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Part 1
Plenary Activities



Thirteenth International Congress
on Mathematical Education:
An Introduction

Gabriele Kaiser

Abstract The paper describes the vision of the 13th International Congress on
Mathematical Education (ICME-13), accompanied by detailed elaborations on the
structure of ICME-13 and important data.

The 13th International Congress on Mathematical Education (ICME-13) took place
from 24 to 31 July 2016 in Hamburg, hosted by the Gesellschaft fiir Didaktik der
Mathematik (Society of Didactics of Mathematics) under the auspices of the
International Commission on Mathematical Instruction (ICMI).

ICME-13 had 3486 participants, with 360 accompanying persons, making it the
largest ICME so far. Congress participants came from 105 countries, i.e., more than
half of the countries in the world were present. Two hundred and fifty teachers
attended additional activities that took place during ICME-13. Directly before the
beginning of ICME-13, 450 early-career researchers attended a day-long specific
programme. These high participation numbers strongly indicate that mathematics
education has become a widely accepted scientific discipline with its own structure
and standards. Furthermore, it documents the growing international community of
mathematics educators.

At the opening ceremony, the five ICMI awards were presented to Michele
Artigue and Alan Bishop (Felix Klein award), Jill Adler and Frederick Leung (Hans
Freudenthal award), Hugh Burkhardt and Malcolm Swan (Emma Castelnuovo
award). Their presentations can be found in these proceedings together with a short
introduction by Carolyn Kieran and Jeremy Kilpatrick.

The heart of the congress consisted of 54 Topic Study Groups, devoted to major
themes of mathematics education, in which 745 presentations were given. In
attached oral communications, 931 shorter papers were presented, complemented
by 533 posters presented in two sessions.
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Two plenary panels presented their points of view on:

— International comparative studies in mathematics: Lessons for improving stu-
dents’ learning, with Jinfa Cai (Chair), Ida Mok, Vijay Reddy and Kaye Stacey

— Transitions in mathematics education, with Ghislaine Gueudet (Chair),
Marianna Bosch, Andrea diSessa, Oh Nam Kwon and Lieven Verschaffel.

Four plenary lectures took place:

— Uncovering the special mathematical work of teaching, by Deborah
Loewenberg Ball

— Mathematics education in its cultural context: Plus and minus 30 years, by Bill
Barton

— Mathematics classroom studies: Multiple windows and perspectives, by
Berinderjeet Kaur

— “What is mathematics?” and why we should ask, where one should learn that,
and who can teach it, by Giinter M. Ziegler.

In addition, 64 invited lectures were given by scholars from all over the world
presenting the state of the art in their research field. The second volume of the
proceedings of ICME-13 will publish these lectures.

38 discussion groups and 42 workshops initiated by congress participants were
offered in which a great variety of themes were discussed, fostering international
collaboration.

Reflecting specific ICMI traditions, five ICMI survey teams described the state
of the art on the following themes:

e Distance learning, blended learning, e-learning in mathematics (chaired by
Marcelo Borba)

e Conceptualisation of the role of competencies, knowing and knowledge in
mathematics education research (chaired by Mogens Niss)

e Assistance of students with mathematical learning difficulties: How can research
support practice? (chaired by Petra Scherer)

e Teachers working and learning through collaboration (chaired by Barbara Jaworski)

e Recent research on geometry education (chaired by Nathalie Sinclair).

The first results of these survey teams were published as Issue 5 in 2016 of ZDM
Mathematics Education (http://link.springer.com/journal/volumesAndIssues/11858);
short versions of these reports can be found in this volume of the proceedings.

Three ICMI studies presented results that already have been published or will be
published by Springer in the new ICMI Study Series:

e ICMI Study 21 on mathematics education and language diversity (Richard
Barwell et al.)

e [ICMI Study 22 on task design (Anne Watson and Minoru Ohtani)

e ICMI Study 23 on primary mathematics study of whole numbers (Mariolina
Bartolini Bussi and Xuhua Sun).
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In addition, six national presentations were given describing the situation of
mathematics education and its scholarly discussion in Argentina, Brazil, Ireland,
Japan, the Lower Mekong Sub-Region and Turkey. Short descriptions of the pre-
sentations are given in this volume.

