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FOREWORD

The Sizth International Congress on Mathematical Education was held in Bu-
dapest, Hungary, from July 27 - August 3, 1988. There were 2414 registered
participants from 74 countries, accompanied by more than 500 additional visitors.
The following countries were represented by more than 10 delegates: Australia
(113), Belgium (13), Brazil (18), Bulgaria (61), Canada (47), Czechoslovakia (35),
Denmark (11), Finland (26), France (112), FRG (75), GDR (11), Greece (17), Hun-
gary (306), Israel (43), Italy (81), Ivory Coast (13), Japan (228), The Netherlands
(65), New Zealand (12), Norway (21), Poland (28), Portugal (22), South Africa
(25), Spain (80), Sweden (62), Switzerland (15), UK (274), USA (380), USSR (90).

These congresses are now held every four years, having previously taken place
in Lyon (France), Exeter (United Kingdom), Karlsruhe (Federal Republic of Ger-
many), Berkeley (United States of America) and Adelaide (Australia). They are
held under the auspices of the International Commission on Mathematical Instruc-
tion, and on this occasion the host organization was the Jinos Bolyai Mathematical
Society.

As on previous occasions, the Ezecutive Commattee of ICMI set up a planning
structure based on an International Programme Commattee. This committee was
responsible for inviting the plenary speakers, and for making the major planning
decisions, which were executed through a Hungarian Organizing Committee.

It was decided that the general pattern used at Adelaide would be followed.
Accordingly, Action Groups, Theme Groups and Topic Areas were established. For
the first two of these, in addition to a Chief Organizer and a Hungarian Coordinator,
an international panel was appointed. This was to ensure as wide a range as possible
of presentations and discussions, with contributors from many parts of the world.

The reports of these groups, prepared by chief organizers with the cooperation
of their panel members and others, form the major part of these Proceedings. The
variety of forms of organization of these reports is a reflection of the diversity of the
work which took place. The work of the groups was facilitated by the production of
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a comprehensive book of Programme Statements which group organizers prepared
prior to the Congress, and which participants were given on arrival in Budapest.
A list of participants was also published. An additional aspect of the groups’ work
was the provision, in a number of cases, of a related Survey Lecture.

One of the most interesting features of these congresses is to learn from the
experiences of other countries. Much of this is achieved by individual conversation
as well as presentations within the groups. National Presentations add to this
experience, and at this Congress contributions under this heading were invited from
Argentina, Bulgaria, Malawi and Spain. Some other countries mounted exhibitions
of their work as part of the displays, which also included a selection of curriculum
development projects, and material from some individual institutions.

The place of Mathematics and its Education in Society is a major theme of
growing importance. This was recognized by a whole day being devoted to it. A
separate publication will result from that day’s activities, and in fact also some
other groups plan to produce publications.

For individual participants it is important to be able to exchange ideas, both by
presenting their own work and learning about the work of others. To maximize this
opportunity, time was given for short oral communications, and space was devoted
to poster presentations. Around 200 of each were accepted, and two books of
abstracts were prepared for Congress participants. As in all Congress activities the
range of topics in these presentations was very wide, covering national and regional
issues, teaching of particular topics, the use of computers, including software
demonstrations, presentation of teaching aids and apparatus, epistemological issues
and professional matters. The use of video materials was represented, but little
emphasis was given to calculators.

As with any large congress, its success relies also on the support and efforts of
many organizations and individuals. Although for reasons of space it is not possible
to thank everybody here, their contributions are highly valued and are recorded in
a number of the Congress documents.

The main venue for the Congress was the Technical University. Plenary ses-
sions and the opening and closing ceremonies took place at the Budapest Con-
vention Centre, a facility of which any city in the world would be proud. The
hospitality and friendliness of the Hungarian people greatly appreciated by all,
and deserve special mention.

The achievements of the Congress depended ultimately on the participants, but
these could not have been realized without the hard work before, during and after
the conference by all those involved in organizing the groups’ activities, mounting
the projects and exhibitions, and providing the essential organizational support
invested for the smooth running of the Congress.

Much of the preparation of these Proceedings took place during a week of
intensive writing in Esztergom immediately after the Congress. We are most
grateful to all those who made this possible, including those chief organizers who
attended, and also to Margit Gémes, Gabriella Koves, Katalin Lesnyik and Jend
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Székely. The final typesetting was done by Dezsd Miklés at TYPOTEX GT using
the TEX text-processing system.

Finally, the greatest thanks must go to Dr. Tibor Nemetz, whose boundless
energy and unfailing good humour in the face of many problems played such a
major part in the whole work of the Congress.

We have accepted the standpoint of the organizers that the Proceeding should
reach the participants of ICME-6 as soon as possible. Consequently, the deadlines
of submitting the reports and eventual corrections must have been kept. Therefore
we could not attend the last version in a few cases of late submissions.

We have been greatly honoured to be asked by the Congress organizers to act
as editors of these Proceedings. We hope that they will act as a reminder of a
productive conference, a stimulus to further research in mathematics education,
and as a source of memories of a happy visit to the beautiful city of Budapest.

Budapest, October 1, 1988

ANN HIRST and KEITH HIRST, editors.
Department of Mathematics
University of Southampton,

SOUTHAMPTON, S09 5NH, UK.
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PLENARY ADDRESS:

SCHOOL MATHEMATICS IN THE 1990’s:
RECENT TRENDS AND THE CHALLENGE
TO DEVELOPING COUNTRIES

Bienvenido F. Nebres (Philippines)

Background of the Talk

I would like to begin with the geographical and cultural context in which I
have worked both in mathematics and in mathematics education. That is, East
Asia, especially Southeast Asia. The Southeast Asian Mathematical Society was
established in 1972 and has since been very active in the development both of
mathematics and mathematics education. In 1972, all our countries with the ex-
ception of Japan would have been considered developing in the economic sense.
But it was clear that the development of mathematics and mathematics education
was quite different in each country. We realized quite early that the categories of
economic development or underdevelopment were inadequate to explain important
differences. It could not explain the strong mathematics being done in Hanoi even
during the worst years of the Vietnam War. Nor could it explain the great number
of students doing pure mathematics in Singapore, when careers in pure mathemat-
ics were extremely limited in that island republic. The economic viewpoint does
not explain either why some countries handled the new mathematics with care and
took only those parts that could be integrated into their system and others created
major problems by the poor handling of the introduction of the new mathematics.

I would like to dedicate this talk to the memory of my student, Doris Capis-
trano. I learned immediately after delivering this plenary address that she had
died in a tragic shooting incident. This address and her life and dreams will always
remain intertwined in my memory.
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It was quite clear after some discussion that much of it had to do with culture, a
tradition of learning, and values that uphold learning.

A regional conference on mathematics education held in Tokyo, Japan in
October 1983, allowed me to articulate some of my thoughts on the question of
mathematics education and the societies of Southeast Asia [1]. In that talk I
classified the problems of mathematics education into two types:

Micro problems, or problems internal to mathematics education, such as

curriculum, teacher training, textbooks, the use of calculators, problem-solving
and the like.

Macro problems, or problems affecting mathematics education because of
external pressures from other sectors of society: economy, politics, culture,
language.

I argued that in many developing countries, the problems that merit most
thought and research are those due to pressures from outside society. The purpose
of study regarding these pressures is to provide some scope and freedom for the
educational system so that it can attend to the internal problems of mathemat-
ics education. Since 1983, I have been led to isolate the area of culture and the
values that support learning as the key variable to study and understand in de-
veloping mathematics and mathematics education in a developing country like the
Philippines.

At the Adelaide Congress in 1984, a theme group on “Mathematics For All”
was formed and zeroed in on the cultural history of the canonical school mathemat-
ics curriculum. Discussions led to a clearer understanding of the problems created
by the lack of fit when a curriculum developed for an elite in western Europe is
transplanted into every classroom in a developing country [2].

It is from this context and these concerns that this talk dialogues with the ICMI
study series monograph “School Mathematics in the 1990’s” [3]. I was privileged to
participate in the first draft of this monograph. For this talk, I have tried to read
the monograph from the point of view of a country like the Philippines, a developing
country with a young tradition of learning. In the monograph itself, it is clear that
the challenge for school mathematics is how to face a world transformed by the
changing demands of society and culture and by a major revolution in technology.
This paper concentrates on the first challenge, namely the demands of society and
culture, and only takes up briefly the challenge of technology. It is not that the
challenge of technology is less important for developing countries, but experience
has shown that making progress in facing society and culture is necessary before
the challenge of technology can be rationally met.

I. The Content of the School Mathematics Curriculum

Some Surprising Facts

The ICMI study reminds us of some well-known, but still surprising, facts.
The school mathematics curriculum is remarkably uniform throughout the world.
We also hear the same remarkably uniform reasons as to why mathematics should
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be taught to all and why the mathematics curriculum should be as it is. These
reasons usually focus on the importance of mathematics for teaching us how to
think, on the pleasure that it can give (at least to a few), and the usefulness of
mathematics in a growing technological world. This uniformity is there despite
extremely different school conditions.

