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Those fortunate beings who find mathematics a joy and a fascina
tion will probably get on, whatever the standard of teaching. It 
requires real genius to light a flicker of understanding in the minds 
of those to whom mathematics is a clouded mystery. The subject 
is so vitally important for everyone in this technological age that 
any advance in the techniques of teaching is to be welcomed. 

I hope all the delegates to the 2nd International Congress on 
Mathematical Education will find the business interesting and full 
of fruitful ideas. I also hope that they will have a thoroughly enjoy
able time between sessions, meeting old friends and making new 
ones. 
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A CONGRESS SURVEY 





An international congress which took two years to plan, embraced 
a vast range of activities and was attended by some 1400 educators 
from all parts of the world, could scarcely be satisfactorily described 
and evaluated within the covers of a single book. Certainly, the pro
vision in printed form of some of the many papers presented at the 
congress, whilst valuable enough in itself, would convey little im
pression of the context in which the papers were presented - of the 
thoughts which prompted them, and of the feelings and reactions 
they aroused. It was for this reason that the Programme Committee, 
the committee responsible for planning the professional work of the 
congress, decided that the official proceedings of congress should 
attempt to do more than merely present a selection of papers. It 
should also contain some account of the lengthy preliminary discus
sions which determined the shape and thus, effectively, the scope of 
the congress, as well as an attempt to describe the general spirit of 
the meeting and to identify those themes which arose in the working 
groups and which could profitably repay further study by individuals 
and groups before the Third International Congress on Mathematical 
Education is convened in the summer of 1976. 

In this way it was hoped that the congress proceedings would 
succeed in conveying to those who could not be present at Exeter 
not only what twenty or so distinguished authors judged to be worthy 
of study and concern, but, even more importantly, the problems 
which over one thousand committed and enthusiastic mathematical 
educators had identified as those which they most desired to consider 
and discuss. Such a report, it was thought, would have a more 
widespread appeal and be of correspondingly greater value. 

Similar considerations led the Programme Committee to break with 
tradition and to recommend that the proceedings should be published 
entirely in English. Translations have therefore been prepared of 
those papers originally presented in languages other than English. 
Copies of these papers in their original form have, however, been 
made available to congress members, and it is hoped that part, at 
least, of these proceedings will appear elsewhere in languages other 
than English. 
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A CONGRESS SURVEY 

1 PRELIMINARIES AND PLANNING 

A major difficulty in planning a Second International Congress is 
that one suffers from a shortage of precedents. In this respect, of 
course, the members of the Programme Committee were more 
fortunate than their colleagues who had planned the First Inter
national Congress on Mathematical Education, held at Lyons in 
August 1969, for we at least had the experience of that meeting on 
which to build. 

The format of the Lyons meeting was based upon that of the 
International Congress of Mathematicians - indeed the sections of 
the ICM devoted to education can be viewed as embryonic congresses 
on mathematical education. Thus, the meeting was built around 
a series of one-hour invited lectures supplemented by a number of 
short (15-minute) contributions by congress members. The limita
tions of this procedure were soon apparent. Mathematical education 
is a topic totally different in nature from mathematics. Although 
there is no shortage of theories in the former, there is a noticeable 
lack of theorems - for, indeed, there is no accepted axiom system 
which even crudely models, and is modelled by, the educational 
process. Contributors to a congress on mathematical education 
cannot, therefore, be expected to emulate their mathematical col
leagues (or even their mathematical selves) by presenting new proofs 
or new theorems, by producing generalisations or new characterisa
tions. Primarily, they bring their experience, their personal judgement, 
and accounts of their work in the classroom - not that these are in 
any way the less valuable! Again, although mathematics possesses 
a basic vernacular which has international validity, the words used in 
mathematical education have to be interpreted afresh by each 
congress member in the light of his educational environment. 
Professor Thom has pointed out (see p. 204) how, once one strays 
from the 'common stem•, the difference of semantic universes 
amongst mathematicians can lead to problems of interpretation and 
understanding. How true this is of mathematical education which, as 
yet, lacks even this 'common stem'. Traditionally, mathematicians 
have sought to ease their problems by discussion, and the need for 
encouraging this type of interaction was soon recognised at Lyons 
and manifested itself in the hasty provision of discussion groups 

· arranged on site. In the event, the success of the congress in attracting 
some 600 members - a most encouraging response to this novel 
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PRELIMINARIES AND PLANNING 

venture - militated against the organisers' attempts to provide these 
facilities at short notice. 

The need to provide for effective discussion was, therefore, one 
lesson of the Lyons Congress. One hint as to how this might be 
encouraged other than through groups constituted to examine specific 
issues was provided by the Mathematics Workshop mounted at Lyons 
by the Association of Teachers of Mathematics. This presentation, 
which included a class of children at work, provoked considerable 
discussion and comment. It transmitted an image and a philosophy 
in a way that could not have been achieved by any number of plenary 
lectures and, as we shall see, influenced the design of the Exeter 
Congress. 

Even before the Lyons Congress had closed, the thoughts of many 
began to turn to its successor, for which, at that time, no venue had 
been decided. The British National Committee for Mathematics had 
extensively discussed the possibility of inviting the International Com
mission on Mathematical Instruction (ICMI) to hold the Second 
Congress in Britain. In February 1970 it determined upon Exeter as 
a suitable site and by the summer of 1970 its invitation to ICMI to 
hold the congress there had been accepted. The detailed planning of 
the congress could now begin. 

The arrangements for the congress were to be made by various com
mittees working under the auspices of the Royal Society. The 
Organising Committee, chaired by Professor M. J. Lighthill (shortly 
afterwards to be honoured for his contributions to mathematics by 
the award of a Knighthood), was the body responsible for formulat
ing fundamental principles and for liaison with international institu
tions. The Programme Committee appointed by the Organising 
Committee was to be responsible for the preparation of a detailed 
programme - the selection of invited speakers, the establishment of 
working groups, etc. This committee consisted of a number of British 
educators later augmented as the need arose, together with a number 
of distinguished, international 'corresponding' members, and was 
chaired by Mrs Elizabeth Williams. A third committee, chaired by 
Mr G. Duller (and, after his unfortunate withdrawal because of ill
health, by Dr D. Hammond Smith), was in charge of local arrange
ments, excursions, social events, etc. 

The Programme Committee held the first of its many meetings in 
October 1970. Some matters which fell into its domain, such as 
arrangements for translation facilities and publicity, although essen-

5 



A CONGRESS SURVEY 

tial to the success of the congress, do not merit detailed discussion 
in these pages. More relevant was the early attempt to identify 
a 'theme' for the congress. 

The committee began its work with the conviction that the response 
to the Lyons Congress justified it in planning a much fuller pro
gramme and in anticipating one thousand active participants, and 
with the belief that a congress of this nature could have a world-wide 
influence on the development of mathematical education. 

Would that influence be greater if the congress concentrated upon 
a particular theme? Could a theme help give direction and focus to 
our work during the short period we had together - shorter, in fact, 
than was the case at Lyons? After lengthy discussion, and the rejec
tion of several proposals, the idea of a central theme was abandoned. 
Mathematical education, a discipline still in its formative years, 
appeared to embrace too many interests for any such circumscription 
to be profitable, or even possible. The congress, it was felt, should 
attempt to cater for all interests and, as far as one could describe 
its purpose, it should 'Study recent work in the field of mathematical 
education and stimulate further developments'. 

The discussions devoted to finding a ' theme' were not without 
value, however, for they helped the committee better to comprehend 
and identify those issues which should be raised at Exeter. Many 
different aspects of mathematical education were distinguished. 

The international nature of the congress served to emphasise the 
great range of conditions in which mathematical education takes 
place. Environmental factors, such as the extent to which the student's 
background and surroundings stimulate or militate against an 
interest in mathematics, are of vital importance. Cultural influences, 
including scientific attitudes, can play a crucial role. These problems, 
which can occur within a single country, loom particularly large 
when one considers mathematical education on a world-wide basis 
and contrasts the situation in a village in Malawi or India with that 
in, say, a residential suburb of Boston {Mass.). Not only would 
members be drawn from all parts of the world, but their interests 
would range over all sectors of education. Problems on the formation 
of ideas on number by the pre-school infant would be matched by 
those concerning what an old man in retirement studying for an 
Open University degree should know about the calculus. (The fact 
that the Lyons Congress - along with most of the ICM section 
meetings which preceded it - had chosen to interpret ' mathematical 
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PRELIMINARIES AND PLANNING 

education' as something which affected only schoolchildren, had 
been noted, and it was agreed that university and other higher and 
further education should also be considered at Exeter.) 

Mathematics, then, is being taught to, and learned by, a multitude 
of students in a bewildering variety of conditions. But what mathe
matics? Here was another leading question for discussion and 
comment. During the past two or three decades, the influence of 
mathematics in contemporary society - scientific, technical and socio
political - has grown tremendously. What are the consequences of 
this for mathematical education? What is the place of mathematics 
in the total education of the individual? Mathematics itself has 
expanded rapidly and whole new fields for study have been uncovered. 
What is the relevance of these advances in mathematics at a research 
level to mathematics teaching at lower levels? Attempts to answer 
these questions have been made during the last decade and are still 
being made. To what extent have the solutions proposed been justi
fied? To what extent do they appear to be practicable? 

The teacher has, of course, received a great deal of advice on how 
he should tackle the problems which confront him. Indeed, the pro
liferation of educational aids and research reports has become 
positively bewildering. But what problems can educational techno
logy and educational research solve? What assistance can they pro
vide for the mathematical educator? Again, these were aspects of 
mathematical education which merited consideration at the con
gress. Some idea of what technical developments have made possible 
has been given by the multi-media courses provided in Britain by the 
Open University and the BBC. What are the lessons to be learned 
from these and similar experiments? Equally important questions can 
be asked about the computer, which clearly has a crucial role to play 
in mathematical education both as a technical aid to student and 
teacher and as an integral part of mathematics itself - for its power 
is such that it has been able to influence mathematical thought and 
even the nature of mathematics. Such considerations of mathematical 
thought lead naturally to questions concerning the growing insights 
one possesses into the nature of mathematics as an activity of the 
human mind. How does this develop in a child? Why has it become 
the fundamental instrument in shaping the structures of the physical 
and social sciences? How has it affected philosophy and man's view 
of the universe? 

These questions concern the philosophical and psychological bases 
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of mathematical education - foundations which will demand even 
greater study if we are to have any confidence in the durability of the 
structures of mathematical education which we are now creating. 

These then were some of the facets of mathematical education that 
were discussed by the Programme Committee as it sought to decide 
upon a 'theme' for the congress. When the idea of a single theme was 
rejected, it was then necessary for the committee to provide congress 
with a framework within which all these different facets could be 
examined. 

2 THE PROGRAMME 

When deciding upon the range of activities to be included in the 
congress programme, the Programme Committee was, as indicated 
above, very much influenced by the Lyons Congress. Obviously, 
there was still a place in the programme for the invited lecture. Cer
tain broad issues should be aired before the congress as a whole and, 
equally, the opportunity to hear distinguished speakers - previously 
only names attached to articles or books - is one which most con
gress attenders value. What was not so evident was the amount of 
time that could profitably be allocated to such talks. Eventually, 
after the views of colleagues abroad had been sought, it was decided 
that, in addition to the Presidential Address, there should be six 
plenary lectures (compared with twenty at Lyons). The IS-minute 
contributions by congress members were abandoned entirely, since 
it was thought that, as a means of pooling the experience of teachers, 
such individual accounts were not enough and that they consumed 
valuable time in a prodigal manner. The active participation of the 
members themselves was considered essential and it was thought that 
the most acceptable means of communication would be papers 
submitted before the congress for limited distribution there, and 
discussion by small groups constituted according to specialist 
interests. The administrative problems consequent upon these pro
posals were daunting, particularly since it was hoped to arrange for 
a preparatory exchange of views prior to the congress, but the com
mittee agreed that the ends appeared to justify the risks which attended 
such an ambitious undertaking. The third major contribution to the 
congress programmes would be in the hands of various national 
committees. The ATM contribution at Lyons had indicated the value 
of workshops in which one could discuss particular developments 
and even see mathematical learning and teaching taking place. This 
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THE PROGRAMME 

idea was now extended to that of a National Presentation at which 
educators could talk about developments and projects in their own 
country and in which they might arrange demonstrations both of 
materials and of actual classroom practice. 

The bricks with which the formal congress programme was to be 
built were, therefore, plenary sessions, working groups and national 
presentations - the necessary mortar would be the intervals provided 
in the programme for informal exchanges of views. 

The selection of the speakers to give the six key lectures was a most 
difficult task. When the committee surveyed the international field 
many possibilities emerged. Two names, however, were in a slightly 
different category from all the others, for they appeared to be present 
in everyone's mind: those of P6lya and Piaget. It is difficult ade
quately to describe the influence of this pair on mathematical educa
tion. Professor P6lya's distinguished contribution to many branches 
of mathematics has been matched by his outstanding work in the 
field of mathematical education. Through his books How to Solve It, 
Mathematics and Plausible Reasoning, and Mathematical Discovery 
he has helped to explain the process central to mathematics - that 
of solving problems. The term 'heuristic' - the study of the methods 
and rules of discovery and invention - is for many inseparably linked 
with his name. In a similar manner, the phrase 'concept formation' 
automatically evokes the name of Piaget. The work of Professor Piaget, 
and that of the Geneva school which he created, has had enormous 
influence on primary education during the past two decades and has 
generated research work in universities throughout the world. Such 
books as The Psychology of Intelligence, The Child's Conception of 
Number, The Early Growth of Logic in the Child and The Child's Con
ception of Geometry have been read and studied by mathematical 
educators everywhere. His theories are not universally accepted, but 
it is indeed a measure of his greatness that they should generate 
controversy - and even on occasion provide the headlines of the 
British daily press! 

The committee after noting this unanimity, proposed that, rather 
than being asked to address congress, these two great educators 
should be invited to attend as 'Distinguished Guests' and to con
tribute papers which, by being made available to all members, would 
help to direct congress thought. It was to the delight of all that both 
Professor P6lya and Professor Piaget accepted the invitation offered 
to them by ICMI, a delight only tempered by the fact that Professor 
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Piaget had later, reluctantly, to decide on medical advice that he 
could not make the journey. 

In the event, the choice of speakers was circumscribed to some 
extent by the themes which the Programme Committee wished to 
emphasise. There was the need to see mathematics not only as a world 
in itself, but as part of a greater universe. How did mathematics 
evolve? What were its social and cultural roots? What is its place in 
general education, indeed in 'civilisation'? To help draw attention 
to these questions and in the hope of encouraging study of the rele
vance of the findings of anthropologists, sociologists and others to 
mathematical education, the committee invited the distinguished 
anthropologist Dr Edmund Leach to address the congress. It is 
significant that other plenary speakers, notably Professor Philp, also 
chose to emphasise such considerations. 

Such anthropological study provides us with opportunities to 
identify primitive examples of mathematical creativity and of those 
processes of thought which we can describe as 'mathematical'. The 
study of such processes and their cultivation - problems of learning, 
knowing, thinking and teaching - are central to the development of 
a discipline of mathematical education. As an acknowledgement of 
this, two speakers, Professor Hawkins and Professor Philp, were 
specifically invited to lecture on aspects of educational philosophy 
and psychology. 

Having indicated the importance which it attached to these facets 
of mathematical education, the Programme Committee turned to 
problems of content and selection. What mathematics should be 
taught and for what reasons? Here the committee was able to fall back 
on precedents, for it has long been the case that certain ( even if, 
almost ofnecessity, a small minority of) professional mathematicians 
have sought not only to advance the study of mathematics itself, but 
also to improve the way in which it is taught at all levels. The com
mittee was fortunate, therefore, that it could turn for guidance and 
advice to such eminent mathematicians as Freudenthal, Sobolev, 
Thom and the congress President, Sir James Lighthill. 

The French professional mathematicians have been very much 
involved in the discussions on mathematical education that have 
taken place during the past fifteen years. In particular, Professors 
Lichnerowicz, Choquet and Dieudonne have contributed greatly to 
the debate through OECD and other seminars, and through their 
textbooks. More recently, Professor Rene Thom's voice has been 
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heard and his contribution has been along very different lines from 
those of his compatriots. The committee was most grateful, therefore, 
when Professor Thom accepted its invitation to speak at Exeter about 
'modern' mathematics as he saw it. Professor Thom's contribution 
is, of course, doubly valuable, for it emphasises - if further evidence 
is still required - that although the mathematical educator should 
seek advice and guidance from professional mathematicians, he 
should not expect the professionals to reply in a unanimous and 
unequivocal manner. The educator will still have the responsibility 
for making decisions. 

The interest which Russian mathematicians have taken in fostering 
mathematical talent in schools is well known. The committee naturally 
turned, therefore, to the USSR for suggestions regarding principles 
that might govern mathematical education. Originally it was hoped 
that Academician Kolmogorov would be able to attend the Exeter 
meeting. Unfortunately, circumstances prevented his attending and 
we were fortunate that Academician Sobolev, one of the international 
corresponding members of the Programme Committee, agreed to 
lecture in Kolmogorov's place and to tell us how mathematical 
educators in the USSR are attempting to solve some of the problems 
which face them. 

One professional mathematician who will always be remembered 
for his contribution to mathematical education is Felix Klein. His 
books on Elementary Mathematics from an Advanced Standpoint are 
still read throughout the world - indeed, some of his suggestions, 
such as the use of calculating machines for teaching arithmetic to 
children, still have a modern ring about them! In recent years, many 
new approaches to the teaching of geometry in schools have been 
based on his Erlanger Programm. By a happy coincidence, our 
meeting in Exeter marked the centenary of Klein's inaugural address 
at Erlangen, and the committee's thoughts turned to how this 
anniversary might best be celebrated. It was decided to invite a geo
meter, who, like Klein, had contributed greatly not only to mathe
matics but also to mathematical education, to talk on some subject 
closely allied with Klein's work. We were fortunate that the Pro
gramme Committee contained just such a person, Hans Freudenthal, 
and that he was willing to accept the invitation offered to him by its 
other members. 

Finally, the committee wished to stress the importance it attached 
to teaching mathematics for, and through, its applications. We in 
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Britain have a tradition of teaching 'Applied Mathematics' in 
schools, where it is often found on the timetable alongside 'Pure 
Mathematics'. It can, of course, be argued that such a dichotomy is 
pedagogically undesirable or even meaningless, yet, despite these and 
other objections, this tradition is one which the British tend to value 
greatly and which makes them apprehensive about the ' purer' 
programmes that they see advocated elsewhere. The committee 
wished, therefore, to draw the attention of all congress members to 
this aspect of mathematics and was extremely grateful when Sir James 
Lighthill, who is renowned for the manner in which he has applied 
mathematics in a variety of fields, suggested that he should devote 
part of his Presidential Address to this topic. 

All the time allotted to plenary sessions had now been filled. The 
committee realised that it had not accorded a mention at plenary 
level to many aspects of mathematical education - to computers, 
educational technology, the history of mathematics, etc. - but hoped 
that these deficiencies would be remedied through the work of the 
various discussion groups, in the showing of films, and in the display 
of equipment and materials. A more significant omission, perhaps, 
and one which the working groups could not remedy, was an account 
of developments within mathematics itself. Many of those who, in 
the past, attended ICM congresses primarily for the work of the 
Education Section also greatly enjoyed the opportunity to make 
contact with leading research mathematicians and to learn of the 
most recent developments. It must be admitted, however, that the 
rapid expansion of mathematics has tended to diminish the value of 
such contacts, for now a vast amount of specialist knowledge is 
frequently required before one can comprehend the significance of 
developments - particularly when they are presented in a manner 
which assumes specialist competence in the listener. The idea of 
attempting to bridge this gap by means of a series of expository 
lectures intended for a more general audience was discussed by the 
committee. In the event, it was unable to mount such a programme -
but it remains the hope of the committee that this idea will be re
examined and followed-up at future ICMI congresses. 
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THE CONGRESS IN ACTION 

3 THE CONGRESS IN ACTION 

The congress was officially opened at 8 p.m. on Tuesday 29 August 
at a ceremony in the Great Hall of Exeter University. The President of 
Congress, Sir James Lighthill, read to the meeting a message received 
from H.R.H. The Prince Philip, Duke of Edinburgh. (This message is 
reprinted on p. v.) An opening speech of welcome was given by Mr 
Kenneth Rowe, M.B.E., Pro-Chancellor of the University of Exeter, 
and this was followed by the Presidential Address (p. 88). The closing 
session of the congress was held at 8 p.m. on Saturday 2 September, 
when the President announced the decisions of the Executive Com
mittee of ICM! on future meetings and . the congress resolutions 
(p. 305) were read out. 

The congress was attended by 1384 full members and 300 associate 
members. In all, 73 countries were represented. 

The scientific programme of the congress consisted of six invited 
lectures, meetings of thirty-eight working groups (see p. 300), and 
presentations mounted by seventeen different countries (seep. 71). 
Mathematical films were shown throughout the working hours of 
the congress. In addition there were independent exhibitions and 
displays arranged by the Educational Equipment Association and the 
Educational Publishers Council, the Open University, the School 
Mathematics Project, the Schools Council Mathematics for the 
Majority Continuation Project, and the Nuffield Project. 

The official representatives of the International Commission on 
Mathematical Instruction met on Friday 1 September and the 
Executive Committee of that body met on Saturday 2 September. 

The social programme included a reception given by the City of 
Exeter and the University of Exeter, held on Thursday 31 August, 
the Congress Dinner, held on Friday 1 September, and late-night 
film and theatre shows. On the afternoon of Friday 1 September 
a wide variety of excursions was available to members. Special 
excursions were provided for associate members on three other days. 

4 THE WORK OF CONGRESS 

It is the aim of this book to transmit to its readers something of 
the general spirit of congress. This it does, in part, by reprinting 
papers presented to congress by the invited speakers, and by repro
ducing some of the papers submitted to the working groups. The 
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difficulties of conveying ' spirit' are manifest. Perhaps the inclusion 
of '(Laughter)' or even '(Gallic whistles)' at suitable points in the 
texts of the plenary lectures might help to transmit more of that 
sense of occasion, but it would be impossible adequately to describe, 
say, the warmth of the congress greeting to its distinguished visitor 
Professor George P6lya. 

If the printed texts fail to do justice to the plenary lectures, how 
much more do the papers reprinted in Part III fail to indicate the 
breadth and depth of the discussions which took place within the 
working groups. The committee which met to select those papers to 
be reprinted in the proceedings had a well-nigh impossible task. First, 
it must be emphasised that many of the papers submitted to working 
groups were clearly intended to provoke discussion and, because of 
their format, were not suitable for reprinting in this volume. This 
is by no means a criticism of their authors, for, indeed, such papers 
were exactly what were required by the various groups. Again, there 
were outstanding papers which were too specialised for this publica
tion and which one hopes to see reprinted in one or other of the 
technical journals that now exist - for it must be emphasised that 
the selection committee attempted to choose papers of general 
interest which could be read by any mathematics teacher. Those 
papers reprinted, therefore, represent only a small part of those con
sidered by the selection committee and, for the reasons given above, 
are not wholly typical of the many papers submitted by authors 
from so many different countries. 

It would be wrong, however, to suggest that the committee suffered 
from an embarrassment of riches. Obviously, all the papers con
sidered did not reach the same standard of readability, excitement 
or depth of research. As we have said before, mathematical education 
is in its formative years and criteria and objectives are not yet sharply 
defined. 

The constraints of space and the time available to a prospective 
reader, rule out any attempt to present a meeting-by-meeting account 
of the activities of the working groups, and we have, therefore, chosen 
instead to survey the major themes which arose in the group discus
sions and to attempt to indicate problems to which mathematical 
educators will be paying especial attention in the coming years. 

In general, the names of contributors to working groups have 
been omitted. However, where research results or reports are avail
able the names of the persons concerned and brief details of the 
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institution to which they belong have been added. The names and 
addresses of the chairmen and secretaries of the working groups 
can be found on pp. 300---4. 

Where appropriate, the activities of two or more groups have been 
described under the same subheading. This is but one way in which 
an attempt has been made to impose some structure on this particular 
section of the proceedings. However, it is important to realise that any 
such structure is bogus in the sense that the groups formed themselves 
in an unstructured way ; they represent neighbourhoods of interest 
which, not unexpectedly, reveal some complicated patterns of 
connectivity. 

Some working groups concentrated their attention on specific age 
levels or even on. particular sections of the curriculum within a given 
age-range, others ranged across all levels of education. The accounts 
of the former type of group are collected together and separate the 
descriptions of the work of the wider-ranging groups. 

The psychology of mathematics learning 

It is perhaps fitting that the survey of the activities of the working 
groups should begin with consideration of that on the psychology of 
learning mathematics, for not only does this study underpin the whole 
of mathematical education, but also this was the most popular group 
in terms of numbers attending. The papers of this working group 
were divided into four categories: the first dealt with theoretical 
problems concerning the psychology of learning mathematics; the 
second was concerned with the results of learning experiments which 
had been based on theoretical-psychological sources; there were 
practical demonstrations and films related to children learning; and 
problems of research related to the psychology of mathematics 
learning were raised. 

The chairman of the group, Professor E. Fischbein (see p. 222), 
introduced three themes, the relation between intuition and reasoning 
processes, the concept of structure in mathematics and psychology, 
and heuristics and the solving of mathematical problems. Research 
was needed on the child's primitive intuitive knowledge, on which 
the school must later try to help the child to build his conceptual 
structures. It was suggested, reciprocally, that the various mathe
matical operations readily available in elementary mathematics 
might indicate the presence of certain developmental stages in the 
child. 
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Other speakers covered various aspects of studies arising from 
Piaget's work which it was claimed allowed the child' s cognitive 
growth to be described with some precision. Miss Joan Bliss talked 
about the relation between concept and image, emphasising that 
the concept derives from the 'interiorised' actions of the child. It is the 
coordination of the results of the child's actions on objects, not the 
objects themselves, that forms the basis of his first interiorised logical 
thinking. 

Joint sessions were held with the working group on research in the 
teaching of mathematics. A number of speakers described experi
ments in teaching logical and mathematical structures to young 
children. Miss Colette Hug {France) stated that she could teach such 
structures with success when she used situations which were 'pure', 
that is, which were stripped of any significance in the real world. 
Dr Seymour Papert (USA) described his teaching method, which 
was essentially enabling children to abstract a formal scheme from 
its concrete materialisation. 

It was suggested that there is a real communications gap between 
teachers and researchers, not merely a difficulty of communication. 
This stems from the differences in the tasks facing them: the first 
having complex problems to solve in 'real time', the latter having to 
locate definable problems capable of solution in some rigorous sense. 
There are problems of transferring ideas from research to teaching, 
among them a danger that results will be inflated, and applied in 
circumstances well beyond those in which they have research valida
tion. There is also a danger of the confusion of research terms with 
the looser language necessarily used in teaching. The language 
developed in curriculum projects might be one way of bridging the 
gap as it is at the same time precise enough to convey distinct mean
ings but also rich enough to be effective in the confusing, value
judgement-laden classroom situation. 

A number of theoretical problems were discussed in the working 
group sessions. The relation between images and concepts influenced 
greatly the learning of mathematics. The discussion made it clear 
that consideration of the different types of image and their role needs 
to be studied in greater depth. There are images which reproduce 
more or less directly the objects and world around them, there are 
other images which have varying degrees of schematisation, there 
are post-conceptual images which are, in fact, figural abstractions. 
All these different types of image and their relation to the concept 
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concerned need to be known, as part of mathematical learning 
depends upon imagery. Another area in which research is needed is 
in the study of intuition, both primary (primitive forms of know
ledge) and secondary (constructed by the teaching process in the 
different branches of mathematics). 

It was felt that practical demonstrations and discussion have shown 
that the learning of mathematical structures through different 
'embodiments' at the elementary level is a promising direction. How
ever, it was stressed that longitudinal research is necessary in order 
to determine the value of such teaching procedures for the develop
ment of mathematical thought. 

The group's discussions led to the following conclusions: 
It is vital that psychologists and mathematics teachers should 

attempt to communicate with each other so that they can better 
understand each other's work and problems. It is necessary for both 
groups to know in greater depth each other's language and working 
style. Research in psychology and the learning of mathematics is 
practically all concerned with the child's first learning experience in 
elementary mathematics in the primary school. It would seem 
desirable that research should be started in children's spontaneous 
learning processes of more complicated mathematical structures, for 
example, the notion of continuity, limits, derivatives, integrals and 
problems concerning axiomatisation. 

Periodical meetings (in the form of symposia, seminars, etc.) 
should be organised between psychologists, mathematicians and 
teachers. Such meetings would not only help in bridging the gap 
between these various groups of people but would possibly also be 
the source of team work in research at the international level. It is 
requested and hoped that ICMI would support such meetings. The 
group generally hoped that at the next congress more mathematics 
teachers and children could be present. 

Investigation and structure 

In the introductory paper written by Professor Piaget for circulation 
to members of congress (pp. 79-87) he discusses the relationship of 
'activity with objects' to 'the comprehension of arithmetical as well 
as geometrical relations'. 'Real comprehension of a notion or theory' 
he says 'implies the re-invention of this theory by the subject.' Here 
we have a clear statement that the manipulation of things leads to an 
understanding of relations through the inventive mind of the learner. 
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This question of the connection between practical exploration of 
situations and the growth of generalisations was the major theme 
of the group considering Creativity, Investigation and Problem-solving. 
In the opening session Miss E. E. Biggs (UK) stressed the importance 
of free investigation if spontaneity and creativity are to be preserved 
in mathematics learning. Starting points need not be obviously 
mathematical but the teacher can so structure situations for children 
that they can rapidly make a discovery or frame a generalisation. 
A workshop, well equipped with materials, apparatus and books, is 
a useful setting in which the teacher has a role different from that of 
an instructor. As Piaget says in his paper, the teacher becomes 
' someone who organises situations'. 

Some interesting points were made in subsequent meetings. For 
instance it was emphasised that spatial factors are involved in the 
treatment of number systems, a fact which becomes evident when 
children use some forms of number apparatus. It also draws attention 
to the varied ways in which children learn and the consequent need 
for a wide variety of techniques in teaching. It was reported that an 
investigation of the effects of learning through individual discovery 
had shown that pupils learn more quickly and show greater interest 
when the initiative lies with them. 

Problem-solving can be carried beyond the practical and become 
a dialectic in which the young investigator conducts an argument 
with himself as proponent and opponent. He may assure himself 
about the solution of some simple instances and can then move on 
to more complex examples. 

After valuable discussions of the thinking that develops through 
discovery methods the group welcomed Professor P6lya to their final 
session at which he spoke on the role of heuristics in mathematical 
education, using an investigation by Euler to illustrate the success 
of unsophisticated lines of enquiry. He urged that young people 
should not have problem-solving techniques thrust upon them but 
should be encouraged to establish a pattern of relations from which 
they could make their own generalisations. 

Finally this group recorded two conclusions: that many ways of 
presenting problems are required if the curiosity of all pupils is to be 
aroused; and that problem-solving abilities develop only in an 
atmosphere of free investigation. 

Structure and activity was the chosen topic of another group. The 
question whether structure or activity should introduce a new 
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mathematical idea was one of the most controversial raised during 
congress. This group set out to study different learning programmes. 
Discussion was based on two contrasting schemes: one was from the 
Experimental School in Mathematics of Francheville-le-Haut, near 
Lyons; the other was contained in the Essex County Council (UK) 
pamphlet The Impact of Modern Mathematics on Primary Schools. 
In the Francheville programme structure was presented first and 
applications followed. In the Essex plan practical experiences of 
many kinds were used as starting points from which generalisations 
could be derived and structures could be identified and used. Video 
tapes and verbal descriptions were used to present schemes from 
Holland and West Germany also. 

The analyses . of these schemes revealed substantial differences 
and stimulated vigorous discussion. One positive comment on the 
practical approach stressed the importance of progressing from 
experimentation by the children to an organised review of their 
experimental findings. This links up with the observation that the 
Essex scheme, which has an experimental basis, asks the children 
to record their discoveries in some form, whereas the other plans 
postponed recording until later. Another difference was in the earlier 
introduction of number in the Essex programme than in the other 
schemes. It was reported that the later start with numbers had had no 
ill effects and had benefited children who, although socially dis
advantaged, appeared to take well to logic, sets and relations during 
the early years. It was considered that schools where a definite 
programme is not laid down give more scope for the creative and 
imaginative powers of a child. 

This group limited its investigations to the primary stage. The 
topic is equally relevant at later stages and discussion will doubtless 
be extended to the middle and secondary years. Meanwhile this group 
was so keenly interested in the well-defined themes discussed that 
they hoped to maintain individual contacts made at Exeter and 
perhaps to make some contribution to the Symposium on Primary 
Mathematics to be held in Hungary in June 1973 (seep. 305). 

Mathematics and language 

'Lekgolo le masome a mabedi le metso e mebedi' is the Northern 
Sotho way of saying 'one hundred and twenty two' when one is 
counting people. When counting cattle, the expression one uses, 
literally translated as 'one hundred and tens which are two and ones 
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which are two', differs grammatically. This was but one of the many 
indications given at Exeter of the way in which language patterns 
can affect the learning and teaching of mathematics. Several other 
examples can be found in this book and the reader's attention is 
especially drawn to Professor Philp's paper (p. 154), to the account 
of the work of the Developing Countries Group (p. 62) and to the 
decision of ICMI (p. 305) to sponsor a regional symposium on 
Mathematics and Language. Yet although the problems of language 
may be more apparent in the developing countries, they exist every
where; indeed there are universal problems not only related to 
mathematics and language, but also to mathematics as a language. It 
was this latter phrase which was taken as a title by one of the groups 
that met at Exeter. 

The group chairman, Professor Schweiger, suggested that mathe
matical reasoning can be seen as a highly specialised language and 
referred to the increasing use of mathematical methods in linguistics. 
For example; the concept of a relation can be applied to natural 
languages and to formal languages; in particular to mathematics 
itself. The general feeling of the meeting was that this sort of analysis 
was in its infancy as yet, and that it became difficult beyond certain 
limited applications. But it was also felt that this was no reason not 
to try to continue applying to mathematics what was potentially 
a useful theory. 

Dr H. Davies (UK) first pointed out the obvious: one learns a first 
language. The beliefs and values of folk linguistics which result from 
this learning can be characterised by the facts that most people have 
a large operational knowledge, yet only a small descriptive know
ledge of their first language, and popularly consider that the written 
word is automatically better than the spoken word. Tape recorded 
readings and experiments within the group showed how the context 
changed the information supplied by the same sentence, and how the 
position of the prominent pitch within the sentence affected the 
meaning. In particular it became evident that the speaker gave 
prominence to what he considered to be the new information im
parted by the sentence. With this in mind the group listened to tape 
recorded readings from a mathematical text on sets by a mathema
tician and by a ten-year-old. The school boy obviously found a lot 
more that was new to him than did the mathematician. More 
important, what he thought to be the important new information 
was not what the writer intended him to learn. 
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This was disturbing, and various ideas for improving textual layout 
were discussed: should we underline key words or leave more spaces 
for example. It was agreed that authors and printers of textbooks 
should bear in mind the need to make explicit, and more obvious 
than most seem to, just what is new and what is assumed. 

The importance of intonation while teaching was also underlined 
by Professor Papy who gave a demonstration lesson with no words; 
just drawing while 'groaning' the intonation. We could, he claimed, 
sometimes use too many words and so confuse, not enlighten. The 
group agreed. 

The subject of notation was also tackled. Children had to be taught 
to read a textbook, and to be shown how the order of action was not 
necessarily the order in which the signs were written, nor as read. 
The linear form of our notation makes certain things very difficult. 
Dr Turnau (Poland) advocated the use of a 'reasoning graph'; that is 
the steps of a proof laid out in a tree alongside the linear text. This 
principle gained support and it was shown how, for example, dia
grams served to make proofs of commutability unnecessary for 
children. Just as music is something more than the score, mathe• 
matics is something more than our codes for it. Our texts must allow 
children to appreciate the mathematics, they can learn to read the 
'score' afterwards. 

It was suggested that many difficulties arose from the fact that, 
although children learned their own language in a natural way from 
native speakers, they are taught mathematics by people who were 
taught by people who were taught by people ... who were taught by 
mathematicians. Some mathematical concepts seem to develop out 
of a repeated need in a given situation, become a body of knowledge 
and then undergo a third stage where the knowledge is organised. 
This theme was illustrated with examples from matrix and set 
theories, and by descriptions of experiments with children who were 
finding the need for mathematical methods to help them discover 
the outcome of some action without having to do it. At first the 
children invented their own notation, until sufficient examples had 
been built up for a unifying system to be employed. This system took 
on a generality which gives it a life of its own. The system can now 
be studied in its own right, and applications chosen at will. The group 
thought that this provided a natural way for children to begin 
learning mathematics. 

Throughout the group meetings the feeling was expressed that 
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viewing mathematics as a language could contribute to our insight 
into what mathematics is, allow for more ready discussion of rigour 
when it is needed, and, in particular, could make available to us 
an understanding of how we might improve communication in our 
teaching methods. All possible encouragement should be given to 
these studies as well as to promoting a better awareness of the 
relationship between the language of mathematics and the mother 
tongue. 

The first eight years 

We now turn to questions of objectives, organisation and content 
during the early stages of mathematical education: a period taken 
to cover both those years which Piaget describes in his paper (p. 82) 
as' the age where material actions and logico-mathematical experience 
are necessary' (before 7/8 years old) and also the years on towards 
11 /12 years, up to 'the age where abstract thought begins to be 
possible', with a year or so more, perhaps, of development in deduc
tive thinking. We are therefore concerned here with both the 'pre
operational stage', with its dependence on actions, and the 'concrete 
operations stage' (in Piaget's terms) when a child 'in order to arrive 
at a coherent deduction, needs to apply his reasoning to manipulable 
objects (in the real world or in his imagination)'. 

The crucial importance of a child's surroundings and opportunities 
before he begins formal schooling is now being fully recognised. It 
is not surprising that a group set up to study primary mathematics 
chose for its title Pre-school and primary mathematics. When children 
start school they normally come after several years of family life in 
which many of the things in use and the round of daily activities will 
have given them experiences of a mathematical kind. But family 
situations vary widely and some children will have done little explor
ing and will have had only very restricted contact with other children. 
Teachers must therefore take into account the great variations in 
ideas, power of expression in words or drawings, skill of hands, and 
responses to new experiences. Mathematical education in school must 
begin for some children with the free play and experiments with 
materials which other children have enjoyed for two or three years. 
So important did the group think this problem that their introductory 
paper described the plight of many disadvantaged children and urged 
the need for compensatory experience. 

A teacher must take each child as he is at entry, find out his 
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individual needs and ensure that he is given as rich a programme as 
possible so that he may have a chance to catch up with others in his 
age-group. Points of potential mathematical growth must be identi
fied and curiosity aroused by materials, conversation, and a variety 
of surprising happenings. Films and descriptions, from Japan and 
elsewhere, of such programmes confirmed the view of the group that 
they were the foundation of the first mathematical steps. Other 
interesting films showed experiments to test the readiness of a child 
to begin mathematics. One of these, using Piagetian tests, led some 
members to express the opinion that it was preferable to assess young 
children in the learning situation rather than under test conditions. 

A discussion of the significance of Piaget's work was introduced by 
Miss Mary Sime, whose paper appears on pp. 272-82. She said that 
a study of his findings made many intending teachers aware that 
they did not themselves have some of the fundamental concepts, 
such as conservation, on which the understanding of number depends. 
Such awareness made a teacher a more competent guide to children's 
learning. 

Under the title Are we off the track in teaching mathematical con
cepts? Professor Hassler Whitney (see p. 283) carried further the 
examination of the place of concepts (using the word in its broadest 
sense) in the primary school. It was pointed out that concepts cannot 
be directly taught; they must be acquired by the learner through his 
own experience. The student must do the right things before he can 
see meanings. There was a lively exchange of views and it was evident 
that there were various interpretations of the word 'concept'. This 
is one aspect of the argument about the role of abstraction in mathe
matical education and is of great importance. It deserves further 
consideration at another conference. 

A main difficulty in establishing new mathematics schedules in 
primary schools is the fear and dislike that the subject rouses in very 
many teachers. They seek a false security in a retreat into teaching as 
they were taught. Plans for in-service courses to remedy this condition 
are discussed on pp. 49-50. 

Several new programmes were described and the group found great 
satisfaction in the IO-point plan put forward, with practical examples, 
by Professor Tamas Varga (Hungary). He cited combinatorics as 
a great source of problems and listed these activities: (1) acquaintance 
with materials, (2) games, (3) searching, (4) classifying and arranging, 
(5) calculating, (6) the beginning of proof, (7) tabulating, (8) finding 
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and extending patterns, (9) formulating rules, (10) varying the 
situation. 

A plea for non-numerical activities, such as manipulating logical 
or attribute blocks, or work on probabilities with matches, led to 
the conclusion that numerical and non-numerical ideas should 
develop side by side. 

Reviewing the week's discussions it was agreed that the develop
ment of children's thinking is so complex and as yet so little is known 
about it that generalisations about material and methods could be 
dangerous. The teacher's greatest need is flexibility in meeting the 
needs of every child. 

A separate group considered the later part of the 8-year period 
under the title Middle school mathematics (ages 9-13). There would 
naturally be some overlap with both primary and secondary pro
grammes but the group looked upon the Middle School as a new 
type of unit which is being developed in some countries, notably in 
Britain which had supplied the background papers. A brief account 
of the British development was given but ten countries in all were 
represented in the group and major contributions also came from 
Holland, Japan, and the USA. 

It was agreed that mathematics teachers should play their part 
in the broad educational aims of this stage: social integration, 
active learning, readiness to investigate, the exercise of imagination, 
the acquisition of necessary skills and techniques,and the fulfilment of 
promise and latent ability. But it was thought that short-term objec
tives should be stated in specifically mathematical terms. This seems 
to differ from the views of the primary group but in fact the middle 
school group agreed on the general inclusion of computational, 
manipulational, and problem-solving abilities, which could cover 
a wide range of related topics. 

Further discussion concerned the place of mental arithmetic, 
number, probability and statistics, and algebra, but standards and 
the point at which topics are introduced varied from country to 
country. Geometry programmes from different countries were com
pared. In the end the major problem was defined as whether geo
metry in the 9-13 age range should be about the properties of 
geometrical figures or about transformations. This certainly could 
be further debated. 

It was suggested that middle schools should have flexible timetables 
so that meaningful links between subjects could be arranged to form 
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'areas of knowledge'. Nevertheless the mathematical activities 
should, in the opinion of the group, be timetabled separately and 
be under the supervision of a competent mathematics teacher. 

A wide range of materials and technical aids were listed as desirable 
at this age and a variety of types of class organisation were proposed. 
Believing that the mathematical curriculum for the middle years 
requires careful study, the members of the group hoped to continue 
their discussions through correspondence. They recommended that 
there should be joint studies between ICMI committees and those of 
organisations concerned with the teaching of other subject disciplines. 

Subject matter at secondary level 

Separate working groups considered specifically the teaching at 
secondary level of algebra, geometry, calculus, logic, and probability 
and statistics. The fact that mathematical education is still at its 
formative stage was reflected by the uncertainties expressed and the 
local differences highlighted. Indeed, these differences, due to varia
tions in conditions and traditions, and to the dissimilar goals of 
those responsible for designing curricula (see p. 59), make the task 
of identifying 'themes' extremely difficult. The value of these groups' 
work cannot, therefore, be adequately assessed from what is written 
below. Some idea of the approaches they employed can be gained 
from reading the papers of Professors Meserve and Shibata (pp. 241 
and 262). It is also to be hoped that some of the more technical papers 
contributed to these groups will appear in those journals devoted to 
mathematics and mathematical education, for they contained much 
that was of more than passing interest. 

There were, however, certain problems which seemed to be en
countered by all the groups. In particular, there is clearly much work 
still to be done on the question of the amount of rigour which might 
reasonably be expected and the stages at which it might be required. 

' Much more needs to be known about the way in which children 
learn algebra ... there is clearly scope for a great deal of research in 
this area.' The relative merits of groups and vector spaces remained 
unresolved; but there was agreement that even simple informal 
abstractions from concrete situations demand a great deal of children 
in general, not just the less able. It is important, too, not to introduce 
the rigorous axiomatic definition of structures before it is possible to 
make useful deductions which have relevant applications for the pupils. 

There was more of a consensus of opinion among the geometers. 
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Three arguments put forward in favour of transformation geometry 
were (a) the children find it easy, (b) children like it, (c) teachers, even 
those previously antagonistic to mathematics, readily adapt to it. 
Problems take pride of place over axioms, which 'will only be taken 
off the shelf (which may hold a strictly superfluous supply) if and 
when demanded by the pupil'. The trend is towards the introduction 
of a variety of geometries (coordinate, vector, transformation, even 
informal Euclid). In this way the children have a battery at their 
disposal, and the very selection of the best approach for a particular 
problem gives opportunities for genuine mathematical thinking. 

In addition to the main geometry group there was also a smaller 
group which devoted all its discussions to lattice geometry. This 
group was distinguished by the limited area it sought to study and it 
was significant that there was general agreement within the group 
about the value of looking at a restricted topic and considering its 
relevance at all stages of education. The group ably demonstrated, 
therefore, how an ICME can provide a meeting place for, and stimu
late discussion between, enthusiasts for a particularly specialised 
branch of mathematical education. It is hoped that one outcome of 
this group's work, both at and after the congress, will be a booklet 
on this approach to teaching geometry in schools and colleges. 

'Too much rigour too early can easily spoil the pupils' confidence' 
was a slogan of the calculus group. Nevertheless, difficulties should 
be pointed out: when the teacher is skating over something he should 
warn the pupils that he is doing so. Counterexamples are very helpful 
in de-bunking the plausible. 

Numerical and graphical methods will undoubtedly receive impetus 
from the advent of computers, and in particular the whole treatment 
of differential equations is likely to undergo a thorough change. 

The logicians on balance came out in favour of integration within 
the mathematics curriculum rather than isolated, straight 'logic 
courses'. In any case, concepts should be formed before symbols are 
introduced. First logical ideas can be introduced at about the age 
of8 or 9, with a variety of teaching materials. The principle of making 
the mathematics encountered at school intelligible and relevant, and 
the need for further research into how this may be done, are exempli
fied by the resolution put forward by the logic group. 
In order to improve and to develop the efficiency of logical thinking and 
practice in pupils it is not enough to give formal elementary notions about 
propositional and predicate calculi. Moreover it is necessary to integrate 
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those notions of symbolic logic to help to understand mathematical reason
ing and to make use of them to clear up some logical difficulties. 

In this field more research is urgently needed. 

The probability and statistics group, in addition to a programme of 
technical papers and discussions on the teaching of these topics from 
the primary school to higher education, devoted one of their sessions 
to consideration of future work. It was stressed by many members 
that there was need for greater communication between those who 
had tried different teaching programmes for statistics - it being 
recognised that such courses were not so readily produced as those 
in probability. Also, it appeared that the special equipment created 
in some countries for teaching these topics was not so widely known 
as it should be. In an attempt to improve matters the group agreed 
to inaugurate a news bulletin. It was hoped that this bulletin would 
also carry contributions on those areas of needs and interests which 
the group saw as being particularly worthy of study prior to the 
1976 !CME, namely: 

(a) the development of new aids and technologies for teaching 
statistics, 

(b) ways ofusing government and other official statistics in teaching, 
(c) the search for points in the curriculum at which statistical 

concepts can be introduced and/or used, 
(d) suggestions for statistical field trips and data collection activi

ties suitable for students of various ages, 
(e) proposals for interdisciplinary work (with computing, biology, 

physics, geography, social science, etc.), 
(f) outlines for suitable courses for teachers (it was felt that at 

present many such courses are unsuitable, being but pale imitations 
of those given to intending research workers), 

(g) outlines for statistics courses for pupils for whom secondary 
education is terminal, 

(h) ways in which statistics can be applied to research in mathe
matical education. 

Papy-Cemrel workshop 

A separate group was devoted to the joint work of Papy's Centre 
Beige de Pedagogie de la Mathematique (CBPM) and the Compre
hensive School Mathematics Program (CSMP) of CEMREL.1 The 
1 Cemrel Inc., A National Educational Laboratory, 10646 St Charles Rock 

Road, St Ann, Missouri 63074-
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main objective is to introduce the basic notions of number, set, 
relation, and function by means of simple languages; 'strings', 
' arrows' and the minicomputer.1 The 'strings' language employs 
Venn diagrams with certain conventions, the 'arrows' show relation-

ships; both are combined in the example in which children are point
ing at their sisters. The children can deduce from the diagram, for 
example, that 

(a) A and Bare sisters, 
(b) Dis a girl, 
(c) H has no sisters (in the playground), 
(d) C is a boy. 

The innovations and experiments are well documented elsewhere, 
e.g. 'Affine geometry at 7',2 the introduction of vectors as equi
valence classes,3 'Real Numbers at 9',4 'A Purchase Vector Space'.5 

Of special interest is the application of the simple languages to the 
education of mentally handicapped children.6• 7• 8 

1 Cf. Proc. 1st Int. Congress on Math. Ed., Reidel Pub. Co., 1969, pp. 201-13. 
• Martin, E., Quelques remarques au sujet de la rencontre entre la geometrie et 

des enfants de la deuxieme annee, NICO 12. (NICO is a publication of the 
CBPM, Avenue Albert 224, 1180 Bruxelles.) 

• Frederique, Initiation a la Geometrie Affine Plane, NICO 10. 
• Frederique, Nombres reels, NICO 10. 
• Frederique, Introduction vectorielle de !'equation de la droite a 10 ans, NICO 

13. See also Frederique, Les En/ants et la Mathematique, vols. 1 to 5. 
8 Dieschbourg, R., Un enseignement moderne de la mathematique a des enfants 

mentalement handicapes, NICO 10. 
7 Dieschbourg, R., Un enseignement moderne de la mathematique a des enfants 

mentalement handicapes - 2° annee, NICO 13. 
8 Vandeputte, C., Un enseignement moderne de la mathematique a des enfants 

paralyses cerebraux, NICO 13. 
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Links with other subjects at secondary level 

This is a major growth-point in mathematical education and a reso
lution by the working group concerned, calling for further action, 
was received with sympathy at the final plenary session of the con
gress (see p. 306). There is, however, much spade work still to be 
done. Considerable quantities of relevant source materials exist in 
a diversity of areas, and the urgent task is to sift, collate, edit and 
test in schools. 

Science is a major 'user' of mathematics. Despite the common 
complaints of science teachers, studies of particular recently de
veloped courses in the USA and in the UK have shown that the 
difference between what is required and what is provided is apparently 
slight (see, for example, the paper by A. J. Malpas, pp. 233-40). 
The difficulties might be less in the subject matter covered than in 
the poor communication between teachers of mathematics and of 
science and in the different phraseology and approach used by each. 
One expression of this was that scientists ' feel' the phenomena, but 
mathematicians 'feel' the logical implications in any particular 
area. 

The key to breaking down the barriers between subjects lies in 
mathematical modelling.1 The approach is to start from experience, 
and from this to make the appropriate abstractions (models) rather 
than to develop the abstract structure first. 

A biological example of mathematical modelling was described in 
some detail in which the consequences of enlargement applied to 
animals were explored. This involved construction of mathematical 
models of concrete models of the animals, and dealt with the relations 
(for animals with bodies of similar proportions) between linear 
dimensions and length or thickness ofleg needed to support the body. 
An important stage was to go back from the model to experience to 
check whether its predictions corresponded to what is actually found, 
both at the concrete model level, and with real animals. It would not 
be correct to describe this example merely as science using mathe
matics, nor as the science being a starting point for the mathematics: 
both subjects develop together. 

The ideal is for teachers of mathematics and other subjects to work 
together in preparing such work, but for the diffusion of ideas it is 
1 Cf. Bell, M. S., Mathematical Models and Uses in our everyday world, SMSG 

Studies in Mathematics, 1972. 
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necessary eventually to publish possible strings of inter-disciplinary 
work.1 

Important questions arise about the closeness or otherwise of the 
mathematical abstraction to the student's experience (for example 
in an experiment on the expansion of a gas there are several levels of 
abstraction from the varying volume of the gas: the length of the 
scale on which volume is indicated; a graph of measured volume 
against temperature; and an equation to represent the relation). 

Apart from science, links with philosophy, art, music, geography 
and economics are all ripe for exploration. 

Impediments to learning mathematics 

Three main topics usually arise in discussions on mathematical 
education: the value of mathematics as an ingredient in education; 
the appropriate mathematics for particular individuals having regard 
to their circumstances; the ways in which mathematical ideas and 
processes can be presented to a pupil. But it is an uncomfortable 
fact of experience that some children do not learn mathematics with 
interest or ease. Their environment has not stimulated their curiosity 
or their urge to construct; they seem to have no capacity for under
standing mathematics or using its language. This twin problem of 
lack of willingness or ability to learn was studied by two groups, one 
interested in the apparent sterility of some children's environment, 
the other in the poor progress of some pupils. 

The main aim of the first group (Mathematics and the socially 
disadvantaged child) was to look at, compare and try to evaluate 
projects being worked out for the mathematical education of dis
advantaged children in many parts of the world. The first point made 
was that children from poor homes often lacked the language to 
describe, for instance, such comparisons as big/small, bigger/smaller; 
this deficiency could hinder the growth of the concept of comparison. 
Other factors were insufficient possessions to learn how to share 
with others, lack of toys to manipulate, absence of books and tools in 
the home. 

There then followed the observation of a lesson given by the 
chairman of the group, Professor William F. Johntz, to a group of 
children from Brixton, a rather poor part of London with a large 
1 The project SUM (Science Uses Mathematics), based on the Centre for Science 

Education, Chelsea College, University of London is preparing some 15 inter
disciplinary 'modules of work' aimed at pupils from 11 to 16 years old. 
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number of immigrants. The lesson was planned to illustrate the 
methods of Project SEED (Special Elementary Education for the 
Disadvantaged) in which graduates in mathematics teach high school 
and college-level mathematics to full-sized classes in which nearly 
all the children come from poverty backgrounds. Professor J ohntz, 
Director of SEED, presented a topic from abstract algebra in 
a Socratic group-discovery format. This topic had the advantage of 
being relatively culture-free and not associated with previous failures. 
The lesson sparked off animated discussion in which many members 
expressed doubts as to the relevance of the topic and the long-term 
understanding achieved, while an equal number was impressed with 
the learning which had taken place. 

An account of the Michigan State University Inner City Mathe
matics Project turned discussion to the need for meaningful in-service 
training for teachers in the atypical and often restricted environment 
of inner-city schools. The desirability of selecting able children in such 
schools for ' enriched' educational experience to enable them to 
proceed to higher education in mathematics provoked controversy. 
Other experiments in Australia, Italy and Norway were described. 
This led to a further consideration of teacher-training. It was em
phasised that a deep transformation in training was required so 
that teachers could develop an approach based on inter-pupil 
communication. 

One session was held jointly with the other group (Mathematics 
for slow/reluctant learners) in which the focus was a showing of films, 
including one produced by the Mathematics for the Majority Con
tinuation Project (see p. 309). This formed an interesting contrast 
with the SEED lesson, because it used the environment as the source 
of mathematics. Group opinion remained evenly divided between 
the view that abstract mathematics was suitable material for these 
children and the belief that the mathematics relevant to the life 
around them was more appropriate. Consequently the group made 
no definite recommendation. Yet it can be expected that future dis
cussions will resolve the conflict since children enjoy both the exercise 
of their minds on arguments within their grasp and also the investi
gation of practical problems within their experience. 

The second group, concerned with slow/reluctant learners, decided 
that it was their task to discuss how to teach children who had already 
failed in most of their mathematical work and were reluctant to 
undertake any sort of further work connected with mathematics. 
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The group therefore agreed on the fundamental requirements before 
any progress could be made. Their first principle was that the mathe
matics programme must consider each child in the totality of his 
situation : personal, educational, social and economic. This may 
demand different individual programmes and a correspondingly small 
class. Administrators should encourage the maximum freedom of 
choice for teachers planning the work and in their turn teachers must 
provide choices for their pupils who need to build up confidence 
through success. Rigid adherence to a prescribed course is bound to 
aggravate the problem. Inexperienced teachers need help in planning 
the various alternative starting points and rates of development. The 
responsibility for the success of these pupils must rest with the 
teacher even within an externally imposed scheme of work. 

Teaching reluctant and slow learners demands ample resources. 
They are generally quite inadequate; authorities should look for 
ways to ensure a generous share of staff, materials and equipment for 
slower classes. Their development is as important as that of abler 
children and working with them may demand greater teaching skills 
than work with more academic children. It should have equal status 
and financial rewards. 

Highly qualified staff should take part in this work and care should 
be taken to avoid separating reluctant learners from those who are 
more successful. The group thought it undesirable that specialists 
should be trained to work only within this problem area. 

The following recommendations were put forward: 
(a) There should be a systematic rather than a piecemeal approach 

to this problem and national projects will be necessary to develop 
materials and train teachers. 

(b) The group did not think it necessary to hold a separate meeting 
before 1976 but a section of the 1976 congress should be devoted to 
this problem. Meanwhile a coordinator should be found to gather 
information from various countries and prepare a report for 1976. 
Such a scheme would, however, probably depend upon financial 
assistance from ICMI. 

University and college level 

As was remarked earlier (p. 6) the Lyons Congress had not specifi
cally considered mathematical education beyond the secondary level, 
apart from teacher-training, and it was, therefore, particularly 
encouraging that a number of groups should have been set up at 
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Exeter to look at various aspects of mathematical education at 
a higher level. 

One group chose to consider the mathematics taught to specialists, 
that is to students for whom mathematics constitutes the greater 
part of their studies. Besides looking at more general questions, the 
group considered two areas, geometry and applied mathematics, in 
depth. The congress heard many pleas for the restoration of geometry 
as a major discipline in the curriculum at all levels - one such is 
reprinted on p. 241 and, of course, this is one of Professor Thom's 
main theses (p. 194). Strong pleas were made in the group discus
sions for the return at a university level of analytic geometry and, 
in particular, the treatment of conics, both analytic and projective. 
The importance of geometry as a medium for conveying fundamental 
concepts of mathematical thought, such as proof, was mentioned. 
Another topic which arose in the plenary sessions was that of applied 
mathematics (see p. 37) and this was taken up again in group dis
cussion. It was argued that the teacher of applied mathematics should 
have considerable familiarity with the discipline to which the mathe
matics was being applied and that this familiarity should be trans
ferred to the students. To aid this transfer it was suggested that 
perhaps a quarter of course time should be spent on a descriptive 
treatment of the area of application. There was also a need to ensure 
that students were given the theory of practical applications rather 
than that of idealised models. It was agreed that the area of applica
tion was of less importance than the manner in which the process of 
application was taught (although the opportunity was taken to 
reaffirm the usefulness of mechanics as a medium for teaching applied 
mathematics provided the work was closely related to that of the 
practising engineer). The time spent on the descriptive part of such 
courses would inevitably mean that the mathematics available for 
use would be more elementary than would otherwise be the case but 
it was pointed out that there are many powerful examples in which 
relatively elementary mathematics is applied. 

Amongst the other more general points considered was that of the 
students who cannot cope with courses as they are given at present. 
Discussion of this point was complicated by the fact that the members 
present came from widely differing educational systems, but some 
pertinent questions were raised which would seem to have universal 
relevance, for example: 

(a) Is the purpose of an undergraduate education to enable the 
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student to 'know' some mathematics, or to 'do' some mathe
matics? 

(b) Are the standard specialist courses designed to produce pro
ductive mathematicians? 

(c) Are lectures intended to 'straighten out' the students' minds 
or that of the teacher? 

(d) Is there a place for survey courses as well as specialist ones? 
(e) To what extent should mathematics students be exposed to 

other disciplines? 
Similar questions were raised by the groups considering the problems 

of those students who study mathematics as an ancillary subject, for 
example, engineers, biologists and social scientists. Here the difference 
in the mathematical aptitudes of the students is more marked - some 
are able mathematicians capable of reading, say, biomathematics or 
econometrics whilst others fight shy of mathematics. One's aim for 
this latter type of student is that he should arrive at some under
standing of mathematics and its use in his own subject so that he 
might make, or recognise, informed decisions. The big problem is 
finding sufficient teachers who are knowledgeable in both mathe
matics and the discipline in which it is to be applied (here the group's 
thinking resembled that of the group discussing mathematics for 
specialists (see p. 33). This is necessary in order to provide an 
abundance of elementary examples (especially in model-making) 
which can be used with many of the weaker students. The work of the 
Committee of the Undergraduate Program in Mathematics (USA) 
in collecting suitable examples was welcomed and the forthcoming 
publication of a collection is eagerly awaited. 

The shortage of those qualified both in mathematics and another 
discipline can only be solved by the provision of joint courses, i.e. 
'integrated' rather than 'two-subject', for those students referred to 
above as 'able mathematicians'. Again there are difficulties of staffing 
such courses and also often difficulties of recognition both within and 
without universities. Courses of this nature will only be produced 
after considerable discussion and developmental work and clearly 
this is a major priority, for once a few courses have been successfully 
developed then others will assuredly follow. 

Although mathematics has been taught to engineers and physicists 
for many years and its importance for these students has long been 
recognised, there remain two opposed schools of thought on how it 
should be taught. It was apparent in group discussion that partici-
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pants from a number of European and Asian countries believed that 
mathematics was such an important subject that it should be taught 
in the same way to the mathematics specialist and to his engineering 
or scientist counterpart - indeed mathematics should be taught to all 
these in a common group. The respective science and engineering 
teachers would then be responsible for teaching applications of this 
mathematics. Such a system was certainly possible in some countries 
since the students admitted to these courses were highly ' motivated' 
and, furthermore, selection procedures ensured that the students had 
a good mathematical training and background. 

The other school of thought, however, believed strongly that 
mathematics should be taught separately to engineering/science 
students and tha.t the material should be strongly 'motivated' all 
through their course. An essential part of this course was the inclu
sion of applications and a demonstration of the relevance of the 
mathematics taught. Additionally, the discussion of real problems, 
mathematical modelling and the solution of physical problems arising 
from their courses and from their experience was regarded as an 
important feature of such a course in mathematics. 

The discussion quite clearly revealed that there was a need for 
a continuing discourse on these and other topics and it was unani
mously agreed that a conference, devoted entirely to the mathematical 
education of engineers, should take place in the near future. 

It will be seen that many of the problems raised above hinge on 
finding ways of encouraging students to participate in mathematics, 
and to apply mathematics, in an active, meaningful way. These latter 
problems were given particular attention by the group which met to 
discuss teaching methods at university and college level. The group 
was concerned at the way in which undergraduate teaching is largely 
regarded as the transmission of information by means of expository 
lecture-type courses and associated tutorial classes. 

The need to describe the goals of one's teaching adequately and 
the qualities and modes of thought and action one seeks to generate 
in one's students was seen as the initial problem to be solved. There is 
a danger that vague descriptions such as 'encouraging creativity', 
'developing thinking' and 'learning to function as a mathematician' 
will mislead us into believing that these aims can be achieved through 
the act of learning mathematical subject matter. The group felt that 
one area which appeared to need, and would repay, investigation was 
that of explicitly formulating the ways in which we should like 
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students to think and act. This might possibly be done by considering 
how these ways would differ from those that are to be observed in 
our students at present. 

Another problematic area was that of using one's professional 
mathematical expertise when teaching students having different levels 
of understanding to one's own. This is a problem of translation -
translation of a piece of mathematics from the teacher's conceptual 
framework to that of the student, which is generally less complex and 
less mathematically sophisticated. This issue was raised particularly 
in connection with the training of school and college teachers who are 
constantly faced with these problems and who get little if any chance 
to discuss such matters in traditional courses. Some work in progress 
was described and again it was apparent how one was involved as 
much with attitudes towards mathematics as with knowledge of 
mathematics. 

This concerns motivation, a matter which also entered the group's 
discussions through a consideration of the relationships between 
mathematics and the physical world. It was told how simple labora
tory situations were being used as a means for encouraging students to 
grapple with problems of constructing their own mathematical models. 

Particular teaching methods discussed included types of project 
and investigational work intended to encourage students to employ 
and develop a variety of skills. For, in addition to those manipulative 
and conceptual skills traditionally required, it was thought important 
to develop skills in the formulation of problems, asking questions in 
particular mathematical situations, relating work from different 
sources, the making of value-judgements and decisions about their 
work, and skills in communication. Research into the ways of bring
ing out these skills in the course of one's teaching - within the con
straints of the system in which one must work - should be •encouraged. 

Since much undergraduate teaching will still be done by means of 
lecturing, this must be made as productive as possible. Joint lectures 
were discussed as a possible means whereby, through having another 
teacher share the teaching, teaching technique might be improved 
and the ex cathedra nature of lectures lessened. Students also require 
guidance as to how they can make most effective use of lectures. 

The need to consider ways of relating a student's mathematical 
activity to his future needs was discussed, particularly in relation to 
those intending to be teachers and further investigation of this 
problem seems urgently to be required. 
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Finally, it was remarked that teachers cannot be certain of 
obtaining optimal solutions to their problems: conditions are con
stantly changing and, most importantly, they have to establish 
relationships through their teaching with individuals. 

Vocational mathematics 
One working group studied 'vocational mathematics for technicians 
and business personnel'. The students concerned have left school 
but are not pursuing a university course. A number of factors con
tribute to the difficulty in making proper provision for them: 

(a) the age-range of the students, say 16 to 60; 
(b) the wide range of their separate interests and requirements; 
(c) the variety of school courses (after a decade of curriculum 

reform); 
(d) the variety of needs of industry. 

The mathematics required ranges from arithmetical calculations (for 
crafts such as building, plumbing), through traditional topics for 
engineering or technical qualifications, to the direct use of mathe
matics in statistics and computing. 

This wide variation in age, ability and requirements poses so many 
problems that the working group considered the possibility of setting 
up a Centre for Further Education in Mathematics, where research 
could be conducted into syllabus content, teaching methods, assess
ment techniques and equipment needs, in the fields of mathematics, 
statistics and computing. An impetus for the massive re-shaping of 
courses, which was generally agreed to be necessary, has been given 
in the UK by the implementation of the 'Haslegrave Report'.1 

Applications of mathematics 

The reader will already be aware of the emphasis given at Exeter to 
the application of mathematics. Examples of how mathematics is 
applied engender motivation, and the need to bring modern applica
tions to students has been recognised in industry (for example) and 
has attracted financial help from funding agencies. This need was 
also acknowledged by the formation of a working group specifically 
to consider the problems of teaching how mathematics is applied 
and - what is not the same - how to apply mathematics. 

The essential requirement of course is to find problems which arise 
from situations of genuine interest which recognisably really exist. 
1 Report of the Committee on Technician Courses and Examinations, HMSO, 1969. 
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The situations will certainly vary from one age group to another 
and one community to another; they can be drawn from sport, 
social sciences, music, physical science and many other sources. The 
problem itself need not necessarily be new to the teacher but it is 
essential that a very thorough investigation of the background to it 
should be undertaken by the student before and during any attempt 
to formulate a model. The students themselves should participate in 
the formulation of this mathematical model and, ultimately, also in 
the assessment and evaluation of any conclusions which are drawn 
from the consideration of the model. The search for a 'right solution' 
(which may be known to exist because it is in an answer book or may, 
in fact, not exist at all in any precise sense) and emphasis on the 
most elegant solution (which may be classical and known to the 
teacher) should be made less important than the acquisition of insight 
into the nebulous situation which gave rise to the problem. The 
students may derive some numerical results, recognise some struc
ture but, even if they never achieve a complete solution, they will 
have gained valuable experience in formulating the model itself. The 
final interpretation and criticism of any results may well lead to 
discussions of a non-mathematical and very general nature. 

It is believed that human science in particular is a rich source of 
problems and even new mathematics, and that there is a very great need 
for mathematicians and human scientists to work together on them. 

A number of informal accounts were given of work in this field, 
but a source book of ideas and possible projects would be invaluable. 
The field ranges from young students in danger of becoming 'mathe
matical drop-outs' to the highest university level. An account was 
given of study groups held at Oxford University1 for industrial 
mathematicians, faculty members and graduate students at which 
attempts were made to formulate and solve industrial problems which 
had been triggered off and found intractable in the firms concerned. 

History of mathematics 

One feature of mathematical education in recent years has been an 
attempt to find a place for history in the mathematics curriculum. 
Its current neglect and its fall into disrepute have been the cause for 
much concern,2 and it was encouraging, therefore, that some seventy 

1 By Dr J. Ockendon. 
1 See, for example, Wilder, R. L., History in the Mathematics Curriculum: Its 

Status, Quality and Function, Amer. Math. Monthly, 79, 5, 1972. 479-95. 
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congress members elected to attend the group established to discuss 
the relations between the history and the pedagogy of mathematics. 

Contributors illustrated and stressed the way in which a study 
of the history of mathematics could, amongst other things, reveal 
mathematics as a human activity - with a future - rather than as 
a ready-made structure, provide an increased awareness of the 
relationships between mathematics and the culture of our society 
and also those between the different branches of the subject, and 
help motivate students by revealing the more human aspects of the 
subject - its successes and its unsolved problems. 