Apart of these impressive figures, the historical development is important: In
1976 another ICME had already taken place in Germany, namely the Third
International Congress on Mathematical Education (ICME-3), which was held in
Karlsruhe. The organisation of ICME-3 in 1976 reflected the German tradition of
collaboration between mathematicians and mathematics educators, with mathe-
matics educator Hans-Georg Steiner as Chair of the International Programme
Committee and mathematician Heinz Kunle as Chief Organiser of the congress. The
strong collaboration between mathematics and mathematics education has been
further developed and the Deutsche Mathematiker-Vereinigung (German
Mathematical Society) has strongly supported ICME-13 since the very beginning.
The German community is the first international mathematics educational com-
munity to host an ICME a second time.

On the occasion of this special event a thematic afternoon was carried out
devoted to the description of the development in the last 40 years from a European
and a historical perspective. The thematic afternoon’s topics were Selected
European Didactic Traditions, German-speaking Traditions and the Legacy of Felix
Klein. These special activities aimed to show the development of the German
mathematics education discussion over the last 40 years, embedding it in a conti-
nental European context and in its historical development.

The German-speaking countries share many common roots with the continental
European didactic traditions of mathematics education, including common peda-
gogical and philosophical traditions. These strong connections within the European
tradition of didactics are already apparent in the word Didaktik in German, di-
dactique in French, didactica in Spanish, Italian and Czech, didactiek in Dutch,
Danish and Swedish. This Didaktik-tradition can be found in many European
countries and has as a common core a theoretical foundation of education with a
strong normative orientation. This tradition goes back to the Czech pedagogue
Comenius with his Didactica Magna (The Great Didactic). Comenius, who
developed still modern approaches to education, is considered the father of modern
education (Hudson & Meyer, 2011). Four distinctive features of these modern
continental European traditions were identified within the selected European
didactic traditions at this thematic afternoon: the strong connection between
mathematics and mathematicians, the key roles of both theory and design activities
for learning and teaching environments and a firm basis on empirical research.
A short description of this topic can be found in these proceedings (Blum et al.),
while a detailed description will be given in a book coming out in the series of
ICME-13 monographs.

The second strand displayed the German-speaking traditions, which include
Austria and Switzerland in addition to Germany. This strand of the discussion is
especially connected to a particular approach to didactics of mathematics that is
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subject bound and strongly oriented towards mathematics (so-called Stoffdidaktik).
This approach was already evident in Arnold Kirsch’s keynote lecture, Aspects of
Simplification in Mathematics Teaching, at ICME-3 in Karlsruhe and has been
further developed in the last 40 years (Kirsch, 1977). Other distinctive features are
related to applications and modelling, which play a prominent role in German
mathematics education and were described at ICME-12 in Seoul by Werner Blum
in his plenary talk (Blum, 2015). Another important feature of the German-speaking
tradition discussion is the approach to mathematics education as design science
aiming to bridge the gap between theory and practice, which was put forward by the
plenary talk of Erich Wittmann at ICME-9 in Tokyo (Wittmann, 2004). A short
description of these presentations can be found in these proceedings (Jahnke et al.),
while a detailed description will be given in a book coming out in the series of
ICME-13 monographs.

The third strand of these special activities, the Legacy of Felix Klein, referred to
the historical roots of German-speaking mathematics education. Felix Klein, the
founding president of ICMI, shaped mathematics education not only nationally but
internationally in several respects. His legacy was reflected upon from three per-
spectives, the first being functional thinking as one fundamental mathematical idea
structuring mathematics education from the very beginning to university. The sec-
ond perspective was intuitive thinking and visualisation, which reflects the high
importance of Anschauung in German mathematics education. Felix Klein devel-
oped the Modellkammer, models of mathematical phenomena, which has been
promoted in other parts of the world (Schubring, 2010). The mathematical exhibition
from the Mathematikum, which has been on display during ICME-13, refers with its
hands-on activities strongly to this tradition. A short description of this strand can be
found in these proceedings (Weigand et al.), while a detailed description will be
given in a book coming out in the series of ICME-13 monographs.