To give one example of this variety of socioeconomic circumstances, con-

sider the school enrollment patterns of Mexico and of J apan. In practice,

only about 60% of Mexican children who start primary school continue

beyond the first year. Roughly 10% start secondary education, and a mere

3% complete it. By contrast, practically all Japanese children complete

lower secondary education, and about 95% stay in full-time education un-

til they are at least 18. Yet the mathematics syllabuses year by year of

the two countries are very similar. Both are based on syllabuses devel-

oped elsewhere, for pupils whose circumstances resemble those of students

neither in Japan nor in Mexico [4].

The uniformity of the reasons given for the usefulness of mathematics is
also quite surprising considering the diverse employment opportunities in differing
countries and in different regions of a given country.

But of course we know that the uniformity of the school mathematics cur-
riculum is not due to the internal structure of mathematics or to uniformity of
situations.

The familiar school mathematics curriculum w as developed in a particular

historical and cultural context, that of western Europe in the aftermath

of the industrial revolution. Those who designed it only had a minority

of society in mind, for at that time only a small elite sector had access to

a substantial number of years of schooling. In recent decades, what was

once provided for a few has now been made available to — indeed, forced

upon — all [5].

As the discussions at the Adelaide Congress of the theme group “Mathematics
For All” showed, this problem of a curriculum made for an elite but given to allis a
problem for all countries. But the problems in developing countries are particularly
severe, because in many of them the tradition of schooling is still not fully rooted.
There is a dual society separating an elite from the majority. Resources are limited
and the values of society do not uphold the role and status of teachers. It is
extremely crucial then that developing countries with a relatively young tradition
of schooling be more critical of experience derived from elsewhere and pay more
attention to their own circumstances and needs. It is these countries that I have
mainly in mind in this talk.

What should be the content of the school math curriculum, especially for
developing countries? Consider the different “curricula”.

The intended curriculum — the curriculum which we find in official syl-

labuses and in the official textbooks. As noted above, this is remarkably

uniform throughout the world.
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The implemented curriculum — the curriculum which is actually taught
in the schools.

The achieved curriculum — the curriculum that is actually mastered and
learned by the students.

The kind of unintended gaps that can occur in developing countries may be
illustrated by the experience of the Philippines with the new mathematics in the
middle 1960’s [6]. The Department of Education invited Peace Corps volunteers to
train teachers in the new math. As was natural, they emphasized the new aspects,
namely numeration systems, sets and set operations, the laws that govern number
operations. Moreover, the curriculum followed what is called the spiral method,
that is, the sequence of topics is the same every year, beginning with sets, set
operations, numeration systems, commutative and associative laws, with actual
operations on numbers coming only in the second half of the curriculum. Not
surprisingly, the teachers thought that the new mathematics replaced the old and
taught mainly intersections and unions and different kinds of numeration systems.
Moreover, since it is normal that the first half of the curriculum is covered more
fully than the second half, we had a generation of students who thought that school
mathematics was basically sets and set operations, commutative and associative
laws and never learned how to add, subtract, divide or multiply.

Closing the Curriculum Gap

What efforts are being made to close the gap between the intended, the
implemented, and the achieved curriculum? I cite three examples, which also
represent different models or approaches.

1. Total Reorganization.

In my 1983 Tokyo paper, I cited the effort of Japan in the second half of
the 1970’ as reported by Shokichi Iyanaga, former President of ICMI [7]. The
gap problem was diagnosed to be due to an intended and implemented curriculum
which was too difficult for too many schoolchildren. Because of the values of
uniform development in Japanese society, the decision was to revise the intended
curriculum downwards to lessen the number of students who could not keep up.
The high discipline and efficiency of the Japanese school system assured that this
intended curriculum was actually implemented. A recent report of Hiroshi Fujita
shows that the gap problem cannot easily be fully solved. “We appreciate the fact
that the 1978 curriculum has improved the situation ... but again the change was
too limited ... the curriculum is still too wide ranging in scope and too hard to
follow for the majority of students, while at the same time stifling the development
of brighter students” [8].

2. Organic Transformation.

In a symposium held at the University of Chicago in 1985, Tamds Varga reports
an effort begun in the 1960’s. An experimental curriculum was started in two first
grade classes by two teachers. Through a patient organic process, the number of
classes grew to two hundred in ten years. Then social and political pressure led to
a speeding up of the process and a molding of a “milder version of the curriculum”
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[9]. By 1984-85, “100% of the seventh and about 80% of the eighth graders enjoy
the fruits of our work” [10]. Not exactly all, continues Varga, and he then recalls the
problems: the pace became too quick, teachers followed not because they believed
or understood, but because they had to, etc.

8. Ethnomathematics.

A different approach and philosophy was presented by Ubiratan
d’Ambrosio, when he proposed ethnomathematics. In his plenary address at the
Adelaide Congress [11], he spoke of the mathematics contained in the experience
of boat construction among the Amazon Indians, the example of sieves and the ge-
ometry that is present in their weaving patterns. His approach and that of others
working on ethnomathematics is to change the content of the intended curriculum
from the canonical school mathematics curriculum to one which arises from and is
closely related to the experience of mathematics in a given culture. If we were to
follow this approach, then we would no longer have a canonical school mathematics
curriculum, at least in the early years, but would have different curricula in the
different cultural contexts of the world.

Different Curricular Tracks

The ICMI Study reminds us that it is helpful to look back to the different
curricula in the history of school mathematics. Figure 1 shows the learning track
of arithmetic. This emphasizes a very practical form of mathematics and may be
called the vocational track. Figure 2 shows the learning track of traditional pure
and applied mathematics. This approach along more traditional mathematics em-
Phasizes the arithmetic and computational aspects at primary and early secondary
levels. Finally, Figure 3 shows the learning track of modern mathematics. This
learning track has brought the approach of modern mathematics down to the ele-
mentary level.

Today we are being asked to consider three types of mathematics:

(i) ethnomathematics

(ii) school mathematics

(iii) higher pure mathematics.

It can be argued that the new school mathematics reforms of the 1960’ sought
to link (ii) and (iii) more closely: to transplant the aims, methods and structures
of (iii) to (ii). Now, greater efforts are being made to link (1) and (ii). It is good
at this point to remember that in the first two learning tracks, elementary school
mathematics was always more vocational and practical [12]. In that form it may
be more easily linked with ethnomathematics. The challenge would then be to link
these more traditional learning tracks with the mathematics in a given culture, and
at the later stage, to link it to higher mathematics.

There is an added question for developing countries, namely the problem of
dropouts. There is a need to round off the curriculum, for practical purposes
probably after four years and after six years. This rounding off would allow students
who finish only four years (or only six years) to have some closure in their learning
of mathematics. It may be that returning to the more traditional learning tracks



PROCEEDINGS OF ICME 6

VOCATIONAL TRAINING

Special Techniques with
applications implicit mathematics

~ 7

ELEMENTARY SCHOOL

Application e.g. to shapes and
by means of solids,time and
rules,schemes calendar,commercial
formulas transactions, physical
problems, technological
problems
ARITHMETIC

Fig. 1: Learning Track of arithmetic




B. F. NEBRES: SCHOOL MATHEMATICS IN THE 1990'S

UNIVERSITY LEVEL

17

Studi of mathematical methods
Matemathics in Sclence and
Technology
SECONDARY LEVEL
ELEMENTARY ANALYTICAL
CALCULUS GEOMETRY

\
/

ALGEBRA
variables
equatlons
funtions

TRIGONOMETRY

/
\

GEOMETRY
construction
and

proofs

1

PRIMARY LEVEL

ARITHMETIC

Fig. 2: Learning Track of Traditional Pure Mathematics



18

PROCEEDINGS OF ICME 6

UNIVERSITY LEVEL

Study of ‘mnodern’
Mathematics

Mathematical methods
in Science and
Technology

SECONDARY LEVEL

Linear algebra
and

Geometry

X

\

Calculus Probability
Structures
Numbers
Polynomials

PRIMALY LEVEL

Logic and Sets
Concept of number
Measurement
Space and shape

Fig. 3: Learning Track of “Modern” Mathematics




B. F. NEBRES: SCHOOL MATHEMATICS IN THE 1990°'S 19

may make this job of rounding off curricula for dropouts easier for developing
countries.

II. The Impact of Technology on School Mathematics

The ICMI Study says, “Perhaps the major concern relating to the content of
school mathematics curriculum in the 1990’s is the extent to which it will/should be
affected by new technology and, in particular, by the hand-held electronic calculator
and the microcomputer” [13]. This statement underlines the perceived importance
of the impact of technology on school mathematics.