At the present time, the use of history in mathematics teaching is 
hampered by its lack of an established place in the curriculum, the 
esteem in which it is held and the credit attached to it. There is a con
sequent shortage of suitable teaching materials, slides, texts, photo
graphs, etc., and of qualified teachers. This latter deficiency will only 
be remedied by an increased emphasis on history within teacher
training, and the group concluded its discussions1 by recommending 
that such training should always include a study of the history of 
mathematics, designed so as to enable students to appreciate mathe
matics in the context of our general cultural heritage and as an aid 
to their understanding of mathematics itself. 

Assessment in mathematics 
The increasing attention being paid to the problems of assessment in 
mathematics - and the way in which this term is now taken to mean 
so much more than merely the testing and ranking of 11, 16, 18 or 
21-year-olds-was indicated by the number of groups which made 
reference to it. Thus, for example, the pre-school and primary 
mathematics group discussed Piagetian tests whilst the group on 
teaching methods in universities considered those particular problems 
of assessment raised by project work, open-ended essay-type 
investigations, etc. 

In addition to these discussions which took place within more 
general frameworks, one group chose to study some particular 
aspects of assessment, in depth. It is significant that it began its work 
by looking at the development of examination and assessment pro
cedures. The need for some form of independent assessment of 
1 A longer account of the group's discussions is to appear in Notae De Historia 

Mathematica - the Newsletter of the Commission on History of Mathematics 
obtainable from Professor K. 0. May, 'Historia', Dept. of Mathematics, 
The University, Toronto 181, Canada. 
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students gave rise to the examination system as we now know it and 
it must be admitted that this need still seems as widely felt as ever. 

With increasing educational opportunities and with the moves to 
make secondary education comprehensive, examinations at the uni
versity entrance level are becoming of growing importance and the 
group heard of several new initiatives at that level. Two would seem 
to merit special attention; the experiment now taking place in 
Sweden in which an attempt is being made to dispense with all 
written examinations for entry to university, and the establishment 
of the International Baccalaureate. This latter initiative, which is 
described more fully in a paper by J. B. Morgan reprinted on pp. 254-
61, seeks to provide a university entrance qualification that will be 
accepted in all countries. It arose from the needs of the substantial 
number of children who are educated in one country and who wish 
to receive their university education in another. Clearly, such an 
international enterprise will not be without problems and the group 
expressed some concern at the difficulties of recognition of the ex
amination's standards not only between countries but also between 
universities within a single country. Nevertheless, the project is not 
only of major interest in its own right, but it also serves as one of the 
few examples within mathematical education of international co
operation leading to a system which is used in several countries. Its 
progress will be watched with interest. 

Other specialist points discussed by the group included the com
parative virtues of multiple-choice and essay-type testing1 at particu
lar age levels and the use of film in tests for Piagetian conservations.2 

Mathematical competitions 

Closely allied with the problems of assessment were those considered 
by the group constituted to discuss mathematical competitions. It is 
indicative of the increasing and world-wide interest in such contests 
that this small group contained representatives from fourteen different 
countries and that it included ten leaders of delegations to olympiads. 

The use of contests as a means for discovering outstanding talent 
was mentioned by Academician Sobolev (seep. 185) in his account 
of mathematical education in the USSR. This aspect of contests -
particularly in relation to their use in developing countries - together 
with such other aspects as their use as teaching aids, as part of extra-

1 A. P. Penfold, University of London Institute of Education. 
2 G. H. Wheatley, Purdue University, Indiana. 
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curricular activities, and as stimulators and motivators was con
sidered by the group. 

It must be acknowledged from the outset that by no means all 
educators are in favour of competitions - whether they are conducted 
as part of ordinary classroom procedure or on a national or inter
national basis - and a divergence of views about the merits of the 
various types of contests was apparent in the group meetings. Thus, 
for example, one group member questioned whether competitions 
did aid the mathematical education of the ordinary child. whilst 
another explained why, although his country encouraged informal, 
small-scale contests, they did not compete in the International 
Olympiad - which they saw as providing special training and oppor
tunities for a few exceptionally talented students and offering little or 
nothing to the less well-endowed. Clearly, like examinations, con
tests bring both benefits and possibly bad side-effects, since an 
atmosphere of intense competition can be harmful for winners and 
losers alike. It is necessary, then, when speaking of mathematical 
competitions to spell out what, in the given context, the word 
'competition' is to mean. 

Many mathematical educators will associate the word with the 
national contests, first held in Hungary in 1894, and since then 
established in various countries. The group heard how in Hungary 
the number of competitions has grown until they now cater for 
12-13 and 13-14-year-olds, for older, secondary-school pupils, and 
for students of the Teacher's Training High Schools.1 The success 
of these national contests has led to similar contests being established 
in many other countries, and to the establishment of an International 
Olympiad at which students from several countries compete (see, for 
example, ICMI Report on Mathematical Contests in Secondary 
Education, Educational Studies in Mathematics, 2, 80-114, which 
includes an account of the growth of these contests and also an 
extensive bibliography relating to them). 

These national and international contests were given considerable 
attention and raised such interesting questions as' Is there supporting 
evidence that such competitions have some value in the preliminary 
identification of outstanding students?' and 'What effect has school 
size on mathematical achievement?' There is clearly concern about 
whether or not the contests can discover outstanding pupils - or 
1 Examples of the problems set can be found in Hungarian Problem Books I and 

II, Random House, New York, 1962. 
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do they merely confirm who are the outstanding teachers and which 
are the outstanding schools? Certainly, pupils from English-speaking 
private schools have performed much better in the South African 
Mathematical Olympiad than have those from the Afrikaaner schools, 
and in Britain it is noticeable that the independent schools stand 
out - possibly due to their experience at preparing students for 
Oxford and Cambridge examinations. The group was interested to 
learn that research into some of these questions is being undertaken 
in the USA.1 

Clearly, a key factor in all this is the type of problem set in the 
contest, and the difficulties involved in framing suitable questions 
was a major item for discussion. The need to provide easy problems 
so as to ensure that even the weaker student goes home with some 
feeling of success clashes with the desire to indulge in 'talent
spotting '. There is also a constant need to find problems which 
demand original thought without needing a large mathematical 
experience. (The possibility of setting 'take-home' problems was 
mentioned by Professor H6di who said that their use in Hungary 
had so far given rise to no particular difficulties.) At an international 
level, questions of syllabus, of limited preparation time, and of varied 
teaching approaches arose - all these affect the fairness of the 
contests. 

One question which was raised on several occasions and which is 
frequently posed when mathematical contests are discussed is 'How 
does one involve more girls? ' and clearly this is a matter of some 
urgency. Perhaps the answer at an international level lies in the 
suggestion that all national teams should be composed of an equal 
number of boys and girls. 

With the increase of national and international contests, it is 
apparent that the experiences gained in overcoming the many 
obstacles to success should be shared and that all such information 
should be communicated in as efficient a manner as possible. The 
group recommended that ICMI's assistance should be sought on this 
score. 

As was mentioned above, though, there are those who would argue 
that local contests involving 'average' pupils from 'average' schools 
would yield greater benefits to the mathematical community than the 
more prestigious International Olympiads. This was the view of the 
Italian mathematicians who decided that, rather than participate in 

1 Professor N. D. Turner, State University of New York, Albany, N.Y. 
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the international contests which they saw as a means of stimulating 
a few students already identified as the best, they would concentrate 
their attentions on informal competitions with modest prizes (such as 
a copy of P6lya's How to Solve It). In this way they hoped to improve 
the general quality of mathematical thinking and to encourage 
students to see mathematics as an interesting and amusing way of 
thinking 'outside the technicalities that usually make it tedious in the 
schools'. Comparable with this approach was the use of inter-school 
contests organised between a few neighbouring schools and 'Mathe
matical Fairs' at which schools took turn at acting as host and in 
which competitions formed part of the general activities. By all 
reports, those fairs which end in 'Banquets' are especially popular! 
At this level tht; difficulties of problem-setting and of possible pupil 
discouragement are less marked, since the personal knowledge that 
local teachers have of their pupils can ensure that problems are asked 
at the right level, and no feelings off ailure ensue. Such activities have 
also proved to have great value for teachers. 

Extra-curricular activities and student journals 

The 'Mathematical Fairs' to which we referred above were but one 
kind of extra-curricular activity considered by congress working 
groups. Other activities discussed included clubs and journals. There 
was general agreement on the importance of all these activities which, 
although they usually occupy a relatively small amount of time, can 
be a decisive factor in mathematical education. For, in regular 
classwork the teacher is often cramped by the need to 'cover the 
syllabus' and cannot follow up the stimulating side issues that can 
be studied in a club. Again, the student welcomes some mathematical 
activities that are not compulsory and in which he can pursue his 
individual interests. As a result, in later life he may remember little of 
his classroom work but could be greatly influenced by, say, a vivid 
recollection of something experienced in a club. A further, and less 
obvious, point in favour of such activities rests on the belief that 
teacher-training as it now exists is based on a half-truth - that one can 
significantly influence adult students. It was argued that a student 
entering college usually has an established philosophy of education 
and - particularly in times of stress - will revert to teaching as 
taught (cf. p. 65). To achieve any rapid improvement in teaching 
practices one has to intervene in the process at a much earlier 
stage - and it is possible to do so through extra-curricular activities. 
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It was reported, for example, how in Hungary mathematical 
clubs are now organised from grade 3 (8-year-olds). The elementary 
teachers themselves meet and compose problem sheets which are 
then mailed out to the schools. These may be problems of enumera
tion, such as 'In how many ways can a total length of 6 be made 
with Cuisenaire rods?' or of recognising the regularity in some 
sequence of numbers. 

The objective of clubs and journals is to spread the influence of 
the most enlightened and stimulating teachers as widely as possible. 
Thus a club drawn from several schools has greater potential than 
a club within one school. Sometimes a university teacher who has 
the knack of speaking to younger students, can make a contribution 
to a club involving secondary schools, or, in a similar way, a secondary 
school teacher can help at a primary school level. A teacher-training 
college might provide a mobile club that visits different schools in 
its locality. This would benefit both the schools and the teachers in 
training. 

Central organisations can help, as in the USA where a federation 
of clubs, 'µafJ ', sends out a periodical bulletin and such things as 
leaflets recommending suitable books for club use and individual 
study. 

In some countries, such as Australia, Canada and the USA, 
centres of population may be great distances apart. In these circum
stances, journals, duplicated documents and correspondence provide 
an alternative to personal contact. 

It was suggested that journals help students to form the habit of 
independent reading, but this was questioned on the grounds that 
only those already possessed of the habit look at such publications. 
This led to consideration of how the skill of reading mathematics was 
to be acquired. It was felt that more attention should be paid to this 
in the classroom. It was also pointed out that, even if only a minority 
read a journal, they might communicate some of their interest to their 
fellows or perhaps later become teachers themselves. 

Dr Avital1 reported on an investigation of his own, which showed 
that children of nine or ten were more willing to read mathematical 
material, and to think carefully about it, than older children. It was 
therefore important to provide material for this age range. 

Journal editors usually find that puzzles and problems are an 
attractive feature. Puzzles (simple thought provokers) promote a use-

1 Ontario Institute for Studies in Education. 
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ful attitude of mind - the readiness to attack difficulties and to try 
different methods of attack. Problems (which involve some element 
of generality) lead to organized knowledge and open wider horizons. 
Since stimulating puzzles and problems are not easily devised, it is 
essential that there is adequate communication between student 
journals in all parts of the world so that good material -can be shared. 
The group resolved to seek ICMI's help in establishing such channels 
of communication. 

In addition to fostering the development of future research workers 
and teachers of mathematics, one must also help the great mass of 
children and adults who say 'I could never do mathematics'. Such 
people are accustomed to think about things rather than sytnbols. 
Several instances were given of ways in which the attention of this 
wider public had been attracted - and all involved actual objects or 
situations, such as a room containing puzzle apparatus, or primitive 
computers, Turing machines and circuit boards. This, clearly, is 
another type of extra-curricular activity which could repay great 
dividends for a comparatively small outlay. 

The professional training of mathematics teachers 

The professional training of teachers is so closely linked with what 
is happening in schools that it must be immediately influenced by any 
significant change in school procedures and in its turn must have an 
impact on the attitudes and objectives of teachers. When changes are 
as rapid and far-reaching as those that have occurred during the 
last fifteen years in mathematics education the effect on teacher 
education must be as profound. Not only is the content of school 
mathematics courses being enlarged and fundamentally modified, 
educational purposes and methods are also passing through a period 
of basic re-assessment. The training of teachers of mathematics at all 
levels is subject therefore to two strong pressures. It must alter the 
mathematical knowledge with which it equips intending teachers and 
it must show them the new insights into how children learn mathe
matics and how such learning can be induced. 

At primary level, mathematics is but one of the branches oflearning 
that teachers must be capable of fostering, whether they like the 
subject or not. The training must be different from that offered to 
secondary teachers who can choose the subject, or small group of 
subjects, which they enjoy and are prepared to teach. But in a period 
when change is swift and extensive, teachers already in servire cannot 
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rely on their own experience either of learning or of teaching mathe
matics. Their initial training must be supplemented to give them 
both new knowledge and new kinds of expertise. Hence three different 
working groups were formed to discuss the three distinct types of 
course: initial courses for primary or secondary teachers, and in
service courses. 

Papers from five different countries were presented to the group 
which studied The Initial Training of Primary (elementary) School 
Teachers and very different 'models' were evident. Nevertheless there 
were common elements and the group decided to focus on these 
common components. Three main strands could be identified as 
essential: mathematical knowledge; insight into children's learning 
and its goals; classroom procedures and materials. There was 
general agreement that teachers should know, in addition to the 
accepted number, algebra and geometry, something about prob
ability and statistics, functions, mathematical systems and the role of 
deduction in mathematics. Nothing was agreed on how and to 
what depth these would be treated in courses for teachers, but it was 
emphasised that the prospective teacher should be helped to see 
mathematics as concerned with formulating and solving problems. 
This involves the characteristic mathematical activities of classifying, 
generalising, symbolising and proving. The student himself should 
be placed in situations in which by exploring and reflecting he can 
identify these processes and so discover the kind of question which 
would guide the children to similar understanding. 

There was widespread support for the use of manipulative materials, 
apparatus and other concrete aids, to encourage, through early 
experience of working with physical models, the ability to abstract 
mathematical relations and patterns. Such materials provide open
ended situations which give enjoyment as well as independence of 
approach. But prospective teachers need to work with the materials 
and become familiar with their uses. As Piaget says (p. 85) 'it is often 
particularly difficult for the teacher of mathematics, who, because of 
his profession, has a very abstract type of thought, to place himself 
in the concrete perspective which is necessarily that of his young 
pupils'. It is to help a teacher to bridge this gap that he needs to 
experience for himself the dawning of new understanding through 
handling suitable concrete materials. 

Contact with children throughout the course of training was ad
vocated but many different ways of organising this were possible; class 
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teaching could be over-emphasised. A graduation could be devised 
which would proceed from observations of children, to work with an 
individual, to taking a mathematical topic with a small group whose 
individual responses could be observed, and finally to responsibility 
for a class which could be organised in a variety of ways. It was said 
that such experience of children's thinking and misconceptions often 
stimulates students to strengthen their own understanding of 
mathematics. 

The integration of all three aspects of teacher education was 
thought to give a better understanding of the development of mathe
matical education but more experiments are required to substantiate 
this theory. 

Integrated inv~stigations of topics which may involve mathematics 
are popular in primary schools. The question of preparing intending 
teachers for such work by taking part in integrated schemes at student 
level caused much controversy. It seemed to be acceptable if it could 
run alongside specific subject courses. A further topic for future 
discussion is the extension of mathematical topics into the uses made 
of mathematics in technology, industry and social services. 

Finally the group agreed that just as the programme of primary 
schooling has become individualised so the training course should 
provide opportunities for individual development and the achieve
ment of competence and confidence in teaching mathematics. But 
initial training can never be adequate for a lifetime of service and 
a greatly increased provision of in-service courses is urgently required. 

The secondary school teacher, in contrast to the teacher in primary 
schools, should be a mathematician capable of creating and organis
ing mathematical ideas as well as disseminating them. His mathe
matics courses during training should reflect the changes in the 
subject as a contemporary body of knowledge as well as developing 
deductive processes and the creative aspects of mathematical dis
covery. His course should also include didactic analysis of a variety 
of teaching and learning approaches and the methodological con
sideration of classroom procedures. We cannot expect an initial 
course to give a complete training, but the intention should be to 
develop an attitude in the teacher which would be likely to produce 
continued growth in his professional insights and objectives. These 
views were put forward by Professor H. G. Steiner (W. Germany), 
Chairman of the group studying the Initial Training of Secondary 
School Teachers. The representative nature of this group is shown 
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by the way in which it produced accounts of training schemes from 
ten different countries including such widely separated places as 
Austria, Canada, the Congo and New Zealand. 

The question whether the mathematics courses for intending 
teachers should take a special form became the most important issue 
discussed. One suggestion was the provision of elective courses 
additional to the basic undergraduate courses in mathematics. Some 
suitable topics proposed included the history of mathematics (which 
was strongly supported) and mathematical literature, elementary 
mathematics from an advanced standpoint, the analysis of new 
mathematics curriculum proposals and some research enterprises. 

Professor Krygowska (Poland) urged the recognition of didactics 
as :a part of mathematics with a status similar to that of analysis or 
topology. She identified four aspects of didactics: a synthesis of the 
appropriate mathematical, educational, cultural and environmental 
ideas ; an introduction to research; the nature and situation of the 
child; practical experience. For 'didactics' the United Kingdom, 
South Africa and others would use the term ' mathematical educa
tion'. The questions raised showed the difficulty of separating 
methodology from didactics, and the problem of placing a didactics 
course in a mathematics department rather than in a department 
of education. In the ensuing discussion on methodology and ' field 
work' in schools, it was evident that many of the topics included in 
'methodology' were identical with those proposed for 'didactics'. 
The formulation of a recognised subject called ' didactics ' ( or ' mathe
matical education') was felt to be an important task offering oppor
tunities of interesting and valuable work. 

Two further points were raised but not adequately considered. 
Intending teachers should be asked to compare the axiomatic deduc
tive approach with the intuitional approach and discuss their relative 
roles. Models and problem-solving should find a place in the course. 
It was pointed out that whereas the mathematician is trained to move 
from model to structure the teacher must learn to move from struc
ture to suitable models. 

The environment has been mentioned several times and particu
larly its role in mathematical education but its place in training 
courses was not developed. The effects oflocal conditions on curricula 
and teaching methods could well be put on a future agenda. 

In the final session resources which should be available were listed. 
The library should have a good reference section including a retrieval 
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system. Periodicals pertaining to mathematical education and appli
cations should include material from associations throughout the 
world. A well-equipped laboratory should have do-it-yourself 
materials and tools, and a small computer or computer terminal; 
and there should be a media centre with equipment for films, tapes 
and cassettes. In common with other subjects mathematics needs 
the use of a demonstration classroom where students can experiment, 
be video-taped and have their attempts analysed by their peers and 
supervisor. Of course the constant help of local schools is invaluable. 

Both the groups that considered the initial training of teachers 
urged the provision of in-service courses because, they held, a teacher 
could not be completely prepared for his various and complex tasks 
merely by his pre-service training. It needs supplementing when 
experience with pupils learning mathematics has made the possibili
ties and difficulties clearer. This was widely confirmed, but the chief 
reason for the remarkably large number of mathematics courses 
organised all over the world for serving teachers is the rapid change 
in content and method. Entirely new mathematical ideas have been 
encountered and have had to be mastered by teachers and then inter
preted by them for their pupils. 

These courses have introduced teachers to new curricula and given 
them new understanding of how children learn mathematics. The 
working group which chose to study the purposes of such courses, 
ways of organising them, and the possible kinds of presentation of 
new ideas which would be most helpful, was intent on finding solu
tions to the problems that have arisen. Members from several 
countries gave ten-minute talks on their experiences of such courses 
and started discussions, for instance, on whether mathematics for 
teachers should be different from mathematics for children and how 
teachers can be helped to see what is involved in 'discovery' or 
'individualisation'. 

The group then saw two samples of lessons to local children which 
could have been shown to teachers at a course. One lesson, for 
nine-year-olds, illustrated the experimental use of geoboards; the 
other, for twelve-year-olds, showed a class lesson on rational 
numbers, using ordered pairs. Immediately deeper questions were 
asked. What is the effect on a teacher of watching lessons given in 
such conditions? Because the children were in an investigation 
situation, independent individual responses could be seen with 
evidence of new thoughts emerging. Even in artificial conditions the 
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children were absorbed in their explorations. The teacher's part 
is seen in the way in which the learning situation has been devised 
and developed. There is an element of drama here in which the 
teacher-observer identifies with one of the performers (teacher or 
learner). 

It was agreed that such teaching episodes have value, as have films 
of children engaged with apparatus. But longer courses are necessary 
if teachers are to become ready to adopt new attitudes. They need 
time to try out with their own classes some of the new mathematical 
ideas and new approaches, and to share their experiences with other 
teachers on the course. In this way they can become convinced of the 
effectiveness of the new procedures in their own teaching. 

Teachers probably need to know more mathematics than they will 
be required to teach, but it was thought they should experience 
learning through handling apparatus and experimenting with 
materials for themselves at their own mathematical level. They should 
also work with concrete material in the same ways and for the same 
purposes as their classes will do. It happened that at this time the 
British National Presentation included a group of primary teachers 
working under the guidance of Miss Edith Biggs on a typical in
service course. These teachers were engaged actively in using 
materials which led them to see new mathematical ideas and also the 
ways in which children could be guided to make the same discoveries. 
It is through such experiences that teachers come to understand more 
fully the mathematics they are teaching and its place in the develop
ment of children's thinking. 

From the vigorous contributions of all members of this group it 
seems that this aspect of the education of teachers will not be 
neglected. 

Educational technology 

Mathematical educators look back on the 1960s as the bringer of 
'modem maths' ( or, translated into American, 'new math'). In 
a wider educational context, that decade also brought us 'educational 
technology' - a term so all-embracing as to be virtually meaningless. 
On the one hand, it describes an approach to education which makes 
use of the newer technological disciplines - what is sometimes de
scribed as a 'systems approach' - on the other, it has come to mean 
the use within education of the products of technology. It was natural 
that both these aspects should be represented at the Exeter Congress 
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and they can be distinguished in the accounts of the working groups 
which follow. 

Individualised learning methods 

There was considerable interest in individualised learning methods, 
and evidence was presented of grass-roots developments in many 
countries, especially the USA, Sweden, and the UK. Occasionally 
a dedicated and inspired teacher would start by working alone, 
perhaps gradually extending his or her sphere of influence by moving 
on to become the leader of a creative group working to develop the 
materials further. In more widely-conceived projects the focus of 
leadership may not be centred within a participant school. One 
project had achieved exceptionally close cooperative ties with a com
mercial producer of programmes. 

Most speakers stressed the vital need to involve teachers who use 
a learning system in some way in the process of prescribing, producing 
and assessing the materials used. The creative group must feel to 
a large extent self-determining. This spirit of involvement and com
mitment can be achieved as much in shaping a learning system from 
already available materials as in the pioneering of original work. This 
latter process can prove tedious, time consuming and inefficient in 
inexpert hands. It is doubtful if teachers have the ability to 
predict what a student might achieve, or to know in advance the 
educationally most advantageous means. In an individualised learn
ing system the teacher becomes a divining rod, sensitised to the 
system, able to make spontaneous compensation and to feed back 
ideas for impro:ving the system. Thus the system is continually 
developing empirically. 

Advancement in pedagogical sophistication brings a more pro
fessional concern for the psychology of individual differences, for 
ethical, social and motivational considerations and for a more certain 
gearing of the student's experiences to his needs in the modern world. 
It is too much to expect a teacher to cope with such complexity 
alone. 

The essence of one's thinking in individualised learning is accom
modation to the concept of change. The child is developing and 
changing within a world which is itself in a state of accelerating 
change. The educational process must keep apace with all such 
changes. The design of a learning system subsumes all relevant tech
nologies, such as cybernetics, sociology, management sciences, 
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curriculum development and educational psychology. It is an attain
able vehicle capable of adapting to change. It calls for teams of 
experts continuously re-appraising, re-defining and re-developing the 
parts of the system and the ways in which they interact. 

Taking individualised learning as the central theme, a symposium 
might be organised to cover modules such as: objectives, especially 
in the higher order of thinking abilities; variety in modes and media; 
depth versus breadth; the teacher's role; pupil freedom of choice 
and self-determination versus controlled and directed learning; 
analysis and remediation; a continuous mathematical education 
across the usual horizontal educational structure; flexibility of 
teacher, pupil and system ; responsibility for the building of materials; 
the affective domain; experimentation or a committed developmental 
approach, and aspects of evaluation. 

The mathematics workshop - the use of apparatus, games and 
structural materials 

The workshop (laboratory) approach is one of many strategies which 
can be used in the classroom. In order to build images, symbolise, 
organise, generalise, drill and practise, or apply knowledge to other 
situations, several modes may be used. For some of these activities 
the laboratory approach is more effective than for others. In the 
laboratory the concrete objects (manipulatives) serve as models for 
the thought images that are moved around in the mind. They serve 
both as a means of recording what went on in the mind and also to 
serve as sources of ideas to spark off others. Ideally, if our object is to 
teach mathematics, the manipulative materials should satisfy the 
following criteria: 

(1) A mathematical fact, concept, or generalisation is the goal. 
(2) The material must be appropriate to the discovery of the fact, 

concept, or generalisation. 
(3) The material must be capable of arousing the student's interest. 
(4) The directions for the use of the materials must be easy to 

follow, and must be capable of leading the student to the desired 
conclusions. 

In certain instances it may also be desirable for the directions to be 
open-ended, enabling different results., perhaps at various levels of 
difficulty, to be obtained. Tapes, slides and pictures can all be used, 
although usually the student gains most from apparatus if he can 
handle it himself. 
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In the use of manipulatives for learning mathematics, the student 
is provided with models for concepts. Often he examines the real 
world for mathematics intrinsic to it, and he is introduced to the 
relationships between subject areas; since the student has discovered 
the mathematics himself, his retention is improved. 

The laboratory method provides many other benefits in addition 
to an understanding of the mathematics involved, and it is perhaps 
because of these benefits that the proponents of the method are most 
enthusiastic. Students in the laboratory develop a method of enquiry; 
they are helped to learn to learn. Gathering, organising, recording, 
and representing data become essential skills. This method also helps 
develop imagination and creativity, it provides for discovery, it 
motivates the child and helps him develop interest in further enquiry, 
it provides for individualisation, it facilitates the use of language, 
and it often provides for aesthetic appreciation. 

Just as the method has its advantages, there are also disadvantages. 
Time is most often given as an excuse for not using the laboratory 
method. However, proponents argue that the initial capital time 
investment of the teacher more than pays off, as classes run more 
smoothly due to increased interest and alleviation of discipline 
problems. Research shows that the laboratory method can be as 
efficient as a traditional teacher-dominated situation and that stu
dents learn more than in the latter situation. 

Other disadvantages claimed against the method include the 
difficulties in getting started, in managing the situation, and in 
evaluating the work; the imprecision which can result, the cost, the 
possibility that students confuse mathematics with the materials they 
are using; the lack of transfer from one application to another. One 
of the greatest problems is one of teacher education. It is necessary to 
help teachers acquire the organisational skill needed. Organisational 
patterns vary from those of a local nature, such as arranging the 
mathematics corner of a classroom, to the problems of organising 
a large-scale resource centre with branching learning sequences. 
During training the teacher should be confronted with a variety of 
experiences, explore many teaching materials, and develop his own 
resources for working in the classroom. Involvement with children 
and materials stirs interest and imagination and leads to greater 
individual development. 

The use of manipulative materials and the laboratory method, 
although well-known in most countries, varies from no-use-at-all to 
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use for a major portion of classroom activity. In some countries, 
materials, money or space are not available; elsewhere they are 
available but teachers lack commitment to them. This mode of 
teaching appears more widely accepted at the primary level than at 
the secondary level, although this may be because of the lack of 
knowledge of materials appropriate to the higher level. 

Recommendations 

Because mathematics is a useful tool in the real world, students need to be 
provided with real world experiences using mathematics and with such 
experiences as will help them to develop their own method of enquiry, and 
to learn how to learn. Because language facility is essential, the experiences 
provided in school should aim at developing this facility. All of these goals 
can be met through laboratory experience. 

Each lesson should have an underlying framework of objectives: both 
subject oriented and student oriented. The hardware and the equipment 
are not the essence; more important than the physical facilities are the 
attitudes of the children, the atmosphere of the classroom, and the 
objectives of the teacher. 

The style of training of teachers must reflect what we actually wish 
teachers to do in their classrooms. In this training as in actual teaching, 
materials must be present and the student-teacher involved with them. 
To talk about them or to look at pictures is not sufficient. 

Just as recipe books are essential to a good cook, references are necessary 
for doing a good job in the laboratory. Such references need to be pre
pared. Further discussions on workshops and mathematics laboratories 
could well concentrate on specific problems, methods and levels. 

The use of television and film in the teaching of mathematics 
Although the members of the group were those · who are deeply 
involved in the use of TV and film material in education, fundamental 
questions were asked about the reasons for using it. We use it because 
it is there, was one strongly held view. This appeared to be supported 
by the fact that, in the case of TV which is a broadcast medium, an 
attempt to appeal to a mass audience runs counter to the current 
trend towards greater individualisation in learning. However, it 
was pointed out that, although this conflict with current educational 
thought certainly exists, there is hope that in the near future most 
educational establishments will have their own equipment to record 
broadcast material which may then be used how and when the 
teacher desires. 
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There is intrinsic value in TV and film material which justify its use. 
A strong element in this argument is the fact that it is possible to 
obtain the services of highly skilled people, mathematicians and 
others, to put ideas across in highly effective ways - better than 
many teachers will be able to do. 

The production of material of the desired quality is a major 
problem. Certain aspects of mathematics are obviously very visual 
and producers of TV and film material gravitate instinctively to this. 
In this respect contributors from various countries showed very 
convincingly what can be done. However the question was asked 
whether we should not rather start by looking at the difficult con
cepts in mathematics, those concepts which students have difficulty 
in grasping, and try to tackle these. Clearly this is what should be 
done, but some of the difficulties of this view were demonstrated 
during a workshop on presenting the concept of' function' in a visual 
way. 

We should start with a clear understanding of the essential points 
we want to communicate. However obvious this may be, there is 
a danger that the mathematicians might push too quickly towards 
these essential points. Problems and situations should be presented 
which prepare the way for the ideas to develop. It may be that these 
problems will contain many extraneous aspects which mathema
ticians might find irritating, but these are essential for the growth 
of ideas in the viewer. Real situations are necessary at school, and 
desirable at a higher level, although university students can go much 
more quickly to the heart of a concept. 

How should these problems be presented? At one end of the 
spectrum some were presented as inanimate visuals with clinical 
precision. There was great merit and beauty in some of the presenta
tions of this type which were seen. At the other extreme there were 
recordings of ad lib situations from which mathematics was extracted. 
These may have lacked the finesse or precision of the former type of 
material but they possessed a convincing feeling of reality. Some
where between these extremes there was material showing the use of 
puppets, with a presenter, intended for 9-10-year-old pupils. This 
material raised the question of the value of humour in TV/film 
material. Humour is certainly a valuable element provided it is 
expertly handled; but there have been unfortunate mis-uses of 
humour where it was not appropriate for the intended audience. 

In the use of TV material in the classroom there are again two 
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extremes: the situation where all the mathematics being done arises 
from, or is connected with, the TV material; and the situation where 
there is no follow-up work at all. Both extremes are undesirable. 

The place of the computer in mathematical education 

Speakers emphasised the use of computers to motivate students in 
their study of mathematics and described ways in which such studies 
were enriched by the use of the computer as a tool. There was general 
agreement that flow-charts could be omitted unless they aided the 
logical development of the algorithm, although there is some value 
in younger pupils starting with non-mathematical flow-charts, the 
flow-chart being a form of language which most students readily 
understand. 

Model making, in the sense of formulating equations which 
describe some real situation, is an essential part of mathematics. 
It is, however, extremely time-consuming, and non-trivial applica
tions may be too difficult for the less-able student; although even 
for these, models which the teacher has prepared are valuable, 
especially if the student has the opportunity to amend the model 
himself. Applied mathematics, which is entirely a model building 
activity, can be completely changed at school level by the use of 
computer methods. 

Many experiments involving the use of computers were described. 
These included one concerning teaching statistics to first-year college 
students (see Wegman and Gere1). To avoid students' difficulties with 
new ideas in computing, packaged programs were used and a visual 
display was presented of distributions of observed variables, which 
could be compared with standard distributions. 

A particularly interesting experiment was described by Seymour 
Papert,2•3 of the Massachusetts Institute of Technology, who had 
worked with 9-10-year-old children who had previously had little 
success in mathematics. They were given two hours of instruction 
per week in a new field, namely, 'turtle geometry'. The aims were 
for the children to carry out complex projects, to use mathematics 
where it is needed, to discover it to be logically 'clean', and to learn 
how to set up a model. 
1 Wegman, E. J. and Gere, B. H., Some Thoughts on Computers and Introduc

tory Statistics, Int. J. Math. Ed. Sci. Technol. 3, 1972, 211-21. 
2 Papert, S., Teaching Children Thinking, Mathematics Teaching, 58, 1972, 2-7. 
8 Papert, S., Teaching Children to be Mathematicians versus Teaching about 

Mathematics, Int. J. Math. Educ. Sci. Technol. 3, 1972, 249-62. 
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Schemes of work intended to give all students some understanding 
of computers are being developed in many countries, sometimes at 
a national level. Views vary on the best methods of doing this, and 
hardware falls into two distinct groups - desk machines which 
require the use of a machine language and mini-computers or 
terminals on which algorithmic languages can be compiled. Costs 
are falling rapidly, and terminals may become cheaper than desk 
machines. There are educational possibilities in both, and it is 
necessary to distinguish two groups of objectives, those which are 
mathematical and those related to the introduction of computer 
science. The exchange of ideas and experiences on the use of com
puters in mathematical education could be greatly helped by the 
existence of an international journal. OECD have established an 
information centre and it is possible that their newsletter may fulfil 
this purpose. 

Programmable calculators in schools 

In this group, a study was made of the projects carried out in various 
countries, a comparison was effected of some of the available 
machines, and aims and methods in using programmable calculators 
in secondary schools were discussed. 

Since 1969 extensive work has been done in France.1 Five or six 
types of machine have been employed, being used with pupils of 
average ability in secondary schools (eleven to seventeen years). 
The main task is to discover which mathematical concepts can be 
introduced efficiently by the use of programmable calculators. 
Initially, the aim was to motivate better working in mathematics, 
and this developed further, leading to ideas of flow-charts, pro
gramming, iteration and so on. 

Projects have been carried out in several individual secondary 
schools and colleges of education in the United Kingdom. The broad 
aims are similar to those in the French project, and the machines are 
seen both as an aid for the teacher when introducing mathematical 
concepts and also as a calculating aid for the pupils. Other projects 
have been started in Holland, Lesotho and Japan. In the USA2 work 
has been done with students training to teach in elementary schools. 
It was found that programmable calculators were more appropriate 

1 M.A. Deledicq, INRDP, Department of Mathematics, 29 rue d'Ulm, Paris 5°, 
France. 

1 Professor M. Sudduth, University of Kentucky, USA. 
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than computers in the elementary grades, and the main result was 
that, as the fear of machines was lost, so a new enthusiasm for 
mathematics developed. 

It was found difficult to separate discussion of general aims 
from consideration of the actual machines, but the main objectives 
appeared to be: 

(a) to learn how to program a problem (as distinct from merely 
gaining an understanding of how the machine operates); 

(b) to introduce mathematical concepts by means of numerical 
examples; 

(c) to simplify the task of calculation; 
(d) to distinguish two types of human activity: mechanical think

ing, which is the way in which machines operate and, secondly, 
imagination and creativity, which no machine can simulate. 

Nine machines from five different manufacturers were available to 
the group. It is neither possible nor desirable to suggest a 'best buy', 
but there are several important aspects to be considered by purchasers. 

(1) Input facilities. Apart from keyboard input, the machines can 
also be programmed by one or more of punched cards, mark-sense 
cards, punched tape and magnetic cards. It was agreed that off-line 
input preparation makes the use of the machines with a class of 
pupils much easier. 

(2) Program operation. Machines with a display on which changes 
of address can be seen, and where the punched cards actually operate 
the program, enabling loops to be seen, are of value with younger 
pupils or those at the beginning of a programming course. 

(3) Output. A printed record is indispensable except perhaps at the 
most elementary levels. 

( 4) Peripherals. Some machines have further facilities, such as 
graph plotters, built-in functions and extra memory space. Trends 
were noticed whereby these machines are becoming more like com
puters, when indirect address and subprogram facilities are available. 

During the discussion about the ways in which the machines are 
introduced, it was mentioned that flow-charts and a 'match-box' 
computer could play a useful part in giving the first ideas; use of the 
machine then follows naturally. Pupils seemed eager to use the 
machines outside class time and, within a class, appear to work 
better in groups. A distinct advantage over other types of computer 
facility is that the machines can easily be transported from room to 
room. 
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Some objections were raised that, because a low-level language is 
used, the machines are difficult to program. Most contributors, 
however, thought that this was an advantage since pupils were forced 
to analyse a problem precisely because they had not yet encountered 
mathematically sophisticated operations; in this way, a feeling for 
rigour developed. Most participants had noticed considerable 
enthusiasm among the pupils: it is good psychology for children to 
be able to give orders instead of merely obeying them; furthermore, 
it is necessary to think in order to command. 

It was generally agreed that programmable calculators are in
valuable in aiding the understanding of certain mathematical 
concepts, such as those of sequences and iterative techniques, and 
representation of variables, and in giving pupils first ideas about 
programming. But when the problems become more complicated, 
the more powerful high-level languages of computers become 
necessary. However, the elements of many techniques can be taught 
in spite of the low-level language. Additionally, some concepts can 
now be taught earlier in the curriculum than was previously the case, 
and by an experimental approach before the theory is met. 

As manufacturing costs reduce owing to improved technology, 
the choice of a particular programmable calculator, and indeed the 
choice between them and other computing facilities, will become 
more difficult. 

Curriculum design and evaluation 

Reports were received from several projects concerned with curricu
lum development at both school and college level. These were largely 
descriptive of the problems that each individual country or project 
had found in developing its mathematics curriculum, and the steps 
taken to solve these problems. While many of these problems are 
dependent on the structure of the society and the educational system 
of a particular country, a number of the problems implicit in the 
papers given are common to all nations, and would repay study by 
a future congress. Some of these points are: 

(a) The choice of mathematical subject matter for inclusion in a 
curriculum 

The approaches of the various projects were frequently based on 
widely differing goals and it was clear that there was no agreement 
as far as aims and the comparative weight to be accorded to them 
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were concerned. For example, one project took as a goal the teaching 
of what mathematics is, as held by mathematicians of the present 
day, another chose to develop the process of research and to train 
the students in 'creative activity ' . Others argued that mathematical 
education was dominated by pure mathematics and that new 
curricula should favour the needs of users of mathematics. 

Again, projects differed in the variety of options which they offered 
to users - one provided a set of optional units which enabled the 
teacher to build up a suitable curriculum for individual students, 
others offered only table-d'hote menus. There is clearly then a need 
for study of the range of criteria that a curriculum project should 
take into account, when making choices of subject matter and 
teaching approach. The state of mathematics, the needs of users, 
the social context of education, the state of the child's conceptual 
development and of his interest and creative activity, all these play 
different parts in the design of different projects. They all need more 
careful identification and study. 

(b) Criteria for evaluating a project 

The problem of how to evaluate the work of a project does not appear 
to admit any straightforward solution. Some idea of the difficulties 
encountered was given by Dr J. Hunter1 who described how students 
following a modern curriculum had performed less well in first-year 
university examinations than those who followed a traditional sylla
bus, but, to counterbalance this, the new syllabus had resulted in 
a greater proportion of pupils, particularly girls, choosing to study 
mathematics longer and had increased the general level of interest 
and enjoyment. 

(c) Suitable curricula for a wide range of students 

The increase in educational opportunities at a higher level has 
already led in the USA to vast numbers of students entering colleges 
who wish to study the applied sciences but have only a slight under
standing of mathematics. There is a need to develop suitable curricula 
for such students who, of course, will also pose a problem elsewhere 
as higher education becomes more accessible. The problem of helping 
those students in higher education for whom the school curriculum 

1 Hunter, J., Some aspects of syllabus development, evaluation and revision, 
illustrated by the work of the Scottish Mathematics Group (copies from W. and 
R. Chambers Ltd, Edinburgh, EH2 lDG). 
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has been unsuccessful, is one which has received insufficient con
sideration. 

(d) The advent of the computer 

Several contributors spoke of the introduction of computing in 
mathematics projects, and raised questions about changed emphasis, 
subject matter and methods of presentation caused by the increasing 
availability of computing facilities in schools and colleges. 

Research in the teaching of mathematics 

When reading the reports of the different working groups one is 
struck by the frequency with which such phrases as 'much work still 
to be done on ... ' and 'a further investigation of this problem seems 
urgently to be required' occur. There is a general demand for more 
'research'. But what do we mean by this emotive word? This was 
one of the first questions which the group meeting under the above 
title sought to answer. In this connection, various types of research 
were defined and the demands of evaluation in these different types of 
research were discussed. The main role of research in mathematical 
education was generally accepted to be the improvement of mathe
matics teaching, and here the value judgements implicit in terms like 
'improvement', 'mathematics' and 'teaching' were emphasised. 

The role of theory was discussed in the context of (a) providing 
a condensation of what is known, from research, about mathematics 
teaching and learning, (b) a framework in which research studies can 
be related, and (c) a guide to generating hypotheses and thereby 
showing directions for research. In this connection, it is hoped that 
theory can play a role in helping teachers to a better understanding of 
the learning-teaching process in mathematics. 

The involvement of teachers in research was a constantly recurring 
theme and specific reference was made to the desirability of involving 
teachers in research work during their initial training and in-service 
education. The idea of' the teacher as a researcher' was also discussed, 
as was the communication-gap which often exists between researchers 
and teachers. It was argued that participation in, or increased know
ledge of, research would serve as a strong motivation for teachers in 
enlarging their knowledge of relationships between goals and means 
in the teaching of mathematics, that is of the didactics of mathe
matics. At the same time, there was discussion of difficulties connected 
with teacher/classroom research. For example, does the teacher have 
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the background training or the time for research? Also there may 
be design and methodological problems implicit in a 'one-classroom' 
research setting. 

There was a general feeling that more research must take place 
within the natural setting of the classroom in order to increase our 
understanding of the teaching process. The need to specify teaching 
goals as clearly and precisely as possible was emphasised; for without 
this, proper evaluation cannot be made. 

There was a strong sentiment that mathematics education is a 
developing area (some would say 'science') in and of itself and 
should be treated that way. Research in mathematics education 
should be carried out by people competent in the relevant fields of 
mathematics in collaboration with specialists in other areas such as 
education or psychology. 

Although recognising that different countries may well have 
different research priorities, reference was made by participants to 
the need for research on 

(a) the relationships between topics, and on the sequences of topics 
within a curriculum, 

(b) children who have special learning disabilities in mathematics, 
(c) successful and unsuccessful teacher/pupil interactions, 
(d) problems of teaching and learning which are not specific to 

mathematics, 
(e) pupils' ability to read mathematical texts, 
(f) the influence of demands for rigour and prec1s10n on the 

attainment by the pupils of creative and aesthetic goals in mathe
matics. 

Mathematics in developing countries 

This was one of the largest and certainly the most international of the 
congress working groups and it was very heartening to note that the 
Exeter Congress attracted so many more educators from developing 
countries than did its predecessor. In recognition of the importance 
of the work of this group and in an attempt to avoid a bland, anodyne 
communique to which every group member could subscribe, the 
account of this group's activities differs from that of any other, being 
somewhat longer and in the form of a personal report from the 
Chairman and Secretary. As such, it inevitably emphasises individual 
viewpoints. Nevertheless, the authors assure us that the opinions 
expressed would have received the general support of the group; 
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indeed, nearly all the material is drawn from the group's working 
papers, and the discussions to which they gave rise. Despite the 
diversity in detail revealed by the papers and discussions, a surprising 
unity in fundamental aims and problems was apparent. 

The present movement for the reform of both content and 
methodology in the teaching of mathematics at all levels affects the 
developing countries just as much as those of Europe and North 
America. Indeed, in many ways it raises more acute problems for 
those countries whose resources are more limited. The group found 
itself discussing the practical problems of the supply of trained or 
retrained teachers, and of appropriate teaching materials, but it was 
even more concerned with fundamental problems arising from the 
background against which rapid reform is taking place. 

1 The social and cultural background 

In many developing countries, including most of those in Africa, 
the following factors arising from the social and cultural background 
are relevant to the reform of mathematics teaching: 

(a) instruction has been oral rather than visual; not many genera
tions have elapsed since instructors were illiterate; 

(b) reliance has been placed on memory of traditional patterns of 
interpretation of history, customs and techniques; it has been im
portant for survival to maintain a well-tried and long-established 
system rather than to make possibly disastrous new experiments; 

(c) the method of instruction has been didactic; where the oldest is 
the most experienced and respected, the duty of the young is to listen; 

(d) spatial experiences have been quite different from those of the 
Western world and, in particular, representation of spatial relation
ships may be almost unknown; 

(e) dynamical experiences will have been few or absent, with 
consequent difficulty in the alignment of scales and visualisation of 
movement, and a general lack of mechanical facility. 

These factors inhibit many of the methods of investigation and 
discussion which are prevalent in modern teaching methods in 
Western countries. 

2 The educational background 

(a) In most developing countries, with the notable exception of 
India, the length of experience of most graduate teachers of mathe
matics is short, and of modern mathematics extremely short. 
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(b) There has been a tendency for historical reasons to regard 
education as first and foremost a means of acquiring a paper quali
fication which will lead ultimately to better-paid employment; only 
secondarily as a means of acquisition of a marketable skill. The idea 
of education as a way of enriching the personality and of increasing 
man's understanding and control of the world often appears only 
in a very poor third place. This brings to the developing teacher a great 
temptation (which is by no means unknown to those who regard 
themselves as more developed) to measure success by the number of 
pupils who pass examinations, and to evaluate examination sylla
buses by the ease with which pupils can be trained to pass them. 

(c) Most countries are experiencing a very great increase in 
numbers of children in primary and secondary schools; this repre
sents a praiseworthy achievement but also creates a situation 
demanding very serious action if teaching methods and conditions 
are not to deteriorate. 

These are not trivial problems. Teachers in the developing countries 
themselves are asking questions about such fundamental issues, and 
there is need for basic research into the relation between teaching 
methods and the cultural and educational background. 

3 The special needs of mathematics 

While much of the above is common to all subjects, there are certain 
features which make mathematics a peculiarly sensitive discipline. 
Mathematics is a subject which demands a quiet, untroubled mind 
for its proper absorption, as also for its lucid communication. Social 
uncertainty. political anxiety, examination apprehensions affect 
mathematical performance more immediately than most other sub
jects. (We all know how difficult it is to find a mistake on the black
board when we are concentrating on holding the attention of the 
class.) 

Secondly, mathematics itself has developed in the last ten years 
rather too precipitately for many teachers, even in well-developed 
countries. Now of course, if your previous experience has been 
entirely taken up with simple arithmetic and the uses of ground-nuts, 
the mysteries of the combination of two reflections are likely to be 
no greater than those of angles in the same segment. The enthusiasts 
will say that, provided the pupil can be given a piece of paper to fold, 
or two pieces of reasonably polished metal {like table-knives), they 
may even be less formidable. But the bulk of the graduates and 
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diplomates in the developing country may include few or none who 
have ever been taught this at school level, and this is unfortunately 
what counts. Still worse, they may have regarded mathematics as 
a terrifying array of data to be memorised, and are now for the first 
time being confronted with a series of operations to be carried out, 
systematised, and understood. No progress in teaching method or 
content can be made unless a teacher is brave enough to do things 
which are different from what he himself experienced as a pupil; and 
in mathematics the difference may well be that between memorisation 
and understanding. 

Serious consideration must therefore be given to the content of 
mathematics syllabuses. Topics relevant to the secondary level of 
education in an industrial society may be totally irrelevant to a pre
dominantly agrarian country. In the past decade there has been 
a tendency to transfer unquestioningly syllabuses from Europe and 
North America to countries in Asia and Africa. The time is ripe for 
fundamental rethinking as to their appropriateness. This must of 
course be done by teachers who are nationals of the countries con
cerned though discussions may be facilitated from outside, for 
example by the sponsorship of regional conferences and assistance 
to relevant research projects. 

Does this mean that mathematics itself is culturally dependent? 
The working party for the most part felt that it is not, but that 
natural aptitudes, the social and economic setting, and the demands 
of national development should certainly influence both the selection 
of appropriate mathematics and the methods by which it is taught. 
While almost every country in the world is moving towards 'modern' 
syllabuses, far too little thought seems to be being given to the aims 
and objectives of mathematical education in relation to local culture 
and needs. Ideally, reform should arise spontaneously from the 
dissatisfaction of nationals with things as they are, rather than from 
expatriates' visions of things as they ought to be. 

4 The transfer of teaching materials 

These are transferred between countries at three main levels: 
(1) The level of acceptance, where materials are transferred directly 

in their original form for general classroom use; 
(2) the level of adaptation, either (a) small-scale adaptation, often 

carried out in the country of origin, consisting of little more than 
alterations to place-names, currencies, and other essentially super-
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ficial matters; or (b) large-scale adaptation, carried out in the 
importing country, often after trials of draft materials; 

(3) the level of appraisal, the transfer of influence and ideas, the 
materials themselves being used maybe only for teacher-training 
and specialist study. 

As a country progresses educationally, so does its level of transfer, 
at a rate closely dependent on its resources of qualified manpower, 
of competent pupils, and of budgeted funds. Transfer at level 2(b) is 
a comparatively recent phenomenon in the history of mathematical 
education, which leads to valuable savings in time and money, but 
there is need to assist developing countries to progress through the 
various levels as rapidly as possible. In particular, indigenous 
textbook writers should be encouraged and trained by all possible 
means. 

5 Primary education 

Every developing country would like a niche in the hall of academic 
fame - an Einstein, a Crick, a Heisenberg. But this is the apex of 
a pyramid which rests on a very broad base; probably what it needs 
far more is a properly numerate and literate labour force and 
electorate. This means a primary school population which is receiving 
a well-rounded and thorough education. Educationally, socially, 
morally, this is worth far more than prestigious names or even 
applied research, for no research project can contribute effectively 
to development without soundly educated technicians possessed of 
skill, adaptability and integrity. 

Unlike the situation in developed countries, primary education is 
terminal for the majority of children. In the past, syllabuses have 
usually been directed towards preparation for secondary education, 
but their content urgently needs reconsideration in the light of the 
needs of those who will never progress beyond primary school. Here 
the developed countries have little relevant experience to offer. 

The crucial question is the provision and training of primary 
school teachers, who often have no more than secondary education 
themselves, and sometimes not even this. Too rapid innovations will 
undermine their confidence and arouse their hostility. Large classes 
demand that the problem be approached with realism and sympathy. 
This is not purely a mathematical problem. Social, political, and 
economic changes are necessary to improve the status and pay of 
the primary teacher, to encourage diplomates to enter primary teach-
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ing, and to allow better use to be made of the available manpower 
(including that of the pupils themselves) in primary schools. 

The question of the language which is the medium of instruction 
arouses strong feelings, but there is widespread agreement that 
mathematics should be taught first, in the early primary years, in 
the child's mother-tongue which will lead to greater understanding 
of basic mathematical concepts. Many countries, however, have 
a multiplicity of languages so that there comes a point, perhaps 
during the primary years, and certainly by the secondary stage, where 
the medium of instruction cannot be the mother-tongue of all the 
pupils concerned. The working party urged that fundamental research 
should be undertaken on the relation between the learning of mathe
matical structures, and the structures of the language through which 
they are learned. 

Account also needs to be taken of the use of simple teaching 
materials and apparatus and the training of teachers in their use. 
Suitable aids costing little or nothing can often be collected by the 
pupils themselves or improvised from material readily available 
locally. Local crafts may reveal geometric patterns, and traditional 
games can be a rich source of mathematical ideas. The natural 
environment may also be rich in illustrative material, but all this will 
be useless unless the teacher is persuaded that it is important, not 
because it helps the teacher to teach the syllabus, but because it helps 
the pupils to understand what they learn. 

6 Secondary education 

Here again, secondary education is terminal for the majority of those 
selected to receive it. In addition, despite the selective system, there 
is usually a wide range of ability in the secondary class. Unlike many 
developed countries, there is only one educational path to be followed, 
and this is determined by the needs of the few who will proceed to 
tertiary education. There is therefore a crying need to provide alterna
tive courses in mathematics for different groups of secondary pupils. 
Again at secondary level the influence of examinations is at its most 
baleful, with unmodified transfer of Western examination methods. 
Alternative methods of assessment, appropriate to the pupils' 
cultural background, must surely be devised, and syllabus content 
reviewed in the light of each country's needs and the pupils' future 
opportunities for employment. 

Little serious evaluation of the long-term effects of changing from 
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a traditional to a modem syllabus at this level has yet been under
taken. To be effective, such a research programme needs to be 
supported by the Ministries of Education and the universities of a 
number of countries in cooperation, perhaps on a regional basis. 

7 University education 

Just as schools should serve the needs of the society in which they 
are set, so universities in developing countries should not merely 
be pale copies of older institutions elsewhere in the world. In some 
countries of Africa a university intake corresponding to the British 
'O' level at 16 + precedes a four-year course leading to a first degree. 
The content of the course work in such cases needs to be formulated 
with reference to the projected manpower needs of the country, and 
not just by reference to the specialist interests of the Department of 
Mathematics at the time. Teaching methods, too, must be geared to 
the educational level of the students rather than modelled on tradi
tional methods in Western universities. Such considerations apply 
even more strongly to the topics of mathematical research supported 
by the university. The limited nature of resources available demands 
that such research projects should be relevant to the needs of society 
rather than simply serve to advance the career of the researcher. 

8 Curriculum development and teacher-training 

In many countries the educational system is so constructed that 
teacher-training, curriculum development and classroom practice are 
three separate activities. We are coming to realise that change can 
only be effective when the three are seen as aspects of a single process. 
It is one thing to prescribe a new series of mathematical textbooks 
for classroom use, but quite another to ensure that the mathematical 
education of the pupils is thereby improved. It is na'ive to define 
curriculum as the content of the textbook, or its development as the 
introduction of a new one. It is both more realistic and more con
structive to define curriculum as what actually takes place in the 
classroom. This immediately gives the teacher a key role in curricu
lum innovation. Many developing countries are already acting on 
this principle, by giving teachers a major share of responsibility for 
developing new teaching materials, and by recognising their crucial 
role in the evaluation of them in the classroom. 

This view of the unity of the process of educational change has 
important implications for the planning of curriculum development 
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projects. Writing-teams must include teachers and not be dominated 
by university personnel. Only teachers, and particularly those who 
are nationals of the country concerned, are aware of the practical 
realities of the school situation, of the pupils' attitudes, capabilities, 
and responses to proposed changes. At the same time the fact of 
being a trained national does not of itself make a teacher a good 
textbook writer. The arts of teaching, and of developing new 
materials, are ones that the good teacher goes on learning throughout 
his career, and more particularly through corporate activity with 
others who are similarly engaged. Mathematical associations have 
often been found useful in developing this, and in breaking down the 
traditional isolation of the teacher in his classroom. Local teachers' 
centres can act as a venue for informal meetings and in-service 
courses, and as libraries for the study and loan of new materials and 
resources. 

The training of teachers is the key to the whole programme of 
mathematical education, and different countries are handling it in 
different ways. Some seem to have no difficulty in ensuring a flow of 
mathematics and science graduates into teaching, while others find 
it almost impossible to recruit any. Some put faith in concurrent 
education and degree courses, others in post-graduate education 
certificates. But all agree that more ought to be done to help their 
primary teachers, that teaching needs to be made more attractive, 
and above all that the training of new teachers will never solve the 
problem by itself. The school population is increasing so fast (in 
some countries the primary population has increased tenfold since 
most of the primary teachers were at school!) that it is like trying to 
climb an escalator which is descending always faster than you can 
climb; or, as the Red Queen said,' it takes all the running you can do 
to stay in the same place'. 

Every teacher is a developing person, and in this self-development 
lies the greatest hope for the future. Every encouragement must be 
given to teachers actually on the job to grow in understanding of 
children and of mathematics, and in efficiency in bringing the two 
together in an environment in which genuine mathematics can be 
learned. This cannot be done in a hurry. A cycle of development is 
not complete until a teacher begins to teach the topics and methods 
by which he himself was taught at a similar level; only then is a firm 
base established on which the next cycle of reform can be built. For 
the university teacher the cycle may be as little as five years; for the 
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secondary teacher it will be nearer ten, and for the primary teacher 
fifteen to twenty years; and the primary teacher is the most important. 

9 General conclusions 

(a) Mathematics teachers in developing countries should be 
encouraged themselves to develop and modify in the light of their 
own classroom experience curricula and syllabuses which are imagina
tive in their outlook but sensitive to the habits of a culture and 
pattern of education which may be very different from that of the 
Western world. In this the paramount needs of development will have 
to be kept in mind. Too abstract an approach is to be deprecated, and 
the incentives to accurate arithmetical facility provided by commer
cial activities will need to be respected and directed. The farmer must 
be able to cope with his accounts, but alongside him the future 
graduate must be experiencing the all-pervasive pattern and power 
of mathematics. Both teacher and pupil need the confidence which 
will enable them to carry out simple arithmetic mentally in less time 
than it takes to write it out on slate or paper; at the same time they 
need the spirit of enquiry which will drive them to understand 
fundamental processes so that they can apply them in a variety of 
situations. 

(b) There is need to encourage interest in mathematics as an 
intellectual exercise which authenticates itself and can bring enjoy
ment and interest to those engaged in it. The increasing popularity 
of the mathematics contest helps to do this by provoking logical 
thought in reasonably simple problems which may be remote from 
the normal school curriculum. 

(c) Emphasis must be placed on that part of mathematics which 
depends on visual imagination: the drawing and interpretation of 
graphs, the recognition of curves, the appreciation of pattern, the 
visualisation of motion and of three-dimensional relationships. These 
are matters which have often been neglected with the excuse that they 
are time-consuming, but probably because the teacher feels insecure 
in handling them. There is no doubt of their importance in the world 
of today. 

(d) There is a danger in too great reliance on paper qualifications. 
The pay of a teacher may depend too closely on them, and too little 
on his responsibilities or suitable experience; indeed, they may be 
too easily equated with an experience which has not been part of the 
courses which led to them. This is particularly dangerous when 
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a diploma in education by itself, without teaching experience, is 
thought to be sufficient qualification to train teachers. 

(e) At all levels of education, educators in developing countries 
should be encouraged to pay less attention to the apparent demands 
of academic respectability, as judged by their professional counter
parts elsewhere in the world, and more to the alignment of their 
work with the genuine needs of the people whom they and their 
institutions serve. 

(f) We urge upon the governments of developing countries the 
importance of investing in the education of their own future man
power. If more pupils than can be effectively taught crowd into 
schools, the effect is likely to be counter-productive; there is evidence 
to show that the result is relapse into illiteracy and the creation of 
a problem class · whose ambitions have been inflated beyond their 
capabilities. The status of the teacher must be made more honoured, 
his salary scales must be handled more imaginatively, and more 
graduates must be attracted into education. Rome was not built in 
a day, nor the educational systems of the developed nations in 
a decade. The development of sound logic and mathematical imagina
tion within the school population of a country may not pay immediate 
economic dividends, but it is a valuable long-term investment in that 
nation's future. 

National and other presentations 

When the Programme Committee took the decision to invite individual 
countries to mount their own presentations at the congress it had 
very little idea of the likely response. Certainly it scarcely imagined 
that seventeen countries, namely the Arab Republic of Egypt, 
Argentina, Australia, Austria, Eire, the Federal Republic of Germany, 
Ghana, India, Italy, Japan, Korea, Malawi, the Netherlands, Poland, 
South Africa, the United Kingdom and the United States of America, 
would respond to the invitation. Inevitably, since there were no 
precedents to fall back on, and since the financial and other resources 
available differed so greatly, the presentations which these countries 
mounted varied considerably in size and purpose. At one end of the 
scale the United Kingdom presentation was able to include a large 
number of activities involving pupils and teachers drawn from 
different parts of the country, and that of the USA contained a series 
of lectures that could by itself have formed the basis for an inter
national congress; at the other end, smaller or more isolated countries 
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were given an opportunity to demonstrate their approach to mathe
matical education, to exhibit typical texts and children's work and to 
talk about the steps they are taking to solve the many problems that 
confront them. Some of the countries compensated for their inability 
to mount 'live' activities by showing films used in mathematics 
teaching and videotapes of classroom work. There can be no doubt 
that congress members found the opportunities to learn about 
developments and thought in countries other than their own most 
valuable, and that, offered within the confines of a national presenta
tion, the ideas, activities and materials exhibited a coherence which 
would have been lost had they been presented piecemeal in a variety 
of discussion groups. 

These benefits were demonstrated also by those exhibitions which 
were independent of, but nonetheless a valuable part of, the congress. 
The work of the Open University has aroused world-wide interest 
and it was fitting that congress members should have been able to 
see a comprehensive demonstration of the unique teaching methods 
of this institution and of the materials in several media that it has 
produced. Again, at the presentations of the School Mathematics 
Project and the Nuffield Project congress members could see a range 
of activities typical of a curriculum reform project. Thus, for 
example, the SMP, through a series of demonstration classes (in one 
of which each pupil had his own console attached to an advanced 
time-sharing computer), was able to give visiting delegates a vivid 
impression of the scale and character of its work. 

5 THE CONGRESS IN RETROSPECT 

One hopes that members attending a congress on mathematical 
education will leave with some new thoughts on 'mathematical 
education'. One can, however, be certain that they will leave with 
new ideas on the planning of' congresses on mathematical education'. 
Clearly, there are lessons to be learned from every congress. Many 
of these are of a technical nature and, as such, are better left for the 
consideration of future programme and organising committees. Some, 
however, would seem to be of wider interest and worthy of considera
tion and comment by those who attend, rather than plan, such con
gresses. It is unusual perhaps for such matters to be discussed in 
a congress report but the precedent is not necessarily a bad one. 

Writing so soon after the end of the congress, it is difficult to see its 
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work in perspective, but talks with a variety of congress members 
suggested that the programme committee was right to reduce the 
number of plenary sessions and to place emphasis on working group 
discussions and national presentations. Such criticisms as there were, 
indicated that further progress is likely to come by improving this 
'tripartite' system rather than by replacing it with yet another system. 

The feeling that there was altogether too much happening at the 
same time was to be expected. Perhaps the significant factor here was 
the length of the congress - it was noticeably shorter than that at 
Lyons, yet it attempted to cover so much more ground. Clearly, any 
future congress must be longer and should contain more 'un
programmed time' for visits to exhibitions, informal chats, or merely 
'getting one's breath back'. 

Again, with increasing membership the value of the plenary 
lecture diminishes. The difficulties of holding meetings in large halls 
with all the paraphernalia of simultaneous translation are manifest: 
the listener's problems are not only mathematical - they are psycho
logical and physiological! Admittedly there is value in seeing and 
hearing a certain number of outstanding speakers and in bringing all 
congress members together for this purpose in one place on at least 
a few occasions during the congress. But possibly, in place of one 
or two of the plenary lectures, invited papers might be circulated (in 
translation where necessary) at the commencement of the congress. 
Members would then have the opportunity to discuss these with their 
respective authors during the duration of congress. Such an arrange
ment would, however, bring further administrative and printing 
problems in its wake. Already, it is apparent that the complexity of 
an ICME is as much as can be coped with by what is almost entirely 
voluntary labour. Any extra administrative commitments will almost 
certainly necessitate professional assistance and this, together with 
any major increase in the amount of multilingual printing needed, 
will inevitably mean a much higher congress fee. 

Problems of administration and printing also affected the work 
of the discussion groups. The amount of preparatory work under
taken by these groups varied enormously and it is no surprise that 
those which were best prepared turned out to be the most rewarding. 
Clearly, although much depends on the group chairman and secre
tary and the facilities available to them, it is the ordinary members 
who, by their contributions and the interest they display prior to the 
congress, are ultimately responsible for the success or failure of the 
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groups. It is to be hoped, therefore, that if similar working groups 
are to be a feature of future congresses, then members will make 
a contribution not only at the congress, but also before it. This should 
enable the groups to move still further from the pattern of 15-minute 
contributions, often unrelated to each other, to a genuine 'workshop' 
with more active participation, from which collective conclusions 
emerge. 

As mentioned earlier, the national presentations and other exhibi
tions were a most popular feature of the congress; the opportunities 
they presented being welcomed by visitor and exhibitor alike. There 
could be difficulties if these presentations are allowed to grow in an 
uncontrolled manner, for more emphasis might be placed on ' selling' 
particular points of view and less on listening and learning; and, in 
an endeavour to mount ever more impressive national presentations, 
less energy and time might be devoted to the corporate workings of 
congress. It is to be hoped that these hazards will be avoided. Cer
tainly, the principle of national and other presentations was success
fully vindicated at Exeter, not least because the activities, displays 
of texts, etc., served as constant reminders that mathematical educa
tion is a practical activity involving pupil and teacher, learner and 
expositor, and they thus acted as a corrective to a dangerous tendency 
to treat mathematical education as an academic, abstract structure 
in which 'pupil' and 'teacher' become 'undefined terms'. It is 
important, though, that such activities involving pupils and teachers 
should not be viewed merely as 'demonstrations' - as 'method' 
classes - but that they should be seen as providing opportunities for 
shared observation of the way in which learners and teachers can 
work together and as a basis for subsequent discussion, for only then 
will they reveal their true potential. 

Above all, the lesson of Exeter is that mathematical education is 
now a matter of great, world-wide interest and that future congresses 
are assured of a large membership. If these even larger congresses 
are to generate ideas and to be of significance in the development of 
a discipline of mathematical education, then they must be prepared 
for diligently - not only by the committees appointed to plan them, 
but by the members themselves. 
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As I read them 

George P6lya 

Some of the following passages are literally quoted or translated, 
others are paraphrased ( condensed, modernised, .. . ). [Square 
brackets are used to indicate inserted words in the quotations and 
comments following the quotations.] I tried not to distort too much 
the meaning intended by the authors. At any rate, as I read them, 
these quotations greatly helped me to clarify my opinions and they 
may find responsive readers. 

1 The ideas should be born in the student's mind and the teacher 
should act only as midwife. Socrates 

2 ... we should give no small share of the credit to Democritus 
who was the first to state the result though he did not prove it [just 
guessed it] ... The method I used did not furnish an actual demonstra
tion [just a suggestion, a guess ... Yet] I foresee that this method, 
once understood, will be used to discover other theorems which have 
not yet occurred to me, by other mathematicians, now living or yet 
unborn. Archimedes 
[First guess, then prove - that's the way to do it.] 

3 Intuition is the conception of an attentive mind, so clear, so 
distinct, and so effortless that we cannot doubt what we have so 
conceived. Descartes 
[Beauty in mathematics is seeing the truth without effort.] 

4 The chains by which the logicians imagine to be able to control 
the human mind seem to me of little value. Descartes 
[ When introduced at the wrong time or place, good logic may be the 
worst enemy of good teaching.] 

5 Nothing is more important than to see the sources of invention 
which are, in my opinion, more interesting than the inventions 
themselves. Leibniz 
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6 Mathematics is the science that yields the best opportunity to 
observe the working of the mind ... [and] has the advantage that by 
cultivating it we may acquire the habit of a method of reasoning 
which can be applied afterwards to the study of any subject and can 
guide us in the pursuit of life's object. Condorcet 
[Commenting on Euler's work.] 

7 Thus all human cognition begins with intuitions, proceeds from 
thence to conceptions, and ends with ideas. Kant 
[Learning begins with action and perception, proceeds from there to 
words and concepts, and should end in desirable mental habits.] -

8 What is good teaching? Giving opportunity to the student to 
discover things by himself. Herbert Spencer 

9 The object of mathematical rigour is to sanction and legitimate the 
conquests of intuition, and there never was any other object for it. 

J. Hadamard 

IO If Euclid failed to kindle your youthful enthusiasm, then you 
were not born to be a scientific thinker. Albert Einstein 
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Comments on mathematical education 

Jean Piaget 

The orientation one would consider giving to mathematical education 
depends naturally on the interpretation adopted of psychological 
development or the acquiring of operations and logico-mathematical 
structures; this interpretation depends equally on the epistemological 
meaning given to those things, the two questions of their psycho
genesis and their epistemological significance being very closely 
related. If Platonism is right and mathematical entities exist inde
pendently of the subject, or if logical positivism is correct in reducing 
them to a general syntax and semantic, in both cases it would be 
justifiable to put the emphasis on the simple transmission of the truth 
from teacher to pupil and to use, as soon as possible, the language 
of the teacher, that is, the axiomatic language, without worrying too 
much about the spontaneous ideas of the children. 