The last perspective is strongly connected to Felix Klein’s famous books,
Elementarmathematik vom Hoheren Standpunkte aus, published originally from
1902 to 1909 in German with the first volume on arithmetic, algebra and analysis,
the second on geometry and the third on precision and approximation mathematics
(Klein, 1902—1908). The first two volumes were published in English with the title
Elementary Mathematics from an Advanced Standpoint in 1932 (Volume 1) and
1939 (Volume 2). Supported by Springer Publishing, a new translation of the first
two books from Felix Klein has come out on the occasion of ICME-13, called
Elementary Mathematics from a Higher Standpoint (Klein, 2016). The wording of
the title has been changed from advanced to higher, taking up the critique by
Kilpatrick (2008/2014) at ICME-11 of the inadequate translation (2008/2014). The
translation by Gert Schubring attempts to bring the English version closer to its
German original, for example, by clarifying fundamental concepts for Klein’s
approach that were inadequately translated, such as Anschauung, which is insuffi-
ciently translated as perception. Furthermore, the third volume, Precision
Mathematics and Approximation Mathematics, which was not been available in
English, has now been translated by Marta Menghini in collaboration with Anna
Baccaglini-Frank. It is a huge step forward for mathematics education that this work
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is now available in a complete and adequate form, because the connection of
mathematics with its applications under a higher perspective was of particular
importance to Felix Klein and was his lifelong theme. Jeremy Kilpatrick states
concerning the importance of this work: “Despite the many setbacks he encoun-
tered, no mathematician had a more profound influence on mathematics education
as a field of scholarship and practice” (p. 27).

Apart from this thematic afternoon as distinctive feature of ICME-13, an
extensive publication programme was implemented in order to develop a sustain-
able congress from an academic perspective. One of our aims with the publication
of the ICME-13 Topical Surveys was to display the state of the art concerning
specific mathematics educational themes in the style of independent handbook
chapters. 26 ICME-13 Topical Surveys were published, and the important aspect of
these Topical Surveys coming out before ICME-13 is that they were available as
open access and hopefully formed the basis for many discussions at the congress.
They displayed what we knew before the congress. The forthcoming post-congress
monographs based on the papers presented within the framework of the topic study
and discussion groups describe the academic outcome of ICME-13 in more detail
and will hopefully contribute to a sustainable congress.

It is our strong hope that ICME-14, which will take place in Shanghai in 2020,
will be able to build its work on the insights achieved and published here and can
thereby strongly foster the development of knowledge on the teaching and learning
of mathematics on a higher basis.

The aforementioned books from Felix Klein, Elementary Mathematics from a
Higher Standpoint (2016), originated from lectures Felix Klein gave to prospective
teachers. His desire in publishing these books was to develop the ability of the
prospective teachers to use the rich mathematics they were learning at university as
vivid stimulation for their own teaching afterwards. This strong tradition that
shaped the German-speaking community has led to many activities in pre-service
and in-service teacher education.

During ICME-13, three days of German-language activities for teachers were
conducted in which scholars participating in ICME-13 worked with practising
teachers in workshops and lectures and offered them background knowledge or new
teaching ideas. These activities for teachers were supported by the MNU - Verband
zur Forderung des MINT-Unterrichts (German Association for the Advancement of
Mathematics and Science Education), a teacher community, which has supported
ICME-13 from the very beginning.

The final characteristics of ICME-13 to be mentioned are the activities for early
career researchers. Early career researchers are our future, because they have to
shoulder the task to further develop the science of mathematics education and to
implement these improvements at all educational levels. We have seen in the past a
strong development towards higher quality standards of research. Publishing a
study needs nowadays to fulfil many requirements concerning theoretical frame-
work and methodology used. Furthermore, publications have become more and
more important in the last years. Therefore, ICME-13 held an early career
researcher day with 450 participants where thematic surveys were presented and
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empirical methodologies prominent in mathematics education were discussed. In
addition, descriptions of selected mathematics educational journals by the editors of
those journals were followed by workshops on academic publishing and writing.
These kinds of activities are highly necessary and should in the future be an integral
part of ICMEs.

Finally, it is the tradition at each ICME to devote 10% of the congress fees to a
solidarity grant in order to support scholars from less affluent countries. With the
support of the Federal Ministry of Education and Research and the Bosch
Foundation, ICME-13 was able to spend nearly 9% of the whole congress budget,
about 230,000 Euros, for scholars from less affluent countries, supporting 223 par-
ticipants from 66 countries. A special focus was set on African scholars; ICME-13
was able to support S0 African scholars from 19 countries. These efforts reflect the
strong will of the German society to express solidarity with less wealthy regions and
take responsibility for helping those regions. It will be our task to continue these
efforts to insure equitable access not only to mathematics instruction in school for all
people but also to the academic discussion on mathematics education for scholars all
over the world, making an ICME a unique international experience.