Importance

The importance of the impact of technology on school mathematics is beyond
doubt. One monograph in the ICMI Study series has been dedicated to this
question: “The Influence of Computers and Informatics on Mathematics and Its
Teaching” [14]. A whole issue of the Arithmetic Teacher in the United States (Feb.
1987) was dedicated to the role of calculators in school mathematics. The discussion
on technology and school mathematics has attracted some of the biggest numbers
of participants in the last two international congresses. This question is important
as well for developing countries. Even for poorer countries, calculators can be
made readily available for the majority of schoolchildren. The microcomputer is
important for a small but influential segment of the population. While it may take
some time for developing countries to make microcomputers available to the larger
population, they also must pay attention to it in a very serious way.

But what exactly shall we do?

Having underlined the importance of the impact of technology on school math-
ematics, however, we still do not know how to proceed. A serious discussion on the
role of the calculator on mathematics education was held at ICME 3 (Karlsruhe,
1976). ICME 4 at Berkeley in 1980 and the Agenda for Action of the National
Council of Teachers of Mathematics of the United States emphasized the impor-
tance of “taking full advantage of the power of calculators and computers at all
grade levels” [15]. But as the Arithmetic Teacher issue cited above states, more
than ten years later we are still far from developing a calculator-integrated cur-
riculum. While more and more of our students are becoming familiar with the
microcomputer (especially at home), the place of the microcomputer in the class-
room and in the mathematics curriculum is still unclear.

It is quite likely that developing countries will have to depend on advances in
the developed world in these two areas of a calculator-integrated and/or microcom-
puter-integrated curriculum. We do not have the human and financial resources
to go into the intense research, development, testing and evaluation necessary to
develop such new curricula. Having said this, I will still propose an agenda for
developing countries with respect to the impact of technology on the school math-
ematics curriculum. I suggest that we look on it as the classic case of technology
transfer. The success of the newly industrializing countries in my part of the world
in absorbing new technology has followed a pattern: importing the technology,
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tmitating 1t, making small but important modifications, eventually mastering the
technology and reconstructing it according to their own needs and purposes. The
Southeast Asian Mathematical Society has followed a similar path in our effort to
build up mathematics research in our part of the world.

My agenda then for the developing world, and here I have greatly in mind
Southeast Asia, is that we pool our resources together and organize our efforts
over the next decade. I believe that a pattern following the paradigms above of
technology transfer or the experience of the Southeast Asian Mathematical Society
would be helpful: listening to and learning from experts abroad, beginning similar
efforts and experiments in our own home countries, bringing together these efforts
and experiments in workshops where we can learn from one another and develop
our own technology-integrated curriculum.

III. The Macro Environment: The Importance of Culture, Beliefs, and
Values for Mathematics Education

In E. G. Begle’s landmark review “Critical Variables in Mathematics Edu-
cation: Findings from a Survey of the Empirical Literature”, there are very few
articles regarding the role of cultural values in their mathematics education. But
discussions of mathematics education in Third World countries have come to focus
more and more on the question of cultural variables. In the Asian experience, this is
probably because the sharp contrast of traditions and cultures in East Asia makes
us aware of the importance of cultural variables. For example, we have realized
that questions like the status and salaries of teachers are not simply a function
of the economy but also of cultural values. Similarly the rise of what we might
call the internal force of genius, wherein mathematics talent springs up even under
difficult economic circumstances, seems to be fostered by the cultural environment.

These intuitive perceptions regarding the importance of cultural variables
have been helped immensely by a series of cross - cultural studies done by H. W.
Stevenson and others at the University of Michigan [17]. They have made recent
studies comparing mathematics education in Japan (Sendai), Taiwan (Taipei),
U.S.A. (Minneapolis). The levels studied were students in first grade and fifth
grade. It is widely known that the achievement of students from Japan and China
has been notably superior to those of American children. The studies corroborate
these earlier findings. But what is notable in the studies is that the variables that
explain the differences seem to be clearly in the area of culture, beliefs, and values.
It is not possible to do a sufficient summary of the studies, but we can highlight
some aspects that help clarify our discussion.

(1) Belief in the Importance of Mathematics

Parents, teachers, and pupils in Japan and Taiwan are clearly convinced of the
importance of mathematics for their education. It is seen as crucial and at least on
the same level as reading. In the United States, however, achievement in reading
is seen as crucial for the education of the child, but mathematics much less so. In
fact, most American parents seem to see no serious problem with the mathematics
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education of their children and are quite satisfied with it and with the achievement
of their children. In contrast, in Japan and China, parents worry a lot about the
mathematics education and achievement of their children.

(2) What Makes a Student Do Well in Mathematics?

Teachers and parents in the United States usually attribute achievement in
mathematics to the innate abilities of the pupils. In the Asian tradition, however,
there is a de-emphasis on differences of talent among students and a belief that
achievement in mathematics is primarily due to hard work and to giving the proper
time to it. If a child’s rate of learning is slower than others, it means only that
the child must study harder. They quote a Chinese proverb, “The slow bird has to
start out early”.

(8) The Status of Teachers

In general, it does seem that teachers are accorded higher status in Japan and
in Taiwan than in the United States. This is both in terms of their social standing in
society and in terms of the remuneration that they receive. For example, in Japan,
the government pays special attention to the salaries of grade school teachers and
they are normally better paid than high school teachers or university faculty, except
at the highest ranks of the university.

There are some clearly observable effects of these differences of culture, beliefs,
and values:

(i) First, more time and effort is given to mathematics in the Japanese or
Chinese classroom than in the American classroom. This is equally true with
respect to time for homework, time given by the teacher, parents, and pupils in
the study of mathematics.

(ii) Teachers in Japan and China continue to work with the whole class in-
cluding the slow-learners. There is effort to help the whole class learn the lesson
and to have them keep up with the pace. Thus the problem of children dropping
out of the learning process is lessened in these classrooms.

(iii) The expectations of school and of society of the teacher provide him or her
with more time to do teaching duties in the Asian classroom than in the American
classroom. Careful measurements show that more is given to teaching and to
teaching-related activities by the Asian teacher than by the American teacher.

IV. An Organic Model for Mathematics Education in Developing
Countries

The importance of the cultural matrix (culture, values, beliefs) for mathe-
matics education leads us to an image of the development of mathematics in a
developing country along the lines of an organic model. This way of thinking is
less prevalent in modern western thought. It may be, as Fritjof Capra argues in
“The Turning Point”, because of the dominance of the Cartesian and Newtonian
mechanistic view of reality [18]. But it is a familiar framework in eastern thought.
For example, a recent article I read on the introduction of western cosmology to
Japan in the 17th century, speaks as follows: “The soil in which the flowers of
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modernization bloomed so profusely had been enriched over centuries. It was due
to this rich soil that Japan was so successful in modernizing itself swiftly after the
Meiji restoration. Many called the modernization a miracle, but in fact, it was
nothing of the kind: it was the outgrowth of several centuries of effort” [19]. In my
discussions with mathematician friends in Japan and China, the importance of the
human and social aspects of the development of mathematics, the importance also
of the affective and non-cognitional aspects, have come up over and over again. In
this vision then, the canonical school mathematics curriculum or some modification
of it has to be seen as an organic growth being planted in foreign soil. It is impor-
tant then to understand the cultural matrix, the soil into which this transplant is
placed. My own reflection on our efforts in Southeast Asia and, in particular, the
Philippines presents the following important areas of concern if we are to handle
this transplant well.

(1) Pace

In the article from the 1985 Chicago symposium cited above, Tamds Varga
discusses the process of implementation of the pilot work which he had developed
in the 1960’s in Budapest. He writes,

In a decade the number of classes grew to about two hundred, 0.5% of

the classes in the eighth grade all over the country. The number of classes

from year to year grew in a geometric progression. The quotient of the

10 /200
2

progression was =~ 1.58. This is the pattern of an organic growth.

The number of classes joining in each year was proportional to the num-

ber of classes within the scheme. As with contagious diseases, when the

sources of infection increased (the increased possibility of visiting classes),

the chances of “catching the disease by personal contact” increased pro-

portionately [20].

He goes on, “Attempts to speed up a natural, organic growth rarely give
satisfactory results, however, and unfortunately such attempts were made” [21].
He then goes on to record the problems that occurred because of the effort to
speed up the growth too much. Pace, therefore, says that the development of
school mathematics especially in a developing country, has to follow the laws of
organic growth. It is foolish to try to speed things up too much as it will simply
lead to a withering or distortion of the growth.

