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Those fortunate beings who find mathematics a joy and a fascina-
tion will probably get on, whatever the standard of teaching. It
requires real genius to light a flicker of understanding in the minds
of those to whom mathematics is a clouded mystery. The subject
is so vitally important for everyone in this technological age that
any advance in the techniques of teaching is to be welcomed.

I hope all the delegates to the 2nd International Congress on
Mathematical Education will find the business interesting and full
of fruitful ideas. I also hope that they will have a thoroughly enjoy-
able time between sessions, meeting old friends and making new
ones.
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I
A CONGRESS SURVEY






An international congress which took two years to plan, embraced
a vast range of activities and was attended by some 1400 educators
from all parts of the world, could scarcely be satisfactorily described
and evaluated within the covers of a single book. Certainly, the pro-
vision in printed form of some of the many papers presented at the
congress, whilst valuable enough in itself, would convey little im-
pression of the context in which the papers were presented — of the
thoughts which prompted them, and of the feelings and reactions
they aroused. It was for this reason that the Programme Committee,
the committee responsible for planning the professional work of the
congress, decided that the official proceedings of congress should
attempt to do more than merely present a selection of papers. It
should also contain some account of the lengthy preliminary discus-
sions which determined the shape and thus, effectively, the scope of
the congress, as well as an attempt to describe the general spirit of
the meeting and to identify those themes which arose in the working
groups and which could profitably repay further study by individuals
and groups before the Third International Congress on Mathematical
Education is convened in the summer of 1976.

In this way it was hoped that the congress proceedings would
succeed in conveying to those who could not be present at Exeter
not only what twenty or so distinguished authors judged to be worthy
of study and concern, but, even more importantly, the problems
which over one thousand committed and enthusiastic mathematical
educators had identified as those which they most desired to consider
and discuss. Such a report, it was thought, would have a more
widespread appeal and be of correspondingly greater value,

Similar considerations led the Programme Committee to break with
tradition and to recommend that the proceedings should be published
entirely in English. Translations have therefore been prepared of
those papers originally presented in languages other than English.
Copies of these papers in their original form have, however, been
made available to congress members, and it is hoped that part, at
least, of these proceedings will appear elsewhere in languages other
than English.



A CONGRESS SURVEY

1 PRELIMINARIES AND PLANNING

A major difficulty in planning a Second International Congress is
that one suffers from a shortage of precedents. In this respect, of
course, the members of the Programme Committee were more
fortunate than their colleagues who had planned the First Inter-
national Congress on Mathematical Education, held at Lyons in
August 1969, for we at least had the experience of that meeting on
which to build.

The format of the Lyons meeting was based upon that of the
International Congress of Mathematicians — indeed the sections of
the ICM devoted to education can be viewed as embryonic congresses
on mathematical education. Thus, the meeting was built around
a series of one-hour invited lectures supplemented by a number of
short (15-minute) contributions by congress members. The limita-
tions of this procedure were soon apparent. Mathematical education
is a topic totally different in nature from mathematics. Although
there is no shortage of theories in the former, there is a noticeable
lack of theorems — for, indeed, there is no accepted axiom system
which even crudely models, and is modelled by, the educational
process. Contributors to a congress on mathematical education
cannot, therefore, be expected to emulate their mathematical col-
leagues (or even their mathematical selves) by presenting new proofs
or new theorems, by producing generalisations or new characterisa-
tions. Primarily, they bring their experience, their personal judgement,
and accounts of their work in the classroom — not that these are in
any way the less valuable! Again, although mathematics possesses
a basic vernacular which has international validity, the words used in
mathematical education have to be interpreted afresh by each
congress member in the light of his educational environment.
Professor Thom has pointed out (see p. 204) how, once one strays
from the ‘common stem’, the difference of semantic universes
amongst mathematicians can lead to problems of interpretation and
understanding. How true this is of mathematical education which, as
yet, lacks even this ‘common stem’. Traditionally, mathematicians
have sought to ease their problems by discussion, and the need for
encouraging this type of interaction was soon recognised at Lyons
and manifested itself in the hasty provision of discussion groups
arranged on site. In the event, the success of the congress in attracting
some 600 members —a most encouraging response to this novel
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PRELIMINARIES AND PLANNING

venture — militated against the organisers’ attempts to provide these
facilities at short notice.

The need to provide for effective discussion was, therefore, one
lesson of the Lyons Congress. One hint as to how this might be
encouraged other than through groups constituted to examine specific
issues was provided by the Mathematics Workshop mounted at Lyons
by the Association of Teachers of Mathematics. This presentation,
which included a class of children at work, provoked considerable
discussion and comment. It transmitted an image and a philosophy
in a way that could not have been achieved by any number of plenary
lectures and, as we shall see, influenced the design of the Exeter
Congress.

Even before the Lyons Congress had closed, the thoughts of many
began to turn to its successor, for which, at that time, no venue had
been decided. The British National Committee for Mathematics had
extensively discussed the possibility of inviting the International Com-
mission on Mathematical Instruction (ICMI) to hold the Second
Congress in Britain. In February 1970 it determined upon Exeter as
a suitable site and by the summer of 1970 its invitation to ICMI to
hold the congress there had been accepted. The detailed planning of
the congress could now begin.

The arrangements for the congress were to be made by various com-
mittees working under the auspices of the Royal Society. The
Organising Committee, chaired by Professor M. J. Lighthill (shortly
afterwards to be honoured for his contributions to mathematics by
the award of a Knighthood), was the body responsible for formulat-
ing fundamental principles and for liaison with international institu-
tions. The Programme Committee appointed by the Organising
Committee was to be responsible for the preparation of a detailed
programme — the selection of invited speakers, the establishment of
working groups, etc. This committee consisted of a number of British
educators later augmented as the need arose, together with a number
of distinguished, international ‘corresponding’ members, and was
chaired by Mrs Elizabeth Williams. A third committee, chaired by
Mr G. Duller (and, after his unfortunate withdrawal because of ill-
health, by Dr D. Hammond Smith), was in charge of local arrange-
ments, excursions, social events, etc.

The Programme Committee held the first of its many meetings in
October 1970. Some matters which fell into its domain, such as
arrangements for translation facilities and publicity, although essen-
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tial to the success of the congress, do not merit detailed discussion
in these pages. More relevant was the early attempt to identify
a ‘theme’ for the congress.

The committee began its work with the conviction that the response
to the Lyons Congress justified it in planning a much fuller pro-
gramme and in anticipating one thousand active participants, and
with the belief that a congress of this nature could have a world-wide
influence on the development of mathematical education.

Would that influence be greater if the congress concentrated upon
a particular theme? Could a theme help give direction and focus to
our work during the short period we had together — shorter, in fact,
than was the case at Lyons ? After lengthy discussion, and the rejec-
tion of several proposals, the idea of a central theme was abandoned.
Mathematical education, a discipline still in its formative years,
appeared to embrace too many interests for any such circumscription
to be profitable, or even possible. The congress, it was felt, should
attempt to cater for all interests and, as far as one could describe
its purpose, it should ‘Study recent work in the field of mathematical
education and stimulate further developments’.

The discussions devoted to finding a ‘theme’ were not without
value, however, for they helped the committee better to comprehend
and identify those issues which should be raised at Exeter. Many
different aspects of mathematical education were distinguished.

The international nature of the congress served to emphasise the
great range of conditions in which mathematical education takes
place. Environmental factors, such as the extent to which the student’s
background and surroundings stimulate or militate against an
interest in mathematics, are of vital importance. Cultural influences,
including scientific attitudes, can play a crucial role. These problems,
which can occur within a single country, loom particularly large
when one considers mathematical education on a world-wide basis
and contrasts the situation in a village in Malawi or India with that
in, say, a residential suburb of Boston (Mass.). Not only would
members be drawn from all parts of the world, but their interests
would range over all sectors of education. Problems on the formation
of ideas on number by the pre-school infant would be matched by
those concerning what an old man in retirement studying for an
Open University degree should know about the calculus. (The fact
that the Lyons Congress —along with most of the ICM section
meetings which preceded it — had chosen to interpret ‘mathematical
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PRELIMINARIES AND PLANNING

education’ as something which affected only schoolchildren, had
been noted, and it was agreed that university and other higher and
further education should also be considered at Exeter.)

Mathematics, then, is being taught to, and learned by, a multitude
of students in a bewildering variety of conditions. But what mathe-
matics? Here was another leading question for discussion and
comment. During the past two or three decades, the influence of
mathematics in contemporary society — scientific, technical and socio-
political — has grown tremendously. What are the consequences of
this for mathematical education? What is the place of mathematics
in the total education of the individual? Mathematics itself has
expanded rapidly and whole new fields for study have been uncovered.
What is the relevance of these advances in mathematics at a research
level to mathematics teaching at lower levels? Attempts to answer
these questions have been made during the last decade and are still
being made. To what extent have the solutions proposed been justi-
fied? To what extent do they appear to be practicable?

The teacher has, of course, received a great deal of advice on how
he should tackle the problems which confront him. Indeed, the pro-
liferation of educational aids and research reports has become
positively bewildering. But what problems can educational techno-
logy and educational research solve? What assistance can they pro-
vide for the mathematical educator? Again, these were aspects of
mathematical education which merited consideration at the con-
gress. Some idea of what technical developments have made possible
has been given by the multi-media courses provided in Britain by the
Open University and the BBC. What are the lessons to be learned
from these and similar experiments ? Equally important questions can
be asked about the computer, which clearly has a crucial role to play
in mathematical education both as a technical aid to student and
teacher and as an integral part of mathematics itself — for its power
is such that it has been able to influence mathematical thought and
even the nature of mathematics. Such considerations of mathematical
thought lead naturally to questions concerning the growing insights
one possesses into the nature of mathematics as an activity of the
human mind. How does this develop in a child ? Why has it become
the fundamental instrument in shaping the structures of the physical
and social sciences ? How has it affected philosophy and man’s view
of the universe?

These questions concern the philosophical and psychological bases
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of mathematical education — foundations which will demand even
greater study if we are to have any confidence in the durability of the
structures of mathematical education which we are now creating.

These then were some of the facets of mathematical education that
were discussed by the Programme Committee as it sought to decide
upon a ‘theme’ for the congress. When the idea of a single theme was
rejected, it was then necessary for the committee to provide congress
with a framework within which all these different facets could be
examined.

2 THE PROGRAMME

When deciding upon the range of activities to be included in the
congress programme, the Programme Committee was, as indicated
above, very much influenced by the Lyons Congress. Obviously,
there was still a place in the programme for the invited lecture. Cer-
tain broad issues should be aired before the congress as a whole and,
equally, the opportunity to hear distinguished speakers — previously
only names attached to articles or books —is one which most con-
gress attenders value. What was not so evident was the amount of
time that could profitably be allocated to such talks. Eventually,
after the views of colleagues abroad had been sought, it was decided
that, in addition to the Presidential Address, there should be six
plenary lectures (compared with twenty at Lyons). The 15-minute
contributions by congress members were abandoned entirely, since
it was thought that, as a means of pooling the experience of teachers,
such individual accounts were not enough and that they consumed
valuable time in a prodigal manner. The active participation of the
members themselves was considered essential and it was thought that
the most acceptable means of communication would be papers
submitted before the congress for limited distribution there, and
discussion by small groups constituted according to specialist
interests. The administrative problems consequent upon these pro-
posals were daunting, particularly since it was hoped to arrange for
a preparatory exchange of views prior to the congress, but the com-
mittee agreed that the ends appeared to justify the risks which attended
such an ambitious undertaking. The third major contribution to the
congress programmes would be in the hands of various national
committees. The ATM contribution at Lyons had indicated the value
of workshops in which one could discuss particular developments
and even see mathematical learning and teaching taking place. This
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idea was now extended to that of a National Presentation at which
educators could talk about developments and projects in their own
country and in which they might arrange demonstrations both of
materials and of actual classroom practice.

The bricks with which the formal congress programme was to be
built were, therefore, plenary sessions, working groups and national
presentations — the necessary mortar would be the intervals provided
in the programme for informal exchanges of views.

The selection of the speakers to give the six key lectures was a most
difficult task. When the committee surveyed the international field
many possibilities emerged. Two names, however, were in a slightly
different category from all the others, for they appeared to be present
in everyone’s mind: those of Po6lya and Piaget. It is difficult ade-
quately to describe the influence of this pair on mathematical educa-
tion. Professor Pdlya’s distinguished contribution to many branches
of mathematics has been matched by his outstanding work in the
field of mathematical education. Through his books How to Solve It,
Mathematics and Plausible Reasoning, and Mathematical Discovery
he has helped to explain the process central to mathematics — that
of solving problems. The term ‘heuristic’ — the study of the methods
and rules of discovery and invention - is for many inseparably linked
with his name. In a similar manner, the phrase ‘concept formation’
automatically evokes the name of Piaget. The work of Professor Piaget,
and that of the Geneva school which he created, has had enormous
influence on primary education during the past two decades and has
generated research work in universities throughout the world. Such
books as The Psychology of Intelligence, The Child’s Conception of
Number, The Early Growth of Logic in the Child and The Child’s Con-
ception of Geometry have been read and studied by mathematical
educators everywhere. His theories are not universally accepted, but
it is indeed a measure of his greatness that they should generate
controversy —and even on occasion provide the headlines of the
British daily press!

The committee after noting this unanimity, proposed that, rather
than being asked to address congress, these two great educators
should be invited to attend as ‘Distinguished Guests’ and to con-
tribute papers which, by being made available to all members, would
help to direct congress thought. It was to the delight of all that both
Professor Polya and Professor Piaget accepted the invitation offered
to them by ICMI, a delight only tempered by the fact that Professor
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Piaget had later, reluctantly, to decide on medical advice that he
could not make the journey.

In the event, the choice of speakers was circumscribed to some
extent by the themes which the Programme Committee wished to
emphasise. There was the need to see mathematics not only as a world
in itself, but as part of a greater universe. How did mathematics
evolve ? What were its social and cultural roots? What is its place in
general education, indeed in ‘civilisation’? To help draw attention
to these questions and in the hope of encouraging study of the rele-
vance of the findings of anthropologists, sociologists and others to
mathematical education, the committee invited the distinguished
anthropologist Dr Edmund Leach to address the congress. 1t is
significant that other plenary speakers, notably Professor Philp, also
chose to emphasise such considerations.

Such anthropological study provides us with opportunities to
identify primitive examples of mathematical creativity and of those
processes of thought which we can describe as ‘mathematical’. The
study of such processes and their cultivation — problems of learning,
knowing, thinking and teaching — are central to the development of
a discipline of mathematical education. As an acknowledgement of
this, two speakers, Professor Hawkins and Professor Philp, were
specifically invited to lecture on aspects of educational philosophy
and psychology.

Having indicated the importance which it attached to these facets
of mathematical education, the Programme Committee turned to
problems of content and selection. What mathematics should be
taught and for what reasons ? Here the committee was able to fall back
on precedents, for it has long been the case that certain (even if,
almost of necessity, a small minority of) professional mathematicians
have sought not only to advance the study of mathematics itself, but
also to improve the way in which it is taught at all levels. The com-
mittee was fortunate, therefore, that it could turn for guidance and
advice to such eminent mathematicians as Freudenthal, Soboleyv,
Thom and the congress President, Sir James Lighthill.

The French professional mathematicians have been very much
involved in the discussions on mathematical education that have
taken place during the past fifteen years. In particular, Professors
Lichnerowicz, Choquet and Dieudonné have contributed greatly to
the debate through OECD and other seminars, and through their
textbooks. More recently, Professor René Thom’s voice has been
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heard and his contribution has been along very different lines from
those of his compatriots. The committee was most grateful, therefore,
when Professor Thom accepted its invitation to speak at Exeter about
‘modern’ mathematics as he saw it. Professor Thom’s contribution
is, of course, doubly valuable, for it emphasises — if further evidence
is still required — that although the mathematical educator should
seek advice and guidance from professional mathematicians, he
should not expect the professionals to reply in a unanimous and
unequivocal manner. The educator will still have the responsibility
for making decisions.

The interest which Russian mathematicians have taken in fostering
mathematical talent in schools is well known. The committee naturally
turned, therefore, to the USSR for suggestions regarding principles
that might govern mathematical education. Originally it was hoped
that Academician Kolmogorov would be able to attend the Exeter
meeting. Unfortunately, circumstances prevented his attending and
we were fortunate that Academician Sobolev, one of the international
corresponding members of the Programme Committee, agreed to
lecture in Kolmogorov’s place and to tell us how mathematical
educators in the USSR are attempting to solve some of the problems
which face them.

One professional mathematician who will always be remembered
for his contribution to mathematical education is Felix Klein. His
books on Elementary Mathematics from an Advanced Standpoint are
still read throughout the world — indeed, some of his suggestions,
such as the use of calculating machines for teaching arithmetic to
children, still have a modern ring about them! In recent years, many
new approaches to the teaching of geometry in schools have been
based on his Erlanger Programm. By a happy coincidence, our
meeting in Exeter marked the centenary of Klein’s inaugural address
at Erlangen, and the committee’s thoughts turned to how this
anniversary might best be celebrated. It was decided to invite a geo-
meter, who, like Klein, had contributed greatly not only to mathe-
matics but also to mathematical education, to talk on some subject
closely allied with Klein’s work. We were fortunate that the Pro-
gramme Committee contained just such a person, Hans Freudenthal,
and that he was willing to accept the invitation offered to him by its
other members.

Finally, the committee wished to stress the importance it attached
to teaching mathematics for, and through, its applications. We in
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Britain have a tradition of teaching ‘Applied Mathematics’ in
schools, where it is often found on the timetable alongside ‘Pure
Mathematics’. It can, of course, be argued that such a dichotomy is
pedagogically undesirable or even meaningless, yet, despite these and
other objections, this tradition is one which the British tend to value
greatly and which makes them apprehensive about the ‘purer’
programmes that they see advocated elsewhere. The committee
wished, therefore, to draw the attention of all congress members to
this aspect of mathematics and was extremely grateful when Sir James
Lighthill, who is renowned for the manner in which he has applied
mathematics in a variety of fields, suggested that he should devote
part of his Presidential Address to this topic.

All the time allotted to plenary sessions had now been filled. The
committee realised that it had not accorded a mention at plenary
level to many aspects of mathematical education —to computers,
educational technology, the history of mathematics, etc. — but hoped
that these deficiencies would be remedied through the work of the
various discussion groups, in the showing of films, and in the display
of equipment and materials. A more significant omission, perhaps,
and one which the working groups could not remedy, was an account
of developments within mathematics itself. Many of those who, in
the past, attended ICM congresses primarily for the work of the
Education Section also greatly enjoyed the opportunity to make
contact with leading research mathematicians and to learn of the
most recent developments. It must be admitted, however, that the
rapid expansion of mathematics has tended to diminish the value of
such contacts, for now a vast amount of specialist knowledge is
frequently required before one can comprehend the significance of
developments — particularly when they are presented in a manner
which assumes specialist competence in the listener. The idea of
attempting to bridge this gap by means of a series of expository
lectures intended for a more general audience was discussed by the
committee. In the event, it was unable to mount such a programme —
but it remains the hope of the committee that this idea will be re-
examined and followed-up at future ICMI congresses.
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3 THE CONGRESS IN ACTION

The congress was officially opened at 8 p.m. on Tuesday 29 August
at a ceremony in the Great Hall of Exeter University. The President of
Congress, Sir James Lighthill, read to the meeting a message received
from H.R.H. The Prince Philip, Duke of Edinburgh. (This message is
reprinted on p. v.) An opening speech of welcome was given by Mr
Kenneth Rowe, M.B.E., Pro-Chancellor of the University of Exeter,
and this was followed by the Presidential Address (p. 88). The closing
session of the congress was held at 8 p.m. on Saturday 2 September,
when the President announced the decisions of the Executive Com-
mittee of ICMI on future meetings and the congress resolutions
(p. 305) were read out.

The congress was attended by 1384 full members and 300 associate
members. In all, 73 countries were represented.

The scientific programme of the congress consisted of six invited
lectures, meetings of thirty-eight working groups (see p. 300), and
presentations mounted by seventeen different countries (see p. 71).
Mathematical films were shown throughout the working hours of
the congress. In addition there were independent exhibitions and
displays arranged by the Educational Equipment Association and the
Educational Publishers Council, the Open University, the School
Mathematics Project, the Schools Council Mathematics for the
Majority Continuation Project, and the Nuffield Project.

The official representatives of the International Commission on
Mathematical Instruction met on Friday 1 September and the
Executive Committee of that body met on Saturday 2 September.

The social programme included a reception given by the City of
Exeter and the University of Exeter, held on Thursday 31 August,
the Congress Dinner, held on Friday 1 September, and late-night
film and theatre shows. On the afternoon of Friday 1 September
a wide variety of excursions was available to members. Special
excursions were provided for associate members on three other days.

4 THE WORK OF CONGRESS

It is the aim of this book to transmit to its readers something of
the general spirit of congress. This it does, in part, by reprinting
papers presented to congress by the invited speakers, and by repro-
ducing some of the papers submitted to the working groups. The
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difficulties of conveying ‘spirit’ are manifest. Perhaps the inclusion
of ‘(Laughter)’ or even ‘(Gallic whistles)’ at suitable points in the
texts of the plenary lectures might help to transmit more of that
sense of occasion, but it would be impossible adequately to describe,
say, the warmth of the congress greeting to its distinguished visitor
Professor George Poélya.

If the printed texts fail to do justice to the plenary lectures, how
much more do the papers reprinted in Part III fail to indicate the
breadth and depth of the discussions which took place within the
working groups. The committee which met to select those papers to
be reprinted in the proceedings had a well-nigh impossible task. First,
it must be emphasised that many of the papers submitted to working
groups were clearly intended to provoke discussion and, because of
their format, were not suitable for reprinting in this volume. This
is by no means a criticism of their authors, for, indeed, such papers
were exactly what were required by the various groups. Again, there
were outstanding papers which were too specialised for this publica-
tion and which one hopes to see reprinted in one or other of the
technical journals that now exist — for it must be emphasised that
the selection committee attempted to choose papers of general
interest which could be read by any mathematics teacher. Those
papers reprinted, therefore, represent only a small part of those con-
sidered by the selection committee and, for the reasons given above,
are not wholly typical of the many papers submitted by authors
from so many different countries.

It would be wrong, however, to suggest that the committee suffered
from an embarrassment of riches. Obviously, all the papers con-
sidered did not reach the same standard of readability, excitement
or depth of research. As we have said before, mathematical education
is in its formative years and criteria and objectives are not yet sharply
defined.

The constraints of space and the time available to a prospective
reader, rule out any attempt to present a meeting-by-meeting account
of the activities of the working groups, and we have, therefore, chosen
instead to survey the major themes which arose in the group discus-
sions and to attempt to indicate problems to which mathematical
educators will be paying especial attention in the coming years.

In general, the names of contributors to working groups have
been omitted. However, where research results or reports are avail-
able the names of the persons concerned and brief details of the
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institution to which they belong have been added. The names and
addresses of the chairmen and secretaries of the working groups
can be found on pp. 300-4.

Where appropriate, the activities of two or more groups have been
described under the same subheading. This is but one way in which
an attempt has been made to impose some structure on this particular
section of the proceedings. However, it is important to realise that any
such structure is bogus in the sense that the groups formed themselves
in an unstructured way; they represent neighbourhoods of interest
which, not unexpectedly, reveal some complicated patterns of
connectivity.

Some working groups concentrated their attention on specific age
levels or even on particular sections of the curriculum within a given
age-range, others ranged across all levels of education. The accounts
of the former type of group are collected together and separate the
descriptions of the work of the wider-ranging groups.

The psychology of mathematics learning

It is perhaps fitting that the survey of the activities of the working
groups should begin with consideration of that on the psychology of
learning mathematics, for not only does this study underpin the whole
of mathematical education, but also this was the most popular group
in terms of numbers attending. The papers of this working group
were divided into four categories: the first dealt with theoretical
problems concerning the psychology of learning mathematics; the
second was concerned with the results of learning experiments which
had been based on theoretical-psychological sources; there were
practical demonstrations and films related to children learning; and
problems of research related to the psychology of mathematics
learning were raised.

The chairman of the group, Professor E. Fischbein (see p. 222),
introduced three themes, the relation between intuition and reasoning
processes, the concept of structure in mathematics and psychology,
and heuristics and the solving of mathematical problems. Research
was needed on the child’s primitive intuitive knowledge, on which
the school must later try to help the child to build his conceptual
structures. It was suggested, reciprocally, that the various mathe-
matical operations readily available in elementary mathematics
might indicate the presence of certain developmental stages in the
child.
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Other speakers covered various aspects of studies arising from
Piaget’s work which it was claimed allowed the child’s cognitive
growth to be described with some precision. Miss Joan Bliss talked
about the relation between concept and image, emphasising that
the concept derives from the ‘interiorised’ actions of the child. It is the
coordination of the results of the child’s actions on objects, not the
objects themselves, that forms the basis of his first interiorised logical
thinking.

Joint sessions were held with the working group on research in the
teaching of mathematics. A number of speakers described experi-
ments in teaching logical and mathematical structures to young
children. Miss Colette Hug (France) stated that she could teach such
structures with success when she used situations which were ‘pure’,
that is, which were stripped of any significance in the real world.
Dr Seymour Papert (USA) described his teaching method, which
was essentially enabling children to abstract a formal scheme from
its concrete materialisation.

It was suggested that there is a real communications gap between
teachers and researchers, not merely a difficulty of communication.
This stems from the differences in the tasks facing them: the first
having complex problems to solve in ‘real time’, the latter having to
locate definable problems capable of solution in some rigorous sense.
There are problems of transferring ideas from research to teaching,
among them a danger that results will be inflated, and applied in
circumstances well beyond those in which they have research valida-
tion. There is also a danger of the confusion of research terms with
the looser language necessarily used in teaching. The language
developed in curriculum projects might be one way of bridging the
gap as it is at the same time precise enough to convey distinct mean-
ings but also rich enough to be effective in the confusing, value-
judgement-laden classroom situation.

A number of theoretical problems were discussed in the working
group sessions. The relation between images and concepts influenced
greatly the learning of mathematics. The discussion made it clear
that consideration of the different types of image and their role needs
to be studied in greater depth. There are images which reproduce
more or less directly the objects and world around them, there are
other images which have varying degrees of schematisation, there
are post-conceptual images which are, in fact, figural abstractions.
All these different types of image and their relation to the concept
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concerned need to be known, as part of mathematical learning
depends upon imagery. Another area in which research is needed is
in the study of intuition, both primary (primitive forms of know-
ledge) and secondary (constructed by the teaching process in the
different branches of mathematics).

It was felt that practical demonstrations and discussion have shown
that the learning of mathematical structures through different
‘embodiments’ at the elementary level is a promising direction. How-
ever, it was stressed that longitudinal research is necessary in order
to determine the value of such teaching procedures for the develop-
ment of mathematical thought.

The group’s discussions led to the following conclusions:

It is vital that psychologists and mathematics teachers should
attempt to communicate with each other so that they can better
understand each other’s work and problems. It is necessary for both
groups to know in greater depth each other’s language and working
style. Research in psychology and the learning of mathematics is
practically all concerned with the child’s first learning experience in
elementary mathematics in the primary school. It would seem
desirable that research should be started in children’s spontaneous
learning processes of more complicated mathematical structures, for
example, the notion of continuity, limits, derivatives, integrals and
problems concerning axiomatisation.

Periodical meetings (in the form of symposia, seminars, etc.)
should be organised between psychologists, mathematicians and
teachers. Such meetings would not only help in bridging the gap
between these various groups of people but would possibly also be
the source of team work in research at the international level. It is
requested and hoped that ICMI would support such meetings. The
group generally hoped that at the next congress more mathematics
teachers and children could be present.

Investigation and structure

In the introductory paper written by Professor Piaget for circulation
to members of congress (pp. 79-87) he discusses the relationship of
“activity with objects’ to ‘the comprehension of arithmetical as well
as geometrical relations’. ‘ Real comprehension of a notion or theory’
he says ‘implies the re-invention of this theory by the subject.” Here
we have a clear statement that the manipulation of things leads to an
understanding of relations through the inventive mind of the learner.
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This question of the connection between practical exploration of
situations and the growth of generalisations was the major theme
of the group considering Creativity, Investigation and Problem-solving.
In the opening session Miss E. E. Biggs (UK) stressed the importance
of free investigation if spontaneity and creativity are to be preserved
in mathematics learning. Starting points need not be obviously
mathematical but the teacher can so structure situations for children
that they can rapidly make a discovery or frame a generalisation.
A workshop, well equipped with materials, apparatus and books, is
a useful setting in which the teacher has a role different from that of
an instructor. As Piaget says in his paper, the teacher becomes
‘someone who organises situations’.

Some interesting points were made in subsequent meetings. For
instance it was emphasised that spatial factors are involved in the
treatment of number systems, a fact which becomes evident when
children use some forms of number apparatus. It also draws attention
to the varied ways in which children learn and the consequent need
for a wide variety of techniques in teaching. It was reported that an
investigation of the effects of learning through individual discovery
had shown that pupils learn more quickly and show greater interest
when the initiative lies with them.

Problem-solving can be carried beyond the practical and become
a dialectic in which the young investigator conducts an argument
with himself as proponent and opponent. He may assure himself
about the solution of some simple instances and can then move on
to more complex examples.

After valuable discussions of the thinking that develops through
discovery methods the group welcomed Professor Pélya to their final
session at which he spoke on the role of heuristics in mathematical
education, using an investigation by Euler to illustrate the success
of unsophisticated lines of enquiry. He urged that young people
should not have problem-solving techniques thrust upon them but
should be encouraged to establish a pattern of relations from which
they could make their own generalisations.

Finally this group recorded two conclusions: that many ways of
presenting problems are required if the curiosity of all pupils is to be
aroused; and that problem-solving abilities develop only in an
atmosphere of free investigation.

Structure and activity was the chosen topic of another group. The
question whether structure or activity should introduce a new
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mathematical idea was one of the most controversial raised during
congress. This group set out to study different learning programmes.
Discussion was based on two contrasting schemes: one was from the
Experimental School in Mathematics of Francheville-le-Haut, near
Lyons; the other was contained in the Essex County Council (UK)
pamphlet The Impact of Modern Mathematics on Primary Schools.
In the Francheville programme structure was presented first and
applications followed. In the Essex plan practical experiences of
many kinds were used as starting points from which generalisations
could be derived and structures could be identified and used. Video
tapes and verbal descriptions were used to present schemes from
Holland and West Germany also.

The analyses of these schemes revealed substantial differences
and stimulated vigorous discussion. One positive comment on the
practical approach stressed the importance of progressing from
experimentation by the children to an organised review of their
experimental findings. This links up with the observation that the
Essex scheme, which has an experimental basis, asks the children
to record their discoveries in some form, whereas the other plans
postponed recording until later. Another difference was in the earlier
introduction of number in the Essex programme than in the other
schemes. It was reported that the later start with numbers had had no
ill effects and had benefited children who, although socially dis-
advantaged, appeared to take well to logic, sets and relations during
the early years. It was considered that schools where a definite
programme is not laid down give more scope for the creative and
imaginative powers of a child.

This group limited its investigations to the primary stage. The
topic is equally relevant at later stages and discussion will doubtless
be extended to the middle and secondary years. Meanwhile this group
was so keenly interested in the well-defined themes discussed that
they hoped to maintain individual contacts made at Exeter and
perhaps to make some contribution to the Symposium on Primary
Mathematics to be held in Hungary in June 1973 (see p. 305).

Mathematics and language

‘Lekgolo le masome a mabedi le metso e mebedi’ is the Northern
Sotho way of saying ‘one hundred and twenty two’ when one is
counting people. When counting cattle, the expression one uses,
literally translated as ‘one hundred and tens which are two and ones
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which are two’, differs grammatically. This was but one of the many
indications given at Exeter of the way in which language patterns
can affect the learning and teaching of mathematics. Several other
examples can be found in this book and the reader’s attention is
especially drawn to Professor Philp’s paper (p. 154), to the account
of the work of the Developing Countries Group (p. 62) and to the
decision of ICMI (p. 305) to sponsor a regional symposium on
Mathematics and Language. Yet although the problems of language
may be more apparent in the developing countries, they exist every-
where; indeed there are universal problems not only related to
mathematics and language, but also to mathematics as a language. It
was this latter phrase which was taken as a title by one of the groups
that met at Exeter.

The group chairman, Professor Schweiger, suggested that mathe-
matical reasoning can be seen as a highly specialised language and
referred to the increasing use of mathematical methods in linguistics.
For example, the concept of a relation can be applied to natural
languages and to formal languages; in particular to mathematics
itself. The general feeling of the meeting was that this sort of analysis
was in its infancy as yet, and that it became difficult beyond certain
limited applications. But it was also felt that this was no reason not
to try to continue applying to mathematics what was potentially
a useful theory.

Dr H. Davies (UK) first pointed out the obvious: one learns a first
language. The beliefs and values of folk linguistics which result from
this learning can be characterised by the facts that most people have
a large operational knowledge, yet only a small descriptive know-
ledge of their first language, and popularly consider that the written
word is automatically better than the spoken word. Tape recorded
readings and experiments within the group showed how the context
changed the information supplied by the same sentence, and how the
position of the prominent pitch within the sentence affected the
meaning. In particular it became evident that the speaker gave
prominence to what he considered to be the new information im-
parted by the sentence. With this in mind the group listened to tape
recorded readings from a mathematical text on sets by a mathema-
tician and by a ten-year-old. The school boy obviously found a lot
more that was new to him than did the mathematician. More
important, what he thought to be the important new information
was not what the writer intended him to learn.
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This was disturbing, and various ideas for improving textual layout
were discussed : should we underline key words or leave more spaces
for example. It was agreed that authors and printers of textbooks
should bear in mind the need to make explicit, and more obvious
than most seem to, just what is new and what is assumed.

The importance of intonation while teaching was also underlined
by Professor Papy who gave a demonstration lesson with no words;
just drawing while ‘groaning’ the intonation. We could, he claimed,
sometimes use too many words and so confuse, not enlighten. The
group agreed.

The subject of notation was also tackled. Children had to be taught
to read a textbook, and to be shown how the order of action was not
necessarily the order in which the signs were written, nor as read.
The linear form of our notation makes certain things very difficult.
Dr Turnau (Poland) advocated the use of a ‘reasoning graph’; that is
the steps of a proof laid out in a tree alongside the linear text. This
principle gained support and it was shown how, for example, dia-
grams served to make proofs of commutability unnecessary for
children. Just as music is something more than the score, mathe-
matics is something more than our codes for it. Our texts must allow
children to appreciate the mathematics, they can learn to read the
‘score’ afterwards.

It was suggested that many difficulties arose from the fact that,
although children learned their own language in a natural way from
native speakers, they are taught mathematics by people who were
taught by people who were taught by people. . .who were taught by
mathematicians. Some mathematical concepts seem to develop out
of a repeated need in a given situation, become a body of knowledge
and then undergo a third stage where the knowledge is organised.
This theme was illustrated with examples from matrix and set
theories, and by descriptions of experiments with children who were
finding the need for mathematical methods to help them discover
the outcome of some action without having to do it. At first the
children invented their own notation, until sufficient examples had
been built up for a unifying system to be employed. This system took
on a generality which gives it a life of its own. The system can now
be studied in its own right, and applications chosen at will. The group
thought that this provided a natural way for children to begin
learning mathematics.

Throughout the group meetings the feeling was expressed that
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viewing mathematics as a language could contribute to our insight
into what mathematics is, allow for more ready discussion of rigour
when it is needed, and, in particular, could make available to us
an understanding of how we might improve communication in our
teaching methods. All possible encouragement should be given to
these studies as well as to promoting a better awareness of the
relationship between the language of mathematics and the mother
tongue.

The first eight years

We now turn to questions of objectives, organisation and content
during the early stages of mathematical education: a period taken
to cover both those years which Piaget describes in his paper (p. 82)
as ‘the age where material actions and logico-mathematical experience
are necessary’ (before 7/8 years old) and also the years on towards
11/12 years, up to ‘the age where abstract thought begins to be
possible’, with a year or so more, perhaps, of development in deduc-
tive thinking. We are therefore concerned here with both the ‘pre-
operational stage’, with its dependence on actions, and the ‘concrete
operations stage’ (in Piaget’s terms) when a child ‘in order to arrive
at a coherent deduction, needs to apply his reasoning to manipulable
objects (in the real world or in his imagination)’.

The crucial importance of a child’s surroundings and opportunities
before he begins formal schooling is now being fully recognised. It
is not surprising that a group set up to study primary mathematics
chose for its title Pre-school and primary mathematics. When children
start school they normally come after several years of family life in
which many of the things in use and the round of daily activities will
have given them experiences of a mathematical kind. But family
situations vary widely and some children will have done little explor-
ing and will have had only very restricted contact with other children.
Teachers must therefore take into account the great variations in
ideas, power of expression in words or drawings, skill of hands, and
responses to new experiences. Mathematical education in school must
begin for some children with the free play and experiments with
materials which other children have enjoyed for two or three years.
So important did the group think this problem that their introductory
paper described the plight of many disadvantaged children and urged
the need for compensatory experience.

A teacher must take each child as he is at entry, find out his
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individual needs and ensure that he is given as rich a programme as
possible so that he may have a chance to catch up with others in his
age-group. Points of potential mathematical growth must be identi-
fied and curiosity aroused by materials, conversation, and a variety
of surprising happenings. Films and descriptions, from Japan and
elsewhere, of such programmes confirmed the view of the group that
they were the foundation of the first mathematical steps. Other
interesting films showed experiments to test the readiness of a child
to begin mathematics. One of these, using Piagetian tests, led some
members to express the opinion that it was preferable to assess young
children in the learning situation rather than under test conditions.

A discussion of the significance of Piaget’s work was introduced by
Miss Mary Sime, whose paper appears on pp. 272-82. She said that
a study of his findings made many intending teachers aware that
they did not themselves have some of the fundamental concepts,
such as conservation, on which the understanding of number depends.
Such awareness made a teacher a more competent guide to children’s
learning.

Under the title Are we off the track in teaching mathematical con-
cepts? Professor Hassler Whitney (see p. 283) carried further the
examination of the place of concepts (using the word in its broadest
sense) in the primary school. It was pointed out that concepts cannot
be directly taught; they must be acquired by the learner through his
own experience. The student must do the right things before he can
see meanings. There was a lively exchange of views and it was evident
that there were various interpretations of the word ‘concept’. This
is one aspect of the argument about the role of abstraction in mathe-
matical education and is of great importance. It deserves further
consideration at another conference.

A main difficulty in establishing new mathematics schedules in
primary schools is the fear and dislike that the subject rouses in very
many teachers. They seek a false security in a retreat into teaching as
they were taught. Plans for in-service courses to remedy this condition
are discussed on pp. 49-50.

Several new programmes were described and the group found great
satisfaction in the 10-point plan put forward, with practical examples,
by Professor Tamas Varga (Hungary). He cited combinatorics as
a great source of problems and listed these activities: (1) acquaintance
with materials, (2) games, (3) searching, (4) classifying and arranging,
(5) calculating, (6) the beginning of proof, (7) tabulating, (8) finding
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and extending patterns, (9) formulating rules, (10) varying the
situation.

A plea for non-numerical activities, such as manipulating logical
or attribute blocks, or work on probabilities with matches, led to
the conclusion that numerical and non-numerical ideas should
develop side by side.

Reviewing the week’s discussions it was agreed that the develop-
ment of children’s thinking is so complex and as yet so little is known
about it that generalisations about material and methods could be
dangerous. The teacher’s greatest need is flexibility in meeting the
needs of every child.

A separate group considered the later part of the 8-year period
under the title Middle school mathematics (ages 9-13). There would
naturally be some overlap with both primary and secondary pro-
grammes but the group looked upon the Middle School as a new
type of unit which is being developed in some countries, notably in
Britain which had supplied the background papers. A brief account
of the British development was given but ten countries in all were
represented in the group and major contributions also came from
Holland, Japan, and the USA.

It was agreed that mathematics teachers should play their part
in the broad educational aims of this stage: social integration,
active learning, readiness to investigate, the exercise of imagination,
theacquisition of necessary skills and techniques, and the fulfilment of
promise and latent ability. But it was thought that short-term objec-
tives should be stated in specifically mathematical terms. This seems
to differ from the views of the primary group but in fact the middle
school group agreed on the general inclusion of computational,
manipulational, and problem-solving abilities, which could cover
a wide range of related topics.

Further discussion concerned the place of mental arithmetic,
number, probability and statistics, and algebra, but standards and
the point at which topics are introduced varied from country to
country. Geometry programmes from different countries were com-
pared. In the end the major problem was defined as whether geo-
metry in the 9-13 age range should be about the properties of
geometrical figures or about transformations. This certainly could
be further debated.

It was suggested that middle schools should have flexible timetables
so that meaningful links between subjects could be arranged to form

24



THE WORK OF CONGRESS

‘areas of knowledge’. Nevertheless the mathematical activities
should, in the opinion of the group, be timetabled separately and
be under the supervision of a competent mathematics teacher.

A wide range of materials and technical aids were listed as desirable
at this age and a variety of types of class organisation were proposed.
Believing that the mathematical curriculum for the middle years
requires careful study, the members of the group hoped to continue
their discussions through correspondence. They recommended that
there should be joint studies between ICMI committees and those of
organisations concerned with the teaching of other subject disciplines.

Subject matter at secondary level

Separate working groups considered specifically the teaching at
secondary level of algebra, geometry, calculus, logic, and probability
and statistics. The fact that mathematical education is still at its
formative stage was reflected by the uncertainties expressed and the
local differences highlighted. Indeed, these differences, due to varia-
tions in conditions and traditions, and to the dissimilar goals of
those responsible for designing curricula (see p. 59), make the task
of identifying ‘themes’ extremely difficult. The value of these groups’
work cannot, therefore, be adequately assessed from what is written
below. Some idea of the approaches they employed can be gained
from reading the papers of Professors Meserve and Shibata (pp. 241
and 262). It is also to be hoped that some of the more technical papers
contributed to these groups will appear in those journals devoted to
mathematics and mathematical education, for they contained much
that was of more than passing interest.

There were, however, certain problems which seemed to be en-
countered by all the groups. In particular, there is clearly much work
still to be done on the question of the amount of rigour which might
reasonably be expected and the stages at which it might be required.

‘Much more needs to be known about the way in which children
learn algebra. . .there is clearly scope for a great deal of research in
this area.” The relative merits of groups and vector spaces remained
unresolved; but there was agreement that even simple informal
abstractions from concrete situations demand a great deal of children
in general, not just the less able. It is important, too, not to introduce
the rigorous axiomatic definition of structures before it is possible to
make useful deductions which have relevant applications for the pupils.

There was more of a consensus of opinion among the geometers.
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Three arguments put forward in favour of transformation geometry
were (a) the children find it easy, (b) children like it, (c) teachers, even
those previously antagonistic to mathematics, readily adapt to it.
Problems take pride of place over axioms, which ‘will only be taken
off the shelf (which may hold a strictly superfluous supply) if and
when demanded by the pupil’. The trend is towards the introduction
of a variety of geometries (coordinate, vector, transformation, even
informal Euclid). In this way the children have a battery at their
disposal, and the very selection of the best approach for a particular
problem gives opportunities for genuine mathematical thinking.

In addition to the main geometry group there was also a smaller
group which devoted all its discussions to lattice geometry. This
group was distinguished by the limited area it sought to study and it
was significant that there was general agreement within the group
about the value of looking at a restricted topic and considering its
relevance at all stages of education. The group ably demonstrated,
therefore, how an ICME can provide a meeting place for, and stimu-
late discussion between, enthusiasts for a particularly specialised
branch of mathematical education. It is hoped that one outcome of
this group’s work, both at and after the congress, will be a booklet
on this approach to teaching geometry in schools and colleges.

‘Too much rigour too early can easily spoil the pupils’ confidence’
was a slogan of the calculus group. Nevertheless, difficulties should
be pointed out: when the teacher is skating over something he should
warn the pupils that he is doing so. Counterexamples are very helpful
in de-bunking the plausible.

Numerical and graphical methods will undoubtedly receive impetus
from the advent of computers, and in particular the whole treatment
of differential equations is likely to undergo a thorough change.

The logicians on balance came out in favour of integration within
the mathematics curriculum rather than isolated, straight ‘logic
courses’. In any case, concepts should be formed before symbols are
introduced. First logical ideas can be introduced at about the age
of 8 or 9, with a variety of teaching materials. The principle of making
the mathematics encountered at school intelligible and relevant, and
the need for further research into how this may be done, are exempli-
fied by the resolution put forward by the logic group.

In order to improve and to develop the efficiency of logical thinking and
practice in pupils it is not enough to give formal elementary notions about
propositional and predicate calculi. Moreover it is necessary to integrate
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those notions of 'syrnbolic logic to help to understand mathematical reason-
ing and to make use of them to clear up some logical difficulties.
In this field more research is urgently needed.

The probability and statistics group, in addition to a programme of
technical papers and discussions on the teaching of these topics from
the primary school to higher education, devoted one of their sessions
to consideration of future work. It was stressed by many members
that there was need for greater communication between those who
had tried different teaching programmes for statistics —it being
recognised that such courses were not so readily produced as those
in probability. Also, it appeared that the special equipment created
in some countries for teaching these topics was not so widely known
as it should be. In an attempt to improve matters the group agreed
to inaugurate a news bulletin. It was hoped that this bulletin would
also carry contributions on those areas of needs and interests which
the group saw as being particularly worthy of study prior to the
1976 ICME, namely:

(a) the development of new aids and technologies for teaching
statistics,

(b) ways of using government and other official statistics in teaching,

(c) the search for points in the curriculum at which statistical
concepts can be introduced and/or used,

(d) suggestions for statistical field trips and data collection activi-
ties suitable for students of various ages,

(e) proposals for interdisciplinary work (with computing, biology,
physics, geography, social science, etc.),

(f) outlines for suitable courses for teachers (it was felt that at
present many such courses are unsuitable, being but pale imitations
of those given to intending research workers),

(g) outlines for statistics courses for pupils for whom secondary
education is terminal,

(h) ways in which statistics can be applied to research in mathe-
matical education.

Papy—-Cemrel workshop

A separate group was devoted to the joint work of Papy’s Centre
Belge de Pédagogie de la Mathématique (CBPM) and the Compre-
hensive School Mathematics Program (CSMP) of CEMREL.! The

1 Cemrel Inc., A National Educational Laboratory, 10646 St Charles Rock
Road, St Ann, Missouri 63074-
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main objective is to introduce the basic notions of number, set,
relation, and function by means of simple languages; ‘strings’,
‘arrows’ and the minicomputer.! The ‘strings’ language employs
Venn diagrams with certain conventions, the ‘arrows’ show relation-

ships; both are combined in the example in which children are point-
ing at their sisters. The children can deduce from the diagram, for
example, that

(a) A and B are sisters,

(b) D is a girl,

(¢) H has no sisters (in the playground),

(d) Cis a boy.
The innovations and experiments are well documented elsewhere,
e.g. ‘Affine geometry at 7°,2 the introduction of vectors as equi-
valence classes,® ‘Real Numbers at 9°,* A Purchase Vector Space’.®
Of special interest is the application of the simple languages to the
education of mentally handicapped children.% %8

L Cf. Proc. Ist Int. Congress on Math. Ed., Reidel Pub. Co., 1969, pp. 201-13.
Martin, E., Quelques remarques au sujet de la rencontre entre la géométrie et
des enfants de la deuxiéme année, NICO 12. (NICO is a publication of the
CBPM, Avenue Albert 224, 1180 Bruxelles.)

Frédérique, Initiation 4 la Géométrie Affine Plane, NICO 10.

Frédérique, Nombres réels, NICO 10.

Frédérique, Introduction vectorielle de I’équation de la droite & 10 ans, NICO
13. See also Frédérique, Les Enfants et la Mathématique, vols. 1 to 5.
Dieschbourg, R., Un enseignement moderne de la mathématique a des enfants
mentalement handicapés, NICO 10.

Dieschbourg, R., Un enseignement moderne de la mathématique a des enfants
mentalement handicapés — 2¢ année, NICO 13.

Vandeputte, C., Un enseignement moderne de la mathématique a des enfants
paralyses cérebraux, NICO 13.

-
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-
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Links with other subjects at secondary level

This is a major growth-point in mathematical education and a reso-
lution by the working group concerned, calling for further action,
was received with sympathy at the final plenary session of the con-
gress (see p. 306). There is, however, much spade work still to be
done. Considerable quantities of relevant source materials exist in
a diversity of areas, and the urgent task is to sift, collate, edit and
test in schools.

Science is a major ‘user’ of mathematics. Despite the common
complaints of science teachers, studies of particular recently de-
veloped courses in the USA and in the UK have shown that the
difference between what is required and what is provided is apparently
slight (see, for example, the paper by A.J. Malpas, pp. 233-40).
The difficulties might be less in the subject matter covered than in
the poor communication between teachers of mathematics and of
science and in the different phraseology and approach used by each.
One expression of this was that scientists ‘feel’ the phenomena, but
mathematicians ‘feel’ the logical implications in any particular
area.

The key to breaking down the barriers between subjects lies in
mathematical modelling.! The approach is to start from experience,
and from this to make the appropriate abstractions (models) rather
than to develop the abstract structure first.

A biological example of mathematical modelling was described in
some detail in which the consequences of enlargement applied to
animals were explored. This involved construction of mathematical
models of concrete models of the animals, and dealt with the relations
(for animals with bodies of similar proportions) between linear
dimensions and length or thickness of leg needed to support the body.
An important stage was to go back from the model to experience to
check whether its predictions corresponded to what is actually found,
both at the concrete model level, and with real animals. It would not
be correct to describe this example merely as science using mathe-
matics, nor as the science being a starting point for the mathematics:
both subjects develop together.

The ideal is for teachers of mathematics and other subjects to work
together in preparing such work, but for the diffusion of ideas it is

1 Cf. Bell, M. S., Mathematical Models and Uses in our everyday world, SMSG
Studies in Mathematics, 1972.
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necessary eventually to publish possible strings of inter-disciplinary
work.!

Important questions arise about the closeness or otherwise of the
mathematical abstraction to the student’s experience (for example
in an experiment on the expansion of a gas there are several levels of
abstraction from the varying volume of the gas: the length of the
scale on which volume is indicated; a graph of measured volume
against temperature; and an equation to represent the relation).

Apart from science, links with philosophy, art, music, geography
and economics are all ripe for exploration.

Impediments to learning mathematics

Three main topics usually arise in discussions on mathematical
education: the value of mathematics as an ingredient in education;
the appropriate mathematics for particular individuals having regard
to their circumstances; the ways in which mathematical ideas and
processes can be presented to a pupil. But it is an uncomfortable
fact of experience that some children do not learn mathematics with
interest or ease. Their environment has not stimulated their curiosity
or their urge to construct; they seem to have no capacity for under-
standing mathematics or using its language. This twin problem of
lack of willingness or ability to learn was studied by two groups, one
interested in the apparent sterility of some children’s environment,
the other in the poor progress of some pupils.

The main aim of the first group (Mathematics and the socially
disadvantaged child) was to look at, compare and try to evaluate
projects being worked out for the mathematical education of dis-
advantaged children in many parts of the world. The first point made
was that children from poor homes often lacked the language to
describe, for instance, such comparisons as big/small, bigger/smaller;
this deficiency could hinder the growth of the concept of comparison.
Other factors were insufficient possessions to learn how to share
with others, lack of toys to manipulate, absence of books and tools in
the home.

There then followed the observation of a lesson given by the
chairman of the group, Professor William F. Johntz, to a group of
children from Brixton, a rather poor part of London with a large
1 The project SUM (Science Uses Mathematics), based on the Centre for Science

Education, Chelsea College, University of London is preparing some 15 inter-
disciplinary ‘modules of work’ aimed at pupils from 11 to 16 years old.

30



THE WORK OF CONGRESS

number of immigrants. The lesson was planned to illustrate the
methods of Project SEED (Special Elementary Education for the
Disadvantaged) in which graduates in mathematics teach high school
and college-level mathematics to full-sized classes in which nearly
all the children come from poverty backgrounds. Professor Johntz,
Director of SEED, presented a topic from abstract algebra in
a Socratic group-discovery format. This topic had the advantage of
being relatively culture-free and not associated with previous failures.
The lesson sparked off animated discussion in which many members
expressed doubts as to the relevance of the topic and the long-term
understanding achieved, while an equal number was impressed with
the learning which had taken place.

An account of the Michigan State University Inner City Mathe-
matics Project turned discussion to the need for meaningful in-service
training for teachers in the atypical and often restricted environment
of inner-city schools. The desirability of selecting able children in such
schools for ‘enriched’ educational experience to enable them to
proceed to higher education in mathematics provoked controversy.
Other experiments in Australia, Italy and Norway were described.
This led to a further consideration of teacher-training. It was em-
phasised that a deep transformation in training was required so
that teachers could develop an approach based on inter-pupil
communication.

One session was held jointly with the other group (Mathematics
Jfor slow|reluctant learners) in which the focus was a showing of films,
including one produced by the Mathematics for the Majority Con-
tinuation Project (see p. 309). This formed an interesting contrast
with the SEED lesson, because it used the environment as the source
of mathematics. Group opinion remained evenly divided between
the view that abstract mathematics was suitable material for these
children and the belief that the mathematics relevant to the life
around them was more appropriate. Consequently the group made
no definite recommendation. Yet it can be expected that future dis-
cussions will resolve the conflict since children enjoy both the exercise
of their minds on arguments within their grasp and also the investi-
gation of practical problems within their experience.

The second group, concerned with slow/reluctant learners, decided
that it was their task to discuss how to teach children who had already
failed in most of their mathematical work and were reluctant to
undertake any sort of further work connected with mathematics.
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The group therefore agreed on the fundamental requirements before
any progress could be made. Their first principle was that the mathe-
matics programme must consider each child in the totality of his
situation: personal, educational, social and economic. This may
demand different individual programmes and a correspondingly small
class. Administrators should encourage the maximum freedom of
choice for teachers planning the work and in their turn teachers must
provide choices for their pupils who need to build up confidence
through success. Rigid adherence to a prescribed course is bound to
aggravate the problem. Inexperienced teachers need help in planning
the various alternative starting points and rates of development. The
responsibility for the success of these pupils must rest with the
teacher even within an externally imposed scheme of work.

Teaching reluctant and slow learners demands ample resources.
They are generally quite inadequate; authorities should look for
ways to ensure a generous share of staff, materials and equipment for
slower classes. Their development is as important as that of abler
children and working with them may demand greater teaching skills
than work with more academic children. It should have equal status
and financial rewards.

Highly qualified staff should take part in this work and care should
be taken to avoid separating reluctant learners from those who are
more successful. The group thought it undesirable that specialists
should be trained to work only within this problem area.

The following recommendations were put forward:

(a) There should be a systematic rather than a piecemeal approach
to this problem and national projects will be necessary to develop
materials and train teachers.

(b) The group did not think it necessary to hold a separate meeting
before 1976 but a section of the 1976 congress should be devoted to
this problem. Meanwhile a coordinator should be found to gather
information from various countries and prepare a report for 1976.
Such a scheme would, however, probably depend upon financial
assistance from ICMI.

University and college level

As was remarked earlier (p. 6) the Lyons Congress had not specifi-
cally considered mathematical education beyond the secondary level,
apart from teacher-training, and it was, therefore, particularly
encouraging that a number of groups should have been set up at
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Exeter to look at various aspects of mathematical education at
a higher level.

One group chose to consider the mathematics taught to specialists,
that is to students for whom mathematics constitutes the greater
part of their studies. Besides looking at more general questions, the
group considered two areas, geometry and applied mathematics, in
depth. The congress heard many pleas for the restoration of geometry
as a major discipline in the curriculum at all levels — one such is
reprinted on p. 241 and, of course, this is one of Professor Thom’s
main theses (p. 194). Strong pleas were made in the group discus-
sions for the return at a university level of analytic geometry and,
in particular, the treatment of conics, both analytic and projective.
The importance of geometry as a medium for conveying fundamental
concepts of mathematical thought, such as proof, was mentioned.
Another topic which arose in the plenary sessions was that of applied
mathematics (see p. 37) and this was taken up again in group dis-
cussion. It was argued that the teacher of applied mathematics should
have considerable familiarity with the discipline to which the mathe-
matics was being applied and that this familiarity should be trans-
ferred to the students. To aid this transfer it was suggested that
perhaps a quarter of course time should be spent on a descriptive
treatment of the area of application. There was also a need to ensure
that students were given the theory of practical applications rather
than that of idealised models. It was agreed that the area of applica-
tion was of less importance than the manner in which the process of
application was taught (although the opportunity was taken to
reaffirm the usefulness of mechanics as a medium for teaching applied
mathematics provided the work was closely related to that of the
practising engineer). The time spent on the descriptive part of such
courses would inevitably mean that the mathematics available for
use would be more elementary than would otherwise be the case but
it was pointed out that there are many powerful examples in which
relatively elementary mathematics is applied.

Amongst the other more general points considered was that of the
students who cannot cope with courses as they are given at present.
Discussion of this point was complicated by the fact that the members
present came from widely differing educational systems, but some
pertinent questions were raised which would seem to have universal
relevance, for example:

(@) Is the purpose of an undergraduate education to enable the
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student to ‘know’ some mathematics, or to ‘do’ some mathe-
matics ?

(b) Are the standard specialist courses designed to produce pro-
ductive mathematicians ?

(c) Are lectures intended to ‘straighten out’ the students’ minds
or that of the teacher?

(d) Is there a place for survey courses as well as specialist ones?

(e) To what extent should mathematics students be exposed to
other disciplines ?

Similar questions were raised by the groups considering the problems
of those students who study mathematics as an ancillary subject, for
example, engineers, biologists and social scientists. Here the difference
in the mathematical aptitudes of the students is more marked — some
are able mathematicians capable of reading, say, biomathematics or
econometrics whilst others fight shy of mathematics. One’s aim for
this latter type of student is that he should arrive at some under-
standing of mathematics and its use in his own subject so that he
might make, or recognise, informed decisions. The big problem is
finding sufficient teachers who are knowledgeable in both mathe-
matics and the discipline in which it is to be applied (here the group’s
thinking resembled that of the group discussing mathematics for
specialists (see p. 33). This is necessary in order to provide an
abundance of elementary examples (especially in model-making)
which can be used with many of the weaker students. The work of the
Committee of the Undergraduate Program in Mathematics (USA)
in collecting suitable examples was welcomed and the forthcoming
publication of a collection is eagerly awaited.

The shortage of those qualified both in mathematics and another
discipline can only be solved by the provision of joint courses, i.e.
‘integrated’ rather than ‘two-subject’, for those students referred to
above as ‘able mathematicians’. Again there are difficulties of staffing
such courses and also often difficulties of recognition both within and
without universities. Courses of this nature will only be produced
after considerable discussion and developmental work and clearly
this is a major priority, for once a few courses have been successfully
developed then others will assuredly follow.

Although mathematics has been taught to engineers and physicists
for many years and its importance for these students has long been
recognised, there remain two opposed schools of thought on how it
should be taught. It was apparent in group discussion that partici-
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pants from a number of European and Asian countries believed that
mathematics was such an important subject that it should be taught
in the same way to the mathematics specialist and to his engineering
or scientist counterpart — indeed mathematics should be taught to all
these in a common group. The respective science and engineering
teachers would then be responsible for teaching applications of this
mathematics. Such a system was certainly possible in some countries
since the students admitted to these courses were highly ‘motivated’
and, furthermore, selection procedures ensured that the students had
a good mathematical training and background.

The other school of thought, however, believed strongly that
mathematics should be taught separately to engineering/science
students and that the material should be strongly ‘motivated’ all
through their course. An essential part of this course was the inclu-
sion of applications and a demonstration of the relevance of the
mathematics taught. Additionally, the discussion of real problems,
mathematical modelling and the solution of physical problems arising
from their courses and from their experience was regarded as an
important feature of such a course in mathematics.

The discussion quite clearly revealed that there was a need for
a continuing discourse on these and other topics and it was unani-
mously agreed that a conference, devoted entirely to the mathematical
education of engineers, should take place in the near future.

It will be seen that many of the problems raised above hinge on
finding ways of encouraging students to participate in mathematics,
and to apply mathematics, in an active, meaningful way. These latter
problems were given particular attention by the group which met to
discuss teaching methods at university and college level. The group
was concerned at the way in which undergraduate teaching is largely
regarded as the transmission of information by means of expository
lecture-type courses and associated tutorial classes.

The need to describe the goals of one’s teaching adequately and
the qualities and modes of thought and action one seeks to generate
in one’s students was seen as the initial problem to be solved. There is
a danger that vague descriptions such as ‘encouraging creativity’,
‘developing thinking’ and ‘learning to function as a mathematician’
will mislead us into believing that these aims can be achieved through
the act of learning mathematical subject matter. The group felt that
one area which appeared to need, and would repay, investigation was
that of explicitly formulating the ways in which we should like
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students to think and act. This might possibly be done by considering
how these ways would differ from those that are to be observed in
our students at present.

Another problematic area was that of using one’s professional
mathematical expertise when teaching students having different levels
of understanding to one’s own. This is a problem of translation —
translation of a piece of mathematics from the teacher’s conceptual
framework to that of the student, which is generally less complex and
less mathematically sophisticated. This issue was raised particularly
in connection with the training of school and college teachers who are
constantly faced with these problems and who get little if any chance
to discuss such matters in traditional courses. Some work in progress
was described and again it was apparent how one was involved as
much with attitudes towards mathematics as with knowledge of
mathematics.

This concerns motivation, a matter which also entered the group’s
discussions through a consideration of the relationships between
mathematics and the physical world. It was told how simple labora-
tory situations were being used as a means for encouraging students to
grapple with problems of constructing their own mathematical models.

Particular teaching methods discussed included types of project
and investigational work intended to encourage students to employ
and develop a variety of skills. For, in addition to those manipulative
and conceptual skills traditionally required, it was thought important
to develop skills in the formulation of problems, asking questions in
particular mathematical situations, relating work from different
sources, the making of value-judgements and decisions about their
work, and skills in communication. Research into the ways of bring-
ing out these skills in the course of one’s teaching — within the con-
straints of the system in which one must work — should be encouraged.

Since much undergraduate teaching will still be done by means of
lecturing, this must be made as productive as possible. Joint lectures
were discussed as a possible means whereby, through having another
teacher share the teaching, teaching technique might be improved
and the ex cathedra nature of lectures lessened. Students also require
guidance as to how they can make most effective use of lectures.

The need to consider ways of relating a student’s mathematical
activity to his future needs was discussed, particularly in relation to
those intending to be teachers and further investigation of this
problem seems urgently to be required.
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Finally, it was remarked that teachers cannot be certain of
obtaining optimal solutions to their problems: conditions are con-
stantly changing and, most importantly, they have to establish
relationships through their teaching with individuals.

Vocational mathematics

One working group studied ‘vocational mathematics for technicians
and business personnel’. The students concerned have left school
but are not pursuing a university course. A number of factors con-
tribute to the difficulty in making proper provision for them:

(a) the age-range of the students, say 16 to 60;

(b) the wide range of their separate interests and requirements;

(c) the variety of school courses (after a decade of curriculum
reform);

(d) the variety of needs of industry.

The mathematics required ranges from arithmetical calculations (for
crafts such as building, plumbing), through traditional topics for
engineering or technical qualifications, to the direct use of mathe-
matics in statistics and computing.

This wide variation in age, ability and requirements poses so many
problems that the working group considered the possibility of setting
up a Centre for Further Education in Mathematics, where research
could be conducted into syllabus content, teaching methods, assess-
ment techniques and equipment needs, in the fields of mathematics,
statistics and computing. An impetus for the massive re-shaping of
courses, which was generally agreed to be necessary, has been given
in the UK by the implementation of the ‘ Haslegrave Report’.t

Applications of mathematics

The reader will already be aware of the emphasis given at Exeter to
the application of mathematics. Examples of how mathematics is
applied engender motivation, and the need to bring modern applica-
tions to students has been recognised in industry (for example) and
has attracted financial help from funding agencies. This need was
also acknowledged by the formation of a working group specifically
to consider the problems of teaching how mathematics is applied
and — what is not the same — how to apply mathematics.

The essential requirement of course is to find problems which arise
from situations of genuine interest which recognisably really exist.

1 Report of the Committee on Technician Cou rses and Examinations, HMSOQ, 1969.

37



A CONGRESS SURVEY

The situations will certainly vary from one age group to another
and one community to another; they can be drawn from sport,
social sciences, music, physical science and many other sources. The
problem itself need not necessarily be new to the teacher but it is
essential that a very thorough investigation of the background to it
should be undertaken by the student before and during any attempt
to formulate a model. The students themselves should participate in
the formulation of this mathematical model and, ultimately, also in
the assessment and evaluation of any conclusions which are drawn
from the consideration of the model. The search for a ‘right solution’
(which may be known to exist because it is in an answer book or may,
in fact, not exist at all in any precise sense) and emphasis on the
most elegant solution (which may be classical and known to the
teacher) should be made less important than the acquisition of insight
into the nebulous situation which gave rise to the problem. The
students may derive some numerical results, recognise some struc-
ture but, even if they never achieve a complete solution, they will
have gained valuable experience in formulating the model itself. The
final interpretation and criticism of any results may well lead to
discussions of a non-mathematical and very general nature.

It is believed that human science in particular is a rich source of
problems and even new mathematics, and thatthereis a very great need
for mathematicians and human scientists to work together on them.

A number of informal accounts were given of work in this field,
but a source book of ideas and possible projects would be invaluable.
The field ranges from young students in danger of becoming ‘mathe-
matical drop-outs’ to the highest university level. An account was
given of study groups held at Oxford University! for industrial
mathematicians, faculty members and graduate students at which
attempts were made to formulate and solve industrial problems which
had been triggered off and found intractable in the firms concerned.

History of mathematics

One feature of mathematical education in recent years has been an
attempt to find a place for history in the mathematics curriculum.
Its current neglect and its fall into disrepute have been the cause for
much concern,? and it was encouraging, therefore, that some seventy

1 By Dr J. Ockendon.
2 See, for example, Wilder, R. L., History in the Mathematics Curriculum: Its
Status, Quality and Function, Amer. Math. Monthly, 79, 5, 1972, 479-95.
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congress members elected to attend the group established to discuss
the relations between the history and the pedagogy of mathematics.

Contributors illustrated and stressed the way in which a study
of the history of mathematics could, amongst other things, reveal
mathematics as a human activity — with a future — rather than as
a ready-made structure, provide an increased awareness of the
relationships between mathematics and the culture of our society
and also those between the different branches of the subject, and
help motivate students by revealing the more human aspects of the
subject — its successes and its unsolved problems.

