ADOPTING MAXIMA AS AN OPEN-SOURCE COMPUTER ALGEBRA SYSTEM INTO MATHEMATICS TEACHING AND LEARNING

N. Karjanto¹ and H. S. Husain² ¹Department of Mathematics, University College, Sungkyunkwan University Natural Science Campus, Republic of Korea ²Department of Mathematics, Faculty of Mathematics and Natural Science Indonesian Education University, Indonesia

Short description of the workshop: aims and underlying ideas

In this workshop, a computer algebra system (CAS) Maxima will be introduced. The primary audience of this workshop is mathematics educators, particularly school teachers and university professors who have experience in teaching Calculus and Linear Algebra with a CAS and those who would like to introduce a possible alternative CAS into their classrooms. Maxima is a computer software can be used for the manipulation of symbolic and numerical expressions, including limit calculation, differentiation, integration, Taylor series, systems of linear equations, polynomials, matrices and tensors. It can also sketch some graphical objects with excellent quality. Some examples from Calculus will be presented and how Maxima plays a role in enhancing students' understanding will also be discussed.

Planned structure:

Planned time line	Topic	Material/Working format/Presenter
		Material: Slide
5 minutes	Introduction	Working format: Presentation
		Presenters: N. Karjanto
	Maxima installation	Material: Printed handout
5 minutes	Participants can install Maxima	Working format: Audience participation
	to their computers or smartphones	Presenters: N. Karjanto and H.S. Husain
	Brief demonstration	Material: Slide
5 minutes		Working format: Demonstration
		Presenter: N. Karjanto
	Sharing session	Material: –
5 minutes	Participants share experience in	Working format: Audience participation
	embedding CAS into their teaching	Presenters: N. Karjanto
	Problem-solving	
60 minutes	Some problems from Calculus or	Material: Slide and Maxima worksheet
	Linear Algebra will be discussed.	Working format: Audience participation
	Good examples that help students	Presenters: N. Karjanto and H.S. Husain
	to learn better will be identified.	
		Material: –
10 minutes	Conclusion	Working format: Discussion
		Presenters: N. Karjanto and H.S. Husain

The planned structure of the workshop is presented as follows.

During the problem-solving session, the participants will be divided into two groups. One group will work on Calculus and the other will work on Linear Algebra. After 25–30 minutes, the groups will switch the topics. The group works on Calculus will now works on Linear Algebra and vice versa. Instead of three topics that were initially proposed earlier, we now propose only two topics, namely Calculus and Linear Algebra. The topic on Arithmetic can be included in the beginning of the session or during the brief introduction of the workshop.

During the problem solving session, the participants will be assigned to solve problems from Calculus and Linear Algebra. In addition, they are also strongly encouraged to identify good examples in assisting the students to understand better particular mathematical concepts using *Maxima*. The following is potential examples that can be discussed during the workshop:

- How to help your students to comprehend better the Fundamental Theorem of Calculus using *Maxima*? Provide concrete examples.
- Using Taylor series expansion and graphical plots, help your students to understand polynomial approximation and an interval of convergence of the corresponding series.
- Assisting students to grasp the meaning of linear (in)dependent in generalized vector space using Maxima. Provide some easy-to-understand examples.
- Show how linear transformation affecting the shape of certain geometrical objects.

Since the organizing committee will not be able to provide a computer lab and a technical assistant, we propose the following strategy. Each group is divided into several teams, where participants can work in a small team of size two or three. A minimum of one laptop or tablet in each team is desirable. The participants should have installed *Maxima* in their respective devices. Participants who need an assistance in installing *Maxima* can be shown a quick demonstration in the beginning of the workshop. Currently, *Maxima* can run on the following operating systems natively without emulation: *Windows, Mac OS X, Linux, BSD, Solaris* and *Android*. The installation file for *Windows* operating system is available for download at http://sourceforge.net/projects/maxima/files/Maxima-Windows/. Simply double click the executable file and follow the installation instruction. After the installation is completed, the software is ready to be launched. The whole process takes less than three minutes in total.

References

http://maxima.sourceforge.net/

http://www.linuxjournal.com/content/exploring-advanced-math-maxima

Ayub, M., Fauzi, A., Ahmad Tarmizi, R., Abu Bakar, K., and Wong, S. L. (2014). Adoption of Wxmaxima software in the classroom: effect on students' motivation and learning of mathematics. *Malaysian Journal of Mathematical Sciences* **8**(2): 311-323.

García López, A., García Mazario, F. and Villa Cuenca, A. D. L. (2011). Could it be possible to replace DERIVE with MAXIMA? *International Journal for Technology in Mathematics Education* **18**(3): 137-142.

Díaz, A., García López, A., and Villa Cuenca, A. D. L. (2011). An example of learning based on competences: Use of Maxima in Linear Algebra for Engineers. *International Journal For Technology in Mathematics Education* **18**(4): 177-181.

Fedriani, E.M. and Moyano, R. (2011). Using Maxima in the Mathematics Classroom. International Journal for Technology in Mathematics Education 18(4): 171-176.

Žáková, K. (2011, April). Maxima–An open alternative for engineering education. In *Global Engineering Education Conference* (EDUCON), 2011 IEEE (pp. 1022-1025). IEEE.