(2) Aspects

There may be certain parts and aspects of mathematics that should be given
emphasis in a particular country and culture. Ethnomathematics points out
many such examples, normally mathematics associated with house-building, boat-
building, geometrical patterns, with which a particular culture is familiar. My own
belief in this matter is that what is important is that children “own” the mathe-
matics they learn. It is important, therefore, to emphasize and to highlight areas
which children can relate to and claim as their own. It may be because of familiar
patterns as in the efforts of ethnomathematics. It may simply be that the par-
ticular problem that is given to them is one which students in their own culture
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had solved in a mathematics olympiad some years back. Whatever it may be, at
least some aspects of mathematics emerge from the unfamiliar, impersonal mass
and come up to the child as a possible friend.

(3) Style

Just as the canonical school curriculum has developed all over the world,
there is a tendency also towards canonical methods of teaching mathematics in
countries and cultures. Let me note two areas of style where balance is needed. The
first is the balance between methods which emphasize insight and understanding,
(understanding why) and mastery of skill (knowing how). Without wanting to over-
simplify philosophies of learning, one can say that western philosophy places most
emphasis on insight and understanding. If we can get the child to understand why,
it will be easy for him or her to learn how. But eastern philosophy places a premium
as well on the right way of doing things. There is thus a place for memorization,
for group chanting, for methodologies that the West would characterize as learning
by rote. There is a belief that mastering the right way of doing things will also
lead to insight and understanding [22]. I believe that each culture should reflect
on the balance and the style of teaching and learning most suitable for it.

Secondly, Western school tradition focuses on the individual. Teaching style
emphasizes individual learning and effort. But Asian self-consciousness places
emphasis on the group and one’s identity and reality is largely determined by
the group. We also need a teaching style that balances focus on the individual and
focus on the group.

(4) Continuity and Growth

Organic development is continuous and dynamic. It may start, of course,
with a singularity, as with the first fertilized cell at the beginning of life. This
consciousness of the continuity of growth leads one to the importance of the
preparation of the cultural matrix (the soil), care for initial growth (when the
transplant is rather fragile), and making sure that the growth process does not
outstrip internal capabilities and resources. It also leads one to realize that like all
life, it has a dynamic cycle of youth, maturity, and need for re-invigoration.

There is also need for continuity throughout the school system, from weakest
schools to strongest ones. One measure that we might develop regarding this
continuity would be to divide schools into different categories a, b, ¢, d, and check
that there is a continuity up through the ladder. In many developing countries,
where dual societies are prevalent, one will often see big breaks in this educational
ladder.

(5) Non-Cognitional Factors

Most mathematics education studies of learning focus on cognitional factors.
In fact, one of the forthcoming studies in the ICMI study series is on mathematics
and cognition. But again if culture, values, beliefs affect mathematics education in
an important way, then non-cognitional factors such as the cultural environment
or affective factors must be understood as well. This has come up quite a bit in
my discussions with mathematician friends from Japan. They have emphasized the
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importance of the affective dimension in doing mathematics. They have pointed
out that it is important to do mathematics research in one’s own language, because
research involves the whole person, cognition and feelings, head and heart. To do
mathematics in a foreign language is like boxing with one hand tied behind one’s
back. One uses one’s head, but not one’s heart [23]. I think we understand as
teachers the importance of affective factors in learning and doing mathematics.
Our experience with Ph.D. students shows that on the level of the dissertation, it
is not so much intelligence and talent that count, but motivation and emotional
factors that differentiate the students who succeed and those who give up. If this is
80, it is important for the development of school mathematics that we be much more
aware of non-cognitional factors and take them into account in the development of
school mathematics in our countries.

V. Research and the Process of Change

The above discussion, that development of school mathematics in developing
countries has to give much attention to culture, values, and beliefs, seems to place
development in the world of the private and the internal and beyond the reach of
planning and organized change. However, my own experience of values and value-
-change says that the area to focus on is something one can touch, namely choices
and decisions. Our values and beliefs of course shape our choices and decisions.
But our values and beliefs are also shaped in great part by the choices that we
make. There are certain crucial forks in our lives and our future is determined by
which fork we take. Similar holds true for nations and cultures.

When one stands before the Great Wall in Beijing, where for centuries the
results of the imperial examinations were read and the new mandarins were deter-
mined, one cannot help but think of the influence of this structure chosen by the
Chinese emperors. The high value placed on learning, even seemingly useless learn-
ing like Chinese classics or mathematics, may have been largely shaped by the fact
that Chinese emperors had determined that these were the path to high position
in government. The special attention paid in Japan to the salaries of grade-school
teachers is expressive, of course, of the values of Japanese society, but it also as-
sures the flow of talent to grade schools which strengthens and reinforces these
values. The attention of media and funding agencies to the needs of science and
technology in the United States in the post-sputnik era opened attractive forks in
the road for young people to pursue careers in science and technology.

If the leadership of a nation believes in the importance of reform in mathemat-
ics education, then its task is to create the structures (the channels and pathways)
that may shift the choices and decisions of its citizens to these efforts and values.
This would include a higher value to be placed on the learning of mathematics, an
emphasis on the necessity and importance of hard work, higher status and recogni-
tion of teachers.
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(1) The Process of Change

I suggest that the model of organic transformation, exemplified by the expe-
rience of Varga, may be most suitable for developing countries. Our experience
in the Philippines of building up graduate and research programs in mathematics,
physics, and chemistry verifies the laws of growth mentioned in his paper. Sim-
ilarly, my own longer experience of developing programs for social consciousness
and responsibility of students in the Philippines follows this paradigm [24]. It be-
gan with a small group of faculty and students with alternative values and choices
(what we eventually called a counterculture), but which gradually began to “in-
fect” a larger portion of the academic community. There was also the experience of
being pushed to move too fast and eventually the time when many of these values
were accepted by the whole academic community.

In this light, we can look again at the essential elements presented in the ICMI
Study for a successful process of change for school mathematics in the 1990’s:

a) A group or groups to develop a plan for change.

b) A measure of the “capital” available for change. “Capital includes finance,
talent and goodwill”.

¢) Developing awareness of the problems of educational change in key figures
in the society.

d) Well-planned intervention strategies and evaluations of these strategies.

e) Identifying the elements involved in bringing about change and determin-
ing the interrelationships of these elements.

I would focus the study of the process of changé on what the ICMI Study calls
tntervention strategies. These could be the so- called magnet schools or lighthouse
schools. The planning for and understanding of these intervention strategies would
require a serious measure and understanding of the “capital” available to the society
and culture. Secondly, the planners would have to monitor with great care the pace
of growth and development. If the national leadership is seriously intent on change,
then one of the difficult pressures from them would be to move too widely, too soon.
Planners may have to agree on a two-track strategy. One which would carry the
original vision and which may move more slowly and a second one which would
meet the more immediate demands of the national leadership.

(2) Research

If we look at the program for research presented in the ICMI Study (Fig. 4),
it becomes clear that the areas of research which I believe are most important for
developing countries are those to the right. That is, processes of change, learning
context, theoretical constructs.

Under theoretical constructs, I would be particularly interested in case studies
and a deeper theoretical understanding of organic models for change. In my own
reflection on this matter, I have found myself turning instinctively to the language
and the conceptual framework of catastrophe theory (singularities, unfolding, po-
tential). I do not know if such a conceptual framework will prove fruitful.

e
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Under processes of change, I have been much helped by studies and by conver-
sations on the development of mathematics and mathematics education in Japan.
More careful studies of the history and development of school mathematics sys-
tems in different countries and the socio-cultural context within which they have
developed would probably be helpful for future planners.

Finally, under learning contezt, the Stevenson studies show clearly how impor-
tant are the attitudes and values of parents, the attitudes and values of teachers,
the structure of time and activities in school and out of school. My impression is
that cross-cultural studies are particularly helpful in this area. They help different
cultures to use one another as a mirror within which they can see more clearly the
lights and shadows in their own system.
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PLENARY ADDRESS:

THEORETICAL FRAMEWORKS AND
EMPIRICAL FACTS IN THE PSYCHOLOGY
OF MATHEMATICS EDUCATION

Gérard Vergnaud (France)

Psychology of mathematics is not really a new field of research, as several
psychologists started to investigate that field a long time ago. But it has developed
and changed a lot during the last 15 years. The international group “Psychology of
Mathematical Education”, which is a working group of the International Congress
on Mathematical Education, has played an important part in gathering ideas and
new results together. Let me mention the name of Ephraim Fischbein who launched
that working group and was its first president.

The aim of my lecture is to present in a synthetic fashion some of the results
that have been obtained and some theoretical ideas which, I think, are essential to
understand how students learn mathematics and develop their own ideas, and how
teachers can improve their teaching, by taking account of the way students learn,
or fail to learn.

Many mathematicians think that primary school mathematics is not mathe-
matics, because there is nothing like proof in it, nor does it include any sophisticated
concepts like those of function, continuity, or algebraic structure. This is a wrong
view, and my first task will be to give examples of the conceptual importance, from
a mathematical point of view, of children’s first acquisitions.