At the present time, the use of history in mathematics teaching is
hampered by its lack of an established place in the curriculum, the
esteem in which it is held and the credit attached to it. There is a con-
sequent shortage of suitable teaching materials, slides, texts, photo-
graphs, etc., and of qualified teachers. This latter deficiency will only
be remedied by an increased emphasis on history within teacher-
training, and the group concluded its discussions! by recommending
that such training should always include a study of the history of
mathematics, designed so as to enable students to appreciate mathe-
matics in the context of our general cultural heritage and as an aid
to their understanding of mathematics itself.

Assessment in mathematics

The increasing attention being paid to the problems of assessment in
mathematics — and the way in which this term is now taken to mean
so much more than merely the testing and ranking of 11, 16, 18 or
21-year-olds — was indicated by the number of groups which made
reference to it. Thus, for example, the pre-school and primary
mathematics group discussed Piagetian tests whilst the group on
teaching methods in universities considered those particular problems
of assessment raised by project work, open-ended essay-type
investigations, etc.

In addition to these discussions which took place within more
general frameworks, one group chose to study some particular
aspects of assessment, in depth. It is significant that it began its work
by looking at the development of examination and assessment pro-
cedures. The need for some form of independent assessment of

1 A longer account of the group’s discussions is to appear in Notae De Historia
Mathematica — the Newsletter of the Commission on History of Mathematics
obtainable from Professor K. O. May, ‘Historia’, Dept. of Mathematics,
The University, Toronto 181, Canada.
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students gave rise to the examination system as we now know it and
it must be admitted that this need still seems as widely felt as ever.

With increasing educational opportunities and with the moves to
make secondary education comprehensive, examinations at the uni-
versity entrance level are becoming of growing importance and the
group heard of several new initiatives at that level. Two would seem
to merit special attention; the experiment now taking place in
Sweden in which an attempt is being made to dispense with all
written examinations for entry to university, and the establishment
of the International Baccalaureate. This latter initiative, which is
described more fully in a paper by J. B. Morgan reprinted on pp. 254—
61, seeks to provide a university entrance qualification that will be
accepted in all countries. It arose from the needs of the substantial
number of children who are educated in one country and who wish
to receive their university education in another. Clearly, such an
international enterprise will not be without problems and the group
expressed some concern at the difficulties of recognition of the ex-
amination’s standards not only between countries but also between
universities within a single country. Nevertheless, the project is not
only of major interest in its own right, but it also serves as one of the
few examples within mathematical education of international co-
operation leading to a system which is used in several countries. Its
progress will be watched with interest.

Other specialist points discussed by the group included the com-
parative virtues of multiple-choice and essay-type testing® at particu-
lar age levels and the use of film in tests for Piagetian conservations.?

Mathematical competitions

Closely allied with the problems of assessment were those considered
by the group constituted to discuss mathematical competitions. It is
indicative of the increasing and world-wide interest in such contests
that this small group contained representatives from fourteen different
countries and that it included ten leaders of delegations to olympiads.

The use of contests as a means for discovering outstanding talent
was mentioned by Academician Sobolev (see p. 185) in his account
of mathematical education in the USSR. This aspect of contests —
particularly in relation to their use in developing countries — together
with such other aspects as their use as teaching aids, as part of extra-

1 A. P. Penfold, University of London Institute of Education.
2 G. H. Wheatley, Purdue University, Indiana.
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curricular activities, and as stimulators and motivators was con-
sidered by the group.

It must be acknowledged from the outset that by no means all
educators are in favour of competitions — whether they are conducted
as part of ordinary classroom procedure or on a national or inter-
national basis —and a divergence of views about the merits of the
various types of contests was apparent in the group meetings. Thus,
for example, one group member questioned whether competitions
did aid the mathematical education of the ordinary child, whilst
another explained why, although his country encouraged informal,
small-scale contests, they did not compete in the International
Olympiad - which they saw as providing special training and oppor-
tunities for a few exceptionally talented students and offering little or
nothing to the less well-endowed. Clearly, like examinations, con-
tests bring both benefits and possibly bad side-effects, since an
atmosphere of intense competition can be harmful for winners and
losers alike. It is necessary, then, when speaking of mathematical
competitions to spell out what, in the given context, the word
‘competition’ is to mean.

Many mathematical educators will associate the word with the
national contests, first held in Hungary in 1894, and since then
established in various countries. The group heard how in Hungary
the number of competitions has grown until they now cater for
12-13 and 13-14-year-olds, for older, secondary-school pupils, and
for students of the Teacher’s Training High Schools.! The success
of these national contests has led to similar contests being established
in many other countries, and to the establishment of an International
Olympiad at which students from several countries compete (see, for
example, ICMI Report on Mathematical Contests in Secondary
Education, Educational Studies in Mathematics, 2, 80-114, which
includes an account of the growth of these contests and also an
extensive bibliography relating to them).

These national and international contests were given considerable
attention and raised such interesting questions as ‘Is there supporting
evidence that such competitions have some value in the preliminary
identification of outstanding students?’ and ‘ What effect has school
size on mathematical achievement?’ There is clearly concern about
whether or not the contests can discover outstanding pupils — or

1 Examples of the problems set can be found in Hungarian Problem Books 1 and
11, Random House, New York, 1962.
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do they merely confirm who are the outstanding teachers and which
are the outstanding schools ? Certainly, pupils from English-speaking
private schools have performed much better in the South African
Mathematical Olympiad than have those from the Afrikaaner schools,
and in Britain it is noticeable that the independent schools stand
out — possibly due to their experience at preparing students for
Oxford and Cambridge examinations. The group was interested to
learn that research into some of these questions is being undertaken
in the USA.!

Clearly, a key factor in all this is the type of problem set in the
contest, and the difficulties involved in framing suitable questions
was a major item for discussion. The need to provide easy problems
so as to ensure that even the weaker student goes home with some
feeling of success clashes with the desire to indulge in ‘talent-
spotting’. There is also a constant need to find problems which
demand original thought without needing a large mathematical
experience. (The possibility of setting ‘take-home’ problems was
mentioned by Professor Ho6di who said that their use in Hungary
had so far given rise to no particular difficulties.) At an international
level, questions of syllabus, of limited preparation time, and of varied
teaching approaches arose —all these affect the fairness of the
contests.

One question which was raised on several occasions and which is
frequently posed when mathematical contests are discussed is ‘How
does one involve more girls?’ and clearly this is a matter of some
urgency. Perhaps the answer at an international level lies in the
suggestion that all national teams should be composed of an equal
number of boys and girls.

With the increase of national and international contests, it is
apparent that the experiences gained in overcoming the many
obstacles to success should be shared and that all such information
should be communicated in as efficient a manner as possible. The
group recommended that ICMI’s assistance should be sought on this
score.

As was mentioned above, though, there are those who would argue
that local contests involving ‘average’ pupils from ‘average’ schools
would yield greater benefits to the mathematical community than the
more prestigious International Olympiads. This was the view of the
Italian mathematicians who decided that, rather than participate in

1 Professor N. D. Turner, State University of New York, Albany, N.Y.

42



THE WORK OF CONGRESS

the international contests which they saw as a means of stimulating
a few students already identified as the best, they would concentrate
their attentions on informal competitions with modest prizes (such as
a copy of Pélya’s How to Solve It). In this way they hoped to improve
the general quality of mathematical thinking and to encourage
students to see mathematics as an interesting and amusing way of
thinking ‘ outside the technicalities that usually make it tedious in the
schools’. Comparable with this approach was the use of inter-school
contests organised between a few neighbouring schools and ‘Mathe-
matical Fairs’ at which schools took turn at acting as host and in
which competitions formed part of the general activities. By all
reports, those fairs which end in ‘Banquets’ are especially popular!
At this level the difficulties of problem-setting and of possible pupil
discouragement are less marked, since the personal knowledge that
local teachers have of their pupils can ensure that problems are asked
at the right level, and no feelings of failure ensue. Such activities have
also proved to have great value for teachers.

Extra-curricular activities and student journals

The ‘Mathematical Fairs’ to which we referred above were but one
kind of extra-curricular activity considered by congress working
groups. Other activities discussed included clubs and journals. There
was general agreement on the importance of all these activities which,
although they usually occupy a relatively small amount of time, can
be a decisive factor in mathematical education. For, in regular
classwork the teacher is often cramped by the need to ‘cover the
syllabus’ and cannot follow up the stimulating side issues that can
be studied in a club. Again, the student welcomes some mathematical
activities that are not compulsory and in which he can pursue his
individual interests. As a result, in later life he may remember little of
his classroom work but could be greatly influenced by, say, a vivid
recollection of something experienced in a club. A further, and less
obvious, point in favour of such activities rests on the belief that
teacher-training as it now exists is based on a half-truth — that one can
significantly influence adult students. It was argued that a student
entering college usually has an established philosophy of education
and - particularly in times of stress —will revert to teaching as
taught (cf. p. 65). To achieve any rapid improvement in teaching
practices one has to intervene in the process at a much earlier
stage — and it is possible to do so through extra-curricular activities.
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It was reported, for example, how in Hungary mathematical
clubs are now organised from grade 3 (8-year-olds). The elementary
teachers themselves meet and compose problem sheets which are
then mailed out to the schools. These may be problems of enumera-
tion, such as ‘In how many ways can a total length of 6 be made
with Cuisenaire rods?’ or of recognising the regularity in some
sequence of numbers.

The objective of clubs and journals is to spread the influence of
the most enlightened and stimulating teachers as widely as possible.
Thus a club drawn from several schools has greater potential than
a club within one school. Sometimes a university teacher who has
the knack of speaking to younger students, can make a contribution
to a clubinvolving secondary schools, or, in a similar way, a secondary
school teacher can help at a primary school level. A teacher-training
college might provide a mobile club that visits different schools in
its locality. This would benefit both the schools and the teachers in
training.

Central organisations can help, as in the USA where a federation
of clubs, ‘uaf’, sends out a periodical bulletin and such things as
leaflets recommending suitable books for club use and individual
study.

In some countries, such as Australia, Canada and the USA,
centres of population may be great distances apart. In these circum-
stances, journals, duplicated documents and correspondence provide
an alternative to personal contact.

It was suggested that journals help students to form the habit of
independent reading, but this was questioned on the grounds that
only those already possessed of the habit look at such publications.
This led to consideration of how the skill of reading mathematics was
to be acquired. It was felt that more attention should be paid to this
in the classroom. It was also pointed out that, even if only a minority
read a journal, they might communicate some of their interest to their
fellows or perhaps later become teachers themselves.

Dr Avital® reported on an investigation of his own, which showed
that children of nine or ten were more willing to read mathematical
material, and to think carefully about it, than older children. It was
therefore important to provide material for this age range.

Journal editors usually find that puzzles and problems are an
attractive feature. Puzzles (simple thought provokers) promote a use-

1 Ontario Institute for Studies in Education.
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ful attitude of mind — the readiness to attack difficulties and to try
different methods of attack. Problems (which involve some element
of generality) lead to organized knowledge and open wider horizons.
Since stimulating puzzles and problems are not easily devised, it is
essential that there is adequate communication between student
journals in all parts of the world so that good material can be shared.
The group resolved to seek ICMI’s help in establishing such channels
of communication.

In addition to fostering the development of future research workers
and teachers of mathematics, one must also help the great mass of
children and adults who say ‘I could never do mathematics’. Such
people are accustomed to think about things rather than symbols.
Several instances were given of ways in which the attention of this
wider public had been attracted — and all involved actual objects or
situations, such as a room containing puzzle apparatus, or primitive
computers, Turing machines and circuit boards. This, clearly, is
another type of extra-curricular activity which could repay great
dividends for a comparatively small outlay.

The professional training of mathematics teachers

The professional training of teachers is so closely linked with what
is happening in schools that it must be immediately influenced by any
significant change in school procedures and in its turn must have an
impact on the attitudes and objectives of teachers. When changes are
as rapid and far-reaching as those that have occurred during the
last fifteen years in mathematics education the effect on teacher
education must be as profound. Not only is the content of school
mathematics courses being enlarged and fundamentally modified,
educational purposes and methods are also passing through a period
of basic re-assessment. The training of teachers of mathematics at all
levels is subject therefore to two strong pressures. It must alter the
mathematical knowledge with which it equips intending teachers and
it must show them the new insights into how children learn mathe-
matics and how such learning can be induced.

At primary level, mathematics is but one of the branches of learning
that teachers must be capable of fostering, whether they like the
subject or not. The training must be different from that offered to
secondary teachers who can choose the subject, or small group of
subjects, which they enjoy and are prepared to teach. But in a period
when change is swift and extensive, teachers already in service cannot
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rely on their own experience either of learning or of teaching mathe-
matics. Their initial training must be supplemented to give them
both new knowledge and new kinds of expertise. Hence three different
working groups were formed to discuss the three distinct types of
course: initial courses for primary or secondary teachers, and in-
service courses.

Papers from five different countries were presented to the group
which studied The Initial Training of Primary (elementary) School
Teachers and very different ‘models’ were evident. Nevertheless there
were common elements and the group decided to focus on these
common components. Three main strands could be identified as
essential: mathematical knowledge; insight into children’s learning
and its goals; classroom procedures and materials. There was
general agreement that teachers should know, in addition to the
accepted number, algebra and geometry, something about prob-
ability and statistics, functions, mathematical systems and the role of
deduction in mathematics. Nothing was agreed on how and to
what depth these would be treated in courses for teachers, but it was
emphasised that the prospective teacher should be helped to see
mathematics as concerned with formulating and solving problems.
This involves the characteristic mathematical activities of classifying,
generalising, symbolising and proving. The student himself should
be placed in situations in which by exploring and reflecting he can
identify these processes and so discover the kind of question which
would guide the children to similar understanding.

There was widespread support for the use of manipulative materials,
apparatus and other concrete aids, to encourage, through early
experience of working with physical models, the ability to abstract
mathematical relations and patterns. Such materials provide open-
ended situations which give enjoyment as well as independence of
approach. But prospective teachers need to work with the materials
and become familiar with their uses. As Piaget says (p. 85) ‘it is often
particularly difficult for the teacher of mathematics, who, because of
his profession, has a very abstract type of thought, to place himself
in the concrete perspective which is necessarily that of his young
pupils’. It is to help a teacher to bridge this gap that he needs to
experience for himself the dawning of new understanding through
handling suitable concrete materials.

Contact with children throughout the course of training was ad-
vocated but many different ways of organising this were possible; class
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teaching could be over-emphasised. A graduation could be devised
which would proceed from observations of children, to work with an
individual, to taking a mathematical topic with a small group whose
individual responses could be observed, and finally to responsibility
for a class which could be organised in a variety of ways. It was said
that such experience of children’s thinking and misconceptions often
stimulates students to strengthen their own understanding of
mathematics.

The integration of all three aspects of teacher education was
thought to give a better understanding of the development of mathe-
matical education but more experiments are required to substantiate
this theory.

Integrated investigations of topics which may involve mathematics
are popular in primary schools. The question of preparing intending
teachers for such work by taking part in integrated schemes at student
level caused much controversy. It seemed to be acceptable if it could
run alongside specific subject courses. A further topic for future
discussion is the extension of mathematical topics into the uses made
of mathematics in technology, industry and social services.

Finally the group agreed that just as the programme of primary
schooling has become individualised so the training course should
provide opportunities for individual development and the achieve-
ment of competence and confidence in teaching mathematics. But
initial training can never be adequate for a lifetime of service and
a greatly increased provision of in-service courses is urgently required.

The secondary school teacher, in contrast to the teacher in primary
schools, should be a mathematician capable of creating and organis-
ing mathematical ideas as well as disseminating them. His mathe-
matics courses during training should reflect the changes in the
subject as a contemporary body of knowledge as well as developing
deductive processes and the creative aspects of mathematical dis-
covery. His course should also include didactic analysis of a variety
of teaching and learning approaches and the methodological con-
sideration of classroom procedures. We cannot expect an initial
course to give a complete training, but the intention should be to
develop an attitude in the teacher which would be likely to produce
continued growth in his professional insights and objectives. These
views were put forward by Professor H. G. Steiner (W. Germany),
Chairman of the group studying the Initial Training of Secondary
School Teachers. The representative nature of this group is shown
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by the way in which it produced accounts of training schemes from
ten different countries including such widely separated places as
Austria, Canada, the Congo and New Zealand.

The question whether the mathematics courses for intending
teachers should take a special form became the most important issue
discussed. One suggestion was the provision of elective courses
additional to the basic undergraduate courses in mathematics. Some
suitable topics proposed included the history of mathematics (which
was strongly supported) and mathematical literature, elementary
mathematics from an advanced standpoint, the analysis of new
mathematics curriculum proposals and some research enterprises.

Professor Krygowska (Poland) urged the recognition of didactics
as a part of mathematics with a status similar to that of analysis or
topology. She identified four aspects of didactics: a synthesis of the
appropriate mathematical, educational, cultural and environmental
ideas; an introduction to research; the nature and situation of the
child; practical experience. For ‘didactics’ the United Kingdom,
South Africa and others would use the term ‘mathematical educa-
tion’. The questions raised showed the difficulty of separating
methodology from didactics, and the problem of placing a didactics
course in a mathematics department rather than in a department
of education. In the ensuing discussion on methodology and ‘field
work’ in schools, it was evident that many of the topics included in
‘methodology’ were identical with those proposed for ‘didactics’.
The formulation of a recognised subject called ‘didactics’ (or ‘mathe-
matical education’) was felt to be an important task offering oppor-
tunities of interesting and valuable work.

Two further points were raised but not adequately considered.
Intending teachers should be asked to compare the axiomatic deduc-
tive approach with the intuitional approach and discuss their relative
roles. Models and problem-solving should find a place in the course.
It was pointed out that whereas the mathematician is trained to move
from model to structure the teacher must learn to move from struc-
ture to suitable models.

The environment has been mentioned several times and particu-
larly its role in mathematical education but its place in training
courses was not developed. The effects oflocal conditions on curricula
and teaching methods could well be put on a future agenda.

In the final session resources which should be available were listed.
The library should have a good reference section including a retrieval
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system. Periodicals pertaining to mathematical education and appli-
cations should include material from associations throughout the
world. A well-equipped laboratory should have do-it-yourself
materials and tools, and a small computer or computer terminal;
and there should be a media centre with equipment for films, tapes
and cassettes. In common with other subjects mathematics needs
the use of a demonstration classroom where students can experiment,
be video-taped and have their attempts analysed by their peers and
supervisor. Of course the constant help of local schools is invaluable.

Both the groups that considered the initial training of teachers
urged the provision of in-service courses because, they held, a teacher
could not be completely prepared for his various and complex tasks
merely by his pre-service training. It needs supplementing when
experience with pupils learning mathematics has made the possibili-
ties and difficulties clearer. This was widely confirmed, but the chief
reason for the remarkably large number of mathematics courses
organised all over the world for serving teachers is the rapid change
in content and method. Entirely new mathematical ideas have been
encountered and have had to be mastered by teachers and then inter-
preted by them for their pupils.

These courses have introduced teachers to new curricula and given
them new understanding of how children learn mathematics. The
working group which chose to study the purposes of such courses,
ways of organising them, and the possible kinds of presentation of
new ideas which would be most helpful, was intent on finding solu-
tions to the problems that have arisen. Members from several
countries gave ten-minute talks on their experiences of such courses
and started discussions, for instance, on whether mathematics for
teachers should be different from mathematics for children and how
teachers can be helped to see what is involved in ‘discovery’ or
‘individualisation’.

The group then saw two samples of lessons to local children which
could have been shown to teachers at a course. One lesson, for
nine-year-olds, illustrated the experimental use of geoboards; the
other, for twelve-year-olds, showed a class lesson on rational
numbers, using ordered pairs. Immediately deeper questions were
asked. What is the effect on a teacher of watching lessons given in
such conditions? Because the children were in an investigation
situation, independent individual responses could be seen with
evidence of new thoughts emerging. Even in artificial conditions the
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children were absorbed in their explorations. The teacher’s part
is seen in the way in which the learning situation has been devised
and developed. There is an element of drama here in which the
teacher-observer identifies with one of the performers (teacher or
learner).

It was agreed that such teaching episodes have value, as have films
of children engaged with apparatus. But longer courses are necessary
if teachers are to become ready to adopt new attitudes. They need
time to try out with their own classes some of the new mathematical
ideas and new approaches, and to share their experiences with other
teachers on the course. In this way they can become convinced of the
effectiveness of the new procedures in their own teaching.

Teachers probably need to know more mathematics than they will
be required to teach, but it was thought they should experience
learning through handling apparatus and experimenting with
materials for themselves at their own mathematical level. They should
also work with concrete material in the same ways and for the same
purposes as their classes will do. It happened that at this time the
British National Presentation included a group of primary teachers
working under the guidance of Miss Edith Biggs on a typical in-
service course. These teachers were engaged actively in using
materials which led them to see new mathematical ideas and also the
ways in which children could be guided to make the same discoveries.
It is through such experiences that teachers come to understand more
fully the mathematics they are teaching and its place in the develop-
ment of children’s thinking.

From the vigorous contributions of all members of this group it
seems that this aspect of the education of teachers will not be
neglected.

Educational technology

Mathematical educators look back on the 1960s as the bringer of
‘modern maths’ (or, translated into American, ‘new math’). In
a wider educational context, that decade also brought us ‘educational
technology’ — a term so all-embracing as to be virtually meaningless.
On the one hand, it describes an approach to education which makes
use of the newer technological disciplines — what is sometimes de-
scribed as a ‘systems approach’ — on the other, it has come to mean
the use within education of the products of technology. It was natural
that both these aspects should be represented at the Exeter Congress
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and they can be distinguished in the accounts of the working groups
which follow.

Individualised learning methods

There was considerable interest in individualised learning methods,
and evidence was presented of grass-roots developments in many
countries, especially the USA, Sweden, and the UK. Occasionally
a dedicated and inspired teacher would start by working alone,
perhaps gradually extending his or her sphere of influence by moving
on to become the leader of a creative group working to develop the
materials further. In more widely-conceived projects the focus of
leadership may not be centred within a participant school. One
project had achieved exceptionally close cooperative ties with a com-
mercial producer of programmes.

Most speakers stressed the vital need to involve teachers who use
a learning system in some way in the process of prescribing, producing
and assessing the materials used. The creative group must feel to
a large extent self-determining. This spirit of involvement and com-
mitment can be achieved as much in shaping a learning system from
already available materials as in the pioneering of original work. This
latter process can prove tedious, time consuming and inefficient in
inexpert hands. It is doubtful if teachers have the ability to
predict what a student might achieve, or to know in advance the
educationally most advantageous means. In an individualised learn-
ing system the teacher becomes a divining rod, sensitised to the
system, able to make spontaneous compensation and to feed back
ideas for improving the system. Thus the system is continually
developing empirically.

Advancement in pedagogical sophistication brings a more pro-
fessional concern for the psychology of individual differences, for
ethical, social and motivational considerations and for a more certain
gearing of the student’s experiences to his needs in the modern world.
It is too much to expect a teacher to cope with such complexity
alone.

The essence of one’s thinking in individualised learning is accom-
modation to the concept of change. The child is developing and
changing within a world which is itself in a state of accelerating
change. The educational process must keep apace with all such
changes. The design of a learning system subsumes all relevant tech-
nologies, such as cybernetics, sociology, management sciences,

1



A CONGRESS SURVEY

curriculum development and educational psychology. It is an attain-
able vehicle capable of adapting to change. It calls for teams of
experts continuously re-appraising, re-defining and re-developing the
parts of the system and the ways in which they interact.

Taking individualised learning as the central theme, a symposium
might be organised to cover modules such as: objectives, especially
in the higher order of thinking abilities; variety in modes and media;
depth versus breadth; the teacher’s role; pupil freedom of choice
and self-determination versus controlled and directed learning;
analysis and remediation; a continuous mathematical education
across the usual horizontal educational structure; flexibility of
teacher, pupil and system; responsibility for the building of materials;
the affective domain ; experimentation or a committed developmental
approach, and aspects of evaluation.

The mathematics workshop — the use of apparatus, games and
structural materials

The workshop (laboratory) approach is one of many strategies which
can be used in the classroom. In order to build images, symbolise,
organise, generalise, drill and practise, or apply knowledge to other
situations, several modes may be used. For some of these activities
the laboratory approach is more effective than for others. In the
laboratory the concrete objects (manipulatives) serve as models for
the thought images that are moved around in the mind. They serve
both as a means of recording what went on in the mind and also to
serve as sources of ideas to spark off others. Ideally, if our object is to
teach mathematics, the manipulative materials should satisfy the
following criteria:

(1) A mathematical fact, concept, or generalisation is the goal.

(2) The material must be appropriate to the discovery of the fact,
concept, or generalisation.

(3) The material must be capable of arousing the student’s interest.

(4) The directions for the use of the materials must be easy to
follow, and must be capable of leading the student to the desired
conclusions.

In certain instances it may also be desirable for the directions to be
open-ended, enabling different results, perhaps at various levels of
difficulty, to be obtained. Tapes, slides and pictures can all be used,
although usually the student gains most from apparatus if he can
handle it himself.
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In the use of manipulatives for learning mathematics, the student
is provided with models for concepts. Often he examines the real
world for mathematics intrinsic to it, and he is introduced to the
relationships between subject areas; since the student has discovered
the mathematics himself, his retention is improved.

The laboratory method provides many other benefits in addition
to an understanding of the mathematics involved, and it is perhaps
because of these benefits that the proponents of the method are most
enthusiastic. Students in the laboratory develop a method of enquiry;
they are helped to learn to learn. Gathering, organising, recording,
and representing data become essential skills. This method also helps
develop imagination and creativity, it provides for discovery, it
motivates the child and helps him develop interest in further enquiry,
it provides for individualisation, it facilitates the use of language,
and it often provides for aesthetic appreciation.

Just as the method has its advantages, there are also disadvantages.
Time is most often given as an excuse for not using the laboratory
method. However, proponents argue that the initial capital time
investment of the teacher more than pays off, as classes run more
smoothly due to increased interest and alleviation of discipline
problems. Research shows that the laboratory method can be as
efficient as a traditional teacher-dominated situation and that stu-
dents learn more than in the latter situation.

Other disadvantages claimed against the method include the
difficulties in getting started, in managing the situation, and in
evaluating the work; the imprecision which can result, the cost, the
possibility that students confuse mathematics with the materials they
are using; the lack of transfer from one application to another. One
of the greatest problems is one of teacher education. It is necessary to
help teachers acquire the organisational skill needed. Organisational
patterns vary from those of a local nature, such as arranging the
mathematics corner of a classroom, to the problems of organising
a large-scale resource centre with branching learning sequences.
During training the teacher should be confronted with a variety of
experiences, explore many teaching materials, and develop his own
resources for working in the classroom. Involvement with children
and materials stirs interest and imagination and leads to greater
individual development.

The use of manipulative materials and the laboratory method,
although well-known in most countries, varies from no-use-at-all to
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use for a major portion of classroom activity. In some countries,
materials, money or space are not available; elsewhere they are
available but teachers lack commitment to them. This mode of
teaching appears more widely accepted at the primary level than at
the secondary level, although this may be because of the lack of
knowledge of materials appropriate to the higher level.

Recommendations

Because mathematics is a useful tool in the real world, students need to be
provided with real world experiences using mathematics and with such
experiences as will help them to develop their own method of enquiry, and
to learn how to learn. Because language facility is essential, the experiences
provided in school should aim at developing this facility. All of these goals
can be met through laboratory experience.

Each lesson should have an underlying framework of objectives: both
subject oriented and student oriented. The hardware and the equipment
are not the essence; more important than the physical facilities are the
attitudes of the children, the atmosphere of the classroom, and the
objectives of the teacher.

The style of training of teachers must reflect what we actually wish
teachers to do in their classrooms. In this training as in actual teaching,
materials must be present and the student-teacher involved with them.
To talk about them or to look at pictures is not sufficient.

Just as recipe books are essential to a good cook, references are necessary
for doing a good job in the laboratory. Such references need to be pre-
pared. Further discussions on workshops and mathematics laboratories
could well concentrate on specific problems, methods and levels.

The use of television and film in the teaching of mathematics

Although the members of the group were those who are deeply
involved in the use of TV and film material in education, fundamental
questions were asked about the reasons for using it. We use it because
it is there, was one strongly held view. This appeared to be supported
by the fact that, in the case of TV which is a broadcast medium, an
attempt to appeal to a mass audience runs counter to the current
trend towards greater individualisation in learning. However, it
was pointed out that, although this conflict with current educational
thought certainly exists, there is hope that in the near future most
educational establishments will have their own equipment to record
broadcast material which may then be used how and when the
teacher desires.
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There is intrinsic value in TV and film material which justify its use.
A strong element in this argument is the fact that it is possible to
obtain the services of highly skilled people, mathematicians and
others, to put ideas across in highly effective ways — better than
many teachers will be able to do.

The production of material of the desired quality is a major
problem. Certain aspects of mathematics are obviously very visual
and producers of TV and film material gravitate instinctively to this.
In this respect contributors from various countries showed very
convincingly what can be done. However the question was asked
whether we should not rather start by looking at the difficult con-
cepts in mathematics, those concepts which students have difficulty
in grasping, and try to tackle these. Clearly this is what should be
done, but some of the difficulties of this view were demonstrated
during a workshop on presenting the concept of ‘function’ in a visual
way.

We should start with a clear understanding of the essential points
we want to communicate. However obvious this may be, there is
a danger that the mathematicians might push too quickly towards
these essential points. Problems and situations should be presented
which prepare the way for the ideas to develop. It may be that these
problems will contain many extraneous aspects which mathema-
ticians might find irritating, but these are essential for the growth
of ideas in the viewer. Real situations are necessary at school, and
desirable at a higher level, although university students can go much
more quickly to the heart of a concept.

How should these problems be presented? At one end of the
spectrum some were presented as inanimate visuals with clinical
precision. There was great merit and beauty in some of the presenta-
tions of this type which were seen. At the other extreme there were
recordings of ad lib situations from which mathematics was extracted.
These may have lacked the finesse or precision of the former type of
material but they possessed a convincing feeling of reality. Some-
where between these extremes there was material showing the use of
puppets, with a presenter, intended for 9-10-year-old pupils. This
material raised the question of the value of humour in TV/film
material. Humour is certainly a valuable element provided it is
expertly handled; but there have been unfortunate mis-uses of
humour where it was not appropriate for the intended audience.

In the use of TV material in the classroom there are again two
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extremes: the situation where all the mathematics being done arises
from, or is connected with, the TV material; and the situation where
there is no follow-up work at all. Both extremes are undesirable.

The place of the computer in mathematical education

Speakers emphasised the use of computers to motivate students in
their study of mathematics and described ways in which such studies
were enriched by the use of the computer as a tool. There was general
agreement that flow-charts could be omitted unless they aided the
logical development of the algorithm, although there is some value
in younger pupils starting with non-mathematical flow-charts, the
flow-chart being a form of language which most students readily
understand.

Model making, in the sense of formulating equations which
describe some real situation, is an essential part of mathematics.
It is, however, extremely time-consuming, and non-trivial applica-
tions may be too difficult for the less-able student; although even
for these, models which the teacher has prepared are valuable,
especially if the student has the opportunity to amend the model
himself. Applied mathematics, which is entirely a model building
activity, can be completely changed at school level by the use of
computer methods.

Many experiments involving the use of computers were described.
These included one concerning teaching statistics to first-year college
students (see Wegman and Gere!). To avoid students’ difficulties with
new ideas in computing, packaged programs were used and a visual
display was presented of distributions of observed variables, which
could be compared with standard distributions.

A particularly interesting experiment was described by Seymour
Papert,>? of the Massachusetts Institute of Technology, who had
worked with 9-10-year-old children who had previously had little
success in mathematics. They were given two hours of instruction
per week in a new field, namely, ‘turtle geometry’. The aims were
for the children to carry out complex projects, to use mathematics
where it is needed, to discover it to be logically ‘clean’, and to learn
how to set up a model.

1 Wegman, E. J. and Gere, B. H., Some Thoughts on Computers and Introduc-
tory Statistics, Int. J. Math. Ed. Sci. Technol. 3, 1972, 211-21.

2 Papert, S., Teaching Children Thinking, Mathematics Teaching, 58, 1972, 2-7.

8 Papert, S., Teaching Children to be Mathematicians versus Teaching about
Mathematics, Int. J. Math. Educ. Sci. Technol. 3, 1972, 249-62.
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Schemes of work intended to give all students some understanding
of computers are being developed in many countries, sometimes at
a national level. Views vary on the best methods of doing this, and
hardware falls into two distinct groups— desk machines which
require the use of a machine language and mini-computers or
terminals on which algorithmic languages can be compiled. Costs
are falling rapidly, and terminals may become cheaper than desk
machines. There are educational possibilities in both, and it is
necessary to distinguish two groups of objectives, those which are
mathematical and those related to the introduction of computer
science. The exchange of ideas and experiences on the use of com-
puters in mathematical education could be greatly helped by the
existence of an international journal. OECD have established an
information centre and it is possible that their newsletter may fulfil
this purpose.

Programmable calculators in schools

In this group, a study was made of the projects carried out in various
countries, a comparison was effected of some of the available
machines, and aims and methods in using programmable calculators
in secondary schools were discussed.

Since 1969 extensive work has been done in France.! Five or six
types of machine have been employed, being used with pupils of
average ability in secondary schools (eleven to seventeen years).
The main task is to discover which mathematical concepts can be
introduced efficiently by the use of programmable calculators.
Initially, the aim was to motivate better working in mathematics,
and this developed further, leading to ideas of flow-charts, pro-
gramming, iteration and so on.

Projects have been carried out in several individual secondary
schools and colleges of education in the United Kingdom. The broad
aims are similar to those in the French project, and the machines are
seen both as an aid for the teacher when introducing mathematical
concepts and also as a calculating aid for the pupils. Other projects
have been started in Holland, Lesotho and Japan. In the USA? work
has been done with students training to teach in elementary schools.
It was found that programmable calculators were more appropriate

1 M. A. Deledicq, INRDP, Department of Mathematics, 29 rue d’Ulm, Paris 5¢,
France.

2 Professor M. Sudduth, University of Kentucky, USA.
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than computers in the elementary grades, and the main result was
that, as the fear of machines was lost, so a new enthusiasm for
mathematics developed.

It was found difficult to separate discussion of general aims
from consideration of the actual machines, but the main objectives
appeared to be:

(a) to learn how to program a problem (as distinct from merely
gaining an understanding of how the machine operates);

(b) to introduce mathematical concepts by means of numerical
examples;

(c) to simplify the task of calculation;

(d) to distinguish two types of human activity: mechanical think-
ing, which is the way in which machines operate and, secondly,
imagination and creativity, which no machine can simulate.

Nine machines from five different manufacturers were available to
the group. It is neither possible nor desirable to suggest a ‘best buy’,
but there are several important aspects to be considered by purchasers.

(1) Input facilities. Apart from keyboard input, the machines can
also be programmed by one or more of punched cards, mark-sense
cards, punched tape and magnetic cards. It was agreed that off-line
input preparation makes the use of the machines with a class of
pupils much easier.

(2) Program operation. Machines with a display on which changes
of address can be seen, and where the punched cards actually operate
the program, enabling loops to be seen, are of value with younger
pupils or those at the beginning of a programming course.

(3) Output. A printed record is indispensable except perhaps at the
most elementary levels.

(4) Peripherals. Some machines have further facilities, such as
graph plotters, built-in functions and extra memory space. Trends
were noticed whereby these machines are becoming more like com-
puters, when indirect address and subprogram facilities are available.

During the discussion about the ways in which the machines are
introduced, it was mentioned that flow-charts and a ‘match-box’
computer could play a useful part in giving the first ideas; use of the
machine then follows naturally. Pupils seemed eager to use the
machines outside class time and, within a class, appear to work
better in groups. A distinct advantage over other types of computer
facility is that the machines can easily be transported from room to
room.
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Some objections were raised that, because a low-level language is
used, the machines are difficult to program. Most contributors,
however, thought that this was an advantage since pupils were forced
to analyse a problem precisely because they had not yet encountered
mathematically sophisticated operations; in this way, a feeling for
rigour developed. Most participants had noticed considerable
enthusiasm among the pupils: it is good psychology for children to
be able to give orders instead of merely obeying them; furthermore,
it is necessary to think in order to command.

It was generally agreed that programmable calculators are in-
valuable in aiding the understanding of certain mathematical
concepts, such as those of sequences and iterative techniques, and
representation of variables, and in giving pupils first ideas about
programming. But when the problems become more complicated,
the more powerful high-level languages of computers become
necessary. However, the elements of many techniques can be taught
in spite of the low-level language. Additionally, some concepts can
now be taught earlier in the curriculum than was previously the case,
and by an experimental approach before the theory is met.

As manufacturing costs reduce owing to improved technology,
the choice of a particular programmable calculator, and indeed the
choice between them and other computing facilities, will become
more difficult.

Curriculum design and evaluation

Reports were received from several projects concerned with curricu-
lum development at both school and college level. These were largely
descriptive of the problems that each individual country or project
had found in developing its mathematics curriculum, and the steps
taken to solve these problems. While many of these problems are
dependent on the structure of the society and the educational system
of a particular country, a number of the problems implicit in the
papers given are common to all nations, and would repay study by
a future congress. Some of these points are:

(a) The choice of mathematical subject matter for inclusion in a
curriculum

The approaches of the various projects were frequently based on
widely differing goals and it was clear that there was no agreement
as far as aims and the comparative weight to be accorded to them
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were concerned. For example, one project took as a goal the teaching
of what mathematics is, as held by mathematicians of the present
day, another chose to develop the process of research and to train
the students in ‘creative activity’. Others argued that mathematical
education was dominated by pure mathematics and that new
curricula should favour the needs of users of mathematics.

Again, projects differed in the variety of options which they offered
to users — one provided a set of optional units which enabled the
teacher to build up a suitable curriculum for individual students,
others offered only table-d’h6te menus. There is clearly then a need
for study of the range of criteria that a curriculum project should
take into account, when making choices of subject matter and
teaching approach. The state of mathematics, the needs of users,
the social context of education, the state of the child’s conceptual
development and of his interest and creative activity, all these play
different parts in the design of different projects. They all need more
careful identification and study.

(b) Criteria for evaluating a project

The problem of how to evaluate the work of a project does not appear
to admit any straightforward solution. Some idea of the difficulties
encountered was given by Dr J. Hunter! who described how students
following a modern curriculum had performed less well in first-year
university examinations than those who followed a traditional sylla-
bus, but, to counterbalance this, the new syllabus had resulted in
a greater proportion of pupils, particularly girls, choosing to study
mathematics longer and had increased the general level of interest
and enjoyment.

(c¢) Suitable curricula for a wide range of students

The increase in educational opportunities at a higher level has
already led in the USA to vast numbers of students entering colleges
who wish to study the applied sciences but have only a slight under-
standing of mathematics. There is a need to develop suitable curricula
for such students who, of course, will also pose a problem elsewhere
as higher education becomes more accessible. The problem of helping
those students in higher education for whom the school curriculum

1 Hunter, J., Some aspects of syllabus development, evaluation and revision,
illustrated by the work of the Scottish Mathematics Group (copies from W. and
R. Chambers Ltd, Edinburgh, EH2 1DG).
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has been unsuccessful, is one which has received insufficient con-
sideration.

(d) The advent of the computer

Several contributors spoke of the introduction of computing in
mathematics projects, and raised questions about changed emphasis,
subject matter and methods of presentation caused by the increasing
availability of computing facilities in schools and colleges.

Research in the teaching of mathematics

When reading the reports of the different working groups one is
struck by the frequency with which such phrases as ‘much work still
to be done on...” and ‘a further investigation of this problem seems
urgently to be required’ occur. There is a general demand for more
‘research’. But what do we mean by this emotive word? This was
one of the first questions which the group meeting under the above
title sought to answer. In this connection, various types of research
were defined and the demands of evaluation in these different types of
research were discussed. The main role of research in mathematical
education was generally accepted to be the improvement of mathe-
matics teaching, and here the value judgements implicit in terms like
‘improvement’, ‘mathematics’ and ‘teaching’ were emphasised.

The role of theory was discussed in the context of (a) providing
a condensation of what is known, from research, about mathematics
teaching and learning, (b) a framework in which research studies can
be related, and (c¢) a guide to generating hypotheses and thereby
showing directions for research. In this connection, it is hoped that
theory can play a role in helping teachers to a better understanding of
the learning-teaching process in mathematics.

The involvement of teachers in research was a constantly recurring
theme and specific reference was made to the desirability of involving
teachers in research work during their initial training and in-service
education. The idea of “the teacher as a researcher’ was also discussed,
as was the communication-gap which often exists between researchers
and teachers. It was argued that participation in, or increased know-
ledge of, research would serve as a strong motivation for teachers in
enlarging their knowledge of relationships between goals and means
in the teaching of mathematics, that is of the didactics of mathe-
matics. At the same time, there was discussion of difficulties connected
with teacher/classroom research. For example, does the teacher have
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the background training or the time for research? Also there may
be design and methodological problems implicit in a ‘ one-classroom’
research setting.

There was a general feeling that more research must take place
within the natural setting of the classroom in order to increase our
understanding of the teaching process. The need to specify teaching
goals as clearly and precisely as possible was emphasised ; for without
this, proper evaluation cannot be made.

There was a strong sentiment that mathematics education is a
developing area (some would say ‘science’) in and of itself and
should be treated that way. Research in mathematics education
should be carried out by people competent in the relevant fields of
mathematics in collaboration with specialists in other areas such as
education or psychology.

Although recognising that different countries may well have
different research priorities, reference was made by participants to
the need for research on

(a) the relationships between topics, and on the sequences of topics
within a curriculum,

(b) children who have special learning disabilities in mathematics,

(c) successful and unsuccessful teacher/pupil interactions,

(d) problems of teaching and learning which are not specific to
mathematics,

(e) pupils’ ability to read mathematical texts,

(f) the influence of demands for rigour and precision on the
attainment by the pupils of creative and aesthetic goals in mathe-
matics.

Mathematics in developing countries

This was one of the largest and certainly the most international of the
congress working groups and it was very heartening to note that the
Exeter Congress attracted so many more educators from developing
countries than did its predecessor. In recognition of the importance
of the work of this group and in an attempt to avoid a bland, anodyne
communiqué to which every group member could subscribe, the
account of this group’s activities differs from that of any other, being
somewhat longer and in the form of a personal report from the
Chairman and Secretary. As such, it inevitably emphasises individual
viewpoints. Nevertheless, the authors assure us that the opinions
expressed would have received the general support of the group;
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indeed, nearly all the material is drawn from the group’s working
papers, and the discussions to which they gave rise. Despite the
diversity in detail revealed by the papers and discussions, a surprising
unity in fundamental aims and problems was apparent.

The present movement for the reform of both content and
methodology in the teaching of mathematics at all levels affects the
developing countries just as much as those of Europe and North
America. Indeed, in many ways it raises more acute problems for
those countries whose resources are more limited. The group found
itself discussing the practical problems of the supply of trained or
retrained teachers, and of appropriate teaching materials, but it was
even more concerned with fundamental problems arising from the
background against which rapid reform is taking place.

1 The social and cultural background

In many developing countries, including most of those in Africa,
the following factors arising from the social and cultural background
are relevant to the reform of mathematics teaching:

(a) instruction has been oral rather than visual; not many genera-
tions have elapsed since instructors were illiterate;

(b) reliance has been placed on memory of traditional patterns of
interpretation of history, customs and techniques; it has been im-
portant for survival to maintain a well-tried and long-established
system rather than to make possibly disastrous new experiments;

(c) the method of instruction has been didactic; where the oldest is
the most experienced and respected, the duty of the young is to listen;

(d) spatial experiences have been quite different from those of the
Western world and, in particular, representation of spatial relation-
ships may be almost unknown;

(e) dynamical experiences will have been few or absent, with
consequent difficulty in the alignment of scales and visualisation of
movement, and a general lack of mechanical facility.

These factors inhibit many of the methods of investigation and
discussion which are prevalent in modern teaching methods in
Western countries.

2 The educational background

(a) In most developing countries, with the notable exception of
India, the length of experience of most graduate teachers of mathe-
matics is short, and of modern mathematics extremely short.
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{(b) There has been a tendency for historical reasons to regard
education as first and foremost a means of acquiring a paper quali-
fication which will lead ultimately to better-paid employment; only
secondarily as a means of acquisition of a marketable skill. The idea
of education as a way of enriching the personality and of increasing
man’s understanding and control of the world often appears only
ina very poor third place. This brings to the developing teacher a great
temptation (which is by no means unknown to those who regard
themselves as more developed) to measure success by the number of
pupils who pass examinations, and to evaluate examination sylla-
buses by the ease with which pupils can be trained to pass them.

(c) Most countries are experiencing a very great increase in
numbers of children in primary and secondary schools; this repre-
sents a praiseworthy achievement but also creates a situation
demanding very serious action if teaching methods and conditions
are not to deteriorate.

These are not trivial problems. Teachers in the developing countries
themselves are asking questions about such fundamental issues, and
there is need for basic research into the relation between teaching
methods and the cultural and educational background.

3 The special needs of mathematics

While much of the above is common to all subjects, there are certain
features which make mathematics a peculiarly sensitive discipline.
Mathematics is a subject which demands a quiet, untroubled mind
for its proper absorption, as also for its lucid communication. Social
uncertainty, political anxiety, examination apprehensions affect
mathematical performance more immediately than most other sub-
jects. (We all know how difficult it is to find a mistake on the black-
board when we are concentrating on holding the attention of the
class.)

Secondly, mathematics itself has developed in the last ten years
rather too precipitately for many teachers, even in well-developed
countries. Now of course, if your previous experience has been
entirely taken up with simple arithmetic and the uses of ground-nuts,
the mysteries of the combination of two reflections are likely to be
no greater than those of angles in the same segment. The enthusiasts
will say that, provided the pupil can be given a piece of paper to fold,
or two pieces of reasonably polished metal (like table-knives), they
may even be less formidable. But the bulk of the graduates and
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diplomates in the developing country may include few or none who
have ever been taught this at school level, and this is unfortunately
what counts. Still worse, they may have regarded mathematics as
a terrifying array of data to be memorised, and are now for the first
time being confronted with a series of operations to be carried out,
systematised, and understood. No progress in teaching method or
content can be made unless a teacher is brave enough to do things
which are different from what he himself experienced as a pupil; and
in mathematics the difference may well be that between memorisation
and understanding.

Serious consideration must therefore be given to the content of
mathematics syllabuses. Topics relevant to the secondary level of
education in an industrial society may be totally irrelevant to a pre-
dominantly agrarian country. In the past decade there has been
a tendency to transfer unquestioningly syllabuses from Europe and
North America to countries in Asia and Africa. The time is ripe for
fundamental rethinking as to their appropriateness. This must of
course be done by teachers who are nationals of the countries con-
cerned though discussions may be facilitated from outside, for
example by the sponsorship of regional conferences and assistance
to relevant research projects.

Does this mean that mathematics itself is culturally dependent?
The working party for the most part felt that it is not, but that
natural aptitudes, the social and economic setting, and the demands
of national development should certainly influence both the selection
of appropriate mathematics and the methods by which it is taught.
While almost every country in the world is moving towards ‘modern’
syllabuses, far too little thought seems to be being given to the aims
and objectives of mathematical education in relation to local culture
and needs. Ideally, reform should arise spontaneously from the
dissatisfaction of nationals with things as they are, rather than from
expatriates’ visions of things as they ought to be.

4 The transfer of teaching materials

These are transferred between countries at three main levels:

(1) The level of acceptance, where materials are transferred directly
in their original form for general classroom use;

(2) the level of adaptation, either (a) small-scale adaptation, often
carried out in the country of origin, consisting of little more than
alterations to place-names, currencies, and other essentially super-
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ficial matters; or (b) large-scale adaptation, carried out in the
importing country, often after trials of draft materials;

(3) the level of appraisal, the transfer of influence and ideas, the
materials themselves being used maybe only for teacher-training
and specialist study.

As a country progresses educationally, so does its level of transfer,
at a rate closely dependent on its resources of qualified manpower,
of competent pupils, and of budgeted funds. Transfer at level 2(b) is
a comparatively recent phenomenon in the history of mathematical
education, which leads to valuable savings in time and money, but
there is need to assist developing countries to progress through the
various levels as rapidly as possible. In particular, indigenous
textbook writers should be encouraged and trained by all possible
means.

5 Primary education

Every developing country would like a niche in the hall of academic
fame — an Einstein, a Crick, a Heisenberg. But this is the apex of
a pyramid which rests on a very broad base; probably what it needs
far more is a properly numerate and literate labour force and
electorate. This means a primary school population which is receiving
a well-rounded and thorough education. Educationally, socially,
morally, this is worth far more than prestigious names or even
applied research, for no research project can contribute effectively
to development without soundly educated technicians possessed of
skill, adaptability and integrity.

Unlike the situation in developed countries, primary education is
terminal for the majority of children. In the past, syllabuses have
usually been directed towards preparation for secondary education,
but their content urgently needs reconsideration in the light of the
needs of those who will never progress beyond primary school. Here
the developed countries have little relevant experience to offer.

The crucial question is the provision and training of primary
school teachers, who often have no more than secondary education
themselves, and sometimes not even this. Too rapid innovations will
undermine their confidence and arouse their hostility. Large classes
demand that the problem be approached with realism and sympathy.
This is not purely a mathematical problem. Social, political, and
economic changes are necessary to improve the status and pay of
the primary teacher, to encourage diplomates to enter primary teach-
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ing, and to allow better use to be made of the available manpower
(including that of the pupils themselves) in primary schools.

The question of the language which is the medium of instruction
arouses strong feelings, but there is widespread agreement that
mathematics should be taught first, in the early primary years, in
the child’s mother-tongue which will lead to greater understanding
of basic mathematical concepts. Many countries, however, have
a multiplicity of languages so that there comes a point, perhaps
during the primary years, and certainly by the secondary stage, where
the medium of instruction cannot be the mother-tongue of all the
pupils concerned. The working party urged that fundamental research
should be undertaken on the relation between the learning of mathe-
matical structures, and the structures of the language through which
they are learned.

Account also needs to be taken of the use of simple teaching
materials and apparatus and the training of teachers in their use.
Suitable aids costing little or nothing can often be collected by the
pupils themselves or improvised from material readily available
locally. Local crafts may reveal geometric patterns, and traditional
games can be a rich source of mathematical ideas. The natural
environment may also be rich in illustrative material, but all this will
be useless unless the teacher is persuaded that it is important, not
because it helps the teacher to teach the syllabus, but because it helps
the pupils to understand what they learn.

6 Secondary education

Here again, secondary education is terminal for the majority of those
selected to receive it. In addition, despite the selective system, there
is usually a wide range of ability in the secondary class. Unlike many
developed countries, there is only one educational path to be followed,
and this is determined by the needs of the few who will proceed to
tertiary education. There is therefore a crying need to provide alterna-
tive courses in mathematics for different groups of secondary pupils.
Again at secondary level the influence of examinations is at its most
baleful, with unmodified transfer of Western examination methods.
Alternative methods of assessment, appropriate to the pupils’
cultural background, must surely be devised, and syllabus content
reviewed in the light of each country’s needs and the pupils’ future
opportunities for employment.

Little serious evaluation of the long-term effects of changing from
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a traditional to a modern syllabus at this level has yet been under-
taken. To be effective, such a research programme needs to be
supported by the Ministries of Education and the universities of a
number of countries in cooperation, perhaps on a regional basis.

7 University education

Just as schools should serve the needs of the society in which they
are set, so universities in developing countries should not merely
be pale copies of older institutions elsewhere in the world. In some
countries of Africa a university intake corresponding to the British
‘O’ level at 16+ precedes a four-year course leading to a first degree.
The content of the course work in such cases needs to be formulated
with reference to the projected manpower needs of the country, and
not just by reference to the specialist interests of the Department of
Mathematics at the time. Teaching methods, too, must be geared to
the educational level of the students rather than modelled on tradi-
tional methods in Western universities. Such considerations apply
even more strongly to the topics of mathematical research supported
by the university. The limited nature of resources available demands
that such research projects should be relevant to the needs of society
rather than simply serve to advance the career of the researcher.

8 Curriculum development and teacher-training

In many countries the educational system is so constructed that
teacher-training, curriculum development and classroom practice are
three separate activities. We are coming to realise that change can
only be effective when the three are seen as aspects of a single process.
It is one thing to prescribe a new series of mathematical textbooks
for classroom use, but quite another to ensure that the mathematical
education of the pupils is thereby improved. It is naive to define
curriculum as the content of the textbook, or its development as the
introduction of a new one. It is both more realistic and more con-
structive to define curriculum as what actually takes place in the
classroom. This immediately gives the teacher a key role in curricu-
lum innovation. Many developing countries are already acting on
this principle, by giving teachers a major share of responsibility for
developing new teaching materials, and by recognising their crucial
role in the evaluation of them in the classroom.

This view of the unity of the process of educational change has
important implications for the planning of curriculum development
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projects. Writing-teams must include teachers and not be dominated
by university personnel. Only teachers, and particularly those who
are nationals of the country concerned, are aware of the practical
realities of the school situation, of the pupils’ attitudes, capabilities,
and responses to proposed changes. At the same time the fact of
being a trained national does not of itself make a teacher a good
textbook writer. The arts of teaching, and of developing new
materials, are ones that the good teacher goes on learning throughout
his career, and more particularly through corporate activity with
others who are similarly engaged. Mathematical associations have
often been found useful in developing this, and in breaking down the
traditional isolation of the teacher in his classroom. Local teachers’
centres can act as a venue for informal meetings and in-service
courses, and as libraries for the study and loan of new materials and
resources.

The training of teachers is the key to the whole programme of
mathematical education, and different countries are handling it in
different ways. Some seem to have no difficulty in ensuring a flow of
mathematics and science graduates into teaching, while others find
it almost impossible to recruit any. Some put faith in concurrent
education and degree courses, others in post-graduate education
certificates. But all agree that more ought to be done to help their
primary teachers, that teaching needs to be made more attractive,
and above all that the training of new teachers will never solve the
problem by itself. The school population is increasing so fast (in
some countries the primary population has increased tenfold since
most of the primary teachers were at school!) that it is like trying to
climb an escalator which is descending always faster than you can
climb; or, as the Red Queen said, ‘it takes all the running you can do
to stay in the same place’.

Every teacher is a developing person, and in this self-development
lies the greatest hope for the future. Every encouragement must be
given to teachers actually on the job to grow in understanding of
children and of mathematics, and in efficiency in bringing the two
together in an environment in which genuine mathematics can be
learned. This cannot be done in a hurry. A cycle of development is
not complete until a teacher begins to teach the topics and methods
by which he himself was taught at a similar level; only then is a firm
base established on which the next cycle of reform can be built. For
the university teacher the cycle may be as little as five years; for the
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secondary teacher it will be nearer ten, and for the primary teacher
fifteen to twenty years; and the primary teacher is the most important.

9 General conclusions

(a) Mathematics teachers in developing countries should be
encouraged themselves to develop and modify in the light of their
own classroom experience curricula and syllabuses which are imagina-
tive in their outlook but sensitive to the habits of a culture and
pattern of education which may be very different from that of the
Western world. In this the paramount needs of development will have
to be kept in mind. Too abstract an approach is to be deprecated, and
the incentives to accurate arithmetical facility provided by commer-
cial activities will need to be respected and directed. The farmer must
be able to cope with his accounts, but alongside him the future
graduate must be experiencing the all-pervasive pattern and power
of mathematics. Both teacher and pupil need the confidence which
will enable them to carry out simple arithmetic mentally in less time
than it takes to write it out on slate or paper; at the same time they
need the spirit of enquiry which will drive them to understand
fundamental processes so that they can apply them in a variety of
situations.

(b) There is need to encourage interest in mathematics as an
intellectual exercise which authenticates itself and can bring enjoy-
ment and interest to those engaged in it. The increasing popularity
of the mathematics contest helps to do this by provoking logical
thought in reasonably simple problems which may be remote from
the normal school curriculum.

(¢) Emphasis must be placed on that part of mathematics which
depends on visual imagination: the drawing and interpretation of
graphs, the recognition of curves, the appreciation of pattern, the
visualisation of motion and of three-dimensional relationships. These
are matters which have often been neglected with the excuse that they
are time-consuming, but probably because the teacher feels insecure
in handling them. There is no doubt of their importance in the world
of today.

(d) There is a danger in too great reliance on paper qualifications.
The pay of a teacher may depend too closely on them, and too little
on his responsibilities or suitable experience; indeed, they may be
too easily equated with an experience which has not been part of the
courses which led to them. This is particularly dangerous when
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a diploma in education by itself, without teaching experience, is
thought to be sufficient qualification to train teachers.

(e) At all levels of education, educators in developing countries
should be encouraged to pay less attention to the apparent demands
of academic respectability, as judged by their professional counter-
parts elsewhere in the world, and more to the alignment of their
work with the genuine needs of the people whom they and their
institutions serve.

(f) We urge upon the governments of developing countries the
importance of investing in the education of their own future man-
power. If more pupils than can be effectively taught crowd into
schools, the effect is likely to be counter-productive; there is evidence
to show that the result is relapse into illiteracy and the creation of
a problem class whose ambitions have been inflated beyond their
capabilities. The status of the teacher must be made more honoured,
his salary scales must be handled more imaginatively, and more
graduates must be attracted into education. Rome was not built in
a day, nor the educational systems of the developed nations in
a decade. The development of sound logic and mathematical imagina-
tion within the school population of a country may not pay immediate
economic dividends, but it is a valuable long-term investment in that
nation’s future.

National and other presentations

When the Programme Committee took the decision to invite individual
countries to mount their own presentations at the congress it had
very little idea of the likely response. Certainly it scarcely imagined
that seventeen countries, namely the Arab Republic of Egypt,
Argentina, Australia, Austria, Eire, the Federal Republic of Germany,
Ghana, India, Italy, Japan, Korea, Malawi, the Netherlands, Poland,
South Africa, the United Kingdom and the United States of America,
would respond to the invitation. Inevitably, since there were no
precedents to fall back on, and since the financial and other resources
available differed so greatly, the presentations which these countries
mounted varied considerably in size and purpose. At one end of the
scale the United Kingdom presentation was able to include a large
number of activities involving pupils and teachers drawn from
different parts of the country, and that of the USA contained a series
of lectures that could by itself have formed the basis for an inter-
national congress; at the other end, smaller or more isolated countries
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were given an opportunity to demonstrate their approach to mathe-
matical education, to exhibit typical texts and children’s work and to
talk about the steps they are taking to solve the many problems that
confront them. Some of the countries compensated for their inability
to mount ‘live’ activities by showing films used in mathematics
teaching and videotapes of classroom work. There can be no doubt
that congress members found the opportunities to learn about
developments and thought in countries other than their own most
valuable, and that, offered within the confines of a national presenta-
tion, the ideas, activities and materials exhibited a coherence which
would have been lost had they been presented piecemeal in a variety
of discussion groups.

These benefits were demonstrated also by those exhibitions which
were independent of, but nonetheless a valuable part of, the congress.
The work of the Open University has aroused world-wide interest
and it was fitting that congress members should have been able to
see a comprehensive demonstration of the unique teaching methods
of this institution and of the materials in several media that it has
produced. Again, at the presentations of the School Mathematics
Project and the Nuffield Project congress members could see a range
of activities typical of a curriculum reform project. Thus, for
example, the SMP, through a series of demonstration classes (in one
of which each pupil had his own console attached to an advanced
time-sharing computer), was able to give visiting delegates a vivid
impression of the scale and character of its work.

5 THE CONGRESS IN RETROSPECT

One hopes that members attending a congress on mathematical
education will leave with some new thoughts on ‘mathematical
education’. One can, however, be certain that they will leave with
new ideas on the planning of ‘ congresses on mathematical education’.
Clearly, there are lessons to be learned from every congress. Many
of these are of a technical nature and, as such, are better left for the
consideration of future programme and organising committees. Some,
however, would seem to be of wider interest and worthy of considera-
tion and comment by those who attend, rather than plan, such con-
gresses. It is unusual perhaps for such matters to be discussed in
a congress report but the precedent is not necessarily a bad one.
Writing so soon after the end of the congress, it is difficult to see its
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work in perspective, but talks with a variety of congress members
suggested that the programme committee was right to reduce the
number of plenary sessions and to place emphasis on working group
discussions and national presentations. Such criticisms as there were,
indicated that further progress is likely to come by improving this
‘tripartite’ system rather than by replacing it with yet another system.

The feeling that there was altogether too much happening at the
same time was to be expected. Perhaps the significant factor here was
the length of the congress — it was noticeably shorter than that at
Lyons, yet it attempted to cover so much more ground. Clearly, any
future congress must be longer and should contain more ‘un-
programmed time’ for visits to exhibitions, informal chats, or merely
‘getting one’s breath back’.

Again, with increasing membership the value of the plenary
lecture diminishes. The difficulties of holding meetings in large halls
with all the paraphernalia of simultaneous translation are manifest:
the listener’s problems are not only mathematical — they are psycho-
logical and physiological! Admittedly there is value in seeing and
hearing a certain number of outstanding speakers and in bringing all
congress members together for this purpose in one place on at least
a few occasions during the congress. But possibly, in place of one
or two of the plenary lectures, invited papers might be circulated (in
translation where necessary) at the commencement of the congress.
Members would then have the opportunity to discuss these with their
respective authors during the duration of congress. Such an arrange-
ment would, however, bring further administrative and printing
problems in its wake. Already, it is apparent that the complexity of
an ICME is as much as can be coped with by what is almost entirely
voluntary labour. Any extra administrative commitments will almost
certainly necessitate professional assistance and this, together with
any major increase in the amount of multilingual printing needed,
will inevitably mean a much higher congress fee.

Problems of administration and printing also affected the work
of the discussion groups. The amount of preparatory work under-
taken by these groups varied enormously and it is no surprise that
those which were best prepared turned out to be the most rewarding,.
Clearly, although much depends on the group chairman and secre-
tary and the facilities available to them, it is the ordinary members
who, by their contributions and the interest they display prior to the
congress, are ultimately responsible for the success or failure of the
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groups. It is to be hoped, therefore, that if similar working groups
are to be a feature of future congresses, then members will make
a contribution not only at the congress, but also before it. This should
enable the groups to move still further from the pattern of 15-minute
contributions, often unrelated to each other, to a genuine ‘workshop’
with more active participation, from which collective conclusions
emerge.

As mentioned earlier, the national presentations and other exhibi-
tions were a most popular feature of the congress; the opportunities
they presented being welcomed by visitor and exhibitor alike. There
could be difficulties if these presentations are allowed to grow in an
uncontrolled manner, for more emphasis might be placed on ‘selling’
particular points of view and less on listening and learning; and, in
an endeavour to mount ever more impressive national presentations,
less energy and time might be devoted to the corporate workings of
congress. It is to be hoped that these hazards will be avoided. Cer-
tainly, the principle of national and other presentations was success-
fully vindicated at Exeter, not least because the activities, displays
of texts, etc., served as constant reminders that mathematical educa-
tion is a practical activity involving pupil and teacher, learner and
expositor, and they thus acted as a corrective to a dangerous tendency
to treat mathematical education as an academic, abstract structure
in which ‘pupil’ and ‘teacher’ become ‘undefined terms’. It is
important, though, that such activities involving pupils and teachers
should not be viewed merely as ‘demonstrations’ —as ‘method’
classes — but that they should be seen as providing opportunities for
shared observation of the way in which learners and teachers can
work together and as a basis for subsequent discussion, for only then
will they reveal their true potential.

Above all, the lesson of Exeter is that mathematical education is
now a matter of great, world-wide interest and that future congresses
are assured of a large membership. If these even larger congresses
are to generate ideas and to be of significance in the development of
a discipline of mathematical education, then they must be prepared
for diligently — not only by the committees appointed to plan them,
but by the members themselves.
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As I read them
George Polya

Some of the following passages are literally quoted or translated,
others are paraphrased (condensed, modernised, ...). [Square
brackets are used to indicate inserted words in the quotations and
comments following the quotations.] I tried not to distort too much
the meaning intended by the authors. At any rate, as I read them,
these quotations greatly helped me to clarify my opinions and they
may find responsive readers.

1 The ideas should be born in the student’s mind and the teacher
should act only as midwife. Socrates

2 ...we should give no small share of the credit to Democritus
who was the first to state the result though he did not prove it [just
guessed it]. . . The method I used did not furnish an actual demonstra-
tion [just a suggestion, a guess...Yet] I foresee that this method,
once understood, will be used to discover other theorems which have
not yet occurred to me, by other mathematicians, now living or yet
unborn. Archimedes
[First guess, then prove — that’s the way to do it.]

3 Intuition is the conception of an attentive mind, so clear, so
distinct, and so effortless that we cannot doubt what we have so
conceived. Descartes
[Beauty in mathematics is seeing the truth without effort.]

4 The chains by which the logicians imagine to be able to control
the human mind seem to me of little value. Descartes
[When introduced at the wrong time or place, good logic may be the
worst enemy of good teaching.]

5 Nothing is more important than to see the sources of invention
which are, in my opinion, more interesting than the inventions
themselves. Leibniz
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6 Mathematics is the science that yields the best opportunity to
observe the working of the mind. . .[and] has the advantage that by
cultivating it we may acquire the habit of a method of reasoning
which can be applied afterwards to the study of any subject and can
guide us in the pursuit of life’s object. Condorcet
[Commenting on Euler’s work.]

7 Thus all human cognition begins with intuitions, proceeds from
thence to conceptions, and ends with ideas. Kant
[Learning begins with action and perception, proceeds from there to
words and concepts, and should end in desirable mental habits.]

8 What is good teaching? Giving opportunity to the student to
discover things by himself. Herbert Spencer

9 The object of mathematical rigour is to sanction and legitimate the
conquests of intuition, and there never was any other object for it.
J. Hadamard

10 If Euclid failed to kindle your youthful enthusiasm, then you
were not born to be a scientific thinker. Albert Einstein

Department of Mathematics,
Stanford University, Stanford,
California 94305, USA.
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Comments on mathematical education

Jean Piaget

The orientation one would consider giving to mathematical education
depends naturally on the interpretation adopted of psychological
development or the acquiring of operations and logico-mathematical
structures; this interpretation depends equally on the epistemological
meaning given to those things, the two questions of their psycho-
genesis and their epistemological significance being very closely
related. If Platonism is right and mathematical entities exist inde-
pendently of the subject, or if logical positivism is correct in reducing
them to a general syntax and semantic, in both cases it would be
justifiable to put the emphasis on the simple transmission of the truth
from teacher to pupil and to use, as soon as possible, the language
of the teacher, that is, the axiomatic language, without worrying too
much about the spontaneous ideas of the children.

We believe, on the contrary, that there exists, as a function of the
development of intelligence as a whole, a spontaneous and gradual
construction of elementary logico-mathematical structures and that
these ‘natural’ (‘natural’ in the way one speaks of the ‘natural’
numbers) structures are much closer to those being used in ‘modern’
mathematics than to those being used in traditional mathematics.
There is, therefore, a body of facts which are, in general, little known
to the teacher, but which, once he has a better psychological know-
ledge, would be of considerable use to him and would help him rather
than make things more complicated. This would also favour the
realisation of creative vocations in pupils rather than treating them
simply as conforming ‘receiving’ instruments.