We believe, on the contrary, that there exists, as a function of the 
development of intelligence as a whole, a spontaneous and gradual 
construction of elementary logico-mathematical structures and that 
these 'natural' ('natural' in the way one speaks of the 'natural' 
numbers) structures are much closer to those being used in 'modem' 
mathematics than to those being used in traditional mathematics. 
There is, therefore, a body of facts which are, in general, little known 
to the teacher, but which, once he has a better psychological know
ledge, would be of considerable use to him and would help him rather 
than make things more complicated. This would also favour the 
realisation of creative vocations in pupils rather than treating them 
simply as conforming 'receiving' instruments. 

However, in order to arrive at this stage it is necessary to revise our 
ideas about the relation between language and action. It would seem, 
in fact, psychologically clear that logic does not arise out of language 
but from a deeper source and this is to be found in the general co
ordination of actions. In fact, before all language, and at a purely 
sensori-motor level, actions are susceptible to repetition and then to 
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generalisation thus building up what could be called assimilation 
schemes. These schemes organise themselves according to certain 
laws and it would seem impossible to deny the relationship between 
these and the laws of logic. Two schemes can be coordinated or dis
sociated (reunion), one can be partially nested in the other (inclusion), 
or only have a part in common with the other (intersection); the parts 
of a scheme or the coordination of two or more schemes can allow 
either an invariant order of succession or certain permutations (types 
of order), as well as one-to-one correspondences, one-to-many or 
many-to-one (bijections etc.), and once a scheme imposes a goal on 
an action it is contradictory for the subject to go in the opposite 
direction. Briefly, there is a whole logic of the action that leads to the 
construction of certain identities and these go beyond perception 
(for example the permanence of the hidden object) and to the elabora
tion of certain structures (the practical group of displacements already 
described by Poincare in his epistemological essays). 

Therefore, it would be a great mistake, particularly in mathematical 
education, to neglect the role of actions and always to remain on the 
level oflanguage. Particularly with young pupils, activity with objects 
is indispensable to the comprehension of arithmetical as well as geo
metrical relations (as was the case with the empirical mathematics of 
the Egyptians). The mathematics teacher's aversion to activities in
volving material experimentation is quite comprehensible. They 
probably see a sort of reference to the physical properties of objects 
and might fear that empirical verifications will harm the development 
of the deductive and purely rational mind which characterises their 
discipline. But this is, in fact, a fundamental misunderstanding and 
psychological analysis allows us to dispel these fears and reassure 
mathematicians with regard to their essential deman<l that the deduc
tive and formal aspect of the mind should be educated. There exist, 
in fact, two types of ' experience•, one very different from the other, 
which are related to the subject's actions. In the first instance, there 
is what is known as 'physical experience' (in the broad sense) which 
consists in acting on objects in order to discover the properties of the 
objects themselves, for example, comparing weights or densities, etc. 
But there also exists, and this is generally not known, what could be 
called 'logico-mathematical experience•; this type of experience 
gathers its information, not from the physical properties of particular 
objects, but from the actual actions ( or more precisely their coordina
tions) carried out by the child on objects - these two types of experi-
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ence are not equivalent. A friend of mine and a well-known mathema• 
tician says that the beginnings of his interest in mathematics were 
triggered off by an experience of the second type which happened to 
him when he was about 4 or 5 years old. Seated in his garden, he 
started to amuse himself by placing some pebbles in a straight line 
and counting them, for example, one to ten from left to right. After 
this he counted them from right to left and to his great surprise he 
still found ten. He then put them in a circle and, with enthusiasm, 
counted them - again ten so he counted them in the opposite direc
tion and he found there were ten in both directions. He went on 
arranging the pebbles in all sorts of ways and finished by convincing 
himself that the sum, ten, was independent of the order of the 
pebbles. It is evident that neither the sum nor the order are physical 
properties of the pebbles until such time as the child has actually 
arranged them or put them all together. In this instance the child 
has discovered that the action of uniting the pebbles gives results and 
these results are independent of the action of ordering the pebbles. 
He could have observed this with any solid objects as, in this action, 
the physical properties of the pebbles played no particular role (apart 
from the fact that they 'let themselves' be acted on; their nature, 
however, remains unaltered, that is, it is conserved, but conservation 
itself also gives rise to logico-mathematical experience). 

Thus this initial role of actions and logico-mathematical experience, 
far from hindering the later development of deductive thought, 
constitutes, on the contrary, a necessary preparation and this for two 
reasons. This first is that mental or intellectual operations, which 
intervene in the subsequent deductive reasoning processes, themselves 
stem from actions: they are interiorised actions and once this in
teriorisation, with the coordinations it supposes, is sufficient, then 
logico-mathematical experience in the form of material actions is no 
longer necessary and interiorised deduction is sufficient. The second 
reason is that coordinations of actions and logico-mathematical 
experience, whilst interiorising themselves, give rise to the creation of 
a particular variety of abstraction which corresponds precisely to 
logical and mathematical abstraction: contrary to ordinary or 
Aristotelian abstraction which derives its sources from the physical 
properties of objects and for this reason is called 'empirical abstrac
tion', logico-mathematical abstraction would be referred to as 're
flective abstraction' and this for two related reasons. On the one 
hand, this abstraction 'reflects' (in the same way as a reflector or 
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projector) everything that was on a lower plane (for example, that of 
action) and projects it to a higher plane, that of thought or mental 
representation. On the other hand, it is a 'reflective abstraction' in the 
sense of a reorganisation of mental activity, as it reconstructs at a higher 
level everything that was drawn from the coordinations of actions. 

However, between the age where material actions and logico
mathematical experience are necessary (before 7 /8 years old) and the 
age where abstract thought begins to be possible (towards 11/12 years 
old and through successive levels until about 14/15 years), there is an 
important stage whose characteristics are interesting to the psycho
logist and useful to know for the teacher. In fact between the age of 
7 and 11/12 years an important spontaneous development of deduc
tive operations with their characteristics of conservation, reversibility, 
etc. can be observed. This allows the elaboration of elementary logic 
of classes and relations, the operational construction of the whole 
number series by the synthesis of the notions of inclusion and 
order, 1 the construction of the notion of measurement by the synthesis 
of the subdivision of a continuum and the ordered displacement of 
a chosen part which serves as a unit, etc. Although there is consider
able progress in the child's logical thinking it is nonetheless still 
fairly limited. At this level the child cannot as yet reason on pure 
hypotheses, expressed verbally, and, in order to arrive at a coherent 
deduction, he needs to apply his reasoning to manipulable objects 
(in the real world or in his imagination). For these reasons, at this 
level we refer to 'concrete operations' as distinct from formal opera
tions. These concrete operations are, in fact, intermediaries between 
the actions of the pre-operational stage and the stage of abstract 
thought which comes much later. 

Thus, having established the continuity between the spontaneous 
actions of the child and his reflexive thought, it can be seen from this 
that the essential notions which characterise modern mathematics 
are much closer to the structures of 'natural' thought than are the 
1 Several authors (Freudenthal, etc.) seem to have understood that I think the 

ordinal number is more primitive than the cardinal number, or the opposite. 
I have never made such a statement and have always considered these two 
aspects of finite numbers indissociable and psychologically reinforcing one 
another in a synthesis that goes beyond both the inclusion of classes and the 
order of asymmetrical transitive relations. If order is necessary it is because 
units which have become equivalent by the abstraction of their qualities can 
only be distinguished from one another by their ordered position. But the 
order of the elementary units is relative to the number (cardinal) of units which 
precede each of the units thus ordered. 
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concepts used in traditional mathematics. First, the importance should 
be pointed out of the spontaneous role of operations which allow the. 
establishment of correspondences between sets and thus the construc
tion of morphisms and in particular when these can be combined 
with recurring sequences. We have, for example, with B. Inhelder, 
asked children between 4/5 and 7/8 years old to put a bead from one 
hand into a transparent cylinder and simultaneously with the other 
hand put another bead into a second transparent cylinder which 
was, however, hidden behind a screen. The questions were de
signed to find out whether or not the child understood that the two 
sets, thus constituted, were equivalent and also to discover whether 
if this action were to be continued indefinitely, this equality would be 
conserved. All the children questioned admitted the equality of the 
two sets whilst the action was going on, however the youngest children 
refused to generalise to the case where the action was continued 
indefinitely. From about 5 or 6 years onwards they admit this general
isation and one small boy of 5½ found the following very amusing 
formula: 'When one knows for one time, one knows for ever.' How
ever this same child, after having seen a set of ten red counters in 
a one-to-one correspondence with a second set of ten blue counters, 
refused to admit the conservation of this equivalence once the ele
ments of one of the sets had been spaced out a little and the corre
spondence between the two was no longer visible. This example 
demonstrates the constructive role of the establishment of a corre
spondence combined with the idea of recurrence. 

An extremely striking example of convergence between theory and 
the spontaneous development of the child is that of geometric intui
tions. Historically these intuitions appeared in Euclidean geometry, 
the structures of projective geometry were not discovered until much 
later and topology only in the nineteenth century. Psychologically 
children of 3 and 4 years old, who do not yet know how to draw 
squares and tend to compare them to circles - shapes such as 
rectangles and triangles etc. being assimilated to simple closed curves 
- are very careful, however, to make the distinction between closed 
and open figures, and they are able to draw with as much care a circle 
inside a figure, outside a figure, or on the frontier of a large figure. 
From these early topological intuitions arise, later and simultaneously, 
projective notions (with verification by 'taking aim' or 'sighting') 
and Euclidean notions according to a process which is nearer psycho
logical theory than history. 
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From the level of concrete operations - at about 7 /8 years -
another interesting convergence can be found, that is the elementary 
equivalent of the three 'mother structures' discovered by Bourbaki, 
and this itself shows the 'natural' character of these structures. First 
of all there is the construction of structures of an algebraic nature, 
in as much as their laws of composition have an inverse and an 
identity element + A-A = 0. This can be observed particularly in 
the system of logical classes (classifications, etc. with quantification 
of the inclusion A < B if B = A+ A' - and neither are empty sets). 
Secondly, order structures can be found whose laws of composition 
are based on reciprocity and this characterises the system of relations 
(ordering). Finally, topological structures based on ideas of con
tinuity, neighbourhood and separation can be observed. These ele
mentary structures later combine with each other. In particular, 
inverses ( or negations ( -A)) and reciprocities, which do not combine 
with each other at the concrete operational level, can be composed 
with one another from the 11/12 formal level onwards, in a four
group which renders possible such compositions: in this case the 
beginning of propositional logic with the combinatorial (set of all 
sub-sets) system, superposes itself on the elementary structures of 
logical classes and relations. The subject is then capable of handling 
systems that have four transformations. Let us take, for example, the 
propositional operation p => q and define the four transformations: 

1. (/) the identify or 'null' transformation I(p => q) = p => q, 
2. (N) the inverse transformation N(p => q) = p n ~ q, 
3. (R) the reciprocal transformation R(p => q) = q => p, 
4. (C) the correlative transformation C(p => q) = .~ p n q. 

In this case RC = N, RN = C, NC = R, NRC = I which ensures 
finally the coordination in a unique system of inverses and recipro
cities. 

Many other examples, in particular the construction of elementary 
and 'trivial' forms· of categories, could be given. However, it is now 
the moment to describe how these convergences between the spon
taneous thought of the child in his 'natural' development and 
certain fundamental theoretical notions can be of use to the teacher. 
It can, of course, happen that certain people will try to teach young 
children 'modern' mathematics with archaic teaching methods, 
based exclusively on verbal transmission from teacher to child with 
a premature use of formalisation. With such methods there are 
bound to be a certain number of failures and these help to explain 
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the scepticism of certain great mathematicians such as J . Leray.1 

However, it is not the 'modern' character of the mathematics pro
grammes that is at fault but the methodology and psychology used in 
such cases. In fact, it is often particularly difficult for the teacher of 
mathematics, who, because of his profession, has a very abstract 
type of thought, to place himself in the concrete perspective which is 
necessarily that . of his young pupils. However, from the develop
mental point of view and in relation to the progressive assimilation 
of the structures already mentioned, there would seem to be no contra
diction (as we have seen above) between the initial concrete phases 
of structures and the final stage when they become formal and 
abstract. The teacher can only be aware that there is no contradiction 
between these two levels of thought ifhe is fully acquainted with (and 
this is the difficulty for the teacher) the details and functioning of 
these successive spontaneous thought structures. Briefly, the practical 
problem that is difficult to solve is to graft these general types of 
notions which the teacher understands in his language on to particu
lar cases of these same notions constructed and used spontaneously 
by the children, without these yet being for them objects of reflection 
or sources of generalisation. 

In order to make this necessary conjunction between the logico
mathematical structures of the teacher and those of the pupil at 
different levels of his development, certain very general psycho
pedagogical principles should perhaps be mentioned. The first is that 
real comprehension of a notion or a theory implies the re-invention 
of this theory by the subject. Once the child is capable of repeating 
certain notions and using some applications of these in learning 
situations he often gives the impression of understanding; however, 
this does not fulfil the condition of re-invention. True understanding 
manifests itself by new spontaneous applications, in other words an 
active generalisation supposes a great deal more: it seems that the 
subject has been able to discover for himself the true reasons involved 
in the understanding of a situation and, therefore, has at least par
tially re-invented it for himself. Naturally, this does not mean that the 
teacher has no role any more, but that his role is less that of a person 
who gives 'lessons' and is rather that of someone who organises 
situations that will give rise to curiosity and solution-seeking in the 
child, and who will support such behaviour by means of appropriate 
1 See the very critical report presented by Leray for Academie des Sciences de 

P-aris (Report No. 276, p. 95, Session of 13 March 1972). 
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arrangements. Should the child have difficulties in hi~ attempts to 
grasp a certain idea, the procedure with an active methodology would 
not be directly to correct him, but to suggest such counterexamples 
that the child's new exploration will lead him to correct himself. 

A second consideration should constantly be present in the teacher's 
mind: that is, at all levels, including adolescence and in a systematic 
manner at the more elementary levels, the pupil will be far more 
capable of 'doing' and 'understanding in actions' than of expressing 
himself verbally. In other words, a large part of the structures the 
child uses when he sets out actively to solve a problem remain 
unconscious. In fact, it is a very general psychological law that the 
child can do something in action long before he really becomes 
'aware' of what is involved - 'awareness' occurs long after the 
action. In other words, the subject possesses far greater intellectual 
powers than he actually consciously uses.1 Consequently, once the 
teacher has had the opportunity of becoming acquainted with the 
psychological research mentioned above, and knows the subjacent 
thought structures the child possesses, he can more easily help the 
child to become aware of these either by appropriate discussions 
between the child and himself, or by the organisation of the work in 
groups where partners of the same age or similar ages (an older child 
acting as leader of a small group) discuss between themselves, which 
in turn favourises verbalisation and 'awareness'. 

A third remark would seem important: in traditional mathematics 
it was often necessary for children to solve quantities of problems, 
some of them quite absurd, and this would mean a huge number of 
numerical or metrical calculations. In this case, the only way to 
succeed with children who were not particularly talented in mathe
matics was to proceed in two stages (but this was often forgotten): 
the first stage was purely qualitative and dealt with the logical 
structure of the problem and only afterwards in a second step were 
numerical or metrical facts introduced with the additional difficulties 
this type of calculation would create. With modern mathematics 
programmes the problem is less acute as they are basically qualitative. 
However, in this case, the problem can be found at another level -
the teacher is often tempted to present far too early notions and 
operations in a framework that is already very formal. In this case, 
the procedure that would seem indispensable would be to take as the 

1 Euclid himself was not aware of all the operational structures he used in reality, 
for example, the group of isometries. 
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starting point the qualitative concrete levels: in other words, the 
representations or models used should correspond to the natural 
logic of the levels of the pupils in question, and formalisation should 
be kept for a later moment as a type of systematisation of the notions 
already acquired. This certainly means the use of intuition before 
axiomatisation and the scorn of logicians for all intuitive or 'naive' 
thought is well known. However, once it is remembered that mathe
matical intuition is essentially operational and the nature of opera
tional structures is to dissociate 'form' from 'content', then the 
final formalisation would seem to be prepared and becomes pro
gressively necessary by the construction itself of these initial intuitive 
structures. We do not believe with Pasch that formalisation goes in 
the opposite direction to that taken by 'natural' thought, but so that 
there may be no conflict between the former and the latter, formalisa
tion should be allowed to constitute itself in its own time and not 
because it is forced to by premature constraints. 

Faculte des Sciences, 
Centre d' Epistemologies genetiques, 
52 rue de Paquis, 
1211 Geneva 14, 
Switzerland. 

87 



Presidential Address 

Sir James Lighthill, F.R.S. 

1 Introduction 
It has given me profound pleasure to be able to welcome such a very 
large and such a very distinguished audience to this opening session 
of the Second International Congress on Mathematical Education. 
Although records of discussion about mathematical education go 
back at least 2500 years, to the days of Plato's Academy, it seems that 
the twentieth century brought a new tempo and urgency to such 
discussions, while we have during the past decade seen a great and 
growing ferment of activity in the field all over the world. Prominent 
in discussion of the subject throughout this twentieth century has 
been our International Commission, founded in 1899 by H. Fehr 
and C. A. Laisant, while this past decade of intensified and increasing 
recognition of the importance of mathematical education and of the 
new approaches and opportunities within it, coincides with the first 
decade of existence, as a fully-fledged Commission within the Inter
national Mathematical Union, of the International Commission on 
Mathematical Instruction, ICMI. 

Up to 1960, the energetic study of mathematical teaching methods 
and curricula within individual countries was supplemented and 
strengthened by the holding of meetings arranged by our Commis
sion, by its review journal L'Enseignement Mathematique, and by 
international discussion every four years in the educational section 
of the International Congress of Mathematicians. Those useful dis
cussions were, nevertheless, rather limited in scope and in the 
number of interested persons involved. In 1960, the International 
Mathematical Union (IMU) took the decision to accept the affiliation 
of ICMI under its wing as a separate Commission of IMU, with 
separate National Sub-Commissions in member countries: the Inter
national Commission on Mathematical Instruction, which could con
duct more intense activities in the educational field and supplement 
those pursued at IMU's regular congresses. The aim ofICMI, as then 
laid down in terms of reference, is 'to further the sound development 
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of mathematical education at all levels, and to secure public apprecia
tion of its importance'. 

In 1962Professor Lichnerowiczwas elected by the General Assembly 
of IMU as the first President of ICMI appointed under the new 
constitution. He launched ICMI at once on a valuably extended 
programme of symposia and publications. It soon became clear that 
such increased activity was very necessary, to match in the inter
national sphere what I referred to earlier as the 'growing ferment of 
activity ' that was manifesting itself simultaneously in so many 
different countries. 

At the Moscow Congress of IMU in 1966, Professor Freudenthal 
was elected the new President ofICMI and he brought about a further 
intensification of activity. In particular, he went beyond specialised 
or regional symposia to organise the first international congress in 
the field, held at Lyons in 1969 with over 600 participants. This was 
a big step forward which brought general recognition that no 
educational topic is more suitable for international discussion than 
education in that unique way of thought and that unique language -
a language of a completely international character - that we call 
mathematics. It was agreed that international congresses should be 
held in future every four years, and indeed in years with dates 
divisible by 4, so that they would alternate with those of the inter
national congresses of mathematicians whose dates are congruent 
to 2 (modulo 4) ! 

The IMU at the Nice Congress in 1970 did me the greatly appreci
ated honour of electing me in succession to Professor Freudenthal as 
President of ICMI. I had previously been Chairman of a small 
subcommittee of the British National Committee for Mathematics 
which had in February 1970 determined upon Exeter as a suitable 
site where ICMI might be invited to hold its second international 
congress. Our National Committee's invitation to hold the second 
congress in Britain was accepted by ICMI and I continued, as 
President of ICMI and Chairman of the Organising Committee for 
the congress, to aim above all at bringing about here at Exeter this 
summer a meeting that would combine width of scope and of inter
national representation with depth of discussion and of exposition. 

My colleagues on the Organising Committee and I have been 
profoundly gratified by the huge international response that has 
followed upon our 2½ years of labour in preparing for this meeting. 
We had been bold enough to plan for an attendance twice as big as 

89 



SIR JAMES LIGHTHILL 

at the first congress in Lyons but this number of registrations was 
reached already last May and finally we took into consideration the 
importance of comfortable accommodation and other arrangements 
for participants within the facilities on this campus when we declined 
to accept registrations beyond a maximum of 1300 full and 300 
associate members. While apologising to those we turned away, may 
I suggest that those who are here will appreciate the wisdom of our 
having kept the number of participants within convenient bounds, as 
well as the rough justice of giving preference to those who were in 
good time with their applications to attend !1 

All of us can regard the first decade of activity of ICMI in its new 
form as having reached a fitting climax with the huge intensification 
of demand for international discussion of mathematical education 
exhibited by the more than doubled attendance at this second of our 
international congresses. About seventy countries are represented 
here at Exeter. This week we shall among other things be giving 
longer-term thought to the future, looking as far ahead as the third 
congress in 1976 and to all the specialised and regional activities in 
which we should be involved between now and then. It will be im
portant to plan all that future activity with wisdom and imagination. 
Let us, however, devote the next four days, above all, to reaping the 
greatest possible advantage from the unique circumstance that ICMI 
has now brought together within this favourable environment leading 
mathematical educators from all over the world and provided them 
with a programme so organised as to allow exchange of ideas and 
opinions and experience on almost every possible aspect of the sub
ject, together with exposition of a wide range of important national 
developments. 

The design of this programme for our congress has been the work 
of the international Programme Committee under the chairmanship 
of Mrs Elizabeth Williams; a committee that has, in my view, success
fully brought to a focus world-wide aspirations for discussion on a 
vast range of different topics within mathematical education, and 
gone on to create the mechanisms for giving them reality. A cardinal 
principle underlying the committee's work has been the necessity of 
viewing mathematical education within the context of the total educa
tion of the individual. You will see how this consideration influenced 
the choice of speakers for our plenary sessions: these main sessions 
1 In the end, late consideration of several ' hard cases', where for particular 

reasons leniency by the Secretariat appeared justified, raised the total registra
tions to about 1700. 
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that will bring all congress participants together are intended, not 
to raise specialised matters within mathematical education but to 
help all of us see the subject within wider contexts; including the 
historical, sociological and psychological contexts as well as that of 
its relationship to the development of mathematics itself. We are 
truly fortunate in the outstanding distinction of those who have 
consented to give these plenary lectures. 

It has been a further source of great delight that two persons who 
have had such a seminal influence on the formation of twentieth
century ideas concerning mathematical education and its place in an 
individual's total education as Professor Piaget and Professor P6lya 
accepted a year ago our invitation to attend this congress as the 
honoured guests of ICMI. All of us have been delighted and stimu
lated by the messages from our two honoured guests circulated with 
the other congress literature. Ultimately Professor Piaget's doctors 
advised him not to travel this summer although for other purposes 
as you will gather from his fascinating paper he remains well and in 
good spirits. Professor P6lya's personal presence and inspired string 
of quotations which each of you has received are a great joy to 
all of us. 

The next most important principle underlying the architecture of 
our programme was that on all the different aspects of our subject 
active discussion must be permitted and encouraged. This congress 
is above all a congress for discussion, and to this end it has been 
organised so as to avoid any formal delivery of main lectures outside 
the periods of the seven plenary sessions. To make general participa
tion possible within manageable areas for discussion, our whole 
subject matter has been divided up into thirty-eight such manageable 
areas, and working groups in each of these areas have been consti
tuted, each with its own Chairman and Secretary. 

I am most grateful to these Chairmen and Secretaries for the effort 
they have put into the advance preparation of plans of diverse kinds 
for the different working groups. These plans will in every case give 
a framework for discussion but also leave time and opportunity for 
unplanned controversy and exchange of ideas to come about. I believe 
that these relatively small working groups, where those involved can 
really get to know each other and come to appreciate each other's 
points of view in detail, will prove to be the cement that binds this 
congress together to give it real strength and effective influence on 
future world developments. 
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Reading through the list of working groups is an experience at the 
same time fascinating and frustrating, in the sense that most of us 
feel interested in the subject matter of more working groups than we 
can possibly attend! It is important, however, that everybody makes 
a selection, as I believe most of you have already done, partly so that 
each of us may take part in those groups where we have most contri
bution to make personally, and partly so that the groups may be of 
manageable size for purposes of active discussion. 

Many of you will select groups devoted to education at a particular 
level (whether primary, secondary or tertiary or certain intermediate 
levels) and specifically to education in a particular branch of mathe
matics at such a particular level. Many others will be involved in 
working groups on particular kinds of teaching method or technique, 
or on some of the fundamental studies underlying the choice of 
methodology. The range of possibilities is very great, and I believe 
that a great range of memorable discussions will get going in these 
working groups. 

In parallel with that complex mechanism for discussion it has been 
important to enable also a proper detailed exposition by any par
ticipating country of those educational developments that it con
siders most worthy to be brought to the notice of the congress. 
These national presentations (some seventeen in number) will, 
I believe, help us become aware of much that is best in the teaching 
methods and curricula of many of the participating countries. 
Several different techniques of presentation will be used: static 
exhibitions, films, talks, and in a few cases demonstration classes 
with live pupils. 

In these remarks I have been trying, not to give you any accurate 
guidance that could replace careful reading of the congress programme 
itself, but rather to indicate the philosophy underlying the work of 
our international Programme Committee and of its devoted Chair
man, Mrs Elizabeth Williams. May I also remark how much we 
owe to the Local Committee which has done such fine work in 
arranging the effective utilisation of this site for purposes of accom
modation and of meetings of both professional and social kinds. 
The value and suitability of this attractive University campus for 
helping us all get to know our colleagues from other countries in 
the most pleasant possible way, in the working groups, in social 
gatherings of many different kinds, and in the course of various 
excursions into the lovely Devon countryside, has been greatly 
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enhanced by the devoted work of many members of the Local Com
mittee, including Mr Duller and Mr Hammond-Smith who have 
been its Chairmen, and last but not least the Congress Secretary, 
Mr Denis Crawforth, who indeed is the kingpin of our whole organi
sation. I hope that all of you during this week will become devoted 
Devonians while you increase still further your expertise as mathe
matical educators! 

2 Integrated pure and applied mathematics 

Now I have come to the part of my Presidental Address which represents 
more of an individual message to this congress. Like those addresses 
to be given by distinguished lecturers to the six other plenary ses
sions, this message is concerned with seeing mathematical education 
within the context of the total education of the individual. It is 
a message, indeed, about those approaches to mathematical educa
tion that are aimed at bringing about its integration with the educa
tional process as a whole. 

I emphasise that this middle portion of my address is a personal 
message which makes no attempt to give any concerted view ofICMI 
as a whole. It reflects, rather, an individual view, which I offer as 
just one contribution among those many and diverse contributions 
that will be made at this congress and, possibly, harmonised within 
the minds of the participants into something like a concerted view of 
mathematical education. 

My personal emphasis in this message is on those aspects of 
mathematical education that are concerned with communicating 
a working knowledge of how mathematics interacts with other sub
jects and with the external world ; in one word, a knowledge of how 
mathematics is applied. You could say that this theme for an address 
is what ICM! might expect in a year when its President is British 
and its congress is held in Britain! Certainly a feature that has speci
fically characterised British approaches to mathematical education 
has been a close association between pure and applied mathematics, 
and a general predilection for teaching mathematics in a way that 
emphasised at any rate some of its applications. 

The older British curricula stressed at an elementary level the 
application of mathematics in commerce and at a more advanced 
level its applications in mechanics and/or statistics, which in tum 
were valuable as foundations for work in engineering, as well as in 
the physical, earth and life sciences. The newer British curricula at 
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primary and secondary level bring in a still wider range of applica
tions: a development that seems to have grown out of the prag
matic British traditions of integrated pure and applied mathematics, 
coupled with · a recognition of how greatly the uses of mathematics 
in all the other sciences, as well as in engineering and commerce, 
have expanded in this third quarter of the twentieth century. This 
expansion in the application of mathematics, which seems to have an 
important contribution to make towards solving this world's pressing 
problems, has of course been connected with the increased power 
given by high-speed computers to those involved in such application, 
and to some extent the computer's new importance has been reflected 
in certain aspects of these curricula. 

I am of course making no claim whatever that developments in 
those general directions are confined to the neighbourhood of the 
British Isles! There are many countries where modern mathematics 
curricula reflect the modern trend towards greatly widened areas of 
application of mathematics influenced by new computational possi
bilities. I have commented merely that our academic traditions made 
this trend a natural and easy one to follow. 

There are other countries where the tendency in modern curricula 
is towards a still greater abstraction than ever before. These more 
abstract curricula contain many attractive features; in particular, 
they may often succeed in imparting an enthusiastic appreciation of 
the beauty of mathematical structures and mathematical deductions. 
Many young minds show a keen response to that beauty, and some 
of you may regard an educator like myself as doomed to failure 
because in place of beauty all I could offer to those young minds 
would be utility: prosaic utility! 

In reality, however, no such stark contrast is exhibited by the 
alternative of a curriculum based on integrated pure and applied 
mathematics. The values in such a curriculum involve integrated 
beauty and utility: they lie in a space of two dimensions, and this 
has certain educational advantages. The most obvious of these 
derives from the observation that a class may contain some pupils 
who can be induced to respond mainly to the beauty of mathematical 
ideas and arguments and some pupils whose interest can be aroused 
mainly from realisation of their utility. Possibly a particular vector 
in the beauty-utility space may produce optimum results for such 
a class! 

Whether for this or other reasons, the trend in modern mathematics 
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teaching projects in Britain and some other countries has been to 
give continual illustrations of how the mathematics taught can be 
applied. They bring in constantly the concrete example, and are 
particularly concerned to emphasise the variety of uses and applica
tions of mathematics. 

This personal message of mine is concentrated, however, on a 
slightly different educational goal. It says: let us go beyond mere use 
of the concrete example as an aid to understanding or of reference 
to utility as an aid to widening the circle of those in whom interest is 
aroused. There is a still more important prize to be won: a prize 
concerned with a deeper integration of mathematics into the total 
education of the individual. 

I want to suggest that educators may have most benefited their 
pupils when they have succeeded in giving a feel for what is involved 
in the process of applying mathematics. This is the process of building 
a bridge between the abstract ideas and inferences of mathematics 
and the concrete problems arising in some field of application. It 
seems to be increasingly recognised that there may be more skill, 
more art, in that bridge-building process than in the associated 
mathematical problem-solving. Computers may be of great value in 
problem-solving, but apparently the human brain alone is able to 
tackle the subtler aspects of creating an effective correspondence 
between the mathematical world and the world of experiment and 
observation. 

As many of you will know, I gave an address on this theme last 
year, speaking as President of the Mathematical Association of Great 
Britain on the occasion of its Centenary. The title of that address1 

was 'The art of teaching the art of applying mathematics', and 
I should like to recommend that slogan in my address to this 
much wider audience, although perhaps laying emphasis here on 
slightly different aspects of the art of teaching the art of applying 
mathematics. 

One feature of the art of applying mathematics to which I draw 
attention in my Mathematical Association address, and a feature 
which makes the word 'art' especially appropriate, was what I called 
the 'linguistic aspect' or 'communications aspect' involved in 
applying mathematics. At an international congress with over sixty 
countries represented, and gifted translators working for us on all 
the consequent linguistic problems and communications problems, 

1 Published in Mathematical Gazette, 55, 1971, 249-70. 
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we are specially able to appreciate the skill and artistry involved in 
effective solution of such problems. Such artistry is not possessed at 
all by computers! Indeed, the failure of computer programs for 
translation between languages is an important reminder of the subtle 
nature of language and of the ways in which it is assimilated by the 
brain. 

One who is a practising applier of mathematics, as I have been for 
thirty years, finds that the most delicate problems with which he 
deals are those of a communications and linguistic character. The 
applier of mathematics has to be able to communicate with the 
practitioners within the field to which he is applying the mathematics. 
They have their specialised language for talking about their problems. 
He has his own specialised language, namely mathematics. These 
linguistic differences complicate the communications problem, and 
make necessary some capability of translation between the two 
languages. 

Thus if we see mathematics as being essentially a language, as the 
title of one of our working groups at this congress implies, educators 
ought to recognise a need for instruction in the arts of translation 
between that language and other languages. They should avoid giving 
an impression that such translation may be a crude, mechanical, 
'computerisable' process ( as some writings on so-called model
building may even seem to imply!). They should try to convey what 
the practising applier of mathematics always finds, namely, that 
effective application is possible only if one sets out to learn the 
language of the field of application and master those characteristics 
special to it. 

This is not only because of the need to communicate with the 
practitioners of that field. It is partly because that language has had 
to evolve in such a way that it really is quite effective for sharing ideas 
and drawing inferences within that field of activity. The applier of 
mathematics must learn to think simultaneously in both languages, 
and thus to use simultaneously the weapons of mathematical reason
ing and the inferential methods typical of the field of application. 
The terminology of those methods must be clearly understood, and 
wherever possible an approximate mathematical equivalent of each 
term needs to be found. 

A teacher who bears in mind these aims may avoid certain dangers 
which can be described as compartmentalisation: dangers of sug
gesting that mathematics may best make its contribution by a direct 
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conversion of the real problem into a mathematical problem, followed 
separately by solution of that mathematical problem. Allowing such 
a divorce between the parts of the work conducted in the two 
different languages leads often to ludicrous errors! It is most unwise 
during parts of the work which involve solving a mathematical 
problem to stop thinking about what the different terms in the 
equations stand for. Such interpretations of their meaning, coupled 
with common-sense arguments and other arguments of a non
mathematical character, prove to be of the greatest value in finding 
a good solution, as well as in interpreting it when it has been 
found. 

Those processes are what I mean by integration of pure and applied 
mathematics and I believe that the teacher who discovers how to 
communicate that sense of integration and of effective bridge
building finds it to have its own beauty: a beauty to which pupils show 
keenness of response, and which further justifies use of the word 
'art' in the expression 'art of applying mathematics'. In my Mathe
matical Association lecture I illustrated all these points at some 
length by an extended example drawn from the application of 
mathematics ·in mechanical engineering. Such an extended example 
would be quite out of place in the opening address to an international 
congress, but I shall refer to just one aspect of it here. 

Engineers make widespread and effective use of a special 'picture 
language', in which diagrams representing systems are used to pick 
out and identify the features of those systems that are important for 
particular purposes. To understand relationships between the ideali
sations in an engineer's diagrams and those involved in mathematical 
equations related to his systems may be important for the applier of 
mathematics to engineering. Advantages may accrue from con
tinued recollection of what is the diagrammatic representation of 
each term in every equation; and, also, from identifying those 
equivalences brought about between different kinds of diagram 
through a parallelism between the equations to which they give 
rise. 

How can teachers communicate such points; namely, that the art 
of applying mathematics is itself centred on problems of communica
tion, as well as of the recognition of bridges between non-mathemati
cal concepts and mathematical ones? My experience as a university 
teacher of mathematics has led me to one and only one answer to 
that question: it is that some direction of application needs to be 
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studied in depth; that one field at least must be investigated at 
sufficient length to give an impression .of the subtle ways in which 
applied mathematics succeeds in making its contributions. The lan
guage used in that field should be at least partly put over, and its 
terminology related to mathematical terminology. 

I am fully aware that there is a conflict between what I am now 
advocating (study of a particular field of application in depth) and 
what I recommended earlier concerning a wide range of different 
concrete illustrations. The conflict is a real one, and it is because 
so much skill in communicating and organising material is needed 
to overcome that conflict, so much artistry on the teacher's part, that 
I am particularly drawn to my slogan 'The art of teaching the art of 
applying mathematics'. 

On the one hand, mathematics teaching should be permeated with 
concrete examples which give an impression of how widely and 
diversely mathematical ideas penetrate into human problems gener
ally, including everyday, technical and scientific matters. On the 
other hand, it is necessary to tell at least one lengthy connected story 
of the application of mathematics in real depth. This will amongst 
other things communicate the message that no-one can expect to 
solve the whole of any problem mathematically. There must be an 
integration of experiment and theory; there must be a combination 
of mathematical investigation with inferences from observation and 
experiment and from non-mathematical modes of reasoning. The 
best primary-school teaching is a good reminder of how effectively 
such integration can be carried out, and can be an inspiration to those 
of us attempting the same at other levels of education. 

3 Conclusion 

But now I believe that I have inserted quite as much of a personal 
and individual message as is proper in a Presidential Address to a 
great international congress like this where the total experience 
represented from the huge field of mathematical education dwarfs 
the significance that any individual views may have. My views can 
be read in Math. Gazette, vol. 55, at much greater length. In the mean
time, in the next four days, all the great issues of mathematical 
education, including this one of what should be the extent of integra
tion of pure and applied mathematics in the educational process, will 
be given that discussion in depth, from the standpoint of the com
bined experience of those engaged within the educational systems of 
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some seventy different countries, which alone can do justice to the 
magnitude and significance of those issues. 

The concluding remarks which I now wish to make are on a theme 
which I believe is particularly proper to be pursued by a President; 
whose main task as the Chairman of the congress must be to seek to 
bring about the fullest possible representation of different views at 
our meetings and the fullest possible interaction between different 
participants, with the aim of fostering movements of opinion which 
might bring about towards the end of our congress some greater 
degree of consensus on many important issues than at the beginning. 
With this in mind, may I encourage each of you to make positive 
contributions at the working groups you attend and to give your 
personal views on matters under discussion. We want the maximum 
participation at those sessions. At the same time may I respectfully 
request that you speak briefly and concisely so that as many other 
participants as possible will also have a chance to contribute. 

In general, let me encourage you to plan your time in advance so 
that you may succeed in attending those working groups in whose 
work you are most interested, and inspect those parts of national 
presentations that are of most concern to you, and in addition make 
use of parts of each day to take advantage of those opportunities 
for personal contact with mathematical educators from countries 
other than your own which you and all of us have this week from 
living all together on this campus. Avoid the danger that, out of 
force of habit, you may find yourselves mixing only with persons 
from your own country. Seize upon the chance of introducing 
yourself, and others, to as many people from different countries 
as possible, and of coming to know them and their opinions and 
practices as mathematical educators. There are marvellous oppor
tunities for all this at meals, on the campus generally and on the 
excursions, and I should like to encourage you to take these oppor
tunities and thus to make full use of what I referred to earlier as 
this unique circumstance. 

At the same time the members of ICMI itself, and of its Executive 
Committee, will be making plans for our future meetings great and 
small. If any of you have ideas under this heading, do please com
municate them to an ICMI representative from your own country, 
who can then ensure that they may be brought into those discussions 
this week. And finally, may I express my own warm thanks to you all 
for showing such determination to complete the, in many cases, long 
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and arduous journey here to Exeter so as to make this Second Con
gress of Mathematical Education still more effective by your personal 
participation. This congress is now actively in progresss; may all 
our great hopes from it be more than fulfilled! 

Department of Applied Mathematics 
and Theoretical Physics, 
Silver Street, 
Cambridge. 
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What groups mean in mathematics and 
what they should mean in 
mathematical education 

Hans Freudenthal 

It would be naive to bet whether or not you have met figure 1 before -
for many years this has been the first drawing children perform when 
they are given a pair of compasses. An eight-year-old girl did this. 

Fig. 1 

She was quite skilful at handling a pair of compasses which is a 
difficult thing for children of this age. 
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Fig. 2 

She did even more, she added a second ring of circles as in figure 2. 
Then I suggested to her that she should colour the drawing, although 
she would have done so if nobody had mentioned it, because a draw
ing like this cries out for colours. The most surprising feature of her 
performance was that it respected flawlessly all the symmetries of the 
drawing. Of course, the girl would not be able to rationalise her 
behaviour in a way mathematicians would do, though she firmly 
grasped all the relevant consequences of such a theory instinctively. 

From the decoration of stone age vessels, to the ornamentation of 
the Alhambra, to Escher's sophisticated graphic art, symmetries have 
played an important part in painting and sculpture. Science, too, 
knew and used symmetry as a principle from olden times. Among the 
few things we know about the first geometer in Greece and the first 
non-anonymous scientist in human history, Thales of Milete, is that 
he formulated and used geometrical theorems on symmetry. By a 
symmetry argument, Anaximander explained why the terrestrial disk 
suspended in the universe did not tilt or fall - it was at equal distances 
from all parts of the heaven. Perhaps you know the story ofBuridan, 
a medieval scholar, who imagined a donkey standing between two 
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haystacks of equal bulk and equal smell and let it starve to death 
because there was no reason why it should eat from the one rather 
than from the other. By symmetry axioms, Archimedes tackled the 
laws of the lever, Simon Stevin the laws of the inclined plane, Huygens 
the laws of collision. Physicists today call it Pierre Curie's law when 
they argue that a symmetry in the causes is preserved in the effects. 
Curie applied it in crystallography; today it is a most important 
principle of quantum theory. 

Let us take a closer look at mathematics. What is the beautiful 
thing about a regular hexagon or about regular figures like those 
illustrated above? They admit mappings onto themselves that do not 
change their aspect. How many? Three reflections in diagonals, 
three reflections in lines joining the midpoints of opposite sides, and 
finally a number of rotations, all of them through angles which are 
multiples of60° (the zero-multiple is included as the identity mapping). 
How do you know that there are twelve, no less and no more? The 
answer is not as trivial as you think - I will return to such questions 
later. 

You know what complex numbers are: pairs of real numbers 
written in the form a+ bi. They form a number field, with the four 
operations and the usual laws; i is the imaginary unit, the square of 
which is supposed to be - 1. Changing i into - i is called conjugation; 
it changes y = a+bi into y = a-bi. Conjugation is an automorph
ism of this field - it preserves the fundamental algebraic relations of 
sum and product: 

a+/J =a+7J, 
afJ = ci, 11, 

and by consequence all algebraical relations whatsoever. By con
jugation every true relation on complex numbers passes into a true 
relation. 

From an algebraic point of view the three solutions a1, a 2, a 3 of 

.x3-x-1 = 0 

are indistinguishable. What is true of one of them algebraically, is 
true of any other. In such relations as 

a 1 +a2 +a3 = 0, 

a 1 a 2 +a1 a3 +a2a3 = -1, 

a1 a 2 a3 = 1, 
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and all other rational relations, they occur in a most symmetric way. 
The equation 2.x3-7x2y-7xy2+2ys = o 
is symmetric in x, y. Does this mean that all its solutions (x, y) are 
symmetric too, that is, of the form ( a, a)? Of course not. But it means 
that if (a, b) is a particular solution of that equation, then the one 
that arises from it by interchanging x and y, that is (b, a), is also 
a solution. 

Why cannot 
(x-y)3 +(y-z)3 +(z-x)3 = (x+y+z)3 +6xyz 

be a true identity? Because the right hand member is symmetric 
in x, y, z, whereas the left hand one changes its sign under an odd 
permutation of x, y, z. 

Why does the ruler not suffice to construct the centre of an ellipse? 
Because there are mappings which, although they preserve straight 
lines and map the ellipse onto itself, carry the centre of the ellipse 
onto any given point not on the ellipse. 

Why is it we can solve equations up to degree four by root 
extractions, yet cannot do this with those of degree five? Because 
equations solvable by root extractions show far fewer symmetries 
than fifth degree equations in general - this is what was proved by 
Ruffini and Abel. 

Nowhere do symmetry arguments reveal their power more con
vincingly than in probability. Why has each ball in an urn the same 
chance of being drawn? Because the urn and the drawing procedure 
and hence the probabilities are invariant under all permutations of 
the contents of the urn. Or a more sophisticated example: 

Six persons A to Fare put at random in a row. What is the chance 
of A standing somewhere left of B? Well, the chance of A standing 
left of B is the same as that of B standing left of A and both together 
exhaust all possibilities, so each one has the chance of one half. And 
the chance of A left of B and C left of D? 

The same as that of 
A left of B and D left of C, 
B left of A and C left of D, 
B left of A and D left of C, 

so each of them is just one quarter. And the chance of 
A left of B left of C? 

By the same reasoning it is one sixth. 
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Autumn 

Spring 

Fig. 3 

This is sound reasoning in spite of today's fashionable misgivings 
about a priori probabilities. When interpreting reality by means of 
mathematical models, I am entitled, nay obliged, to incorporate all 
symmetries found in reality into the mathematical model, and this is 
what I have done in the above examples. Arranging people at random 
means that all statements about those arrangements must be invariant 
under all shuffling, or as mathematicians say, under all permutations; 
and from this principle all relevant probabilities can be derived in 
the problems I just discussed. 

From probability let us turn to astronomy. Everybody knows that 
as to climate and seasons the Northern and Southern hemisphere of 
the terrestrial globe are mirror images of each other, that while we 
enjoy the last summer weeks, our antipodes are waiting for spring to 
come, and that when in the arctic zone the sun does not set, in the 
antarctic one it does not rise. But why is it so? It is worthwhile to 
make the symmetry reasons of these phenomena explicit in mathe
matical terms. 

The Earth moves around the sun in a nearly circular orbit, while 
rotating around an axis, skew on the orbit plane but fixed in space. 
This system admits a few symmetries (see figure 3). First, the point 
reflection at the centre (the sun), which displaces the Earth over 
half a year in its orbit and at the same time interchanges the Northern 
and Southern hemispheres - it explains the greater part of the geo
graphic phenomena I mentioned. Secondly, there is the reflection in 
the plane orthogonal to the orbit plane and passing through the 
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summer and winter solstices, which inverts the course of the Earth; 
and thirdly, the half-turn rotation of the system about an axis joining 
the spring and autumn equinoxes, which also inverts the course of 
the Earth but at the same time interchanges the two hemispheres. The 
last two symmetries explain why the seasons are mirrored by the 
equinoxes and solstices with respect to such optical phenomena as 
solar risings and settings and day length. But since these symmetries 
invert the course of the Earth and hence the direction of time, they 
break down if applied to phenomena that need time to develop, such as 
heat distribution and weather, and this illustrates why the terrestrial 
climate is not mirror imaged by the equinoxes and solstices, why 21 June 
is not the hottest day and 21 December not the coldest. Notice that 
of these three symmetries, each is the product of the other two. 

Let us look further at mathematics applied in reality. A mass or an 
electric charge determines a field of force. If I know about some 
symmetry of this mass or charge distribution, I may be sure that the 
field will show the same symmetry. For instance, a rotationally 
symmetric mass or electric conductor will produce a rotationally 
symmetric potential and field of force . It is sound mathematics to 
profit from this symmetry before attempting to calculate the poten
tial and the field of force. 

On the other hand, if a harmonic oscillator is vibrating under the 
influence of an exterior force f(t) with period T, that is 

x"(t)+ax'(t)+,8x(t) = f(t), 

I am not entitled to claim that all its vibrations will have the same 
period T. What is invariant under the mapping t ➔ t +Tis not each 
particular vibration, but the set of all of them; which means that by 
shifting one solution <p(t) over T, I get a new one, <p(t + T). 

Solving differential equations arising from physical problems can 
be an arduous job. Often qualitative information on the symmetric 
character of solutions is all we can obtain and precisely the thing we 
need. Symmetries of space, of interchanging particles, of inverting 
charges, spins, magnetic fields play a paramount role if differential 
equations arising in quantum mechanics are to be interpreted. 

In the examples I have displayed, experts will have recognised a 
common feature - each of them shows in its particular way how 
groups arise and are used to study regularities in nature and in 
mathematics. Why did I refrain from using the word groups? If 
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systematics is pursued, one starts by defining a group, continues 
by proving a few general theorems about the group concept, then 
develops the general principles according to which groups can be 
applied, and finally arrives at some applications of groups according 
to these principles, provided, of course, that sufficient time is left 
for this minor concern. Yet mathematics develops systematically only 
in an 'objective mind'. In the individual it takes the path from the 
particular case to the general principle, from the concrete to the 
more abstract, and so it happened in history, too. Groups and group 
theory methods preceded the conscious organisation of this complex 
of investigations in terms of the explicit group concept by at least 
half a century. This is a common way in mathematics. In order to 
organise a field of knowledge you have first to acquire knowledge 
about it by exploring it. Fundamental definitions do not arise at the 
start but at the end of the exploration, because in order to define 
a thing you must know what it is and what it is good for. 

Camille Jordan's celebrated codification of group theory in 1870, 
the Traite des substitutions, made explicit what mathematicians had 
instinctively been doing for half a century: analysing geometric and 
algebraic systems by means of groups and developing the principles 
of group theory.1 The most striking example of this instinctive group 
theory during those fifty years is Hermann von Helmholtz' extensive 
use of Lie groups in his famous space problem, long before Lie 
discovered them - even the term 'group' is lacking in this paper on 
group theory and it may be taken for granted that Helmholtz did not 
know about groups when he wrote it. 

It is instructive to see how groups arose in the paper, which is an 
enquiry into the foundations of geometry. Space is viewed by Helm
holtz as a manifold gifted with a metric and as such it possesses a 
group of autometries, that is, mappings onto itself leaving the metric 
invariant. Euclidean and non-Euclidean space are characterised by 
free mobility, that is by the existence of an as-large-as-possible group 
of autometries. According to more recent investigations the geometry 
of a space will be Euclidean or non-Euclidean provided that for 
some positive a any two triples of points a,, b, (i = 1, 2, 3) with 

dist (a,, a1) = dist (b,, b1) = a (i =fa j) 

can be mapped upon each other by autometries of the space. 
1 It is true that, as early as 1854, Arthur Cayley defined groups in a formal 

abstract way, but this was a premature act with no consequences for either 
Cayley's investigations or those of others. 
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Helmholtz did not mention groups but he used all kind of group
theoretical tools in his investigation. The first mathematicians who, 
influenced by Jordan, made group theory explicit in geometry, were 
Felix Klein and Sophus Lie. The latter opened up the whole field of 
what is now called Lie groups, whereas the former restricted himself 
to subgroups of the projective group as subject matter and to classical 
theory of invariants as working method. He took his rough material 
from Cayley. Cayley had derived a metric from a conic in the plane 
by the requirement that it should be invariant under all projective 
transformations leaving the conic invariant. Unknowingly, by this 
procedure he had constructed the first model of the up-to-then 
abstract hyperbolic geometry. It was Klein's great achievement to 
make this model explicit and, by the same discovery, to create the 
concept of 'model' which was in our times to become of major 
importance within mathematics and beyond. 

Through this example, Klein learned to appreciate and to use the 
automorphism groups of a geometry. He hit upon the idea that groups 
can be tools to classify geometric properties, and he applied this 
idea to the projective group and its subgroups. Indeed, recognising 
whether some property, proposition or definition is metric, affine, 
projective is an effective means of creating order in the chaos of 
geometry. 

This is the leading idea of the so-called Erlanger Programm. It is 
often expressed in a brilliant aphorism that stems from Klein himself: 
geometry is the theory of invariants of a certain group. Klein himself 
was the first among the large number of mathematicians who were 
misled by this aphorism. There is a lot of geometry that cannot be 
fitted into this frame, and there are many geometries for which groups 
are irrelevant. Klein's restricted view of the projective group and the 
algebraic theory of invariants was broadened by Lie, and later on by 
Elie Cartan who interpreted the Erlanger Programm better than 
Klein ever did. 

On the other hand by stressing groups as a formal means of classi
fying geometries, Klein forgot about groups as a working tool within 
a geometry. This was the reason why school geometry was never 
influenced by the Erlanger Programm. Not unlike Klein's book 
Elementary Mathematics from an Advanced Standpoint, his Erlanger 
Programm hovered too high above school mathematics to be able to 
influence it. 

Not until the most recent reforms did geometric groups enter 
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school geometry. Geometric mappings were instrumental in the 
beginning of geometry and still played a part in the last Elements 
before Euclid. For some - probably philosophical - reasons, Euclid 
purged geometry of transformations. His surrogate method of chains 
of congruent triangles became a dogma which for centuries nobody 
dared to question. Take, for example, the theorem about the cube, 
that the endpoints B, D, E of the three edges through the vertex A 
define a plane orthogonal to the diagonal AG (see figure 4). The 
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traditional proof is a complicated one involving a chain of artificial 
congruent triangles. By means of mappings the proposition is obvious. 
The cube admits rotations about the diagonal AG; since these inter
change B, D and E, they leave invariant the plane BDE, which con
sequently is orthogonal to the axis AG - a most natural and lucid 
proof compared with the artificiality and obscurity of the Euclidean 
method. 

A few days ago I happened to check in several textbooks how they 
prove that the intersection of two spheres is a circle: it is still accord
ing to the Euclidean method of congruent triangles. After quite a few 
years of lipservice to the group idea, the natural way using rotations 
about the axis joining the centres is still barred. 

Groups are now formally admitted at school but I doubt whether 
the spirit of group theory has also penetrated school mathematics. 

After so many examples of what groups mean in mathematics and 
beyond, it is time to single out the factor common to all of them: 

Groups are important because they arise from structures as systems 
of automorphisms of those structures. 
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What is a structure and what are its automorphisms? 
Examples. Euclidean space with its straight lines and circles - the 

mappings carrying lines into lines and circles into circles preserve 
this structure; they are its automorphisms. 

A salt crystal, that is, a lattice with Na and Cl atoms alternating 
in the lattice corners - translations, rntations and reflections carrying 
Na atoms into Na atoms and Cl atoms into Cl atoms preserve this 
structure. 

The field of numbers a+ b ..,/2 with a, b E Q with all its sum and 
product relations cx+/J = y and cx/J = 8- the mapping 

a+b..,/2 ➔ a-b..,/2 

and the identity leave this structure invariant. 
A structure Sis a set M with a relation Rora system <I> of relations. 

An automorphism of Sis a one-to-one mapping/ of M onto itself 
such that for any relation R of <I>, 

R(x, y, z, ... ) = R(fx,fy,fz, ... ), 

in other words, f is required to preserve every relation of <I>, and its 
negation; the relation should be satisfied by x, y, z, ... if and only if 
it is satisfied by fx,fy,fz, .... 

Let S be a structure and G the set of its automorphisms. Then 
obviously the identity belongs to G, iffbelongs to G then so does its 
inverse, and if f and g both belong to G then so does their com
position fog. 

The automorphisms of a structure form a group with composition as 
group operation. 
If groups are introduced they are mostly automorphism groups of 

certain structures. The way of introduction guarantees that the thing 
defined is a group; rather than by an algorithmic verification, this 
result is obtained in one conceptual blow, and this is a great advan
tage. Preferring conceptual to algorithmic approaches is one of the 
most conspicuous features of what is really modern in modern 
mathematics. 

If the problem is to define the group G, then of course the con
ceptual introduction of G as an automorphism group of a structure S 
means a shift of the problem. Now one has to make sure whether 
the defined group G is in fact the group one intended to define. But 
in order to check what is . the automorphism group of the proposed 
structure, one can again proceed conceptually and according to 
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certain paramount principles. I prefer to show how this is done by 
means of an example. 

Let S be the square lattice in the plane (points with integral co
ordinates). What is the group G of congruencies leaving S invariant? 
The translation ta by a vector a belongs to G, and so do the rotations 
d1 through ½1rj (j = 0, l, 2, 3) about the origin, and the reflections in 
the horizontal axis. How do we find all elements of G? 

Let f belong to G. Then f carries the origin onto some lattice 
point a; thus f(O, 0) = a. The translation ta does likewise, so 
fi = ta - 1J fixes (0, 0). Now Ji maps (1, 0) onto a lattice point that 
must be a neighbour of (0, 0), that is onto one of (1, 0), (0, 1), 
( -1, 0) or (0, -1). The same is done by d0, d1, d2 and d3 respectively. 
So if j is properly chosen,f2 = dr1fi fixes both (0, 0) and (1, 0) and 
consequently the entire horizontal axis. Thusj2 is the identity or the 
reflections. Working back towards/, one gets 

f = tad1 or tad1s. 

This is the most general element of G. The integral translations, the 
rotations through ½1rj (j = 0, 1, 2, 3) and the reflection s together 
generate G. 

Groups as taught, or proposed by curriculum designers to be taught, 
at school, are a different thing. They usually begin with the 2-cyclic 
or the Klein group. The group elements are exhibited by particular 
mappings of geometrical or other origin; the four corners of a square 
are mapped upon each other by a horizontal, a vertical, and a 
diagonal exchange (see figure 5). Or, the set of a red and a blue 
triangle and a red and a blue square is mapped onto itself by shape 
exchange, by colour exchange and by both shape and colour ex
change. By explicit computations, it is checked that these three 
mappings together with the identity form a group. In itself this 
procedure is sound; what is wrong with it, is that by this prelude the 
stage is set for generalisations which are wrong - mathematically and 
pedagogically. And so it continues. New groups are introduced, of 
6, 8, 12, 24 elements - all of them by summing up its elements, one 
by one, usually as mappings of different kinds, with the stress on 
constructing group tables. Verifying in this frame whether the con
struct is really a group, would be an endless task unless the number 
of elements is very small, but even in this case it is not good mathe
matics to trust algorithms better than insight. 
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Fig. 5 

So what happens is that the young child is led to believe that all 
systems with a binary operation are groups or at least that the 
teacher would never present ones that are not. Or the group property 
is suggested by sham arguments or by correct ones which cannot be 

Fig. 6(a) Fig. 6(b) 

grasped by the learner. Group diagrams may play an important part 
in this method. Consider the two group diagrams above (figures 6(a) 
and (b)). The six-point set of the corners is transformed by two 
mappings, one of order 2 indicated by the thick lines, which inter
changes the endpoints of every thick line, and the other of order 3, 
indicated by the arrows, which maps the tail of each arrow on its head. 
These two mappings generate a group G of permutations of the six 
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corners. It is now suggested that G is simply transitive on the set of 
the corners (that is, the element of G mapping one corner onto 
another, is unique), thus that G is a group of order six. This is indeed 
true. In the case of the first group diagram it is obvious. This evi
dence is falsely transferred to the second where it is not at all obvious. 
The correct way to deal with the second case is to consider it as 
a graph rather than as a group diagram and to find out its auto
morphism group. Group tables and group diagrams are devices to 
make groups explicit or to visualise them, but they are utterly in
efficient tools to introduce groups or to prove that some system is 
a group. 

It is true that in such school group theory things are finally put 
straight if one lands in the safe harbour of algorithmics. It is algo
rithmics in a finite set of at most twenty-six letters each of which 
means a constant group element. It is a particularly dangerous kind 
of algorithmics because if it comes early it may frustrate the interpre
tation ofletters as symbols to denote variables - a dangerous tendency 
which is today very strongly felt in set theory at school. 

Are there valid arguments to teach a school group theory, different 
from the genuine one? I would doubt it. 

According to a famous 'hypothesis' of Jerome Bruner's 
'every subject can be taught effectively and in an intellectually 
honest form to any child at any stage of development '.1 

In fact Bruner at this place was citing Barbel Inhelder who, however, 
cautiously had added a proviso: 

'provided they are divorced from their mathematical expression 
and studied through material that the child can handle himself'. 

There are sounder arguments for teaching some subject matter than 
our ability to do so. But even if this argument is accepted in teaching 
mathematics, we must not at the same instant invalidate it by a 
proviso that requires transforming a mathematical (teaching) subject 
into non-mathematics. 

We have to be careful and honest if we want to adapt some piece 
of high mathematics to a lower level. Simplifying is a good thing but 
wrong elementarisations are a danger, and so is imitating superficial 
features while destroying the great ideas of some mathematical 
theory. If children are taught groups they are entitled to learn genuine 
group theory rather than a childish version. In the past, mathematics 
1 Bruner, J., The Process of Education, Harvard University Press, Cambridge, 

Mass., 1960, p. 33. 
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has seriously suffered under the falsifying tendencies in adaptations 
of mathematical subject matter to school level. Let us be more 
cautious in the future. Honesty is a cardinal virtue in education. 
Nothing is Jost if some subject matter cannot be taught prematurely 
and much is gained if it can in an honest way. 
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Nature, man and mathematics 

David Hawkins 

Several years ago, when I had brought home a new microscope 
designed for children's use, we had opportunity to observe the first 
recognition, by a five-year-old, of the world of size and scale. Or 
perhaps it was not the first, beginnings are hard to catch; and this 
fortunate young girl was already deeply involved with fragments of 
that world, at least - with dolls and furniture to scale, with pictures 
and maps of her own and others' drafting, and much else besides. 
But the world of size and scale is something else again, it is a re
capitulation and a surmise; a glimpse of generality and of closure. 
At that young age the eyepiece of a microscope is first a shiny 
object and then, with luck, a sort of peep-show or television screen 
in miniature. At any rate we did what we all three, Christa, my wife, 
and I, called 'looking at' various objects. Some, which Christa 
brought for this new occupation, were ten or fifty times too big to 
fit between object and stage, and one saw a young child's perceptual 
unreadiness to make use of what might be called the transitivity of 
congruences. 

But one evening Christa brought to the microscope a tiny bit of 
lint from the floor. Here for the first time there seemed to be recogni
tion, the lint was seen as lint though transformed a hundred-fold in 
scale. But the next day confirmation came in full measure, pressed 
down and running over. Our young friend came trotting from our 
bedroom carrying a small souvenir of London, a red Corgi double
decker bus. Halfway to the microscope she hesitated, then smiled at 
us a rueful smile. Touching the outside steps with her finger, she said, 
'Wouldn't it be nice if there were little people going up and down?' 

It was not a statement one could call theorematic in the usual sense, 
but it took us suddenly to the world of Leeuwenhoek and Robert 
Hooke, of the life cycle of the flea, and of Jonathan Swift and Voltaire. 
In all previous history we find no evidence of such liberation of 
imagination and even today it is known only to some happy few. 
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In our work with children and teachers you and we have had many 
opportunities to observe how poorly developed, in most humans 
today, are the intuitions of variation and invariance to scale. I suppose 
this is because we and the things around us are often undergoing 
translations and rotations, but very seldom shrink or expand. Con
fronted with the question whether a jar full of pebbles or a jar full of 
sand will absorb more water, even most adults are in the kind of 
trouble which Piaget has made famous concerning children's percep
tion of invariance in number, area, and volume. This one concerns 
invariance to scale, one of numerous topics which should be proposed 
for similar investigation. 

E.T. Bell once observed that while we might admire the ingenuity 
which led historically to more and more accurate approximations 
of pi, the greatest admiration should go to that unknown genius who 
first gave this ratio meaning by recognising that it was a pure number, 
invariant to scale. 

Lacking well-consolidated intuitions which could bring alive the 
space-groups of transformations, we also seem to lack the conceptual 
means for getting to a zeroth approximation understanding of 
natural phenomena on the scale of the very large, the very small, 
and the very complex. Conversely, our failure to assign dignity to 
children's exploration of this world of scale robs us of a powerful 
resource in the teaching of mathematics. 

I thought to begin this talk with the example of scale transforma
tions because they are, perhaps out of the whole of mathematics, 
among the most simple and most illuminating in their relevance to 
the diversity and nature of the material universe, and to the habits 
of thought with which mathematical education sometimes is and 
more often ought to be concerned. 

In the United States at least one finds that this glorious topic of 
size and scale comes first into students' ken only when they are 
struggling with the equations of a physics text. My own first-year 
university students have almost uniformly been amazed to discover 
that a two-centimetre cube has four times the surface area and eight 
times the mass of a one-centimetre cube, a discovery I have often 
shamed them into with a gift of sugar-cubes. And even this discovery 
left them unprepared for the argument that single cells cannot in 
general be as big as bird's eggs or Lilliputians as small as mice. 
Dimensional relations in general are black magic to most students, 
mainly I think because such topics have never been considered to be 
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proper mathematics - despite Hassler Whitney's elegant demonstra
tion of the formal simplicity of dimensional numbers. But even if 
such topics had been woven into the earlier curriculum they would 
almost certainly,'! fear, have been effectively divorced from the simple 
empirical and practical sources of their appeal and power. Yet (as 
I shall argue) such matters as dimensional analysis, whether at the 
level of five-year-old Christa or at the level of theoretical physics, are 
very nearly ideal examples of mathematical art. 

From such examples one is led toward two questions which I wish 
to raise in this paper. One concerns the teaching of mathematics. 
The second, intimately connected with the first at a philosophical 
level, concerns the nature of mathematics itself. 

The first question has to do with the range and repertoire of a 
teacher who knows success in leading children into the mathematical 
domain. If such teachers are rare they are all the more worthy of 
support and study if we hope to make them less rare. Let me there
fore say a little more of what is involved in their art. 

There are two aspects of this art which are inseparably connected, 
and this connection leads me from the consideration of teaching to 
the nature of mathematics as a teacher must grasp it. It commits me, 
I find, to the view that such a rare teacher has within his grasp a 
privileged source of information concerning the nature of mathe
matics. I think this view might scornfully be rejected in some circles. 
Before the present audience I count at least on a generous initial 
reception, not least because of the presence of Professor Polya, who 
has done so much to illuminate the nature of mathematical art. 

The working perspective of a teacher allows him - though un
fortunately it does not always compel him - to make many observa
tions of those acquisitions and transitions in intellectual development 
upon which the growth of mathematical knowledge depends. But 
such a teacher is of course not only an observer, he would indeed be 
less of an observer if he were not also a participant; one who, because 
of the way he shares in and contributes to that development, can 
earn the privilege of insight into its details and pathways. The ideal 
work of a good teacher has then these two aspects inseparably com
bined, that of diagnosis and that of providing in accordance with 
the indications of his diagnosis. As a diagnostician the teacher is 
trying to map into his own the momentary state and trajectory of 
another mind and then, as provisioner, to enhance (not to replace) 
the resources of that mind from his own store of knowledge and skill. 
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It is clear to all of us, I think, that teachers who approximate this 
ideal are rare indeed. We do not educate most of our teachers very 
relevantly to such a way of teaching, and we hamper their potential 
fluency of performance in a hundred ways, not least the incredible 
burden of managing active children in too large numbers and in too 
sterile surroundings. So my ideal teacher is approximated only as we 
get out to the tail of the distribution of teaching opportunities and 
teaching styles which prevail today. Circumstances which allow and 
encourage good teaching are rare, though we can make them less so. 
At any rate the teacher I speak of is a presupposition of my argument 
and does exist, though rarely. He is, so to say, a kind of existence 
theorem. 

For such a teacher a limiting condition in mapping a child's 
thought into his own is, of course, the amplitude of his own grasp of 
those relationships in which the child is involved. His mathematical 
domain must be ample enough, or amplifiable enough, to match 
the range of a child's wonder and curiosity, his operational skills, his 
unexpected ways of gaining insight. David Page once remarked that 
when children are seriously attentive they seldom give wrong answers, 
but they often answer a question different from the one we think we 
are asking. A teacher-diagnostician must map a child's question as 
much as his answer, neither alone will define the traje~tory; and he 
must be prepared to anticipate something of what the child may 
encounter further along that path. 

It is obvious, I think, that in many respects a teacher's grasp of 
subject-matter must include far more than what we conventionally 
call mathematics. It must include what a child sees, handles, plays 
with; miniatures, for example, such as cars, lorries, bricks, dolls and 
dolls houses; more generally the great and the small. It must include 
finished materials and raw, sand and water and clay as well as 
batteries and wire and globes. It should include rocks, plants and 
animals, mirrors and crystals. It should include all those things which 
in serious play with them contribute to children's grasp of orderings, 
of number and measure, of pattern and structure. 

It goes without saying, of course, that mathematics as conven
tionally understood may include, on the other hand, a great deal 
which a teacher of children need not have mastered. Otherwise we 
would ask the impossible. But a teacher of children, of the kind 
I postulate, must be a mathematician, what I would call an elementary 
mathematician, one who can at least sometimes sense when a child's 
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interests and proposals - what I have called his trajectory - are 
taking him near to mathematically sacred ground. There is a delight
ful report of Edith Biggs concerning a ten-year-old who noticed and 
became intrigued by the fact that in the graph he had made of area 
against linear dimension, the curve was locally a straight line. That 
child then was supported in extensive investigations along what one 
can only call the trajectory of Isaac Newton. A teacher who lacked 
any feeling for the calculus would almost certainly have failed him. 
In the same way one has seen children's curiosity about the individual 
properties of numbers leading straight toward the great problems of 
number theory, but likely to miss them without a teacher's recogni
tion and support. 

If a teacher's grasp of subject-matter must extend beyond the 
conventional image of mathematics, we must then face the question 
of definition in a new form - what is at stake is not the nature of the 
end-product usually called mathematics, but of that whole domain 
in which mathematical ideas and procedures germinate, sprout and 
take root, and in the end produce the visible upper branching, leafing 
and flowering which all we here so value, and which wither when 
uprooted. 

In this way I find myself compelled to extend the domain of 
mathematics so that it will provide room, provide closure, for all the 
mapping operations of a teacher. Mathematics so considered will 
obviously overlap with other parts or aspects of the curriculum. 
A child tracing the flow of coloured water through a transparent 
siphon is not thereby being a mathematician, or physicist, or town 
engineer, nor simply delighting in the intuition of colour and 
motion. What he is being is a matter of his momentary trajectory of 
learning. A good teacher will diagnose the child's involvement as 
related potentially to all of these or other important educational 
concerns, but will not identify it as any of these too soon or too 
simply. In that sense the curricular divisions overlap in all the child
hood praxis of learning, as they do in the practical existence of 
society. The child has not yet chosen a career - except in passing. 