ICME-13 has been the biggest ICME so far and has allowed many scholars from
all over the world to participate actively. It will be our ongoing task to broaden the
participation in ICMEs and to encourage scholars from all over the world to engage
in and enrich all future ICMEs.

Acknowledgements I would like to thank Lena Pankow for her strong and continuing support
not only during the congress ICME-13, but in the work for this volume as well.
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Uncovering the Special Mathematical
Work of Teaching

Deborah Loewenberg Ball

Abstract Helping young people develop mathematical skills, ways of thinking,
and identities, and supporting classrooms as equitable communities of practice,
entails for teachers a specialized set of instructional skills specific to the domain.
This paper argues that, although progress has been made in understanding
“mathematical knowledge for teaching,” more study is needed to understand
interactive mathematical work of teaching and to orient teachers’ professional
education to this dynamic and performative mathematical fluency and activity.

Introduction

A basic problem for both policy and practice is to identify what teachers need to
know in order to teach mathematics well. Although it is obvious that teaching
depends on knowing the subject, unanswered questions about the specific knowl-
edge needed to teach mathematics have preoccupied teacher educators and
researchers alike. This paper traces the effort to frame and investigate this problem
and to develop useful ways to understand and solve it.

A Common Question: “How Much” Mathematics Do
Teachers Need to Know?

The quest to identify and quantify teachers’ mathematical knowledge dates back
several decades. There is widespread agreement that teachers must know mathe-
matics in order to teach it. This has been taken for granted. Although many

D.L. Ball (X)
University of Michigan, Ann Arbor, Michigan, USA
e-mail: dball@umich.edu

© The Author(s) 2017 11
G. Kaiser (ed.), Proceedings of the 13th International Congress on Mathematical
Education, ICME-13 Monographs, DOI 10.1007/978-3-319-62597-3_2



12 D.L. Ball

researchers, policymakers, and teacher educators expressed concern that teachers
typically did not know enough mathematics, less consensus has been reached about
how much mathematics teachers needed in order to teach well. This has led to
claims, reports, and recommendations focused on the number—or sometimes the
content—of courses that teachers should take. Many arguments have centered on
how much mathematics teachers should know, others on what is most important to
know. Although it might seem straightforward, the question of the mathematics
teachers need to know has been not at all simple to answer convincingly.

Although the basic assumption seemed obvious—after all, how can one teach
something that one does not know well?—numerous studies failed to show that the
amount of mathematics that teachers study clearly or consistently predicts their
students’ learning." “Amount” tended to be measured in terms of attainment, either
by completing a concentration in mathematics at the postsecondary level or by
taking a certain number of university-level courses. This was an unsettling dis-
covery in some ways, but it led to a new question: what mathematical skill and
insight does teaching actually require? Clearly, it requires mathematics, but if it is
not the amount of knowledge, then what is it about the mathematics that matters for
good teaching?

These questions were far from new. Over a century ago, Dewey (1902) had
flagged the special way of thinking about content through the mind of the child. But
common worries about teachers’ knowledge had nonetheless persisted, without
satisfactory ways to articulate exactly the nature of this special way of thinking.
Shulman and his colleagues (1986, 1987) aptly named it “pedagogical content
knowledge,” which significantly advanced the field. Researchers around the world
probed the mathematical knowledge needed for teaching and began to find better
answers (e.g., Adler & Davis, 2006; Ball, Thames, & Phelps, 2008; Baumert et al.,
2010; Blomeke et al., 2015; Bruckmaier, Krauss, Blum, & Leiss, 2016; Carrillo,
Climent, Contreras, & Muiioz-Catalan, 2013; Herbst & Kosko, 2014; Hill,
Schilling, & Ball, 2004; Kaiser, Busse, Hoth, Konig, & Blomeke, 2015; Knievel,
Lindmeier, & Heinze, 2015; McCrory, Floden, Ferrini-Mundy, Reckase, & Senk,
2012; Rowland, Huckstep, & Thwaites, 2005; Saderholm, Ronau, Brown, &
Collins, 2010; Senk et al., 2012; Tatto et al., 2008; Tchoshanov, 2011). Studies
have ranged from investigations of what teachers (and preservice teachers) know
(or lack) (e.g., Ball, 1990; Baumert et al., 2010; Hill, 2007; Rowland et al., 2005;
Thompson, 1984); what teachers learn from interventions, or other opportunities to
learn mathematics (e.g., Borko et al., 1992; Hiebert, Morris, & Glass, 2003); to
articulating positions about what teachers should know (e.g., Conference Board of
Mathematical Sciences, 2001, 2012; McCrory et al., 2012; Silverman & Thompson,
2008). Many efforts were made to get closer to the use of mathematics in teaching
(e.g., Adler & Rhonda, 2015; Ball et al., 2008; Bruckmaier et al., 2016; Goffney,