However, in order to arrive at this stage it is necessary to revise our
ideas about the relation between language and action. It would seem,
in fact, psychologically clear that logic does not arise out of language
but from a deeper source and this is to be found in the general co-
ordination of actions. In fact, before all language, and at a purely
sensori-motor level, actions are susceptible to repetition and then to
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generalisation thus building up what could be called assimilation
schemes. These schemes organise themselves according to certain
laws and it would seem impossible to deny the relationship between
these and the laws of logic. Two schemes can be coordinated or dis-
sociated (reunion), one can be partially nested in the other (inclusion),
or only have a part in common with the other (intersection); the parts
of a scheme or the coordination of two or more schemes can allow
either an invariant order of succession or certain permutations (types
of order), as well as one-to-one correspondences, one-to-many or
many-to-one (bijections etc.), and once a scheme imposes a goal on
an action it is contradictory for the subject to go in the opposite
direction. Briefly, there is a whole logic of the action that leads to the
construction of certain identities and these go beyond perception
(for example the permanence of the hidden object) and to the elabora-
tion of certain structures (the practical group of displacements already
described by Poincaré in his epistemological essays).

Therefore, it would be a great mistake, particularly in mathematical
education, to neglect the role of actions and always to remain on the
level of language. Particularly with young pupils, activity with objects
is indispensable to the comprehension of arithmetical as well as geo-
metrical relations (as was the case with the empirical mathematics of
the Egyptians). The mathematics teacher’s aversion to activities in-
volving material experimentation is quite comprehensible. They
probably see a sort of reference to the physical properties of objects
and might fear that empirical verifications will harm the development
of the deductive and purely rational mind which characterises their
discipline. But this is, in fact, a fundamental misunderstanding and
psychological analysis allows us to dispel these fears and reassure
mathematicians with regard to their essential demand that the deduc-
tive and formal aspect of the mind should be educated. There exist,
in fact, two types of ‘experience’, one very different from the other,
which are related to the subject’s actions. In the first instance, there
is what is known as ‘physical experience’ (in the broad sense) which
consists in acting on objects in order to discover the properties of the
objects themselves, for example, comparing weights or densities, etc.
But there also exists, and this is generally not known, what could be
called ‘logico-mathematical experience’; this type of experience
gathers its information, not from the physical properties of particular
objects, but from the actual actions (or more precisely their coordina-
tions) carried out by the child on objects — these two types of experi-
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ence are not equivalent. A friend of mine and a well-known mathema-
tician says that the beginnings of his interest in mathematics were
triggered off by an experience of the second type which happened to
him when he was about 4 or 5 years old. Seated in his garden, he
started to amuse himself by placing some pebbles in a straight line
and counting them, for example, one to ten from left to right. After
this he counted them from right to left and to his great surprise he
still found ten. He then put them in a circle and, with enthusiasm,
counted them — again ten so he counted them in the opposite direc-
tion and he found there were ten in both directions. He went on
arranging the pebbles in all sorts of ways and finished by convincing
himself that the sum, ten, was independent of the order of the
pebbles. It is evident that neither the sum nor the order are physical
properties of the pebbles until such time as the child has actually
arranged them or put them all together. In this instance the child
has discovered that the action of uniting the pebbles gives results and
these results are independent of the action of ordering the pebbles.
He could have observed this with any solid objects as, in this action,
the physical properties of the pebbles played no particular role (apart
from the fact that they ‘let themselves’ be acted on; their nature,
however, remains unaltered, that is, it is conserved, but conservation
itself also gives rise to logico-mathematical experience).

Thus this initial role of actions and logico-mathematical experience,
far from hindering the later development of deductive thought,
constitutes, on the contrary, a necessary preparation and this for two
reasons. This first is that mental or intellectual operations, which
intervene in the subsequent deductive reasoning processes, themselves
stem from actions: they are interiorised actions and once this in-
teriorisation, with the coordinations it supposes, is sufficient, then
logico-mathematical experience in the form of material actions is no
longer necessary and interiorised deduction is sufficient. The second
reason is that coordinations of actions and logico-mathematical
experience, whilst interiorising themselves, give rise to the creation of
a particular variety of abstraction which corresponds precisely to
logical and mathematical abstraction: contrary to ordinary or
Aristotelian abstraction which derives its sources from the physical
properties of objects and for this reason is called ‘empirical abstrac-
tion’, logico-mathematical abstraction would be referred to as ‘re-
flective abstraction’ and this for two related reasons. On the one
hand, this abstraction ‘reflects’ (in the same way as a reflector or
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projector) everything that was on a lower plane (for example, that of
action) and projects it to a higher plane, that of thought or mental
representation. On the other hand, it is a ‘reflective abstraction’ in the
sense of a reorganisation of mental activity, asit reconstructsatahigher
level everything that was drawn from the coordinations of actions.

However, between the age where material actions and logico-
mathematical experience are necessary (before 7/8 years old) and the
age where abstract thought begins to be possible (towards 11/12 years
old and through successive levels until about 14/15 years), there is an
important stage whose characteristics are interesting to the psycho-
logist and useful to know for the teacher. In fact between the age of
7 and 11/12 years an important spontaneous development of deduc-
tive operations with their characteristics of conservation, reversibility,
etc. can be observed. This allows the elaboration of elementary logic
of classes and relations, the operational construction of the whole
number series by the synthesis of the notions of inclusion and
order,! the construction of the notion of measurement by the synthesis
of the subdivision of a continuum and the ordered displacement of
a chosen part which serves as a unit, etc. Although there is consider-
able progress in the child’s logical thinking it is nonetheless still
fairly limited. At this level the child cannot as yet reason on pure
hypotheses, expressed verbally, and, in order to arrive at a coherent
deduction, he needs to apply his reasoning to manipulable objects
(in the real world or in his imagination). For these reasons, at this
level we refer to ‘concrete operations’ as distinct from formal opera-
tions. These concrete operations are, in fact, intermediaries between
the actions of the pre-operational stage and the stage of abstract
thought which comes much later.

Thus, having established the continuity between the spontaneous
actions of the child and his reflexive thought, it can be seen from this
that the essential notions which characterise modern mathematics
are much closer to the structures of ‘natural’ thought than are the
1 Several authors (Freudenthal, etc.) seem to have understood that I think the

ordinal number is more primitive than the cardinal number, or the opposite.

I have never made such a statement and have always considered these two

aspects of finite numbers indissociable and psychologically reinforcing one

another in a synthesis that goes beyond both the inclusion of classes and the
order of asymmetrical transitive relations. If order is necessary it is because
units which have become equivalent by the abstraction of their qualities can
only be distinguished from one another by their ordered position. But the

order of the elementary units is relative to the number (cardinal) of units which
precede each of the units thus ordered.
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concepts used in traditional mathematics. First, the importance should
be pointed out of the spontaneous role of operations which allow the
establishment of correspondences between sets and thus the construc-
tion of morphisms and in particular when these can be combined
with recurring sequences. We have, for example, with B. Inhelder,
asked children between 4/5 and 7/8 years old to put a bead from one
hand into a transparent cylinder and simultaneously with the other
hand put another bead into a second transparent cylinder which
was, however, hidden behind a screen. The questions were de-
signed to find out whether or not the child understood that the two
sets, thus constituted, were equivalent and also to discover whether
if this action were to be continued indefinitely, this equality would be
conserved. All the children questioned admitted the equality of the
two sets whilst the action was going on, however the youngest children
refused to generalise to the case where the action was continued
indefinitely. From about 5 or 6 years onwards they admit this general-
isation and one small boy of 5} found the following very amusing
formula: ‘When one knows for one time, one knows for ever.” How-
ever this same child, after having seen a set of ten red counters in
a one-to-one correspondence with a second set of ten blue counters,
refused to admit the conservation of this equivalence once the ele-
ments of one of the sets had been spaced out a little and the corre-
spondence between the two was no longer visible. This example
demonstrates the constructive role of the establishment of a corre-
spondence combined with the idea of recurrence.

An extremely striking example of convergence between theory and
the spontaneous development of the child is that of geometric intui-
tions. Historically these intuitions appeared in Euclidean geometry,
the structures of projective geometry were not discovered until much
later and topology only in the nineteenth century. Psychologically
children of 3 and 4 years old, who do not yet know how to draw
squares and tend to compare them to circles —shapes such as
rectangles and triangles etc. being assimilated to simple closed curves
— are very careful, however, to make the distinction between closed
and open figures, and they are able to draw with as much care a circle
inside a figure, outside a figure, or on the frontier of a large figure.
From these early topological intuitions arise, later and simultaneously,
projective notions (with verification by ‘taking aim’ or ‘sighting’)
and Euclidean notions according to a process which is nearer psycho-
logical theory than history.
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From the level of concrete operations—at about 7/8 years-—
another interesting convergence can be found, that is the elementary
equivalent of the three ‘mother structures’ discovered by Bourbaki,
and this itself shows the ‘natural’ character of these structures. First
of all there is the construction of structures of an algebraic nature,
in as much as their laws of composition have an inverse and an
identity element +A4—A4 = 0. This can be observed particularly in
the system of logical classes (classifications, etc. with quantification
of the inclusion 4 < B if B = A+ A’ — and neither are empty sets).
Secondly, order structures can be found whose laws of composition
are based on reciprocity and this characterises the system of relations
(ordering). Finally, topological structures based on ideas of con-
tinuity, neighbourhood and separation can be observed. These ele-
mentary structures later combine with each other. In particular,
inverses (or negations (— 4)) and reciprocities, which do not combine
with each other at the concrete operational level, can be composed
with one another from the 11/12 formal level onwards, in a four-
group which renders possible such compositions: in this case the
beginning of propositional logic with the combinatorial (set of all
sub-sets) system, superposes itself on the elementary structures of
logical classes and relations. The subject is then capable of handling
systems that have four transformations. Let us take, for example, the
propositional operation p = ¢ and define the four transformations:

1. (1) the identify or ‘null’ transformation I(p = ¢) = p = g,

2. (N) the inverse transformation N(p = q) = pn ~ g,

3. (R) the reciprocal transformation R(p = q) = q = p,

4. (C) the correlative transformation C(p 2 q) = ~ pn q.

In this case RC = N, RN = C, NC = R, NRC = I which ensures
finally the coordination in a unique system of inverses and recipro-
cities.

Many other examples, in particular the construction of elementary
and ‘trivial’ forms of categories, could be given. However, it is now
the moment to describe how these convergences between the spon-
taneous thought of the child in his ‘natural’ development and
certain fundamental theoretical notions can be of use to the teacher.
It can, of course, happen that certain people will try to teach young
children ‘modern’ mathematics with archaic teaching methods,
based exclusively on verbal transmission from teacher to child with
a premature use of formalisation. With such methods there are
bound to be a certain number of failures and these help to explain
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the scepticism of certain great mathematicians such as J. Leray.!
However, it is not the ‘modern’ character of the mathematics pro-
grammes that is at fault but the methodology and psychology used in
such cases. In fact, it is often particularly difficult for the teacher of
mathematics, who, because of his profession, has a very abstract
type of thought, to place himself in the concrete perspective which is
necessarily that of his young pupils. However, from the develop-
mental point of view and in relation to the progressive assimilation
of the structures already mentioned, there would seem to be no contra-
diction (as we have seen above) between the initial concrete phases
of structures and the final stage when they become formal and
abstract. The teacher can only be aware that there is no contradiction
between these two levels of thought if he is fully acquainted with (and
this is the difficulty for the teacher) the details and functioning of
these successive spontaneous thought structures. Briefly, the practical
problem that is difficult to solve is to graft these general types of
notions which the teacher understands in his language on to particu-
lar cases of these same notions constructed and used spontaneously
by the children, without these yet being for them objects of reflection
or sources of generalisation.

In order to make this necessary conjunction between the logico-
mathematical structures of the teacher and those of the pupil at
different levels of his development, certain very general psycho-
pedagogical principles should perhaps be mentioned. The first is that
real comprehension of a notion or a theory implies the re-invention
of this theory by the subject. Once the child is capable of repeating
certain notions and using some applications of these in learning
situations he often gives the impression of understanding; however,
this does not fulfil the condition of re-invention. True understanding
manifests itself by new spontaneous applications, in other words an
active generalisation supposes a great deal more: it seems that the
subject has been able to discover for himself the true reasons involved
in the understanding of a situation and, therefore, has at least par-
tially re-invented it for himself. Naturally, this does not mean that the
teacher has no role any more, but that his role is less that of a person
who gives ‘lessons’ and is rather that of someone who organises
situations that will give rise to curiosity and solution-seeking in the
child, and who will support such behaviour by means of appropriate

1 See the very critical report presented by Leray for Académie des Sciences de
Paris (Report No. 276, p. 95, Session of 13 March 1972).
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arrangements. Should the child have difficulties in his attempts to
grasp a certain idea, the procedure with an active methodology would
not be directly to correct him, but to suggest such counterexamples
that the child’s new exploration will lead him to correct himself.

A second consideration should constantly be present in the teacher’s
mind: that is, at all levels, including adolescence and in a systematic
manner at the more elementary levels, the pupil will be far more
capable of ‘doing’ and ‘understanding in actions’ than of expressing
himself verbally. In other words, a large part of the structures the
child uses when he sets out actively to solve a problem remain
unconscious. In fact, it is a very general psychological law that the
child can do something in action long before he really becomes
‘aware’ of what is involved — ‘awareness’ occurs long after the
action. In other words, the subject possesses far greater intellectual
powers than he actually consciously uses.! Consequently, once the
teacher has had the opportunity of becoming acquainted with the
psychological research mentioned above, and knows the subjacent
thought structures the child possesses, he can more easily help the
child to become aware of these either by appropriate discussions
between the child and himself, or by the organisation of the work in
groups where partners of the same age or similar ages (an older child
acting as leader of a small group) discuss between themselves, which
in turn favourises verbalisation and ‘awareness’.

A third remark would seem important: in traditional mathematics
it was often necessary for children to solve quantities of problems,
some of them quite absurd, and this would mean a huge number of
numerical or metrical calculations. In this case, the only way to
succeed with children who were not particularly talented in mathe-
matics was to proceed in two stages (but this was often forgotten):
the first stage was purely qualitative and dealt with the logical
structure of the problem and only afterwards in a second step were
numerical or metrical facts introduced with the additional difficulties
this type of calculation would create. With modern mathematics
programmes the problem is less acute as they are basically qualitative.
However, in this case, the problem can be found at another level —
the teacher is often tempted to present far too early notions and
operations in a framework that is already very formal. In this case,
the procedure that would seem indispensable would be to take as the

! Euclid himself was not aware of all the operational structures he used in reality,
for example, the group of isometries.
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starting point the qualitative concrete levels: in other words, the
representations or models used should correspond to the natural
logic of the levels of the pupils in question, and formalisation should
be kept for a later moment as a type of systematisation of the notions
already acquired. This certainly means the use of intuition before
axiomatisation and the scorn of logicians for all intuitive or ‘naive’
thought is well known. However, once it is remembered that mathe-
matical intuition is essentially operational and the nature of opera-
tional structures is to dissociate ‘form’ from ‘content’, then the
final formalisation would seem to be prepared and becomes pro-
gressively necessary by the construction itself of these initial intuitive
structures. We do not believe with Pasch that formalisation goes in
the opposite direction to that taken by ‘natural’ thought, but so that
there may be no conflict between the former and the latter, formalisa-
tion should be allowed to constitute itself in its own time and not
because it is forced to by premature constraints.

Faculté des Sciences,

Centre d’ Epistemologies génétiques,
52 rue de Paquis,

1211 Geneva 14,

Switzerland.
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Presidential Address
Sir James Lighthill, F.R.S.

1 Introduction

It has given me profound pleasure to be able to welcome such a very
large and such a very distinguished audience to this opening session
of the Second International Congress on Mathematical Education.
Although records of discussion about mathematical education go
back at least 2500 years, to the days of Plato’s Academy, it seems that
the twentieth century brought a new tempo and urgency to such
discussions, while we have during the past decade seen a great and
growing ferment of activity in the field all over the world. Prominent
in discussion of the subject throughout this twentieth century has
been our International Commission, founded in 1899 by H. Fehr
and C. A. Laisant, while this past decade of intensified and increasing
recognition of the importance of mathematical education and of the
new approaches and opportunities within it, coincides with the first
decade of existence, as a fully-fledged Commission within the Inter-
national Mathematical Union, of the International Commission on
Mathematical Instruction, ICMI.

Up to 1960, the energetic study of mathematical teaching methods
and curricula within individual countries was supplemented and
strengthened by the holding of meetings arranged by our Commis-
sion, by its review journal L’Enseignement Mathématique, and by
international discussion every four years in the educational section
of the International Congress of Mathematicians. Those useful dis-
cussions were, nevertheless, rather limited in scope and in the
number of interested persons involved. In 1960, the International
Mathematical Union (IMU) took the decision to accept the affiliation
of ICMI under its wing as a separate Commission of IMU, with
separate National Sub-Commissions in member countries: the Inter-
national Commission on Mathematical Instruction, which could con-
duct more intense activities in the educational field and supplement
those pursued at IMU’s regular congresses. The aim of ICMI, as then
laid down in terms of reference, is ‘to further the sound development
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of mathematical education at all levels, and to secure public apprecia-
tion of its importance’.

In 1962 Professor Lichnerowicz was elected by the General Assembly
of IMU as the first President of ICMI appointed under the new
constitution. He launched ICMI at once on a valuably extended
programme of symposia and publications. It soon became clear that
such increased activity was very necessary, to match in the inter-
national sphere what I referred to earlier as the ‘growing ferment of
activity’ that was manifesting itself simultaneously in so many
different countries.

At the Moscow Congress of IMU in 1966, Professor Freudenthal
was elected the new President of ICMI and he brought about a further
intensification of activity. In particular, he went beyond specialised
or regional symposia to organise the first international congress in
the field, held at Lyons in 1969 with over 600 participants. This was
a big step forward which brought general recognition that no
educational topic is more suitable for international discussion than
education in that unique way of thought and that unique language -
a language of a completely international character —that we call
mathematics. It was agreed that international congresses should be
held in future every four years, and indeed in years with dates
divisible by 4, so that they would alternate with those of the inter-
national congresses of mathematicians whose dates are congruent
to 2 (modulo 4)!

The IMU at the Nice Congress in 1970 did me the greatly appreci-
ated honour of electing me in succession to Professor Freudenthal as
President of ICMI. I had previously been Chairman of a small
subcommittee of the British National Committee for Mathematics
which had in February 1970 determined upon Exeter as a suitable
site where ICMI might be invited to hold its second international
congress. Our National Committee’s invitation to hold the second
congress in Britain was accepted by ICMI and I continued, as
President of ICMI and Chairman of the Organising Committee for
the congress, to aim above all at bringing about here at Exeter this
summer a meeting that would combine width of scope and of inter-
national representation with depth of discussion and of exposition.

My colleagues on the Organising Committee and I have been
profoundly gratified by the huge international response that has
followed upon our 21 years of labour in preparing for this meeting.
We had been bold enough to plan for an attendance twice as big as
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at the first congress in Lyons but this number of registrations was
reached already last May and finally we took into consideration the
importance of comfortable accommodation and other arrangements
for participants within the facilities on this campus when we declined
to accept registrations beyond a maximum of 1300 full and 300
associate members. While apologising to those we turned away, may
I suggest that those who are here will appreciate the wisdom of our
having kept the number of participants within convenient bounds, as
well as the rough justice of giving preference to those who were in
good time with their applications to attend!*

All of us can regard the first decade of activity of ICMI in its new
form as having reached a fitting climax with the huge intensification
of demand for international discussion of mathematical education
exhibited by the more than doubled attendance at this second of our
international congresses. About seventy countries are represented
here at Exeter. This week we shall among other things be giving
longer-term thought to the future, looking as far ahead as the third
congress in 1976 and to all the specialised and regional activities in
which we should be involved between now and then. It will be im-
portant to plan all that future activity with wisdom and imagination.
Let us, however, devote the next four days, above all, to reaping the
greatest possible advantage from the unique circumstance that ICMI
has now brought together within this favourable environment leading
mathematical educators from all over the world and provided them
with a programme so organised as to allow exchange of ideas and
opinions and experience on almost every possible aspect of the sub-
ject, together with exposition of a wide range of important national
developments.

The design of this programme for our congress has been the work
of the international Programme Committee under the chairmanship
of Mrs Elizabeth Williams; a committee that has, in my view, success-
fully brought to a focus world-wide aspirations for discussion on a
vast range of different topics within mathematical education, and
gone on to create the mechanisms for giving them reality. A cardinal
principle underlying the committee’s work has been the necessity of
viewing mathematical education within the context of the total educa-
tion of the individual. You will see how this consideration influenced
the choice of speakers for our plenary sessions: these main sessions
1 In the end, late consideration of several ‘hard cases’, where for particular

reasons leniency by the Secretariat appeared justified, raised the total registra-
tions to about 1700.
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that will bring all congress participants together are intended, not
to raise specialised matters within mathematical education but to
help all of us see the subject within wider contexts; including the
historical, sociological and psychological contexts as well as that of
its relationship to the development of mathematics itself. We are
truly fortunate in the outstanding distinction of those who have
consented to give these plenary lectures.

It has been a further source of great delight that two persons who
have had such a seminal influence on the formation of twentieth-
century ideas concerning mathematical education and its place in an
individual’s total education as Professor Piaget and Professor Pdlya
accepted a year ago our invitation to attend this congress as the
honoured guests of ICMI. All of us have been delighted and stimu-
lated by the messages from our two honoured guests circulated with
the other congress literature. Ultimately Professor Piaget’s doctors
advised him not to travel this summer although for other purposes
as you will gather from his fascinating paper he remains well and in
good spirits. Professor Pélya’s personal presence and inspired string
of quotations which each of you has received are a great joy to
all of us.

The next most important principle underlying the architecture of
our programme was that on all the different aspects of our subject
active discussion must be permitted and encouraged. This congress
is above all a congress for discussion, and to this end it has been
organised so as to avoid any formal delivery of main lectures outside
the periods of the seven plenary sessions. To make general participa-
tion possible within manageable areas for discussion, our whole
subject matter has been divided up into thirty-eight such manageable
areas, and working groups in each of these areas have been consti-
tuted, each with its own Chairman and Secretary.

I am most grateful to these Chairmen and Secretaries for the effort
they have put into the advance preparation of plans of diverse kinds
for the different working groups. These plans will in every case give
a framework for discussion but also leave time and opportunity for
unplanned controversy and exchange of ideas to come about. I believe
that these relatively small working groups, where those involved can
really get to know each other and come to appreciate each other’s
points of view in detail, will prove to be the cement that binds this
congress together to give it real strength and effective influence on
future world developments.
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Reading through the list of working groups is an experience at the
same time fascinating and frustrating, in the sense that most of us
feel interested in the subject matter of more working groups than we
can possibly attend! It is important, however, that everybody makes
a selection, as I believe most of you have already done, partly so that
each of us may take part in those groups where we have most contri-
bution to make personally, and partly so that the groups may be of
manageable size for purposes of active discussion.

Many of you will select groups devoted to education at a particular
level (whether primary, secondary or tertiary or certain intermediate
levels) and specifically to education in a particular branch of mathe-
matics at such a particular level. Many others will be involved in
working groups on particular kinds of teaching method or technique,
or on some of the fundamental studies underlying the choice of
methodology. The range of possibilities is very great, and I believe
that a great range of memorable discussions will get going in these
working groups.

In parallel with that complex mechanism for discussion it has been
important to enable also a proper detailed exposition by any par-
ticipating country of those educational developments that it con-
siders most worthy to be brought to the notice of the congress.
These national presentations (some seventeen in number) will,
I believe, help us become aware of much that is best in the teaching
methods and curricula of many of the participating countries.
Several different techniques of presentation will be used: static
exhibitions, films, talks, and in a few cases demonstration classes
with live pupils.

In these remarks I have been trying, not to give you any accurate
guidance that could replace careful reading of the congress programme
itself, but rather to indicate the philosophy underlying the work of
our international Programme Committee and of its devoted Chair-
man, Mrs Elizabeth Williams. May I also remark how much we
owe to the Local Committee which has done such fine work in
arranging the effective utilisation of this site for purposes of accom-
modation and of meetings of both professional and social kinds.
The value and suitability of this attractive University campus for
helping us all get to know our colleagues from other countries in
the most pleasant possible way, in the working groups, in social
gatherings of many different kinds, and in the course of various
excursions into the lovely Devon countryside, has been greatly
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enhanced by the devoted work of many members of the Local Com-
mittee, including Mr Duller and Mr Hammond-Smith who have
been its Chairmen, and last but not least the Congress Secretary,
Mr Denis Crawforth, who indeed is the kingpin of our whole organi-
sation. I hope that all of you during this week will become devoted
Devonians while you increase still further your expertise as mathe-
matical educators!

2 Integrated pure and applied mathematics

Now I havecometothe part of my Presidental Address which represents
more of an individual message to this congress. Like those addresses
to be given by distinguished lecturers to the six other plenary ses-
sions, this message is concerned with seeing mathematical education
within the context of the total education of the individual. It is
a message, indeed, about those approaches to mathematical educa-
tion that are aimed at bringing about its integration with the educa-
tional process as a whole.

I emphasise that this middle portion of my address is a personal
message which makes no attempt to give any concerted view of ICMI
as a whole. It reflects, rather, an individual view, which I offer as
just one contribution among those many and diverse contributions
that will be made at this congress and, possibly, harmonised within
the minds of the participants into something like a concerted view of
mathematical education.

My personal emphasis in this message is on those aspects of
mathematical education that are concerned with communicating
a working knowledge of how mathematics interacts with other sub-
jects and with the external world; in one word, a knowledge of how
mathematics is applied. You could say that this theme for an address
is what ICMI might expect in a year when its President is British
and its congress is held in Britain! Certainly a feature that has speci-
fically characterised British approaches to mathematical education
has been a close association between pure and applied mathematics,
and a general predilection for teaching mathematics in a way that
emphasised at any rate some of its applications.

The older British curricula stressed at an elementary level the
application of mathematics in commerce and at a more advanced
level its applications in mechanics and/or statistics, which in turn
were valuable as foundations for work in engineering, as well as in
the physical, earth and life sciences. The newer British curricula at

93



SIR JAMES LIGHTHILL

primary and secondary level bring in a still wider range of applica-
tions: a development that seems to have grown out of the prag-
matic British traditions of integrated pure and applied mathematics,
coupled with a recognition of how greatly the uses of mathematics
in all the other sciences, as well as in engineering and commerce,
have expanded in this third quarter of the twentieth century. This
expansion in the application of mathematics, which seems to have an
important contribution to make towards solving this world’s pressing
problems, has of course been connected with the increased power
given by high-speed computers to those involved in such application,
and to some extent the computer’s new importance has been reflected
in certain aspects of these curricula.

I am of course making no claim whatever that developments in
those general directions are confined to the neighbourhood of the
British Isles! There are many countries where modern mathematics
curricula reflect the modern trend towards greatly widened areas of
application of mathematics influenced by new computational possi-
bilities. I have commented merely that our academic traditions made
this trend a natural and easy one to follow.

There are other countries where the tendency in modern curricula
is towards a still greater abstraction than ever before. These more
abstract curricula contain many attractive features; in particular,
they may often succeed in imparting an enthusiastic appreciation of
the beauty of mathematical structures and mathematical deductions.
Many young minds show a keen response to that beauty, and some
of you may regard an educator like myself as doomed to failure
because in place of beauty all I could offer to those young minds
would be utility: prosaic utility!

In reality, however, no such stark contrast is exhibited by the
alternative of a curriculum based on integrated pure and applied
mathematics. The values in such a curriculum involve integrated
beauty and utility: they lie in a space of two dimensions, and this
has certain educational advantages. The most obvious of these
derives from the observation that a class may contain some pupils
who can be induced to respond mainly to the beauty of mathematical
ideas and arguments and some pupils whose interest can be aroused
mainly from realisation of their utility. Possibly a particular vector
in the beauty—utility space may produce optimum results for such
a class!

Whether for this or other reasons, the trend in modern mathematics
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teaching projects in Britain and some other countries has been to
give continual illustrations of how the mathematics taught can be
applied. They bring in constantly the concrete example, and are
particularly concerned to emphasise the variety of uses and applica-
tions of mathematics.

This personal message of mine is concentrated, however, on a
slightly different educational goal. It says: let us go beyond mere use
of the concrete example as an aid to understanding or of reference
to utility as an aid to widening the circle of those in whom interest is
aroused. There is a still more important prize to be won: a prize
concerned with a deeper integration of mathematics into the total
education of the individual.

I want to suggest that educators may have most benefited their
pupils when they have succeeded in giving a feel for what is involved
in the process of applying mathematics. This is the process of building
a bridge between the abstract ideas and inferences of mathematics
and the concrete problems arising in some field of application. It
seems to be increasingly recognised that there may be more skill,
more art, in that bridge-building process than in the associated
mathematical problem-solving. Computers may be of great value in
problem-solving, but apparently the human brain alone is able to
tackle the subtler aspects of creating an effective correspondence
between the mathematical world and the world of experiment and
observation.

As many of you will know, I gave an address on this theme last
year, speaking as President of the Mathematical Association of Great
Britain on the occasion of its Centenary. The title of that address!
was ‘The art of teaching the art of applying mathematics’, and
I should like to recommend that slogan in my address to this
much wider audience, although perhaps laying emphasis here on
slightly different aspects of the art of teaching the art of applying
mathematics.

One feature of the art of applying mathematics to which I draw
attention in my Mathematical Association address, and a feature
which makes the word ‘art’ especially appropriate, was what I called
the ‘linguistic aspect’ or ‘communications aspect’ involved in
applying mathematics. At an international congress with over sixty
countries represented, and gifted translators working for us on all
the consequent linguistic problems and communications problems,

1 Published in Mathematical Gazette, 55, 1971, 249-70.
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we are specially able to appreciate the skill and artistry involved in
effective solution of such problems. Such artistry is not possessed at
all by computers! Indeed, the failure of computer programs for
translation between languages is an important reminder of the subtle
nature of language and of the ways in which it is assimilated by the
brain.

One who is a practising applier of mathematics, as I have been for
thirty years, finds that the most delicate problems with which he
deals are those of a communications and linguistic character. The
applier of mathematics has to be able to communicate with the
practitioners within the field to which he is applying the mathematics.
They have their specialised language for talking about their problems.
He has his own specialised language, namely mathematics. These
linguistic differences complicate the communications problem, and
make necessary some capability of translation between the two
languages.

Thus if we see mathematics as being essentially a language, as the
title of one of our working groups at this congress implies, educators
ought to recognise a need for instruction in the arts of translation
between that language and other languages. They should avoid giving
an impression that such translation may be a crude, mechanical,
‘computerisable’ process (as some writings on so-called model-
building may even seem to imply!). They should try to convey what
the practising applier of mathematics always finds, namely, that
effective application is possible only if one sets out to learn the
language of the field of application and master those characteristics
special to it.

This is not only because of the need to communicate with the
practitioners of that field. It is partly because that language has had
to evolve in such a way that it really is quite effective for sharing ideas
and drawing inferences within that field of activity. The applier of
mathematics must learn to think simultaneously in both languages,
and thus to use simultaneously the weapons of mathematical reason-
ing and the inferential methods typical of the field of application.
The terminology of those methods must be clearly understood, and
wherever possible an approximate mathematical equivalent of each
term needs to be found.

A teacher who bears in mind these aims may avoid certain dangers
which can be described as compartmentalisation: dangers of sug-
gesting that mathematics may best make its contribution by a direct
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conversion of the real problem into a mathematical problem, followed
separately by solution of that mathematical problem. Allowing such
a divorce between the parts of the work conducted in the two
different languages leads often to ludicrous errors! It is most unwise
during parts of the work which involve solving a mathematical
problem to stop thinking about what the different terms in the
equations stand for. Such interpretations of their meaning, coupled
with common-sense arguments and other arguments of a non-
mathematical character, prove to be of the greatest value in finding
a good solution, as well as in interpreting it when it has been
found.

Those processes are what I mean by integration of pure and applied
mathematics and I believe that the teacher who discovers how to
communicate that sense of integration and of effective bridge-
building finds it to have its own beauty: a beauty to which pupils show
keenness of response, and which further justifies use of the word
‘art’ in the expression ‘art of applying mathematics’. In my Mathe-
matical Association lecture I illustrated all these points at some
length by an extended example drawn from the application of
mathematics in mechanical engineering. Such an extended example
would be quite out of place in the opening address to an international
congress, but I shall refer to just one aspect of it here.

Engineers make widespread and effective use of a special ‘picture
language’, in which diagrams representing systems are used to pick
out and identify the features of those systems that are important for
particular purposes. To understand relationships between the ideali-
sations in an engineer’s diagrams and those involved in mathematical
equations related to his systems may be important for the applier of
mathematics to engineering. Advantages may accrue from con-
tinued recollection of what is the diagrammatic representation of
each term in every equation; and, also, from identifying those
equivalences brought about between different kinds of diagram
through a parallelism between the equations to which they give
rise.

How can teachers communicate such points; namely, that the art
of applying mathematics is itself centred on problems of communica-
tion, as well as of the recognition of bridges between non-mathemati-
cal concepts and mathematical ones? My experience as a university
teacher of mathematics has led me to one and only one answer to
that question: it is that some direction of application needs to be
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studied in depth; that one field at least must be investigated at
sufficient length to give an impression of the subtle ways in which
applied mathematics succeeds in making its contributions. The lan-
guage used in that field should be at least partly put over, and its
terminology related to mathematical terminology.

I am fully aware that there is a conflict between what I am now
advocating (study of a particular field of application in depth) and
what I recommended earlier concerning a wide range of different
concrete illustrations. The conflict is a real one, and it is because
so much skill in communicating and organising material is needed
to overcome that conflict, so much artistry on the teacher’s part, that
I am particularly drawn to my slogan ‘The art of teaching the art of
applying mathematics’.

On the one hand, mathematics teaching should be permeated with
concrete examples which give an impression of how widely and
diversely mathematical ideas penetrate into human problems gener-
ally, including everyday, technical and scientific matters. On the
other hand, it is necessary to tell at least one lengthy connected story
of the application of mathematics in real depth. This will amongst
other things communicate the message that no-one can expect to
solve the whole of any problem mathematically. There must be an
integration of experiment and theory; there must be a combination
of mathematical investigation with inferences from observation and
experiment and from non-mathematical modes of reasoning. The
best primary-school teaching is a good reminder of how effectively
such integration can be carried out, and can be an inspiration to those
of us attempting the same at other levels of education.

3 Conclusion

But now I believe that I have inserted quite as much of a personal
and individual message as is proper in a Presidential Address to a
great international congress like this where the total experience
represented from the huge field of mathematical education dwarfs
the significance that any individual views may have. My views can
be read in Math. Gazette, vol. 55, at much greater length. In the mean-
time, in the next four days, all the great issues of mathematical
education, including this one of what should be the extent of integra-
tion of pure and applied mathematics in the educational process, will
be given that discussion in depth, from the standpoint of the com-
bined experience of those engaged within the educational systems of
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some seventy different countries, which alone can do justice to the
magnitude and significance of those issues.

The concluding remarks which I now wish to make are on a theme
which I believe is particularly proper to be pursued by a President,
whose main task as the Chairman of the congress must be to seek to
bring about the fullest possible representation of different views at
our meetings and the fullest possible interaction between different
participants, with the aim of fostering movements of opinion which
might bring about towards the end of our congress some greater
degree of consensus on many important issues than at the beginning.
With this in mind, may I encourage each of you to make positive
contributions at the working groups you attend and to give your
personal views on matters under discussion. We want the maximum
participation at those sessions. At the same time may I respectfully
request that you speak briefly and concisely so that as many other
participants as possible will also have a chance to contribute.

In general, let me encourage you to plan your time in advance so
that you may succeed in attending those working groups in whose
work you are most interested, and inspect those parts of national
presentations that are of most concern to you, and in addition make
use of parts of each day to take advantage of those opportunities
for personal contact with mathematical educators from countries
other than your own which you and all of us have this week from
living all together on this campus. Avoid the danger that, out of
force of habit, you may find yourselves mixing only with persons
from your own country. Seize upon the chance of introducing
yourself, and others, to as many people from different countries
as possible, and of coming to know them and their opinions and
practices as mathematical educators. There are marvellous oppor-
tunities for all this at meals, on the campus generally and on the
excursions, and I should like to encourage you to take these oppor-
tunities and thus to make full use of what 1 referred to earlier as
this unique circumstance.

At the same time the members of ICMI itself, and of its Executive
Committee, will be making plans for our future meetings great and
small. If any of you have ideas under this heading, do please com-
municate them to an ICMI representative from your own country,
who can then ensure that they may be brought into those discussions
this week. And finally, may I express my own warm thanks to you all
for showing such determination to complete the, in many cases, long
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and arduous journey here to Exeter so as to make this Second Con-
gress of Mathematical Education still more effective by your personal
participation. This congress is now actively in progresss; may all
our great hopes from it be more than fulfilled!

Department of Applied Mathematics
and Theoretical Physics,

Silver Street,

Cambridge.

100



What groups mean in mathematics and
what they should mean in
mathematical education

Hans Freudenthal

It would be naive to bet whether or not you have met figure 1 before —
for many years this has been the first drawing children perform when
they are given a pair of compasses. An eight-year-old girl did this.

Fig. 1

She was quite skilful at handling a pair of compasses which is a
difficult thing for children of this age.
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Fig. 2

She did even more, she added a second ring of circles as in figure 2.
Then I suggested to her that she should colour the drawing, although
she would have done so if nobody had mentioned it, because a draw-
ing like this cries out for colours. The most surprising feature of her
performance was that it respected flawlessly all the symmetries of the
drawing. Of course, the girl would not be able to rationalise her
behaviour in a way mathematicians would do, though she firmly
grasped all the relevant consequences of such a theory instinctively.

From the decoration of stone age vessels, to the ornamentation of
the Alhambra, to Escher’s sophisticated graphic art, symmetries have
played an important part in painting and sculpture. Science, too,
knew and used symmetry as a principle from olden times. Among the
few things we know about the first geometer in Greece and the first
non-anonymous scientist in human history, Thales of Milete, is that
he formulated and used geometrical theorems on symmetry. By a
symmetry argument, Anaximander explained why the terrestrial disk
suspended in the universe did not tilt or fall — it was at equal distances
from all parts of the heaven. Perhaps you know the story of Buridan,
a medieval scholar, who imagined a donkey standing between two
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haystacks of equal bulk and equal smell and let it starve to death
because there was no reason why it should eat from the one rather
than from the other. By symmetry axioms, Archimedes tackled the
laws of the lever, Simon Stevin the laws of the inclined plane, Huygens
the laws of collision. Physicists today call it Pierre Curie’s law when
they argue that a symmetry in the causes is preserved in the effects.
Curie applied it in crystallography; today it is a most important
principle of quantum theory.

Let us take a closer look at mathematics. What is the beautiful
thing about a regular hexagon or about regular figures like those
illustrated above? They admit mappings onto themselves that do not
change their aspect. How many? Three reflections in diagonals,
three reflections in lines joining the midpoints of opposite sides, and
finally a number of rotations, all of them through angles which are
multiples of 60° (the zero-multiple is included as the identity mapping).
How do you know that there are twelve, no less and no more? The
answer is not as trivial as you think — I will return to such questions
later.

You know what complex numbers are: pairs of real numbers
written in the form a+ bi. They form a number field, with the four
operations and the usual laws; i is the imaginary unit, the square of
which is supposed to be — 1. Changingi into —i is called conjugation;
it changes y = a+bi into ¥ = a—bi. Conjugation is an automorph-
ism of this field — it preserves the fundamental algebraic relations of
sum and product:

atp =a+p,
aff =3 p,

and by consequence all algebraical relations whatsoever. By con-
jugation every true relation on complex numbers passes into a true
relation.

From an algebraic point of view the three solutions o, a,, g of

xX—x—-1=0

are indistinguishable. What is true of one of them algebraically, is
true of any other. In such relations as

a+ay+ag =0,
ooty ta agt ooy =—1,
a g0 = 1,
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and all other rational relations, they occur in a most symmetric way.
The equation 233 —Txy—Txy?+2)3 = 0
is symmetric in x, y. Does this mean that all its solutions (x, y) are
symmetric too, that is, of the form (a, @) ? Of course not. But it means
that if (a, b) is a particular solution of that equation, then the one
that arises from it by interchanging x and y, that is (b, @), is also
a solution.

Why cannot

x=12+(—22+(2—x)? = (x+y+2)>+6xyz

be a true identity? Because the right hand member is symmetric
in x, y, z, whereas the left hand one changes its sign under an odd
permutation of x, y, z.

Why does the ruler not suffice to construct the centre of an ellipse ?
Because there are mappings which, although they preserve straight
lines and map the ellipse onto itself, carry the centre of the ellipse
onto any given point not on the ellipse.

Why is it we can solve equations up to degree four by root
extractions, yet cannot do this with those of degree five? Because
equations solvable by root extractions show far fewer symmetries
than fifth degree equations in general — this is what was proved by
Ruffini and Abel.

Nowhere do symmetry arguments reveal their power more con-
vincingly than in probability. Why has each ball in an urn the same
chance of being drawn ? Because the urn and the drawing procedure
and hence the probabilities are invariant under all permutations of
the contents of the urn. Or a more sophisticated example:

Six persons A to F are put at random in a row. What is the chance
of A4 standing somewhere left of B? Well, the chance of 4 standing
left of B is the same as that of B standing left of 4 and both together
exhaust all possibilities, so each one has the chance of one half. And

the chance of A left of B and C left of D?
The same as that of

A left of B and D left of C,
B left of A and C left of D,
B left of A and D left of C,

so each of them is just one quarter. And the chance of
A left of B left of C?
By the same reasoning it is one sixth.
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Autumn

This is sound reasoning in spite of today’s fashionable misgivings
about a priori probabilities. When interpreting reality by means of
mathematical models, I am entitled, nay obliged, to incorporate all
symmetries found in reality into the mathematical model, and this is
what I have done in the above examples. Arranging people at random
means that all statements about those arrangements must be invariant
under all shuffling, or as mathematicians say, under all permutations;
and from this principle all relevant probabilities can be derived in
the problems I just discussed.

From probability let us turn to astronomy. Everybody knows that
as to climate and seasons the Northern and Southern hemisphere of
the terrestrial globe are mirror images of each other, that while we
enjoy the last summer weeks, our antipodes are waiting for spring to
come, and that when in the arctic zone the sun does not set, in the
antarctic one it does not rise. But why is it so? It is worthwhile to
make the symmetry reasons of these phenomena explicit in mathe-
matical terms.

The Earth moves around the sun in a nearly circular orbit, while
rotating around an axis, skew on the orbit plane but fixed in space.
This system admits a few symmetries (see figure 3). First, the point
reflection at the centre (the sun), which displaces the Earth over
half a year in its orbit and at the same time interchanges the Northern
and Southern hemispheres — it explains the greater part of the geo-
graphic phenomena I mentioned. Secondly, there is the reflection in
the plane orthogonal to the orbit plane and passing through the
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summer and winter solstices, which inverts the course of the Earth;
and thirdly, the half-turn rotation of the system about an axis joining
the spring and autumn equinoxes, which also inverts the course of
the Earth but at the same time interchanges the two hemispheres. The
last two symmetries explain why the seasons are mirrored by the
equinoxes and solstices with respect to such optical phenomena as
solar risings and settings and day length. But since these symmetries
invert the course of the Earth and hence the direction of time, they
break down if applied to phenomena that need time to develop, such as
heat distribution and weather, and this illustrates why the terrestrial
climateisnotmirrorimaged by the equinoxes and solstices, why 21 June
is not the hottest day and 21 December not the coldest. Notice that
of these three symmetries, each is the product of the other two.

Let us look further at mathematics applied in reality. A mass or an
electric charge determines a field of force. If 1 know about some
symmetry of this mass or charge distribution, I may be sure that the
field will show the same symmetry. For instance, a rotationally
symmetric mass or electric conductor will produce a rotationally
symmetric potential and field of force. It is sound mathematics to
profit from this symmetry before attempting to calculate the poten-
tial and the field of force.

On the other hand, if a harmonic oscillator is vibrating under the
influence of an exterior force f(¢) with period 7, that is

x"(t)+ax'()+px(t) = f(0),

I am not entitled to claim that all its vibrations will have the same
period T. What is invariant under the mapping ¢ - ¢+ T is not each
particular vibration, but the set of all of them; which means that by
shifting one solution ¢(¢) over T, I get a new one, ¢(¢+T).

Solving differential equations arising from physical problems can
be an arduous job. Often qualitative information on the symmetric
character of solutions is all we can obtain and precisely the thing we
need. Symmetries of space, of interchanging particles, of inverting
charges, spins, magnetic fields play a paramount role if differential
equations arising in quantum mechanics are to be interpreted.

In the examples I have displayed, experts will have recognised a
common feature — each of them shows in its particular way how
groups arise and are used to study regularities in nature and in
mathematics. Why did I refrain from using the word groups? If
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systematics is pursued, one starts by defining a group, continues
by proving a few general theorems about the group concept, then
develops the general principles according to which groups can be
applied, and finally arrives at some applications of groups according
to these principles, provided, of course, that sufficient time is left
for this minor concern. Yet mathematics develops systematically only
in an ‘objective mind’. In the individual it takes the path from the
particular case to the general principle, from the concrete to the
more abstract, and so it happened in history, too. Groups and group
theory methods preceded the conscious organisation of this complex
of investigations in terms of the explicit group concept by at least
half a century. This is a common way in mathematics. In order to
organise a field of knowledge you have first to acquire knowledge
about it by exploring it. Fundamental definitions do not arise at the
start but at the end of the exploration, because in order to define
a thing you must know what it is and what it is good for.

Camille Jordan’s celebrated codification of group theory in 1870,
the Traité des substitutions, made explicit what mathematicians had
instinctively been doing for half a century: analysing geometric and
algebraic systems by means of groups and developing the principles
of group theory.! The most striking example of this instinctive group
theory during those fifty years is Hermann von Helmholtz’ extensive
use of Lie groups in his famous space problem, long before Lie
discovered them — even the term ‘group’ is lacking in this paper on
group theory and it may be taken for granted that Helmholtz did not
know about groups when he wrote it.

It is instructive to see how groups arose in the paper, which is an
enquiry into the foundations of geometry. Space is viewed by Helm-
holtz as a manifold gifted with a metric and as such it possesses a
group of autometries, that is, mappings onto itself leaving the metric
invariant. Euclidean and non-Euclidean space are characterised by
free mobility, that is by the existence of an as-large-as-possible group
of autometries. According to more recent investigations the geometry
of a space will be Euclidean or non-Euclidean provided that for
some positive « any two triples of points a;, b; (i = 1, 2, 3) with

dist (@;, a;) = dist (b;, b)) = a (i #J)
can be mapped upon each other by autometries of the space.
1 1t is true that, as early as 1854, Arthur Cayley defined groups in a formal

abstract way, but this was a premature act with no consequences for either
Cayley’s investigations or those of others.
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Helmbholtz did not mention groups but he used all kind of group-
theoretical tools in his investigation. The first mathematicians who,
influenced by Jordan, made group theory explicit in geometry, were
Felix Klein and Sophus Lie. The latter opened up the whole field of
what is now called Lie groups, whereas the former restricted himself
to subgroups of the projective group as subject matter and to classical
theory of invariants as working method. He took his rough material
from Cayley. Cayley had derived a metric from a conic in the plane
by the requirement that it should be invariant under all projective
transformations leaving the conic invariant. Unknowingly, by this
procedure he had constructed the first model of the up-to-then
abstract hyperbolic geometry. It was Klein’s great achievement to
make this model explicit and, by the same discovery, to create the
concept of ‘model’ which was in our times to become of major
importance within mathematics and beyond.

Through this example, Klein learned to appreciate and to use the
automorphism groups of a geometry. He hit upon theidea that groups
can be tools to classify geometric properties, and he applied this
idea to the projective group and its subgroups. Indeed, recognising
whether some property, proposition or definition is metric, affine,
projective is an effective means of creating order in the chaos of
geometry.

This is the leading idea of the so-called Erlanger Programm. 1t is
often expressed in a brilliant aphorism that stems from Klein himself:
geometry is the theory of invariants of a certain group. Klein himself
was the first among the large number of mathematicians who were
misled by this aphorism. There is a lot of geometry that cannot be
fitted into this frame, and there are many geometries for which groups
are irrelevant. Klein’s restricted view of the projective group and the
algebraic theory of invariants was broadened by Lie, and later on by
Elie Cartan who interpreted the Erlanger Programm better than
Klein ever did.

On the other hand by stressing groups as a formal means of classi-
fying geometries, Klein forgot about groups as a working tool within
a geometry. This was the reason why school geometry was never
influenced by the Erlanger Programm. Not unlike Klein’s book
Elementary Mathematics from an Advanced Standpoint, his Erlanger
Programm hovered too high above school mathematics to be able to
influence it.

Not until the most recent reforms did geometric groups enter
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school geometry. Geometric mappings were instrumental in the
beginning of geometry and still played a part in the last Elements
before Euclid. For some — probably philosophical — reasons, Euclid
purged geometry of transformations. His surrogate method of chains
of congruent triangles became a dogma which for centuries nobody
dared to question. Take, for example, the theorem about the cube,
that the endpoints B, D, E of the three edges through the vertex 4
define a plane orthogonal to the diagonal AG (see figure 4). The

G

Fig. 4

traditional proof is a complicated one involving a chain of artificial
congruent triangles. By means of mappings the propositionis obvious.
The cube admits rotations about the diagonal AG; since these inter-
change B, D and E, they leave invariant the plane BDE, which con-
sequently is orthogonal to the axis AG —a most natural and lucid
proof compared with the artificiality and obscurity of the Euclidean
method.

A few days ago I happened to check in several textbooks how they
prove that the intersection of two spheres is a circle: it is still accord-
ing to the Euclidean method of congruent triangles. After quite a few
years of lipservice to the group idea, the natural way using rotations
about the axis joining the centres is still barred.

Groups are now formally admitted at school but I doubt whether
the spirit of group theory has also penetrated school mathematics.

After so many examples of what groups mean in mathematics and

beyond, it is time to single out the factor common to all of them:
Groups are important because they arise from structures as systems
of automorphisms of those structures.

109



HANS FREUDENTHAL

What is a structure and what are its automorphisms ?

Examples. Euclidean space with its straight lines and circles — the
mappings carrying lines into lines and circles into circles preserve
this structure; they are its automorphisms.

A salt crystal, that is, a lattice with Na and Cl atoms alternating
in the lattice corners — translations, rotations and reflections carrying
Na atoms into Na atoms and Cl atoms into Cl atoms preserve this
structure.

The field of numbers a+5b4/2 with a, b € Q@ with all its sum and
product relations a+ 4 = y and af = ¢ — the mapping

a+by2—>a—by2

and the identity leave this structure invariant.

A structure S'is a set M with a relation R or a system @ of relations.
An automorphism of S is a one-to-one mapping f of M onto itself
such that for any relation R of @,

R(x,y, 2, ...) < RUX, /3, /2, ...),

in other words, fis required to preserve every relation of @, and its
negation; the relation should be satisfied by x, y, z, ... if and only if
it is satisfied by fx, fy, 1z, ....

Let S be a structure and G the set of its automorphisms. Then
obviously the identity belongs to G, if f belongs to G then so does its
inverse, and if f and g both belong to G then so does their com-
position fo g.

The automorphisms of a structure form a group with composition as

group operation.

If groups are introduced they are mostly automorphism groups of
certain structures. The way of introduction guarantees that the thing
defined is a group; rather than by an algorithmic verification, this
result is obtained in one conceptual blow, and this is a great advan-
tage. Preferring conceptual to algorithmic approaches is one of the
most conspicuous features of what is really modern in modern
mathematics.

If the problem is to define the group G, then of course the con-
ceptual introduction of G as an automorphism group of a structure S
means a shift of the problem. Now one has to make sure whether
the defined group G is in fact the group one intended to define. But
in order to check what is the automorphism group of the proposed
structure, one can again proceed conceptually and according to
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certain paramount principles. I prefer to show how this is done by
means of an example.

Let S be the square lattice in the plane (points with integral co-
ordinates). What is the group G of congruencies leaving .S invariant?
The translation ¢, by a vector a belongs to G, and so do the rotations
d; through 17j (j = 0, 1, 2, 3) about the origin, and the reflection s in
the horizontal axis. How do we find all elements of G?

Let f belong to G. Then f carries the origin onto some lattice
point a; thus f(0,0) = a. The translation 7, does likewise, so
fi = t, Y fixes (0, 0). Now f; maps (1, 0) onto a lattice point that
must be a neighbour of (0, 0), that is onto one of (1, 0), (0, 1),
(—1,0) or (0, —1). The same is done by dy, d;, d, and dj respectively.
So if j is properly chosen, f, = d,~'f; fixes both (0, 0) and (1, 0) and
consequently the entire horizontal axis. Thus f; is the identity or the
reflection 5. Working back towards f, one gets

f= tad; or t,,djs.

This is the most general element of G. The integral translations, the
rotations through 477 (j = 0, 1, 2, 3) and the reflection s together
generate G.

Groups as taught, or proposed by curriculum designers to be taught,
at school, are a different thing. They usually begin with the 2-cyclic
or the Klein group. The group elements are exhibited by particular
mappings of geometrical or other origin; the four corners of a square
are mapped upon each other by a horizontal, a vertical, and a
diagonal exchange (see figure 5). Or, the set of a red and a blue
triangle and a red and a blue square is mapped onto itself by shape
exchange, by colour exchange and by both shape and colour ex-
change. By explicit computations, it is checked that these three
mappings together with the identity form a group. In itself this
procedure is sound; what is wrong with it, is that by this prelude the
stage is set for generalisations which are wrong — mathematically and
pedagogically. And so it continues. New groups are introduced, of
6, 8, 12, 24 elements — all of them by summing up its elements, one
by one, usually as mappings of different kinds, with the stress on
constructing group tables. Verifying in this frame whether the con-
struct is really a group, would be an endless task unless the number
of elements is very small, but even in this case it is not good mathe-
matics to trust algorithms better than insight.
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Fig. 5

So what happens is that the young child is led to believe that all
systems with a binary operation are groups or at least that the
teacher would never present ones that are not. Or the group property
is suggested by sham arguments or by correct ones which cannot be

Fig. 6(a) Fig. 6(b)

grasped by the learner. Group diagrams may play an important part
in this method. Consider the two group diagrams above (figures 6 (a)
and (b)). The six-point set of the corners is transformed by two
mappings, one of order 2 indicated by the thick lines, which inter-
changes the endpoints of every thick line, and the other of order 3,
indicated by the arrows, which maps the tail of each arrow on its head.
These two mappings generate a group G of permutations of the six
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corners. It is now suggested that G is simply transitive on the set of
the corners (that is, the element of G mapping one corner onto
another, is unique), thus that G is a group of order six. This is indeed
true. In the case of the first group diagram it is obvious. This evi-
dence is falsely transferred to the second where it is not at all obvious.
The correct way to deal with the second case is to consider it as
a graph rather than as a group diagram and to find out its auto-
morphism group. Group tables and group diagrams are devices to
make groups explicit or to visualise them, but they are utterly in-
efficient tools to introduce groups or to prove that some system is
a group.

It is true that in such school group theory things are finally put
straight if one lands in the safe harbour of algorithmics. It is algo-
rithmics in a finite set of at most twenty-six letters each of which
means a constant group element. It is a particularly dangerous kind
of algorithmics because if it comes early it may frustrate the interpre-
tation of letters as symbols to denote variables — a dangerous tendency
which is today very strongly felt in set theory at school.

Are there valid arguments to teach a school group theory, different
from the genuine one? I would doubt it.

According to a famous ‘hypothesis’ of Jerome Bruner’s

‘every subject can be taught effectively and in an intellectually

honest form to any child at any stage of development’.!

In fact Bruner at this place was citing Barbel Inhelder who, however,
cautiously had added a proviso:

‘provided they are divorced from their mathematical expression
and studied through material that the child can handle himself’.
There are sounder arguments for teaching some subject matter than
our ability to do so. But even if this argument is accepted in teaching
mathematics, we must not at the same instant invalidate it by a
proviso that requires transforming a mathematical (teaching) subject

into non-mathematics.

We have to be careful and honest if we want to adapt some piece
of high mathematics to a lower level. Simplifying is a good thing but
wrong elementarisations are a danger, and so is imitating superficial
features while destroying the great ideas of some mathematical
theory. If children are taught groups they are entitled to learn genuine
group theory rather than a childish version. In the past, mathematics

1 Bruner, J., The Process of Education, Harvard University Press, Cambridge,
Mass., 1960, p. 33.
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has seriously suffered under the falsifying tendencies in adaptations
of mathematical subject matter to school level. Let us be more
cautious in the future. Honesty is a cardinal virtue in education.
Nothing is lost if some subject matter cannot be taught prematurely
and much is gained if it can in an honest way.

1.O.W.0.,
Tiberdreef, 4,
Utrecht,
Holland.
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Nature, man and mathematics
David Hawkins

Several years ago, when I had brought home a new microscope
designed for children’s use, we had opportunity to observe the first
recognition, by a five-year-old, of the world of size and scale. Or
perhaps it was not the first, beginnings are hard to catch; and this
fortunate young girl was already deeply involved with fragments of
that world, at least — with dolls and furniture to scale, with pictures
and maps of her own and others’ drafting, and much else besides.
But the world of size and scale is something else again, it is a re-
capitulation and a surmise; a glimpse of generality and of closure.
At that young age the eyepiece of a microscope is first a shiny
object and then, with luck, a sort of peep-show or television screen
in miniature. At any rate we did what we all three, Christa, my wife,
and I, called ‘looking at’ various objects. Some, which Christa
brought for this new occupation, were ten or fifty times too big to
fit between object and stage, and one saw a young child’s perceptual
unreadiness to make use of what might be called the transitivity of
congruences.

But one evening Christa brought to the microscope a tiny bit of
lint from the floor. Here for the first time there seemed to be recogni-
tion, the lint was seen as lint though transformed a hundred-fold in
scale. But the next day confirmation came in full measure, pressed
down and running over. Our young friend came trotting from our
bedroom carrying a small souvenir of London, a red Corgi double-
decker bus. Halfway to the microscope she hesitated, then smiled at
us a rueful smile. Touching the outside steps with her finger, she said,
‘Wouldn’t it be nice if there were little people going up and down?’

It was not a statement one could call theorematic in the usual sense,
but it took us suddenly to the world of Leeuwenhoek and Robert
Hooke, of the life cycle of the flea, and of Jonathan Swift and Voltaire,
In all previous history we find no evidence of such liberation of
imagination and even today it is known only to some happy few.
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In our work with children and teachers you and we have had many
opportunities to observe how poorly developed, in most humans
today, are the intuitions of variation and invariance to scale. I suppose
this is because we and the things around us are often undergoing
translations and rotations, but very seldom shrink or expand. Con-
fronted with the question whether a jar full of pebbles or a jar full of
sand will absorb more water, even most adults are in the kind of
trouble which Piaget has made famous concerning children’s percep-
tion of invariance in number, area, and volume. This one concerns
invariance to scale, one of numerous topics which should be proposed
for similar investigation.

E. T. Bell once observed that while we might admire the ingenuity
which led historically to more and more accurate approximations
of pi, the greatest admiration should go to that unknown genius who
first gave this ratio meaning by recognising that it was a pure number,
invariant to scale.

Lacking well-consolidated intuitions which could bring alive the
space-groups of transformations, we also seem to lack the conceptual
means for getting to a zeroth approximation understanding of
natural phenomena on the scale of the very large, the very small,
and the very complex. Conversely, our failure to assign dignity to
children’s exploration of this world of scale robs us of a powerful
resource in the teaching of mathematics.

I thought to begin this talk with the example of scale transforma-
tions because they are, perhaps out of the whole of mathematics,
among the most simple and most illuminating in their relevance to
the diversity and nature of the material universe, and to the habits
of thought with which mathematical education sometimes is and
more often ought to be concerned.

In the United States at least one finds that this glorious topic of
size and scale comes first into students’ ken only when they are
struggling with the equations of a physics text. My own first-year
university students have almost uniformly been amazed to discover
that a two-centimetre cube has four times the surface area and eight
times the mass of a one-centimetre cube, a discovery I have often
shamed them into with a gift of sugar-cubes. And even this discovery
left them unprepared for the argument that single cells cannot in
general be as big as bird’s eggs or Lilliputians as small as mice.
Dimensional relations in general are black magic to most students,
mainly I think because such topics have never been considered to be
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proper mathematics — despite Hassler Whitney’s elegant demonstra-
tion of the formal simplicity of dimensional numbers. But even if
such topics had been woven into the earlier curriculum they would
almost certainly, I fear, have been effectively divorced from the simple
empirical and practical sources of their appeal and power. Yet (as
I shall argue) such matters as dimensional analysis, whether at the
level of five-year-old Christa or at the level of theoretical physics, are
very nearly ideal examples of mathematical art.

From such examples one is led toward two questions which I wish
to raise in this paper. One concerns the teaching of mathematics.
The second, intimately connected with the first at a philosophical
level, concerns the nature of mathematics itself.

The first question has to do with the range and repertoire of a
teacher who knows success in leading children into the mathematical
domain. If such teachers are rare they are all the more worthy of
support and study if we hope to make them less rare. Let me there-
fore say a little more of what is involved in their art.

There are two aspects of this art which are inseparably connected,
and this connection leads me from the consideration of teaching to
the nature of mathematics as a teacher must grasp it. It commits me,
I find, to the view that such a rare teacher has within his grasp a
privileged source of information concerning the nature of mathe-
matics. I think this view might scornfully be rejected in some circles.
Before the present audience I count at least on a generous initial
reception, not least because of the presence of Professor Pélya, who
has done so much to illuminate the nature of mathematical art.

The working perspective of a teacher allows him - though un-
fortunately it does not always compel him — to make many observa-
tions of those acquisitions and transitions in intellectual development
upon which the growth of mathematical knowledge depends. But
such a teacher is of course not only an observer, he would indeed be
less of an observer if he were not also a participant; one who, because
of the way he shares in and contributes to that development, can
earn the privilege of insight into its details and pathways. The ideal
work of a good teacher has then these two aspects inseparably com-
bined, that of diagnosis and that of providing in accordance with
the indications of his diagnosis. As a diagnostician the teacher is
trying to map into his own the momentary state and trajectory of
another mind and then, as provisioner, to enhance (not to replace)
the resources of that mind from his own store of knowledge and skill.
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It is clear to all of us, I think, that teachers who approximate this
ideal are rare indeed. We do not educate most of our teachers very
relevantly to such a way of teaching, and we hamper their potential
fluency of performance in a hundred ways, not least the incredible
burden of managing active children in too large numbers and in too
sterile surroundings. So my ideal teacher is approximated only as we
get out to the tail of the distribution of teaching opportunities and
teaching styles which prevail today. Circumstances which allow and
encourage good teaching are rare, though we can make them less so.
At any rate the teacher I speak of is a presupposition of my argument
and does exist, though rarely. He is, so to say, a kind of existence
theorem.

For such a teacher a limiting condition in mapping a child’s
thought into his own is, of course, the amplitude of his own grasp of
those relationships in which the child is involved. His mathematical
domain must be ample enough, or amplifiable enough, to match
the range of a child’s wonder and curiosity, his operational skills, his
unexpected ways of gaining insight. David Page once remarked that
when children are seriously attentive they seldom give wrong answers,
but they often answer a question different from the one we think we
are asking. A teacher—diagnostician must map a child’s question as
much as his answer, neither alone will define the trajectory; and he
must be prepared to anticipate something of what the child may
encounter further along that path.

It is obvious, I think, that in many respects a teacher’s grasp of
subject-matter must include far more than what we conventionally
call mathematics. It must include what a child sees, handles, plays
with; miniatures, for example, such as cars, lorries, bricks, dolls and
dolls houses; more generally the great and the small. It must include
finished materials and raw, sand and water and clay as well as
batteries and wire and globes. It should include rocks, plants and
animals, mirrors and crystals. It should include all those things which
in serious play with them contribute to children’s grasp of orderings,
of number and measure, of pattern and structure.

It goes without saying, of course, that mathematics as conven-
tionally understood may include, on the other hand, a great deal
which a teacher of children need not have mastered. Otherwise we
would ask the impossible. But a teacher of children, of the kind
I postulate, must be a mathematician, what I would call an elementary
mathematician, one who can at least sometimes sense when a child’s
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interests and proposals — what I have called his trajectory — are
taking him near to mathematically sacred ground. There is a delight-
ful report of Edith Biggs concerning a ten-year-old who noticed and
became intrigued by the fact that in the graph he had made of area
against linear dimension, the curve was Jocally a straight line. That
child then was supported in extensive investigations along what one
can only call the trajectory of Isaac Newton. A teacher who lacked
any feeling for the calculus would almost certainly have failed him.
In the same way one has seen children’s curiosity about the individual
properties of numbers leading straight toward the great problems of
number theory, but likely to miss them without a teacher’s recogni-
tion and support.

If a teacher’s grasp of subject-matter must extend beyond the
conventional image of mathematics, we must then face the question
of definition in a new form — what is at stake is not the nature of the
end-product usually called mathematics, but of that whole domain
in which mathematical ideas and procedures germinate, sprout and
take root, and in the end produce the visible upper branching, leafing
and flowering which all we here so value, and which wither when
uprooted.

In this way I find myself compelled to extend the domain of
mathematics so that it will provide room, provide closure, for all the
mapping operations of a teacher. Mathematics so considered will
obviously overlap with other parts or aspects of the curriculum.
A child tracing the flow of coloured water through a transparent
siphon is not thereby being a mathematician, or physicist, or town
engineer, nor simply delighting in the intuition of colour and
motion. What he is being is a matter of his momentary trajectory of
learning. A good teacher will diagnose the child’s involvement as
related potentially to all of these or other important educational
concerns, but will not identify it as any of these too soon or too
simply. In that sense the curricular divisions overlap in all the child-
hood praxis of learning, as they do in the practical existence of
society. The child has not yet chosen a career — except in passing.

So by closure of the mathematical domain I mean not to partition
mathematics off from other educational concerns, on the contrary
I mean to define the mathematical domain in such a way that it does
not exclude any situation of learning merely on the ground that the
latter might also be described under social or scientific or aesthetic
categories. I use the mathematical term ‘closure’ as particularly
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apt — recognising that as mathematicians use the word, it implies
removing barriers, not building them. Ideally any concrete involve-
ment of children, any relationship with the world around them in
which they are caught up, will link up with mathematics among
other things and in that sense is part of its extended domain.