Another task will be to show that mathematical concepts and procedures are
learned and developed over a long period of students’ growth, more than 10 years
for additive structures or for multiplicative structures.

My next purpose will be to analyse the role of symbols and language in con-
cept formation and problem solving, and to illustrate the specific, and sometimes
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difficult, operations of thinking that are required by the reading and the use of
mathematical symbolisms like graphs and algebra.

And finally I will stress the need for a better interaction of epistemology of
mathematics, cognitive, developmental and social psychology, and didactics.

What is a mathematical behaviour?

There are many kinds and many levels of mathematical behaviour, even in
school mathematics. It is not easy to compare such behaviours as counting a set
of discrete objects, measuring the length of a room, or the volume of a container,
perform a difficult subtraction, choose the data and the operations that are nec-
essary to solve a double proportion problem, a linear equation or a linear system,
analyse the variation of a function, show the equality of two angles in a complex
geometrical figure.

And yet it is important to consider that all these behaviours are tied to
mathematical concepts, and would not be possible if such concepts as those of
one-to-one correspondence, cardinal, additivity of measures, place-value notation,
isomorphism of measures, linearity and n-linearity, function and variable, did not
exist.

The fact that such concepts exist does not mean that students are fully aware
of the relationship between these ideas and the way they behave. Most often
mathematical ideas are only implicit in students’ behaviour. Let me take two
examples:

The first one is inspired by the work of Gelman and Gallistel (1978), Fuson and
Hall (1982), Steffe et al. (1983), Chichignoud (1986) and others. When counting
a set of six elements, most five or six year-olds count: one, two, three, four, five,
six... six! Not only do they have to establish one-to-one correspondences between
the objects to be counted, the gestures of the finger, the movements of the eyes and
the number-words, but also they feel the need to say the word “six” twice. The
first utterance refers to the sixth element of the set, the second utterance refers to
the cardinal of the set: this double utterance means that the concept of cardinal
has been recognized.

Older children may not repeat “six”, but only stress it differently from the
other number-words. But there are children who do not repeat “six” and when
asked how many objects there are, are unable to answer, and start counting again.

For children who can cardinalize, “six” summarizes the information on the
set gathered by the counting procedure. This is not the case for children who do
not cardinalize. One can therefore infer the existence and the non-existence of the
concept of cardinal from children’s behaviour. Actually rather than a concept it
is an invariant property of discrete sets relying upon an invariant organization of
the counting behaviour. Let us call such invariant organization of behaviour, for a
certain class of situations, a “scheme”.

One can see from this example that the scheme of counting a set is not
only made of rules of production but also of implicit strong mathematical ideas,
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namely those of one-to-one correspondence and cardinal. Let us call these ideas
“operational invariants”. Children progressively strengthen and extend the scope
of validity of such invariants: cardinals do not depend on the spatial distribution of
the elements, nor on the size of objects... And the counting procedure is altogether
the same, even if it is more difficult to count a flock of moving sheep than a pile of
plates on the table.

My second example will be taken from algebra. When dealing with equations
like

4z 4+25=53 or 41=3t+26

many 13-14 year olds in France can apply the same scheme (invariant organization
of the action sequence), for instance:

4z 425 -25=53-25 41 — 26 =3t + 26 — 26
4z = 28 15 =3t

4z/4 = 28/4 15/3 = 3t/3

z=17 5=t

or simplified versions like:

4z =53 - 25 41-26 =3t
4z =28 15 = 3t
€ =28/4 t=15/3=5

The same scheme applies to all equations of the shape az + b = ¢ whatever the
name and the place of the unknown may be, provided a,b and c¢ are positive, b
is smaller than ¢, and a is a small whole number, smaller than ¢ — 5. Why these
restrictions? Because for many students, the scheme cannot be fully extended to
negative numbers and to difficult divisions.

Yet the procedure has some generality and it relies on such mathematical ideas
as the conservation of equality when the same number is subtracted from both
sides, or when both sides are divided by the same number. For many students
these ideas are only implicit theorems. Let us call them theorems-in-action. They
are operational invariants, like the ideas of cardinal and one-to-one correspondence.

I can give quickly a few more examples of implicit concepts and implicit
theorems that can be traced in the emergence of new competences in children.

It is now well known for instance that when they have to count a set of children
after having counted 4 boys and 3 girls, many five or six year-old children count
the whole set again. It is a big step to be able to say 4 + 3 = 7 or even to start
from four, and count three steps forward. It shortens the counting-all procedure.
This discovery (it is a fresh discovery for students as nobody usually teaches it
to children) can be considered as the spontaneous recognition of the fundamental
axiom of the theory of measure:
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card(A U B) = card(A) + card(B)
provided A and B have no common part.

Don’t count the whole set again; just add the cardinals of the subsets.

It is also well known (Carpenter and Moser, 1983; Fuson, 1983) that young
students tend to simulate as closely as possible the structure of problems. For
instance, when they have to find the result of winning three marbles when the
winner had 6 marbles before playing, they would proceed by starting from 6 and
count 3 steps on. If the situation is a start of 3 and a win of 6, the natural tendency
is to start from 3 and count 6 steps on. This is not so easy and the risk of going
wrong is bigger; another step for 5 to 7 year olds, is to start from the greater
number 6 and count 3 steps on. One can consider this discovery as commutativity
in action:

3+6=6+3
at+b=b+a

The realm of validity of such a theorem-in-action is not as large as that of the
real theorem. Moreover, children cannot usually explain clearly why it is possible
to do 6 + 3 instead of 3 + 6, but the mathematical idea is nevertheless present.

My last example will be the spontaneous solution given by some students to
double proportion problems. In a verbal problem students had to calculate the
quantity of sugar necessary for 50 children going to a vacation camp for 28 days.
They had found in a book that the quantity needed for 10 children for 1 week
was 3.5 kg. Some students said that 50 children is 5 times more than 10, and 28
days 4 times longer than a week; therefore the consumption of sugar should be 20
times bigger. The non trivial theorem-in-action revealed by this procedure can be
written:

Consumption {5 x 10,4 X 7) = 5 X 4x Consumption (10,7)

which is a particular case of the general property of bilinear function:
fAiz1, Azz2) = Midaf(z1, 22)

Of course the easy numerical values made it possible for 11 year-olds to extract
ratios 5 and 4; and there is no conceptual difficulty for them in recognizing the
double proportion of consumption to the number of persons and to the length of
time. Therefore, there is a gap between the theorem-in-action they used and the -
general theorem. But again the mathematical idea was there.

In summary a mathematical behaviour is a behaviour that relies upon some
mathematical idea. A mathematical behaviour consists of an invariant organi-
zation of behaviour called a scheme. Some schemes are algorithms, but not all
mathematical schemes are algorithms; and even when students have been taught
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an algorithm, they don’t always follow the rules they have been taught, and replace
them by more meaningful schemes or by memorized shortcuts.

Schemes (et algorithms) are not made of rules only; they are also made of
goals and expectations, inferences and operational invariants. I have given a few
examples of such operational invariants: cardinal, additivity axiom, commutativity,
conservation of equality, bilinear theorem. The implicit knowledge contained in
schemes can be analysed as made of concepts and theorems that are used in action,
without being clearly identified and worded as objects, properties and relationships.

Situations and conceptual fields

A scheme is associated with a class of situations. There are many different
schemes because there are many different classes of situations. For instance it is
not the same conceptual problem and not the same scheme to add 7 and 5 in the
three following problems:

1. Peter had 5 marbles. He plays a game of marbles with John and wins 7
marbles. How many marbles does he have now?

2. Robert has just played a game of marbles with Celia. He has lost 7 marbles.
He has now 5 marbles. How many marbles did he have before playing?

3. John has played two games of marbles. He has lost 7 marbles in the second
game, but he does not remember what happened in the first game. When he
counts his marbles in the end, he finds that he has altogether won 5 marbles.
What happened in the first game?

Problem 2 (Robert) is usually solved with a delay of one year and a half after
Problem 1 (Peter) is solved. The main reason for this lies in the structure of the
problems. Whereas Problem 1 (Peter) consists of searching the final state knowing
the initial state and the transformation, Problem 2 (Robert) consists of searching
the initial state knowing the final state and the transformation: this requires either
the inversion of the transformation, or a hypothetical reasoning on the initial state
such as: had he 10 marbles in the beginning, he would be left with 3; he needs 2
more; Robert had 12 marbles.

Let me represent both problems:

@)
Problem 1 = > []

Problem 2 D @ >

The addition 5+7 does not have the same meaning in both cases. In problem 1,
it fits perfectly with the primitive conception of addition as an increase (Gelman
and Gallistel, 1978). In problem 2, it goes against that primitive conception
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(you don’t add when you have lost marbles), and it requires the inversion of the
transformation -7, from the initial to the final state, into +7, from the final to the

initial state.
===

©

Problem 3 (John) is the most difficult case; 75% of 12 year old students fail
to solve that problem. Addition 5 + 7 is now totally counterintuitive, as you need
to add a part and the whole to find the other part.