'A thorough review of relevant studies that investigate relationships between teachers’ mathe-
matical knowledge and students’ learning and teaching quality can be found in National
Mathematics Advisory Panel (2008).
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2010, 2014; Goffney & Hoover, 2017; Herbst & Chazan, 2015; Hoover, Mosvold,
& Fauskanger, 2014; Hill, 2011; Hill & Ball, 2004; Hill, Rowan, & Ball, 2005;
Rowland, 2013; Sfard, 2007; Sherin, Jacobs, & Phillipp, 2011; Thompson, Carlson,
& Silverman, 2007).

Some scholars developed measures of this special kind of knowledge (e.g.,
Bruckmaier et al., 2016; Herbst & Kosko, 2014; Hill, Ball, & Schilling, 2008; Hill
et al., 2004). It is beyond the scope of this paper to represent or discuss the many
projects that sought to understand in more nuanced ways the kind of mathematical
skill and insight teaching actually requires. Important to note, however, is that
scholars shifted from asking “what mathematics do teachers need to know” to “how
is mathematics used in teaching” (Ball, Lubienski, & Mewborn, 2001).

Alongside this quest to uncover how mathematics is used in teaching, a strong
emphasis on measurement was emerging in the broader political and scholarly
environments. Funders encouraged assessment of impact and outcomes, and
researchers responded by developing tests to evaluate teaching and studying how
teaching relates to learning. Projects built a host of new tools, items, and tasks of all
different kinds. The emphasis on measurement certainly helped to advance the
effort to understand teacher knowledge; it also shifted the trajectory and impeded
some aspects of the unanswered questions about the mathematical knowledge
needed for teaching.

First consider briefly the advances. Across all of these efforts, researchers have
made a great deal of progress in learning that there are special kinds of knowing of
mathematics that matter for good teaching. We understand that it is not as simple as
how many courses someone takes. We also developed better ways to study what
teachers learn from teacher education and professional development. The tools and
measures researchers built during this measurement period have helped us better
understand what teachers learn. These tools hold potential to offer more precise
information about what teachers might have learned than simply asking teachers
what they learned, or whether they found the professional development useful or
enjoyable. We now have better ways of assessing what teachers learn from pro-
fessional education.

The emphasis on measurement, however, drew focus away from fundamental
questions about the role of teachers’ mathematical knowledge in teaching and its
importance for students’ learning. Although many researchers viewed teaching
from sociocultural perspectives, asking about what teachers do with students in
classrooms, the development of assessment tools was based in more individualistic
and cognitivist perspectives.” Many started out trying to understand the mathe-
matics in teaching, but more often ended up measuring individual cognitive
capabilities of teachers instead. For many scholars, this invisible but significant shift
in lens meant that the questions that were being asked and answered drifted away
from the fundamental problems about mathematics knowledge and teaching.

I am grateful to Anna Sfard for discussions and insights about this phenomenon (e.g., Sfard,
2007).
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Research was not capturing the dynamic of what teachers actually do when they
listen to students, make decisions about what to say next, move around the room,
and decide on the next example. Scholars were studying classrooms and analyzing
discourse, tasks, and interactions, but were not unpacking what is involved for the
teacher in doing those things. The measurement work also led scholars to break up
teaching into compartments, which is not the way teaching is enacted in practice.
For example, work focused on mathematics was often separated from a focus on
equity. However, in teaching, concerns for equity—who has the floor, who is being
recognized, whose ideas are being valued—are entangled in the construction of
mathematics, of what is asked and emphasized, and of what it means to do or be
good at math.

