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PREFACE / PREFACIO

This book comprises selected lectures from the 8th International
Congress on Mathematical Education (ICME-8), held in Sevilla, Spain,
from July 14 to 21, 1996. There were some 56 "regular lectures" given
during ICME-8 and 33 of them are included in the present volume, with
authors coming from 19 different countries. (We do not take into account
here the four “plenary lectures" presented at ICME-8, which are to be
found in the book of Proceedings of ICME-8.)

As was the case with previous ICMEs, the Executive Committee of
the International Commission on Mathematical Instruction (ICMI)
appointed an International Programme Committee (IPC) for ICME-8,
responsible for setting up the structure of the scientific programme and for
inviting the main speakers and the organizers of various components of
the programme. One of the first decisions of the IPC was to maintain the
practice reintroduced at the previous ICME congress (ICME-7, Québec,
1992) of having an important number of lectures, in addition to the
customary plenary lectures or the mini-lecture presentations to small
groups. While adhering to the principle that an essential aspect of the
quadrennial ICME congresses is the opportunity they provide for face-to-
face debate and discussion among mathematics educators, either in the
context of Working Groups, Topic Groups, Poster Presentations or
informal gatherings, the IPC felt the "traditional lecture", in spite of all its
well-recognized deficiencies, still provides an excellent medium for putting
participants in contact with key issues in mathematics education.

The ICME-8 IPC therefore reserved six one-hour slots on the
programme for the regular lectures, about 10 presentations being
scheduled simultaneously each time. Invitations were issued to a
selection of the best theoreticians, researchers and practitioners in the
field around the world. Speakers were chosen according to their
professional quality, theircommunication abilities, the selection of topics
and the levels of education the IPC wished to cover. The written versions
of thirty-three of these presentations make up this volume.

The reader should be aware that the set of lectures we offer here is
in many ways biased. It is a proper subset of the lectures presented at
ICME-8, which were themselves only one component in the scientific
programme. We make pretence that it gives a complete picture neither of
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the field of mathematics education nor of the ICME-8 programme as a
whole. The reader should consult the ICME-8 Proceedings to see how the
lecture topics complement the topics treated in other programme strands:
the plenary lectures, the Working Groups, the Topics Groups, the reports
of ongoing work by the official Study Groups of ICMI, the reports of the
ICMI Studies, etc. Here, however, the reader will find written versions of
some fine talks well worth reading and reflecting upon.

As was the case with ICME-7, the Sevilla congress results in the
production of two books, one being the Proceedings of ICME-8
themselves and the other, the present volume of selected lectures. A
difficulty in the production of such a book is that for many authors, English
(the "lingua franca" in mathematics education at the international level) is
a second, if not a third, language. Although all efforts have been made to
insure a high level of correction in the written language, it was the policy
not to change authors' style, staying as close as possible to the original
versions.

The editors wish to acknowledge the contribution of a number of
people to the production of this volume. First, and above all, we extend
our thanks and gratitude to the authors themselves: by investing the extra
effort, in addition to the preparation of their oral presentation, necessary for
their presentation to be brought in a written format, they have made this
volume possible. We also wish to thank all the Local Institutions and
sponsors, which made all their best to contribute to the success of ICME 8.

Bernard R. Hodgson

for the Editing Committee:

Claudi Alsina, José M? Alvarez Falcén, Bernard R. Hodgson,
Colette Laborde, Antonio Pérez Jiménez.
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LAS CONCEPCIONES SOCIOEPISTEMOLOGICAS
DE FRECHET EN SUS INVESTIGACIONES SOBRE LA
TEORIA DE LOS ESPACIOS ABSTRACTOS
Y LA TOPOLOGIA GENERAL

Luis Carlos Arboleda A.

Luis Cornelio Recalde C.1

1. Introducciéon

La forma como el cientifico se representa su proyecto investigativo
es algo que llama constantemente el interés en los estudios sociales
sobre la ciencia. Uno de los aspectos importantes del andlisis sobre las
condiciones socioculturales de la producciéon de las teorias, es la
explicacion del sistema de valores y conceptos del matematico creador vy,
muy particularmente, de los procedimientos practicos y conceptuales que
pudieron haberlo conducido a ciertos resultados empleando determinadas
estrategias.

Con el término de representacion nos referimos, de manera
aproximada, a las formas en las que se revisten los objetos de los mundos
matematicos en el ambito de la conciencia, por efecto de la intermediacién
de doble via de la practica matematica de los individuos con un sistema
de valores y creencias (sociales, culturales, religiosas, etc.). Que algunos
matematicos mantengan fervientemente que el Unico objetivo de la ciencia
-como decia Jacobi refiriéndose a la teoria de nimeros- es ‘la bisqueda del
honor del espiritu humano2, o que otros crean que incluso las nociones
mas simples como los numeros enteros no son intuiciones puras o juicios
sintéticos a priori, sino ‘conceptos primigenios que surgieron de
complicadas nociones humanas’>, unas y otras son representaciones

1 Profesores-investigadores del Grupo de Historia de las Matematicas -
Departamento de Matematicas-, y del Grupo de Educacién
Matematica—Instituto de Educacién y Pedagogia-, Universidad del Valle, Cali,
Colombia.

2 Dieudonné, J., Pour ’honneur de I'esprit humain. Les mathématiques
aujourd’hui. Hachette, Paris, 1987.

3 Fréchet, M., Les mathématiques et le concret. P.U.F., Paris, 1955; idea
expresada en el capitulo sobre los Origenes de las nociones matemaéticas, al
cual volveremos paginas mas adelante.
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organicamente relacionadas con estrategias cognitivas e investigativas
contrapuestas. Uno y otro tipo de enfoques son construcciones
articuladas estrechamente por configuraciones sociales, como puede
comprobarse a través de una indagacion cuidadosa de caracter historico
y cultural.

El propdsito de la presente comunicaciéon es aprovechar algunos
materiales documentales de la investigacidn socio-histérica que adelantan
los autores sobre la teoria de los Espacios Abstractos del matematico
francés Maurice Fréchet (1878-1973)4, con el fin de analizar algunas de
las representaciones del cientifico sobre su obra. Especialmente nos
interesa destacar aquellas apreciaciones y valoraciones filoséficas de
Fréchet sobre la relevancia para la creacién matematica, de los procesos
de generalizacién fundamentados en lo concreto de las modelizaciones
abstractas con soporte empirico.

Una adecuada comprension sobre este problema puede contribuir
a explicar a matematicos, filésofos, historiadores, socidlogos vy
educadores matematicos, la naturaleza y funcién de los factores del
contexto social y cultural en la formacién de pensamiento matematico. En
particular en el campo de la educacién matematica, es sabido que la
transposicion didactica tiene como propdsito explicar los mecanismos
que permiten el paso de un objeto de saber a un objeto de ensefianza. En
el estudio de caso de la nocion de distancia de Fréchet,® se sefala una
via fecunda para explorar estrategias didacticas viables sobre esta
nocién, las cuales tienen en cuenta aquellas representaciones del
matematico que son asociadas con el pensamiento creador, y no
solamente las ideas acabadas que se establecen por acuerdos
consensuales entre la comunidad matematica. Tales acuerdos constituyen
el llamado saber erudito (savoir savant) que es, por naturaleza,
despersonalizado. Una de esas representaciones consisitid, segun el
mismo Fréchet, en generalizar en los espacios abstractos una idea muy
simple: que una cualidad (la proximidad o vecindad en torno a un
elemento) se puede expresar por un nimero (la nocién de distancia).

4 Arboleda L.C, y L.C. Recalde. Matematicas y experiencia: La generalizacion
de la nocién de espacio abstracto en Maurice Fréchet. Proyecto financiado
por Colciencias y la Universidad del Valle. 1996-1998

5 Chevallard Y., y Joshua M.-A., Un exemple d’analyse de la transposition
didactique: la notion de distance, Recherches en didactique des
mathématiques, vol. 3, 2, 1982
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2.Fréchet y la Matematica de las Formas.

En lo que sigue nos limitaremos a analizar las ideas de Fréchet
sobre su producciéon matematica a partir de dos ejes fundamentales que,
como veremos, se presentan intimamente ligados al observador histérico:

i) En relacién con el programa filoséfico de orientacién leibniziana
que articula su obra, y

ii)En relacién con sus concepciones sobre el origen
fundamentalmente empirico de la produccidon matematica en
general, y de la suya en patrticular.

Estas ideas de Fréchet se encuentran reunidas basicamente en dos
publicaciones suyas: la Noticia sobre sus trabajos cientificos 6, y Las
Matematicas y lo Concreto 7. La primera es un ensayo sobre su
contribucion matemaética durante el periodo 1904-1928. En este trabajo
Fréchet explica lo especifico y original de la misma a los evaluadores del
concurso para ser admitido como miembro correspondiente de la
Academia de Ciencias de Paris. La segunda es una recopilacién de
articulos divulgativos y pedagégicos elaborados a lo largo de su carrera
como investigador y profesor. Entre ellos, hay dos particularmente Utiles
para los propdsitos de la presente comunicacién en cuanto abordan temas
relacionados con sus concepciones empiristas: Desaxiomatizacion de la
ciencia y Origenes de las nociones matemadticas. Este ultimo articulo
contiene, como aspecto a destacar, una resefia del debate que mantuvo
Fréchet con algunos colegas y filésofos contemporaneos suyos (Enriques,
Gonseth, Bernays, Lukasiewisz, Wavre y Kérékjarto), en las Entretiens
de Ziirich, realizadas entre el 6 y el 9 de diciembre de 1938, alrededor del
tema de los fundamentos y el método de las ciencias matematicas.

En la Noticia, Fréchet escoge el siguiente epigrafe de Leibniz para
explicarle a sus colegas de la Academia, la naturaleza del programa
filosdfico que articula y soporta su contribucion en diversos campos
(analisis funcional, andlisis general, analisis clasico, geometria,
probabilidad y matematicas aplicadas):

Quienes prefieren avanzar en los detalles de las ciencias
deprecian las investigaciones abstractas y generales, y quienes
profundizan en los principios, entran raramente en
particularidades. En cuanto a mi, le doy igual importancia a lo uno
y a lo otro, porque he descubierto que el andlisis de los principios
permite el avance en las invenciones particulares.

6 Fréchet, Maurice. Notice sur les travaux scientifiques. Paris. Hermann, 1933.
7 Fréchet, Maurice. Les mathématiques et le concret. Paris. PUF, 1955.
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Fréchet explica enseguida las razones por las cuales encuentra que
su obra se enmarca en el programa filoséfico leibniziano sobre las
matematicas. En primer lugar, se destaca el interés de ambos en orientar
las investigaciones dentro de estrategias de generalizacion especificas;
Leibniz en el andlisis infinitesimal de R, y Fréchet en el andlisis general de
espacios de naturaleza cualquiera. Los resultados obtenidos por Fréchet
durante el periodo 1904-1928 al aplicar este enfoque de generalizacion a
distintas teorias matematicas (topologia general, andlisis funcional, teoria
de funciones, etc.), fueron sistematizados en su célebre obra de 1928
sobre los Espacios Abstractos8.

El andlisis de los principios que se preservan en las
generalizaciones hace parte de un programa filoséfico con una cobertura
que va mas alla del campo matematico. La idea de Leibniz era elaborar
una especie de alfabeto del pensamiento humano, de tal suerte que a
partir de él se pudiera inferir y discutir sobre cualquier aspecto, en lo que
denomind charasteristica generalis (caracteristica universal). Buscaba
crear una Mathesis universalis con el propdsito de registrar en el
pensamiento simbdlico aquello que la percepcién nos permite percibir, ya
que “todo lo que la imaginacion empirica abarca a partir de las figuras, lo
deriva el calculo de signos por una demostracién inequivoca; e incluso
conduge a otras consecuencias a las que la facultad de imaginar no puede
llegar™.

Fréchet comparte el propdsito central del programa leibniziano de
desarrollar esa matematicas de las formas que permitiera registrar en el
pensamiento simbdlico aquello que la percepcion nos permite observarl0,
La idea de una matematica universal articula sus estrategias
investigativas en cuanto a la construccién de un lenguaje matematico
integrador de una red conceptual de teorias especializadas, y que en los
aflos 1920 se centraban en el Analisis General de los Espacios
Abstractos. Pero también se haya presente en actividades que Fréchet
emprendié sistematicamente como proyecto de vida, en tanto ciudadano
y como intelectual.

Recordemos que Fréchet fue durante muchos afos, promotor y
organizador de la Unién Universal de Esperanto, lengua en la cual

8 Fréchet, Maurice. Les espaces abstraits et leur théorie considérée
comme introduction a I'Analyse Générale. Paris. Gauthier-Villars, 1928.
9 Leibniz citado en Granger, Guilles-Gaston. Formes, opérations, objets. Paris.
Mathesis, Vrin. 1994; capitulo
“Philosophie et Mathématique Leibniziennes”, p.p. 216.
10 | eibniz citado en Granger, op. cit., p.216.
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publicé interesantes resultados matematicos. Si bien esto implicaba
reducir el impacto cientifico esperado en la circulaciéon de tales
investigaciones, Fréchet queria asi convencer a sus colegas de que era
posible y deseable escoger una lengua “ordinaria” muy general y tal vez
mas apropiada que otras para comunicar enunciados matematicos del
nivel “universal” de los suyos.

Como sabemos,!1 la creacion del célculo leibniziano reposa sobre
algunos principios légico-filoséficos: la combinatoria (en la cual
procedimientos como la diferenciacion se establecen al margen de
consideraciones infinitesimales y en relacién con las propiedades del
triangulo caracteristico de Pascal); la ley de continuidad (principio
metafisico que permite la extension de propiedades de lo finito a lo infinito;
permite entender, por ejemplo, cémo la tangente conserva en el limite las
propiedades de la secante a través de la relacién invariante entre la
subtangente y la ordenada); y el conocimiento de los objetos matematico
a través de su representacion en el universo simbdlico. En relacién con
este ultimo principio, la solucidon mas general posible de un problema, por
el ejemplo el de la tangente, pasa por encontrar un algoritmo en el cual se
expresen simbdlicamente todos los pasos implicados en el proceso de
generalizacion.

En el contexto de este programa filoséfico se entiende mejor la
manera en que Leibniz introdujo las conocidas técnicas y simbolismos del
calculo, como las notaciones “/” y “d” para la integracién y la
diferenciacién, entendidas éstas en tanto operaciones reciprocas.
También sabemos que precisamente la fuerza notacional del calculo de
Leibniz jugdé un papel determinante en la aceptacion de su enfoque con
relacién al de Newton. Entre otras cosas porque siendo para Leibniz los
simbolos “/” y “d” muy préximos a nuestra idea actual de operadores, se
llegaba facilmente a resultados fecundos en el andlisis. Por su parte, la
engorrosa metodologia newtoniana de las fluxiones y la notacién de
punto, complicaba indtiimente los procesos. En fin, mientras que el
enfoque de Newton estaba referido a variaciones infinitesimales en el
tiempo, el de Leibniz trataba variables mas generales en las cuales, no
sélo el tiempo podia ser tomado como un caso particular, sino que su
manejo era independiente de consideraciones infinitesimales.

No deja de llamar la atencién que en cierta medida algunos de
estos principios I6gico-filoséficos se encuentran subyacentes a la creacion

1 ver, por ejemplo, Granger, op cit, y Belaval, Yvon. Leibniz critique de
Descartes. Paris, Gallimard. 1960; capitulo “La géométrie algébrique et le
calcul infinitésimal”
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matematica mas general y abstracta de Fréchet. Asi como se los halla
contribuyendo y validando al campo teérico del célculo infinitesimal,
también es posible reconocerles esta misma funcién dentro del proyecto
de establecer el analisis general, entendido como el estudio de las
correspondencias entre variables de naturaleza cualquiera. En la obra de
Fréchet se realiza el propdsito leibniziano de encontrar en el andlisis mas
general y absoluto de los principios (la matemética de las formas), la
explicacion mas fecunda de los objetos particulares a la cual se refiere el
ya citado epigrafe de la Noticia.

3. La diferencial de Fréchet y la generalizacion de principios utiles y
sencillos.

Una excelente ilustracion de la filiacién de sus investigaciones
sobre el andlisis en los espacios abstractos con el programa de Leibniz,
es la llamada ‘diferencial de Fréchet', o diferencial de una funcién definida
sobre un espacio particular de funciones, con la bien conocida aplicacion
al caso de una transformacién definida entre partes de dos espacios
lineales normados. Refiriéndose a los procedimientos y criterios que
utilizé en esta extension de la diferencial a los espacios abstractos,
Fréchet recalca que inicialmente su interés se orienté en la direccion de
generalizar aquel principio ‘Util y necesario’ que originé la nocion de
diferencial en el céalculo infinitesimal; esto es, que la diferencial dF es la
funcién méas simple con respecto a la variaciéon Ax de la variable, y mas
aproximada a la variacion AF de la funcién. 12

En su noticia necrolégica de 1977 sobre Fréchet, Szolem
Mandelbrojt escribié: 13

12 En su conferencia de 1925 en Berna sobre la Désaxiomatisation de la science
(IN: Mathématique et le Concret, op. cit., pp. 8-9), Fréchet afirma que con
esta definicién habia querido retornar a la concepcién de los inicios del calculo
diferencial, y darle a la diferencial un uso mas intuitivo y riguroso.

13 Notice nécrologique sur M.F.. par Szolem Mandelbrojt, le 19 novembre 1977.
IN: Dossier Administratif, Fonds Fréchet, Académie des Sciences, Paris. En un
trabajo posterior analizaremos con detenimiento los procedimientos de
Volterra y Fréchet en relacién con dos ‘estilos’ diferentes de generalizar la
diferencial. Anotemos por el momento como hecho interesante, que
Mandelbrojt encontré en su Noticia razones para establecer la conexién entre
las generalizaciones de Fréchet y la busqueda consecuente de un ideal
leibniziano que habria caracterizado las distintas facetas intelectuales,
matematicas y humanas de su vida.
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En el Andlisis funcional concebido por Vito Volterra (actualmente se
le da ese nombre a otra rama mds general de las matematicas), se
estudian las funciones cuya variable es una linea o una funcidn,
llamadas ‘funcionales’ por Hadamard. Al explorar ese nuevo
dominio Volterra empled el método del paso de lo finito a lo infinito,
el cual no es siempre riguroso en esta disciplina.

Y destacando entre otras contribuciones suyas al analisis funcional

la introduccion de la diferencial abstracta de Fréchet, Mandelbrojt agregé
enseguida lo siguiente:

Fréchet comenzo sus investigaciones a este respecto utilizando un
meétodo directo, general y muy riguroso. Sustituyé la definicién de
la diferencial de una funcién de linea por una definicién valedera en
casos mucho mds amplios.

En efecto, trabajando en un espacio de funciones de linea, Vito

Volterra habia introducido en 1887 las nociones de derivada y diferencial.
Volterra empieza analizando la variacién de F( f (x)), con pequefios
cambios de la funcién f en la vecindad de un punto particular x. Volterra
define la derivada de F en relacién a f en el punto x, como la funcional
F’(f ,x),lacual es continua en cada variable bajo ciertas condiciones

14 v. volterra, Sopra le funzioni che dipendono da altre funzioni, Rend. R. Accad.

15

dei Lincei, ser. 4, vol. 3 (1887); tres notas respectivamente en las pp. 97-105,
141-146, 153-158.

La evolucién de los principales resultados sobre la diferencial hasta alcanzar
su estado canénico, se encuentra expuesta con todo detalle en: Taylor, A.E.,
A Study of Maurice Fréchet Ill: Fréchet as Analyst, 1909-1930, Arch. for
History of Exact Sciences, vol. 37, 1987; pp. 25-76. El estudio de la cuestién
desde la perspectiva italiana -particularmente interesante por la
argumentacion en contra de la polémica explicacién dada por J. Dieudonné a
la contribucién de Volterra a los inicios del Anélisis funcional-, se encuentra,
entre otros, en Fichera, G., Vito Volterra and the birth of functional analysis. IN:
Pier, J.-P. (ed.), Development of Mathematics, 1900-1950, Birkhauser,
Berlin, 1994; pp. 171-183. En una préxima publicacién los autores del
presente trabajo haran un balance sobre estas diversas interpretaciones, en
el marco de su investigacion sobre las ideas de Fréchet en relacién con el
problema de las generalizaciones matemaéticas a partir de la experiencia.
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restrictivas, obteniendo a partir de alli la expresion:

Li F(f+eg)-F(f)
m e

g -0

b
= [F/(f.) g(x)dx

donde f y g estan definidas sobre [a, b]. La expresion € g(x) es
llamada la variacién de f{x), y sera denotada por & f. De lo anterior se sigue
que:

b
F(f +e8)~F(g)=¢ [F'(f,x) g(x)dx+p

donde p es tal que p/e — 0 cuando € — 0.
b

A la expresion 8 F =¢ JF’(f,x) g(x)dx
a

Volterra la llamaréa ‘primera variacion’ de F.

En 1902, Hadamard muestra que la definicién de Volterra es
demasiado restrictiva, pues no puede extenderse a casos mas generales
de funcionales en los cuales él mismo estaba interesado. Propone
someter la definicién a hipétesis mas generales, para ampliar su campo
de incidencia y posibilitar asi que a tales funcionales se les pudiesen
aplicar los métodos del calculo infinitesimal. En particular Hadamard
recomienda que se tengan en cuenta las funcionales F cuya variacion es
una funcional lineal de la variacion de f.

En 1912, Fréchet, retoma las ideas de Hadamard con respecto a la
diferencial abstracta como parte de su programa de extender los
principios fundamentales del calculo diferencial al céalculo funcional. Es
una comunicacién enviada a Volterra el 30 de julio de 1913, Fréchet
explica el método empleado por €l para obtener tal generalizacion: 16

16 Nurzia, L, La Corrispondenza tra Vito Volterra e Maurice Fréchet sui
Fondamenti dell’Analisis Funzionali. Revista di storia della scienza, vol. 4, 3,
1987; pp. 391-416. En este trabajo se publican por primera vez apartes de la
correspondencia de Fréchet a Volterra que aportan informacion histérica
importante para valorar las contribuciones de estos autores a los comienzos del
andlisis funcional, asi como para comprender las diferencias de ‘estilos
cognitivos’, motivaciones y representaciones —particularmente de Fréchet- sobre
la naturaleza de los conceptos y del razonamiento matematico
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(...) La idea que constituye la sustancia de mi articulo y que me
parece original, consiste en adoptar el punto de vista de Hadamard
[recordemos que Hadamard habia propuesto atender a la variacion
de f ] pero aplicdndolo no a la variacion de f (x) sino a su
crecimiento (...)

Mas adelante, en 1914, Fréchet escribe:

Me incliné pues a tratar de retomar la antigua definicion,
generalmente olvidada hoy en dia: la diferencial es la parte
principal del crecimiento de la funcién cuando el crecimiento de la
variable se considera infinitamente pequerio.

Un paso decisivo para llegar a la generalizacion del tipo que
buscaba Fréchet, consistié en apoyarse en una definicion previa de la
diferencial total de una funcién de varias variables. En este aspecto,
Fréchet incorpora un nuevo elemento teérico en la definicion de la
diferencial de una funcién £ (x, y), al hacer depender la diferencial de la
existencia de una funcién homogénea y de primer grado con relacion a los
crecimientos Ax, Ay. Se dice que la funciéon f(x, y) tiene una diferencial
en (x, ), si existe una funcién lineal homogénea

A Ax + B Ay, tal que:

%(f(x+Ax,y+Ay)—f(x,y)—AAx—BAy)=£

donde € — 0, cuando A — 0. La funcién lineal homogénea
[A Ax + B Ay] es la diferencial de f.

La definicién para el caso de la funcional F ( f) que propone
Fréchet, se ‘vislumbra’ ya en la expresion anterior:

F (f) es diferenciable en f'si existe € y una funcional 8F (f; g), lineal
en relacién a g, tal que:

F(f+8)-F(f)—-d(f;g)=eM(g)
donde, M (g) = max|g(x)| en [a, b] y € — 0, cuando M(g) — 0.

Pero Fréchet no se detiene en este nivel de generalizacién de la
diferencial. En 1925 aplica su definicién a una clase de espacios que él
habia introducido afios atrds y que se habian revelado extremamente
importantes en teorias de naturaleza diferente: los ‘espacios distanciados
vectoriales’ o espacios normados lineales:
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Sean E; , E, espacios normados lineales. Si M = f(m) es una
transformacién del punto m de E; en el punto M de E,, y si m, esun
punto interior del conjunto, donde esta definido F(m), se dice que la
transformacion es diferenciable en m, si existe una transformacion lineal
¥ de E; en E, tal que:

F(m, + Am) — F(m)—¥A(m) =¢ || am U, ||

donde U es un vector unitario variable en E, y & — 0, cuando
llam [l — o.

Observemos la expresién simbdlica simple del algoritmo; principio
légico que era caracteristica comun a los procesos de generalizacion y
abstraccion en el anélisis matematico de los siglos XIX y XX. Asi mismo
se puede comprobar la intervencion -en este proceso de definicion de la
diferencial abstracta de Fréchet-, de otros de principios filoséficos como,
la ley de los homogéneos (simbolizacién y manipulacion tedrica distinta
entre variables y cantidades respectivamente comparables), y la
aceptacién de que a nivel de lo general y abstracto —por simetria con lo
que ocurre en el mundo de lo concreto-, también se pueden establecer
relaciones y manipulaciones tedricas entre objetos con un cierto grado de
vaguedad, aproximacion e indeterminismo.

4. Las ideas de Fréchet sobre la relacion de las Matematicas con la
Experiencia.

Ademés de los mencionados principios logico-filoséficos de factura
leibniziana, el campo de representacion de la creacion matematica de
Fréchet nos parece que esta articulado por sus concepciones sobre el
origen empirico de las nociones mas generales y abstractas. Resulta
interesante estudiar la cuestiéon de si existe una cierta recurrencia entre
estos dos 6rdenes de representacion en el sistema de valores y conceptos
matematicos de Fréchet. Es decir, preguntarse hasta qué punto cabe
hablar de las concepciones socioepistemolégicas de Fréchet como factor
movilizador de sus investigaciones sobre la teoria de los espacios
abstractos y la topologia general. Este es un asunto que los autores
abordaran en otros trabajos. Por ahora limitémonos a considerar las
concepciones de Fréchet sobre la naturaleza de los conceptos y el
pensamiento matematico.

10
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Las nociones fundamentales de todas las ramas matematicas son
construidas a partir de la experiencia.'” La experiencia conduce a la
abstraccion, y la abstraccién sustituye y enriquece la experiencia. El
Anadlisis General se fundamenta en ideas que a través de la experiencia
de matematicos en diferentes campos teéricos particulares se revelaron
simples, dtiles y fecundas, pero que sin embargo antes de Fréchet
nadie habia examinado en forma tan sistematica ni en toda su
generalidad. Fréchet reconocié tales ideas “candidatas a generalizacion”,
a través de su propia experiencia y la de su entorno intelectual. Escruté
en las distintas teorias cuéles eran las condiciones necesarias y
suficientes en las que radicaba su éxito; separé los aspectos accesorios
de los fundamentales, y les imprimié a los fundamentales su forma a la
vez simple y fecundidad conceptual. Por ultimo validé sus
generalizaciones de nuevo a través de la experiencia, y comprobd que
permitian desarrollar nuevos campos tedricos y experimentales, al mismo
tiempo que perfeccionaban los ya existentes tanto en el nivel conceptual
como técnico. Veamos las fases del procedimiento de doble via entre
abstraccion y realidad concreta que explica -de acuerdo con Fréchet-, la
dindmica del pensamiento matematico.

La primera etapa de generalizacién a partir de lo concreto se opera
con la sintesis inductiva. Esta tiene que ver con ese a menudo largo
proceso que consiste en articular en un mismo campo tedrico las
versiones particulares que tiene la teoria general en campos restringidos
y hasta entonces inconexos. Muchas veces la generalizacién matematica
se produce mediante procesos de iteracién. Una teoria o modelo
abstracto que es reconocido como valido en la experiencia dentro de
espacios restringidos, se extiende entonces a campos generales, incluso
a espacios de naturaleza cualquiera.

En sus investigaciones cientificas Fréchet utilizé corrientemente
este procedimiento de generacién inductiva sobre nociones simples y
utiles. Como tratamos de demostrarlo en nuestro proyecto, en ello habria
podido influir, aparte de ciertos principios légico-filoséficos, la experiencia
de utilizacion exitosa de este método en los trabajos de andlisis funcional
que hacia comienzos del siglo XX ya habia hecho célebres a matematicos
como Ascoli, Volterra, Arzela e Hilbert, y a su propio maestro Hadamard.
Fréchet tenia la convicciéon profunda de que las generalizaciones se
hacen poco a poco, respondiendo a necesidades del campo teérico, en la

17 Fréchet, M., Entretiens de Zurich, IN: Les Mathématiques et le concret, op.
cit., pp. 11-51.

11
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medida que ellas son reconocidas como tales por los propios
investigadores.

La segunda etapa corresponde a los procedimientos clasicos de la
axiomatizacion de la teoria. A través de esta fase se busca la organizacion
racional del campo tedrico, la reconstruccién del objeto y la reproduccién
del mismo campo. Esta fase es la que permite reemplazar experiencias
directas demasiado dispendiosas o simplemente alejadas del alcance de
nuestras posibilidades empiricas, por experiencias indirectas que se
apoyan en proposiciones de la teoria deductiva. En la tercera fase se
trata de constatar que la teoria abstracta asi generalizada y axiomatizada,
preserva las propiedades fundamentales de la red de teorias particulares
asociadas con la teoria abstracta.

En este punto es necesario hacer una acotacion sobre las
apreciaciones de Fréchet con respecto a los peligros del formalismo
excesivo. En varios de sus trabajos se refiere a la situacion de
autonomizacién del pensamiento abstracto, en virtud de la cual, en la
medida que se extienden los procesos de generalizacion, la comunidad
matemaética se encierra en ella misma, desarrollandose cada vez mas los
conceptos y métodos dentro de un mundo matematico hermético'8. Las
teorias progresivamente se vuelven mas dificiles de relacionar y analizar
de acuerdo con categorias familiares al mundo de la experiencia y de la
vida cotidiana. Como dice Sal Restivo!9, el mundo matematico va
dejando atras los mundos de las representaciones y de los paisajes de
cosas identificables, para reducirse a un mundo de simbolos y notaciones
autoreferenciado.

Fréchet observa esta situacién (el comienzo de la hegemonia de
programa de Hilbert), y alerta sobre el hecho de que las matematicas no
se pueden reducir a su parte deductiva, so pena de convertirlas en un
juego del entendimiento sin ningun alcance practico. Llega incluso a
afirmar que, no obstante todas las ventajas que se le reconocian
al método axiomatico, “seria interesante identificar igualmente una

18 Ppor ejemplo, en su biografia del matemético alsaciano Louis Arbogast (1759-
1803) (IN: Revue du Mois, 1920, pp. 337-362), Fréchet se apoya en las
politicas educativas por las cuales Arbogast abogé en la Convencién Nacional,
para denunciar el dogmatismo del logicismo puro que estaba en boga
entonces sobre todo entre los jévenes investigadores. Decia que si bien tal
dogmatismo podia ser cémodo, correspondia a un programa de trabajo
estrecho. Habia pues, necesidad de luchar por desterrar esas concepciones
de las mentes de los candidatos a la agregacién impara quienes la comodidad
de la l6gica de exposicién era lo portante.

19 Restivo, Sal. The social construction of mathematics. Zentralblatt der mathe-
matik, 1988.
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construccién cientifica basada sobre principios diferentes e incluso
opuestos” (in [4]; op.cit., pp. 3). Su propuesta parece aplicarse en todo
caso a aquellas teorias “que hubieran ya alcanzado un alto grado de
abstraccion”.

Dentro de la concepcién de Fréchet sobre la relacién matematica y
experiencia, se pone en cuestién la creencia generalizada de la
autonomia de las matematicas con respecto a la realidad. Aun en el
trabajo matematico mas abstracto interviene inevitablemente -con un
efecto epistémico determinado sobre la teoria- algun tipo de
representacion de la experiencia. Fréchet constata que la orientacién de
las ciencias matematicas, el sentido hacia donde se producen sus
progresos, no estd condicionada solamente por necesidades internas
(organizacion, sistematizacion, simplificacion de resultados de tales
transformaciones légicas). También son motivadas por demandas
externas, por problemas concretos planteados por la naturaleza y la
técnica.

5. La estrategia comunicativa de Fréchet sobre sus ideas sobre las
matematicas.

Enfrentado como estaba en el periodo de entreguerras, a un
contexto intelectual en el cual se comenzaban a valorar mas los enfoques
estructuralistas, formalistas y axiomaticos, Fréchet se vio conducido a
poner en practica una verdadera estrategia de divulgacion de las
concepciones socio-epistémicas, con orientacién empirica, en las cuales
reposaban sus propias investigaciones. Las ideas que hemos venido
comentando en este trabajo, estan articuladas en funcién de una retdrica
persuasiva que a todas luces utiliza Fréchet para hacer comprender a sus
diferentes interlocutores (académicos, comunidad matematica en general,
profesores, distintos usuarios cientificos y no cientificos), la construccion,
naturaleza y funcién de sus teorias mas abstractas y generales. El gusto
que siempre manifesté por el uso de citaciones de autores consagrados
en la literatura matematica y en la historia de las ciencias, se convierte en
muchos casos en un instrumento privilegiado para reforzar la
argumentacion persuasiva sobre sus concepciones socioepistemoldgicas
o pedagdgicas.

Conviene traer a colacién en esta parte final de la exposicién uno
de los tantos textos y citaciones en los cuales acostumbraba Fréchet
sustentar la defensa de sus delicadas argumentaciones. En el escrito es
el cual propendia claramente por la Desaxiomatizacién de la ciencia20

20 Fréchet, op. cit., p. 10.
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TEACHING AND LEARNING ELEMENTARY ANALYSIS
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I. INTRODUCTION

It is not easy for students to enter the conceptual field of
analysis.Thanks to the educational research carried out in this area during
the last years (Tall, 1991), today we better understand the real nature of
students’ difficulties and we are aware of the general failure of standard
teaching strategies. As a consequence, all over the world, new curricula
are developed, trying to find the way for a meaningful and accessible
entrance into this conceptual field (Artigue & Ervynck, 1992). More intuitive
and experimental approaches relying on the use of new technologies
seem to be widely privileged now. What are their potential and their limits?
What can we learn from the experience of countries where such
approaches were established some years ago? In this text, | would like to
address these important issues.

Firstly, | shall try to synthesize the main results obtained by
didactical research in this area. | do not pretend to be exhaustive but just
try to give a personal view of the present state of the art. Then, | shall
analyse teaching practices and their evolution, by referring to one
particular case : the case of French secondary curricula which, in my
opinion, illustrates the general tendency, fairly well. Finally, | shall come to
the potential and limits of the new approaches, as one can evaluate them
from the French experience.

Il. STUDENTS’ DIFFICULTIES WITH THE CONCEPTUAL FIELD OF
ANALYSIS

Didactical research in this area has evidenced the existence of
strong and resistant difficulties. They have different origins but they tightly
intervene and reinforce mutually, in a kind of complex network.
Nevertheless, in order to facilitate the synthesis, | have chosen to group
them according to three categories, which are the followings :
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« Difficulties linked to the mathematical complexity of the basic
objects of the field : real numbers, functions, sequences, objects which are
still in a construction phase when the official teaching of analysis begins.

« Difficulties linked to the conceptualization of the notion of limit at
the core of the field, and to its technical mastery.

« Difficulties linked to the necessary breach with algebraic thinking.

I1.1. DIFFICULTIES LINKED TO THE BASIC OBJECTS OF THE FIELD:

We cannot consider that the basic objects of analysis are new
notions for students when they enter the field. In France, for instance,
irrational numbers, linear and affine functions are introduced at grades 8
and 9 and, at grade 10, the notion of function becomes a central notion.
Nevertheless, we cannot say that these objects are yet stabilized; on the
contrary, analysis will play an essential role in their conceptualization and
maturation.

Real Numbers

Various pieces of research tend to show that conceptions developed
by students about real numbers are not really adequate. The distinction
between the different categories of numbers remains fuzzy and strongly
dependent from their semiotic representations (Munyazikwiye, 1995).
Moreover, the increasing and uncontrolled use of pocket calculators tends
to reinforce the assimilation real number / decimal number.

At this level of schooling, real numbers are algebraic objects. Real
order is recognized as a dense order but, depending from the context,
students can conciliate this property with the existence of numbers just
before or just after a given number : for instance, 0.999... is often said to
be the number just before 1 ; more than 40% students entering French
universities consider that, if two numbers A and B satisfy the condition :
Yn>0 IA-B|<1/n, they are not necessarily equal, just very close, in some
sense successors. The association between real numbers and the real line
also lacks coherence. Even if a priori students accept the principle of a one
to one correspondence between R and the line, they are not necessarily
convinced that such or such precise number has a place on the line
(Castela, 1996).

Functions

As far as functions are concerned, the situation is even more
complex and it is difficult to summarize in a few words the huge amount of
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existing research results. | will only mention some main categories of
difficulties, which, once more, do not act independently.

» Difficulties in identifying what really a function is and in considering
sequences as functions.

It is well known that the criteria used by students in order to check
functionality are at variance with the formal definition of the notion, even
for students who are able to reproduce this formal definition (Vinner &
Dreyfus, 1989). These criteria depend more from typical examples taken
as prototypes and from associations such as the association : function -
formula or the association function - curve. So, the same object may be
considered as a function or not, depending from the form of its semiotic
representation : for instance, the function f defined by f(x)=2 is not
recognized as a function because the given algebraic expression does not
depend from X, but is considered as a function if given through its graphic
representation as it is represented by a straight line. Such phenomena led
researchers to differentiate between what they call « concept definition »
and what they call « concept image » (Tall &Vinner, 1981).

» Difficulties in going beyond a process conception of functions and
being able to link flexibly the process and the object dimension of this
concept, and develop with respect to it a proceptual view (Tall & Thomas,
1991).

Research clearly shows the qualitative gap existing between these
two levels of conceptualization : process level and object level (Sfard,
1992) (Dubinsky & Harel, 1992). One can trace it, for instance, in the
difficulties students often meet at considering as equal functions defined
by two equivalent processes, or at working with functions defined by a
general property. Mathematical work in analysis becomes very difficult if
students can only rely on a process view of functions, as they have to
engage them as objects, in more complex processes (such as integration,
differentiation...) and as they also have to consider not only particular
objects but classes of functions defined by specific properties : continuous,
C1, Riemann integrable ...functions.

« Difficulties in linking the different semiotic registers which allow us
to represent and work out functions.

These difficulties have been extensively analyzed (Romberg,
Carpenter, Fennema, 1994), both those related to the translation from one
semiotic register to another one, especially from the graphical register to
the algebraic one, and those related to the use of information referring to
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different notions within a given register : function and its derivative, in the
graphical register, for example. Research has also evidenced the poor
sensitivity of usual teaching to these difficulties and nicely explained how
these practices tend to reinforce difficulties by the way they treat graphical
representations and the low status they give to graphical reasoning.

« Difficulties in going beyond numerical and algebraic modes of
thinking.

This category of difficulties is less mentioned in the literature,
perhaps because students are rarely given the responsibility of the kind of
thinking they have to develop in problem solving. Nevertheless, it is an
essential one as analysis is, since Euler at least and his famous book
«Introductio in analysin infinitorum», a mathematical field organized
around the notion of function, around functional thinking. Current research
in France (Pihoué, 1996) tends to prove that, when entering grade 11,
students who have been exposed to functions during three years at least,
do not really see the interest and economy of functional thinking. For a
great majority, it remains a simple matter of didactic contract.