The extension I propose can be justified, I think, in two ways. The
first is that persons called teachers are particularly susceptible to
intimidation by persons called mathematicians. Teachers often feel
constrained by the opinions of the higher sect, constrained in par-
ticular to narrow their own views and their own practice to conform
to such opinions, rather than to explore more widely beyond the
implied barriers. A deliberate effort to extend the domain of mathe-
matics is inseparable, I believe, from any practical effort directed
toward the deepening and enrichment of mathematics teaching.
We must aim to convert the higher sect.

We have recently enjoyed a small report of an American teacher,
Dudley Hunt, who involved a group of ten-year-olds in an extensive
project around the partitioning of regular hexagons. Her original aim
was to provide a matrix for experience in the addition of fractions,
but as the project ramified, one might equally have described it as
a study of the geometry of the hexagon, of symmetry, or of decorative
design. This teacher happens to be a mathematician herself and does
not need the approval of the higher sect, and indeed many individual
mathematicians would be delighted by such work, even though their
own °‘official’ view of their subject-matter, translated in terms of
texts and syllabuses and work-books throughout the world, would
imply disparagement of some part of it occurring, so to speak, in the
wrong part of the syllabus. In my country the only respectable part,
I fear, would be those boring, unmotivated work-book pages of
symbolic problems, $+4 = [.

It is for such reasons we must speak about the nature of mathe-
matics itself - we will not otherwise give teachers the licence and
support they deserve in teaching mathematics, and we will not see
the work of serious adult mathematics in its deep inner connections
with the world of childhood.

The second justification is therefore that the proposed enlargement
gives us the possibility of a view of the nature of mathematics which,
regardless of pedagogical motives or implications, may be worth
pursuing for its own sake.

In speaking of an extension of the mathematical domain to provide
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a kind of closure for the mapping of the potential range of children’s
mathematical learning I am appealing, of course, to a heuristic
principle which has been important in the history of mathematics.
I shall call it the Principle of the Extended Domain. It is based upon
the fact that a problem can arise within a domain which nevertheless
proves too restrictive to allow an adequate solution of that problem.
Indeed I think this principle lies very close to the heart of what might
be called the mathematical style, to the secret of mathematics.

The most familiar major historical example of a successful applica-
tion of this principle is, I suppose, the development of the number
system, which only in the complex domain gives full closure to all the
elementary operations of arithmetic. In his essay on The Essence of
Mathematics Charles Saunders Peirce uses chess as a sort of counter-
example. ‘Chess is mathematics, after a fashion; but owing to the
exceptions which everywhere confront the mathematician in this
field — such as the limits of the board; the single steps of king, knight
and pawn; the peculiar mode of capture by pawns; castling — there
results a mathematics whose wings are clipped, which can only run
along the ground.” G. H. Hardy, in his 4pology, uses the example of
chess also, as a kind of mathematics which he says is not serious; he
says of it that its problems cannot be generalised in such a way that
their solution links them significantly with the rest of mathematics.

Serious mathematics then must be able, as Peirce says, to fly. And
it can fly only as it can generalise. Hence, he says, ‘a mathematician
often finds what a chess-player might call a gambit to his advantage;
exchanging a smaller problem that involves exceptions for a larger
one free from them.’ That is, he extends the domain. It is interesting in
connection with this counterexample of Peirce and Hardy, to consider
the rather major gambit later engineered by John von Neumannin the
theory of games, by which chess becomes only an example of the most
elementary form of game. The mathematical theory of games flies so
high it can hardly distinguish chess from noughts and crosses.

But the use I wish to make here of the principle of the extended
domain is a different one. What I wish to urge is an extension of the
domain of mathematics itself, as usually conceived, so that mathe-
matics in the extended domain will provide something like logical
closure to the diagnostic mapping and resultant planning of a teacher.
I shall argue that this extension, although motivated by a primary
concern for learning and teaching, is at the same time entirely con-
sonant with the traditions of Archimedes, Newton, and Gauss. It is
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dissonant, I think, with dominant pedagogical traditions of the past
and present.

In proposing to extend the domain of what we call mathematics
and therefore of what teachers conceive their mathematical commit-
ments to be, I have no wish to blur the disciplinary distinctions.
Indeed, the challenge is to widen the domain of mathematics with
analytical care. We want to make its essence more intelligible, not
to dissolve it.

Let me be explicit. The domain is to be consciously expanded to
include all those junctures in the lives of children, in their working
contact with the great world of nature and of human society, out of
which mathematics in the usual restricted sense can be seen to evolve.
Only so will educational closure be possible. But it now becomes
a question as to how the mathematical treatment of this shared
domain can be characterised — what its essence or genius is, what are
the invariants across this enlarged domain, of aim and style. Clearly
there will be some sacrifices from the point of view of one confined
to the restricted domain. Explicitness of symbolic definition and of
generality will not be among the invariants, nor will formal argument.
Eight- or ten-year-olds working with the Archimedean balance will
sometimes come to isolate those moves, those operations, which
maintain the state of balance, sorting variables and gradually isolating
the underlying relations which characterise the balance. Their dis-
course will be mostly limited to the concrete context, they will not
think to offer formal statements. Their investigation is surely not
deductive, but highly empirical. As children continue this process of
sorting and isolating, as they come closer to a grasp of regularity and
symmetry, they move toward a more analytical and deductive style.
Where a teacher can support and provide, can dignify with pertinent
curiosity, children will sometimes reach the law of moments empiri-
cally, and less easily a simpler fact underlying the famous theorem
of Archimedes: the invariance of balance to any pairwise symmetrical
displacement of equal weights — the law of the equal-arm balance.

Let us look at these two results, not crammed down children’s
throats, but supposing each to be achieved with some inner illumina-
tion: the law of moments and the law of symmetry. Logically, when
put in a proper formal context, these are equivalent, if one supplies
a premise which Archimedes failed to state, the conservation of
weight. But they are not equivalent in heuristic value. The law of
moments for the unequal-arm balance is a part of empirical science,
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and its formulating could be called ‘applied mathematics’ if we
assumed that the algebra were already available for application. The
symmetry principle is on a different footing; its use in characterising
the invariance of balance is not applied mathematics; on the con-
trary it is mathematics. It is also theoretical physics, to be sure, but
I warned that the extension of mathematics would produce overlap,
if not require it. First of all the second formulation, that of symmetry,
is simpler and deeper than the law of moments. It is a type of formu-
lation which, in Hardy’s term, has more ‘seriousness’ than the law of
moments, useful as this is in many other contexts. It is an example,
perhaps the simplest one, of the whole family of logical tools whose
nature was first discussed by Leibniz, who related it directly with the
principle of causality, of sufficient reason. If we assume that nothing
else matters but mass and length of arm, then with equal masses and
equal arms, any argument that the left side would descend is eo ipso
applicable to the right side, and all such arguments will cancel each
other by contradiction. It is a deep thing that this symmetry is still
sufficient, though hidden, to define the unequal-arm balance, that
the special case implies the general one. One should add in passing
that with an unstable balance, the symmetry argument gives us equal
probability for the two possibilities — an example of what Bernoulli
called the principle of non-sufficient reason. Modern theoretical
physics would be unthinkable without such arguments.

But to return to the ten-year-old: much of this is still remote from
him, far along on his current trajectory. But even within his own
reach a symmetry-argument has seriousness, it relates to his growing
manifold of perceptions and intuitions of symmetry and of choice.
It provides him with a way of thinking which, though it will not
automatically or easily transfer to different situations, will be avail-
able as an analogy. It will be a potential cross-link in his intellectual
file, when he has worked out what a teacher can recognise as similar
patterns of thought in other situations.

That is my reason for dwelling on this example from Archimedes.
The symmetry formulation of the balance provides a clear-cut
example of something very close to the essence of mathematics —
closer than the axiomatic method, closer than the ideal of deductive
rigour — and which holds up, I think, across its extended domain.
Archimedes showed us something of its power in his argument from
the special case of the equal-arm balance to the general case of the
unequal-arm balance. And he deepened the demonstration by his
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use of the balance in those extraordinary extensions of plane and
solid geometry which bear his name.

In the essay I referred to before, Charles Peirce offers a definition of
mathematics which is helpful, namely ‘the study of what is true of
hypothetical states of things’. It is not clear to me that this definition
as it stands is adequate to my extended domain. In any case it seems
also too broad. As a definition it could well apply to the novel, for
example, which invents hypothetical states of things and tries to
discern what is true of them. Since the nature of the novel is at least
as problematic as that of mathematics, it may be well to restrict the
definition, while bearing in mind a genuine family resemblance.

Peirce does in fact narrow his definition. Mathematical investiga-
tions are distinguished, he says, by resort to what, following Immanuel
Kant, he calls a schema. A schema is a kind of artifact or model
constructed to satisfy the conditions of a hypothesis, about which we
then notice that it has thus and such additional properties not
obviously entailed by the hypothesis. The kind of schema Peirce
has in mind is the use of drawing and auxiliary construction in
synthetic geometry. Though the hypothesis may be universal and
abstract, the schema which fits it is particular and concrete, pro-
duced by the hand and observed by the eye. In the absence of such
motor-perceptual transformation no amount of sheer reflection about
the hypothesis will produce a mathematical investigation or argu-
ment. If you make a triangle out of rigid rods and rotate one of
them slightly about some point, you can directly see that the sum of
angles remains unchanged. Such action and observations are intrinsic
to the mathematical style, which thus never loses touch with what
Piaget has called the concrete operational éfape of thought. The
symmetry principle applied to the unequal-arm balance is another
kind of example. We establish the general case of balance by starting
with all mass at the centre and then, by using only symmetrical dis-
placements, produce any arbitrary balance configuration in the
general case.

1 should like to give two more examples of schematisation at
a relatively adult level before proceeding further. Martin Gardiner
recently reported the following story of a reader’s reflections about
a tin of beer, American style. About to put it down at a picnic on
uneven ground, the thought occurred to him that if he drank some
beer first it would be less likely to tip over. On further reflection he
observed that if he were to drink all the beer the centre of gravity
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would be back up to the centre of the tin. Ergo there is a minimum,
a liquid level of maximum stability. Now, of course, any mathe-
matician or physicist immediately thinks of expressing the combined
centre of gravity of the tin and its contents in terms of the variable
amount of liquid, then taking the derivative and finding the point where
that derivative vanishes. But the author of this tale thought of another
way of finding the answer, which I leave to you, with only a hint
that your non-standard solution would delight the heart of Archi-
medes, who had not yet been taught the calculus. All I need say about
this example is that once again the schema of balance is brought into
view. In solving the problem by either means one performs an act of
abstraction, of cutting away all features of the realistic problem
except those that fit the schema provided by the unequal-arm balance
- cutting to reveal the hidden symmetry. This is the kind of step which
Peirce saw as so characteristically mathematical.

But the first solution is again after all — once one sees it correctly —
a standard bit of applied mathematics. The non-calculus solution is
more interesting in terms of my general thesis, as I think you will
agree when you see that solution.

My last example is of a different kind, but I think it also illustrates
the significance of Peirce’s thesis. It also comes from chess. There is
a stop-rule in chess which says that a threatened king may not simply
move back and forth between two squares. In a typically mathe-
matical spirit G. A. Hedlund and Marsden Morse proposed and
solved a slightly more general problem. Suppose a king were confined
to three adjacent squares &, b, ¢, from any of which he could move to
either of the others. It is assumed that all of these moves would avoid
checkmate. Clearly the defensive player could avoid such a pattern
as abab, which would save him from the usual stop-rule. Morse now
proposes a more general rule, namely that the game ends if the player
directly repeats any sequence of moves — such as abab, abcabe, abcach-
abcach; and so on. The question arises whether under this rule he
can still play an unending game. 1 do not give Morse’s affirmative
solution but a different and more special one which Walter Mientka
and I happened to find, and of which I therefore know the genesis.
Mathematicians seldom let us in on such secrets. In an unending
sequence of three letters one must avoid all direct repetitions,
double blocks of any length, and those very long blocks get trouble-
some. It is easy to avoid direct repetitions of pairs or triples, but the
farther one goes the longer become the blocks one has to avoid
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repeating. As with testing for prime numbers, the testing keeps
increasing in difficulty.

Now at this point we would all recognise, I think, that a step is
needed which does not follow from the hypothesis by any amount of
reasoning of the kind outlined in logic texts and it is, somehow, a
uniquely mathematical step. The step is, I shall say, a search for
a schema. Because one does not find a ‘standard method’ the prob-
lem cannot be called applied mathematics. One does not even know
in advance whether this might turn out to be serious mathematics in
Hardy’s sense. A search for analogies, therefore, is the next step.
I happened to find one in the procedure of substitution, as when one
replaces a simple element by a complex one, each element in a pattern
by a pattern of elements, a noun by a noun clause, a variable by
a function. That was my schema. If one replaced each Jetter in a block
by a corresponding block of letters, each block guaranteed to be
repetition-free, one might then have a much longer block which was
equally impeccable. The answer is: almost, but not quite. I shall not
go on with the details, but with suitably chosen blocks 4, B, C the
method does work, and the substitution can be iterated endlessly,
producing an infinite sequence without repetitions. In Peirce’s lan-
guage, it flies. I still do not know that this is very serious mathe-
matics, although there are many unsolved problems about such
sequences and they link up in possibly interesting ways with other
parts of number theory. The point of the illustration is that new
mathematics — new to a child, new to an amateur such as myself, or
new to a professional mathematician — takes off and flies through a
successful search for schemata available in one’s repertoire, for
patterns of construction which one has previously mastered, which
may provide guidance in building a new variant suited to new
situations encountered in nature or in mathematics.

As this process is successful it served also to enrich the repertoire,
the store of useful schemata. As is true of all knowledge, the growth
of mathematics lies always in some use of mathematics — not primarily
in providing premises for an argument, but in providing schemata
for the guidance of thought.

When we search in our repertoire we sometimes find what we call
an algorithm, a standard schema which fits the conditions of a new
problem, and leads directly to its solution. In such cases we can speak
of applied mathematics, whether the problem is one of everyday life,
of science, or within mathematics itself. The implication of the term
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‘applied mathematics’ is often slightly pejorative. You can imagine
the other kind of mathematician, called ‘pure’, offering his discipline
for use but not — as mathematician — expecting to learn anything new
in the process. Noblesse oblige. But as I have suggested, this case of
the standard schema shades over into the schema by analogy, where
no standard method is available but where those that are available
suggest ways of looking at a problem which may make it at least
partially tractable. This may still if you wish be called applied mathe-
matics but whenever such a problem is solved it does, in principle, add
new mathematics to the general repertoire. Finally, there are cases
where problems cannot be brought under existing schemas, and where
even the power of analogy fails. In such cases we resort to direct induc-
tion, to numerical examples, or to various other related, but easier, in-
vestigations ; and very often the problem waits. If itisa serious problem
it waits on a special shelf of fame, such as the list of Hilbert’s problems.
Whichever case we consider, the general conclusion is clear — that in
a proper sense all mathematics grows out of the use of previously
schematised knowledge which is itself explicitly or potentially mathe-
matical — in that sense a/l mathematics is ‘applied mathematics’.

I have at least sketched the case I wish to make concerning the
essence of mathematics. There is a sort of corollary, however, which
I would like to develop. Mathematics has evolved historically into
a large and richly interconnected system which is not only a mirror
of the world of nature but which has many internal mirrors — morph-
isms of one kind or another — which sometimes generate, in turn,
new mirrors for the world of nature, new analogies of structure, new
schemata. But running pervasively through this whole system there
is a common implicit style which in general human terms is both a
strength and a limitation. When Peirce talks about mathematics
which can fly, this metaphor refers, I believe, to the generalising
power implicit in the structure of the domain, a power which depends
essentially upon a certain monotony, a certain iterative character,
both in its objects and in its perceptions and arguments. The number
system evolves from such monotony, though each step generates
novelties which are in turn a challenge to new investigations. The
method of Archimedes, like early calculus, depends upon those
results of infinite iteration, called infinitesimals, which the great of
the eighteenth century used fluently, which physicists have in fact
perversely used all along, and which formal logic has recently, after
long doubt, declared absolutely rigorous.
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From Archimedes to the recent past the assertion that the method
of infinitesimals is not rigorous, is now known to be a non-rigorous
assertion, indeed a false one! I should mention again the wide sweep
and great power of the schema of iterated substitution revealed, for
example, in logic, in geometry, in the statistical theory of branching
processes, or in the elegant and very ‘serious’ theorem of Kolmo-
gorov, that a function of many variables can always be expressed by
composition from functions of two variables only. This schema, with
its imagery of branching trees, has many delightful uses within the
range of children’s arithmetical explorations — although it seems to
find no place within the official repertoire, curriculum, or racecourse.

The iterative or monotonous character of mathematics, so deeply
embedded in the nature of its domains and so profoundly exploited
in its style of thought, is often noticed by outsiders and given as a
reason for a certain repugnance by persons whose special cultivation
lies in other fields. Words like ‘mechanical’ and ‘abstract’ enter in.
Consider for contrast the visual pattern of a painting such as Gauguin’s
Maternité or the thematic patterns of Mozart’s Second Horn Concerto
or of Beethoven’s Eroica. Structure there is, even structure which is
repetitive, iterative; but the interesting part typically connects with
just that deviation from simple-minded regularity, just that surprising
use of ambiguity which mathematics will avoid. Though a computer
can compose music which is recognisably Mozartian, it does not
compose Mozart which is musically interesting. It does not know
when to depart from an algorithm.

So with a great novel, such as The Magic Mountain, The Red and
the Black, Crime and Punishment, there is a formal structure but it is
never maintained at the expense of those unique non-recurrent or
even discordant details which win our trust and convey to us the
higher levels of order and significance which lesser works fail to
capture. Picasso’s Don Quixote presupposes a precision of anatomical
knowledge, yet the anatomist despairs of him. To be that kind of
mirror of the world, a different kind of structure and order is neces-
sary, one which stays far longer in the domain of concrete intuition
and which requires a very different, though not incompatible, sort of
cultivation of education from the mathematical.

Yet structure is never absent, even (at some level) a kind of struc-
ture which can be abstracted and schematised. Whereas random
music, like Borges’ Library of Babylon — to which I shall return —
can produce no surprises. Departure from regularity presupposes
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regularity, and significant irregularity implies order on a higher level.
So when we are working with young children we should not be
surprised that they wear what may seem to be seven-league boots,
and that the cross-connections they can make may go easily from
mathematics to science or to decorative or dynamic art. My idealised
teacher will not sorrow, but rather rejoice, when the dissection of
hexagons leads to crochet patterns or visual fantasy, or when
Fibonacci numbers lead to a new interest in rabbits or the growth of
trees, or vice versa. From the time of Froebel and Montessori to that
of Cuisenaire and Dienes, too much of our move toward the mathe-
matics of the concrete, invaluable as that has been, has had such
deviant possibilities puritanically designed out of it.

I wish now to return to the perspective of a teacher of children, and
consider the extent to which my case holds up. My argument is one
which seeks to make it plausible, when mathematics is extended in
meaning to include the roots as well as the branch and the flower,
that mathematical subject matter is potentially the whole of experi-
ence. Its differentiating mark is not primarily one of subject matter,
but of style. This style is not defined by reference to the deductive as
opposed to the empirical, by the formal as opposed to the concrete,
by the axiomatic as opposed to the intuitive, but rather by a charac-
teristic more generic than these, which I have called, following Peirce,
schematisation. But let me first reassure you that I intend no dis-
paragement of these admirable, but secondary, stylistic features. I am
only saying that as one looks at mathematics in its extended domain,
these features are mot invariant across that domain. As one looks
more deeply to the roots one sees these nice distinctions tending to
dissolve. They characterise branches of mathematics, or leaves and
flowers, but not the whole of it; they characterise these products as
finished products. In the process of being born, whether among
children or among amateurs or professionals, no mathematics is yet
rigorous, or fully deductive, or axiomatic; but its style is that of
schematisation. In the process of being born, mathematics is a search-
ing out and delineation of structure, guided by those analogies of
structure which have already been consolidated within the minds of
the searchers. Its final format is intended to convince, but that is only
one stable product of mathematicising, not its essence.

I believe that I owe here a further debt to all the modern efforts
which have gone into the process of differentiating between mathe-
matics and empirical science. As a young philosopher I was raised up
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surrounded by the belief of Frege and Russell and the Viennese
positivists that all of mathematics is somehow a vast tautology, thus
sharply and finally distinguished, and pedagogically separable, from
empirical science. Although, they said, our natural language is full
of ambiguities and confusions, there is possible a rational reconstruc-
tion of that language (we were assured) which will make clear just
where the dividing line occurs, and thus rid us of the besetting sin of
supposing that mathematical truth owes anything to the nature of the
world we live in. This philosophical movement rode partly on great
new developments in mathematics going back to Descartes’ invention
of analytic geometry, to the invention of non-Euclidean geometries,
and to the foundations of arithmetic initiated by Peano and Frege.
These discoveries revealed the fact that at least major parts of mathe-
matics, and presumably all of it, could be faithfully mirrored within
the domain of arithmetic, while arithmetic itself could be reduced to,
or mirrored within, a suitably clarified and formalised system of pure
logic. Not only was this true of traditional mathematics, but it
proved true also of those parts of empirical science which had been
sufficiently developed — rational mechanics, for example, the theory
of elasticity, or more recently (as in the work of Ulam and Kolmo-
gorov) the theory of probability, long suspect, like the calculus, as
to its precise mathematical status.

By such developments, it was hoped, the contribution of rational
analysis could be sharply differentiated from all questions of empiri-
cal truth involved in the description of nature. What was somehow
overlooked or treated arrogantly was the fact that these powerful and
impressive mathematical structures had been evolved through con-
stant intercourse with the domains of science, practical life, and
engineering. It was also overlooked that they could be reapplied in
those domains only by informal rules of interpretation which carried
within them all the philosophically interesting problems which had
supposedly been banished by the new programme.

What tended to be overlooked also was the fact that this whole
development failed in one crucial way to explain the specific content
and form of existing mathematics. If we define mathematics merely
as a system of propositions organised according to the axiomatic
method and the rules of deduction, this is rather like defining a book
as consisting merely of a few hundred pages of printed marks; like
defining a sculpture merely as any form carved out of stone or cast in
metal. Jorge Luis Borges’ fantasy, to which I 1eferred before, is
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about a library which turns out to be the library of all possible books.
The inhabitants of this library spend their lives in a search for
meaning among its volumes. A book is defined here as — merely — any
400-page sequence of letters (and spaces) from the alphabet. If you
calculate the number of books in Borges’ library it turns out to be
about two to the power 220, My students and I once estimated the
number of the subset of such volumes which consist of recognised
words organised grammatically into sentences, and this vastly
reduced library, at a few volumes per kilogram, was still incom-
parably more massive than the known physical universe. I do not
quite know how to estimate the number of distinct, self-consistent,
formalised axiom sets of not unreasonable complexity, but I would
guess it is at least large enough to use up a galaxy or two at the
modest rate of 28 kilograms/galaxy of printed paper.

We are in no different position with respect to sculpture or music
or any other art. In one way we are in a worse position with respect
to the development of mathematics: these axiom sets, though stated
in a few pages, will entail an infinity of theorems from which we can
in fact deduce only some selected finite number.

The view that mathematics is somehow only a vast tautology, that
truth in mathematics has no relation to the order and connection of
nature, is thus a misinterpretation of its schematic iterative style. If
deductive formulation is necessary to its final formal product, this
criterion alone does not enable us to distinguish between deductive
sense and deductive nonsense. Defenders of the philosophy of Frege
admit this criticism, indirectly, but by adding another criticism, one
embedded in a doctrine of art for art’s sake. From among the infinity of
potential mathematical structures one picksfor development only those
which are aesthetically pleasing. Mathematics is, so to say, another
genre of art, its products free creations of what is somewhat eulogisti-
cally called the human mind. No art is free except within the bounds
of some discipline; the discipline of mathematics is the deductive
mode. But otherwise — the argument goes — it is free. This view has
been held by some first-rate mathematicians, notably by Hardy, just
as the corresponding view in painting or literature has been held by
some first-rate artists. The work of the mathematician may, on such
a view, throw light on the world of man and nature, as if by chance.
If so, again, noblesse oblige. T. S. Eliot produced, as an example of
what might engross an artist fully, while lacking all practical utility
or moral relevance, the following remarkable image — an eggshell on
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an altar. Unkind critics might seek to match this from some corners
of contemporary mathematics. Surely, Hardy did not go so far as
Eliot. His criterion of seriousness precluded that.

I think, however, that we can take one important lesson from this
view. Whatever else it may be — and 1 have argued for much else —
mathematics as my ideal teacher sees and lives it is unthinkable except
as a kind of disciplined art. It is unsuccessful in the teaching or
learning of it without that interplay of aesthetic tension and release
involved in all creative activity, and which rewards all the intervening
discipline which creativeness requires.

What is wrong with the doctrine of art pour art is that it makes
a mystery of any kind of discipline at all. The essential art of mathe-
matics, if I am right, is that of investigating hypothetical states of
things through the discipline of schematisation.

But I have only illustrated this Peircean doctrine, not developed
it in detail. In particular I have not discussed the epistemological and
historical origins, or the systematics of those basic mathematical
structures we know and seek to regenerate in our teaching. Fortu-
nately the subject is very much alive today, thanks in large measure
to the work of Professor Piaget. In closing I can only comment on
certain aspects of that work. From my own point of view, at least,
Professor Piaget has brought about a long-overdue revitalisation of
the philosophical framework of Immanuel Kant, who developed the
first coherent account of knowledge as the product of a self-
regulating synthetic activity.

With respect to the proto-deducting style of mathematical thinking,
Professor Piaget has made an important theoretical argument which
is thoroughly Kantian in spirit, though grounded also in his own
empirical studies of intellectual development. This argument con-
cerns the origin and nature of our sense of logical entailment or
necessity. Like Kant (and Hume), Piaget argues that contingent
generalisations derived from factual observation can never, of them-
selves, give rise to this idea of necessity.

This sense of necessity is first operative, Piaget argues, in the
habitual use of those schemata by which infants and children develop,
with increasing competence, their ability to control and transform
their material surroundings by systematic means. In still later intel-
lectual development the distinction between the necessary and the
contingent gains recognition by a kind of reflective abstraction; our
knowledge can be traced partly to perception and partly to a growing
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awareness of our own active transformation of that experience into
a stable and organised system of intellectual resources. Thus, for
example, the space-group of translations and rotations (as Kant also
long ago suggested) is developed first through the empirical fact that
these are reversible operations whereas other changes, those which
we describe only temporally, are not. It is not our direct perception
of spatial properties which gives rise to our.idea of space, but our
reflection upon the operational or manipulatory schema which we
have been busy developing since infancy at a motor-sensory level.
In the same way our schema for counting and number evolves not
from a direct perception of different degrees of numerosity, but from
more primitive operations of matching and sequencing. In both cases
a process of reflective abstraction, appearing in the fullness of time
and experience and education, raises these schemata from the level
of use to the level of objects for conscious scrutiny and analysis.
When we have thus begun to be aware of what are in fact our own
operational commitments, we find that they, so to speak, lead a life
of their own; the number system or the nexus of geometrical relations
as it were imposes its will on us, we are not free to imagine that there
is a largest number, that seven has two immediate successors, or
that there are spatially unconnected localities. But unlike Kant and
Kant’s predecessor Hume, Piaget has taken seriously the complex
developmental nature of these ideas, and has brought it home to us
naive adults that our obvious necessities of thought are often dis-
concertingly absent in the thinking of young children, who typically
make sense of their world in ways we have abandoned and can
retrieve only with great imaginative effort. When I was speaking of
a teacher’s capacity to map the trajectories of children’s thinking,
I was referring in part to these way-stations of logical thought, which
along with other childish things we have long since, most of us, put
aside.

With all due respect to the theoretical perspectives and empirical
studies of Piaget, I wish to emphasise what Piaget himself has often
asserted, that this developmental framework is not directly relevant
or adequate to the practical and theoretical perspective of a teacher.
In particular there is a certain danger in the unimaginative use of
Piagetian interviews to check off children’s conceptual ‘attainments’
and thus provide a sort of profile of individual developmental level.
It would be very poor credit indeed to the thought of a great investi-
gator if such very limited diagnosis became a sort of administrative

133



DAVID HAWKINS

substitute for the widely abused IQ, which, in turn, was poor credit
to the early great investigations of Binet.

But more basically we must reserve judgement about inferences
from the average behaviour of groups of children of different ages to
the actual pathways of individual growth. As we know from the
theory of the comparative method, we can sometimes construct a fair
description of the developmental stages of single organisms by
observing samples of similar organisms of different ages. The means
and variances obtained by this use of the comparative method are
however only significant to the extent that we are sampling from
populations which are uniform in essential respects — in some degree
of approximation, for example, in the case of gross physical growth.
If on the other hand we are interested in the common dynamics of
growth in populations where individual development pursues different
pathways, the means and variances of a composite picture may
entirely mask the essential dynamics of the process. When, for
example, individual learning is in reality all-or-none, a group average
may produce the standard continuous learning curve. And since
children are in fact diverging in humanly important ways toward
different careers, different competencies and insights, different talents
and interests, a method which looks only at those common con-
ceptual nodes which most biographical trajectories sooner or later
traverse is likely to miss the most interesting part of the theory of
learning and development, and the part most crucial to education.
It is likely to observe the fine structure and the dynamics of transi-
tions, differing from individual to individual, under such low resolving
power that these are seen as little more than a residual statistical
variance, what Piaget calls décalages.

None of this is said by way of criticism of Piaget’s work, which in
common with many others I both admire and learn from. What is at
stake is that human creative capacities are only weakly inferrable
by testing for the presence of those widely relevant schemata which —
because they are widely relevant — we all do more or less competently
develop, along one pathway or along another. The epistemological
perspective of a teacher is one which is closer to the dynamics of
developmentally significant learning, whereas this potentially vital
role of a teacher is diluted out by the comparative method. In educa-
tion as in biology the absence of a theory based on detailed study of
specific transitions leads away from science toward orthogenesis,
toward belief in the automatism of progress. One of the more
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enthusiastic of Piaget’s adherents allegedly once said, ‘You don’t
have to teach, just wait a while.” But that is a remark which cuts both
ways; all cats look alike in the dark. On the other hand, the over-
whelming mass of studies which deal with the effects of teaching deal
with short-run reversible learning, of no particular educational signi-
ficance. The really interesting problems of education are hard to study.
They are too long-term and too complex for the laboratory, and too
diverse and non-linear for the comparative method. They require
longitudinal study of individuals, with intervention a dependent
variable, dependent upon close diagnostic observation. The investi-
gator who can do that and will do it is, after all, rather like what
I have called a teacher. So the teacher himself is potentially the best
researcher, if only we would offer him strong intellectual support
and respect his potentialities as a scientist: lighten his mechanical
burdens, join him more frequently in his association with children,
argue with him, pick his brains.

In the meantime the very existence of such a teacher as I have
described — and he does exist, though all too rarely throughout most
of the world - is a challenge to all the narrowing preconceptions and
practice of mathematics teaching as that art is usually described and
practised.

Mountain View Center,
1511 University Avenue,
University of Colorado,
Boulder,

Colorado 80302,

USA.
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Some anthropological observations on
number, time and common-sense

Edmund Leach

In 1919, in his Introduction to Mathematical Philosophy, Bertrand
Russell declared that ‘logic is concerned with the real world just as
truly as zoology’,! but in the Preface to the 1938 edition of The
Principles of Mathematics we read that ‘none of the raw material of
the world has smooth logical properties, but whatever appears to
have such properties is constructed artificially to have them’.?
Fashions in social anthropology go through similar oscillations.
During most of my academic lifetime the bias has been heavily
empiricist. Anthropologists have supposed that they were engaged in
a kind of social zoology. Human societies have been discussed as if
they were organisms. The study of social structure and social rela-
tions has been treated as analogous to the study of anatomy and
physiology. Anthropology was a social science; anthropologists
hoped to discover an ordered universe of social facts — objective facts
put there, free from the taint of human intuition.

Broadly speaking, empirically minded social anthropologists of
this sort take the view that all unsophisticated pre-literate peoples
have a thoroughly practical rule-of-thumb approach to the day-to-day
problems of domestic technology. They insist that it is a complete
mistake to imagine that the ordinary behaviour of primitive man is
dominated by childish superstition. Magical fantasy is never allowed
to interfere with common-sense.

That is still the orthodox view but of late there has been a move
away from empiricism in the direction of idealism. Many anthro-
pologists would now argue, in imitation of Russell, that ‘none of the
raw material of our social world has smooth logical properties, but
whatever appears to have such properties is constructed artificially
to have them’.

! Russell, B., Introduction to Mathematical Philosophy, Allen and Unwin,

London; Macmillan, New York, 1919, p. 169.

2 Russell, B., The Principles of Mathematics (2nd edition with new Introduction),
Allen and Unwin, London; W. W. Norton, New York, 1938, p. xi.
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That is the orientation which has governed my own thinking
while I have been preparing this paper.

I started out by asking myself why on earth should a social
anthropologist be invited to address a gathering of teachers of
mathematics? I came to the conclusion that one possible answer
might run something like this:

The subject matter of social anthropology is human custom but
mainly the custom of pre-literate unsophisticated peoples living
outside (or on the fringe of) the modern industrial world. Such
peoples do not engage in mathematical computations as you might
ordinarily understand them.

But that is true also of the vast majority of those whom we our-
selves encounter in our daily lives. For the ordinary ‘man in the
street’, whether child or adult, mathematics is a mystery. Your
problem, as teachers of mathematics, is to overcome this mystery,
and that entails, at least to some extent, changing the way that your
pupils think about the nature of things. But part of your difficulty
is to be able to understand how your unsophisticated, pre-mathe-
matical pupils interpret their experiences in the first place.

Are there universal aspects of common-sense which the teacher of
mathematics, with his special initial prejudices is likely to overlook?

This is the sort of question a social anthropologist ought to be
able to answer but I am afraid that I must disappoint you. Common-
sense turns out to be a much more variable factor than one might
have supposed. The only lesson that comparative ethnography can
offer in this respect is that what seems obvious to you and me is not
necessarily obvious to anyone else.

Let me start with an example from Ancient Egypt which was
almost the first of the really sophisticated societies. The Egyptians
had only a very rudimentary mathematical understanding but, for
purposes of survey and accountancy, they adopted quite elaborate
techniques of computation. Some of these seem surprising.

The Egyptians evidently came to the conclusion that in measuring
a straight line, the fractions + and 1, 4 and % could be accurately
judged by eye — as indeed is pretty much the case. For the purposes
of arithmetical computation they therefore made their number series
start, not with the integer 1 but with a fraction — either } or 4. The
numbers were thus in two series:

4,4, 1,2,3,4,5,...
4, 4,1,2,3,4,5, ...
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All these numbers were in effect treated as if they were integers.
Other fractions were then written as combinations of these natural
numbers with unit fractions. For example,

% becomes ‘}++’.

What could be common-sensical about that? Well it depends upon
one’s point of view. The resulting computation procedure is cer-
tainly extraordinarily cumbersome yet close inspection shows that it
employs repetitive algorithms appropriate to a modern computer
program.! Evidently in the Egyptian case the advantages of mechani-
cal simplicity involved in the repetitive element of the procedure
outweighed the disadvantage that it was very slow.

Incidentally this Egyptian fractional numbering system with its
special use of halves and thirds provides part of the answer to
another common-sense question which modern children may raise.
Since we have a twenty-four hour day why does the ordinary clock
face only show twelve hours? The details are complicated but the
main point is this. The shadow face of the Roman—Egyptian sundial
was divided into quarters, and each quarter into thirds, making
twelve sections in all. Although astronomers had used a twenty-four
hour, equal interval, day-night from as early as the third century B.C.,
this twenty-four hour manner of reckoning did not come into general
use until around the eleventh century A.D. along with the introduction
of mechanical escapement clocks. Prior to that period the term
true hours (horai kairai) was always applied to sundial hours which
vary in length according to the time of year and the latitude of
observation.? Common-sense, but to our thinking rather odd.

With that introduction let me delimit my subject matter. I shall
mainly be talking about relatively unsophisticated concepts of time.
Until I get near the end I shall not be going into any great detail.
I simply want to examine the principles of ‘common-sense’ which
these time concepts entail. I shall concentrate on those features which
are at variance with the assumptions normally current in the modern,
twentieth century, industrial world.

I cannot now remember how my mathematics teachers first intro-
duced the concept of time. I suspect they avoided it. After all at first
1 Neugebauer, O., The Exact Sciences in Antiquity, Princeton University Press,

Princeton, 1952, pp. 21, 72-8.

2 Ibid. p. 81. See also Neugebauer, O., Ancient Mathematics and Astronomy in

C. Singer, E.J. Holmyard and A. R. Hall (eds.) A4 History of Technology,
Vol. 1, Clarendon Press, Oxford, 1954, pp. 785-803, esp. 796-7.
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sight it seems an elementary matter. Time is something that we
measure and something that we measure with, therefore it is a
dimension. And yet surely this is very puzzling, for time, whatever it
may be, is something which is experienced quite intangibly. We cannot
see it or touch it as we can a footrule. How is it then that we come
to think of it as measurable? Measurable in relation to what?

When we measure anything the units of scale that we employ — feet,
centimetres, hours, ounces, grams and so on — represent numerical
quantities of dimensions. This is so much of a commonplace that
the dimensions themselves appear intrinsic. It seems sensible to
measure a quantity of sugar by weight or by volume, but nonsense
to measure it by length or by area or by duration. Yet in fact, the
dimensions that we employ in any particular case are largely arbi-
trary and differ according to the social and operational context in
which we make our observation. In many parts of the world farmers
regularly measure their fields in terms of seed requirements or crop
yield; all of us tend to judge journey distance by the time it takes to get
there. This implies measuring area by volume and distance by time,
procedures which seem to blur the edges between sense and nonsense.

It is consistent with our assumption that dimensions are ‘given’
facts of the external situation that we today tend to prefer scales
which have some kind of universal validity. The theoretical standard
metre, for example, is not the actual length of any man-made object
but ‘one ten millionth part of the meridian quadrant’, that is to say
it is an absolute feature of the cosmos which can be ascertained only
by calculation. All other measures of length, in any scale whatsoever,
can, in theory, be expressed as a standardised multiple or fraction of
this ideal metre. And this relationship is absolute. An English inch
equals 2.54 centimetres; we could not imagine it to be 2.54 cm today
and 3 cm tomorrow.

But standardisation of this sort is not a quality of scales as such.
In the world of commerce and international finance, for example,
scales of value are shifting relative to one another all the time and
we accept this as normal. In a comparable way, in a non-scientific
world, all scales, including those which are used to measure time and
space, are adjustable to circumstance. It is a peculiarity of scientific
society that an ideal scale should be one which is unambiguous and
exact; under other conditions people have preferred scales which
were easy to use. Where the criterion of a good scale is its convenience,
too much precision may even be a nuisance.

139



EDMUND LEACH

All this is relevant to my central theme. In any society the generally
prevailing ideas about the nature of time and space are closely linked
up with the kinds of measuring scale which are thought appropriate.
If we alter the scales and dimensions with which we measure, we
seem somehow to alter the nature of that which is being measured.
For us distances consist of miles or kilometres just as time consists of
hours and minutes. But in a clockless world there are no hours and
no minutes. If we consistently measured distance by time, then we
should doubtless take it for granted that the topography consists of
days and nights. It follows that our present-day feelings about the
nature of the cosmos are largely determined by the nature of the
scales which we use to measure its components. It is therefore very
significant that, as compared with any previous period of history,
our scientific culture operates with more precise scales but far fewer
dimensions than ever before.

We manage to make do with fewer dimensions because, having
perfected the art of numerical calculation it is convenient to have
all values expressed in interchangeable numbers. For example, in the
field of economics, the value of land, of goods, of valuables, of food,
of labour, and of every type of service can now be expressed in terms
of a single numerical dimension ‘money’. In primitive society this is
not the case, Houses and yams both have value, but there would
ordinarily be no possible way of computing the value of a house as
a numerical quantity of yams. In primitive economics, in the absence
of a general medium of exchange, we have a situation where there is
a multiple range of value dimensions.

Space dimensions and time dimensions can also both be multiple
in this same sense. Nowadays we usually take it for granted that the
three linear dimensions, length, breadth and height, are all measur-
able in units of the same type. This is because we find it convenient
to compute areas and volumes as squares and cubes of a numerical
linear scale. Other people, who lack our arithmetical proficiency,
may find it more convenient to keep such dimensions apart, to
measure height, for example, in different units from length and
breadth, or land area in different units from the size of buildings and
material artifacts. And so also with time.

In post sixteenth century European mathematics, time has come
to be treated as a fourth dimension distinct from, but precisely on
a par with length, breadth and height except that every now and
again we have to remind ourselves that the arrow of time is not
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reversible. We now take it for granted that time is continuous and
that both past and future have infinite extension. We also take it for
granted that there is just one kind of time. . .that the nano-seconds
by which we compute the time lag of computer mechanisms, if
magnified sufficiently, will turn into the light years by which we
compute the distance of extra-galactic nebulae. We not only think
of time as being ‘like space’ in that it is an attribute of what is ‘out
there’ but we think of duration as a kind of length. We move along
the time axis as we might along a space axis; more picturesquely, we
float down the river of time as we might travel along a road. All
metaphors of this very general kind, which one way or another entail
the assumption that time is unitary — all in one piece — and that it
exists ‘out there’, external to individual human experience, are
highly artificial. The ‘time’ to which they refer is a construct which
has come to be grafted on to our thinking by the logical requirements
of mathematics rather than because of any direct personal experience.

But how do we in fact experience time flow ? Here I must emphasise
again that I am a social anthropologist and not a psychologist.! I am
not here concerned with the problem of time ‘perception’ or time
‘intuition’. I am talking about cultural phenomena; interactions
between man and nature which can be directly described like the
sequence of days of the week or the oscillation of a pendulum.

Time experience, in this sense, appears in six quite separable forms.

(1) Time as alternation: day-night, day-night.

(2) Time as sequence: one thing happens after another.

(3) Time as distance: if an individual moves from locality 4 to
locality B this will use up time.

(4) Time as delimitation: any named and identifiable event neces-
sarily has a beginning and an end. Time, in this sense, delimits events,
just as boundaries delimit objects.

(5) Time as repetition: the sequence of events in one working day
is the same as in the day before or the day after; in every annual cycle,
productive activities follow one another in the same sequence, and
so on. The recognition of such repetitions is universal, but this does
not necessarily entail a notion of continuity. . .today is separate from
yesterday. There is often a gap of several months between the end of
one working year and the beginning of the next.

(6) Time as aging: older people are aware that they and their

1 For a recent discussion of psychological aspects of this problem see Ornstein,
R. E., On the Experience of Time, Penguin Books, Harmondsworth, 1969.
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friends were once younger; they are also aware that in the future they
will all be dead. The end of the world lies ahead.

Now to anyone with your kind of mathematical orientation the
last of these six categories of time is simply the notion of entropy
while the other five can all be combined into one figure.
But a unitary conception of time such as is implied by a wave
diagram of this sort does not arise from ordinary experience; it is an
intellectual construct imposed on ‘the world out there’ by the thought
processes of mathematicians.

In the world of common-sense, time is fragmented and the frag-
ments do not necessarily fit together.

But let me go back to my list of the varieties of time. Most accounts
of the history of science give the impression that, from the second
millennium B.C. onwards, men were aware of the ‘existence’ of

N
NN

a unitary entity ‘time’; and that the progress of astronomy was
directly linked up with more and more refined attempts to measure
time — by calculating the relative lengths of lunar, solar and sidereal
cycles so as to establish the ‘true’ length of the year. In retrospect
this is indeed how it worked out, but that is certainly not what the
ancient calendar makers thought they were up to.

We know for example that, from the third millennium B.C. at
least, the Ancient Egyptians had two quite different calendars, one
for computing official and religious events and the other for organis-
ing the agricultural seasons which were linked with the rise and fall
of the Nile flood. The civil agricultural calendar was a lunar calendar.
The religious calendar was a day-count system which made use of
the special number scales to which I have already referred. Each
third of a year was divided into quarters making twelve sections;
each section was then subdivided into thirds, of ten days each. The
whole yearly cycle thus consisted of a symmetrically arranged se-
quence of thirty-six ten day periods. To this was added a special half
section of five days which consisted of religious festivals outside the
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normal year, giving a full cycle of 365 days. The Egyptians were well
aware that this year was not astronomical, but it was convenient.
Until very late they did not attempt to calculate its precise dis-
crepancy from the natural year. In effect they behaved as if the two
calendars, the secular and the religious, measured two quite separate
varieties of time. This was common-sense since the day-count calendar
served religious purposes for which astronomical correlations were
irrelevant. It is only convention which makes us think that the move-
ments of the heavenly bodies constitute a natural clock. On the con-
trary, it is at least arguable that the symmetrical, astronomy-free,
Egyptian day-count system was the only completely rational method
of reckoning time that has ever been invented anywhere.!

For that matter even the Chaldeans and the Greeks who, unlike
the Egyptians, really did become interested in astronomical (as
distinct from calendrical) problems, were both quite unconcerned
with what we should now consider to be the practical aspects of
astronomy. Their concerns were metaphysical. This is a point I must
emphasise most strongly. In the history of science, astronomy and
mathematics were both step-children of astrology, not the other way
about. Astronomy was first developed to serve astrological ends and
astrology is just one of a vast number of ‘para-logical’ techniques by
which man has, at one time or another, attempted to predict the future.

All these techniques derive from the same basic non-rational yet
common-sense belief, namely that every person or animal or thing
or event has its own ‘destiny’ or ‘life-time’. In retrospect, after it has
happened, this proposition becomes a self evident truth; the mera-
physical hypothesis is simply that the destiny is ‘already there’,
before it has actually happened. But if it is there, it is ‘logical’ to think
that it should be discoverable.

And why not ? Suppose I go to Bristol next Sunday. I do not at this
moment know the way to get there. But the way from Exeter to
Bristol already exists and I can discover what it is. If I go to Bristol
I shall make a journey along this road which already exists; if I do
this I shall uncover a piece of my destiny; I shall use up a piece of
my life-time. Surely it is common-sense to think that this future
life-time already exists now ?

That anyway is the logic of pre-destination. Each person, animal,
thing, event carries with it its own destiny, its own unique ‘piece of
time’. Part of this time is already past and uncovered; part still lies

1 Neugebauer (1952), The Exact Sciences in Antiquity, p. 81.
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in the future and is in shadow; but the whole has “existed’ ‘from the
beginning’.

Historically, astrology arose when it was realised that astronomical
events are computable in advance. Once it was postulated that an
association might exist between the time of a particular personal
event — such as a birth — and the time of a particular astronomical
event — such as an astrological configuration — then it became per-
fectly ‘reasonable’ to suppose that the future course of an indi-
vidual’s personal destiny can be predicted.

From our modern scientific point of view this is nonsense, but this
is what happened in history. Clockmaking and astronomy did not
evolve as techniques for measuring an abstract unitary entity, sidereal
time, which is part of nature, but as devices for linking together the
conjunctions of isolated, very specific, very personal, chunks of time.

Joseph Needham and his associates have given a fascinating
account of the medieval Chinese version of this ideology which I feel
is worth repeating, if only to add an element of light relief. In the
eleventh century A.D. the Chinese emperor possessed the most
sophisticated clock in the world. It was an elaborate water-driven
affair about thirty-five feet high. The function of the clock was not
merely to tell the time of day but to compute the positions of the
stars and the planets and their conjunctions. I quote:

From time immemorial the large number of women attending upon (the
Chinese Emperor) were regulated according to the numinous cosmism
which pervaded Chinese Court life. . .his consorts and concubines com-
prised one empress, three consorts, nine spouses, twenty seven concubines,
and eighty one assistant concubines. The total adds up to 121, which
(certainly by no coincidence) is one third of 365 to the nearest round
number. . . The lower-ranking women came first, the higher-ranking came
last. The assistant concubines, eighty one in number shared the imperial
couch nine nights in groups of nine. The concubines, twenty seven in
number, were allotted three nights in groups of nine. The nine spouses
and three consorts were allotted one night to each group, and the empress
also alone one night. On the fifteenth day of every month the sequence
was complete, after which it repeated in the reverse order. . . The secretarial
ladies kept a record of everything with their vermilion brushes.

What was at stake was the Imperial succession...(any one of an
Emperor’s sons might theoretically be chosen as heir); one of the factors
in this choice was the nature of the asterisms which had been culminating
at the time of the candidate’s conception. Hence the importance of the
records which were kept by the ladies secretarial, and the value of a
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(mechanical instrument) which not only told the time but from which one
could read off the star positions at any desired moment.*

I cannot help feeling that some of your more reluctant pupils might
find mathematics a much more exciting subject if they thought that
their calculations could lead to a similar pay off!

The case of the Emperor’s concubines illustrates, among other
things, the magical property of numbers, particularly of multiples
of the number 3. This is no trivial matter; most of your pupils will
almost certainly have magical feelings about numbers.

Almost universally, even in the most unsophisticated societies, odd
and even numbers are recognised as complementary and opposite,
often as male and female. By an extension of this mode of thinking,
three, reckoned as 2 + 1, may be considered the first complete number.
Hence the recurrent appearance of mystical religious triads — Osiris—
Isis-Horus, the Christian Holy Family, the Christian Trinity and
so on.?

Correspondingly if 3 is perfect and complete it follows that 2 x 3 is
imperfect and incomplete but 3 x 3 is again perfect and so on. Hence
6 is ‘bad’ but 9 is ‘good”’.

But this is taking me far away from my theme of time reckoning
so let me go back yet again to my list of ‘the varieties of time’, in
particular to the phenomenon of entropy — the human peculiarity
that, of all animals, man alone knows that he is going to die.

1 Needham, J., Wang Ling and de Solla Price, D. J., Heavenly Clockwork : The
Great Astronomical Clocks of Mediaeval China, Cambridge University Press,
London, 1960, chapter 8.

? The world-wide magico-religious emphasis on triads and ternary numbers of
which a variety of examples appear in this paper has both logical and psycho-
logical foundations. Theological disputes about the nature of the Trinity are
ultimately concerned with problems of ‘truth’ just as are the logicians who are
able to show that Boolean algebra, when applied to propositional logic, can
reduce the sixteen connectives of a standard truth table to three: ‘union’,
‘product’, ‘complement’. But apart from its logical implications this same
numerology evidently strikes a chord which reaches deep into human psycho-
logy. At a fairly superficial level, every individual tends to perceive himself as
standing at the apex of a triangle of which the two parents form the base, but
much more fundamental is the empirical finding that the phonology of language
depends upon an innate human capacity to learn how to discriminate between
binary distinctive features and then to mediate oppositions.

The kind of dialectical logic by which we first recognise an entity ‘4’ by
distinguishing it from ‘not-A’ and then synthesise ‘B’ as the negation of ‘both
A and not-A4’ to form a new triadic unity, seems to be a universal component
of human thought. It can be illustrated in the myths and customs of even the
most exotic peoples. This is the central theme in Lévi-Strauss’ 4 volume
Mythologiques (Plon, Paris, 1964-1971).
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The nature of religion cannot be summarised in a sentence yet it is
fairly obvious that a very large part of all religious ideology is con-
cerned with attempts to deny the fact of death. Death, we are told,
is not ‘really’ death at all, it is a gateway to eternal life. In accepting
any such doctrine we reject the inevitability of entropy and the
arrow of time.

The forms which such belief can take are enormously varied but
most of them fall into just two major classes:

(1) There are systems (such as that of orthodox Christianity) in
which the time of life on earth is recognised as subject to entropy. ..
we get older and older every day. . .but life in ‘the other world’ is
‘eternal’, that is time-less. In Heaven and Hell the individual soul
does not experience aging.

(2) There are systems which are essentially cyclical and repetitive —
the future life is a copy of this one — birth follows death but death
still follows birth.

Our modern ‘scientific’ notion of infinitely extensible entropic
time — a universe which is for ever running down hill - fits especially
badly with religious ideologies of the first type which postulate an
after life of eternal bliss; so let us take a closer look at the time
structures which are entailed by such systems.

Christianity, if we accept the Bible as literally true, presupposes
a time framework which is similar to that of the Australian Abori-
gines. Time has a beginning, but thereafter the past falls into two
distinct stages.

Therewasfirst the period of dream time or myth time in which the first
beings existed in a newly created Paradise, in a stationary state without
reproducing themselves or getting older. Then, in contrast, there is
the waking time of ordinary experience in which entropy operates,
events happen one after another, and ultimately everyone is dead.

A characteristic of the first of these periods, the dream time, is that
all events are, in a sense, simultaneous; it takes time to tell the story
but the story when it has been told is like a map; it is a description
of a social topography; it would not really matter if the events had
been listed in quite a different sequence.

The other characteristic of dream-time-past is that it is not really
‘past’ at all. The legendary first beings, who appear as hero figures
in the myths, are not ‘dead’, they exist ‘now’, and they still operate
with potency in our present existence; ‘God liveth’ as a kind of super
grandfather laying down the moral rules.
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Now in unsophisticated, non-numerate societies, such as social
anthropologists usually study, this dual evaluation of the past does
not create any serious intellectual difficulties. Entropic time, in which
human beings grow old and die, is current and recent, it relates only
to the memory of man — that is to the life experience of individuals
who are still alive and their immediate forbears. The timeless eternity,
from which the hero ancestors are still controlling events, is close at
hand, not chronologically distanced from the present.

But as soon as it becomes customary to measure time by numbers,
there is a tendency to use number magic to relate the past to the
present. The ‘beginning of time’ then becomes a base point; the
patriarchs cease to be immortal and turn into giants who live to
a very great abnormal age but eventually die. The Biblical Book of
Genesis exemplifies the general pattern. But it is a great mistake to -
imagine that people who have developed a chronological sense of the
past of this type, havea view of history which closely resembles our own.

To round off I propose to give you in rough outline an example of
the point I have just made. It illustrates the main thesis that I have
been making all along. Common-sense is a variable; the fact that
people act in a way that seems to us sensible, or that they make state-
ments which seem to us comprehensible, does not necessarily imply
that they mean what we think they mean.

The areas in which there is likely to be the greatest misunder-
standing are those in which we feel ourselves most expert.

All of you in this room are accustomed to the manipulation of
numbers, but you also operate within a framework of strict con-
ventions about what sorts of numbers may be manipulated. If, for
example, you had a Western style education you will have been
taught that the time framework of history is ‘a given’ which is not
open to manipulation. But that of course is just a convention and it
may be salutary to consider the works of medieval Christian his-
torians precisely because they constitute a class of authors who
manipulated the time framework of history quite blatantly.

The justification for my citing this rather complicated and super-
ficially crazy material is that it illustrates a particular, and widespread,
way of thinking about numbers. I am not suggesting that your pupils
think like that; but it is quite possible that they may do so!

But now to my example.

Whenever the past is given chronological depth but is still credited
with a mystical influence upon the present, chronology itself becomes
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a part of the magical apparatus. This readily leads to an obsession
with number magic.

The Christian Fathers of the third century A.D. argued as follows:!

(@) God created the world in 6 days and rested on the 7th day.

(b) A day in the sight of God is a thousand years.

(c) It is therefore self evident that the world will come to an end
6000 years after the Creation.

(d) This impending doom is confirmed by the fact that Noah was
600 years old at the time of the Flood, that the Idol set up by
Nebuchadnezzar measured 60 cubits by 6 cubits and that the mark
on the Beast in the Book of Revelations is the number 666.

(e) The Incarnation of Christ the Redeemer was the recapitulation
of the Creation of Adam the Sinner.

(f) But Adam was created on the 6th day and had sinned at the
6th hour (i.e. 53 days after the first Beginning). Therefore the
redemption of the World was timed for 54 x 1000 years.

(g) It follows that Christ was born in Bethlehem in the World
Year 5500. He was crucified in His 33rd year; 33 being morally good,
just as 666 is morally bad.

And so on.

One aspect of this is that the authors concerned were living in the
third century A.D. so that by computing the End of the World at
A.D. 500 they were bringing the Day of Judgement near enough to be
interesting. The exaggerations of the environmental Doom-watchers
of today who predict total disaster within the next fifty years have
similar motivations. But early Christian numerological calculations
could be much more specific than that.

The following characteristic example comes from Hippolytus’
Commentary on the Book of Daniel written in the early part of the
third century.

The first coming of Our Lord, the Incarnation of his birth at Bethlehem,
took place on the eighth day before the Kalends of January (December
25th) on a Wednesday in the forty second year of the reign of Augustus,
five thousand five hundred years after Adam. He suffered in his thirty
third year on the eighth day before the Kalends of April (March 25th)
in the 18th year of Tiberius Caesar in the consulship of Rufus and
Rubellion.?

1 The Writings of Irenaeus (translated by A. Roberts and W. H. Rambaut),
Ante-Nicene Christian Library, Edinburgh, 1969, vol. 2; pp. 118, 132, etc.

2 Bonwetsch, G. N. and Achelis, H. (eds.), Hippolytus Werke vol. 1, part 1,
Die Kommentare zu Daniel and zum Hohenliede, Leipzig, 1897, p. 242.
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On the face of it this reads like an assertion of historical fact such as
we might encounter in a modern school history book. It is nothing
of the sort. If we are to understand what was intended we have to
appreciate that the author’s central problem was one of time rather
than events. The exact date of the Crucifixion had become an issue of
extreme doctrinal significance, but it was unknown. Hippolytus
believed that he could discover the ‘correct’ date by computation.

As is the case among many much more primitive societies, the
early Christians believed that the welfare of their community might
be very seriously jeopardised if the various annual rituals were not
properly performed on the ‘correct’ dates. But Christian festivals
such as Easter were supposed to be tied to dates in the Jewish lunar
year. Any straightforward reading of the Gospels for example must
imply that the Friday of the Crucifixion corresponded to the Jewish
Passover which falls on the fourteenth day of the month Nisan. But
how could the lunar date Nisan XIV be identified in the Roman
Julian calendar of 365} days? The theologians have never managed
to solve this problem! but in the early centuries of Christendom
attempts to solve it led to endless theories about ‘time cycles’, each
of which tended to become the doctrinal banner of a particular
schismatic group.

Considered astronomically, al/ the various theories were defective,
and indeed, prior to the sixteenth century A.D. astronomical observa-
tion was always too crude to decide a disputed issue one way or the
other.

In practice the rival theorists ignored astronomy and attempted to
give their arguments a mythical authority by projecting them back-
wards through time. Each author sought to validate the accuracy of
his own favoured Easter table by showing how well it fitted with
the events of sacred history.?

So what about Hippolytus’ statements concerning the dates of the
birth and Crucifixion of Jesus Christ? They represent a curious
amalgam of calendrical calculation, historical tradition and doctrinal
theory.

1 After the Council of Nicaea the Crucifixion was presumed to have occurred on
Nisan XV and the tables were redesigned so as to prevent Easter Sunday from
ever coinciding exactly with the Jewish Passover. However in 1923 the Paschal
full moon fell on the day given in the modern Western Church tables for
Easter day. To conform with the post-Nicaean rules Good Friday should have
been on the Friday following Easter Sunday!

2 For a full account see Jones, C. W. (ed.), Bedae : Opera de Temporibus, Mediaeval
Academy of America, Cambridge, Mass., 1943, chapters 1-4.
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All the rival theories about the dating of Easter manage to drag in
the names of the two consuls, usually called Rufius and Rebellius.
According to modern reckoning they held the consulship in A.D. 29
but their significance for the Christian tradition was that they were
supposed to have been twin brothers. By specifying them as gemini,
the founding of the Church of Christ is linked up with the founding
of the City of Rome by the gemini Romulus and Remus.

The statement that Jesus was crucified in his 33rd year is an
essential detail which distinguishes Hippolytus’ theory from rival
doctrines which place this key event in A.D. 29. The link with the
18th year of Tiberius is based on Luke 3: 1, 23. On this basis, Jesus
would have been born in the 44th year of the reign of Caesar Augustus
as ordinarily computed and the reference to the ‘42nd year’ is prob-
ably simply a mistake.

The references to days of the week and days of the month are
however based wholly on computation and doctrinal theory. The
precise details of this particular computation cannot be reconstructed
with certainty but they would have been based on some or all of the
following postulates.

(1) The World was created at the Spring Equinox, 25 March,
on the first day of the week, Sunday.

(2) The moon was created on the evening of the fourth day,
Wednesday.

(3) Since it was created to light the night, it was a full moon.

(4) The Annunciation and Conception of the Blessed Virgin was
a recapitulation of the Creation of the World and therefore occurred
on 25 March, but since it brought light to our (moral) darkness it
was a full moon.

(5) The birth of Christ followed, exactly 9 Calendar months after
the Conception, on 25 December. It was a Wednesday because it
recapitulated the creation of the sun and the moon on the fourth
day.?!

(6) The Crucifixion of Jesus Christ on Friday in Holy Week was
the act of Redemption which repeated in reverse the expulsion of
Adam and Eve from the Garden of Eden on the sixth day and the
ninth hour. It was linked with the full moon of the Jewish Passover.
But since this too was a beginning of new time, this event again must
have occurred on 25 March.

Apart from these theological assumptions Hippolytus also made

1 In fact if 25 March is a Sunday, 25 December is a Tuesday.
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use of some perfectly straightforward calendrical calculations,
such as,

in the Julian Calendar the days of the week repeat themselves in
relation to the days of the month every 28 years (4x7) so if 25
March is a Sunday in year 1 it will also be a Sunday in year 29, and
in year 33 it will be a Friday.

Finally, there is the fact that Hippolytus’ Easter tables assume, quite
erroneously, thatthereis a 16 year lunar cycle such that if 25 Marchis a
full moon in year 1, it will also be a full moon in year 17 and year 33.

Putting all this together Hippolytus argues that the Conception of
Christ, as the crucial beginning of the Christian era, occurred on
a Sunday, at the Equinox, on 25 March, at the full moon. By his
(inaccurate) reckoning, 25 March 32 years later was likewise a full
moon, but a Friday — the Friday of the Crucifixion. Counting from
the Annunciation as base, this is correctly described as ‘the 33rd
year’ of Christ’s life.

Far from being a mere artistic flourish Hippolytus’ references to
month dates and days of the week lie close to the heart of the matter
since they serve to justify the table of actual Easter dates which
started from A.p. 222.%

At first sight this all seems very silly but we need to notice what is
going on. Hippolytus first assumes that chronological numbers are
no more sacrosanct than other numbers and that they are open to
1 In Hippolytus’ table the cycle begins with the (genuine) full moon of A.p. 222

which fell on 13 April. Easter is allowed to fall on any of the days /una xvi to

Iuna xxii of the Paschal moon. This implies that Christ was crucified on Nisan

XIV and lay in the tomb on Nisan XV. The table assumes that the earliest limit

for Easter day was 18 March the day the sun entered Aries according to the

Old Roman computation. This would imply that the Paschal new moon

corresponding to Nisan I could not retrogress beyond the last hours of

4 March.

A revised Hippolytan table, which appeared in the year 243 under the name
of Cyprian, explains this equation of Nisan I with 4/5 March by the following
remarkable piece of reasoning:

The World was created at the Spring Equinox, 25 March

The moon was created on the evening of the 4th day, 28 March

Since it was created to light the night it was created as a full moon. The

following day 29 March was therefore Nisan XIV. If this moon had existed

before it was created full it would have been a new moon on 16 March.
The lunar date falls back 11 days each year in relation to the solar calendar.

Therefore the first actual Nisan I would be 11 days before 16 March, i.e.

4/5 March, near the end of the first year of the Creation, and this set the

earliest limit for subsequent Paschal full moons as 4/5 March+ 14 that is

18 March. Q.E.D.
(See Jones (1943), Bedae: Opera de Temporibus, pp. 12-13.)
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manipulation in a mathematical way. He then assumes that if we
link historical events with numbers (i.e. dates), the series will be
recursive (i.e. that ‘history will repeat itself’). He then treats the
repetitive sequences of which his history is composed as interlocking
epicycles of varying duration and postulates that the ‘important’
events in history always occur on dates at which several different
epicycles all come into phase. His key dates are those at which the
7 day week, the 365} day Julian year and the 354 day lunar year
synchronise.

This way of using a numerical view of the past as a code for
deciphering the present was not a peculiarity of early Christians.
Other civilisations have used historical time in a very similar way,
notably the Maya of Central America. Granted the primary assump-
tion that history repeats itself it is a perfectly rational way of pro-
ceeding and we should perhaps ask ourselves why we are so confi-
dent that the assumption is false. But my present point is a different
one. The early Christian authors looked upon the writing of history
as the application of a general theory of number to practical prob-
lems. Dating was not ascertained by reference to contemporary
records but by citing ‘authorities’ and by computation. Moreover,
in the correct scientific style of Professor Popper, they recognised
that their hypotheses could be falsified by events, in which case they
would have to change their theory and this would alter the structure
of history. Here is a striking example of the latter principle.

Some 80 years after Hippolytus published his tables the Alex-
andrine ecclesiastics became interested in the arithmetic of the
Kallippic cycle of 76 years. It was noticed that the number 5776 was
76 x 76 while the reign date of Diocletian, by Hippolytus® reckoning,
would be World Year 5787. Arguing that the reign of Diocletian,
with its anti-Christian persecutions, must mark the era of Anti-
Christ who was to be the forerunner of Christ’s true second coming,
the Alexandrine church authorities decided that the reign of Dio-
cletian must have initiated a new era of time. They therefore quietly
shifted the dates of both the Crucifixion and the Creation of the
World forward by 10 years — to the consternation and anguish of
later chronologists! In this way Diocletian’s reign date became
World Year 5776+ 1, the first year of a new great cycle of time.!

Let me emphasise again just why I am giving you these tedious

1 Mas Latrie, L. Cte de, Trésor de Chronologie (Paris, 1889), Col. 30/31: Encyclo-
paedia Britannica XIth edn, article Chronology.
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examples of phoney arithmetic. They illustrate the two main ways
in which the medieval historian’s attitude to time differs from that
of his modern successor. In the first place, events are treated as
interesting only in so far as they can be seen to be fulfilments of
Destiny or omens of the Future. Secondly, dating, though meticu-
lous, is a matter of computation rather than of evidence.

Until this view of the nature of history and of the nature of
evidence could be abandoned, the development of modern science
was impossible, but, in the context of established Christianity, any
such change was liable to smack of heresy.

Writing about A.D. 1267 Roger Bacon reviewed at length the whole
of the earlier argument about the date of Easter and then he went on
to recommend to the Pope a calendar revision of his own devising.
Bacon justified the need for this calendar revision by saying that the
existing system made the Christian church a laughing stock in the
eyes of Arabic scientists; he justified the revision itself not by refer-
ring to historical ‘authorities” but by a straightforward astronomical
calculation.! His viewpoint is thus the exact antithesis of that pro-
pounded by the earlier writers whom I have mentioned.

Bacon’s proposed revision was broadly similar to that ultimately
adopted by Pope Gregory at the end of the sixteenth century but his
scientific enthusiasm was three hundred years too early; all that
Bacon earned by his proposals was fourteen years imprisonment!