So by closure of the mathematical domain I mean not to partition 
mathematics off from other educational concerns, on the contrary 
I mean to define the mathematical domain in such a way that it does 
not exclude any situation of learning merely on the ground that the 
latter might also be described under social or scientific or aesthetic 
categories. I use the mathematical term 'closure' as particularly 
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apt - recognising that as mathematicians use the word, it implies 
removing barriers, not building them. Ideally any concrete involve
ment of children, any relationship with the world around them in 
which they are caught up, will link up with mathematics among 
other things and in that sense is part of its extended domain. 

The extension I propose can be justified, I think, in two ways. The 
first is that persons called teachers are particularly susceptible to 
intimidation by persons called mathematicians. Teachers often feel 
constrained by the opinions of the higher sect, constrained in par
ticular to narrow their own views and their own practice to conform 
to such opinions, rather than to explore more widely beyond the 
implied barriers. A deliberate effort to extend the domain of mathe
matics is inseparable, I believe, from any practical effort directed 
toward the deepening and enrichment of mathematics teaching. 
We must aim to convert the higher sect. 

We have recently enjoyed a small report of an American teacher, 
Dudley Hunt, who involved a group of ten-year-olds in an extensive 
project around the partitioning of regular hexagons. Her original aim 
was to provide a matrix for experience in the addition of fractions, 
but as the project ramified, one might equally have described it as 
a study of the geometry of the hexagon, of symmetry, or of decorative 
design. This teacher happens to be a mathematician herself and does 
not need the approval of the higher sect, and indeed many individual 
mathematicians would be delighted by such work, even though their 
own 'official' view of their subject-matter, translated in terms of 
texts and syllabuses and work-books throughout the world, would 
imply disparagement of some part of it occurring, so to speak, in the 
wrong part of the syllabus. In my country the only respectable part, 
I fear, would be those boring, unmotivated work-book pages of 
symbolic problems,¼+½ = □. 

It is for such reasons we must speak about the nature of mathe
matics itself - we will not otherwise give teachers the licence and 
support they deserve in teaching mathematics, and we will not see 
the work of serious adult mathematics in its deep inner connections 
with the world of childhood. 

The second justification is therefore that the proposed enlargement 
gives us the possibility of a view of the nature of mathematics which, 
regardless of pedagogical motives or implications, may be" worth 
pursuing for its own sake. 

In speaking of an extension of the mathematical domain to provide 
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a kind of closure for the mapping of the potential range of children's 
mathematical learning I am appealing, of course, to a heuristic 
principle which has been important in the history of mathematics. 
I shall call it the Principle of the Extended Domain. It is based upon 
the fact that a problem can arise within a domain which nevertheless 
proves too restrictive to allow an adequate solution of that problem. 
Indeed I think this principle lies very close to the heart of what might 
be called the mathematical style, to the secret of mathematics. 

The most familiar major historical example of a successful applica
tion of this principle is, I suppose, the development of the number 
system, which only in the complex domain gives full closure to all the 
elementary operations of arithmetic. In his essay on The Essence of 
Mathematics Charles Saunders Peirce uses chess as a sort of counter
example. 'Chess is mathematics, after a fashion; but owing to the 
exceptions which everywhere confront the mathematician in this 
field - such as the limits of the board; the single steps of king, knight 
and pawn; the peculiar mode of capture by pawns; castling- there 
results a mathematics whc:lse wings are clipped, which can only run 
along the ground.' G. H. Hardy, in his Apology, uses the example of 
chess also, as a kind of mathematics which he says is not serious; he 
says of it that its problems cannot be generalised in such a way that 
their solution links them significantly with the rest of mathematics. 

Serious mathematics then must be able, as Peirce says, to fly. And 
it can fly only as it can generalise. Hence, he says, 'a mathematician 
often finds what a chess-player might call a gambit to his advantage; 
exchanging a smaller problem that involves exceptions for a larger 
one free from them.' That is, he extends the domain. It is interesting in 
connection with this counterexample of Peirce and Hardy, to consider 
the rather major gambit later engineered by John von Neumann in the 
theory of games, by which chess becomes only an example of the most 
elementary form of game. The mathematical theory of games flies so 
high it can hardly distinguish chess from noughts and crosses. 

But the use I wish to make here of the principle of the extended 
domain is a different one. What I wish to urge is an extension of the 
domain of mathematics itself, as usually conceived, so that mathe
matics in the extended domain will provide something like logical 
closure to the diagnostic mapping and resultant planning of a teacher. 
I shall argue that this extension, although motivated by a primary 
concern for learning and teaching, is at the same time entirely con
sonant with the traditions of Archimedes, Newton, and Gauss. It is 
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dissonant, I think, with dominant pedagogical traditions of the past 
and present. 

In proposing to extend the domain of what we call mathematics 
and therefore of what teachers conceive their mathematical commit
ments to be, I have no wish to blur the disciplinary distinctions. 
Indeed, the challenge is to widen the domain of mathematics with 
analytical care. We want to make its essence more intelligible, not 
to dissolve it. 

Let me be explicit. The domain is to be consciously expanded to 
include all those junctures in the lives of children, in their working 
contact with the great world of nature and of human society, out of 
which mathematics in the usual restricted sense can be seen to evolve. 
Only so will educational closure be possible. But it now becomes 
a question as to how the mathematical treatment of this shared 
domain can be characterised - what its essence or genius is, what are 
the invariants across this enlarged domain, of aim and style. Clearly 
there will be some sacrifices from the point of view of one confined 
to the restricted domain. Explicitness of symbolic definition and of 
generality will not be among the invariants, nor will formal argument. 
Eight- or ten-year-olds working with the Archimedean balance will 
sometimes come to isolate those moves, those operations, which 
maintain the state of balance, sorting variables and gradually isolating 
the underlying relations which characterise the balance. Their dis
course will be mostly limited to the concrete context, they will not 
think to offer formal statements. Their investigation is surely not 
deductive, but highly empirical. As children continue this process of 
sorting and isolating, as they come closer to a grasp of regularity and 
symmetry, they move toward a more analytical and deductive style. 
Where a teacher can support and provide, can dignify with pertinent 
curiosity, children will sometimes reach the law of moments empiri
cally, and less easily a simpler fact underlying the famous theorem 
of Archimedes: the invariance of balance to any pairwise symmetrical 
displacement of equal weights - the law of the equal-arm balance. 

Let us look at these two results, not crammed down children's 
throats, but supposing each to be achieved with some inner illumina
tion: the law of moments and the law of symmetry. Logically, when 
put in a proper formal context, these are equivalent, if one supplies 
a premise which Archimedes failed to state, the conservation of 
weight. But they are not equivalent in heuristic value. The law of 
moments for the unequal-arm balance is a part of empirical science, 
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and its formulating could be called 'applied mathematics' if we 
assumed that the algebra were already available for application. The 
symmetry principle is on a different footing; its use in characterising 
the invariance of balance is not applied mathematics; on the con
trary it is mathematics. It is also theoretical physics, to be sure, but 
I warned that the extension of mathematics would produce overlap, 
if not require it. First of all the second formulation, that of symmetry, 
is simpler and deeper than the law of moments. It is a type of formu
lation which, in Hardy's term, has more ' seriousness' than the law of 
moments, useful as this is in many other contexts. It is an example, 
perhaps the simplest one, of the whole family of logical tools whose 
nature was first discussed by Leibniz, who related it directly with the 
principle of causality, of sufficient reason. If we assume that nothing 
else matters but mass and length of arm, then with equal masses and 
equal arms, any argument that the left side would descend is eo ipso 
applicable to the right side, and all such arguments will cancel each 
other by contradiction. It is a deep thing that this symmetry is still 
sufficient, though hidden, to define the unequal-arm balance, that 
the special case implies the general one. One should add in passing 
that with an unstable balance, the symmetry argument gives us equal 
probability for the two possibilities - an example of what Bernoulli 
called the principle of non-sufficient reason. Modem theoretical 
physics would be unthinkable without such arguments. 

But to return to the ten-year-old: much of this is still remote from 
him, far along on his current trajectory. But even within his own 
reach a symmetry-argument has seriousness, it relates to his growing 

-manifold of perceptions and intuitions of symmetry and of choice. 
It provides him with a way of thinking which, though it will not 
automatically or easily transfer to different situations, will be avail
able as an analogy. It will be a potential cross-link in his intellectual 
file, when he has worked out what a teacher can recognise as similar 
patterns of thought in other situations. 

That is my reason for dwelling on this example from Archimedes. 
The symmetry formulation of the balance provides a clear-cut 
example of something very close to the essence of mathematics -
closer than the axiomatic method, closer than the ideal of deductive 
rigour - and which holds up, I think, across its extended domain. 
Archimedes showed us something of its power in his argument from 
the special case of the equal-arm balance to the general case of the 
unequal-arm balance. And he deepened the demonstration by his 
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use of the balance in those extraordinary extensions of plane and 
solid geometry which bear his name. 

In the essay I referred to before, Charles Peirce offers a definition of 
mathematics which is helpful, namely ' the study of what is true of 
hypothetical states of things'. It is not clear to me that this definition 
as it stands is adequate to my extended domain. In any case it seems 
also too broad. Ali a definition it could well apply to the novel, for 
example, which invents hypothetical states of things and tries to 
discern what is true of them. Since the nature of the novel is at least 
as problematic as that of mathematics, it may be well to restrict the 
definition, while bearing in mind a genuine family resemblance. 

Peirce does in fact narrow his definition. Mathematical investiga• 
tions are distinguished, he says, by resort to what, following Immanuel 
Kant, he calls a schema. A schema is a kind of artifact or model 
constructed to satisfy the conditions of a hypothesis, about which we 
then notice that it has thus and such additional properties not 
obviously entailed by the hypothesis. The kind of schema Peirce 
has in mind is the use of drawing and auxiliary construction in 
synthetic geometry: Though the hypothesis may be universal and 
abstract, the schema which fits it is particular and concrete, pro• 
duced by the hand and observed by the eye. In the absence of such 
motor-perceptual transformation no amount of sheer reflection about 
the hypothesis will produce a mathematical investigation or argu• 
ment. If you make a triangle out of rigid rods and rotate one of 
them slightly about some point, you can directly see that the sum of 
angles remains unchanged. Such action and observations are intrinsic 
to the mathematical style, which thus never loses touch with what 
Piaget has called the concrete operational etape of thought. The 
symmetry principle applied to the unequal•arm balance is another 
kind of example. We establish the general case of balance by starting 
with all mass at the centre and then, by using only symmetrical dis• 
placements, produce any arbitrary balance configuration in the 
general case. 

I should like to give two more examples of schematisation at 
a relatively adult level before proceeding further. Martin Gardiner 
recently reported the following story of a reader's reflections about 
a tin of beer, American style. About to put it down at a picnic on 
uneven ground, the thought occurred to him that if he drank some 
beer first it would be less likely to tip over. On further reflection he 
observed that if he were to drink all the beer the centre of gravity 
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would be back up to the centre of the tin. Ergo there is a minimum, 
a liquid level of maximum stability. Now, of course, any mathe
matician or physicist immediately thinks of expressing the combined 
centre of gravity of the tin and its contents in terms of the variable 
amount ofliquid, then taking the derivative and finding the point where 
that derivative vanishes. But the author of this tale thought of another 
way of finding the answer, which I leave to you, with only a hint 
that your non-standard solution would delight the heart of Archi
medes, who had not yet been taught the calculus. All I need say about 
this example is that once again the schema of balance is brought into 
view. In solving the problem by either means one performs an act of 
abstraction, of cutting away all features of the realistic problem 
except those that fit the schema provided by the unequal-arm balance 
- cutting to reveal the hidden symmetry. This is the kind of step which 
Peirce saw as so characteristically mathematical. 

But the first solution is again after all - once one sees it correctly -
a standard bit of applied mathematics. The non-calculus solution is 
more interesting in terms of my general thesis, as I think you will 
agree when you see that solution. 

My last example is of a different kind, but I think it also illustrates 
the significance of Peirce's thesis. It also comes from chess. There is 
a stop-rule in chess which says that a threatened king may not simply 
move back and forth between two squares. In a typically mathe
matical spirit G. A. Hedlund and Marsden Morse proposed and 
solved a slightly more general problem. Suppose a king were confined 
to three adjacent squares a, b, c, from any of which he could move to 
either of the others. It is assumed that all of these moves would avoid 
checkmate. Clearly the defensive player could avoid such a pattern 
as abab, which would save him from the usual stop-rule. Morse now 
proposes a more general rule, namely that the game ends if the player 
directly repeats any sequence of moves - such as abab, abcabc, abcacb
abcacb; and so on. The question arises whether under this rule be 
can still play an unending game. I do not give Morse's affirmative 
solution but a different and more special one which Walter Mientka 
and I happened to find, and of which I therefore know the genesis. 
Mathematicians seldom let us in on such secrets. In an unending 
sequence of three letters one must avoid all direct repetitions, 
double blocks of any length, and those very long blocks get trouble
some. It is easy to avoid direct repetitions of pairs or triples, but the 
farther one goes the longer become the blocks one has to avoid 
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repeating. As with testing for prime numbers, the testing keeps 
increasing in difficulty. 

Now at this point we would all recognise, I think, that a step is 
needed which does not follow from the hypothesis by any amount of 
reasoning of the kind outlined in logic texts and it is, somehow, a 
uniquely mathematical step. The step is, I shall say, a search for 
a schema. Because one does not find a 'standard method' the prob
lem cannot be called applied mathematics. One does not even know 
in advance whether this might turn out to be serious mathematics in 
Hardy's sense. A search for analogies, therefore, is the next step. 
I happened to find one in the procedure of substitution, as when one 
replaces a simple element by a complex one, each element in a pattern 
by a pattern of elements, a noun by a noun clause, a variable by 
a function. That was my schema. If one replaced each letter in a block 
by a corresponding block of letters, each block guaranteed to be 
repetition-free, one might then have a much longer block which was 
equally impeccable. The answer is: almost, but not quite. I shall not 
go on with the details, but with suitably chosen blocks A, B, C the 
method does work, and the substitution can be iterated endlessly, 
producing an infinite sequence without repetitions. In Peirce's lan
guage, it flies. I still do not know that this is very serious mathe
matics, although there are many unsolved problems about such 
sequences and they link up in possibly interesting ways with other 
parts of number theory. The point of the illustration is that new 
mathematics - new to a child, new to an amateur such as myself, or 
new to a professional mathematician - takes off and flies through a 
successful search for schemata available in one's repertoire, for 
patterns of construction which one has previously mastered, which 
may provide guidance in building a new variant suited to new 
situations encountered in nature or in mathematics. 

As this process is successful it served also to enrich the repertoire, 
the store of useful schemata. As is true of all knowledge, the growth 
of mathematics lies always in some use of mathematics - not primarily 
in providing premises for an argument, but in providing schemata 
for the guidance of thought. 

When we search in our repertoire we sometimes find what we call 
an algorithm, a standard schema which fits the conditions of a new 
problem, and leads directly to its solution. In such cases we can speak 
of applied mathematics, whether the problem is one of everyday life, 
of science, or within mathematics itself. The implication of the term 
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'applied mathematics' is often slightly pejorative. You can imagine 
the other kind of mathematician, called 'pure', offering his discipline 
for use but not - as mathematician - expecting to learn anything new 
in the process. Noblesse oblige. But as I have suggested, this case of 
the standard schema shades over into the schema by analogy, where 
no standard method is available but where those that are available 
suggest ways of looking at a problem which may make it at least 
partially tractable. This may still if you wish be called applied mathe
matics but whenever such a problem is solved it does, in principle, add 
new mathematics to the general repertoire. Finally, there are cases 
where problems cannot be brought under existing schemas, and where 
even the power of analogy fails. In such cases we resort to direct induc
tion, to numerical examples, or to various other related, but easier, in
vestigations; and very often the problem waits. If itis a serious problem 
it waits on a special shelf of fame, such as the list of Hilbert's problems. 
Whichever case we consider, the general conclusion is clear - that in 
a proper sense all mathematics grows out of the use of previously 
schematised knowledge which is itself explicitly or potentially mathe
matical - in that sense all mathematics is • applied mathematics'. 

I have at least sketched the case I wish to make concerning the 
essence of mathematics. There is a sort of corollary, however, which 
I would like to develop. Mathematics has evolved historically into 
a large and richly interconnected system which is not only a mirror 
of the world of nature but which has many internal mirrors - morph
isms of one kind or another - which sometimes generate, in turn, 
new mirrors for the world of nature, new analogies of structure, new 
schemata. But running pervasively through this whole system there 
is a common implicit style which in general human terms is both a 
strength and a limitation. When Peirce talks about mathematics 
which can fly, this metaphor refers, I believe, to the generalising 
power implicit in the structure of the domain, a power which depends 
essentially upon a certain monotony, a certain iterative character, 
both in its objects and in its perceptions and arguments. The number 
system evolves from such monotony, though each step generates 
novelties which are in turn a challenge to new investigations. The 
method of Archimedes, like early calculus, depends upon those 
results of infinite iteration, called infinitesimals, which the great of 
the eighteenth century used fluently, which physicists have in fact 
perversely used all along, and which formal logic has recently, after 
long doubt, declared absolutely rigorous. 
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From Archimedes to the recent past the assertion that the method 
of infinitesimals is not rigorous, is now known to be a non-rigorous 
assertion, indeed a false one! I should mention again the wide sweep 
and great power of the schema of iterated substitution revealed, for 
example, in logic, in geometry, in the statistical theory of branching 
processes, or in the elegant and very ' serious' theorem of Kolmo
gorov, that a function of many variables can always be expressed by 
composition from functions of two variables only. This schema, with 
its imagery of branching trees, has many delightful uses within the 
range of children's arithmetical explorations - although it seems to 
find no place within the official repertoire, curriculum, or racecourse. 

The iterative or monotonous character of mathematics, so deeply 
embedded in the nature of its domains and so profoundly exploited 
in its style of thought, is often noticed by outsiders and given as a 
reason for a certain repugnance by persons whose special cultivation 
lies in other fields. Words like 'mechanical' and 'abstract' enter in. 
Consider for contrast the visual pattern ofa painting such as Gauguin's 
Maternite or the thematic patterns of Mozart's Second Horn Concerto 
or of Beethoven's Eroica. Structure there is, even structure which is 
repetitive, iterative; but the interesting part typically connects with 
just that deviation from simple-minded regularity, just that surprising 
use of ambiguity which mathematics will avoid. Though a computer 
can compose music which is recognisably Mozartian, it does not 
compose Mozart which is musically interesting. It does not know 
when to depart from an algorithm. 

So with a great novel, such as The Magic Mountain, The Red and 
the Black, Crime and Punishment, there is a formal structure but it is 
never maintained at the expense of those unique non-recurrent or 
even discordant details which win our trust and convey to us the 
higher levels of order and significance which lesser works fail to 
capture. Picasso's Don Quixote presupposes a precision of anatomical 
knowledge, yet the anatomist despairs of him. To be that kind of 
mirror of the world, a different kind of structure and order is neces
sary, one which stays far longer in the domain of concrete intuition 
and which requires a very different, though not incompatible, sort of 
cultivation of education from the mathematical. 

Yet structure is never absent, even (at some level) a kind of struc
ture which can be abstracted and schematised. Whereas random 
music, like Borges' Library of Babylon - to which I shall return -
can produce no surprises. Departure from regularity presupposes 
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regularity, and significant irregularity implies order on a higher level. 
So when we are working with young children we should not be 
surprised that they wear what may seem to be seven-league boots, 
and that the cross-connections they can make may go easily from 
mathematics to science or to decorative or dynamic art. My idealised 
teacher will not sorrow, but rather rejoice, when the dissection of 
hexagons leads to crochet patterns or visual fantasy, or when 
Fibonacci numbers lead to a new interest in rabbits or the growth of 
trees, or vice versa. From the time of Froebe} and Montessori to that 
of Cuisenaire and Dienes, too much of our move toward the mathe
matics of the concrete, invaluable as that has been, has had such 
deviant possibilities puritanically designed out of it. 

I wish now to return to the perspective of a teacher of children, and 
consider the extent to which my case holds up. My argument is one 
which seeks to make it plausible, when mathematics is extended in 
meaning to include the roots as well as the branch and the flower, 
that mathematical subject matter is potentially the whole of experi
ence. Its differentiating mark is not primarily one of subject matter, 
but of style. This style is not defined by reference to the deductive as 
opposed to the empirical, by the formal as opposed to the concrete, 
by the axiomatic as opposed to the intuitive, but rather by a charac
teristic more generic than these, which I have called, following Peirce, 
schematisation. But let me first reassure you that I intend no dis
paragement of these admirable, but secondary, stylistic features. I am 
only saying that as one looks at mathematics in its extended domain, 
these features are not invariant across that domain. As one looks 
more deeply to the roots one sees these nice distinctions tending to 
dissolve. They characterise branches of mathematics, or leaves and 
flowers, but not the whole of it; they characterise these products as 
finished products. In the process of being born, whether among 
children or among amateurs or professionals, no mathematics is yet 
rigorous, or fully deductive, or axiomatic; but its style is that of 
schematisation. In the process of being born, mathematics is a search
ing out and delineation of structure, guided by those analogies of 
structure which have already been consolidated within the minds of 
the searchers. Its final format is intended to convince, but that is only 
one stable product of mathematicising, not its essence. 

I believe that I owe here a further debt to all the modern efforts 
which have gone into the process of differentiating between mathe
matics and empirical science. As a young philosopher I was raised up 
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surrounded by the belief of Frege and Russell and the Viennese 
positivists that all of mathematics is somehow a vast tautology, thus 
sharply and finally distinguished, and pedagogically separable, from 
empirical science. Although, they said, our natural language is full 
of ambiguities and confusions, there is possible a rational reconstruc
tion of that language (we were assured) which will make clear just 
where the dividing line occurs, and thus rid us of the besetting sin of 
supposing that mathematical truth owes anything to the nature of the 
world we live in. This philosophical movement rode partly on great 
new developments in mathematics going back to Descartes' invention 
of analytic geometry, to the invention of non-Euclidean geometries, 
and to the foundations of arithmetic initiated by Peano and Frege. 
These discoveries revealed the fact that at least major parts of mathe
matics, and presumably all of it, could be faithfully mirrored within 
the domain of arithmetic, while arithmetic itself could be reduced to, 
or mirrored within, a suitably clarified and formalised system of pure 
logic. Not only was this true of traditional mathematics, but it 
proved true also of those parts of empirical science which had been 
sufficiently developed - rational mechanics, for example, the theory 
of elasticity, or more recently (as in the work of Ulam and Kolmo
gorov) the theory of probability, long suspect, like the calculus, as 
to its precise mathematical status. 

By such developments, it was hoped, the contribution of rational 
analysis could be sharply differentiated from all questions of empiri
cal truth involved in the description of nature. What was somehow 
overlooked or treated arrogantly was the fact that these powerful and 
impressive mathematical structures had been evolved through con
stant intercourse with the domains of science, practical life, and 
engineering. It was also overlooked that they could be reapplied in 
those domains only by informal rules of interpretation which carried 
within them all the philosophically interesting problems which had 
supposedly been banished by the new programme. 

What tended to be overlooked also was the fact that this whole 
development failed in one crucial way to explain the specific content 
and form of existing mathematics. If we define mathematics merely 
as a system of propositions organised according to the axiomatic 
method and the rules of deduction, this is rather like defining a book 
as consisting merely of a few hundred pages of printed marks; like 
defining a sculpture merely as any form carved out of stone or cast in 
metal. Jorge Luis Borges' fantasy, to which I 1eferred before, is 
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about a library which turns out to be the library of all possible books. 
The inhabitants of this library spend their lives in a search for 
meaning among its volumes. A book is defined here as - merely - any 
400-page sequence of letters (and spaces) from the alphabet. If you 
calculate the number of books in Borges' library it turns out to be 
about two to the power 220• My students and I once estimated the 
number of the subset of such volumes which consist of recognised 
words organised grammatically into sentences, and this vastly 
reduced library, at a few volumes per kilogram, was still incom
parably more massive than the known physical universe. I do not 
quite know how to estimate the number of distinct, self-consistent, 
formalised axiom sets of not unreasonable complexity, but I would 
guess it is at least large enough to use up a galaxy or two at the 
modest rate of 248 kilograms/galaxy of printed paper. 

We are in no different position with respect to sculpture or music 
or any other art. In one way we are in a worse position with respect 
to the development of mathematics: these axiom sets, though stated 
in a few pages, will entail an infinity of theorems from which we can 
in fact deduce only some selected finite number. 

The view that mathematics is somehow only a vast tautology, that 
truth in mathematics has no relation to the order and connection of 
nature, is thus a misinterpretation of its schematic iterative style. If 
deductive formulation is necessary to its final formal product, this 
criterion alone does not enable us to distinguish between deductive 
sense and deductive nonsense. Defenders of the philosophy of Frege 
admit this criticism, indirectly, but by adding another criticism, one 
embedded in a doctrine of art for art's sake. From among the infinity of 
potential mathematical structures one picks for development only those 
which are aesthetically pleasing. Mathematics is, so to say, another 
genre of art, its products free creations of what is somewhat eulogisti
cally called the human mind. No art is free except within the bounds 
of some discipline; the discipline of mathematics is the deductive 
mode. But otherwise - the argument goes - it is free. This view has 
been held by some first-rate mathematicians, notably by Hardy, just 
as the corresponding view in painting or literature has been held by 
some first-rate artists. The work of the mathematician may, on such 
a view, throw light on the world of man and nature, as if by chance. 
If so, again, noblesse oblige. T. S. Eliot produced, as an example of 
what might engross an artist fully, while lacking all practical utility 
or moral relevance, the following remarkable image - an eggshell on 
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an altar. Unkind critics might seek to match this from some comers 
of contemporary mathematics. Surely, Hardy did not go so far as 
Eliot. His criterion of seriousness precluded that. 

I think, however, that we can take one important lesson from this 
view. Whatever else it may be - and I have argued for much else -
mathematics as my ideal teacher sees and lives it is unthinkable except 
as a kind of disciplined art. It is unsuccessful in the teaching or 
learning of it without that interplay of aesthetic tension and release 
involved in all creative activity, and which rewards all the intervening 
discipline which creativeness requires. 

What is wrong with the doctrine of art pour /'art is that it makes 
a mystery of any kind of discipline at all. The essential art of mathe
matics, if I am right, is that of investigating hypothetical states of 
things through the discipline of schematisation. 

But I have only illustrated this Peircean doctrine, not developed 
it in detail. In particular I have not discussed the epistemological and 
historical origins, or the systematics of those basic mathematical 
structures we know and seek to regenerate in our teaching. Fortu
nately the subject is very much alive today, thanks in large measure 
to the work of Professor Piaget. In closing I can only comment on 
certain aspects of that work. From my own point of view, at least, 
Professor Piaget has brought about a long-overdue revitalisation of 
the philosophical framework of Immanuel Kant, who developed the 
first coherent account of knowledge as the product of a self
regulating synthetic activity. 

With respect to the proto-deducting style of mathematical thinking, 
Professor Piaget has made an important theoretical argument which 
is thoroughly Kantian in spirit, though grounded also in his own 
empirical studies of intellectual development. This argument con
cerns the origin and nature of our sense of logical entailment or 
necessity. Like Kant (and Hume), Piaget argues that contingent 
generalisations derived from factual observation can never, of them
selves, give rise to this idea of necessity. 

This sense of necessity is first operative, Piaget argues, in the 
habitual use of those schemata by which infants and children develop, 
with increasing competence, their ability to control and transform 
their material surroundings by systematic means. In still later intel
lectual development the distinction between the necessary and the 
contingent gains recognition by a kind of reflective abstraction; our 
knowledge can be traced partly to perception and partly to a growing 
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awareness of our own active transformation of that experience into 
a stable and organised system of intellectual resources. Thus, for 
example, the space-group of translations and rotations (as Kant also 
long ago suggested) is developed first through the empirical fact that 
these are reversible operations whereas other changes, those which 
we describe only temporally, are not. It is not our direct perception 
of spatial properties which gives rise to our. idea of space, but our 
reflection upon the operational or manipulatory schema which we 
have been busy developing since infancy at a motor-sensory level. 
In the same way our schema for counting and number evolves not 
from a direct perception of different degrees of numerosity, but from 
more primitive operations of matching and sequencing. In both cases 
a process of reflective abstraction, appearing in the fullness of time 
and experience and education, raises these schemata from the level 
of use to the level of objects for conscious scrutiny and analysis. 
When we have thus begun to be aware of what are in fact our own 
operational commitments, we find that they, so to speak, lead a life 
of their own; the number system or the nexus of geometrical relations 
as it were imposes its will on us, we are not free to imagine that there 
is a largest number, that seven has two immediate successors, or 
that there are spatially unconnected localities. But unlike Kant and 
Kant's predecessor Hume, Piaget has taken seriously the complex 
developmental nature of these ideas, and has brought it home to us 
naive adults that our obvious necessities of thought are often dis
concertingly absent in the thinking of young children, who typically 
make sense of their world in ways we have abandoned and can 
retrieve only with great imaginative effort. When I was speaking of 
a teacher's capacity to map the trajectories of children's thinking, 
I was referring in part to these way-stations of logical thought, which 
along with other childish things we have long since, most of us, put 
aside. 

With all due respect to the theoretical perspectives and empirical 
studies of Piaget, I wish to emphasise what Piaget himself has often 
asserted, that this developmental framework is not directly relevant 
or adequate to the practical and theoretical perspective of a teacher. 
In particular there is a certain danger in the unimaginative use of 
Piagetian interviews to check off children's conceptual 'attainments' 
and thus provide a sort of profile of individual developmental level. 
It would be very poor credit indeed to the thought of a great investi
gator if such very limited diagnosis became a sort of administrative 

133 



DAVID HAWKINS 

substitute for the widely abused IQ, which, in tum, was poor credit 
to the early great investigations of Binet. 

But more basically we must reserve judgement about inferences 
from the average behaviour of groups of children of different ages to 
the actual pathways of individual growth. As we know from the 
theory of the comparative method, we can sometimes construct a fair 
description of the developmental stages of single organisms by 
observing samples of similar organisms of different ages. The means 
and variances obtained by this use of the comparative method are 
however only significant to the extent that we are sampling from 
populations which are uniform in essential respects - in some degree 
of approximation, for example, in the case of gross physical growth. 
If on the other hand we are interested in the common dynamics of 
growth in populations where individual development pursues different 
pathways, the means and variances of a composite picture may 
entirely mask the essential dynamics of the process. When, for 
example, individual learning is in reality all-or-none, a group average 
may produce the standard continuous learning curve. And since 
children are in fact diverging in humanly important ways toward 
different careers, different competencies and insights, different talents 
and interests, a method which looks only at those common con
ceptual nodes which most biographical trajectories sooner or later 
traverse is likely to miss the most interesting part of the theory of 
learning and development, and the part most crucial to education. 
It is likely to observe the fine structure and the dynamics of transi
tions, differing from individual to individual, under such low resolving 
power that these are seen as little more than a residual statistical 
variance, what Piaget calls decalages. 

None of this is said by way of criticism of Piaget's work, which in 
common with many others I both admire and learn from. What is at 
stake is that human creative capacities are only weakly inferrable 
by testing for the presence of those widely relevant schemata which -
because they are widely relevant - we all do more or less competently 
develop, along one pathway or along another. The epistemological 
perspective of a teacher is one which is closer to the dynamics of 
developmentally significant learning, whereas this potentially vital 
role of a teacher is diluted out by the comparative method. In educa
tion as in biology the absence of a theory based on detailed study of 
specific transitions leads away from science toward orthogenesis, 
toward belief in the automatism of progress. One of the more 
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enthusiastic of Piaget's adherents allegedly once said, 'You don't 
have to teach, just wait a while.' But that is a remark which cuts both 
ways; all cats look alike in the dark. On the other hand, the over
whelming mass of studies which deal with the effects of teaching deal 
with short-run reversible learning, of no particular educational signi
ficance. The really interesting problems of education are hard to study. 
They are too long-term and too complex for the laboratory, and too 
diverse and non-linear for the comparative method. They require 
longitudinal study of individuals, with intervention a dependent 
variable, dependent upon close diagnostic observation. The investi
gator who can do that and will do it is, after all, rather like what 
I have called a teacher. So the teacher himself is potentially the best 
researcher, if only we would offer him strong intellectual support 
and respect his potentialities as a scientist: lighten his mechanical 
burdens, join him more frequently in his association with children, 
argue with him, pick his brains. 

In the meantime the very existence of such a teacher as I have 
described - and he does exist, though all too rarely throughout most 
of the world - is a challenge to all the narrowing preconceptions and 
practice of mathematics teaching as that art is usually described and 
practised. 
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Some anthropological observations on 
number, time and common-sense 

Edmund Leach 

In 1919, in his Introduction to Mathematical Philosophy, Bertrand 
Russell declared that 'logic is concerned with the real world just as 
truly as zoology',1 but in the Preface to the 1938 edition of The 
Principles of Mathematics we read that 'none of the raw material of 
the world has smooth logical properties, but whatever appears to 
have such properties is constructed artificially to have them' .2 

Fashions in social anthropology go through similar oscillations. 
During most of my academic lifetime the bias has been heavily 
empiricist. Anthropologists have supposed that they were engaged in 
a kind of social zoology. Human societies have been discussed as if 
they were organisms. The study of social structure and social rela
tions has been treated as analogous to the study of anatomy and 
physiology. Anthropology was a social science; anthropologists 
hoped to discover an ordered universe of social facts - objective facts 
put there, free from the taint of human intuition. 

Broadly speaking, empirically minded social anthropologists of 
this sort take the view that all unsophisticated pre-literate peoples 
have a thoroughly practical rule-of-thumb approach to the day-to-day 
problems of domestic technology. They insist that it is a complete 
mistake to imagine that the ordinary behaviour of primitive man is 
dominated by childish superstition. Magical fantasy is never allowed 
to interfere with common-sense. 

That is still the orthodox view but of late there has been a move 
away from empiricism in the direction of idealism. Many anthro
pologists would now argue, in imitation of Russell, that 'none of the 
raw material of our social world has smooth logical properties, but 
whatever appears to have such properties is constructed artificially 
to have them'. 
1 Russell, B., Introduction to Mathematical Philosophy, Allen and Unwin, 

London; Macmillan, New York, 1919, p. 169. 
2 Russell, B., The Principles of Mathematics (2nd edition with new Introduction), 

Allen and Unwin, London; W.W. Norton, New York, 1938, p. xi. 
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That is the orientation which has governed my own thinking 
while I have been preparing this paper. 

I started out by asking myself why on earth should a social 
anthropologist be invited to address a gathering of teachers of 
mathematics? I came to the conclusion that one possible answer 
might run something like this: 

The subject matter of social anthropology is human custom but 
mainly the custom of pre-literate unsophisticated peoples living 
outside (or on the fringe of) the modern industrial world. Such 
peoples do not engage in mathematical computations as you might 
ordinarily understand them. 

But that is true also of the vast majority of those whom we our
selves encounter in our daily lives. For the ordinary 'man in the 
street', whether child or adult, mathematics is a mystery. Your 
problem, as teachers of mathematics, is to overcome this mystery, 
and that entails, at least to some extent, changing the way that your 
pupils think about the nature of things. But part of your difficulty 
is to be able to understand how your unsophisticated, pre-mathe
matical pupils interpret their experiences in the first place. 

Are there universal aspects of common-sense which the teacher of 
mathematics, with his special initial prejudices is likely to overlook? 

This is the sort of question a social anthropologist ought to be 
able to answer but I am afraid that I must disappoint you. Common
sense turns out to be a much more variable factor than one might 
have supposed. The only lesson that comparative ethnography can 
offer in this respect is that what seems obvious to you and me is not 
necessarily obvious to anyone else. 

Let me start with an example from Ancient Egypt which was 
almost the first of the really sophisticated societies. The Egyptians 
had only a very rudimentary mathematical understanding but, for 
purposes of survey and accountancy, they adopted quite elaborate 
techniques of computation. Some of these seem surprising. 

The Egyptians evidently came to the conclusion that in measuring 
a straight line, the fractions ½ and ¼, t and t could be accurately 
judged by eye - as indeed is pretty much the case. For the purposes 
of arithmetical computation they therefore made their number series 
start, not with the integer 1 but with a fraction - either ¼ or ¼. The 
numbers were thus in two series: 

¼, ½, 1, 2, 3, 4, 5, ... 
¼, t, 1, 2, 3, 4, 5, ...• 
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All these numbers were in effect treated as if they were integers. 
Other fractions were then written as combinations of these natural 
numbers with unit fractions. For example, 

t becomes '¼+-h', 
What could be common-sensical about that? Well it depends upon 
one's point of view. The resulting computation procedure is cer
tainly extraordinarily cumbersome yet close inspection shows that it 
employs repetitive algorithms appropriate to a modern computer 
program.1 Evidently in the Egyptian case the advantages of mechani
cal simplicity involved in the repetitive element of the procedure 
outweighed the disadvantage that it was very slow. 

Incidentally this Egyptian fractional numbering system with its 
special use of halves and thirds provides part of the answer to 
another common-sense question which modern children may raise. 
Since we have a twenty-four hour day why does the ordinary clock 
face only show twelve hours? The details are complicated but the 
main point is this. The shadow face of the Roman-Egyptian sundial 
was divided into quarters, and each quarter into thirds, making 
twelve sections in all. Although astronomers had used a twenty-four 
hour, equal interval, day-night from as early as the third century B.C., 

this twenty-four hour manner of reckoning did not come into general 
use until around the eleventh century A.O. along with the introduction 
of mechanical escapement clocks. Prior to that period the term 
true hours (horai kairai) was always applied to sundial hours which 
vary in length according to the time of year and the latitude of 
observation.2 Common-sense, but to our thinking rather odd. 

With that introduction let me delimit my subject matter. I shall 
mainly be talking about relatively unsophisticated concepts of time. 
Until I get near the end I shall not be going into any great detail. 
I simply want to examine the principles of 'common-sense' which 
these time concepts entail. I shall concentrate on those features which 
are at variance with the assumptions normally current in the modern, 
twentieth century, industrial world. 

I cannot now remember how my mathematics teachers first intro
duced the concept of time. I suspect they avoided it. After all at first 
1 Neugebauer, 0 ., The Exact Sciences in Antiquity, Princeton University Press, 

Princeton, 1952, pp. 21, 72-8. 
1 Ibid. p. 81. See also Neugebauer, 0 ., Ancient Mathematics and Astronomy in 

C. Singer, E. J. Holmyard and A. R. Hall (eds.) A History of Technology, 
Vol. 1, Clarendon Press, Oxford, 1954, pp. 785-803, esp. 796--7. 
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sight it seems an elementary matter. Time is something that we 
measure and something that we measure with, therefore it is a 
dimension. And yet surely this is very puzzling, for time, whatever it 
may be, is something which is experienced quite intangibly. We cannot 
see it or touch it as we can a footrule. How is it then that we come 
to think of it as measurable? Measurable in relation to what? 

When we measure anything the units of scale that we employ - feet, 
centimetres, hours, ounces, grams and so on - represent numerical 
quantities of dimensions. This is so much of a commonplace that 
the dimensions themselves appear intrinsic. It seems sensible to 
measure a quantity of sugar by weight or by volume, but nonsense 
to measure it by length or by area or by duration. Yet in fact, the 
dimensions that we employ in any particular case are largely arbi
trary and differ according to the social and operational context in 
which we make our observation. In many parts of the world farmers 
regularly measure their fields in terms of seed requirements or crop 
yield; all ofus tend to judge journey distance by the time it takes to get 
there. This implies measuring area by volume and distance by time, 
procedures which seem to blur the edges between sense and nonsense. 

It is consistent with our assumption that dimensions are 'given' 
facts of the external situation that we today tend to prefer scales 
which have some kind of universal validity. The theoretical standard 
metre, for example, is not the actual length of any man-made object 
but 'one ten millionth part of the meridian quadrant', that is to say 
it is an absolute feature of the cosmos which can be ascertained only 
by calculation. All other measures oflength, in any scale whatsoever, 
can, in theory, be expressed as a standardised multiple or fraction of 
this ideal metre. And this relationship is absolute. An English inch 
equals 2.54 centimetres; we could not imagine it to be 2.54 cm today 
and 3 cm tomorrow. 

But standardisation of this sort is not a quality of scales as such. 
In the world of commerce and international finance, for example, 
scales of value are shifting relative to one another all the time and 
we accept this as normal. In a comparable way, in a non-scientific 
world, all scales, including those which are used to measure time and 
space, are adjustable to circumstance. It is a peculiarity of scientific 
society that an ideal scale should be one which is unambiguous and 
exact; under other conditions people have preferred scales which 
were easy to use. Where the criterion of a good scale is its convenience, 
too much precision may even be a nuisance. 
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All this is relevant to my central theme. In any society the generally 
prevailing ideas about the nature of time and space are closely linked 
up with the kinds of measuring scale which are thought appropriate. 
If we alter the scales and dimensions with which we measure, we 
seem somehow to alter the nature of that which is being measured. 
For us distances consist of miles or kilometres just as time consists of 
hours and minutes. But in a clockless world there are no hours and 
no minutes. If we consistently measured distance by time, then we 
should doubtless take it for granted that the topography consists of 
days and nights. It follows that our present-day feelings about the 
nature of the cosmos are largely determined by the nature of the 
scales which we use to measure its components. It is therefore very 
significant that, as compared with any previous period of history, 
our scientific culture operates with more precise scales but far fewer 
dimensions than ever before. 

We manage to make do with fewer dimensions because, having 
perfected the art of numerical calculation it is convenient to have 
all values expressed in interchangeable numbers. For example, in the 
field of economics, the value of land, of goods, of valuables, of food, 
of labour, and of every type of service can now be expressed in terms 
of a single numerical dimension 'money'. In primitive society this is 
not the case. Houses and yams both have value, but there would 
ordinarily be no possible way of computing the value of a house as 
a numerical quantity of yams. In primitive economics, in the absence 
of a general medium of exchange, we have a situation where there is 
a multiple range of value dimensions. 

Space dimensions and time dimensions can also both be multiple 
in this same sense. Nowadays we usually take it for granted that the 
three linear dimensions, length, breadth and height, . are all measur
able in units of the same type. This is because we find it convenient 
to compute areas and volumes as squares and cubes of a numerical 
linear scale. Other people, who lack our arithmetical proficiency, 
may find it more convenient to keep such dimensions apart, to 
measure height, for example, in different units from length and 
breadth, or land area in different units from the size of buildings and 
material artifacts. And so also with time. 

In post sixteenth century European mathematics, time has come 
to be treated as a fourth dimension distinct from, but precisely on 
a par with length, breadth and height except that every now and 
again we have to remind ourselves that the arrow of time is not 

140 



NUMBER, TIME AND COMMON-SENSE 

reversible. We now take it for granted that time is continuous and 
that both past and future have infinite extension. We also take it for 
granted that there is just one kind of time .. . that the nano-seconds 
by which we compute the time lag of computer mechanisms, if 
magnified sufficiently, will turn into the light years by which we 
compute the distance of extra-galactic nebulae. We not only think 
of time as being 'like space' in that it is an attribute of what is 'out 
there' but we think of duration as a kind of length. We move along 
the time axis as we might along a space axis; more picturesquely, we 
float down the river of time as we might travel along a road. All 
metaphors of this very general kind, which one way or another entail 
the assumption that time is unitary - all in one piece - and that it 
exists 'out there', external to individual human experience, are 
highly artificial. The 'time' to which they refer is a construct which 
has come to be grafted on to our thinking by the logical requirements 
of mathematics rather than because of any direct personal experience. 

But how do we in fact experience time flow? Here I must emphasise 
again that I am a social anthropologist and not a psychologist.1 I am 
not here concerned with the problem of time 'perception' or time 
'intuition'. I am talking about cultural phenomena; interactions 
between man and nature which can be directly described like the 
sequence of days of the week or the oscillation of a pendulum. 

Time experience, in this sense, appears in six quite separable forms. 
(1) Time as alternation: day-night, day-night. 
(2) Time as sequence: one thing happens after another. 
(3) Time as distance: if an individual moves from locality A to 

locality B this will use up time. 
(4) Time as delimitation : any named and identifiable event neces

sarily has a beginning and an end. Time, in this sense, delimits events, 
just as boundaries delimit objects. 

(5) Time as repetition: the sequence of events in one working day 
is the same as in the day before or the day after; in every annual cycle, 
productive activities follow one another in the same sequence, and 
so on. The recognition of such repetitions is universal, but this does 
not necessarily entail a notion of continuity . . . today is separate from 
yesterday. There is often a gap of several months between the end of 
one working year and the beginning of the next. 

(6) Time as aging: older people are aware that they and their 
1 For a recent discussion of psychological aspects of this problem see Ornstein, 

R. E., On the Experience of Time, Penguin Books, Harmondsworth, 1969. 
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friends were once younger; they are also aware that in the future they 
will all be dead. The end of the world lies ahead. 

Now to anyone with your kind of mathematical orientation the 
last of these six categories of time is simply the notion of entropy 
while the other five can all be combined into one figure. 
But a unitary conception of time such as is implied by a wave 
diagram of this sort does not arise from ordinary experience; it is an 
intellectual construct imposed on 'the world out there' by the thought 
processes of mathematicians. 

In the world of common-sense, time is fragmented and the frag
ments do not necessarily fit together. 

But let me go back to my list of the varieties of time. Most accounts 
of the history of science give the impression that, from the second 
millennium B.C. onwards, men were aware of the 'existence' of 

a unitary entity 'time'; and that the progress of astronomy was 
directly linked up with more and more refined attempts to measure 
time - by calculating the relative lengths of lunar, solar and sidereal 
cycles so as to establish the 'true' length of the year. In retrospect 
this is indeed how it worked out, but that is certainly not what the 
ancient calendar makers thought they were up to. 

We know for example that, from the third millennium B.C. at 
least, the Ancient Egyptians had two quite different calendars, one 
for computing official and religious events and the other for organis
ing the agricultural seasons which were linked with the rise and fall 
of the Nile flood. The civil agricultural calendar was a lunar calendar. 
The religious calendar was a day-count system which made use of 
the special number scales to which I have already referred. Each 
third of a year was divided into quarters making twelve sections; 
each section was then subdivided into thirds, of ten days each. The 
whole yearly cycle thus consisted of a symmetrically arranged se
quence of thirty-six ten day periods. To this was added a special half 
section of five days which consisted of religious festivals outside the 
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normal year, giving a full cycle of 365 days. The Egyptians were well 
aware that this year was not astronomical, but it was convenient. 
Until very late they did not attempt to calculate its precise dis
crepancy from the natural year. In effect they behaved as if the two 
calendars, the secular and the religious, measured two quite separate 
varieties of time. This was common-sense since the day-count calendar 
served religious purposes for which astronomical correlations were 
irrelevant. It is only convention which makes us think that the move
ments of the heavenly bodies constitute a natural clock. On the con
trary, it is at least arguable that the symmetrical, astronomy-free, 
Egyptian day-count system was the only completely rational method 
of reckoning time that has ever been invented anywhere.1 

For that matter even the Chaldeans and the Greeks who, unlike 
the Egyptians, really did become interested in astronomical (as 
distinct from calendrical) problems, were both quite unconcerned 
with what we should now consider to be the practical aspects of 
astronomy. Their concerns were metaphysical. This is a point I must 
emphasise most strongly. In the history of science, astronomy and 
mathematics were both step-children of astrology, not the other way 
about. Astronomy was first developed to serve astrological ends and 
astrology is just one of a vast number of 'para-logical' techniques by 
which man has, at one time or another, attempted to predict the future. 

All these techniques derive from the same basic non-rational yet 
common-sense belief, namely that every person or animal or thing 
or event has its own 'destiny' or ' life-time'. In retrospect, after it has 
happened, this proposition becomes a self evident truth; the meta
physical hypothesis is simply that the destiny is 'already there', 
before it has actually happened. But if it is there, it is 'logical' to think 
that it should be discoverable. 

And why not? Suppose I go to Bristol next Sunday. I do not at this 
moment know the way to get there. But the way from Exeter to 
Bristol already exists and I can discover what it is. If I go to Bristol 
I shall make a journey along this road which already exists; if I do 
this I shall uncover a piece of my destiny; I shall use up a piece of 
my life-time. Surely it is common-sense to think that this future 
life-time already exists now? 

That anyway is the logic of pre-destination. Each person, animal, 
thing, event carries with it its own destiny, its own unique 'piece of 
time'. Part of this time is already past and uncovered; part still lies 

1 Neugebauer (1952), The Exact Sciences in Antiquity, p. 81. 
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in the future and is in shadow; but the whole has 'existed' 'from the 
beginning'. 

Historically, astrology arose when it was realised that astronomical 
events are computable in advance. Once it was postulated that an 
association might exist between the time of a particular personal 
event - such as a birth - and the time of a particular astronomical 
event - such as an astrological configuration - then it became per
fectly 'reasonable' to suppose that the future course of an indi• 
vidual's personal destiny can be predicted. 

From our modern scientific point of view this is nonsense, but this 
is what happened in history. Clockmaking and astronomy did not 
evolve as techniques for measuring an abstract unitary entity, sidereal 
time, which is part of nature, but as devices for linking together the 
conjunctions of isolated, very specific, very personal, chunks of time. 

Joseph Needham and his associates have given a fascinating 
account of the medieval Chinese version of this ideology which I feel 
is worth repeating, if only to add an element of light relief. In the 
eleventh century A.O. the Chinese emperor possessed the most 
sophisticated clock in the world. It was an elaborate water-driven 
affair about thirty-five feet high. The function of the clock was not 
merely to tell the time of day but to compute the positions of the 
stars and the planets and their conjunctions. I quote: 

From time immemorial the large number of women attending upon (the 
Chinese Emperor) were regulated according to the numinous cosmism 
which pervaded Chinese Court life ... his consorts and concubines com
prised one empress, three consorts, nine spouses, twenty seven concubines, 
and eighty one assistant concubines. The total adds up to 121, which 
(certainly by no coincidence) is one third of 365 to the nearest round 
number ... The lower-ranking women came first, the higher-ranking came 
last. The assistant concubines, eighty one in number shared the imperial 
couch nine nights in groups of nine. The concubines, twenty seven in 
number, were allotted three nights in groups of nine. The nine spouses 
and three consorts. were allotted one night to each group, and the empress 
also alone one night. On the fifteenth day of every month the sequence 
was complete, after which it repeated in the reverse order . . . The secretarial 
ladies kept a record of everything with their vermilion brushes. 

What was at stake was the Imperial succession ... (any one of an 
Emperor's sons might theoretically be chosen as heir); one of the factors 
in this choice was the nature of the asterisms which had been culminating 
at the time of the candidate's conception. Hence the importance of the 
records which were kept by the ladies secretarial, and the value of a 
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(mechanical instrument) which not only told the time but from which one 
could read off the star positions at any desired moment.1 

I cannot help feeling that some of your more reluctant pupils might 
find mathematics a much more exciting subject if they thought that 
their calculations could lead to a similar pay off! 

The case of the Emperor's concubines illustrates, among other 
things, the magical property of numbers, particularly of multiples 
of the number 3. This is no trivial matter; most of your pupils will 
almost certainly have magical feelings about numbers. 

Almost universally, even in the most unsophisticated societies, odd 
and even numbers are recognised as complementary and opposite, 
often as male and female. By an extension of this mode of thinking, 
three, reckoned as 2 + 1, may be considered the first complete number. 
Hence the recurrent appearance of mystical religious triads - Osiris
Isis-Horus, the Christian Holy Family, the Christian Trinity and 
so on.2 

Correspondingly if 3 is perfect and complete it follows that 2 x 3 is 
imperfect and incomplete but 3 x 3 is again perfect and so on. Hence 
6 is 'bad' but 9 is 'good'. 

But this is taking me far away from my theme of time reckoning 
so let me go back yet again to my list of 'the varieties of time', in 
particular to the phenomenon of entropy - the human peculiarity 
that, of all animals, man alone knows that he is going to die. 
1 Needham, J., Wang Ling and de Solla Price, D. J., Heavenly Clockwork: The 

Great Astronomical Clocks of Mediaeval China, Cambridge University Press, 
London, 1960, chapter 8. 

• The world-wide magico-religious emphasis on triads and ternary numbers of 
which a variety of examples appear in this paper has both logical and psycho
logical foundations . Theological disputes about the nature of the Trinity are 
ultimately concerned with problems of 'truth' just as are the logicians who are 
able to show that Boolean algebra, when applied to propositional lo~c, can 
reduce the sixteen connectives of a standard truth table to three: 'union', 
'product', 'complement'. But apart from its logical implications this same 
numerology evidently strikes a chord which reaches deep into hu!I\lln psycho
logy. At a fairly superficial level, every individual tends to perceive himself as 
standing at the apex of a triangle of which the two parents form the base, but 
much more fundamental is the empirical finding that the phonology of language 
depends upon an innate human capacity to learn how to discriminate between 
binary distinctive features and then to mediate oppositions. 

The kind of dialectical logic by which we first recognise an entity 'A' by 
distinguishing it from 'not-A• and then synthesise' B' as the negation of 'both 
A and not-A' to form a new triadic unity, seems to be a universal component 
of human thought. It can be illustrated in the myths and customs of even the 
most exotic peoples. This is the central theme in Levi-Strauss' 4 volume 
Mytho/ogiques (Pion, Paris, 1964-1971). 
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The nature of religion cannot be summarised in a sentence yet it is 
fairly obvious that a very large part of all religious ideology is con
cerned with attempts to deny the fact of death. Death, we are told, 
is not 'really' death at all, it is a gateway to eternal life. In accepting 
any such doctrine we reject the inevitability of entropy and the 
arrow of time. 

The forms which such belief can take are enormously varied but 
most of them fall into just two major classes: 

(1) There are systems (such as that of orthodox Christianity) in 
which the time of life on earth is recognised as subject to entropy .. . 
we get older and older every day .. . but life in 'the other world ' is 
'eternal ', that is time-less. In Heaven and Hell the individual soul 
does not experience aging. 

(2) There are systems which are essentially cyclical and repetitive -
the future life is a copy of this one - birth follows death but death 
still follows birth. 

Our modern 'scientific' notion of infinitely extensible entropic 
time - a universe which is for ever running down hill - fits especially 
badly with religious ideologies of the first type which postulate an 
after life of eternal bliss; so let us take a closer look at the time 
structures which are entailed by such systems. 

Christianity, if we accept the Bible as literally true, presupposes 
a time framework which is similar to that of the Australian Abori
gines. Time has a beginning, but thereafter the past falls into two 
distinct stages. 

There was firstthe period of dream time or myth time in which the first 
beings existed in a newly created Paradise, in a stationary state without 
reproducing themselves or getting older. Then, in contrast, there is 
the waking time of ordinary experience in which entropy operates, 
events happen one after another, and ultimately everyone is dead. 

A characteristic of the first of these periods, the dream time, is that 
all events are, in a sense, simultaneous; it takes time to tell the story 
b11t the story when it has been told is like a map; it is a description 
of a social topography; it would not really matter if the events had 
been listed in quite a different sequence. 

The other characteristic of dream-time-past is that it is not really 
'past' at all. The legendary first beings, who appear as hero figures 
in the myths, are not 'dead', they exist ' now', and they still operate 
with potency in our present existence; 'God liveth' as a kind of super 
grandfather laying down the moral rules. 
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Now in unsophisticated, non-numerate societies, such as social 
anthropologists usually study, this dual evaluation of the past does 
not create any serious intellectual difficulties. Entropic time, in which 
human beings grow old and die, is current and recent, it relates only 
to the memory of man - that is to the life experience of individuals 
who are still alive and their immediate forbears. The timeless eternity, 
from which the hero ancestors are still controlling events, is close at 
hand, not chronologically distanced from the present. 

But as soon as it becomes customary to measure time by numbers, 
there is a tendency to use number magic to relate the past to the 
present. The 'beginning of time' then becomes a base point; the 
patriarchs cease to be immortal and turn into giants who live to 
a very great abnormal age but eventually die. The Biblical Book of 
Genesis exemplifies the general pattern. But it is a great mistake to 
imagine that people who have developed a chronological sense of the 
past of this type, have a view of history which closely resembles our own. 

To round off I propose to give you in rough outline an example of 
the point I have just made. It illustrates the main thesis that I have 
been making all along. Common-sense is a variable; the fact that 
people act in a way that seems to us sensible, or that they make state
ments which seem to us comprehensible, does not necessarily imply 
that they mean what we think they mean. 

The areas in which there is likely to be the greatest misunder
standing are those in which we feel ourselves most expert. 

All of you in this room are accustomed to the manipulation of 
numbers, but you also operate within a framework of strict con
ventions about what sorts of numbers may be manipulated. If, for 
example, you had a Western style education you will have been 
taught that the time framework of history is 'a given' which is not 
open to manipulation. But that of course is just a convention and it 
may be salutary to consider the works of medieval Christian his
torians precisely because they constitute a class of authors who 
manipulated the time framework of history quite blatantly. 

The justification for my citing this rather complicated and super
ficially crazy material is that it illustrates a particular, and widespread, 
way of thinking about numbers. I am not suggesting that your pupils 
think like that; but it is quite possible that they may do so! 

But now to my example. 
Whenever the past is given chronological depth but is still credited 

with a mystical influence upon the present, chronology itself becomes 
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a part of the magical apparatus. This readily leads to an obsession 
with number magic. 

The Christian Fathers of the third century A.O. argued as follows :1 

(a) God created the world in 6 days and rested on the 7th day. 
(b) A day in the sight of God is a thousand years. 
(c) It is therefore self evident that the world will come to an end 

6000 years after the Creation. 
(d) This impending doom is confirmed by the fact that Noah was 

600 years old at the time of the Flood, that the Idol set up by 
Nebuchadnezzar measured 60 cubits by 6 cubits and that the mark 
on the Beast in the Book of Revelations is the number 666. 

(e) The Incarnation of Christ the Redeemer was the recapitulation 
of the Creation of Adam the Sinner. 

(f) But Adam was created on the 6th day and had sinned at the 
6th hour (i.e. 5½ days after the first Beginning). Therefore the 
redemption of the World was timed for 5½ x 1000 years. 

(g) It follows that Christ was born in Bethlehem in the World 
Year 5500. He was crucified in His 33rd year; 33 being morally good, 
just as 666 is morally bad. 

And so on. 
One aspect of this is that the authors concerned were living in the 

third century A.O. so that by computing the End of the World at 
A.O. 500 they were bringing the Day of Judgement near enough to be 
interesting. The exaggerations of the environmental Doom-watchers 
of today who predict total disaster within the next fifty years have 
similar motivations. But early Christian numerological calculations 
could be much more specific than that. 

The following characteristic example comes from Hippolytus' 
Commentary on the Book of Daniel written in the early part of the 
third century. 

The first coming of Our Lord, the Incarnation of his birth at Bethlehem, 
took place on the eighth day before the Kalends of January (December 
25th) on a Wednesday in the forty second year of the reign of Augustus, 
five thousand five hundred years after Adam. He suffered in his thirty 
third year on the eighth day before the Kalends of April (March 25th) 
in the 18th year of Tiberius Caesar in the consulship of Rufus and 
Rubellion.• 
1 The Writings of Irenaeus (translated by A. Roberts and W. H. Rambaut), 

Ante-Nicene Christian Library, Edinburgh, 1969, vol. 2; pp. 118, 132, etc. 
• Bonwetsch, G. N. and Achelis, H. (eds.), Hippolytus Werke vol. 1, part 1, 

Die Kommentare zu Daniel and zum Hohenliede, Leipzig, 1897, p. 242. 
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On the face of it this reads like an assertion of historical fact such as 
we might encounter in a modern school history book. It is nothing 
of the sort. If we are to understand what was intended we have to 
appreciate that the author's central problem was one of time rather 
than events. The exact date of the Crucifixion had become an issue of 
extreme doctrinal significance, but it was unknown. Hippolytus 
believed that he could discover the 'correct' date by computation. 

As is the case among many much more primitive societies, the 
early Christians believed that the welfare of their community might 
be very seriously jeopardised if the various annual rituals were not 
properly performed on the 'correct' dates. But Christian festivals 
such as Easter were supposed to be tied to dates in the Jewish lunar 
year. Any straightforward reading of the Gospels for example must 
imply that the Friday of the Crucifixion corresponded to the Jewish 
Passover which falls on the fourteenth day of the month Nisan. But 
how could the lunar date Nisan XIV be identified in the Roman 
Julian calendar of 365¼ days? The theologians have never managed 
to solve this problem1 but in the early centuries of Christendom 
attempts to solve it led to endless theories about 'time cycles', each 
of which tended to become the doctrinal banner of a particular 
schismatic group. 

Considered astronomically, all the various theories were defective, 
and indeed, prior to the sixteenth century A.O. astronomical observa
tion was always too crude to decide a disputed issue one way or the 
other. 

In practice the rival theorists ignored astronomy and attempted to 
give their arguments a mythical authority by projecting them back
wards through time. Each author sought to validate the accuracy of 
his own favoured Easter table by showing how well it fitted with 
the events of sacred history.2 

So what about Hippolytus' statements concerning the dates of the 
birth and Crucifixion of Jesus Christ? They represent a curious 
amalgam of calendrical calculation, historical tradition and doctrinal 
theory. 
1 After the Council of Nicaea the Crucifixion was presumed to have occurred on 

Nisan XV and the tables were redesigned so as to prevent Easter Sunday from 
ever coinciding exactly with the Jewish Passover. However in 1923 the Paschal 
full moon fell on the day given in the modern Western Church tables for 
Easter day. To conform with the post-Nicaean rules Good Friday should have 
been on the Friday following Easter Sunday! 

2 For a full account see Jones, C. W. (ed.), Bedae: Opera de Temporibus, Mediaeval 
Academy of America, Cambridge, Mass., 1943, chapters 1-4. 
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All the rival theories about the dating of Easter manage to drag in 
the names of the two consuls, usually called Rufius and Rebellius. 
According to modern reckoning they held the consulship in A.D. 29 
but their significance for the Christian tradition was that they were 
supposed to have been twin brothers. By specifying them as gemini, 
the founding of the Church of Christ is linked up with the founding 
of the City of Rome by the gemini Romulus and Remus. 

The statement that Jesus was crucified in his 33rd year is an 
essential detail which distinguishes Hippolytus' theory from rival 
doctrines which place this key event in A.D. 29. The link with the 
18th year of Tiberius is based on Luke 3: 1, 23. On this basis, Jesus 
would have been born in the 44th year of the reign of Caesar Augustus 
as ordinarily computed and the reference to the '42nd year' is prob
ably simply a mistake. 

The references to days of the week and days of the month are 
however based wholly on computation and doctrinal theory. The 
precise details of this particular computation cannot be reconstructed 
with certainty but they would have been based on some or all of the 
following postulates. 

(1) The World was created at the Spring Equinox, 25 March, 
on the first day of the week, Sunday. 

(2) The moon was created on the evening of the fourth day, 
Wednesday. 

(3) Since it was created to light the night, it was a full moon. 
(4) The Annunciation and Conception of the Blessed Virgin was 

a recapitulation of the Creation of the World and therefore occurred 
on 25 March, but since it brought light to our (moral) darkness it 
was a full moon. 

(5) The birth of Christ followed, exactly 9 Calendar months after 
the Conception, on 25 December. It was a Wednesday because it 
recapitulated the creation of the sun and the moon on the fourth 
day.1 

(6) The Crucifixion of Jesus Christ on Friday in Holy Week was 
the act of Redemption which repeated in reverse the expulsion of 
Adam and Eve from the Garden of Eden on the sixth day and the 
ninth hour. It was linked with the full moon of the Jewish Passover. 
But since this too was a beginning of new time, this event again must 
have occurred on 25 March. 

Apart from these theological assumptions Hippolytus also made 
1 In fact if 25 March is a Sunday, 25 December is a Tuesday. 
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use of some perfectly straightforward calendrical calculations, 
such as, 

in the Julian Calendar the days of the week repeat themselves in 
relation to the days of the month every 28 years ( 4 x 7) so if 25 
March is a Sunday in year 1 it will also be a Sunday in year 29, and 
in year 33 it will be a Friday. 
Finally, there is the fact that Hippolytus' Easter tables assume, quite 
erroneously, thatthereis a 16yearlunarcyclesuch that if25 March is a 
full moon in year 1, it will also be a full moon in year 17 and year 33. 

Putting all this together Hippolytus argues that the Conception of 
Christ, as the crucial beginning of the Christian era, occurred on 
a Sunday, at the Equinox, on 25 March, at the full moon. By his 
(inaccurate) reckoning, 25 March 32 years later was likewise a full 
moon, but a Friday - the Friday of the Crucifixion. Counting from 
the Annunciation as base, this is correctly described as 'the 33rd 
year' of Christ's life. 

Far from being a mere artistic flourish Hippolytus' references to 
month dates and days of the week lie close to the heart of the matter 
since they serve to justify the table of actual Easter dates which 
started from A.D. 222.1 

At first sight this all seems very silly but we need to notice what is 
going on. Hippolytus first assumes that chronological numbers are 
no more sacrosanct than other numbers and that they are open to 
1 In Hippolytus' table the cycle begins with the (genuine) full moon of A.D. 222 

which fell on 13 April. Easter is allowed to fall on any of the days luna xvi to 
luna xxii of the Paschal moon. This implies that Christ was crucified on Nisan 
XIV and lay in the tomb on Nisan XV. The table assumes that the earliest limit 
for Easter day was 18 March the day the sun entered Aries according to the 
Old Roman computation. This would imply that the Paschal new moon 
corresponding to Nisan I could not retrogress beyond the last hours of 
4 March. 

A revised Hippolytan table, which appeared in the year 243 under the name 
of Cyprian, explains this equation of Nisan I with 4/5 March by the following 
remarkable piece of reasoning: 

The World was created at the Spring Equinox, 25 March 
The moon was created on the evening of the 4th day, 28 March 
Since it was created to light the night it was created as a full moon. The 
following day 29 March was therefore Nisan XIV. If this moon had existed 
before it was created full it would have been a new moon on 16 March. 

The lunar date falls back 11 days each year in relation to the solar calendar. 
Therefore the first actual Nisan I would be 11 days before 16 March, i.e. 
4/5 March, near the end of the first year of the Creation, and this set the 
earliest limit for subsequent Paschal full moons as 4/5 March+ 14 that is 
18 March. Q.E.D. 

(See Jones (1943), Bedae: Opera de Temporibus, pp. 12-13.) 
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manipulation in a mathematical way. He then assumes that if we 
link historical events with numbers (i.e. dates), the series will be 
recursive (i.e. that 'history will repeat itself'). He then treats the 
repetitive sequences of which his history is composed as interlocking 
epicycles of varying duration and postulates that the 'important' 
events in history always occur on dates at which several different 
epicycles all come into phase. His key dates are those at which the 
7 day week, the 365¼ day Julian year and the 354 day lunar year 
synchronise. 

This way of using a numerical view of the past as a code for 
deciphering the present was not a peculiarity of early Christians. 
Other civilisations have used historical time in a very similar way, 
notably the Maya of Central America. Granted the primary assump
tion that history repeats itself it is a perfectly rational way of pro
ceeding and we should perhaps ask ourselves why we are so confi
dent that the assumption is false. But my present point is a different 
one. The early Christian authors looked upon the writing of history 
as the application of a general theory of number to practical prob
lems. Dating was not ascertained by reference to contemporary 
records but by citing 'authorities' and by computation. Moreover, 
in the correct scientific style of Professor Popper, they recognised 
that their hypotheses could be falsified by events, in which case they 
would have to change their theory and this would alter the structure 
of history. Here is a striking example of the latter principle. 

Some 80 years after Hippolytus published his tables the Alex
andrine ecclesiastics became interested in the arithmetic of the 
Kallippic cycle of 76 years. It was noticed that the number 5776 was 
76 x 76 while the reign date of Diocletian, by Hlppolytus' reckoning, 
would be World Year 5787. Arguing that the reign of Diocletian, 
with its anti-Christian persecutions, must mark the era of Anti
Christ who was to be the forerunner of Christ's true second coming, 
the Alexandrine church authorities decided that the reign of Dio
cletian must have initiated a new era of time. They therefore quietly 
shifted the dates of both the Crucifixion and the Creation of the 
World forward by 10 years - to the consternation and anguish of 
later chronologists! In this way Diocletian's reign date became 
World Year 5776+ 1, the first year of a new great cycle of time.1 

Let me emphasise again just why I am giving you these tedious 
1 Mas Latrie, L. Cte de, Tresor de Chronologie (Paris, 1889), Col. 30/31: Encyclo

paedia Britannica Xlth edn, article Chronology, 
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examples of phoney arithmetic. They illustrate the two main ways 
in which the medieval historian's attitude to time differs from that 
of his modern successor. In the first place, events are treated as 
interesting only in so far as they can be seen to be fulfilments of 
Destiny or omens of the Future. Secondly, dating, though meticu
lous, is a matter of computation rather than of evidence. 

Until this view of the nature of history and of the nature of 
evidence could be abandoned, the development of modern science 
was impossible, but, in the context of established Christianity, any 
such change was liable to smack of heresy. 