The advances in assessment and measurement were important. As a scientific
enterprise, the field had developed better microscopes. Because they had better
tools, researchers were able to get closer to many micro-level aspects of teachers,
including their values, beliefs, and reasoning; their competencies; and their math-
ematical, pedagogical, and professional content knowledge. These tools also took
us inside classrooms and enabled us to see, study, and “measure” teaching—as
researchers. However, we were not inside of what it takes to do teaching as a
teacher. Capturing the patterns of student participation does not explain what goes
on inside the practices of calling on, supporting, and distributing students’ talk, or
of constructing and distributing different kinds of talk turns, and to whom about
what aspect of the mathematics. Describing how students are positioned by the
teacher or their peers and how that is shaped by identities and perceptions does not
open a window on to what it takes, in moment-to-moment interaction, to make the
decisions, arrange the work, say particular things, and disrupt the space and the
dynamics in which students and teachers move.

As a field, we wanted to understand how teachers’ mathematical knowledge
matters for teaching and learning. We wanted to know this with more practical
relevance and more theoretical clarity. We assumed that something about mathe-
matical knowledge would affect the quality of teaching and learning. But what we
need to be talking more clearly about is mathematical knowing and doing inside the
mathematical work of feaching. This change from nouns—‘knowledge” and
“teachers”—to verbs—"“knowing and doing” and “teaching”—is not mere rhetor-
ical flourish. These words can support a focus on the dynamics of a revised fun-
damental question: what is the mathematical work of teaching? This question helps
to ensure that we are not compartmentalizing and that we are talking about the
dynamics of the work a teacher does as she teaches her students mathematics (see
Lampert, 2001, for an extensive development of what is involved in unpacking the
work involved in managing “problems of teaching”).

What is the “work of mathematics teaching” seen through a lens of practice?
How do we calibrate the wide variety of work underway—about teaching, about
theories of classrooms, about what mathematics is, about the larger environments of
the work of teaching—to see, name, and understand the actual mathematical work
of teaching?



Uncovering the Special Mathematical Work of Teaching 15

Recalibrating the Question by Reconsidering “Teaching”

The instructional triangle in Fig. 1 (Cohen, Raudenbush, & Ball, 2003) makes
visible that teaching is co-constructed in classrooms through a dynamic interplay of
relationships, situated in broad socio-political, historical, economic, cultural,
community, and family environments. These are constructed through the inter-
pretations and interactions of teachers, students, and content.’

Students influence one another in myriad ways; what they already know about
the content from prior experiences inside and outside of school influences them;
how they read and understand their teachers also influences them. How their
teachers interpret, respond, and treat them, as well as what their teachers know,
believe, and understand about the curriculum, are all powerfully important. All of
these relationships are interacting and influencing the learning in complex
environments.

All of this complexity could make learning highly improbable. But the work of
teaching is at its core about taking responsibility for attending with care to these
chaotic and dynamic interactions. The work involves using skill, love, and
knowledge to maximize deliberately the probability that students will learn
worthwhile things and will flourish as human beings from being in that learning
environment.

This is a probabilistic argument. Teaching does not cause learning—Ilearners do
the work of learning. However, the work of learning cannot be left to chance.
Teaching is about doing caring and careful work in real time, with students, in
specific contexts, that makes it the most likely that every student learns worthwhile
skills, knowledge, dispositions, and qualities for their lives.

I refer to teaching practice as “work”™ to focus on what teachers actually do and
to distinguish this focus from important foci on other features of classrooms, such
as instructional formats, classroom culture and norms, what students are doing, and
how the curriculum is designed. For example, small group work might be a feature
in a classroom, but a focus on the work of teaching would probe what the teacher
does to make small group work function well. The word “work™ is intended to
focus attention on what is involved in the doing of this responsibility of “maxi-
mizing the probability” that students will thrive and learn. Other aspects and fea-
tures of classroom discourse, content, and interactions are also important but are not
focused on what it takes to do the teaching.

What about problem solving or discussions or seatwork? Aren’t those things that
teachers do? Certainly teachers create seatwork. They use small groups. They
facilitate discussions. But this does not help us understand from the inside of the
work what it is to make small groups, or lead discussions, or create seatwork. What
is it to ask a question in the moment—not thinking for a long time about what
question might be asked, but actually producing the question in real time, fluently,

3See Ball and Forzani (2007) for a discussion of how this instructional triangle relates to and
differs from other uses of “triangles” to represent teaching and learning.
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Fig. 1 Instructional triangle
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in a way that a child can understand it? What is involved in watching the children,
listening to their talk, remembering what particular children said or did the day
before, keeping in mind the point of the lesson (Sleep, 2012), and asking the next
question, choosing the specific example, and deciding when and how to conclude
the lesson for that day?