That perhaps is an appropriate place to stop because it brings us
back full circle to the uncertainties of Bertrand Russell. Bacon was
not thrown into gaol because he was a scientist defying the Church
but because he was putting forward the claims of empiricism against
the idealist assumptions of established mathematical orthodoxy.
Today, as I suggested at the beginning, the movement of thought
is going the other way; idealist heresies are tending to undermine the
empiricist assumptions of scientific orthodoxy.

Let us beware lest the would-be heretics among our own pupils,
by challenging our authority, should tempt us to react as the Pope
reacted against Roger Bacon.

King’s College,
Cambridge.

1 Burke, R. B. (trans.), The Opus Magnus of Roger Bacon, 2 vols., University of
Pennsylvania Press, Philadelphia, 1928, vol. 1, pp. 222-30; 291-306.
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Mathematical education in developing
countries — some problems of
teaching and learning

Hugh Philp

The original invitation to me to address the Conference suggested
as a topic ‘The Psychology of Mathematics Education’. For two
main reasons I have chosen to go off at something of a tangent. First,
Shulman’s brilliant paper in the 1970 NSSE ‘Yearbook’ represents
so careful and thoughtful an analysis of current Western thinking on
the psychology of mathematics education that it would be both pre-
sumptuous and superfluous for me to attempt to improve on it.
Secondly, my colleagues and I at Macquarie University in Australia
have been concerned, over the last five years or so, with some
problems related to the education of children in developing countries
and I thought it might be more useful, and interesting, to discuss
some of our findings with you than to recapitulate what has already
been so well described by Shulman.

The central concept in much of our work has been that of ‘Educ-
ability’, operationally defined as ‘the probability that children will
learn what they are supposed to learn’ — and with the factors, both
genetic and environmental, which affect this (Philp, 1967). The initial
emphasis, although not the only one by any means, has been on
factors related to cognitive development, essentially because so much
of the current theory and practice of curriculum development and
teaching methods is dependent on notions about the nature of
cognition. The number of occasions on which the name of Piaget is in-
voked in other papers in this volume is itself evidence enough of this.

The great bulk of the research on the development of cognitive
skills and hence of the derived theory has been carried out with
Western children. Similarly most of the curriculum building based
on the theories of Piaget, Bruner, Gagné, Ausubel and others has
gone on in Western educational systems. Sometimes such curricula
have been transferred, almost unaltered, to non-Western societies;
in other cases, in the current jargon, they ‘have been adapted to meet
local needs’. But very seldom, if ever, has their fundamental psycho-

154



PROBLEMS OF TEACHING AND LEARNING

logical basis been questioned. . .do the theories of cognitive develop-
ment on which they rest stand up in non-Western contexts? Do the
children of New Guinea, for example, develop cognitive concepts in
the same way as Australian children ? If not, what are their modes of
concept formation and what are the implications for curriculum and
for teaching? Much of our work has been concerned with questions
of this kind.

The main purpose of this paper therefore is not so much to discuss
the general psychology of mathematics teaching and learning as to
describe recent data, much of it unpublished, which suggest that there
may be a need for re-examination of current practices, particularly in
non-Western societies, and perhaps also of current theories of mathe-
matics curricula and methods of teaching in the schools. I hasten to
add that these new data will need further extension and research, for
their implications, if verified, are far reaching indeed. My emphasis
would be that they are more in the nature of ‘work-in-progress’ than
of definitive findings.

Before going on to describe them it would seem appropriate to
make some distinctions and clarify some concepts which are germane
to the presentation.

First, there is a real distinction to be made between mathematical
thinking and mathematical learning. There is no necessary relation-
ship, in the shape of a one-to-one correspondence, between the logic
of mathematics itself and the ways in which children form concepts
generally. Piaget (e.g. 1926, 1957) has demonstrated fairly conclusively
that children’s logic, in the early years at least, is far from being
hypothetico-deductive in character and the work of a generation of
anthropologists has amply shown, in Bridgman’s words (1958), that
‘It begins to look as though formal logic as we know it, is an attribute
of the group of Indo-European languages with certain grammatical
features.” We have been too prone to assume that because the logic
of mathematics is pretty much the logic of those Indo-European
languages, it must also be the logic of all languages and all cultures.
There is a good demonstration of this fallacy in Gay and Cole’s
fascinating book (1967) on mathematical thinking and learning
among the Kpelle people of Liberia. That is, while there may well be
a universal logic of mathematics —a subject on which I would not
feel qualified to judge — there is almost certainly not a universal logic
of the ways in which children form mathematical or indeed any other
concepts. Some of the later data bear further on this.
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Second there is some point in distinguishing between the structure
of mathematical thinking and learning and the functions or processes
involved. This is not merely or even the old philosophical distinction
between structure and function, for it involves a whole set of pro-
cedures related to curriculum and to teaching. It is fair to say that
traditionally in Western education we have accepted, at least until
fairly recently, ‘structural’ notions about mathematics learning; we
have talked about ‘mathematical ability’ and have accounted for
learning differences among children in terms of this. And indeed there
is a good deal of evidence from factor analysis studies that, among
Western children and students, there are ‘abilities” which are related
to performance in tasks of a mathematical character. Whether these
‘abilities” are genetically determined, in the sense of D. O. Webb’s
‘Intelligence A’ or whether they represent ways in which people
structure their learned world or whether there is a combination of
both, is still a matter of speculation. The general assumption has
been that there are basic ‘mental structures’ and that these have some
kind of universal character to them. Some of the evidence given
below suggests however that different cultural groups exhibit different
structures in the factor analysis sense, when presented with apparently
identical tasks. For the moment it is sufficient to emphasise that most
current curricula, particularly at secondary level, assume ‘mental
structures’ which are more or less isomorphic with curriculum
‘subjects’. Put another way, we have been concerned with concepts
and not with how they are formed.

Alongside this, since Piaget, we have begun to look at the function-
ing mind, with how people in general and children in particular,
go about forming concepts and have begun to frame curricula and
teaching methods accordingly. In this, as in the theories of structure,
there has been as a rule the assumption that the processes involved
are universal: that children, whatever their background, language
or culture, form concepts in essentially the same way —and hence
that mathematics can be taught, as far as its logic is concerned, in the
same way to New Guinea children as to English or Australian boys
and girls. I would doubt that Piaget himself, despite his insistence on
‘fonctions invariantes’ would go as far as to say this, although, as
Sigel (1969) writes, he has ‘ been criticised for underplaying the role of
socialization experience as an influence in cognitive growth’. Many
educators, including mathematical educators, have assumed uni-
versality of concept formation however. Some of the data to be
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presented below suggest that the assumption is unwarranted and may
lead to disastrous consequences in learning.

At this stage two points are stressed: (@) in our present state of
knowledge about the neurology of the brain, any theories about
structure are themselves inferences from performance: that is, from
function — which raises difficult questions about the nature of the
performance tasks themselves; (b) that even if there are universal
structures, these result in a very wide variety of performance under
different cultural conditions, so wide in fact that for practical pur-
poses, knowledge of the structures would be largely irrelevant
without parallel knowledge about the nature and range of the func-
tions implicit in these structures.

That is, we are on sound ground in our attempts to build
mathematics teaching and learning on the basis of the ways in which
the child learns to form mathematicai concepts: the logic of child
development must take precedence over the logic of mathematical
development, or rather, we must develop mathematics curricula in
order to take maximum advantage of the ways in which the child
develops cognitively. The corollary to this is that if cognitive de-
velopment and/or cognitive functioning is different in different
cultural contexts then so must the curricula and probably the methods
of teaching be different.

This leads directly to the allied distinction between ‘process’ and
‘product’, a distinction admirably stated by J. S. Bruner (1966, p. 72)
in his classic little book Towards a Theory of Instruction.

Finally a theory of instruction seeks to take account of the fact that
curriculum reflects not only the nature of knowledge itself (the specific
capabilities) but also the nature of the knower and of the knowledge-
getting process. It is the enterprise par excellence where the line between the
subject matter and the method grows necessarily indistinct. A body of
knowledge, enshrined in a university faculty and embodied in a series of
authoritative volumes, is the result of much prior intellectual activity. To
instruct someone in these disciplines is not a matter of getting him to com-
mit results to mind. Rather, it is to teach him to participate in the process
that makes possible the establishment of knowledge. We teach a subject
not to produce little living libraries on that subject, but rather to get
a student to think mathematically for himself, to consider matters as
a historian does, to take part in the process of knowledge-getting. Knowing
is a process, not a product.

Need one say more?
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A more difficult problem, however, lies in determining the subject
matter of a curriculum which will attain objectives such as these.
Shulman, in the penetrating chapter on ‘Psychology and Mathe-
matics Education’ to which I have referred, contrasts the positions
of Bruner and Robert M. Gagné on the issue; ‘Gagné’ he writes
(p. 55), ‘has come out in substantial agreement with Bruner on the
priority of processes over products as to objectives of instruction.
His emphasis, however, is not on teaching strategies or heuristics of
discovery; he is much more concerned with the teaching of the rules
or intellectual skills that are relevant to particular instructional
domains.” And he quotes Gagné himself":

Although no one would disagree with the aims expressed (by Bruner), it is
exceedingly doubtful that they can be brought about solely by teaching
students “strategies’ or ‘styles’ of thinking. Even if these can be taught (and
it is likely that they can), they do not provide the individual with the basic
firmament of thought, which is a set of externally-oriented intellectual
skills. Strategies, after all, are rules which govern the individual’s approach
to listening, reading, storing information, retrieving information, or solving
problems. If it is a mathematical problem the individual is engaged in
solving, he may have acquired a strategy of applying relevant subordinate
rules in a certain order — but he must also have available the mathematical
rules themselves. If it is a problem in genetic inheritance, he may have
learned a way of guessing at probabilities before actually working them
out — but he must also bring to bear the substantive rules pertaining to
dominant and recessive characteristics. Knowing strategies, then, is not all
that is required for thinking; it is not even a substantial part of what is
needed. To be an effective problem-solver, the individual must somehow
have acquired masses of organized intellectual skills.

Shulman deduces from this distinction the view that the objectives
of a curriculum determine the methods of teaching, and that therefore,
‘psychology has been successful in suggesting ways of teaching only
when objectives have been made operationally clear’. The position
taken in the present paper is that this does not go far enough, since
it fails to take into account the facts that (a) some objectives, how-
ever clearly stated, are not attainable unless certain pre-requisites
are met and (b) some methods are inappropriate to the children and
the teachers however clearly the objectives may be stated in opera-
tional terms. That is, while I would agree that objectives often deter-
mine methods, I would also argue that objectives have to be
determined as much by the total learning situation, including the
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capabilities of the child, as by the demands of the subject matter,
whether these demands be couched in terms of strategies or in terms
of knowledge and skills.

A similar comment applies to the equally important distinction
between ‘guided learning’ and ‘discovery learning’. This is not
identical with the process—product argument for, as we have just
seen, Gagné accepts the objective of ‘process’ but argues for ‘guided
learning’ as a more effective methodological strategy for teaching.
Ausubel, on the other hand, stresses guided learning but dismisses
more or less out of hand any thought of ‘process’ directed curricu-
lum, maintaining that the primary objective of formal education is
the transmission of knowledge. Not of course that any of these major
theorists on the application of the psychology of development to
education — Bruner, Gagné, Ausubel — would wish to argue a black
and white case. The question is rather one of emphasis or stress in
curriculum and methods and stems from an important difference in
theoretical interest: Bruner is concerned with the whole range of
issues relating to the cognitive development of children and with the
implications of his findings for teaching and learning. Gagné, on
my reading, takes his beginnings from the learning process itself and
is looking for relationships between this and the content to be learned:
he is less concerned than Bruner with the learner. Ausubel seems to
focus on the nature of the content and looks from this to the appro-
priate teaching-learning situation for acquisition of this content.
A gross oversimplification of their respective stances on the issues of
discovery versus guided learning and product versus process would
give a paradigm like that below.

Objectives

Product Process

[ Guided learning Ausubel Gagné
Method

1Discovery learning g Bruner

I have dwelt somewhat overlong on this issue for three reasons:
first, to emphasise again that objectives to a large extent determine
approaches; secondly, to suggest that current theories do not take
into sufficient account the nature of the total learning situation,
particularly the nature of children’s thinking in different cultural
contexts; and thirdly, to point out that although no major theorist,
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to my knowledge, is concerned with product as an objective, that is
with the transmission of knowledge — and at the same time argues
for the use of ‘discovery learning’ as a basic method, nevertheless
this is a far from uncommon strategy among curriculum makers and
teachers, particularly teachers of mathematics. That is, they have ‘ got
the message’ about ‘discovery learning’ but are still reluctant to
abandon their well-ingrained loyalties to content.

One further set of ideas relevant to this must be outlined here.
Bernstein (1971) in a fascinating discussion of curriculum from the
viewpoint of a sociologist of education, distinguishes between
‘integrated’ and ‘collection’ types of curricula and between ‘strong’
and ‘weak’ classifications and ‘frames’ of instruction. A ‘collection’
type of curriculum is described as one in which ‘the contents stand
in a closed relationship to each other; that is. . .are clearly bounded
and insulated from each other’. Against this he goes on to ‘juxtapose
a curriculum where the various contents do not go their separate
ways, but where the contents stand in an open relationship to each
other” (p. 186). This he calls an ‘integrated curriculum’. These
distinctions may pertain within so-called subjects as well as between
them; Geometry may be taught as distinct from Algebra as it is from
say, History or Bahasa Indonesia in a collection type of curriculum.
Clearly there is some relationship between this dichotomy and the
product-process one just discussed.

His second distinction, between ‘strong’ and ‘weak’ frames is
somewhat akin to that between ‘guided’ and ‘discovery learning’.
‘Collection’ and ‘integration’ refer to the content of the curriculum,
but Bernstein is also concerned with relationships between contents.
He uses the concepts of ‘classification’ and ‘frame’ for this; meaning
by classification ‘the nature of the differentiation between contents’.
Classification may be ‘strong’ or ‘weak’:

Where classification is strong, contents are well insulated from each other
by strong boundaries. Where classification is weak, there is reduced insula-
tion between contents, for the boundaries between contents are weak or
blurred. Classification thus refers to the degree of boundary maintenance
between contents. Classification focuses our attention upon boundary
strength as the critical distinguishing feature of the division of labour of
educational knowledge. It gives us the basic structure of the message
system, curriculum (p. 187).

‘Frame’ refers to the frame of the context in which knowledge is
transmitted and received. Frame refers to the specific pedagogical
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relationship of teacher and taught. In a different jargon, ‘frame’
would appear to be equivalent to the ‘total teaching-learning situa-
tion’ or, in a more restricted sense, to the ‘teacher—pupil’ relation-
ship. Bernstein argues that frame, like classification, may be ‘strong’,
when teachers and pupils have a limited ‘range of options available
. . .in the control of what is transmitted and received in the context of
the pedagogical relationship’; or ‘weak’ when the range of options
is relatively wide. In this sense ‘frame refers to the degree of control
teachers and pupils possess over the selection, organisation and
pacing of the knowledge transmitted and received in the pedagogical
relationship’ (p. 187).

The importance of these distinctions from the viewpoint of the
present paper, is in his argument that integrated curriculum codes
are more likely to be accompanied by weak classification and weak
frames and that this combination, to revert to the earlier language, is
more likely to go along with process type objectives and with dis-
covery learning.

The pedagogy of integrated codes is likely to emphasise various ways of
knowing in the pedagogical relationships. With the collection code, the
pedagogy tends to proceed from the surface structure of the knowledge to
the deep structure; ..., only the élite have access to the deep structure
and therefore access to the realising of new realities or access to the experi-
ential knowledge that new realities are possible. With integrated codes,
the pedagogy is likely to proceed from the deep structure to the surface
structure. We can see this already at work in the new primary school
mathematics. Thus, I suggest that integrated codes will make available
from the beginning of the pupil’s educational career, clearly in a way
appropriate to a given age level, the deep structure of the knowledge, i.e.,
the principles for the generating of new knowledge (p. 200).

And he goes on in words which Bruner might have written

Such emphasis upon various ways of knowing, rather than upon the
attaining of states of knowledge, is likely to affect, not only the emphasis
of the pedagogy, but the underlying theory of learning. The underlying
theory of learning of collection is likely to be didactic whilst the underlying
theory of learning of integrated codes may well be more group- or self-
regulated (p. 209).

That is, Bernstein, from an entirely different frame of reference,
appears to me to finish in the Bruner box of my little paradigm. His
distinctions, however, suggest an additional important considera-

6 161 HDI



HUGH PHILP

tion. In most developing countries — and in not a few developed ones
also — curriculum tends to be of the collection type and to be accom-
panied by strong classification and strong frames: it tends to be
subject centred, with few methodological options available to teachers
and still fewer to children. This is in marked contrast to the informal
out-of-school learning-teaching situation in most developing
countries, where socialisation tends to have an integrated curriculum
—even though this is seldom explicit; teaching-learning situations
may be strongly framed (as in, say, initiation ceremonies) or, more
frequently, weakly framed (as in the acquisition of the mother-
tongue, including of course, the vernacular number system and its
applications). The implication, as Margaret Mead (1943) argued in
her remarkable discussion of the difference between ‘teaching’ and
‘learning’ societies, is that there may be conflict of learning modes
between ‘home’ in the broad sense, and the formal school system,
especially when this is an externally imposed system which has not
evolved within the society.

To illustrate most of what has gone before it is proposed now to
discuss some data, challenging data, most of it drawn from recent
work in the Territory of Papua and New Guinea. The peoples of
this Territory, many of whom, until quite recently, have had no
contact with any groups other than their most immediate tribal
neighbours, live for the most part in remote, isolated villages. Some-
thing like 700 different languages have been identified, about 200 of
these being Austronesian and 500 or so non-Austronesian, or Papuan
(Ward and Lea, 1970) and there is a fairly diverse group of socio-
cultural living patterns. Since the war a Government education system
has been established alongside a somewhat older mission-based
pattern. In the early years and still largely persisting, the curriculum
and teaching methods were based on those of New South Wales,
in Australia. These may fairly be described in Bernstein’s terms, as
characterised by strong collection, strong classification and strong
frames; or, in terms of the paradigm, as being in the Ausubel-type-
cell with the curriculum product oriented and the methods based on
guided learning. No comment is offered on the appropriateness of
the content. In the last ten years or so, however, under the influence
of a new Director, L. W. Johnston, and his successor K. S. McKinnon,
there have been major efforts, particularly at primary level, to intro-
duce new, process-based curricula and to train teachers in the use of
discovery learning. As part of these reforms the staff of the Depart-
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ment of Education, working with groups of teachers, have developed
a mathematics curriculum which makes intensive use of attribute
blocks and other materials derived from the work of Zeldon Dienes
in Britain, the US, South Australia and the Territory itself. The
system, marketed as TEMLAB, has been introduced into many
Territory schools, accompanied by a programme of teacher re-
education. The fundamental theory of the system has been described
in a number of publications, perhaps most clearly in the well-known
compilation prepared by Dienes for ISGML and published in 1966
by the Unesco Institute for Education in Hamburg (Dienes, 1966).

There is little need here to give the details of the programme which
is an imaginative and consistent development from the theory, but
the theoretical principles should be outlined since some of the research
to be described has called into question not so much the principles
themselves, but some of the assumptions which underlie their appli-
cation. Dienes appears to accept, with minor reservations of a techni-
cal nature, both Piaget’s basic ideas about the staged development
of concept formation and Bruner’s position on the use of strategies.
In addition he quotes with approval Bartlett’s work on the develop-
ment of open systems in thinking through some kind of dialectic.
Skemp’s distinctions between ‘rote learning’ and ‘ schematic learning’
(which has some affinity to Ausubel’s view about learning) and
between ‘sensory-motor’ and ‘reflective’ intelligence are also seen by
Dienes as important in the development of curriculum and methods
of teaching-learning in mathematics. He quotes Skemp (1960) as
claiming that

mathematics is essentially a structure of subordinate and superordinate
concepts and, therefore, in order to achieve a schema which involves
a superordinate, all the subordinates must already have been constructed.
So no new schema can be evolved until other schemata which form part
of the new schema have also been evolved.

Dienes’ own notion of abstraction is related to this:

it is a process of class formation. Abstract ideas are formed by classifying
objects into classes through some common property which, it is discovered,
is possessed by these objects. Generalization is regarded as the extension
of an already formed class and, therefore, it is more of a logical operation
whereas abstraction is regarded as a constructive operation. Abstraction,
therefore, is likely to take place as a result of abstracting information from
rather a lot of different situations in which one particular aspect, namely
the structure to be learnt, is held constant. This gives rise to the principle
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of multiple embodiment. On the other hand the need for generality in
mathematics gives rise to the principle of varying all the mathematical
variables possible. The constructivity principle in its more sophisticated
form is the theory of how constructions, abstractions, generalizations and
play stand in relation to one another, as regards the process of learning.
Another important principle is the principle of contrast. In order to learn
something about a relationship, this relationship must be seen not to be
necessarily valid in certain other cases (Dienes, 1966, p. 21).

Dienes’ ideas about play are also highly relevant to the teaching—
learning process and TEMLAB makes considerable use of them.

The central idea of the curriculum method, apart from its concen-
tration on ‘process’ and on ‘discovery learning’ is that of abstraction.
In 1966 Dienes contended that ‘ From results up to date, there is no
evidence to suggest that native children are in any sense less
capable of learning mathematics than any other children’ (p. 113).
Later statements, principally by the teachers and members of the
Department, have been less optimistic and there is some evidence
that, although Territory of Papua and New Guinea children are able
to manipulate attribute blocks and other structured materials with
quite astonishing skill and to convert this performance into paper
and pencil situations, many of them are not displaying the apprecia-
tion and application of mathematical concepts which might have
been expected to follow —and which had followed with Western
children. A possible explanation for this derives from the research
work of some members of the staff of the School of Education at
Macquarie University.

Our interest, which was generously supported by Territory of
Papua and New Guinea Department of Education, was as I have
said in general problems of cognitive development in the children of
the Territory of Papua and New Guinea. For a variety of reasons,
some of these related to the TEMLAB project, our theoretical
orientation stemmed from Bruner, although a number of studies
based on Piaget’s work have also been conducted.

Bruner contends that there are three basic strategies for attacking
problems — including mathematical problems: indeed much of his
earlier work and many of his experimental examples concerned
mathematics. These strategies he terms ‘enactive’, ‘ikonic’ and
‘symbolic’. To quote Dienes (1966, p. 19): '

Bruner believes that the child in the beginning thinks in terms of action.
His methods of solving a problem are, therefore, severely limited because
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if he cannot act out the solution, he cannot solve the problem. The next
stage is the manipulation of images. This is what he calls the iconic stage.
Images are very much more easily manipulable than actions, but never-
theless they tend to have a kind of permanence which makes them not
very adapted to transformations. Mathematical thinking in particular
abounds in transformations and, therefore, Bruner believes that fairly
sophisticated mathematical thinking cannot take place until a child learns
to think in terms of symbols and this is the third and last stage of the
development of mathematical thinking.

This framework has major affinities with Piaget’s notions about
developmental stages, but is not identical. An important idea for
Bruner is that anyone — adult as well as child — can and does ‘ operate’
in any one of these strategic modes, depending partly on the specific
demands of the problem and partly on individual ‘preference’. That
is, some people who are perfectly competent in the use of symbolic
strategies for solving problems ‘prefer’ to use the ikonic mode — as
Bruner writes, they are more ‘comfortable’ with it, just as some
mathematicians are more ‘comfortable’ with, or ‘prefer’, to seek
geometric solutions to problems they are quite capable of attacking
algebraically. There are problems, however, which cannot be solved
efficiently or even at all using ikonic strategies and many others in
which the symbolic mode is by far the most effective or efficient — in
the sense of being more economic of time and resources. Obviously
enough, the TPNG mathematics curriculum, as described by Dienes,
attempts to capitalise on the Bruner strategies and has as one of its
objectives, the development of the use of the symbolic mode. It
therefore became of some interest to examine the use of the basic
strategies by TPNG children.

Ideas about classification and abstraction are fundamental to the
theoretical positions of both Piaget and Bruner; a great deal of their
experimental work has centred round the ways in which children
classify their world and account for these classifications. The long
statement from Dienes which has just been quoted emphasises the
importance which was placed on abstraction and classification in the
development of the TPNG mathematics curriculum and of course
similar ideas underlie most of the curricula in the ‘new mathematics’.
It was therefore another matter of importance for us to explore the
kinds of classification used by TPNG children and to examine, in
particular, whether this performance was like those described by
the Geneva group and/or the Harvard group. We were also interested
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Territory of Papua and New Guinea (to show sample areas). After Kelly
(1972).
Avatip: Avatip speakers
Muglum: Melpa speakers
Tapini: Tawaudi speakers
Kunimaipa speakers

in attempting to determine whether experience of school made any
difference, either to the use of strategies of problem-solving or to
levels of sophistication of classification.

The education system of TPNG provided an almost ideal situation
for such a study. Apart from the remoteness of many villages, which
meant a minimum of ‘cultural contamination’ in a high proportion
of them, only about half the children in any one village attend
school. Moreover, on such evidence as is available, attendance or
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non-attendance is determined partly by chance, partly by physical
location of the school and only to a minor degree by the social factors
which largely determine such things in developed countries. It was
possible, accordingly, to obtain groups of attenders and non-
attenders reasonably well matched in terms of age and language
spoken. We had four such groups from different areas of TPNG,
ranging from the remote headwaters of the Sepik River to the moun-
tain valleys of the Western Highlands, as shown on the map.

The final sample is shown in table 1. It will be noted that it is not
an ideal matched sample: this was essentially because it was difficult
to persuade parents to allow their children to walk for two or three
days through rough mountain jungle to play games with mad white
men. One important characteristic of the sample, although to be
honest, not one for which we planned, is that the four village groups
use different number systems; in the sense of different bases. None
of them is quite as exotic as those of, say, the Chimbu who use a base
of thirty-one, or the Eastern and Western Kewa, whose body-
counting system has a base of forty-seven (Wolfers, 1971) but they
are sufficiently different from the European system and from each
other to merit brief description.

The Sepik people in Avatip use a language which, according to
Kelly (1972, p. 113) ‘has a quite advanced counting system, . . . words
from one to a thousand were recorded. When counting goods they
use a kind of continuous adding process which effects multiplica-
tion...They do not rely on one-to-one correspondence.” The
Melpa speaking people of the Western Highlands have ‘counting
words to ten. Larger numbers appear to be counted in base eight,
using the fingers of the clenched fist to mark the eights (ibid. p. 118).
A similar system is used by the Kunimaipa villagers of the Goilala—
Tapini area, but their neighbours, the Tawaudi ‘appear to (have) only
(words for) one, one plus and many. . .certainly the Tawaudi trade
and sell garden produce by a literal one-to-one correspondence of
object to object’ (ibid. p. 124). ,

For testing the choice,of strategies we used an instrument developed
by M. R. Kelly from an earlier model devised by Olson and described
by him in Bruner, Olver and Greenfield’s Studies in Cognitive Growth
(Bruner et al., 1966). A series of problems was presented to each child
on this machine, which demanded a minimum use of language;
responses could be classified with considerable reliability into ‘en-
active’, ‘ikonic’ or ‘symbolic’ categories of strategy. It is important
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TABLE 1. Age, district, school years and sex distributions of
final sample as drawn

Ages
District 7 8 9 10 11 12 13 14 15+ Total
1. Avatip
School years Male 4 6 — 1 1 — — — — 12
Female 5 5 1 1 — — — — — 12
Male — — 2 1 3 3 2 1 — 12
Female — — 1 1 3 7 — — — 12
Male — — — — — 2 1 3 6 12
Female — — — — 1 1 6 1 3 12
Male 1 - - — - 1 - — — 2
Female — 1 — 1 2 2 — 1 1 8
2. Muglum
Schoolyears Male 10 1 — — 1 — — — — 12
Female 11 1 — — — — — — — 12
Male 1 — 1 7 1 — 2 — — 12
Female — — 8 1 1 1 — 1 — 12
Mae — — — — 2 — 6 3 1 12
Female — — — 1 2 1 2 2 4 12
Male 1 4 3 6 4 8 6 4 8 44
Female 2 5 6 2 1 2 5 3 2 28
3. Keltiga
School years Male 3 210 8 3 6 3 3 1 39
Female 1 — 2 6 1 2 5 4 2 23
4. Goilala/Tawaudi
School years Male 2 2 - 1 1 — — — — 6
Female 1 1 — — — — — — — 2
Male — — — 2 2 1 — — 4 9
Female — — — — 1 — — — — 1
Mae — — — — — — 2 1 4 7
Female — — — — — — — 1 4 5
Male 3 17 7 2 3 3 2 — 28
Female 2 3 4 S5 3 4 4 4 9 38
5. Goilala/Kunimaipa
School years Male 3 3 - — — — — — 6
Female 2 2 1 2 3 — — — — 10
Male _— Y = — — — 1 2 3
Female — — — — 2 3 3 2 1 11
Mae — — — — — — 1 — 4 5
Femae — — — — — — — — 7 7
Male — — 1 3 1 1 — — — 6
Female — — — — — — — — — 0
Avatip 0 School Years (village) + Keltiga 0 School Years = 72
Goilala Tawaudi + Goilala Kunimaipa (school) =172
(village) =172
Thus three districts’ provide 72 school and 72 village each
school = 216 village = 216
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Fig. 1. Trends in use of strategies: summed problems, Series A.
All groups: N = 1668 problem solutions. After Kelly (1972).

to note that Kelly was not concerned with correctness of solution —
most children ‘solved’ all the problems — but with the strategy they
employed. Pilot studies showed that many children used a mixed
strategy — ‘ikonic-symbolic’ — and this was introduced as a scoring
category in the main study. I should say at once that we found
no use at all of the enactive mode in this sample, although with
younger children it appeared about as frequently as with NSW
children of similar ages. It seems that, as with Western children, the
enactive mode is not relevant to our simple problem situation. More
surprisingly, none of the children in our sample used the symbolic
mode consistently; a very few did solve one or two easier problems
using symbolic strategies, but as the tasks became more difficult even
these few used mixed or ikonic strategies. The data to be presented,
therefore, show proportions of responses categorised as belonging to
the ikonic or mixed ikonic-symbolic modes.

In accordance with developmental theory, we predicted an increase
in the use of the mixed strategy with age and a reciprocal decrease in
the use of the ikonic. Figure 1 summarises the results over all children.
We were wrong — and the differences between the curves are highly
significant at all ages from nine onwards. There is a slight tendency —
which fits a parabola — for the use of the mixed mode to be beginning
to increase again about 12-13 years. Now let us break these curves
down according to sex and according to attendance or non-attendance
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Fig. 2. (a) Ikonic mode: trends in use by males and females, in school and
village groups. (b) Mixed mode: trends in use by males and females, in
school and village groups. After Kelly (1972).

at school. Here we predicted no sex differences, and greater use of
the mixed mode by school attenders than by non-attenders (called
‘school’ and ‘village’ children on the diagram). Figure 2 gives the
results: obviously the bottom graph is a mirror of the top. Clearly
enough, girls in general use the mixed mode more often than boys
but this is much more pronounced in the ‘village’ group than in the
‘school’ group. Overall, there is a significant difference between the
school group and the village group in favour of the village children
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in use of the mixed mode, but this is confounded by both sex and age
effects. It is worth looking at males and females separately: the village
girls, although there is a slight but significant decline with age, make
uniformly more use of the more efficient mixed mode than the school
girls. The gap increases with age. The male picture is different: the
school group, like the girls, slowly falls with age — the difference
between the male/female curves is not significant at any point
except 8. The village boys, however, decline rapidly in use of the
mixed mode until about 10-11-12, when they begin to use it more
frequently. Nor are these results an accident of sampling, for they
appeared in all four of the groups studied. The theoretical analysis
of some of these findings is not the concern of the present paper —
fascinating though they are. Here I am interested in pointing out
that, contrary to expectation, among TPNG children there is ap-
parently a decrease with age rather than an increase in the level of
efficiency, in terms of strategies, with which problems are solved.
Further, exposure to school makes little difference; such differences
as do exist operate in favour of the village children. The same appara-
tus and problems have been used with NSW children, both native
born and non-English speaking migrants, and Kelly has shown that
the results are in the expected direction; that is, there is an increase
with age in the use of the mixed and symbolic modes.

It is pertinent in the light of these data, to question the use of
a curriculum heavily dependent on the development of symbolic
type strategies.

Furthermore, when we used Piaget-type situations similar results
emerged. For example, no child in this sample (TPNG) could solve
a standard formal operations problem using local materials.

We may now look at some data on classification. For this, with the
same sample as before, two sets of tasks were developed from the earlier
work of Bruner and his group. The first set of materials was a square
matrix of nine blocks which can be ordered according to two criteria
of classification, length and area of cross section. This has obvious
relationship to the attribute blocks of TEMLAB. The second set of
materials consisted of separate sets of objects, drawings of these
objects, photographs of them, and sets of words in the vernacular
languages. The original objects, which were either full size or scale
models, were all of local origin and were familiar to the children — we
tested for this by asking each child to identify each object. He was
then asked to group them ‘in any way’ and then for the reasons for
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his grouping. In accordance with the procedure reported in Bruner
et al. (1966), the responses were then scored according to ‘structure’,
that is the level of inclusiveness of the grouping, and ‘base’, the
attribute of classification, whatever the level of structure. Identical
procedures were used for the objects, pictures and photographs, but,
because the ‘village’ children were illiterate, ‘words’ were read to
them and to the school group by vernacular speakers. In passing, it
should be noted that, after pilot testing, most tests were administered
by vernacular speakers — often children themselves.

What did we find ? First, as we would hope, as well as expect, on
the block matrix the school groups, both male and female, had
a ‘higher’ level of performance at each age level than the village
groups. The differences were less, however, for tasks which required
application of classification, for example, reversal of the matrix,
than for those in which straightforward classification was required.

The other classification data, where children had to choose
categories, sort materials into them and then account for their
classification, gave a less clear picture. There were some differences
in the level of structure of objects, pictures and photographs and these
differences were in favour of the school as against the village groups.
Similar results appeared when the nature of the attributes was ex-
amined: the school group made more, though limited, use of nominal,
that is “abstract’, classification principles, while the village children
almost exclusively used ‘functional egocentric’ criteria. When it came
to classification of ‘words’, however, there were no significant
differences between the village group and the school group in terms
of the nature of the ‘attribute’ of classification. The indication is
strong that TPNG children, at least in the areas in which we worked,
prefer to use images —to employ ‘ikonic strategies’ rather than
symbols when faced with cognitive problems to solve.

Before going on to discuss possible explanations and implications
for curriculum and teaching, particularly in mathematics, it is worth
looking at performance on all these tasks in terms of comparisons
among the four village groups. It will be recalled that the Avatip
people of the Sepik, the people in the Mount Hagen area and the
Kunimaipa from Tapini use somewhat more sophisticated number
systems than the Tawaudi, whose system is an extremely limited one.
On all the tasks described, the Tawaudi children performed at a
‘lower’ level than the children from any of the other three areas —
village and school children alike. The Melpa-speaking children of
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the Mount Hagen area tended to use more high level ‘structures’
than any of the other groups and the ‘base’ or criteria of classification
was much more frequently on the ‘nominal’ (abstract) level. This
raises some questions of considerable theoretical and practical
interest. A possible explanation and a suggestion for curriculum is
contained in an extension of a hypothesis advanced by Kuhlman (1960)
who writes ‘Either the habit of using imagery is suppressed or it is
retained during language acquisition and is adapted to the requirements
of complex problem solving’ (italics mine) (quoted by Bruner et al.,
1966). What I would add is that the very language structure of some
cultures may be conducive to the retention and adaptation of the use
of imagery (that is the ikonic or mixed modes) to the requirements of
complex problem solving’. Western curricula assume the increasing
use of the symbolic mode and of ‘nominal’ methods of classification
with the associated superordinate structure. They have usually been
‘taken over’ or ‘adapted’ for non-Western groups without any
attempt to examine the validity of the assumption.

Considerations of this kind led us to look for further data. An
obvious starting point was in the nature of the language systems.
I do not want to get involved here in a discussion of Whorf’s hypo-
thesis that the structure of the language determines the kinds of
classifications available to children and hence to a large extent the
nature of the concepts they form, but data recently gathered by
Kelly, and as yet unpublished, is very much in support of it. Working
with New Guinea anthropologists, he charted the Melpa linguistic
dimensions and I quote from a personal communication:

They do not form hierarchies of classification. Their world is a series of
intersecting sets. They can perform well on tasks designed from their own
system, better than the Australian children at Hagen A school.! You can
get them to assimilate our objects (for example wooden attribute blocks)
to their schema, but can’t get them to assimilate their objects to our
schema [for example, class inclusion with ‘kim’ (leaf vegetable) and ‘oka’
(kau kau) which are both ‘rung’ (food)]. The lack of ability to handle
hierarchies goes through to high school kids and teachers’ college students.
When you explore English concepts in the vernacular you find that they
have been busily distorting them into the vernacular equivalent for years.
For example, ‘weapon’ which is ‘mel el ba ng mel kum panda’, things
designed specifically for killing man or animal (i.e. bows and arrows and
spears). A stone cannot be a weapon, even when used to bash in someone’s

1 A Highlands school with the standard Australian (N.S.W.) curriculum.
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head. (It is the most common instrument of murder used in Hagen.)
A stone is a stone is a stone.

From data of this kind it may be argued that the level and nature of
the classification of any given set of material will depend, to some
extent at least, on the language of classification. Kelly set out to test
this hypothesis in an ingenious experiment. The results are not yet
fully analysed, but they seem to me of such interest that I propose to
describe them briefly. They were obtained from the Melpa children
of whom I have just spoken. Three samples were selected, each of
sixty-seven children:

A. a ‘school’ group: tested in English;

B. a ‘school’ group, matched in pairs with 4 on age, sex and
school performance: tested in Melpa;

C. a‘village’ group, matched with the 4 and B modules on age and
sex: tested in Melpa.

Each group was presented with two sets of classification tasks:

(a) attribute blocks, with colour, shape, size and thickness as
attributes;

(b) leaves from local plants, with colour, size, use (e.g. as food, for
construction, for decoration) and method of cultivation as attributes.
Instructions were given, as appropriate to each group, in English or
Melpa in the expectation (or hope, rather) that the instruction would
produce a ‘mental set’ for working in the corresponding language.
Responses were scored behaviourally as well as verbally, that is, in
terms of what the children did physically with the materials as well
as in terms of their descriptions of the classifications. In addition to
the original classification instructions, the children were ‘pushed’ to
attempt more inclusive hierarchies. The results — and I emphasise
that this analysis of the behavioural responses is both incomplete and
tentative — show:

(a) The level of classification (in the sense earlier discussed) was
higher, for both sets of materials, for the group tested in English
than for either of the other groups. School group B, however, was
‘superior’ to the village group, that is, in terms of level of classifica-
tion. Thus 4 > B > C for both sets of materials.

(b) For both groups A and B the level of classification of the
‘Western’ materials — the attribute blocks — was much higher than
the level of classification of local materials. The difference was far
greater for the group tested in English than for the group tested
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in their native language. No differences appeared in the village
group.

(c) When ‘pushed’ to use a more inclusive category of classifica-
tion, children in all three groups were able to make some shifts,
although the amounts were quite small. The group tested in English
was again superior to either of the others, while the Melpa-tested
school group exceeded the village group in the mean number of
shifts made, that is, 4 > B > C in mean number of shifts on both
types of material.

(d) No significant differences were found between types of material
in terms of the ability to use higher orders of classification.

These data, if confirmed by other studies at present under way in
New Guinea and elsewhere, support the earlier findings that it is as
if the accessibility of inclusive words in a language in some way
affects and restricts the inclusiveness of the classifications which the
child is able to make.

And this is to be expected in societies in which classification is
built into the language as it is in a number of the TPNG languages
as well as in some Asian tongues like Thai. An object is classified
according to its linguistic ‘classifier’ and not according to ‘natural’
or ‘logical’ categories, on Western criteria of logic. It is made to fit,
as Kelly says, into the child’s schema. This would parallel such
studies as those of Gay and Cole (1967) with the Kpelle and Green-
field’s (1966) with the Wolof children of Senegal. It would seem clear
that findings of this kind raise real problems for curriculum con-
struction and teaching methods in non-Western societies.

This is not to say that the fundamental theory behind TEMLAB
and other modern mathematics curricula is incorrect and that we
should revert to collection type curricula, with strong classification
and strong frames or, in other language, to product or subject
centred curricula, supported by strictly guided learning. On the
contrary, the data seem to me to argue for even greater emphasis on
process and on discovery methods, but with curriculum context care-
fully designed to take into account the processes the child has already
learned to use and which are ‘preferred’ in his society. Where he has
to learn ‘new’ processes in order to cope effectively with the curricu-
lum, then ample scope has to be given for this. For example, it would
appear from what has just been said, that a great deal of specific
material will have to be built into the TPNG curriculum, presumably,
but not exclusively, through primary school mathematics, on the
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formation of hierarchies. We cannot assume that, as Dienes wrote in
1966, ¢ Abstraction is likely to take place as a result of abstracting
information from rather a lot of different situations in which one
particular aspect, namely the structure to be learned is held constant.’
Inmanylanguages and cultures the principle of ‘multiple embodiment’
is not generic. It is, granted, essential for most Western thinking,
particularly in mathematics and science: if curricula and methods
which will help non-Western children to form and use Western-type
concepts are desired then we must help children to learn not only
the concepts but the ways of thinking which lead to these concepts. (In-
cidentally I understand that Professor Dienes and Dr Kelly have been
asked to advise on ways of redesigning TEMLAB to include games
which will encourage the development of ideas about hierarchies.)

The other evidence I wish briefly to discuss refers to the ‘structure’
of mathematical thinking, in the factor analysis sense. There is little
point in getting involved here in a heredity—environment contro-
versy. My main purpose is to present some data which appear to
support the thesis I have been so far arguing, that cultural factors,
particularly language, influence not only what is learned, but how it
is learned, and how it is applied. That is, even on the same tests of
performance we should expect a different pattern to emerge in
different cultures. This is a somewhat different emphasis from that
of Guilford (1971) in his monumental study The Nature of Human
Intelligence as derived from the results of factor analysis. Discussing
some cross cultural work he writes, somewhat curiously: ‘There are
not many cultural differences in factor structure where all groups are
tested in the same language’ (italics mine) ‘and such differences as
occur can be accounted for in terms of cultural variables’ (p. 40).
That is, Guilford seems to be dismissing, to some extent at least
Piaget’s view, which I share, that ‘les structures (sont) variables, les
fonctions (sont) invariantes’ (Piaget, 1968, p. 11). Apart from almost
inaccessible Japanese data, there have been all too few studies of
‘factor structure’ in non-Western societies. Guilford cites Vanden-
burg (1959) on Chinese students studying in the US and Guthrie
(1963) on Tagalog speaking students in the Philippines Normal
College. One may add Dunlap (1931) in Hawaii, Biesheuvel (1949)
in South Africa, Scott (1950) among the Sudanese and Jahoda (1956)
in West Africa as evidence that the picture is not quite as clear as
Guilford suggests: what may well be really important are those
‘cultural variables’, which Guilford dismisses.
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Early in 1972 Miss Elizabeth Southwell! conducted a factor
analysis based study in TPNG. Since it was concerned quite specifi-
cally with mathematics her results are of some relevance. She
administered a battery of thirteen tests; six of them were specifically
of a mathematical character, four others have shown significant
leadings on ‘number type’ factors in Western studies, two were verbal
and the thirteenth tested ‘general information’. There were four
sample groups: European teachers working in TPNG; indigenous
teachers; indigenous students in training to become teachers and
New Guinea children of high school age. The factor patterns were
quite different: that for the European teachers was fairly easy to
describe in terms of the familiar Thurstone-Guilford type factors.
The indigenous teachers, who had less formal education than any of
the other groups, produced a verbal factor, distinct from the Thur-
stone type V of the Europeans, which ran through almost all the tests,
including those which used no apparent language. A second factor
was concerned with the spatial relationships, but was much more
general — that is, it entered into more tests — than the S factor for the
Europeans and a third, which had something to do with number did
not appear at all in the European group. Analysis of the performance
of the teacher-trainees and the children produced patterns somewhat
like those of the indigenous teachers, but less generalised.

More interesting was a second factor analysis, again on all four
samples but this time using the sixty items of her test of ‘mathematics
understanding’. Difficulty structure, confounded by differential read-
ing speeds, may well have accounted for some of the patterns in the
first study, but in this test there were few significant differences in
item difficulty with the mathematics understanding test, and light is
shed on this by the analysis.

For present purposes it is proposed to discuss the differences
between the European teachers and the indigenous teachers. In both
groups there were four or at best five factors which made ‘psycho-
logical sense’ and among them accounted for about 509, of the
variance. Most clear among the indigenous teachers was a general
verbal factor — although, it is stressed, this was a mathematical test -
which took up almost 25 %, of the total variance. This factor did not
1 Miss Southwell has just successfully presented this material for a Ph.D. at the

University of London. My interpretation of her data, which she generously

loaned to me, may not accord with hers. In any event I have not presented it in
full since clearly it would be unfair to do so until she has herself published.
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appear at all in the European teacher pattern. In the European
pattern was clearly to be identified a factor which looked very much
like Coombs’ (1941) and my own (1951) ‘4’ factor, which enters into
most mathematical type problems but is distinct from the purely
numerical factor N identified in many studies. This factor did not
appear in the indigenous group. What is of some interest is that items
involving sets, whether in the form of braces or Venn diagrams, had
significant loadings (> 0.30) on the A factor in the European group,
but on the verbal factor and also on a spatial factor for the indigenous
group. The spatial factor also appeared for the Europeans but Venn
diagrams had low loadings on it. This would seem to lend support to
Kelly’s findings about the preferred use of the mixed-ikonic-symbolic
mode by indigenous groups in TPNG. Items which were apparently
solved by symbolic means by the European teachers were solved,
equally well in terms of correct answers, by use of images or a mixture
of images and symbols by the indigenes. Similarly the different factor
pattern on the items involving sets would seem to imply that different
criteria of classification were being used, lending support to the lan-
guage data discussed above.

What does all this imply ? Let me say again that the data are not
conclusive. We are still very much in the early stages of our investiga-
tions and many questions remain. One intriguing one, which we
hope to look at next year, is the effect of different indigenous number
systems on school performance. This is part of a much greater attack
on the total effect of language: for this we will need the help of
anthropologists, psycho-socio linguists and mathematicians interested
ineducation, for it seems important to continue in this general curricu-
lum area.

However, I think that there is already enough evidence to suggest
that, at least in non-Western societies and particularly in pre-literate
areas:

(a) curriculum should be process oriented and methods should be
heavily discovery learning based,

(b) curriculum should be integrated, in Bernstein’s sense with weak
classification and weak frames,

(c) the learning processes and preferred strategies of each particular
culture group should be carefully investigated and the curriculum
built and teaching-learning methods devised in order to take account
of them,

(d) the linguistic structure of the mother tongue should be
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analysed to determine the classificatory sysiem: this too should be
carefully considered when constructing a curriculum, particularly in
mathematics.

It is perhaps appropriate to end by quoting the familiar 64th Query
of Bishop Berkeley: ‘Whether mathematics. . .have not their mys-
teries, and what is more, their repugnances and contradictions?’
and to ask whether this should not also apply to mathematics

. learning?
Taciing 4nd Jeatning School of Education,

Macquarie University,
Australia.
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Some questions of mathematical
education in the USSR

S. L. Sobolev

At this time of unusually rapid change in the mode of life of all
mankind, a time when science is being applied with increasing
intensity to technology, the demand for scientific personnel -
researchers and practical workers — has grown enormously. In par-
ticular, the demand for mathematicians has been especially great
in recent years. Inevitably, the teaching of the basic sciences has
lagged behind in all countries. Of the whole body of mathematical
knowledge which I, and those who were students with me at Leningrad
University, now require, very little was acquired whilst we were at
university. University gave us the basis for something that it is
difficult to express in words. Perhaps it taught us to think.

In the same way, what we are teaching young people now, in
particular the mathematics we are giving them, will probably no
longer meet the demands made on them in fifteen to twenty years
time. And it is precisely fifteen to twenty years hence that their time
will come. They will create the science and technology of the future.

On the other hand, in every country, and all the time, problems
arise which will only be solved, either today or tomorrow, by
specialists. These problems change very rapidly, before one’s very eyes.

In recent years much has already been said about the necessity of
conducting mathematical education from the very beginning on the
most abstract level possible, concentrating attention on general
mathematical ideas. In a number of countries attempts have been
made to introduce children from an early age to set-theoretic termino-
logy and the basic concepts connected with this. The merits and
demerits of such early abstraction are now more or less clear. For,
although it has been made possible for them to penetrate more easily
into some fundamental regions of mathematical science, young people
educated in this way sometimes lack the ability to grasp practical
mathematical situations, because of their weak knowledge of concrete
mathematical material.
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The other extreme — teaching principally by the method of solving
varied concrete problems — also has its merits and demerits. As a
result of such unbalanced education, we often get scientific workers
who lack perspective and are unable to be creative when the occasion
arises.

All this has been discussed many times in recent years, and one
can only argue about the respective weightings we must give to
concrete knowledge and general theory in the training of future
mathematicians.

I shall not, therefore, talk of these questions, but will attempt
instead to talk in concrete terms about the experience of teaching
mathematics in the Soviet Union and about those tendencies and
opinions which are to be found in our country.

Mathematics is taught in the USSR at two levels of education: in
the secondary school and in the higher school.

The secondary school is intended for the education of children from
the age of 7 or 8 to 17 or 18 years. This school is a ten-year school in
the Russian Federation, and an eleven-year school in some republics
of the Union where the Russian language is taught separately but
where basic education takes place in the language of that republic.

The final section of the ten-year general-educational school can
be replaced by the completion of the eight-year, so-called incomplete
secondary school, followed by study in special professional, technical
schools, medical schools etc., and also in the evening schools. The
curriculum of these schools includes general educational subjects
to the same extent as in the ten-year school.

The higher schools are: universities (about fifty in the country),
pedagogical institutes, higher technical educational institutions, insti-
tutes of medicine and law, musical academies etc. designated for
higher professional education.

Students can enter the institutions of higher education from the
age of seventeen onwards. The period of study in the higher schools is
about five years.

For professional purposes, mathematics is taught in the higher
schools in the physics-mathematics, the mechanics-mathematics and
the mathematical faculties of universities and pedagogical institutes.
Mathematics is also one of the fundamental disciplines in the curricula
of other university faculties and higher technical educational
institutions.

Until the last two decades the content of mathematical education
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in the secondary school was very stable. By long tradition, in the
classes up to the age of twelve there was a very long and detailed
study of arithmetic including the ‘arithmetical’ solution of rather
complicated verbal problems which really required algebraic methods.
Then there followed two parallel courses: algebra and geometry. The
algebra course was traditional, containing a study of the identical
transformations of literal expressions, the theory of algebraic equa-
tions and systems, with the application of algebraic techniques to the
solution of verbal problems. The course also included the elements
of combinatorics and an initial acquaintance with the logarithmic
function, including the use of tables. Geometry was based on visual
presentations and an axiomatic approach close to that of Euclid.

Only in the last ten to fifteen years has the study of trigonometrical
functions and the solution of triangles been distributed between the
algebra and geometry courses.

The acceleration of technical progress and the growth of the role of
science has necessitated a revision of the content and style of mathe-
matical (and not only mathematical) education in the secondary school.

The basic ideas and concepts of traditional ‘higher mathematics’:
the derivative, the integral, and easy differential equations as a means
of describing physical phenomena were needed by almost everybody,
whatever his kind of work. It has also become no less important to
teach young people some elementary uses of calculating machines.

A broadening of the content of mathematical education, therefore,
became essential and syllabuses in mathematics (and other subjects)
in the secondary school were radically revised with the participation
of wide groups of the scientific public in the country. The resulting
changes affected not only content but also the style of teaching.

The primary aim of the changes is to bridge the gaps between
arithmetic on the one side and algebra and geometry on the other,
and also between elementary and higher mathematics. This is
achieved by the early use of letters, first of all for denoting unknowns
in solving problems. The concept of a negative number is introduced
early. In the very lowest classes pupils meet the elementary geometri-
cal figures and simple problems with geometrical content. As a result
the functional point of view is achieved, with considerable use being
made of graphical methods. The algebra course is rounded off with
the introduction of the concepts of the derivative and integral with
various applications, but without developing the complicated tech-
nique of differentiation and integration. The concepts of the theory
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of sets and mathematical logic are introduced gradually(!), when
necessary, from the fourth class, and these provide a convenient
language for the study of systems of equations, inequalities between
unknowns, and for the formation of the concept of a function.
Greater attention is given to the method of coordinates and to the
graphs of functions.

The basis of the geometry course is implicitly the study of groups
of motions of the Euclidean plane and space.

The revision of instruction according to the new syllabuses was
preceded by long discussion. The mathematical syllabuses, for
example, were discussed twice at sessions of the presidium of the
Academy of Sciences of the USSR. A competition was announced for
the writing of new textbooks, in which several teams of writers took
part. Those textbooks that were acknowledged the most successful
were accepted. However, we can be sure that in the future it will be
necessary to include substantial improvements.

In the revision of the teaching in the secondary school a moderate
point of view was adopted which took into account many present-day
abstract mathematical ideas and concepts. Nevertheless, it was still
considered important that the students should acquire factual know-
ledge and skills, and familiarity with those concepts mentioned above
that are essential for the construction of models of the phenomena of
the world about us.

The introduction of the new material is made possible by the extent
to which time is saved as a result of its use in teaching traditional
mathematics.

In the new syllabus there is a reserve section that permits the
teacher to increase the content of the mathematics. This consists of
optional activities, beginning from the seventh class, to which special
time is devoted (of the order of four hours a week). These optional
activities take place in different realms of knowledge, at the student’s
choice, and this choice often falls within mathematics. In addition, in
various towns of the USSR there are schools with strengthened
physics-mathematics preparation in the upper classes. Such schools
have been in existence for nearly fifteen years and the experiences
gained in them were taken into account when the syllabuses for the
general schools were prepared.

A particular role is played by the boarding-schools associated with
the largest universities of the country (Moscow, Leningrad, Novosi-
birsk and Kiev). The main purpose of these schools is to attract
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talented young people from towns and villages remote from the large
centres. Such pupils are discovered in the ‘mathematical olympiads’
— mathematical contests in which very many school children take
part. These are organised now in three rounds: first in the schools,
then in the large regional centres and finally the all-Union olympiad.

Recently each spring there has been also an all-Siberian mathe-
matical olympiad in Novosibirsk.

The first mathematical olympiad was organised in Leningrad in
1934. From that time these contests have won great popularity.

Until recent years the profession of scientific worker was not very
popular, particularly in places remote from the large scientific centres.
Now the situation is beginning to change.

The olympiads, the physics-mathematics schools etc., however,
are designed not simply and solely for the direct search for talent, but
have another important aim — to attract young people to be scientific
workers and researchers. Their aim is to acquaint boys and girls with
the fascination of scientific enquiry. And in fact, thanks to them, many
young people have found their vocation.

The reform of school education in the USSR, which affects not
only mathematics, has increased the demands on teachers. Simul-
taneously with this there was a rise in the salary of teachers both in
the secondary and higher schools.

In the higher schools mathematical education has four basic
aims:

(@) In the technical higher educational establishments and other
higher schools and faculties for which mathematics is an important
auxiliary subject, the aim is to produce educated engineers who are
able to solve difficult technical problems.

(b) New branches of engineering have recently been created which
are essentially mathematical, for example, control theory, mathe-
matical economics, programming, the construction of new computers,
and as a result we can now speak of the ‘engineer-mathematician’.
His appearance, following on that of the engineer-physicist, means
we must change our ideas of what a technical worker must know
today. A second aim, therefore, is to produce such engineer-
mathematicians.

(c) In the pedagogical institutes the aim is to prepare suitably
equipped mathematics teachers for the secondary schools.

(d) Finally, in the universities the aim is to produce mathematical
researchers and teachers in the higher schools.
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I will say something in detail about each of these.

The newest thing that has appeared in recent years in the realm of
higher technical education in the USSR is the creation in several
institutions of the specialism of engineer-mathematician. This
specialism has been established both in the technical schools, as for
example in the Physics-Technical Institute in Moscow, and also in
universities — Moscow, Leningrad, Novosibirsk.

A new specialism like this has been dictated by life itself and the
establishment of special engineering-mathematics faculties, both in
universities and in higher technical educational institutions, has taken
place not only in the Soviet Union but also in many other countries.

The content and style of mathematics teaching in the other
faculties of the higher technical schools is subordinate to the require-
ments of the basic specialism and is therefore rather varied. Recently,
there have been moves towards extending this content in certain non-
traditional directions. Thus, there are courses on programming,
based on present-day computational mathematics, followed by short
courses on control theory, the basic concepts of mathematical econo-
mics, and so on.

Unfortunately, a shortage of suitably qualified personnel prevents
changes being made on a sufficiently large scale.

New mathematics syllabuses have also been developed in the
pedagogical institutes. The aim in designing these syllabuses was to
bring the mathematical training of their students closer to that of
the university, and also to initiate them into the new mathematical
specialisms they will have to talk about in school. An important aim
of the courses on teaching method is to ensure that future teachers
know the new syllabuses and textbooks for the secondary school,
which are very different from those from which they learned.

The education of professional mathematicians (in the mathematics-
mechanics, mathematics and physics-mathematics faculties of uni-
versities) lasts five years. Students who have shown outstanding
ability and an inclination towards scientific work can stay for a
three-year postgraduate course. In this they will study a chosen field
in depth under the direction of a professor and prepare an indepen-
dent piece of research including a dissertation. They will then obtain
the first science degree — candidate of science.

At this time of scientific progress, when mathematical knowledge
is developing fast and the role of mathematics is increasing every-
where, there is a need systematically to revise the material studied in
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the mathematics faculties. Several years ago the growth of applica-
tions of mathematical science, precipitated discussion in many
universities of the USSR concerning the reforms which would be
needed in the teaching of mathematics.

In our country, as it seems in the whole world, up to now the ablest
young people, those with a breadth of vision, creativity and deep
insight, very often sought to engage in mathematics divorced from its
applications. This tendency was encouraged by the fact that in those
many parts of mathematics which until now had been little connected
with other sciences, it was easier to obtain fundamentally new results
and to discover or invent new methods of investigation.

Often also, the value placed by society on concrete and narrow,
although also very difficult, results was lower than that it put on wide,
though perhaps at times much more banal, generalisations. Young
students, therefore, have tended to neglect those problems in which the
techniques of research take the lion’s share of time and energy and in
which the results have a concrete character. This has happened almost
everywhere with the exception of some backward conservative edu-
cational institutions where concreteness of results was perhaps valued
highly, but the results themselves were weak.

Even in Leningrad University, which prided itself on its ancient
traditions in applied mathematics, and where in their time worked
Tchebishev, Markov (the elder), Liapunov and Steklov, they were
not able to avoid this.

Several historical causes also contributed to this separation of
mathematics from its applications. Most applications of mathe-
matics in the past were in the field of mechanics: the mechanics of
systems, the mechanics of rigid bodies and the mechanics of con-
tinuous media. Often mechanics was regarded almost as a part of
mathematical science, and the role of experiments was hardly taken
into account. In the large universities, such as Leningrad and
Moscow, there were combined mathematics-mechanics faculties with
the two departments of mathematics and mechanics.

Other applications of mathematics were hardly taught at all and
were limited to a course in numerical analysis. The content of this
course was reduced to certain largely trivial questions about the
estimation of errors and to the enumeration of different computational
methods developed historically. It did not touch on such general
questions as are to be found in the present-day theory of computation.

In mechanics, after the important discoveries of Liapunov,
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Chaplygin and Jukovski, there followed a period of quiet, slow accu-
mulation of facts. Even the appearance of new problems and ideas,
such as linear programming, the theory of games, control theory and
so on did not help break down the division between mathematics and
its applications. Indeed, there sprang up many ‘applied” mathema-
ticians who thought of separating the teaching of ‘pure’ and ‘applied’
mathematics, and of creating faculties of applied mathematics,
engineering mathematics, computational mathematics, cybernetics
and so on.

These scientists believed that if students were to receive first a good
training in the modern applications of mathematics, and then were
to study the more general abstract disciplines, they would be more
likely to get a taste for applying their mathematics.

There are not only psychological or sociological arguments for
the creation of separate applied faculties.

During a five-year course it is simply not possible to acquaint
students with all the new ideas, methods and theories developed in
recent times if one preserves all the former material.

After long debate, new faculties were opened in Moscow and
Leningrad Universities. In Novosibirsk it was decided after consider-
able discussion to preserve a united faculty but with two sub-divisions:
mathematics and engineering mathematics.

So far few graduates have been produced by the new faculties and
they have not worked long enough for us to be able to judge the
success of this new venture.

The idea of separating the applied mathematical faculties is not
shared by all mathematicians in our country. It has opponents —
advocates of the unity of mathematics and its applications. At the
same time no-one has serious doubts about the sheer necessity of
making changes. Mathematics has grown up. New questions, new
problems and new situations have arisen which must find their place
in education.

Alongside the creation of new faculties one continues the inde-
pendent process of refashioning the old faculties of mathematics-
mechanics and physics-mathematics. This process began in the
strongest universities where the professorial staff included the most
creative and active scholars.

Teaching syllabuses are being changed, new courses are appearing,
new professorial chairs are being created. The syllabuses of the old
established subjects are also being changed radically.
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Those mathematicians who insist on the unity of mathematical
education base their views on the fact that this unity must reflect the
unity of mathematical science itself. In order to be able to cope with
the problems they will meet, it is necessary for students to master
mathematics in all its breadth. For this reason many would consider
it pointless to give students too narrow an education. Mathematicians
holding these views believe, therefore, that the creation of applied
faculties in universities is unjustified.

The engineer-mathematicians needed to solve the problems of the
present day, and also technical programmers, must be trained in the
higher or secondary technical school. To meet these new demands
the old mathematics-mechanics and mechanics-mathematics faculties
of universities, together with applied faculties, are changing, or have
already changed, their appearance. These now include new mathe-
matical disciplines on the same basis and with the same justification
as such topics as analysis, algebra, geometry, theory of sets, topology
and so on.

The syllabuses of the mathematics-mechanics faculties of different
universities are basically similar but may differ in detail according
to the scientific interests of the leading professors.

In the faculty of which Ishall speak, mathematical topics are divided
into two classes: those which are obligatory for all students, irrespec-
tive of their narrow specialisations, and the special options which are
selected by the student.

The aim of the common section is to give the students sufficient
knowledge and know-how for them to be able to work independently
from contemporary sources should they need to proceed further in
the future. This knowledge must be sufficiently wide but not over-
loaded with details. No professor should regard his own subject as the
most important and significant, but should see it simply as an
essential part of a united whole; the acceptance of this point of view
need not prevent his demonstrating a creative relationship to his
subject.

This common core consists of the following disciplines.

(1) Lectures on mathematical analysis are given during the first
five semesters. Topics covered include classical differential and in-
tegral calculus, the theory of Fourier series, curvilinear and multiple
integrals, the theory of exterior differential forms, and the theory of
functions of a complex variable.

In addition to the lecture course, there are exercise classes (in
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groups of twenty-five) which are conducted by assistants, and in which
problems on analysis and its applications are set. The style of teach-
ing has been determined over the course of many years by the excel-
lent textbook of G. M. Fichtenholz. In recent years the analysis
course has been greatly modernised with the introduction of the ideas
of functional analysis and general topology. The works of Bourbaki
and Dieudonné’s book on analysis have exerted a certain influence.

(2) Algebra lectures are given in three semesters beginning with the
first. They include the theory of determinants and matrices, the
theory of divisibility of polynomials, theorems about the distribution
of the roots of polynomials in the complex plane and on the real
axis, elements of the theory of groups, the theory of linear trans-
formations of finite-dimensional vector spaces (including Jordan’s
canonical form), and elements of the algebra of tensors. The simplest
facts in the theory of numbers are also introduced, such as the theory
of divisibility and congruence arithmetic, and these are blended with
algebraic material.

(3) Lectures on geometry are usually given in four semesters
beginning with the first. In the first semester there is a short course on
analytic geometry and vector algebra, the largest part of which
consists of exercises. In some places there are attempts to unify
analytic geometry and linear algebra.

In the second semester one studies the differential geometry of
curves and surfaces. Sometimes this section is included in mathe-
matical analysis. The third and fourth parts are not given in all
universities. These are the elements of general and combinatorial
topology and the theory of Riemannian spaces.

(4) Ordinary differential equations are covered in lectures in the
third and fourth semesters. Here, together with traditional material —
the study of methods of integration of different classes of equations —
are given the elements of qualitative and analytic theory and the
theory of special functions.

(5) Functional analysis is covered in lectures in the fifth and sixth
semesters. The content of the course is metric spaces, linear normed
spaces, Hilbert spaces, including the spectral theory of bounded
operators.

(6) The equations of mathematical physics (sixth and seventh,
sometimes fifth and sixth semesters) includes the basic study of partial
differential equations together with applications to problems of
mathematical physics. Great use is made of the methods of functional
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analysis, and several of its sections closely connected with the theory
of equations are expounded.

(7) The theory of probability (fifth and sixth semesters) is a short
course including the theory of random quantities, the limit theorems
and the basic concepts of the theory of random processes.

(8) Computational mathematics is sometimes carried out in two
parts. First of all, in the first course (first and second semesters) the
elements of programming are given and students learn Algol. They
do exercises in programming the solution of problems in algebra and
analysis. Later (fifth and sixth semesters), methods of computation
are studied and, in a special practical class, solutions and programs
are composed for problems connected with differential equations,
the theory of probability and so on. In addition, a short course on
optimisation, devoted to linear programming, the theory of games
and other methods of solution of optimisational problems, is also
given.

(9) Short courses on theoretical mechanics and physics are given
in the fourth to eighth semesters. These enable one to make greater
use of mathematics in later expositions of these disciplines.

These common courses end basically in the seventh semester. From
the fifth semester (and sometimes earlier) students begin to attend
special courses organised by the faculty board and take part in
special seminars. Here there is a great choice. In Leningrad Uni-
versity, for example, a student must attend three special courses
and take part in the work of a special seminar extending over two
years. The faculty boards usually organise a large number of courses
and seminars, and students are able to make a choice.

The fifth year (ninth and tenth semesters) is devoted to specialised
courses and seminars, and pre-diploma practical and written work,
which usually is a short independent investigation. It is by no means
unknown for such diploma work to merit publication in scientific
journals.

In addition to this considerable theoretical preparation, the
students of the mathematics-mechanics faculties also receive an
acquaintance with applied questions.