Writing about A.D. 1267 Roger Bacon reviewed at length the whole 
of the earlier argument about the date of Easter and then he went on 
to recommend to the Pope a calendar revision of his own devising. 
Bacon justified the need for this calendar revision by saying that the 
existing system made the Christian church a laughing stock in the 
eyes of Arabic scientists; he justified the revision itself not by refer
ring to historical 'authorities' but by a straightforward astronomical 
calculation.1 His viewpoint is thus the exact antithesis of that pro
pounded by the earlier writers whom I have mentioned. 

Bacon's proposed revision was broadly similar to that ultimately 
adopted by Pope Gregory at the end of the sixteenth century but his 
scientific enthusiasm was three hundred years too early; all that 
Bacon earned by his proposals was fourteen years imprisonment! 

That perhaps is an appropriate place to stop because it brings us 
back full circle to the uncertainties of Bertrand Russell. Bacon was 
not thrown into gaol because he was a scientist defying the Church 
but because he was putting forward the claims of empiricism against 
the idealist assumptions of established mathematical orthodoxy. 
Today, as I suggested at the beginning, the movement of thought 
is going the other way; idealist heresies are tending to undermine the 
empiricist assumptions of scientific orthodoxy. 

Let us beware lest the would-be heretics among our own pupils, 
by challenging our authority, should tempt us to react as the Pope 
reacted against Roger Bacon. 

King's College, 
Cambridge. 

1 Burke, R. B. (trans.), The Opus Magnus of Roger Bacon, 2 vols., University of 
Pennsylvania Press, Philadelphia, 1928, vol. 1, pp. 222-30; 291-306. 
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Mathematical education in developing 
countries - some problems of 

teaching and learning 

Hugh Philp 

The original invitation to me to address the Conference suggested 
as a topic 'The Psychology of Mathematics Education'. For two 
main reasons I have chosen to go off at something of a tangent. First, 
Shulman's brilliant paper in the 1970 NSSE 'Yearbook' represents 
so careful and thoughtful an analysis of current Western thinking on 
the psychology of mathematics education that it would be both pre
sumptuous and superfluous for me to attempt to improve on it. 
Secondly, my colleagues and I at Macquarie University in Australia 
have been concerned, over the last five years or so, with some 
problems related to the education of children in developing countries 
and I thought it might be more useful, and interesting, to discuss 
some of our findings with you than to recapitulate what has already 
been so well described by Shulman. 

The central concept in much of our work has been that of 'Educ
ability', operationally defined as 'the probability that children will 
learn what they are supposed to learn' - and with the factors, both 
genetic and environmental, which affect this (Philp, 1967). The initial 
emphasis, although not the only one by any means, has been on 
factors related to cognitive development, essentially because so much 
of the current theory and practice of curriculum development and 
teaching methods is dependent on notions about the nature of 
cognition. The number of occasions on which the name of Piaget is in
voked in other papers in this volume is itself evidence enough of this. 

The great bulk of the research on the development of cognitive 
skills and hence of , the derived theory has been carried out with 
Western children. Similarly most of the curriculum building based 
on the theories of Piaget, Bruner, Gagne, Ausubel and others has 
gone on in Western educational systems. Sometimes such curricula 
have been transferred, almost unaltered, to non-Western societies; 
in other cases, in the current jargon, they 'have been adapted to meet 
local needs'. But very seldom, if ever, has their fundamental psycho-
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logical basis been questioned ... do the theories of cognitive develop~ 
ment on which they rest stand up in non-Western contexts? Do the 
children of New Guinea, for example, develop cognitive concepts in 
the same way as Australian children? If not, what are their modes of 
concept formation and what are the implications for curriculum and 
for teaching? Much of our work has been concerned with questions 
of this kind. 

The main purpose of this paper therefore is not so much to discuss 
the general psychology of mathematics teaching and learning as to 
describe recent data, much of it unpublished, which suggest that there 
may be a need for re-examination of current practices, particularly in 
non-Western societies, and perhaps also of current theories of mathe
matics curricula and methods of teaching in the schools. I hasten to 
add that these new data will need further extension and research, for 
their implications, if verified, are far reaching indeed. My emphasis 
would be that they are more in the nature of' work-in-progress' than 
of definitive findings. 

Before going on to describe them it would seem appropriate to 
make some distinctions and clarify some concepts which are germane 
to the presentation. 

First, there is a real distinction to be made between mathematical 
thinking and mathematical learning. There is no necessary relation
ship, in the shape of a one-to-one correspondence, between the logic 
of mathematics itself and the ways in which children form concepts 
generally. Piaget ( e.g. 1926, 19 57) has demonstrated fairly conclusively 
that children's logic, in the early years at least, is far from being 
hypothetico-deductive in character and the work of a generation of 
anthropologists has amply shown, in Bridgman's words (1958), that 
'It begins to look as though formal logic as we know it, is an attribute 
of the group of Indo-European languages with certain grammatical 
features.' We have been too prone to assume that because the logic 
of mathematics is pretty much the logic of those Indo-European 
languages, it must also be the logic of all languages and all cultures. 
There is a good demonstration of this fallacy in Gay and Cole's 
fascinating book (1967) on mathematical thinking and learning 
among the Kpelle people of Liberia. That is, while there may well be 
a universal logic of mathematics - a subject on which I would not 
feel qualified to judge - there is almost certainly not a universal logic 
of the ways in which children form mathematical or indeed any other 
concepts. Some of the later data bear further on this. 
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Second there is some point in distinguishing between the structure 
of mathematical thinking and learning and the functions or processes 
involved. This is not merely or even the old philosophical distinction 
between structure and function, for it involves a whole set of pro
cedures related to curriculum and to teaching. It is fair to say that 
traditionally in Western education we have accepted, at least until 
fairly recently, 'structural' notions about mathematics learning; we 
have talked about 'mathematical ability' and have accounted for 
learning differences among children in terms of this. And indeed there 
is a good deal of evidence from factor analysis studies that, among 
Western children and students, there are' abilities ' which are related 
to performance in tasks of a mathematical character. Whether these 
'abilities' are genetically determined, in the sense of D. 0. Webb's 
'Intelligence A' or whether they represent ways in which people 
structure their learned world or whether there is a combination of 
both, is still a matter of speculation. The general assumption has 
been that there are basic 'mental structures' and that these have some 
kind of universal character to them. Some of the evidence given 
below suggests however that different cultural groups exhibit different 
structures in the factor analysis sense, when presented with apparently 
identical tasks. For the moment it is sufficient to emphasise that most 
current curricula, particularly at secondary level, assume 'mental 
structures' which are more or less isomorphic with curriculum 
'subjects'. Put another way, we have been concerned with concepts 
and not with how they are formed. 

Alongside this, since Piaget, we have begun to look at the function
ing mind, with how people in general and children in particular, 
go about forming concepts and have begun to frame curricula and 
teaching methods accordingly. In this, as in the theories of structure, 
there has been as a rule the assumption that the processes involved 
are universal: that children, whatever their background, language 
or culture, form concepts in essentially the same way - and hence 
that mathematics can be taught, as far as its logic is concerned, in the 
same way to New Guinea children as to English or Australian boys 
and girls. I would doubt that Piaget himself, despite his insistence on 
' fonctions invariantes' would go as far as to say this, although, as 
Sigel (1969) writes, he has ' been criticised for underplaying the role of 
socialization experience as an influence in cognitive growth'. Many 
educators, including mathematical educators, have assumed uni
versality of concept formation however. Some of the data to be 
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presented below suggest that the assumption is unwarranted and may 
lead to disastrous consequences in learning. 

At this stage two points are stressed: (a) in our present state of 
knowledge about the neurology of the brain, any theories about 
structure are themselves inferences from performance: that is, from 
function - which raises difficult questions about the nature of the 
performance tasks themselves; (b) that even if there are universal 
structures, these result in a very wide variety of performance under 
different cultural conditions, so wide in fact that for practical pur
poses, knowledge of the structures would be largely irrelevant 
without parallel knowledge about the nature and range of the func
tions implicit in these structures. 

That is, we are on sound ground in our attempts to build 
mathematics teaching and learning on the basis of the ways in which 
the child learns to form mathematicai concepts: the logic of child 
development must take precedence over the logic of mathematical 
development, or rather, we must develop mathematics curricula in 
order to take maximum advantage of the ways in which the child 
develops cognitively. The corollary to this is that if cognitive de
velopment and/or cognitive functioning is different in different 
cultural contexts then so must the curricula and probably the methods 
of teaching be different. 

This leads directly to the allied distinction between 'process' and 
'product', a distinction admirably stated by J. S. Bruner (1966, p. 72) 
in his classic little book Towards a Theory of Instruction. 

Finally a theory of instruction seeks to take account of the fact that 
curriculum reflects not only the nature of knowledge itself (the specific 
capabilities) but also the nature of the knower and of the knowledge
getting process. It is the enterprise par excellence where the line between the 
subject matter and the method grows necessarily indistinct. A body of 
knowledge, enshrined in a university faculty and embodied in a series of 
authoritative volumes, is the result of much prior intellectual activity. To 
instruct someone in these disciplines is not a matter of getting him to com
mit results to mind. Rather, it is to teach him to participate in the process 
that makes possible the establishment of knowledge. We teach a subject 
not to produce little living libraries on that subject, but rather to get 
a student to think mathematically for himself, to consider matters as 
a historian does, to take part in the process of knowledge-getting. Knowing 
is a process, not a product. 

Need one say more? 
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A more difficult problem, however, lies in determining the subject 
matter of a curriculum which will attain objectives such as these. 
Shulman, in the penetrating chapter on 'Psychology and Mathe
matics Education' to which I have referred, contrasts the positions 
of Bruner and Robert M. Gagne on the issue ; ' Gagne' he writes 
(p. 55), 'has come out in substantial agreement with Bruner on the 
priority of processes over products as to objectives of instruction. 
His emphasis, however, is not on teaching strategies or heuristics of 
discovery; he is much more concerned with the teaching of the rules 
or intellectual skills that are relevant to particular instructional 
domains.' And he quotes Gagne himself: 

Although no one would disagree with the aims expressed (by Bruner), it is 
exceedingly doubtful that they can be brought about solely by teaching 
students 'strategies' or 'styles' of thinking. Even if these can be taught (and 
it is likely that they can), they do not provide the individual with the basic 
firmament of thought, which is a set of externally-oriented intellectual 
skills. Strategies, after all, are rules which govern the individual's approach 
to listening, reading, storing information, retrieving information, or solving 
problems. If it is a mathematical problem the individual is engaged in 
solving, he may have acquired a strategy of applying relevant subordinate 
rules in a certain order - but he must also have available the mathematical 
rules themselves. If it is a problem in genetic inheritance, he may have 
learned a way of guessing at probabilities before actually working them 
out - but he must also bring to bear the substantive rules pertaining to 
dominant and recessive characteristics. Knowing strategies, then, is not all 
that is required for thinking; it is not even a substantial part of what is 
needed. To be an effective problem-solver, the individual must somehow 
have acquired masses of organized intellectual skills. 

Shulman deduces from this distinction the view that the objectives 
of a curriculum determine the methods of teaching, and that therefore, 
'psychology has been successful in suggesting ways of teaching only 
when objectives have been made operationally clear'. The position 
taken in the present paper is that this does not go far enough, since 
it fails to take into account the facts that (a) some objectives, how
ever clearly stated, are not attainable unless certain pre-requisites 
are met and (b) some methods are inappropriate to the children and 
the teachers however clearly the objectives may be stated in opera
tional terms. That is, while I would agree that objectives often deter
mine methods, I would also argue that objectives have to be 
determined as much by the total learning situation, including the 
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capabilities of the child, as by the demands of the subject matter, 
whether these demands be couched in terms of strategies or in terms 
of knowledge and skills. 

A similar comment applies to the equally important distinction 
between 'guided learning' and 'discovery learning'. This is not 
identical with the process- product argument for, as we have just 
seen, Gagne accepts the objective of ' process ' but argues for 'guided 
learning ' as a more effective methodological strategy for teaching. 
Ausubel, on the other hand, stresses guided learning but dismisses 
more or less out of hand any thought of ' process' directed curricu
lum, maintaining that the primary objective of formal education is 
the transmission of knowledge. Not of course that any of these major 
theorists on the application of the psychology of development to 
education - Bruner, Gagne, Ausubel - would wish to argue a black 
and white case. The question is rather one of emphasis or stress in 
curriculum and methods and stems from an important difference in 
theoretical interest: Bruner is concerned with the whole range of 
issues relating to the cognitive development of children and with the 
implications of his findings for teaching and learning. Gagne, on 
my reading, takes his beginnings from the learning process itself and 
is looking for relationships between this and the content to be learned: 
he is less concerned than Bruner with the learner. Ausubel seems to 
focus on the nature of the content and looks from this to the appro
priate teaching- learning situation for acquisition of this content. 
A gross oversimplification of their respective stances on the issues of 
discovery versus guided learning and product versus process would 
give a paradigm like that below. 

Objectives 

Product 

(Guided learning Ausubel 
Method 

1 Discovery learning ? 

Process 

Gagne 

Bruner 

I have dwelt somewhat overlong on this issue for three reasons: 
first, to emphasise again that objectives to a large extent determine 
approaches; secondly, to suggest that current theories do not take 
into sufficient account the nature of the total learning situation, 
particularly the nature of children's thinking in different cultural 
contexts; and thirdly, to point out that although no major theorist, 
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to my knowledge, is concerned with product as an objective, that is 
with the transmission of knowledge - and at the same time argues 
for the use of 'discovery learning' as a basic method, nevertheless 
this is a far from uncommon strategy among curriculum makers and 
teachers, particularly teachers of mathematics. That is, they have 'got 
the message' about 'discovery learning' but are still reluctant to 
abandon their well-ingrained loyalties to content. 

One further set of ideas relevant to this must be outlined here. 
Bernstein (1971) in a fascinating discussion of curriculum from the 
viewpoint of a sociologist of education, distinguishes between 
'integrated' and 'collection' types of curricula and between 'strong' 
and 'weak' classifications and 'frames' of instruction. A 'collection' 
type of curriculum is described as one in which 'the contents stand 
in a closed relationship to each other; that is . . . are clearly bounded 
and insulated from each other'. Against this he goes on to 'juxtapose 
a curriculum where the various contents do not go their separate 
ways, but where the contents stand in an open relationship to each 
other' (p. 186). This he calls an 'integrated curriculum'. These 
distinctions may pertain within so-called subjects as well as between 
them; Geometry may be taught as distinct from Algebra as it is from 
say, History or Bahasa Indonesia in a collection type of curriculum. 
Clearly there is some relationship between this dichotomy and the 
product-process one just discussed. 

His second distinction, between 'strong' and 'weak' frames is 
somewhat akin to that between 'guided' and 'discovery learning'. 
'Collection' and 'integration' refer to the content of the curriculum, 
but Bernstein is also concerned with relationships between contents. 
He uses the concepts of' classification' and 'frame' for this; meaning 
by classification 'the nature of the differentiation between contents'. 
Classification may be 'strong' or 'weak': 

Where classification is strong, contents are well insulated from each other 
by strong boundaries. Where classification is weak, there is reduced insula
tion between contents, for the boundaries between contents are weak or 
blurred. Classification thus refers to the degree of boundary maintenance 
between contents. Classification focuses our attention upon boundary 
strength as the critical distinguishing feature of the division of labour of 
educational knowledge. It gives us the basic structure of the message 
system, curriculum (p. 187). 

'Frame' refers to the frame of the context in which knowledge is 
transmitted and received, Frame refers to the specific pedagogical 

160 



PROBLEMS OF TEACHING AND LEARNING 

relationship of teacher and taught. In a different jargon, 'frame' 
would appear to be equivalent to the 'total teaching-learning situa
tion' or, in a more restricted sense, to the 'teacher-pupil ' relation
ship. Bernstein argues that frame, like classification, may be 'strong', 
when teachers and pupils have a limited 'range of options available 
... in the control of what is transmitted and received in the context of 
the pedagogical relationship'; or ' weak' when the range of options 
is relatively wide. In this sense ' frame refers to the degree of control 
teachers and pupils possess over the selection, organisation and 
pacing of the knowledge transmitted and received in the pedagogical 
relationship' (p. 187). 

The importance of these distinctions from the viewpoint of the 
present paper, is in his argument that integrated curriculum codes 
are more likely to be accompanied by weak classification and weak 
frames and that this combination, to revert to the earlier language, is 
more likely to go along with process type objectives and with dis
covery learning. 

The pedagogy of integrated codes is likely to emphasise various ways of 
knowing in the pedagogical relationships. With the collection code, the 
pedagogy tends to proceed from the surface structure of the knowledge to 
the deep structure; . . . , only the elite have access to the deep structure 
and therefore access to the realising of new realities or access to the experi
ential knowledge that new realities are possible. With integrated codes, 
the pedagogy is likely to proceed from the deep structure to the surface 
structure. We can see this already at work in the new primary school 
mathematics. Thus, I suggest that integrated codes will make available 
from the beginning of the pupil's educational career, clearly in a way 
appropriate to a given age level, the deep structure of the knowledge, i.e., 
the principles for the generating of new knowledge (p. 200). 

And he goes on in words which Bruner might have written 

Such emphasis upon various ways of knowing, rather than upon the 
attaining of states of knowledge, is likely to affect, not only the emphasis 
of the pedagogy, but the underlying theory of learning. The underlying 
theory of learning of collection is likely to be didactic whilst the underlying 
theory of learning of integrated codes may well be more group- or self
regulated (p. 209). 

That is, Bernstein, from an entirely different frame of reference, 
appears to me to finish in the Bruner box of my little paradigm. His 
distinctions, however, suggest an additional important considera-
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tion. In most developing countries - and in not a few developed ones 
also - curriculum tends to be of the collection type and to be accom
panied by strong classification and strong frames: it tends to be 
subject centred, with few methodological options available to teachers 
and still fewer to children. This is in marked contrast to the informal 
out-of-school learning-teaching situation in most developing 
countries, where socialisation tends to have an integrated curriculum 
- even though this is seldom explicit; teaching-learning situations 
may be strongly framed (as in, say, initiation ceremonies) or, more 
frequently, weakly framed (as in the acquisition of the mother
tongue, including of course, the vernacular number system and its 
applications). The implication, as Margaret Mead (1943) argued in 
her remarkable discussion of the difference between 'teaching' and 
'learning' societies, is that there may be conflict of learning modes 
between 'home' in the broad sense, and the formal school system, 
especially when this is an externally imposed system which has not 
evolved within the society. 

To illustrate most of what has gone before it is proposed now to 
discuss some data, challenging data, most of it drawn from recent 
work in the Territory of Papua and New Guinea. The peoples of 
this Territory, many of whom, until quite recently, have had no 
contact with any groups other than their most immediate tribal 
neighbours, live for the most part in remote, isolated villages. Some
thing like 700 different languages have been identified, about 200 of 
these being Austronesian and 500 or so non-Austronesian, or Papuan 
(Ward and Lea, 1970) and there is a fairly diverse group of socio
cultural living patterns. Since the war a Government education system 
has been established alongside a somewhat older mission-based 
pattern. In the early years and still largely persisting, the curriculum 
and teaching methods were based on those of New South Wales, 
in Australia. These may fairly be described in Bernstein's terms, as 
characterised by strong collection, strong classification and strong 
frames; or, in terms of the paradigm, as being in the Ausubel-type
cell with the curriculum product oriented and the methods based on 
guided learning. No comment is offered on the appropriateness of 
the content. In the last ten years or so, however, under the influence 
of a new Director, L. W. Johnston, and his successor K. S. McKinnon, 
there have been major efforts, particularly at primary level, to intro
duce new, process-based curricula and to train teachers in the use of 
discovery learning. As part of these reforms the staff of the Depart-
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ment of Education, working with groups of teachers, have developed 
a mathematics curriculum which makes intensive use of attribute 
blocks and other materials derived from the work of Zeldon Dienes 
in Britain, the US, South Australia and the Territory itself. The 
system, marketed as TEMLAB, has been introduced into many 
Territory schools, accompanied by a programme of teacher re
education. The fundamental theory of the system has been described 
in a number of publications, perhaps most clearly in the well-known 
compilation prepared by Dienes for ISGML and published in 1966 
by the Unesco Institute for Education in Hamburg (Dienes, 1966). 

There is little need here to give the details of the programme which 
is an imaginative and consistent development from the theory, but 
the theoretical principles should be outlined since some of the research 
to be described has called into question not so much the principles 
themselves, but some of the assumptions which underlie their appli
cation. Dienes appears to accept, with minor reservations of a techni
cal nature, both Piaget's basic ideas about the staged development 
of concept formation and Bruner's position on the use of strategies. 
In addition he quotes with approval Bartlett's work on the develop
ment of open systems in thinking through some kind of dialectic. 
Skemp's distinctions between' rote learning' and' schematic learning' 
(which has some affinity to Ausubel's view about learning) and 
between 'sensory-motor' and 'reflective' intelligence are also seen by 
Dienes as important in the development of curriculum and methods 
of teaching-learning in mathematics. He quotes Skemp (1960) as 
claiming that 

mathematics is essentially a structure of subordinate and superordinate 
concepts and, therefore, in order to achieve a schema which involves 
a superordinate, all the subordinates must already have been constructed. 
So no new schema can be evolved until other schemata which form part 
of the new schema have also been evolved. 

Dienes' own notion of abstraction is related to this: 

it is a process of class formation. Abstract ideas are formed by classifying 
objects into classes through some common property which, it is discovered, 
is possessed by these objects. Generalization is regarded as the extension 
of an already formed class and, therefore, it is more of a logical operation 
whereas abstraction is regarded as a constructive operation. Abstraction, 
therefore, is likely to take place as a result of abstracting information from 
rather a lot of different situations in which one particular aspect, namely 
the structure to be learnt, is held constant. This gives rise to the principle 
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of multiple embodiment. On the other hand the need for generality in 
mathematics gives rise to the principle of varying all the mathematical 
variables possible. The constructivity principle in its more sophisticated 
form is the theory of how constructions, abstractions, generalizations and 
play stand in relation to one another, as regards the process of learning. 
Another important principle is the principle of contrast. In order to learn 
something about a relationship, this relationship must be seen not to be 
necessarily valid in certain other cases (Dienes, 1966, p. 21). 

Dienes' ideas about play are also highly relevant to the teaching
learning process and TEMLAB makes considerable use of them. 

The central idea of the curriculum method, apart from its concen
tration on' process' and on ' discovery learning' is that of abstraction. 
In 1966 Dienes contended that' From results up to date, there is no 
evidence to suggest that native children are in any sense less 
capable of learning mathematics than any other children' (p. 113). 
Later statements, principally by the teachers and members of the 
Department, have been less optimistic and there is some evidence 
that, although Territory of Papua and New Guinea children are able 
to manipulate attribute blocks and other structured materials with 
quite astonishing skill and to convert this performance into paper 
and pencil situations, many of them are not displaying the apprecia
tion and application of mathematical concepts which might have 
been expected to follow - and which had followed with Western 
children. A possible explanation for this derives from the research 
work of some members of the staff of the School of Education at 
Macquarie University. 

Our interest, which was generously supported by Territory of 
Papua and New Guinea Department of Education, was as I have 
said in general problems of cognitive development in the children of 
the Territory of Papua and New Guinea. For a variety of reasons, 
some of these related to the TEMLAB project, our theoretical 
orientation stemmed from Bruner, although a number of studies 
based on Piaget's work have also been conducted. 

Bruner contends that there are three basic strategies for attacking 
problems - including mathematical problems: indeed much of his 
earlier work and many of his experimental examples concerned 
mathematics. These strategies he terms 'enactive ', 'ikonic' and 
'symbolic'. To quote Dienes (1966, p. 19): 

Bruner believes that the child in the beginning thinks in terms of action. 
His methods of solving a problem are, therefore, severely limited because 
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if he cannot act out the solution, he cannot solve the problem. The next 
stage is the manipulation of images. This is what he calls the iconic stage. 
Images are very much more easily manipulable than actions, but never
theless they tend to have a kind of permanence which makes them not 
very adapted to transformations. Mathematical thinking in particular 
abounds in transformations and, therefore, Bruner believes that fairly 
sophisticated mathematical thinking cannot take place until a child learns 
to think in terms of symbols and this is the third and last stage of the 
development of mathematical thinking. 

This framework has major affinities with Piaget's notions about 
developmental stages, but is not identical. An important idea for 
Bruner is that anyone - adult as well as child - can and does ' operate' 
in any one of these strategic modes, depending partly on the specific 
demands of the problem and partly on individual 'preference'. That 
is, some people who are perfectly competent in the use of symbolic 
strategies for solving problems 'prefer' to use the ikonic mode - as 
Bruner writes, they are more 'comfortable' with it, just as some 
mathematicians are more 'comfortable' with, or 'prefer', to seek 
geometric solutions to problems they are quite capable of attacking 
algebraically. There are problems, however, which cannot be solved 
efficiently or even at all using ikonic strategies and many others in 
which the symbolic mode is by far the most effective or efficient - in 
the sense of being more economic of time and resources. Obviously 
enough, the TPNG mathematics curriculum, as described by Dienes, 
attempts to capitalise on the Bruner strategies and has as one of its 
objectives, the development of the use of the symbolic mode. It 
therefore became of some interest to examine the use of the basic 
strategies by TPNG children. 

Ideas about classification and abstraction are fundamental to the 
theoretical positions of both Piaget and Bruner ; a great deal of their 
experimental work has centred round the ways in which children 
classify their world and account for these classifications. The long 
statement from Dienes which has just been quoted emphasises the 
importance which was placed on abstraction and classification in the 
development of the TPNG mathematics curriculum and of course 
similar ideas underlie most of the curricula in the 'new mathematics'. 
It was therefore another matter of importance for us to explore the 
kinds of classification used by TPNG children and to examine, in 
particular, whether this performance was like those described by 
the Geneva group and/or the Harvard group. We were also interested 
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in attempting to determine whether experience of school made any 
difference, either to the use of strategies of problem-solving or to 
levels of sophistication of classification. 

The education system of TPNG provided an almost ideal situation 
for such a study. Apart from the remoteness of many villages, which 
meant a minimum of 'cultural contamination' in a high proportion 
of them, only about half the children in any one village attend 
school. Moreover, on such evidence as is available, attendance or 
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non-attendance is determined partly by chance, partly by physical 
location of the school and only to a minor degree by the social factors 
which largely determine such things in developed countries. It was 
possible, accordingly, to obtain groups of attenders and non
attenders reasonably well matched in terms of age and language 
spoken. We had four such groups from different areas of TPNG, 
ranging from the remote headwaters of the Sepik River to the moun
tain valleys of the Western Highlands, as shown on the map. 

The final sample is shown in table 1. It will be noted that it is not 
an ideal matched sample: this was essentially because it was difficult 
to persuade parents to allow their children to walk for two or three 
days through rough mountain jungle to play games with mad white 
men. One important characteristic of the sample, although to be 
honest, not one for which we planned, is that the four village groups 
use different number systems; in the sense of different bases. None 
of them is quite as exotic as those of, say, the Chimbu who use a base 
of thirty-one, or the Eastern and Western Kewa, whose body
counting system has a base of forty-seven (Wolfers, 1971) but they 
are sufficiently different from the European system and from each 
other to merit brief description. 

The Sepik people in A vatip use a language which, according to 
Kelly (1972, p. 113) 'has a quite advanced counting system, ... words 
from one to a thousand were recorded. When counting goods they 
use a kind of continuous adding process which effects multiplica
tion ... They do not rely on one-to-one correspondence.' The 
Melpa speaking people of the Western Highlands have 'counting 
words to ten. Larger numbers appear to be counted in base eight, 
using the fingers of the clenched fist to mark the eights (ibid. p. 118). 
A similar system is used by the Kunimaipa villagers of the Goilala
Tapini area, but their neighbours, the Tawaudi 'appear to (have) only 
(words for) one, one plus and many ... certainly the Tawaudi trade 
and sell garden produce by a literal one-to-one correspondence of 
object to object' (ibid. p. 124). 

For testing the choice,of strategies we used an instrument developed 
by M. R. Kelly from an earlier model devised by Olson and described 
by him in Bruner, Olver and Greenfield's Studies in Cognitive Growth 
(Bruner et al., 1966). A series of problems was presented to each child 
on this machine, which demanded a minimum use of language; 
responses could be classified with considerable reliability into 'en
active ', 'ikonic ' or 'symbolic' categories of strategy. It is important 
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TABLE 1. Age, district, school years and sex distributions of 
final sample as drawn 

Ages 

District 7 8 9 10 11 12 13 14 15+ Total 

1. Avatip 
School years Male 4 6 1 1 12 

Female 5 5 1 1 12 
Male 2 1 3 3 2 1 12 
Female 1 1 3 7 - 12 
Male 2 1 3 6 12 
Female 1 1 6 1 3 12 
Male 1 1 2 
Female 1 1 2 2 1 1 8 

2. Muglum 
School years Male 10 1 1 12 

Female 11 1 12 
Male 1 1 7 1 2 12 
Female 8 1 1 1 1 12 
Male 2 6 3 1 12 
Female 1 2 1 2 2 4 12 
Male 1 4 3 6 4 8 6 4 8 44 
Female 2 5 6 2 1 2 5 3 2 28 

3. Keltiga 
School years Male 3 2 10 8 3 6 3 3 1 39 

Female 1 2 6 1 2 5 4 2 23 

4. Goilala/Tawaudi 
School years Male 2 2 1 1 6 

Female 1 1 2 
Male 2 2 1 4 9 
Female 1 1 
Male 2 1 4 7 
Female 1 4 5 
Male 3 1 7 7 2 3 3 2 28 
Female 2 3 4 5 3 4 4 4 9 38 

5. Goilala/Kunimaipa 
School years Male 3 3 6 

Female 2 2 1 2 3 10 
Male 1 2 3 
Female 2 3 3 2 1 11 
Male 1 4 5 
Female 7 7 
Male 1 3 1 1 6 
Female 0 

Avatip O School Years (village)+ Keltiga O School Years = 72 
Goilala Tawaudi + Goilala Kunimaipa (school) = 72 

(village) = 72 
Thus three 'districts' provide 72 school and 72 village each 

school= 216 village = 216 
168 
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Fig. 1. Trends in use of strategies: summed problems, Series A. 
All groups: N = 1668 problem solutions. After Kelly (1972). 

to note that Kelly was not concerned with correctness of solution -
most children 'solved' all the problems - but with the strategy they 
employed. Pilot studies showed that many children used a mixed 
strategy- 'ikonic---symbolic' - and this was introduced as a scoring 
category in the main study. I should say at once that we found 
no use at all of the enactive mode in this sample, although with 
younger children it appeared about as frequently as with NSW 
children of similar ages. It seems that, as with Western children, the 
enactive mode is not relevant to our simple problem situation. More 
surprisingly, none of the children in our sample used the symbolic 
mode consistently; a very few did solve one or two easier problems 
using symbolic strategies, but as the tasks became more difficult even 
these few used mixed or ikonic strategies. The data to be presented, 
therefore, show proportions of responses categorised as belonging to 
the ikonic or mixed ikonic-symbolic modes. 

In accordance with developmental theory, we predicted an increase 
in the use of the mixed strategy with age and a reciprocal decrease in 
the use of the ikonic. Figure 1 summarises the results over all children. 
We were wrong- and the differences between the curves are highly 
significant at all ages from nine onwards. There is a slight tendency -
which fits a parabola - for the use of the mixed mode to be beginning 
to increase again about 12-13 years. Now let us break these curves 
down according to sex and according to attendance or non-attendance 
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Fig. 2. (a) Ikonic mode: trends in use by males and females, in school and 
village groups. (b) Mixed mode: trends in use by males and females, in 
school and village groups. After Kelly (1972). 

at school. Here we predicted no sex differences, and greater use of 
the mixed mode by school attenders than by non-attenders ( called 
'school' and 'village' children on the diagram). Figure 2 gives the 
results: obviously the bottom graph is a mirror of the top. Clearly 
enough, girls in general use the mixed mode more often than boys 
but this is much more pronounced in the 'village' group than in the 
'school' group. Overall, there is a significant difference between the 
school group and the village group in favour of the village children 
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in use of the mixed mode, but this is confounded by both sex and age 
effects. It is worth looking at males and females separately: the village 
girls, although there is a slight but significant decline with age, make 
uniformly more use of the more efficient mixed mode than the school 
girls. The gap increases with age. The male picture is different: the 
school group, like the girls, slowly falls with age - the difference 
between the male/female curves is not significant at any point 
except 8. The village boys, however, decline rapidly in use of the 
mixed mode until about 10-11-12, when they begin to use it more 
frequently. Nor are these results an accident of sampling, for they 
appeared in all four of the groups studied. The theoretical analysis 
of some of these findings is not the concern of the present paper -
fascinating though they are. Here I am interested in pointing out 
that, contrary to expectation, among TPNG children there is ap
parently a decrease with age rather than an increase in the level of 
efficiency, in terms of strategies, with which problems are solved. 
Further, exposure to school makes little difference; such differences 
as do exist operate in favour of the village children. The same appara
tus and problems have been used with NSW children, both native 
born and non-English speaking migrants, and Kelly has shown that 
the results are in the expected direction; that is, there is an increase 
with age in the use of the mixed and symbolic modes. 

It is pertinent in the light of these data, to question the use of 
a curriculum heavily dependent on the development of symbolic 
type strategies. 

Furthermore, when we used Piaget-type situations similar results 
emerged. For example, no child in this sample (TPNG) could solve 
a standard formal operations problem using local materials. 

We may now look at some data on classification. For this, with the 
same sample as before, two sets of tasks were developed from the earlier 
work of Bruner and his group. The first set of materials was a square 
matrix of nine blocks which can be ordered according to two criteria 
of classification, length and area of cross section. This has obvious 
relationship to the attribute blocks of TEMLAB. The second set of 
materials consisted of separate sets of objects, drawings of these 
objects, photographs of them, and sets of words in the vernacular 
languages. The original objects, which were either full size or scale 
models, were all of local origin and were familiar to the children - we 
tested for this by asking each child to identify each object. He was 
then asked to group them 'in any way' and then for the reasons for 
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his grouping. In accordance with the procedure reported in Bruner 
et al. (1966), the responses were then scored according to 'structure', 
that is the level of inclusiveness of the grouping, and 'base', the 
attribute of classification, whatever the level of structure. Identical 
procedures were used for the objects, pictures and photographs, but, 
because the 'village' children were illiterate, 'words' were read to 
them and to the school group by vernacular speakers. In passing, it 
should be noted that, after pilot testing, most tests were administered 
by vernacular speakers - often children themselves. 

What did we find? First, as we would hope, as well as expect, on 
the block matrix the school groups, both male and female, had 
a 'higher' level of performance at each age level than the village 
groups. The differences were less, however, for tasks which required 
application of classification, for example, reversal of the matrix, 
than for those in which straightforward classification was required. 

The other classification data, where children had to choose 
categories, sort materials into them and then account for their 
classification, gave a less clear picture. There were some differences 
in the level of structure of objects, pictures and photographs and these 
differences were in favour of the school as against the village groups. 
Similar results appeared when the nature of the attributes was ex
amined: the school group made more, though limited, use of nominal, 
that is 'abstract', classification principles, while the village children 
almost exclusively used 'functional egocentric' criteria. When it came 
to classification of 'words', however, there were no significant 
differences between the village group and the school group in terms 
of the nature of the 'attribute' of classification. The indication is 
strong that TPNG children, at least in the areas in which we worked, 
prefer to use images - to employ 'ikonic strategies' rather than 
symbols when faced with cognitive problems to solve. 

Before going on to discuss possible explanations and implications 
for curriculum and teaching, particularly in mathematics, it is worth 
looking at performance on all these tasks in terms of comparisons 
among the four village groups. It will be recalled that the A vatip 
people of the Sepik, the people in the Mount Hagen area and the 
Kunimaipa from Tapini use somewhat more sophisticated number 
systems than the Tawaudi, whose system is an extremely limited one. 
On all the tasks described, the Tawaudi children performed at a 
'lower' level than the children from any of the other three areas -
village and school children alike. The Melpa-speaking children of 
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the Mount Hagen area tended to use more high level 'structures' 
than any of the other groups and the 'base' or criteria of classification 
was much more frequently on the 'nominal' (abstract) level. This 
raises some questions of considerable theoretical and practical 
interest. A possible explanation and a suggestion for curriculum is 
contained in an extension of a hypothesis advanced by Kuhlman (1960) 
who writes 'Either the habit of using imagery is suppressed or it is 
retained during language acquisition and is adapted to the requirements 
of complex problem solving' (italics mine) (quoted by Bruner et al., 
1966). What I would add is that the very language structure of some 
cultures may be conducive to the retention and adaptation of the use 
of imagery (that is the ikonic or mixed modes) 'to the requirements of 
complex problem solving'. Western curricula assume the increasing 
use of the symbolic mode and of' nominal' methods of classification 
with the associated superordinate structure. They have usually been 
'taken over' or 'adapted' for non-Western groups without any 
attempt to examine the validity of the assumption. 

Considerations of this kind led us to look for further data. An 
obvious starting point was in the nature of the language systems. 
I do not want to get involved here in a discussion of Whorf's hypo
thesis that the structure of the language determines the kinds of 
classifications available to children and hence to a large extent the 
nature of the concepts they form, but data recently gathered by 
Kelly, and as yet unpublished, is very much in support of it. Working 
with New Guinea anthropologists, he charted the Melpa linguistic 
dimensions and I quote from a personal communication: 

They do not form hierarchies of classification. Their world is a series of 
intersecting sets. They can perform well on tasks designed from their own 
system, better than the Australian children at Hagen A school.1 You can 
get them to assimilate our objects (for example wooden attribute blocks) 
to their schema, but can't get them to assimilate their objects to our 
schema [for example, class inclusion with 'kim' (leaf vegetable) and 'oka' 
(kau kau) which are both 'rung' (food)]. The lack of ability to handle 
hierarchies goes through to high school kids and teachers' college students. 
When you explore English concepts in the vernacular you find that they 
have been busily distorting them into the vernacular equivalent for years. 
For example, 'weapon' which is 'me! el ba ng me! kum panda', things 
designed specifically for killing man or animal (i.e. bows and arrows and 
spears). A stone cannot be a weapon, even when used to bash in someone's 

1 A Highlands school with the standard Australian (N.S.W.) curriculum. 
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head. (It is the most common instrument of murder used in Hagen.) 
A stone is a stone is a stone. 

From data of this kind it may be argued that the level and nature of 
the classification of any given set of material will depend, to some 
extent at least, on the language of classification. Kelly set out to test 
this hypothesis in an ingenious experiment. The results are not yet 
fully analysed, but they seem to me of such interest that I propose to 
describe them briefly. They were obtained from the Melpa children 
of whom I have just spoken. Three samples were selected, each of 
sixty-seven children: 

A. a 'school' group: tested in English; 
B. a 'school' group, matched in pairs with A on age, sex and 

school performance: tested in Mel pa; 
C. a 'village' group, matched with the A and B modules on age and 

sex: tested in Melpa. 
Each group was presented with two sets of classification tasks: 

(a) attribute blocks, with colour, shape, size and thickness as 
attributes; 

(b) leaves from local plants, with colour, size, use (e.g. as food, for 
construction, for decoration) and method of cultivation as attributes. 
Instructions were given, as appropriate to each group, in English or 
Melpa in the expectation (or hope, rather) that the instruction would 
produce a 'mental set' for working in the corresponding language. 
Responses were scored behaviourally as well as verbally, that is, in 
terms of what the children did physically with the materials as well 
as in terms of their descriptions of the classifications. In addition to 
the original classification instructions, the children were 'pushed' to 
attempt more inclusive hierarchies. The results - and I emphasise 
that this analysis of the behavioural responses is both incomplete and 
tentative - show: 

(a) The level of classification (in the sense earlier discussed) was 
higher, for both sets of materials, for the group tested in English 
than for either of the other groups. School group B, however, was 
'superior' to the village group, that is, in terms of level of classifica
tion. Thus A > B > C for both sets of materials. 

(b) For both groups A and B the level of classification of the 
'Western' materials- the attribute blocks -was much higher than 
the level of classification of local materials. The difference was far 
greater for the group tested in English than for the group tested 
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in their native language. No differences appeared in the village 
group. 

( c) When 'pushed' to use a more inclusive category of classifica
tion, children in all three groups were able to make some shifts, 
although the amounts were quite small. The group tested in English 
was again superior to either of the others, while the Melpa-tested 
school group exceeded the village group in the mean number of 
shifts made, that is, A > B > C in mean number of shifts on both 
types of material. 

(d) No significant differences were found between types of material 
in terms of the ability to use higher orders of classification. 

These data, if confirmed by other studies at present under way in 
New Guinea and elsewhere, support the earlier findings that it is as 
if the accessibility of inclusive words in a language in some way 
affects and restricts the inclusiveness of the classifications which the 
child is able to make. 

And this is to be expected in societies in which classification is 
built into the language as it is in a number of the TPNG languages 
as well as in some Asian tongues like Thai. An object is classified 
according to its linguistic 'classifier' and not according to 'natural' 
or 'logical' categories, on Western criteria of logic. It is made to fit, 
as Kelly says, into the child's schema. This would parallel such 
studies as those of Gay and Cole (1967) with the Kpelle and Green
field's (1966) with the Wolof children of Senegal. It would seem clear 
that findings of this kind raise real problems for curriculum con
struction and teaching methods in non-Western societies. 

This is not to say that the fundamental theory behind TEMLAB 
and other modern mathematics curricula is incorrect and that we 
should revert to collection type curricula, with strong classification 
and strong frames or, in other language, to product or subject 
centred curricula, supported by strictly guided learning. On the 
contrary, the data seem to me to argue for even greater emphasis on 
process and on discovery methods, but with curriculum context care
fully designed to take into account the processes the child has already 
learned to use and which are 'preferred' in his society. Where he has 
to learn 'new' processes in order to cope effectively with the curricu
lum, then ample scope has to be given for this. For example, it would 
appear from what has just been said, that a great deal of specific 
material will have to be built into the TPNG curriculum, presumably, 
but not exclusively, through primary school mathematics, on the 
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formation of hierarchies. We cannot assume that, as Dienes wrote in 
1966, 'Abstraction is likely to take place as a result of abstracting 
information from rather a lot of different situations in which one 
particular aspect, namely the structure to be learned is held constant.' 
In many languages and cultures the principle of 'multiple embodiment' 
is not generic. It is, granted, essential for most Western thinking, 
particularly in mathematics and science : if curricula and methods 
which will help non-Western children to form and use Western-type 
concepts are desired then we must help children to learn not only 
the concepts but the ways of thinking which lead to these concepts. (In
cidentally I understand that Professor Dienes and Dr Kelly have been 
asked to advise on ways of redesigning TEMLAB to include games 
which will encourage the development of ideas about hierarchies.) 

The other evidence I wish briefly to discuss refers to the 'structure' 
of mathematical thinking, in the factor analysis sense. There is little 
point in getting involved here in a heredity-environment contro
versy. My main purpose is to present some data which appear to 
support the thesis I have been so far arguing, that cultural factors, 
particularly language, influence not only what is learned, but how it 
is learned, and how it is applied. That is, even on the same tests of 
performance we should expect a different pattern to emerge in 
different cultures. This is a somewhat different emphasis from that 
of Guilford (1971) in his monumental study The Nature of Human 
Intelligence as derived from the results of factor analysis. Discussing 
some cross cultural work he writes, somewhat curiously: 'There are 
not many cultural differences in factor structure where all groups are 
tested in the same language ' (italics mine) ' and such differences as 
occur can be accounted for in terms of cultural variables' (p. 40). 
That is, Guilford seems to be dismissing, to some extent at least 
Piaget's view, which I share, that ' les ~tructures (sont) variables, les 
fonctions (sont) invariantes' (Piaget, 1968, p. 11). Apart from almost 
inaccessible Japanese data, there have been all too few studies of 
'factor structure' in non-Western societies. Guilford cites Vanden
burg (1959) on Chinese students studying in the US and Guthrie 
(1963) on Tagalog speaking students in the Philippines Normal 
College. One may add Dunlap (1931) in Hawaii, Biesheuvel (1949) 
in South Africa, Scott (1950) among the Sudanese and Jahoda (1956) 
in West Africa as evidence that the picture is not quite as clear as 
Guilford suggests: what may well be really important are those 
'cultural variables', which Guilford dismisses. 
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Early in 1972 Miss Elizabeth Southwell1 conducted a factor 
analysis based study in TPNG. Since it was concerned quite specifi• 
cally with mathematics her results are of some relevance. She 
administered a battery of thirteen tests; six of them were specifically 
of a mathematical character, four others have shown significant 
leadings on 'number type' factors in Western studies, two were verbal 
and the thirteenth tested 'general information'. There were four 
sample groups: European teachers working in TPNG; indigenous 
teachers; indigenous students in training to become teachers and 
New Guinea children of high school age. The factor patterns were 
quite different: that for the European teachers was fairly easy to 
describe in terms of the familiar Thurstone-Guilford type factors. 
The indigenous teachers, who had less formal education than any of 
the other groups, produced a verbal factor, distinct from the Thur• 
stone type V of the Europeans, which ran through almost all the tests, 
including those which used no apparent language. A second factor 
was concerned with the spatial relationships, but was much more 
general - that is, it entered into more tests - than the S factor for the 
Europeans and a third, which had something to do with number did 
not appear at all in the European group. Analysis of the performance 
of the teacher-trainees and the children produced patterns somewhat 
like those of the indigenous teachers, but less generalised. 

More interesting was a second factor analysis, again on all four 
samples but this time using the sixty items of her test of' mathematics 
understanding'. Difficulty structure, confounded by differential read
ing speeds, may well have accounted for some of the patterns in the 
first study, but in this test there were few significant differences in 
item difficulty with the mathematics understanding test, and light is 
shed on this by the analysis. 

For present purposes it is proposed to discuss the differences 
between the European teachers and the indigenous teachers. In both 
groups there were four or at best five factors which made 'psycho
logical sense' and among them accounted for about 50 % of the 
variance. Most clear among the indigenous teachers was a general 
verbal factor - although, it is stressed, this was a mathematical test -
which took up almost 25 % of the total variance. This factor did not 
1 Miss Southwell has just successfully presented this material for a Ph.D. at the 

University of London. My interpretation of her data, which she generously 
loaned to me, may not accord with hers. In any event I have not presented it in 
full since clearly it would be unfair to do so until she has herself published. 
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appear at all in the European teacher pattern. In the European 
pattern was clearly to be identified a factor which looked very much 
like Coombs' (1941) and my own (1951) 'A' factor, which enters into 
most mathematical type problems but is distinct from the purely 
numerical factor N identified in many studies. This factor did not 
appear in the indigenous group. What is of some interest is that items 
involving sets, whether in the form of braces or Venn diagrams, had 
significant loadings ( > 0.30) on the A factor in the European group, 
but on the verbal factor and also on a spatial factor for the indigenous 
group. The spatial factor also appeared for the Europeans but Venn 
diagrams had low loadings on it. This would seem to lend support to 
Kelly's findings about the preferred use of the mixed-ikonic-symbolic 
mode by indigenous groups in TPNG. Items which were apparently 
solved by symbolic means by the European teachers were solved, 
equally well in terms of correct answers, by use of images or a mixture 
of images and symbols by the indigenes. Similarly the different factor 
pattern on the items involving sets would seem to imply that different 
criteria of classification were being used, lending support to the lan
guage data discussed above. 

What does all this imply? Let me say again that the data are not 
conclusive. We are still very much in the early stages of our investiga
tions and many questions remain. One intriguing one, which we 
hope to look at next year, is the effect of different indigenous number 
systems on school performance. This is part of a much greater attack 
on the total effect of language: for this we will need the help of 
anthropologists, psycho-socio linguists and mathematicians interested 
in education, for it seems important to continue in this general curricu
lum area. 

However, I think that there is already enough evidence to suggest 
that, at least in non-Western societies and particularly in pre-literate 
areas: 

(a) curriculum should be process oriented and methods should be 
heavily discovery learning based, 

(b) curriculum should be integrated, in Bernstein's sense with weak 
classification and weak frames, 

( c) the learning processes and preferred strategies of each particular 
culture group should be carefully investigated and the curriculum 
built and teaching-learning methods devised in order to take account 
of them, 

(d) the linguistic structure of the mother tongue should be 
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analysed to determine the classificatory system: this too should be 
carefully considered when constructing a curriculum, particularly in 
mathematics. 

It is perhaps appropriate to end by quoting the familiar 64th Query 
of Bishop Berkeley: 'Whether mathematics ... have not their mys
teries, and what is more, their repugnances and contradictions?' 
and to ask whether this should not also apply to mathematics 
teaching and learning? 
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Some questions of mathematical 
education in the USSR 

S. L. Sobolev 

At this time of unusually rapid change in the mode of life of all 
mankind, a time when science is being applied with increasing 
intensity to technology, the demand for scientific personnel -
researchers and practical workers - has grown enormously. Jn par
ticular, the demand for mathematicians has been especially great 
in recent years. Inevitably, the teaching of the basic sciences has 
lagged behind in all countries. Of the whole body of mathematical 
knowledge which I, and those who were students with me at Leningrad 
University, now require, very little was acquired whilst we were at 
university. University gave us the basis for something that it is 
difficult to express in words. Perhaps it taught us to think. 

In the same way, what we are teaching young people now, in 
particular the mathematics we are giving them, will probably no 
longer meet the demands made on them in fifteen to twenty years 
time. And it is precisely fifteen to twenty years hence that their time 
will come. They will create the science and technology of the future. 

On the other hand, in every country, and all the time, problems 
arise which will only be solved, either today or tomorrow, by 
specialists. These problems change very rapidly, before one's very eyes. 

In recent years much has already been said about the necessity of 
conducting mathematical education from the very beginning on the 
most abstract level possible, concentrating attention on general 
mathematical ideas. In a number of countries attempts have been 
made to introduce children from an early age to set-theoretic termino
logy and the basic concepts connected with this. The merits and 
demerits of such early abstraction are now more or less clear. For, 
although it has been made possible for them to penetrate more easily 
into some fundamental regions of mathematical science, young people 
educated in this way sometimes lack the ability to grasp practical 
mathematical situations, because of their weak knowledge of concrete 
mathematical material. 
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The other extreme - teaching principally by the method of solving 
varied concrete problems - also has its merits and demerits. As a 
result of such unbalanced education, we often get scientific workers 
who lack perspective and are unable to be creative when the occasion 
arises. 

All this has been discussed many times in recent years, and one 
can only argue about the respective weightings we must give to 
concrete knowledge and general theory in the training of future 
mathematicians. 

I shall not, therefore, talk of these questions, but will attempt 
instead to talk in concrete terms about the experience of teaching 
mathematics in the Soviet Union and about those tendencies and 
opinions which are to be found in our country, 

Mathematics is taught in the USSR at two levels of education: in 
the secondary school and in the higher school. 

The secondary school is intended for the education of children from 
the age of 7 or 8 to 17 or 18 years. This school is a ten-year school in 
the Russian Federation, and an eleven-year school in some republics 
of the Union where the Russian language is taught separately but 
where basic education takes place in the language of that republic. 

The final section of the ten-year general-educational school can 
be replaced by the completion of the eight-year, so-called incomplete 
secondary school, followed by study in special professional, technical 
schools, medical schools etc., and also in the evening schools. The 
curriculum of these schools includes general educational subjects 
to the same extent as in the ten-year school. 

The higher schools are: universities (about fifty in the country), 
pedagogical institutes, higher technical educational institutions, insti
tutes of medicine and law, musical academies etc. designated for 
higher professional education. 

Students can enter the institutions of higher education from the 
age of seventeen onwards. The period of study in the higher schools is 
about five years. 

For professional purposes, mathematics is taught in the higher 
schools in the physics-mathematics, the mechanics-mathematics and 
the mathematical faculties of universities and pedagogical institutes. 
Mathematics is also one of the fundamental disciplines in the curricula 
of other university faculties and higher technical educational 
institutions. 

Until the last two decades the content of mathematical education 
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in the secondary school was very stable. By long tradition, in the 
classes up to the age of twelve there was a very long and detailed 
study of arithmetic including the 'arithmetical' solution of rather 
complicated verbal problems which really required algebraic methods. 
Then there followed two parallel courses: algebra and· geometry. The 
algebra course was traditional, containing a study of the identical 
transformations of literal expressions, the theory of algebraic equa
tions and systems, with the application of algebraic techniques to the 
solution of verbal problems. The course also included the elements 
of combinatorics and an initial acquaintance with the logarithmic 
function, including the use of tables. Geometry was based on visual 
presentations and an axiomatic approach close to that of Euclid. 

Only in the last ten to fifteen years has the study of trigonometrical 
functions and the solution of triangles been distributed between the 
algebra and geometry courses. 

The acceleration of technical progress and the growth of the role of 
science has necessitated a revision of the content and style of mathe
matical ( and not only mathematical) education in the secondary school. 

The basic ideas and concepts of traditional 'higher mathematics' : 
the derivative, the integral, and easy differential equations as a means 
of describing physical phenomena were needed by almost everybody, 
whatever his kind of work. It has also become no less important to 
teach young people some elementary uses of calculating machines. 

A broadening of the content of mathematical education, therefore, 
became essential and syllabuses in mathematics (and other subjects) 
in the secondary school were radically revised with the participation 
of wide groups of the scientific public in the country. The resulting 
changes affected not only content but also the style of teaching. 

The primary aim of the changes is to bridge the gaps between 
arithmetic on the one side and algebra and geometry on the other, 
and also between elementary and higher mathematics. This is 
achieved by the early use of letters, first of all for denoting unknowns 
in solving problems. The concept of a negative number is introduced 
early. In the very lowest classes pupils meet the elementary geometri
cal figures and simple problems with geometrical content. As a result 
the functional point of view is achieved, with considerable use being 
made of graphical methods. The algebra course is rounded off with 
the introduction of the concepts of the derivative and integral with 
various applications, but without developing the complicated tech
nique of differentiation and integration. The concepts of the theory 
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of sets and mathematical logic are introduced gradually(!), when 
necessary, from the fourth class, and these provide a convenient 
language for the study of systems of equations, inequalities between 
unknowns, and for the formation of the concept of a function. 
Greater attention is given to the method of coordinates and to the 
graphs of functions. 

The basis of the geometry course is implicitly the study of groups 
of motions of the Euclidean plane and space. 

The revision of instruction according to the new syllabuses was 
preceded by long discussion. The mathematical syllabuses, for 
example, were discussed twice at sessions of the presidium of the 
Academy of Sciences of the USSR. A competition was announced for 
the writing of new textbooks, in which several teams of writers took 
part. Those textbooks that were acknowledged the most successful 
were accepted. However, we can be sure that in the future it will be 
necessary to include substantial improvements. 

In the revision of the teaching in the secondary school a moderate 
point of view was adopted which took into account many present-day 
abstract mathematical ideas and concepts. Nevertheless, it was still 
considered important that the students should acquire factual know
ledge and skills, and familiarity with those concepts mentioned above 
that are essential for the construction of models of the phenomena of 
the world about us. 

The introduction of the new material is made possible by the extent 
to which time is saved as a result of its use in teaching traditional 
mathematics. 

In the new syllabus there is a reserve section that permits the 
teacher to increase the content of the mathematics. This consists of 
optional activities, beginning from the seventh class, to which special 
time is devoted (of the order of four hours a week). These optional 
activities take place in different realms of knowledge, at the student's 
choice, and this choice often falls within mathematics. In addition, in 
various towns of the USSR there are schools with strengthened 
physics-mathematics preparation in the upper classes. Such schools 
have been in existence for nearly fifteen years and the experiences 
gained in them were taken into account when the syllabuses for the 
general schools were prepared. 

A particular role is played by the boarding-schools associated with 
the largest universities of the country (Moscow, Leningrad, Novosi
birsk and Kiev). The main purpose of these schools is to attract 

184 



MA THEM A TICS IN THE USSR 

talented young people from towns and villages remote from the large 
centres. Such pupils are discovered in the 'mathematical olympiads' 
- mathematical contests in which very many school children take 
part. These are organised now in three rounds: first in the schools, 
then in the large regional centres and finally the all-Union olympiad. 

Recently each spring there has been also an all-Siberian mathe
matical olympiad in Novosibirsk. 

The first mathematical olympiad was organised in Leningrad in 
1934. From that time these contests have won great popularity. 

Until recent years the profession of scientific worker was not very 
popular, particularly in places remote from the large scientific centres. 
Now the situation is beginning to change. 

The olympiads, the physics-mathematics schools etc., however, 
are designed not simply and solely for the direct search for talent, but 
have another important aim - to attract young people to be scientific 
workers and researchers. Their aim is to acquaint boys and girls with 
the fascination of scientific enquiry. And in fact, thanks to them, many 
young people have found their vocation. 

The reform of school education in the USSR, which affects not 
only mathematics, has increased the demands on teachers. Simul
taneously with this there was a rise in the salary of teachers both in 
the secondary and higher schools. 

In the higher schools mathematical education has four basic 
aims: 

(a) In the technical higher educational establishments and other 
higher schools and faculties for which mathematics is an important 
auxiliary subject, the aim is to produce educated engineers who are 
able to solve difficult technical problems. 

(b) New branches of engineering have recently been created which 
are essentially mathematical, for example, control theory, mathe
matical economics, programming, the construction of new computers, 
and as a result we can now speak of the 'engineer-mathematician'. 
His appearance, following on that of the engineer-physicist, means 
we must change our ideas of what a technical worker must know 
today. A second aim, therefore, is to produce such engineer
mathematicians. 

(c) In the pedagogical institutes the aim is to prepare suitably 
equipped mathematics teachers for the secondary schools. 

(d) Finally, in the universities the aim is to produce mathematical 
researchers and teachers in the higher schools. 
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I will say something in detail about each of these. 
The newest thing that has appeared in recent years in the realm of 

higher technical education in the USSR is the creation in several 
institutions of the specialism of engineer-mathematician. This 
specialism has been established both in the technical schools, as for 
example in the Physics-Technical Institute in Moscow, and also in 
universities - Moscow, Leningrad, Novosibirsk. 

A new specialism like this has been dictated by life itself and the 
establishment of special engineering-mathematics faculties, both in 
universities and in higher technical educational institutions, has taken 
place not only in the Soviet Union but also in many other countries. 

The content and style of mathematics teaching in the other 
faculties of the higher technical schools is subordinate to the require
ments of the basic specialism and is therefore rather varied. Recently, 
there have been moves towards extending this content in certain non
traditional directions. Thus, there are courses on programming, 
based on present-day computational mathematics, followed by short 
courses on control theory, the basic concepts of mathematical econo
mics, and so on. 

Unfortunately, a shortage of suitably qualified personnel prevents 
changes being made on a sufficiently large scale. 

New mathematics syllabuses have also been developed in the 
pedagogical institutes. The aim in designing these syllabuses was to 
bring the mathematical training of their students closer to that of 
the university, and also to initiate them into the new mathematical 
specialisms they will have to talk about in school. An important aim 
of the courses on teaching method is to ensure that future teachers 
know the new syllabuses and textbooks for the secondary school, 
which are very different from those from which they learned. 

The education of professional mathematicians (in the mathematics
mechanics, mathematics and physics-mathematics faculties of uni
versities) lasts five years. Students who have shown outstanding 
ability and an inclination towards scientific work can stay for a 
three-year postgraduate course. In this they will study a chosen field 
in depth under the direction of a professor and prepare an indepen
dent piece of research including a dissertation. They will then obtain 
the first science degree - candidate of science. 

At this time of scientific progress, when mathematical knowledge 
is developing fast and the role of mathematics is increasing every
where, there is a need systematically to revise the material studied in 
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the mathematics faculties. Several years ago the growth of applica
tions of mathematical science, precipitated discussion in many 
universities of the USSR concerning the reforms which would be 
needed in the teaching of mathematics. 

In our country, as it seems in the whole world, up to now the ablest 
young people, those with a breadth of vision, creativity and deep 
insight, very often sought to engage in mathematics divorced from its 
applications. This tendency was encouraged by the fact that in those 
many parts of mathematics which until now had been little connected 
with other sciences, it was easier to obtain fundamentally new results 
and to discover or invent new methods of investigation. 

Often also, the value placed by society on concrete and narrow, 
although also very difficult, results was lower than that it put on wide, 
though perhaps at times much more banal, generalisations. Young 
students, therefore, have tended to neglect those problems in which the 
techniques of research take the lion's share of time and energy and in 
which the results have a concrete character. This has happened almost 
everywhere with the exception of some backward conservative edu
cational institutions where concreteness of results was perhaps valued 
highly, but the results themselves were weak. 

Even in Leningrad University, which prided itself on its ancient 
traditions in applied mathematics, and where in their time worked 
Tchebishev, Markov (the elder), Liapunov and Steklov, they were 
not able to avoid this. 

Several historical causes also contributed to this separation of 
mathematics from its applications. Most applications of mathe
matics in the past were in the field of mechanics: the mechanics of 
systems, the mechanics of rigid bodies and the mechanics of con
tinuous media. Often mechanics was regarded almost as a part of 
mathematical science, and the role of experiments was hardly taken 
into account. In the large universities, such as Leningrad and 
Moscow, there were combined mathematics-mechanics faculties with 
the two departments of mathematics and mechanics. 

Other applications of mathematics were hardly taught at all and 
were limited to a course in numerical analysis. The content of this 
course was reduced to certain largely trivial questions about the 
estimation of errors and to the enumeration of different computational 
methods developed historically. It did not touch on such general 
questions as are to be found in the present-day theory of computation. 

In mechanics, after the important discoveries of Liapunov, 
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Chaplygin and Jukovski, there followed a period of quiet, slow accu
mulation of facts. Even the appearance of new problems and ideas, 
such as linear programming, the theory of games, control theory and 
so on did not help break down the division between mathematics and 
its applications. Indeed, there sprang up many 'applied' mathema
ticians who thought of separating the teaching of' pure' and 'applied' 
mathematics, and of creating faculties of applied mathematics, 
engineering mathematics, computational mathematics, cybernetics 
and so on. 

These scientists believed that if students were to receive first a good 
training in the modern applications of mathematics, and then were 
to study the more general abstract disciplines, they would be more 
likely to get a taste for applying their mathematics. 

There are not only psychological or sociological arguments for 
the creation of separate applied faculties. 

During a five-year course it is simply not possible to acquaint 
students with all the new ideas, methods and theories developed in 
recent times if one preserves all the former material. 

After long debate, new faculties were opened in Moscow and 
Leningrad Universities. In Novosibirsk it was decided after consider
able discussion to preserve a united faculty but with two sub-divisions: 
mathematics and engineering mathematics. 

So far few graduates have been produced by the new faculties and 
they have not worked long enough for us to be able to judge the 
success of this new venture. 

The idea of separating the applied mathematical faculties is not 
shared by all mathematicians in our country. It has opponents -
advocates of the unity of mathematics and its applications. At the 
same time no-one has serious doubts about the sheer necessity of 
making changes. Mathematics has grown up. New questions, new 
problems and new situations have arisen which must find their place 
in education. 

Alongside the creation of new faculties one continues the inde
pendent process of refashioning the old faculties of mathematics
mechanics and physics-mathematics. This process began in the 
strongest universities where the professorial staff included the most 
creative and active scholars. 

Teaching syllabuses are being changed, new courses are appearing, 
new professorial chairs are being created. The syllabuses of the old 
established subjects are also being changed radically. 
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Those mathematicians who insist on the unity of mathematical 
education base their views on the fact that this unity must reflect the 
unity of mathematical science itself. In order to be able to cope with 
the problems they will meet, it is necessary for students to master 
mathematics in all its breadth. For this reason many would consider 
it pointless to give students too narrow an education. Mathematicians 
holding these views believe, therefore, that the creation of applied 
faculties in universities is unjustified. 

The engineer-mathematicians needed to solve the problems of the 
present day, and also technical programmers, must be trained in the 
higher or secondary technical school. To meet these new demands 
the old mathematics-mechanics and mechanics-mathematics faculties 
of universities, together with applied faculties, are changing, or have 
already changed, their appearance. These now include new mathe
matical disciplines on the same basis and with the same justification 
as such topics as analysis, algebra, geometry, theory of sets, topology 
and so on. 

The syllabuses of the mathematics-mechanics faculties of different 
universities are basically similar but may differ in detail according 
to the scientific interests of the leading professors. 

In the faculty of which I shall speak, mathematical topics are divided 
into two classes: those which are obligatory for all students, irrespec
tive of their narrow specialisations, and the special options which are 
selected by the student. 

The aim of the common section is to give the students sufficient 
knowledge and know-how for them to be able to work independently 
from contemporary sources should they need to proceed further in 
the future. This knowledge must be sufficiently wide but not over
loaded with details. No professor should regard his own subject as the 
most important and significant, but should see it simply as an 
essential part of a united whole; the acceptance of this point of view 
need not prevent his demonstrating a creative relationship to his 
subject. 

This common core consists of the following disciplines. 
(1) Lectures on mathematical analysis are given during the first 

five semesters. Topics covered include classical differential and in
tegral calculus, the theory of Fourier series, curvilinear and multiple 
integrals, the theory of exterior differential forms, and the theory of 
functions of a complex variable. 

In addition to the lecture course, there are exercise classes (in 
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groups of twenty-five) which are conducted by assistants, and in which 
problems on analysis and its applications are set. The style of teach
ing has been determined over the course of many years by the excel
lent textbook of G. M. Fichtenholz. In recent years the analysis 
course has been greatly modernised with the introduction of the ideas 
of functional analysis and general topology. The works of Bourbaki 
and Dieudonne's book on analysis have exerted a certain influence. 

(2) Algebra lectures are given in three semesters beginning with the 
first. They include the theory of determinants and matrices, the 
theory of divisibility of polynomials, theorems about the distribution 
of the roots of polynomials in the complex plane and on the real 
axis, elements of the theory of groups, the theory of linear trans
formations of finite-dimensional vector spaces (including Jordan's 
canonical form), and elements of the algebra of tensors. The simplest 
facts in the theory of numbers are also introduced, such as the theory 
of divisibility and congruence arithmetic, and these are blended with 
algebraic material. 

(3) Lectures on geometry are usually given in four semesters 
beginning with the first. In the first semester there is a short course on 
analytic geometry and vector algebra, the largest part of which 
consists of exercises. In some places there are attempts to unify 
analytic geometry and linear algebra. 

In the second semester one studies the differential geometry of 
curves and surfaces. Sometimes this section is included in mathe
matical analysis. The third and fourth parts are not given in all 
universities. These are the elements of general and combinatorial 
topology and the theory of Riemannian spaces. 

(4) Ordinary differential equations are covered in lectures in the 
third and fourth semesters. Here, together with traditional material -
the study of methods of integration of different classes of equations -
are given the elements of qualitative and analytic theory and the 
theory of special functions. 

(5) Functional analysis is covered in lectures in the fifth and sixth 
semesters. The content of the course is metric spaces, linear normed 
spaces, Hilbert spaces, including the spectral theory of bounded 
operators. 

(6) The equations of mathematical physics (sixth and seventh, 
sometimes fifth and sixth semesters) includes the basic study of partial 
differential equations together with applications to problems of 
mathematical physics. Great use is made of the methods offunctional 
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analysis, and several of its sections closely connected with the theory 
of equations are expounded. 

(7) The theory of probability (fifth and sixth semesters) is a short 
course including the theory of random quantities, the limit theorems 
and the basic concepts of the theory of random processes. 

(8) Computational mathematics is sometimes carried out in two 
parts. First of all, in the first course (first and second semesters) the 
elements of programming are given and students learn Algol. They 
do exercises in programming the solution of problems in algebra and 
analysis. Later (fifth and sixth semesters), methods of computation 
are studied and, in a special practical class, solutions and programs 
are composed for problems connected with differential equations, 
the theory of probability and so on. In addition, a short course on 
optimisation, devoted to linear programming, the theory of games 
and other methods of solution of optimisational problems, is also 
given. 

(9) Short courses on theoretical mechanics and physics are given 
in the fourth to eighth semesters. These enable one to make greater 
use of mathematics in later expositions of these disciplines. 

These common courses end basically in the seventh semester. From 
the fifth semester (and sometimes earlier) students begin to attend 
special courses organised by the faculty board and take part in 
special seminars. Here there is a great choice. In Leningrad Uni
versity, for example, a student must attend three special courses 
and take part in the work of a special seminar extending over two 
years. The faculty boards usually organise a large number of courses 
and seminars, and students are able to make a choice. 

The fifth year (ninth and tenth semesters) is devoted to specialised 
courses and seminars, and pre-diploma practical and written work, 
which usually is a short independent investigation. It is by no means 
unknown for such diploma work to merit publication in scientific 
journals. 

In addition to this considerable theoretical preparation, the 
students of the mathematics-mechanics faculties also receive an 
acquaintance with applied questions. 