I1.2. DIFFICULTIES LINKED TO THE CONCEPT OF LIMIT

Difficulties students must face are not reduced to this first category.
Those associated to the conceptualization of the notion of limit are well
documented in the research literature (Cornu, 1991). As regards this
specific domain, it has to be noticed that several researchers refer to the
notion of epistemological obstacle introduced by the philosopher Gaston
Bachelard (Sierpinska, 1988), (Schneider, 1991). According to Bachelard,
scientific knowledge is not built in a continuous process but results from
the rejection of previous forms of knowledge, which constitute
«epistemological obstacles ». So these authors make the hypothesis that
some learning difficulties, especially the more resistant ones, result from
forms of knowledge, which have been, for a time, coherent and efficient in
social or scholar contexts met by students. In other words, they focus on
difficulties which can be expressed as resulting from coherent and locally
efficient forms of knowledge, appearing both in the historical development
of the concept and in its current learning, even if they do not take exactly
the same form, due to evident cultural differences. -

As far as limits are concerned, the different authors seem to agree
on the following epistemological obstacles at least :

« the common sense of the word « limit » which induces resistant
conceptions of the limit as a barrier or as the last term of a process, or
tends to restrict convergence to monotonous convergence,
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* the over-generalization of properties of finite processes to infinite
processes, according to the continuity principle stated by Leibniz,

* the strength of a geometry of forms which prevent from clearly
identifying the objects involved in the limit process and their underlying
topology. This makes difficult the subtle game between the numerical and
geometrical settings at play in the limit process.

The strength of such an obstacle is attested by the difficulties
encountered by students and even graduate students when they are
asked the following unfamiliar question : why the same method : cutting a
sphere into small slices and approximating it by the corresponding pile of
small cylinders, then taking the limit, gives a correct value for the volume
of the sphere and an incorrect value for its area ? As the pile of cylinders
has the sphere as evident geometrical limit, most of them do not under-
stand why the different magnitudes associated to the pile of cylinders do
not necessarily converge towards the corresponding magnitudes for the
sphere !

In the research literature about limits, the identification of
epistemological obstacles plays an important role, but students’ difficulties
cannot be reduced to those relevant of this particular category. The
concept of limit, as the concept of function, has two facets : a process facet
and an object facet and the ability to cope efficiently with these two facets
requires cognitive processes whose complexity and difficulty are well
known, now. This fact contributes to explain why students, all over the
world, have so strong difficulties in identifying 0.999... and 1. The first
semiotic representation 0.999... is obviously of a process type and the
second of an object type. Equaling the two imposes not to be trapped by
these semiotic characteristics, it imposes to be able to see beyond the
infinite process described by 0.999..., the number created by this process
and detached from it.

Another important category of difficulties arises from the
characteristics of the formal definition of the concept, at least in the
standard analysis which is taught nowadays : its logical complexity and the
fact that it requires to reverse the direction of the function process which
goes from the variable x to the value of the function f(x). But, beyond these
formal characteristics, there is one essential point : between an intuitive
conception of limits and a formal conception, there is a major qualitative
gap. The formal concept of limit is a concept which partially breaks with
previous conceptions of the same notion. Its role as unifying concept, as
foundational concept is as important, perhaps more important than its
productive role in problem solving. We meet there an epistemological
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dimension of the concept whose didactic transposition is not evident. In
fact, some re-searchers such as A.Robert (Robert & Robinet, 1996), have
got the conviction that it needs specific mediations, at a meta-level. Some
relation-ship could certainly be made with the ideas developed by Vigotsky
about the formation of scientific concepts.

I.3. DIFFICULTIES LINKED TO THE NECESSARY BREACH WITH
ALGEBRAIC THINKING.

Mathematical activity in analysis, strongly relies on algebraic skills
and competencies but, at the same time, entrance in « analysis thinking »
requires to take some distance from algebraic thinking (Legrand, 1993).
The breach between algebraic thinking and analytic thinking has various
different dimensions but | shall limit to some essential points.

Firstly, in order to enter analysis thinking and be efficient in it, one
has to develop another vision of equality, to develop and master new
techniques for proving equalities. Note that a similar change was
evidenced by didactical research in the transition from numerical thinking
to algebraic thinking. Briefly speaking, in algebra, in order to prove that two
expressions a(x) and b(x) are equal, the standard strategy is the following:
to transform one or the two of them by successive equivalencies, up to
obtain two obviously equivalent expressions, or to transform their
difference (resp. quotient) up to obtain 0 (resp. 1). In analysis, of course if
one does not restrict analysis to its algebraic part, this strategy is often out
of range or at least not the most economic one, as we do not know the
objects of analysis as we know the algebraic ones and as we often work
with local properties. We have to develop a vision of equality linked to local
« infinite proximity », that is to say linked to the fact that if : Ve>0 d(A,B)<e,
for an adequate distance d, A=B. As a consequence, inequalities are
taking in analysis a predominant role over equalities and reasoning locally
by sufficient conditions on algebraic expressions becomes a fundamental
mode of reasoning.

For instance, if you have to prove that there exists a neighborhood
of xq such that : a(x)<b(x), you do not try to solve this inequality as you
would certainly do in algebra. You transform it by introducing successive
expressions : a4(x), as(x)... an(x), and by reducing if necessary the initial
neighborhood such as locally : a(x) < a4 (X) < ... < ap(x), up to get the
evidence that for some neighborhood of Xg, you can assure : an(x) < b(x).
Each step of the process can require difficult choices : you have to accept
to loose information on a(x), but not too much as you want to stay locally
under b(x) and you have to combine these choices with a subtle game on
neighborhoods.
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Looking at these changes, at the underlying increase in technical
difficulty, helps us to understand better the distance which separates the
ability to articulate the formal definition of the limit, even to illustrate it by
examples and counter-examples, by graphical representations, from the
ability to technically master this definition, that is to say to be able to use
it as an operational tool in problem solving and proofs.

In order to close this section, | would like to stress another
dimension of this breach between ancient modes of thinking and analytical
thinking. Entering the world of analysis requires also to reconstruct objects
which were familiar, but in other worlds. The notion of tangent provides us
with a typical example of such necessary reconstruction. As showh by
(Castela, 1995), the educational system, in France at least, is not sensitive
to this problem and this poor sensitivity has evident negative effects.

lll. THE EVOLUTION OF FRENCH SECONDARY CURRICULA

lil.1. THE 1902 REFORM :
A PRAGMATIC AND ALGEBRAIC APPROACH TO ANALYSIS

As in many other countries, analysis appeared in the classical
secondary curriculum at the beginning of this century with the 1902 reform
(Artigue, 1996). This was a successful introduction, supported by the most
eminent mathematicians of the time : Poincaré, Borel, Hadamard... not to
quote the others, as attested by the ICMI study devoted to these questions
ten years after (Beke, 1914).

For the mathematicians involved in the reform process, taught
analysis had to be rigorous, free from any kind of metaphysics (thus from
any kind of infinitesimals), but, at the same time, it had to be accessible to
students and useful, both for mathematics and physical sciences. The
following quotations from a famous conference given by H.Poincaré on
mathematical definitions (Poincaré, 1904) and from the report of the ICMI
study illustrate these positions :

« No doubt, it is difficult for a teacher to teach something which does
not satisfy him entirely, but the satisfaction of the teacher is not the
unique goal of teaching : one has at first to take care of what is the
mind of the student and what one wants it to become » (Poincaré)
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« Our main duty is to introduce the notions of differential and
integral calculus in an intuitive way, by starting from geometrical and
mechanical considerations, and gradually rise to the necessary
abstraction. All our affirmations have to be true, but we do not have
to target the whole truth. » (Beke)

These mathematicians were convinced that it was possible to
develop a curriculum in analysis coherent with these principles without
major difficulties and, with regard to the notion of limit, one can read in the
final report of the ICME study :

« The notion of limit is so present in secondary teaching and even
at beginning levels (unlimited decimal fractions, area of the circle,
logarithm, geometrical series...) that its general definition would not
be likely to occasion any difficulty. »

What was taught in fact, at that time, was standard calculus, but we
have to be aware that the increase in power and rigour offered by this
algebraic analysis for solving classical problems at secondary level was so
evident that the interest of this new calculus could not be denied.

lll.2. THE SIXTIES’ REFORMS AND THE NEW MATH REFORM:
TOWARDS A FORMAL APPROACH OF ANALYSIS

The curriculum remained stable until the beginning of the sixties. At
that time, structuralism was becoming dominant. Mathematicians had
discovered the power of algebraic structures and foundation issues were
taking a predominant role. In France, it was the golden age for the
Bourbaki Group created in 1937, with the aim of renewing the universitary
course of differential and integral calculus. Traditional teaching of analysis
was then seen as an obsolete object, unable to cope with the central ideas
of the field. Renovation entered the secondary curriculum in 1960,
introducing a conception of analysis less empirical and pragmatic, with
more emphasis on fundamental concepts and their structural dimension.
At the same moment, quantifiers were officially introduced as well as
elements of set theory and algebraic structures. The formal definition of
the limit was explicitly mentioned in the syllabus. This was a real
renovation, reinforced in 1965, but not a revolution. A careful look at
textbooks shows that it was in fact a transition period, that newness
introduced did not bowl over the ancient organization.
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The new math reform definitively turned the page at the beginning
of the seventies. Analysis was not its main part but teaching of analysis
was deeply influenced by the spirit of the reform. It became essentially
formal and theoretical, focusing more on definitions and foundation issues
than on problem solving. It was rejected soon after within the wave of
global rejection of the new math reform.

ll.3. THE REJECTION OF THE NEW MATH REFORM AND THE
INTRODUCTION OF INTUITIVE AND EXPERIMENTAL APPROACHES

The last important reform directly resulted from the rejection of the
new math reform and took place in 1982. It was influenced by the reflection
and experimental work undertaken in the IREMs. It was supported by the
vision of mathematics as a science historically and culturally produced
and, as such, dependent from historical and cultural contexts, which was
becoming predominant. It tried to find a more adequate equilibrium
between the mathematical coherence of the field and students’ cognitive
development. It tried also to find a better equilibrium between the « tool »
and « object » dimensions of analysis, according to R.Douady (Douady,
1986), that is to say between the internal development and structuration of
the fundamental concepts of the field and their use as tools for solving
problems internal or external to mathematics. The proposals of the
commission interlREM Analyse published in 1981 reflected these
ambitions. They were the followings :

* to modify the relationships between theory and applications and
organize the syllabus around the solving of problems rich enough and
epistemologically representative of the field, a field being now considered,
according to J.Dieudonné, as a field where « approximating, majoring,
minoring » were core processes,

* to find better equilibrium between qualitative analysis and
quantitative analysis, by giving more importance to quantitative problems,
thanks to the use of calculators,

* to give particular importance to typical and simple examples which
could then serve as a reference, and to avoid any early interest in
pathological cases, ‘

* to theorize only when necessary with reduced levels of
formalization accessible to students,

* and last but not least, to develop a constructivist approach to
teaching.

These proposals were directly reflected in the new curriculum,
proposed in 1982 and the general strategy used in order to introduce the
different key notions clearly illustrates these positions:
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« explore typical simple behaviors, both numerically and graphically, with
the help of calculators for the numerical part,

 use these explorations in order to produce quantitative definitions
adapted to the most simple cases and work them out,

« by introducing more complex cases, let students become aware of the
limitations of the first approach and introduce general and qualitative
definitions.

For instance, the notion of derivative was introduced through the
notion of first order expansion by exploring numerically and graphically the
local behavior (at 0) of tygical functions allowing majorations of the form :
| f(x+h)-f(x)-*(x)h| < Mn2. Later on, functions which did not allow such
simple majorations were introduced and led to the general definition of a
first order expansion.

Formalization was strongly reduced. Only one formal definition was
introduced for the limit in 0 and teachers were explicitly asked not to use it
extensively. This formal definition whose role was vanishing, disappeared
in the curriculum adjustment which took place three years later and the
paragraph of the syllabus devoted to limits was modestly renamed
«language of limits ».

Mathematical activity was organized around problem solving :
optimization problems, approximation of numbers and functions,
modelisation of discrete and continuous variations... The notions of
derivative, and above all of derivative function, essential tool for solving
these problems, became the central notion. The logical order : limits -
continuity - derivatives was thus broken : a minimal intuitive language of
limits was introduced for supporting the introduction of the derivative, then
the derivative function was the central piece of the edifice, the notion of
continuity nearly disappeared, all the more as, with the definition chosen
for the limit, every function having a limit at a point in its definition domain
was necessarily continuous.

The influence of analysis was already evident at grade 10, one year
before its official introduction, as attested by the following excerpt of the
syllabus :

« Themes for activities :

1. Majoration and minoration of a function on an interval

2. Research for extremum in optimization problems

3. Rate of variation - inequalities such as :lf(x)-f(y) | < Mlx-y |
Geometrical interpretation

4. Use of variations of functions in order to solve equations f(x)=b and
inequalities. »
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This was an ambitious curriculum. It tried to make alive the
epistemological value of analysis as a field where approximation played a
central role and to organize the progressive entrance of students in it, both
at conceptual and technical levels. In this introduction, links between
algebraic, numerical and graphical representations and techniques played
an essential role, as explicitly stressed in the syllabus. Analysis taught was
not a formal one, it was approached in an intuitive and experimental way,
and there was a desire not to limit it to algebraic practices. This syllabus
was then modified in 1985, 1990, 1993, in order to better fit the increasing
democratization of high schools but the spirit remained the same, at least
as expressed in the syllabus. So we can measure today the long term
effects of nearly 15 years of such intuitive and experimental approaches.

IV. SOME POTENTIALS AND LIMITS OF THESE APPROACHES

Firstly, there are some evident positive outcomes. | would like to
only mention three of them which, in my opinion, are specially important :

* Such an approach made the field accessible to any category of
students, up to a certain point, and this positive outcome cannot be
considered as unimportant, above all if one takes into account that the
great majority (about 70%) of what we call each « age class » of the
population enters high school and is taught analysis,

* Very soon, students are in contact with important problems at the
core of the field, such as optimization and approximation problems ;
analysis is not reduced to its algebraic part, and according to the syllabus,
textbooks try to give importance to the numerical and graphical
dimensions of both concepts and techniques,

* Calculators and even graphic calculators are regularly used by
students. They help to make viable the numerical and graphical
approaches encouraged in the syllabus.

In spite of these evident positive outcomes, | am far from thinking
that we found some ideal way towards analysis. Some very important
issues remained unsolved and new problems are emerging. Once more, |
would like to focus on some of them.

* The limits of the help provided by calculators and the issues linked
to their integration

Calculators and even graphic calculators are widely spread out in
France, as mentioned above. In 1981, a decision of the Ministry of
Education allowed them to be freely used in assessments at secondary
level and this is still the case today. Students for instance can take the
« Baccalauréat » with a graphic calculator or even a TI192. This decision
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was taken in order to foster the institutional integration of such
technological means. But, even now, calculators are mostly considered as
private students’ tools. Recent research (Trouche, 1996) shows the
negative effect of such an uncontrolled use on the conceptions developed
by students, about concepts such as the concept of limit, about numerical
approximations or graphical representations. An effective learning of
analysis with graphic calculators requires the development of specific
competencies, of specific knowledge. This fact is not easily recognized by
the educational system which remains reluctant to devote time to such
specific learning.

The difficulties of viability of the « approximation » dimension of
analysis

Recent evolution has also put to the fore the difficulties encountered
by the educational system with the « approximation » dimension of
analysis. As stressed above, developing this dimension requires to take
some distance from usual modes of thinking and relies on difficult
techniques whose learning is a long term process. Teachers encounter
evident difficulties at organizing and preserving an « ecological niche »
for such mathematical practices, all the more as they cannot avoid the
competition between approximation techniques and algebraic techniques,
which look easier (Artigue, 1993).

« The difficulties of viability of teaching through rich and significant
problems.

New curriculum wanted to organize analysis approach around rich
and significant problem solving activities. We note an increasing gap
between these ambitions which are still explicit in the syllabus and the
content of textbooks. What one can find in most recent textbooks tends
more towards an unstructured accumulation of problems with a limited
scope whose solving is so much decomposed in sub-questions that
students can hardly understand their global coherence. Such an evolution
clearly shows the strength of didactic transposition processes which shape
and condition the real curriculum (Chevallard, 1985). In the educational
world too, as far as assimilation remains possible, accommodation is not
the rule.

« The difficulties resulting from the increasing lack of structuration
Once more, these difficulties are evidenced by recent textbooks.

Status of objects, notions, assertions remains fuzzy. Formal definitions
have been banished, replaced by descriptive sentences expressed in
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« natural language », these being a priori thought more accessible and
intuitive. In fact, these sentences only have the appearance of natural
language : they have nothing to do with the vernacular language spoken
by students. They do not support an operational control of practices.
Moreover, as quantifiers are generally situated partly at the beginning of
the sentence, partly at the end, they do not help students to become
sensitive to the complex game quantifiers play in the corresponding
definitions. Theorems are accepted on the base of a few explorations and
not necessarily labeled as such. At reading textbooks, one has the
uncomfortable feeling that the coherence induced by the logical
constraints of knowledge has progressively fainted without being replaced
by another evident coherence.

For many of our students, what we are developing, beyond the
standard algebraic part of analysis, is perhaps more a world of « pottering
about » than the mathematical world we wanted to begin to make alive.

V. SOME CONCLUDING REMARKS

Didactical research clearly attests that it is not easy for students to
enter the conceptual field of analysis, if analysis is not reduced to its
algebraic part, if entrance in this conceptual field aims at developing the
modes of thinking and the techniques which are now considered as
fundamental in it. Secondary education has been facing this problem for
about one century. At the beginning of the century, analysis entered the
general secondary curriculum, and this introduction, which provided
teachers with very efficient tools for solving classical problems, both in
mathematics and physical sciences, was highly appreciated. With the
reform undertaken in the early sixties, new ambitions entered the
secondary curriculum in analysis : roughly speaking, analysis taught took
its autonomy from algebra and the object dimension emerged from the tool
dimension. Soon after, the new math reform imposed a formal vision
where foundation issues tended to become predominant. This formal
vision was soon rejected and, in the early eighties, a new organization
around problems and techniques at the core of the field emerged ;
experimental and intuitive approaches were encouraged. These intuitive
and experimental approaches to analysis progressively imposed
themselves and today, they appear as the only reasonable entrance gate,
all the more as analysis teaching is no longer limited to some
mathematical or social elite. But, we have to confess that they did not
succeed in making teaching and learning analysis miraculously easy and
satisfactory. They helped to solve some problems but, in the long range, if
they are not carefully controlled, they tend to generate some unavoidable
problems. The necessity to better control these approaches is evidenced
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by the evolution of the didactic transposition process along the last fifteen
years in France and the cognitive effects this evolution produces. Current
didactical research in the field, in France, is addressing these crucial
issues, both at high school level and at the transition form high school to
university.

Analysis of this particular didactic transposition process also
evidences the difficulties raised by the exploitation of didactical results or
local successful experimentations, for undertaking substantial and global
actions on the educational system. For this purpose, epistemological and
cognitive approaches which have been predominant in the field and
essentially used, up to now, are obviously insufficient. We have to
integrate approaches to didactical research which allow us to better take
into account the role played by institutional and cultural constraints in both
learning and teaching processes.
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INNOVACION EDUCATIVA: UN RETO PROFESIONAL

Luis Balbuena

La innovacién educativa puede ser definida, descrita e interpretada
desde multiples opticas. Como en el proceso educativo intervienen
investigadores, administraciones publicas, maestros, padres, alumnos,
etc., cada uno puede tener, y de hecho lo tiene, un modo de entender y
de hablar de la innovacién en el area de la educacién. Y por si esta
complejidad fuese poca, en la literatura dedicada al tema existe un
conjunto de palabras tales como reforma, cambio, renovacion,
investigacion, mejora, innovacién, etc., de significados parecidos y sin que
exista aun un acuerdo generalizado sobre cuéles son o deben ser los
limites de unas y de otras.

Por eso considero importante que trate de delimitar lo mejor que me
sea posible cudl es el entorno educativo en el que centraré mis
reflexiones.

Si se ha leido con atencién el extenso programa de este 82 ICME,
se habra podido comprobar que esta preocupaciéon que les intento
transmitir es la parte central de varias actividades. Significa que estamos
ante un problema que ocupa la atencién de los que nos movemos en el
mundo de la Educacién Matematica, aunque quizas preocupe mas a los
que cada dia hemos de practicar con grupos de alumnos mas o menos
extensos. Quizas seamos también los que tengamos mas difuso nuestro
rol en el area de la Educacién Matematica.

El tema es abordado directa o indirectamente en varias
conferencias regulares, es el eje especifico de un grupo de trabajo y
seguro que planeara en muchas mas de las actividades que contiene el
programa.

Pero empecemos a precisar los conceptos.

Parece que hay un cierto consenso en considerar la Reforma
educativa como un cambio en el sistema a gran escala. Un cambio que
afecta, no sélo al curriculum de las distintas disciplinas y a las formas de
ensenar, de evaluar, etc., sino que puede introducir cambios estructurales
sobre lo ya existente. Asi, por ejemplo, en Espafia, se acomete en estos
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momentos una reforma del sistema educativo que modifica la estructura
existente hasta hoy de manera sustancial. Introduce dos segmentos
absolutamente novedosos: Educacion Infantil (de tres a cinco afios), y la
Ensefianza Secundaria Obligatoria (de 12 a 16 afos), con lo que la
obligatoriedad se amplia de los catorce afios actuales a los dieciséis. Por
otra parte, reduce la ensefianza primaria de los ocho afios que tiene ahora
a seis y también el actual Bachillerato (incluyendo el Curso de
Orientacién Universitaria) pasara de cuatro a dos afnos.

Es, por tanto, una reforma que como indica Sack (1981) "es una
forma especial de cambio, que implica una estrategia planificada para la
modificacion de aspectos del sistema de educacién de un pais, con
arreglo a un sistema de necesidades, de resultados especificos, de
medios y de métodos adecuados".

La reforma educativa va generalmente ligada a politicas y
programas gubernamentales con las que se intenta dar algin rumbo a
todo el pais. Los gobernantes son conscientes de que ningin cambio
profundo puede realizarse en una sociedad si no se reforma y se orienta
el sistema educativo hacia esos objetivos. Nuestros gobiernos, en
Espafia, orientan el sistema educativo hacia la nueva situacion del pais:
hacia la democracia y hacia la plena integraciéon con Europa.

Queda claro, por tanto, cudl es concepto de reforma aplicado a la
educacioén.

La investigacién en Educacién Matematica es otro término que
conviene clarificar, aunque parece que hay un cierto consenso en
considerar a la investigacion en esta drea como aquella que se realiza
siguiendo los métodos propios de un proceso investigador. Dice G.
Vazquez (1987) "... deben formularse dos requisitos para dar validez a la
investigacién en esta area: primero, que sea cientifica y segundo, que sea
pedagdgica, esto es, adecuada a la naturaleza de nuestro objeto de
estudio: la educacién como resultado y como proceso ".

D.J. Fox en su "Modelo del proceso de investigaciéon” habla de 17
etapas divididas en tres partes: .

Primera parte: disefio del plan de investigacion (trece etapas).

Etapa 1.- Idea o necesidad impulsora y area problematica.

Etapa 2.- Examen inicial de la bibliografia.

Etapa 3.-  Definicion del problema concreto de la investigacion.

Etapa 4.- Estimacion del éxito potencial de la investigacion plan-
teada.
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Etapa 5.- Segundo examen de la bibliografia.

Etapa 6.- Seleccion del enfoque de la investigacion.

Etapa 7.- Formulacién de las hipétesis de la investigacion.

Etapa 8.- Seleccién de los métodos y técnicas de recogida de
datos.

Etapa 9. - Seleccién y elaboracién de los instrumentos de recogi-
da de datos.

Etapa 10. - Disefo del plan de andlisis de datos.

Etapa 11. - Disefio del plan de recogida de datos.

Etapa 12. - Identificacion de la poblacién y de la muestra a utilizar.

Etapa 13.- Estudios pilotos del enfoque, métodos e instrumentos
de recogida de datos y del plan de analisis de recogi-
da de datos.

Segunda parte: ejecucion del plan de investigacion (tres etapas).

Etapa 14. - Ejecucién del plan de recogida de datos.
Etapa 15. - Ejecucién del plan de analisis de datos.
Etapa 16. - Preparacién de los informes de la investigacion.

Tercera parte: aplicacion de resultados (una etapa).

Etapa 17. - Difusién de los resultados y propuesta de medidas de
actuacion.

Sobre la investigaciéon en Educacién Matematica creo que se ha
estudiado y teorizado suficientemente. Los criterios de calidad estan
establecidos y mas o menos aceptados por todos, pero creo que es la
practica, esa tercera parte que apunta Fox, la que, en la mayoria de los
casos, determina la validez y la viabilidad de cualquier investigacién por
muy sesuda Yy rigurosa que sea.

Generalmente se piensa que la labor del investigador acaba con la
elaboracién de un informe y su presentacién ante un tribunal cuando se
trata de una tesis doctoral. Opino, sin embargo, que es responsabilidad
del investigador, no sélo la difusién de su estudio, sino también procurar
que sus deducciones y conclusiones lleguen a producir los cambios y
mejoras que investigd, maxime, cuando la mayor parte de las veces, su
investigacién ha sido financiada con dinero publico.

Por otra parte, nadie pone en duda la trascendencia vy las
aportaciones de la investigacion en Educacién Matematica para la
mejora del aprendizaje y de la ensefianza de esta disciplina. Esto es un
axioma.
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No voy a incidir mas en este aspecto que considero del maximo
interés, porque quizds me desvie demasiado de mi objetivo aunque
pienso que es necesario que reflexionemos acerca del papel que juega o
puede jugar la investigacion en los cambios que se producen en el
sistema educativo. Resulta cuando menos preocupante, la frecuencia con
que los cambios que se proponen (desde las administraciones, sobre
todo), no se basen en investigaciones contrastadas y no deja de causar
cierta inquietud y perplejidad que, a los que ensefiamos dia a dia en el
aula, no nos lleguen tampoco ni ideas ni resultados producto de
investigaciones que nos ayuden a ensefiar mejor o a conseguir que
nuestros alumnos aprendan con mas intensidad y eficacia.

Y llego asi al tercer concepto que quisiera intentar precisar y
delimitar:

Innovacién educativa.

No existe demasiada literatura sobre este concepto y ello, quizas,
debido a lo complicado que resulta marcar con claridad sus limites y los
criterios de calidad y eficacia que debe conllevar toda innovacion
educativa. Hay incluso quien piensa que se trata de una distincion (entre
investigacién e innovacion), interesada y artificiosa. Pero también he
escuchado a investigadores, como el Prof. Rico (Universidad de
Granada), hablar de la necesidad de aceptar ambas concepciones como
perfectamente diferenciadas, coexistentes y potenciables.

Empezaré exponiendo algunas opiniones sobre la innovacion
educativa que puedan orientar al profesor "de aula" a la hora de intentar
clarificar su rol innovador.

Segun T. Gonzélez y J.M. Escudero (1987) "... suele emplearse el
término innovacion para referirse a cambios a menor escala o mas
concretos ". Desde hace afios otros autores hablan de la innovacion como
cambios deliberados que pretenden dar al sistema educativo una mayor
eficacia para el cumplimiento de sus objetivos.

Asi pues, parece que se quiere reservar el término "reforma" para
aquellos cambios cuantitativamente amplios; el término "investigacion"
(en nuestro caso, en Educacion Matematica), para cambios
cualitativamente mas profundos y se reserva la "innovacion” para cambios
cualitativa y cuantitativamente menores. Esa ambigliedad nos situa ante
una idea dificil de delimitar, para la que no existe una medida adecuada
que permita precisar cuando se rebasan los limites de la innovacioén para
situarnos en otra cosa.
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Debemos, no obstante, intentar establecer criterios y
conceptualizaciones que acerquen la innovacién a sus protagonistas que
son (y en esto parece que no existe demasiada controversia), los
profesores y profesoras que cada dia desarrollan su labor profesional en
centros educativos, ante grupos de estudiantes cuya correcta formacion
depende, en gran medida, de las actitudes y de las aptitudes de sus
profesores.

Esa tendencia de reservar la innovacién para lo que podriamos
llamar "la practica educativa" es la visién que, sobre el tema, sostienen
J.M. Sancho y otros (1992) que hablan de "procesos deliberados y
sistematicos" que intentan producir cambios en la practica educativa.
También M.V. Garcia (1995) indica que "... para algunas personas la
innovacién es algo cotidiano, algo propio del quehacer profesional,
vinculado a su preocupacién por la educacion y por el aprendizaje de sus
alumnos". Creo que esta visién del concepto nos situa sobre la pista de lo
gue muchos entendemos por innovacion educativa, de qué es lo que cabe
en él y qué tipo de trabajos y actividades se pueden considerar como
innovadores.

Surge, pues, una pregunta clave: jpueden establecerse principios
que permitan identificar procesos innovadores en Educacién Matematica?

Intentaré aportar algunas sefas de identidad sobre lo que
considero como innovacién educativa.

Como punto de arranque, considero la innovacién aplicada a
nuestro campo, como aquellas experiencias que suponen acciones
practicas y sistematicas por medio de las cuales se intenta introducir y
promover ciertos cambios tanto en la forma de aprender y de ensefar
matematicas, como para conseguir actitudes mas positivas en torno a
nuestra disciplina. Este Ultimo aspecto tiene, para mi, una gran
importancia. Se trata de conseguir que los estudiantes se acerquen a las
matematicas de una forma distinta a como suele hacerse, que se superen
ciertos tabues e ideas preconcebidas, que la vean y la consideren como a
una amiga. Es posible.

La innovacién no siempre estd motivada por algin grado de
insatisfaccion, bien ante el sistema educativo en su conjunto o bien ante
la practica cotidiana. El profesor debe considerar la innovacién como algo
propio de su quehacer y con la cual puede mejorar su practica. Ahora
bien, la alteracién que supone pasar de una situacion inicial a otra final
diferente, no debe hacerse sin una programacion que clarifique al detalle
el por qué, el para qué, el cémo y el cuando se hace. El objeto de nuestra
innovacién es tan delicado y preciso que nos debe obligar a meditar y
reflexionar sobre el proceso de cambio que deseamos realizar.
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Pero ahi no debe acabar la innovacién. En ningin caso debe
plantearse el cambio por el cambio. Es necesaria la evaluacion de lo
realizado. El por qué, el para qué y el como, han de analizarse y
comprobar si los objetivos propuestos con la innovacién se han cubierto o
no. Se debe verificar si el producto final es mejor que el del punto de
partida. En resumen, en toda innovacién educativa, ha de existir una
programacion y una evaluacion. Sobre todo una evaluacién, pues aunque
pueda parecer paraddjico, existe poca ‘“cultura evaluativa" entre los
profesores. En pocas ocasiones realizamos una evaluacion de nuestro
propio trabajo y esta es una de las condiciones basicas para garantizar la
calidad de cualquier trabajo innovador. Debemos aplicarla a nuestra labor
como algo habitual y como una especie de control de calidad de nuestro
trabajo.

Otra caracteristica que, a mi juicio, debe contener la innovacion
para que pueda concedérsele la categoria de eficaz, es que sea
transferible. Que se pueda repetir. Que pueda ser aplicada por el mismo
profesor o por otro en distintas circunstancias. Asi, las innovaciones que
un profesor decida realizar no quedaran restringidas sélo a los alumnos
de su grupo, sino que deben ser conocidas, aplicadas y desarrolladas, si
asi se deseara, por otros también.

Por otra parte, la innovacién debe ser proyectada y desarrollada
tratando de ajustarse al maximo al método de trabajo que requiere una
investigacion. Es evidente que existen multiples limitaciones para que una
innovacién, hecha desde el aula, pueda seguir estrictamente los pasos
que requiere una investigacion. El profesor en ejercicio esta sometido a
muchas restricciones: de medios, de tiempo, de formacién, etc. , que, en
general, le impiden realizar investigaciones siguiendo todas y cada una de
las pautas que éstas requieren. El importante rastreo bibliografico, que
Fox sefala en dos etapas, por ejemplo, es una seria limitacién. Pero aun
cuando todas las etapas no puedan realizarse en toda su extension, el
espiritu que anime al innovador, a aquel profesor que pretenda introducir
algin cambio en su préactica docente, debe ser el mismo que anima al que
quiere hacer una profunda investigaciéon: ha de seguir un proceso
totalmente deliberado y sistematico.

La innovaciéon debe actuar directa e inmediatamente sobre el
sistema educativo. Esta es una de las caracteristicas que permite
reconocer una innovacioén, pues ésta se plantea y disefia para producir
efectos inmediatos. Es parte de su grandeza y también de su peligro. El
profesor desea experimentar un nuevo material didactico (manipulable o
no), que le permita mejorar la introduccion de un determinado contenido;
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o bien quiere conseguir desarrollar mejor ciertas capacidades del alumno
(abstraccion, generalizacién,...) a través de contenidos nuevos o de
contenidos del curriculum pero enfocados de otra manera o desea, en fin,
cambiar la actitud de sus alumnos hacia las matematicas
proporcionandoles ideas y actividades mas creativas y acordes con sus
capacidades y con su formacién. En cualquiera de los casos, el profesor
innovador no se plantea obtener resultados a medio o a largo plazo, como
suele ocurrir con la investigacién, sino que desea obtener resultados
(buenos, malos o neutros) de forma inmediata. Es que, ademas, esos
resultados actian como estimulo para proseguir mejorando e innovando.
Creo conveniente clarificar que no es la innovacién un factor
discriminante entre el buen y el mal profesor. Un profesor con inquietudes
innovadoras, realizadas con las condiciones de calidad, suele
corresponder a un buen profesor. Sin embargo, el reciproco no siempre es
cierto.

Tras estas caracterizaciones de la innovacion, demos un simbélico
paseo por la realidad.

Desgraciadamente el sistema educativo, casi nunca, procura las
mejores condiciones para que el “profesor de aula" se sienta estimulado
a realizar labores innovadoras. En general, lo hace o ha de hacerlo "a
pesar del sistema", derrochando grandes dotes de profesionalidad y
utilizando parte o gran parte de su tiempo libre, en el supuesto de que
disponga de él, pues cada vez es mas escaso...

El profesor innovador ha de superar, por tanto, diversas situaciones
que le inducen a la desmoralizacién. Entre otras:

- La formacién. Generalmente tenemos poco tiempo para la
formaciéon permanente, sobre todo en los aspectos docentes: leer
revistas, libros, asistir a cursos, a congresos, etc. . Nada de esto suele ser
facil. Unas veces por falta de recursos econdémicos, otras porque la
estructura del sistema (horas de clase, burocracia, permisos oficiales,... )
lo impiden. Por otra parte, tampoco suele ensefarse el cémo innovar. Es
algo que tenemos que aprender con nuestros medios y si tenemos interés
por hacerlo. (Obsérvese que no he hecho referencia a la formacién
cientifica porque doy por supuesto que se tiene la suficiente e incluso
mas).

- El encorsetamiento de los sistemas educativos. Aunque en este

aspecto hay una cierta superacién, aun los sistemas educativos son
demasiado rigidos. Se marcan no sélo los contenidos, sino que muchas
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veces se sefalan las metodologias. Y si no lo hace la administracion
responsable, lo hacen las editoriales a través de sus libros de texto que,
en general, marcan y obligan a seguir pautas.

- Falta de incentivacion. Es una de las méas graves deficiencias de
los sistemas educativos. En casi todos los trabajos (sobre todo en los
promovidos por la empresa privada), el trabajador tiene unos incentivos
que le estimulan a procurar hacerlo cada vez mejor. En nuestra profesion
esos estimulos sélo se encuentran en la profesionalidad de cada uno,
pues las administraciones educativas no suelen ofrecer mas que el
sueldo, que no siempre esta acorde con la labor que desarrolla el docente.
Y cuando hablo de incentivos, no me refiero sélo a los de tipo econémico.
Existen formas de reconocer la labor y el esfuerzo del docente que no
pasan necesariamente por elevar sus emolumentos.

Si bien para el profesor universitario la actividad investigadora
forma parte de lo que podria ser su propia definicién, en el profesor no
universitario no sélo no toma parte de su definicién, sino que ni siquiera
es tenida en cuenta de forma adecuada entre sus méritos profesionales.
En numerosas convocatorias de las que suele hacer la administracion
educativa para seleccionar profesores que han de desarrollar labores que
requieren cierta especializacién en temas didacticos, los trabajos
realizados por un profesor aspirante relacionados con la innovacién o con
aportaciones al sistema educativo (publicaciones, articulos en revistas
especializadas, comunicaciones o ponencias en congresos e incluso una
tesis doctoral), son considerados méritos "no preferentes” y baremados
con infimas puntuaciones. Es evidente que esta falta de reconocimiento
conlleva una general inhibicion del profesorado a la hora de plantearse
proyectos de innovacion y no digamos ya, de investigacion.

Un reconocimiento formal de esta parcela de nuestro trabajo traeria
como consecuencia una transformacion de nuestro perfil profesional.
Posiblemente la subliminar y solapada "carrera docente" actual, basada
en la consecucién de la maxima titulaciéon y de conseguir un maximo de
certificados de cursos y méas cursos, daria paso a otra basada mas en las
aportaciones que cada cual sea capaz de hacer al sistema educativo, con
lo enriquecedor que eso podria ser para todos.

- Es evidente que no esta cerrada la lista de limitaciones (soledad,
incomunicacién, dificultad para publicar resultados, burocratizacion cada
vez mayor del sistema, y otras tal vez de tipo mas particular de una zona,
pais o estrictamente personales). Sin embargo, creo que a pesar de
todas esas limitaciones (que nos pueden afectar en mayor o menor
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medida), nuestra profesionalidad, es decir, el amor hacia nuestro trabajo
y el convencimiento de que estamos desarrollando una labor de gran
trascendencia para la sociedad, nos debe obligar a estar por encima de
esas posibles trabas y hemos de convertir la innovacién permanente en
una de las caracteristicas definitorias de nuestra profesién. Esa actitud de
constante busqueda de mejoras es buena para el sistema, es buena para
nosotros, los profesores, porque nos obliga a reflexionar sobre nuestro
quehacer, pero, sobre todo, es buena para nuestros alumnos porque
entre otros efectos positivos, es un buen referente de profesionalidad que
perdurara.

Existen infinitos campos en los que aquel que lo desee, puede
innovar. En este sentido hemos de tratar de superar la falta de autoestima
que suele tener el profesor de aula; el maestro que dia a dia se comunica
con sus alumnos en el grandioso recinto de su aula. Ese hecho ya es en
si, sumamente importante. Pero es que, ademas, nuestros ensayos,
nuestras innovaciones, por muy sencillas que nos parezcan, tienen el
mérito de ser realizadas sin que nadie nos obligue a ello. Tendemos a
pensar que nuestras experiencias no tienen valor y, en general, ni nos
preocupamos de comunicarlas y mucho menos nos esforzamos en
escribir acerca de ellas para transmitirlas, bien a través de congresos,
bien por medio de revistas o por cualquier otro sistema. Sin embargo,
tengo la conviccién de que esa tendencia va a cambiar. Los profesores de
aula hemos de ser conscientes de que nuestros problemas los tendremos
que resolver nosotros mismos, ayudandonos y comunicandonos unos con
otros. No podemos seguir esperando a que mi problema cotidiano sobre
cémo estimular a un alumno para que comprenda y ame las matematicas
me sea resuelto ni se sabe cuando, ni se sabe por quién, ni se sabe desde
donde. Nosotros también tenemos resultados que aportar en la Educacién
Matematica. Nosotros también debemos aportar resultados a la
Educacién Matemaética. En ese sentido es esperanzador constatar la gran
cantidad de comunicaciones presentadas por profesores de aula.