Problem 3 O @

—=C1—=>[]
RS
As a matter of fact the two games are considered as parts of the combined
transformation which connects the initial and the final states. Had John lost 15

marbles in all, the answer would have been easy and natural. But problem 3
requires an addition 5 + 7, which is actually a subtraction of two directed numbers:

z+(-7) = (+5)
= (+5)—(-7)=5+7=+12

The research work that has been achieved by Carpenter and Moser (1983),
Riley, Greeno and Heller (1982), Vergnaud and Durand (1976), Nesher (1982) and
others shows consistent results and substantial agreement about the classification
of addition and subtraction tasks.

Whereas addition is usually conceived by mathematicians and teachers as the
binary commutative combination of two parts into a whole, and subtraction as
the search for one part knowing the whole and the other part, the psychological
classification of cognitive tasks reveals that, beside the binary combination of two
parts into a whole, there is also the unary operation of a transformation of the
initial state. There are essentially six different tasks related to the initial-state —
transformation — final-state relationship, among which two are solved by adding
and four by subtracting. A similar situation exists for comparison problems, when
you deal with three-term relationships: reference-state — comparison — compared-
state, for instance:

John has 7 sweets, he has 2 sweets less than Janet. How many sweets does
Janet have?
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The binary commutative combination cannot model these relationships; one
rather needs a unary non-commutative operation, as can been seen in the above
arrow-diagrams.

Let me also stress the fact that it is not wise to keep directed numbers away
from children at the primary school level, as they do meet situations involving
transformations and relationships which should be modelled by directed numbers.
I do not find as much support as I would like in favour of this idea, probably
because some operations with negative numbers are still difficult for many 15 or 16
year-old students. But the fact that some tasks with negative numbers are difficult
for the majority of 15-year olds must not hide that other fact that most 9 year-
olds can understand what a negative transformation is (I have eaten four sweets),
or what a negative relationship is (I owe you 3 dollars), and can also understand
that negative and positive transformations are inverses of one another.

In summary, if one calls “additive structures” the set of situations that involve
the addition or subtraction of two numbers, one sees some primitive competences
and conceptions emerging in 3 or 4 year-old children; and still some problems
requiring just one addition are failed by a majority of 15 year-olds. Between these
two periods of their cognitive development, children discover or learn how to solve
a great variety of problems.

Researchers are now able to give a differentiated picture of the variety of
cognitive tasks which children meet, of the mental “revolutions” they have to
achieve, of the main obstacles on which some students keep failing for a long time.

Several important concepts are involved in additive structures: cardinal, mea-
sure, state, transformation, comparison, difference, inversion and directed number
are all essential in the conceptualizing process undertaken by students. Some of
these concepts remain implicit for them. Understanding them sometimes requires
the teacher to provide explicit wording, symbolizing and explaining.

The place of language and symbols is certainly an important issue in mathe-
matics education. I will come to this point later.

But before I do this, I would like to take other examples of the long term devel-
opment of mathematical competences and conceptions. My next example will be
“multiplicative structures”, i.e. the set of situations that involve the multiplication
or the division of two numbers, or a combination of such operations. Most of these
situations are in fact simple-proportion or multiple-proportion problems, in which
two variables are proportional to each other (simple proportion), or one variable is
proportional to several other independent variables (multiple proportion).

Children are faced with proportion problems as soon as they have to find
the cost of several identical objects, share a number of sweets, or find how many
pastries they can buy with a certain amount of money.

In simple proportion problems, there are two kinds of ratio: scalar ratios
(between magnitudes of the same kind) and function ratios or rates (between

magnitudes of different kinds), sometimes called intensive quantities (Schwarz,
1988).
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Take for instance a multiplication problem like the following: Miniature cars
cost 5 dollars each. How much do you have to pay if you buy 4 of them?

cars dollars
Q e
4—;[:]

9

The above diagram shows that you can either use the invariant scalar ratio
(vertical):

cost of 4 cars 4 cars

cost of 1 car 1 car

or the invariant function ratio or rate (horizontal):

cost of 4 cars __cost of 1 car

4 cars - 1 car

The first one is a scalar and has no dimension; it will be expressed, in natural
language, by such expression as “4 times more”. The second one is a quotient of
two magnitudes “dollars per car” and it relates the two different variables; this is
the reason why I call it a function-ratio.

If one introduces multiplication as repeated addition of the same number, it
is meaningful to do this with the scalar operator in mind:

4 times 5 dollars < 5 dollars + 5 dollars + 5 dollars + 5 dollars

but not with the function operator, as 5 times 4 cars cannot give dollars.
The correct analysis would be:

4 cars x 5 dollars = dollars
Sdollars = [

Thus, students meet dimensional analysis at the primary school level.

Many results have been collected on the comparative difficulty of multiplication
and division problems in the simple proportion case. One may vary the structure
of the problem, the numerical values and the domain of experience to which such
problems refer. See for instance Bell, Fischbein and Greer (1984), Vergnaud (1983).
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multiplication type I division type II division general case
case partition quotient rule of three

1 b 1 O 1 b a b

a O a c O c c O

a, b, ¢ can be taken among small or large whole numbers, among decimals, larger
or smaller than 1, among fractions.

And the problems may refer to familiar or unfamiliar domains of experience,
to easy or difficult mathematical physical or technical domains.

~ Type II division is, on average, rather more difficult than type I division.

— Multiplying by a decimal is a striking obstacle, probably because it moves the
child away from the primitive conception of multiplication as iterated addition.

— It is even more difficult to divide by a decimal.

— In children’s primitive conception, multiplication is supposed to make bigger
and division smaller. Therefore multiplying or dividing by numbers smaller
than 1 gives counterintuitive results.

— It is also more natural for students to divide the larger number by the smaller.
Many errors appear when the correct division is smaller by larger.

— The difficulty of rule-of-three problems is altogether tied to the numerical
values. The procedures used by students favor the use of the isomorphic
properties of the linear function

flz+2") = f(z) + f(z")
f(Az) = Af(z)
fAz + X2') = Af(z) + X' f(2')
rather than the constant function coefficient:

f(z) = az

z= ()

This means that students consider scalar ratios, between magnitudes of the
same kind, and linear combinations of such magnitudes, rather than function-
ratios, between magnitudes of different kinds. Nevertheless the best students can
shift easily from one point of view to the other, whereas the weak students keep
using the same stereotyped strategy. These results are important for teachers, as
some taught procedures are practically incomprehensible for most children, like the
cross-product for rule-of-three problems. .

Several researchers (Noelting, 1980; Karplus et al, 1983; Behr et al, 1983;
Kieren, 1988) have studied extensively the difficult development of the concept of
ratio. The synthesis into the concept of rational number of such different ideas as
those of fractionalquantity, scalar ratio and function-ratio, is a long-term product
of mathematical education.
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But the most important conceptual problem in multiplicative structures, is
probably the multiple proportion structure, which is involved in the measure of
space (area and volume), in different domains of physics (quantity of movement,
heat and energy, electricity...) and in many other domains like those of production
and consumption, when some variable is proportional to two or more independent
variables.

Let us take the example of the concept of volume. There is some understanding
of that concept by 6 or 7 year-old students, when they have to compare the
capacity of different containers, or when they have to measure, and even estimate
the capacity of one container with the help of a unit of volume. Rogarski and I
call unidimensional, the conception of volume that is sufficient to accomplish such
tasks, and tridimensionnal the conception that is involved in the understanding of
the concept of volume as the product of three lengths, or the coordination of ratios
concerning lengths, areas and volumes.

In a task concerning the comparison of the capacity of two fish tanks (the large
one was twice as long, three times as wide and twice as deep as the small one),
we could observe several different procedures used by students, correct or incorrect
(Vergnaud, 1983). I will take the example of two correct procedures:

1) 2 x 3 x 2= 12 times larger.

2) mentally pave the large tank with the small one: two in the length, three in
the width; this makes 6; two in the height; 6 and 6 make 12.

The first procedure is tridimensional; it can be generalized to non-whole
number ratios. The second procedure is unidimensional; it fails with ratios like
1.5, 0.8, 1.2, as one cannot easily pave the large tank with the small one.

One can also make different uses of the formula for the area of regular prisms:

V=AH

1) To calculate the volume, you must know the basic area and the height, and
multiply.

2) You can also calculate the height (or the area) when you know the volume and
the area (or the height). This reading of the formula is not contained in the
first reading.

3) The volume is proportional to the area when the height is held constant, and
proportional to the height when the area is held constant. This reading of the
formula is actually the best way to understand it, and the true reason for it.
But it is very rarely provided by schoolbooks, at least in France.