The department of engineering-mathematics has always belonged 
in the mathematics faculty of Novosibirsk university, where its basis 
had been the department of mechanics. Its curriculum has been 
broadened by the inclusion of new disciplines with syllabuses 
resembling those of the department of mathematics. 
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The faculty has preserved the unity of mathematical education 
which corresponds to the unity of mathematical science. The sylla
buses of the two departments resemble each other in the first half 
of the course. In both of them basic mathematical analysis is taught 
for two years. This course is followed by one on the elements of 
functional analysis, earlier called analysis Ill. In both departments 
computational mathematics plays an essential part. The study of this 
begins in the first course and continues to the fourth. The syllabuses 
in algebra differ somewhat, being wider and beginning earlier in the 
case of the mathematicians. Because of this, more applications can be 
considered in the engineering departments, and the study of 
mechanics of continuous media, comes earlier and is more detailed. 
More attention is given to concrete methods of calculation in the 
solution of problems in mechanics and physics. 

Some of the special options are common to both parts of the 
faculty. Thus, for example, both departments treat problems in the 
theory of computation (each has its own section of computational 
mathematics), aerodynamics and cybernetics. The differences which 
occur are determined partly by the professorial and lecturing staff of 
the two parallel departments. 

The other specialist options are different. Within the mathematics 
department there are departments of functional analysis, algebra, 
topology, differential equations, whereas engineering mathematics 
includes, for example, departments of aerodynamics, elasticity and 
plasticity, and geophysical applications of mathematics. 

Throughout the world mathematical education is in a ferment, and 
everywhere there is a search for new ways. Probably there are many 
different solutions to the basic problem of how new generations of 
mathematicians are to be educated and the optimisation of these 
solutions is at present humanly impossible. 

In the Soviet Union, as in other developed countries, varied 
attempts are being made to construct a new and fully up-to-date 
system of mathematical education. 

I have already spoken of different methods that are realisable and 
are already partly realised, for attaining a harmony between school 
and life. It is hard to say at present which will prove to be the best 
way to reach this goal. In my view the most successful will probably 
prove to be some 'mixed strategy', in which there will be a place for 
special physics-mathematics schools and special optional courses 
in the general schools, and also mathematical olympiads. The uni-
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versities and the higher technical schools will benefit from the mathe
matics and engineering-mathematics faculties which have been 
reconstructed in a modern spirit. 

The optimal relations must be found between all experimental 
forms of mathematical education now existing and these will depend 
upon local requirements. And of course these problems will be 
solved better by the young people whom we introduce successfully -
or even with less than total success - into the temple of mathematical 
science. 
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Modem mathematics: does it exist? 

Rene Thom 

The future historian of mathematics will not fail to be amazed by the 
extent of the movement of the 1960s known as Modern Mathematics. 
This movement now appears to have reached its zenith, and the 
first signs of waning, a justifiably healthy reaction, are beginning to 
make themselves apparent. I should like, perhaps somewhat pre
maturely, to set forth in the manner of a balance sheet those things 
associated with this movement which should be retained, put in their 
proper place, or purely and simply eliminated. It is useless in such 
an issue to conceal the existence of preconceptions and of personal 
bias which cannot avoid influencing one's judgement. It is a question, 
not of knowledge nor of pedagogical technique, but of a field where 
the personal feelings of the mathematician cannot fail to play an 
essential role. Only dogmatic spirits (and they are not lacking among 
'modernists') can believe that there is in these questions a truth 
capable of being logically established and before which one needs 
must bow. Consequently, I see this article as a 'speech for the de
fence' to be contributed to the debate and not a proof which one 
knows very well to be non-existent. 

'Modern Mathematics' has a very complex origin and composition. 
One can say, broadly speaking, that it seeks the two fundamental 
objectives: 

(a) The pedagogical renewal of mathematics teaching 

Exception is taken to the didacticism of traditional teaching, even its 
dogmatism, which is particularly evident - so one is assured - in the 
teaching of Euclidean geometry. It is proposed to replace it by teach
ing which is less directed, more free, constructive, oriented above 
all to a heuristic approach, and by its nature, more able to arouse the 
pupil's individual interests and activities. 
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(b) The modernisation of syllabuses 

Mathematics having progressed, so we are told, considerably since 
Cauchy, .it is strange that in many countries the syllabuses have not 
done likewise. In particular, it is argued that the introduction into 
teaching of the great mathematical 'structures' will, in a natural way, 
simplify this teaching, for, by so doing, one offers the universal 
schemata which govern mathematical thought. 

One will observe that neither of these two objectives is, to be 
precise, 'modern' nor even recent. The anxiety about teaching 
mathematics in a heuristic or creative way does not date from yester
day (as Professor P6lya's contribution to congress thought shows). 
It is directly descended from the pedagogy of Rousseau and one 
could say without exaggeration that modern educators could still be 
inspired by the heuristic pedagogy displayed in the lesson that 
Socrates gave to the small slave of Menon's.1 As for the advance
ment of mathematics which would necessitate a re-organisation of 
syllabuses, one needs only point to the embarrassment and un
certainty of modern theorists in dating the alleged revolution which 
they so glibly invoke: Evariste Galois, founder of group theory, 
Weierstrass, father of rigour in analysis, Cantor, creator of set theory, 
Hilbert, provider of an axiomatic foundation for geometry, Bourbaki, 
systematic presenter of contemporary mathematics, so many names 
are called forth at random, and with no great theoretical accuracy, 
to justify curricular reform. 

It is hardly possible to deny objectives (a) and (b) a certain validity. 
However, one can scarcely hope to attain either of these aims abso
lutely. I shall not discuss objective (a) (pedagogical renewal) at 
length: I am aware of having no competence in pedagogy - in which 
I find difficulty in seeing anything more than an art. I shall restrict 
myself, therefore, in this field to crude, common-sense arguments. 

In order to satisfy himself that his pupil is participating fully in 
the investigation in hand, the teacher must keep a continual check 
on the student's reactions, so that he may guide his own steps and 
those of his ward. This is scarcely possible, ideally, except in a 
tete-a-tete: moreover, this was the case in the example of the Socratic 
dialogue mentioned earlier. As soon as a teacher must handle several 
pupils simultaneously, he cannot keep check of the often divergent 
1 See, for example, Plato, Five Dialogues, Everyman's Library, Dent-Dutton, 

London, 1910. 
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reactions of all his pupils, and he is forced to neglect some of them. 
The next stage, and the anxiety about efficiency, will induce him to 
adopt the attitude of guide and soon revert to teaching ex cathedra. 
Also, efforts directed towards a freer pedagogy are necessarily costly: 
they demand more teachers, and better trained teachers with origi
nality. Society will only be able to permit such efforts within the 
bounds fixed by the financial budget. In another connection, to make 
a theory of mathematical creativity is almost a contradiction in terms, 
for nothing can be less easily described in terms of techniques or 
recipes than creative originality. As soon as one uses a textbook, one 
establishes a didacticism, an academicism, even if the book be so 
written as to promote individual research. What is one to conclude 
other than that efforts at improving pedagogy will always be 
unfinished ? 

Point (b) on the Modernisation of Syllabuses also seems very 
· justified. But let us observe that despite recent progress in our techni

cal civilisation, the stages of a young child's development (physical 
or intellectual) have not been altered. There is always a stage of 
necessary apprenticeship, genetic constraints to respect, in order to 
learn to walk, to speak, to read, to write, and it does not seem as if 
progress in psychology has been able to modify in any way the 
normal calendar which governs the acquisition of such knowledge. 
This is why one can legitimately ask whether the same kind of 
constraints are not operating in the learning of mathematics. If this 
is the case, then the hope of arriving, by means of a general re
organisation of curricula or methods, at an accelerated awareness of 
the great theories of contemporary mathematics, could well prove 
illusory. Now it is indisputable that a number of 'modernist' educa
tionists have expressed this hope and supported these illusions. 

I personally believe that these genetic constraints do exist, that 
they form an integral part of the pupil's temperament and personality, 
and that, among many of the pupils (probably most of the children 
entering secondary education) they will, by their nature, completely 
prevent the understanding of mathematics at the level of the rudiments 
of the differential calculus - the goal which would have to be attained 
by those wishing to enter higher scientific education. This is why it is 
not obvious that an advancement in recent knowledge must, of 
necessity, be reflected in syllabuses, especially at the elementary and 
secondary levels. 

But let us admit, for the time being, the validity of points (a) and 
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(b) taken separately. What is strangest - and most arguable - in the 
modernist position, is the way in which it believes that these two 
objectives can be synthesised. Two arguments have been put forward 
in support of this claim. 

(i) The first argument is of a tactical nature: I have heard it 
expressed in petto by French modernists, and I do not know if it 
expresses the general attitude of reformers elsewhere. For pedagogical 
reform to succeed, one must overcome inertia, the routine of teachers; 
with this object, one must change syllabuses. In changing the content, 
one will more easily be able to change the methods. 

This tactical argument only has validity if it becomes evident that 
the new materials introduced into teaching definitely encourage a 
constructive, heuristic approach. Now it happens that the reformers 
(at least those of Continental Europe) have been induced, by their 
philosophical bias, on the one hand to abandon that terrain which 
is an ideal apprenticeship for investigation, that inexhaustible mine 
of exercises, Euclidean geometry, and on the other hand, to substitute 
for it the generalities of sets and logic, that is to say, material which 
is as poor, empty and discouraging to intuition as it can be. 

(ii) The second argument is more serious. The psycho-pedagogues, 
aware of the vagueness of their doctrinal position, believed that they 
had found the key to their problems in the assertions of logicians and 
formalist mathematicians. Since it was acknowledged that the pro
gression of mathematical thought was modelled by those great 
formal schemata that are the structures - structures of sets and logic, 
algebraic structures, topological structures - teaching the child, at an 
early enough age, the definition and the use of these structures would 
suffice to give him easy access to contemporary mathematical theories. 

This argument merits a searching discussion; beneath its con
vincing appearance a basic psychological error is made which utterly 
invalidates the modernist endeavour. One should first realise that 
most of these great abstract structures - set theory, Boolean algebra, 
topological structures - are present, here and now, in the inf ant 
psyche in an implicit form, when one propounds them explicitly in 
teaching. (In the case of algebraic structures there are grounds for 
making distinctions: some, such as the group, exist implicitly, those 
of the ring and the field are much more artificial.) The whole 
modernist argument rests essentially on the assumption. By making 
the implicit mechanisms, or techniques, of thought conscious and explicit, 
one makes these techniques easier. 
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Now this raises a great psycho-pedagogical problem which is by no 
means peculiar to mathematics. One meets it, for example, in the 
teaching of modem languages: must one teach a language to a pupil 
in an explicit way, from books, instilling into him the grammar and 
vocabulary of this language? Or, on the other hand, should one 
teach him the language by direct use, as an alien child would 
naturally learn it if immersed into this linguistic society? The answer 
is not easy, but, from the point of view of effectiveness, the direct 
method is often preferable. In the early development of a child, 
explicit and deductive learning play absolutely no part: when learn
ing to walk, it would be more of a hindrance than a help to under
stand the anatomy of the leg; and to have studied the physiology of 
the digestive system is no help at all when digesting a too-heavy meal. 
No doubt objections will be raised that I have used very crude 
examples that have nothing in common with that supremely rational 
activity, mathematical thought. But this would be to forget that 
reason in man has, itself, biological roots, and that mathematical 
thought is born of the spirit's need to simulate external reality. We 
shall return to this point later. 

Another example, typical enough of transfer from the implicit to 
the explicit, is provided by psycho-analysis which has sought to make 
this transition from the subconscious to the conscious the essential 
tool of its clinic. Now in this case, it seems that the results, in the 
treatment of mental disorders, have turned out to be somewhat 
disappointing. Knowing the theory of Freudian slips will not neces
sarily prevent you from making one. 

Moreover, this movement from the implicit to the explicit, often 
useless, can have a bad influence. At times the pupil cannot see the 
connection between a mental activity already present in his mind, and 
the abstract, symbolic description which is offered to him ( especially 
if this presentation is permeated by formalist thought); in such a case, 
this teaching will remain a dead letter for him. At times, the child 
suspects the connection without reaching a clear understanding of it. 
In this case, the explicit knowledge of the formal definition of the 
activity can upset this activity, which, up to that point, was function
ing very efficiently without theory: in the manner of those conscien
tious individuals who hesitate to speak a language because they know 
too much of its grammar and are afraid of making mistakes. 

Finally, it should not necessarily be thought that by knowing the 
standard structures of mathematics one knows mathematics; on the 
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contrary, they only represent its most superficial aspects. When a bio
logist wishes to study the physiology of walking, his attention is 
immediately drawn to those striking structures : the bones and the 
joints; but he will neglect, for want of understanding them well, all 
the functional aspects bound up with the synchronisation of muscu
lar contractions, their mechanical effects on the entire equilibrium, 
the nervous systems which control them, etc. Thus our analysis of the 
processes of thought only displays the crudest 'joints' of reasoning -
while neglecting the fine interactions due to sense, which are difficult 
to explain or formalise. These crude joints belong to the domain of 
logic, of propositional calculus. This corresponds to the 'surface' 
structures of linguistics which in common speech are constantly 
upset, bent, by the demands of the 'profound' structures of meaning. 
(See the examples which I gave in [1].) No doubt, as a rule, it is not 
the same in mathematics, where the combinatorial rules of structures 
do not permit any exceptions. Not so obvious: the paradoxes of set 
theory clearly originate because one does not wish to admit exceptions 
to the validity of certain axioms; and in ordinary mathematics it is 
by a leap into the infinite and the continuous that the exception 
materialises. (Cf. what is said in [1] about 'semantic breakdown'.) 

But let us return to our problem: is it of any value to transform 
into an explicit knowledge a mechanism already present in an implicit 
form in the mind? Before putting the question of knowing whether 
such a transfer is useful, one must first ask oneself if it is possible. 
How can the thinker in some way detach himself from his own 
thought, visualise it abstractly, independent even of the content of 
the thought? Certainly, this detachment is a necessary step in the 
process of mathematical advancement: but the inverse operation, 
which is the reabsorption of the explicit into the implicit, is no less 
important, no less necessary. This second stage, which amounts to 
treating as 'existents', as legitimate objects to be treated globally, 
equivalence classes extracted abstractly as a result of the preceding 
process of making explicit, corresponds to what logicians call an 
'ontological requirement'1 for the operation in question. Now 
everything leads one to believe, that this operation of detachment, 
this splitting of the semantic field, carrying the mental activity that 
one wants to abstract, is only possible if, to be precise, the object 
generated by this operation is recognised as the bearer of a stability, 
1 See, for example, Quine, W. V., From a Logical Point of View, Harvard U.P., 

Cambridge, Mass., 1964. 
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of a 'sense', as strong as that recognised in primitive elements. Let us 
illustrate these difficult thoughts with an example. It is permissible 
to define a rational number abstractly as an equivalence class of 
ordered pairs of integers 

(p, q) ~ (p', q') if and only if pq' = p'q. 

But this definition will only convey meaning if one has shown that 
the equivalence class so defined behaves like an integer, that it has 
the same operational properties (and even more, since division by 
a non-zero rational is always possible), and that, in addition, the set 
of these new numbers contains in a natural way the set of the integers 
with which one began. Thus the quality of existence that one attri
buted at the outset to integers will extend naturally to the rationals 
which contain them. When one has clearly understood that it is the 
result of the abstraction process which justifies the abstraction and 
makes it possible, one sees how the formal and axiomatic presentation 
runs contrary to the natural order. In good teaching, one introduces 
new concepts, ideas etc. by using them, one explains their rules of 
interaction with primitive elements one has assumed to exist, one 
makes them familiar through handling these rules. It is only later 
that one will be able to give the abstract definition which allows one 
to verify the consistency of the theory extended in this way. Mathe
matics, even in its most elaborate form, has never proceeded other
wise ( except perhaps for certain gratuitous generalisations of alge
braic theories). 

In the paper which he wrote for the congress, Professor Piaget 
gave an excellent description of the process of extracting conscious 
structures from schemata of unconscious activity: this is what he 
calls the process of' reflective abstraction' (seep. 81 ). He nevertheless 
expresses his conviction that the explicit teaching of the great abstract 
structures opened up by contemporary mathematics is a very effective 
factor in facilitating this process. Ought I to say therefore that it 
seems to me that the psychologist places excessive trust in the virtues 
of mathematical formalism? And that he credits deductive, abstract 
reasoning with a power that it can scarcely have in a young child's 
mind. 

Let us try to give this process of' reflective abstraction' a geometric 
image: let us represent the set of human activities (sensori-motor 
and mental) by the x, y-plane, and let us suppose that the upper 
half-plane y > 0 represents the conscious part of these activities, the 
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lower half-plane y < 0 the unconscious part. A schema of un
conscious activity, S, will be represented by a geometrical shape (S) 
in this lower half-plane. Reflective abstraction consists of the creation 
from (S), emanating out of S, of a form (S') in the conscious half
plane y > 0: (S') is a kind of mirror-image of (S), eventually im
poverished and purified. This process of the formation ofa 'conscious 
offspring' S' starting from the mother-structure S is at all points 
analogous to the process of biological reproduction, by which a living 
being produces a descendant isomorphic to it; the process having 

y 

continued, there will always be at the onset the formation in S of 
a bud, of a foetus, which develops in Sand, having come to maturity, 
detaches itself. This is - as the word indicates - a true 'conception', 
which permits the formation of S' out of S. The teacher's task is to 
bring the foetus to maturity and, when the moment comes, to free it 
from the unconscious mother-structure which engenders it, a maieutic 
role, a midwife's role - as Socrates has it (cf. p. 77). But, in this 
analogy, the great abstract logical structures, such as, for example, 
the notion of equivalence relation, powerful, detached means of 
abstraction, bear a strong resemblance to the brutal tools of the 
surgeon, such as the forceps or the caesarian operation. And if one 
undertakes a caesarian operation with a premature foetus, one loses 
the infant and one runs the strong risk of killing the mother. If, on the 
other hand, one had left the child to develop, if one had left him to 
come to full term while supplying him with a suitably nourishing 
milieu, the separation from the mother-structure would take place 
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naturally and without the aid of those powerful but feelingless tools -
abstract, logical notions. Our fathers (and, in point of fact, the 
mathematicians of my generation) did not know 'modern mathe
matics': that has not hindered them from learning mathematics, 
and I do not hesitate to say it, in a manner much more natural than 
that of the modernist presentation. To leave the embryo to mature, 
this is in fact to lead it to consciousness, thus to give it a meaning, 
and importance either operational or conceptual. It is to this pri
mordial task of conferring on it existence in the mental world, that 
teaching must be dedicated. 

The real problem which confronts mathematics teaching is not that of 
rigour, but the problem of the development of 'meaning', of the 
'existence' of mathematical objects. 

Formalisation, axiomatics and rigour 

This leads me to deal with the old war-horse of the modernists (of the 
Continental European variety): rigour and axiomatics. One knows 
that any hope of giving mathematics a rigorously formal basis was 
irreparably shattered by Godel's theorem. However, it does not seem 
as if mathematicians suffer greatly in their professional activities from 
this. Why? Because in practice, a mathematician's thought is never 
a formalised one. The mathematician gives a meaning to every 
proposition, one which allows him to forget the formal statement of 
this proposition within any existing formalised theory (the meaning 
confers on the proposition an ontological status independent of all 
formalisation). One can, I believe, affirm in all sincerity, that the only 
formal processes in mathematics are those of numerical and algebraic 
computation. Now can one reduce mathematics to calculation? 
Certainly not, for even in a situation which is entirely concerned with 
calculation, the steps of the calculation must be chosen from a very 
large number of possibilities. And one's choice is guided only by the 
intuitive interpretation of the quantities involved. Thus the emphasis 
placed by modernists on axiomatics is not only a pedagogical aberra
tion (which is obvious enough) but also a truly mathematical one. 

One has not, I believe, extracted from Hilbert's axiomatics the true 
lesson to be found there; it is this: one accedes to absolute rigour only 
by eliminating meaning; absolute rigour is only possible in, and 
by, such destitution of meaning. But if one must choose between 
rigour and meaning, I shall unhesitatingly choose the latter. It is 
this choice one has always made in mathematics, where one works 
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almost always in a semi-formalised situation, with a metalanguage 
which is ordinary speech, not formalised. And the whole profession 
is happy with this bastard situation and does not ask for anything 
better. 

One has, moreover, very probably overestimated the importance 
of rigour in mathematics. Of all the scientific disciplines, mathe
matics is the one where rigour is a priori least necessary. When 
a mathematician X publishes the proof of a theorem, his reader Y is 
in a position to check his assertions. He can say: the proof seems 
correct to me and I am convinced; or else: I do not understand such 
and such a point, this lemma is not very clear to me, there is a gap in 
the argument. On the other hand, in experimental disciplines, the 
situation is entir~ly different. When an experimenter A presents the 
result of tests carried out in his laboratory, he can give all the details 
he wishes concerning the procedure followed, all the desired guaran
teed data on numerical results, but I have no way of checking the 
accuracy of his statements and I am compelled to trust him. As a 
result, error is ultimately a negligible phenomenon in the evolution 
of mathematics. It is more frequently a happy accident in the progress 
of a theory, than a catastrophe which is going to deflect science from 
its normal course. The mistake is only annoying for its author, not 
for mathematics itself. The advocates of axiomatics would do well to 
reflect on the following philosophical problem: why is ordinary 
language not axiomatisable? (Perhaps the nearest approaches to a 
formal language are those of the law and theology.) It is that, in 
everyday situations, members of the same linguistic community have 
practically the same semantic universe, the same vision of the uni
verse through their own language. Although a name - a concept - is 
realised in extension1 by an equivalence class which is not formalis
able, nevertheless everyday speech functions with remarkable effi
ciency and an almost total absence of ambiguities. (If a phrase should 
be ambiguous, then the ambiguity is generally resolved by the con
text.) The meaning in ordinary language rests in the main on criteria 
of a topological character: the identity of an object, or of an indi
vidual, expresses itself in the connected character of the space-time 
domain occupied by that object (or that individual). And the syntax 
of ordinary language, relatively poor from the structural point of 
view, describes the most frequent dynamic interactions between 
1 For a definition of this technical term see, for example, Quine, From a Logical 

Point of View, p. 21. 
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space-time objects. On the other hand, in mathematics, amongst 
professional mathematicians (and, a fortiori, amongst students) 
semantic universes are very different: an expression which makes 
sense to X is incomprehensible to Y, etc. This is because 'meaning' 
in mathematics is the fruit of constructive activity, of an apprentice
ship, and there have never been two mathematicians (or even two 
students) who have had the same history of mathematical experiences. 
It is this fundamental diversity of semantic universes which explains 
the need for formalisation - at least in part - in mathematics. At best 
mathematicians base their universe on a kind of common stem made 
up of objects and theories which occur in standard teaching (for 
example, real and complex numbers, analytic and differentiable func
tions, manifolds, groups, vector spaces, ... ) and all proof, other 
than the more specialised, must proceed from this mathematical 
vernacular common to all. A proof of a theorem (T) is like a path 
which, setting out from propositions derived from the common stem 
(and thus intelligible to all), leads by successive steps to a psycho
logical state of affairs in which (T) appears obvious. The rigour of 
the proof - in the usual, not the formalised, sense - depends on the 
fact that each of the steps is perfectly clear to every reader, taking 
into account the extensions of meaning already effected in the 
previous stages. In mathematics, if one rejects a proof, it is more 
often because it is incomprehensible than because it is false. Generally 
this happens because the author, blinded in some way by the vision of 
his discovery, has made unduly optimistic ass'.lmptions about shared 
backgrounds. A little later his colleagues will make explicit that 
which the author had expressed implicitly, and by filling in the gaps 
will make the proof complete. Rigour, like the provision of supplies 
and support troops, always follows a breakthrough. · 

In fact, whether one wishes it or not, all mathematical pedagogy, 
even if scarcely coherent, rests on a philosophy of mathematics. The 
modernist tendency is grounded essentially on the formalist concep
tion of mathematics - that which was classically expressed in the 
famous aphorism of Bertrand Russell, 'Mathematics may be defined 
as the subject in which we never know what we are talking about nor 
whether what we are saying is true'. Its opponents, on the other hand, 
insist on anchoring mathematics in reality. One gladly accuses them 
of Platonism. But there are without doubt shades of difference. With 
Plato the world of Ideas constituted the supreme reality, and the 
concrete world of our perceptions was only a kind of degraded image 
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of this Ideal world. But man has always the naive illusion that he has 
access to the ultimate reality; more humbly, it must be asked whether 
mathematics has not played a role in the evolutionary separation 
of man, if it has not constituted a decisive factor in the superiority of 
man over the animal. In external reality, certain local processes, of 
a biological or physical nature, are subject to a very strict determin
ism; others, however, are aleatory, that is to say cannot be foreseen 
with precision. Very rapidly, the animal nervous system, then the 
human, has specialised in the simulation of well determined external 
processes; it is useless, in fact, to simulate the aleatory processes, since 
these, by definition, have an unforeseeable outcome. Very quickly, 
the mind has isolated a certain number of typical dynamic situations 
with a foreseeable outcome, because they were subject to a rigorous 
determinism (dynamically stable). 

These patterns of conflict, organised in a classification of effective 
processes, were the first situations ' understood' by man (for example, 
the capture by a predator of its prey); these have formed the 'nuclei 
of the intelligibility of reality', in the words of J. Ladriere [2]. But 
having assimilated a formula which works, the mind has a tendency 
to extrapolate the conditions of application of this formula and to 
repeat its use (like Pavlov's dog which salivated at the sound of a 
bell). From this comes the tendency to isolate the repeatable processes. 
which can then be combined with each other as many times as one 
wishes. Such is the source of mathematics: it is the science of the 
simulation of automatisms. To this end, of being able to repeat and 
combine a configuration of objects, the mind is led to simplify, to purify 
reality. There is, in principle, the same relationship between the formal 
and the intelligible, as between a derived function and its primitive. 

In the operation of derivation of a germ of a function, one pares 
away a good part of the information contained in the germ in order 
to permit a more ready extrapolation. In the same way, in the per
ception of an intelligible situation the mind schematises, simplifies, 
so that it can repeat and combine this situation. Thus, setting out from 
one such nucleus of intelligibility, the mathematical mind engenders 
by combination the whole of an abstract structure which aims at 
spreading the conditions of applicability of the formula which results, 
at extending its domain of validity. But there is between reality and 
this mathematical construction the same relation as that between 
the tangent plane and a point of the embedded manifold which it 
touches; as soon as one moves a little way from the point of contact, 
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the validity of the abstract model diminishes and disappears in 
general, because this 'tangent plane' strays away from reality. To be 
sure, it can happen, rather exceptionally, that the mathematical 
theory be entirely valid empirically. It is that, as Dostoyevsky says, 
'reality often lacks a sense of humour'. Certain areas of nature -
essentially the field of classical natural philosophy - are entirely 
governed by rules of an automatic character. Hence the existence of 
quantitative, physical laws - and their 'unreasonable precision', 
according to the so accurate expression of E. Wigner. Only in so far 
as nature is stupid, does she allow herself to be put into mathematical 
terms ... 

Such a conception of mathematics clearly goes against the tradi
tional point of view. It makes geometric continuity of premier 
importance. A discrete algebraic schema only derives its formal 
effectiveness because it has an empirical realisation in the space-time 
continuum. Pedagogy must strive to recreate (according to Haeckel's 
law of recapitulation1 - ontogenesis recapitulates phylogenesis) the 
fundamental experiences which, from the dawn of historic time, have 
given rise to mathematical entities. Of course this is not easy, for 
one must forget all the cultural elaborations ( of which axiomatics 
is the last) which have been deposited on these mathematical objects, 
in order to restore their original freshness. One must forget culture 
in order to return to nature. The modernist tendency represents, on 
the contrary, an increase of culture to the detriment of nature; it is -
in the strict meaning of the term - a preciosity. But if preciosity in 
art and in literature sometimes has a certain charm, the same may 
not be true in mathematics ... 

These considerations - hazardous as they seem - have their im
portance when one comes to discuss a crucial point in the modernist 
reform, the place of elementary geometry in teaching. 

Comparison of ordinary language, that of geometry and that 
of algebra 

It is interesting to compare normal language with those of Euclidean 
geometry and (formal) algebra from the three following points of 
view. 

(1) The' meaning' of an element: can one formalise the equivalence 
class (in extension) defined by an element of the language? 
1 See, for example, Storer, T. I., et al., General Zoology (5th ed.), McGraw-Hill, 

New York, 1972. 
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(2) Is this meaning intuitively clear? 
(3) The richness (or poverty) of the syntax. 
One then has the following answers. 

Ordinary language 

(1) The equivalence class defined by a word (a concept) cannot 
usually be formalised (itis often of a topological nature - the invariance 
of a gestalt). 

(2) Nevertheless, the meaning of the word is clear. 
(3) The syntax is poor. (There are few kinds of nuclear phrases in 

grammar, and the setting of phrases one inside another as sub
ordinates rapidly ceases: at the most there are three or four possible 
stages of subordination.) 

Euclidean geometry 

(1) The object defined by a word, a geometric figure, is formalisable 
(that is, susceptible of description in a few words as a function of the 
elementary ' beings', namely points). Equivalence is defined by the 
Euclidean group, a group of finite dimension. 

(2) The meaning of a word is clear, for it coincides with the spatial 
intuition of the corresponding figure. 

(3) The syntax is rich, for it describes all the respective spatial 
positions of the figures and their displacements. (Nevertheless it is 
expressed verbally by a small number of concepts, such as incidence, 
the combinations of which are unlimited.) 

Formal or algebraic language 

(1) The equivalence class is defined by identifying a written symbol 
with itself: it is therefore formalisable. 

(2) The 'meaning' of an algebraic symbol is established with 
difficulty or is non-existent. 

(3) The syntax, which is the way in which possible operations 
can be combined, is rich, for, in principle, it is limitless. 

One sees from this comparison how Euclidean geometry is a natural 
(and perhaps irreplaceable) intermediate stage between common 
language and algebraic language. Geometry allows a psychological 
widening of the syntax, whilst still retaining the meaning always 
given by spatial intuition. At the same time, the meaning of an 
element can already be given by a formal definition. The move - in 
line with modernist dogma - to eliminate elementary geometry to 
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make room for calculus and linear algebra, has little to recommend it 
psychologically, because the algebraic objects {the symbols) are too 
poor semantically to permit themselves to be understood directly 
as is the case with a spatial figure. 

I shall add that the language of elementary geometry offers a solu
tion to the following problem: to express in a one-dimensional 
combination - that of language - a morphology, a multi-dimensional 
structure. Now this problem recurs in a form 'everywhere dense' in 
mathematics, where the mathematician has to communicate his 
intuitions to others. In this sense, the spirit of geometry circulates 
almost everywhere in the immense body of mathematics, and it is 
a major pedagogical error to seek to eliminate it. To this argument 
one may add the heuristic poverty of algebra, where each new diffi
culty presents itself like a wall which necessitates entirely new 
methods if it is to be surmounted. There is nothing of this in geometry, 
where the combination of figures allows a host of exercises which are 
well-graded according to difficulty. 

The balance sheet 

If I have been hard on the modernists, this does not mean in the least 
that everything which has been contributed by this movement must 
be set on one side; a return to the status quo is doubtless impossible. 
There is, in particular, one positive point which one should retain in 
any case. Formerly, there existed between secondary and higher 
education in mathematics a kind of gulf that young students who 
had just left the secondary school had much difficulty in bridging. 
By the introduction of set notation (presented without any theory, 
as simple abbreviations) and the rudiments of linear algebra, one can 
help make this gap disappear. In my opinion, a pupil leaving secondary 
education (16-17 years) and intending to take up a scientific career 
should be at about the same mathematical level as a Leibniz with, in 
addition, some notions of more modern linear algebra. It seems 
possible to achieve this result without sacrificing the teaching of ele
mentary geometry. In doing this one need not try to obtain an impos
sible rigour; one will keep the substance of Euclid's Elements (in 
a more supple and less axiomatic presentation) while relinquishing 
the method of procedure which, in any case, has long been out of date. 

Perhaps such a moderate conclusion will be disappointing. But 
the mathematical community has in these last years allowed itself 
to be led astray by declarations and ill-considered promises. There 
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has been talk of a 'revolution in mathematics' and assertions that, 
thanks to new syllabuses and new methods, the most average pupil 
would be able to complete his secondary studies in mathematics. It 
is time to put a stop to these utterances which border on deception. 
No miracle is possible and one can only hope to ameliorate the 
existing situation step by step, and by small local improvements. 
Then what was responsible for the birth of this modernist move
ment? One has not explained everything, happily, when one has 
drawn attention to the commercial interests involved in alterations 
to curricula and textbooks. I should venture to suggest the following 
hypothesis - with certain obvious reservations: there was without 
any doubt a feeling of relative frustration in the mathematics com
munity during the years 1950-60: jealousy with regard to Physicists, 
favoured financially by the development of nuclear energy (and 
devices); jealousy with regard to Biologists, made famous by the 
discovery of DNA and the genetic code. During these same years, 
mathematics was making very great advances, notably in algebraic 
geometry and algebraic topology, but these advances did not arouse 
the interest of the general public. 

The launching of satellites (1957-60) drew public attention anew to 
mathematical techniques (and notably to the computer). It was in 
order to revive this declining interest that recourse was made to 
'modern mathematics'. If this hypothesis has the ring of truth, it 
would be well to remind our colleagues that it is a law of our society 
that the important things in it are never those of which one speaks; 
in our time, even more than in the time of Nietzsche, new ideas 
arrive on the feet of doves. 
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Investigation and problem-solving in 
mathematical education 

Edith Biggs 

Investigation can play a vital part in the learning of mathematical 
concepts and in problem-solving. At all stages the teacher has an 
essential part to play. He sets the scene, providing real materials or 
a challenging problem when necessary. · He observes what his pupils 
do with these and asks questions which will help their learning. 

There are different stages in learning by investigation. All are 
important for sound and lasting learning. 

(1) Free exploration. A problem arises, or the teacher asks a 
question. The children use materials which they find for themselves 
or which are provided by their teacher. When materials are not 
necessary pupils explore the problem for themselves. Very often they 
will discover relations which the teacher has not thought of. These 
should not be rejected but postponed if the teacher wants to pursue 
a particular concept. 

(2) Directed discovery. Here the teacher wants the pupils to 
investigate a particular idea which has developed during the first 
stage. This is probably the idea which the teacher originally planned 
to develop. His questions are now focused on the concept he has in 
mind. Since pupils vary in background, in ability and in attitude, 
it is useful to group them so that questions can be appropriate to the 
needs of each group. 

(3) Once pupils have had experience of a concept or have solved 
the problem in hand they will require further varied experience 
or practice to fix the concept. This stage should not be omitted 
since a pupil's confidence often depends on both knowledge and 
skills. 

Group work (often friendship groups) is very valuable in work of 
this kind, especially in stages 1 and 2. Pupils discuss, interchange 
and develop ideas and achieve far more than they would when 
working individually. Such group activity normally increases the 
pace but teachers need to keep a careful eye on slower pupils to see 
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that they have adequate experience to ensure understanding and 
adequate practice to ensure learning. 

Most teachers are more confident in their classroom when they 
have a plan of action, either in mathematics or in the development 
of topics which include mathematics. In the United Kingdom such 
planning is normally done by the headteacher, in consultation with 
his staff; or by a group of teachers at a teachers' centre. As far as 
mathematics is concerned there are certain topics which we should 
probably agree are essential (up to the age of thirteen). These would 
include number in various aspects; measurement of all kinds (in
cluding volume, angles etc.); statistics and probability; the properties 
of shapes (three-dimensional as well as two-dimensional, scale, 
congruence, symmetry and tessellations). Pupils should have first
hand experience of certain mathematical concepts in all these topics; 
sorting, matching and classification; inequalities, arranging in order 
of magnitude, conservation; the operations of addition, subtrac
tion, multiplication and division; estimation, approximation and 
averages; patterns such as direct and inverse proportion, squares, 
cubes, growth patterns; variables, generalisation leading to algebra 
and limits; representation of many different types. Of course there 
would also be a wide range of topics which would be regarded as 
optional. 

In general, teachers would plan the starting points for the im
portant and essential topics. However, many of the mathematical 
topics which have engaged pupils' interest over a period of time 
have been sparked off in other aspects of the curriculum than 
mathematics. One useful outcome is that whereas pupils are some
times less interested in purely mathematical problems they become 
completely absorbed in problems which arise in other fields and 
normally persist until they have obtained a satisfactory solution as 
the following examples illustrate. 

A seven-year-old boy needed to draw a circle for the model he was 
making. His teacher found him sitting with his finger in the middle 
of a square turning this around. He told her, excitedly, that the 
corners traced a circle as he turned the square. The teacher asked 
him to find the middle of the square, which he did using string, so 
that she could nail the square to a sheet of paper on a board. This 
activity attracted many children not concerned with the original 
problem. They used a variety of shapes nailed at the centre or at 
corners and rotated these slowly, drawing round each successive 
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position. The final picture was painted in very attractive colours. 
Later the boy improved his method of drawing circles, first by using 
a strip of wood nailed to a board and later by using a long loop of 
string knotted at various points. 

A year later the teacher experimented with another group of 
children. She suggested that they should choose a plastic shape and 
rotate this to see what happened. To her surprise this group of 
children used templates in an en
tirely different way. For example 
Helen started drawing 4 squares, 
then continued drawing round her 
square template until she had sur
rounded the 4 squares. She num
bered each square she used. She 
continued adding layer upon layer 
and wrote down the number of 
squares added each time. She re
corded 'I drew round the square 
and then numbered the squares 

1 

12 

11 

IO 

2 

1 

4 

9 

3 4 

2 5 

3 6 

8 7 

and the number was 4. The second time I went round the number 
was 12 and the third time the number was 20, and the fourth time 
the number was 28. The number went up in 8 each time. I think the 
numbers would go on like this: 36, 44, 52, 60, 68, 76, 84, 92, 100.' When 
the teacher asked if she could do this in another way, Helen started 
with one square and built round it. 

Other children used equilateral triangles and rhombuses, each time 
recording the number of units added. It is interesting that these 
children who tackled this problem without the inducement of dis
covering a method of drawing a circle used an entirely different 
strategy. 

This problem could, of course, be used to develop the idea of scale 
- for example, what happens to the perimeter and area of a square 
when it doubles (trebles, etc.) its edge? The pattern of linear scale 
often arises when children are comparing their own vital statistics. 
For example, after asking a group of six- to seven-year-olds to arrange 
themselves in order of height a teacher asked them to represent this 
in some way. After some discussion they drew round the tallest of 
the group, then marked the height of each group on this cut-out. 
The teacher then asked them to cut off their 'string height'. She gave 
them a large sheet of paper and asked them to arrange their string 
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heights on that in order of height. After considerable discussion (and 
asking in vain for another sheet of paper) the members of the group 
decided to halve their string height. (But in their efforts they forgot 
to arrange them in order !) 

An interesting problem on scale arose with a class of ten-year-olds. 
This time the children did not discover the answer to this question 
because the teacher did not, at that time, know enough mathematics 
to develop the topic. 

After a radio programme the children had become interested in the 
blue whale. They found all the statistics they could and measured 
their classroom to see how many classrooms they would need in 
a row to accommodate one blue whale. They then measured the 
playground and found that five blue whales could be fitted into the 
space. Next day, on the way home from school, a girl from the class 
saw a model blue whale in a cleaner's shop. She asked the manager 
if she could borrow this, since she was working on the blue whale at 
school, to see if it was a true scale model. The manager agreed, if 
the girl could find someone to transport the 3-metre model. This was 
eventually accomplished in a van and the children discovered that the 
model was a reasonably accurate scale model of an adult whale. This 
created an interest in baby blue whales. The children found that the 
ratio of the lengths of adult and baby whales was 4 to I. They were 
therefore surprised to find that the ratio of the corresponding weights 
was 15 to 1. They then switched their interest to humans. They 
worked out, from an example they knew, that the ratio of the heights 
of adult to baby was 3.6 to I, whereas the ratio of their weights was 
14 to 1. Now the children (and their teacher) had expected the weights 
to be in the same ratio as the heights (whereas I was surprised because 
there was not a greater difference in these two ratios). But here, for 
the time being, the investigation had to stop because the teacher did 
not know how to develop the topic further. How would you have 
followed up this problem? 

The next example also concerns animals. Some ten- and eleven
year-old children had been asked to find the average pressure on their 
feet (when standing on both feet). To do this each divided his weight 
in pounds by the total foot area in square inches. The results (to 
2 places of decimals!) were then arranged in order from largest to 
smallest. The children then turned their attention to animals. One 
child wrote: 'Our class wondered what the pressure on an elephant's 
foot would be. So before Christmas I wrote to Bellevue Zoo asking 
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them to draw round an elephant's foot. In about a week I received 
the elephant's foot below.' The zoo had also supplied the elephant's 
weight (3 tons 5 cwt). The pressure per square inch on the elephant's 
foot turned out to be over 13 pounds, very different from that on the 
children's feet (maximum 2.6 pounds). After receiving the answer 
from the zoo, the children collected results from their own animals: 
cats and dogs, rats and hamsters. A scientific enquiry had begun; 
Professor David Hawkins of Colorado University also became 
interested in this problem. Could this be developed with other types 
of animal, e.g. birds? Insects? 

A problem on scale which concerned eight- and nine-year-olds (in 
the USA) arose when they were studying rocks. After making their 
collection of rocks some began by comparing textures (by feeling 
with eyes shut, and trying to find suitable words to describe what 
they felt). Others began to compare the size of their rocks. They 
weighed them, found the perimeter and cut a string model and finally 
made a paper covering to fit each rock. They were still not satisfied 
that they had compared their rocks in every way. One boy suggested 
filing the rocks, collecting the filings in identical jam jars so that the 
contents could be compared. They started, but since the rocks were 
made of granite, little headway was made. At this point I offered the 
boys a clear plastic container holding some water and asked if this would 
help. 'No', they replied, 'because all rocks float.' When I pressed 
them to find a stone which floated they produced a piece of pumice! 
I hoped they would now try to float their rocks but ' No', they said, 
'Rocks disappear in water - like salt and sugar'. At this moment the 
calls were made for the buses (at this voluntarily integrated school 
most children travelled in buses) and the children disappeared. Next 
morning I was prepared to give the children the opportunity to study 
solution - but there was no need. Every member of the group had 
tried a rock in water for himself and assured me that rocks did not, 
after all, disappear in water. 

And now the children were eager to put their rocks in water. As 
the first went in, I asked what had happened. 'The water's risen', 
they said, 'we knew it would.' 'Can you tell me anything about it?' 
I asked. Slowly a boy said ' That risen water is what my rock would 
be if it were made of water.' He paused. 'If we could weigh it, it 
would weigh the same as the rock.' 'Do you all agree?' I asked. 
Most of the group said yes. The others were unsure. They tried to 
pour off the risen water with the rock still in the container. The rock 
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became uncovered so they abandoned this, removed the rock and 
marked the water level. Then they replaced the rock and marked the 
second level. One boy decided to remove the rock and measure the 
volume of water he had to put in to fill the container to the second 
mark. While he was deciding what units to use another suggestion 
was made. 'Let's fill a container to the top and collect the risen 
water when the rock is put in, in a polythene bag and weigh it. ' This 
was done and the water was weighed. Now the rock weighed 4¾ lb 
and the risen water only 1 ½ lb. The children decided that they must 
have spilt some water so they repeated the experiment - with the 
same result. Still they did not believe the result so they tried a third 
time. 'The water weighs much less than the rock' they said. One 
boy added, 'The rock is about three times as heavy as the water.' 

At that moment a boy began to shape the water in the bag (firmly 
closed with an elastic band) . I enquired what he was doing. 'If this 
is what my rock would be if it were made of water I must be able 
to make the water into the shape of the stone,' he said. This made 
me realise that this boy really understood volume. 

The following day the children decided that they would make 
rock books. They searched for paper the colour of their rocks and 
wanted to make the covers of the same shape as their rock. For 
most of them this meant drawing round their rocks and then making 
an enlargement. One boy cut a piece of string the length of the 
perimeter and doubled this, because he wanted a rock 'twice the 
size'. He indicated that he meant twice as long, twice as wide and 
twice as high. He had great difficulty in trying to arrange the double 
perimeter round the rock so that the two shapes were the same. 
I could not think how to help him without telling him 'the trick' 
so he completed this 'by eye'. 

Some time later I related this story to some teachers of children 
of ages five to eleven. I asked them if they could find a way of en
larging shapes. After some false starts I suggested that they should 
start with a square, put in the diagonals and then see what they had 
to do to obtain a square with edges half the length of those of the 
original square. It was some time before they discovered that their 
second square could be obtained by joining the mid-points of the half 
diagonals. They then tried doubling the original square - and found 
the perimeters to be doubled. 'What about areas?' I asked. The 
4 to 1 relationship was discovered and other enlargements were 
tried. 
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Suppose you took the point for enlarging or reducing anywhere 
else in the square, would the same method work? Suppose the point 
is on the perimeter of the square or outside, will the same method 
work? There was much experiment and argu
ment. Other geometrical shapes and finally some 
very irregular shapes were enlarged and reduced 
in various ratios. Would it work for a circle, I 
asked. What would be the ratio of the peri
meters and areas? (I produced some logiblocs 
in a 2 to 1 linear ratio of squares, rectangles, 
equilateral triangles and of circular discs of the 
same thickness.) The ratio of the perimeters 
caused some trouble, despite the previous work. 
All were convinced about the 4 to 1 ratio of 
areas except for the circular discs. Eventually a 
teacher of younger children (five to seven) 
suggested we might use balance scales to see if 
4 small discs balanced 1 large one of the same 
thickness. We completed this investigation the 
next day by developing different strategies for 
building the largest cube we could, using an uncounted pile of identical 
cubes. We then repeated this, building the largest square using thin 
identical squares. We also built a consecutive sequence of cubes and 
a consecutive sequence of squares and found all possible number 
patterns - which we subsequently investigated and grouped. 

I should now like to return to the problem of growth of humans 
(and of whales). Recently, two secondary teachers worked on this _ 
problem and came to the following conclusion. The ratio of the 
lengths of a new born baby to an adult is approximately J to 4 
(50 cm to 200 cm). 

The ratio of their girths is approximately J to 2 (50 cm to 100 cm). 
Therefore we would expect ratio of areas of cross-sections to be 

1 to 4 (and not 1 to 16). 
Therefore the ratio of volumes will be approximately 1 to 16 (and 

not 1 to 64). 
This also seems to be true for whales! 
Another example occurred with twenty-four graduate mathematics 

students in a school of education in the USA. I was asked to talk to 
them about the teaching of mathematics with young children. As in 
this article, I posed the problems undertaken by pupils of the age 
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range five to sixteen - but gave no answers. The final problem was 
one set in a public examination taken by sixteen-year-olds. 'Investi
gate triangles of fixed perimeter.' I made string and squared paper · 
available. Twelve students used the string and, within half an hour, 
had investigated every aspect ofthis problem. The others, using paper 
and pencil only, solved one aspect but were still floundering at the 
end of an hour. I discovered later that the former group had not been 
given normal lectures but investigations (both individually and as 
groups). The other group had been given the usual diet of lectures. 
In consequence of this experiment it was recommended that all 
students should be given investigations as part of their training. 

A final example illustrates the need for more background know
ledge on the part of teachers and for careful planning by teachers to 
ensure progression on the part of the pupils they teach. Two nearby 
schools in England covering the age range five to eleven years, were 
asked to concentrate on the topic symmetry for a few weeks. It was 
interesting to notice that every teacher began with mirror symmetry, 
partly because this was the first experience their children had had of 
symmetry and partly because this was the type of symmetry which 
was familiar to every teacher. The five-year-olds used paint prints of 
their two hands and of their two feet to illustrate this type of sym
metry. At the other extreme a ten-year-old made a paint blot pattern 
of great delicacy and intricacy which she called 'The Universe'. 
Little was done to develop the equivalences which could arise from 
such work because the teachers were not aware of the possibilities. 
Children of eight and nine made cut-out patterns with two axes of 
mirror symmetry by paper folding. The nine-year-olds included the 

· axes of mirror symmetry of common two-dimensional shapes. They 
also explored symmetries of a variety of number patterns and of 
coloured rods. 

The ten-year-olds studied for the first time, planes of mirror sym
metry of the regular three-dimensional solids they made. (This might 
have been tried with far younger children if their teachers had thought 
of this.) Furthermore, it was not until the age of ten that children 
were given experience of rotational symmetry. The teacher respon
sible gave her children a variety of experiences which led them to 
discover the angles of rotation of regular two-dimensional shapes. 
This did not include the rotational symmetry of geometrical shapes 
such as the parallelogram and rectangle. It was evident from this 
work that teachers in Britain require a far more extensive first-hand 
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experience of symmetry if they are to explore this topic to the full 
with their pupils. For example, no experience was given of symmetry 
in graphs or of algebraic expressions. We have found that when pupils 
(and teachers) are given experience of examples of such symmetry 
they are quick to notice equivalences. 

So investigations and problem-solving have a very important place 
in the learning of mathematics. Children and students learning 
through investigations are accustomed to problem situations (real or 
imaginary) and do not find problems difficult. Sometimes the solu
tion of the problem requires the use of materials and sometimes of 
paper and pencil only. As pupils grow older, if they are accustomed 
to learning by this means they will require far less first-hand experi
ence and should be expected to use far more imagination. So we shall 
be encouraging pupils to use their creative powers to the full in 
mathematics. 

Because mathematics is an abstract subject, results of all investiga
tions should be communicated in forms becoming progressively more 
abstract: by a picture or diagram, in words, by a table, by a graph 
or by an algebraic relation. 

I cannot do better than finish by quoting Professor P6lya, who 
has experimented extensively with the teaching of mathematics to 
university students. 

'Abstractions are important; use all means to make them more 
tangible. Nothing is too good or too bad, too poetical or too trivial 
to clarify your abstractions.' 
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Intuition, structure and heuristic methods 
in the teaching of mathematics 

E. Fischbein 

1 Intuition and comprehension in 
mathematical education 

When the pupil is presented with a logical proof, is it necessary for 
him to have to add to this his own means of direct comprehension, 
that is to say, what is known as his intuition? 

This is not a new problem. However, it has recently attracted much 
attention due to the increase in rigour of the mathematical proofs 
given in teaching situations. In my opinion, in order that these more 
axiomatised demonstrations do not stifle the mathematical reasoning 
process, it is absolutely essential to encourage the use of such intuitive 
support. This is the first problem that I should like to examine. 

First, I consider that there are a number of distinctions that should 
be made: it is necessary to distinguish between what I call intuitions 
of adhesion and intuitions of anticipation. The intuition of adhesion 
expresses itself in the feeling of evidence about a certain fact. It is 
intuitively evident that the relation of equality is transitive, that from 
any point not on a straight line there can be only one perpendicular 
to that line, that there is always a natural number greater than a given 
number, etc. When I say that something is 'intuitively evident' I refer 
to the fact that the need for a mathematical proof is not felt in these 
cases (though, from the mathematical point of view, such a proof 
may be necessary). By 'anticipatory intuition' I mean the global 
vision of the solution to a problem. This vision precedes the rigorous 
and explicit construction of the solution. These two types of intuition, 
though interdependent, play two different roles in understanding and 
in the psycho-pedagogical aspect of science in general and of 
mathematics in particular. 

I should like, for the moment, to dwell on the problem of the intui
tion of adhesion. What is its source? In this pa per I cannot enter into 
all the details, but I support the opinion that intuitions base them-
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selves on mental habits. It is possible, in certain cases, that at the 
origin there are hereditary elements but usually these express, to a 
certain degree, the experience of the individual which, in turn, may 
well have been influenced by society. 

Let us consider a current intuition, for example, space is not iso
tropic. The notions of vertical and horizontal, 'above' and 'below', 
seem to be absolute properties of space. It is evident that this particu
lar vision of the world cannot be seen as a pure conceptualisation of 
space; this vision, in fact, expresses a mental structure that is deeply 
rooted in human behaviour as a consequence of a terrestrial life. 

The essential fact to be borne in mind when considering the 
didactical process is that intuition cannot be created, eliminated, or 
modified by either explanations or short learning exercises. There 
are at least three situations which must be taken into consideration: 

(a) In the learning situation the information given to the pupil 
about a certain notion can be similar to the intuitive knowledge the 
pupil has of this notion; this type of agreement can be extremely 
useful in education (for example, the shortest distance between two 
points is a straight line). 

(b) In certain learning situations the intuition the child has about 
a certain notion can be very different from the notion itself, thus there 
will be a contradiction between the intuition and the objective truth 
or the 'truth' that can be arrived at through proof (for example, the 
set of natural numbers has the same cardinality as the set of rational 
numbers). 

(c) In some situations there will be no established intuitive attitude 
(for example, the altitudes of a triangle are concurrent). 

In fact, things are not quite as simple as they would seem from the 
above classification, even in the case of the first category which we 
would call favourable intuitions. In the deductive organisation of 
various branches of mathematics, certain of these favourable intui
tions are considered as axioms, whereas others are considered as 
theorems whose proof is necessary and possible. Such a distinction 
is not made on intuitive grounds and is therefore not intuitively 
evident. For this reason theorems are often not understood to be 
theorems (that is to say a proposition that needs a proof). The fact 
that it is intuitively evident (from the psychological point of view) that 
from a point not on a straight line there is only one perpendicular 
to the line, makes the necessity for a proof not intuitively evident. 

As I have already mentioned, intuition can also be contradicted 
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by a mathematical truth. The whole field of the transfinite would enter 
into this category. There are several levels of intuition about this 
idea. The very fundamental idea of the 'absence of obstacles' (bound
lessness) which is the basis of this concept is very clear even to a child of 
nine or ten years. A straight line can be continued indefinitely; the 
sequence of natural numbers goes on forever; these truths are intui
tively evident. However, the statement that the set of real numbers 
cannot be put into a one-to-one correspondence with the set, also 
infinite, of natural numbers seems to be intuitively surprising. 

How many permutations of five objects are there? A research 
project carried out by our team showed that there was a natural 
tendency to underestimate the number. (The subjects, children and 
adolescents, estimated on the average that sixteen permutations 
could be obtained; that there are 120 seemed to them extremely 
surprising.) It is also surprising to discover that when throwing a pair 
of dice the probability of obtaining a double, for example 5 and 5, 
is half that of obtaining a mixed pair, for example 5 and 6. The 
hypothesis could be formulated that, in order to be efficient, the 
teaching of a subject must be preceded by an exploration of the in
tuitive knowledge of the pupil, just as, for example, the construction 
of a building is preceded by an investigation of the nature of the site. 

Some colleagues and I have tried to explore the child's intuitive 
level of certain elementary concepts in the theory of probability by 
using a method we call 'teaching by programmed discovery'. This 
method consists of a series of questions related to a certain concept. 
The questions begin at the most general and formal level to which 
the subjects have access, and, in case these cannot be successfully 
answered, they continue until they reach the most rudimentary, 
global and intuitive level of the subjects. We have been able to estab
lish that within the subjects there is a favourable intuitive basis for 
the concept of probability [l ], and for the calculation of probability 
[2] in the case where the probability of a compound event is equal to 
the sum of those of the elementary events which constitute it. The 
law concerning the multiplication of probabilities is based on the 
intuition that one reduces the chances when one imposes additional 
conditions (intersection of events), but the operation of multiplica
tion, as such, does not appear to have an intuitive basis. In the case 
of the law of addition, there seems to be an almost complete lack of 
understanding of the compound character of certain events and 
consequently no idea of the necessity to make an inventory of the 
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different situations which will give rise to a particular event. In this 
case it is not only a question of the absence of intuition, but also an 
intuition that has been contradicted [3]. 

The different types of intuition quoted above are natural intuitions. 
They are constructed during the ontogenesis of the subject, before 
and outside of any sort of systematic intuition. These types of intui
tions we shall call 'primary intuitions'. Can the intuitive factor of 
understanding be reduced to primary intuitions? 

In fact, the situation is more complex. New intuitions can be built 
up which have the same character of adhesion to a certain fact and 
to a certain interpretation, these we will call 'secondary intuitions'. 
In this manner it can be accepted as evident the fact that Euclid's 
postulate is only pseudo-evidence; that the set of real numbers cannot 
be put into one-to-one correspondence with the set of natural num
bers; that without the intervention of a force, a body in motion will 
continue its rectilinear and uniform movement. 

However, these secondary intuitions cannot be constructed, as we 
have already said, simply by explanations or short learning exercises. 
These intuitions need to be based on mental habits and the creation of 
these habits requires an extremely long training which can extend 
over the whole period of the growth of intelligence (above all the 
period of concrete operations). 

If the hypothesis of secondary intuitions is accepted, then one must 
reject the Bergson point of view according to which intelligence and 
intuition are opposing and irreducible modalities of knowledge. 
According to Bergson, intuition is a direct knowledge of vital pheno
mena and this is an extension of the instinct, whereas intelligence 
founded on the spatial characteristics of matter is basically an 
instrument of action. 

According to our hypothesis, the rational modality of knowledge, 
through intelligence, can, by a long familiarisation with a certain 
field, transform itself into an immediate form of synthetic, global 
knowledge having the specific characteristics of intuition. In our 
opinion the pupil should learn consciously to compare his intuitive 
interpretation of certain terms and procedures with those that are 
used in their rigorous mathematical interpretation. He should learn 
to rethink the elements that come from his primitive experience in 
such a way that they agree with his new conceptual framework. 

Our hypothesis, therefore, is that this process of refining and 
correcting the intuitive basis should not be allowed to go .on in 
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a haphazard manner ( or not to happen at all) but should be an 
integral part of the teaching process. If an intuitive basis is lacking, 
as can frequently happen, for example, in the field of probability, it is 
vital that these intuitions should be constructed with the help of 
well-programmed exercises spread out over a long period whilst in
telligence is developing. 

2 Structures in mathematics and psychology 

The second problem that I should like to discuss is that of structure 
in mathematics and psychology. 

Piaget has defined structure in the broadest sense as a system and 
this system .is a totality that has laws and properties that are charac
teristic of it as a totality [4]. 

A structure is constituted of a set of elements between which 
there are certain relations. It is well known that for Bourbaki there 
are three types of structures: (a) algebraic, (b) order, and (c) topo
logical. With the help of these structures the diverse branches. of 
mathematics can be brought together to form an architectural unity. 

The problem which faces mathematical educators is the following. 
:On the one hand, .should one leave the general schemes of thought 

to form themselves gradually, by a sort of natural generalisation, 
after the pupil has assimilated a fairly considerable amount of 
mathematical knowledge? 
- Or, on the other hand, is it better that the child should be given the 

opportunity to function with these schemes, these structures, very 
early on in his development, so that they can be used as true matrices 
for the formation of his mathematical thought? 

Arguments can be found for and against these two alternatives. 
For the first point of view, that is, that acquaintance with these 

structures should be left until such time as a good preparation in 
mathematics provides opportunities for them to disengage themselves 
naturally: 

(a) · The natural course in the development of knowledge is from 
the particular to the general, from the concrete to the abstract. 

(b) . Mathematical structures, by their nature, are concepts that 
require an extremely high degree of abstraction. They could not, 
therefore, be understood; · assimilated and . used until such time as 
intelligence has reached the stage of formal operations and above all 
the stage of final equilibrium (from about the age of fifteen or sixteen 
years). 

226 



INTUITION, STRUCTURE AND HEURISTIC METHODS 

(c) Mathematical structures arose out of the confrontation of 
diverse mathematical domains. The pupil must also be capable of 
understanding on a fairly broad mathematical basis (in arithmetic, 
algebra, geometry). 

For the second point of view, that is, that the teaching of mathe
matical structures should start at a very early age, even before seven 
years old, or at least during the period of concrete operational think
ing (from the age of seven years): 

(a) These structures express the fundamental structures and general 
schemes of intelligence and are not just a means of giving information 
or a manner of proceeding in a particular instance. Consequently 
their assimilation must be structured in such a way as to allow them 
to be integrated into the total architecture of intelligence. Short 
learning exercises will not help this objective. A gradual and carefully 
constructed elaboration is necessary. It is easy to memorise the 
axioms of a group, but, if the group concept is to become an efficient 
and productive instrument in thought, it must be assimilated within 
the dynamic architecture of the intellect. 

(b) Mathematical structures must be allowed to function during 
the period of the growth of intelligence if they are to be in
tegrated in a really organic way into the mathematical thought of 
the child. 

(c) Contemporary developmental psychology has shown the 
characteristics of the evolution of intelligence. The most important 
work in this field is, undoubtedly, that of Piaget. His work shows 
very clearly that intelligence develops through a series of stages [5]. 
The essential idea for our discussion is that each fundamental system 
of knowledge must be anticipated and prepared for in earlier stages 
by means specific to these stages. According to this law, the learning of 
mathematical structures during the period of the final equilibrium of 
formal operations must already be prepared for during the period of 
concrete operations by means appropriate to this period. This will 
permit the structures to become efficient instruments in mathematical 
thought. 

To sum up then, the essential psycho-pedagogical problem is the 
following: mathematical structures, like all other fundamental 
mathematical concepts (relation, function, equivalence, continuity, 
etc.) and the fundamental logical operations, are, by their nature, 
abstractions of extreme generality. The child should start to learn 
these structures in a very empirical manner during the period of 
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concrete operations in order to integrate them into his scheme of 
intellectual activity. 

The problem appears to be without solution. Two important 
discoveries in developmental psychology would, however, seem to 
suggest possible approaches. The first is due to Piaget, who has shown 
the close relationship between the important mathematical structures 
and the organisation of human intelligence. According to him, 
mathematical structures are closely related to the main operational 
structures of intelligence gradually built up during the subject's 
ontogenesis, and group structure is at the core of this relationship. 
At the concrete operational level, intelligence has already acquired, 
although only partially, characteristics that are analogous to those 
of a group [6]. 

The second discovery is linked to the name of Jerome S. Bruner: 
an abstract structure can be transmitted and assimilated as such, 
that is remaining unaltered, by means of various embodiments [7]. 
Enactive, iconic and symbolic representations can all serve as vehicles 
for an embodiment and transmit the same mathematical structure, 
although several embodiments may be necessary for the structure to 
be understood. By this means a pupil will slowly grasp a fundamental 
idea common to all the embodiments. Dienes has called this pro
cedure 'the principle of perceptual variability' or in its most general 
form 'the principle of multiple embodiments' [8]. He and his col
leagues have invented a tremendous variety of embodiments for 
mathematical and logical structures. The principal element of these 
is that of play and thus they appeal directly to the interest of the 
pupil. 

Dienes' activity has inspired other research workers, for example 
Tamas Varga (Hungary), Mrs Marguerite Robert (France), Mrs F. 
Morine and her team in Italy, Professor B. Zorgo (Roumania), and 
many others. This approach has shown itself to be extremely produc
tive and accumulating observations have revealed the interest and 
'receptivity' of children when they have been asked to carry out such 
activities. For the moment, however, the results of this work can 
only be considered as hypothetical. Only rigorous longitudinal studies 
can establish the effectiveness of this development in mathematical 
education. 

According to Professor Freudenthal (see pp. 101-14), with whose 
opinions I agree, the child, when being introduced to mathematical 
structures, should start with structures more primitive and simpler 
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than that of the group. He puts forward a number of examples which 
are both simpler and at the same time more suggestive in showing 
how the idea of a group can be developed. These same examples 
prove extremely useful in the study of regularities in nature and in 
mathematics. 

Richard Skemp has, on the other hand, pointed out: 'An appro
priate scheme means one which takes into account the long-term 
learning task and not just the immediate one' [9]. 

The correspondence between the model used and the mathematical 
structure must be as complete and as natural as possible so that the 
models themselves can suggest new problems, new directions in 
finding solutions and even new models for the same mathematical 
structure. In [10], models having these qualities are called' generative 
models'. It is a fact, though, that many of the models suggested by 
educators, teachers, etc. have an extremely limited range and conse
quently very little educational value. 

3 Heuristic methods 

The third problem I should like to touch on is that of improving our 
techniques in problem-solving by systematically learning heuristic 
procedures and strategies. A large variety of studies have already 
been published dealing with this subject. 

It is generally recognised that heuristic procedures are elastic 
schemes which allow a certain degree of variability and adaptability 
to given conditions and which guide our investigatory activity. 

George P6lya has described a certain number of heuristic pro
cedures used in mathematics, for example, the use of analogies and 
models, the reduction of a problem to a simpler one, etc. In a recent 
piece of research, Max Jerman of Stanford University [11] studied 
strategies in problem solving. (His paper, incidentally, contains an 
extremely good bibliography of the whole problem.) Jerman's results 
show that those subjects who followed a programmed learning 
sequence in problem-solving strategies did no better than the control 
group. In reality, the subjects of the experiment made better use of 
the correct procedures but their results were no better because of the 
difficulties they had with computation. 

In general, the results of research on the learning of heuristic 
procedures in problem-solving do not provide any convincing practical 
conclusion. The results are, in fact, far less spectacular than might 
have been expected from the expounded theory. 
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I feel that the following might be an explanation of the situation. 
The solving of a problem is certainly a conscious activity. It is 

conscious because a goal is set, there is an understanding of the 
meaning of the problem, and a specific direction in the respective 
field is chosen, but the 'solving' process as such is not conscious in 
its detail. The subject does not control, nor is he aware of, the mechan
isms involved in the resolution of the problem. This situation is not 
specific to the art of invention, it can be found in all human activity 
no matter how simple. When I pick up a glass of water, I am conscious 
of the action because I am conscious of its finality. However, the 
details of the movements, the successive muscular contractions are 
not the result of a conscious order. 

For this reason, there are a certain number of behavioural rules 
that exist when a subject is trying to solve a problem but they are not 
used in the same manner as, for example, a cook might use his 
methods in the preparation of a special dish. 

In problem-solving, therefore, such procedures operate in an 
implicit manner. If the subject becomes conscious of the process and 
tries to think about these procedures in an explicit manner, he can 
no longer think of the problem that has been raised. When the 
creative process of finding a solution is interrupted a useful result 
can no longer be found. 

Nevertheless an awareness of heuristic procedures can be useful 
for the following reasons. First, these procedures can be integrated 
into our activity, into the hierarchical structure of our intellectual 
habits as a result of systematic and persistent practice. I would men
tion, for example: practice in the comprehension of the text of 
a problem; appraisal of facts; determination of unknown variables; 
appraisal of images, should such images exist; the construction · of 
auxiliary figures, schemata and diagrams; changing of point-of-view; 
the use of analogies; the provisional consideration · of simpler 
problems, etc. 

There are times during the solution of a problem when certain 
heuristic procedures could be used consciously. At the beginning, 
when the variables involved in the problem must be sorted out before 
the actual problem-solving process can be started, certain rules could 
be of help. For example, 'Look carefully at the wording'. 'Have-you 
understood completely the meaning of each of the terms used?' 'Try 
and find out exactly what is being asked and, as far as possible, the 
steps you think will be necessary to obtain the answer', etc. 

230 



INTUITION, STRUCTURE AND HEURISTIC METHODS 

During the process of problem-solving there are times when creative 
ideas no longer seem to flow, there is the feeling that the wrong 
direction is being taken, and that things need to be reconsidered. In 
such moments, heuristic procedures could be of great help. 

Clearly, the most important recommendation is that the capacity 
to solve problems can be practised by exercises in problem-solving. 
However, I feel that the idea of programming ought to be better 
appreciated and applied. Often, in collections of problems to be 
solved, the problems themselves are so diverse; that there is in
sufficient opportunity for the subject to construct those supple, 
harmonious and polyvaleiit syst~ms of mental habits essential to 
problem-solving. 

Conclusions 

In this paper I have discussed three apparently independent subjects: 
the problem of intuition, the role of structures and the learning of 
heuristic procedures. In fact, all the fields are closely related in 
problems of creativity and the pedagogy of mathematics. 

I feel that if this relationship were to be better appreciated it 
would contribute greatly to an improvement in mathematics teaching. 
Creative mathematical thinking, which becomes apparent in problem
solving, reveals a whole variety of heuristic procedures which are 
inspired and guided by intuition. These intuitions, both the intuition 
of adhesion as well as the anticipatory intuition, express the stabilized 
organisation of mental structures in a certain field. 
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Mathematics and science in the 
secondary school 

Anthony J. Malpas 

Three questions which the work described in this paper seeks to 
answer are the following: 

(1) What mathematical skills are required in the new secondary 
school science courses? 

(2) To what extent do courses in modern mathematics provide for 
the development of these skills? 

(3) In what ways can the work of science and mathematics depart
ments in schools be more closely linked to promote more effective 
learning of these skills ? 

With the end of the nineteen sixties and the coming to fruition 
in Britain and the USA of the first generation curriculum projects in 
science and mathematics, the mood of teachers in the schools in 
these countries has changed. With increasing confidence in their own 
new materials and methods of teaching, they are beginning to have the 
time and energy to look across subject boundaries and to consider 
the possibility of inter-subject cooperation. Phrases like 'Integrated 
Studies' and 'Interdisciplinary Enquiry' are appearing increasingly 
as 'subjects' on school timetables. The new emphasis on children's 
cooperative, rather than competitive, activities (project work, small 
group activities of all kinds) is being matched in some places by first 
attempts at cooperative ventures among teachers (team teaching and 
'integrated' approaches to the curriculum). This new spirit also finds 
expression in many of the second generation curriculum projects 
(exemplified in Britain in the sciences by Nuffield Secondary Science, 
Nuffield Advanced Physical Science, and the Schools Council 
Integrated Science Project, and in mathematics by the Mathematics 
for the Majority Continuation Project) which all share the marked 
characteristic of an approach to the curriculum on a thematic rather 
than a traditional 'subject' basis. Appointments are already being 
made in some schools of 'Head of Mathematics and Science'. This 
is therefore the right time to pose questions such as the above and to 
try to obtain some good answers to them. 
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1 What are the mathematical requirements of modern science 
courses? 