Por otra parte, los sistemas educativos se estan reformando en
muchos paises. Es un deseo en todos, que el sistema que resulte sea
bueno, el mejor posible y creo que una condicién "sine qua non" para que
un sistema educativo sea considerado bueno es que consiga que su
profesorado se sienta con deseos de innovar, que se sienta apoyado y
estimulado para ello y que se pongan a su disposicién medios para poder
hacerlo. Por eso hay un rayo de esperanza para que, si esto se
comprende, podamos tener en el futuro mejores sistemas educativos y
una mejora de nuestro rol profesional.
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En definitiva, como se deduce de lo anterior, la innovacién
educativa necesita de la contribucién de todos para conseguir una
sistematizacién, una fundamentacion teérica, la legitimacién conceptual,
clarificar su contenido, disefar y consensuar unos criterios de calidad que
garanticen la utilidad, la generalizacién y, sobre todo, que incida en la
practica escolar. Es necesaria la innovacion permanente para afianzar y
ampliar nuestro prestigio ante la sociedad. Nos queda, pues, tarea por
hacer.

Como no quisiera que mi planteamiento fuera estrictamente tedrico
o que quedase en el terreno de los deseos, quisiera explicarles
sucintamente una actividad que venimos desarrollando en mi centro de
trabajo, que es un Instituto de Bachillerato (ensefianza Secundaria) con
unos 850 alumnos y alumnas de edades comprendidas entre los 14y los
18 afios. Es, concretamente, el 1.B. "Viera y Clavijo" de la ciudad de La
Laguna - Isla de Tenerife - Canarias - Espafia. Los ocho profesores que
impartimos matematicas en el centro formamos el Seminario de la
asignatura y un equipo de trabajo compactado.

La actividad en cuestién la titulamos "Semana de Matematicas" y la
venimos desarrollando desde hace varios afos. Cada edicién nos permite
ampliar y mejorar la anterior. El titulo de la actividad puede resultar
engafioso porque el trabajo se desarrolla préacticamente durante todo el
curso escolar. Moviliza en torno a las matematicas a un buen nimero de
alumnos del centro debido, principalmente, a que procuramos ofrecer un
variado conjunto de actividades en las que poder participar.
Esquematicamente incluye:

-Concurso del cartel anunciador (se convoca un mes después de
empezar el curso).

-Concurso de "Fotografia y Matematicas" (también se convoca en
noviembre).

-Liguilla matematica "jYo qué sé!" (Los alumnos se organizan en
equipos para participar en las cuatro sesiones de que consta).
-Revista "jYo qué sé!" (Se edita paralela a la liguilla publicando
trabajos diversos sobre matematicas).

-Talleres impartidos por los alumnos.

-Show matematico.

-Conferencias llusiones Opticas, La medida del tiempo, Las
matematicas ¢para qué?, Las celosias, Los numeros y la
numerologia: lo serio y lo menos serio,...

-Visitas pedagdgicas (museo de la Ciencia y el Cosmos; Centro
provincial de meteorologia; planetario; observatorio astrondmico;

)
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-Concurso de trabajos cientificos.

-Construir aparatos y sencillas maquinas.

-Exposicién de trabajos realizados por equipos durante el curso
(celosias, la medida del tiempo, los cuarenta principales, ilusiones
Opticas, simetrias,...).

-Realizacién de alguna actividad mascota: icosaedro de doce
metros de diametro, superficies regladas con rectas directrices de
diez metros, laberinto gigante de 222 nudos y 40 vértices
cambiables.

-Exposicién de material manipulable; incluye un amplio conjunto de
actividades que se realizan con material manipulable, elaborado,
en muchos casos, por los propios alumnos: puzzles planos y
espaciales, demostraciones visuales, puentes de Kéningberg,
mundo de los espejos, grafos, aparatos de Galton, la cicloide, la
torre de Hanoi, la mesa de las celosias y las teselaciones,...

Es una actividad que entre otros muchos efectos positivos, permite
presentar otra cara de las matematicas y ser un punto de atraccién para
muchos alumnos.

Ademas de la actividad brevemente relatada, solicitamos a la
autoridad educativa poder implantar una asignatura optativa para los
alumnos de 22y 3° (15 - 16 afios) que hemos titulado "Taller para re-crear
matematicas" y que nos fue concedida. Este taller, con dos horas
semanales, nos permite dar "rienda suelta" a la creatividad matematica
toda vez que la programacion tiene ese aspecto como uno de sus
objetivos. La innovacién esta presente de manera casi permanente ya
que intentamos desarrollar actividades que complementen la formacién
algoritmizada que se les ofrece en las clases ordinarias. Asi que se
profundiza en procesos que contengan grandes dosis de abstraccion,
creatividad, intuicién matematica, estrategias de resolucién de problemas
matematicos y no matematicos, procesos légicos, acercamiento a la
historia de las matematicas y de las ciencias en general, etc. En sintesis,
desarrollar capacidades mas que conocimientos estrictamente
matematicos.

Como conclusién quisiera animar a todos a innovar. Esta actitud no
debe ser una excepcién sino la regla general. Necesitamos las
aportaciones de todos para que los profesores de aula encontremos y
definamos claramente nuestro rol en el drea de la Educacién Matematica.

Debemos ser reflexivos y creadores de nuestro propio trabajo. Creo

que es una forma honrada y directa tanto de ejercer la profesién como de
dignificar y prestigiar al profesor ante la sociedad.
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No quiero terminar sin hacer una mencion expresa a Gonzalo
Sanchez Vézquez, al maestro y amigo que convalece. El nos ha
ensefiado el camino cuando dice que la Educacion Matematica la
debemos construir entre todos. En ocasiones nos ha hablado de la
necesidad de formar equipos de trabajo en los que participemos no sélo
los profesores de aula (a los que gusta llamar "profesores de a pie"), sino
también investigadores, psic6logos, pedagogos y todos cuantos puedany
tengan algo que decir en esta area a la que él ha dedicado parte de su
vida y de su sabiduria.

Muchas gracias.
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DRAWING INSTRUMENTS:
HISTORICAL AND DIDACTICAL ISSUES

Maria G. Bartolini Bussi
Dipartimento di Matematica Pura ed Applicata
Universita degli Studi di Modena

Introduction

The aim of this paper is to present some cultural artefacts, originally
developed as drawing instruments, and to analyse them from two different,
yet related, perspectives, namely their status in the historical development
of geometry and a possible use in didactics of mathematics at secondary
and tertiary level. As for the first problem, we shall base our arguments on
well known results in the history of mathematics, whom the interested
reader is referred to. As for the second problem, we shall hint at some
recent and ongoing research studies in didactics of mathematics and in the
psychology of mathematics education.

The following discussion is mainly drawn from the results of a fifteen
years long research project in didactics of mathematics in secondary
school, i. e. the project Mathematical Machines, that has been developed
in cooperation by an academic researcher (the author of this presentation)
and a group of secondary school teachers. Among them the contribution
of Annalisa Martinez, Marcello Pergola and Carla Zanoli has to be
especially acknowledged: they did the historical research and built more
than one hundred and fifty models of historical relevance and used them
systematically in the classroom (grades 9-13). The whole collection is
temporarily kept in the laboratory of mathematics of their school (Liceo
Scientifico 'A. Tassoni' at Modena) and is waiting to be moved to a more
suitable site.

The context of the teaching experiments on mathematical machines
has two characteristic features (Bartolini Bussi & Pergola 1996):

(a) the presence of manifold teaching aids, among which physical
large size models (either statical or dynamical), the so - called
mathematical machines, that give the name to the whole project.;

(b) the recourse, under teacher's guidance, to selected historical
sources,
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1) to contextualise problems, 2) to describe the functioning of
machines, 3) to approach the problem of the historical development of
mathematics in a broad perspective.

This context, in spite of the presence of intrusive physical models is
highly mathematised: it allows students to go through the history of some
mathematical theories from the very starting of their existence as
geometrical objects.

In the following section we shall present some historical sheets that
contextualise some of the models available in the mathematical laboratory.
They refer to two topics, i. e. conics and geometrical transformations. In
the other section we shall discuss the didactical use of these models by
presenting shortly a teaching experiment on pantographs.

Drawing Instruments: Historical Issues
Descartes' Curve Drawers

It is well known that the Greek approach to geometrical construction
relied upon the use of straightedge and compasses. The theory of conic
sections was three dimensional, whence the name of solid problems for
the problems which required conics to be solved. Surely other mechanical
instruments had been built, like curve drawers (e.g. Nicomedes' conchoid)
or mean finders (e.g. Erathostenes' mesolabon). Mechanical ways of
generating conics too, on the base of their 3d-definition were known for
centuries, as the enclosed figure 1 shows: it is a parabolic compass, drawn
by Leonardo da Vinci. But their use was not accepted in scholarly geometry.

figure 1 figure 2

We can contrast this position with Descartes' one. In the Géométrie
he started his program of refounding geometry, that would have produced
modern algebraic geometry, by introducing, in a very interlaced way, the
so-called Cartesian geometry, i.e. the method of describing curves by
means of measuring numbers, with respect to two lines, and the recourse
to mechanical generation of curves, by means of movements whose
relation admits exact determination (figure 2).
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Consider the lines AB, AD, AF and so forth, which we may suppose
to be described by means of the instrument YZ. This instrument consists
of several rulers hinged together in such a way that YZ being placed along
the line AN the angle XYZ can be increased or decreased in size, and
when its sides are together the points B,C,D,E,F,G,H, all coincide with A;
but as the size of the angle is increased, the ruler BC, fastened at right
angles to XY at the point B, pushes towards Z the ruler CD which slides
along YZ always at right angles. In like manner, CD pushes DE which
slides along YX always parallel to BC; DE pushes EF; EF pushes FG; FG
pushes GH and so on. Thus we may imagine an infinity of rulers, each
pushing another, half of them making equal angles with YX and the rest
with YZ.

Now as the angle XYZ is increased the point B describes the curve
AB, which is a circle; while the intersections of the other rulers, namely the
points D,F,H describe other curves, AD, AF, AH, of which the latter are
more complex than the first and this more complex than the circle.
Nevertheless | see no reason why the description of the first cannot be
conceived as clearly and distinctly as that of the circle, or at least as that
of the conic sections; or why the second, third or any other that can be thus
described, cannot be as clearly conceived of as that of the first: and
therefore | see no reason why they should not be used in the same way in
the solution of geometric problems.

(Descartes, La Géométrie, 1637)

This very short quotation shows that in Descartes' geometry the
status of mechanical devices such as curve drawers is theoretical. The
existence of a curve drawer that allows one to determine exactly
movements is the criterion to accept the product curve inside geometry.

It is important to recall that Descartes poses the problem of
algebraic curves but does not solve it. Actually the identification of the set
of plane algebraic curves with the set of curves that can be drawn (at least
locally) by a linkage is solved only two centuries later by Kempe, as we
shall see in the following (see also Bos 1981).

In the laboratory several models of curve drawers are available,
dating back to either the classical age or to the systematic studies of post-
cartesian age. Most of them can be simulated by computer (e.g. Cabri-
Géometre software) in order to draw the curve as a locus of points.
Approach to Geometric Transformations in the Seventeenth Century

The figures 3 and 4 from Diirer, show drawing activity with the help
of instruments.
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In the first figure the painter uses the picture plane as a 'window'
from which to look at the space of the room. In the second figure the
painter uses an instrument to obtain, point by point, a correct perspective
drawing of a lute. A thread, weighted to keep it taut, is stretched from a
point (the position of the eye) to a point of the lute: it passes through a
point of the window that is later marked by means of two adjustable
threads (that function as coordinate lines in the window); then the thread
is moved out of the way and the 'little door' carrying the drawing paper is
swung round into the picture plane, so that the position of the point (the
intersection of the two threads) can be marked in the drawing.

figure 3 figure 4

In the mathematical laboratory a large size model of the first Direr's
perspectograph is available together with several models of pairs of
perspective planes, made out of wood and/or plexiglas, with
corresponding points joined by weighted threads. Some pairs of planes
are movable up to the complete superimposition of each other. During the
movement the eye's point (if any) changes, but the projection is
conserved, according to Stevin's statement:

If the picture plane rotates round the ground line and if the observer
rotates in the same sense round his own foot so as to be parallel to the
plane, the perspective will not be troubled and will be kept also when the
picture plane is turned over on the horizontal plane.

(Stevin,, Oeuvres Mathematiques, augmentees par A. Girard, Leyde, 1634)

This set of models embodies the birth of the projective approach to
geometrical transformations in the seventeenth century. This approach,
even if grounded on the tradition of Greek geometry (e. g. Euclid and
Apollonius) represents a change for several reasons, e. g.:

(1) while in Greek geometry the attention was focused on figures,
conceived as isolated realities, in the seventeenth century the attention is
shifted to the whole plane (or space);
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(2) while in Greek mathematics infinite existed only potentially, in the
seventeenth century infinite is conceived also in actuality;

(8) while in Greek culture the separation between geometry and
practical knowledge was emphasised, in the seventeenth century
geometry develops in a dialectical relationship with other fields of
knowledge, not only offering but also adopting methods, e. g. algebra (from
commercial arithmetic), drawing (from architecture, technology - e. g.
sundials and astrolabes - and art - the theory of perspective).

Some of these reasons seem to be understandable inside
mathematics, but actually they depend on inside as well as outside factors,
as some historians point out (Raymond 1979, Kline 1972).

The introduction of ideal points in the plane is the mathematical
counterpart of the introduction of vanishing points in the picture plane, as
centres of the pencils of lines obtained by projecting pencil of parallel lines:
the vanishing points on the horizon of the picture plane can be conceived
as external representations of the ideal points, which are at infinite
distance from the observer. Besides the introduction of ideal points allows
the unified treatment of conics, according to the general need of finding
general methods that apply to individual cases (i. e. combinatoric
reasoning), that is typical of the whole development of science in the
seventeenth century (Raymond 1979).

The work of mathematicians such as Desargues has to be
contextualised in this complex cultural space. Desargues brings from the
practical tradition to the scholarly tradition of geometry two crucial
elements:

(1) the concern with problems as being three-dimensional, as the
practical tradition deals with the real world and not with diagrams on paper;

(2) the concept of projection from object to image.

However Desargues' concept of projection is not the same as in
earlier texts on perspective: in Renaissance usage, objects rendered in
per-spective are usually said to be 'degraded" as the emphasis is upon
what has been changed by the projection (dimensionality and shape), the
essentially symmetrical relationship between object and image is lost. The
important original contribution of Desargues seems to have been the
concept of invariance (Field & Gray 1987).

The Pantograph of Scheiner
The instrument we are describing now is the so - called Scheiner's

pantograph, used in the seventeenth century either to make a scale copy
of a drawing (figure 5) or as an aid to drawing in perspective (figure 6).
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FIGVRA 1L
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The second use is so described by Scheiner (1631) himself:

The object, to be seen, sends its own image or visible species -
called intentional by philosophers - to the eye through air or other
diaphanous body, in pyramid's shape, whose base is the very object and
the vertex is in the centre of our eye. This pyramid, wherever it is
mathematically cut, has always on the section surface the lively and right
image or portrait of the object. When we draw distant bodies, we cannot
physically touch them with the pointer and extract immediately from them
the copy by pen; hence, if we portray their species represented on the
section of the segment of the visual pyramid, that we can touch
mathematically with the pointer, as it is close to us, we shall make in the
same time a copy very similar to the very object; as in optics there is a
proposition, credited by everybody as true, that if two things are similar to
another, they are similar to each other. Hence, as both the object and the
image formed by us with the instrument are similar to the visible species,
they are similar to each other.[..] As the image to be touched by the pointer
is not real, but is only the intentional species of the object on the surface
of the segment of the visual cone, and the copy formed by the pen must
be real and physical, the plane on which we work must be partly real and
physical and partly rational and mathematical.

Two copies of the Scheiner's Pantographs are available in the
Laboratory. The first is designed to make a scale copy of a drawing. The
second is for perspective drawing. The rational part is on the left and the
physical part (where a sheet of paper can be stuck) on the right.

From Scheiner's Pantographs to Linkages

The Scheiner's pantograph is one of the early documented linkages
used for realising geometrical transformations. If we use the linkage to
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make a scale copy of a drawing, we allude to a plane similarity that
transforms the drawing into a smaller, equal size, or larger drawing. The
use of the Scheiner's pantograph in perspective drawing alludes in modern
terms to a composition of application, the first from the object to its
'intentional’ species and the second from the intentional species to the
physical copy made on the paper.

The study of such linkages arises from practical purposes, such as
perspective drawing, but the attitude towards mathematical activity of the
mathematicians of the seventeenth century is deeply contrasting with the
attitude of ancient mathematicians. The introduction of linkages for
theoretical purposes is reconsidered also in the nineteenth century. We
can quote from Kcenigs (1897) the historical reconstruction of this theory:

The theory of linkages dates back to 1864. There is no doubt that
such articulated systems have been used also before: maybe some
passionate and precise investigator can track them down in remote
antiquity. [...] When in 1631 Scheiner published for the first time the
description of his pantograph, he surely did not know the general concepts
that his small instrument contained in embryo; we can actually state that
he could not know them, because these concepts are linked to the abstract
theory of transformations, a theory peculiar of our century, which gives a
unitary imprint to all the fulfilled progresses.

The merit of Peaucellier, of Kempe, of Hart, of Lipkine was not so
much to have been able to trace some special curves by means of
linkages as to have seen there a technique to realise real geometrical
transformations. This is the very generality of the theory of linkages

It is well known the device called the parallelogram of Watt: it is a
device which aims at describing, in an approximate way a line segment by
means of the pole of a piston. Peaucellier in 1864 found a rigorous solution
by means of a simple linkage. [...] Sylvester was very interested in this
discovery and engaged to disseminate and to extend it. His intervention
made the linkages very popular in England, where they were extensively
studied by Hart, Clifford, Roberts, Cayley and Kempe.

(Kcenigs 1897)

The studies of the quoted geometers concern mainly the
mechanical description of individual algebraic curves and individual
birational transformation. But later Kempe proves that every algebraic
curve can be traced by means of an articulated system, and that every
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birational transformation can be realised by means of an articulated
system (Lebesgue 1950).

Later the study of linkages stops being interesting for pure
mathematicians, but becomes a fundamental part of the Theory of
Machines and Mechanisms and Robotics (Bartolini Bussi & Pergola 1996).

In the laboratory there are more than a dozen elementary linkages
that realise geometrical transformations together with dozens of
composed linkages that combine elementary ones to give mechanical
proofs of theorems on composition of transformations

Drawing Instruments: Didactical Issues.
The Small Group Study of the Pantograph of Sylvester

In the previous section we have presented some sets of instruments
available in the laboratory, by means of their historical contextualisation. In
this section we shall briefly describe how they are actually used in
mathematics lessons. The small group study of these models, historically
contextualised by the teacher, defines the activity in the mathematical
laboratory.

Small group study of a model is realised by means of a task, given
by the teacher: the students are not completely free to manipulate the
model, but they are given a precise list of questions to be answered. For
instance, the study of a pantograph of Sylvester is done by means of a list
of questions to be answered in writing: in particular, we shall focus on two
questions (further details in Bartolini Bussi 1993, Bartolini Bussi & Pergola
1996):

A specimen of the pantograph, see figure 7, is given to a small
group of students (11th grade) together with a list of questions. We shall
focus on only two of them.

QUESTIONS

1. Represent the mechanism with a schematic figure and describe
it to somebody who has to build a similar one on the base of only your
description.

4. Are there some geometrical properties which are related to all the
configurations of the mechanism? Try to prove your statements.

The first question is a typical communication task. It is well studied

in didactics of mathematics (Brousseau 1986). The mathematical task of
describing the geometrical structure of the pantograph is inserted into the
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social task of communicating it to an interlocutor. The small group acts on
the mechanism with the aim of producing a written message, including a
figure: the decoder, in this case a fictitious one, is supposed to gain the
information, by means of which he has to reconstruct the building action.
As the students have not handled the pantograph before, they do not know
anything about it: so, also the elementary features of the polygons which
constitute the schematic figure (a parallelogram and two similar isosceles
triangles) are to be discovered, by means of handling and even measuring,
to be sure that some bars have the same length and some angles have
the same width. Yet, even if the students are allowed to measure, they are
given this physical object in a school setting, in a mathematics laboratory,
where a typical situation of speech communication is given. This very
setting inhibits the recourse to a practice-oriented message, such as the
one that could have been used in some out-of-school setting. The students
immediately realise that coding essential points with letters is crucial: in
small group they can point at the mechanism ostensively and speak of 'this
point', 'that angle', and so on, but, as a student says, if we write so, he (i.
e. the fictitious interlocutor) will understand nothing. Hence, coding points
by letter is given a new sense: it is no more a social rule of the contract
between the teacher and students, based on the tradition of all the school
books ; rather, it is a true need of communication.

The fourth question requires three different processes, described in
(Bartolini Bussi 1993): (a) guessing and stating a conjecture; (b) looking for
a proof; (c) writing down a proof.

The conjecture is produced with the help of the teacher. It is a
difficult conjecture as it concerns objects that are not directly observable in
the mechanism, namely the line segment OP and OP'

CONJECTURE
OP = OP'
g POP'is constant

.
it means that, during the deformation of the
mechanism, the point P' is always the image of

c P under a rotation around O. The rotation

Figure 7 angle is PAB = BCP".

The process of looking for a proof is quite interesting. It could be
described as a continuous exploration of a metaphorical space that
contains 'known' facts and statements to be proved. Among known facts
there are not only results from geometrical theory that has been already
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studied by students but also empirical information from the configurations
of the mechanism. The pieces of available knowledge are used without
investigating whether they are empirical information or theoretical
statements. So, for instance (see details and further examples in Bartolini
Bussi 1993, but the same structure has been found in different
experiments carried out with graduate students too), we can observe the
following path in the process of proof search:

A: 'OP = OP' and the angles POP' are equal for all the
configurations of the linkages' (it is the conjecture to be proved and it has
been stated on the base of empirical observation);

B: 'OP = OP' because we have proved that the triangles OAP and
OCP' are congruent’;

C: 'As the angle POP' is constant and the triangle POP' is isosceles,
all the triangles of the infinitely many configurations of the linkage are
similar'.

In the step C two information of different nature are treated as if they
had the same status: actually 'POP’ is constant' is based on empirical
evidence, while 'POP' is isosceles'is based on an already produced proof.
Later, during small group work, the statement 'POP' is constant’ will be
proved independently, i. e. connected to the available knowledge by
means of theorems on the angles.

In the following process of writing down the proof, the time order of
exploration has to be changed. According to the standard script of proofs,
it is necessary to build a path from the geometrical properties of the model
of the physical mechanism to the statement to be proved. The conjecture
is the thesis and cannot be used any more as available information. An
implicit or explicit separation between known facts (either axioms, or
theorems or inference rules) and facts to be proved (thesis) will be
introduced.

However the shift from looking for a proof to writing down a proof is
not simple and some traces of the old time organisation are still evident in
the final text produced by the students:

Thesis. The angle POP' is constant.

The angle POP' is constant as the triangles POP' obtained by means of
the deformations of the mechanism are always similar, whatever the
position of P and P".
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In fact OP=0OP", because the triangles OCP' and
A P OAP are congruent, as CP'=0A,CO=AP and
OCP'=0OAP (BCO=0AB and P'CB=BAP)

' The above triangles are also similar to a
" third triangle PBP', because, as the triangles
BCP' and BAP are similar, it follows:

4 BP':BP=CP': CO
and the angle P'BP = OCP' as (posing that CP'B
Figure 8 = CBP'= o and CBA =f) we have

PBP' = 360 - (20.+B)
OCP' = 360 - (2a+p).

This is true because prolonging the line BC from the side of C the
angle supplementary to BCP' is equal to 2c. and the angle supplementary
to BCD is equal to B as two contiguous angles of a parallelogram are
always supplementary

Discussion

The introduction of mathematical machines in the classroom at
secondary school level seems to answer to two related problems of
didactics of mathematics

1) the socio-cultural construction of consciousness;

2) the construction of a pragmatic basis for proof.

The first issue is related to the first part of this paper. The small
group work is historically contextualised by the teacher by means of wide
historical introductions, like the ones that have been presented, and put in
this way in a broader perspective. The importance of this historical
perspective extends well beyond the students' discovery that similar
problems existed a long time ago. In the course of a historical study, what
is in the foreground is the process of constructing meaning and the idea
that this process is not individual but collective (Otte & Seeger 1994).

The second issue is related to the second part of this paper. During
small group work, the students are confronted with the global process of
production of 'new' theorems: they are put in the situation of exploring,
making and testing conjectures, and devising their own proofs. They are
working on physical objects, to be transformed into geometrical objects;
they are coping with the complex epistemological relationship between
deductive reasoning on the one hand and its application on the other
(Hanna & Jahnke 1993). The deep connections between the exploring
phase, the conjecturing phase and the proving phase that have been only
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hinted at in this paper are the focus of some research studies that are now
in progress on the early approach to mathematical proof in the field of
experience of sunshadows (Boero, Garuti & Mariotti 1996, Boero, Garuti,
Lemut & Mariotti 1996) or in the context of Cabri-geometry (Laborde,
personal communication). In the studies, the standard habit of asking the
students to understand and repeat proofs of statements supplied by the
teacher is upset. In all the cases the standard paper-and-pencil context for
geometrical proofs is substituted by a dynamic context (i. e., linkages,
sunshadows and Cabri-geometry), that encourages exploration and the
statement of conjectures. Further research studies seem to be necessary
to ascertain whether this not episodic experience could provoke effects on
proof construction in more traditional paper-and-pencil contexts and out-
side geometry as well.
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Basic Imagery and Understandings for Mathematical Concepts

1. Despite immense progress in the field of mathematics didactics
there are still a lot of mathematics educators as well as teachers who
adhere to a rather narrow picture of their subject, namely consisting on the
whole of abstract relations between abstract objects and some calculation.
For them, intuitive, vivid, enactive or application oriented ways of doing
mathematics do not belong to true mathematics, but are mere approaches.
The advantage of this picture is that the contents can be identified exactly,
and can easily be made accessible to presentations in textbooks, as well
as to empirical research on how students handle them, or to (so-called)
intelligent tutorial systems.

Yet, this picture is not a suitable foundation for teaching and learning
mathematics (neither for doing or applying mathematics), as in it the
category of meaning is ignored and hence the constitution of meaning is
not a matter of education. — But in every thinking or learning process the
individual assigns some meaning to some notion, situation or
circumstances, and teachers, in particular mathematics teachers, have to
take into account these processes of assignment.

Closely connected to the difficulties in recognizing and controlling
the students' learning processes is the problem of matching concepts in
the realms of mathematics, epistemology and psychology (which | will call
‘mathematical', ‘epistemological' and 'psychological concepts'
respectively). — The conception of basic imagery and understandings
(BIU) offers a didactical frame for this matching problem. In German
mathematics education this conception has a long tradition. Rudolf vom
Hofe (1995) investigated its history and found a lot of variants in the last
200 years, most of them tackling the matching problem by designing ideal
normative mathematical concepts in the epistemological mode (vom Hofe
names them "basic ideas") serving as models for the students' formation
of concepts in the cognitive mode (which he names "individual images").
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It seemed to be natural to all those educators to found their
conceptions on an analysis of subject matter and to include their rich
teaching experience as an empirical background. Thus they were much
closer to their students than many mathematics professors at the
universities or teachers at the Gymnasiums (in former times with the top
10 % of each age-group) who taught (and often still do teach) mathematics
— maybe in an elementarized, but still — in a rarely modified manner as
a pure discipline. On the other hand, those educators, too, did often not
care for what really happens in the students' brains, and, furthermore, in
spite of their good ideas, their efforts had only little success.

But one must admit that only since the 1970s has there been
reasonable technology for thoroughly studying classroom actions, namely
video recordings. Of course, even with this technology one does still not
know how cognition ‘really' works. Neither the mathematical formalization
of thinking processes, nor the definition of man as an information
processing being similar to a computer (Simon 1969) brought about much
new insight in to human cognition. But based on the talents of video
technology we learned a lot about communicative and social interaction in
the classroom, in particular, how mathematical meaning is implicitly and
explicitly negotiated between the participants (cf. Bishop 1985).

Due to the constructivist and connectionist roots of their theories,
some cognitive scientists underestimate, ignore or deny a dominant
influence of the teacher and, consequently, of the subject matter on the
students' learning processes. — In fact, during painstaking examinations
of videotaped and transcribed micro situations, middle and long term
effects can easily get out of sight. If one concentrates on social and
communicational characteristics of a situation, the subject matter tends to
play only a minor role. And comparing students' deviating verbal and non-
verbal manifestations with teachers' obvious original intentions may
support severe doubts in the efficacy (or even possibility) of extraneously
deter-mined learning processes. — These tendencies are supported by
the researchers' aim to overcome the old theories because of their meager
success.

On the other hand, careful re-analyses of classroom situations under
subject matter aspects often lead to plausible recasts or improvements
(as well as to verifications) of former interpretations based on interaction-
theoretical grounds. So to me it sounds unreasonable to exclude these
aspects when exploring such a situation. As | pointed out before, in
German mathematics didactics, for a lot of mathematical concepts there
are well known elaborated teaching routines. Whether a teacher relies on
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such a routine or not: From the words, diagrams etc. that she or he uses,
from her or his rejection or acceptance of students' answers etc., the
observer frequently can disclose the teacher's own imagery and
understandings about the mathematical concept in question. (Throughout
this talk, the notion of mathematical concept includes theorems,
mathematical structures, procedures etc.) — Surprisingly often, the
teacher's own imagery and understandings seem to be inadequate, or at
least the teacher evokes inadequate imagery and understandings among
the students. — These problems can be tackled didactically with the help
of the conception of BIU, which is meant to be a theoretical and practical
frame for a normative, descriptive and constructive treatment of concept
formation processes.

A radical constructivist would argue that there is no adequacy or in
adequacy of imagery and understandings. Here we have reached a point
of discourse where there might be no agreement. For me, adequacy of
concepts or adequacy of imagery and understandings is a useful and
important didactical category. Of course, adequacy cannot be proved like
a mathematical theorem. Whether a student's concept is adequate even
cannot be stated uniquely, neither in the prescriptive, nor in the descriptive
mode. But there are strong hints in either mode: If a student's statements
about, and actions with a mathematical concept sound plausible and seem
to be successful to her or his own common sense as well as to experts, we
would concede some adequacy (for more details cf. E.J. Davis 1978).

From a didactical point of view, it is not crucial whether teachers
actually ‘teach' their students or whether they only stimulate their
students' concept formation processes. Good ‘teaching' always contains
stimulating the students' own activities.

2. By the adjective ‘basic' there are expressed several essential
characteristics of the conception of BIU:

— It includes a tendency of epistemological homogenity and
obligation how mathematical concepts should be understood.

— Psychologically speaking, it indicates that students' individual
concepts normally are, and in the teaching processes the
epistemological concepts should be, anchored in the students'
worlds of experience.

— With respect to subject matter it stresses the importance of
fundamental ideas (in the sense of Halmos' elements, 1981, or
Schreiber's universal ideas, 1983) guiding the study of any
mathematical discipline.
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Epistemological homogeneity: This tendency seems to be
in contradiction with modern pedagogical and didactical paradigms like
“the students should create their own mathematics", or "the students have
to find their individual ways in solving mathematical problems" etc. In fact,
teaching does not mean telling (Campbell & Dawson 1995), but it means
stimulating students' cognitive activities, negotiating mathematical
meaning in the classroom etc.

But this way of conceiving the teaching-learning process does not
entail any obligation for the teacher to tolerate or even to support
inadequate individual concepts; on the contrary: it makes the teacher's
task much more difficult. She or he must be provided with a good
theoretical and practical competency in mathematics, mathematics
applications, epistemology, pedagogy, psychology, social sciences etc., in
order to

— develop her or his own view of the epistemological kernel (which
must not be identified with a mathematical definition) of some
mathematical concept which the students shall acquire,

— perceive the students' actual individual concepts as truly as
possible and to judge their adequacy,

— help the students, if necessary, to improve or to correct their
individual concepts into adequate ones near the epistemological
kernel,

— possibly learn by the students and improve her or his own
individual concepts.

This task imparts a predominant role in the teaching-learning
process to the teacher's own imagery and understandings and to their
transposition into didactical action. For example, if for the calculation of =
a circle is approximated by a sequence of polygons and the teacher uses
a phrase like "in this sequence the polygons have more and more vertices,
and finally they turn into the circle", the students' formation of an adequate
concept of limit is obstructed.

The epistemological kernel of a concept corresponds to a commonly
shared socio-psychological kernel. Such a socially constituted kernel is an
important prerequisite for the construction of individual argumentation and
its introduction again into classroom interaction (cf. Krummheuer 1989). —
It is obvious that this commonly shared kernel should be as extensive as
possible, which, again, gives the teacher a central position in the teaching-
learning process.
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Anchoring mathematical concepts in the students' worlds of
experience: Even working mathematicians need some real world frame
for doing mathematics ("we consider ...", "if x runs through the real line ..."
etc.; cf. Kaput, 1979, and many others). All the more do students need
such frames so that they can constitute meaning with the subject matter
they are about to learn (Davis & McKnight, 1980, Johnson, 1987,
Fischbein, 1987, 1989, Dérfler 1996 etc.). As such frames do not belong
to the epistemological concepts, the teacher is rather free when cons-
tructing real world situations where basic imagery and understandings can
be unfolded.

These situations need not be absolutely realistic; on the contrary, by
alienating them with the help of fairy-tale traits and concentrating on the
essence they can be turned into metaphors with their explanatory power.
One can take human beings, animals, things, which are more or less
anthropomorphized and more or less mathematized. These participants in
the situation have to act somehow, following some arbitrary rules, pursuing
some arbitrary plans, obeying arbitrarily physical and other natural laws, or
not.

For a lesson about the integral as area function for a given function
I designed the following situation: The x-axis is a hard-surface road: to the
north of this road (in the coordinate system) there is a uniformly wet
swamp which is bounded by the road and the graph of the function in
question. A vehicle drives on the road in the positive (eastern) direction,
with an arm perpendicular to the road which is sufficiently long to reach all
parts of the swamp during the trip. With the help of this arm the water is
absorbed uniformly from the swamp (on the basis of some uninteresting
technology) and collected in a cylindrical jar. Thus, at any moment the
level of the water in the jar is a linear measure of that part of the area which
has already been passed by the vehicle.

If the vehicle reaches a position where the function is negative, the
metaphor has to be extended: To the south of the road there is a desert
which is bounded by the road and the negative parts of the graph and
which has to be watered uniformly by the vehicle. For this purpose the
vehicle has a second arm perpendicular to the road which is sufficiently
long to reach all parts of the desert during the trip. Again, the exact
mechanism is not interesting; the only important thing is that the level of
the water in the jar drops proportionally with the desert area passed.

Of course, this metaphor contains a lot of technical and didactical
problems which have to be considered thoroughly: — What happens if the
jar is full (empty) and there is still swamp (desert) area to be drained
(watered)? — Draining the swamp and watering the desert have to be
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accomplished with the same velocity of flow (whatever this physical notion
means). — In principle, one needs a new coordinate system for the
function of the water level (the integral function). — When the vehicle
makes a half turn and then drives in the negative (western) direction, the
two arms change their positions, and now the desert has to be to the north
and the swamp has to be to the south of the road (in accordance with the
mathematical changing of positive and negative area). — But if the starting
point of the vehicle is finally made a variable, the efficiency of the metaphor
comes to an end.

Every metaphor has its limitations (cf. Presmeg 1994), but this is no
drawback. The one which | just described should make plausible

— continuous measurement,

— the transfer from area measurement into linear measurement

and

— the concept of negative area.

It thus appeals to common sense, and if the teacher wants the
students to maintain their common sense, it is a must to emphasize the
limitations of any metaphor.

Situations which are appropriate for mathematics teaching rarely
come along by themselves. Genuine mathematics applications are often
not suited for supporting concept formation, as they are frequently over-
loaded with alien problems. At the same time the teacher should not evoke
the impression that some artificial situation, designed for the use in
mathematics teaching, would be an example for genuine mathematics
applications. Sometimes, this coincidence can happen, but usually it does
not; and students with common sense realize the artificial character of
such a situation.

Fundamental ideas for mathematical disciplines (in an
epistemological and psychological sense): Basic imagery and
understandings are not only meant as a peg on which to hang some
mathematical content, but they shall lay the foundations for further
meaningful interpretations of concepts within a mathematical discipline.

3. The notions of imagery and understanding stand for two
fundamental psychological constructs. There exists an extensive literature
about them. Different authors have different definitions, most of them not
very concise. A lot of contemporary cognitive scientists disregard these
two constructs anyway, as they escape hard empirical research and do not
fit a computer related view of intelligence. — But it is just these — seen
behaviouristically — shortcomings, their vagueness and flexibility, which
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turn these constructs into suitable means for analyzing (and promoting)
such complex didactical objects as human teaching-learning processes.

Imagery can be grasped as: mental, often visual (but also auditory,
olfactory, tactile, gustatory and kinesthetic; cf. Sheehan 1972)
representations of some object, situation, action etc. having their sensory
foundations in the long term memory and being activated in conscious
processes. A person activating some imagery has already some meaning,
some intentions in mind and organizes these processes according to these
intentions (Bosshardt 1981). — Imagery is closely related to intuitions, but
its objects are more concrete, and meaning plays a more important role.

The objects of imagery (and understandings) can be given in
different modes, namely analogous or propositional. | don't want to resume
the cognitive scientists' quarrel in the 1970s about the interrelations
between these two modes or about their separate existence as ways of
thinking. In my opinion both are valuable means for analyzing imagery and
understandings in teaching-learning processes.

Apparently, imagery is more closely connected to the analogous
mode, and understandings are more closely connected to the
propositional mode of thinking. But it is difficult for a person to activate
some imagery without propositional elements, in particular in didactical
situations, as in these situations verbalization is the fundamental means
for a participant to communicate either with others or with her- or himself
(this communication with oneself being a transposition of a social situation
to one's mind which is typical for teaching-learning processes). On the
other hand, there can be no process of understanding without recurring to
any plausible imagery and to analogous elements.

Obviously, thinking in the analogous mode can be stimulated by
analogous means like pictures, diagrams etc. (with a lot of limitations; cf.
Presmeg 1994), and the propositional mode can rather be stimulated by
propositional means like verbal communication. In the age of paper and
pencil and of books, analogously given objects frequently are of a visual,
static nature, and the learners have to undertake some effort to make
these 'objects' plausible, meaningful, vivid imagery matching their worlds
of experience. In the nearest future the use of multi-media in schools (in
the western world) possibly will relieve the students from these efforts.

Whether multi-media will be conducive to the students' learning
processes, is not yet settled: The students' inclinations and abilities to
undertake efforts to generate mathematical concepts could be
undermined. — This problem is complementary to the following classical
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one, related to the use of visualizations (diagrams, icons etc.): Among
educators there is a naive belief that visualizations do facilitate the
students' learning processes. But as, for example, Schipper (1982)
showed with primary graders, many visualizations are not self-
explanatory at all, but they are subject matter which has to be acquired for
its own sake, on the one hand, and in relation to the visualized contents, on
the other hand. — As a matter of course, visualizations can be successful
didactical means, but not because they would reduce necessary effort, but
because they demand more effort and give hints how to direct and
structure this surplus effort and thus make it effective.

There are didactical situations, as well as mathematical concepts,
as well as students, for which respectivily one of the modes is more
suitable. For teaching and learning mathematics it is important that there
has to be a permanent transformation between the two modes. Maybe
geometry can be treated predominantly in the analogous mode, and
algebra in the propositional mode; maybe the teacher is even able to take
into consideration the preferences of single students. But in principle, both
modes must be present.

Taking into account the widespread propositional appearance of
mathematics teaching, in particular on the secondary level, there is need
of an increased use of the analogous mode all over the world. — By
stressing the students' anchoring of their individual concepts in their worlds
of experience, the conception of BIU lays some accent on the analogous
mode, as a prophylactic counterweight to the preponderance of the
propositional mode in the upper mathematical curriculum.

The psychological construct of understanding is still more
complicated and non-uniform. For didactical reasons the following aspects
are relevant:

(1) One can understand people, their actions, situations, the mo-
tives or the aims of the participants (practical knowledge of human
nature, common sense).