The department of engineering-mathematics has always belonged
in the mathematics faculty of Novosibirsk university, where its basis
had been the department of mechanics. Its curriculum has been
broadened by the inclusion of new disciplines with syllabuses
resembling those of the department of mathematics.
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The faculty has preserved the unity of mathematical education
which corresponds to the unity of mathematical science. The sylla-
buses of the two departments resemble each other in the first half
of the course. In both of them basic mathematical analysis is taught
for two years. This course is followed by one on the elements of
functional analysis, earlier called analysis III. In both departments
computational mathematics plays an essential part. The study of this
begins in the first course and continues to the fourth. The syllabuses
in algebra differ somewhat, being wider and beginning earlier in the
case of the mathematicians. Because of this, more applications can be
considered in the engineering departments, and the study of
mechanics of continuous media, comes earlier and is more detailed.
More attention is given to concrete methods of calculation in the
solution of problems in mechanics and physics.

Some of the special options are common to both parts of the
faculty. Thus, for example, both departments treat problems in the
theory of computation (each has its own section of computational
mathematics), aerodynamics and cybernetics. The differences which
occur are determined partly by the professorial and lecturing staff of
the two parallel departments.

The other specialist options are different. Within the mathematics
department there are departments of functional analysis, algebra,
topology, differential equations, whereas engineering mathematics
includes, for example, departments of aerodynamics, elasticity and
plasticity, and geophysical applications of mathematics.

Throughout the world mathematical education is in a ferment, and
everywhere there is a search for new ways. Probably there are many
different solutions to the basic problem of how new generations of
mathematicians are to be educated and the optimisation of these
solutions is at present humanly impossible.

In the Soviet Union, as in other developed countries, varied
attempts are being made to construct a new and fully up-to-date
system of mathematical education.

I have already spoken of different methods that are realisable and
are already partly realised, for attaining a harmony between school
and life. 1t is hard to say at present which will prove to be the best
way to reach this goal. In my view the most successful will probably
prove to be some ‘mixed strategy’, in which there will be a place for
special physics-mathematics schools and special optional courses
in the general schools, and also mathematical olympiads. The uni-
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versities and the higher technical schools will benefit from the mathe-
matics and engineering-mathematics faculties which have been
reconstructed in a modern spirit.

The optimal relations must be found between all experimental
forms of mathematical education now existing and these will depend
upon local requirements. And of course these problems will be
solved better by the young people whom we introduce successfully —
or even with less than total success — into the temple of mathematical
science.

Novosibirsk University,
USSR.
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Modern mathematics: does it exist?

René Thom

The future historian of mathematics will not fail to be amazed by the
extent of the movement of the 1960s known as Modern Mathematics.
This movement now appears to have reached its zenith, and the
first signs of waning, a justifiably healthy reaction, are beginning to
make themselves apparent. I should like, perhaps somewhat pre-
maturely, to set forth in the manner of a balance sheet those things
associated with this movement which should be retained, put in their
proper place, or purely and simply eliminated. It is useless in such
an issue to conceal the existence of preconceptions and of personal
bias which cannot avoid influencing one’s judgement. It is a question,
not of knowledge nor of pedagogical technique, but of a field where
the personal feelings of the mathematician cannot fail to play an
essential role. Only dogmatic spirits (and they are not lacking among
‘modernists’) can believe that there is in these questions a truth
capable of being logically established and before which one needs
must bow. Consequently, I see this article as a ‘speech for the de-
fence’ to be contributed to the debate and not a proof which one
knows very well to be non-existent.

‘Modern Mathematics’ has a very complex origin and composition.
One can say, broadly speaking, that it seeks the two fundamental
objectives:

(a) The pedagogical renewal of mathematics teaching

Exception is taken to the didacticism of traditional teaching, even its
dogmatism, which is particularly evident — so one is assured — in the
teaching of Euclidean geometry. It is proposed to replace it by teach-
ing which is less directed, more free, constructive, oriented above
all to a heuristic approach, and by its nature, more able to arouse the
pupil’s individual interests and activities.
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(b) The modernisation of syllabuses

Mathematics having progressed, so we are told, considerably since
Cauchy, it is strange that in many countries the syllabuses have not
done likewise. In particular, it is argued that the introduction into
teaching of the great mathematical ‘structures’ will, in a natural way,
simplify this teaching, for, by so doing, one offers the universal
schemata which govern mathematical thought.

One will observe that neither of these two objectives is, to be
precise, ‘modern’ nor even recent. The anxiety about teaching
mathematics in a heuristic or creative way does not date from yester-
day (as Professor Polya’s contribution to congress thought shows).
It is directly descended from the pedagogy of Rousseau and one
could say without exaggeration that modern educators could still be
inspired by the heuristic pedagogy displayed in the lesson that
Socrates gave to the small slave of Menon’s.! As for the advance-
ment of mathematics which would necessitate a re-organisation of
syllabuses, one needs only point to the embarrassment and un-
certainty of modern theorists in dating the alleged revolution which
they so glibly invoke: Evariste Galois, founder of group theory,
Weierstrass, father of rigour in analysis, Cantor, creator of set theory,
Hilbert, provider of an axiomatic foundation for geometry, Bourbaki,
systematic presenter of contemporary mathematics, so many names
are called forth at random, and with no great theoretical accuracy,
to justify curricular reform.

It is hardly possible to deny objectives (a) and (b) a certain validity.
However, one can scarcely hope to attain either of these aims abso-
lutely. I shall not discuss objective (@) (pedagogical renewal) at
length: I am aware of having no competence in pedagogy — in which
I find difficulty in seeing anything more than an art. I shall restrict
myself, therefore, in this field to crude, common-sense arguments.

In order to satisfy himself that his pupil is participating fully in
the investigation in hand, the teacher must keep a continual check
on the student’s reactions, so that he may guide his own steps and
those of his ward. This is scarcely possible, ideally, except in a
téte-a-téte: moreover, this was the case in the example of the Socratic
dialogue mentioned earlier. As soon as a teacher must handle several
pupils simultaneously, he cannot keep check of the often divergent

1 See, for example, Plato, Five Dialogues, Everyman’s Library, Dent-Dutton,
London, 1910.
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reactions of all his pupils, and he is forced to neglect some of them.
The next stage, and the anxiety about efficiency, will induce him to
adopt the attitude of guide and soon revert to teaching ex cathedra.
Also, efforts directed towards a freer pedagogy are necessarily costly:
they demand more teachers, and better trained teachers with origi-
nality. Society will only be able to permit such efforts within the
bounds fixed by the financial budget. In another connection, to make
a theory of mathematical creativity is almost a contradiction in terms,
for nothing can be less easily described in terms of techniques or
recipes than creative originality. As soon as one uses a textbook, one
establishes a didacticism, an academicism, even if the book be so
written as to promote individual research. What is one to conclude
other than that efforts at improving pedagogy will always be
unfinished ?

Point (b) on the Modernisation of Syllabuses also seems very
justified. But let us observe that despite recent progress in our techni-
cal civilisation, the stages of a young child’s development (physical
or intellectual) have not been altered. There is always a stage of
necessary apprenticeship, genetic constraints to respect, in order to
learn to walk, to speak, to read, to write, and it does not seem as if
progress in psychology has been able to modify in any way the
normal calendar which governs the acquisition of such knowledge.
This is why one can legitimately ask whether the same kind of
constraints are not operating in the learning of mathematics. If this
is the case, then the hope of arriving, by means of a general re-
organisation of curricula or methods, at an accelerated awareness of
the great theories of contemporary mathematics, could well prove
illusory. Now it is indisputable that a number of ‘modernist’ educa-
tionists have expressed this hope and supported these illusions.

I personally believe that these genetic constraints do exist, that
they form an integral part of the pupil’s temperament and personality,
and that, among many of the pupils (probably most of the children
entering secondary education) they will, by their nature, completely
prevent the understanding of mathematics at the level of the rudiments
of the differential calculus — the goal which would have to be attained
by those wishing to enter higher scientific education. This is why it is
not obvious that an advancement in recent knowledge must, of
necessity, be reflected in syllabuses, especially at the elementary and
secondary levels.

But let us admit, for the time being, the validity of points (a) and
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(b) taken separately. What is strangest — and most arguable — in the
modernist position, is the way in which it believes that these two
objectives can be synthesised. Two arguments have been put forward
in support of this claim.

(i) The first argument is of a tactical nature: I have heard it
expressed in petto by French modernists, and I do not know if it
expresses the general attitude of reformers elsewhere. For pedagogical
reform to succeed, one must overcome inertia, the routine of teachers;
with this object, one must change syllabuses. In changing the content,
one will more easily be able to change the methods.

This tactical argument only has validity if it becomes evident that
the new materials introduced into teaching definitely encourage a
constructive, heuristic approach. Now it happens that the reformers
(at least those of Continental Europe) have been induced, by their
philosophical bias, on the one hand to abandon that terrain which
is an ideal apprenticeship for investigation, that inexhaustible mine
of exercises, Euclidean geometry, and on the other hand, to substitute
for it the generalities of sets and logic, that is to say, material which
is as poor, empty and discouraging to intuition as it can be.

(ii) The second argument is more serious. The psycho-pedagogues,
aware of the vagueness of their doctrinal position, believed that they
had found the key to their problems in the assertions of logicians and
formalist mathematicians. Since it was acknowledged that the pro-
gression of mathematical thought was modelled by those great
formal schemata that are the structures — structures of sets and logic,
algebraic structures, topological structures — teaching the child, at an
early enough age, the definition and the use of these structures would
suffice to give him easy access to contemporary mathematical theories.

This argument merits a searching discussion; beneath its con-
vincing appearance a basic psychological error is made which utterly
invalidates the modernist endeavour. One should first realise that
most of these great abstract structures — set theory, Boolean algebra,
topological structures — are present, here and now, in the infant
psyche in an implicit form, when one propounds them explicitly in
teaching. (In the case of algebraic structures there are grounds for
making distinctions: some, such as the group, exist implicitly, those
of the ring and the field are much more artificial.) The whole
modernist argument rests essentially on the assumption. By making
the implicit mechanisms, or techniques, of thought conscious and explicit,
one makes these techniques easier.
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Now this raises a great psycho-pedagogical problem which is by no
means peculiar to mathematics. One meets it, for example, in the
teaching of modern languages: must one teach a language to a pupil
in an explicit way, from books, instilling into him the grammar and
vocabulary of this language? Or, on the other hand, should one
teach him the language by direct use, as an alien child would
naturally learn it if immersed into this linguistic society ? The answer
is not easy, but, from the point of view of effectiveness, the direct
method is often preferable. In the early development of a child,
explicit and deductive learning play absolutely no part: when learn-
ing to walk, it would be more of a hindrance than a help to under-
stand the anatomy of the leg; and to have studied the physiology of
the digestive system is no help at all when digesting a too-heavy meal.
No doubt objections will be raised that I have used very crude
examples that have nothing in common with that supremely rational
activity, mathematical thought. But this would be to forget that
reason in man has, itself, biological roots, and that mathematical
thought is born of the spirit’s need to simulate external reality. We
shall return to this point later.

Another example, typical enough of transfer from the implicit to
the explicit, is provided by psycho-analysis which has sought to make
this transition from the subconscious to the conscious the essential
tool of its clinic. Now in this case, it seems that the results, in the
treatment of mental disorders, have turned out to be somewhat
disappointing. Knowing the theory of Freudian slips will not neces-
sarily prevent you from making one.

Moreover, this movement from the implicit to the explicit, often
useless, can have a bad influence. At times the pupil cannot see the
connection between a mental activity already present in his mind, and
the abstract, symbolic description which is offered to him (especially
if this presentation is permeated by formalist thought); in such a case,
this teaching will remain a dead letter for him. At times, the child
suspects the connection without reaching a clear understanding of it.
In this case, the explicit knowledge of the formal definition of the
activity can upset this activity, which, up to that point, was function-
ing very efficiently without theory: in the manner of those conscien-
tious individuals who hesitate to speak a language because they know
too much of its grammar and are afraid of making mistakes.

Finally, it should not necessarily be thought that by knowing the
standard structures of mathematics one knows mathematics; on the
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contrary, they only represent its most superficial aspects. When a bio-
logist wishes to study the physiology of walking, his attention is
immediately drawn to those striking structures: the bones and the
joints; but he will neglect, for want of understanding them well, all
the functional aspects bound up with the synchronisation of muscu-
lar contractions, their mechanical effects on the entire equilibrium,
the nervous systems which control them, etc. Thus our analysis of the
processes of thought only displays the crudest ‘joints’ of reasoning —
while neglecting the fine interactions due to sense, which are difficult
to explain or formalise. These crude joints belong to the domain of
logic, of propositional calculus. This corresponds to the ‘surface’
structures of linguistics which in common speech are constantly
upset, bent, by the demands of the ‘profound’ structures of meaning.
(See the examples which I gave in [1].) No doubt, as a rule, it is not
the same in mathematics, where the combinatorial rules of structures
do not permit any exceptions. Not so obvious: the paradoxes of set
theory clearly originate because one does not wish to admit exceptions
to the validity of certain axioms; and in ordinary mathematics it is
by a leap into the infinite and the continuous that the exception
materialises. (Cf. what is said in [1] about ‘semantic breakdown’.)

But let us return to our problem: is it of any value to transform
into an explicit knowledge a mechanism already present in an implicit
form in the mind ? Before putting the question of knowing whether
such a transfer is useful, one must first ask oneself if it is possible.
How can the thinker in some way detach himself from his own
thought, visualise it abstractly, independent even of the content of
the thought? Certainly, this detachment is a necessary step in the
process of mathematical advancement: but the inverse operation,
which is the reabsorption of the explicit into the implicit, is no less
important, no less necessary. This second stage, which amounts to
treating as ‘existents’, as legitimate objects to be treated globally,
equivalence classes extracted abstractly as a result of the preceding
process of making explicit, corresponds to what logicians call an
‘ontological requirement™ for the operation in question. Now
everything leads one to believe, that this operation of detachment,
this splitting of the semantic field, carrying the mental activity that
one wants to abstract, is only possible if, to be precise, the object
generated by this operation is recognised as the bearer of a stability,

1 See, for example, Quine, W. V., From a Logical Point of View, Harvard U.P.,
Cambridge, Mass., 1964.
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of a ‘sense’, as strong as that recognised in primitive elements. Let us
illustrate these difficult thoughts with an example. It is permissible
to define a rational number abstractly as an equivalence class of
ordered pairs of integers

(p,q9) ~ (p',q) ifandonlyif pg =p'q.

But this definition will only convey meaning if one has shown that
the equivalence class so defined behaves like an integer, that it has
the same operational properties (and even more, since division by
a non-zero rational is always possible), and that, in addition, the set
of these new numbers contains in a natural way the set of the integers
with which one began. Thus the quality of existence that one attri-
buted at the outset to integers will extend naturally to the rationals
which contain them. When one has clearly understood that it is the
result of the abstraction process which justifies the abstraction and
makes it possible, one sees how the formal and axiomatic presentation
runs contrary to the natural order. In good teaching, one introduces
new concepts, ideas etc. by using them, one explains their rules of
interaction with primitive elements one has assumed to exist, one
makes them familiar through handling these rules. It is only later
that one will be able to give the abstract definition which allows one
to verify the consistency of the theory extended in this way. Mathe-
matics, even in its most elaborate form, has never proceeded other-
wise (except perhaps for certain gratuitous generalisations of alge-
braic theories).

In the paper which he wrote for the congress, Professor Piaget
gave an excellent description of the process of extracting conscious
structures from schemata of unconscious activity: this is what he
calls the process of ‘reflective abstraction’ (see p. 81). He nevertheless
expresses his conviction that the explicit teaching of the great abstract
structures opened up by contemporary mathematics is a very effective
factor in facilitating this process. Ought I to say therefore that it
seems to me that the psychologist places excessive trust in the virtues
of mathematical formalism? And that he credits deductive, abstract
reasoning with a power that it can scarcely have in a young child’s
mind.

Let us try to give this process of ‘reflective abstraction’ a geometric
image: let us represent the set of human activities (sensori-motor
and mental) by the x, y-plane, and let us suppose that the upper
half-plane y > 0 represents the conscious part of these activities, the
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lower half-plane y < 0 the unconscious part. A schema of un-
conscious activity, S, will be represented by a geometrical shape (S)
in this lower half-plane. Reflective abstraction consists of the creation
from (S), emanating out of S, of a form (S’) in the conscious half-
plane y > 0: (S') is a kind of mirror-image of (S), eventually im-
poverished and purified. This process of the formation of a ‘ conscious
offspring’ §’ starting from the mother-structure S is at all points
analogous to the process of biological reproduction, by which a living
being produces a descendant isomorphic to it; the process having

¥

continued, there will always be at the onset the formation in S of
a bud, of a foetus, which develops in S and, having come to maturity,
detaches itself. This is — as the word indicates — a true ‘conception’,
which permits the formation of S” out of S. The teacher’s task is to
bring the foetus to maturity and, when the moment comes, to free it
from the unconscious mother-structure which engenders it, a maieutic
role, a midwife’s role —as Socrates has it (cf. p. 77). But, in this
analogy, the great abstract logical structures, such as, for example,
the notion of equivalence relation, powerful, detached means of
abstraction, bear a strong resemblance to the brutal tools of the
surgeon, such as the forceps or the caesarian operation. And if one
undertakes a caesarian operation with a premature foetus, one loses
the infant and one runs the strong risk of killing the mother. If, on the
other hand, one had left the child to develop, if one had left him to
come to full term while supplying him with a suitably nourishing
milieu, the separation from the mother-structure would take place
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naturally and without the aid of those powerful but feelingless tools —
abstract, logical notions. Our fathers (and, in point of fact, the
mathematicians of my generation) did not know ‘modern mathe-
matics’: that has not hindered them from learning mathematics,
and I do not hesitate to say it, in a manner much more natural than
that of the modernist presentation. To leave the embryo to mature,
this is in fact to lead it to consciousness, thus to give it a meaning,
and importance either operational or conceptual. It is to this pri-
mordial task of conferring on it existence in the mental world, that
teaching must be dedicated.

The real problem which confronts mathematics teaching is not that of
rigour, but the problem of the development of ‘meaning’, of the
‘existence’ of mathematical objects.

Formalisation, axiomatics and rigour

This leads me to deal with the old war-horse of the modernists (of the
Continental European variety): rigour and axiomatics. One knows
that any hope of giving mathematics a rigorously formal basis was
irreparably shattered by Godel’s theorem. However, it does not seem
as if mathematicians suffer greatly in their professional activities from
this. Why ? Because in practice, a mathematician’s thought is never
a formalised one. The mathematician gives a meaning to every
proposition, one which allows him to forget the formal statement of
this proposition within any existing formalised theory (the meaning
confers on the proposition an ontological status independent of all
formalisation). One can, I believe, affirm in all sincerity, that the only
formal processes in mathematics are those of numerical and algebraic
computation. Now can one reduce mathematics to calculation?
Certainly not, for even in a situation which is entirely concerned with
calculation, the steps of the calculation must be chosen from a very
large number of possibilities. And one’s choice is guided only by the
intuitive interpretation of the quantities involved. Thus the emphasis
placed by modernists on axiomatics is not only a pedagogical aberra-
tion (which is obvious enough) but also a truly mathematical one.
One has not, I believe, extracted from Hilbert’s axiomatics the true
lesson to be found there; it is this: one accedes to absolute rigour only
by eliminating meaning; absolute rigour is only possible in, and
by, such destitution of meaning. But if one must choose between
rigour and meaning, I shall unhesitatingly choose the latter. It is
this choice one has always made in mathematics, where one works
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almost always in a semi-formalised situation, with a metalanguage
which is ordinary speech, not formalised. And the whole profession
is happy with this bastard situation and does not ask for anything
better.

One has, moreover, very probably overestimated the importance
of rigour in mathematics. Of all the scientific disciplines, mathe-
matics is the one where rigour is a priori least necessary. When
a mathematician X publishes the proof of a theorem, his reader Y is
in a position to check his assertions. He can say: the proof seems
correct to me and I am convinced; or else: I do not understand such
and such a point, this lemma is not very clear to me, there is a gap in
the argument. On the other hand, in experimental disciplines, the
situation is entirely different. When an experimenter 4 presents the
result of tests carried out in his laboratory, he can give all the details
he wishes concerning the procedure followed, all the desired guaran-
teed data on numerical results, but I have no way of checking the
accuracy of his statements and I am compelled to trust him. As a
result, error is ultimately a negligible phenomenon in the evolution
of mathematics. It is more frequently a happy accident in the progress
of a theory, than a catastrophe which is going to deflect science from
its normal course. The mistake is only annoying for its author, not
for mathematics itself. The advocates of axiomatics would do well to
reflect on the following philosophical problem: why is ordinary
language not axiomatisable? (Perhaps the nearest approaches to a
formal language are those of the law and theology.) It is that, in
everyday situations, members of the same linguistic community have
practically the same semantic universe, the same vision of the uni-
verse through their own language. Although a name — a concept — is
realised in extension! by an equivalence class which is not formalis-
able, nevertheless everyday speech functions with remarkable effi-
ciency and an almost total absence of ambiguities. (If a phrase should
be ambiguous, then the ambiguity is generally resolved by the con-
text.) The meaning in ordinary language rests in the main on criteria
of a topological character: the identity of an object, or of an indi-
vidual, expresses itself in the connected character of the space-time
domain occupied by that object (or that individual). And the syntax
of ordinary language, relatively poor from the structural point of
view, describes the most frequent dynamic interactions between

1 For a definition of this technical term see, for example, Quine, From a Logical
Point of View, p. 21.
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space-time objects. On the other hand, in mathematics, amongst
professional mathematicians (and, a fortiori, amongst students)
semantic universes are very different: an expression which makes
sense to X is incomprehensible to Y, etc. This is because ‘meaning’
in mathematics is the fruit of constructive activity, of an apprentice-
ship, and there have never been two mathematicians (or even two
students) who have had the same history of mathematical experiences.
It is this fundamental diversity of semantic universes which explains
the need for formalisation — at least in part — in mathematics. At best
mathematicians base their universe on a kind of common stem made
up of objects and theories which occur in standard teaching (for
example, real and complex numbers, analytic and differentiable func-
tions, manifolds, groups, vector spaces, ...) and all proof, other
than the more specialised, must proceed from this mathematical
vernacular common to all. A proof of a theorem (7') is like a path
which, setting out from propositions derived from the common stem
(and thus intelligible to all), leads by successive steps to a psycho-
logical state of affairs in which (T') appears obvious. The rigour of
the proof — in the usual, not the formalised, sense — depends on the
fact that each of the steps is perfectly clear to every reader, taking
into account the extensions of meaning already effected in the
previous stages. In mathematics, if one rejects a proof, it is more
often because it is incomprehensible than because it is false. Generally
this happens because the author, blinded in some way by the vision of
his discovery, has made unduly optimistic assumptions about shared
backgrounds. A little later his colleagues will make explicit that
which the author had expressed implicitly, and by filling in the gaps
will make the proof complete. Rigour, like the provision of supplies
and support troops, always follows a breakthrough.

In fact, whether one wishes it or not, all mathematical pedagogy,
even if scarcely coherent, rests on a philosophy of mathematics. The
modernist tendency is grounded essentially on the formalist concep-
tion of mathematics —that which was classically expressed in the
famous aphorism of Bertrand Russell, ‘ Mathematics may be defined
as the subject in which we never know what we are talking about nor
whether what we are saying is true’. Its opponents, on the other hand,
insist on anchoring mathematics in reality. One gladly accuses them
of Platonism. But there are without doubt shades of difference. With
Plato the world of Ideas constituted the supreme reality, and the
concrete world of our perceptions was only a kind of degraded image
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of this Ideal world. But man has always the naive illusion that he has
access to the ultimate reality ; more humbly, it must be asked whether
mathematics has not played a role in the evolutionary separation
of man, if it has not constituted a decisive factor in the superiority of
man over the animal. In external reality, certain local processes, of
a biological or physical nature, are subject to a very strict determin-
ism; others, however, are aleatory, that is to say cannot be foreseen
with precision. Very rapidly, the animal nervous system, then the
human, has specialised in the simulation of well determined external
processes; it is useless, in fact, to simulate the aleatory processes, since
these, by definition, have an unforeseeable outcome. Very quickly,
the mind has isolated a certain number of typical dynamic situations
with a foreseeable outcome, because they were subject to a rigorous
determinism (dynamically stable).

These patterns of conflict, organised in a classification of effective
processes, were the first situations ‘understood’ by man (for example,
the capture by a predator of its prey); these have formed the ‘nuclei
of the intelligibility of reality’, in the words of J. Ladriére [2]. But
having assimilated a formula which works, the mind has a tendency
to extrapolate the conditions of application of this formula and to
repeat its use (like Pavlov’s dog which salivated at the sound of a
bell). From this comes the tendency to isolate the repeatable processes,
which can then be combined with each other as many times as one
wishes. Such is the source of mathematics: it is the science of the
simulation of automatisms. To this end, of being able to repeat and
combinea configuration of objects, the mind is led to simplify, to purify
reality. There is, in principle, the same relationship between the formal
and the intelligible, as between a derived function and its primitive.

In the operation of derivation of a germ of a function, one pares
away a good part of the information contained in the germ in order
to permit a more ready extrapolation. In the same way, in the per-
ception of an intelligible situation the mind schematises, simplifies,
so that it can repeat and combine this situation. Thus, setting out from
one such nucleus of intelligibility, the mathematical mind engenders
by combination the whole of an abstract structure which aims at
spreading the conditions of applicability of the formula which results,
at extending its domain of validity. But there is between reality and
this mathematical construction the same relation as that between
the tangent plane and a point of the embedded manifold which it
touches; as soon as one moves a little way from the point of contact,
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the validity of the abstract model diminishes and disappears in
general, because this ‘tangent plane’ strays away from reality. To be
sure, it can happen, rather exceptionally, that the mathematical
theory be entirely valid empirically. It is that, as Dostoyevsky says,
‘reality often lacks a sense of humour’. Certain areas of nature —
essentially the field of classical natural philosophy — are entirely
governed by rules of an automatic character. Hence the existence of
quantitative, physical laws —and their ‘unreasonable precision’,
according to the so accurate expression of E. Wigner. Only in so far
as nature is stupid, does she allow herself to be put into mathematical
terms...

Such a conception of mathematics clearly goes against the tradi-
tional point of view. It makes geometric continuity of premier
importance. A discrete algebraic schema only derives its formal
effectiveness because it has an empirical realisation in the space-time
continuum. Pedagogy must strive to recreate (according to Haeckel’s
law of recapitulation! — ontogenesis recapitulates phylogenesis) the
fundamental experiences which, from the dawn of historic time, have
given rise to mathematical entities. Of course this is not easy, for
one must forget all the cultural elaborations (of which axiomatics
is the last) which have been deposited on these mathematical objects,
in order to restore their original freshness. One must forget culture
in order to return to nature. The modernist tendency represents, on
the contrary, an increase of culture to the detriment of nature; it is —
in the strict meaning of the term — a preciosity. But if preciosity in
art and in literature sometimes has a certain charm, the same may
not be true in mathematics. . .

These considerations — hazardous as they seem — have their im-
portance when one comes to discuss a crucial point in the modernist
reform, the place of elementary geometry in teaching.

Comparison of ordinary language, that of geometry and that
of algebra

It is interesting to compare normal language with those of Euclidean
geometry and (formal) algebra from the three following points of
view.

(1) The ‘meaning’ of an element: can one formalise the equivalence
class (in extension) defined by an element of the language?

1 See, for example, Storer, T. L., et al., General Zoology (5th ed.), McGraw-Hill,
New York, 1972.
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(2) Is this meaning intuitively clear?
(3) The richness (or poverty) of the syntax.
One then has the following answers.

Ordinary language

(1) The equivalence class defined by a word (a concept) cannot
usually be formalised (itis often of a topological nature — the invariance
of a gestalt).

(2) Nevertheless, the meaning of the word is clear.

(3) The syntax is poor. (There are few kinds of nuclear phrases in
grammar, and the setting of phrases one inside another as sub-
ordinates rapidly ceases: at the most there are three or four possible
stages of subordination.)

FEuclidean geometry

(1) The object defined by a word, a geometric figure, is formalisable
(that is, susceptible of description in a few words as a function of the
elementary ‘beings’, namely points). Equivalence is defined by the
Euclidean group, a group of finite dimension.

(2) The meaning of a word is clear, for it coincides with the spatial
intuition of the corresponding figure.

(3) The syntax is rich, for it describes all the respective spatial
positions of the figures and their displacements. (Nevertheless it is
expressed verbally by a small number of concepts, such as incidence,
the combinations of which are unlimited.)

Formal or algebraic language

(1) The equivalence class is defined by identifying a written symbol
with itself: it is therefore formalisable.

(2) The ‘meaning’ of an algebraic symbol is established with
difficulty or is non-existent.

(3) The syntax, which is the way in which possible operations
can be combined, is rich, for, in principle, it is limitless. :

One sees from this comparison how Euclidean geometry is a natural
(and perhaps irreplaceable) intermediate stage between common
language and algebraic language. Geometry allows a psychological
widening of the syntax, whilst still retaining the meaning always
given by spatial intuition. At the same time, the meaning of an
element can already be given by a formal definition. The move — in
line with modernist dogma — to eliminate elementary geometry to
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make room for calculus and linear algebra, has little to recommend it
psychologically, because the algebraic objects (the symbols) are too
poor semantically to permit themselves to be understood directly
as is the case with a spatial figure.

I shall add that the language of elementary geometry offers a solu-
tion to the following problem: to express in a one-dimensional
combination - that of language — a morphology, a multi-dimensional
structure. Now this problem recurs in a form ‘everywhere dense’ in
mathematics, where the mathematician has to communicate his
intuitions to others. In this sense, the spirit of geometry circulates
almost everywhere in the immense body of mathematics, and it is
a major pedagogical error to seek to eliminate it. To this argument
one may add the heuristic poverty of algebra, where each new diffi-
culty presents itself like a wall which necessitates entirely new
methodsif it is to be surmounted. There is nothing of this in geometry,
where the combination of figures allows a host of exercises which are
well-graded according to difficulty.

The balance sheet

If I have been hard on the modernists, this does not mean in the least
that everything which has been contributed by this movement must
be set on one side; a return to the status quo is doubtless impossible.
There is, in particular, one positive point which one should retain in
any case. Formerly, there existed between secondary and higher
education in mathematics a kind of gulf that young students who
had just left the secondary school had much difficulty in bridging.
By the introduction of set notation (presented without any theory,
as simple abbreviations) and the rudiments of linear algebra, one can
help make this gap disappear. In my opinion, a pupil leaving secondary
education (16-17 years) and intending to take up a scientific career
should be at about the same mathematical level as a Leibniz with, in
addition, some notions of more modern linear algebra. It seems
possible to achieve this result without sacrificing the teaching of ele-
mentary geometry. In doing this one need not try to obtain an impos-
sible rigour; one will keep the substance of Euclid’s Elements (in
a more supple and less axiomatic presentation) while relinquishing
the method of procedure which, in any case, has long been out of date.

Perhaps such a moderate conclusion will be disappointing. But
the mathematical community has in these last years allowed itself
to be led astray by declarations and ill-considered promises. There
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has been talk of a ‘revolution in mathematics’ and assertions that,
thanks to new syllabuses and new methods, the most average pupil
would be able to complete his secondary studies in mathematics. It
is time to put a stop to these utterances which border on deception.
No miracle is possible and one can only hope to ameliorate the
existing situation step by step, and by small local improvements.
Then what was responsible for the birth of this modernist move-
ment? One has not explained everything, happily, when one has
drawn attention to the commercial interests involved in alterations
to curricula and textbooks. I should venture to suggest the following
hypothesis — with certain obvious reservations: there was without
any doubt a feeling of relative frustration in the mathematics com-
munity during the years 1950-60: jealousy with regard to Physicists,
favoured financially by the development of nuclear energy (and
devices); jealousy with regard to Biologists, made famous by the
discovery of DNA and the genetic code. During these same years,
mathematics was making very great advances, notably in algebraic
geometry and algebraic topology, but these advances did not arouse
the interest of the general public.

The launching of satellites (1957-60) drew public attention anew to
mathematical techniques (and notably to the computer). It was in
order to revive this declining interest that recourse was made to
‘modern mathematics’. If this hypothesis has the ring of truth, it
would be well to remind our colleagues that it is a law of our society
that the important things in it are never those of which one speaks;
in our time, even more than in the time of Nietzsche, new ideas
arrive on the feet of doves.
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Investigation and problem-solving in
mathematical education

Edith Biggs

Investigation can play a vital part in the learning of mathematical
concepts and in problem-solving. At all stages the teacher has an
essential part to play. He sets the scene, providing real materials or
a challenging problem when necessary. He observes what his pupils
do with these and asks questions which will help their learning.

There are different stages in learning by investigation. All are
important for sound and lasting learning.

(1) Free exploration. A problem arises, or the teacher asks a
question. The children use materials which they find for themselves
or which are provided by their teacher. When materials are not
necessary pupils explore the problem for themselves. Very often they
will discover relations which the teacher has not thought of. These
should not be rejected but postponed if the teacher wants to pursue
a particular concept.

(2) Directed discovery. Here the teacher wants the pupils to
investigate a particular idea which has developed during the first
stage. This is probably the idea which the teacher originally planned
to develop. His questions are now focused on the concept he has in
mind. Since pupils vary in background, in ability and in attitude,
it is useful to group them so that questions can be appropriate to the
needs of each group.

(3) Once pupils have had experience of a concept or have solved
the problem in hand they will require further varied experience
or practice to fix the concept. This stage should not be omitted
since a pupil’s confidence often depends on both knowledge and
skills.

Group work (often friendship groups) is very valuable in work of
this kind, especially in stages 1 and 2. Pupils discuss, interchange
and develop ideas and achieve far more than they would when
working individually. Such group activity normally increases the
pace but teachers need to keep a careful eye on slower pupils to see
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that they have adequate experience to ensure understanding and
adequate practice to ensure learning.

Most teachers are more confident in their classroom when they
have a plan of action, either in mathematics or in the development
of topics which include mathematics. In the United Kingdom such
planning is normally done by the headteacher, in consultation with
his staff, or by a group of teachers at a teachers’ centre. As far as
mathematics is concerned there are certain topics which we should
probably agree are essential (up to the age of thirteen). These would
include number in various aspects; measurement of all kinds (in-
cluding volume, angles etc.); statistics and probability; the properties
of shapes (three-dimensional as well as two-dimensional, scale,
congruence, symmetry and tessellations). Pupils should have first-
hand experience of certain mathematical concepts in all these topics;
sorting, matching and classification; inequalities, arranging in order
of magnitude, conservation; the operations of addition, subtrac-
tion, multiplication and division; estimation, approximation and
averages; patterns such as direct and inverse proportion, squares,
cubes, growth patterns; variables, generalisation leading to algebra
and limits; representation of many different types. Of course there
would also be a wide range of topics which would be regarded as
optional.

In general, teachers would plan the starting points for the im-
portant and essential topics. However, many of the mathematical
topics which have engaged pupils’ interest over a period of time
have been sparked off in other aspects of the curriculum than
mathematics. One useful outcome is that whereas pupils are some-
times less interested in purely mathematical problems they become
completely absorbed in problems which arise in other fields and
normally persist until they have obtained a satisfactory solution as
the following examples illustrate.

A seven-year-old boy needed to draw a circle for the model he was
making. His teacher found him sitting with his finger in the middle
of a square turning this around. He told her, excitedly, that the
corners traced a circle as he turned the square. The teacher asked
him to find the middle of the square, which he did using string, so
that she could nail the square to a sheet of paper on a board. This
activity attracted many children not concerned with the original
problem. They used a variety of shapes nailed at the centre or at
corners and rotated these slowly, drawing round each successive
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position. The final picture was painted in very attractive colours.
Later the boy improved his method of drawing circles, first by using
a strip of wood nailed to a board and later by using a long loop of
string knotted at various points.

A year later the teacher experimented with another group of
children. She suggested that they should choose a plastic shape and
rotate this to see what happened. To her surprise this group of
children used templates in an en-
tirely different way. For example

Helen started drawing 4 squares, 1 E 3 4
then continued drawing round her
square template until she had sur- 12 1 5 5

rounded the 4 squares. She num-
bered each square she used. She
continued adding layer upon layer 11 4 3 6
and wrote down the number of
squares added each time. She re-
corded ‘I drew round the square
and then numbered the squares
and the number was 4. The second time I went round the number
was 12 and the third time the number was 20, and the fourth time
the number was 28. The number went up in 8 each time. I think the
numbers would go on like this: 36, 44, 52, 60, 68, 76, 84, 92, 100.” When
the teacher asked if she could do this in another way, Helen started
with one square and built round it.

Other children used equilateral triangles and rhombuses, each time
recording the number of units added. It is interesting that these
children who tackled this problem without the inducement of dis-
covering a method of drawing a circle used an entirely different
strategy.

This problem could, of course, be used to develop the idea of scale
— for example, what happens to the perimeter and area of a square
when it doubles (trebles, etc.) its edge? The pattern of linear scale
often arises when children are comparing their own vital statistics.
Forexample, after asking a group of six- to seven-year-olds to arrange
themselves in order of height a teacher asked them to represent this
in some way. After some discussion they drew round the tallest of
the group, then marked the height of each group on this cut-out.
The teacher then asked them to cut off their ‘string height’. She gave
them a large sheet of paper and asked them to arrange their string
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heights on that in order of height. After considerable discussion (and
asking in vain for another sheet of paper) the members of the group
decided to halve their string height. (But in their efforts they forgot
to arrange them in order!)

An interesting problem on scale arose with a class of ten-year-olds.
This time the children did not discover the answer to this question
because the teacher did not, at that time, know enough mathematics
to develop the topic.

After a radio programme the children had become interested in the
blue whale. They found all the statistics they could and measured
their classroom to see how many classrooms they would need in
a row to accommodate one blue whale. They then measured the
playground and found that five blue whales could be fitted into the
space. Next day, on the way home from school, a girl from the class
saw a model blue whale in a cleaner’s shop. She asked the manager
if she could borrow this, since she was working on the blue whale at
school, to see if it was a true scale model. The manager agreed, if
the girl could find someone to transport the 3-metre model. This was
eventually accomplished in a van and the children discovered that the
model was a reasonably accurate scale model of an adult whale. This
created an interest in baby blue whales. The children found that the
ratio of the lengths of adult and baby whales was 4 to 1. They were
therefore surprised to find that the ratio of the corresponding weights
was 15 to 1. They then switched their interest to humans. They
worked out, from an example they knew, that the ratio of the heights
of adult to baby was 3.6 to 1, whereas the ratio of their weights was
14 to 1. Now the children (and their teacher) had expected the weights
to be in the same ratio as the heights (Whereas I was surprised because
there was not a greater difference in these two ratios). But here, for
the time being, the investigation had to stop because the teacher did
not know how to develop the topic further. How would you have
followed up this problem?

The next example also concerns animals. Some ten- and eleven-
year-old children had been asked to find the average pressure on their
feet (when standing on both feet). To do this each divided his weight
in pounds by the total foot area in square inches. The results (to
2 places of decimals!) were then arranged in order from largest to
smallest. The children then turned their attention to animals. One
child wrote: ‘Our class wondered what the pressure on an elephant’s
foot would be. So before Christmas I wrote to Bellevue Zoo asking
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them to draw round an elephant’s foot. In about a week I received
the elephant’s foot below.” The zoo had also supplied the elephant’s
weight (3 tons 5 cwt). The pressure per square inch on the elephant’s
foot turned out to be over 13 pounds, very different from that on the
children’s feet (maximum 2.6 pounds). After receiving the answer
from the zoo, the children collected results from their own animals:
cats and dogs, rats and hamsters. A scientific enquiry had begun;
Professor David Hawkins of Colorado University also became
interested in this problem. Could this be developed with other types
of animal, e.g. birds? Insects?

A problem on scale which concerned eight- and nine-year-olds (in
the USA) arose when they were studying rocks. After making their
collection of rocks some began by comparing textures (by feeling
with eyes shut, and trying to find suitable words to describe what
they felt). Others began to compare the size of their rocks. They
weighed them, found the perimeter and cut a string model and finally
made a paper covering to fit each rock. They were still not satisfied
that they had compared their rocks in every way. One boy suggested
filing the rocks, collecting the filings in identical jam jars so that the
contents could be compared. They started, but since the rocks were
made of granite, little headway was made. At this point I offered the
boysaclear plasticcontainer holding some water and asked if this would
help. ‘No’, they replied, ‘because all rocks float.” When I pressed
them to find a stone which floated they produced a piece of pumice!
I hoped they would now try to float their rocks but ‘No’, they said,
‘Rocks disappear in water — like salt and sugar’. At this moment the
calls were made for the buses (at this voluntarily integrated school
most children travelled in buses) and the children disappeared. Next
morning I was prepared to give the children the opportunity to study
solution — but there was no need. Every member of the group had
tried a rock in water for himself and assured me that rocks did not,
after all, disappear in water.

And now the children were eager to put their rocks in water. As
the first went in, I asked what had happened. ‘The water’s risen’,
they said, ‘we knew it would.” ‘Can you tell me anything about it?’
I asked. Slowly a boy said ‘That risen water is what my rock would
be if it were made of water,” He paused. ‘If we could weigh it, it
would weigh the same as the rock.” ‘Do you all agree?’ I asked.
Most of the group said yes. The others were unsure. They tried to
pour off the risen water with the rock still in the container. The rock
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became uncovered so they abandoned this, removed the rock and
marked the water level. Then they replaced the rock and marked the
second level. One boy decided to remove the rock and measure the
volume of water he had to put in to fill the container to the second
mark. While he was deciding what units to use another suggestion
was made. ‘Let’s fill a container to the top and collect the risen
water when the rock is put in, in a polythene bag and weigh it.’ This
was done and the water was weighed. Now the rock weighed 43 Ib
and the risen water only 13 Ib. The children decided that they must
have spilt some water so they repeated the experiment — with the
same result. Still they did not believe the result so they tried a third
time. ‘The water weighs much less than the rock’ they said. One
boy added, ‘The rock is about three times as heavy as the water.’

At that moment a boy began to shape the water in the bag (firmly
closed with an elastic band). I enquired what he was doing. ‘If this
is what my rock would be if it were made of water I must be able
to make the water into the shape of the stone,’ he said. This made
me realise that this boy really understood volume.

The following day the children decided that they would make
rock books. They searched for paper the colour of their rocks and
wanted to make the covers of the same shape as their rock. For
most of them this meant drawing round their rocks and then making
an enlargement. One boy cut a piece of string the length of the
perimeter and doubled this, because he wanted a rock ‘twice the
size’. He indicated that he meant twice as long, twice as wide and
twice as high. He had great difficulty in trying to arrange the double
perimeter round the rock so that the two shapes were the same.
I could not think how to help him without telling him ‘the trick’
so he completed this ‘by eye’.

Some time later I related this story to some teachers of children
of ages five to eleven. I asked them if they could find a way of en-
larging shapes. After some false starts I suggested that they should
start with a square, put in the diagonals and then see what they had
to do to obtain a square with edges half the length of those of the
original square. It was some time before they discovered that their
second square could be obtained by joining the mid-points of the half
diagonals. They then tried doubling the original square — and found
the perimeters to be doubled. ‘What about areas?’ I asked. The
4 to 1 relationship was discovered and other enlargements were
tried.
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Suppose you took the point for enlarging or reducing anywhere
else in the square, would the same method work ? Suppose the point
is on the perimeter of the square or outside, will the same method
work ? There was much experiment and argu-
ment. Other geometrical shapes and finally some
very irregular shapes were enlarged and reduced
in various ratios. Would it work for a circle, I
asked. What would be the ratio of the peri-
meters and areas? (I produced some logiblocs
in a 2 to 1 linear ratio of squares, rectangles,
equilateral triangles and of circular discs of the
same thickness.) The ratio of the perimeters
caused some trouble, despite the previous work.
All were convinced about the 4 to 1 ratio of
areas except for the circular discs. Eventually a
teacher of younger children (five to seven)
suggested we might use balance scales to see if
4 small discs balanced 1 large one of the same
thickness. We completed this investigation the
next day by developing different strategies for
building the largest cube we could, using an uncounted pile of identical
cubes. We then repeated this, building the largest square using thin
identical squares. We also built a consecutive sequence of cubes and
a consecutive sequence of squares and found all possible number
patterns — which we subsequently investigated and grouped.

I should now like to return to the problem of growth of humans
(and of whales). Recently, two secondary teachers worked on this
problem and came to the following conclusion. The ratio of the
lengths of a new born baby to an adult is approximately I to 4
(50 cm to 200 cm).

The ratio of their girths is approximately I fo 2 (50 cm to 100 cm).

Therefore we would expect ratio of areas of cross-sections to be
1 to 4 (and not 1 to 16).

Therefore the ratio of volumes will be approximately 1 to 16 (and
not 1 to 64).

This also seems to be true for whales!

Another example occurred with twenty-four graduate mathematics
students in a school of education in the USA. I was asked to talk to
them about the teaching of mathematics with young children. As in
this article, I posed the problems undertaken by pupils of the age
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range five to sixteen — but gave no answers. The final problem was
one set in a public examination taken by sixteen-year-olds. ‘Investi-
gate triangles of fixed perimeter.” I made string and squared paper
available. Twelve students used the string and, within half an hour,
had investigated every aspect of this problem. The others, using paper
and pencil only, solved one aspect but were still floundering at the
end of an hour. I discovered later that the former group had not been
given normal lectures but investigations (both individually and as
groups). The other group had been given the usual diet of lectures.
In consequence of this experiment it was recommended that all
students should be given investigations as part of their training.

A final example illustrates the need for more background know-
ledge on the part of teachers and for careful planning by teachers to
énsure progression on the part of the pupils they teach. Two nearby
schools in England covering the age range five to eleven years, were
asked to concentrate on the topic symmetry for a few weeks. It was
interesting to notice that every teacher began with mirror symmetry,
partly because this was the first experience their children had had of
symmetry and partly because this was the type of symmetry which
was familiar to every teacher. The five-year-olds used paint prints of
their two hands and of their two feet to illustrate this type of sym-
metry. At the other extreme a ten-year-old made a paint blot pattern
of great delicacy and intricacy which she called ‘The Universe’.
Little was done to develop the equivalences which could arise from
such work because the teachers were not aware of the possibilities.
Children of eight and nine made cut-out patterns with two axes of
mirror symmetry by paper folding. The nine-year-olds included the
axes of mirror symmetry of common two-dimensional shapes. They
also explored symmetries of a variety of number patterns and of
coloured rods.

The ten-year-olds studied for the first time, planes of mirror sym-
metry of the regular three-dimensional solids they made. (This might
have been tried with far younger children if their teachers had thought
of this.) Furthermore, it was not until the age of ten that children
were given experience of rotational symmetry. The teacher respon-
sible gave her children a variety of experiences which led them to
discover the angles of rotation of regular two-dimensional shapes.
This did not include the rotational symmetry of geometrical shapes
such as the parallelogram and rectangle. It was evident from this
work that teachers in Britain require a far more extensive first-hand
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experience of symmetry if they are to explore this topic to the full
with their pupils. For example, no experience was given of symmetry
in graphs or of algebraic expressions. We have found that when pupils
(and teachers) are given experience of examples of such symmetry
they are quick to notice equivalences.

So investigations and problem-solving have a very important place
in the learning of mathematics. Children and students learning
through investigations are accustomed to problem situations (real or
imaginary) and do not find problems difficult. Sometimes the solu-
tion of the problem requires the use of materials and sometimes of
paper and pencil only. As pupils grow older, if they are accustomed
to learning by this means they will require far less first-hand experi-
ence and should be expected to use far more imagination. So we shall
be encouraging pupils to use their creative powers to the full in
mathematics.

Because mathematics is an abstract subject, results of all investiga-
tions should be communicated in forms becoming progressively more
abstract: by a picture or diagram, in words, by a table, by a graph
or by an algebraic relation.

I cannot do better than finish by quoting Professor Pélya, who
has experimented extensively with the teaching of mathematics to
university students.

‘ Abstractions are important; use all means to make them more
tangible. Nothing is too good or too bad, too poetical or too trivial
to clarify your abstractions.’

2 Carlton Gardens,
London, W5 2AN.
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Intuition, structure and heuristic methods
in the teaching of mathematics

E. Fischbein

1 Intuition and comprehension in
mathematical education

When the pupil is presented with a logical proof, is it necessary for
him to have to add to this his own means of direct comprehension,
that is to say, what is known as his intuition?

This is not a new problem. However, it has recently attracted much
attention due to the increase in rigour of the mathematical proofs
given in teaching situations. In my opinion, in order that these more
axiomatised demonstrations do not stifle the mathematical reasoning
process, it is absolutely essential to encourage the use of such intuitive
support. This is the first problem that I should like to examine.

First, I consider that there are a number of distinctions that should
be made: it is necessary to distinguish between what I call intuitions
of adhesion and intuitions of anticipation. The intuition of adhesion
expresses itself in the feeling of evidence about a certain fact. It is
intuitively evident that the relation of equality is transitive, that from
any point not on a straight line there can be only one perpendicular
to that line, that there is always a natural number greater than a given
number, etc. When I say that something is ‘intuitively evident’ I refer
to the fact that the need for a mathematical proof is not felt in these
cases (though, from the mathematical point of view, such a proof
may be necessary). By ‘anticipatory intuition’ I mean the global
vision of the solution to a problem. This vision precedes the rigorous
and explicit construction of the solution. These two types of intuition,
though interdependent, play two different roles in understanding and
in the psycho-pedagogical aspect of science in general and of
mathematics in particular.

I should like, for the moment, to dwell on the problem of the intui-
tion of adhesion. What is its source ? In this paper I cannot enter into
all the details, but I support the opinion that intuitions base them-
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selves on mental habits. It is possible, in certain cases, that at the
origin there are hereditary elements but usually these express, to a
certain degree, the experience of the individual which, in turn, may
well have been influenced by society.

Let us consider a current intuition, for example, space is not iso-
tropic. The notions of vertical and horizontal, ‘above’ and ‘below’,
seem to be absolute properties of space. It is evident that this particu-
lar vision of the world cannot be seen as a pure conceptualisation of
space; this vision, in fact, expresses a mental structure that is deeply
rooted in human behaviour as a consequence of a terrestrial life.

The essential fact to be borne in mind when considering the
didactical process is that intuition cannot be created, eliminated, or
modified by either explanations or short learning exercises. There
are at least three situations which must be taken into consideration:

(a) In the learning situation the information given to the pupil
about a certain notion can be similar to the intuitive knowledge the
pupil has of this notion; this type of agreement can be extremely
useful in education (for example, the shortest distance between two
points is a straight line).

(b) In certain learning situations the intuition the child has about
a certain notion can be very different from the notion itself, thus there
will be a contradiction between the intuition and the objective truth
or the ‘truth’ that can be arrived at through proof (for example, the
set of natural numbers has the same cardinality as the set of rational
numbers).

(¢) In some situations there will be no established intuitive attitude
(for example, the altitudes of a triangle are concurrent).

In fact, things are not quite as simple as they would seem from the
above classification, even in the case of the first category which we
would call favourable intuitions. In the deductive organisation of
various branches of mathematics, certain of these favourable intui-
tions are considered as axioms, whereas others are considered as
theorems whose proof is necessary and possible. Such a distinction
is not made on intuitive grounds and is therefore not intuitively
evident. For this reason theorems are often not understood to be
theorems (that is to say a proposition that needs a proof). The fact
that it is intuitively evident (from the psychological point of view) that
from a point not on a straight line there is only one perpendicular
to the line, makes the necessity for a proof not intuitively evident.

As I have already mentioned, intuition can also be contradicted
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by a mathematical truth. The whole field of the transfinite would enter
into this category. There are several levels of intuition about this
idea. The very fundamental idea of the ‘absence of obstacles’ (bound-
lessness) which is the basis of this concept is very clear even to a child of
nine or ten years. A straight line can be continued indefinitely; the
sequence of natural numbers goes on forever; these truths are intui-
tively evident. However, the statement that the set of real numbers
cannot be put into a one-to-one correspondence with the set, also
infinite, of natural numbers seems to be intuitively surprising.

How many permutations of five objects are there? A research
project carried out by our team showed that there was a natural
tendency to underestimate the number. (The subjects, children and
adolescents, estimated on the average that sixteen permutations
could be obtained; that there are 120 seemed to them extremely
surprising.) It is also surprising to discover that when throwing a pair
of dice the probability of obtaining a double, for example 5 and 5,
is half that of obtaining a mixed pair, for example 5 and 6. The
hypothesis could be formulated that, in order to be efficient, the
teaching of a subject must be preceded by an exploration of the in-
tuitive knowledge of the pupil, just as, for example, the construction
of a building is preceded by an investigation of the nature of the site.

Some colleagues and I have tried to explore the child’s intuitive
level of certain elementary concepts in the theory of probability by
using a method we call ‘teaching by programmed discovery’. This
method consists of a series of questions related to a certain concept.
The questions begin at the most general and formal level to which
the subjects have access, and, in case these cannot be successfully
answered, they continue until they reach the most rudimentary,
global and intuitive level of the subjects. We have been able to estab-
lish that within the subjects there is a favourable intuitive basis for
the concept of probability [1], and for the calculation of probability
[2] in the case where the probability of a compound event is equal to
the sum of those of the elementary events which constitute it. The
law concerning the multiplication of probabilities is based on the
intuition that one reduces the chances when one imposes additional
conditions (intersection of events), but the operation of multiplica-
tion, as such, does not appear to have an intuitive basis. In the case
of the law of addition, there seems to be an almost complete lack of
understanding of the compound character of certain events and
consequently no idea of the necessity to make an inventory of the
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different situations which will give rise to a particular event. In this
case it is not only a question of the absence of intuition, but also an
intuition that has been contradicted [3].

The different types of intuition quoted above are natural intuitions.
They are constructed during the ontogenesis of the subject, before
and outside of any sort of systematic intuition. These types of intui-
tions we shall call ‘primary intuitions’. Can the intuitive factor of
understanding be reduced to primary intuitions?

In fact, the situation is more complex. New intuitions can be built
up which have the same character of adhesion to a certain fact and
to a certain interpretation, these we will call ‘secondary intuitions’.
In this manner it can be accepted as evident the fact that Euclid’s
postulate is only pseudo-evidence; that the set of real numbers cannot
be put into one-to-one correspondence with the set of natural num-
bers; that without the intervention of a force, a body in motion will
continue its rectilinear and uniform movement.

However, these secondary intuitions cannot be constructed, as we
have already said, simply by explanations or short learning exercises.
These intuitions need to be based on mental habits and the creation of
these habits requires an extremely long training which can extend
over the whole period of the growth of intelligence (above all the
period of concrete operations).

If the hypothesis of secondary intuitions is accepted, then one must
reject the Bergson point of view according to which intelligence and
intuition are opposing and irreducible modalities of knowledge.
According to Bergson, intuition is a direct knowledge of vital pheno-
mena and this is an extension of the instinct, whereas intelligence
founded on the spatial characteristics of matter is basically an
instrument of action.

According to our hypothesis, the rational modality of knowledge,
through intelligence, can, by a long familiarisation with a certain
field, transform itself into an immediate form of synthetic, global
knowledge having the specific characteristics of intuition. In our
opinion the pupil should learn consciously to compare his intuitive
interpretation of certain terms and procedures with those that are
used in their rigorous mathematical interpretation. He should learn
to rethink the elements that come from his primitive experience in
such a way that they agree with his new conceptual framework.

Our hypothesis, therefore, is that this process of refining and
correcting the intuitive basis should not be allowed to go on in
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a haphazard manner (or not to happen at all) but should be an
integral part of the teaching process. If an intuitive basis is lacking,
as can frequently happen, for example, in the field of probability, it is
vital that these intuitions should be constructed with the help of
well-programmed exercises spread out over a long period whilst in-
telligence is developing.

2 Structures in mathematics and psychology

The second problem that I should like to discuss is that of structure
in mathematics and psychology.

Piaget has defined structure in the broadest sense as a system and
this system is a totality that has laws and properties that are charac-
teristic of it as a totality [4].

A structure is constituted of a set of elements between which
there are certain relations. It is well known that for Bourbaki there
are three types of structures: (@) algebraic, (b) order, and (c) topo-
logical. With the help of these structures the diverse branches of
mathematics can be brought together to form an architectural unity.

The problem which faces mathematical educators is the following,.

On the one hand, should one leave the general schemes of thought
to form themselves gradually, by a sort of natural generalisation,
after the pupil has assimilated a fairly considerable amount of
mathematical knowledge ?

Or, on the other hand, is it better that the child should be given the
opportunity to function with these schemes, these structures, very
early on in his development, so that they can be used as true matrices
for the formation of his mathematical thought?

Arguments can be found for and against these two alternatives.

For the first point of view, that is, that acquaintance with these
structures should be left until such time as a good preparation in
mathematics provides opportunities for them to disengage themselves
naturally:

(a) The natural course in the development of knowledge is from
the particular to the general, from the concrete to the abstract.

(b) Mathematical structures, by their nature, are concepts that
require an extremely high degree of abstraction. They could not,
therefore, be understood, assimilated and used until such time as
intelligence has reached the stage of formal operations and above all
the stage of final equilibrium (from about the age of fifteen or sixteen
years). :
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(¢) Mathematical structures arose out of the confrontation of
diverse mathematical domains. The pupil must also be capable of
understanding on a fairly broad mathematical basis (in arithmetic,
algebra, geometry).

For the second point of view, that is, that the teaching of mathe-
matical structures should start at a very early age, even before seven
years old, or at least during the period of concrete operational think-
ing (from the age of seven years):

(a) These structures express the fundamental structures and general
schemes of intelligence and are not just a means of giving information
or a manner of proceeding in a particular instance. Consequently
their assimilation must be structured in such a way as to allow them
to be integrated into the total architecture of intelligence. Short
learning exercises will not help this objective. A gradual and carefully
constructed elaboration is necessary. It is easy to memorise the
axioms of a group, but, if the group concept is to become an efficient
and productive instrument in thought, it must be assimilated within
the dynamic architecture of the intellect.

(b) Mathematical structures must be allowed to function during
the period of the growth of intelligence if they are to be in-
tegrated in a really organic way into the mathematical thought of
the child.

(¢) Contemporary developmental psychology has shown the
characteristics of the evolution of intelligence. The most important
work in this field is, undoubtedly, that of Piaget. His work shows
very clearly that intelligence develops through a series of stages [5].
The essential idea for our discussion is that each fundamental system
of knowledge must be anticipated and prepared for in earlier stages
by means specific to these stages. Accordingto this law, the learning of
mathematical structures during the period of the final equilibrium of
formal operations must already be prepared for during the period of
concrete operations by means appropriate to this period. This will
permit the structures to become efficient instruments in mathematical
thought.

To sum up then, the essential psycho-pedagogical problem is the
following: mathematical structures, like all other fundamental
mathematical concepts (relation, function, equivalence, continuity,
etc.) and the fundamental logical operations, are, by their nature,
abstractions of extreme generality. The child should start to learn
these structures in a very empirical manner during the period of
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concrete operations in order to integrate them into his scheme of
intellectual activity.

The problem appears to be without solution. Two important
discoveries in developmental psychology would, however, seem to
suggest possible approaches. The first is due to Piaget, who has shown
the close relationship between the important mathematical structures
and the organisation of human intelligence. According to him,
mathematical structures are closely related to the main operational
structures of intelligence gradually built up during the subject’s
ontogenesis, and group structure is at the core of this relationship.
At the concrete operational level, intelligence has already acquired,
although only partially, characteristics that are analogous to those
of a group [6].

The second discovery is linked to the name of Jerome S. Bruner:
an abstract structure can be transmitted and assimilated as such,
that is remaining unaltered, by means of various embodiments [7].
Enactive, iconic and symbolic representations can all serve as vehicles
for an embodiment and transmit the same mathematical structure,
although several embodiments may be necessary for the structure to
be understood. By this means a pupil will slowly grasp a fundamental
idea common to all the embodiments. Dienes has called this pro-
cedure ‘the principle of perceptual variability’ or in its most general
form ‘the principle of multiple embodiments’ [8]. He and his col-
leagues have invented a tremendous variety of embodiments for
mathematical and logical structures. The principal element of these
is that of play and thus they appeal directly to the interest of the
pupil.

Dienes’ activity has inspired other research workers, for example
Tamas Varga (Hungary), Mrs Marguerite Robert (France), Mrs F.
Morine and her team in Italy, Professor B. Z6rgd (Roumania), and
many others. This approach has shown itself to be extremely produc-
tive and accumulating observations have revealed the interest and
‘receptivity’ of children when they have been asked to carry out such
activities. For the moment, however, the results of this work can
only be considered as hypothetical. Only rigorous longitudinal studies
can establish the effectiveness of this development in mathematical
education.

According to Professor Freudenthal (see pp. 101-14), with whose
opinions I agree, the child, when being introduced to mathematical
structures, should start with structures more primitive and simpler

228



INTUITION, STRUCTURE AND HEURISTIC METHODS

than that of the group. He puts forward a number of examples which
are both simpler and at the same time more suggestive in showing
how the idea of a group can be developed. These same examples
prove extremely useful in the study of regularities in nature and in
mathematics.

Richard Skemp has, on the other hand, pointed out: ‘An appro-
priate scheme means one which takes into account the long-term
learning task and not just the immediate one’ [9].

The correspondence between the model used and the mathematical
structure must be as complete and as natural as possible so that the
models themselves can suggest new problems, new directions in
finding solutions and even new models for the same mathematical
structure. In [10], models having these qualities are called ‘generative
models’. It is a fact, though, that many of the models suggested by
educators, teachers, etc. have an extremely limited range and conse-
quently very little educational value.

3 Heuristic methods

The third problem I should like to touch on is that of improving our
techniques in problem-solving by systematically learning heuristic
procedures and strategies. A large variety of studies have already
been published dealing with this subject.

It is generally recognised that heuristic procedures are elastic
schemes which allow a certain degree of variability and adaptability
to given conditions and which guide our investigatory activity.

George Pélya has described a certain number of heuristic pro-
cedures used in mathematics, for example, the use of analogies and
models, the reduction of a problem to a simpler one, etc. In a recent
piece of research, Max Jerman of Stanford University [11] studied
strategies in problem solving. (His paper, incidentally, contains an
extremely good bibliography of the whole problem.) Jerman’s results
show that those subjects who followed a programmed learning
sequence in problem-solving strategies did no better than the control
group. In reality, the subjects of the experiment made better use of
the correct procedures but their results were no better because of the
difficulties they had with computation.

In general, the results of research on the learning of heuristic
procedures in problem-solving do not provide any convincing practical
conclusion. The results are, in fact, far less spectacular than might
have been expected from the expounded theory.
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I feel that the following might be an explanation of the situation.

The solving of a problem is certainly a conscious activity. It is
conscious because a goal is set, there is an understanding of the
meaning of the problem, and a specific direction in the respective
field is chosen, but the ‘solving’ process as such is not conscious in
its detail. The subject does not control, nor is he aware of, the mechan-
isms involved in the resolution of the problem. This situation is not
specific to the art of invention, it can be found in all human activity
no matter how simple. When I pick up a glass of water, I am conscious
of the action because I am conscious of its finality. However, the
details of the movements, the successive muscular contractions are
not the result of a conscious order.

For this reason, there are a certain number of behavioural rules
that exist when a subject is trying to solve a problem but they are not
used in the same manner as, for example, a cook might use his
methods in the preparation of a special dish.

In problem-solving, therefore, such procedures operate in an
implicit manner. If the subject becomes conscious of the process and
tries to think about these procedures in an explicit manner, he can
no longer think of the problem that has been raised. When the
creative process of finding a solution is interrupted a useful result
can no longer be found.

Nevertheless an awareness of heuristic procedures can be useful
for the following reasons. First, these procedures can be integrated
into our activity, into the hierarchical structure of our intellectual
habits as a result of systematic and persistent practice. I would men-
tion, for example: practice in the comprehension of the text of
a problem; appraisal of facts; determination of unknown variables;
appraisal of images, should such images exist; the construction of
auxiliary figures, schemata and diagrams; changing of point-of-view;
the use of analogies; the provisional consideration of simpler
problems, etc.

There are times during the solution of a problem when certain
heuristic procedures could be used consciously. At the beginning,
when the variables involved in the problem must be sorted out before
the actual problem-solving process can be started, certain rules could
be of help. For example, ‘ Look carefully at the wording’. ‘Have you
understood completely the meaning of each of the terms used?” ‘Try
and find out exactly what is being asked and, as far as possible, the
steps you think will be necessary to obtain the answer’, etc.
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During the process of problem-solving there are times when creative
ideas no longer seem to flow, there is the feeling that the wrong
direction is being taken, and that things need to be reconsidered. In
such moments, heuristic procedures could be of great help.

Clearly, the most important recommendation is that the capacity
to solve problems can be practised by exercises in problem-solving.
However, I feel that the idea of programming ought to be better
appreciated and applied. Often, in collections of problems to be
solved, the problems themselves are so diverse, that there is in-
sufficient opportunity for the subject to construct those supple,
harmonious and polyvalent systems of mental habits essentlal to
problem-solving.

Conclusions

In this paper I have discussed three apparently independent subjects:
the problem of intuition, the role of structures and the learning of
heuristic procedures. In fact, all the fields are closely related in
problems of creativity and the pedagogy of mathematics.

I feel that if this relationship were to be better appreciated it
would contribute greatly to an improvement in mathematics teaching.
Creative mathematical thinking, which becomes apparent in problem-
solving, reveals a whole variety of heuristic procedures which are
inspired and guided by intuition. These intuitions, both the intuition
of adhesion as well as the anticipatory intuition, express the stabilized
organisation of mental structures in a certain field.
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Mathematics and science in the
secondary school

Anthony J. Malpas

Three questions which the work described in this paper seeks to
answer are the following:

(1) What mathematical skills are required in the new secondary
school science courses ?

(2) To what extent do courses in modern mathematics provide for
the development of these skills?

(3) In what ways can the work of science and mathematics depart-
ments in schools be more closely linked to promote more effective
learning of these skills ?

With the end of the nineteen sixties and the coming to fruition
in Britain and the USA of the first generation curriculum projects in
science and mathematics, the mood of teachers in the schools in
these countries has changed. With increasing confidence in their own
new materials and methods of teaching, they are beginning to have the
time and energy to look across subject boundaries and to consider
the possibility of inter-subject cooperation. Phrases like ‘Integrated
Studies’ and ‘Interdisciplinary Enquiry’ are appearing increasingly
as ‘subjects’ on school timetables. The new emphasis on children’s
cooperative, rather than competitive, activities (project work, small
group activities of all kinds) is being matched in some places by first
attempts at cooperative ventures among teachers (team teaching and
‘integrated’ approaches to the curriculum). This new spirit also finds
expression in many of the second generation curriculum projects
(exemplified in Britain in the sciences by Nuffield Secondary Science,
Nuffield Advanced Physical Science, and the Schools Council
Integrated Science Project, and in mathematics by the Mathematics
for the Majority Continuation Project) which all share the marked
characteristic of an approach to the curriculum on a thematic rather
than a traditional ‘subject’ basis. Appointments are already being
made in some schools of ‘Head of Mathematics and Science’. This
is therefore the right time to pose questions such as the above and to
try to obtain some good answers to them.
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1 What are the mathematical requirements of modern science
courses?