This question as posed above, although the right one to ask, is too 
general to admit of a full answer for all countries at the present time, 
and this paper is a report only of some work which has recently been 
done in Britain.1 Here efforts have been made to study the links 
between the new mathematics and science programmes, and a joint 
working party composed of members of the Association for Science 
Education, the Mathematical Association, and the Association of 
Teachers of Mathematics has been set up and has produced 
reports.2 To limit the scale of the work reported in this paper, atten
tion was confined to the published materials of the Nuffield Science 
Teaching Project's Biology, Chemistry and Physics Ordinary Level 
(eleven to sixteen years) schemes. A comprehensive analysis of these 
schemes was carried out and the mathematical skills and abilities 
implicit in the activities of the courses were briefly described.3 These 
mathematical assessments of the courses were then carefully con
sidered and it was concluded that the mathematical skills required 
could be classified into three broad groupings. The biggest and most 
important of these groupings is that cluster of ideas concerned with 
ratios, rates, proportion, straight line graphs, and formulae. The 
first three rows of table 1 show the extent to which use of this cluster 
of ideas is called upon in Nuffield science courses. Every science 
:teacher knows that these skills are central to the organisation and 
interpretation of scientific data, so it is perhaps not so surprising 
after aH to find them widely required at every level in all subjects 
of Nuffield science (and, one would add as a good guess, in other 
new science schemes and in 'traditional' science subjects as 
well). 
1 For similar work in USA see James F. Thorpe (Del Valle High School, Walnut 

Creek, California) and James G. Lindblad (Lowell High School, Whittier, 
. California), Resource materials for the teaching of the new mathematics programs 

•· • in application to the sciences. Max S. Bell, The University of Chicago, is also 
· working in this field in conjunction with the School Mathematics Study Group; 
Stanford University. 

• See; for example, • Do the new maths and science schemes have much in 
·_··common?' by B. R. Harris, Association for Science Education/Mathematical 

Association/Asso9iation of Teachers of · Mathematics Science Mathematics 
Links Working Party Education in Science 9, 47, April 1972, 17. . .-.. 

8 The primary data resulting from the analysis are not included in this paper for 
· lack ofspace. Readers who wish to -examine these data are invited to db so by 

writing to the author. 
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TABLE 1. Ratio, proportion, linear relations, and related concepts in mathematics needed in Nuffield 
science and treated in SMP mathematics · 

Year of the secondary school course 

1 (11-12 years) 2 (12-13 years) 3 (13-14 years) 4 (14-15 years) 5 (15-16 years) 

Nuffield ScScR ScVRGRRa %% GGGRRR GGRG G % GGR %% 
Biology RCRV Ra % R % RRR PC 

Nuffield R (density) RaRRaR CRRRaRaRaR RGRGGGGRa % 
Chemistry RaRaGCRG RaRFS % RC 

Nuffield R (density) PG P RGRRR RRRERaSc GPGFFGF FVFFFFS 
Physics R (pressure) Ra Ra PR GGGVSGR FFFGFRVA FFSFFS 

RaR %P reciprocals A A FSRaRRRR GCVFF 
G % FRRFF 

~ SMP Coordinates; linear Similarity; areas of Rates of change; Solution of equations Areas and graphs; 
vi 'O' level relations (graphical similar figures; en- gradient; rate of graphically and alge- areas of irregular 

mathematics ready reckoner); largement; graphing change at an instant; braically; gradients figures ; functions and 
algebraic relations; functions; law of graphing equations and and tangents ; search- graphs. Review, 
graphing algebraic natural growth; (slide orderings; equations; ing for functions; summary and occa-
relations. rule); volumes of F,S. P R Ra F G (logs, sionally extension of 

similar solids ; solving growth functions and previous work. 
equations; ratio and reciprocals). 
proportion; %. 

Key A area under graph R rates of change 
C curvilinear relations Ra ratios 
E enlargement S substitution of values in equations 
F manipulation of formulae Sc scale and scale factors (including similar figures) 
G straight line graphs and gradients V variation (including inverse variation and inverse square 
P proportion law) 

Note The number of entries of a concept or skill in any one cell of these tables (R R R Ra G etc.) is intended to give a rough idea of 
the number · of separate occasions in science lessons when these concepts are required. The descriptions of the SMP mathematics are 
chapter and section titles. 
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The second grouping of mathematical skills, distinguishable from 
but merging into the first group, is those concerned with measure
ment and the statistical treatment of data, including descriptive 
statistics and probability, calculation of averages, approximations 
and the use of standard form in handling very large and very small 
numbers. As may be seen in the first three rows of table 2, these too 
are widely required, particularly in Nuffield Biology and Physics. 

A third, somewhat smaller grouping concerns some aspects of 
geometry and trigonometry. As the first three rows of table 3 show, 
these arise mainly in Nuffield Physics, although in Chemistry sym
metry and tessellations are important concepts. 

Any attempt at classification of ideas in this way is bound to seem 
somewhat arbitrary and to leave some items as difficult to classify. 
By using the broad groupings just described however, very little of the 
mathematics required for Nuffield Science has been omitted. 

2 To what extent do modern mathematics courses meet these 
needs? 

Having made, as described, an assessment of the mathematics needed 
for Nuffield science, the question naturally arises to what extent do 
the modern mathematics projects meet these needs? As is well known, 
the various mathematics projects in Britain introduce mathematical 
topics in a variety of different orders1 so that a general answer to this 
question cannot easily be given. Instead of trying to do that, we have 
selected the 'O' level course of the School Mathematics Project 
(SMP) as a project comparable, in the scale of its operations in 
England, with that of the Nuffield projects in the sciences. 

Tables 1, 2, and 3 in their fourth rows show, in outline for each 
year, the extent to which the SMP course covers the topics required 
by the sciences. As can be seen in each of the tables, the agreement 
between demand and supply is very close. In some cases (e.g. vector 
geometry) supply even exceeds demand. In very few instances can it 
be said that demand exceeds supply. Moreover, with one or two 
notable exceptions, the timing of the introduction of the various 
concepts and skills seems to keep remarkably well in step; in most 
cases they are introduced in the same year in mathematics and in 
science and sometimes a year earlier in mathematics. Exceptions 
1 The Mathematical Association's pamphlet, Mathematics Projects in British 

Secondary Schools, G. Bell and Sons, London, 1968, in its 11 to 16 Syllabus 
Analysis shows the extent to which projects vary in their order of treatment of 
mathematical topics. 
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Nuffield 
Biology 

Nuffield 
Chemistry 

t-..> Nuffield 
I.,> Physics -J 

SMP 
'O' level 
mathematics 

TABLE 2. Measurement and the statistical treatment of data 

1 (11-12 years) 

DSDSDSAvM 

DSDS 

SFSF AA 
AvDP 
Av 

A (bread and butter 
arithmetic). 

approximate calculation 
averages 

Year of the secondary school course 

2 (12-13 years) 3 (13-14 years) 4 (14--15 years} 

DSDS DSDDSDSSF DSDSSF 
MAvAv SFDSDSAv 

DS SF ADS DSDS 

AAv AAAAAAA 
SF SF SF SF 
P (random walk) 
Av (RMS value) 

Estimation and P DS D Av, cumulative Thinking statistically; 
accuracy (A), DS D Av, frequency. Av PD limits of 
Large and small 
numbers: SF 

accuracy; P (tree 
diagrams). 

M measurement 
P probability 

5 (15-16 years) 

PPDSAv 
Range, std. devo. 
RDPPDS 
Binomial distribution 

DSDSDSAv 

ASFSF 
AvP 
SF 

SF DS significance. 
Review, summary, and 
occasional extension 
of previous work. 

Key A 
Av 
D 
DS 

distributions 
descriptive statistics 

SF standard form (also known as scientific notation} 

(For interpretation of the table please see note on table 1.) 
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w 
00 

Nuffield 
Biology 

Nuffield 
Chemistry 

Nuffield 
Physics 

SMP 
'O' level 
mathematics 

TABLE 3. Geometry and trigonometry-some aspects used in science 

Year of the secondary school course 

1 (11-12 years) 2 (12-13 years) 3 (13-14 years) 

(areas of similar figures - see table 1) Parallelogram area 
bxh 

Electrical circuit diagrams Tessellations in 2- and 
3-D (close-packing of 
spheres). 

Regular solids; 3-D 
arrays; angle, plane, 
face; volume of cuboid; 
sphere. 

Angle, polygons, and 
polyhedra; area and 
area measurement; 
symmetry; parallelo
grams and triangles. 

Intuitive ideas of geo
metrical transforma
tions of a square; 
angle; rotation; 
circuit diagrams. 

Waves; reflection, 
symmetry; equal 
angles; circles, para
bolas, ellipses; (en
largement, similar tri
angles) properties of 
circle; reflection; 
symmetry; angles; 
parallel lines; sini/sinr. 

Topology; reflections Transformations in-
and rotations; trans- eluding reflection; the 
lations and vectors; circle; 1T; circum-
volume (including ference and area; 
calculation of volumes); cylinders; 3-D 
filling space with poly- geometry: points, lines, 
hedra; trigonometry; planes, and angles; 
sine and cosine; waves, sine and cosine 
Pythagoras' Theorem. functions; areas of 

parallelogram and 
triangle. 

4 (14-15 years) 

Topology: feed-back 
loops and control 
systems (implicit). 

Area of triangle; 
vectors (momentum). 

5 (15-16 years) 

Motion in an orbit; 
ellipses; crossed chords 
method of showing 
centripetal force is 
mv2/r; similar triangles; 
waves; sine, cosine; 
vectors (velocities). 

Trigonometry; tangents Vectors and trigono
and gradients; relation metry; displacement 
between sin, cos, and and velocity vectors; 
tan; parabola; hyper- sphere: volume and 
bola; ellipse; co- surface area. Review, 
ordinates and vectors summary and occa-
in 3-D; vector sional extension of 
geometry. previous work. 
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include the early use of the rate concept in the form of density in 
the Nuffield Chemistry and Physics courses in Year 1, and early use 
of standard form in Year 1 of Nuffield Physics (though in neither 
case is the need for these regarded by the scientists as crucial). As 
a general conclusion, agreement seems close and the situation, on 
paper, appears remarkably satisfactory. Yet three comments need 
to be made. 

(1) One is struck, in undertaking the above analysis, how little use 
is made in the science courses of the many other mathematical ideas 
which go to make up a modern course like the School Mathematics 
Project. All of the work on structure in mathematics, most of the 
transformation geometry (including networks and topology), and 
much of the approach to algebra and the mathematics of functional 
relations stand alone in SMP mathematics and find little or no echo 
in Nuffield science. It would seem to be time to examine ways in 
which these powerful ideas can be brought to bear and usefully 
exercised in modern school science. 

(2) The analysis above shows that provision is made in the struc
ture of the courses for the possibility of cooperation between teachers 
in school mathematics and science departments over the topics listed 
in tables 1, 2, and 3. We have to ask how far that possibility becomes 
a reality in the average school. I believe that one reason why coopera
tion · is so little of a reality in some schools is the lack of materials 
which could be used in a joint approach to the teaching of the topics 
in the overlap areas. We have made a beginning, in the Shell 
Mathematics Unit at the Centre for Science Education, with remedy
ing this situation, with the preparation, in a trial edition, of modul~s 
of work1 designed to be . used jointly by science and mathematics 
departments in schools. Other similar mathematics/science modules 
are in preparation2 and will be tried out in schools during the coming 
academic year. This we think is at least part of the answer to the third 
question raised at the beginning of this paper. 

(3) There are some mathematical topics about which, notwith
standing the fact that they are treated consonantly in both mathe
matics and science courses, there are persistent reports from teachers 
1 Indices and Molecules, Nuffield Foundation, 1971. Trial version not for publica-

tion. Nuffield Mathematics Teaching Project. A second module also completed 
is entitled Symmetry and Crystal Structure. 

1 Other modules in preparation include ones on shape, size, and growth in 
biology, combining ratios in chemistry, density, rates of change, and measure
ment. 
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of students' difficulties.1 One such topic is proportionality, linear 
relationships and variation, which, as table 1 shows, is widely needed 
in science courses and quite fully treated in SMP mathematics. Such 
persistent reports of difficulty suggest that, as Inhelder and Piaget2 

and others, e.g. Lovell,3 have pointed out, there may be an important 
psychological component to which more attention should be given, 
in the development of students' mathematical skills and their ability 
to handle concepts like ratios and proportion. This is a point on 
which we are doing further work. 
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Geometry as a gateway to mathematics 

Bruce E. Meserve 

Introduction 

The role of geometry in the study of mathematics has been a special 
interest of mine for several years. During the past year I have enjoyed 
a sabbatical from my university teaching and made a special effort 
to discover what is happening to the role of geometry. I have found 
two papers particularly enlightening and would like to quote from 
them as background for our considerations of geometry as a gateway 
to mathematics. I believe that geometry serves this role at all levels -
in elementary schools, in secondary schools, and in colleges and 
universities. 

Professor E. Spanier wrote in 1970, in an article entitled 'The 
Undergraduate Program in Mathematics', that: 

Broadly speaking, the goal of undergraduate mathematics education 
should be to help the student to understand something about mathematics 
both in its internal structure and in its relations with other disciplines. He 
should get a feeling of the vitality of the subject and enough history to 
appreciate current trends and progress. He should have studied some areas 
of mathematics, possibly only small parts, in depth, but he should also 
obtain some sort of global view of mathematics by the time he graduates. 
These objectives are important for all mathematics majors. 

Relative to geometry, Professor Spanier writes: 

The classical geometry courses have been dwindling because they are not 
needed for graduate work. Today's teachers have been taught to distrust 
the practice of drawing a figure and using intuition as an aid in understand
ing a result. They insist on presenting a subject in the 'right' way, which 
usually means in the most abstract setting available to the teacher in 
question ... Even the most elementary properties of curves and surfaces in 
3-space can't be discussed without a machinery appropriate for general 
manifolds of n-space. 

When so much abstract machinery is presented before the student's 
intuition has developed, he may learn how a result can be proved, but he 
is unlikely to get a true understanding of the result. The most important 
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things about a theorem do not necessarily include its proof. On the con
trary, to understand a theorem one should know what it says, what moti
vates it, or why it is stated, as well as instances where it applies or does not 
apply, and some of its consequences as well as its proof. These things are 
not necessarily easy; indeed, patient step-by-step verification of a proof 
may be considerably easier: We should not be afraid to omit proofs. It is 
good pedagogy, especially in undergraduate courses, to state a theorem 
(such as Stokes' theorem) and discuss its consequences without giving 
a proof of it. 

ln his conclusion Professor Spanier says: 

It is certain that there is much room for improvement in what we are 
teaching undergraduates, and that this need lies deeper than mere re
arrangement of the curriculum. It is not clear what should be done to effect 
improvement, but unless we define our goals and recognise the defects of 
current practices, we can't even begin. 

The second paper that I found particularly interesting is Professor 
T. J. Willmore's report of his address 'Whither Geometry?' at the 
April 1970 Annual Congress of the Mathematical Association in 
England. To establish a concept of geometry Professor Willmore 
uses the following quote from the opening pages of Semple and 
Kneebone's Algebraic Curves: 

Geometry is the study of spatial relations, and in its most elementary form 
it is conceived as a systematic investigation into the properties of figures 
subsisting in the space familiar to common sense. As mathematical insight 
grows, however, the 'space' that constitutes the geometer's ultimate object 
of study is seen to be . an ideal object - an intellectual construction that 
reveals itself to be · essentially different from any possible object of naive 
intuition. Nevertheless, even the m.ost abstract geometrical thinking must 
retain some link, however attenuated, with spatial intuition, for other
wise it would be misleading to call it geometrical; and it is an historical 
fac~ that,. throughout the Jong development of mathematics, geometers 
have again and again arisen who have giyen a fresh impulse to formal 
ma.thematics • by gC?ing back once more for inspiration to the primitive 
geometrical sense. 

r shall not repeat Professor Willmore's presentation of developments 
iil Euclidean geometry, affine geometry, projective geometry, alge
braic geometry; and differential geometry - his · own speciality. 
However, his four conjectured lessons that can be learned from 
the past development of geometry seem particularly pertinent. I 
quote: 
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I suppose that the first lesson is that mathematics no longer consists of 
separate water-tight compartments, and that geometry as such is no longer 
a subject. What is important is a geometrical way of looking at a mathes 
matical situation - geometry is essentially a way of life. We have geometric 
topology, geometrical dynamics, differential and algebraic geometry, but 
not just 'geometry'. The geometry of a manifold is described by the Lie 
algebra of the group of transformations which preserves the structure, and 
it is also described by global analysis of the manifold. The ·geometric, 
algebraic and analytic structures are all inter-related. 

The second lesson to be learned is the power of invariant methods of 
describing a geometrical situation - real progress is made When one 
concentrates on geometric (invariant) properties. ,An analytical approach 
is purely formal and can easily degenerate into a morass of symbols whose 
significance is obscure. · -

The third lesson to be learned is the advantage of familiarity with 
axiomatic methods, especially with structures where the axioms do not 
form a categorical system. 

The fourth lesson .. .is that much is to be gained by detailed study of 
particular cases of mathematical situations. The theoretical edifices of 
various structures are a very important part of mathematics. But the life 
blood whichguaranteesacontinuingand vigorous development of the subject 
is to be found in trying to solve problems which present themselves naturally. 
When the problem solvers are no more, mathematics will be moribund. 

Professor Willmore then stated his view of the future of geometry. 
With reference to university level geometry he conjectured that: 

geometry as a self-contained body of knowledge will _become less im
portant, while the geometrical attitude _towards mathematics will become 
increasingly important. 

With reference to the teaching of geometry in the schools he said: 

We should certainly try to achieve the following: 
1. To give our students some idea of the nature of euclidean geometry, 

and the nature of the axioms on which it is based. 
2. To let them see that there are several different geometries of which 

euclidean geometry is only one example. 
3. To emphasize the influence of Dt:~cartes _on geometry. 
4. To use set language to describe geometrical configurations, following 

the ideas of Papy. · · · · · · · 
5. To encourage the student to make his own conjectures of results which 

might well be true. . 
6. Above all, we should try to impart to our students the intellectual 

excitement associated with geometrical discovery, and the shared 
. enjoyment of understanding the discoveries .of others. 
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As a further basis for our discussions I shall 
(1) describe my interpretation of the causes of the present status 

of geometry, 
(2) recommend a specific concept of the role of geometry, and 
(3) suggest one possible approach to the reestablishment of 

geometry as a major area of mathematical study and exploration. 
My remarks reflect primarily the situation in the United States and 

are not intended to be definitive but rather to serve as a stimulant to 
discussion. Thus I shall try to provide a framework for the considera
tion of geometry as a gateway to mathematics, an approach to 
numerous topics throughout all branches of mathematics. Those 
sharing my concern for the present role of geometry should be able 
to extend this framework readily into their own areas of special 
interest and to reinforce the framework with a substantial number 
of significant illustrative examples. 

What happened to reduce geometry to its present status? 

It seems to me that the present down-graded role of geometry has 
arisen from increasing specialisation and narrowing of our areas of 
concern. Rather than evolving with our eve-r-changing intellectual 
environment, we have again and again walled ourselves off into 
smaller and smaller areas of interest relative to the scope of mathe
matics with our students 'learning more and more about less and 
less'. Accordingly, we are in increasing danger of stagnation and 
suffocation. Incidentally, I feel that the entire discipline of mathe
matics is showing definite signs of following this same unfortunate 
path toward immobilisation by failing to be actively alert and sympa
thetic to the concerns of logicians, statisticians, teachers, and most 
recently, information scientists. 

However, let us restrict our detailed considerations to geometry. 
'A society of gentlemen' emphasised the changing nature of geo
metry in 1751 in a London publication printed for John Wilcox and 
entitled 

THE MATHEMATICIAN containing many curious dissertations on 
the rise, progress, and improvement of geometry. 

I quote from the footnote on page 2: 

Geometry, like many other sciences, has outgrown its name; it originally 
meant no more than measuring Earth, or surveying the land, as is plain 
from both its etymology and the principal use that was made of it; whereas 
now, it means the whole science of extension and magnitude, and con-
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templates the nature and properties of all kinds of figures abstractly con
sidered without any regard to matter. 

Thus the abstractions of geometry have been in progress for over 
two hundred years; they should not be blamed for the increasing 
lack of interest in geometry during the last fifty years. 

During the last fifty years topology has attained substantial 
recognition independent of geometry. The study oflinear transforma
tions has become linear algebra, which in turn has become algebra. 
Currently graph theory and combinatorics may be attaining inde
pendence. You can undoubtedly cite other examples. The point is 
that over the ages, and today, geometric concepts provided the bases 
for advances that have become separate branches of mathematics 
and geometric concepts provided the insight for explorations in 
practically all branches of mathematics. I feel that the present status 
of geometry has arisen primarily from two trends: 

(1) the spin-off of new branches of mathematics, and 
(2) the increasing recognition of the interrelations among the 

various branches of mathematics. 
I recognise that geometry is not the sole approach to the new 

branches of mathematics under consideration and geometry should 
not expect an exclusive claim to them. Assuming that geometry and 
other branches of mathematics are mutually interrelated, two 
questions remain: 

What should be our present concept of the role of geometry? 
How can students be prepared to make effective use of geometric 

concepts in their chosen careers? 

A concept of the role of geometry 

Historically a large part of mathematics was based upon geometric 
concepts and even geometric representations. The influence of 
algebra is now seen in analytic geometry,. linear algebra, algebraic 
geometry, and the somewhat restricting concept of a geometry as 
a study of invariants under a group of transformations. The influence 
of analysis is seen in differential geometry. It seems to me that there 
can be no serious question either of the value of other branches of 
mathematics in the study of geometry or of the value of geometry 
in the study of other branches of mathematics. One question to 
discuss is whether geometry inherently retains its identity as a funda
mental, recognisable area of mathematics or should be absorbed 
into other mathematical areas. 
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Professor Pedoe, in his book A Course of Geometry for Colleges 
and Universities takes as his 'main thread' 'the algebraic methods 
available for a study of elementary geometry'. I am sidestepping my 
concern for how we approach geometry and looking at the aspects 
of geometry that we would like to convey to our pupils. Indeed, 
I view the problem of the present status of geometry as in part a 
public relations problem of obtaining recognition of the advantages 
and respectability of a geometric approach. 

What is, or should be, the role of geometry today in the overall 
study and uses of mathematics? The point of view that I am suggest
ing is based upon the following three premises: 

(1) Geometry provides one or more points of view, or ways of 
looking at, nearly all areas of mathematics. 

(2) Geometric interpretations continue to provide insights leading 
to both the intuitive understanding of, and advances in, most areas of 
mathematics . . 

(3) Geometric techniques provide effective tools for solving prob
lems in most areas of mathematics. 
From these premises it seems to me that: 

geometry is an essential part of the study of mathematics at any 
level and a vital catalyst for effective use or study of any branch of 
mathematics. 
This concept of the role of geometry seems to have many implica

tions for both our classroom practices and our public relations. 
I would emphasise two general implications: 

(1) The widely publicised 'Down with Euclid' statements must be 
accepted not as synonymous with 'down with geometry' but rather 
as strong indications that geometry must be taught as a living and 
growing subject instead of a collection of ancient rules. 

(2) Geometry should be presented in such a way as to prepare the 
students to use geometry. 

• This second implication could have been taken from Oswald Veblen's 
article 'The modem approach to elementary geometry' published in 
1934. Veblen said: 

It seems to me that elementary geometry should be presented in such a way 
as to prepare the student for other sciences which he is to study later, and 
in which this 'very geometry is going to be used. This means that the 
methods of geometry should not be singular ones, peculiar to the subject 
itself, but should as far as possible be methods which can be used over 
and over again in other branches of science. · 
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Veblen was arguing for the inclusion of coordinate methods as well 
as synthetic methods. Now - nearly forty years later- we are con
cerned with both of these approaches (synthetic and coordinate). 
We are concerned with an informal intuitive approach to geometry 
(especially for ages five to thirteen). We are concerned with trans
formations and with vectors. We may still add other approaches 
in our discussions. We need to find a balance in our selections from 
the various approaches to geometry. The use of a variety of methods 
is an essential part of our desire to prepare our students to make 

· effective use of geometric concepts. 
But just what are we trying to accomplish? It would be very helpful 

if we could prepare educational objectives for our students in specific 
behavioural terms. However, such considerations would require much 
more time than we have available. As we look at the teaching of 
geometry at all levels, one major role of geometry seems to stand 
out above all others - the use of geometric representations. These 
geometric representations may be simple sketches or pictorial 
representations. Geometric representations may be at an ihf ormal 
intuitive level or part of a formal axiomatic system. ·Geometric 
representations may be interpretations using abstract geometric 
figures and their properties. At all levels geometric representations 
appear to provide the basis for the use of geometry as an approach 
to the study of mathematics. 

Think of our uses of number scales, number lines, complex planes, 
and all sorts of graphical representations. Operations with fractional 
numbers may be represented by rectangular . regions. Operations 
with complex numbers may be represented · cm a complex plane. 
Hyperbolic geometry may be represented on a Poincare model. At 
all levels the use of geometric representations provides the basis for 
using intuitive geometric concepts, applying known geometric rela
tions, and using geometric· transformations in the solution of 
problems. · 
· ·: The role of geometric representations as mathematical models of 
a wide variety of. problems provides a primary basis· for our s~lection 
of topics and methods for a geometry course. -However, we need to 
consider not only. the theorems that we would like our students to 
know but also the techniques that we would like them to be able 
to use. 

W.e would like. ()Ur studen1s .to be able to explore relations a~ong 
geometric figures using continuity and using symw~try,_ We _}Vould 
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like our students to be able to use algebra as in analytic (coordinate) 
geometry, finite geometries, and algebraic geometry. We would like 
our students to be able to use calculus as in differential geometry, 
to be able to use vectors, and to be able to use transformations that 
leave invariant the essential aspects of a problem while converting 
the geometric representation to one in which known results provide 
useful information for solving the problem. 

These objectives are mentioned to emphasise the need for a broad 
concept of geometry. This breadth is needed if students are to use 
their knowledge of geometry effectively as one approach to their 
study of mathematics. 

My own special interest in geometry is at the undergraduate level 
of the university, especially in its relation to the preparation of 
teachers for elementary and secondary schools. 

In the United States the most commonly used course for prospective 
·elementary school teachers (with students of ages five to thirteen) 
seems to be a very weak secondary school course in Euclidean geo
metry. I feel very strongly that prospective elementary school teachers 
have a serious need for experiences involving explorations in geo
metry in the pedagogical spirit that they should use in their own 
teaching. This pedagogical need is much greater than their need for 
a review ofthetheorems of secondary school geometry. I have taught 
a course based upon explorations in geometry and I strongly recom
mend such an approach.'If you are in~erested, you will find excellent 
suggestions among the current supplementary materials for elementary 
school teachers and the materials used in experimental programmes. 

Prospective secondary school teachers need a broad preparation 
in geometry since they will themselves be expected to provide a broad 
preparation for their own students. In addition to the approaches 
that have already been mentioned these students need an overall 
.view of. the place of Euclidean geometry among a wide variety of 
other geometries. For example, they might consider the hierarchy of 
geometries shown in the diagram on p. 249. The discussions of some 
of the geometries, such as the spherical and non-Euclidean geometries, 
could be quite informal. 

Carl B. Allendoerfer, in an article published in 1969 and entitled 
~The dilemma in geometry', suggests the following major objectives 
for geometry in our elementary and secondary schools: 

1. An understanding of the basic facts about geometric figures in the 
' plane and solids in space. 
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2. An understanding of the basic facts about geometric · transformations 
such as reflections, rotations, and translations. 

3. An appreciation of the deductive method. 
4. An introduction to imaginative thinking. 
5. Integration of geometric ideas with other parts of mathematics. 

I share his desire for the consideration of plane and solid geometry 
at all levels. The emphasis in the role of geometry that I have 
suggested is upon his last objective - the integration of geometric 
ideas with other parts of mathematics - but with the added objective 
of maintaining an awareness that geometry is involved. 

Topology 

Projectiv 

Affine geometry 

Similarities 

Euclidean geometry 
Hyperbolic 
geometry 

Elliptic 
geometry 

(as the 'non-Euclidean' 
geometries) 

Spherical 
geometry 

Professor Hans Freudenthal in the introduction of his book 
Mathematics Observed notes that 

The trained mathematician uses the modes of thought of mathematics at 
every turn, usually without knowing that he is doing so, or in what way. 

Our concern might be expressed as a paraphrase of that quotation: 

The trained mathematician, and each person who makes extensive 
use of mathematics, uses the modes of thought of geometry at 
nearly every turn, often without knowing that he is doing so, or 
in what way. 

The reestablishment of geometry through the recognition of the 
uses of its modes of thought should be consistent with a contem• 
porary view of mathematics as a unified subject. Again quoting 
Professor Freudenthal 
Formerly, it was possible to distinguish (with some difficulty) between 
pure and applied mathematics or between geometry, algebra, and analysis; 
today it is impossible to say where one begins and the other ends. 
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My concept of geometry as one approach to mathematics is closely 
related to my concept of a really good mathematician as an inherently 
lazy person who seeks the easiest way of accomplishing fully the 
task that he wants to do. He should be able to use geometry as one 
approach to his task. 

A suggested approach 

My suggested approach to the reestablishment of geometry as a major 
area of mathematical study and exploration is a university course 
in geometry that would provide students with a geometric point of 
view and competencies for using geometry throughout their study 
and use of mathematics. I have not written a textbook for such a 
course and do not have an existence proof that such a course is 
possible. However, an emphasis . upon the modes of thought of 
geometry, and the prerequisites for applications of geometry, could 
be the key to the reestablishment of geometry as a major mathema
tical discipline. Accordingly, I propose such a course as orte approach 
to the revitalisation of geometry. · 

Without trying to assign priorities or to structure a course, I shall 
comment briefly upon three essential ingredients of a university 
geometry course to help students prepare themselves for using 
geometry as an approach to their study of mathematics. These 
same three ingredients seem to me to underly the teaching of geometry 
at all levels. 

1 Basic facts 

Discussions of basic facts about plane and solid figures have 
dominated many of our geometry courses. Obviously facts are essen
tial. However, relative to the student's future use of facts, the manner 
in which they are presented is of critical importance. Student con
jectures and testing of their conjectures, relations among facts, and 
:recognition · of a variety of situations in which specified facts are 
applicable are very important. Also it should suffice to introduce 
many facts informally, to develop some facts deductively, and to 
explore many facts with coordinates, vectors, transformations, con
tinuity, symmetry; algebra, or calculus. Throughout our emphasis 
upon geometry as an approach to mathematics, a variety of geometric 
techniques and their applications must qe considered. Accordingly, 
a r.estriction to the style of an elegant deductive system is unacceptably 
narrow. ·· 

250 



GEOMETRY AS A GATEWAY TO MATHEMATICS 

2 The deductive method 

As indicated in Professor Allendoerfer's list of major objectives for 
school mathematics, the deductive method needs to be considered 
enough to be appreciated. At the university undergraduate level 
I feel that we tend to overemphasise the deductive method. Our 
students need to recognise the ultimate authority of the deductive 
method but they also desperately need experience in formulating 
problems, trying a variety of geometric approaches and representa
tions, and formulating conjectures that they will then test deductively. 
The deductive method is a mode of thought that has carried over 
from geometry to other branches of mathematics and other sciences. 
However, our emphasis in geometry should be not only on the use 
and appreciation of the deductive method but also on several other 
aspects of geometry. 

Poincare emphasised the insufficiency of the deductive method in 
his 'The Value of Science': 

What you gain in rigor .. . you lose in objectivity. You can rise toward 
your logical ideal only by cutting off the bonds which attach you to reality. 
Your science is infallible; but it can only remain so by imprisoning itself 
in an ivory tower and removing all relation with the external world. From 
this seclusion it must go out when it would attempt the slightest applica
tion. 

From this point of view I have been suggesting that we must go 
outside our ivory tower to revitalise the teaching of geometry. Later 
Poincare said: 

in becoming rigorous, mathematical science takes a character so artificial 
as to strike everyone; it forgets its historical origins; we see how questions 
can be answered, we no longer see how and why they are put. 

3 Geometric intuition 

The third basic ingredient on which I .wish to comment is geometric 
intuition. In his 'Science and Method' Poincare said: · · · · 

The principal aim of mathematical teaching is to develop certain faculties 
of the mind, and among these intuition . is not the least precious. It ·rs 
through it that the mathematical world remains in contact with the real 
world, and if pure mathematicians could do without it, it would always be 
necessary to have recourse to it to fill up .the chasm which separates the 
symbol from reality. The practician will always have need of it, and for 
one pure geometer, there should be a hundred practicians. 
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and later: 

For the pure geometer himself, this faculty is necessary; it is by logic one 
demonstrates, by intuition one invents. To know how to criticize is good, 
to know how to create is better. You know how to recognize if a combina
ti0n is correct; what a predicament if you have not the art of choosing 
among all the possible combinations. Logic tells us that on such and such 
a way we may be sure not to meet any obstacle; it does not say which way 
leads to the end. For that it is necessary to see from afar, and the faculty 
that teaches us to see is intuition. 

Geometric intuition provides the basis for much of Allendoerfer's 
imaginative thinking. It is one of Freudenthal's modes of thought 
that we need to find ways of developing in our students. I feel tb,at 
our own pedagogical approach is fully as significant as the mathe
matical content within which we endeavour to develop geometric 
intuition. 

Numerous topics could be suggested for a university course to 
help students use a geometric approach to their study of mathematics. 
From my own experience one topic, the topology of the real line, 
stands out as essential. The completeness of the line, continuity, the 
separation of the line by a point of it, and the order relations among 
the points of a real line are used extensively in elementary mathe
matics. In general, a broad selection of topics commensurate with 
the mathematical maturity of the student is needed. Probably dif
ferent selections of topics are needed for different groups of students. 
Throughout the treatment of these topics an emphasis upon intuitive 
concepts and upon applications of geometry should provide the 
basis for a sound geometric point of view, even though numerous 
formal details of graduate level rigour are postponed until later 
courses. 

Conclusion 

I have tried to define some of our goals while recognising that it is not 
completely clear what should be done to implement them. It may be 
that I have been wasting your time commenting upon the obvious. 
However, I hope that my presentation will have served to emphasise 
a contemporary point of view of geometry and to focus our attention 
on ways of teaching geometry to develop facility in the use of geo
metry as a gateway to mathematics. 
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The International Baccalaureate 

J.B. Morgan 

PART I-GENERAL 

1 International schools 

The need for international schools was first publicly recognised in 
1924 with the foundation of the International School of Geneva, 
largely to cater for the families of officials working in the headquarters 
of the League of Nations. Since then the steady growth of the great 
international companies and the world-wide operations of the United 
Nations has caused this pattern to be followed in many cities all over 
the world. Dozens of international schools have sprung up to cater 
for the children of a largely mobile population of families from 
overseas. Children who attend these schools come from a multitude 
of backgrounds, stay in one area for varying periods of time and have 
an enormous number of different plans for further education in 
colleges, universities and training schemes. 

International schools can now be broadly divided into two types 
of foundation: 

(i) schools whose main purpose is to serve the foreign families 
living in the area (for example, the International School of Geneva 
and the International College of Beirut); 

(ii) schools whose main purpose is to serve the cause of inter
national understanding, cooperation and peace (for example, 
Atlantic College in Wales, UK, the first of a developing chain of 
United World Colleges). 
Both types of school (and they are steadily growing closer together) 
have two main problems to solve: the design of a common syllabus to 
cater for the needs of a highly mobile population, and the provision 
of a common leaving qualification which will be acceptable to uni
versities and colleges in all countries where their students wish to 
continue their studies or begin professional training. 
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2 The International Baccalaureate 

Following a plan initially launched in 1962 by the International 
School of Geneva, in conjunction with the International Schools 
Association, various committees were formed to work out syllabuses 

· and design trial examinations. In 1965 Atlantic College joined the 
experiment, followed in 1967 by the United Nations International 
School in New York. Meanwhile, in 1966, Mr A. D. C. Peterson of 
Oxford University (UK) had been appointed Director General of 
the experiment, and a conference at Sevres, near Paris, attended by 
experts from eleven countries, led to the foundation of the Inter
national Baccalaureate Office (IBO) in Geneva. During 1968-70 there 
were many trial examinations in the separate subjects, and a Pilot 
Project was worked out for the six years 1971-6, covering a two-year 
terminal course. 

The first stage of the Pilot Project, 1971-3, is nearing completion, 
and a detailed revision of the regulations and syllabuses has been 
prepared for the second stage, 1974-6. It is intended that a complete 
(but flexible) scheme will be ready shortly after the conclusion of the 
1976 examinations for adoption by some form of inter-governmental 
agency, possibly under the guidance of UNESCO, and that the IB 
will then expand its field to take in many other schools and many 
other countries beyond the necessarily limited number who have 
taken part in the Pilot Project. 

3 The IB Diploma Programme 

To qualify for the Diploma a candidate must satisfy the examiner in 
one subject from each of the following six sections; three subjects 
must be passed at Higher Level and three at Subsidiary Level. 

(1) Language A (the working language) including a syllabus of 
world literature in translation. 

(2) Language B ( or second language A), which must be different 
from the language chosen under section 1. 

(3) Study of man; one of the following: history, geography, 
economics, philosophy, psychology, social anthropology. 

(4) Experimental sciences; one of the following : biology, physics, 
chemistry, physical science, scientific studies. 

(5) Mathematics. 
(6) Other studies; one of the following: arts (plastic arts or music), 

a third language (classical or modem), a second subject from sec-
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tion 3, a second subject from section 4, further mathematics, or a 
syllabus designed by the school and approved by the IBO. 

In addition all candidates for the Diploma must have followed a 
common course in Theory of Knowledge (including logic), and have 
engaged satisfactorily in an artistic or creative activity. The course in 
Theory of Knowledge is aimed at making the student familiar with 
the various processes of thought, and capable of understanding their 
relationships, whether the reasoning is applied to mathematics, the 
humanities, the experimental sciences, morals, the arts, or any other 
field. The freedom allowed in section 6, and in the design of certain 
optional topics (see § 10) provides each school with the opportunity 
of making the fullest possible use of local interests, resources and 
teaching talent. 

The plan is based on the principle that 'learning how to learn' has 
now become the prime function of school education, and, in particu
lar, pays special regard to: 

(i) the need for a broad general education, firmly establishing the 
student in the use of 'tools' he will need whatever the career he 
chooses to follow ; 

(ii) as flexible as possible a choice among the subjects to be studied, 
so that, subject to (i), the student's options correspond as far as 
possible to his particular interests and capacities. 

Students who do not need to follow the full Diploma course may 
offer single subjects, and there is then no restriction upon their 
choice except feasibility within their school programme. The IBO 
awards certificates for such subjects, showing the grade in each case. 

4 Assessment 

Each subject is individually assessed by the Chief Examiner on a scale 
rising from Grade 1 (very poor) to Grade 7 (excellent). To gain 
a Diploma, a candidate must have been awarded a mark of at least 4 
in each of the six subjects examined. A system of cross-compensation 
allows lower marks in one or two subjects to be counterbalanced 
by higher marks in others, while a mark of 6 or 7 in the Theory 
of Knowledge course adds one point to the candidate's total. 

Different methods of assessment are used by the examiners in the 
various subjects. At present six types of assessment are used, but 
experiments are carried out each year and the present position is 
very fluid; the six types are: 

(1) Independent research (higher level only); an extended essay 
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in language A and history, and field work in geography, followed by 
an oral examination; in other subjects independent work is optional. 

(2) Written examinations; these are held towards the end of May 
and include essays, short answer questions and multiple choice 
objective tests. 

(3) Oral examinations; in language A these are traditional face~ 
to-face orals, but in most other subjects tape recordings are used. 

( 4) Practical assessment; assessment of practical work in sciences 
is based on a combination of teachers' continuous assessment, school 
inspections and evaluation of experiments presented by film; in art, 
dossiers and slides are submitted to a panel of examiners. 

(5) Listening comprehension test; taped conversations and prose 
extracts upon which short written replies are based (mostly language 
B). 

(6) School assessment of the student during the 2-year 1B course 
is taken into consideration by the Chief Examiner in each subject; it 
is also used for the Theory of Knowledge and Aesthetic Activities 
courses, and for special school syllabuses under Other Studies 
(with moderation by a visiting examiner). 

5 Research unit 

A special research unit, located at Oxford University, prepares 
detailed statistical reports for the information of participating 
schools, the IBO, examiners and members of the Council of Founda
tion (which is responsible for the general direction and administra
tion of the IB). Details analysed include the correlation between 
school assessment and 1B grades, the distribution of 1B grades (rising 
from 1 to 7) by subjects and by schools, and the progress of IB 
candidates in their subsequent studies. 

6 University recognition 

In the past international schools have, in broad terms, adopted one 
of the two methods described below in order to provide their students 
with the qualifications necessary for admission to the university and 
faculty of their choice: 

(i) Upper forms were divided into separate groups, each group 
working towards the objective laid down by a particular country; 
this method defeats the aims of truly international schools and leads 
to an expensive duplication of teaching staff. 

(ii) All students were prepared for the leaving qualification of the 
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host country and admission requirements were negotiated with 
individual countries or universities; this method defeated the aim 
of mobility and led to an impossible burden of secretarial work. 

The IBO has therefore made approaches to many countries and 
universities, and in May 1972 there were already twenty-nine 
countries in which universities recognised the 1B Diploma within the 
framework of their own regulations for admission. Two examples 
are given: in the UK all universities recognise the 1B for all applicants, 
although a particular faculty may make special requirements in 
relation to subjects chosen and grades awarded; in France the uni
versities recognise the IB for all foreigners and for all French students 
whose parents have been living abroad for at least two years. 

The list of countries and universities is growing steadily, but the 
arrangements will have to be re-negotiated in many cases at the end 
of the Pilot Project in 1976. Details are given in the General Guide 
(see§ 13). 

PART II- MATHEMATICS 

7 Special problems relating to mathematics 

(i) The background and technical skills of students vary greatly 
both in quality and nature; this variation is due not only to the 
personal interests and experience of the students but also to the differing 
speeds and directions of development of mathematical courses in 
different countries. 

(ii) The aims and destinations of students, whether they relate to 
further education or to careers, are far more varied than in national 
schools; so are the views of their parents. 

(iii) The qualifications required by colleges and universities in 
different countries vary considerably both in level of attainment and 
in the type of thinking required. 

8 Aims of the syllabuses 

(a) The teacher is required: 
(i) to develop the student's understanding of mathematics as an 

academic discipline; 
(ii) to develop an attitude to mathematics in the student favourable 

to subsequent learning and application of the subject; 
(iii) to develop the student's ability to learn mathematics on his 

own; 
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(iv) to encourage those students who lack confidence in their own 
knowledge of mathematics and experience in the subject. 
(b) The examiner is required to assess the student's 

(i) knowledge of mathematical concepts and essential terminology; 
(ii) ability to formulate proofs of some of the theorems about 

these concepts; 
(iii) ability to represent situations in mathematical terms (mathe

matical models), to examine their implications and possibilities, and 
to arrive at definite conclusions by the application of mathematics 
as a tool. 

9 General considerations 

Mathematics is a compulsory subject in the IB. It may be offered at 
Higher Level, Subsidiary Level A or Subsidiary Level B. There is 
also a subsidiary subject, Further Mathematics, intended mainly for 
those students who intend to read mathematics at the university. 

Higher Level is intended for students who have good mathematical 
ability and especially for those who will need the subject in their 
future studies. 

Subsidiary Level A is designed to provide a background of mathe
matical thought sufficient for students planning to pursue university 
studies in science, economics, and so on. 

Subsidiary Level Bis designed for students who, for the purpose of 
admission to colleges and universities, offer a combination of sub
jects which may not include mathematics, and for those not intending 
immediately to continue their formal academic studies; it is part of 
IB policy that all diploma candidates should continue to study 
mathematics while at school as part of their general education. 

Further Mathematics may be offered under Other Studies of the 
general programme as a separate subsidiary subject, but only by 
candidates who enter for the Higher Level. 

10 Design of the IIlgher and Subsidiary Levels 

At each level, except Further Mathematics, the syllabus is divided 
into two sections: section 1 is the core of the respective syllabus and 
is compulsory; section 2 contains optional topics from which a selec
tion must be made. In addition to the options in section 2 schools 
may submit topics of their own design for approval by the Chief 
Examiner in Mathematics. 

Logic has been excluded from the core section in each case because 
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it is included in the Theory of Knowledge course which is compulsory 
for all students who enter for the IB Diploma, but it occurs as an 
option at Subsidiary Level, mainly for the benefit of those students 
who are taking only a Certificate course. 

Both Subsidiary Levels, A and B, have a list of items of preliminary 
knowledge required, as a guide to teachers in drawing up their 
individual schemes of preparation in mathematics for the years 
preceding the IB course. 

At all levels the syllabus includes a few topics, marked with an 
asterisk, which it is hoped teachers will include in their courses, but 
which will not be examined. It is also possible for teachers to allow 
their quicker students to work on additional topics in section 2, and 
it is felt that this provides a good opportunity for individual work. 

To illustrate the range of topics included, the main headings occur
ring in the Higher Level and Subsidiary Level A syllabuses are 
reproduced below. 

Higher Level 
All candidates must have studied section 1 of Subsidiary Level A. Candi
dates are expected to choose at least three options in section 2. 

Section 1 1. Mathematical induction. 2. Sets, relations, mappings and 
algebraic structure. 3. Particular functions. 4. Polynomials. 5. Ana
lytical geometry. 6. Differential calculus. 7. Integral calculus. 8. Vec
tors. 9. Matrices. 10. Complex numbers. 

Section 2 1. Statistics and Probability. 2. Linear algebra and geometry. 
3. Analysis and differential equations. 4. Mechanics. 5. Numerical 
calculations. 6. Theory of numbers. 7. Geometry. 8. Further cal• 
culus. (OR an individual topic.) 

Subsidiary Level A 
Candidates are expected to choose at least two options in section 2. 
Section 1 1. Sets. 2. Relations. 3. Number. 4. Numerical calculations. 

5. Algebra. 6. Trigonometry. 7. Vectors. 8. Matrices. 9. Functions. 
10. Calculus. 11. Probability. 12. Statistics. 

Section 2 1. Algebraic concepts. 2. Geometry. 3. Calculus. 4. Busi
ness mathematics. 5. Probability and statistics. 6. Logic. 7. Vectors. 
(OR an individual topic.) 

11 Syllabus revision 

The IB policy is one of continuous consultation with schools and 
revision of details of syllabus and examination, with a major revision 
between stages 1 and 2 of the Pilot Project. This major revision began 
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with a conference in Oxford (October 1971) attended by teachers, 
examiners and advisers. Between November 1971 and February 1972 
the draft syllabuses were circulated, and there was considerable 
correspondence with schools. In February and March 1972 several 
schools which had not attended the Oxford conference were visited, 

· and in March 1972 a final drafting panel (Chief Examiner and two 
assistant examiners, one English and one French) met in Geneva, 
with help from the IBO staff. Altogether four new syllabuses, each 
in two languages, were drafted, aimed at meeting the wishes of 
twenty-two schools in eleven countries. The new syllabuses will be 
examined in 1974. 

12 Annual Consultative Conference 

This is convened (usually once a year) to advise on all educational 
matters. Its members are representatives of the teaching staff and 
students of participating schools, members of the Executive Com
mittee and Research Unit, examiners, interested observers and 
specialists. Working groups discuss individual subjects and special 
problems. 

13 Information 
Further details can be obtained from the following sources: 

(i) The Director General: Mr A. D. C. Peterson, Department of 
Educational Studies, Oxford University, 15 Norham Gardens, 
Oxford, UK. 

(ii) The Director of the International Baccalaureate Office: 
M. Gerard Renaud, 1 rue Albert-Gos, 1206 Geneva, Switzerland. 
Chief Examiners can be contacted through M. Renaud. 

(iii) The Research Director is Dr W. D. Halls, IBO Research Unit, 
15 Norham Gardens, Oxford, UK. 

(iv) The official General Guide to the International Baccalaureate, 
which contains full details of all syllabuses, can be obtained from 
M. Renaud, at IBO Geneva. 

(v) The book, International Baccalaureate, by Mr A. D. C. Peter
son, deals more fully with the philosophy, aims and future of the IB; 
it is published by G. G. Harrap & Co. Ltd. 
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The role of axioms 
in contemporary mathematics and in 

mathematical education 

Toshio Shibata 

1 What do we mean by 'Axiomatics'? 

Modern mathematics, as it has developed during the last century and 
is still progressing, is characterised both by the axiomatic method 
and a tendency to abstractness. There are two types of mathematics 
constructed axiomatically, namely, categorical and non-categoricaP 
theories. Examples of the former are Euclidean geometry and the 
theory of the natural numbers, and of the latter, group, ring, field, 
vector space and metric space. Roughly speaking, the former is an 
axiomatisation of a substance - an entity - and the latter is an 
abstraction of a structure. 

A categorical theory can be constructed in two different ways. One 
way is to discover the essential basis, look for the foundation of a 
theory, and axiomatise the theory. This is in the spirit of Euclid and 
Hilbert and may be called the historical development. Historical 
Euclidean geometry, Hilbert's rigorous theory and Peano's theory of 
the naturals are examples of this historical development. 

The other way is as follows. First, we break down a theory into 
essential pieces, observe some similarity in different theories, and 
abstract a common structure. Thus we obtain a non-categorical 
theory. Next, we organise several non-categorical theories to charac
terise a categorical theory. This is in the spirit of modern mathematics 
and may be called the modern development. Thus, an approach in 
which the Euclidean plane is characterised as a two-dimensional 
linear space with an inner product typifies this development. 

Though it is very difficult to visualise this feature of mathematics, 
or the process of mathematisation just mentioned, we may sum
marise it as in diagram 1. (See also appendix § 1.) 

One of the purposes of mathematics education is to give students 
1 An axiom system is said to be categorical if every two models of the system are 

isomorphic. 
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Concrete materials 
Actual world 

\fathematisation 
(Informal) Application 

INFORMAL THEORY 

Application I Theorems I 

Axiomatisation 
(Historical 

~-----'----~development) 
AXIOM 

(Relation between 
undefined terms) 

CATEGORICAL THEORY 

Deduction 

I Axioms I 

I 

NON-CATEGORICAL THEORY 

Characterisation 
(Modern development) 

Diagram 1 

an answer to the question 'What is mathematics?'. School mathe
matics should not be an account of already-completed mathematics 
and, in my opinion, school mathematics should not be developed 
axiomatically from the beginning. It is more important for students 
to understand the processes of constructing mathematics, that is, the 
processes of axiomatisation and abstraction, including the progres
sion from concrete materials to informal theories. In particular, there 
will be many differences between the way in which one approaches 
the historical development of a categorical theory and that in which 
one introduces the modem development through non-categorical 
theories. I discuss these differences and point out some problems 
which arise in teaching axiomatics in the following sections. 

2 How should we approach non-categorical theory in school 
mathematics? 

The development of a non-categorical theory goes as follows. 
First, we observe several concrete theories occurring in different 
branches from one viewpoint, attempt to discover some similarity 
and abstract a structure by axiomatising. Secondly, we deduce some 
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I Counting I 
Measurement 

t 
Natural numbers Group 
Integers Ring 
Rational numbers Field 
Real numbers Ordered set 
Complex numbers '¥ 

t Conditionally complete 
I PEANo ' s AXIOMS I ordered field 

- REAL NUMBERS 

Diagram 1 applied to the world of numbers 

Observation 
Experiment 

Informal geometry 
Plane geometry 
Solid geometry 
Analytic geometry 

HILBERT'S AXIOMS 

Linear space 
Metric space 
Normed space 
Hilbert space 

2- or 3-dim. inner product 
space - EUCLIDEAN SPACE 

Diagram 1 applied to the world of figures 

useful theorems from the axioms obtained. Thirdly and finally, we 
apply these theorems to a concrete theory. Briefly speaking, there are 
three stages, abstraction, deduction and application. The simpler 
a system of axioms is, the more concrete theories are included in it 
and the wider the applications will be. An axiom system ought to be 
meaningful so that we are able to obtain rich consequences from it. 
Moreover, the significance of teaching non-categorical theory will be 
lost unless the circuit of the above three stages: abstraction, deduction 
and application, is completed. Considerable background experience 
is necessary if the abstraction stage is to be understood and sufficient 
training in deductive thinking is essential at the deduction stage. If 
knowledge of concrete theory is lacking, then it is impossible to 
develop the application stage. 

For example, after careful observation of the properties of 
operations such as addition, multiplication, permutation and trans
formation, we abstract the concept of a group. We then deduce, for 
example, Lagrange's theorem on the order of a subgroup which is 
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applied to the classification of symmetries, In this application stage 
we need some correct knowledge about figures. _ 

One more example (at the university level): after obtaining con
siderable knowledge about real numbers and elementary geometry, 
we abstract the concept of a metric space and define the concept of 
completeness. Then we may easily deduce the Contraction Mapping 
Theorem in a complete metric space. The theorem has remarkable 
applications such as the existence theorem of the solution of a 
differential equation. In this application stage, we need much know
ledge about continuous functions. 

Although many materials have been devised so as to permit the 
abstraction stage for several structures to be considered at a school 
level, such an introduction must be accompanied with other rich 
experiences in order to avoid, say, the too hasty abstraction of the 
group concept before the students have met examples of non. 
commutative cases. Furthermore, even when the above condition is 
fulfilled, we still need more new materials which can stimulate 
meaningful deduction, resulting in significant applications which 
are new to our students. It is obvious that the deduction stage is 
important, but, for instance, a mere examination of a set of equivalent 
axioms for a group, is, I think, meaningless to our students. 

The activity of thinking mathematically may be regarded as 
starting with observations and experiments on concrete materials 
followed by classifications and arrangements. All of these processes 
are repeated gradually in a developmental way as students become 
more mature. This may be regarded as building the foundations for 
the abstraction stage. 

It seems to be a recent tendency to introduce an abstract concept 
such as that of a group into the early stages. Certainly, it is desirable 
to observe concrete materials from an abstract viewpoint such as 
those of the set and group concepts if by so doing we help students to 
understand essential properties of the materials; and the group con
cept will be the most suitable one through which to approach 
non-categorical theory. 

However, the introduction of an abstract concept is only the first 
of my three stages, and if there are not the materials available to 
allow one to complete all three of these, it would be better to replace 
a hasty abstraction by the collection of other materials, further 
experiences and more varied viewpoints.1 

1 Cf. appendix § 2. 
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3 What significance does categorical theory have in school 
mathematics? 

As I have mentioned already, a categorical theory is developed in 
two different ways, that is, the historical development and the modern 
development. The latter is a product of this century and it is especially 
attractive for mathematicians. It might be a royal road leading to 
a theoretical construction of mathematics, but before entering upon 
it, suitable analysis of its characteristics is essential and we should 
be aware that we shall not be able to drive on it without a thorough 
understanding of non-categorical theories. There might be some 
significance in characterising an object, but, in my opinion, the con
tents of a theory are more important for our students than is its 
framework. The modem development of a categorical theory is a 
matter to be handled at the university level. 

The method of the historical development of a categorical theory 
is a suitable way in which to obtain a good understanding of the 
contents of the theory. In a definite world, for example, in the world 
of numbers or that of figures, we observe many properties and deduce 
some properties from those previously known. We examine the 
process of deduction and do some reverse thinking, step by step. 
After these considerations we attempt to seek foundations for the 
theory. Lastly, we fix the essential basis, axioms. Though it is difficult 
to demonstrate rigorously a historical development of a categorical 
theory, it is desirable that the method of the historical construction 
of mathematics be known. An understanding of this method enables 
students not only to gain accurate knowledge of a subject but also 
to learn meaningful deductive thinking. Such activities may be needed 
to understand non-categorical theory and the mo4ern development 
of a categorical theory. 

There are two outstanding examples of the historical development 
of a categorical theory, namely, Peano's theory and that of Euclid 
and Hilbert. Numbers and figures have been matters of great concern 
for human beings from ancient times until the present, and these two 
subjects are axiomatised and completed by these two famous theories. 

It would be wonderful for students to know that the world of 
numbers can be constructed using only the five axioms of Peano. 
However, the road of construction is so long. The frequent recourse 
to mathematical induction is too dull and the classification according 
to an equivalence relation at too high a level of abstraction for 
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students. If we are to treat Peano's theory in school mathematics, it 
will be as an example of inductive definition or as a story of the 
axiomatic development of the world of numbers. 

On the other hand, it may be strange for students to know that 
point and straight line are undefined terms. It will also be more 
difficult for them to understand Hilbert's axiom system and, in 
particular, the role of the axiom of continuity, even at the university 
level. However, if we recognise the importance of illustrating the 
historical development of a categorical theory in order that our 
students should understand how to organise a theory systematically, 
then I think geometry is a better medium than algebra. 

Comparing the world of numbers and that of figures in school 
mathematics, the development of the former is rather simple and 
straightforward starting from counting, or natural numbers, while 
that of the latter is complicated, starting from the observation of 
several figures, other than a point or a straight line. Students have 
been familiar with certain properties of numbers since their pre
school stage and there will be no necessity to analyse these properties 
for them. On the other hand, there are many viewpoints on how to 
analyse figures, for example, size, shape and position, and many 
properties of figures which depend on different foundations are 
obtained by intuitive consideration and experimental activities. 
There will naturally be a need to analyse these properties. It is 
important to know how to find a simple approach in such com
plicated situations. 

Moreover, it is very important to know the meaning of proof. In 
geometry, we can consider some deductive relationship of several 
properties by first observing drawn figures. Geometry is thus a suit
able medium in which to foster meaningful, deductive thinking and 
an understanding of the essence of proof.1 

To summarise, therefore: 
Axiomatics can be classified into three types: 
non-categorical theory, categorical theory developed in a 'modern' 
way and categorical theory developed in a 'historical' way. 

For teaching non-categorical theory, which has three stages, 
abstraction, deduction and application, we have to develop suitable 
materials which will allow the student to complete all three stages. 
It is better to approach the historical development of a categorical 
theory through geometry than through algebra. 

1 Cf. appendix §3. 
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Appendix Some supplementary thoughts1 

I Some additional notes on diagram I (p. 263) 

The various blocks of the diagram are built up in a particular order 
which I explain below. To facilitate the explanation, in the accom
panying figures each block is represented only in outline. 

First: figure 1 shows the world of so-
called school mathematics. Here there 
are three stages: 

(I) Mathematisation from the actual 
world to a more theoretical world. 

(2) Development of informal mathe
matics. 

(3) Application to concrete materials. 
At stages I and 3, activities such as 

abstraction or formalisation are repeated. 
Experience and intuition will play import
ant parts here. 

Fig. 1 

Stage 2 provides repeated opportunities for deductive and inductive 
thinking, in an informal sense. 

This three-stage circuit is developed gradually. Thus school mathe
matics will be constructed step by step. 

Next (see figure 2): About 2000 years ago, Euclid produced his 
axiom system. At the end of the nineteenth century, Hilbert re
organised Euclidean geometry from a more 
rigorous standpoint and opened the door 
of axiomatics, the characteristic of modern 
mathematics. 

In the world of numbers, Peano com
pleted his axiom system for the natural 
numbers. 

These theories were constructed by 
seeking for foundations in a definite 
world, those of figures or numbers. Each 
of them is an example of the historical 
development of a categorical theory and 
can be said to be an axiomatisation of a 
'substance'. 

Fig. 2 

1 The material in this appendix was discussed by Professor Shibata at a meeting 
of the working group on Contemporary Presentations of Geometry at School 
and University Level. 
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Thirdly (see figure 3): 'Modern mathematics' has approached 
mathematics in a completely different way. It breaks down various 
objects into their essential parts and abstracts a common structure. 
Different abstract theories such as group theory or metric space 
theory are constructed and applied to many concrete theories. 

Fig. 3 

The circuit of the three stages, abstraction, deduction and applica
tion, is similar to that of the school mathematics construction, men
tioned above, although more rigorous. 

Fig. 4 

Last (see figure 4): A definite world is characterised by organising 
several non-categorical theories. This is a modern development of 
mathematics. 

The historical development of mathematics and the modern 
abstraction of structure are the warp and woof, the latitude and 
longitude of the theoretical construction of mathematics. 
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The diagrams on p. 264 show how these ideas can be applied to the 
world of numbers and that of figures. 

Which should we stress, historical development or modern develop
ment, axiomatisation of a substance or abstraction of a structure? 

These two aspects have different natures; we can neglect neither 
of them. 

2 Some subjects related to non-categorical theory in school mathematics 

As I mentioned in section 2, there is much in school mathematics 
from which we can abstract some structure. The outstanding problem, 
though, is whether we shall then be able to treat some meaningful 
theorems or not. 

I shall list some of the material in the following table. It is regret
table that there are so few items in the column labelled 'Theorem ' . 

Basic material Abstract concept Theorem 

Various operations on Group On the order of 
numbers, figures a subgroup 

Integers, polynomials Integral domain LCM,GCD 
Large and small in Ordered set, lattice 
numbers 

Set inclusion Boolean algebra 

Rational numbers Field 
Real numbers 
Complex numbers 
Various operations on Linear space 
numbers, vectors, 
functions 

Distance in 2- or 3-D Metric space 
space 

Convergence 
Uncertain events Probability 
Dice experiments 

3 An example of a development of plane geometry 

Here, I give an example of how we can handle and analyse properties 
of figures using a well-known theorem. I shall illustrate this dia
grammatically and add a few words of explanation. 

In elementary school, students are able to obtain property (1) in 
the following diagram, by cutting a triangular piece of paper, and 
they may then solve problem (2) easily. 

In secondary school, after obtaining a knowledge of parallel lines, 
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Sum of interior angles 
of a triangle is ·1so0

• 

A 

_,./\ A+B+C= 180° 

BL_jc 

Existence of parallel lines 
If the alternate interior angles 
obtained when a straight line 
intersects two given straight 
lines are congruent, then the 
two lines are parallel. 

/~ m fl 11. = /J ⇒ l ll m 

Uniqueness of straight line 
joining given two points. 

p Q 
- -

(Ax10m of INCIDENCE) 

(2) 

====> 

Sum of interior angles 
of a polygon. 

A 

Bo: A+B+C+D+E+F=? 

~ 
C D 

(4) Uniqueness of parallel lines 
The alternate interior angles 
obtained when a straight line 
intersects given parallel 
lines are congruent to each other. 

~~ / IJm ⇒ y .. S 

(Axiom of PARALLEL LINES) 

(6) Congruence of two triangles 
A A' 

B~B~C' 

AB -= A'B' } 
AC -= A'C' ⇒ t:,ABC -= t:,A'B'C' 
LA = LA' 

(Axiom of CONGRUENCE) 

the student will prove property (1) by drawing a straight line through 
point A which is parallel to the line BC. Careful examination of the 
proof will reveal that its foundations lie in facts (3) and ( 4). These 
two propositions are mutually converse and proposition (4) is 
nothing other than the so-called axiom of parallel lines. 

At a more advanced level, perhaps in upper secondary school, 
property (3) may be proved by reductio ad absurdum. The basis of the 
proof is facts (5) and (6); fact (5) being one of the axioms of incidence 
and (6) being one of the axioms of congruence. 

In this way, starting with a familiar property, we are able to go 
back and search for an essential basis step by step. 

This work was supported by a grant from the Japanese Ministry of 
Education. 
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Implications of the work of Piaget in the 
training of students to teach primary 

mathematics 

Mary Sime 

Introductory remarks 

Many mathematicians, whatever their feelings about 'New Mathe
matics' still love to start with axioms. Therefore I hope to capture 
your attention by offering you three axioms as a starting point to this 
paper. While to me the following statements are self evident, it may 
well be that to some of you they are not. Nevertheless, I give them to 
you as axioms. 

The first is that mathematics should be enjoyed. I would consider 
that many teachers in the last few decades have tried to make it so 
by enriching primary school children's lives with plentiful, enjoyable 
experiences in true 'pre-mathematics ',1 as contrasted to a drilling 
in 'sums', thus laying a foundation for both emotional and intellec
tual appreciation of the subject. 

I also take as an axiom that there are five 'cornerstones' of learning 
of which mathematics is one. The others would be language, move
ment, some form of scientific exploration and some work that is 
normally considered creative. (This statement is difficult to word 
unambiguously since, to some of us, mathematics is creative.) These 
five cornerstones are vitally important in early education since, as 
well as being of maximum value in their own right, they are the 
essential tools of all future learning. Hence, in the integrated work 
that goes on in many of our primary schools their contribution is 
of double worth. 

My third axiom would be that trainee teachers need to be given 
an understanding both of mathematics and of how children form 
mathematical concepts and mathematical habits of thought. From 
this axiom I wish, later in the paper, to develop the line of thought 
1 I am being a purist and playing safe in this conference of very real mathema-

ticians by calling the concrete explorations of children towards mathematics, 
before the age of hypothetical thinking, 'pre-mathematics' as mathematics 
itself is abstract. 

272 



IMPLICATIONS OF PIAGET'S WORK 

that the Piagetian theory of developmental psychology sees mathe
matical form (coming to a climax in group and lattice form) in the 
intellectual activity of the adult brain. Consequently it seems that the 
concurrent and even integrated study of mathematics and of Piagetian 
theory can enrich and clarify, for any student, both the mathematics 
and the developmental psychology. 

If I may invent the word 'sub-axiom' I would slip one in here. 
Psychology has not been truly studied unless it can be applied. Far 
too many students divorce their study lamentably from classroom 
work. Therefore, just as the primary school child needs plentiful 
experience in pre-mathematics, so a student needs experience in 
diagnostic testing (a la Piaget) and of attempting, under tutorial 
guidance, to relate his teaching to the results of the testing. To this 
one must add a 'caveat'. In the schools teachers will not have clinical 
conditions in which to do Piagetian testing. Unless, in the colleges, 
students are given experience in adapting the testing to non-clinical 
conditions most will cease to do such diagnostic work once they 
qualify. This is also a theme I shall develop later. 

After these few introductory remarks may I turn now to enlarging 
on them by examining the challenges to be found in first infant1 and 
then junior2 schools. 

The challenges in the infants' classroom 

Piaget calls infancy the 'intuitive period'. It is a period during which, 
above all else, the child needs to be precipitated into a wealth of 
experiences with carefully chosen materials so as to enable him to 
abstract from those experiences properties that are themselves 
abstract. So he will form concepts and also develop the logic skills of 
classification and seriation. 

Amongst the earliest preconcepts to develop into concepts are 
those of number (Piaget [l]), of area (Piaget [2]), of sequence 
(Piaget [2]), of the horizontality of the surface of liquids (Piaget [2]), 
and so forth. I stress that they develop through experiences and not 
through the materials themselves. Materials that are not manipulated 
are 'dead materials': those that motivate to activity bring seething 
life into an infants' classroom. A good student will foresee and plan 
for them to bring the maximum benefit. 
1 UK equivalent of USA grade KG and grade 1. 
1 UK equivalent of USA grades 2, 3, 4, 5 and possibly 6. 'Primary' is UK 

equivalent of USA KG to grade 5 or 6. 
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So, in providing materials that have properties relevant to the 
concepts that children should be forming I would suggest students 
need to consider, too, the play-element that such materials can be 
expected to provide. Hence my words 'carefully chosen materials'. 
To satisfy those who prefer all work to be offered open-ended, I would 
modify my words only to this extent. Certainly an infant will learn 
from all experiences, whether foreseen or not. The occasional lazy 
student will try to escape preparation on these grounds. But we are 
asking for optimum learning with a strong element of the 'corner
stones' in it and in this paper we are pin-pointing the mathematics 
'cornerstone'. For this either the experiences need to be foreseen 
and the materials carefully chosen or the student needs to be very 
well grounded in mathematics and very astute at recognising and 
exploiting the mathematical elements in any situation. Most students 
are not secure enough in their mathematics to take the second of these 
two courses, so they need to plan ahead, taking into consideration 
Piaget's theories. Careful initial planning does not inhibit a later 
development into open-endedness if the students or the children see 
further tempting fields of investigation opening out. 

Many of us know of the materials encouraged in the UK by Edith 
Biggs and by the Nuffield Project, and it is not hard to imagine the 
enjoyment which they give to children. The teacher is hard put to it 
to supply sufficient of such wisely chosen materials from which 
mathematical experiences can grow, and - this is my next crucial 
point - from which results of the experiences can be recorded mathe
matically by some such method as block graphs or Papygrams or 
any other early form of the written language of mathematics. 

Together with this pre-applied-mathematics the infant needs, too, 
experience with the beauty of the symmetry and rhythm in geometri
cal plane and solid shapes. Manipulating them will plant in the child 
an intuitive appreciation of geometrical form. Is an infant too young 
for preconceptual learning of transformation geometry through tiling 
patterns? I think not. Similarly one can encourage one's students to 
introduce into the infants' classroom toys that prepare the ground 
for mappings, for sets, for equations and so forth. As preconcepts of 
these gradually develop into concepts one may encourage children 
to talk in mathematical terms. 