(2) One can understand utterances medially and formally (e.g., if
they are made loud enough and in a language one knows).

(3) One can understand the content of a message made by
someone (understand what this someone means by a certain
communication, text, phrase, word, symbol, drawing etc.).

(4) One can understand technical matters, working principles of
gadgets, mathematical structures, procedures etc. (expertise).
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At first glance, aspect (4) seems to be most suitable for the
conception of BIU. But it becomes immediately clear that each of these
aspects is important for the learning of mathematics and has to play an
essential role in the conception, in particular (3). This aspect is a classical
psychological paradigm, but the general opinion about it has changed:
Today, one does not believe anymore that it consists just of finding some
objective meaning of given signs, but that the receiver of a message tends
to and has to embed the message in some context and, in doing so, tries
to reconstruct its meaning (cf. Engelkamp 1984), thus getting near aspect

).

It goes without saying that there is no understanding (3) without (2):
the sender and the receiver of a message have to have a common
language, not only in a direct, but also in a figurative sense: As Clark &
Carlson (1981) put it, there has to be a "common ground", which, again,
refers to aspect (1). — In school teaching, and in particular in mathematics
teaching, the common ground of teachers and students is often rather thin,
if existing at all. — But, extending the common ground does not only mean
that the students have to be better instructed so that they make the
teachers ground their own. Rather the teacher must engage in the
students, attach importance to them (and not only to the subject matter),
understand them as human beings (again, aspect (1)), and try to
reconstruct or to anticipate their ways of thinking.

By following the conception of BIU, to some extent the teacher is
forced to do so, and furthermore, her or his expertise can be promoted. But
this way of teaching and learning demands much more effort for both
parts, in comparison with the ususal way, where teachers, in good
harmony with the students, are satisfied with students' instrumental
understanding (in the sense of the late Richard Skemp 1976).

In the following example, the teacher (resp. the researcher) did not
quite understand the student's ways of thinking. It was originally described
by Malle (1988) and re-analyzed by vom Hofe (1998): In order to develop
the concept of negative numbers, Ingo, the student, was given the fol-
lowing situation: “In the evening the temperature is 5 degrees (Celsius)
below zero. During the night a warm wind moves inland, and the
temperature rises by 12 degrees. — What is the temperature next
morning?" Ingo answers correctly: "7 degrees”, but in the dialogue with the
interviewer, he shows inadequate imagery. When he sketches the
situation, he asks whether he must draw three thermometers, and later he
explains that at midnight the temperature went up to +12 degrees, and in
the morning it dropped to +7 degrees.
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Malle gives well known and, of course, correct explanations for
Ingo's obvious inadequate dealing with the situation: Ingo is not able to
identify the elements which are important for solving the problem, but
invents additional information and tells fairy tales, and he does not distinguish
between the starting and the final state (i.e. the starting and final
temperature, represented on the thermometer), on the one hand, and the
change between the states (the rise of the temperature), on the other
hand.

In his careful re-analysis, vom Hofe shows that the problem lies in
Ingo's imagery about the physical situation, which is no suitable basis for
the formation of the mathematical concept. Whereas the interviewer
expects Ingo to focus on the changes of the mercury column (as a direct
model of the number line), Ingo imagines two masses of air, a cold and a
warm one, which mix and result in a third mass with average temperature.
Therefore he needs three thermometers, and in the night the temperature
does not rise by 12 degrees, but up to 12 degrees, and goes down again
in the morning. The idea of mixing air masses is, physically speaking, not
at all inept, but it merely does not fit the mathematics that the interviewer
has in his mind. For Ingo, there are two states of temperature which result
in a third one, the weighed arithmetical mean, and not one state which
changes into another.

Granted that every human being tends continually to conceive, or to
make and to keep her or his environment meaningful and sensible, one
must admit that usual mathematics teaching in large parts has a contra-
productive effect. — The striving for “constancy of meaning" (Hérmann,
1976) is in my opinion a characteristic trait of humans which, for example,
is largely ignored in Piaget's biologistic theory of equilibration.

Mathematics teaching, too, is such an environment which humans
who are in touch with it try to make meaningful and sensible. As an ex-
treme example, (in a famous French movie from 1984) in a physics lesson
in Paris the absent-minded student from Algeria understands "le thé au
harem d'Archiméde", when he hears "le théoréme d'Archiméde” (which
means: "tea time in Archimedes's harem" instead of "the theorem of
Archimedes"). Even if we omit such extreme cases, it still seems to be rather
normal all over the world that students tend to develop their own non-
conforming imagery and understandings, which, however, often remain
implicit.

Fischbein (1989) calls them "tacit models" and characterizes them
as simple, concrete, practical, behavioural, robust, autonomous and nar-
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rowing. Their robustness results from their simplicity, their anchoring in the
students' worlds of experience, and their short term success with
convenient applications (see the example of Ingo and the temperature).
Inadequate tacit models come into being because of lack of adequate
basic imagery and understandings, which in their turn would also be
concrete, practical, etc., successful and therefore robust, and not
narrowing, but capable of expansion.

So the conception of BIU includes the strategy of occupying the
students' frames with adequate basic imagery and understandings from
the beginning, i.e. to give them the possibility and to enable them to
develop such imagery and understandings by themselves.

Nevertheless, students will still generate a lot of inadequate tacit
models, and teachers must be able to recognize them and to help the
students to settle them. In this, again, the teachers can be supported by
the theoretical and practical frame of the conception of BIU, thus using the
constructive aspect of the conception (as vom Hofe, 1995, puts it).

Fischbein (1989), like many other educators and cognitive
scientists, recommends that the students should undertake meta-cognitive
analyses in order to discover and eliminate the defects in their frames. —
I couldn't find evidence in the literature that students would be able to
successfully analyze their own (wrong) thinking without massive
interventions by the teacher or by some interviewer. According to my own
experience with young people in all grades, they are overstrained if
they reflect reflexively about their own reflections.

Indeed, in many classroom situations there can be found actions of
understanding on a meta-level; for example, if students recall how they
solved a certain problem, or if they try to find out the teacher's intentions,
instead of trying to understand the contents of her or his statements. But,
in general, this kind of understanding (aspect (1)} is not explicitly reflected
by the students.

One essential trait of every didactical situation is (or should be) that
the participants strive for understanding the contents of some message
given, verbally or non-verbally, by the teacher, students, the textbook etc.
(aspect (3)), with the underlying aim that the students shall acquire
expertise (aspect (4)). Whereas aspect (3) stresses the processes of
under-standing, aspect (4) stands for the products of these processes.
The products are not only results, but at the same time they are starting
points for new processes, and each understanding process starts on the
ground of some already existing understanding.
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In mathematics teaching, both aspects of understanding ((3) and
(4)) deal with the same objects: the messages, seen ideally, deal with
mathematical concepts, about which the students shall acquire expertise.
— In the humanities and in the social sciences, as well as (in an indirect
way) in mathematics, this expertise again often refers to social situations
(in a wide sense) and thus is in parts identical with aspect (1). — So,
finally, in normal teaching-learning processes all the aspects of under-
standing discussed here belong together and are essential for success.

In my view, there is no understanding without imagery, and no
imagery without understanding. With the notion of imagery there are
stressed the analogous mode, roots in everyday lives, intuitions etc., —
whereas with the notion of understanding there is laid some accent on the
propositional mode, on subject matter, on predicates etc., — but not only
do both notions appear together, they have a large domain of essence in
common.

4. There can be identified roughly four types of BIU for use in mathe-
matics teaching in the primary and secondary grades:

A. More or less global BIU, especially for the formation of the
concept of number and for elementary arithmetic: multiplication as
repeated addition; division as partitioning (splitting up; 'Aufteilen’) or
distributing (sharing out; ‘Verteilen'); fractions as quantities or as
operators, negative numbers as states or as operators, the ma-
chine model for operators, the little-people metaphor for running
through an algorithm. Basic imagery and understandings are not
bound to primitive, non-quantifiable actions (in the sense of intuitive
understanding according to Herscovics & Bergeron, 1983), and
their formation is not a kind of mathematical propedeutics or pre-
mathematics, but — in my opinion — genuine mathematics (just with-
out calculus with symbols). They would be useful in the upper
secondary grades as well, for example, with the concept of limit and
infinitesimal thinking as a whole.

B. More or less local BIU, e.g. the arithmetical mean, the internal
rate of return of an investment, the circumcircle of a regular

polygon.

C. BIU for extra-mathematical concepts, situations, procedures
(from physics, economics, everyday lives etc.), which are to be
used in mathematics teaching (example: Ingo and the temperature).
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D. BIU for conventions, e.g. the meaning of symbols, or of
diagrams. Example: The teacher tries to explain subtraction with the
help of the following situation: "Mother baked six cakes for her
daughter's birthday; the dog Schnucki ate four of them. How many
are there left?" She draws 6 circles on the blackboard and crosses
out four of them (each with one line), hoping to support visually the
understanding of the problem 6—4=2: But Ralph, a learning disabled
child, wonders why the teacher halves the marbles (Mann 1991).

It goes without saying that the prototypes, metaphors, metonymies
(Presmeg 1994) used for BIU should not obscure the concepts they refer
to, as in the following example:

Euclidean geometry: As a preparation for proving the existence
and uniqueness of the incircle of a triangle, the teacher asks the students:
“Imagine a cone with several balls of ice cream intersecting each other
physically, and a plane section through the cone containing its axis of
rotation. Do so three times, by identifying the tip of the cone with the three
vertices of the triangle one after another." — A more suitable imagery
would be to stick a small circle near one vertex between its adjacent
edges. When the circle is blown up like a two-dimensional balloon, it
moves away from that vertex, still touching the two edges, until it meets the
third edge and thus reaches its final position as incircle. In dissociation
from the pure Euclidean way of doing geometry, this metaphor makes use
of kinematic and continuous physical phenomena from the students'
worlds of experience.

Of course, mathematical concepts should not be falsified, as is the
case with the concept of circle in Papert's (1980) original idea of turtle
geometry. The children shall draw a circle by programming the turtle to do
a straight motion of length 1, then to do a right turn of the amount 1, and
to repeat these two actions 360 times, i.e. by drawing a fuzzy regular
polygon with 360 vertices. In fact, the result looks like a circle, but the way
in which it was produced belongs to a concept which is essentially different
from the Euclidean circle. It's true that every line on the computer screen
is a sequence of squares; but this is not the point, as students with some
experience with paper and pencil as well as with computer screens will
recognize the shortcomings of any realization of geometric forms and will
be able to idealize these forms, if at least the underlying activities are
appropriate. — But the procedure for making a Logo circle is not
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appropriate for Euclidean geometry. — Furthermore, | doubt that the Logo
geometry is a good preparation for differential geometry, — eventually it is
a helpful model for someone who already has the concept of mathematical
limit at her or his disposal, whereas it is likely to be a mental obstacle for
someone who is still on her or his way of acquiring this concept, let alone
for primary graders.

Transformation geometry: When in the late 1960s and early
1970s transformation geometry was pushed into the mathematics
curriculum, it was assumed that real motions of real objects could serve as
BIU. In fact, the students accepted these BIU willingly and transferred
them easily into continuous motions of point sets in the plane. But the
crucial point was the abstraction of the motions, which the students in
general did not manage to perform. Their BIU of transformations grounded
on motions were so robust that the good advice to focus their attention to
the starting and final positions of the geometric forms or to the plane as a
whole remained useless, because, for example, the notions of starting and
final position, again, evoked imagery about motions (cf. Bender 1982).

Thus, mathematicians and mathematics educators failed to
establish in the curriculum the full algebraization of geometry by
transformation groups, and up to today geometric transformations are not
treated as objects on their own, but only as means to investigate geometric
forms. The idea of embodying Piaget's groupings of thinking schemes in
geometric transformation groups proved to be too naive.

By the way, there are reasonable didactical applications of contin-
uous motions, e.g. in good old congruence geometry by Euclid and
Hilbert: Two geometric forms are conguent if they can be moved to each
other in a way that both exactly cover one another. In German there is a
synonym for the word 'kongruent' which is due to this reciprocal covering
(='decken’), namely 'deckungsgleich’ ('gleich'= 'equal’). In congruence
geometry, different from transformation geometry, the specific form of
these motions is not essential at all. So the students need not, cannot and,
in fact, do not memorize them, and motions are not likely to turn into
mental obstacles against viewing congruence as an interrelation between
two stationary geometrical forms.

For functional reasoning in geometry and other mathematical
disciplines, like calculus, there is needed a different, and slightly more
abstract, concept of motion: What happens in the range of a function, if
one 'walks' around in its domain? Example: The area function assigns to
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each triangle of the Euclidean plane its area. Starting with one triangle,
one changes one of its vertices, and one observes, how the area changes.
— The metaphorical character of this situation is obvious: There is a space
(the domain, i.e. the set of all triangles) and someone or something (the
variables) who 'walks' around; and the motions of this someone or some
thing are transferred by some mechanism, like an abstract pantograph,
into another space (the range, i.e. the positive real numbers).

One more example, where 'dynamic' imagery and understandings
seem to be not helpful for basic concept formation, is the concept of
sequence and limit: Many students have the wrong idea that a
mathematical sequence would possess a last element or that one could at
least reach such an element (whatever the notion of reaching should
mean). — The ground for this misconception is often laid in mathematics
teaching itself, e.g. when determining the number = by an approximation:

The students consider a sequence of polygons which have more
and more vertices until they finally turn into a circle. Even if the teacher
carefully avoids such wrong diction, the students still can easily get the
impression that the circle would be the last element of that sequence:
Firstly, because of optical reasons, and secondly, because the aim of the
lesson is to determine a limit by a sequence of elements, and all the
activities evoke this impression, whether or not the teacher expresses
verbally that the limit cannot be reached. Even if the students accept that
it is impossible to reach it, they tend to ground the impossibility on limited
time and limited arithmetic of human or electronic calculators.

Another example, which is dealt with in the curriculum even earlier,
is the decimal fractions of rational numbers. The students prove, e.g.,
that 1/3 = 0,333..., The teacher states that the equality holds if there are
infinitely many digits '3', and finally, in Germany, there is written 1/3 =0,3
as abbreviation. By this notion the double nature of the concept of limit is
expressed. The symbol 'lim..." stands for a request to run through a
process and, at the same time, for the result of this process.

For an algebraic term, like a+b , this double nature (to be a request
for some activity and to be the result of this activity) is well known and
useful, but it fails when the activity includes some infinite process. So the
students are right when they refuse to accept the correctness of the
equality 0,3 = 1/3 and all the more 0,9 = 1. They take the dynamic part
of the double nature of limit seriously (because this part, grounded on the
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didactical principle of supporting ‘dynamical’ thinking, is always stressed),
and they correctly deny that running through that infinite process, for which
an expression like 0,9 stands, will result in the limit. Fischbein (1989)
observed that students even deny the symmetry of the equality sign, as
they accept 1/3 = 0,3, because this expression can be read from left to
right, and the digits on the right can be written down one after the other,
whereas they refuse 0,§ = 1/3 , because one can never have on the left
side all the needed ingredients to produce the result, one never comes to
an end and one is not able to say " = 1/3

5. In all times, all over the world, mathematics educators reflected
and still do reflect on basic imagery and understandings for mathematical
concepts, though they usually do not name them like that and possibly
have different or no conceptual frames. There is still missing a theory
unifying the relevant disciplines 'mathematics’, ‘epistemology' and
‘psychology'. The work of vom Hofe and my work is one attempt. But the
realization in didactical and teaching practice is at least as important as the
theory. Which basic imagery and understandings do we think to be
adequate? How can we support the students generating adequate basic
imagery and understandings? Which inadequate basic imagery and
understandings can occur? How are they caused? How can they be
improved or corrected? — In my opinion, these are fundamental questions
of mathematics education.

6. In the discussion after the talk | was asked, what the conception
of BIU had to do with learning. — This question was a harsh criticism, as
in my opinion | hadn't talked about anything but what the conception of BIU
has to do with learning.
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TRANSFORMING MATHEMATICS INSTRUCTION IN
EVERY ELEMENTARY CLASSROOM: USING RESEARCH
AS A BASIS FOR EFFECTIVE SCHOOL PRACTICE

Patricia F. Campbell
Center for Mathematics Education
Department of Curriculum and Instruction
University of Maryland at College Park

Project IMPACT (Increasing the Mathematical Power of All Children
and Teachers) is a National Science Foundation-funded collaborative
venture that joins university researchers at the University of Maryland at
College Park with school district coordinators and teachers in Montgomery
County Public Schools, Maryland, USA. The purpose of the project was
to design, implement, and evaluate a teacher enhancement model that
sought to enhance student understanding and to support teacher change
in predominantly minority urban schools in the United States. The
emphasis was on teaching mathematics for understanding, focusing on
problem solving and concept development. The model intended for
instruction was consistent with a constructivist perspective on
mathematical learning, emphasizing interaction and collaboration. The
project accessed intact mathematics faculties within schools. Evaluation
addressed both student achievement and teacher change. This research
was conducted in demographically diverse elementary schools, enrolling
children of ages 5 through 10 or 11, in low socio-economic communities in
Maryland, just outside Washington, D.C. The area served by the schools
was urban, but not what is termed “inner-city" in the United States. This
longitudinal project began in December, 1989, and concludes in February,
1997.

Two Perspectives to be Merged

Two perspectives influenced this project. First, the school district
wanted to address student mathematics achievement in racially diverse,
low socio-economic schools. The district was attempting to implement a
new kindergarten through eighth-grade mathematics curriculum based on
the NCTM Curriculum and Evaluation Standards for School Mathematics.
They recognized the need for a more focused and supportive teacher
enhancement model, because prior professional development efforts had
led to only limited student achievement. Further, student achievement data
indicated persistent and continuing differential performance by student
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racial ethnicity. As a university researcher, | was interested in investigating
the use of research as the basis for transforming school practice in
elementary mathematics. A study was designed that would implement
and evaluate a teacher enhancement model based on constructivist
principles and existing research on the teaching and learning of
elementary mathematics. This project was to involve all elementary
mathematics teachers in the participating schools and to be evaluated in
terms of student achievement, not just in terms of teacher beliefs.

This project presumed a constructivist theory of knowledge, and this
provided the theoretical basis for Project IMPACT. In particular, two basic
principles were: (a) learners actively construct knowledge through
interaction with their surroundings and experiences, and (b) learners
interpret these occurrences based on prior knowledge and their rendering
of their observations and actions (Noddings, 1990).

Assumptions for Project IMPACT

In 1989-90, when this Project was initiated, there was "no
‘constructivist teaching model' out there waiting to be implemented” (Pirie
& Kieren, 1992, p. 506). But there were researchers who had
hypothesized characteristics of instructional approaches that would be
compatible with a constructivist perspective. Further, research studies on
addition, subtraction and place value offered evidence that when teachers
had knowledge of children's thinking and focused on fostering
understanding through problem solving, increased student achievement
and teacher change resulted (Carpenter, Fennema, Peterson, Chiang, &
Loef, 1989; Cobb, Wood, & Yackel, 1991; Cobb, Yackel, Wood, Wheatley,
& Merkel, 1988).

There were two important assumptions in Project IMPACT. One
assumption addressed application of constructivist theory to all children.
The other assumption addressed school-based reform.

First, it was assumed that all children can understand and construct
mathematical meaning. This meant that the Project had to implement a
policy of expecting and fostering the mathematical understanding of each
child, not a policy of remediation. Therefore, the Project had to address
teachers' pedagogical and mathematical content knowledge, encouraging
instructional change and decision making to support children's
construction of knowledge. Further, the intention of the Project was to
move beyond equal opportunity for students to educational justice in terms
of treatment and outcomes.
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Second, this Project assumed that the critical unit for change in mathe-
matics instruction is the school. Therefore, the study's design did not rely
on teachers to volunteer for enhancement nor did it scatter the
enhancement across partial faculties in many schools. The Project
accessed intact mathematics faculties in the participating schools. This
was done because it was believed that programmatic and instructional
reform could not depend on isolated, heroic teachers who were left to work
independently. Generally, when given sufficient notice, teachers viewed
the expected summer in-service program with either acceptance or
eagerness.

School Selection

The 21 predominantly minority elementary schools in the district
were ranked on the following criteria: percentage of minority students
enrolled; percentage of families receiving free or reduced-fee breakfast,
lunch, or both; percentage of low scores on the Grade 3 statewide
assessment; and percentage of students categorized as below grade level
on the school system's mathematics curriculum assessment upon leaving
Grade 3. Third-grade achievement was used as a measure of academic
tradition because the project was initially funded only for kindergarten
through third-grade implementation.

The principals of the six highest ranking schools in these categories
were invited to join the Project. Of the six schools initially identified, two
schools decided against participation and the next two schools on the
listing agreed to participate. These six cooperating schools were matched
in demographic pairs and identified as either a treatment site, participating
in the teacher enhancement, or a comparable site, receiving no
enhancement from the Project. Schools had to commit to Project IMPACT
prior to identification of treatment or comparable-site status. The
assignment of project status was determined by three coin tosses,
conducted in the presence of the school principals or their designees.
Designation of treatment or comparable-site status was the choice of the
winning schools. Both treatment and comparable-site schools had to permit
classroom observations in the fall and the spring and student assessment
in the winter and spring. Following the coin toss, two of the principals
requested treatment status; one principal requested that his school be a
comparable site. These schools participated in a longitudinal study from
June, 1990, through June, 1993. There were two years of implementation
support at each grade beginning with the kindergarten and first grade in
1990, adding the next grade in each successive year.
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Three of the six cooperating schools were primary schools, enrolling
children through Grade 3. The other three schools were elementary
schools, enrolling children through Grade 5. In 1993, the school district
funded the Project's summer in-service program for the primary grade
teachers in the comparable-site schools. At the same time, the teacher
enhancement model was implemented in Grades 4 and 5 across all
Project schools. At that time, two more schools became involved in the
Project. These were the fourth- through sixth-grade schools that enrolled
the children who had come from one of the three original primary schools
participating in the Project. There were no comparable-site schools for the
fourth and fifth grade. The Project was implemented at the fourth and fifth
grade from June, 1993, through June, 1995.

The Project schools enrolled a diverse student population. The 9%
Asian population were primarily children from Cambodia and Vietnam with
other children from the nations of Southwest Asia and the Middle East.
Another 26% of the children were coded White; these were children from
the United States, with some children from Eastern Europe. This category
included children who were not coded as Black, Asian or Hispanic by a
caregiver. The Hispanic children constituted 30% of the student
population. They were primarily from Central America, with some children
from the northern countries of South America. The remaining 35% of the
children were coded Black. These included African-American children
from the United States and children from Africa, Haiti, and islands in the
Caribbean. In each of the five implementation years, approximately 500
children formed a grade-level cohort across the schools. Of these, 60% of
the children received free or reduced-fee breakfast, lunch, or both meals
at schools, and 25% of the children were enrolled in English classes for
speakers of other languages.

The Teacher Enhancement Model

The Project IMPACT teacher enhancement model involved (a) a
summer in-service program for all teachers of mathematics, (b) an on-site
mathematics specialist in each school, () manipulative materials for each
classroom, and (d) teacher planning and instructional problem solving
during a common grade-level planning time each week. This report only
addresses the summer in-service program.

The summer program was grade related, involving all of the
kindergarten and first grade teachers in the participating schools during
the first summer and teachers of subsequent grade levels participating by
grade in the following summers. Each summer in-service addressed:
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(a) adult-level mathematics content; (b) teaching mathematics for
understanding, including questioning, use of manipulative materials, and
integration of mathematical topics; (c) research on children's learning of
those mathematics topics that were deemed critical to the grade-level
focus as well as research addressing a constructivist theory of learning; and
(d) teaching mathe-matics in culturally diverse classrooms. The summer in-
service program accessed a summer school program for children,
providing teachers with an opportunity to begin instructional change with a
small group of children without all the demands associated with academic
year instruction. The in-service program also included time to plan for the
coming academic year.

Consider one approach that was used to address research on
children's learning. Videotapes of teaching and videotapes of children
solving mathematics problems were used. These two kinds of tapes
served different purposes. The teaching tapes were to illustrate and
provoke discussion about how "constructivist teaching" might look. In
particular, the sessions addressed the teacher's role as a facilitator of
learning, the crucial nature of teacher questioning, and the meaning of
student responses. The children's problem-solving tapes provided a
context for discussing re-search. After watching one of these tapes,
teachers struggled to characterize how the understanding of a particular
child might be interpreted. Further, the teachers would discuss what
approaches they might use or what issues they might want to address if
that child was in their class. The reason for using videotapes was to focus
the teachers' attention on children's learning, whether thinking about
examining mathematical meaning, considering instructional approaches,
or defining curricular emphases. Thus, in this Project, the intention was to
make a research perspective a critical basis for making decisions.

Evaluation and Results

Project IMPACT sought to evaluate the effectiveness of its efforts by
examining student achievement and by collecting data regarding teacher
change. Surveys of teacher beliefs and confidence were administered in
order to characterize the rationale that might be guiding teachers' actions.
Classroom observations provided information regarding the teachers'
actual conduct. Student achievement was evaluated by assessments
administered twice each year, using both student interviews and written
tests.
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Teacher Change

Two surveys were constructed to examine the teachers' rationale
and perspectives. One survey characterized teachers' beliefs about mathe-
matics, mathematical pedagogy, and equity; the second survey estimated
teachers' confidence for implementing instructional reform.

The primary teachers assumed a more constructivist perspective
regarding how children learn mathematics and how mathematics should
be taught than did the upper grade teachers. Further, the primary
teachers' perspectives of equity in mathematics education favored
supporting every child's access to challenging mathematics whereas the
upper grade teachers were more likely to base instructional decisions on
an evaluation of children's existing skills and assessed needs. There was
no difference between upper and lower grade teachers' change in beliefs
regarding (a) the relationship between skill and understanding or problem-
solving instruction, (b) the way mathematics instruction should be
sequenced, or (c) the nature of mathematics. Within each of these, the
primary and upper grade teachers made comparable shifts toward a more
reform-based perspective.

Although the confidence level of each group of teachers changed in
a direction indicating more willingness to interact with mathematics and to
implement instructional approaches supporting reform, this change was
more pronounced among the primary teachers. Both sets of teachers
made a strong shift evidencing more confidence for interacting with
mathematics over the course of the academic year. As the reality of
classroom practice became evident, primary teachers became slightly
more confident about their ability to implement a reform perspective
whereas the upper grade teachers became slightly less confident, but this
difference was not statistically significant.

Classroom instruction was observed in order to characterize the
growth and changes evidenced within the teachers. If a teacher was still
in the classroom of an IMPACT school after two years of implementation,
the status of instruction at the end of those two years is characterized. If
a teacher left an IMPACT school prior to two years of implementation, the
evaluation of her instructional change was fixed at the level evidenced
when she was last observed at an IMPACT site. Therefore, the
characterizations that follow present a distribution skewed towards less
change for the upper grade teachers as none of the fifth grade teachers
had had two years of supported implementation. Finally, each of the
following frequency estimates are truly only educated predictions, subject
to further analysis and interpretation of the classroom observation data.
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About 10% of the primary teachers (5 out of 52) and 17% of the
upper grade teachers (7 out of 41) made no real change in their
instruction. Another 17% of the primary teachers (9 out of 52) and 24% of
the upper grade teachers (10 out of 41) moved considerably beyond
routinized practice and direct instruction. These teachers used
manipulatives and small-group activities. They asked how problems were
solved and accepted different strategies, but they did not pursue the
meaning of student explanations. They generally did not use know how to
use an incorrect answer as an instructional probe, typically ignoring
incorrect answers or telling the errant child the correct response. About
19% of the primary teachers (10 out of 52) and 37% of the upper-grade
teachers (15 out of 41) evidenced instructional changes consistent with a
constructivist perspective. These teachers sought the input of their
colleagues and asked questions when manipulative materials were in use
to keep a mathematical focus. In these classrooms, it was not uncommon
to hear a teacher probing the reasoning behind a child's response, but
these teachers generally did not relate strategies as a way to highlight
mathematical meaning. In about 54% of the primary classrooms (28 out
of 52) and 22% of the upper grade classrooms (9 out of 41), instruction
was supportive of children's construction of knowledge and attentive to
mathematics. These teachers made links between mathematical topics
and frequently asked questions to focus the children's attention towards
mathematical generalizations or abstractions. These teachers often used
questioning to address the similarities or differences between offered
strategies. When students responded incorrectly, these teachers tried to
ask questions that might cause the children to reexamine their procedure
or reasoning.

Student Achievement

The data for grades 4 and 5 are still being analyzed, so this report
is limited to the kindergarten through third-grade data. The students were
assessed at the middle of the school year and at the end of the school year
each year, using both a scripted problem-solving interview and, in Grades
2 through 5, a written test. The assessments were administered in one of
six languages. The assessment addressed numerical and computational
skill, whole number and place-value concepts, problem solving and
reasoning, geometric properties and relationships, and rational number.

Student data indicated that there was no significant difference in
total mean achievement through first grade. However, there was a
significant difference in mean achievement favoring the children in the
treatment classrooms in second and third grade. Other significant effects
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were attributable to race and English language proficiency. To better
understand the source of the effects, the items in the assessment were
subsequently categorized by mathematical topic and were re-analyzed.

This analysis revealed no significant difference in numerical and
computational skill over the four-year data set. A significant difference in
geometry achievement was noted in the first grade favoring the treatment
group; this persisted in each successive grade. Similarly, there was no
difference in problem solving and reasoning through the middle of first
grade, however, a significant difference became evident favoring the
treatment group at the end of first grade. This difference was due to
increased performance on graphing and word problem items, and it
persisted through third grade. The significant difference in achievement
on whole number and place-value concepts became evident at the middle
of second grade and continued in the next year's data. Finally, the rational
number achievement data showed a significant difference favoring the
treatment children at the middle of second grade and again throughout
third grade.

Conclusion

Project IMPACT's influence on student achievement was not
immediate. It seemed to become evident first in the least abstract
mathematics represented in the curriculum and then increase in breadth
over time. The beneficial effect of focusing on conceptual understanding
and problem solving became more evident and persistent as the level of
the mathematical abstraction became more pronounced.

Instructional change is not easy. It is demanding, threatening, and
risky. The evidence of Project IMPACT is that change in urban centers can
happen when individual teachers are not left alone to accomplish it in
isolation. It is easier to attempt change in an atmosphere of support. Itis
easier to succeed when people work together for a common goal relevant
to their needs.

Finally, IMPACT addressed both the mathematical and pedagogical
knowledge of teachers in order to support decision making. Both
components are critical. Research on children's learning provides an
important lens for teacher enhancement, but so does mathematical
content.

Project IMPACT demonstrates the potential of applying research to
instructional decision making across whole schools. It has done so in the
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reality of public schools that do not have a tradition of strong mathematics
achievement. If the potential and problems associated with reform are to
be understood, if the implications of reform are to be recognized, and if the
vision of mathematical power for all is to be realized, then reform cannot
just be carried out in idealized settings.

We, as mathematics educators, must accept the challenge to
expand and to maintain our commitment, not to just selected classrooms,
but to educational change across schools.
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ACCOUNTING FOR MATHEMATICAL LEARNING IN THE
SOCIAL CONTEXT OF THE CLASSROOM

. Paul Cobb
Vanderbilt University

This paper focuses on the issue of accounting for students'
mathematical learning as it occurs in the social context of the classroom. In
the opening section of the paper, | first clarify why this is a significant issue
for myself and my colleagues and develop criteria for classroom analyses
that are relevant to our purposes. In the second part of the paper, | outline
the interpretive framework that we currently use by presenting a sample
analysis. In the final section, | reflect on this analysis to address four more
general issues. These concern the contributions of the type illustrated by
the sample analysis, the relationship between instructional design and
classroom-based research, the role of symbols and other tools in
mathematical learning, and the relation between individual students'
mathematical activity and communal classroom processes.

Social Context and Developmental Research

In recent years, there has been a shift away from theoretical
perspectives that focus on individual, isolated learners and towards those
that bring to the fore the socially- and culturally-situated nature of
mathematical activity (e.g., Bishop, 1988; Nickson, 1992; Nunes, 1992).
Analyses conducted from this latter viewpoint continue to be vitally
concerned with the process of mathematical development. However, in
contrast to purely psychological perspectives, individual students'
mathematical interpretations, solutions, explanations, and justifications are
seen not only as individual acts, but simultaneously as acts of participating
in collective or communal classroom processes. Viewed in this way,
mathematical learning is seen to be necessarily situated in social context.
It should be acknowledged that this paradigm encompasses a range
of theoretical positions that include various versions of constructivism,
sociocultural theory, and sociolinguistic theory. Comparing and

The general theoretical analysis reported in this paper was supported by the
Office of Educational Research and Improvement under grant number
R305A60007. The analysis of the sample instructional sequence was supported
by the National Science Foundation under grant No. RED-9353587. The opinions
expressed do not necessarily reflect the views of either OERI or the Foundation.
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contrasting these alternatives is beyond the scope of this paper, and | will
instead focus directly on the version of social constructivism to which | and
my colleagues subscribe.

From the social constructivist perspective, the challenge of
accounting for learning in social context involves analyzing both 1) the
evolution of the communal practices in which students participate, and 2)
the development of individual students' mathematical understandings as
they participate in and contribute to the evolution of these classroom
practices. Consequently, from this point of view, a first criterion when
accounting for learning in social context is that such analyses should focus
on the mathematical development of both individual students and of the
classroom communities in which they participate.

Stated in this way, the rationale for this first criterion is primarily
theoretical and reflects a particular view of the relation between individual
activity and communal practices. In considering other criteria, | attempt to
ground the issue of accounting for mathematical learning in social context
in my own and my colleague’s classroom-based activity of collaborating
with teachers to design learning environments for students. In this work,
we draw on the theory of Realistic Mathematics Education developed at
the Freudenthal Institute when developing sequences of instructional
activities for students. In following this approach, we initially conduct an
anticipatory thought experiment in which we envision how students'
mathematical learning might proceed as an instructional sequence is
enacted in the classroom (Gravemeijer, 1994). These thought
experiments involve conjectures about both 1) students' possible learning
trajectories, and 2) the means of supporting, organizing, and guiding that
development. These conjectures are then continually tested and modified
as we engage in classroom-based research and attempt to make sense of
what is actually happening as the instructional activities are realized in
interaction between a teacher and his or her students in the classroom. It
is here that the issue of accounting for students' mathematical learning in
social context gains pragmatic force in that the ways in which we look at
communal classroom practices and at individual students' activity
profoundly influences the instructional decisions that we make when we
experiment in classrooms. Given our agenda as mathematics educators
who conduct classroom-based developmental research, a second criterion
is therefore that analyses of mathematical learning in social context should
feed back to inform the ongoing process of instructional development.

In addition to conducting ongoing analyses of classroom events on
a daily basis, we also video-record all classroom lessons so that we can
conduct retrospective analyses of teaching experiments that typically last
several months. The time frame of these analyses gives rise to further
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challenges in that analyses that locate students' mathematical activity in
social context often deal with only a few lessons, or perhaps focus on just
a few minutes within one lesson. The issue that | and my colleagues have
been struggling with is therefore that of stepping back from and coming to
grips with what transpires in a classroom not during a ten-minute episode
but over, say, a three-month time period. A third criterion that arises when
conducting developmental research is therefore that analyses should
document the mathematical learning of both the classroom community and
of individual students over extended periods of time.

Interpretive Framework

The interpretive framework that has emerged from our attempts to
analyze classroom events while engaging in developmental research
involves the coordination of social and psychological perspectives (see
Figure 1). The social perspective is an interactionist perspective on
collective or communal classroom processes (Bauersfeld, Krummbheuer, &
Voigt, 1988) and the psychological perspective is a constructivist
perspective on individual students' and the teacher's interpretations and
actions as they participate in and contribute to the development of these
communal practices (cf. Cobb & Yackel, 1996). The entries in the column
headed “social perspective” - social norms,

Social Perspective |Psychological Perspective

Classroom social norms |Beliefs about own role, others’ roles,
and the general nature of mathematica
activity in school

Sociomathematical norms | Mathematical beliefs and values

Classroom mathematical practices | Mathematical conceptions

Figure 1. An Interpretive Framework for Analyzing Mathematical
Activity in Social Context.

sociomathematical norms, and classroom mathematical practices - refer to
aspects of the classroom microculture that we have found it useful to
differentiate given our research agenda. The corresponding entries in the
column headed "psychological perspective" refer to what, for want of better
terminology, might be called their psychological correlates.
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| will give an extended example taken from a year-long teaching
experiment to illustrate how analyses can be organized in terms of the
framework. This experiment was conducted in a first-grade classroom
with six- and seven-year-old students and focused on the development of
core quantitative concepts. A series of three individual interviews
conducted with all 18 students at the beginning, middle, and end of the
school year indicated that the experiment was reasonably successful in
that the students made significant progress (Cobb, Gravemeijer, Yackel,
McClain, & Whitenack, in press). The data collected in the course of the
teaching experiment therefore constitute an appropriate setting in which to
explore ways of accounting for students’ mathematical development as it
occurs in the social context of the classroom. In the following paragraphs,
| summarize this analysis by briefly outlining the social and
sociomathematical norms established by the classroom community and
then considering the classroom mathematical practices in more detail.

Social norms. The first step in the analysis of the first-grade
teaching experiment involved documenting the social norms to delineate
the classroom participation structure. This participation structure proved
to be relatively stable by the midpoint of the school year and can be
summarized as follows:

1) Students were obliged to explain and justify their reasoning.

2) Students were obliged to listen to and to attempt to understand
others' explanations.

3) Students were obliged to indicate non-understanding and, if
possible, to ask the explainer clarifying questions.

4) Students were obliged to indicate when they considered
solutions invalid, and to explain the reasons for their judgment.

5) The teacher was obliged to comment on or redescribe students'
contributions, sometimes by notating their reasoning.

As shown in Figure 1, we take the psychological correlates of the
social norms to be students' beliefs about their own roles, others' roles,
and the general nature of mathematical activity in school. We therefore
conjecture that in guiding the renegotiation of social norms, teachers are
simultaneously supporting students' reorganization of these beliefs. This
conjecture, it should be noted, is open to empirical investigation.

Sociomathematical norms. It is apparent from the list of social
norms given above that such norms are not specific to mathematics, but
apply to any subject matter area including science or social studies

classes as well as to mathematics classes. The second aspect of the
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classroom microculture that we differentiate focuses on normative features
of students' mathematical activity (Yackel & Cobb, 1996). With regard to
the analysis of the first-grade classroom, one sociomathematical norm that
emerged was that of what counted as an acceptable mathematical
explanation. In the most general terms, acceptable explanations in this
classroom had to be interpretable by other members of the classroom
community as descriptions of actions on numerical entities (cf. Sfard,
1994). A second sociomathematical norm that emerged concerned what
counted as a different mathematical explanation in this classroom. It
appeared that solutions to additive tasks were judged as different if they
involved either 1) different quantitative interpretations (e.g., the task “14
cookies are in the cookie jar and | take 6 out. How many cookies are in
the jar now?” interpreted as 6+_=14 rather than 14-6), or 2) difference in
calculational processes such that numerical entities were decomposed
and recomposed in different ways (e.g., a solution in which a student
reasoned 14-4=10, 10-2=8 would be judged as different to that of another
student who reasoned, 7+7=14, 14-7=7, 7-1=6). Significantly, by the
midpoint of the school year, various counting methods that would be
judged as different by researchers (e.g., counting all versus counting on)
were not judged as different in this classroom, but were all simply
described as counting. This observation highlights the claim that what
counts as a different explanation can differ markedly from one classroom
to another, and that these differences can profoundly influence the
mathematical understandings that students develop.