This question as posed above, although the right one to ask, is too
general to admit of a full answer for all countries at the present time,
and this paper is a report only of some work which has recently been
done in Britain.! Here efforts have been made to study the links
between the new mathematics and science programmes, and a joint
working party composed of members of the Association for Science
Education, the Mathematical Association, and the Association of
Teachers of Mathematics has been set up and has produced
reports.2 To limit the scale of the work reported in this paper, atten-
tion was confined to the published materials of the Nuffield Science
Teaching Project’s Biology, Chemistry and Physics Ordinary Level
(eleven to sixteen years) schemes. A comprehensive analysis of these
schemes was carried out and the mathematical skills and abilities
implicit in the activities of the courses were briefly described.® These
mathematical assessments of the courses were then carefully con-
sidered and it was concluded that the mathematical skills required
could be classified into three broad groupings. The biggest and most
important of these groupings is that cluster of ideas concerned with
ratios, rates, proportion, straight line graphs, and formulae. The
first three rows of table 1 show the extent to which use of this cluster
of ideas is called upon in Nuffield science courses. Every science
teacher knows that these skills are central to the organisation and
interpretation of scientific data, so it is perhaps not so surprising
after all to find them widely required at every level in all subjects
of Nuffield science (and, one would add as a good guess, in other
new science schemes and in ‘traditional’ science subjects as
well).

For similar work in USA see James F. Thorpe (Del Valle High School, Walnut
Creek, California) and James G. Lindblad (Lowell High School, Whittier,
California), Resource materials for the teaching of the new mathematics programs
- in application to the sciences. Max S. Bell, The University of Chicago, is also
- - working in this field in conjunction with the School Mathematics Study Group,

Stanford University.

? See, for example, ‘Do the new maths and science schemes have much in
- common?’ by B. R. Harris, Association for Science Education/Mathematical
Association/Association of Teachers of Mathematics Science Mathematics
Links Workmg Party Education in Science 9, 47, April 1972, 17.

The primary data resulting from the analysns are not included in this paper for

lack of space. Readers who wish to examine these data are mVIted to do so by
writing to the author.

-
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science and treated in SMP mathematics

TABLE 1. Ratio, proportion, linear relations, and related concepts in mathematics needed in Nuffield

Year of the secondary school course

1 (11-12 years) 2 (12-13 years) 3 (13-14 years) 4 (14-15 years) 5 (15-16 years) ’
Nuffield ScScR Sc VR GRRa % %GGGRRR GGRG G Y%YGGRY%UY%
Biology RCRY Ra %R %RRR BC
Nuffield R (density) RaRRaR CRRRaRaRaR RGRGGGGRa %
Chemistry RaRaGCRG RaRFS %RC
Nuffield R (density) PG P RGRRR RRRERaSc GPGFFGF FVFFFFS
Physics R (pressure) Ra RaPR GGGVSGR FFFGFRVA FFSFFS
RaR %P reciprocals A A FSRaRRRR GCVFF
G %FRRFF
N SMP Coordinates; linear Similarity; areas of Rates of change; Solution of equations  Areas and graphs;

G ‘O’ level
mathematics ready reckoner);

relations (graphical

algebraic relations;

similar figures; en-
largement; graphing
functions; law of

gradient; rate of

change at an instant;
graphing equations and

graphically and alge-
braically; gradients
and tangents; search-

areas of irregular
figures; functions and
graphs. Review,

graphing algebraic natural growth; (slide orderings; equations; ing for functions; summary and occa-

relations. rule); volumes of F, PR Ra F G (logs, sionally extension of
similar solids; solving growth functions and  previous work.
equations; ratio and reciprocals).

proportion; %

rates of change
ratios
substitution of values in equations
scale and scale factors (including similar figures)
straight line graphs and gradients variation (including inverse variation and inverse square
proportion law)

Note The number of entries of a concept or skill in any one cell of these tables (R R R Ra G etc.) is intended to give a rough idea of
the number of separate occasions in science lessons when these concepts are required. The descriptions of the SMP mathematics are
chapter and section titles.

Key area under graph
curvilinear relations

A
€
E enlargement
F
G

<gupw

manipulation of formulae
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The second grouping of mathematical skills, distinguishable from
but merging into the first group, is those concerned with measure-
ment and the statistical treatment of data, including descriptive
statistics and probability, calculation of averages, approximations
and the use of standard form in handling very large and very small
numbers. As may be seen in the first three rows of table 2, these too
are widely required, particularly in Nuffield Biology and Physics.

A third, somewhat smaller grouping concerns some aspects of
geometry and trigonometry. As the first three rows of table 3 show,
these arise mainly in Nuffield Physics, although in Chemistry sym-
metry and tessellations are important concepts.

Any attempt at classification of ideas in this way is bound to seem
somewhat arbitrary and to leave some items as difficult to classify.
By using the broad groupings just described however, very little of the
mathematics required for Nuffield Science has been omitted.

2 To what extent do modern mathematics courses meet these
needs?

Having made, as described, an assessment of the mathematics needed
for Nuffield science, the question naturally arises to what extent do
the modern mathematics projects meet these needs ? As is well known,
the various mathematics projects in Britain introduce mathematical
topics in a variety of different orders! so that a general answer to this
question cannot easily be given. Instead of trying to do that, we have
selected the ‘O’ level course of the School Mathematics Project
(SMP) as a project comparable, in the scale of its operations in
England, with that of the Nuffield projects in the sciences.

Tables 1, 2, and 3 in their fourth rows show, in outline for each
year, the extent to which the SMP course covers the topics required
by the sciences. As can be seen in each of the tables, the agreement
between demand and supply is very close. In some cases (e.g. vector
geometry) supply even exceeds demand. In very few instances can it
be said that demand exceeds supply. Moreover, with one or two
notable exceptions, the timing of the introduction of the various
concepts and skills seems to keep remarkably well in step; in most
cases they are introduced in the same year in mathematics and in
science and sometimes a year earlier in mathematics. Exceptions
1 The Mathematical Association’s pamphlet, Mathematics Projects in British

Secondary Schools, G. Bell and Sons, London, 1968, in its 11 to 16 Syllabus

Analysis shows the extent to which projects vary in their order of treatment of
mathematical topics.
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TABLE 2. Measurement and the statistical treatment of data

Year of the secondary school course

1 (11-12 years) 2 (12-13 years) 3 (13-14 years) 4 (14-15 years) 5 (15-16 years)

Nuffield DSDS DS AvM DS DS DS D DS DS SF DS DS SF PPDS Av
Biology M Av Av SF DS DS Av Range, std. devn.

RDPPDS
Binomial distribution
Nuffield DS DS DS SF A DS DS DS DS DS DS Av
Chemistry
~ Nuffield SFSFAA A Av AAAAAAA A SFSF
Y Physics AvDP SF SF SF SF AvP
Av P (random walk) SF
Av (RMS value)

SMP A (bread and butter Estimation and P DS D Av, cumulative Thinking statistically;  SF DS significance.
‘O’ level arithmetic). accuracy (A), DS D Av, frequency. Av P D limits of Review, summary, and
mathematics Large and small accuracy; P (tree occasional extension

numbers: SF diagrams). of previous work.
Key A approximate calculation M  measurement
Av averages P probability o .
D distributions SF standard form (also known as scientific notation)

DS descriptive statistics
(For interpretation of the table please see note on table 1.)
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TABLE 3. Geometry and trigonometry — some aspects used in science

Year of the secondary school course

2 (12-13 years)

3 (13-14 years)

4 (14-15 years)

5 (15-16 years)

(areas of similar figures — see table 1)

Electrical circuit diagrams

Intuitive ideas of geo-
metrical transforma-

face; volume of cuboid; tions of a square;

1 (11-12 years)
Nuffield
Biology
Nuffield
Chemistry
Nuffield Regular solids; 3-D
Physics arrays; angle, plane,
sphere.
SMP Angle, polygons, and
‘O’ level polyhedra; area and

mathematics area measurement;
symmetry ; parallelo-
grams and triangles.

angle; rotation;
circuit diagrams.

Topology ; reflections
and rotations; trans-
lations and vectors;
volume (including

Parallelogram area
bxh

Tessellations in 2- and
3-D (close-packing of
spheres).

Waves ; reflection,
symmetry; equal
angles; circles, para-
bolas, ellipses; (en-
largement, similar tri-
angles) properties of
circle; reflection;
symmetry; angles;
parallel lines; sini/sinr.

Transformations in-
cluding reflection; the
circle; m; circum-
ference and area;

calculation of volumes); cylinders; 3-D

filling space with poly-

hedra; trigonometry;
sine and cosine;

Pythagoras’ Theorem.

geometry : points, lines,

planes, and angles;
waves, sine and cosine
functions; areas of
parallelogram and
triangle.

Topology: feed-back
loops and control
systems (implicit).

Area of triangle;
vectors (momentum).

Motion in an orbit;
ellipses; crossed chords
method of showing
centripetal force is
mv?[r; similar triangles;
waves; sine, cosine;
vectors (velocities).

Trigonometry; tangents Vectors and trigono-

and gradients; relation
between sin, cos, and
tan; parabola; hyper-
bola; ellipse; co-
ordinates and vectors
in 3-D; vector
geometry.

metry; displacement
and velocity vectors;
sphere: volume and
surface area. Review,
summary and occa-
sional extension of
previous work.
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include the early use of the rate concept in the form of density in
the Nuffield Chemistry and Physics courses in Year 1, and early use
of standard form in Year 1 of Nuffield Physics (though in neither
case is the need for these regarded by the scientists as crucial). As
a general conclusion, agreement seems close and the situation, on
paper, appears remarkably satisfactory. Yet three comments need
to be made.

(1) One is struck, in undertaking the above analysis, how little use
is made in the science courses of the many other mathematical ideas
which go to make up a modern course like the School Mathematics
Project. All of the work on structure in mathematics, most of the
transformation geometry (including networks and topology), and
much of the approach to algebra and the mathematics of functional
relations stand alone in SMP mathematics and find little or no echo
in Nuffield science. It would seem to be time to examine ways in
which these powerful ideas can be brought to bear and usefully
exercised in modern school science.

(2) The analysis above shows that provision is made in the struc-
ture of the courses for the possibility of cooperation between teachers
in school mathematics and science departments over the topics listed
in tables 1, 2, and 3. We have to ask how far that possibility becomes
a reality in the average school. I believe that one reason why coopera-
tion is so little of a reality in some schools is the lack of materials
which could be used in a joint approach to the teaching of the topics
in the overlap areas. We have made a beginning, in the Shell
Mathematics Unit at the Centre for Science Education, with remedy-
ing this situation, with the preparation, in a trial edition, of modules
of work! designed to be used jointly by science and mathematics
departments in schools. Other similar mathematics/science modules
are in preparation?® and will be tried out in schools during the coming
academic year. This we think is at least part of the answer to the third
question raised at the beginning of this paper.

(3) There are some mathematical topics about which, notwith-
standing the fact that they are treated consonantly in both mathe-
matics and science courses, there are persistent reports from teachers
1 Indices and Molecules, Nuffield Foundation, 1971. Trial version not for publica-

tion. Nuffield Mathematics Teaching Project. A second module also completed

is entitled Symmetry and Crystal Structure.
2 Other modules in preparation include ones on shape, size, and growth in

biology, combining ratios in chemistry, density, rates of change, and measure-
ment.
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of students’ difficulties.! One such topic is proportionality, linear
relationships and variation, which, as table 1 shows, is widely needed
in science courses and quite fully treated in SMP mathematics. Such
persistent reports of difficulty suggest that, as Inhelder and Piaget?
and others, e.g. Lovell,® have pointed out, there may be an important
psychological component to which more attention should be given,
in the development of students’ mathematical skills and their ability
to handle concepts like ratios and proportion. This is a point on
which we are doing further work.
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Geometry as a gateway to mathematics

Bruce E. Meserve

Introduction

The role of geometry in the study of mathematics has been a special
interest of mine for several years. During the past year I have enjoyed
a sabbatical from my university teaching and made a special effort
to discover what is happening to the role of geometry. I have found
two papers particularly enlightening and would like to quote from
them as background for our considerations of geometry as a gateway
to mathematics. I believe that geometry serves this role at all levels —
in elementary schools, in secondary schools, and in colleges and
universities.

Professor E. Spanier wrote in 1970, in an article entitled ‘The
Undergraduate Program in Mathematics’, that:

Broadly speaking, the goal of undergraduate mathematics education
should be to help the student to understand something about mathematics
both in its internal structure and in its relations with other disciplines. He
should get a feeling of the vitality of the subject and enough history to
appreciate current trends and progress. He should have studied some areas
of mathematics, possibly only small parts, in depth, but he should also
obtain some sort of global view of mathematics by the time he graduates.
These objectives are important for all mathematics majors.

Relative to geometry, Professor Spanier writes:

The classical geometry courses have been dwindling because they are not
needed for graduate work. Today’s teachers have been taught to distrust
the practice of drawing a figure and using intuition as an aid in understand-
ing a result. They insist on presenting a subject in the ‘right’ way, which
usually means in the most abstract setting available to the teacher in
question . . . Even the most elementary properties of curves and surfaces in
3-space can’t be discussed without a machinery appropriate for general
manifolds of n-space.

When so much abstract machinery is presented before the student’s
intuition has developed, he may learn how a result can be proved, but he
is unlikely to get a true understanding of the result. The most important
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things about a theorem do not necessarily include its proof. On the con-
trary, to understand a theorem one should know what it says, what moti-
vates it, or why it is stated, as well as instances where it applies or does not
apply, and some of its consequences as well as its proof. These things are
not necessarily easy; indeed, patient step-by-step verification of a proof
may be considerably easier. We should not be afraid to omit proofs. It is
good pedagogy, especially in undergraduate courses, to state a theorem
(such as Stokes’ theorem) and discuss its consequences without giving
a proof of it.

1In his conclusion Professor Spanier says:

It is certain that there is much room for improvement in what we are
teaching undergraduates, and that this need lies deeper than mere re-
arrangement of the curriculum. It is not clear what should be done to effect
improvement, but unless we define our goals and recognise the defects of
current practices, we can’t even begin.

The second paper that I found particularly interesting is Professor
T. J. Willmore’s report of his address ‘Whither Geometry?’ at the
April 1970 Annual Congress of the Mathematical Association in
England. To establish a concept of geometry Professor Willmore
uses the following quote from the opening pages of Semple and
Kneebone’s Algebraic Curves:

Geometry is the study of spatial relations, and in its most elementary form
it is conceived as a systematic investigation into the properties of figures
subsisting in the space familiar to common sense. As mathematical insight
grows, however, the ‘space’ that constitutes the geometer’s ultimate object
of study is seen to be an ideal object — an intellectual construction that
reveals itself to be essentially different from any possible object of naive
intuition. Nevertheless, even the most abstract geometrical thinking must
retain some link, however attenuated, with spatial intuition, for other-
wise it would be misleading to call it geometrical; and it is an historical
fact that, throughout the long development of mathematics, geometers
have again and again arisen who have given a fresh impulse to formal
mathematics by going back once more for inspiration to the primitive
geometrical sense.

I shall not repeat Professor Willmore’s presentation of developments
in Euclidean geometry, affine geometry, projective geometry, alge-
braic geometry, and differential geometry —his own speciality.
However, his four conjectured lessons that can be learned from
the past development of geometry seem particularly pertinent. I
quote:
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I suppose that the first lesson is that mathematics no longer consists of
separate water-tight compartments, and that geometry as such is no longer
a subject. What is important is a geometrical way of looking at a mathe-
matical situation — geometry is essentially a way of life. We have geometric
topology, geometrical dynamics, differential and algebraic geometry, but
not just ‘geometry’. The geometry of a manifold is described by the Lie
algebra of the group of transformations which preserves the structure, and
it is also described by global analysis of the manifold. The geometrlc,
algebraic and analytic structures are all inter-related.

The second lesson to be learned is the power of invariant methods of
describing a geometrical situation —real progress is made when one
concentrates on geometric (invariant) properties. An analytical approach
is purely formal and can easily degenerate into a morass of symbols whose
significance is obscure. ) )

The third lesson to be learned is the advantage of familiarity with
axiomatic methods, especially with structures where the axioms do not
form a categorical system.

The fourth lesson. . .is that much is to be gained by detailed study of
particular cases of mathematical situations. The theoretical edifices of
various structures are a very important part of mathematics. But the life
blood which guaranteesa continuingand vigorous development of the subject
istobefoundintrying to solve problems which present themselves naturally.
When the problem solvers are no more, mathematics will be moribund.

Professor Willmore then stated his view of the future of geometry.
With reference to university level geometry he conjectured that:

geometry as a self-contained body of knowledge will become less im-
portant, while the geometrical attitude towards mathematics will become
increasingly important.

With reference to the teaching of geometry in the schools he said:

We should certainly try to achieve the following: :

1. To give our students some idea of the nature of euclidean geometry,
and the nature of the axioms on which it is based.

2. To let them see that there are several different geometries of which
euclidean geometry is only one example.

3. To emphasize the influence of Descartes on geometry.

4. To use set language to describe geometrical configurations, following
the ideas of Papy.

5. To encourage the student to make his own conjectures of results Wthh

. might well be true.

6. Above all, we should try to impart to our students the mtellectual
excitement associated with geometrical discovery, and the shared
enjoyment of understanding the discoveries of others.
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As a further basis for our discussions I shall

(1) describe my interpretation of the causes of the present status
of geometry,

(2) recommend a specific concept of the role of geometry, and

(3) suggest one possible approach to the reestablishment of
geometry as a major area of mathematical study and exploration.

My remarks reflect primarily the situation in the United States and
are not intended to be definitive but rather to serve as a stimulant to
discussion. Thus I shall try to provide a framework for the considera-
tion of geometry as a gateway to mathematics, an approach to
numerous topics throughout all branches of mathematics. Those
sharing my concern for the present role of geometry should be able
to extend this framework readily into their own areas of special
interest and to reinforce the framework with a substantial number
of significant illustrative examples.

What happened to reduce geometry to its present status?

It seems to me that the present down-graded role of geometry has
arisen from increasing specialisation and narrowing of our areas of
concern. Rather than evolving with our ever-changing intellectual
environment, we have again and again walled ourselves off into
smaller and smaller areas of interest relative to the scope of mathe-
matics with our students ‘learning more and more about less and
less’. Accordingly, we are in increasing danger of stagnation and
suffocation. Incidentally, I feel that the entire discipline of mathe-
matics is showing definite signs of following this same unfortunate
path toward immobilisation by failing to be actively alert and sympa-
thetic to the concerns of logicians, statisticians, teachers, and most
recently, information scientists.

However, let us restrict our detailed considerations to geometry.
‘A society of gentlemen’ emphasised the changing nature of geo-
metry in 1751 in a London publication printed for John Wilcox and
entitled

THE MATHEMATICIAN containing many curious dissertations on

the rise, progress, and improvement of geometry.
I quote from the footnote on page 2:

Geometry, like many other sciences, has outgrown its name; it originally
meant no more than measuring Earth, or surveying the land, as is plain
from both its etymology and the principal use that was made of it; whereas
now, it means the whole science of extension and magnitude, and con-
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templates the nature and properties of all kinds of figures abstractly con-
sidered without any regard to matter.

Thus the abstractions of geometry have been in progress for over
two hundred years; they should not be blamed for the increasing
lack of interest in geometry during the last fifty years.

During the last fifty years topology has attained substantial
recognition independent of geometry. The study of linear transforma-
tions has become linear algebra, which in turn has become algebra.
Currently graph theory and combinatorics may be attaining inde-
pendence. You can undoubtedly cite other examples. The point is
that over the ages, and today, geometric concepts provided the bases
for advances that have become separate branches of mathematics
and geometric concepts provided the insight for explorations in
practically all branches of mathematics. I feel that the present status
of geometry has arisen primarily from two trends:

(1) the spin-off of new branches of mathematics, and

(2) the increasing recognition of the interrelations among the
various branches of mathematics.

I recognise that geometry is not the sole approach to the new
branches of mathematics under consideration and geometry should
not expect an exclusive claim to them. Assuming that geometry and
other branches of mathematics are mutually interrelated, two
questions remain:

What should be our present concept of the role of geometry?

How can students be prepared to make effective use of geometric
concepts in their chosen careers?

A concept of the role of geometry

Historically a large part of mathematics was based upon geometric
concepts and even geometric representations. The influence of
algebra is now seen in analytic geometry, linear algebra, algebraic
geometry, and the somewhat restricting concept of a geometry as
a study of invariants under a group of transformations. The influence
of analysis is seen in differential geometry. It seems to me that there
can be no serious question either of the value of other branches of
mathematics in the study of geometry or of the value of geometry
in the study of other branches of mathematics. One question to
discuss is whether geometry inherently retains its identity as a funda-
mental, recognisable area of mathematics or should be absorbed
into other mathematical areas.
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Professor Pedoe, in his book A Course of Geometry for Colleges
and Universities takes as his ‘main thread’ ‘the algebraic methods
available for a study of elementary geometry’. I am sidestepping my
concern for how we approach geometry and looking at the aspects
of geometry that we would like to convey to our pupils. Indeed,
I view the problem of the present status of geometry as in part a
public relations problem of obtaining recognition of the advantages
and respectability of a geometric approach.

What is, or should be, the role of geometry today in the overall
study and uses of mathematics? The point of view that I am suggest-
ing is based upon the following three premises:

(1) Geometry provides one or more points of view, or ways of
looking at, nearly all areas of mathematics.

(2) Geometric interpretations continue to provide insights leading
to both the intuitive understanding of, and advances in, most areas of
mathematics.

(3) Geometric techniques provide effective tools for solving prob-
lems in most areas of mathematics.

From these premises it seems to me that:

geometry is an essential part of the study of mathematics at any

level and a vital catalyst for effective use or study of any branch of

mathematics.

This concept of the role of geometry seems to have many implica-
tions for both our classroom practices and our public relations.
I would emphasise two general implications:

(1) The widely publicised ‘Down with Euclid’ statements must be
accepted not as synonymous with ‘down with geometry’ but rather
as strong indications that geometry must be taught as a living and
growing subject instead of a collection of ancient rules.

(2) Geometry should be presented in such a way as to prepare the
students to use geometry.

Thissecond implication could have been taken from Oswald Veblen’s
article ‘The modern approach to elementary geometry’ published in
1934. Veblen said:

It seems to me that elementary geometry should be presented in such a way
as to prepare the student for other sciences which he is to study later, and
in which this very geometry is going to be used. This means that the
methods of geometry should not be singular ones, peculiar to the subject
itself, but should as far as possible be methods which can be used over
and over again in other branches of science. -
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Veblen was arguing for the inclusion of coordinate methods as well
as synthetic methods. Now — nearly forty years later — we are con-
cerned with both of these approaches (synthetic and coordinate).
We are concerned with an informal intuitive approach to geometry
(especially for ages five to thirteen). We are concerned with trans-
formations and with vectors. We may still add other approaches
in our discussions. We need to find a balance in our selections from
the various approaches to geometry. The use of a variety of methods
is an essential part of our desire to prepare our students to make
effective use of geometric concepts.

But just what are we trying to accomplish ? It would be very helpful
if we could prepare educational objectives for our students in specific
behavioural terms. However, such considerations would require much
more time than we have available. As we look at the teaching of
geometry at all levels, one major role of geometry seems to stand
out above all others — the use of geometric representations. These
geometric representations may be simple sketches or pictorial
representations. Geometric representations may be at an informal
intuitive level or part of a formal axiomatic system. Geometric
representations may be interpretations using abstract geometric
figures and their properties. At all levels geometric representations
appear to provide the basis for the use of geometry as an approach
to the study of mathematics. o

Think of our uses of number scales, number lines, complex planes,
and all sorts of graphical representations. Operations with fractional
numbers ‘may be represented by rectangular regions. Operations
with complex numbers may be represented on a complex plane.
Hyperbolic geometry may be represented on a Poincaré model. At
all levels the use of geometric representations provides the basis for
using intuitive geometric concepts, applying known geometric rela-
tions, and using geometrlc transformatlons in the solution of
problems

- The role of geometrlc representatlons as mathematical models of
a wide variety of problems provides a primary basis for our selection
of topics and methods for a geometry course. However, we need to
consider not only the theorems that we would like our students to
know but also the techniques that we would like them to be able
to use.

We would like our students to be able to explore relatlons among
geometric figures using continuity and using symmetry, We would
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like our students to be able to use algebra as in analytic (coordinate)
geometry, finite geometries, and algebraic geometry. We would like
our students to be able to use calculus as in differential geometry,
to be able to use vectors, and to be able to use transformations that
leave invariant the essential aspects of a problem while converting
the geometric representation to one in which known results provide
useful information for solving the problem.

These objectives are mentioned to emphasise the need for a broad
concept of geometry. This breadth is needed if students are to use
their knowledge of geometry effectively as one approach to their
study of mathematics.

My own special interest in geometry is at the undergraduate level
of the university, especially in its relation to the preparation of
teachers for elementary and secondary schools.

In the United States the most commonly used course for prospective
-elementary school teachers (with students of ages five to thirteen)
seems to be a very weak secondary school course in Euclidean geo-
metry. I feel very strongly that prospective elementary school teachers
have a serious need for experiences involving explorations in geo-
metry in the pedagogical spirit that they should use in their own
teaching. This pedagogical need is much greater than their need for
a review of the theorems of secondary school geometry. I have taught
a course based upon explorations in geometry and I strongly recom-
mend such an approach. If you are interested, you will find excellent
suggestionsamongthe current supplementary materials for elementary
school teachers and the materials used in experimental programmes.

Prospective secondary school teachers need a broad preparation
in geometry since they will themselves be expected to provide a broad
preparation for their own students. In addition to the approaches
that have already been mentioned these students need an overall
view of -the place of Euclidean geometry among a wide variety of
other geometries. For example, they might consider the hierarchy of
geometries shown in the diagram on p. 249. The discussions of some
of the geometries, such as the spherical and non-Euclidean geometries,
could be quite informal.

Carl B. Allendoerfer, in an article published in 1969 and entitled
‘The dilemma in geometry’, suggests the following major objectives
for geometry in our elementary and secondary schools:

1. An understanding of the basic facts about geometric figures in the
plane and solids in space.
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2. An understanding of the basic facts about geometric transformations
such as reflections, rotations, and translations.

3. An appreciation of the deductive method.

4. An introduction to imaginative thinking.

5. Integration of geometric ideas with other parts of mathematics.

I share his desire for the consideration of plane and solid geometry
at all levels. The emphasis in the role of geometry that I have
suggested is upon his last objective — the integration of geometric
ideas with other parts of mathematics — but with the added objective
of maintaining an awareness that geometry is involved.

Topology

Projective geometry

Affine geometry

gEe%‘::;l:;I Similarities
Hyperbolic  Elliptic Spherical
Euclidean geometry  geometry  geometry  geometry

(as the ‘non-Euclidean’
geometries)

Professor Hans Freudenthal in the introduction of his book
Mathematics Observed notes that

The trained mathematician uses the modes of thought of mathematics at
every turn, usually without knowing that he is doing so, or in what way.

Our concern might be expressed as a paraphrase of that quotation:

The trained mathematician, and each person who makes extensive

use of mathematics, uses the modes of thought of geometry at

nearly every turn, often without knowing that he is doing so, or
in what way.

The reestablishment of geometry through the recognition of the
uses of its modes of thought should be consistent with a contem-
porary view of mathematics as a unified subject. Again quoting
Professor Freudenthal
Formerly, it was possible to distinguish (with some difficulty) between

pure and applied mathematics or between geometry, algebra, and analysis;
today it is impossible to say where one begins and the other ends.
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My concept of geometry as one approach to mathematics is closely
related to my concept of a really good mathematician as an inherently
lazy person who seeks the easiest way of accomplishing fully the
task that he wants to do. He should be able to use geometry as one
approach to his task.

A suggested approach

My suggested approach to the reestablishment of geometry as a major
area of mathematical study and exploration is a university course
in geometry that would provide students with a geometric point of
view and competencies for using geometry throughout their study
and use of mathematics. I have not written a textbook for such a
course and do not have an existence proof that such a course is
possible. However, an emphasis upon the modes of thought of
geometry, and the prerequisites for applications of geometry, could
be the key to the reestablishment of geometry as a major mathema-
tical discipline. Accordingly, I propose such a course as one approach
to the revitalisation of geometry.

Without trying to assign priorities or to structure a course, I shall
comment briefly upon three essential ingredients of a university
geometry course to help students prepare themselves for using
geometry as an approach to their study of mathematics. These
same three ingredients seem to me to underly the tcachmg of geometry
at all levels.

1 Basic facts

Discussions of basic facts about plane and solid figures have
dominated many of our geometry courses. Obviously facts are essen-
tial. However, relative to the student’s future use of facts, the manner
in which they are presented is of critical importance. Student con-
jectures and testing of their conjectures, relations among facts, and
recognition of a variety of situations in which specified facts are
applicable are very important. Also it should suffice to introduce
many facts informally, to develop some facts deductively, and to
explore many facts with coordinates, vectors, transformations, con-
tinuity, symmetry, algebra, or calculus. Throughout our emphasis
upon geometry as an approach to mathematics, a variety of geometric
techniques and their applications must be considered. Accordingly,
a restnctlon to the style of an elegant deductive system is unacceptably
narrow.’
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2 The deductive method

As indicated in Professor Allendoerfer’s list of major objectives for
school mathematics, the deductive method needs to be considered
enough to be appreciated. At the university undergraduate level
I feel that we tend to overemphasise the deductive method. Our
students need to recognise the ultimate authority of the deductive
method but they also desperately need experience in formulating
problems, trying a variety of geometric approaches and representa-
tions, and formulating conjectures that they will then test deductively.
The deductive method is a mode of thought that has carried over
from geometry to other branches of mathematics and other sciences.
However, our emphasis in geometry should be not only on the use
and appreciation of the deductive method but also on several other
aspects of geometry.

Poincaré emphasised the insufficiency of the deductive method in
his ‘The Value of Science’:

What you gain in rigor...you lose in objectivity. You can rise toward
your logical ideal only by cutting off the bonds which attach you to reality.
Your science is infallible; but it can only remain so by imprisoning itself
in an ivory tower and removing all relation with the external world. From
this seclusion it must go out when it would attempt the slightest applica-
tion.

From this point of view I have been suggesting that we must go
outside our ivory tower to revitalise the teaching of geometry. Later
Poincaré said:

in becoming rigorous, mathematical science takes a character so artificial
as to strike everyone; it forgets its historical origins; we see how questions
can be answered, we no longer see how and why they are put.

3 Geometric intuition

The third basic ingredient on which I wish to comment is geometric
intuition. In his ‘Science and Method’ Poincaré said:

The principal aim of mathematical teaching is to develop certain faculties
of the mind, and among these intuition is not the least precious. It is
through it that the mathematical world remains in contact with the real
world, and if pure mathematicians could do without it, it would always be
necessary to have recourse to it to fill up the chasm which separates the
symbol from reality. The practician will always have need of it, and for
one pure geometer, there should be a hundred practicians.
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and later:

For the pure geometer himself, this faculty is necessary; it is by logic one
demonstrates, by intuition one invents. To know how to criticize is good,
to know how to create is better. You know how to recognize if a combina-
tion is correct; what a predicament if you have not the art of choosing
among all the possible combinations. Logic tells us that on such and such
a way we may be sure not to meet any obstacle; it does not say which way
leads to the end. For that it is necessary to see from afar, and the faculty
that teaches us to see is intuition.

Geometric intuition provides the basis for much of Allendoerfer’s
imaginative thinking. It is one of Freudenthal’s modes of thought
that we need to find ways of developing in our students. I feel that
our own pedagogical approach is fully as significant as the mathe-
matical content within which we endeavour to develop geometric
intuition.

Numerous topics could be suggested for a university course to
help students use a geometric approach to their study of mathematics.
From my own experience one topic, the topology of the real line,
stands out as essential. The completeness of the line, continuity, the
separation of the line by a point of it, and the order relations among
the points of a real line are used extensively in elementary mathe-
matics. In general, a broad selection of topics commensurate with
the mathematical maturity of the student is needed. Probably dif-
ferent selections of topics are needed for different groups of students.
Throughout the treatment of these topics an emphasis upon intuitive
concepts and upon applications of geometry should provide the
basis for a sound geometric point of view, even though numerous
formal details of graduate level rigour are postponed until later
courses.

Conclusion

I have tried to define some of our goals while recognising that it is not
completely clear what should be done to implement them. It may be
that I have been wasting your time commenting upon the obvious.
However, I hope that my presentation will have served to emphasise
a contemporary point of view of geometry and to focus our attention
on ways of teaching geometry to develop facility in the use of geo-
metry as a gateway to mathematics.
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The International Baccalaureate
J. B. Morgan

PART I-GENERAL

1 International schools

The need for international schools was first publicly recognised in
1924 with the foundation of the International School of Geneva,
largely to cater for the families of officials working in the headquarters
of the League of Nations. Since then the steady growth of the great
international companies and the world-wide operations of the United
Nations has caused this pattern to be followed in many cities all over
the world. Dozens of international schools have sprung up to cater
for the children of a largely mobile population of families from
overseas. Children who attend these schools come from a multitude
of backgrounds, stay in one area for varying periods of time and have
an enormous number of different plans for further education in
colleges, universities and training schemes.

International schools can now be broadly divided into two types
of foundation:

(i) schools whose main purpose is to serve the foreign families
living in the area (for example, the International School of Geneva
and the International College of Beirut);

(ii) schools whose main purpose is to serve the cause of inter-

national understanding, cooperation and peace (for example,
Atlantic College in Wales, UK, the first of a developing chain of
United World Colleges).
Both types of school (and they are steadily growing closer together)
have two main problems to solve: the design of a common syllabus to
cater for the needs of a highly mobile population, and the provision
of a common leaving qualification which will be acceptable to uni-
versities and colleges in all countries where their students wish to
continue their studies or begin professional training.
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2 The International Baccalaureate

Following a plan initially launched in 1962 by the International
School of Geneva, in conjunction with the International Schools
Association, various committees were formed to work out syllabuses
and design trial examinations. In 1965 Atlantic College joined the
experiment, followed in 1967 by the United Nations International
School in New York. Meanwhile, in 1966, Mr A. D. C. Peterson of
Oxford University (UK) had been appointed Director General of
the experiment, and a conference at Sévres, near Paris, attended by
experts from eleven countries, led to the foundation of the Inter-
national Baccalaureate Office (IBO) in Geneva. During 1968-70 there
were many trial examinations in the separate subjects, and a Pilot
Project was worked out for the six years 1971-6, covering a two-year
terminal course.

The first stage of the Pilot Project, 1971-3, is nearing completion,
and a detailed revision of the regulations and syllabuses has been
prepared for the second stage, 1974-6. It is intended that a complete
(but flexible) scheme will be ready shortly after the conclusion of the
1976 examinations for adoption by some form of inter-governmental
agency, possibly under the guidance of UNESCO, and that the IB
will then expand its field to take in many other schools and many
other countries beyond the necessarily limited number who have
taken part in the Pilot Project.

3 The IB Diploma Programme

To qualify for the Diploma a candidate must satisfy the examiner in
one subject from each of the following six sections; three subjects
must be passed at Higher Level and three at Subsidiary Level.

(1) Language A (the working language) including a syllabus of
world literature in translation.

(2) Language B (or second language 4), which must be different
from the language chosen under section 1.

(3) Study of man; one of the following: history, geography,
economics, philosophy, psychology, social anthropology.

(4) Experimental sciences; one of the following: biology, physics,
chemistry, physical science, scientific studies.

(5) Mathematics.

(6) Other studies; one of the following: arts (plastic arts or music),
a third language (classical or modern), a second subject from sec-
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tion 3, a second subject from section 4, further mathematics, or a
syllabus designed by the school and approved by the IBO.

In addition all candidates for the Diploma must have followed a
common course in Theory of Knowledge (including logic), and have
engaged satisfactorily in an artistic or creative activity. The course in
Theory of Knowledge is aimed at making the student familiar with
the various processes of thought, and capable of understanding their
relationships, whether the reasoning is applied to mathematics, the
humanities, the experimental sciences, morals, the arts, or any other
field. The freedom allowed in section 6, and in the design of certain
optional topics (see §10) provides each school with the opportunity
of making the fullest possible use of local interests, resources and
teaching talent.

The plan is based on the principle that ‘learning how to learn’ has
now become the prime function of school education, and, in particu-
lar, pays special regard to:

(i) the need for a broad general education, firmly establishing the
student in the use of ‘tools’ he will need whatever the career he
chooses to follow;

(ii) as flexible as possible a choice among the subjects to be studied,
so that, subject to (i), the student’s options correspond as far as
possible to his particular interests and capacities.

Students who do not need to follow the full Diploma course may
offer single subjects, and there is then no restriction upon their
choice except feasibility within their school programme. The IBO
awards certificates for such subjects, showing the grade in each case.

4 Assessment

Each subject is individually assessed by the Chief Examiner on a scale
rising from Grade 1 (very poor) to Grade 7 (excellent). To gain
a Diploma, a candidate must have been awarded a mark of at least 4
in each of the six subjects examined. A system of cross-compensation
allows lower marks in one or two subjects to be counterbalanced
by higher marks in others, while a mark of 6 or 7 in the Theory
of Knowledge course adds one point to the candidate’s total.

Different methods of assessment are used by the examiners in the
various subjects. At present six types of assessment are used, but
experiments are carried out each year and the present position is
very fluid; the six types are:

(1) Independent research (higher level only); an extended essay
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in language A4 and history, and field work in geography, followed by
an oral examination; in other subjects independent work is optional.

(2) Written examinations; these are held towards the end of May
and include essays, short answer questions and multiple choice
objective tests.

(3) Oral examinations; in language A these are traditional face-
to-face orals, but in most other subjects tape recordings are used.

(4) Practical assessment; assessment of practical work in sciences
is based on a combination of teachers’ continuous assessment, school
inspections and evaluation of experiments presented by film; in art,
dossiers and slides are submitted to a panel of examiners.

(5) Listening comprehension test; taped conversations and prose
extracts upon which short written replies are based (mostly language
B).

(6) School assessment of the student during the 2-year IB course
is taken into consideration by the Chief Examiner in each subject; it
is also used for the Theory of Knowledge and Aesthetic Activities
courses, and for special school syllabuses under Other Studies
(with moderation by a visiting examiner).

5 Research unit

A special research unit, located at Oxford University, prepares
detailed statistical reports for the information of participating
schools, the IBO, examiners and members of the Council of Founda-
tion (which is responsible for the general direction and administra-
tion of the IB). Details analysed include the correlation between
school assessment and IB grades, the distribution of IB grades (rising
from 1 to 7) by subjects and by schools, and the progress of 1B
candidates in their subsequent studies.

6 University recognition

In the past international schools have, in broad terms, adopted one
of the two methods described below in order to provide their students
with the qualifications necessary for admission to the university and
faculty of their choice:

(i) Upper forms were divided into separate groups, each group
working towards the objective laid down by a particular country;
this method defeats the aims of truly international schools and leads
to an expensive duplication of teaching staff.

(ii) All students were prepared for the leaving qualification of the
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host country and admission requirements were negotiated with
individual countries or universities; this method defeated the aim
of mobility and led to an impossible burden of secretarial work.

The IBO has therefore made approaches to many countries and
universities, and in May 1972 there were already twenty-nine
countries in which universities recognised the IB Diploma within the
framework of their own regulations for admission. Two examples
are given: in the UK all universities recognise the IB for all applicants,
although a particular faculty may make special requirements in
relation to subjects chosen and grades awarded; in France the uni-
versities recognise the IB for all foreigners and for all French students
whose parents have been living abroad for at least two years.

The list of countries and universities is growing steadily, but the
arrangements will have to be re-negotiated in many cases at the end
of the Pilot Project in 1976. Details are given in the General Guide
(see §13).

PART II- MATHEMATICS
7 Special problems relating to mathematics

(i) The background and technical skills of students vary greatly
both in quality and nature; this variation is due not only to the
personalinterests and experience of the students butalso to the differing
speeds and directions of development of mathematical courses in
different countries.

(ii) The aims and destinations of students, whether they relate to
further education or to careers, are far more varied than in national
schools; so are the views of their parents.

(iii) The qualifications required by colleges and universities in
different countries vary considerably both in level of attainment and
in the type of thinking required.

8 Aims of the syllabuses

(a) The teacher is required:

(i) to develop the student’s understanding of mathematics as an
academic discipline;

(ii) to develop an attitude to mathematics in the student favourable
to subsequent learning and application of the subject;

(iii) to develop the student’s ability to learn mathematics on his
own;
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(iv) to encourage those students who lack confidence in their own
knowledge of mathematics and experience in the subject.
(b) The examiner is required to assess the student’s

(i) knowledge of mathematical concepts and essential terminology;

(ii) ability to formulate proofs of some of the theorems about
these concepts;

(iii) ability to represent situations in mathematical terms (mathe-
matical models), to examine their implications and possibilities, and
to arrive at definite conclusions by the application of mathematics
as a tool.

9 General considerations

Mathematics is a compulsory subject in the IB. It may be offered at
Higher Level, Subsidiary Level 4 or Subsidiary Level B. There is
also a subsidiary subject, Further Mathematics, intended mainly for
those students who intend to read mathematics at the university.

Higher Level is intended for students who have good mathematical
ability and especially for those who will need the subject in their
future studies.

Subsidiary Level A is designed to provide a background of mathe-
matical thought sufficient for students planning to pursue university
studies in science, economics, and so on.

Subsidiary Level B is designed for students who, for the purpose of
admission to colleges and universities, offer a combination of sub-
jects which may not include mathematics, and for those not intending
immediately to continue their formal academic studies; it is part of
IB policy that all diploma candidates should continue to study
mathematics while at school as part of their general education.

Further Mathematics may be offered under Other Studies of the
general programme as a separate subsidiary subject, but only by
candidates who enter for the Higher Level.

10 Design of the Higher and Subsidiary Levels

At each level, except Further Mathematics, the syllabus is divided
into two sections: section 1 is the core of the respective syllabus and
is compulsory; section 2 contains optional topics from which a selec-
tion must be made. In addition to the options in section 2 schools
may submit topics of their own design for approval by the Chief
Examiner in Mathematics.

Logic has been excluded from the core section in each case because
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it is included in the Theory of Knowledge course which is compulsory
for all students who enter for the IB Diploma, but it occurs as an
option at Subsidiary Level, mainly for the benefit of those students
who are taking only a Certificate course.

Both Subsidiary Levels, 4 and B, have a list of items of preliminary
knowledge required, as a guide to teachers in drawing up their
individual schemes of preparation in mathematics for the years
preceding the 1B course.

At all levels the syllabus includes a few topics, marked with an
asterisk, which it is hoped teachers will include in their courses, but
which will not be examined. It is also possible for teachers to allow
their quicker students to work on additional topics in section 2, and
it is felt that this provides a good opportunity for individual work.

To illustrate the range of topics included, the main headings occur-
ring in the Higher Level and Subsidiary Level A syllabuses are
reproduced below.

Higher Level

All candidates must have studied section 1 of Subsidiary Level 4. Candi-

dates are expected to choose at least three options in section 2.

Section 1 1. Mathematical induction. 2. Sets, relations, mappings and
algebraic structure. 3. Particular functions. 4. Polynomials. 5. Ana-
lytical geometry. 6. Differential calculus. 7. Integral calculus. 8. Vec-
tors. 9. Matrices. 10. Complex numbers.

Section 2 1. Statistics and Probability. 2. Linear algebra and geometry.
3. Analysis and differential equations. 4. Mechanics. 5. Numerical
calculations. 6. Theory of numbers. 7. Geometry. 8. Further cal-
culus. (OR an individual topic.)

Subsidiary Level A

Candidates are expected to choose at least two options in section 2.

Section] 1.Sets. 2.Relations. 3.Number. 4.Numerical calculations.
5. Algebra. 6. Trigonometry. 7. Vectors. 8.Matrices. 9.Functions.
10. Calculus. 11. Probability. 12. Statistics.

Section 2 1. Algebraic concepts. 2. Geometry. 3. Calculus. 4. Busi-
ness mathematics. 5. Probability and statistics. 6. Logic. 7. Vectors.
(OR an individual topic.)

11 Syllabus revision

The IB policy is one of continuous consultation with schools and
revision of details of syllabus and examination, with a major revision
between stages 1 and 2 of the Pilot Project. This major revision began
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with a conference in Oxford (October 1971) attended by teachers,
examiners and advisers. Between November 1971 and February 1972
the draft syllabuses were circulated, and there was considerable
correspondence with schools. In February and March 1972 several
schools which had not attended the Oxford conference were visited,
and in March 1972 a final drafting panel (Chief Examiner and two
assistant examiners, one English and one French) met in Geneva,
with help from the IBO staff. Altogether four new syllabuses, each
in two languages, were drafted, aimed at meeting the wishes of
twenty-two schools in eleven countries. The new syllabuses will be
examined in 1974.

12 Annual Consultative Conference

This is convened (usually once a year) to advise on all educational
matters. Its members are representatives of the teaching staff and
students of participating schools, members of the Executive Com-
mittee and Research Unit, examiners, interested observers and
specialists. Working groups discuss individual subjects and special
problems,

13 Information
Further details can be obtained from the following sources:

(i) The Director General: Mr A. D. C. Peterson, Department of
Educational Studies, Oxford University, 15 Norham Gardens,
Oxford, UK.

(i) The Director of the International Baccalaureate Office:
M. Gérard Renaud, 1 rue Albert-Gos, 1206 Geneva, Switzerland.
Chief Examiners can be contacted through M. Renaud.

(iii) The Research Director is Dr W. D. Halls, IBO Research Unit,
15 Norham Gardens, Oxford, UK.

(iv) The official General Guide to the International Baccalaureate,
which contains full details of all syllabuses, can be obtained from
M. Renaud, at IBO Geneva.

(v) The book, International Baccalaureate, by Mr A. D. C. Peter-
son, deals more fully with the philosophy, aims and future of the IB;
it is published by G. G. Harrap & Co. Ltd.

The Gate House,
Lower Ufford,
Woodbridge, Suffolk.

261



The role of axioms
in contemporary mathematics and in
mathematical education

Toshio Shibata

1 What do we mean by ‘ Axiomatics’?

Modern mathematics, as it has developed during the last century and
is still progressing, is characterised both by the axiomatic method
and a tendency to abstractness. There are two types of mathematics
constructed axiomatically, namely, categorical and non-categorical
theories. Examples of the former are Euclidean geometry and the
theory of the natural numbers, and of the latter, group, ring, field,
vector space and metric space. Roughly speaking, the former is an
axiomatisation of a substance —an entity —and the latter is an
abstraction of a structure.

A categorical theory can be constructed in two different ways. One
way is to discover the essential basis, look for the foundation of a
theory, and axiomatise the theory. This is in the spirit of Euclid and
Hilbert and may be called the historical development. Historical
Euclidean geometry, Hilbert’s rigorous theory and Peano’s theory of
the naturals are examples of this historical development.

The other way is as follows. First, we break down a theory into
essential pieces, observe some similarity in different theories, and
abstract a common structure. Thus we obtain a non-categorical
theory. Next, we organise several non-categorical theories to charac-
terise a categorical theory. This is in the spirit of modern mathematics
and may be called the modern development. Thus, an approach in
which the Euclidean plane is characterised as a two-dimensional
linear space with an inner product typifies this development.

Though it is very difficult to visualise this feature of mathematics,
or the process of mathematisation just mentioned, we may sum-
marise it as in diagram 1. (See also appendix §1.)

One of the purposes of mathematics education is to give students

1 An axiom system is said to be categorical if every two models of the system are
isomorphic.
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(Informal) Application
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Axiomatisation NON-CATEGORICAL THEORY
(Historical
development)
AXIOM Characterisation
(Relation between (Modern development)
undefined terms)
CATEGORICAL THEORY
Diagram 1

an answer to the question ‘What is mathematics?’. School mathe-
matics should not be an account of already-completed mathematics
and, in my opinion, school mathematics should not be developed
axiomatically from the beginning. It is more important for students
to understand the processes of constructing mathematics, that is, the
processes of axiomatisation and abstraction, including the progres-
sion from concrete materials to informal theories. In particular, there
will be many differences between the way in which one approaches
the historical development of a categorical theory and that in which
one introduces the modern development through non-categorical
theories. I discuss these differences and point out some problems
which arise in teaching axiomatics in the following sections.

2 How should we approach non-categorical theory in school
mathematics?

The development of a non-categorical theory goes as follows.
First, we observe several concrete theories occurring in different
branches from one viewpoint, attempt to discover some similarity
and abstract a structure by axiomatising. Secondly, we deduce some
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Diagram 1 applied to the world of numbers

Observation
Experiment
¥
Informal geometry Linear space
Plane geometry Metric space
Solid geometry Normed space
Analytic geometry Hilbert space
¥
[ HILBERT’S AXIOMS ] 2- or 3-dim. inner product
space — EUCLIDEAN SPACE

Diagram 1 applied to the world of figures

useful theorems from the axioms obtained. Thirdly and finally, we
apply these theorems to a concrete theory. Briefly speaking, there are
three stages, abstraction, deduction and application. The simpler
a system of axioms is, the more concrete theories are included in it
and the wider the applications will be. An axiom system ought to be
meaningful so that we are able to obtain rich consequences from it.
Moreover, the significance of teaching non-categorical theory will be
lost unless the circuit of the above three stages: abstraction, deduction
and application, is completed. Considerable background experience
is necessary if the abstraction stage is to be understood and sufficient
training in deductive thinking is essential at the deduction stage. If
knowledge of concrete theory is lacking, then it is impossible to
develop the application stage.

For example, after careful observation of the properties of
operations such as addition, multiplication, permutation and trans-
formation, we abstract the concept of a group. We then deduce, for
example, Lagrange’s theorem on the order of a subgroup which is
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applied to the classification of symmetries, In this application stage
we need some correct knowledge about figures. )

One more example (at the university level): after obtaining con-
siderable knowledge about real numbers and elementary geometry,
we abstract the concept of a metric space and define the concept of
completeness. Then we may easily deduce the Contraction Mapping
Theorem in a complete metric space. The theorem has remarkable
applications such as the existence theorem of the solution of a
differential equation. In this application stage, we need much know-
ledge about continuous functions.

Although many materials have been devised so as to permit the
abstraction stage for several structures to be considered at a school
level, such an introduction must be accompanied with other rich
experiences in order to avoid, say, the too hasty abstraction of the
group concept before the students have met examples of non-
commutative cases. Furthermore, even when the above condition is
fulfilled, we still need more new materials which can stimulate
meaningful deduction, resulting in significant applications which
are new to our students. It is obvious that the deduction stage is
important, but, for instance, a mere examination of a set of equivalent
axioms for a group, is, I think, meaningless to our students.

The activity of thinking mathematically may be regarded as
starting with observations and experiments on concrete materials
followed by classifications and arrangements. All of these processes
are repeated gradually in a developmental way as students become
more mature. This may be regarded as building the foundations for
the abstraction stage.

It seems to be a recent tendency to introduce an abstract concept
such as that of a group into the early stages. Certainly, it is desirable
to observe concrete materials from an abstract viewpoint such as
those of the set and group concepts if by so doing we help students to
understand essential properties of the materials; and the group con-
cept will be the most suitable one through which to approach
non-categorical theory.

However, the introduction of an abstract concept is only the first
of my three stages, and if there are not the materials available to
allow one to complete all three of these, it would be better to replace
a hasty abstraction by the collection of other materials, further
experiences and more varied viewpoints.!

1 Cf. appendix §2.
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3 What sighlﬁcance does categorical theory have in school
mathematics?

As I have mentioned already, a categorical theory is developed in
two different ways, that is, the historical development and the modern
development. The latter is a product of this century and it is especially
attractive for mathematicians. It might be a royal road leading to
a theoretical construction of mathematics, but before entering upon
it, suitable analysis of its characteristics is essential and we should
be aware that we shall not be able to drive on it without a thorough
understanding of non-categorical theories. There might be some
significance in characterising an object, but, in my opinion, the con-
tents of a theory are more important for our students than is its
framework. The modern development of a categorical theory is a
matter to be handled at the university level.

The method of the historical development of a categorical theory
is a suitable way in which to obtain a good understanding of the
contents of the theory. In a definite world, for example, in the world
of numbers or that of figures, we observe many properties and deduce
some properties from those previously known. We examine the
process of deduction and do some reverse thinking, step by step.
After these considerations we attempt to seek foundations for the
theory. Lastly, we fix the essential basis, axioms. Though it is difficult
to demonstrate rigorously a historical development of a categorical
theory, it is desirable that the method of the historical construction
of mathematics be known. An understanding of this method enables
students not only to gain accurate knowledge of a subject but also
to learn meaningful deductive thinking. Such activities may be needed
to understand non-categorical theory and the modern development
of a categorical theory.

There are two outstanding examples of the historical development
of a categorical theory, namely, Peano’s theory and that of Euclid
and Hilbert. Numbers and figures have been matters of great concern
for human beings from ancient times until the present, and these two
subjects are axiomatised and completed by these two famous theories.

It would be wonderful for students to know that the world of
numbers can be constructed using only the five axioms of Peano.
However, the road of construction is so long. The frequent recourse
to mathematical induction is too dull and the classification according
to an equivalence relation at too high a level of abstraction for
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students. If we are to treat Peano’s theory in school mathematics, it
will be as an example of inductive definition or as a story of the
axiomatic development of the world of numbers.

On the other hand, it may be strange for students to know that
point and straight line are undefined terms. It will also be more
difficult for them to understand Hilbert’s axiom system and, in
particular, the role of the axiom of continuity, even at the university
level. However, if we recognise the importance of illustrating the
historical development of a categorical theory in order that our
students should understand how to organise a theory systematically,
then I think geometry is a better medium than algebra.

Comparing the world of numbers and that of figures in school
mathematics, the development of the former is rather simple and
straightforward starting from counting, or natural numbers, while
that of the latter is complicated, starting from the observation of
several figures, other than a point or a straight line. Students have
been familiar with certain properties of numbers since their pre-
school stage and there will be no necessity to analyse these properties
for them. On the other hand, there are many viewpoints on how to
analyse figures, for example, size, shape and position, and many
properties of figures which depend on different foundations are
obtained by intuitive consideration and experimental activities.
There will naturally be a need to analyse these properties. It is
important to know how to find a simple approach in such com-
plicated situations.

Moreover, it is very important to know the meaning of proof. In
geometry, we can consider some deductive relationship of several
properties by first observing drawn figures. Geometry is thus a suit-
able medium in which to foster meaningful, deductive thinking and
an understanding of the essence of proof.!

To summarise, therefore:

Axiomatics can be classified into three types:

non-categorical theory, categorical theory developed in a ‘modern’

way and categorical theory developed in a ‘historical’ way.

For teaching non-categorical theory, which has three stages,
abstraction, deduction and application, we have to develop suitable
materials which will allow the student to complete all three stages.
It is better to approach the historical development of a categorical
theory through geometry than through algebra.

1 Cf. appendix §3.
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Appendix Some supplementary thoughts!
1 Some additional notes on diagram 1 (p. 263)

The various blocks of the diagram are built up in a particular order
which I explain below. To facilitate the explanation, in the accom-
panying figures each block is represented only in outline.

First: figure 1 shows the world of so-
called school mathematics. Here there

are three stages:
(1) Mathematisation from the actual

world to a more theoretical world.

(2) Development of informal mathe-
matics.

(3) Application to concrete materials.

At stages 1 and 3, activities such as
abstraction or formalisation are repeated.
Experience and intuition will play import-
ant parts here.

Stage 2 provides repeated opportunities for deductive and inductive
thinking, in an informal sense.

This three-stage circuit is developed gradually. Thus school mathe-
matics will be constructed step by step.

Next (see figure 2): About 2000 years ago, Euclid produced his
axiom system. At the end of the nineteenth century, Hilbert re-
organised Euclidean geometry fromamore
rigorous standpoint and opened the door

of axiomatics, the characteristic of modern
mathematics.

In the world of numbers, Peano com-
pleted his axiom system for the natural
numbers.

These theories were constructed by
seeking for foundations in a definite EEI
world, those of figures or numbers. Each
of them is an example of the historical
development of a categorical theory and

can be said to be an axiomatisation of a
‘substance’.

Fig. 1

Fig. 2

1 The material in this appendix was discussed by Professor Shibata at a meeting
of the working group on Contemporary Presentations of Geometry at School
and University Level.
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Thirdly (see figure 3): ‘Modern mathematics’ has approached
mathematics in a completely different way. It breaks down various
objects into their essential parts and abstracts a common structure.
Different abstract theories such as group theory or metric space
theory are constructed and applied to many concrete theories.

I;ZI

=

Fig. 3

The circuit of the three stages, abstraction, deduction and applica-
tion, is similar to that of the school mathematics construction, men-
tioned above, although more rigorous.

¢7

L H

Fig. 4

Last (see figure 4): A definite world is characterised by organising
several non-categorical theories. This is a modern development of
mathematics.

The historical development of mathematics and the modern
abstraction of structure are the warp and woof, the latitude and
longitude of the theoretical construction of mathematics.
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The diagrams on p. 264 show how these ideas can be applied to the
world of numbers and that of figures.

Which should we stress, historical development or modern develop-
ment, axiomatisation of a substance or abstraction of a structure?

These two aspects have different natures; we can neglect neither
of them.

2 Somesubjectsrelatedtonon-categoricaltheory inschoolmathematics

As I mentioned in section 2, there is much in school mathematics
from which we can abstract some structure. The outstanding problem,
though, is whether we shall then be able to treat some meaningful
theorems or not.

I shall list some of the material in the following table. It is regret-
table that there are so few items in the column labelled ‘Theorem’.

Basic material Abstract concept Theorem
Various oﬁerations on Group On the order of
numbers, figures a subgroup
Integers, polynomials  Integral domain LCM, GCD
Large and small in Ordered set, lattice —
numbers
Set inclusion Boolean algebra —
Rational numbers Field —

Real numbers
Complex numbers

Various operations on Linear space —
numbers, vectors,

functions

Distance in 2- or 3-D  Metric space —
space

Convergence

Uncertain events Probability —_

Dice experiments

3 An example of a development of plane geometry

Here, I give an example of how we can handle and analyse properties
of figures using a well-known theorem. I shall illustrate this dia-
grammatically and add a few words of explanation.

In elementary school, students are able to obtain property (1) in
the following diagram, by cutting a triangular piece of paper, and
they may then solve problem (2) easily.

In secondary school, after obtaining a knowledge of parallel lines,
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Sum of interior angles (@[ Sum of interior angles
of a triangle is '180°. of a polygon.
A
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Existence of parallel lines ) Uniqueness of parallel lines
If the alternate interior angles The alternate interior angles
obtained when a straight line obtained when a straight line
intersects two given straight intersects given parallel
lines are congruent, then the lines are congruent to each other.

two lines are parallel.
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the student will prove property (1) by drawing a straight line through
point 4 which is parallel to the line BC. Careful examination of the
proof will reveal that its foundations lie in facts (3) and (4). These
two propositions are mutually converse and proposition (4) is
nothing other than the so-called axiom of parallel lines.

At a more advanced level, perhaps in upper secondary school,
property (3) may be proved by reductio ad absurdum. The basis of the
proof is facts (5) and (6); fact (5) being one of the axioms of incidence
and (6) being one of the axioms of congruence.

In this way, starting with a familiar property, we are able to go
back and search for an essential basis step by step.

This work was supported by a grant from the Japanese Ministry of
Education.

Science University of Tokyo,
1-3 Kagurazaka Shinjuku-ku,
Tokyo.
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Implications of the work of Piaget in the

training of students to teach primary
mathematics

Mary Sime

Introductory remarks

Many mathematicians, whatever their feelings about ‘New Mathe-
matics’ still love to start with axioms. Therefore 1 hope to capture
your attention by offering you three axioms as a starting point to this
paper. While to me the following statements are self evident, it may
well be that to some of you they are not. Nevertheless, I give them to
you as axioms.

The first is that mathematics should be enjoyed. I would consider
that many teachers in the last few decades have tried to make it so
by enriching primary school children’s lives with plentiful, enjoyable
experiences in true ‘pre-mathematics’,' as contrasted to a drilling
in ‘sums’, thus laying a foundation for both emotional and intellec-
tual appreciation of the subject.

I also take as an axiom that there are five ‘cornerstones’ of learning
of which mathematics is one. The others would be language, move-
ment, some form of scientific exploration and some work that is
normally considered creative. (This statement is difficult to word
unambiguously since, to some of us, mathematics is creative.) These
five cornerstones are vitally important in early education since, as
well as being of maximum value in their own right, they are the
essential tools of all future learning. Hence, in the integrated work
that goes on in many of our primary schools their contribution is
of double worth.

My third axiom would be that trainee teachers need to be given
an understanding both of mathematics and of how children form
mathematical concepts and mathematical habits of thought. From
this axiom I wish, later in the paper, to develop the line of thought
1 T am being a purist and playing safe in this conference of very real mathema-

ticians by calling the concrete explorations of children towards mathematics,

before the age of hypothetical thinking, ‘pre-mathematics’ as mathematics
itself is abstract.
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that the Piagetian theory of developmental psychology sees mathe-
matical form (coming to a climax in group and lattice form) in the
intellectual activity of the adult brain. Consequently it seems that the
concurrent and even integrated study of mathematics and of Piagetian
theory can enrich and clarify, for any student, both the mathematics
and the developmental psychology.

If I may invent the word ‘sub-axiom’ I would slip one in here.
Psychology has not been truly studied unless it can be applied. Far
too many students divorce their study lamentably from classroom
work. Therefore, just as the primary school child needs plentiful
experience in pre-mathematics, so a student needs experience in
diagnostic testing (@ la Piaget) and of attempting, under tutorial
guidance, to relate his teaching to the results of the testing. To this
one must add a ‘caveat’. In the schools teachers will not have clinical
conditions in which to do Piagetian testing. Unless, in the colleges,
students are given experience in adapting the testing to non-clinical
conditions most will cease to do such diagnostic work once they
qualify. This is also a theme I shall develop later.

After these few introductory remarks may I turn now to enlarging
on them by examining the challenges to be found in first infant* and
then junior? schools.

The challenges in the infants’ classroom

Piaget calls infancy the ‘intuitive period’. It is a period during which,
above all else, the child needs to be precipitated into a wealth of
experiences with carefully chosen materials so as to enable him to
abstract from those experiences properties that are themselves
abstract. So he will form concepts and also develop the logic skills of
classification and seriation.

Amongst the earliest preconcepts to develop into concepts are
those of number (Piaget [1]), of area (Piaget [2]), of sequence
(Piaget [2]), of the horizontality of the surface of liquids (Piaget [2]),
and so forth. I stress that they develop through experiences and not
through the materials themselves. Materials that are not manipulated
are ‘dead materials’: those that motivate to activity bring seething
life into an infants’ classroom. A good student will foresee and plan
for them to bring the maximum benefit.

1 UK equivalent of USA grade KG and grade 1.

2 UK equivalent of USA grades 2, 3, 4, 5 and possibly 6. ‘Primary’ is UK
equivalent of USA KG to grade S or 6.
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So, in providing materials that have properties relevant to the
concepts that children should be forming I would suggest students
need to consider, too, the play-element that such materials can be
expected to provide. Hence my words ‘carefully chosen materials’.
To satisfy those who prefer all work to be offered open-ended, I would
modify my words only to this extent. Certainly an infant will learn
from all experiences, whether foreseen or not. The occasional lazy
student will try to escape preparation on these grounds. But we are
asking for optimum learning with a strong element of the ‘corner-
stones’ in it and in this paper we are pin-pointing the mathematics
‘cornerstone’. For this either the experiences need to be foreseen
and the materials carefully chosen or the student needs to be very
well grounded in mathematics and very astute at recognising and
exploiting the mathematical elements in any situation. Most students
are not secure enough in their mathematics to take the second of these
two courses, so they need to plan ahead, taking into consideration
Piaget’s theories. Careful initial planning does not inhibit a later
development into open-endedness if the students or the children see
further tempting fields of investigation opening out.

Many of us know of the materials encouraged in the UK by Edith
Biggs and by the Nuffield Project, and it is not hard to imagine the
enjoyment which they give to children. The teacher is hard put to it
to supply sufficient of such wisely chosen materials from which
mathematical experiences can grow, and — this is my next crucial
point — from which results of the experiences can be recorded mathe-
matically by some such method as block graphs or Papygrams or
any other early form of the written language of mathematics.

Together with this pre-applied-mathematics the infant needs, too,
experience with the beauty of the symmetry and rhythm in geometri-
cal plane and solid shapes. Manipulating them will plant in the child
an intuitive appreciation of geometrical form. Is an infant too young
for preconceptual learning of transformation geometry through tiling
patterns ? I think not. Similarly one can encourage one’s students to
introduce into the infants’ classroom toys that prepare the ground
for mappings, for sets, for equations and so forth. As preconcepts of
these gradually develop into concepts one may encourage children
to talk in mathematical terms.

Parallel with all this is the mathematics that can be absorbed
through structured apparatus. Cuisenaire rods, in their imperceptible
way, help a child forward to the abstractions of length, relationships
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and number and also, concurrently, to the logic skills of classification
and seriation (see Piaget [3]). Logic blocks, seen as fun, promote the
skill of classification, sometimes to the pitch of clagsification by
negation.

What of the student ? At the infant stage many a child can absorb
happily more pre-mathematics than many a student has on entering
college. And it is such a student who, more often than not, chooses
primary teaching as a career. Untutored he could do irreparable
harm. And he cannot be allowed to avoid mathematics for he would
impoverish the intellectual lives of generations of children. So he
needs careful tutoring in mathematics. Even more, I think, he can
benefit from a good tutoring on Piagetian theories, for much of the
mathematics that he needs will be absorbed, incidentally, as he
practises Piagetian testing. Many a student has come to me after
carrying out the well-known, very simple tests, such as any of those
on sequence (the linen line) (Piaget [2]), area (the cows and the fields
and houses) (Piaget [2]) or any of those on number (Piaget [1]) or
classification (Piaget [3]) and has remarked that he was just becoming
conscious of forming the appropriate concept himself. I have often
suspected that, as well as having diagnostic value, Piagetian tests
have a teaching value for the child though, so far as I know, Piaget
himself does not claim it. Certainly the non-mathematical student
seems to learn mathematics as well as developmental psychology
from them.

