re-conceptualization may be 

necessary to make the quandary disappear.  

6. Puzzling about thinking in a nutshell 

Five persistent, vexing quandaries were presented in this chapter to show that in spite of the 

long history of thinking about human thinking and large, and of mathematical thinking in 

particular, those who try to understand this complex phenomenon may well have yet a long 

way to go. Indeed, the stories just told left us with a long list of unanswered questions. Just to 

quote a few representative examples:  

- Why is it that children who can count without a glitch do not use counting when asked to 

compare sets of objects? How can we account for what they actually do? More generally, 

where does numerical thinking begin, how is its incipient version different from our own and 

how does it become, eventually, just like that of any other adult persons?  

- Why is it that even well-educated people do not apply abstract mathematical 

procedures in situations in which such use could help them with problems they are trying to 

solve?  More generally, why does people’s thinking appear so much dependent on 

particularities of the situations in which it takes place? Are there any teaching strategies that 

could be used to counteract this situatedness? 

- How can one explain the fact that a child who learned a mathematical concept from a 

teacher or a textbook ‘errs’ about this concept in a systematic way? How can we account for 
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the fact that some of these mistakes are shared by great many children all around the world? 

Even more puzzlingly, how is it that students’ “misconceptions” are often very much like 

those of the scientists or mathematicians who were the first to think about the concepts in 

question? Most importantly, since the theory of misconceptions, even if perfected, does not 

seem likely to suffice as a framework for studying learning of mathematics or science, what is 

it that this theory is missing? 

- If the condition known as “learning disability” is supposed to originate in “natural” rather 

than environmental factors, why does it seem so tightly related to life stories of those who are 

diagnosed as learning disabled? Which of the two comes first: learning disability or life 

hardships? Besides, without a direct access to physiological factors, how are we supposed to 

distinguish between learning disabilities and “normal” learning difficulties?  

- Although we do not seem to hesitate while deciding whether we understand something 

or not, and although we are only too quick to diagnose other people’s understanding, we 

have considerable difficulty trying to articulate our criteria for this kind of judgment. What is it 

that we do not yet understand about understanding? 

These five quandaries, when taken together, lead to the inevitable conclusion: If in 

spite of the long history of research so many questions about thinking remain unanswered, it 

may well be that the reason is in our ways of thinking about thinking. Examining this 

conjecture is the theme of the next chapter.   
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