A third sociomathematical norm that emerged concerns what
counted as an insightful mathematical solution. It is important to clarify
that, by the midpoint of the school year, the teacher responded
differentially to students' contributions, and that in doing so, she indicated
that she particularly valued what she and the students called grouping
solutions. This appeared to be an important facet of her effectiveness in
supporting her students’ learning in that it enabled them to become aware
of more sophisticated forms of mathematical reasoning. This, in turn, made it
possi-ble for their problem solving efforts to have a sense of directionality
(cf. Voigt, 1995). In accomplishing this, however, the teacher continued to
accept and actively solicited counting solutions from students who she
judged were not yet able to develop grouping solutions. In doing so, she
actively managed the tension between proactively supporting the evolution
of classroom mathematical practices and ensuring that all students had a
way to participate in those practices.

As is shown in Figure 1, we take students' specifically mathematical
beliefs and values to be the psychological correlates of the
sociomathematical norms. We therefore conjecture that in guiding the
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renegotiation of these norms, teachers are simultaneously supporting
students' reorganization of the beliefs and values that constitute what
might be called their mathematical dispositions. Once again, this
conjecture is open to empirical investigation.

Classroom mathematical practices. The third aspect of the
interpretive framework concerns the mathematical practices established
by the classroom community and their psychological correlates, individual
students' specifically mathematical interpretations and actions. The
objective when analyzing the evolution of classroom mathematical
practices is to trace the mathematical development of the classroom
community against the backdrop of the social and sociomathematical
norms. For illustrative purposes, | will focus on one short instructional
sequence called the Candy Shop that was enacted during 12 lessons
midway through the school year. The instructional intent of this sequence
was to support students' initial construction and coordination of units of ten
and of one. The teacher first introduced the anchoring scenario by
developing a narrative with her students about a character called Mrs.
Wright who owned a candy shop. In the course of these initial discussions,
the teacher and students established the convention of packing candies
into rolls of ten.

The first mathematical practice identified was that of counting by
tens and ones to evaluate collections of candies. For example, in one of
the first instructional activities, the teacher gave the students bags of lose
unifix cubes and asked them to act as packers in the candy shop. Before
they began, however, the students estimated how many rolls of ten they
thought they would make. This served to orient them to enumerate the
candies/unifix cubes as they packed them. In a subsequent instructional
activity, the teacher used an overhead projector to show the students a
pictured collection of rolls and individual candies and asked them to figure
out how many candies there were in all. In both of these instructional
activities and in others, solutions in which students first counted rolls by
ten and then individual candies by one became routine and beyond need
of justification. As this first mathematical practice illustrates, a practice
does not necessarily correspond to a particular type of instructional activity
but can instead cut across several activities. It is also important to clarify
that the emergence of a practice typically involves a process of
negotiation. For example, several students participated in the first
instructional activity described above by counting rolls by ten, 10, 20, 30,
..., 80, but then said that they had made 80 rolls. Other students
challenged them, arguing that they had made eight rolls that contained 80
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candies. The actual process by which the practice of counting by tens and
ones emerged can be documented by conducting detailed microanalyses
of this and other specific episodes.

A second mathematical practice emerged as the teacher and
students continued to discuss solutions to tasks involving pictured
collections of rolls and candies. The graphic the teacher used when
presenting one task is shown below. The reasoning of the first student
who gave an explanation, Chris, proved difficult for the teacher and other
students to follow. However, he appeared to mentally group ten individual
candies together.

o o
o O
0o ©O
o o o o
o 0O
T: How did you figure it out, Chris?

Chris:  Well, | knew there was 13 pieces not counting the rolls, all those
pieces that are loose,

T: OK.

Chris: and then those three rolls make 30 and if you go up and | got past
ten, and I got to 13, so | got past 30, and then | knew if you added
ten and three, and | used up two of those, | mean three of those
(points towards the screen from his position sitting on the floor).
You have 30, and you add the ten, you used up the ten on the 30
and then you had three left and that made 43.

Chris' subsequent clarifications indicate that when he spoke of "using up a
ten on the 30," he probably meant that if he counted ten more from 30 he
would complete the 30s decade and have 40, and that three more would
be 43.

The teacher asked Chris to repeat his explanation and then began
to redescribe his solution, possibly to verify her interpretation with him.

T: Chris, you said this was 30 (writes 30 beneath the rolis). Then you
have five here (circles a group of five candies).

Chris:  Yes.

T: Then you had (circles a group of four candies).

Chris:  Four, and then that one over there made five. (T circles the candy
he points to.) So that's ten. | used up that 30 right there, | used up
that 30 with ten, you see 30 is a whole entire ten almost, it's not
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really a whole entire ten—after 39 comes 40 and that used up the
ten.

T: So there’s the 30 that he used (points). Now does everybody see
the ten that he used? He had five there, and then you saw he had
four and one more made another five. So did you add the five and
five to make ten?

Chris: Yes.

T: So then you had 30 plus ten and that got you up to 40.

Chris: Yes.

T: And then you still had these three more (circles the group of three

candies) made 43.
Chris: Yes.

In the course of this exchange, the teacher accommodated to Chris'
way of speaking, saying "there's the 30 that he used." However, in doing
s0, she assumed that Chris was referring to the three picture rolls when he
in fact seemed to be referring to the 30s decade. Thus, there was a subtle
difference in their individual interpretations. Nonetheless, they appeared
to communicate effectively as the exchange continued. To take account of
such differences, | and my colleagues speak of interpretations being
taken-as-shared rather than shared.

As the discussion continued, several other students indicated that
they did not understand Chris' reasoning and he gave a series of
increasingly articulate explanations. In the remainder of this lesson and in
subsequent lessons, the act of mentally grouping ten pictured candies
gradually emerged as an established classroom mathematical practice.
The teacher for her part indicated that such solutions were particularly
valued. For example, after several students had explained how they had
figured out how many candies there were in a picture showing eight rolls
together with groups of six, four, and three individual candies, she asked,
"s there another way that you could group to figure out 937"

Ben: (Walks to the screen.) | think it's 93 because | took this six (points
to the group of six individual candies) and | broke it up and | took
one away and | put it with the four (points to the group of four indi-
vidual candies) to make five and five, to make ten, and | knew that
was 80, so it would be 90, and then 93.

As Ben described his solution, the teacher indicated that she
particularly valued it by writing arithmetical sentences to record his
reasoning. In addition, the protracted discussion of Chris' solution had
also implicitly served to legitimize solutions of this type.
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The third mathematical practice identified during the Candy Shop
sequence emerged when the teacher introduced a new type of
instructional activity in which the students generated different partitionings
of a given collection of candies. The teacher explained that Mrs. Wright
was interrupted as she packed candies into rolls.

Teacher:What if Mrs. Wright had 43 pieces of candy, and she is working
on packing them into rolls. What are different ways that she might
have 43 pieces of candy, how many rolls and how many pieces
might she have? Sarah, what's one way she might find it?

The students, as a group, were able to generate the various
possibilities with little apparent difficulty.

Sarah: Four rolls and three pieces.

Elizabeth: 43 pieces.

Kendra: She might have two rolls and 23 pieces.

Darren: She could have three rolls, 12 pieces, | mean 13 pieces.
Linda: One roll and 33 pieces.

The teacher for her part recorded each of their suggestions on the
whiteboard as shown in Figure 2. Previously, the students had evaluated
pictured collections of candies. In contrast, the teacher now drew pictured
collections to record the results of their reasoning as they generated
alternative partitionings.

At this point in the exchange, one of the students, Karen, volun-
teered, “Well see, we've done all the ways.” She then went on to explain
how the configurations the teacher had drawn could be arranged in order.
Most of the students seemed to take Karen's purpose for ordering the
configurations as self-evident, and a second student proposed an
alternative scheme for numbering the pictures. The discussion during the
remainder of the session then focused on the merits of different ways of
organizing and labeling the configurations.

Summary. This necessarily brief account of the mathematical
practices that emerged during the Candy Shop sequence can be
summarized as follows:

1. Counting by tens and ones to evaluate collections of candies.

2. Grouping ten candies mentally when evaluating collections.

3. Generating alternative partitionings of a given collection of candies.
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We, as observers, can see in this sequence of mathematical
practices the initial emergence of the invariance of quantity under certain
transformations. In this regard, it can reasonably be argued that the
learning of the classroom community was mathematically significant. As a
further point, it is important to stress that an analysis of mathematical
practices
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Figure 2. The Teacher’s Record of the Students’ Responses to the Task
Involving 43 Candies.

does not merely involve listing a sequence of activities, methods, or
strategies. The analysis also has to sketch the collective developmental
route the classroom community has taken by indicating how one practice
might have emerged from previously established practices. For example,
consider again Ben's reasoning when he evaluated a collection of eight
rolls and 13 candies.
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I think it's 93 because | took this six (points) and I broke it up and |
took one away and. | put it with the four (points) to make five and
five, to make ten, and | knew that was 80, so it would be 90, and
then 93.

Here, in reasoning "80, so it would be 90, and then 93," Ben in effect
established nine units of ten and three units of one as an alternative to 93
organized as eight tens and 13 ones. This, of course, is not to say that he
consciously related these alternative partitionings. Instead, the relation-
ship was implicit in his activity as he participated in the second
mathematical practice. As the third mathematical practice emerged, what
was previously implicit in students' activity became an explicit topic of
conversation. This example is paradigmatic in that it illustrates that an
analysis of classroom mathematical practices should account of the
process of the classroom community’s learning.

Reflections

My purpose in the final section of this paper is to step back from
the analysis of the candy shop sequence to address several more general
issues. The first of these concerns the contribution of analyses that
delineate sequences mathematical practices. To this end, imagine that, at
the end of the school year, we had interviewed not only the students in the
teaching experiment classroom but also those from another first-grade
classroom in the same school. | am sure that if we shuffled the video-
recordings of these interviews, most viewers could almost unerringly
identify the classroom from which each student came. It is precisely this
contrast between the mathematical reasoning of the two groups of
students that is accounted for in terms of participation in the differing
mathematical practices established in the two classrooms.

To continue the thought experiment, suppose that we now focus
only on the students in the teaching experiment classroom. The contrast
is now between the activity of individual students in the same classroom
community and it is here that qualitative differences in their reasoning
come to the fore even as they participate in the same practices. In my
view, psychological analyses of the individual students' diverse ways of
participating in these practices are needed in order to account for these
qualitative differences. An analysis of this type, when coordinated with an
analysis of communal practices, documents the process of individual
students’ mathematical development as they participate in and contribute
to the evolution of the classroom mathematical practices.
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The second more general point is to note that, in documenting the
evolving mathematical practices, we have in effect documented the Candy
Shop sequence as it was realized in interaction in the classroom.
However, participating in these practices also constituted the immediate
social situation in which the students' mathematical learning occurred. As
a consequence, the analysis also documents the evolving social situation
of their mathematical development. These interrelations between 1) an
analysis of classroom mathematical practices, 2) the instructional
sequences as realized in interaction, and 3) the evolving social situation of
the students’ mathematical development is encouraging in that it brings
together the two general aspects of developmental research --
instructional development and classroom-based research. Analyses of
classroom mathematical practices might therefore make it possible to
develop a common language in which to talk both about instructional
design and about individual and collective mathematical development in
the classroom.

The third more general point concerns the role of symbols and other
tools in mathematical learning. It should be apparent from the sample
analysis that ways of symbolizing do not stand apart from classroom
mathematical practices but are instead integral aspects of both these
practices and the activity of the students who participate in them. For
example, participation in the second. mathematical practice involved
reasoning with pictured collections of candies. This observation in turn
implies that the ways of symbolizing established in the teaching-experiment
classroom profoundly influenced both the mathematical understandings the
students developed and the process by which they developed them. ltisin
fact possible to trace the evolution of the ways of symbolizing:

signifiedy —  signifiery — signifiero  — signifierg
candies unifix cubes pictured verbal enumerations
collections recorded as 3r 13p etc.

In Walkerdine's (1988) terms, one can speak of a chain of
signification emerging as the mathematical practices evolved. Walkerdine
notes that succeeding signifiers may initially be established as substitutes
for preceding terms, with the assumption that the sense of those terms is
preserved through the links of the chain. For example, pictured collections
were initially introduced as substitutes for collections of candies/unifix
cubes. However, Walkerdine goes on to argue that the original sign
combination (i.e., candies/unifix cubes) is not merely concealed behind
succeeding signifiers. Instead, the meaning of this sign combination
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evolves as the chain is constituted. Walkerdine's fundamental contention
is that a sign combination that originates in a particular practice slides under
succee-ding signifiers that originate in other practices motivated by
different concerns and interests. In the case of the Candy Shop
sequence, for example, the meaning of the candies/unifix cubes sign
combination was initially constituted within a narrative about Mrs. Wright's
candy shop. The concerns and interests in this instance were those of a
simulated buying and selling activity. Later, the concerns and interests were
primarily mathe-matical and involved structuring collections of candies in
different ways. When the students participated in the third mathematical
practice, rolls of ten candies instantiated units of ten of some type, and the
activity of packing candies by making bars of ten unifix cubes had been
displaced by that of mentally creating and decomposing such units. In a
very real sense, they were no longer the same candies that the students
had acted with as when they participated in the first mathematical practice.
An analysis of the chain of signification that was constituted as the
classroom mathe-matical practices evolved accounts for this change of
meaning and thus for the underlying process of mathematization in
sociolinguistic terms. It should be stressed that, in such an account, the
symbols themselves do not have any particular magic. Instead, the focus
is on ways of symbolizing -- on symbols as integral aspects of individual
and collective activity rather than as separate entities that stand apart from
thought and reasoning.

The final more general point concerns the relationship between
individual students’ mathematical activity and communal classroom
practices implicit in the sample analysis. To put the matter as succinctly
as possible, we take this relationship to be reflexive. This is an extremely
strong relationship and does not merely mean that individual activity and
communal practices are interdependent. Instead, it implies that one
literally does not exist without the other (cf. Mehan & Wood, 1975). | would
therefore question an account that spoke of classroom mathematical
practices first being established, and then somehow causing students to
reorganize their mathematical understandings. Similarly, | would question
an account that spoke of students first reorganizing their understandings
and then contributing to the establishment of new practices. The
theoretical position inherent in the interpretive framework and in the
sample analysis is one that focuses on both individual students' activity
and on the social worlds in which they participate without attempting to
derive one from the other. From this point of view, individual students are
seen to contribute to the evolution of classroom mathematical practices as
they reorganize their mathematical understandings. Conversely, their
participation in those practices is seen to both enable and constrain the
ways in which they reorganize their understandings.
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In this analytical approach, the process of coordinating
psychological and social analyses is not merely a matter of somehow
pasting a conventional psychological analysis on to a separate social
analysis. Instead, when conducting a psychological analysis, one
analyzes individual students' activity as they participate in the practices of
the classroom community. Further, when conducting a social analysis,
one focuses on communal practices that are continually generated by and
do not exist apart from the activities of the participating individuals. The
coordination at the heart of the interpretive framework is therefore not that
between individuals and a community viewed as separate, sharply defined
entities. Instead, the coordination is between different ways of looking at
and making sense of what is going on in classrooms. What, from one
perspective, is seen as a single classroom community is, from another,
seen as a number of interacting individuals actively interpreting each
others' actions. Thus, the central coordination is between our own ways
of interpreting classroom events. Whitson (in press) clarifies this point
when he suggests that we think of ourselves as viewing human processes
in the classroom, with the realization that these processes can be
described in either social or psychological terms. Throughout this paper, |
have attempted to illustrate that both of these perspectives are relevant to
the concerns and interests of mathematics educators who engage in
developmental research. The interpretive framework | have outlined
represents one way of coordinating these perspectives that is rooted in
classroom-based research of this type.
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CONCEPTUALIZING THE PROFESSIONAL
DEVELOPMENT OF TEACHERS

Thomas J. Cooney
University of Georgia
USA

Introduction

Most mathematics educators are involved with teacher education in
some way. The teachers may be at the preservice or inservice level and
they may be oriented toward elementary, middle, or secondary schools.
Regardless of their status or level of teaching most teachers participate in
some form of teacher education designed to promote “better teaching”
however we define that term. As such, teachers are learners. Brown and
Borko's (1992) review of research on how teachers learn to teach
mathematics emphasizes that teachers are rational and cognizing agents
with all of the implications that entails. As with any learner, we can
consider the conceptual development of the teacher as that development
pertains to the different domains of knowledge acquired. The nature of
those domains is complex as suggested by Lappan and Theule-Lubienski
(1994) and Bromme (1994). Even a casual consideration of Shulman’s
(1986) notion of pedagogical content knowledge reveals the complexity of
teachers’ knowing as various elements of epistemology, psychology,
mathematics, philosophy, and pedagogy are woven together by the
teacher, implicit as that weaving process may be.

The notion of professionalism is likewise complex. Romberg (1988)
identified four aspects he considered central to the concept of
professionalism: (a) an accumulation of knowledge that sets the
“professional” apart from others, (b) use of that knowledge when making
occupational decisions, (c) membership in an organization that performs
an indispensable public service and which has elements of self-regulation
and autonomy, and (d) the presence of indicators that allow for change
within the profession. Romberg (1988) and Noddings (1992) have argued
that the presence of these conditions are frequently lacking in the
professional lives of teachers. Noddings (1992) concludes that teachers
generally fall short of professional status given the lack of prestige
associated with teaching, the fact that teachers labor in isolation, and that
they lack collegiality necessary for a rich professional life. An underlying
factor in this lack of professional status is the question of legitimacy of the
knowledge perceived necessary to become an accomplished teacher.
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Simply put, is that knowledge commonsensical or the product of
disciplined inquiry? | submit that it is both based on the following
argument.

The professional development of teachers can be thought of in
many ways. One could, for example, think of professional development in
terms of the teacher’s acquisition of knowledge and skills that lead to a
particular model of teaching perhaps developed through disciplined
inquiry. Good, Grouws, and Ebmeier's (1983) model of active mathe-
matics teaching comes immediately to mind. Alternately, we can
conceptualize professional development as moving toward some idealized
notion of teaching as defined by recognized expert teachers. While we can
debate the relative merits of different models of teaching, it is undeniable
that some are grounded in knowledge derived from research. Most
definitions of reform-oriented teaching assume teachers have acquired the
kinds of knowledge suggested by Shulman (1986), Lappan and Theule-
Lubienski (1994), and Bromme (1994). The commonsensical part is the
artistic translation of this knowledge into action, an artistry that is
dependent on the teacher’s propensity to monitor his/her own actions and
to generate alternatives for dealing with conceived constraints. These
alternatives can be enhanced by the knowledge gained from studying
teachers and classrooms.

Teaching ought to be about adapting to and taking advantage of
students’ cognitive structures while maintaining high expectations
regarding what the student should eventually achieve. The adaptation to
which | refer is a function of the teacher’s ability to be a reflective being, to
attend to various circumstances, and to sort out what constraints exist (and
don't exist), and to envision ways of dealing with those constraints.
Consequently, | think of professional development along a continuum in
which a teacher acquires the ability to monitor his/her actions in
accordance with the circumstances in which he or she is teaching or
learning. The development involves the teacher’s flexibility of thinking and
adaptability when reacting to various constraints. Attention to context is an
integral part of this conceptualization of development because it leads to
questions of why an activity was effective in one situation and not in
another or why some students seem to develop intellectually and others
do not. The question then arises of how we can conceptualize such
development among teachers.

Reflective Teaching and Mathematics
Presently the notion of reflective teaching and the value derived

from the act of reflection has considerable currency. There are many
factors that have contributed to this. Schén’s (1983, 1987) seminal work
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on the reflective practitioner is foremost among them. His notions of
reflecting-in-action and reflecting-on-action not only honor a practitioner’s
tacit knowledge but highlight the practitioner’s ingenuity in translating
knowledge into action via reflection. To watch a world class athlete or
artist perform is to remind ourselves of the apparent ease with which the
individual performs. “He/she makes it look so easy.” is often the
conclusion reached by observers. It is that kind of ease that marks the
accomplished teacher as well--an ease punctuated by reflecting-in-action
and adapting to a given context. | maintain that reflection and the
recognition of constraints should be a central component to any teacher
education program that desires to educate teachers to become adaptive
agents in the classroom.

It is worth noting that a conception of teaching rooted in adaptation
is consistent with recent developments in the philosophy of mathematics.
Lakatos’ (1976) classic work Proofs and Refutations emphasizes the
proposition that mathematics, at least in part, consists of a dialogue among
individuals in a societal context. His emphasis on dialogue embodies a
characteristic of master teaching, namely, taking a student’s intellectual
hand and guiding his/her intellectual development. Davis and Hersh’s
(1981) descriptions of mathematical experiences reinforce the notion that
mathematics is a function of human experience and is a far more
problematic subject than often considered by the general populace. Nearly
20 years ago Tymoczko (1979) suggested the presence of a Kuhnian
paradigm shift in mathematics in which the traditional notions of intuition
and logic were being supplemented by the aid of computer explorations
created by humankind. Witness the proof of the four-color map theorem.
In his Quebec address Tymoczko (1 994) drew the following conclusion.

Educators ignore humanistic mathematics to their peril. Without it,
educators may teach students to compute and to solve, just as they
can teach students to read and to write. But without it, educators
can't teach students to love, to appreciate, or even to understand
mathematics. (p. 339)

This apparent shift in the notion of what constitutes mathematics
has not gone unnoticed in the field of mathematics education. Ernest
(1991) has taken arguments about what constitutes mathematics posited
by various philosophers of mathematics and discussed the relevance of
these arguments for mathematics education. While we can question
whether these shifts in mathematical foundations have fueled reform in the
teaching of mathematics or, as Tymoczko (1986) suggests, the
relationship is the other way around, what seems clear is the consistency

103



REGULAR LECTURES / CONFERENCIAS ORDINARIAS

between thinking of mathematics as a human endeavor and the notion that
teaching is an exercise in adaptation.

The question arises, then, as to what theoretical constructs can
guide our thinking about teaching so conceived?

The Theoretical Challenge

As a profession we have come to accept that what a teacher
believes about mathematics and the teaching of mathematics is integrally
related to the quality of mathematics being taught in the classroom. (See
Thompson, 1992.) We know less about how those beliefs are structured
and the extent to which they are permeable in the face of tensions rooted
in potentially conflicting evidence. Much of this permeability requires
attention to context.

We have always honored context as an important contributor to
understanding mathematics. For example, it is one thing to know the
Pythagorean Theorem in the sense of finding the length of the missing
side of a right triangle given the lengths of the two remaining sides. It is
another matter to understand the Pythagorean Theorem as a special case
of Pappus’ Theorem or to understand the consequences of considering
the existence of the Pythagorean Theorem in the hyperbolic plane.
Similarly, our students learn that the graphs of the equations
y=(1/2)x+3andy=-2x-1are perpendicular but often fail to realize
that the significance of this finding is rooted in the properties of the
rectangular coordinate plane. Should the corresponding x and y axes
intersect at a 602 angle, what then would we observe about the interesting
graphs?

| use these examples to emphasize the importance of mathematical
context in teaching mathematics. We all come to believe certain things
about mathematics and about teaching mathematics. To what extent are
our beliefs dependent on the contexts in which we have come to hold
those beliefs? Why is it that we believe the Pythagorean Theorem or any
other mathematical proposition? Because someone told us it is so?
Because we formally deduced it? How do we come to believe anything?
These questions are relevant as we examine the influence of the contexts
on what we believe and on how those beliefs are held and, concomitantly,
how they might be modified.

If we honor mathematics as a human endeavor then we must see

the teaching and learning of mathematics as context bound, recognizing
and dealing with constraints in the classroom, and generating alternatives

104




Cooney

for addressing those constraints. The challenge theoretically speaking is to
identify and apply theoretical precepts that enable us to conceptualize a
teacher’s ability to be adaptive and attend to contexts. | will posit several
perspectives that | think have particular merit in conceptualizing teachers’
professional development so conceived.

Relevant Theoretical Constructs

| give considerable credence to the notion of self autonomy for |
would claim that a person’s autonomy is critical to being a reflective and
adaptive individual. | do not mean autonomous in a boorish sort of way but
rather autonomous in that the individual is capable of integrating a variety
of perspectives into a cohesive set of beliefs to which the individual is
committed. Bauersfeld (1988) speaks of the importance of the social
dimension as an influencing factor on how we organize ourselves. To him,
patterns of interaction are a product of social interactions, forever
shaping our behavior in light of the implicit obligations we encounter as
social beings. No less is true of teachers and students in classrooms. The
issue arises whether the individual is capable of monitoring those
interactions thereby having the ability to shape them. Von Glasersfeld’s
(1991) notion of reflection as the ability of an individual to “step out of the
stream of direct experience, to re-present a chunk of it, and to look at it as
though it were direct experience, while remaining aware of the fact that it
is not” (p. 47) is particularly relevant to this discussion. For von
Glasersfeld, reflection is a critical ingredient for an individual’s ability to re-
present the schemes that guide his/her thinking and actions. Dewey
(1933) suggests that reflection involves a state of doubt and the act of
searching for resolution. For Dewey, reflection is an explicit act, similar in
many ways to Schdn’s (1983) notion of reflecting-in-action which
necessitates an awareness of the action taken. This awareness is quite
important for it emphasizes the individual’s attention to context.

Green (1971) differentiates teaching and indoctrination, the former
being a matter of creating contexts in which an individual comes to know
in a personal and rational way, the latter being a matter of accumulating
information verified solely by an external being. We see this difference
being played out daily in classrooms around the world. On the one hand,
we see teachers who invite students to explore, to reason, and to conclude
that propositions are true by virtue of reasoning. On the other hand, we
encounter teachers who emphasize students learning proclamations
whose verification rests with them or the textbooks. This latter case is anti-
thetical to reform in the teaching of mathematics. The distinction that
Green makes involves how one positions himself or herself relative to an
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external authority. If mathematics is seen as a subject that is handed
down, first from professors of mathematics to teachers of mathematics and
then from teachers of mathematics to the students in our schools, then
mathematics is cast as a subject devoid of human invention. It relies on
some external authority to verify truth, that authority being external to the
student. In contrast, a teacher who encourages students to learn and own
their mathematics fosters a humanistic view of mathematics as it is the
individual who builds mathematical knowledge, not an external being who
transmits it. Much of this contrast has been couched in the language of
constructivism and appropriately so. My interest here is to focus on the
way that an individual comes to know and believe. Rokeach’s (1960)
analysis of the open and closed mind is another means of characterizing
an externally (or not) oriented person. The closed minded person denies
context as a mitigating factor as their judgments are absolute. To remind
ourselves of the existence of this absoluteness, we have only to recall the
number of times our preservice teachers have implored us to tell them the
right way to teach mathematics. In contrast the open-minded person sees
shades of gray depending on the contexts in which judgments are made.
For example, a beginning teacher shared with me her experience in using
cooperative learning groups, a technique she initially abandoned. She
saw value in using learning groups and was analytical regarding the
difficulties she encountered in her failed attempt. She was planning to use
them again.

Attention to context differentiates teaching from indoctrination, the
notion of open minded from close minded, and, to a great extent whether
constructs are permeable (Kelly, 1955) or not. The basis for schemes
developed by Perry (1970) and Belenky, Clinchy, Goldberger, and Tarule
(1986) are rooted in the extent to which individuals come to know based
on their own reasoning processes versus relying on external sources for
their knowledge. Perry’s (1970) analysis of the intellectual development of
male Harvard students resulted in a scheme consisting of nine positions
which can be clustered into four basic categories: dualism, multiplism,
relativism, and commitment. Briefly, dualism involves seeing the world in
absolute terms, truth being defined by an external being. The stage of
multiplism consists of recognizing that various opinions exist but truth is
still defined by an external authority which has yet to reveal which of the
various positions have legitimacy. Brown, Cooney, and Jones (1990) noted
various studies that revealed teachers often communicate a dualistic or
multiplistic orientation toward the teaching of mathematics. Relativism is
the ability to assess the merits of various perspectives which are
recognized as not necessarily being of equal merit. Attention to context is
an integral part of this analysis. Finally, Perry’s stage of commitment
involves not only analyzing the merits of various perspectives but making
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a personal commitment to one of the positions. A teacher who asks
students to consider and analyze various ways of representing data, to
analyze the value of each representation, and to make a case for the most
appropriate representation would be encouraging this more sophisticated
way of knowing.

Belenky, et al., (1986) use the metaphor of voice to describe
different ways women come to know. Oversimplified, these positions are
described briefly below.

a. Silence--one who perceives herself as having no voice

b. Received knower--one who listens to others often at the expen
se of suppressing her own voice

c. Subjective knower--one who listens to the voice of inner self and
seeks self-identify

d. Procedural knower--one who applies the voice of reason in
separate or connected ways,

e. Constructed knower--one who integrates many voices including
her own voice

The Belenky, et al. (1986) scheme is not stage like as is the Perry
scheme but it does characterize different ways that women and, | submit,
others as well, come to know.

A critical aspect of both the Perry and Belenky et al. schemes is a
transition from relying on external authority as the primary determiner of
truth to valuing one’s own voice and critically incorporating voices of others
into one’s belief systems. This transition point, no doubt evolutionary in
nature, is a critical aspect of the professional growth of teachers as it
marks the point at which a teacher values his/her own voice while
integrating the voices of others. In Perry’s scheme, this transition occurs
in the movement from the position of true Multiplism Coordinate to the
more evaluative stages of Relativism and Commitment Foreseen. Perry
(1970) describes this transition as a “radical reperception of all knowledge
as contextual and relativistic” (p. 109) rather than “assimilate the new, in
one way or another, to the fundamental dualistic structure with which they
began” (p. 109). For Belenky, et al., (1986) this shift occurs in the
subjective knowledge position in which “an externally oriented perspective
on knowledge and truth eventuates in a new conception of truth as
personal, private, and subjectively known or intuited” (p. 54). These
transitions are important for they signal the emergence of the teacher’s
ability to be analytical and attentive to context--both prerequisites for
reflection as defined by Dewey (1933) and others.
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Creating a Theoretical Perspective

Over the past five years we have studied preservice secondary
teachers as they progress through their program at the University of
Georgia and into their first year of teaching. More recently, this research
has been conducted within a National Science Foundation supported
project entitled Research and Development Initiatives Applied to Teacher
Education (RADIATE) directed by Patricia Wilson and myself. We have
found considerable merit in using the theoretical constructs previously
described to characterize teachers’ professional development. Some
preservice teachers’ orientations reflect Perry’s (1970) dualistic or early
multiplistic stages in that they seem unable or unwilling to reflect on the
possible interpretations of teacher education activities. Henry’s
orientation ( Cooney, Shealy, & Arvold, in press) seems to fit this category.
Henry was convinced that he knew the right way to teach when he began
his formal studies in mathematics education. He opposed the use of
technology, a position that he maintained throughout his teacher education
program. He was steadfast in his belief that good teaching consisted of
effective methods of telling students what they needed to know.
Throughout his teacher education program he felt uneasy with the
methods of teaching being used and suggested. He was discouraged,
almost to the point of withdrawing from the program. But Henry's student
teaching assignment was with a traditional teacher who conducted a very
teacher-centered classroom. This affirmed Henry's belief about teaching.
He was critical of his teacher education program and felt that the
University instructors were off the mark and failed to appreciate what
teaching was really like in the schools. His first year of teaching consisted
of teaching lower level classes. Observations of his classes revealed a
very teacher-centered classroom. Henry wanted to teach higher level
students so that he could really teach mathematics. (See Cooney, et al.,
in press.)

Harriet (Cooney & Wilson, 1995) was another student who seemed
to gain little from her teacher "education program. Her mathematics
education courses placed considerable emphasis on reflecting and
analyzing both mathematical and pedagogical situations. Harriet, too, had
definite ideas about teaching, gained mostly from her mother, a highly
respected middle school mathematics teacher. Over the 15 month period
in which she took most of her courses in mathematics education, Harriet
was resistant to activities that called for reflection or problem posing. Her
orientation toward mathematics was decidedly arithmetical and
computational. She cared deeply about helping students, an attitude that
translated into helping students acquire basic skills. Harriet was not
unhappy about her teacher education program as much as she just
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seemed oblivious to it. Observational data collected during her first year of
teaching were consistent with interview data gathered during her
preservice program in that she conveyed a caring attitude toward the
students. But the mathematics she taught in her first year of teaching was
limited and computational and was taught in a teacher-centered classroom
which also characterized her student teaching. (See Cooney & Wilson,
1995.)

Although Henry was critical of his teacher education program,
Harriet, in general, was not. She was pleased with her the field
experiences and enjoyed exposure to topics such as alternative
assessment (although she used none of the ideas in her teaching) and of the
opportunity to share ideas with her peers (although she seemed not to
incorporate the thinking of others into her own belief structures). Like
Henry, her beliefs reflected Perry’s notions of dualism or early stages of
multiplism.

Nancy (Shealy, 1994/1995; Cooney, et al., in press), like Harriet,
was influenced by family members to become a teacher. Nancy was
oriented toward doing what others expected of her. Consensuality was
very important to her. She saw creativity in others but not in herself. For
the most part, Nancy’s knowledge about teaching stemmed from the
voices of others--her peers and her professors. She accepted diversity of
views but saw herself as a spectator rather than a contributor to that
diversity. Differences among her peers and professors were seen as
misinterpretations rather than profound disagreements. She wanted
students to like and respect her. In many ways, her way of knowing
reflects what Belenky, et al., (1986) call a “received knower.” We have
only limited information about Nancy’s first year of teaching, but we do
know that she experienced considerable difficulty during her first few
months of teaching and that she was quite discouraged. She did not seem
to command the respect or love that she had hoped would come from the
students. Although Nancy was sensitive to what others said and in that
sense was reflective, it was not the kind of reflection defined by Dewey
(1933), Schén (1983), or von Glasersfeld (1991).  Although Nancy’s
orientation was not dualistic, neither was it relativistic. (See, Cooney, et al.,
in press.)

Despite their differences, Henry, Harriet, and Nancy have much in
common. Shealy (1994/1995) used the term naive idealist to characterize
Nancy. He saw in Nancy a certain naiveté borne out her penchant for
consensuality. Nancy was not resistant to new ideas. Indeed, she willingly
received ideas from others suggesting an “idealist’ nature to her
orientation toward teaching mathematics. In contrast, Henry and Harriet
were resistant to new ideas, Henry more openly so. They were absolute in
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their beliefs about teaching and generally failed to take context into
consideration with respect to their beliefs. In this sense they were
isolationists. (See Cooney, Shealy, & Arvold, in press.) Itis difficult to see
how an isolationist could become a reflective individual. On the other hand,
it is possible that the naive idealist could move into a reflective mode. For
example, there is reason to believe that a naive idealist like Nancy could
eventually become a reflective practitioner when she realizes that her own
voice is part of the choir of voices contributing to her beliefs about
teaching.

Some preservice teachers were quite reflective. Greg (Shealy,
1994/1995), for example, held the core belief that his role of teacher was
to help students prepare for life. This was a permeable belief. Initially,
Greg saw technology as counterproductive to students developing their
reasoning skills. As he progressed through his teacher education program,
which involved extensive use of technology, he modified this belief and
eventually became committed to the use of technology as a means of
teaching mathematics. Greg’s cohesive set of beliefs were based on the
core belief that he would help prepare students for life. Greg had a
relativistic orientation toward various situations as evidenced by his
attention to the context in which he was teaching or learning mathematics.
Other preservice teachers e.g., Sally (Cooney, et al., in press) and Kyle
(Cooney & Wilson, 1995) were also reflective and generally analytical.
They made connections but fell short of resolving conflicts involving beliefs
about mathe-matics or the teaching of mathematics. For example, Kyle felt
it quite important to demonstrate to students the importance of how
mathematics could be applied to real world situations yet he felt that he
missed some of the basics in calculus because his calculus professor
spent a considerable amount of time solving application problems. Sally,
who initially seemed to be a received knower, later developed a more
sophisticated conception of teaching as she reflected on her experiences
as a student and as she encountered new ideas about teaching. Yet there
were contradictions that Sally never resolved perhaps because she
was not committed to becoming a teacher as evidenced by the fact that
she decided not to teach following her graduation in mathematics
education. Kyle, too, was reflective and attended to context as evidenced
by statements such as, “l would use cooperative learning, but not all the
time. Don’t make all your examples from the book. You can tell a lot about
what they know about a problem by the mathematical terminology they're
using.” Kyle generally connected his experiences to his core belief that
mathematics should be made interesting for students by enabling them to
see connections between mathematics and the real world. Yet, Kyle felt
tension between the importance he placed on basic skills and his
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orientation toward real world connections, a tension never fully resolved
during his teacher education program. He seemed to relish and prosper
from reflective activities in a way Harriet did not. Yet, neither did he
develop a set of beliefs into a coherent whole as Greg had done. (See
Cooney & Wilson, 1995.)

Cooney, et al. (in press) suggest that there are two kinds of
connectedness that characterize preservice teachers. First, there is
connectedness as demonstrated by Sally and Kyle in which connections
are made through reflective activity and attention to context but tensions
are not resolved. We describe this as naive connectionism. On the other
hand, a student such as Greg not only made connections but was able to
take various positions and weave them into a coherent set of beliefs. This
permeability of beliefs represents a more sophisticated notion of
connectedness which we call reflective connectionism. These various
positions are also reflected in our research with other preservice teachers
who have participated in project RADIATE.

Although we have less information about inservice teachers, they,
too, reflect these different positions. Some are resolute that they are not
interested in trying various methods of teaching mathematics such as
cooperative groups, technology or alternative assessment. The reasons
are varied and some with reasonable justification. But often they are
rooted in their unwillingness to leave the security of traditional teaching.
Ellen, for example, restrained from trying different ways of teaching for fear
of loosing control of what the students would learn. Observations of her
teaching revealed a very teacher-centered classroom, a position from
which she was very reluctant to deviate. Ellen was an isolationist of sorts.
Yet other inservice teachers dismiss reasons such as time constraints and
lack of support and willingly venture into the unknown, confident that good
things will happen. Usually these adventurous teachers are analytical and
attentive to the context in which a particular teaching technique is more
likely to be effective. David, for example, continually tried different ways of
assessing students’ understanding, monitoring his own assessment
practices in the process. David fits the mold of a reflective connectionist.

Implications for Practice
During the instructional phase of project RADIATE we placed
considerable emphasis on encouraging preservice teachers to reflect on

various pedagogical and mathematical situations. Much of this material is
based on the notion of integrating content and pedagogy as developed by
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Cooney, Brown, Dossey, Schrage, and Wittmann (1996). In one scenario,
Ms. Lopez presents “the biggest box problem” to her high school algebra
students.

THE BIGGEST BOX PROBLEM
What size square cut from the corners of the original square
maximizes the volume of the figure formed by folding the figure into a
box without a top?
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The students are asked to solve the problem using graphing
calculators and spreadsheets. But when one student wants to know the
“axact” answer, Ms. Lopez is not sure how to find that answer without
using calculus which the students have not studied. As she fumbles
mathematically, students become impatient and problems arise. The
question then becomes one of having the preservice teachers not only
solve the mathematical problem in various ways and extend it to related
problems, e.g., what size cut would maximize the volume if no material
was wasted, but consider the various options for handling the troublesome
classroom situation.

In another situation teachers are asked to classify various
representations of functions in much the way that Kelly (1955) advocates
in his use of the imp grid technique. The activity below is but a sample of
the materials presented in Cooney, Brown, Dossey, Schrage, and
Wittmann (1996). The purpose of the activity is to consider various
contexts in which functions appear and to focus on ways that functions are
classified. This and other card sort activities are designed to promote
recognition of the importance of classification in mathematics in general,
functions in particular, and to consider how the activity can be adapted for
use with other content areas in school mathematics.
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THE CARD SORT PROBLEM

Cooney

Consider the following six representations of functions. Group them into
two or three piles using whatever criteria you wish.

TN/

T

2 x 0 2

Fred is considering which size pizza
is the better buy. He wonders what
happens to the area of the circular
pizza when the diameter of the pizza
is doubled.

The 1990 census shows that Central
City has a population of 40,000
people. Recent studies indicate that
over the past 20 years the
population has steadily increased at
an annual rate of 2%. Social
scientists predict Central City will
experience this same growth rate
over the next 20 years. Ms.
Callahan has been asked to predict
Central City's population for each
of the next 15 years.

...........