Parallel with all this is the mathematics that can be absorbed 
through structured apparatus. Cuisenaire rods, in their imperceptible 
way, help a child forward to the abstractions of length, relationships 
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and number and also, concurrently, to the logic skills of classification 
and seriation (see Piaget [3]). Logic blocks, seen as fun, promote the 
skill of classification, sometimes to the pitch of cla~sification by 
negation. 

What of the student? At the infant stage many a child can absorb 
happily more pre-mathematics than many a student has on entering 
college. And it is such a student who, more often than not, chooses 
primary teaching as a career. Untutored he could do irreparable 
harm. And he cannot be allowed to avoid mathematics for he would 
impoverish the intellectual lives of generations of children. So he 
needs careful tutoring in mathematics. Even more, I think, he can 
benefit from a good tutoring on Piagetian theories, for much of the 
mathematics that he needs will be absorbed, incidentally, as he 
practises Piagetian testing. Many a student has come to me after 
carrying out the well-known, very simple tests, such as any of those 
on sequence (the linen line) (Piaget [2]), area (the cows and the fields 
and houses) (Piaget [2]) or any of those on number (Piaget [l]) or 
classification (Piaget [3]) and has remarked that he was just becoming 
conscious of forming the appropriate concept himself. I have often 
suspected that, as well as having diagnostic value, Piagetian tests 
have a teaching value for the child though, so far as I know, Piaget 
himself does not claim it. Certainly the non-mathematical student 
seems to learn mathematics as well as developmental psychology 
from them. 

I think this is for two reasons. The very indirectness of the mathe
matics learning is a help. For one thing, as he focuses his attention 
primarily on the developmental psychology of the child and only 
obliquely on the mathematics involved, the student loses the inhibi
tions and the fears set up in him by poor teaching in his own school 
days. The first few examples of success are sufficient for him to break 
through his anxiety barrier. Also, he sees the child's struggles at the 
middle Piagetian stages and perhaps identifies himself with the child. 
So he learns with the child, loses his fears, takes an interest in 
exploring more mathematics which inspires him to more Piaget and 
so on to more mathematics. An ever widening spiral of learning has 
been set up. 

A mathematics and an education tutor, cooperating, can now lead 
such a student to explore further afield in both areas and help him to 
become an excellent primary teacher. A colleague and I have now 
enjoyed such close cooperation and integration of our work for six 
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years. Our students, conscious of our happy cooperation, have also 
gained in the sense of security it has given them. 

I have mentioned this point as I speak of work in the infant 
school. It applies equally well in the junior school situation and 
I tum to that now. 

The challenge in the junior classroom 

Juniors, most of whom are at the ' concrete operational' stage, need 
a teacher to provide them with constant experiences that will satisfy 
their natural urge to exercise their early concepts, now securely 
formed, in reasoning out problems as they manipulate materials. 
Similarly they need to exercise their now fast maturing skills in 
classification and seriation but this, too, with the help of concrete 
materials. They cannot yet work from the abstract to the particular. 
As they find answers to problems they can demonstrate these answers 
but they cannot prove them. To ask it of them would muddle their 
thinking. They are still forming the late developing concepts such as 
those of weight and of volume. Above all, through the activities and 
concrete reasoning that I have just described, they are beginning to 
tread out the paths of intellectual patterns of thought that should 
be abstracted into formal concepts in their adolescence. 

Let us add to this the simple fact that junior children are at an age 
at which they most enjoy working in small groups and sharing 
problems, responsibilities, decisions and successes (Piaget [4]). Conse• 
quently, if the teacher harnesses this trait in their psychology by 
inviting them to work in such groups, their learning will be cumula• 
tive as they discuss and argue about their efforts and discoveries. 

These facts led me to encourage my students to create learning 
situations in junior schools in which the student could foresee specific 
potential developments that have distinct mathematical value. Much 
of the learning is oblique. Very simply I will mention two such 
projects carried out by first year students in my presence. Incidentally, 
the students were also working in teams of about six. I find that such 
small teams, if well knit, benefit as junior children would do from the 
cumulative effect of discussion during preparation and from a later 
pooling of their observations and classroom experiences. 

One of the projects1 was the building of a two-roomed Wendy 
House out of an enormous crate. It had viable hot water and elec• 
1 Both projects are described in full in Sime [l], as is the testing on 'horizontality' 

described briefly on p. 281. 
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tricity systems, geometrically accurate doors, windows, eaves and 
so forth and a floor rich in transformation geometry. The other pro
ject was a carefully prepared measuring up and scale modelling of 
Stonehenge by a class of nine-year-old children. In this the students 
were aiming at the oblique teaching of scale, of angles, of triangula
tion and at the formation of the late developing concepts of weight 
and volume. This project became open-ended and the children moved 
on to a study of leverages and tensions. 

Learning situations that are shallow in content, but yet might give 
the casual impression of being of the same value as the two just 
mentioned could have been planned empirically by students and have 
had little learning value in them. In students' classes one meets in
numerable jerry-built Wendy Houses and many approximate models 
of Stonehenge, copied merely from pictures in books and with no 
measuring or reasoning or calculation and no oblique learning 
having been brought into play. I think it is obvious where and how 
an understanding of the Piagetian stage can influence the bringing 
of oblique, sound learning into the more carefully planned project 
work. 

One could go on indefinitely suggesting similar projects both 
closed- and open-ended, all rich in mathematical content and in 
concrete reasoning .. These would all be examples of what I called in 
my introduction 'mathematics for enjoyment in its own right'. Now 
may I turn to junior school pre-mathematics as a root of future 
learning, coupling this with a mention of the formal concepts that 
I promised to enlarge upon. 

In The Growth of Logical Thinking from Childhood to Adolescence 
Piaget [5] (together with Inhelder) has pointed out to us that the 
mental skills and patterns of thought that are used by adults as they 
reason logically and abstractly, are developing gradually as a result 
of concrete experiences throughout childhood and are then abstracted 
from those experiences. On reaching perfection they become what 
Piaget calls formal concepts. Examples of these intellectual skills and 
formal concepts are: 

(a) The skill of recognising one's own contradictory statements 
(investigated by experiments with flotation). 

(b) The skill of recognising and reacting to reciprocal implication 
(investigated by exercises on a billiard table). 

(c) The skill of eliminating negative factors in a problem (investi
gated with a pendulum). 
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(a) The skill of holding constant all factors in a problem except 
the one to be tested (investigated with flexible rods). 

( e) The skill of forming a mental lattice of all the possible combina
ticms of factors to be tested (investigated with colourless, odourless 
chemicals). 

(f) The skill of counterbalancing the value of factors within a 
problem (investigated with a balance or with a moving snail on 
a moving board). 

It is in this last skill that Piaget brings me to the climax of my 
appreciation of his work by illustrating that the fully alert adolescent 
mind brings into action a consequent formal concept in the pattern 
of a mental Klein 4-group activity (see p. 84). 

Any teacher of secondary mathematics would agree it is necessary 
to give exercise to these formal concepts through work on mathe
matical problems, subsequently building more mathematics upon 
them. I go beyond this. I would claim that in the junior school the 
teacher should be nurturing the middle stages of their development 
and that he therefore needs to be fully conversant with the diagnostic 
testing for that development and, of course, necessarily, conversant 
with the mathematical patterns themselves. 

At this point I think we can move on to look more closely at the 
students. 

A. The student who offers mathematics as one of his academic 
subjects 

I would simply make four isolated points about him. 
One is that, unfortunately for the primary schools, very few of the 

mathematically able students opt for primary school teaching. 
Equally, not all mathematically able students enjoy mathematics and 
they would need to enjoy it to 'get it across' creatively to primary 
children. This idea of personal enrichment through mathematics is 
as important to the student as it is to the children. Such enjoyment 
is more likely to be achieved if the psychology supporting the mathe
matics is always taken into consideration. 

My next point is that many a good mathematics student sees the 
subject purely in its isolation and abstraction. He therefore needs an 
enormous amount of tutorial help if he is to see how to present it 
to children through integrated work in the primary schools. 

Similarly, many a good mathematics student finds it difficult to 
envisage modern mathematics as a primary school subject since he, 
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himself, probably did not touch it until his last few years at school. 
So he needs help with the psychology of a practical approach to it to 
prevent him from trying to present it formally to children who are at 
a concrete operational stage. 

Nevertheless, this same student is the one who can most easily be 
guided into appreciating the Piagetian theories. He does, at least, 
know the mathematics of such forms as groups and lattices: he will 
therefore find it easier than most students to learn about the corre
sponding patterns of mental activity. His strength in mathematics 
becomes a doubly valuable attribute. This opens up a particularly 
pleasant chance of integrated work to the mathematics and education 
tutors. So, in spite of three drawbacks, I would say that it is 
probably easier for an education tutor to train a mathematics (or 
science) student in developmental psychology than to train any other 
student. It is, consequently, correspondingly easier for such a student 
to plan really rich integrated learning in a primary school. Such 
learning will have plentiful creative content. Some other students, in 
contrast, can be too often satisfied with drawing half the potential 
out of children, particularly out of bright children. 

B. The non-mathematical student 

This student is, of course, the one who is the greatest challenge to 
the training colleges. And training colleges are evading their duty if 
they ignore the problem. 

Concomitants of the problem are: 
Such students generally have a fear or a dislike of mathematics. 
Probably they are the victims of attempted formal teaching in 

their own primary school days and this has given them an inbuilt 
muddled thinking in mathematics and therefore a confused state of 
hypothetical thinking generally. 

They rarely perceive the mathematical content in a general situa
tion. 

They have probably never met modern mathematics. 
They always record facts in words, never mathematically. They 

would, for example, never record statistics directly on to a graph nor 
would they take note of a graph included in the middle of a text; 
they would just ignore it. 

Of the above problems the 'phobia' is probably at the root of it 
all. Therefore the indirect approach that I have mentioned is probably 
the most valuable. 
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Closing thoughts 

I would add to this that, as well as giving direct value to the student in 
enabling him to become a teacher of mathematics, an understanding 
and appreciation of mathematics is also of much more general value: 

(a) He needs to understand mathematical forms in order to under
stand the intellectual patterns by which a child learns any subject. 

(b) He needs a sense of proportion, given by mathematics, in other 
activities, as for example in planning curricula or in dealing with 
discipline problems, as well as in other subjects. 

(c) I would emphasise that the mathematical patterns of thinking 
that Piaget describes also influence the way in which a child's moral 
judgement develops [4]. Certainly facing truth of the success or 
failure of a mathematical exercise seems to me a better moral training 
than any preaching could be: I can remember, as a child, having it 
impressed on me how intellectually (and morally) wrong it would be 
to put QED unless I was sure that a problem was solved and proved. 
I should very much like to enlarge on this if only there were time. 

Lastly, we should remember that Piagetian testing, which I claim 
will help a student in the ways I have just mentioned, is not nearly as 
simple and straightforward as books would suggest it is. What are 
the pitfalls? How do we train students to avoid them? 

I consider a student should have continuous experience of testing, 
throughout his training. At first experience should be in clinical 
conditions, until he has acquired the skill of framing the follow-up 
questions to the child's early responses in such a way that he discovers 
what the child really means. No answer is right unless given for a right 
reason nor if given as a result of a leading question. Similarly, no 
answer is wrong unless the child's reasoning is wrong. Responses need 
not be verbal. Many responses, incidentally, are highly amusing. 

I am convinced that after a short period of clinical conditions 
a student needs to go on to diagnostic testing in normal classroom 
situations and, at the climax, to diagnosing by merely watching 
children's normal behaviour and listening to their conversations. 
Let me quote three examples. 

The first is an example of non-clinical testing which brought forth 
a right answer for wrong reasons. A trainee teacher watched six 
infants who obviously enjoyed their milk and suggested, one day, 
that they should pour it from their bottles (which they had all agreed 
contained equal quantities) into various shapes of cups, mugs and 
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glasses. From previous observation she had expected them to be at 
stage 2 in the test. Not suspecting that they had done the test several 
times with their teacher she was surprised when, on being questioned, 
the children all persisted in stating that there were still equal quanti
ties in all containers. So she said, 

'All right! Now you can drink it.' 
Then came the truth, without words, as they all stretched out their 

hands to the tallest glass. 
My second example is of a wrong answer for an unexpected right 

reason. It was given in clinical conditions but could well have 
happened in a classroom. A farmer's son, a bright little boy, having 
helped a student place equal numbers of 'houses' on 'fields' of 
agreed equal area persisted in his answer that the cow on one field 
had more grass to eat than the horse on the other field. 'Why?' 
asked the student. ''cos you know that a cow needs more grass than 
a horse' said the farmer's son. 

As an example of diagnosing by merely watching children's 
behaviour, you will probably be fascinated to hear of the antics of 
a class of five-year-old children when they were suddenly faced with 
the problem of drinking milk (through straws) from opaque cartons 
instead of from the glass bottles to which they were accustomed. 
I will describe four children in particular, though they only illustrate 
four stages of solving the problem that were shown by fairly equal 
numbers of children throughout the class. 

Caroline, having drunk about half her milk was quite unable to 
find the rest. She held her inverted carton high above her head, with 
the straw pushed right through the milk to the air pocket above its 
surface. The milk trickled down the outside of the straw and down 
her chin and neck. She twisted the carton about, but it was obvious 
that all her explorations were random. 

Philip held the carton in front of him and poked the straw forwards 
to what had been the bottom of the carton before tilting. He expected 
the milk still to be at the bottom. After a time, he failed to find any 
there, so he squeezed the carton to get some out that way. 

Beverley found the milk by bending the straw. By this means, she 
emptied the carton. 

Mark found the milk with confidence. 
As we watched these children, we realised that they were all at 

different Piagetian stages of appreciating how liquid finds its own 
level. So we applied the well-known Piagetian tests (Piaget [21) 
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and found that most of the class of thirty-six drew the milk in the 
Piagetian 'bottles' just about where they were hunting for it in the 
cartons. In particular, Caroline (Piaget stage 1) scribbled vaguely in 
the middle of the drawn bottles. Philip (stage 2a) drew the milk in 
its original position in the bottle at whatever angle the bottle was 
tilted (thus, sometimes, giving it a vertical surface). Beverley (stage 
2b) drew the milk in various interesting positions, but, at least, did 
not have a vertical surface. Mark (stage 3a) always put the milk 
approximately in the right position, but very rarely gave it a level 
surface. 

It was a student who first spotted this situation and telephoned me 
to go out and help her with the tests and take photographs. This is 
the sort of Piagetian testing by observation that I consider most 
valuable of all since the average alert teacher will be able to react to it 
throughout his or her teaching career. 

I have tried to make these examples light-hearted as well as illustra
tive for, to me, it is essential that the developmental psychology 
that supports the mathematics should be as enjoyable as mathe
matics itself should be. 

To close, may I quote from Lunzer in the Times Educational 
Supplement of February 1972. 

'Ifa teacher has absorbed the true essence of Piaget's approach he 
will not be prepared to let Nature take its course.' 

I apply this particularly to the teacher of mathematics. 
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Are we off the track in teaching 
mathematical concepts?1 

Hassler Whitney 

1 The whole child 

After centuries with little change in the mathematics curriculum in 
schools, we find ourselves in an era of 'New Math', typified by the 
teaching of concepts. At the same time, though many children find 
they can go much further and faster ahead, the great majority are 
confused, turned off, and fearful of the subject. What are the real 
causes of this failure? Research studies, with control groups and 
statistics, do not go deep enough. We must study individual children, 
work with them in the classroom, to discover bit by bit what the 
basic problems besetting them are, and how to overcome them. In 
brief, our focus has been too much on the subject matter, not enough 
on the child himself. Through various examples, we will see the 
manifold ways in which good ideas, put into practice, go wrong, and 
will look for roads to improvement. We must keep coming back to 
the whole child as the main focus. When we think of concepts, they 
must be end results, expressed first in the child's terms. But more 
than anything else, we discover what an extraordinary being a young 
person is, capable of learning, in his own ways, with eagerness and 
speed; we must promote this, not suppress it. 

My own view of the problem, after a life's work as a mathematician 
with basic interests in education and children, has evolved greatly 
through five years of working with children and teachers in schools at 
all levels. The forces at work on the children are extremely varied 
and complex. Only with great patience and understanding, with real 
respect towards all in the school and the community concerned, can 
true progress be made. We can then let the poorer methods gradually 
drop away of themselves. 
1 This is a shortened version of the paper presented at Exeter. The full text is 

reprinted in Pre-School and Primary Mathematics (Ward Lock, 1973), a collec
tion of papers submitted to the working group with that title. 
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2 The coming of the New Math 

It will help the picture to see how the New Math arose. Since the last 
world war there has been a greatly growing penetration of mathe
matics into science, engineering, and other fields of application. This 
has required an ever increasing understanding of mathematical 
method by more and more people. It is not enough for them to know 
mathematical facts; it is the basic comprehension that is important, 
so that new problems or old problems in new guises can be attacked 
successfully. Seeing how children in school normally learn mathe
matics by rote, with consequent inability to apply it to new situations, 
a number of mathematicians undertook to improve the situation. 
From this came two general sorts of study: 

(I) Find what the basic mathematics is. This led to a formulation 
of elementary mathematics, starting from a set-theoretic foundation 
and building it up in a more or less logical sequence. 

(2) Enlist the help of psychologists and educators to find the best 
ways of teaching the material to children. 

In different countries, the story took on varying forms; the essential 
features were similar. In the USA, through a number of projects, 
large and small, experiments in teaching were carried out, and pre
liminary texts were written; this work is continuing. Out of this 
developed series of texts by the different publishing firms, competing 
for attractiveness to school systems. In these texts, supposedly to 
make it easier for the children, concepts were broken into tiny bits, 
and teachers' manuals give explicit directions on how to teach, mark 
answers, and so on. Gone is the child who thinks for himself; he is 
supposed to catch on to exactly what he is to do. He is to learn fancy 
language first, then concepts which do not relate to his experience. 
Where the children are encouraged to explore first, a good start is being 
made; the problem is then how to continue so that understanding 
takes place, first in the child's terms, later in more adult language. 

3 The cycle: student to teacher 

A generation ago, the vast majority of elementary school children 
learned mathematics under teachers who were insecure in the subject, 
or obtained security through rote learning. The children's questions 
about why and wherefore were evaded; their own creative ideas 
were squelched, and answers not given in precisely the expected form 
were marked wrong. The children soon learned to look towards the 

284 



SHOULD WE TEACH MATHEMATICAL CONCEPTS? 

authority, book or teacher, for what was right; never mind possible 
hidden meanings. In higher grades, they started bogging down in 
fractions; the subject was confusing, and the complexities tended to 
be overwhelming. By the time they were in high school, algebra was 
fearful; they learned formulae by rote, and that was essentially all 
that was asked. In college, after a couple of years without math, the 
thought of taking another math course was frightening. In fact, they 
were mostly no better in arithmetic than six years before. Their point 
of view was now: 'Tell me what I should know; don' t ask me to 
think.' If they do not expect to deal further with math, they happily 
join those who say 'I never could do math!' What percentage of 
adults claim not to be in this group? 

With some liking for children, or thoughts that they can handle 
them, they now become teachers. In math, they are quite insecure; 
fortunately there are teachers' manuals, which they can follow to the 
letter if desired. Their students soon learn not to ask questions but to 
look to the authority, and we are back full circle. 

4 Pushing theory 

In the latter part of first grade, children are learning to 'go over ten'. 
In the New Math, in the USA for instance, a teacher may follow 
a manual, and teach: 

8+4 = 8+(2+2) 
= (8 + 2) + 2, by the associative law, 
= 10+2 = 12. 

Here is the effect on the children: 
(a) The expression 8+(2+2) is confusing. Why put in the curly 

signs? Writing 8+2+2 is simpler. Perhaps 2+2 = 4 is recognised; 
but why choose 2 + 2? 

(b) Now the curly signs are moved around. What is a 'law'? Does 
this mean that I am told to do something, and therefore do it? I have 
really stopped trying to see what this is about, anyway. 

(c) I feel uncomfortable, especially since the teacher does too. If 
she is expressing what school is supposed to be like, I do not want to 
go to school. 

(d) There is 12 at the end. Why not just count four more than 
eight, and get twelve? 

(e) I am told that the 1 in 12 means ten. But I know that you write 
10 for ten, not 1. I hope this will stop soon. 
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This is, of course, a horrible example of the New Math in action. 
But it is, alas, quite common. Most ways of pushing New Math are 
more subtle; but this makes it only harder for the children to object, 
and leaves them with greater insecurity if they cannot see through it. 

Let us look for a better way. We can straighten a coat hanger, let 
the children put ten beads of one colour and ten of another on it, and 
bend over the ends. How fast can the children show three beads, by 
sliding them to one side? Show ten! Show eight! They quickly learn 
that they find eight fastest by taking two less than ten. Now show 
eleven; fifteen; twenty-one (silly, there are not that many!). Another 
game: first show eight; now four more. How many is this? Twelve, 
of course! And this is the children's answer; if the teacher said 
thirteen, they would wonder what went wrong. 

Another game: make spacers out of cards with slots; show 8 + 4. 

Another game: show twelve; now show four fewer. With the spacers, 
we have the same picture as before. Some children will notice this; 
here is a chance for the teacher to promote a good discussion. The 
children learn from each other, and the teacher sees new things 
herself. 

In this way the children can have lots of experience in a short time, 
with immediate mathematical meanings. Moreover, it is easy for 
them to give each other problems, and find quick solutions. 

If the teachers are in a setting where they can do a little of this at 
a time, they will learn to be more of an adviser and helper; gradually 
their insecurity and need to be the authority will lessen. The spon
taneity of the children will reflect on the teacher, the class, and the 
school. 

5 Language versus reality 

The numbers 3, 4, 7 are related through both addition and subtrac
tion; for a given relation, two of the numbers determine the other. 
Hence the New Math texts give pages of problems of the sort shown 
opposite: 
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Let us watch the child doing his assignment. He has a number of 
problems to do. If they are all of the same pattern, some clues may 
well show him this; after putting in a few numbers, the others are 
inserted quickly. Thus his powers of detective work, if not of mathe
matical comprehension, are encouraged. If clues fail, he thinks, 
should a larger or smaller number go in? This may suggest a number; 
he puts this in. Now he goes to the next, and the next, till impatience 
and boredom make him stop or put in almost anything. How about 
the pictures? Just as he does not read the text, he does not try to 
fathom them; they are not his pictures. 

7-0=4 
0 0( 0 O 

0 (0 0 

The root of the difficulty should be clear. A good reasoning process 
is devised for the child to go through, which will lead him to put down 
the right answer. But a child's mind follows its own channels; they 
are seldom those we devise for him. We hide from ourselves the fact 
that he is presented with a language he does not understand, and he 
is asked to get answers that make the language take on more mean
ing. This is exactly the reverse of what makes sense. The child must 
grasp the relationships in his own way first, then find some way in 
which to express it. Later the expression can take the form we have 
chosen. 

The real goal is not for the child to learn particular answers; it is 
for him to grow in powers of finding answers, or rather, of explora
tion into processes. We therefore replace teaching by learning, or 
better, by investigation. We think up a game. One child puts a small 
group of counters (or buttons, etc.) on the table; each child can 
count them. They are now hidden by a sheet of paper. Another child 
pulls some out, and keeps them hidden under his hand. The paper is 
removed, showing how many are left. How many are under the hand? 

For children who find this too hard, we change the manner of 
playing. A child can count out his own pile, the same number as 
under the paper. He may now try removing some, to leave the 
number shown later; thus he finds the answer by experiment. And 
there are many other things the child is experiencing. For instance, 
he may be noting that 7 = 6+ 1 = 5+2 = 4+3 in an intuitive way. 
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Because he needs to use it, he notes that when his pile corresponds 
to the hidden pile, and what is left after pulling away corresponds 
similarly, there is a third correspondence. The texts would not dare 
teach something like this, for the children, when tested on it, would 
practically all fail. (Please do not teach this! But it might appear in 
a discussion.) 

This kind of game is real to the child, and the answers are his own; 
he becomes steadily more secure with the answers. When the children 
are first asked to make records of the games, in any way they find, 
they may at first write simply 7 4 3. Later they can start with 
7 - , continue to 7 - , 4, and end with 7 - 3, 4. They may then 
put in the equal sign, though without much understanding of its 
significance. 

Here is another sample of the game. There are five counters; some 
are slid out; all are left. There are none under the hand! It is exciting 
to verify this. To be taught that 5-0 = 5 as a 'property of zero' is 
pretty deadly. Five under the paper; none left. Hand is lifted: six. 
You cheated! Compare this with 'You cannot subtract a larger 
number from a smaller one'. 

6 Concepts through activities 

In recent times, mathematicians have seen how to base the theory of 
natural numbers on set theory, through the notion of cardinality. 
Hence it is natural to teach young children set theory first, to reinforce 
their understanding of number. In the Math Lab approach, the child 
is given an assignment. A card or sheet shows two circles, with 
pictures of dolls in one and caps in the other. He is asked if there are 
enough caps for the dolls. The child counts first, finding that there are 
six dolls and only five caps; he knows the answer. Now he copies the 
pictures. It is difficult to draw the dolls, and he may lose count. Next 
he draws lines from the dolls to the caps. A line may go through 
two dolls; a cap may be left out. The work is shown to the teacher, 
who points out the mistakes; they are corrected, and he has now 
finished the job. 

Is this a useful experience for the child? Certainly, provided that it 
is not pressed too hard and the child works with willingness; he is 
clearly gaining skills of various sorts. But it has little to do with the 
original reason for setting up the problem, and is very slow at that. 

If we put the child's growth first, we think up somewhat different 
activities. We may, for instance, put red counters and white counters 
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in a bag. A child draws out a small handful. Are there more red or 
more white counters? Counting tells the answer. Can you do this 
without counting? A child will think of matching; this is easy and 
fast, moving the counters around. Play the game a number of times; 
he finds that there are usually more white counters. Why so? 
Children may guess that there are more whites than reds in the bag. 
They may even get a preliminary concept of ratios. Verifying by 
emptying the bag is exciting. How do we match all these? A child 
may think of making piles of four before matching; how educational! 
He is getting notions of numbers in other bases (of course not 
expressed in this language). 

7 Keeping in touch 

In the third or fourth grade there are a number of children who 
cannot do a subtraction problem such as 41-15. Let us consider 
some ways of helping such a child. 

(a) The teacher or an aide gives direct help. 'You cannot take five 
from I. Hence you look at the 4. What does the "4" mean?' The 
child has been through this many times, and feels quite uncomfort
able. He vaguely thinks he is supposed to say 'forty'. The helper 
senses the child's withdrawal, tries to close her mind to it, and 
attempts to keep the mental connection, to go through the process. 
Some right words are elicited or placed in the child's mouth, and the 
answer is obtained. Another problem is done; then the child does 
one or two by himself. Why is it, then, that a month later the child 
can still not do such problems? The answer is really perfectly clear: 
the problems were done by the aide, not the child; on his own, the 
child's insecurity comes back, and he does not dare begin. 

(b) An aide brings materials for the child to use. Exchanging a ten 
length stick for ten small blocks, the problem is solved, and the 
answer found. Now the aide helps the child write down the answer 
in tlie right way. The child looks up at the aide to see if this is the 
right place to write the '2'; with an affirmative nod, it is written 
down. This is certainly far better. Yet the child may later again have 
qualms: what he finally wrote down was with the aide's assent, and 
he has not the aide now to give the assent. The aide led the child to 
find his own way (it would have been better for the child to have 
chosen the materials); but at the end, the aide took over in writing the 
answer. 

(c) It is a big school system, and everything is well organised. Each 
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year, a group of slow children from each class is given special 
attention. With written tests, it is determined which concepts the 
children do not understand; they are now given training in these 
concepts. The next year, the same group is given more special work. 
The children and the teachers know that the record will be of further 
and further failure. This is the extreme of keeping carefully out of 
touch with the individual. 

(d) Children who have fallen behind have lost confidence and 
some of their inner security; this needs to be built up. You cannot 
really help here unless you gain their respect by showing that you are 
truly interested in them as humans and understand their difficulties. 
Talking with them to get in touch is the natural way to start. Then 
you can carry out some activity with them that contains elements of 
challenge, and they will be ready to accept this and use their own 
thinking powers. A simple activity that can be carried out with little 
challenge is a buying game. You give them some money, say plain 
popsicle sticks or coffee stirrers for dollars and red ones for tens. 
A storekeeper offers things for sale. The store can only accept exact 
amounts; change can be made at the bank. For instance, a child has 
four red sticks and one plain, which he records. Wishing to buy a 
painting for $15, he exchanges a red for ten plains, and records: 3 
red, 11 plain. He now records the cost of the painting, pays for it, 
and records the amount left (2 red, 6 plain). Later, only amounts of 
money will be recorded (41, 15, 26). This kind of work leads to real 
understanding, and soon to an algorithm. 

red plain 
4 1 
3 11 
1 5 painting 

2 6 

8 Math and the real world 

So far we have shown how an exaggerated focus on concepts has 
hurt the growth of the children. We now point out a distortion of 
concepts that has given rise to enormous confusion in schools and 
great problems for scientists in mathematical phases of their work. 

It is asserted that mathematics deals with numbers, not quantities. 
Hence in school, equations shall contain numbers only. If materials 
are used, their purpose is only to get concepts about pure numbers; 

290 



SHOULD WE TEACH MATHEMATICAL CONCEPTS? 

we must then banish the materials from our minds. But in real life, 
the reverse is the case. Mathematics grew up because of its enormous 
power in applications. It is very important for children to experience 
this from the outset. Let us go directly to the positive side, and show 
how this may be done. 

As an early experience, two blocks, with three blocks near them, 
give five blocks. This may be verbalised; or we might write it as 

(1) Two blocks and three blocks makes five blocks. 

Later this could be changed to 

(2) 2B and 3B is SB. 

We get abstract ideas of numbers from experiences of this sort; the 
symbols 2, 3, 5 evolve, we form 2+3, and finally we write 

(3) 2+3 = 5. 

We can now go back, and interpret B, 2B, 3B, and so on, as abstract 
symbols for numbers of blocks. (The child, trying the experiment, is 
learning to think ofnumbers of blocks, neglecting their individuality.) 
Just as we invented the sign + for numbers, we now invent it for our 
quantities, and write 2B+ 3B. We can now use mathematical notation 
to tell us what we see: 

(4) 2B+3B = SB. 

There are six children at a party; each is to have three cookies and 
four gum drops. What should we get? Figure it out (and draw 
a picture also): 

6(3C+4G) = 6(3C)+6(4G) = (6 x 3) C+(6 x 4) G 
= 18C+24G. 

How easily we get the answer! We are now told all sorts of things: 
You cannot add two different kinds of things, you cannot use 
cookies in an equation, and so on. Who cares? We have found 
powerful methods, so let us use them. Anyway, we can define addition 
here and make good sense. 

Suppose a child is sent to the store for loaves of bread and cans of 
soup, and is then sent back for more. He might think (or even write) 

4L+ SC = $2.43, 2L+3C = $1.31. 

Fromthesecondequation,hefinds4L+6C = $2.62. Usingthefirstnow 
shows that C = 19 cents and hence L = 37 cents. How can we help 
him give meaning to these equations? If L means the price of one loaf 
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and C means the price of one can, the equations are true, and the 
operations on them are clear. 

In school we are told how to change units. In later professional 
work, in chemistry or engineering for instance, one may get terribly 
mixed up with various units, and feel quite insecure. Let us allow 
ourselves to write equations with quantities and see how we fare. 
Suppose you are going at 40 miles per hour; how long does it take 
to go 100 feet? First, 

40 miles 40 x 5280 ft 2112 ft 
hr = 60 x 60 sec = 36 sec · 

If we do not know what to do with this, we can try. Multiplying by 
100 ft comes out in an unwanted kind of quantity. Dividing by 
100 ft gives 

2112 ft I 2112 
36 sec x 100 ft = 3600 sec· 

Evidently we must turn this upside down ; the answer is 1. 7 seconds 
approximately. 

For more details on these methods, see my paper, ' The Mathe
matics of Physical Quantities', Am. Math. Monthly 15, 1968, 115-38, 
227-56. 

9 Fractions 

The first major breakdown in school math is apt to occur when 
fractions are studied intensively. Moreover, under stress, children 
are likely to associate 'fractions' with fractures, fracturing, and 
hospitals. The stress is caused particularly by the tremendous con
fusion of ideas. The root of this is the mathematician's insistence 
that you do not work with quantities. You show half a pie, but are 
supposed to call it ' half', not 'half a pie ' . A third of a pie has neither 
the same shape nor size as a third of a rectangle, yet they are both sup
posed to bet. 

In a child's early experience, fractions were parts of things; 
expressed in mathematical language, fractions operate on quantities. 
Twice three balls is six balls; also half of six balls is three balls. Of 
course the child's view of fractions is coloured. If his piece of bread 
is cut in half by Mother (worse, by big brother), the two halves do 
not equal a whole. Certainly two halves of a doll are not one whole 
doll. On the other hand, two big halves of two cookies may be better 
than one cookie. 
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In school, the child is asked, what is 4 + ½? Suddenly ½ is an 
abstract object, perhaps called a number, that he has no idea of the 
meaning of. We may draw pictures of rectangles and halves of 
rectangles to help him. They are our pictures, and he docs not know 
why we came to draw them. He is supposed to reason in terms of 
quantities and then translate into numbers; at the same time, he is 
not supposed to represent quantities by equations. No wonder he 
tends to feel helpless. 

We teach fractions like this because we always have, not because 
it makes good sense. Now consider what the children's problem is, 
psychologically. With such a question, they are supposed to give an 
answer; perhaps make a first attempt to give an answer, and if it is 
wrong, a better attempt. In other words, the answer is put first, and 
the attempt to find one, second. Perhaps we give them enough time 
to think of the answer. This is still wrong: the looking for an answer 
is put first, the exploration towards the answer, second. And even this 
is wrong: What is desired on the part of the students is the exploration 
towards answers; much better, exploration of the general subject. 

Hence a better question is: What are halves like? What can you 
do with them? This is an open-ended question. Different students 
may explore in different ways, then compare what they are doing 
and finding. How might halves appear in everyday life? Can you 
think up some problems with them? 

One student might think: there are four pieces of bread on the 
table. More people come; Mother cuts each piece in half. How many 
half pieces are there? Eight of course. Whether this has much to do 
with the first posed problem is not too clear; but let us look into that 
later. The student is finding out about fractions, in a real life and 
honest fashion, with an answer in his terms that he understands and 
is sure of. This is a major step in the right direction. With more such 
problems, one looks for general methods, then perhaps relations 
with operations such as addition and multiplication. Gradually 
abstract operations on fractions appear. For instance: With br for 
a piece of bread, 

4hr 
4hr = 8 x (½br), ½br = 8. 

This may suggest writing 4 + ½ = 8. This step is similar to that 
from (2) or ( 4) to (3) above; it may be slow in coming. The important 
thing is that the student is finding out about fractions, and their use in 
life situations. 
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A wonderful tool for exploring multiplication and division is the 
rubber band stretcher. One person holds a stretched rubber band 
over lined paper; another makes marks on it with a felt pen, say 
every fourth line. One can now use it to show where to cut a candy 
bar in half ( or a picture of a candy bar). Next, cut another into thirds; 
it is interesting that four marks are used, one at each end and two in 
between. For a long bar cut in half, the students find they can best 
use five marks; they see quarters at the same time. Now one may ask, 
what is two-thirds of five inches? It looks like nearly 3½ inches. One 
looks at one-third of five inches at the same time; also another mark, 
l½, or ½, of five inches. Thinking things over, the student is likely 
to find that the answer comes out in thirds of an inch. 

It will also become apparent that the stretcher is not perfect. This 
is an introduction to practical science: there are experimental 
errors; moreover, the causes of errors will interest the student, and 
he is learning about how math is used in science. 

10 Escape from reality 

We return to our basic problem. For the great mass of students 
passing through high school, math still means mystery and anxiety. 
We may have accomplished many things, but not what is most 
important. It is clear that our attempts at improvement have not 
been sufficiently deep and determined. The real determination should 
be not to get our way in making changes, but seeing that the full facts 
are faced squarely. We show here how some things that are going on 
in schools are an escape from reality, rather than facing the facts. In 
each case, there is some 'authority' behind which one hides. In large 
measure, we find behind the authority a higher authority, command
ing that the important concepts be learned, and that this should be 
proved through tests. 

Some teachers take out their emotional difficulties on their children; 
many of these children will do the same later with theirs. In this case, 
we see the teacher herself or himself as the authority, and we are 
blocked. Other teachers hear the exhortation 'Stress this concept!' 
(Stress: to subject to the action of external forces; to overstrain.) 
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They pass it on: 'Tom, say the set of boys in the room; Alice, say 
numeral, not number.' The children learn to shut up, as the safest way. 
These teachers feel the higher authority too strongly. If we tell her 
not to do this, she is left in still more of a vacuum; we would better 
help her find more positive methods to replace this. 

Failure may be sensed in a larger way. With the difficulty not only 
of finding success, but of convincing the school of it, an educational 
consultant is called in. Behavioural objectives are set up. (What an 
escape! We drop the child, and only measure what he does.) New 
teaching methods are brought in, with packaged materials. These 
materials have been statistically proved, and the children will be 
pre-tested and post-tested. By the end of the year, the children may be 
making better scores. But there will be a growing sense that most 
children are losing their creative identity; this will show up especially 
in later years. 

A group of parents and teachers may feel the degradation of the 
children, and set up a 'free school', or even turn the whole school into 
an 'open space' school. In the latter case, to satisfy the other parents, 
evaluation may be brought in early, and the tone, academically, is 
likely to be more restrictive than before. In either case, in spite of the 
preliminary months of constant meetings, the jump into the new 
system was too sudden; the escape is from the many realities of 
a whole school and its relation to the community. The school is likely 
to disappear, or revert to its former status, with great anger at those 
who caused the change. 

Some school systems, with great pressure from tax payers and 
vocal minorities, take refuge in firms that will run things for them, 
with programmed materials and computer-assisted instruction. 'Each 
child works individually, at his own pace.' This has a wonderful 
sound (and is praised in education journals). One does not notice that 
the 'individual' applies merely to what page the child is on, due to 
what he put down on a pre-test; the individuality of the child himself 
is lost. The children may be content; they prefer to be told to go 
back to item so and so by the machine rather than be marked wrong 
by the teacher, and the game is rather fun, at least for a while. Score 
sheets with innumerable 'concepts learned' checked off satisfy the 
parents. The direction one is going in is shown by a quote from 
a particular program, which claims it develops 'the correct motor 
response to given visual and auditory stimuli'. How can a whole 
community be so complacent? 
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Behind most of this we see the ogre of testing. Our pleas to see 
what is happening to the child are brushed aside, or drowned by 
the scientific findings of the multiple choice tests. The testers have 
grown to such power that those fighting them are just laughed at, or 
slyly put aside. It hurts when those in the humanities hear that their 
subject is vague (cannot be monitored continuously by machine) and 
hence not true education. When we think of evaluation, and still 
more of accountability, we turn to the testers as the final judges of 
the revered concepts, thus putting the testing procedure on a plane 
so far above us that we cannot touch it. 

11 A new lease of life 

We are too used to thinking of subject matter, and how children can 
)earn it. We must start with the children, to see what they really are. 
In a kindergarten class, we see them running around, and busy at 
activities. We take many pictures, analyse them, and make statistics. 
Have we found the children? 

Follow an individual child, for half an hour (if you can concentrate 
this long), trying to be keenly aware of him. You will only begin to 
sense the incredibly quick and varied experiences the child is under
going. He climbs on to a couch after a cat, while readjusting a toy in 
bis hand and turning to hear a remark by the teacher and swinging 
his leg around for better balance, in the space of a few seconds. 
A year later we teach him the commutative law (for abstract numbers, 
or cardinal numbers of sets where the child sees no order, or what?). 
How utterly barren for him, in terms of what he can experience! In 
many places, in the past and the present, opportunities have been 
given children, both I bright' and 'disadvantaged', to show their 
enthusiasm and powers; their achievements have been spectacular. 
This can be done more generally if we find ways for it. 

The title of this paper represents one way in which we must change 
our point of view. The most fundamental problem is to spread a 
better point of view to all concerned with school children; this 
necessarily includes parents, and essentially, all adults. If we can 
achieve a new lease of life for a good body of children in a school or a 
community, we may hope it can spread to wider regions. This has 
been the case in the past, and can be so in the future. 
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Appendix 1 The Congress Committees 
and Officers 

Chairman: Sir James Lighthill, F.R.S. 

Hon. Secretary: Mr D. G. Crawforth 
Hon. Treasurer: Mr M. Goldsmith 

Organising Committee 

Sir James Lighthill, F.R.s. (Chairman), the Congress Secretary, the Congress 
Treasurer, Professor J. V. Armitage, Professor H. Freudenthal, Mr R. C. 
Lyness, H.M.I., Professor G. Matthews, Dr E. A. Maxwell, Professor D. 
Rees, F.R.s., Mrs J. Stephens, Dr B. Thwaites, Mrs E. M. Williams, c.B.E. 

Programme Committee 

Mrs E. M. Williams, c.B.E. (Chairman), Mr J. B. Hoare (Secretary), the 
Congress Secretary, the Congress Treasurer, Dr T. J. Fletcher, H.M.I., 

Dr A.G. Howson, Professor G. Matthews, Dr E. A. Maxwell, Mrs J. 
Stephens, Mr B. J. Wilson, Professor H. Freudenthal (Netherlands), 
Professor J. Novak (Czechoslovakia); Professor A. Pescarini (Italy), 
Dr H. 0. Pollak (USA), Professor A. Revuz (France), Professor S. L. 
Sobolev (USSR), Professor H. G. Steiner (German Federal Republic), 
Professor J. Suranyi (Hungary), Professor I. Wirszup (USA). 

Local Committee 

Mr G. Duller (Chairman, until 27 April 1972), Dr D. Hammond Smith 
(Chairman, from 27 April 1972), Miss C. M. Cornelius, Mr A. E. B. Duval, 
Mr J. Fox, Mr D. Hughes, Mr R. Jady, Dr T. E. R. Jones, Mr P. Kaner, 
Mr D. Lee, Mr W. J. A. Mann, H.M.I., Mr H. Pratt, Mr J. V. Wild, c.M.o., 

o.B.E., Mr D. A. Wort. 

Organiser of Working Groups Mrs M. Brown 
Organiser of National Presentations Mrs J. Stephens 
Editor of Congress Proceedings Dr A.G. Howson 
Publicity Officer Miss I. Fekete 
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Appendix 2 The working groups 

Logic at school level 

Chairman: Professor W. Servais, 60 rue des Desportes, Morlanwelz, 
Belgium. Secretary: Mr R. D. Nelson, Ampleforth College, York, 
YO64HE. 

Algebra at school level 

Chairman: Professor S. Iyanaga, 12-4 Otsuka 6-chome, Bunkyo-ku, 
Tokyo, Japan. Secretary: Mr G. Wain, School of Education, University 
of Leeds, Leeds, LS2 9JT. 

Contemporary presentations of geometry at school and university level 

Chairman: Mme Dr A. Z. Krygovska, Oleandry 6/6, Krakow, Poland. 
Secretary: Mr R. L. Lindsay, The University of Nottingham, University 
Park, Nottingham, NG7 2RD. 

Calculus and analysis at school level 

Chairman: Professor T. M. Apostol, California Institute of Technology, 
Pasadena, California 91109, USA. Secretary: Mr H. Neill, The Uni
versity, Durham. 

The teaching of probability and statistics at school level 

Chairman: Professor Lennart Rade, 0 Fogelbergsgaten 3, 41128 Gote
burg, Sweden. Secretary: Mr D. Kaye, University of Manchester, Depart
ment of Extra Mural Studies, Manchester, M13 9PL. 

Links with other subjects at secondary level 

Chairman: Professor M. S. Bell, University of Chicago, USA. Secretary: 
Professor G. Matthews, Centre for Science Education, Bridges Place, 
London, SW6 4HR. 

Application of mathematics 

Chairman: Dr H. 0 . Pollak, Bell Telephone Laboratories Ltd., Murray 
Hill, New Jersey, USA. Secretary: Dr Margaret Rayner, St Hilda's 
College, Oxford. 
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Mathematics for specialists at university and college level 

Chairman: Professor B. H. Neumann, F.R.S., Australia National Uni
versity, P.O. Box 4, Canberra, A.C.T., Australia 2600. Secretary: 
Dr R. R. McLone, Department of Mathematics, University of Southamp
ton, Southampton, SO9 5NH. 

Mathematics for social scientists/biologists at university and college 
level 

Chairman: Professor D. Sida, Carleton University, Ottawa, Canada. 
Secretary: Dr E. D. Tagg, University of Lancaster, Cartmel College, 
Bailrigg, Lancaster. 

Mathematics for scientists/engineers at university and college level 

Chairman: Professor W. Martin, Massachusetts Institute of Technology, 
Cambridge, Mass. 02139, USA. Secretary: Professor A. C. Bajpai, 
C.A.M.E.T., University of Technology, Loughborough, Leics. 

Relations between the history and pedagogy of mathematics 

Chairman: Professor P. S. Jones, University of Michigan, Ann Arbor, 
Michigan 48104, USA. Secretary: Mr L. F. Rogers, 17 Windsor Road, 
Teddington, Middlesex. 

The psychology of learning mathematics 

Chairman: Dr E. Fischbein, lnstitut de Psychologie, Bucharest, Roumania. 
Secretary: Miss Joan Bliss, Centre for Science Education, BridieS Place, 
London, SW6 4HR. 

Mathematics as a language 

Chairman: 0. Professor dr F. Schweiger, Mathematisches llistitut der 
Universitat Salzburg, A-5020 Salzburg, Austria, Porchestr, 1/1. 
Secretary: Mrs A. Cormack, 16 Kelross Road, London, N. S. 

Research in the teaching of mathematics 

Chairman: Professor Bent Christiansen, Royal Danish School of Educa
tional Studies, Copenhagen, Denmark. Secretary: Dr A. J. Bishop, Uni
versity of Cambridge, Department of Education, 17 Brookside, Cambridge. 

Individual learning methods 
Chairman: Professor L. R. B. Elton, Institute of Educational Technology, 
University of Surrey, Guildford. Secretary: Mr K. Gray, France Hill 
School, Camberley, Surrey. 

Creativity, investigation and problem-solving 

Chairman: Professor G. Glaeser, IREM Strasbourg, Department of 
Mathematics, University of Strasbourg, rue Rene Descartes, Strasbourg, 
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France. Secretary: Mr C. Edwards, 16 Fairfields, Great Kingshill, High 
Wycombe, Bucks. 

Extra-curricular mathematics 

Chairman: Professor W.W. Sawyer, University of Toronto, Canada. 
Secretary: Mr A. Sherlock, Millfield School, Street, Somerset. 

Teaching methods at university and college level 

Chairman: Professor K. 0. May, Department of Mathematics, University 
of Toronto, Toronto, 181, Canada. Secretary: Dr K. E. Hirst, Depart
ment of Mathematics, The University, Southampton, SO9 5NH. 

Pre-school and primary mathematics 

Chairman: Professor Mary Folsom, University of Miami, Coral Gables, 
Fla 33124, USA. Secretary: Mr E. G. Choat, Rachel McMillan College, 
Creek Road, Deptford, London, S.E. 8. 

Structure and activity in mathematics: teacher's choice of curriculum 
materials and tasks for 9-13 age group 

Chairman: Dr Daniel Duclos, University of Lyons, France. Secretary: 
Mr A. W. Bell, Shell Centre for Mathematics Education, University of 
Nottingham, University Park, Nottingham, NG7 2RD. 

Mathematics and the slow/reluctant learner 

Chairman: S. Mellin-Olsen, Pedagogisk Seminar, University of Bergen, 
5000 Bergen, Norway. Secretary: Mr P.A. Kaner, 3 The Cloisters, 
Cathedral Close, Exeter. 

Curriculum design and evaluation 

Chairman: Professor Howard Fehr, Teachers College, Columbia Uni
versity, New York 10027, USA. Secretary: Miss H. D. Shuard, Homer
ton College of Education, Cambridge. 

Mathematics in developing countries 

Chairman: Professor H. M. Cundy, Chancellor College, University of 
Malawi, P.O. Box 52000, Limbe, Malawi. Secretary: Mr B. J. Wilson, 
CEDO, Tavistock Square, London, W.C. 2. 

The use of television and film in the teaching of mathematics 

Chairman: Professor Seymour Schuster, Department of Mathematics, 
Carlton College, Northfield, Minn. 55057, USA. Secretary: Mr J. May
hew, Room 75a, The County Hall, London, S.E.11. 
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The place of computers in mathematical education 

Chairman: Mr F. Lovis, Mathematics Faculty, The Open University, 
Walton Hall, Walton, Bletchley, Buckinghamshire. Secretary: Mr R. E. J. 
Lewis, Centre for Science Education, Bridges Place, London, SW6 4HR. 

Initial training of elementary teachers 

Chairman: Professor W. F. Fitzgerald, Department of Mathematics and 
Elementary Education, Michigan State University, East Lansing, Michigan 
48823, USA. Secretary: Mr A. Morley, Nottingham College of Educa
tion, Clifton, Nottingham NG 11 6NS. 

Initial training of secondary teachers 

Chairman: Professor H. G. Steiner, Piidagogische Hochschule Bayreuth 
der Universitiit Erlangen-Niimberg, Bayreuth, Germany. Secretary: 
Mr K. Gardner, Brighton College of Education, Brighton BNl 9PH. 

In-service education of teachers 

Chairman: Professor J. Trivett, Simon Fraser University, Canada. Secre
tary: Mr D.S. Fielker, Abbey Wood Mathematics Centre, Eynsham 
Bridge, Eynsham Drive, London, S.E. 2. 

The mathematics workshop - the use of apparatus, games and 
structural materials 

Chairman: Professor William Schaaf, Florida Atlantic University, Boca 
Raton, Fla, USA. Secretary: Mr J. A. Dodridge, Hereford College, 
Hereford. 

Editing a mathematics journal 

Chairman: Dr Shmuel Avita!, Ontario Institute for Studies in Education, 
252 Bloor Street West, Toronto, Canada. Secretary: Dr E. A. Maxwell, 
Queens' College, Cambridge. 

Mathematical competitions 

Chairman: Dr E. H6di, Budapest XVII Rakoshegy, Melczer u. 31, Hun
gary. Secretary: Mr L. Beeson, Bishop Otter College, Chichester, Sussex. 

Programmable calculators in schools 

Chairman: M. Marcel Dumont, Institut National de Recherche et de 
Documentation Pedagogique, 29 rue d'Ulm, Paris 58 • Secretary: Mr D. 
Blakely, Marling School, Stroud, Glos. 

Middle-school mathematics - ages 9-13 

Chairman: Mr D. T. E. Marjoram, H.M.I., D.E.S., Elizabeth House, York 
Road, London, S.E.1. Secretary: Mr E. McDonald, H.M.I., 1 Meadow 
Way, Baldwins Gate, Newcastle, Staffs, ST5 5DG. 
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Assessment in mathematics 

Chairman: Dr T. Cavanagh, University of North Colorado, USA. Secre
tary: Mr A. Penfold, London Institute of Education, Malet Street, 
London, W.C.1. 

Vocational mathematics for technicians and business personnel 

Chairman: Mr F. W. Kellaway, Principal, Letchworth Technical College, 
Letchworth, Herts. Secretary: Mr M. Bridger, City of Leicester Poly
technic, Mathematics Department, P.O. Box 143, Leicester, LEI 9BH. 

Tessellations, space filling, point lattice geometry and their applica
tions 

Chairman: Dr J. Hammer, Department of Mathematics, University of 
Sydney, Sydney, NSW, Australia, 2006. Secretary: Mr P. Boorman, 
Lacon House, Millham Road, Bishops Cleave, Cheltenham, Glos. 

Papy-Cemrel international workshop at primary level 

Chairman: Professor Frederique Papy, Centre Beige de Pedagogie de la 
Mathematique, 1180, Bruxelles, Avenue Albert 224, Belgium. Secretary: 
Mr Frank Gomer, Didsbury College of Education, Wilmslow Road, 
Manchester M20 8RR. 

Mathematics and the socially disadvantaged child 

Chairman: Professor W. F. Johntz, Director, Project S.E.E.D., 1011 Keith 
Avenue, Berkeley, California 94708, USA. Secretary: Mrs C. Hoyles, 
19 Globe Road, Stratford, London E15 lRF. 
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Appendix 3 ICMI and Congress 
recommendations 

1 Symposia 

Suggestions for symposia were considered at the General Assembly of 
ICMI and at a meeting of the Executive Committee. It was agreed that 
ICMI sponsorship should be given to the following: 

(a) Luxembourg', at Echternach, 4-9 June 1973, on New Topics in 
applicable mathematics in Secondary Schools; 

(b) Hungary, at Eger, 18-22 June 1973, on Theoretical Problems of 
Teaching Mathematics in the Primary Schools; 

(c) Poland, at Warsaw, one week in 1974, on Teaching children of 
age 5-11; 

(d) Denmark ( ?), in 1974 or 1975, on Aspects of Geometry Teaching at 
School Level; 

(e) Kenya(?), a regional symposium on Mathematics and Language; 
(j) Japan, 1974, a regional symposium; 
(g) India, a regional symposium possibly on Integrated curriculum de

velopment, including applications of mathematics relevant to the problems 
of developing countries. 

In addition it was agreed that steps should be taken for a joint ICMI
IFIP (International Federation of Information Processing Societies) 
symposium on Computers in secondary education. 

It was agreed that no immediate proposal for a regional conference in 
Latin America should be made, particularly in the light of the forthcoming 
third congress of the Inter-American Committee on Mathematical Educa
tion. 

2 Place of the 1976 Congress 

Invitations had been received from Spain, the Federal Republic of Germany, 
the United States of America and the Netherlands. A decision would be 
made in 1973. 

3 Resolutions 

The Executive Committee considered carefully all resolutions proposed by 
working groups. In addition to those which influenced decisions on future 
symposia, it decided to endorse formally the following resolutions: 
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Resolution from the working group on 'Mathematics in Developing 
Countries' · · 

That all possible encouragement and assistance should be given to 
developing countries to make changes in their mathematics syllabuses and 
curricula; such changes to be framed by qualified citizens of those countries 
to ensure that the cultural background of the pupils and the needs of 
national development are taken fully into account. 

Resolution from the working group on 'Links with other Subjects 
at Secondary Level' 

In view of the interest expressed at all levels in interdisciplinary and 
integrated studies, linking mathematics with other subjects, this Congress 
recommends that action be taken to facilitate and encourage work in this 
field. In particular this could include: 

(a) providing support (financial and other) to enable teachers of mathe
matics and other subjects in secondary schools to work together on suitable 
areas (e.g. by team-teaching); 

(b) publicising what is already being done in this direction in order to 
encourage others to attempt cooperative work (a travel grant would be 
one way of achieving this); 

(c) providing support and encouragement for individuals and insti
tutions to develop new teaching materials which cross disciplinary 
boundaries; 

(d) providing support for the production of source materials suitable 
for use in secondary schools from the wide variety of existing sources on 
topics linking mathematics with other subjects. 

Agreed 
That steps be taken by ICM! to establish a centre for the interchange and 
dissemination of information on all matters of interest in Mathematical 
Education, with special reference to symposia, journals and competitions; 
and also that steps be taken to encourage cooperation between journals in 
different languages, with special reference to interchange and to re-printing 
of selected articles. 
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Appendix 4 Films and videotapes on 
mathematics and its teaching 

During the congress films were shown at some of the working groups and 
at some of the national presentations. In addition, continuous programmes 
of films were projected in the Newman Theatre. The films shown are 
listed below by country of origin, together with a certain amount of 
information concerning their availability. Information is also given on some 
of the videotapes which were presented. Some films which it was intended 
to show at the congress did not arrive because of postal difficulties. These 
have been included for completeness. All the films are 16 mm. 

Australia 
Discovery- the Formal Way 1 inch Bell and Howell videotape, 45 minutes. 
G. L. Hubbard, Hubbard Academy, Brisbane, Australia. 

A record of a lesson to grade 10 students from Brisbane State High 
School. The students had been introduced earlier to symbolic and formal 
procedures and to relations as subsets of Cartesian products, and the 
lesson is concerned with the correct logical notation for a function. 

France 

Ca/cul des Probabilite - En/ants de 10 a 11 ans. Lunettes - Etude d'une struc
ture de gr(!upe (2 parts). Three 16 mm films, each lasting 20--30 minutes, 
were shown of teaching at the primary school at Francheville, near Lyons. 
The lessons concerned probability and structures on a grid. Details may be 
obtained from Service du Film de la Recherche Scientifique, 86 Boulevard 
Raspail, 75006, Paris. 

Great Britain 
The British Broadcasting Corporation produces regular programmes on 
mathematics. Two representative examples of their work were shown. 

Maths Workshop Stage 1 and 2 is a fortnightly series for children aged 
9-11. Round-up 3 from this series is a magazine programme featuring 
children's work. 20 minutes. 
Countdown is a series first shown in Autumn 1972, designed for lower 
ability 14--16-year-old children. Lucky Jim is the first of the series and is on 
probability - a club raffle leads to a discussion of some beliefs about the 
workings of chance. British Broadcasting Corporation, Villiers House, 
Haven Green, Ealing, W 5. 
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Why Mathematics? Central Office of Information film made for the 
Department of Education and Science. 32 minutes, colour, sound. Made 
by Verity Films. Devised and produced by Seafield Head. Written and 
directed by Nie Ralph, graphics by Trevor Bond. 

Available for United Kingdom non-theatrical distribution, on free loan, 
and sale, from Central Film Library, Government Building, Bromyard 
Avenue, London W3 7JB, and through its associate libraries in Scotland 
and Wales. 

The film is intended for younger secondary children, and it shows them 
that mathematics is a subject with interesting and important practical 
applications. 

Further information about DES films can be obtained from the Films 
Officer, Information Division, Department of Education and Science, 
Elizabeth House, York Road, London SEl 7PH 
Topology Colour, 9 minutes. 

Distributed by Educational Film Centre Ltd, 5 Richmond Mews, Dean 
Street, London W 1. 

Uses two and three dimensional animation to show examples of topo
logical changes. This film also considers such phenomena as networks, 
Moebius strips and Klein bottles. 
The following two films show some of the work of the Nuffield Mathe
matics Project. 
Maths with Everything (Infants) Colour, 21 minutes. 

Can be bought from: Graphic Films Ltd, 1 Soho Square, London W 1. 
Black and White £28.50, colour £90. Can be hired from: Concord Films 
Council, Nacton, Ipswich, Suffolk. 

Observes teachers at a workshop enjoying themselves as they learn to 
integrate mathematical concepts into the entire curriculum as :well as to 
make the learning process enjoyable for the children. Then shows a teacher 
applying these methods in the classroom, working closely with individual 
students aged 5 to 7. 

Into Secondary School (First Year Secondary)Black and White, 20minutes. 
Can be bought from Sound Services Ltd, Wilton Crescent, Merton 

Park, London SW19, price £16.50. Can be hired from Petroleum Film 
Bureau, 4 Brook Street, London W 1. 

Illustrates how Nuffield Maths may be successfully continued at least 
two years into the secondary level. Questions the need for the complete 
change in teaching methods that normally takes place when British 
children change from primary to secondary school at the age of 11. 
Describes how two British secondary schools have tackled the problems 
of this new approach. 

The above two films are distributed in the USA by University of Cali
fornia, Extension Media Center, Berkeley, CA 94720. 
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Teacher Based Curriculum Development 20 minutes, colour. Directed by 
Harry Davenport. Distributed by Schools Council, 160 Great Portland 
Street, London W 1. 

This film was produced for the Mathematics for the Majority Continua
tion Project. The project is concerned with less academic, secondary pupils, 
aged 13-16. The film shows the development of new ideas and materials on 
a national scale using teachers organised into writing groups. All aspects 
of the project are covered - teachers writing groups, processing and 
designing, evaluation, and children using the materials in the classroom. 

Number Patterns Black and white, sound, 11 minutes. Made by Beryl 
Fletcher and Hugh Larcombe, Darlington College of Education. 

A college-produced film, showing animations of four different number 
patterns, for use with children aged 9-13. 

A selection of 1 inch Ampex videotapes showed representative work of 
teaching programmes produced by the Inner London Education Authority, 
Educational Television Service. These included material from the series 
The Nature and Application of Mathematics, for older school children; 
a programme for primary children from the series Pattern in Mathematics, 
introduced by two puppets; and a discussion programme at a teachers' 
centre. 

These programmes are available for hire. Enquiries to Educational 
Television Centre, Tennyson Street, London SW8 3TB. 

Israel 

lsometries 

Square Root by Iteration 

Congruent Triangles 
These three 1 inch Ampex television tapes, produced by the television 

service in Israel for 15-16-year-old pupils, were introduced by A. Markus. 

Japan 

One to One Correspondence Black and white, about 20 minutes. Dubbed in 
English. Produced by Makoto Yamazaki. Directed by Hisanori Nishiuchi. 

A film for secondary school children. Examples of one-to-one corre
spondence with baggage tags and seat number labels in an aircraft, and 
other material situations, lead on to the correspondence between even and 
odd integers. The excellent studio production of this television film gained 
it a Japan Prize. 
Regular Polyhedra A television film which is one of a series intended for 
the first grade of the lower secondary school. The film is concerned with 
making regular solids. 

The above two films are distributed by Japanese Television; Hisanori 
Nishiuchi, NHK, 2 Jinnan-Machi, 2-chome, Shinjuku-ku, Tokyo. 
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Russia 

Three black and white films, each of some 7-8 minutes, were made for 
television, and introduce the fundamental concepts of calculus using 
a combination of live action and diagram work. 

Details from E. Schukin, University of Kaliningrad. 

USA 
Minnesota College Geometry Project Films Colour, sound. 

These films were produced by the University of Minnesota College 
Geometry Project in cooperation with the National Science Foundation, 
Washington DC. 

World distribution by International Film Bureau Inc. Distributed in 
Europe by Europa Diffusion, 25 rue Beranger, 75 Paris 38 • 

Orthogonal Projection 8 minutes, sale $135, rental $12.50. 
The principal use of the film is in connection with a written unit entitled 

'Geometric Transformations'. It introduces students to an elementary 
geometric transformation, which serves as a springboard for treating more 
complicated kinds of transformation. 

Mathematician: D. Pedoe. 
Central Similarities 1 minutes, sale $135, rental $12.50. 

This film is supplementary to the section on Similarity Transformations 
in the unit on 'Geometric Transformations'. 

Mathematician: D. Pedoe. 
Dihedral Kaleidoscopes 8 minutes, sale $135, rental $12.50. 

This film is primarily motivational, intending to get students excited 
about the ideas of symmetry. The first major idea is that of physically 
exhibiting the dihedral groups by means of reflections in two intersecting 
mirrors (dihedral kaleidoscopes). The second major idea is a reiteration 
of the fact that every isometry is a product of reflections. The third and 
final notion is that by using three mirrors standing vertically on a table so 
that each pair forms a dihedral kaleidoscope, one obtains regular and 
semi-regular tessellations of plane. 

Mathematician: H. S. M. Coxeter. 
Geometric Vectors - Additions 12 minutes, sale $185, rental $15. 

Using the study of motion as motivation, the notion of vectors is intro
duced - and finally defined as an equivalence class of arrows. 

Mathematicians: W. 0. J. Moser and S. Schuster. 

Inversion 9 minutes, sale $160, rental $12.50. 
Inversion is the last of the transformations treated in the unit, 'Geo

metric Transformations'. Inversion is introduced in the film and several 
of the properties of the transformation are discussed before it is applied 
to solving Steiner's problem. 

Mathematician: D. Pedoe. 
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Curves of Constant Width 11 minutes, sale $185, rental $15. 
The written unit 'Convexity and Combinatorial Geometry' contains 

a section on 'Curves of Constant Width'. The film ties in directly with 
that section and is, in some sense, stronger in mathematical content. 

Mathematician: J. D. E. Konhauser. 
Central Perspectivities 9 minutes, sale $160, rental $12.50. 

The film proceeds towards the fundamental theorem of projective geo
metry, providing motivation by discussing the questions: How many points 
determine a perspectivity uniquely? Can a perspectivity map one given 
triple into another? After it becomes clear that aprojectivity (a product of 
perspectivities) is necessary to map one given triple into another, the 
narrator poses the question: How much information uniquely determines 
a projectivity? The answer to this question, namely the Fundamental 
Theorem, is not given in the film. It is hoped that the students will gain 
more of an appreciation of the Fundamental Theorem if they are left to 
ponder the question that is left open. 

Mathematician: S. Schuster. 
Equidecomposable Polygons 17½ minutes, sale $285, rental $17.50. 

This film treats a problem in the theory of dissection of polygonal regions 
that was solved by Hadwiger and Glur in 1948. The two polygonal regions 
can be dissected so that there is one-to-one correspondence between the 
parts of one and the parts of the other, satisfying the condition that 
corresponding parts must be congruent, then the two regions are said to be 
equidecomposable. 

Mathematician: J. D. E. Konhauser. 

Symmetries of the Cube 9 minutes, sale $160, rental $12.50. 
The film reviews the manner in which reflections are used to show the 

symmetries of a square. Mirrors are then used to study symmetries of 
the cube; that is, the reflectional symmetries are shown to generate all the 
symmetries, producing the extended octahedral group. The reciprocal of 
the cube, namely the regular octahedron, is seen to possess the same 
group of symmetries as the cube. 

Mathematicians: H. S. M. Coxeter and W. 0. J. Moser. 
lsometries 26 minutes, sale $405, rental $20. 

Translations, rotations, reflections and glide-reflections are introduced 
as examples of isometries, namely distance-preserving transformations of 
the plane. 

Mathematicians: W. 0. J. Moser and S. Schuster. 
Projective Generation of Conics 16 minutes, sale $285, rental $17.50. 

Conic sections may be developed in various ways. The methods of 
construction developed by Pascal, Maclaurin, Braikenridge, Poncelet, and 
Steiner are all exhibited dynamically by means of film animation. 

Mathematician: S. Schuster. 
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Caroms 9 minutes, sale $160, rental $12.50. 
An animated film exhibiting the relationship between a carom - a ball 

rebounding from a wall - and a reflection. 
Mathematician: C. Davis. 

Symmetry Colour, 10½ minutes, sale $125, rental $12.50. 
Film design and direction - Philip Stapp. Physicists - Judith Bregman, 

Polytechnic Institute of Brooklyn, Richard Davisson, University of 
Washington, Alan Holden, Bell Telephone Laboratories. Music - Gene 
Forrell. Production - Sturgis-Grant Productions, Inc. 

'Symmetry' is both a scientific exposition and a work of art. It is not 
about science, it embodies science. The film is an abstract mathematical 
ballet based on two-dimensional symmetry groups of the plane. 

Distributed by International Division, McGraw-Hill Book Company, 
330 West 42nd Street, New York, NY 10036. Distributed in Great Britain 
by Contemporary Films Ltd, 55 Greek Street, London Wl V 6DB. 

The Kakeya Problem 60 minutes. Colour. Sponsored by the Mathematical 
Association of America. A filmed lecture by A. S. Besicovitch on a cele
brated problem. It is shown that a line segment can be rotated in a plane 
in such a way as to 'smudge' an arbitrarily small area. 

John Von Neumann 63 minutes. Black and White. Sponsored by the 
Mathematical Association of America 1966. A documentary on the life 
and work of a distinguished contemporary mathematician. 

Shapes of the Future I and II - Unsolved Problems in Geometr)I Directed 
by Klee. 

The above films, four of a series, are distributed in the USA by Amram 
Nowak A$sociates. The first two are available on loan in Britain to sub
scriber members of the Sussex Library of Mathematics Films, University 
of Sussex, Falmer, Brighton. (Non-subscribers may enquire if copies are 
available.) 

Between Rational Numbers (Knights) 11 minutes. 
Equivalence Classes in Addition (Fraction Singers) 8 minutes. 
The Remainder in Division (Termites) 8 minutes. 
Solving Pairs of Equation (Pirates) 10 minutes. 

The above four films on rational numbers are from a series of thirty made 
for the National Council of Teachers of Mathematics. 

The Weird Number Sound, colour, about 10 minutes. 
A cartoon film introducing some ideas of rational numbers in the style 

of a popular thriller. 

Information on the above five films from Lauren G. Woodby, Michigan 
State University, East Lansing, Michigan. 
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West Germany 

Number Systems, Place Value 
Counting, Adding and Subtracting 
Sets, Subsets, Union, Intersection 
Compositions, Addition and Subtraction 

These four short colour films are part of a series of activity packages con
sisting of games, books, films and overhead projector material intended 
for 5-10-year-old pupils. 

The films are work films, intended for cassette viewing, developing 
mathematical ideas from play activities with number apparatus. The 
system is almost self-teaching. Distributed by Hermann-Schroedel Verlag 
K6, 3 Hannover, Zeiss-strasse 10, West Germany. 
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