4) If you take units ten times smaller for lengths, the measure of the volume will
be 1000 times bigger.

Students may be able to read the formula at a certain level and be unable
to understand the tridimensioiial nature of the concept of volume, which is yet
essential. And still they know something about the concept of volume.
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It is for this very reason that I have developed the framework of conceptual
fields: we need a framework to understand connections and jumps, in the devel-
opment and the learning of competences and conceptions. The main organizer of
such fields is the content of knowledge, and not such abstractions as the logical
structure, the linguistic structure, or the level of complexity as measured by infor-
mation theory. The complex conception of volume comes from the enrichment of
former conceptions of volume, together with the interaction of these conceptions
with new situations which require students to take account of new relationships,
both spatial and multiplicative.

Additive structures are a conceptual field. Multiplicative structures are an-
other conceptual field, not totally independent from the former one, but sufficiently
independent to be studied separately. The conceptual field of multiplicative struc-
tures is made of such concepts as those of linear and n-linear functions, ratio,
and rational number, dimensional analysis, vector-space... It involves situations of
different kinds, taken in different domains, that can be analysed by simple and mul-
tiple proportion structures. It also involves different words and natural language
expressions, different symbolizations like tables, graphs and formulas. It finally in-
volves the implicit or explicit recognition by students of a variety of operational
invariants like those mentioned above: scalar ratio, function ratio, independence
and dependence of variables, theorems-in-action such as the isomorphic properties
of the linear and the n-linear functions.

This framework is a critical means to understand how students learn: it
claims that concepts are rooted in situations, consist of invariants of different kinds
and levels, and need to be represented by linguistic and non-linguistic symbolic
elements.

Algebra

I do not have the time to explain in detail the numerous problems raised by
the learning and teaching of algebra. Convergent results have been collected on the
way students shift, or have difficulties in shifting, from arithmetic to algebra, also
on the errors they make in reading and transforming algebraic expressions, on the
conceptual difficulties raised by the concepts of function and variable, and on the
use that can be made of calculators and computers : Filloy, Rojano (1984, 1985),
Booth (1984), Vergnaud et al. (1987), Kieran (1988).

I would also like to stress the important theoretical problem of the relation-
ship between symbols and syntax on the one hand, mathematical knowledge and
schemes on the other hand.

Algebra is not an independent conceptual field, that could be taught and
learned independently of additive and multiplicative structures. Even if teachers
and schoolbooks take it for granted that algebraic expressions are just relationships
between numbers, students do not: they keep considering numbers as magnitudes
(cardinals, lengths, areas, money, physical quantities...), and as relationships be-
tween magnitudes. Moreover, as they read expressions from left to right, they often
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consider that algebraic expressions model situations in which time is considered as
going from an initial state on the left, to a final state on the right. In such a
conception, the equality sign does not mean the symmetric and transitive equal-
ity relationship that is required to understand equations, but rather a relationship
between a production process and an outcome.

Therefore the teaching of algebra, especially the introduction of algebra to 12
to 15 year-old students, requires a careful epistemological and cognitive analysis.

As algebra makes important use of syntactic rules, (you must do this, you
may not do that), it is important to clarify the relationship between symbols
and symbolic operations on the one hand, and the mathematical magnitudes,
relationships and operations that are represented by those symbols on the other
hand. Let me take four examples:

1) 3z+12=6z-3

2) 322+ 122 =10
3z(z+4) =0

3) (n—1)+(n+1)=2n

4) (a+b)(a—b) =a? — b2

The meaning of example 1 is usually: find the value of x so as both functions
3z + 12 and 6z — 3 have the same value. The equality concerns numbers not
functions. It is true only for x correctly chosen. The meaning of example 2 is
somewhat different. It is aimed at showing that 4 and 0 are solutions. The meaning
of example 3 is again different. It demonstrates that the sum of the predecessor
and the successor of any whole number is an even number. The equality concerns
predecessor and successor as functions of any given number, and the equality is
always true. This is also the case in example 4. The meanings of elementary
algebra are manifold.

Algebra is usually introduced as a way to solve arithmetic problems.This is
usually viewed by students as more complex than an arithmetic solution, because
in most simple equations a + z = b,az = b and az + b = ¢, the algebraic solution
actually depends upon the arithmetic solution and does not offer any obvious
benefit.

To appear as a profitable tool, algebra must be seen as a way to solve arith-
metical problems that cannot be solved easily by purely arithmetical means. Re-
searchers have studied problems of this type. They have usually arrived at problems
that can be expressed either as

az+b=czx+d

unknown on both sides or as
az+by=c

dz+by=¢c

two unknowns.
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To solve these equations, students must accept operating upon the unknowns.
This is just what some of them don’t understand. How can you operate on
something or with something you don’t know? (Collis, 1975)

Another difficult cognitive problem concerns negative numbers. Students’
most frequent conception is that numbers are magnitudes; they cannot be negative.
The minus sign means subtraction of a positive quantity, not the inversion of a
transformation or a directed number, nor a difference between two transformations
or two relationships. With such conceptions what does it mean to find a negative
solution?

Here again one needs to find problems that make negative solutions meaning-
ful: problems in which unknowns are transformations, relationships, or coordinates.

When one observes students solving equations, one can usually identify orga-
nized and standardized patterns of behaviour. Automaticity is a powerful property
of algebra. But automatic algorithms are only the visible part of the iceberg. The
profound ideas of algebra need to be clarified and this cannot be done without
the identification of the concepts of function and variable, of directed number, and
so on. Not only must algebra be a useful tool, it consists also of new objects, the
epistemological status of which is not clearly seen by students and even by teachers.

The meaning of the concept of function and variable is not conveyed by
equations only, and not even essentially, as letters are conceived of as unknowns
rather than variables. Therefore computers and programmable pocket calculators,
graphic curves and other devices are essential ways for students to experience
functions and variables and identify them as mathematical objects, having names,
properties, and relationships to other objects.

Symbols and mathematics

The role of symbols can therefore be clarified. Symbols are necessary to iden-
tify mathematical objects and make explicit their properties and their relationships
to other objects. Whereas in the arithmetic solution of a problem, one very often
leaves implicit the choice of the relevant data and operations, the algebraic solution
consists of making the relationships explicit and summarized in a laconic expres-
sion; then there are algorithmic or quasi-algorithmic ways of dealing with these
expressions.

Actually the role of symbols in thinking is a very old psychological and even
philosophical problem. Vygotski developed strong ideas about this problem more
than 50 years ago, when he studied the relationship between language and thinking.

Research on mathematics education makes use of and is in tune with some of
his ideas. Natural language and mathematical symbols of all kinds (tables, dia-
grams, graphs, algebra...) play an important part in the process of conceptualizing,
also in the control and regulation of schemes et algorithms, also in the solving of
new problems, and in reasoning about them, i.e. combining and transforming re-
lationships, planning, choosing data and operations.
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Algebra is certainly the most obvious case in school mathematics, of the help
of symbols in thinking, but there are many earlier cases, at the elementary school
level with diagrams and tables, and even at the kindergarten level, when children
start counting with words, making a specific use of natural language in counting,
in counting on and down, in counting up to a certain number from a given number,
in adding, subtracting and comparing, also in expressing spatial relationships and
movements.

If I may choose just another example of the help of symbols in thinking, I will
take the case of the above-mentioned bilinear reasoning (consumption of sugar).

5 times more

10 — 50

5 times more

: 4 times
longer

4 times
longer
20 times more

% €———

5 times more children and 4 times more time make 20 times more consumption
of sugar.

But graphs and diagrams also help thinking a lot. For instance graphs are a
powerful tool in algebra, to represent variables, functions and solutions of systems
during the introductory phase of algebra.

But a new symbolic tool like graphs does not go without diff.culties. The
reading, understanding and use of such a tool raises specific conceptual difficulties.

For instance, it is not obvious that numbers can be represented by dots on a
line. It requires the understanding of the concept of origin and the identification of
the succession of dots to the inclusive succession of segments separating these dots
from the origin (Vergnaud and Errecalde, 1980). Some 14-15 year-old students
keep seeing the dots as ordered whole numbers 1, 2, 3, 4... from left to right,
without being able to give any meaning to the interval between 2 and 3. When the
origin cannot be represented, or when students have to change the origin of the
reference system, many of them just fail. This conceptual difficuity is especially
important in the use of graphic computer aids, when the origin and the scale are
changed to focus some part of the graph (Nadot, 1988).
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Linguistic and non-linguistic symbols are both a help and a problem for stu-
dents. They help students in identifying the relevant mathematical objects and
relationships, but they also raise problems of reading and understanding.

Psychology, epistemology and didactics

Research on Mathematics Education is a complex story. Psychology is only
part of it, but has an essential part to play in it, from a theoretical and from a
methodological point of view; not only to understand the different steps of the
development of mathematical ideas and competences in students’ minds, and the
difficulties and the errors (as I have tried to show); but also to understand the
process of learning in the classroom and the process of teaching.