How many different groupings did you identify and what criteria did

you use?

The following open-ended question was developed and used by the

RADIATE project.

THE PENTAGON PROBLEM

Consider the pentagon drawn on a sheet of
regular typing paper. What is the largest
pentagon having the same shape that can be

drawn on the paper?

There are a variety of ways of solving the pentagon problem ranging
from using dilations to using an overhead projector or even a copy machine
to enlarge the figure. We ask our teachers to solve the problem and
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then create and analyze contexts in which the problem could be used with
students. In short, they are asked to consider both the mathematical and
pedagogical contexts of the problem. In all cases, convincing arguments
must be given as to why the solution figure is similar to the original
pentagon and why it is believed that the solution figure is the largest
possible figure.

In project RADIATE preservice teachers use e-mail to communi-
cate their reflections and analyses with the instructor and with each other.
They are asked what influenced them to become mathematics teachers
and what factors contributed to what they believe about mathematics. For
example, they are asked whether they plan to besome a mathematics
teacher because of the mathematics or because of the desire to work with
students. In another context, the teachers are asked to consider which of
the following types of people would best fit their notion of being a
mathematics teacher.

newscaster orchestra conductor  physician ~ missionary —gardener
engineer social worker entertainer coach

The issue is not what they pick but the rationale for their selection.
The task, which serves both an instructional goal and as a source of data
for research, is designed to encourage teachers to reflect on their beliefs
about mathematics and teaching and to consider the implications of their
biographies of becoming a mathematics teacher for the way that they
might eventually teach mathematics.

A Concluding Thought

Properly conceived, teacher education ought not to be a random
activity. It should take advantage of what the teacher brings to the
enterprise just as we hope teachers consider what their students bring to
the classroom. In part, this necessitates listening to what teachers tell us
and basing teacher education on their perceived needs. Still, this cannot
be the whole of teacher education as some teachers experience motivated
blindness just as we do as teacher educators. That is, we sometimes lack
the perception of what the real problems are because we are caught up in
the particulars of a situation and fail to see the big picture.

| would claim that teacher education ought to be about providing

visions of what teaching mathematics can be like in the idealized sense, of
providing contexts in which teachers can define their vision and acquire

114




Cooney

the knowledge and skills to move toward that vision, and of enhancing
their ability to be reflective and adaptive agents in the classroom so that
they can monitor their own progress. With respect to this last point, | have
argued that it is important for us to understand the struggles and tensions
teachers experience as they strive to be adaptive agents and to under-
stand what constitutes progress during that process. Such knowledge
provides us a basis for conceptualizing both research and development
activities in teacher education. More importantly, it provides a basis for
allowing teachers to realize their potential and for them moving toward the
type of professionalism of which Romberg (1988) and Noddings (1992)
speak. Our tensions and struggles as teacher educators ought to focus on
ways we can enable teachers to accomplish this end. For then, we will
have moved teacher education beyond being activity bound and toward
being a field of disciplined inquiry. What better way to spend our pro-
fessional lives than finding means of enriching the professional lives of
others and concomitantly enhancing our own as well?
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ETHNOMATHEMATICS: WHERE DOES IT COME FROM?
AND WHERE DOES IT GO?

Ubiratan D'Ambrosio

My early thoughts on Ethnomathematics.

Mathematics, as a form of knowledge, is subordinated to the general
behavior of the human being. Hence Mathematics results from the
cummulative responses of the individuals and the communities to the
drives towards survival and transcendence. These cummulative
responses build into culture. In this process, individual actions are the
result of different behaviors: sensorial, intuitive (and instinctive), emotional
and rational. And individuals interact through communication, understood
in the broad sense. Thus a body of knowledge is generated, which is
intellectualy and socially organized, and is diffused. | try to understand
knowledge, hence Mathematics, as the result of all these categories.

Particularly important are the relations between Mathematics and
Society. | have been concerned with this issue for a long time. Five ICMEs
ago, in the Third International Congress of Mathematical Education, in
Karlsruhe in 1976, | was invited to prepare a paper reflecting the state of
the art and to organize a discussion on the objectives and goals of
Mathematics Education. In those years | had accumulated experience of
work in Brazil and most Latin American countries, in the USA, in Europe
and in a number of African countries. In this process, a broader conception
of mathematics started to take shape in my mind. The paper, entitled "Why
Teach Mathematics?", although published in several languages by
UNESCO, did not draw attention. There | presented the basic ideas that
led to the Program Ethnomathematics, mainly focusing on a socio-cultural
critique of Western Mathematics. The name Ethnomathematics had not
yet occurred to me.

Soon after | started to use the word Ethnomathematics. It looked
adequate to me after learning about important works on Ethnomusicology,

ot A atia,

1 Ubiratan D'Ambrosio: "Overall Goals and Objectives for Mathematics Education
Why Teach Mathematics?", New Trends in Mathematics Teaching 1V,
UNESCO- ICMI, Paris, 1979; pp. 180-196.
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on Ethnobotanics, on Ethnohistory, on Ethnopsychiatry and on
Ethnomethodology. These "ethnodisciplines” have much to do with work
done by anthropologists and undeniably in my early work on
Ethnomathematics | was very close to Anthropology and Ethnography. The
name was explicitly used, in the broader sense | attribute to it nowadays,
in the plenary talk | gave in the Fifth International Congress of
Mathematics Education, ICME 5, in Adelaide, Australia, in 19842. This
broader sense challenges the usual way of understanding knowledge li-
nearly, focusing on each of these categories which built into knowledge
isolatedly, thus creating areas of study known as cognitive science
[generation], epistemology [intellectual organization], history [social
organization] and education [diffusion]. Also the drives which move
materially and spiritually our species [survival and transcendence] and the
dimensions of the responses to these drives [sensorial, intuitive/instinctive,
emotional, rational] are usually studied as isolated categories. | see all of
these categories of study as interdependent and interrelated. Thus my
adoption of a holistic approach for understanding the human species. 3

Ethnomathematics has only more recently been considered an
area of Mathematics and Mathematics Education.4 But since
antiquity we recognize concerns similar to those that we label
nowadays Ethnomathematics. Herodotus says: "If the river carried
away any portion of a man's lot, he appeared before the king
[Sesostris], and related what had happened; upon which the king
sent persons to examine, and determine by measurement the exact
extent of the loss; and thenceforth only such a rent was demanded of
him as was proportionate to the reduced size of his land. From this
practice, | think, geometry first came to be known in Egypt, whence it
passed into Greece. The sun-dial, however, and the gnomon with
the division of the day into twelve parts, were received by the
Greeks from the Babylonian." 5 Most probably those persons whom

2 A short summary of the paper was published in the Proceedings of the Fifth
International Congress of Mathematical Education, ed. Marjorie Carss,
Birhauser, Boston, 1986; pp. 1-6. The full paper was published as Socio-cultural
bases for Mathematics education, UNICAMP, Campinas, 1985.

3 For a very brief and introductory discussion of the holistic approach see
Ubiratan D'Ambrosio: "Uniting Reality and Action: A holistic approach to
Mathematics Education” in Teaching Teachers. Teaching Students, eds. Lynn A.
Steen and Donald J. Albers, Birkhauser, Boston, 1981; pp. 33-42.

4 it appears Zentralblatt/Mathematics Reviews Subject Classification of 1991 as
History: 01A07.

5 The History of Herodotus, translated by George Rawlinson, Book Il, 109, Great
Books of the Western World, 1994; p.70.
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the king sent to examine the lands and determine the measurements were
the "mathematicians" of ancient Egypt. We find similar considerations in
Maya accounts.®

In every culture we recognize practices of measurement, of
quantification, of observation, of classification, of inference. These
practices were applied by distinguished members of the society for a
variety of purposes, such as to record events and facts [scribes], to
administer society [public officers], to change the face of the land through
buildings and works [architects], to predict events and possibly to interfere
with their course [diviners, magicians, astrologers, healers]. The corpora
of knowledge that those distinguished members of society knew have
many of the characteristics of what we call nowadays Mathematics. But
they would never call themselves mathematicians nor Mathematics what
they practiced. Much the less Ethnomathematics!

Throughout the history of mankind every culture has recorded, in
different ways, reports of travellers who have seen or heard about ways of
coping with reality and explainig facts and phenomena which are different
from their own. The encounters of cultures are, evidently, responsible for
the dynamics of cultural changes.

Ethnomathematics as a corpus of knowledge incorporate [Western]
Mathematics.

Although | was led to use Ethnomathematics by similarity with other
“ethnodisciplines”, | soon recognized that it should be viewed as the
recognition of different styles, forms and modes of thought [tics] aiming at
explaining and dealing with reality [mathema), which were developed in
different natural and cultural environments [ethno].” These developments

6 See Michael Closs (ed.): Native American Mathematics, University of Texas
Press, Austin, 1986.

7 The search of a name to express all these ideas led me to commit un abus
d'étymologie and use the Greek roots ethno, mathema and tics (a modification
of techné). See my article "Ethnomathematics: A Research Program on the
History and Philosophy of Mathematics with Pedagogical Implications."
Notices of the American Mathematical Society, December 1992, vol. 39, n°10;
pp. 1183-1185. Ethnomathematics is a reseach program, delineated in the
name itself. Of course, it is supported by a broader view of History. Hence the
discussions (Letters to the Editor) which appeared in subsequent issues of the
Notices. Of course, it is of fundamental importance for this program to look for
mathematical ideas in different cultures.
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are not immune to cultural dynamics and reveal inumerous contributions
from other cultures and run throughout history.

A corpus of knowledge results from a complex of needs and
interests, of experiences and memories, of simbols and representations.
The intangible process of imaginative thought which underlies the
acquisition of knowledge distinguishes the human species from all other
living creatures. The quest of men and women about themselves and the
other, about nature and the cosmos, gives them their special dignity and
the feeling of truth. The efforts to present images of truth in forms that will
delight the mind and senses of the beholder gives meaning to humanity.
Distortions in presenting these images lead to preposterousness, to
arrogance and arrogation and to hegemony.

Western Mathematics does not escape from these considerations.
Besides looking into the mathema of different cultures, my research
program would naturally include an analysis of how these issues are seen
in the development of Western Mathematics. Thus Ethnomathematics is
also a research program in the History and Philosophy of Western
Mathematics.

Western Mathematics developed out of the Mediterranean
environment, hence they belong to the ensemble of behaviors of the
Mediterranean cultures. This assertion is generally accepted. Even
Herodotus comes in support of these remarks. But, for obvious reasons,
those in power are zealous on reaffirming the intellectual hegemony of the
West® . The strongest argument using to support this intellectual
hegemony is Science. Hence the seemingly unchallengeable position of
Mathematics.

The non-recognition of the process of cultural dynamics has lead to
distorted views of history. The turning point was, undobtedly, the expansion
of the West beginning in the last quarter of the XV century, which opened up
the colonial enterprise.

8 There is a widely spread refusal to recognize this obviousness. | invite those
reluctant in accepting my claim that the reasons are obvious to look into the
qualitative changes in the state of the world in this century.
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The colonial statute and a vision of history.

The colonial statute strongly relied on the strategies of conversion,
which had been the main characteristic of both Christian and Islamic
expansion, instead of allowing the flow of the process of cultural dynamics.
This was particularly important in the evolution of mathematical ideas and
in defining a style of mathematics education which was grounded in the
ideals of the Enlightment, and acquired a firm standing in the XIX and XX
centuries, clearly as a response to the major objectives of the colonial
empires.

In the process of conquest it was decisive to remove historical and
intellectual knowledge of the conquered, with the consequent elimination
of their intellectual thrust and pride. To attain these goals, the strategy of
religious conversion was efficacious. New religions brought to the new
lands new conceptions of space [permanence] and of time [fluidity], which
are the most relevant categories in the foundations of mathematical
knowledge.

The era of political colonialism came to an end after the World War I
Since then there was the expectation of the emergence of a new protocol
in economic and cultural relations. The Third World was a proposal for a
new order.9 Although the expectations are not yet realized, the process is
irreversible and as a consequence there is evidence of the emergence, in
just about every field of human activity, of new forms and styles of
explanations, of understanding and of practices. Regretably, the former
colonial mind are as yet reluctant in recognizing different styles of knowing,
freed from the colonial biases.

A new historicity.

A new historicity, hitherto ignored and even repressed, now
emerges and is increasingly accepted and adopted as a guide for action.
It challenges truisms and social and cultural behaviors, taken as normal in
modern civilization.

These studies combine the skills of the archaeologist, anthropologist,
ethnographer, the conventional historian, the specialist in the disciplines,

9 The phrase "Third World" was coined by the Algerian writer Frantz Fanon in his
book Les damnés de la Terre, Maspero, Paris, 1961, in writing about the newly-
emergent nations after WW Il. There was then an optimistic mood of hope that
the era of damned peoples and cultures was approching its end.
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and all this make up for a typical interdisciplinarian approach. The focuses
include combining collection of data from tangible materials and from oral
traditions, analysis of behavior, comparative studies and cultural
dynamics. History thus gains a new breadth, for the concept of sources
has to be largely amplified and the chronology entirely revised in order to
include developments which followed different, in many cases unrelated,
strands.

How could Mathematics stay unaffected by the opening of these
new directions of critical inquiry? Thus the inevitability of Ethnomathe-
matics. An excellent account of the trajectory of Ethnomathematics is
given by Paulus Gerdes as Chapter 24 of the International Handbook of
Mathematics Education.10

Ethnomathematics may be, and indeed it is, tolerated, even taught,
admired and practiced in some academic environments. It is sometimes
looked upon as a fashion. And regarded as politically correct. Indeed it is.
But there is a cultural arrogance intrinsic to these views. There is a general
acceptance and praise of the fact that some cultures show achievements
that match -- even if minimally -- results of Western Mathematics, which
continues to be the paragon of rationality.

No one would dare to challenge the fact that Western Mathematics
is the paragon of rationality. Much of the research in Ethnomathematics
today has been directed to identify results and practices that resembles
Western Mathematics in non-Western cultures, and to analyze these
results and practices by Western instruments. | entirely accept the need of
this research. They are absolutely necessary and constitute the most
accepted, attractive and indeed the most developed strand of
Ethnomathematics research.

Different styles of knowing.

We now have the elements for going deeper into understanding
other styles of cognition. The key issue, which sometimes is not explicit in
most developments of Ethnomathematics, is the recognition that the
Mathematical development of other cultures follow different tracks of
intellectual inquiry, different concepts of truth, different sets of values,

10 |nternational Handbook of Mathematics Education , 2 volumes, eds. Alan J.
Bishop et al., Kluwer Academic Publishers, Dordrecht, 1996.
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different visions of the self, of the other, of mankind, of nature and the
planet, and of the cosmos. These visions come all together and can not be
considered isolated from each other. These visions build into the behavior
of each human being and of societies and are inseparable from the history
of each human being and of each society.!! Civilization, as a category of
historical analysis, is the result of this. This was the proposal implicit in
Spengler's historiography and more explicit in the historiography of the
Annales.

The frameworks of modern society, its science and technology, its
religion and the arts, its political organization and philosophical schemes,
all sprang out of the Mediterranean. From some elements an entire corpus
of knowledge results.

Every culture reveals mythological attributes to facts of reality. The
formalisms which derive from the mythological attributes generate distinct
corpora of knowledge. Nowadays, all the discourse about indigeneous
development refer to these broad aspects of knowledge.

There is a general acceptance that cultures are relative in the sense
that something that is true or good in one cultural context may be false or
bad in another. But this carries with it the adoption of standards of the
outsider. Cultural relativism is indeed ethnocentric. And uses Mathematics
as a standard, hence a demonstrative tool.

Much of the arguments are based on the claim of the universality of
Mathematics, unique among all cultural manifestations. Of course,
Mathematical knowledge is the same in Rome or Lapland or Amazonia,
the same as myths, music and hot-dogs. But how about “producing” and
‘consuming" mathematics, myths, music and hot-dogs? All these cultural
manifestations have to do with people.

What do the Lapps and Yanomami have to say about hot-dogs,
music and myths? This is a good and respectable question. But if one puts
similar questions about Mathematics, the answer is simply "this does not
make sense". The claim is that Lapps and Yanomami do not have the
intellectual tools to discuss Mathematics. To them we just say: learn
Mathematics (of course, Western Mathematics).

M Fora presentation of these issues, with special emphasis in the Navajo culture,
see James F. Hamill: Ethno-Logic. The Anthropology of Human Reasoning,
University of Illinois Press, Urbana, 1990.
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These were key points in the conquest and the colonial process.
Chroniclers have reported and identified all the contradictions resulting
from the way the encounter was handled. To exhibit a "succesful”
colonized has always been an important evidence of the magnanimity of
the colonizers and the adequacy of their pedagogy. No one denies that
some Lapp and Yanomami may even receive a Fields Medal! The
undeniable possibilities of these results leave unresolved, indeed it
masquerades, the real issue.

A theoretical approach and recent developments.

Current historiography is inadequate to deal with Ethnomathe-
matics. The chroniclers of the conquest and colonization are not
recognized sources in the History of Mathematics. Hence
Ethnomathematics has been, and to a large extent continues to be, treated
as curiosity, the same as ethnoreligions are seen as obscurantism and
ethnomedicines as superstitions.

A theory of knowledge can be built on five main strands:

1. Description of ad hoc knowledge and recognition of methods.
2. How do methods give rise to theories?

3. How do theories lay the ground for invention?

4. What are the socio-political frameworks of knowledge?

5. How do we think? or How is knowledge generated?

A theory of Ethnomathematics should also focus in these five
strands. These are not isolated strands. They twine and weave as in a
fabric. The metaphor is specially appropriate for Ethnomathematics. How
these strands come together in such an indissoluble way in
Ethnomathematics is well illustrated in chapters 24 [by Paulus Gerdes], 26
[by Bill Barton] and 35 [by Ole Skovsmose and Lene Nielsen] of the
International Handbook of Mathematics Education (see Note 9).

Much of the current research in Ethnomathematics has been
directed to strand 1. This has also been the main objective of ethnography,
psychology, and cultural and social anthropology. There is an increasing
literature on these fields supported by the way peoples perform
mathematically in different cultural environments in all the parts of the
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world. We have today a good amount of published research in these
directions, which support Ethnomathematics, sometimes not explicitly.
And a good amount of research on Ethnomathemastics following this
strand.12

Of course, the pedagogical implications of these researchers is
evident. From mere awareness of Ethnomathematics in different cultural
environments to a deeper knowledge of these Ethnomathematics, it is
undeniable that the classroom benefits benefits in several ways from it. We
may think of a a practical and instrumental objective of Mathematics in
Schools. Ethnomathematics relates to everyday uses in the more
immediate cultural environment.3 Political awareness and steps towards
full citizenship, avoiding inequities, is more easily achieved, since
Ethnomathematics is intrinsically critical, as a result of its dynamics. It has
not the characteristics of frozen knowledge which prevails in most of
academic mathematics.14 But probably the most important is to restore
cultural awareness and esteem of groups that have been subjected to
iequities and discriminations which characterizes the colonial times, but
still persits nowadays. This comes in the direction of strand 4.15

The arrogance of the dominator finds in Mathematics [academic, as
practiced in the traditional school] a perfect ally. The interview with Paulo
Freire, presented in this same congress, is very explicit on this. Freire
reports that in his school days he never looked on Mathematics as
accessible to him. This was regarded as something for individuals who
were more like gods!

My early motivation for these thoughts came initially from artisan-ship
(basketry in the Amazon), craftsmanship (boat builders in the Amazon
basin), buildings (mosques in West Africa) and other cultural manifestations.
This invited a reflexion on how these manifestations have, implicit in them,
mathematical ideas and contents, which normally are not recognized,

12 gee Chapter 24, #4 [An Overview of Ethnomathematics Literatures] by Paulus
Gerdes; op.cit. in Note 10.

13 See the important book by Marilyn Frankenstein: Relearning Mathematics. A
different Third R: Radical Mathematics, Free Association Books, London, 1989.

14 The book of Marilyn Frankenstein, cited in note 13, is particularly concerned
with this. See also the activities of the group "Political Dimensions of
Mathematics Education”, which was established and met for the first time in
London, 1990.

15 See my chapter in the NCTM Yearbook 1997,
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while equivalente cultural manifestations of Western civilization support
the relations between mathematics and society. We always talk about
cathedrals, paintings and the medieval conceptions of God as decisive in
the elaboration of what would be later called non-euclidean geometries.
These facts are as common in other cultures and determine their
developments of modes of explanation and of the more immediate needs
of dealing with their environment [mathema). Of course, this follows
different paths in different cultural and natural environments. The same
can be said about the techniques of registering space [cartography, maps],
one of the most influential factors in the development of Western
Mathematics. Corresponding techniques, with the same objectives, are
present in every culture. Hence, they have determined specific
developments of their "mathematical® ideas.'® This is the typical
approach to strand 1.

Strands 2. and 3. are as yet very incipient. Recent work by Samuel
Lopez Bello with the Guarany Kayowaa, in Mato Grosso, of Chateubriand
Amancio Nunes, with the Kaingang, in Southern Brazil, of Pedro Paulo
Scandiuzzi, among the Kamaiura nation in the Xingu region, aims at
identifying the epistemological foundations of their Ethnomathematics.1”

It is sure that a better knowledge about the generation and
organization of knowledge in different cultural environments will shed light
into the difficult strand 5. There is no point in attempting to understand the
human mind by looking into the behavior of the dominant culture. Indeed
this is preposterous. The theoretical understanding of Ethnomathematics
and its history are essential elements for understanding both the human
mind and the dynamics of cultural encounters.

The pedagogical benefits of the Ethnomathematics approach are
easily recognized. There is considerable research supporting situated
cognition and building-up on self-esteem. Both are intrinsic to the
Ethnomathematics pedagogy. There has been much writing and several
different proposals about this. Again, a good source of current
developments is Chapter 24, by Paulus Gerdes, in the International

Handbook of Mathematics Education (see note 12).

| see Ethnomathematics as a thriving field of research and of
pedagogical practice.

16 The recent paper of Marcia Ascher touches this aspect of Ethnomathematics:
“Models and Maps from the Marshall Islands: A Case in Ethnomathematics",
Historia Mathematica 22, 1995; pp. 347-370. .

17 Some of these researches have been reported in the NEWSLETTER of the
ISGEm. This periodical publication is, to my knowledge, the best source of new
developments in Ethnomathematics.
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SOME ASPECTS OF THE UNVERSITY MATHEMATICS
CURRICULUM FOR ENGINEERS

Nguyen Dinh Tri
Hanoi university of technology

1. Introduction

The main objective of Hanoi University of technology is to train
engineers for the country. The undergraduate education in our university
is for 5 academic years, one year being composed of 2 semesters. The
period of the first 2 academic years is for general education, the remaining
period is for speciality education in engineering. There are 28 specialities
in the university, including the speciality of applied mathematics.

Traditionally the Core Curriculum in mathematics for engineers
includes :

- Calculus

- Linear algebra

- Probability and statistics

- Numerical methods

These courses are given as compulsory courses in the period of
general education. In the remaining period, the departments offer
specialized mathematics courses which are closely connected to the
specific fields as Fourier analysis, special functions, equations of
mathematical physics, differential geometry, approximation theory (splines,
wavelets, ....), combinatorial optimization.

Over the years mathematics curriculum in our university have gone
through a lot of changes. Due to various reasons, less probability and
statistics, less numerical methods were being taught. Since 1988 the
reform of curriculum in mathematics in the primary and secondary schools
was carried out. Therefore we have to change our mathematics curriculum
for providing a smooth transition from schools, to review the aims of
mathematics education, the principles of implementation of mathematics
curriculum in order to meet the requirement of our society in the coming
century.
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In this talk, | would like to expose what has been proposed for the
core curriculum in mathematics for engineers at my university and for the
mathematics curriculum of the Department of Applied Mathematics.

2. Role of mathematics in engineering education.

Throughout history it is well known that mathematics play the role
of the key to engineering development and engineering development
stimulates the development of mathematics .

In the engineering curriculum, the role of mathematics is :

- to provide a training in logical thinking

- to develop a good level of knowledge (basic concept, basic ideas,
basic techniques) and skills, of mathematics literacy

- to provide a tool for the derivation of quantitative information
about natural systems, a tool for learning across the disciplines, a
modeling tool for other sciences.

We notice in the last decades the strong development of abstract
activities of engineers : modeling, design of numerical models, using
computers. However engineers are not mathematicians. Therefore
mathematics education for engineering students is aimed not to train
mathematical rigour but train the following abilities :

- to develop mathematical thinking, to train mathematical
reasoning

- to understand elementary mathematical models of engineering
and to solve them by computers

- to formulate mathematically problems arising in engineering and
to solve them by using mathematical ideas and techniques.

As the rate of technological change accelerates in the recent time,
some engineering knowledges become outdated very quick. So the
engineers must be able to learn independently for adapting successfully to
the changes in demands upon them, to change their subjest of work.
During the years of their professional lives, the engineers have to pass a
number periods of technological updating for understanding new concepts
and mastering new techniques. For this reason, our curriculum should be
aimed to provide a training for change and not an education for life. We
have to recognise and promote the role of mathematics in the continuing
education of engineers in collaboration with industry.

As the specialisation in engineering increases due to the
sophistication of technology, the engineers must be able to work with

130




Dinh Tri

others, to work in team, in which engineers can collaborate, communicate
easily with specialists of various domains.

3. Core Curriculum in Mathematics for engineers.
3.1 Incorporation of discrete mathematics in the Core Curriculum.

As | mentioned in the introduction, traditionally the Core
Curriculum in mathematics for engineers in our university includes
calculus, linear algebra, probability and statistics, numerical methods. It's
clear that differential and integral calculus occupies a very important place
in the mathematics curriculum in the last year of secondary school and the
first year of university. Calculus provides methodology and techniques
ne-cessary for the study of functions and e abstract tools which are
fundamental for the further study of higher mathematics. Moreover,
calculus provides the foundations for many applications of mathematics in
other sciences and engineering. All these applications are based on
continuous mathematical models.

With the widespread use of computers and the strong
development of informatics in the last decades, the interest of discrete
mathe-matics increases rapidly. Computers are discrete machines. Discrete
mathe-matics play to the role of mathematical foundation of informatics.
Moreover, the application of computers has stimulated the use and
development of discrete mathematical models in many disciplines. So far
the course of discrete mathematics is offered to the students of the third
year of the department of informatics. Because computers are very
efficient computing tools for all branches of sciences and technology, the
students of all other departments have to learn some subjects of
informatics, but they have no opportunity to learn discrete mathematics.
For this reason, we would like to incorporate discrete mathematics in the
core curriculum in mathematics for engineers. We prefer to develop a new
mathematical course which includes algebraic structures, discrete
mathematics and linear algebra. This course is given to all students of
engineering of our university in the period of general education. So the
new core curriculum in mathematics for engineers in our university now
includes :

- calculus

- algebra (including discrete mathematics)
- probability and statistics

- numerical methods
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3.2 Teaching of calculus.

We observe that engineers graduated from our university are not
competent in mathematical modeling. When they investigate real
problems arising in engineering, they are confused to identify the
quantities which participate to the problem, to establish various relations
between them, to find necessary and sufficient conditions so that the
problem is well posed. The main reason of this fact is that the courses of
calculus offered in our university are too abstract. In the lectures the
mathematics teachers try to define precisely basic concepts of calculus, to
expose main ideas, main methods, main results relative to these notions.
Due to the pressure of time and the lack of knowledges of applications of
calculus in various domains of applied sciences of professors, these
applications are considered as auxiliary in the lectures of calculus. Our
students are able to find the derivative or the integral of a wide class of
functions, to integrate some classes of differential equation, but only very
few students understand deeply the practical origin of derivative or integral
and can apply these notions in the investigation of real problems in
physics, mechanics, engineering. In the courses of calculus in our
university, the demand of mathematical rigour in some fundamental aspect
like in the construction of real number should be decreased, but the
importance of calculus in various areas of applied sciences and and
technology should be increased. To train engineers for the future, it is
necessary to provide them the knowledges on the interpenetration
between mathematics and other branches of sciences and technology, on
the industrial dimension of mathematics, on the development of
mathematical tools and the application of these tools in the resolution of
mathematical models. The control of students knowleges should include
some miniprojects which integrate the following aspects : modeling,
numerical resolution of mathematical models by computers, discussion on
received results. The project work should be included as a component of
the mathematics curriculum. The project work contributes :

- to develop autonomy, initiative and personal work of students.

- to enhance the work in team

- to extend cultural perspectives of mathematics, of mathematics
application, to promote the relevance of mathematics to industrial
needs.
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3.3 Core Curriculum in Calculus.
Calculus I. Simple variable calculus

* Sequences

* Functions : concept of mapping, function, graphical representation
* Differential calculus : definition and rules of differentiation,
derivative of inverse function, higher derivatives, Taylor and Mac
Laurin expansion, approximation and asymptotic behaviour of

functions
* Integral calculus : indefinite integral and definite integral,
fundamental theorems and standard techniques of integration.

Engineering applications. Improper integrals

Calculus Il. Multivariable calculus

* Function of n ( 2 2) variables : representation, partial derivative,
total differential, change of variables, implicit function theorem,
Taylor expansion, extrema, Lagrange multipliers.

* Multiple integral : double integral, triple integral, change of
variables

* Line integral, Green’s theorem, surface integral, Stoke’s theorem
and Gauss theorem, with physical signifiance

Calculus lll. Infinite series. Ordinary differential equations (ODE)

* Infinite series : convergence tests, absolute convergence, uniform
convergence of series of functions, power series

* Fourier series

* ODE : first order differential equation, second order linear
diferential equations with constant coeffcients, systems of
differential equations.

3.4 Core Curriculum in Algebra

Set and mappings.

* Mathematical logic : propositions, connectives, truth-tables, rules,
of inference, quantifiers, introduction to Boolean algebra, reasoning
by recurrence

* Set : operations on sets, relation to Boolean algebra.

* Binary relations : equivalence, order
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* Mapping : injection, surjection, bijection.
Combinatorics and graph.

* Counting techniques, the product rule, inclusion-exclusion
* Arrangenent, permutation, combination
* Graphs, directed, undirected, trees

Algebraic structure

* Group
* Ring
* Field

Linear space and transformations

* Space,linear independence, bases, subspaces, scalar product,
Euclidean norm

* Linear transformation, matrix representation, change of basis, ortho-
gonal transformation

Matrix algebra and system of linear equations

* Matrix representation of system of linear equations, solution of
system of linear equations, by elimination method.

* Matrix algebra, inversion, rank

* Determinants

* Decomposition methods. Consistency, uniqueness of solution

The eigenvalue problem
* Algebraic methods for determining eigenvalues and eigenvectors

* Reduction a matrix to diagonal and Jordan form
* Quadratic form

3.5 Core Curriculum in Probability and Statistics.
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Random variable and probability distribution

* One-dimensional random variables. Basic distributions (binomial,
Poisson, exponential, normal, .....)

* Multidimentional random variables. Conditional distributions, in-
pendences, linear combinations of random variables

The law of large numbers and the central limit theorem

Statistical treatment.

* Classical treatment : point estimation of parameters, unbiased
estimator, consistent estimator, the maximum likelihood method,
umbiased estimation of expectation and variance, estimating
parameters of specific distributions, the confidence intervals for the
mean and variance, for the parameters of the above distributions
* Bayesian treament

Estimation

* Point estimation
* Interval of confidence

Hypothesis testing
Linear regression
3.6 Core Curriculum in Numerical Methods

* Errors

* Numerical solution of algebraic and transcendantal equation : ite-
ration, chord, bissection, Newton method, order of convergence

* Numerical solution of system of linear equations, method of
iteration

*Polynomial interpolation

*Numerical solution of ordinary differential equation : Euler method,
Runge-Kutta method.

4.Structure of the courses of Mathematics of the Department of
Applied Mathematics

Applied mathematics is concerned with the development of mathe-

matics models and techniques with applications to the resolution of
problems arising in other sciences as physics, mechanics, computer
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sciences, in engineering. Computational techniques are of great interest to
Applied Mathematics

The objective of the Department of Applied Mathematics is to train
mathematics engineers. They have to master :

- mathematical aspects of modeling : differential and stochastic models

- scientific, economic computing and informatics

- some disciplines in applied areas : physics, mechanics, ...

The mathematics courses offered in the period of speciality
education for Applied Mathematics are aimed to provide knowledges of
higher level of abstraction, of deeper level of significance in mathematical
modeling, in solving these models by mathematical tools, by computer.
The courses comprises four areas of study : basic concepts, mathematical
methods, computing and some domains of applied sciences.

The list of courses offered in the third and fourth years is as follows :

- Advanced discrete mathematics

- Data structure and algorithm

- Optimization

- Combinatorial algorithms

- Theory of programmation

- Functional analysis

- Equations of mathematical physics

- Advanced numerical analysis

- Finite difference and finite element methods
- Mathematical statistics and data analysis
- Time series

- System and control

- Economical models

- Signal processing

- Fluid dynamics

- Mechanics of deformable media

In the first semester of the fifth year, a reasonable flexibility in
content is allowed. The last semester is for the memoir writing.
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GEOMETRY IN PARAMETER SPACES
A standard geometrization process

A. Douady

1. Introduction

Since the beginning of the 20th century — I could say following
Hilbert— geometry has proved to be an extremely efficient way to tackle
many problems in mathematics or other sciences. In many cases, it is not
in Euclidean geometry in dimension 2 or 3 that one ends up, but in
geometry in some space adapted to the problem —sometimes a space of
parameters constructed ad hoc.

In very general terms, the strategy in this geometrization process,
i.e. in the transfer from the initial framework to a geometrical framework,
can be described as follows:

The initial problem is formulated as to find a configuration (in the
given situation) satisfying certain requirements. One looks at the set of all
configurations of that nature. One then identifies this set with some subset
E of a space in which one is used to work geometrically (typically RN); the
set E is then a parameter space for the configurations considered. The
problem then becomes to construct a point in E with certain geometrical
properties.

In this talk, we give three examples of implementation of this
strategy:

1) A propenty of circle intersections

2) Possibility of reversing a line without letting it be tangent to a

given curve;

3) Existence polynomials of degree 4 with prescribed critical values.

In the first two examples, the initial framework is already
geometrical, but transfer to another geometrical framework is necessary
(or at least useful) to solve the problem. In other words, we have to provide
an already geometrical problem with a new geometrization.

In the third example, the initial problem is algebraic. It could be

easily formulated in geometrical terms, but the geometric representation
we use is different from the obvious one.
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In each of these examples, the parameter space Eis a part of R3 or
R2, but it is easy to imagine that it is not always so. For instance, the set
of possible orbits of a planet has dimension 5; in robotics, one has to deal
with the set of all possible positions of a solid. This is a 6 dimensional
manifold, which can be imbedded in R9.

We shall first give the statement of the problems in their initial frame-
work, to allow the reader to investigate various ways to tackle them
before looking at the one we propose.

2. The Problems
2.1 Circle intersections.

Let Cy Cp, C3 Csbe 4 circles in the plane. We suppose that:
Cq and C, intersect in aq, ap ;

Cg and Cy4 intersect in ag, a4 ;

C4 and Cy intersect in by, by ;

Cp and Cy intersect in by by (Fig. 1).

/

[Fig. 1]
Prove that, if aq ap, a3, a4 are on a circle or a line, then by, bo, b3, by
are on a circle or a line.
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2.2 Reversing a line (a problem suggested by David Epstein)

This problem has 3 versions. Consider in the plane an arc of curve
I which is one of T'y, T'p, I'3 drawn in Fig. 2, and a straight line D not
intersecting T. Is it possible to move D continuously and to take it back to
its initial position with orientation reversed, without letting it to be tangent
to T at any time during the movement ?

[Fig. 2]
Hint. The answer is not the same for the 3 curves: there are 2 yes
and 1 no, or the other was around. Before you look at section 4, try to
make guesses.

2.3 Polynomial with prescribed critical values.
Let f be a monic polynomial of degree 4 with coefficients in R:

fl) =x*+ a3x3 + a2x2 + aqx + ag.
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(“monic” means a4 = 1). We suppose that the derivative f’ has 3 real
roots ¢4 < ¢p < cg (critical points). Then the critical value v; = f(¢)) satisfy vo
> vq and Vo >vg (Fig. 3).

|

c [~} €3

[Fig. 3]

Question 1: Given real numbers v, vo, v3 such that vy >vq andvy
> g, can one chose ag, ay, ap, ag, So that the critical values of fare v 4, vo,
V3 ?

If we translate f horizontally, i.e. replace it by x — f (x — b), the
critical values are unchanged.

Question 2: Is a monic degree 4 polynomial uniquely determined up
to translation by its critical values vy, vo, v3 ?

This problem arises naturally for arbitrary degree d. There is a
classical proof involving complex analysis. It was proposed as a challenge
to get a proof staying in the real framework. P. Sentenac and | proposed a
way to do so, | present here the case of degree 4, the simplest non trivial
one.

3. Travel to the country of circles
3.0. Preliminary considerations

We are considering the first problem, that on circle intersections.
This is a problem on circles: supposing that a4, ay, ag, a4 are on a circle,
we are looking for a circle passing through by, bo, bs, by (or at least trying
to prove the existence of such a circle).
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According to our general strategy, we have to look at the set C of all
circles in the plane.

3.1. First attempt

A circle is determined by its center and its radius. Let us denote by
Ca,b,r the circle of radius r whose center has coordinates (a,b).
Representing the circle Ca b,r by the point (a,b,r) of R3, we identify the set
C with the half space R2 x R + (the points on the frontier plane represent
point circles).

This is very natural, but it leads to some trouble. Remember we are
looking for a circle passing through 4 points. Given a point P = (x,y) in the
plane R2, the set C(P) of circles passing through P is represented by the
cone

{(ab,r) I r=d((x,y).(a,b)}

The set C(PQ) of circles passing through two points P and Q is a
branch of hyperbola. For 4 points, we are looking at the intersection of two
hyperbolas in R3, this is very complicated, and we soon get drowned.

So we have to look for a more clever representation of the set C.
3.2. More algebraically

The equation of the circle Cg,p,ris (x—a)2 + (y—b)2 =12, i. e.

* x2 +y2-2ax—-2by+c=0

where ¢ = a2 + b2 — 2. Any equation of the form (*) describes a circle,
provided ¢ < a?+b2 (accepting point circles). Representing C ab,r by the
point (a,b,c) in R3, we identify C with the region exterior to the paraboloid
T of equation c=a2+b2. Points on the paraboloid represent point circles;
points in the region inside represent imaginary circles with no real points.

What are the goods and the odds of this new representation?

Disadvantages: This seems less natural. Moreover we get a region
in R3 which is harder to describe.

Advantage: The set C(P) is now a plane, namely that of equation ™
where a,b and c are the variables, x and y being considered as constant.
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This plane touches the paraboloid X at the point representing the
point circle {P}, otherwise it lies in region exterior to Z. Given two points P
and Q, the set C(P,Q) becomes the intersection of two planes, i.e. a
straight line (lying entirely in the region exterior to X).

3.3. Solving the problem

We use the second representation and identify C with the region E
in R3 exterior to Z. A circle C in R2 is represented by a point in E that we
denote also by C. Given two points C and C' in R3, we denote by Dc,c’ the
line passing through C and C'.

To say that ay, ap, ag, a4 are on a circle G means that there is a
point T e E which lies both on the line Dcq,co and on Dcg,c4 i.€. that these
two lines meet. It implies that the points cq, ¢y, c3, ¢4 are in a plane, and
therefore that the lines Dc4,c3 and Dcp,c4 meet or are parallel. If they meet
in a point T, this point represent a circle passing through b, by, b3, by.

Remains to see that, if the lines mentioned are parallel, the points
b; are on a line. There are several ways to show that, we will propose a
limit argument.

3.4. Limit argument

Suppose that the lines Dcqcg and Dcp ¢4 are parallel in a plane H.
Move slightly the point C4 in the plane H to a point Cy4(e) so that the two
lines intersect. Then we get 4 points by, by, ba(€), b4(€) on a circle. When
e tends to 0, the points bg(e) and by(e) respectively, while by and b, remain
fixed. Therefore by, by, b3, by are on a circle or on a line.