I think this is for two reasons. The very indirectness of the mathe-
matics learning is a help. For one thing, as he focuses his attention
primarily on the developmental psychology of the child and only
obliquely on the mathematics involved, the student loses the inhibi-
tions and the fears set up in him by poor teaching in his own school
days. The first few examples of success are sufficient for him to break
through his anxiety barrier. Also, he sees the child’s struggles at the
middle Piagetian stages and perhaps identifies himself with the child.
So he learns with the child, loses his fears, takes an interest in
exploring more mathematics which inspires him to more Piaget and
so on to more mathematics. An ever widening spiral of learning has
been set up.

A mathematics and an education tutor, cooperating, can now lead
such a student to explore further afield in both areas and help him to
become an excellent primary teacher. A colleague and I have now
enjoyed such close cooperation and integration of our work for six
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years. Our students, conscious of our happy cooperation, have also
gained in the sense of security it has given them.

I have mentioned this point as I speak of work in the infant
school. It applies equally well in the junior school situation and
I turn to that now.

The challenge in the junior classroom

Juniors, most of whom are at the ‘concrete operational’ stage, need
a teacher to provide them with constant experiences that will satisfy
their natural urge to exercise their early concepts, now securely
formed, in reasoning out problems as they manipulate materials.
Similarly they need to exercise their now fast maturing skills in
classification and seriation but this, too, with the help of concrete
materials. They cannot yet work from the abstract to the particular.
As they find answers to problems they can demonstrate these answers
but they cannot prove them. To ask it of them would muddle their
thinking. They are still forming the late developing concepts such as
those of weight and of volume. Above all, through the activities and
concrete reasoning that I have just described, they are beginning to
tread out the paths of intellectual patterns of thought that should
be abstracted into formal concepts in their adolescence.

Let us add to this the simple fact that junior children are at an age
at which they most enjoy working in small groups and sharing
problems, responsibilities, decisions and successes (Piaget [4]). Conse-
quently, if the teacher harnesses this trait in their psychology by
inviting them to work in such groups, their learning will be cumula-
tive as they discuss and argue about their efforts and discoveries.

These facts led me to encourage my students to create learning
situations in junior schools in which the student could foresee specific
potential developments that have distinct mathematical value. Much
of the learning is oblique. Very simply I will mention two such
projects carried out by first year students in my presence. Incidentally,
the students were also working in teams of about six. I find that such
small teams, if well knit, benefit as junior children would do from the
cumulative effect of discussion during preparation and from a later
pooling of their observations and classroom experiences.

One of the projects' was the building of a two-roomed Wendy
House out of an enormous crate. It had viable hot water and elec-

1 Both projects are described in full in Sime [1], as is the testing on ‘horizontality’
described briefly on p. 281.
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tricity systems, geometrically accurate doors, windows, eaves and
so forth and a floor rich in transformation geometry. The other pro-
ject was a carefully prepared measuring up and scale modelling of
Stonehenge by a class of nine-year-old children. In this the students
were aiming at the oblique teaching of scale, of angles, of triangula-
tion and at the formation of the late developing concepts of weight
and volume. This project became open-ended and the children moved
on to a study of leverages and tensions.

Learning situations that are shallow in content, but yet might give
the casual impression of being of the same value as the two just
mentioned could have been planned empirically by students and have
had little learning value in them. In students’ classes one meets in-
numerable jerry-built Wendy Houses and many approximate models
of Stonehenge, copied merely from pictures in books and with no
measuring or reasoning or calculation and no oblique learning
having been brought into play. I think it is obvious where and how
an understanding of the Piagetian stage can influence the bringing
of oblique, sound learning into the more carefully planned project
work.

One could go on indefinitely suggesting similar projects both
closed- and open-ended, all rich in mathematical content and in
concrete reasoning.. These would all be examples of what I called in
my introduction ‘mathematics for enjoyment in its own right’. Now
may I turn to junior school pre-mathematics as a root of future
learning, coupling this with a mention of the formal concepts that
I promised to enlarge upon.

In The Growth of Logical Thinking from Childhood to Adolescence
Piaget [5] (together with Inhelder) has pointed out to us that the
mental skills and patterns of thought that are used by adults as they
reason logically and abstractly, are developing gradually as a result
of concrete experiences throughout childhood and are then abstracted
from those experiences. On reaching perfection they become what
Piaget calls formal concepts. Examples of these intellectual skills and
formal concepts are:

(a) The skill of recognising one’s own contradictory statements
(investigated by experiments with flotation).

(b) The skill of recognising and reacting to reciprocal implication
(investigated by exercises on a billiard table).

(¢) The skill of eliminating negative factors in a problem (investi-
gated with a pendulum).
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(d) The skill of holding constant all factors in a problem except
the one to be tested (investigated with flexible rods).

(e) The skill of forming a mental lattice of all the possible combina-
tions of factors to be tested (investigated with colourless, odourless
chemicals).

(f) The skill of counterbalancing the value of factors within a
problem (investigated with a balance or with a moving snail on
a moving board).

It is in this last skill that Piaget brings me to the climax of my
appreciation of his work by illustrating that the fully alert adolescent
mind brings into action a consequent formal concept in the pattern
of a mental Klein 4-group activity (see p. 84).

Any teacher of secondary mathematics would agree it is necessary
to give exercise to these formal concepts through work on mathe-
matical problems, subsequently building more mathematics upon
them. I go beyond this. I would claim that in the junior school the
teacher should be nurturing the middle stages of their development
and that he therefore needs to be fully conversant with the diagnostic
testing for that development and, of course, necessarily, conversant
with the mathematical patterns themselves.

At this point I think we can move on to look more closely at the
students.

A. The student who offers mathematics as one of his academic
subjects

I would simply make four isolated points about him.

One is that, unfortunately for the primary schools, very few of the
mathematically able students opt for primary school teaching.
Equally, not all mathematically able students enjoy mathematics and
they would need to enjoy it to ‘get it across’ creatively to primary
children. This idea of personal enrichment through mathematics is
as important to the student as it is to the children. Such enjoyment
is more likely to be achieved if the psychology supporting the mathe-
matics is always taken into consideration.

My next point is that many a good mathematics student sees the
subject purely in its isolation and abstraction. He therefore needs an
enormous amount of tutorial help if he is to see how to present it
to children through integrated work in the primary schools.

Similarly, many a good mathematics student finds it difficult to
envisage modern mathematics as a primary school subject since he,
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himself, probably did not touch it until his last few years at school.
So he needs help with the psychology of a practical approach to it to
prevent him from trying to present it formally to children who are at
a concrete operational stage.

Nevertheless, this same student is the one who can most easily be
guided into appreciating the Piagetian theories. He does, at least,
know the mathematics of such forms as groups and lattices: he will
therefore find it easier than most students to learn about the corre-
sponding patterns of mental activity. His strength in mathematics
becomes a doubly valuable attribute. This opens up a particularly
pleasant chance of integrated work to the mathematics and education
tutors. So, in spite of three drawbacks, I would say that it is
probably easier for an education tutor to train a mathematics (or
science) student in developmental psychology than to train any other
student. It is, consequently, correspondingly easier for such a student
to plan really rich integrated learning in a primary school. Such
learning will have plentiful creative content. Some other students, in
contrast, can be too often satisfied with drawing half the potential
out of children, particularly out of bright children.

B. The non-mathematical student

This student is, of course, the one who is the greatest challenge to
the training colleges. And training colleges are evading their duty if
they ignore the problem.

Concomitants of the problem are:

Such students generally have a fear or a dislike of mathematics.

Probably they are the victims of attempted formal teaching in
their own primary school days and this has given them an inbuilt
muddled thinking in mathematics and therefore a confused state of
hypothetical thinking generally.

They rarely perceive the mathematical content in a general situa-
tion.

They have probably never met modern mathematics.

They always record facts in words, never mathematically. They
would, for example, never record statistics directly on to a graph nor
would they take note of a graph included in the middle of a text;
they would just ignore it.

Of the above problems the ‘phobia’ is probably at the root of it
all. Therefore the indirect approach that I have mentioned is probably
the most valuable.
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Closing thoughts

I would add to this that, as well as giving direct value to the student in
enabling him to become a teacher of mathematics, an understanding
and appreciation of mathematics is also of much more general value:

(a) He needs to understand mathematical forms in order to under-
stand the intellectual patterns by which a child learns any subject.

(b) He needs a sense of proportion, given by mathematics, in other
activities, as for example in planning curricula or in dealing with
discipline problems, as well as in other subjects.

(¢) I would emphasise that the mathematical patterns of thinking
that Piaget describes also influence the way in which a child’s moral
judgement develops [4]. Certainly facing truth of the success or
failure of a mathematical exercise seems to me a better moral training
than any preaching could be: I can remember, as a child, having it
impressed on me how intellectually (and morally) wrong it would be
to put QED unless I was sure that a problem was solved and proved.
I should very much like to enlarge on this if only there were time.

Lastly, we should remember that Piagetian testing, which I claim
will help a student in the ways I have just mentioned, is not nearly as
simple and straightforward as books would suggest it is. What are
the pitfalls? How do we train students to avoid them?

I consider a student should have continuous experience of testing,
throughout his training. At first experience should be in clinical
conditions, until he has acquired the skill of framing the follow-up
questions to the child’s early responses in such a way that he discovers
what the child really means. No answer is right unless given for a right
reason nor if given as a result of a leading question. Similarly, no
answer is wrong unless the child’s reasoning is wrong. Responses need
not be verbal. Many responses, incidentally, are highly amusing.

I am convinced that after a short period of clinical conditions
a student needs to go on to diagnostic testing in normal classroom
situations and, at the climax, to diagnosing by merely watching
children’s normal behaviour and listening to their conversations.
Let me quote three examples.

The first is an example of non-clinical testing which brought forth
a right answer for wrong reasons. A trainee teacher watched six
infants who obviously enjoyed their milk and suggested, one day,
that they should pour it from their bottles (which they had all agreed
contained equal quantities) into various shapes of cups, mugs and
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glasses. From previous observation she had expected them to be at
stage 2 in the test. Not suspecting that they had done the test several
times with their teacher she was surprised when, on being questioned,
the children all persisted in stating that there were still equal quanti-
ties in all containers. So she said,

‘All right! Now you can drink it.’

Then came the truth, without words, as they all stretched out their
hands to the tallest glass.

My second example is of a wrong answer for an unexpected right
reason. It was given in clinical conditions but could well have
happened in a classroom. A farmer’s son, a bright little boy, having
helped a student place equal numbers of ‘houses’ on ‘fields’ of
agreed equal area persisted in his answer that the cow on one field
had more grass to eat than the horse on the other field. ‘Why?’
asked the student. “’cos you know that a cow needs more grass than
a horse’ said the farmer’s son.

As an example of diagnosing by merely watching children’s
behaviour, you will probably be fascinated to hear of the antics of
a class of five-year-old children when they were suddenly faced with
the problem of drinking milk (through straws) from opaque cartons
instead of from the glass bottles to which they were accustomed.,
I will describe four children in particular, though they only illustrate
four stages of solving the problem that were shown by fairly equal
numbers of children throughout the class.

Caroline, having drunk about half her milk was quite unable to
find the rest. She held her inverted carton high above her head, with
the straw pushed right through the milk to the air pocket above its
surface. The milk trickled down the outside of the straw and down
her chin and neck. She twisted the carton about, but it was obvious
that all her explorations were random.

Philip held the carton in front of him and poked the straw forwards
to what had been the bottom of the carton before tilting. He expected
the milk still to be at the bottom. After a time, he failed to find any
there, so he squeezed the carton to get some out that way.

Beverley found the milk by bending the straw. By this means, she
emptied the carton.

Mark found the milk with confidence.

As we watched these children, we realised that they were all at
different Piagetian stages of appreciating how liquid finds its own
level. So we applied the well-known Piagetian tests (Piaget [2])
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and found that most of the class of thirty-six drew the milk in the
Piagetian ‘bottles’ just about where they were hunting for it in the
cartons. In particular, Caroline (Piaget stage 1) scribbled vaguely in
the middle of the drawn bottles. Philip (stage 2a) drew the milk in
its original position in the bottle at whatever angle the bottle was
tilted (thus, sometimes, giving it a vertical surface). Beverley (stage
2b) drew the milk in various interesting positions, but, at least, did
not have a vertical surface. Mark (stage 3a) always put the milk
approximately in the right position, but very rarely gave it a level
surface.

It was a student who first spotted this situation and telephoned me
to go out and help her with the tests and take photographs. This is
the sort of Piagetian testing by observation that 1 consider most
valuable of all since the average alert teacher will be able to react to it
throughout his or her teaching career.

1 have tried to make these examples light-hearted as well as illustra-
tive for, to me, it is essential that the developmental psychology
that supports the mathematics should be as enjoyable as mathe-
matics itself should be.

To close, may 1 quote from Lunzer in the Times Educational
Supplement of February 1972.

‘If a teacher has absorbed the true essence of Piaget’s approach he

will not be prepared to let Nature take its course.’

I apply this particularly to the teacher of mathematics.

References

Piaget, J., [1] The Child’s Conception of Number, Routledge and Kegan
Paul, London, 1952.

Piaget, J., [2] with Inhelder, B., The Child’s Conception of Space, Routledge
and Kegan Paul, London, 1956.

Piaget, J., [3] with Inhelder, B., The Early Growth of Logic in the Child,
Routledge and Kegan Paul, London, 1964.

Piaget, J., [4] The Moral Judgement of the Child, Routledge and Kegan
Paul, London, 1932.

Piaget, J., [5] with Inhelder, B., The Growth of Logical Thinking from
Childhood to Adolescence, Routledge and Kegan Paul, London, 1958.

Sime, M., A Child’s Eye View, Thames and Hudson, London, 1973.

College of Education,
Chorley,
Lancs.

282



Are we off the track in teaching
mathematical concepts?"

Hassler Whitney

1 The whole child

After centuries with little change in the mathematics curriculum in
schools, we find ourselves in an era of ‘New Math’, typified by the
teaching of concepts. At the same time, though many children find
they can go much further and faster ahead, the great majority are
confused, turned off, and fearful of the subject. What are the real
causes of this failure? Research studies, with control groups and
statistics, do not go deep enough. We must study individual children,
work with them in the classroom, to discover bit by bit what the
basic problems besetting them are, and how to overcome them. In
brief, our focus has been too much on the subject matter, not enough
on the child himself. Through various examples, we will see the
manifold ways in which good ideas, put into practice, go wrong, and
will look for roads to improvement. We must keep coming back to
the whole child as the main focus. When we think of concepts, they
must be end results, expressed first in the child’s terms. But more
than anything else, we discover what an extraordinary being a young
person is, capable of learning, in his own ways, with eagerness and
speed ; we must promote this, not suppress it.

My own view of the problem, after a life’s work as a mathematician
with basic interests in education and children, has evolved greatly
through five years of working with children and teachers in schools at
all levels. The forces at work on the children are extremely varied
and complex. Only with great patience and understanding, with real
respect towards all in the school and the community concerned, can
true progress be made. We can then let the poorer methods gradually
drop away of themselves.

1 This is a shortened version of the paper presented at Exeter. The full text is

reprinted in Pre-School and Primary Mathematics (Ward Lock, 1973), a collec-
tion of papers submitted to the working group with that title.
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2 The coming of the New Math

It will help the picture to see how the New Math arose. Since the last
world war there has been a greatly growing penetration of mathe-
matics into science, engineering, and other fields of application. This
has required an ever increasing understanding of mathematical
method by more and more people. It is not enough for them to know
mathematical facts; it is the basic comprehension that is important,
so that new problems or old problems in new guises can be attacked
successfully. Seeing how children in school normally learn mathe-
matics by rote, with consequent inability to apply it to new situations,
a number of mathematicians undertook to improve the situation.
From this came two general sorts of study:

(1) Find what the basic mathematics is. This led to a formulation
of elementary mathematics, starting from a set-theoretic foundation
and building it up in a more or less logical sequence.

(2) Enlist the help of psychologists and educators to find the best
ways of teaching the material to children.

In different countries, the story took on varying forms; the essential
features were similar, In the USA, through a number of projects,
large and small, experiments in teaching were carried out, and pre-
liminary texts were written; this work is continuing. Out of this
developed series of texts by the different publishing firms, competing
for attractiveness to school systems. In these texts, supposedly to
make it easier for the children, concepts were broken into tiny bits,
and teachers’ manuals give explicit directions on how to teach, mark
answers, and so on. Gone is the child who thinks for himself; he is
supposed to catch on to exactly what he is to do. He is to learn fancy
language first, then concepts which do not relate to his experience.
Where the children are encouraged to explore first, a good start is being
made; the problem is then how to continue so that understanding
takes place, first in the child’s terms, later in more adult language.

3 The cycle: student to teacher

A generation ago, the vast majority of elementary school children
learned mathematics under teachers who were insecure in the subject,
or obtained security through rote learning. The children’s questions
about why and wherefore were evaded; their own creative ideas
were squelched, and answers not given in precisely the expected form
were marked wrong. The children soon learned to look towards the
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authority, book or teacher, for what was right; never mind possible
hidden meanings. In higher grades, they started bogging down in
fractions; the subject was confusing, and the complexities tended to
be overwhelming. By the time they were in high school, algebra was
fearful; they learned formulae by rote, and that was essentially all
that was asked. In college, after a couple of years without math, the
thought of taking another math course was frightening. In fact, they
were mostly no better in arithmetic than six years before. Their point
of view was now: ‘Tell me what I should know; don’t ask me to
think.” If they do not expect to deal further with math, they happily
join those who say ‘I never could do math!” What percentage of
adults claim not to be in this group?

With some liking for children, or thoughts that they can handle
them, they now become teachers. In math, they are quite insecure;
fortunately there are teachers’ manuals, which they can follow to the
letter if desired. Their students soon learn not to ask questions but to
look to the authority, and we are back full circle.

4 Pushing theory

In the latter part of first grade, children are learning to ‘go over ten’.
In the New Math, in the USA for instance, a teacher may follow
a manual, and teach:

8+4 = 8+(2+2)
= (8+2)+2, by the associative law,
=10+2 = 12.

Here is the effect on the children:

(a) The expression 8+ (2+2) is confusing. Why put in the curly
signs? Writing 8 +2+2 is simpler. Perhaps 2+2 = 4 is recognised;
but why choose 2+2?

(b) Now the curly signs are moved around. What is a ‘law’? Does
this mean that I am told to do something, and therefore do it? 1 have
really stopped trying to see what this is about, anyway.

(c) 1 feel uncomfortable, especially since the teacher does too. If
she is expressing what school is supposed to be like, I do not want to
go to school.

(d) There is 12 at the end. Why not just count four more than
eight, and get twelve?

(e) T am told that the 1 in 12 means ten. But I know that you write
10 for ten, not 1. I hope this will stop soon.
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This is, of course, a horrible example of the New Math in action.
But it is, alas, quite common. Most ways of pushing New Math are
more subtle; but this makes it only harder for the children to object,
and leaves them with greater insecurity if they cannot see through it.

Let us look for a better way. We can straighten a coat hanger, let
the children put ten beads of one colour and ten of another on it, and
bend over the ends. How fast can the children show three beads, by
sliding them to one side? Show ten! Show eight! They quickly learn
that they find eight fastest by taking two less than ten. Now show
eleven; fifteen; twenty-one (silly, there are not that many!). Another
game: first show eight; now four more. How many is this? Twelve,
of course! And this is the children’s answer; if the teacher said
thirteen, they would wonder what went wrong,.

Another game: make spacers out of cards with slots; show 8+4.

Another game: show twelve; now show four fewer. With the spacers,
we have the same picture as before. Some children will notice this;
here is a chance for the teacher to promote a good discussion. The
children learn from each other, and the teacher sees new things
herself.

In this way the children can have lots of experience in a short time,
with immediate mathematical meanings. Moreover, it is easy for
them to give each other problems, and find quick solutions.

If the teachers are in a setting where they can do a little of this at
a time, they will learn to be more of an adviser and helper; gradually
their insecurity and need to be the authority will lessen. The spon-
taneity of the children will reflect on the teacher, the class, and the
school.

5 Language versus reality

The numbers 3, 4, 7 are related through both addition and subtrac-
tion; for a given relation, two of the numbers determine the other.
Hence the New Math texts give pages of problems of the sort shown
opposite:
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Let us watch the child doing his assignment. He has a number of
problems to do. If they are all of the same pattern, some clues may
well show him this; after putting in a few numbers, the others are
inserted quickly. Thus his powers of detective work, if not of mathe-
matical comprehension, are encouraged. If clues fail, he thinks,
should a larger or smaller number go in ? This may suggest a number;
he puts this in. Now he goes to the next, and the next, till impatience
and boredom make him stop or put in almost anything. How about
the pictures? Just as he does not read the text, he does not try to
fathom them; they are not Ais pictures.

O o0 o
O JO-0O

The root of the difficulty should be clear. A good reasoning process
is devised for the child to go through, which will lead him to put down
the right answer. But a child’s mind follows its own channels; they
are seldom those we devise for him. We hide from ourselves the fact
that he is presented with a language he does not understand, and he
is asked to get answers that make the language take on more mean-
ing. This is exactly the reverse of what makes sense. The child must
grasp the relationships in his own way first, then find some way in
which to express it. Later the expression can take the form we have
chosen.

The real goal is not for the child to learn particular answers; it is
for him to grow in powers of finding answers, or rather, of explora-
tion into processes. We therefore replace teaching by learning, or
better, by investigation. We think up a game. One child puts a small
group of counters (or buttons, etc.) on the table; each child can
count them. They are now hidden by a sheet of paper. Another child
pulls some out, and keeps them hidden under his hand. The paper is
removed, showing how many are left. How many are under the hand ?

For children who find this too hard, we change the manner of
playing. A child can count out his own pile, the same number as
under the paper. He may now try removing some, to leave the
number shown later; thus he finds the answer by experiment. And
there are many other things the child is experiencing. For instance,
he may be noting that 7 = 6+1 = 5+2 = 4+ 3 in an intuitive way.
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Because he needs to use it, he notes that when his pile corresponds
to the hidden pile, and what is left after pulling away corresponds
similarly, there is a third correspondence. The texts would not dare
teach something like this, for the children, when tested on it, would
practically all fail. (Please do not teach this! But it might appear in
a discussion.)

This kind of game is real to the child, and the answers are his own;
he becomes steadily more secure with the answers. When the children
are first asked to make records of the games, in any way they find,
they may at first write simply 7 4 3. Later they can start with
7— , continue to 7— , 4, and end with 7—3, 4. They may then
put in the equal sign, though without much understanding of its
significance.

Here is another sample of the game. There are five counters; some
are slid out; all are left. There are none under the hand! It is exciting
to verify this. To be taught that 5—0 = 5 as a ‘property of zero’ is
pretty deadly. Five under the paper; none left. Hand is lifted: six.
You cheated! Compare this with ‘You cannot subtract a larger
number from a smaller one’.

6 Concepts through activities

In recent times, mathematicians have seen how to base the theory of
natural numbers on set theory, through the notion of cardinality.
Hence it is natural to teach young children set theory first, to reinforce
their understanding of number. In the Math Lab approach, the child
is given an assignment. A card or sheet shows two circles, with
pictures of dolls in one and caps in the other. He is asked if there are
enough caps for the dolls. The child counts first, finding that there are
six dolls and only five caps; he knows the answer. Now he copies the
pictures. It is difficult to draw the dolls, and he may lose count. Next
he draws lines from the dolls to the caps. A line may go through
two dolls; a cap may be left out. The work is shown to the teacher,
who points out the mistakes; they are corrected, and he has now
finished the job.

Is this a useful experience for the child ? Certainly, provided that it
is not pressed too hard and the child works with willingness; he is
clearly gaining skills of various sorts. But it has little to do with the
original reason for setting up the problem, and is very slow at that.

If we put the child’s growth first, we think up somewhat different
activities. We may, for instance, put red counters and white counters
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in a bag. A child draws out a small handful. Are there more red or
more white counters? Counting tells the answer. Can you do this
without counting? A child will think of matching; this is easy and
fast, moving the counters around. Play the game a number of times;
he finds that there are usually more white counters. Why so?
Children may guess that there are more whites than reds in the bag.
They may even get a preliminary concept of ratios. Verifying by
emptying the bag is exciting. How do we match all these? A child
may think of making piles of four before matching; how educational!
He is getting notions of numbers in other bases (of course not
expressed in this language).

7 XKeeping in touch

In the third or fourth grade there are a number of children who
cannot do a subtraction problem such as 41 —15. Let us consider
some ways of helping such a child.

(a) The teacher or an aide gives direct help. ‘ You cannot take five
from 1. Hence you look at the 4. What does the “4” mean?’ The
child has been through this many times, and feels quite uncomfort-
able. He vaguely thinks he is supposed to say ‘forty’. The helper
senses the child’s withdrawal, tries to close her mind to it, and
attempts to keep the mental connection, to go through the process.
Some right words are elicited or placed in the child’s mouth, and the
answer is obtained. Another problem is done; then the child does
one or two by himself. Why is it, then, that a month later the child
can still not do such problems? The answer is really perfectly clear:
the problems were done by the aide, not the child; on his own, the
child’s insecurity comes back, and he does not dare begin.

(b) An aide brings materials for the child to use. Exchanging a ten
length stick for ten small blocks, the problem is solved, and the
answer found. Now the aide helps the child write down the answer
in the right way. The child looks up at the aide to see if this is the
right place to write the ‘2’; with an affirmative nod, it is written
down. This is certainly far better. Yet the child may later again have
qualms: what he finally wrote down was with the aide’s assent, and
he has not the aide now to give the assent. The aide led the child to
find his own way (it would have been better for the child to have
chosen the materials); but at the end, the aide took over in writing the
answer.

(c) Itis a bigschool system, and everything is well organised. Each
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year, a group of slow children from each class is given special
attention. With written tests, it is determined which concepts the
children do not understand; they are now given training in these
concepts. The next year, the same group is given more special work.
The children and the teachers know that the record will be of further
and further failure. This is the extreme of keeping carefully out of
touch with the individual.

(d) Children who have fallen behind have lost confidence and
some of their inner security; this needs to be built up. You cannot
really help here unless you gain their respect by showing that you are
truly interested in them as humans and understand their difficulties.
Talking with them to get in touch is the natural way to start. Then
you can carry out some activity with them that contains elements of
challenge, and they will be ready to accept this and use their own
thinking powers. A simple activity that can be carried out with little
challenge is a buying game. You give them some money, say plain
popsicle sticks or coffee stirrers for dollars and red ones for tens.
A storekeeper offers things for sale. The store can only accept exact
amounts; change can be made at the bank. For instance, a child has
four red sticks and one plain, which he records. Wishing to buy a
painting for $15, he exchanges a red for ten plains, and records: 3
red, 11 plain. He now records the cost of the painting, pays for it,
and records the amount left (2 red, 6 plain). Later, only amounts of
money will be recorded (41, 15, 26). This kind of work leads to real
understanding, and soon to an algorithm.

red plain

4 1

3 11

1 5 painting
2 6

8 Math and the real world

So far we have shown how an exaggerated focus on concepts has
hurt the growth of the children. We now point out a distortion of
concepts that has given rise to enormous confusion in schools and
great problems for scientists in mathematical phases of their work.
It is asserted that mathematics deals with numbers, not quantities.
Hence in school, equations shall contain numbers only. If materials
are used, their purpose is only to get concepts about pure numbers;
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we must then banish the materials from our minds. But in real life,
the reverse is the case. Mathematics grew up because of its enormous
power in applications. It is very important for children to experience
this from the outset. Let us go directly to the positive side, and show
how this may be done.

As an early experience, two blocks, with three blocks near them,
give five blocks. This may be verbalised; or we might write it as

€)) Two blocks and three blocks makes five blocks.
Later this could be changed to

2) 2B and 3B is 5B.

We get abstract ideas of numbers from experiences of this sort; the
symbols 2, 3, 5 evolve, we form 2+ 3, and finally we write

) 2+3 =5,

We can now go back, and interpret B, 2B, 3B, and so on, as abstract
symbols for numbers of blocks. (The child, trying the experiment, is
learning to think of numbers of blocks, neglecting their individuality.)
Just as we invented the sign + for numbers, we now invent it for our
quantities, and write 2B+ 3B. We can now use mathematical notation
to tell us what we see:

(O] 2B+3B = 5B.

There are six children at a party; each is to have three cookies and
four gum drops. What should we get? Figure it out (and draw
a picture also):

6(3C+4G) = 6(3C)+6(4G)

(6x3) C+(6x4) G
18C+24G.

How easily we get the answer! We are now told all sorts of things:
You cannot add two different kinds of things, you cannot use
cookies in an equation, and so on. Who cares? We have found
powerful methods, so let us use them. Anyway, we can define addition
here and make good sense.

Suppose a child is sent to the store for loaves of bread and cans of
soup, and is then sent back for more. He might think (or even write)

4L+ 5C = $2.43, 2L+3C = §1.31.

Fromthesecondequation, hefinds4L + 6C = $2.62. Usingthefirstnow
shows that C = 19 cents and hence L = 37 cents. How can we help
him give meaning to these equations ? If L means the price of one loaf
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and C means the price of one can, the equations are true, and the
operations on them are clear.

In school we are told how to change units. In later professional
work, in chemistry or engineering for instance, one may get terribly
mixed up with various units, and feel quite insecure. Let us allow
ourselves to write equations with quantities and see how we fare.
Suppose you are going at 40 miles per hour; how long does it take
to go 100 feet ? First,

40 miles  40x 5280 ft _ 2112 ft
hr =~ 60x60sec ~ 36sec’

If we do not know what to do with this, we can try. Multiplying by
100 ft comes out in an unwanted kind of quantity. Dividing by
100 ft gives

2A12ft 1 _ 2112
36sec ~ 100 ft ~ 3600 sec”

Evidently we must turn this upside down; the answer is 1.7 seconds
approximately.

For more details on these methods, see my paper, ‘The Mathe-
matics of Physical Quantities’, Am. Math. Monthly 75, 1968, 11538,
227-56.

9 Fractions

The first major breakdown in school math is apt to occur when
fractions are studied intensively. Moreover, under stress, children
are likely to associate ‘fractions’ with fractures, fracturing, and
hospitals. The stress is caused particularly by the tremendous con-
fusion of ideas. The root of this is the mathematician’s insistence
that you do not work with quantities. You show half a pie, but are
supposed to call it ‘half’, not ‘half a pie’. A third of a pie has neither
the same shape nor size as a third of a rectangle, yet they are both sup-
posed to be 1.

In a child’s early experience, fractions were parts of things;
expressed in mathematical language, fractions operate on quantities.
Twice three balls is six balls; also half of six balls is three balls. Of
course the child’s view of fractions is coloured. If his piece of bread
is cut in half by Mother (worse, by big brother), the two halves do
not equal a whole. Certainly two halves of a doll are not one whole
doll. On the other hand, two big halves of two cookies may be better
than one cookie.
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In school, the child is asked, what is 4 + 4? Suddenly % is an
abstract object, perhaps called a number, that he has no idea of the
meaning of. We may draw pictures of rectangles and halves of
rectangles to help him. They are our pictures, and he does not know
why we came to draw them. He is supposed to reason in terms of
quantities and then translate into numbers; at the same time, he is
not supposed to represent quantities by equations. No wonder he
tends to feel helpless.

We teach fractions like this because we always have, not because
it makes good sense. Now consider what the children’s problem is,
psychologically. With such a question, they are supposed to give an
answer; perhaps make a first attempt to give an answer, and if it is
wrong, a better attempt. In other words, the answer is put first, and
the attempt to find one, second. Perhaps we give them enough time
to think of the answer. This is still wrong: the looking for an answer
is put first, the exploration towards the answer, second. And even this
is wrong: What is desired on the part of the students is the exploration
towards answers; much better, exploration of the general subject.

Hence a better question is: What are halves like? What can you
do with them? This is an open-ended question., Different students
may explore in different ways, then compare what they are doing
and finding. How might halves appear in everyday life? Can you
think up some problems with them ?

One student might think: there are four pieces of bread on the
table. More people come; Mother cuts each piece in half. How many
half pieces are there? Eight of course. Whether this has much to do
with the first posed problem is not too clear; but let us look into that
later. The student is finding out about fractions, in a real life and
honest fashion, with an answer in his terms that he understands and
is sure of. This is a major step in the right direction. With more such
problems, one looks for general methods, then perhaps relations
with operations such as addition and multiplication. Gradually
abstract operations on fractions appear. For instance: With br for
a piece of bread,

4br = 8 x (3br) aor 5,
> Lbr
This may suggest writing 4 + 3 = 8. This step is similar to that
from (2) or (4) to (3) above; it may be slow in coming. The important
thing is that the student is finding out about fractions, and their use in
life situations.
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A wonderful tool for exploring multiplication and division is the
rubber band stretcher. One person holds a stretched rubber band
over lined paper; another makes marks on it with a felt pen, say
every fourth line. One can now use it to show where to cut a candy
bar in half (or a picture of a candy bar). Next, cut another into thirds;
it is interesting that four marks are used, one at each end and two in
between. For a long bar cut in half, the students find they can best
use five marks; they see quarters at the same time. Now one may ask,
what is two-thirds of five inches ? It looks like nearly 3% inches. One
looks at one-third of five inches at the same time; also another mark,
14, or %, of five inches. Thinking things over, the student is likely
to find that the answer comes out in thirds of an inch.

o = W

llllllI12l1|l3ll.ll4rlllsilll6ll|l

It will also become apparent that the stretcher is not perfect. This
is an introduction to practical science: there are experimental
errors; moreover, the causes of errors will interest the student, and
he is learning about how math is used in science.

10 Escape from reality

We return to our basic problem. For the great mass of students
passing through high school, math still means mystery and anxiety.
We may have accomplished many things, but not what is most
important. It is clear that our attempts at improvement have not
been sufficiently deep and determined. The real determination should
be not to get our way in making changes, but seeing that the full facts
are faced squarely. We show here how some things that are going on
in schools are an escape from reality, rather than facing the facts. In
each case, there is some ‘authority’ behind which one hides. In large
measure, we find behind the authority a higher authority, command-
ing that the important concepts be learned, and that this should be
proved through tests.

Some teachers take out their emotional difficulties on their children;
many of these children will do the same later with theirs. In this case,
we see the teacher herself or himself as the authority, and we are
blocked. Other teachers hear the exhortation ‘Stress this concept!’
(Stress: to subject to the action of external forces; to overstrain.)

294



SHOULD WE TEACH MATHEMATICAL CONCEPTS?

They pass it on: ‘Tom, say the set of boys in the room; Alice, say
numeral, not number.’ The children learn to shut up, as the safest way.
These teachers feel the higher authority too strongly. If we tell her
not to do this, she is left in still more of a vacuum; we would better
help her find more positive methods to replace this.

Failure may be sensed in a larger way. With the difficulty not only
of finding success, but of convincing the school of it, an educational
consultant is called in. Behavioural objectives are set up. (What an
escape! We drop the child, and only measure what he does.) New
teaching methods are brought in, with packaged materials. These
materials have been statistically proved, and the children will be
pre-tested and post-tested. By the end of the year, the children may be
making better scores. But there will be a growing sense that most
children are losing their creative identity; this will show up especially
in later years.

A group of parents and teachers may feel the degradation of the
children, and set up a ‘free school’, or even turn the whole school into
an ‘open space’ school. In the latter case, to satisfy the other parents,
evaluation may be brought in early, and the tone, academically, is
likely to be more restrictive than before. In either case, in spite of the
preliminary months of constant meetings, the jump into the new
system was too sudden; the escape is from the many realities of
a whole school and its relation to the community. The school is likely
to disappear, or revert to its former status, with great anger at those
who caused the change.

Some school systems, with great pressure from tax payers and
vocal minorities, take refuge in firms that will run things for them,
with programmed materials and computer-assisted instruction. ‘Each
child works individually, at his own pace.” This has a wonderful
sound (and is praised in education journals). One does not notice that
the ‘individual’ applies merely to what page the child is on, due to
what he put down on a pre-test; the individuality of the child himself
is lost. The children may be content; they prefer to be told to go
back to item so and so by the machine rather than be marked wrong
by the teacher, and the game is rather fun, at least for a while. Score
sheets with innumerable ‘concepts learned’ checked off satisfy the
parents. The direction one is going in is shown by a quote from
a particular program, which claims it develops ‘the correct motor
response to given visual and auditory stimuli’. How can a whole
community be so complacent ?
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Behind most of this we see the ogre of testing. Our pleas to see
what is happening to the child are brushed aside, or drowned by
the scientific findings of the multiple choice tests. The testers have
grown to such power that those fighting them are just laughed at, or
slyly put aside. It hurts when those in the humanities hear that their
subject is vague (cannot be monitored continuously by machine) and
hence not true education., When we think of evaluation, and still
more of accountability, we turn to the testers as the final judges of
the revered concepts, thus putting the testing procedure on a plane
so far above us that we cannot touch it.

11 A new lease of life

We are too used to thinking of subject matter, and how children can
learn it. We must start with the children, to see what they really are.
In a kindergarten class, we see them running around, and busy at
activities. We take many pictures, analyse them, and make statistics.
Have we found the children?

Follow an individual child, for half an hour (if you can concentrate
this long), trying to be keenly aware of him. You will only begin to
sense the incredibly quick and varied experiences the child is under-
going. He climbs on to a couch after a cat, while readjusting a toy in
his hand and turning to hear a remark by the teacher and swinging
his leg around for better balance, in the space of a few seconds.
A year later we teach him the commutative law (for abstract numbers,
or cardinal numbers of sets where the child sees no order, or what?).
How utterly barren for him, in terms of what he can experience! In
many places, in the past and the present, opportunities have been
given children, both ‘bright’ and ‘disadvantaged’, to show their
enthusiasm and powers; their achievements have been spectacular.
This can be done more generally if we find ways for it.

The title of this paper represents one way in which we must change
our point of view. The most fundamental problem is to spread a
better point of view to all concerned with school children; this
necessarily includes parents, and essentially, all adults. If we can
achieve a new lease of life for a good body of children in a school ora
community, we may hope it can spread to wider regions. This has
been the case in the past, and can be so in the future.

Institute for Advanced Study,
Princeton, NJ 08540.
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Appendix 1 The Congress Committees
and Officers

Chairman: Sir James Lighthill, r.r.s.
Hon. Secretary: Mr D. G. Crawforth
Hon. Treasurer: Mr M. Goldsmith

Organising Committee

Sir James Lighthill, r.r.s. (Chairman), the Congress Secretary, the Congress
Treasurer, Professor J. V. Armitage, Professor H. Freudenthal, Mr R. C.
Lyness, H.M.L, Professor G. Matthews, Dr E. A. Maxwell, Professor D.
Rees, F.R.S., Mrs J. Stephens, Dr B. Thwaites, Mrs E. M. Williams, C.B.E.

Programme Committee

Mrs E. M. Williams, c.B.E. (Chairman), Mr J. B. Hoare (Secretary), the
Congress Secretary, the Congress Treasurer, Dr T. J. Fletcher, H.M.IL.,
Dr A. G. Howson, Professor G. Matthews, Dr E. A. Maxwell, Mrs J.
Stephens, Mr B.J. Wilson, Professor H. Freudenthal (Netherlands),
Professor J. Novak (Czechoslovakia), Professor A. Pescarini (Italy),
Dr H. O. Pollak (USA), Professor A.Revuz (France), Professor S. L.
Sobolev (USSR), Professor H. G. Steiner (German Federal Republic),
Professor J. Suranyi (Hungary), Professor I. Wirszup (USA).

Local Committee

Mr G. Duller (Chairman, until 27 April 1972), Dr D. Hammond Smith
(Chairman, from 27 April 1972), Miss C. M. Cornelius, Mr A. E. B. Duval,
Mr J. Fox, Mr D. Hughes, Mr R. Jady, Dr T. E. R. Jones, Mr P. Kaner,
Mr D. Lee, Mr W. J. A. Mann, H.M.I., Mr H. Pratt, Mr J. V. Wild, c.m.G.,
0.B.E., Mr D. A. Wort.

Organiser of Working Groups Mrs M. Brown
Organiser of National Presentations Mrs J. Stephens
Editor of Congress Proceedings Dr A. G. Howson
Publicity Officer Miss 1. Fekete

299



Appendix 2 The working groups

Logic at school level

Chairman: Professor W. Servais, 60 rue des Desportes, Morlanwelz,
Belgium. Secretary: Mr R. D. Nelson, Ampleforth College, York,
YO6 4HE.

Algebra at school level

Chairman: Professor S.Iyanaga, 12-4 Otsuka 6-chome, Bunkyo-ku,
Tokyo, Japan. Secretary: Mr G. Wain, School of Education, University
of Leeds, Leeds, LS2 9JT.

Contemporary presentations of geometry at school and universitylevel
Chairman: Mme Dr A. Z. Krygovska, Oleandry 6/6, Krakow, Poland.
Secretary: Mr R.L. Lindsay, The University of Nottingham, University
Park, Nottingham, NG7 2RD.

Calculus and analysis at school level

Chairman: Professor T. M, Apostol, California Institute of Technology,
Pasadena, California 91109, USA. Secretary: Mr H. Neill, The Uni-
versity, Durham.

The teaching of probability and statistics at school level

Chairman: Professor Lennart Rade, O Fogelbergsgaten 3, 41128 Gote-
burg, Sweden. Secretary: Mr D. Kaye, University of Manchester, Depart-
ment of Extra Mural Studies, Manchester, M13 9PL.

Links with other subjects at secondary level

Chairman: Professor M. S. Bell, University of Chicago, USA. Secretary:
Professor G. Matthews, Centre for Science Education, Bridges Place,
London, SW6 4HR.

Application of mathematics

Chairman: Dr H. O. Pollak, Bell Telephone Laboratories Ltd., Murray
Hill, New Jersey, USA. Secretary: Dr Margaret Rayner, St Hilda’s
College, Oxford.
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Mathematics for specialists at university and college level

Chairman: Professor B. H. Neumann, F.R.S., Australia National Uni-
versity, P.O. Box 4, Canberra, A.C.T., Australia 2600. Secretary:
Dr R. R. McLone, Department of Mathematics, University of Southamp-
ton, Southampton, SO9 5NH.

Mathematics for social scientists/biologists at university and college
level

Chairman: Professor D. Sida, Carleton University, Ottawa, Canada.

Secretary: Dr E.D. Tagg, University of Lancaster, Cartmel College,
Bailrigg, Lancaster.

Mathematics for scientists/engineers at university and college level

Chairman: Professor W. Martin, Massachusetts Institute of Technology,
Cambridge, Mass. 02139, USA. Secretary: Professor A. C. Bajpai,
C.A.M.E.T., University of Technology, Loughborough, Leics.

Relations between the history and pedagogy of mathematics

Chairman: Professor P. S. Jones, University of Michigan, Ann Arbor,
Michigan 48104, USA. Secretary: Mr L. F. Rogers, 17 Windsor Road,
Teddington, Middlesex.

The psychology of learning mathematics

Chairman: Dr E. Fischbein, Institut de Psychologie, Bucharest, Roumania.
Secretary: Miss Joan Bliss, Centre for Science Education, Bridges Place,
London, SW6 4HR.

Mathematics as a language

Chairman: O. Professor dr F. Schweiger, Mathematisches Institut der
Universitdt Salzburg, A-5020 Salzburg, Austria, Porchestr, 1/1.
Secretary: Mrs A. Cormack, 16 Kelross Road, London, N.5.

Research in the teaching of mathematics

Chairman: Professor Bent Christiansen, Royal Danish School of Educa-
tional Studies, Copenhagen, Denmark. Secretary: Dr A. J. Bishop, Uni-
versity of Cambridge, Department of Education, 17 Brookside, Cambridge.

Individual learning methods

Chairman: Professor L. R. B. Elton, Institute of Educational Technology,
University of Surrey, Guildford. Secretary: Mr K. Gray, France Hill
School, Camberley, Surrey.

Creativity, investigation and problem-solving
Chairman: Professor G. Glaeser, IREM Strasbourg, Department of
Mathematics, University of Strasbourg, rue René Descartes, Strasbourg,
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France. Secretary: Mr C. Edwards, 16 Fairfields, Great Kingshill, High
Wycombe, Bucks.

Extra-curricular mathematics

Chairman: Professor W. W. Sawyer, University of Toronto, Canada.
Secretary: Mr A. Sherlock, Millfield School, Street, Somerset.

Teaching methods at university and college level

Chairman : Professor K. O. May, Department of Mathematics, University
of Toronto, Toronto, 181, Canada. Secretary: Dr K. E. Hirst, Depart-
ment of Mathematics, The University, Southampton, SO9 SNH.

Pre-school and primary mathematics

Chairman: Professor Mary Folsom, University of Miami, Coral Gables,
Fla 33124, USA. Secretary: Mr E. G. Choat, Rachel McMillan College,
Creek Road, Deptford, London, S.E.8.

Structure and activity in mathematics: teacher’s choice of curriculum
materials and tasks for 9-13 age group

Chairman: Dr Daniel Duclos, University of Lyons, France. Secretary:
Mr A. W. Bell, Shell Centre for Mathematics Education, University of
Nottingham, University Park, Nottingham, NG7 2RD.

Mathematics and the slow/reluctant learner

Chairman: S. Mellin-Olsen, Pedagogisk Seminar, University of Bergen,
5000 Bergen, Norway. Secretary: Mr P. A. Kaner, 3 The Cloisters,
Cathedral Close, Exeter.

Curriculum design and evaluation

Chairman: Professor Howard Fehr, Teachers College, Columbia Uni-
versity, New York 10027, USA. Secretary: Miss H. D. Shuard, Homer-
ton College of Education, Cambridge.

Mathematics in developing countries

Chairman: Professor H. M. Cundy, Chancellor College, University of
Malawi, P.O. Box 52000, Limbe, Malawi. Secretary: Mr B. J. Wilson,
CEDO, Tavistock Square, London, W.C.2.

The use of television and film in the teaching of mathematics

Chairman: Professor Seymour Schuster, Department of Mathematics,
Carlton College, Northfield, Minn. 55057, USA. Secretary: Mr J. May-
hew, Room 75a, The County Hall, London, S.E.11.
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The place of computers in mathematical education

Chairman: Mr F. Lovis, Mathematics Faculty, The Open University,
Walton Hall, Walton, Bletchley, Buckinghamshire. Secretary: MrR.E.J.
Lewis, Centre for Science Education, Bridges Place, London, SW6 4HR.

Initial training of elementary teachers

Chairman: Professor W. F. Fitzgerald, Department of Mathematics and
Elementary Education, Michigan State University, East Lansing, Michigan
48823, USA. Secretary: Mr A. Morley, Nottingham College of Educa-
tion, Clifton, Nottingham NG11 6NS.

Initial training of secondary teachers

Chairman: Professor H. G. Steiner, Pidagogische Hochschule Bayreuth
der Universitit Erlangen-Niirnberg, Bayreuth, Germany. Secretary:
Mr K. Gardner, Brighton College of Education, Brighton BN1 9PH.

In-service education of teachers

Chairman: Professor J. Trivett, Simon Fraser University, Canada. Secre-
tary: Mr D. S. Fielker, Abbey Wood Mathematics Centre, Eynsham
Bridge, Eynsham Drive, London, S.E.2.

The mathematics workshop —the use of apparatus, games and
structural materials

Chairman: Professor William Schaaf, Florida Atlantic University, Boca
Raton, Fla, USA. Secretary: Mr J. A. Dodridge, Hereford College,
Hereford.

Editing a mathematics journal

Chairman: Dr Shmuel Avital, Ontario Institute for Studies in Education,
252 Bloor Street West, Toronto, Canada. Secretary: Dr E. A. Maxwell,
Queens’ College, Cambridge.

Mathematical competitions

Chairman: Dr E. H6di, Budapest XVII Rakoshegy, Melczer u. 31, Hun-
gary. Secretary: Mr L. Beeson, Bishop Otter College, Chichester, Sussex.
Programmable calculators in schools

Chairman: M. Marcel Dumont, Institut National de Recherche et de
Documentation Pédagogique, 29 rue d’Ulm, Paris 5¢. Secretary: Mr D.
Blakely, Marling School, Stroud, Glos.

Middle-school mathematics — ages 9-13

Chairman: Mr D. T. E. Marjoram, H.Mm.L., D.E.S., Elizabeth House, York
Road, London, S.E.1. Secretary: Mr E. McDonald, H.M.I., 1 Meadow
Way, Baldwins Gate, Newcastle, Staffs, ST5 SDG.
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Assessment in mathematics

Chairman: Dr T. Cavanagh, University of North Colorado, USA. Secre-
tary: Mr A. Penfold, London Institute of Education, Malet Street,
London, W.C.1.

Vocational mathematics for technicians and business personnel

Chairman: Mr F. W. Kellaway, Principal, Letchworth Technical College,
Letchworth, Herts. Secretary: Mr M. Bridger, City of Leicester Poly-
technic, Mathematics Department, P.O. Box 143, Leicester, LE1 9BH.

Tessellations, space filling, point lattice geometry and their applica-
tions
Chairman: Dr J. Hammer, Department of Mathematics, University of

Sydney, Sydney, NSW, Australia, 2006. Secretary: Mr P. Boorman,
Lacon House, Millham Road, Bishops Cleave, Cheltenham, Glos.

Papy-Cemrel international workshop at primary level

Chairman: Professor Frédérique Papy, Centre Belge de Pédagogie de la
Mathématique, 1180, Bruxelles, Avenue Albert 224, Belgium. Secretary:
Mr Frank Gorner, Didsbury College of Education, Wilmslow Road,
Manchester M20 8RR.

Mathematics and the socially disadvantaged child

Chairman: Professor W. F. Johntz, Director, Project S.E.E.D., 1011 Keith
Avenue, Berkeley, California 94708, USA. Secretary: Mrs C. Hoyles,
19 Globe Road, Stratford, London E15 1RF.
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Appendix 3 ICMI and Congress
recommendations

1 Symposia

Suggestions for symposia were considered at the General Assembly of
ICMI and at a meeting of the Executive Committee. It was agreed that
ICMI sponsorship should be given to the following:

(a) Luxembourg, at Echternach, 4-9 June 1973, on New Topics in
applicable mathematics in Secondary Schools;

(b) Hungary, at Eger, 18-22 June 1973, on Theoretical Problems of
Teaching Mathematics in the Primary Schools;

(¢) Poland, at Warsaw, one week in 1974, on Teaching children of
age 5-11;

(d) Denmark (?), in 1974 or 1975, on Aspects of Geometry Teaching at
School Level,

(e) Kenya (?), a regional symposium on Mathematics and Language;

(f) Japan, 1974, a regional symposium;

(g) India, a regional symposium possibly on Integrated curriculum de-
velopment, including applications of mathematics relevant to the problems
of developing countries.

In addition it was agreed that steps should be taken for a joint ICMI-
IFIP (International Federation of Information Processing Societies)
symposium on Computers in secondary education.

It was agreed that no immediate proposal for a regional conference in
Latin America should be made, particularly in the light of the forthcoming
third congress of the Inter-American Committee on Mathematical Educa-
tion.

2 Place of the 1976 Congress

Invitations had been received from Spain, the Federal Republic of Germany,
the United States of America and the Netherlands. A decision would be
made in 1973.

3 Resolutions

The Executive Committee considered carefully all resolutions proposed by
working groups. In addition to those which influenced decisions on future
symposia, it decided to endorse formally the following resolutions:
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Resolution from the working group on ‘ Mathematics in Developing
Countries’

That all possible encouragement and assistance should be given to
developing countries to make changes in their mathematics syllabuses and
curricula; such changes to be framed by qualified citizens of those countries
to ensure that the cultural background of the pupils and the needs of
national development are taken fully into account.

Resolution from the working group on ‘Links with other Subjects
at Secondary Level’

In view of the interest expressed at all levels in interdisciplinary and
integrated studies, linking mathematics with other subjects, this Congress
recommends that action be taken to facilitate and encourage work in this
field. In particular this could include:

(a) providing support (financial and other) to enable teachers of mathe-
matics and other subjects in secondary schools to work together on suitable
areas (e.g. by team-teaching);

(b) publicising what is already being done in this direction in order to
encourage others to attempt cooperative work (a travel grant would be
one way of achieving this);

(¢) providing support and encouragement for individuals and insti-
tutions to develop new teaching materials which cross disciplinary
boundaries;

(d) providing support for the production of source materials suitable
for use in secondary schools from the wide variety of existing sources on
topics linking mathematics with other subjects.

Agreed

That steps be taken by ICMI to establish a centre for the interchange and
dissemination of information on all matters of interest in Mathematical
Education, with special reference to symposia, journals and competitions;
and also that steps be taken to encourage cooperation between journals in
different languages, with special reference to interchange and to re-printing
of selected articles.
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Appendix 4 Films and videotapes on
mathematics and its teaching

During the congress films were shown at some of the working groups and
at some of the national presentations. In addition, continuous programmes
of films were projected in the Newman Theatre. The films shown are
listed below by country of origin, together with a certain amount of
information concerning their availability. Information is also given on some
of the videotapes which were presented. Some films which it was intended
to show at the congress did not arrive because of postal difficulties. These
have been included for completeness. All the films are 16 mm.

Australia

Discovery — the Formal Way 1 inch Bell and Howell videotape, 45 minutes.
G. L. Hubbard, Hubbard Academy, Brisbane, Australia.

A record of a lesson to grade 10 students from Brisbane State High
School. The students had been introduced earlier to symbolic and formal
procedures and to relations as subsets of Cartesian products, and the
lesson is concerned with the correct logical notation for a function.

France

Calcul des Probabilité — Enfants de 10 a 11 ans. Lunettes — Etude d’une struc-
ture de groupe (2 parts). Three 16 mm films, each lasting 20-30 minutes,
were shown of teaching at the primary school at Francheyville, near Lyons.
The lessons concerned probability and structures on a grid. Details may be
obtained from Service du Film de la Recherche Scientifique, 86 Boulevard
Raspail, 75006, Paris.

Great Britain

The British Broadcasting Corporation produces regular programmes on
mathematics. Two representative examples of their work were shown.

Maths Workshop Stage 1 and 2 is a fortnightly series for children aged
9-11. Round-up 3 from this series is a magazine programme featuring
children’s work. 20 minutes.

Countdown is a series first shown in Autumn 1972, designed for lower
ability 14-16-year-old children. Lucky Jim is the first of the series and is on
probability — a club raffle leads to a discussion of some beliefs about the
workings of chance. British Broadcasting Corporation, Villiers House,
Haven Green, Ealing, WS5.

307



APPENDIX 4

Why Mathematics? Central Office of Information film made for the
Department of Education and Science. 32 minutes, colour, sound. Made
by Verity Films. Devised and produced by Seafield Head. Written and
directed by Nic Ralph, graphics by Trevor Bond.

Available for United Kingdom non-theatrical distribution, on free loan,
and sale, from Central Film Library, Government Building, Bromyard
Avenue, London W3 7JB, and through its associate libraries in Scotland
and Wales.

The film is intended for younger secondary children, and it shows them
that mathematics is a subject with interesting and important practical
applications.

Further information about DES films can be obtained from the Films
Officer, Information Division, Department of Education and Science,
Elizabeth House, York Road, London SE1 7PH.

Topology Colour, 9 minutes.

Distributed by Educational Film Centre Ltd, 5 Richmond Mews, Dean
Street, London W 1.

Uses two and three dimensional animation to show examples of topo-
logical changes. This film also considers such phenomena as networks,
Moebius strips and Klein bottles.

The following two films show some of the work of the Nuffield Mathe-
matics Project.

Maths with Everything (Infants) Colour, 21 minutes.

Can be bought from: Graphic Films Ltd, 1 Soho Square, London W1.
Black and White £28.50, colour £90. Can be hired from: Concord Films
Council, Nacton, Ipswich, Suffolk.

Observes teachers at a workshop enjoying themselves as they learn to
integrate mathematical concepts into the entire curriculum as well as to
make the learning process enjoyable for the children. Then shows a teacher
applying these methods in the classroom, working closely with individual
students aged 5 to 7.

Into Secondary School (First Year Secondary)Black and White, 20 minutes.

Can be bought from Sound Services Ltd, Wilton Crescent, Merton
Park, London SW 19, price £16.50. Can be hired from Petroleum Film
Bureau, 4 Brook Street, London W1.

Illustrates how Nuffield Maths may be successfully continued at least
two years into the secondary level. Questions the need for the complete
change in teaching methods that normally takes place when British
children change from primary to secondary school at the age of 11.
Describes how two British secondary schools have tackled the problems
of this new approach.

The above two films are distributed in the USA by University of Cali-
fornia, Extension Media Center, Berkeley, CA 94720.
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Teacher Based Curriculum Development 20 minutes, colour. Directed by
Harry Davenport. Distributed by Schools Council, 160 Great Portland
Street, London W1.

This film was produced for the Mathematics for the Majority Continua-
tion Project. The project is concerned with less academic, secondary pupils,
aged 13-16. The film shows the development of new ideas and materials on
a national scale using teachers organised into writing groups. All aspects
of the project are covered —teachers writing groups, processing and
designing, evaluation, and children using the materials in the classroom.

Number Patterns Black and white, sound, 11 minutes. Made by Beryl
Fletcher and Hugh Larcombe, Darlington College of Education.

A college-produced film, showing animations of four different number
patterns, for use with children aged 9-13.

A selection of 1 inch Ampex videotapes showed representative work of
teaching programmes produced by the Inner London Education Authority,
Educational Television Service. These included material from the series
The Nature and Application of Mathematics, for older school children;
a programme for primary children from the series Pattern in Mathematics,
introduced by two puppets; and a discussion programme at a teachers’
centre.

These programmes are available for hire. Enquiries to Educational
Television Centre, Tennyson Street, London SW8 3TB.

Israel
Isometries
Square Root by Iteration

Congruent Triangles
These three 1 inch Ampex television tapes, produced by the television
service in Israel for 15-16-year-old pupils, were introduced by A. Markus.
Japan
One to One Correspondence Black and white, about 20 minutes. Dubbed in
English. Produced by Makoto Yamazaki. Directed by Hisanori Nishiuchi.
A film for secondary school children. Examples of one-to-one corre-
spondence with baggage tags and seat number labels in an aircraft, and
other material situations, lead on to the correspondence between even and
odd integers. The excellent studio production of this television film gained
it a Japan Prize.
Regular Polyhedra A television film which is one of a series intended for
the first grade of the lower secondary school. The film is concerned with
making regular solids.

The above two films are distributed by Japanese Television; Hisanori
Nishiuchi, NHK, 2 Jinnan-Machi, 2-chome, Shinjuku-ku, Tokyo.

309



APPENDIX 4

Russia

Three black and white films, each of some 7-8 minutes, were made for
television, and introduce the fundamental concepts of calculus using
a combination of live action and diagram work.

Details from E. Schukin, University of Kaliningrad.

JSA
Minnesota College Geometry Project Films Colour, sound.

These films were produced by the University of Minnesota College
Geometry Project in cooperation with the National Science Foundation,
Washington DC.

World distribution by International Film Bureau Inc. Distributed in
Europe by Europa Diffusion, 25 rue Beranger, 75 Paris 3e.

Orthogonal Projection 8 minutes, sale $135, rental $12.50.

The principal use of the film is in connection with a written unit entitled
‘Geometric Transformations’, It introduces students to an elementary
geometric transformation, which serves as a springboard for treating more
complicated kinds of transformation.

Mathematician: D. Pedoe.

Central Similarities 7 minutes, sale $135, rental $12.50.

This film is supplementary to the section on Similarity Transformations
in the unit on ‘Geometric Transformations’.

Mathematician: D. Pedoe.

Dihedral Kaleidoscopes 8 minutes, sale $135, rental $12.50.

This film is primarily motivational, intending to get students excited
about the ideas of symmetry. The first major idea is that of physically
exhibiting the dihedral groups by means of reflections in two intersecting
mirrors (dihedral kaleidoscopes). The second major idea is a reiteration
of the fact that every isometry is a product of reflections. The third and
final notion is that by using three mirrors standing vertically on a table so
that each pair forms a dihedral kaleidoscope, one obtains regular and
semi-regular tessellations of plane.

Mathematician: H. S. M. Coxeter.

Geometric Vectors — Additions 12 minutes, sale $185, rental $15.
Using the study of motion as motivation, the notion of vectors is intro-
duced - and finally defined as an equivalence class of arrows.
Mathematicians: W. O. J. Moser and S. Schuster.

Inversion 9 minutes, sale $160, rental $12.50.

Inversion is the last of the transformations treated in the unit, ‘Geo-
metric Transformations’. Inversion is introduced in the film and several
of the properties of the transformation are discussed before it is applied
to solving Steiner’s problem.

Mathematician: D. Pedoe.
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Curves of Constant Width 11 minutes, sale $185, rental $15.

The written unit ‘Convexity and Combinatorial Geometry’ contains
a section on ‘Curves of Constant Width’. The film ties in directly with
that section and is, in some sense, stronger in mathematical content.

Mathematician: J. D. E. Konhauser.

Central Perspectivities 9 minutes, sale $160, rental $12.50.

The film proceeds towards the fundamental theorem of projective geo-
metry, providing motivation by discussing the questions : How many points
determine a perspectivity uniquely? Can a perspectivity map one given
triple into another ? After it becomes clear that a projectivity (a product of
perspectivities) is necessary to map one given triple into another, the
narrator poses the question: How much information uniquely determines
a projectivity? The answer to this question, namely the Fundamental
Theorem, is not given in the film. It is hoped that the students will gain
more of an appreciation of the Fundamental Theorem if they are left to
ponder the question that is left open.

Mathematician: S. Schuster.

Equidecomposable Polygons 17% minutes, sale $285, rental $17.50.

This film treats a problem in the theory of dissection of polygonal regions
that was solved by Hadwiger and Glur in 1948. The two polygonal regions
can be dissected so that there is one-to-one correspondence between the
parts of one and the parts of the other, satisfying the condition that
corresponding parts must be congruent, then the two regions are said to be
equidecomposable.

Mathematician: J. D. E. Konhauser.

Symmetries of the Cube 9 minutes, sale $160, rental $12.50.

The film reviews the manner in which reflections are used to show the
symmetries of a square. Mirrors are then used to study symmetries of
the cube; that is, the reflectional symmetries are shown to generate all the
symmetries, producing the extended octahedral group. The reciprocal of
the cube, namely the regular octahedron, is seen to possess the same
group of symmetries as the cube,

Mathematicians: H. S. M. Coxeter and W. O. J. Moser.

Isometries 26 minutes, sale $405, rental $20.

Translations, rotations, reflections and glide-reflections are introduced
as examples of isometries, namely distance-preserving transformations of
the plane.

Mathematicians: W. O. J. Moser and S. Schuster.

Projective Generation of Conics 16 minutes, sale $285, rental $17.50.

Conic sections may be developed in various ways. The methods of
construction developed by Pascal, Maclaurin, Braikenridge, Poncelet, and
Steiner are all exhibited dynamically by means of film animation.

Mathematician: S. Schuster.
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Caroms 9 minutes, sale $160, rental $12.50.

An animated film exhibiting the relationship between a carom - a ball
rebounding from a wall — and a reflection.

Mathematician: C. Davis.

Symmetry Colour, 103 minutes, sale $125, rental $12.50.

Film design and direction — Philip Stapp. Physicists — Judith Bregman,
Polytechnic Institute of Brooklyn, Richard Davisson, University of
Washington, Alan Holden, Bell Telephone Laboratories. Music — Gene
Forrell. Production — Sturgis—Grant Productions, Inc.

‘Symmetry’ is both a scientific exposition and a work of art. It is not
about science, it embodies science. The film is an abstract mathematical
ballet based on two-dimensional symmetry groups of the plane.

Distributed by International Division, McGraw-Hill Book Company,
330 West 42nd Street, New York, NY 10036. Distributed in Great Britain
by Contemporary Films Ltd, 55 Greek Street, London W1V 6DB.

The Kakeya Problem 60 minutes. Colour. Sponsored by the Mathematical
Association of America. A filmed lecture by A. S. Besicovitch on a cele-
brated problem. It is shown that a line segment can be rotated in a plane
in such a way as to ‘smudge’ an arbitrarily small area.

John Von Neumann 63 minutes. Black and White. Sponsored by the
Mathematical Association of America 1966. A documentary on the life
and work of a distinguished contemporary mathematician.

Shapes of the Future I and II — Unsolved Problems in Geometry Directed
by Klee.

The above films, four of a series, are distributed in the USA by Amram
Nowak Associates. The first two are available on loan in Britain to sub-
scriber members of the Sussex Library of Mathematics Films, University
of Sussex, Falmer, Brighton. (Non-subscribers may enquire if copies are
available.)

Between Rational Numbers (Knights) 11 minutes.

Equivalence Classes in Addition (Fraction Singers) 8 minutes.

The Remainder in Division (Termites) 8 minutes.

Solving Pairs of Equation (Pirates) 10 minutes.

The above four films on rational numbers are from a series of thirty made
for the National Council of Teachers of Mathematics.

The Weird Number Sound, colour, about 10 minutes.
A cartoon film introducing some ideas of rational numbers in the style
of a popular thriller.

Information on the above five films from Lauren G. Woodby, Michigan
State University, East Lansing, Michigan.
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West Germany

Number Systems, Place Value
Counting, Adding and Subtracting

Sets, Subsets, Union, Intersection
Compositions, Addition and Subtraction

These four short colour films are part of a series of activity packages con-
sisting of games, books, films and overhead projector material intended
for 5-10-year-old pupils.

The films are work films, intended for cassette viewing, developing
mathematical ideas from play activities with number apparatus. The
system is almost self-teaching. Distributed by Hermann-Schroedel Verlag
K6, 3 Hannover, Zeiss-strasse 10, West Germany.
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Developments in Mathematical Education

Proceedings of the '
Second International Congress on Mathematical Education

At the end of August 1972 around 1400 people from seventy-three
countries gathered for the Second International Congress on Mathe-
matical Education at Exeter, England. This book surveys the work of
this conference, and presents it as a picture of developing trends in
mathematical education.

A great deal of the most useful work of the Congress was carried out
in its thirty-eight working groups. These dealt with a very wide range of
interest and all levels of mathematical education from pre-school to
university. The work of these groups is surveyed in Part I and a small
selection of representative papers chosen for their general interest is
included in Part III.

The Congress was also addressed in plenary session by a number of
distinguished speakers concerned with mathematical education; their
addresses are reprinted in Part II, together with two papers written
especially for the Congress by Professors Piaget and Polya. All contribu-
tions are printed in English.

A number of themes emerged from the Congress. For example, there
was great concern with the relationship between mathematics and the
way in which the formation of mathematical concepts is affected by the
use of language or the means in which children form the concepts from
which mathematics can be drawn. Again, there was great interest in the
relationship between mathematics, the uses to which it is put, and the
artistry with which it is developed. Though many issues were recognisably
international in their scope the Congress fully realised that the detailed
application of the principles discussed could only be carried out by
people immersed in the culture of the pupils with whom they were
dealing. '

The work of this Congress is likely to be a starting point of a number
of fruitful developments, and a number of follow-up conferences have
already been planned to deal with particular issues which were raised.
This book summarises and sets out what the Congress achieved.
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