Teaching and learning in the classroom is a social process, that depends on
some macrofeatures of the educational and social system, and on microphenomena
that take place in the interaction of students with mathematical situations and with
the other actors (teacher and other students). The curriculum, the school books,
the social environment, the system of training for teachers are macrophenomena.
Chevallard (1985) has analysed the social process of transposition that governs the
transformation (and deformation) of the scientific knowledge of mathematicians
into the knowledge to be taught, and the knowledge actually taught. Among the
factors of that process, teachers’ representations, abilities, and difficulties play a
very important part.

Three kinds of representations appear to be essential
— representation of the knowledge to be taught; .
- representation of the students’ competences and conceptions;
— representation of the learning process.

Brousseau has analysed different aspects of the erroneous representations of
teachers concerning mathematics and the learning process. He has also developed
the theory of didactic situations that concerns the invention, the choice and the
management of situations to be offered to students. The theory of situations
stresses the epistemological ground of the concept to be taught and proposes
systematic ways of organizing students’ activity and cooperation. He has for
instance made the important distinction between situations aimed at producing
an action, or a message or a proof. Brousseau has also developed the concept of
“didactical contract” which implicitly rules the interaction of the students and the
teacher.

One of the most important parameters of teachers’ decisions in the choice of
situations and in the teaching process is their representation of students’ compe-
tences and conceptions. This is why, as a cognitive psychologist, I have stressed
that point in this address. The emergence of competences can and must be de-
scribed in mathematical terms, as “theorems-in-action”. But the analysis of these
competences requires more than the stabilized formal description that is usually
offered by mathematics.
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I have shown for instance that the analysis of additive structures requires
change over time to be taken into account, also the use of a unary-operation model,
also of children’s own untaught procedures and errors. Mathematics does not
usually take change over time into consideration, and sees addition as an internal
binary law of combination. Actually students have to do with both a unary and
a binary conception of addition, depending on the situations they have to master.
There lies the conceptual problem.

Along the same idea, the analysis of multiplicative structures requires dimen-
sional analysis to be taken into account, even at the primary school level. This
means that the learning, and therefore the teaching of mathematics are not con-
cerned only with pure numbers but also with magnitudes and relationships between
magnitudes including quotients and products of dimensions. This analysis of ad-
ditive and multiplicative structures might have been made from an @ prior: point
of view. It just happens that it is the difficulties of students, their errors and
procedures that have compelled us to revise and complete our views, a posteriors.

Cognitive psychology is essential to epistemology of mathematics as much as
epistemology of mathematics is essential to cognitive psychology.

If epistemology is concerned with the relationship of concepts and procedures
with the practical and theoretical problems to be solved, then epistemology is im-
portant not only to understand the initial competences and conceptions of children
in a conceptual field, and the situations which shape these competences and concep-
tions, but also to understand how these competences and conceptions are enriched,
widened, restricted and sometimes profoundly changed during the process of learn-
ing and during the cognitive development of students. This process covers many
years. Some aspects of the concept of volume are grasped by 6 or 7 year olds: com-
paring the quantity of orange juice in glasses, and measuring and comparing the
capacity of containers. But it is another story to grasp a tridimensional conception
of volume; most 13 or 14 year olds do not satisfy the criterion of combining ratios
on lengths, areas and volumes, as I have shown above.

My final conclusion is that didactics, psychology and epistemology must be
strongly tied together in mathematics education research.

Epistemology is essential to imagine didactic situations and to characterize in
mathematical terms students’ competences and conceptions.

Psychology is essential to analyse carefully the short term process taking place
in the classroom both from a cognitive point of view and from the point of view of
social interaction; also to analyse the long term process of development.

Didactics includes epistemology and psychology, but it also takes it as a burden
to theorize about the conception of situations and activities that should take place
in the classroom and the way to manage the ensuing process.

A mathematical concept, if one looks at it developing in students’ minds, is a
triplet of three sets:

— the set of situations that make the concept meaningful in a variety of aspects;
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— the set of operational invariants (properties, relationships, objects, theorems-
in-action...) that are progressively grasped by students, in a hierarchical
fashion;

— the set of linguistic and non-linguistic symbols that represent those invariants
and are used to point at them, to communicate and discuss about them, and
therefore to represent situations and procedures.

The symbolic dimension of mathematical concepts is essential, but we must
never forget that mathematics is not a language but knowledge; solving practical
and theoretical problems is both the source and the criterion of mathematical
knowledge for students as much as for mathematicians.
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SPECIAL IPC-INVITED LECTURE:

COMPUTERIZATION OF SCHOOLS AND
MATHEMATICAL EDUCATION

Andrei Ershov (USSR)

1. Introduction

It is not accidental that the Organizing Committee has chosen a computer
terminal as an emblem of our Congress.

But computerization is not an easy path. A very fresh and pertinent experience
was the computerized registration procedure last Tuesday.

Computerization puts the teacher in a vulnerable and unstable position.

Nevertheless, computerization is like a tidal wave or a warming up of the
climate: you can neither hide nor prevent it but only cope with it.

So I am going to speak about relations between Education, Mathematics and
Informatics.

Professionally I am neither a teacher, nor a mathematician. So I especially
appreciate the honourable invitation from the International Program Committee
to deliver this lecture. But I must explain why I took the risk of accepting.

Two personal reasons and one general.

The first reason is that working professionally in Informatics, essentially in
research and development, I was more or less constantly engaged in what is called
a mathematical and educational practice.

The second reason is that, getting a mathematical education and having the
happy privilege to be for 4 years a member of the Mathematical Division of the
Soviet Academy, I felt and, possibly, possessed a flow of powerful mathematical
and educational ideas from many great authors and personalities. I can’t avoid
mentioning some of them: Poincare and Lusin, Courant and Kolmogorov, Kleene
and Markov, von Neumann and Bourbaki, Vigotsky and Piaget.
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To speak about sources, one recollection. For me, this Congress is a private
celebration of the 30th anniversary of my first trip abroad, namely to Hungary, in
1958. I had just been a student — seven years of study in the mathematical faculty
of Moscow University.

You know the Russian mathematical literature never suffered an inferiority
complex. Nevertheless my bookshelf was for all those years well populated by
Hungarian authors. Only among the basic books I had

Pélya and Szegd for Calculus

Sz8kefalvi-Nagy for Functional Analysis

Rézsa Péter for Recursive Fanctions

Lészlé Kalmdr for Logic, and not forgetting

John von Neumann’s classic on computers.

Really, there is no better place to conduct this Congress on Mathematical
Education.

As to the third, general reason, I want to say that Mathematics is not just a
material science for Informatics. There has been a steady tendency towards the
mathematization of Informatics in the course of its formation and maturation . On
the other hand, there is more and more evidence that some methods of Informatics,
some information technologies penetrate into Mathematics, influencing its style,
technique, and content.

My elaboration of this theme will be put into two global contexts.

The first context is the State Program of Introducing Computers and Infor-
matics into school education in the USSR.

The first three years of rather intensive work in this direction have allowed us to
accumulate some first experiences and gain an irreversible momentum. Moreover,
this work has resulted in the development of a conception of school computerization
as a long-term process with explicitly stated intermediate and final goals. I hope,
some facts on the Program and some formulations from the Conception will be
interesting to this audience.

The second context is the very active process of studying and discussing
computers in mathematical education [1-4] and my conclusions rely heavily on
what can be found in the corresponding material.

And I am happy to observe that computers in mathematics is one of the
prevailing activities at this Congress.

So, my plan for the main part of the lecture is as follows:

Some evidence about the Computerization Program in the USSR.

Some formulations on Computers in Education from the Conception.

Then I plan to mention the major problems of mathematical education. In
the spirit of our philosophy they will be formulated as a list of contradictions or
dilemmas. In this context the so-called Kolmogorov Reform of School Mathematics
in the USSR will be discussed.

The positive part of my presentation will consist of a list of theses on the
impact of computers and Informatics on Mathematics and its teaching.
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And I will conclude with a statement about Language, Mathematics and
Informatics as three basic major subjects in School Education.

II. The program

Now, about the National Program of Computerization.

The Program was launched by adopting a governmental decision to introduce
promptly and frontally in all schools a 70 hour course in grades 9 and 10 on
“Fundamentals of Informatics and Computers”.

In a sense this decision symbolized the beginning of Perestroika: in February
1985 Mikhail Sergeevich Gorbachev submitted the decision to the Politbureau
as Chairman of the Commission on School Reform and on March 11 he was
elected Secretary General of the Party and started to steer the country towards
revolutionary changes.

This strong decision had many scientific and educational motivations behind it
(see, for example, [7]) but essentially, it was a political decision. It triggered all the
machinery in the educational sys