In the same way we can prove the converse. Applying itto al,...,a4,
we get that if these points are on a line, the lines Dcq,co and Dcg,c4 are
parallel, thus the points Cy,...,C4 are in a plane. We have seen that this
implies that by,...,b4 are on a circle or on a line.

This finishes the proof of the result.

4. Movement of a line
4.1. An unexpected Moebius strip

The problem suggested by D. Epstein is a problem about lines in the
plane R2, so we have to look at the space D of lines in the plane.
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[Fig. 4]

Given 6 and & in R, let Dg,;, denote the line making an angle 6 with
the first axis Ox, and such that the projection H of O on it has abscissa h
on the axis making angle 6 + /2 with Ox (Fig. 4). Any line in the plane can
be written as Dy,p,, and this in several ways: given (8,h) in R2, the pairs
(6',h') such that Dg ' = Dg ), are the (6+2kn,h) and the (6 + (2k +1)=, —h).
So D can be viewed as the quotient of R2 by the equivalence relation
defined this way, or if you prefer as the strip [0, ©] x R with (0, k) and (=,
—h) identified.

Note that R is homeomorphic to the open interval ] - 1, 1[ (and we
can choose a homeomorphism ¢ so that ¢(~h) = —¢(k) ), so the strip [0, 7]
x R is homeomorphic to [0, ] x ] — 1, 1[, and finally D can be identified to
[0, w]x[—1,1[ with (0,y) and (=, —y) identified, i.e. to a Moebius strip with its
boundary curve removed. (Fig. 5)

[Fig. 5]
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Here | have a scruple, | feel | am cheating a little bit: D has been
defined only as a set. But the statement of the problem implicitely involves
a topology on D, since it mentions a continuous movement of a line, i.e. of
a point in D. To be rigourous, we should define the natural topology on D,
and show that the identification above is a homeomorphism. | don't want
to develop on this theme here. We shall admit that saying that we have a
continuous movement t — Dy parametrized by [0,1] means that D, =
De(t)vh(t) with 6(t) and h(t) depending continuously on ¢, and that the
requirement that D, comes back to its initial position with orientation
reversed means that 6(1) = 6(0) + (2k + 1)n for some k, and k(1) = —h(0).

So the question is whether it is possible to have such a movement
avoiding the forbidden set: the set of lines tangent to I'. What we have to
do now is to describe this forbidden set in the 3 cases I' =T'y, I'p, I's.

4.2. Description of the forbidden set

Say we take as origin the midpoint O between the extremities A and
B of T, and the axis Ox to be the line AB.

Let M(s) be a point which ranges over I when s ranges from 0 to 1.
Write the tangent to I' as Dge(s) h+(s) With 6" and h* continuous. Then
(6*(s),h*(s)) describes in R2 an arc T*, and the forbidden set in R2 is the
union I™** of copies of I'* translated by (6,h) — (6 + k=, (—1)kh) fork € Z.
The sets T'*, and I'**, have the aspect drawned in Fig. 6.

146



Douady

The question is then whether it is possible to join the point D, to
some DO*) with k odd without meeting T't**. It is clear on the picture that
this is possible for 1 = 1 and impossible fori1 =2 and 1 = 3.

4.3. Proofs

Let us try to transform this visual evidence into a proof. We start by
'3, for which it is the easiest. In this case 6* is monotonous and ranges
from 0 to &, so it is a homeomorphism [0,1] — [0,n]. Therefore I'3* is the
graph of a continuous function 4 : [0,n] — R withn(0) = n(n) = 0, and I'**3
is the graph of the same function extended to R by n(@+xx) = (—1)xn(6).
Now, supposing we have q and h continuous [0,1] — R with 6(1) = 6(0) +
(2x+1)m and A(1) = —h(0), then A(fy — n(6(t)) is continuous and takes
opposite values at 0 and 1, so it must vanish somewhere. This means that
there is a t e [0,1] so that (6(t), A(t)) € T*3. g.e.d.

Let us come to I'2. The important feature is that 6*(s) varies
continuously from 0 to — (it would work also with any =, k # 0 in Z). We
shall use only this fact; maybe we could get a slightly simpler proof using
other particularities of the situation, | think it is not worth trying.

We extend 6* and A* to R by 6*(s+k)=6*(s)-kxr and
h*(s+k)=(—1)kh*(s). The set T** is then the image of R by s — (6*(s),h*(s)).
The functions s — 6*(s) + ms and h* are continuous and periodic, thus
bounded.

By hypothesis D = Dg(g) (o) does not intersect T', and we can
suppose that De(O),h does not intersect I for < 0. We extend t — (&), A(1))
by
(&1).h(1)) (6(0),h(0) + 1) for:<o0;

= (6(1)A(1) +t=1) forr>1.

The result then follows from the following lemma (applied to
(=6*,h*,—06,h) :

Crossing lemma.- Let s — (x1(s),y1(s)) and t — (xo(s),yo(s)) be two
continuous maps R — R2. Suppose that the functions y1 and x, are
bounded, and that x; and y, range from — to 4. Then the two path
cross, i.e. there is a pair (s,t) such that (x4(s),y4(s)) = (xa(t),yo(1)).

This lemma is classical in topology. The usual proof involves the
notion of index of a loop around a point (number of turns).
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4.4. The case of I’y

For the Q-shaped curve Ty, the movement is possible. We can just
exhibit it in the initial framework:

As the picture is drawned, the line AB and the two inflexion tangent
limit a triangle below AB. Move D parallel to itself so that it passes through
some point in this triangle, and then just rotate it by half a turn.

Remark: If we would take a curve T’y looking like T'y but with the
inflexion tangent intersecting T" again, the result would be different: then
there would be a double tangent L, and we could extract from Iy U L a
curve I''z looking like '3 (but containing a line segment), and the answer
would be NO as for I'z. (Fig. 7)

[Fig. 7]
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5. The problem on degree 4 polynomials
5.1. Natural tackling of the problem

The set of monic polynomials of degree 4 is naturally identified to R4
via f — (ag,...,ag). In this set, polynomials having 3 distinct real critical
points form an open set defined by a complicated inequation.

But we are interested only by polynomials up to horizontal
translation: we could restrict to centered polynomials, i.e. those with ag =
0. Indeed each class modulo horizontal translation contains a unique
centered polynomial. The centered monic polynomials of degree 4 form a
space R3, in which those with 3 distinct critical points form the open set Q
defined by a3, — 27424 > 0.

We want to show that the map f — (vq,v5,v3) from Q to
{(v1,v2,v3)lvo>v4,v5,v3} is bijective. This is the natural way of tackling the
problem, but we shall proceed in a slightly different way.

5.2. First transformation

We first draw our attention on the invariance of the problem by
vertical translation. Indeed, if we have a polynomial f such that vo—v4 and
vo—vg have the prescribed values, then it is not difficult to adjust f by
adding a constant so that v4, v, v3 have the prescribed values.

So we look at f up to vertical translation, i.e. we look at

f' = 4x3 + 3a3x2 + 202x +aq
The critical points are the zeroes of f', we require that there are 3

distinct real ones cq < ¢3 < c3. Then vo—v4 and vo—v3 can be interpreted as
areas:

Vo —vy =Aq= Iczc1 f
Vo —vg3=Ap = ,’.636‘2 I£'l
So we can formulate the problem in the equivalent form:
Question: Given A; and A, both positive, does there exist a
polyanmiaI g=4x3 chzxz + byx + bg with 3 real roots ¢ < cp < c3 such

that Jeocyg = Ay, Jegep = =Ap ? Is such a polynomial unique up to
horizontal translation?
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5.3. Second transformation

We now take into account the invariance by horizontal translation.
Note that g = f' is given by

gx) = 4(x = c1)(x — c)x — c3)

Take as unknown
l] =Cpy— (4] >0
12 = C3 - C2 > 0.

These numbers determine f' up to horizontal translation. So they
allow to compute A and Ao, and we can look at the map

(O (11,12) - (A1,A2)

from R2 4 too itself. The question is now:
Question: Is ® a bijection ? a homeomorphism ?

5.4. Study of the map ®

Lemma 1 (homogeneity) .- If A is a half line from O, so is ®(A).
Proof: If ~I; = Al; and ~ly = Al,, the graph of ~g is obtained from that
of gby x = Ax, y — A3y. So ~Ay = MA,, ~A, = 1A,

Lemma 2.- If you increase [, and decrease [, so that [; + L, is
unchanged, then A, increases and A, decreases.

Proof: Take ~cq = ¢4, ~c3 = cgand ~c, = ¢, and define ~g from ~c,,
~c,, ~c5 Then ~g — g is a polynomial of degree 2 vanishing at ¢, and c,, SO
it has a constant sign on Jey,c3[. This sign is it is > 0, because it is at ~cp.

Then ~Aq = [~cocq~g > lepci~g > Ay

and ~A, = Jea~col~gl < fegeal~gl < Ay

5.5. What ford >4 ?

For d > 4, the problem can be treated along the same lines, but we
must make use of more sophisticated notions.

We define in the same way a map @ from Rd-2, to itself. Starting
from a point inside Rd-2,, we can look at the linear map tangent to @ at this
point. By an argument similar to that of Lemma 2, we can see that this
linear map is an isomorphism. Therefore @ is a local homeomorphism.
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Using homogeneity and extension to the boundary, we see that @ is
a proper map (i.e. the inverse image of a compact set is compact).
Therefore it is a finite covering map, and since Rd-2, is simply connected,
@ is a homeomorphism.

Conclusion

In the 3 examples treated here, we consider the set of objects
(circles, lines, polynomials) of interest for the problem. This is an abstract
set; in order to be able to work in it, we have to make a chart, i.e. to define
a correspondance with a set of points in a space with already a
geommetrical structure, or with a numerical set (typically a part of R).

The choice of the chart is the crucial point. It is where one can show
one's skill. It is not always the most natural choice which is the most
efficient, as we have seen in examples 1 and 3. Sometimes, the
correspondance is not bijective, as in example 2: the set of lines can be
identified with a quotient of R2 homeomorphic to a Moebius strip, but the
work actually takes place in its covering space R2

In these examples, the work is rather easy after a proper

geometrization has taken place. Certainly it is not always so, but such a
process is often a very good first step.
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SOCIAL CONSTRUCTIVISM AS A PHILOSOPHY
OF MATHEMATICS

Paul Ernest
University of Exeter, UK

Introduction

My aim in this paper is two-fold. First to give a written report of my
conference lecture at the International Congress on Mathematical
Education in Seville. Second, to fill in a little the sketch of my current work
in developing a social constructivist philosophy of mathematics which |
presented there, briefly pointing to some the implications for mathematics
education. But initially | need to spell out the problematic present position
in the philosophy of mathematics and the need for a new approach.

Much of modern epistemology has understood knowledge to be
made up of knowledge claims with ironclad warrants and justifications
(Kant 1950, Moore 1959, Klein 1981). Thus, Ayer (1946), for example,
claims that empirical knowledge of the world can attain certainty, and that
the truths of mathematics and logic are both certain and necessary.
However there is a sceptical tradition in epistemology stretching back to
the presocratic philosophers and strongly present in contemporary
philosophy which regards all knowledge as fallible and based on revisable
foundations (Bernstein 1983, Everitt and Fisher 1995, Wittgenstein 1953,
Rorty 1979, Rosen 1989). In the philosophy of science there has similarly
been a shift in the leading views of knowledge away from infallibility and
certainty (Feyerabend 1975, Kuhn 1970, Popper 1959). Likewise, in the
sociology of knowledge and social studies of science there is a consensus
that far from being necessary, scientific and mathematical knowledge, and
indeed all forms of knowledge, are contingent social constructions (Bloor
1991, Fuller 1988, Latour 1993, Lyotard 1984).

Traditionally, mathematical knowledge has been understood as
universal and absolute knowledge, whose epistemological status sets it
above all other forms of knowledge. The traditional foundationalist schools
of formalism, logicism and intuitionism sought to establish the absolute
validity of mathematical knowledge. Although modern philosophy of
mathematics has in part moved away from this dogma, it is still very
influential, and needs to be critiqued. So | wish to begin by summarising
some of the arguments against absolutism, as this position has been
termed (Ernest 1991).
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My argument is that the claim of the absolute validity for mathe-
matical knowledge cannot be sustained. The primary basis for this claim is
that mathematical knowledge rests on certain and necessary proofs. But
proof in mathematics assumes the truth, correctness, or consistency of an
underlying axiom set, and of logical rules and axioms or postulates. The
truth of this basis cannot be established on pain of creating a vicious circle
(Lakatos 1962). Overall the correctness or consistency of mathematical
theories and truths cannot be established in non-trivial cases (Godel
1931).

Thus mathematical proof can be taken as absolutely correct only if
certain unjustified assumptions made. First, it must be assumed that
absolute standards of rigour are attained. But there are no grounds for
assuming this (Tymoczko 1986). Second, it must be assumed that any
proof can be made perfectly rigorous. But virtually all accepted
mathematical proofs are informal proofs, and there are no grounds for
assuming that such a transformation can be made (Lakatos 1978). Third,
it must be assumed that the checking of rigorous proofs for correctness is
possible. But checking is already deeply problematic, and the further
formalising of informal proofs will lengthen them and make checking
practically impossible (MacKenzie 1993)

A final but inescapably telling argument will suffice to show that
absolute rigour is an unattainable ideal. The argument is well-known.
Mathematical proof as an epistemological warrant depends on the
assumed safety of axiomatic systems and proof in mathematics. But
Gédel’s (1931) second incompleteness theorem means that consistency
and hence establishing the correctness and safety of mathematical
systems is indemonstrable. We can never be sure mathematics theories
are safe, and hence we cannot claim their correctness, let alone their
necessity or certainty. These arguments are necessarily compressed here,
but are treated fully elsewhere (e.g., Ermest 1991, 1997). So the claim of
absolute validity for mathematical knowledge is unjustified.

The past two decades has seen a growing acceptance of the
weakness of absolutist accounts of mathematical knowledge and of the
impossibility in establishing knowledge claims absolutely. In particular the
‘maverick’ tradition, to use Kitcher and Aspray's (1988) phrase, in the
philosophy of mathematics questions the absolute status of mathematical
knowledge and suggest that a reconceptualisation of philosophy of
mathematics is needed (Davis and Hersh 1980, Lakatos 1976, Tymoczko
1986, Kitcher 1984, Ernest 1997). The main claim of the 'maverick' tradition
is that mathe-matical knowledge is fallible. In addition, the narrow
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academic focus of the philosophy of mathematics on foundationist
epistemology or on platonistic ontology to the exclusion of the history and
practice of mathematics, is viewed by many as misguided. However there
is still a heated controversy over whether the acceptance of mathematical
knowledge is at root a social process, or whether proofs and hence the
justification of mathematical knowledge are based on reason and logic
alone, no matter how imperfectly these ideals are realised in actuality.

WHAT IS FALLIBILISM?

The term “fallibilism’ is ambiguous, and leads to some confusion, so
it is useful to distinguish three versions. First of all, there is what might be
termed fallibilism1 which asserts that mistakes occur in mathematics
because humans make mistakes. Fallibilism1 is trivial because clearly
human beings are fallible, i.e., make mistakes, and all philosophies of ma-
thematics would accept this. So this version is discarded with no further
ado.

Secondly, there is fallibilism2 which claims that mathematical
knowledge is or may be, of itself, false. Two possible versions of this might
be distinguished. The first subcase is the claim that all mathematical
knowledge is or may turn out to be false. This is easily rejected because it
is absurd to say that 2+2=4 is or may be absolutely false. The second
weaker subcase is the claim that some mathematical knowledge is or may
turn out to be false. To support this claim it is enough to find one falsehood
in mathematics, or stronger, one contradiction. Gédel's Theorem means
we cannot eliminate this possibility. However the implication of this version
of fallibilism2 is that absolute true/false judgements can be made about
ma-thematical knowledge, i.e. there is absolute truth, but mathematics
fails or may fail to attain it. This version of fallibilism is thus absolutist.

Third, there is fallibilism3 which claims that mathematics is a
relative, contingent, historical construct. This version denies the assumed
absolutism of fallibilism2. According to fallibilism3 absolute judgements
with regard to truth or falsity, correctness or incorrectness cannot be made.
This is because the criteria and definitions of these concepts themselves
vary with time, context, and never attain a final state. There are no
absolutes concerning truth, correctness, certainty, necessity, and hence
however good and well founded mathematical knowledge is or becomes it
can never attain perfection, and no absolute or perfect criteria exist either.

Fallibilism3 is the position of social constructivism, which claims that
the concepts, definitions, and rules of mathematics were invented and
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evolved over millennia, including rules of truth and proof. Thus mathe-
matical knowledge is based on contingency, due to its historical
development and the inevitable impact of external forces on the resourcing
and direction of mathematics. But is also based on the deliberate choices
and en deavours of mathematicians, elaborated through extensive
reasoning. Both contingencies and choices are at work in mathematics, so
it cannot be claimed that the overall development is either necessary or
arbitrary. Much of mathematics follows by logical necessity from its
assumptions and adopted rules of reasoning, just as moves do in the
game of chess. Once a set of axioms and rules has been chosen (e.g.,
Peano’s axioms or those of group theory), many unexpected results await
the research mathe-matician. This does not contradict fallibilism3 for none
of the rules of reasoning and logic in mathematics are themselves
absolute. Mathematics consists of language games with deeply
entrenched rules and patterns that are very stable and enduring, but which
always remain open to the possibility of change, and in the long term, do
change. And as they change, so does the range of possible discovered
within a mathematical system.

Social constructivism and fallibilism3 reject absolutism, which
involves the following three sub-theses (Harré and Krausz 1996). First of
all, there is the thesis of universalism, which asserts that all knowing
beings at all times and in all cultures would agree on truth and on
mathematical knowledge. It may immediately be noted that this is false if
‘do’ is put for ‘would’, for groups such as intuitionists and classical
mathematicians already disagree fundamentally on what is legitimate
mathematical knowledge. But a more general problem for the thesis of
universalism is the question of how would we know if it were true. Since
people’s knowledge and beliefs must be transformed to validate it, and this
cannot be done universally, it must remain an indemonstrable article of
faith. As such the thesis is rejected by social constructivism.

Second, there is the thesis of objectivism, which asserts that truth
depends on objective reality, not views of persons or groups. This raises
the problem of privileged access to ‘objective mathematical reality’, i.e.,
the ‘god’s-eye view' of mathematicians into the universe of mathematics.
This thesis is unsatisfactory because it is not what mathematicians intuit
which is taken as objective truth, but rather what they prove that is
regarded as true. Thus how mathematical truth ‘depends’ on a
mathematical reality that plays no part in its justification is unclear.

Third, there is the thesis of foundationalism, which asserts that there
is a unique permanent foundation for knowledge. This foundation has not
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been identified historically. Foundationalist philosophies of mathematics
(Logicism, Formalism, Intuitionism) have all failed, as | argue above.
Furthermore, the idea that a basic foundation for mathematical knowledge
exists leads to a vicious cycle, because no basic set of assumptions can
ever ultimately be dispensed with (Lakatos 1962).

Lakatos’ contribution

The philosopher of mathematics who has contributed most to the
maverick tradition is Imre Lakatos. He is responsible for both the negative
thesis (the rejection of absolutism by fallibilism3) and the positive thesis
(philosophy of mathematics needs to be reconceptualised to include the
history and methodology of mathematics) of the maverick tradition. He
argued, as above, for a fallibilist epistemology of mathematics on the
ground that any attempt to find a perfectly secure basis leads to infinite
regress, and mathematical knowledge cannot be given a final, fully
rigorous form. As he put it “Why not honestly admit mathematical fallibility,
and try to defend the dignity of fallible knowledge from cynical scepticism”
(Lakatos 1962: 184)

It should be mentioned that my interpretation of Lakatos is
controversial. The editors of Lakatos (1976) claim that he had or would
relinquish fallibilism3. He undoubtedly did change his position over time,
and my account is of early Lakatos, where he unequivocally states that
although formalisation of theories and logic increases rigour “one had to
pay for each step which increased rigour in deduction by the introduction
of a new and fallible translation.” (Lakatos 1978: 90). Lakatos would not
support social constructivism as | describe it here. He believed
mathematics is fallible3 but wholly rational and not at root based on social
agreement or conversation.

Lakatos’s (1976) best known contribution is his logic of mathematical
discovery (LMD) or the method of proofs and refutations, which is a
methodology of mathematics with three functions. First there is the
epistemological function: to account for the genesis and justification of
mathematical knowledge naturalistically, as part of his fallibilism3 (concerning
mathematical knowledge in the timeless present). Second, there is the
historical function: to provide a theory of the historical development of ma-
thematics (concerning mathematical knowledge in the past). Third, there is
the methodological function: to account for the methodology of practising
mathematicians (concering mathematical knowledge in the future).

Lakatos's LMD is a cyclic theory of knowledge creation in
mathematics with a dialectical form, which may be represented as follows.
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Given a mathematical problem (or set of problems) and an informal
mathematical theory, an initial step in the genesis of new knowledge is the
proposal of a conjecture. The method of proofs and refutations is applied
to this conjecture, and an informal proof of the conjecture is constructed,
and then subjected to criticism, leading to an informal refutation. In
response to this refutation, the conjecture and possibly also the informal
theory and the original problem(s) are modified or changed (new problems
may very well be raised), in a new synthesis, completing the cycle. This is
illustrated schematically in Table 1, which shows one complete step, and
the beginning of the next step in the cycle.

Table 1: Cyclic Form of Lakatos’ Logic of Mathematical Discovery

STAGE CONTEXT COMPONENTS OF CYCLE
Some Stage in Process | Problem Set Conjecture
Informal Theory Informal proof of conjecture
: Informal refutation of conjecture
Next Stage New Problem Set New Conjecture
New Informal Theory

Although Lakatos (1976) is explicit about the role of the conjectures,
proofs and refutations in this cycle, the part played by problems and
informal theory are often implicit in his account. He does stress the role of
problems in the development of mathematics in some places, such as at
the end of his dialogue where the teacher states that “a scientific inquiry
‘begins and ends with problems™ (Lakatos 1963-4: 336, quoting Popper).

Wittgenstein’s contribution

In looking for guidance on how to develop a broader, more inclusive
social philosophy of mathematics, a unique source and inspiration is
Wittgenstein (1953, 1956), who proposed a revolutionary naturalistic and
fallibilist social philosophy of mathematics, which to this day remains
under-appreciated under-developed. (My interpretation of Wittgenstein is
also personal, and likely to be controversial).

Wittgenstein's philosophy is based on his key concepts of ‘language
games’: how we use language co-ordinated with our actions and
embedded in and inseparably a part of ‘forms of life’: which are our
historico-cultural practices. “The term ‘language-game’ is meant to bring
into prominence the fact that speaking of language is part of an activity, or
of a form of life” (Wittgenstein 1953: 11). “Mathematics teaches you, not
just the answer to a question, but a whole language-game with questions
and answers.” (Wittgenstein 1956: 381)
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His naturalism gives priority to existing mathematical practice, as
Maddy (1990) concurs. “You don't make a decision: you simply do a
certain thing. It is a question of a certain practice.” (Wittgenstein 1976:
237). His philosophy is fallibilist, because he grounds certainty in the
accepted (but always revisable) rules of language games (Rorty 1979).
“The ma-thematician is not a discoverer: he is an inventor.” (Wittgenstein
1956: 111). “To accept a proposition as ... certain means to use it as a
grammatical rule: this removes uncertainty from it.” (Wittgenstein 1956:
170) He argues that proof serves to justify mathematical knowledge
through persuasion, not by its inherent logical necessity. “In a
demonstration we get agreement with someone.” (Wittgenstein 1965: 62).
Thus Wittgenstein puts forward what can legitimately be termed a social
constructivist philosophy of ma-thematics. He challenges foundationalism,
rejects the universally adopted prescriptive approach of his day, and
demands the reconceptualization of the philosophy of mathematics so as
to be descriptive of practice.

RECONCEPTUALIZING THE PHILOSOPHY OF MATHEMATICS

As | have indicated, traditional philosophy of mathematics seeks to
reconstruct mathematics in a vain foundationalist quest for certainty. But
this goal is inappropriate, as a number of philosophers of mathematics
agree: “To confuse description and programme - to confuse 'is' with ‘ought
to be' or 'should be' - is just as harmful in the philosophy of mathematics
as elsewhere.” (Kérner 1960: 12), and “the job of the philosopher of ma-
thematics is to describe and explain mathematics, not to reform it.” (Maddy
1990: 28). Lakatos, in a characteristically witty and forceful way which
paraphrases Kant indicates the direction that a reconceptualised
philosophy of mathematics should follow. “The history of mathematics,
lacking the guidance of philosophy has become blind, while the philosophy
of ma-thematics turning its back on the...history of mathematics, has
become empty” (1976: 2).

Building on these and other suggestions it might be expected that
an adequate philosophy of mathematics should account for a number of
aspects of mathematics including the following:

1. Epistemology: Mathematical knowledge; its character, genesis
and justification, with special attention to the role of proof

2. Theories: Mathematical theories, both constructive and

structural: their character and development, and issues of appraisal
and evaluation
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3. Ontology: The objects of mathematics: their character, origins
and relationship with the language of mathematics, the issue of
Platonism

4. Methodology and History: Mathematical practice: its character,
and the mathematical activities of mathematicians, in the present
and past

5. Applications and Values: Applications of mathematics; its
relationship with science, technology, other areas of knowledge and
values

6. Individual Knowledge and Learning: The learning of
mathematics: its character and role in the onward transmission of
mathematical knowledge, and in the creativity of individual
mathe-maticians (Ernest 1997)

ltems 1 and 3 include the traditional epistemological and ontological
focuses of the philosophy of mathematics, broadened to add a concern
with the genesis of mathematical knowledge and objects of mathematics,
as well as with language. Item 2 adds a concem with the form that ma-
thematical knowledge usually takes: mathematical theories. ltems 4 and 5
go beyond the traditional boundaries by admitting the applications of ma-
thematics and human mathematical practice as legitimate philosophical
concemns, as well as its relations with other areas of human knowledge
and values. Item 6 adds a concern with how mathematics is transmitted
onwards from one generation to the next, and in particular, how it is learnt
by individuals, and the dialectical relation between individuals and existing
knowledge in creativity.

The legitimacy of these extended concerns arises from the need to
consider the relationship between mathematics and its corporeal agents,
i.e., human beings. They are required to accommodate what on the face
of it is the simple and clear task of the philosophy of mathematics, namely
to give an account of mathematics.

SOCIAL CONSTRUCTIVISM

Social constructivism is proposed as a philosophy of mathematics
building on the ideas elaborated above with the aim of potentially or
possibly addressing these six aspects or dimensions of an enlarged
philosophy of mathematics. Social constructivism is based first of all on
Lakatos' Logic of Mathematical Discovery for negotiation and acceptance
of mathematical knowledge, concepts and proofs.
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The second source of social constructivism is Wittgenstein's notions
of ‘language game' and 'forms of life'. Thus mathematical knowledge is
taken to rest on socially situated linguistic practices, including shared
rules, meanings and conventions, i.e. on both tacit and explicit knowledge
and symbolic practices.

A central element of social constructivism is the reinterpretation of
objectivity as social and intersubjective. Following Bloor (1984), Fuller
(1988), Harding (1986) and others objective knowledge is understood as
social, cultural, public and collective knowledge, and not as personal,
private or individual belief, nor as external, absolute or otherwise extra-
human.

A novel central feature of social constructivism is that it adopts
conversation as the basic underpinning representational form for its
epistemology. Thus this position views mathematics as basically linguistic,
textual and semiotic, but embedded in the social world of human
interaction.

Conversation

Beyond the metaphor of the 'great conversation' for philosophy and
the history of ideas used by Michael Oakshott, conversation is taken as a
basic epistemological form by Rorty (1979), Harré (1983), Shotter (1993),
Gergen (1985), and many others.

If, however, we think of “rational certainty" as a matter of victory in
argument rather than of relation to an object known, we shall look
toward our interlocutors rather than to our faculties for the
explanation of the phenomenon. If we think of our certainty about
the Pythagorean Theorem as our confidence, based on experience
with arguments on such matters, that nobody will find an objection
to the premises from which we infer it, then we shall not seek to
explain it by the relation of reason to triangularity. Our certainty will be
a matter of conversation between persons, rather than an
interaction with nonhuman reality. (Rorty 1979)

So what is conversation? The original form is naturally interpersonal
conversation, which consists of persons exchanging of speech, based on
shared experiences, understandings, values, respect, etc. That is, it is
language-games situated in human forms of life. Two secondary forms of
conversation are derived from this. First, there is intrapersonal
conversation, i.e., thought as constituted and formed by conversation.
According to this view (verbal) thinking is originally internalised
conversation with an imagined other (Vygotsky 1978, Mead 1934, see
Figure 2 below). Second, there is cultural conversation, which is an
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extended version, consisting of the creation and exchange of texts in
permanent (i.e., enduringly embodied) form. Indeed, it can be said that the
reading of any text is dialogical, with the reader interrogating it and
creating answers from it.

These three forms of conversation are social in manifestation
(interpersonal and cultural), or in origin (intrapersonal). Conversation has
an underlying dialogical form of ebb and flow, comprising the alternation of
voices in assertion and counter assertion. Conversation is the source of
feedback, in the form of acceptance, elaboration, reaction, criticism and
correction essential for all human knowledge and learning. Thus the
different conversational roles include the following two forms, which occur
in each of the three forms, but originate in the interpersonal:

1. The role of proponent or friendly listener following a line of
thinking or a thought experiment sympathetically, for understanding
(Peirce, Rotman)

2. The role of critic, in which an argument is examined for
weaknesses and flaws.

Taking conversation as epistemologically basic re-grounds
mathematical knowledge in physically-embodied, socially-situated acts of
human knowing and communication. It rejects the cartesian dualism of
mind versus body, and knowledge versus the world. It acknowledges that
there are multiple valid voices and perspectives on knowledge, which has
significant ethical implications (cf. Habermas 1981)

The conversational nature of mathematics

My claim is that mathematical text is conversational, for the
following reasons. Mathematics is primarily a symbolic activity, using
written inscription and language to create, record and justify its knowledge
(Rotman 1988, 1993). Viewed semiotically as comprising texts,
mathematics is conversational for it addresses a reader. “In all cases the
word is orientated towards an addressee” (Volosinov 1973: 85)

Analysis of mathematical texts, proofs, etc., reveals the verb forms
to be in indicative and imperative moods. The indicative mood is used to
make statements, claims and assertions describing the future outcomes of
thought experiments which the reader can perform or accept. (Peirce,
cited in Rotman 1993: 76) The imperatives are shared injunctions, orders
or instructions issued by the writer to the reader. (Rotman 1988, 1993).
Thus mathematical texts comprise specific assertions and imperatives
directed by the writer to the reader. The reader of mathematical text is there-
fore either the agent of the mathematician-author's will, whose response is
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an imagined or actual action, or a critic seeking to make a critical
response. In all cases the mathematical text is conversational.
The conversational structure of mathematical concepts

Dialogical / conversational processes also underpin a substantial
class of modern mathematical concepts as the underlying meanings or
possible interpretations.

Table 2: Dialogical concepts in Mathematics

TOPIC DIALECTICAL CONCEPT

Analysis € -0 definitions of the limit: for each value...there is...
Constructivist Logic| Interpretation of quantifiers: Vx3y...

"You choose x, and | show how to construct y’
Recursion theory | Arithmetical Hierarchy - Y3v3v3...

Set theory Diagonal argument:for any enumeration, omitted element
Set theory Game-theoretic version of Axiom of Choice

Game Theory Alternation of moves by opponents

Number theory J. Conway's game theoretic foundations of number
Statistics Hypothesis testing (Hq versus Hp)

Probability Analysis of wagers, betting games

Table 2 illustrates the wide occurrence of dialogical or
conversational concepts in mathematics, through which the formal
interplay between persons, or a back and forth movement of choices is
structured into the concepts themselves. (For more details see Ernest
1994).

Origins and basis of proof

In Ancient Greece proof developed from of cultural practice of
disputation, i.e. conversation (Struik 1967). The term 'dialectic' derived
from verb 'to discuss'. (Cornford 1935). So the origins of proof may be said
to be conversational. In modern Proof Theory many developments also
treat proofs as if part of a dialogue. For example, according to Heyting
(1956), in intuitionistic mathematics every assertion is a promise to provide
a proof. Such claims are valid only if the opponent convinced. Natural
Deduction techniques likewise build proofs based on sets of assumptions
or hypotheses agreed by both a proposer and an opposer. In the method
of semantic tableaux, the version or proof constructed is an explicit attempt
to refute the claim or story as put forward by another in dialogue.
Lorenzen's conversational proof method is likewise based on two
disputants(Roberts 1992). One tries to maintain a thesis over other's
objections, and the connectives used have explicit conversational
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meanings. Overall, it can be said that both the beginnings of logic and
proof and modern developments confirm that mathematical proof is at root
dialectical, based in human conversation and persuasion.

Acceptance of mathematical knowledge is conversational

A widespread but controversial view is that the acceptance of
mathematical knowledge and proof is social act, a conversational act, as
illustrated in the quote from Rorty, given above. Thus “A proof becomes a
proof after the social act of ‘accepting it as a proof’. This is as true of
mathematics as it is of physics, linguistics and biology.” (Manin). The
structure of a proof is a means to this epistemological end of persuading
others, and ultimately the mathematical community, to accept it as a
warrant for a theorem. Furthermore, the acceptance of a proof depends on
largely tacit criteria and informed professional judgement, just as a
teacher's decision to accept mathematical answers from a student depends
on professional judgement. In both cases such judgements are based on
criteria including the rhetorical style of the proposed item of mathematical
knowledge, not just on rigid and explicit logical rules of correctness.

The acceptance of mathematical knowledge depends on dual roles
developed and internalised through conversation. These are, first of all,
the role of proposer of would-be new knowledge, or analogously, of a
sympathetic reader or listener. The second role is that of a critical reader
or listener, a reviewer, assessor, or gatekeeper. These roles are deployed
in the generalised logic of mathematical discovery, which is the proposed
conversational mechanism for acceptance or modification of mathematical
knowledge. This is illustrated in Table 3.

Table 3: The Generalised Logic of Mathematical Discovery

SCIENTIFIC CONTEXT for Stage n Background scientific and epistemologica
context: problems, concepts, methods, informal theories, proof criteria and
paradigms, and meta-mathematical views.

THESIS Stage n (i) Proposal of new/revised conjecture, proof, solution or theory.
ANTITHESIS Stage n (i) Dialectical and evaluative response to the proposal:

Critical Response Acceptance Response
Counterexample, counter-argument, Acceptance of proposal. Suggested
refutation,criticism of proposal extension of proposal.

SYNTHESIS Stage n (iiij) Re-evaluation and modification of the proposal:

Local Restructuring Modified proposals: Globlal Restructuring of

new conjecture, proof, problem-solution,  Context: changed problems, concepts

problems or theory. methods, informal theories. Changed
proof paradigms, criteria, meta-
mathematical views.

OUTCOME Stage n+1 (i)
Accepted or rejected proposal, or revised scientific and epistemological context.
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The generalised logic of mathematical discovery is so-termed
because it is a generalisation of Lakatos’s logic of mathematical discovery
(Table 1) to overcome the criticism that it does not describe the full
generality of mathematical knowledge developments, including
'mathematical revolutions' (Gillies 1992).

It is clear that conversation and dialectical processes play a key role
in the generalised logic of mathematical discovery shown in Table 3. The
underlying logic is dialectical, and that this underpins the genesis and
warranting of mathematical knowledge. In this process mathematical
proofs and other proposals are offered to the appropriate mathematical
community as part of a continuing dialogue. They are addressed to an
audience, and are tendered in the expectation of a response, drawing
upon tacit and professional knowledge. Critical scrutiny of a proof by the
mathematical community leads to either (a) criticism, requiring
development and improvement (concerning the context of discovery), or
(b) acceptance as a knowledge warrant (concerning the context of
justification). The same conversational logic of mathematical discovery is
at work in both cases. There can be no proofs in mathematics which are
above critical scrutiny and this logic, no matter how rigorous. Thus
mathematical proof has not only evolved from dialogical form, but its very
function in the mathematical community as an epistemological warrant for
items of mathematical knowledge requires the deployment of that form.

However, a word of caution is needed. Although mathematics is
claimed to be at root conversational, it is also the discipline par excellence
which hides its dialogical nature under its monological appearance, and
which has expunged the traces of multiple voices and of human authorship
behind a rhetoric of objectivity and impersonality. This is why the claimed
conversational nature of mathematics might seem surprising: it is the exact
opposite of the traditional absolutist view of mathematics as disembodied
and superhuman, critiqued above.

See figure next page
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WARRANTING | ACADEMIC CONTEXT|

Public Criticism
— and Reformulation \
Publication t New Knowledge
/ \ Human Action/ Move
atutt——--
Person with Conversation Public Knowledge or
Knowledge of Interpersonal Mathematical " Text Move
Mathematics Negotiation Knowledge —
Certfication ol Recontextualisation
Personal knowledge

\ [SCHOOL CONTEXT ]
Personal

LEARNING & ASSESSMENT

Figure 1: The Cyclic Mechanism for the Social Construction of
Mathematical Knowledge

Figure 1 summarises the social construction of mathematical
knowledge in the contexts of research and schooling, and shows how they
are interrelated in an overall cyclic mechanism, and the role of
conversation and negotiation in each. In the context of research
mathematics, individuals use their personal knowledge both to construct
mathematical knowledge claims (possibly jointly with others), and
participate in the dialogical process of criticism and warranting of others'
mathematical knowledge claims. In the context of mathematics education
individuals use their personal knowledge to direct and control mathematics
learning conversations both to present mathematical knowledge to
learners directly or indirectly (i.e. teaching), and participate in the process
of warranting and criticism of others' mathematical knowledge claims or
performances (i.e. the assessment of learning). Ultimately, individuals
emerge from this process with their personal knowledge warranted or
certified, and may therefore be able to participate in these conversations
as teachers or mathematicians, after further professional preparation.

As figure 1 illustrates, the mechanism for the social construction of
mathematical knowledge has the form of a cycle. What travels for part of
the cycle is embodied mathematical knowledge. This is represented
publicly by mathematicians as a text, and after possible modification is
then approved, if it passes muster, and then becomes part of the pool of

166



Ernest

accepted knowledge representations. Selections from this pool are
recontextualised into the school context where they are offered to learners.
Learners appropriate and internalise this knowledge, with a greater or
lesser degree of personal reformulation (see Figure 2 below).
Mathematical knowledge is now embodied in the skills and dispositions of
individuals, i.e., as personal knowledge, and when these individuals are
certified as knowledgeable, the cycle is completed. For potentially they can
now participate in the construction of new mathematical knowledge, as
research mathematicians, or can help the development of the personal
knowledge of others, as teachers of mathematics.

The cyclic pattern of the social construction of mathematical
knowledge finds a parallel in Harré’s (1983) social model of mind (also
referred to as Vygotskian space, in Shotter 1991). This also sees thought
or knowledge cycling as it alternates between public and private
manifestations, and between individual and collective social locations.
This is illustrated in Figure 2.

Figure 2: Vygotskian space - Harré’s social model of mind

SOCIAL LOCATION

INDIVIDUAL COLLECTIVE
Public Public & Individual | Conventionalisation| Public & Collective
Manifestation| Mind/Knowledge 2> (2 Mind/Knowledge
Publication /A (1) W Appropriation (3)
Private Private & individual Private & Collective
Manifestation | Mind/knowledge |€Transformation(4) Mind/Knowledge

The cycle in Figure 2 is orientated differently from Figure 1, so the
analogy is clarified by stating that the process of publication (marked 1)
corresponds to the assessment and warranting of individual knowledge
and learning, whereas the process of conventionalisation publication
(marked 2) corresponds to the assessment of a new contribution to public
knowledge. The process of appropriation (marked 3) corresponds to the
recontextualisation of accepted mathematical knowledge into the context
of schooling, and its offering to learners. The process of transformation
(marked 4) corresponds to learner appropriating and assuming ownership
of the knowledge as individual and personal knowledge.
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Clearly this model has strong parallels and potentially strong
implications for the teaching and learning of mathematics. There are many
more aspects of the social constructivist theory which there is not space to
report her, but which were indicated in the talk. These include an extended
model of mathematical knowledge based on Kitcher (1984) and Kuhn
(1970) incorporating both tacit and explicit knowledge elements. There is
the important role of rhetoric in both research mathematics and school
mathematics. There is the parallel with socially situated views of learning
which are becoming more widely accepted in psychology and
mathematics education. These are all treated in Ernest (1997), the source
from which this article is a condensed selection.

Conclusion

In conclusion, it might be claimed that the novelty of social
constructivism is to realise both that mathematical knowledge is
necessary, stable and autonomous, but that this co-exists with its
contingent, fallibilist3, and historically shifting character. As Vico said, with
regard to geometry: the only things we can know completely are those we
have made (because there is nowhere else to look than within our own
construction).

In addition, social constructivism links both the learning of
mathematics and research in mathematics in an overall scheme in which
knowledge travels either embodied in a person or in a text, and the
processes of formation and warranting in the two contexts are parallel.
Social constructivism provides an explanation of how mathematics and
logic seem irrefutably certain, yet are contingent, historical creations. The
full account also offers explanations for how the objects of mathematics
are cultural fictions emerging from the use of mathematical language and
symbolism, yet seem so solid; and how mathematics is so unreasonably
effective in providing the conceptual foundations of our scientific theories
about the world. The central explanatory concept is emergence: the
evolutionary history of culture and the individual, and the shaping role of
conversation. However adequate arguments and explanations go beyond
what | can offer here. This talk is based on my current book Ernest (1997),
but other relevant publications are Ernest (1991, 1992, 1994).
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THE RUSSIAN STANDARDS: PROBLEMS AND
DECISIONS

Victor Firsov

Alongside with space rockets and Bolschoy ballet, School
Mathematics could be referred to the category of "sacred cows" of modern
post-soviet Russia: it is accepted to be proud of them and not to criticize
them. It is obviously no more than national myth that had its basis in
achievements of the Past and that does not require today's confirmations.
Typical for periods of social crisis the nostalgia on the Past promotes the
creation of similar myths. At the same time mythological consciousness is
dangerous for corresponding areas of human activity because it idealizes
the Past and does not promote their development with taking into account
the realities and the needs of modern Russia.

The critical analysis allows to see that some of past advantages of
Russian School Mathematics are disappeared. Other ones have lost their
significance in new system of school coordinates. Third ones have turned
to the denying. In result the brilliant picture at one time has grown dull. The
superiority myth becomes similar to an old mirror showing the image
appreciably more attractive in comparison with the reality.

Large volume and high theoretical level of Mathematics courses
were considered always as traditional advantages of Russian School. The
question if it is necessary to each student, sounds increasingly stronger in
modern conditions of greater freedom and greater openness of school to
social demands. The opponents put forward the requirement of resolute
humanitarization of school. They challenge the necessity of exceedingly
ambitious goals of school mathematical education. They also ascertain
significant break between the advanced requirements of the Mathematics
Curriculum and the real achievements of the majority of the
schoolchildren.

The officious soviet propaganda ignored break mentioned by the
practice of overestimating minimum positive marks (writing "3" and
keeping in mind "2"). Actually the data of researches of the Institute into
Content and Methods of Education, USSR Academy of Pedagogical
Sciences on check of mathematical preparation of the schoolchildren [1]*
shows that from 30 up to 50 % of the pupils did not take possession of

*The numbers in parenthesis refer to the list of references at the end of the text.
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basic Mathematics skills that are minimal necessary for continuing of
education. There is no basis to hope that the today's situation is
appreciably improved: the Curriculum and the textbooks have not
practically changed, and, say, the indicators of health of the children fall
down even in comparison with unsatisfactory ones of the last Soviet years

[2].

Critics of Russian School Mathematics condemn excessive, by their
opinion, enthusiasm for the formal goals of education to the detriment of
real ones. Moreover in a part of achievement of the real goals of
Mathematics Education the priority is given back to development of the
technical apparatus instead of direct application of Mathematics to the
solution of real practical problems.

The results of international comparative research like IAEP and
TIMSS are indicative in this relation despite all their ambiguity. So, the
Soviet Union looked not bad by results of IAEP [3]. The more detailed
analysis [4] of test groups’ results has compelled to change such
evaluation. There was found out that Soviet students did not surpass
practically the pupils from other countries in fulfilment of the tests requiring
the understanding of Mathematics concepts and its practical application.
Significant advantage was formed because of higher results on
development of the technical part of Mathematics. Thus, by the price of
serious expenditures of educational time and overloading of the children
by mathematical technics it becomes possible to reach comparable results
on those components of Mathematics that are most important from
positions of General Education. We shall agree that even the opportunity
of discussion of similar conclusion puts a question on efficiency of Soviet
model of School Mathematics Education.

This model was developed for specific historic conditions of the
period of Soviet industrialization in 30-ties. The model oriented to
preparation of the future engineers at the system of high technical
institutions. Till now each pupil in Russia is trained the Mathematics as if
her (his) hot desire to receive the engineering diploma (and Soviet diploma
of 30-ties namely) is known beforehand.

It effects the selection of School Mathematics content and style. It
explains the orientation of Soviet School Mathematics to development of
refined technical apparatus of transformations of algebraic and
transcendent expressions and of algorithms for precise solution of the
equations and inequalities appearing archaic today. It leads to the
orientation of a subject to development of continuous Mathematics and to
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suppression of discrete Mathematics. Just mention the absence of such topics
as combinatorics, data analysis and probability, elements of mathematical
logic in modern Mathematics Curriculum for Russian School [5].

It is possible to continue the critical analysis of School Mathematics
content. However, even if to take into account disputability and ambiguity
of questions discussed above, we are nevertheless compelled to ascertain
the necessity of Curriculum reform and it's reduction to greater conformity
with the needs of our times.

The analysis of usual practice of teaching and learning Mathematics
leads to similar conclusions [6]. It's orientation to needs of strong highly
motivated learner (future student of university or technical institute) and
neglect of interests of low-learners are the serious lacks. The aspects of
School Mathematics as communications development and cooperative
learning that are necessary for low-learners are developing
unsatisfactorily. Assessment system imposes the penalties for non-
achievement by the student of a level of the advanced requirements.
Assessment system works under the circuit of "subtraction" that is
opposite to cumulative assessment.

Unfortunately, the Russian Mathematics community does not welcome
to discuss these questions. Powerful lobby of higher schools’ professors and
of Math educators works under the slogans "to increase the number of
academic hours to study Mathematics at school" (one of the greatest in the
world), "to raise the level of mathematical preparation of students" (meaning
the future students and completely ignoring a consequence for other following
to corresponding actions), "to keep high traditions of National Mathematics
Education" (understanding it as the necessity of preservation of Soviet
model). Honestly, there is hidden disrespect to the children (their rights not to
love Mathematics are rejected resolutely) and to the Mathematics
(educational and cultural values of School Mathematics for each pupil of
school are declared on words whereas the course is designed actually
according to the needs of the best pupils only).

Obviously it becomes impossible to carry out the contradictory
social order within the framework of unique model of School Mathematics
Education. The decisions conducting to a greater variety of Mathematics
Education were found in conditions of Soviet school yet.

The development at schools since mid-30-ties of the system of

voluntary mathematical circles and olympiads for students has become the
most efficient of them. The names of such outstanding mathematicians
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and popularizators of Mathematics as |.Gelfand, I.Perelman and |.Yaglom
are connected with the movement. Just this system has caused a large
part of our mathematical elite. Just to it our country is obliged by
outstanding results shown by the Soviet participants at International
Mathematical Olympiads.

The schools with advanced studies of Mathematics at the high
secondary stage are more known in the world. The names of
A.Kolmogorov, A.Lyapunov and S.Shwarzburd are connected to its origin.
Arising since 1959 as more systematized variant of mathematical circles,
passing through period of official disallowance and fight for the existence,
they have received "the rights of citizenship” to the end of Soviet epoch.
Such schools become today the most popular model for “streaming” at
high secondary school not only in a direction of Mathematics already.

Unfortunately significant overloading of pupils and teachers
alongside with unreasoned state policy in the field of teacher's salaries
have resulted to practical liquidation of mathematical circles as of a mass
movement today. It is not enough completely to have the opportunities of
diversity connected with streaming at high secondary school only.

The slogan of diversity as bases of organic development of school
has an exclusive importance for modern Russia. Construction of a
democratic civil society and market economical relations require freedom
and pluralism and exclude the presence of "only right decisions". On the
other hand, the positive achievement of Russian school that are answering
to the realities of today's life should be protected from unreasonable
innovations. Thus, new school appropriate to principles of unity and
diversity [7] should come on change of extremely unified Soviet school that
brought up the "small screws" of big state machine (according to metaphor
of J.Stalin). These complementary and cooperating principles are called to
ensure the evolutionary character of school’s development just as heredity
and variability provide biological evolution.

The development of new Russian School requires the creation of
new generation of normative documents ensuring the goals. New Law of
Russian Federation on Education named these documents as Educational
Standards. The law provides that Educational Standards should determine
“the compulsory minimum of the contents of Education”, “the requirements
to the levels of preparation of students graduated the stages of school”
and “maximal allowable volume of study load of children” [8].
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We shall notice at once that pedagogical public of Russia has
apprehended extremely sensitively the term “standards" borrowed from
American experience. For people in our country the word "standard"
associates with compulsory uniformity of the Soviet times.

Really the goals of the standards’ implementation in USA and in
Russia look opposite diametrically. It seems that the authors of the project
of National Standards [9] aspired to come to common understanding of the
goals and objectives of School Mathematics Education in conditions of a
superfluous variety of American schools. The similar problem does not
arise at all in Russian school. Opposite, we here need more de-
standardization of Education.

The collision of various interests and positions accompanies with
the whole short history of creation of Russian Educational Standards. We
shall designate basic conceptual "bifurcation points" where the positions of
the parties differ essentially.

First and probably main distinction consists in understanding of the
basic purpose of the Standards. The supporters of one position see it in
maintenance of unity of Russian school [10]. Their opponents consider the
maintenance of unity of school as one of a list of necessary conditions
only. They specify priority purpose of the Standards as being the
instrument of school’s development [11].

The marked divergence has no scholastic character. It is directly
connected with opposition of conservative guarding tendencies to the
movement for reforming of Russian School that was described above. It is
relevant to notice that this conflict has obvious political colour in today's
Russia. If to finish up the first considered position to its logical end, the
best decision will appear as return to the unified typical Curriculum of
Soviet School, and complete refusal from a variety of the educational
programs as a consequence.

Searches of ways of realization of a contrary position result to a new
point of opposition. The conceptual divergences concern here to the ways,
with the help of which future Standards would determine the directions of
school’'s development.

Traditional approach (perceived often as only possible) supposes
the setting of educational goals through the system of Educational
Standards. In this case the standards are called to determine directly the
major elements of Educational System, imposing them to school.
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The opponents of the traditional approach remark that anybody
cannot apply for knowledge what school should be. The achievement of
public consensus in a question on the goals of Education looks perfect
Utopia. In this context in Russia they always recollect the words from the
song of outstanding poet and dissident A.Galich:

Do not fear of plague, do not fear of prison,
Do not fear of stench and of hell.

But fear of person only that could tell:

"l know as it should be!"

Within the framework of the alternative approach standards take a
role similar to the role of the legislative restrictions in a lawful state: the
standards specify what is forbidden to do. Thus, there are the conditions
for realization of a democratic principle "it is allowed everything that it is
not forbidden."

This principle means real freedom for schools, and apparent
paradox only consists that freedom is provided by means of the
interdictions. The standards become the expression of the similar
interdictions concerning the content of Education at School. With their help
the principle of "allowance" receives non-declarative mechanism of its
realization.

Thus, in the alternative approach the standards set “a field of
freedom" in a choice of the content of Education; freedom results in
occurrence of various educational programs; the variety of the programs
provides an opportunity of their choice by the parents and children.
Through this choice the society would influence schools showing them
people’s educational needs and preferences. These needs and
preferences will find reflection in the contents of the next variants of the
standards, and so on... The democratic interaction of society and school
will come true through the standards by such way.

Certainly, the serious discussions arise in the relation of the content
and of the forms of standards presentation. These discussions go often
around of some basic questions.

Whether It is necessary to adjust the content of Education that
should be taught or which should be acquired by each student? Here the
authors of the alternative projects took the same position: it should be both
standards of "teaching" and standards of "learning". However, the different
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circuits of the forms of standards representation are selected with own
advantages and lacks.

Should the standards be oriented on today or on prospect? In the
first case the standards will easily enter School, but will fix those minuses
which we aspire to take away from School. In the second case the
standards will allow to specify urgent directions of development of School
(for example, so necessary unload of compulsory educational content). At
the same time such standards appear poorly connected to the textbooks
available of schools. It is necessary to admit that this question did not find
its satisfactory solution yet.

How to co-ordinate correctly federal and regional interests? How to
distribute the responsibility for standards execution in appropriate way?
How to alter the corresponding systems of assessment and control?

The search of the answers on these and similar questions
continues. It is necessary to notice that in the field of Mathematics
Education the alternative projects of the standards appear rather alike.
Obviously it is connected to circumstance that in the field of School
Mathematics the whole necessary way was passed much earlier in
comparison with other subjects. The standards of School Mathematical
Education in understanding as above entered into Soviet School already
in 1982. Now the specification of the earlier entered standards comes true
unless. Thus, our final conclusion is that existing projects of Standards
could not ensure the required reform of Russian School Mathematics. The
genuine reform is still ahead yet.
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HIGHLIGHTS AND SHADOWS OF CURRENT JAPANESE
NATIONAL CURRICULUM OF MATHEMATICS
FOR SECONDARY SCHOOLS

Hiroshi FUJITA
Meiji University; Japan

§1. Introduction

Firstly, focusing on SHS (Senior High School) mathematics
curriculum, we describe the underlying philosophy, basic strategy, courses
and their contents of the current Japanese national curriculum, which is
called the Course of Study (CS). Actually, the author was involved in
organizing this CS as a member of Council for Educational Curricula.
Reports on initial experiences of implementation are mentioned.

Secondly, as a newly arising difficulty in mathematics education in
Japan, we analyze recent tendency of Japanese youths’ disinclination for
mathematics as well as for science and technology, which has become a
matter of national concern. It is our belief that the underlying idea and
methods of the current CS will be effective also to overcome this crisis of
Japanese mathematics education.

While some points of our discussion are specific to Japan, we think
that the other points are of international interests and concern, at least, in
some countries.

The paper is composed of 7 sections. In §2, we sketch the
Japanese educational system, the process of text book authorization and
the process of revision of CS. The second half of §2 is devoted to a
description of the necessity of reform and the chronic issues of Japanese
mathematics education which the current CS is intended to meet,
particularly, the polarization of students, and backwardness in school use
of computers.

In §3, we state our philosophy that the purpose of mathematics
education (at the secondary level) is to cultivate students’ mathematical
intelligence with the two foci targets; fostering ML (Mathematical Literacy)
and enhancing (MT (Mathematical Thinking Power). In order to be
compatible with Japanese social tendency that dislikes apparent
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differentiations and, at the same time, in order to increase flexibility of
curriculum, we have adopted an original structure, the so-called Core and
Options curriculum (COM) structure as explained also in §3.

§4 gives a brief description of courses and topics of the current CS
to be taught as the core or as optional modules. In fact, the program as a
whole is a restricted realization of COM.

Reports on initial experiences of implementation of the current CS
are mentioned in §5.

§6 is a brief analysis of Japanese crisis of mathematics education
mentioned above. Serious symptoms are students’ (even élite students’)
lowering of scholarship and running away from deep thought in mathe-
matics. Possible causes of this crisis and related sociological backgrounds
are mentioned, including the demographic factor that the number of
Japanese youths is constantly decreasing.

In §7, this paper is concluded by a description of directions of our
future efforts to improve mathematics education, including suggestions for
the coming revisions of CS.

§2. Educational System in Japan
The Japanese school system is similar to the American one.

Namely, its main body is of the 6-3-3-4 structure, while it is preceded by
Kindergarten and is followed by the graduate school. Statistics for 1995 are:

school years of study type enrollment ratio
Kindergarten (K) 1-3 volunteer 63.2 %

Elementary school (ES) 6 compulsory 99.99 %
Junior high school (JHS) 3 compulsory 99.99 %
Senior high school (SHS) 3 volunteer 96.7 %

University (Colleges) (UG) 4 (2) volunteer [32.1 % (13.1 %)
Graduate school (GS) 2+3 volunteer 9.0 %

Remark

In Japan, Jyuku, (informal learning institute) is flourishing.
Approximately, 20 % of pupils of elementary schools and 50% of students
of junior high schools take evening and / or weekend courses in Jyukus for
extra learning.
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2.1. Course of Study

The contents of teaching in Japanese schools from Kindergarten to
SHS are strongly controlled by the Course of Study (CS) issued by
Monbusho (Ministry of Education, Science and Culture). In recent years,
CS has been totally reorganized approximately every ten years. Actually,
the current CS was announced in 1989, while previous revisions of CS had
been made in 1978 (post-modernization), 1970 (modernization), 1969,
1955, - - - . Textbooks for school use must be written according to the CS
and have to undergo authorization by Monbusho.

Usually, the formal process of revision of the CS starts with forming
the Council of Education Curricula (CEC) and with an inquiry from the
minister of Monbusho to the Council, which are often preceded by the
minister’s receipt of recommendations from a superior council, the Central
Council of Education. After the answer of CEC is submitted, working
committees for each school subject are formed and work out the new CS,
which is then announced and put in force by Monbusho. Then publishers
create textbooks in accordance with the new CS and submit them for
authorization by Monbusho.

Thus, it takes several years to begin school teaching according to
the new CS after its announcement. Actually, the current CS was
announced in 1989, and firstly implemented 1992 with ES, 1993 in with
JHS and in 1994 with SHS.

2.2, Recognized issues

The following issues were recognized as basic problems to be met
by the new CS, when we started our informal and then formal preparation
for organization of the current CS in 1980's.

1) The nearly saturated high advancement rate to SHS, which
reaches 95% or over. This implies lowering and diversity of scholarships
among the majority of students.

2) Practically and concretely, the mathematics part of the new CS
has to meet the polarization of students into the following two groups;

* Students of better aptitude who are bound for university education,
professional career and who need strength in mathematics.

* Majority of students who need mathematical literacy to live and
work as intellectual citizens.
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3) Retarded state of use of computers in mathematics teaching and
learning has to be recovered. In spite of popularity of computers in
Japanese society (workplace as well as home), introduction of computers
in school education had been difficult without formal approval for it by CS.

Remarks

1) Generally speaking, the Japanese mathematics teachers are
good in regard to the academic background. All of them are graduates of
4 years universities or higher.

2) The entrance examination to prestigious universities, good SHS,
and excellent private JHS is very competitive. It exerts a strong driving
force for students to work hard as well as distortion of sound learning of
mathematics.

§3. Guiding Principles and Strategies

Our basic philosophy and strategies in organizing the current CS
are as follows. Incidentally, in addition to publication of papers in
references, these principles and strategies were orally presented by the
author to the international community of mathematics education on
occasions like ICME-5, Adelaide (1984), UCSMP & NCTM Conferences,
Chicago (1988), ICME-6, Budapest (1988), ICMI Sessions in ICM’90,
Kyoto (1990).

3.1. A historical view point

We claim that the current progress of mathematical sciences, where
the new applied mathematics plays the core role, should be recognized as
the fourth peak in the history of mathematics to follow the preceding three,
namely, the birth of Euclidian geometry, the discovery of infinitesimal
calculus and formation of abstract mathematics. Furthermore, the coming
fourth peak of mathematics shares basic features with the second peak in
the sense that they are both characterized by a vivid expansion of
concepts and methods and by rich applications. Mathematics education
must reflect these trends of mathematics.

3.2. The purpose of mathematics education
We have reviewed the purpose of mathematics education at SHS
level and reached the assertion as follows. Particularly, as for SHS, the

purpose of mathematics education is to cultivate mathematical intelligence
of the students through the two-foci targets: namely, by fostering their
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ML = mathematical literacy and MT = mathematical thinking power.

These two targets should be pursued in an appropriate balance depending
on individual schools, classes or individual students and in view of the
students’ intended career and aptitudes.

To be a little more specific, we claim that
ML = mathematical competence of intellectual citizens

= mathematics for intelligent users,
MT = mathematical potentiality for future career.

ML
(Mathematical Literacy)

MT
(Mathematical Thinking)

3.3. Flexibility curriculum

As a fundamental strategy, we have adopted the curriculum
structure of Core and optional modules (COM), which was originally
proposed by Prof. F. Terada.

Original structure of COM

Conceptually, the mathematics curriculum of the core-options
structure is designed as follows.
* Math curriculum = { core } U { option modules }
* Core = standard math-competence of intellectual citizens
* Option = { Remedial options } U { advanced options }
— Core-Options diagram —
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Core <———‘¢
I

Remedial Side options Advanced
options for enrichment options

Intended merits of COM
1. Flexibility of curriculum to meet diversity of students without appa
rent differentiation.
2. More chances of self-adjustment.
3. Compatible with the two foci goals, ML and MT.
4. Compatible with introduction of computers and calculators into
school mathematics.

§4. Current Courses of SHS Mathematics

The current SHS in accordance with 1989-CS is a restricted
realization of COM, and is actually composed of courses as described
below.

4.1. Courses

Course Requirement | Standard Units Structure Year
Math | compulsory 4 Omnibus 1st

Math |l selective 3 Omnibus 2nd
Math 11l selective 3 Omnibus 3rd

Math A selective 2 Option modules 1st
Math B selective 2 Option modules 2nd
Match C| selective 2 Option modules 3rd

Remarks

As mentioned above, this program of the current CS can be viewed
as a restricted realization of COM curriculum. Such restriction was
necessary to avoid the impact of drastic change, to be feasible in the
customary way of closed class teaching, to be practically compatible with
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the entrance examination to universities and finally to be subject to control
by Monbusho through CS.

According to the current CS, we regard that the core for general
students is

{Mathl} U {Mathll},
while the core for science and technology bound students is
{Mathl} v {Mathll} U {Mathill}.

The option modules are contained in Math A, Math B, Math C. If a
student takes one of these courses, he/she is normally required to learn
two of the modules of his / her choice among four modules belonging to
each course. On the other hand, Math I, Math Il and Math Ill are of
integrated omnibus structure: If a student takes one of these courses,
he/she must learn all topics in it.

It is emphasized that Math C should be learned with due use of
computers and from the view point of applied mathematics.

The arrangement of topics through the whole program is not very
systematic. Some of necessary knowledge to learn a topic or module may
have to be prepared “on the spot” when needs come up.

4.2. Contents of courses

Math | Math A
1) quadratic functions 1) numbers and expressions
2) figures and measurements, 2) plane geometry

simple trigonometry included
3) number of elements and cases | 3) numerical sequence
combinatorics

4) probability 4) computation and computers
Math Il Math B

1) various functions 1) vectors

%, log x, trigonometric functions
2) figures and equations 2) complex numbers and
straight lines and circles complex plane

3) change of values of functions 3) probability distributions
simple differentiation and integration

4) algorithm and computers
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Math 1l

Math C

1) functions and their limit
2) differential calculus

3) integral calculus

1) matrices and linear computation
2) various curves including

conics and polar coordinates

3) numerical computation

4) statistical processing

§5. Report on Initial Implementation

Students to graduate from SHS in 1997 March are the first runners
who have studied according to the current CS. Hence, reports only on the
initial experiences of implementation of CS are available now.

5.1. Statistics of selective courses and modules

1) Selective courses are shown below by percentages of students
who take them. For instance, since Math | is compulsory, its percentage is
100 %, while Math C is taken only by 19.8 % of students who are mostly
bound for science and technology.

Math | |Math Il |Math il

Math A [Math B |Math C

100 % |86.1 %|21.4 %

71.6 %|43.9 % [19.8 %

2) Selective modules taught are shown by percentages of schools
which offer teaching of them. Statistics for Math C is not available yet in

1996.

Math A

Math B
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Number and expression Plane geometry
91.4 % 25.6 %
Numerical sequence Computation and computer
81.9 % 6.4 %
Vector Complex number and computer plane
76 % 70 %

Probability distribution

Algorithm and computer

25.0 %

3.2 %
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5.2. Reports and comments

The following is a part of various reports and comments with
appreciation or criticism from initial experiences of the CS.

1) Text books: Reliable but somewhat conservative text books have
been created to match the new CS.

2) Response of students: In many schools, Math | matches the
majority of students.

3) Appreciation by teachers: The flexible structure of the new CS is
stimulating for enthusiastic or active teachers, while the non-systematic
arrangement of topics is not liked by some conservative teachers who are
mostly senior.

4) Entrance examinations: Notwithstanding the difficulty caused by
the increased flexibility of curriculum, the Center of University Entrance
Examination has decided to pose a full menu examination including all
modules of the selective subjects Math A and Math B.

On the other hand, however, most of the prestigious national
universities are not very cooperative with the new CS and have flatly
designated two modules to be tested from each of Math A, Math B, Math
C, in particular, excluding the computer related modules. This exerts a
strong negative influence on SHS, and makes it difficult for SHS to
implement the CS as it was intended.

5) Computers: Computer-related modules are rarely offered to teach
a SHS, although many SHS recognize importance of these modules and
the hardware environments are not poor nowadays, probably because
teachers are not well prepared, and, as mentioned above and because of
exclusion of these modules from the range of mathematics problems at the
individual entrance examination to many universities. Nevertheless, a
number of conscientions universities have announced to include computer
modules to the range of their examinations.

6) Response of university professors: Except for those who are
particularly concerned with the secondary education since before,
university mathematics professors feel that the current CS is too non-
systematic to lose the characteristic nature of mathematics, and is
inconvenient practically in setting problems of entrance examination.
Some of them hate the increased teaching burden caused by the
acceptance of students with diverse backgrounds which is a consequence
of new CS.

On the other hand, because of the recent issues which they
seriously experience in teaching mathematics of the university level, a
number of university professors express their support of the underlying
idea of the new CS.
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§6. Crisis of Mathematics Education

In Japan, youth’s disinclination for study of science and technology
as well as for study of mathematics has become a serious matter of
concern. As for mathematics, on July 2, 1994, presidents of academic
societies of mathematics and mathematics education made a public
appeal, “Crisis of Mathematical Education in Japan” in order to call for
measures and efforts to meet this difficulty. Furthermore, the ICMI national
committee of Japan chaired by Prof. S. litaka sent a letter on July 15, 1995
to Professor A. Arima, President of the Central Council of Education,
requesting to incorporate necessary measures to resolve this serious
issue when the Council works out their recommendation to the minister of
Monbusho.

6.1. Some symptoms

Particularly in regard to mathematics, the following symptoms of the
crisis are observed:

1) Lowering of scholarship of university students, remarkable even
with engineering students of prestigious universities.

2) Lowering of quality of learning is a matter of concern. Children
and students opt to avoid mathematical problems which require deeper
thinking. Even when they earn some good scores in mathematics, children
are poor with verbal problems and students hate problems involving proof.

3) Decay of popularity of mathematics among élite students should
be noted, although the decrease in number of SHS students who take
selective mathematics courses is not drastic yet.

In suffering from students’ falling away, mathematics is not alone.
Japanese youths with better aptitude prefer, as their majors, fields of
literary or social sciences to science and technology, although nobody
denies the importance of science and technology in the coming era.

At SHS, physics is learned only by 20% of students, while physics
was taken by 80% of students some decades ago. As reasons for this
tendency, we may refer:

« Decay in youths of traditional cultural backgrounds like diligence

and perseverance.

« Youths dislike sustained efforts which S&T (Science and
Technology) requires.

« Freshmen’s wish to relax and enjoy after competitive entrance
examinations is difficult to realice with S&T.
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¢ Scientists and engineers are not well paid in comparison with
bankers and commercial managers. They are unhappy in
companies when their knowledge becomes obsolete.

* Facilities and learning environments of S&T in universities are
poor.

* Curriculum for science at the secondary level may be too stiff to
kill students’ fondness of science.

6.2. Demographic factor
The number of 18 year - old in Japan decreases sharply after the

peak in 1992.
Number of 18 year - old youths. (Unit = 10,000)

1980 [ 1985 | 1986 | 1990 | 1991 | 1992 | 1993 [ 1994 | 1995 | 1996
158 | 156 | 185 | 201 | 204 | 205 | 198 | 186 | 177 | 172

1997] 1998 | 1999 | 2000| 2001 | 2002 | 2003 | 2004| 2005 | 2006
167 | 161 | 153 | 151 ] 150 | 147 | 141 | 137| 133 | 130

This decrease in size of this age group has favourable as well as
bad influences on school education. For instance, the number of children
in a classroom may be reduced. The competition at the entrance
examination will be relaxed except for those who aim at very prestigious
schools and universities. On the other hand, however, new employment of
young and active teachers will become difficult, because the educational
budget depends monotonously on the number of pupils and students.
Furthermore, universities of medium level may exclude mathematics from
their entrance examination in order to attract more applicants who do not
like mathematics, and thus discourage mathematics learning.

6.3. Appeal by presidents of societies

As mentioned above, the presidents of the following societies
signed the Appeal “Crisis of Mathematics Education™ Mathematical
Society of Japan (S. litaka), Japanese Society of Mathematical Education
(T. Uetake), Japan Society for Industrial and Applied Mathematics
(H. Fujita), Society of Mathematical Education (K. Yokochi).
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Items Suggested in the Appeal are:

1.

2.

More school hours, particularly in Junior high schools, must be
alloted to mathematics.

Ample mathematical literacy must be fostered in all students
through enjoyable (not painstaking) approaches.

. Study of coherent curricula of mathematics with an integral view

over all grades and school levels is needed.

. Active and enjoyable learning of mathematics by students should

be promoted with active use of computers.

. More mathematics teachers with a lively mathematical sense

must be brought up and employed.

. The weight of mathematics at entrance examinations should not

be reduced, while improvement of its problem-setting must be
done increasingly.

§7. Required Further Efforts
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In the coming reorganization of CS, which is to be started during
1996 by forming the Council of Educational Curricula, we have to try to
achieve the following:

1.

2.

Pursuit of the objectives of the current CS with necessary
amendments of the content.

More active use of computers and graphic calculators into each
topic in mathematics.

_Review of JHS mathematics, which used to be too uniform with

little selective components. We have to re-organize the
curriculum so that even in this period of compulsory education,
we can foster germs of various abilities of individual students, and
on the other hand, we do not force the majority of students to
learn too sophisticated topics beyond their aptitude.

. Re-examination of teaching topics to meet the 5-days (per week)

school system.

. Organize curriculum with ML-MT targets which is properly

applicable to the group of stronger (even gifted) students as well
as the majority of students, provided that their teachers are
qualified and well-prepared.
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ISSUES IN ASSESSMENT: A NEVER ENDING STORY

Peter Galbraith

Let us begin by agreeing that winds of change have been blowing
for some time in the world of mathematics assessment and that these
winds vary in strength from gentle zephyrs to potential hurricanes. Let us
recognise that shifts in emphasis have occurred and are occurring; for
example a move away from sole reliance on formal testing; the
introduction of so-called coursework assessment involving project work
and other activities of an open nature; an increase in the number of
countries, states and territories that involve teachers actively in
assessment activities; and an increased consciousness that assessment
should form an integral part of teaching/leaming transactions.

Simultaneously let us acknowledge, in apparent conflict with some
of the above, moves towards system wide 'accountability' at various levels
of schooling through the agency of national or state mandated tests of
mathematical 'ability' or 'competence'. Rather obviously the different
‘winds' have sources in belief systems that themselves vary in what they
value most.

It seems of doubtful benefit in a paper such as this to discuss the
detail of various assessment instruments or methods, existing or
developing, or the efficacy or efficiency with which such instruments might
be administered, for inevitably any given choice will be outside the current
interests of some countries and systems, and hence by definition
peripheral to some potential readers. There is an expanding source of
reference material that may be consulted with respect to such
developments, for example (Niss, 1993(a) and (b); Romberg, 1992; Gifford
and O'Connor, 1992; Leder, 1992; Grouws, 1992; as well as a variety of
National Reports).

So it is my intention to assume that these or similar, actions,
circumstances, methods, and contexts exist in some form in all countries
and to attempt to address at a more general level issues and questions
that are consequently posed for the mathematical education community.
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An international perspective

Recognising that circumstances vary between countries, there do
seem to be changes in social, political and educational climates that form
a broad backdrop to the assessment saga on a sufficiently global basis as
to affect almost all of us.

Acknowledging that any selection is subjective, | will nominate five that
seem to me to be illustrative of such movements.

1. Educational opportunities and requirements are being broadened
globally - this may involve more children completing primary school, more
children undertaking secondary education, more students proceeding to
tertiary studies, or changes in the composition of schooling due to policies
of positive discrimination on behalf of population sub-groups.

A consequence is a continuing decline in the so-called ‘unskilled
population’, an increase in the level of formal qualifications demanded by
employers, and at the global level a developing international trade in
qualifications and courses which may be expected to increase through
expanded use of the Internet.

Within such societal shifts, assessment is seen as a means of
exercising control (Wolf, 1996) through which we find manifested:

» accountability as a public demand particularly in industrialised
countries

e monitoring of standards through national and international
agencies for social and economic development

* increased linking of teaching with work experience

« increased concern on the part of students, teachers, parents and
employers for education to provide an adequate basis for
occupational selection.

These moves have locked into the pre-existing interest in
international comparisons (FIMS; SIMS, TIMSS) (Robitaille, 1992)
involving testing across perceived common standards and supported by
more general tracking of societal indicators over time by agencies such as
the World Bank and UNESCO.

Nationally 'standards' have become prey to political processes that
result in something like the following:

"Standards must be raised so we need assessment based on

standards; hence transfer power from schools to central agencies
and professional test providers."
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Since reliability as a public perception is paramount, it is easier to
sacrifice validity, and a way to muzzle resulting critique is to freeze
teachers and the mathematics community out of the process. Now it
becomes a question of who decides what quality is, and who controls it! -
a political question rather than an educational one.

2. There are re-definitions of the assessment agenda that use
common terms but with different meanings. For example various
‘deconstructed' meanings are given to key words and what these imply for
practice. A word such as Accountability can be construed respectively as,
following Wolf (1996):

(i) being able to explain (account for) actions; or
(i) being responsible for some actions; or
(iii) being responsible to someone for actions taken.

These interpretations have substantially different meanings in
practice where for example (1) provides for considerable teacher
autonomy while (3) can mean the withholding of funds unless prescribed
standards and methods (as specified by major stakeholders) are adhered
to.

When defining such standards associated with criterion based
assessment the construct of transparency must be added to the traditional
constructs of validity and reliability suitably re-defined. Transparency
refers in particular to criterion targets that aim to ensure that students can
see clearly where to go. The more transparent the criteria the better the
student should be able to target learning. However following the maxim
that 'every silver lining has a cloud' explicit clarification of what is to be
achieved also opens the door to challenge, especially in litigatious
societies.

3. Issues of 'equality' continue to add unresolved questions to the
assessment debate. Some learners, for example through culture and
background, are better equipped to engage in ‘assessment games' than
others so that opportunities are unequal even though public procedures
have an air of objective legitimacy. The traditional use of mathematics as
a filter (based on some version of faculty psychology), through which
mathematics performance continues to be viewed as a proxy for general
ability, continues. Given the acceptance of this view society then feels
empowered to use assessment as a means of disciplining students,
teachers and institutions as argued by Niss (1993(a)) in terms of the
carrot/stick approach to assessment. In places where external
examinations continue as vestiges of colonial power, Ridgeway and
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Passey (1992), the impact of associated social and political beliefs are as
strong (or stronger) than pressures for reform deriving from research-
based educational outcomes or generative professional wisdom.

4. Conceptions of ability continue to represent a pervasive
fundamental conflict among issues yet to be resolved. Beliefs that innate
intelligence and aptitude are the determiners of mathematical success
continue to exist and sustain fatalistic approaches to mathematics
performance. Such beliefs effectively excuse individuals on the one hand
from trying as students, and on the other from trying as teachers. That
fatalism is alive and well in my own country amongst both teachers and the
public was demonstrated all too cleariy through two research studies
(Galbraith and Chant, 1990, 1993).

The other aspect of ability attribution that continues as an issue
involves the domain specific versus domain general explanation of the
development of human talent (Brown and Campione, 1992). If intelligence
as the ability to leam is innate, then it does not matter much what kind of
testing is used to assess its level, providing it meets conventional notions
of reliability and validity - as capitalized by commercial producers of
educational tests. If, however, performance can be enhanced by careful
teaching then it matters a great deal how the standards are set, how the
learning goals are made transparent and explicit, and how the assessment
program is matched to the specific leaming goals. Related issues
expounded by Brown and Campione (1992) include the amount of
guidance provided, rather than the number of trials needed for leaming to
appear (a metacognitive rather than a behaviourist position), and the focus
of assessment on the effectiveness of current learning rather than on the
fruits of past learning. The paper presents one of the more powerful
theoretical supports for a dynamic interaction between assessment and
instruction, both for learning potential, and for the linking of assessment
and instruction as an alliance against the re-ification of test scores into
fixed cognitive entities. This theoretical debate continues to underlie
activities that at another level appear to be concerned with practice.

5. Forms of reporting progress have increasingly become a focus for
innovation. Zarinnia and Romberg (1992) provide seven categories within
which assessment outcomes might be reported. In referring to a range of
positive or negative side-effects associated with each they draw attention
to advantages and distortions potentially deriving from new assessment
directions. For example while focussing on process may present
mathematics as powerful and active, it may also cause fragmentation in
which various processes become ends in themselves rather than as
means to an holistic end -no less a fragmentation than has occurred with

198



Galbraith

a focus on content. Similar analyses in a variety of countries point firmly
away from reliance on standardized testing to the use of contextualized
evidence obtained from tasks incorporated in regular instruction. This in
turn sets an agenda for the re-professionalization of the teaching
community in which beliefs about the nature of authentic mathematical
activity is a target for change, and a basis for developing exemplars
descriptive of quality as a pre-cursor to the development of ways of
promoting inter-judge agreement on the quality of student work. These
continuing manifestations of the nature/nurture debate impact in various
ways on all efforts to change the emphasis in assessment towards
learning in context.

A question of interests

The preceding section has sampled some of the events and
movements currently engaging the field of Mathematics Education. It is
assumed that through our pedagogical and assessment practices we hope
to provide for the development of a liberated person in the sense
described by Siegel (1980) as one who is "free from the unwarranted
control of unjustified beliefs, insupportable attitudes, and the paucity of
abilities which can prevent that person from completely taking charge of
his or her life". The search for liberty inevitably calls into question the
“interests" that are served by concepts and procedures used to control and
label the capacities of individuals.

The question of "interests" as it has been applied in Education
generally is associated with the 'critical theory' movement from which it has
drawn its conceptual basis (Habermas, 1971; Gibson, 1986; Carr and
Kemmis, 1986). Three levels of interest have been articulated, viz
technical, practical, and emancipatory, and much has been written
concerning these in the general teacher education literature, see for
example van Manen (1977) and particularly Zeichner and his associates
(Zeichner and Liston, 1987; Tabachnik and Zeichner, 1984; Zeichner,
1993).

Technical interests refer to the interest in gaining knowledge for the
purpose of efficient and effective application in controlling the environment
defined in a broad sense. This may be taken to include the attainment of
prescribed educational objectives requiring technical skill, and mastery
approaches to learning and assessment provide an exemplar for the
achievement of technical interests in mathematics. Technical intere