The use of “work of teaching” also represents a commitment to honor the
effortful and deliberate nature of teaching. Learning does not happen by chance in
classrooms. In fact, when the work of teaching is not as skillful as it might be,
children do not learn. They are put at risk and they do not thrive. It is not respectful
of the skill and effort entailed in teaching to represent it as intuitive, individual, or to
render its details invisible. I use the word “work™ to help us focus our lens not away
from teaching, but more directly onto it.

There are many tools to draw upon to help us focus on the work of teaching.
Drawing on the socio-cultural work of Anna Sfard, Jill Adler, and others, we know
that classrooms are discursively intensive places that require a great deal of com-
munication, both verbal and nonverbal, between and among students and teachers
(Sfard, 2007; Adler & Davis, 2006; Adler & Ronda, 2015). We know that class-
rooms are filled with diversity that creates all kinds of resources and challenges for
that discursive work. This means that there is something to the mathematically
interactive, discursive, and performative work of mathematics teaching that is
important to understand. In the next section, I turn to focus specifically on this
“mathematical work of teaching.” The goal is to see, name, and unpack the
mathematical listening, speaking, interacting, fluency, and doing that are part of the
work of teaching, not just resources for it. Focusing in this way on the mathematical
doing that teaching entails can help shed light on the quest to understand the
mathematics needed by teachers.
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Seeing and Naming the Mathematical Work of Teaching

How might we identify and illustrate what might be meant by the work of teaching,
and in particular the mathematical work of teaching? Central to bear in mind is an
inherent fact of teaching, namely, that teachers are always communicating, relating,
and making sense across differences, including differences in age, gender identities,
race and ethnicity, culture and religion, language, and experience. This important
dimension of difference in identity and positionality means that a fundamental part
of the work of teaching is being aware of and oriented to learning about and
coordinating with others’ perspectives. Teaching is not just about what the teacher
thinks; it is about anticipating what others think and care about, and attuning one’s
talk, gestures, and facial expressions to how others might hear or read the teacher. It
is about talking with one’s ear toward what someone else thinks, knows, or
understands. This is a special and difficult kind of talking. Little is understood about
what it takes to do it interactively, on one’s feet. Often when we think about
explaining mathematics, for example, we search for a good explanation that we
ourselves find compelling and that we can understand and can articulate. But the
real talk of teaching focuses instead on explaining mathematics in a way that
anticipates how the person to whom the teacher is talking might actually understand
the teacher’s words, or how that individual might hear the teacher. It is a strange
kind of talking and unlike most of the talking we do in everyday life.

This feature of teaching “across difference” is made still more consequential
because these differences are not merely individual and personal. It is not a neutral
feature of the work of teaching. Rather, the significance of difference is embedded
in the historical and persistent structures and normative patterns of practice that
have excluded and marginalized minoritized groups. Consider, for example, the
social identities and contexts of the children in the class we examine below. They
attend public school in a low-income predominantly African American community
in the United States. Few members of their families have attended college. The
children are in grade 5 and range in age from 9 to 11 years; of the 30 students in the
class, 22 are African American, four are Latinx,4 and four are White. Consider, too,
the teacher’s identity and position. Like the overwhelming majority of U.S.
teachers, she is a White woman who attended predominantly White middle-class
schools. Perhaps less like many U.S. teachers, growing up, she has been fluent in
two other languages and experienced attending school as an emergent bilingual
learner. Her public-school teaching experience over the last 40 years has been
entirely with children of color and bilingual children, primarily of middle and
working class families. The differences and connections between her identity and
positionality and those of the children and their families are crucial to the forging of
their relationships and communication. These differences matter for the imperative
to connect with them and earn their trust. This is all fundamental to the work, and
the mathematical work, of teaching.

*Latinx” is used to avoid conveying a binary representation of gender identity.
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Fig. 2 Naming one-third on the number line (beginning of lesson)

Many of the children in this particular class—and in many in U.S. classrooms—
have not had successful experiences with mathematics in school. They have come
to think of being “smart” as getting right answers and good grades. Because of what
they have come to see as “mathematics” and what it means to do well at it, by age
10 many of the children have begun to think they are not particularly good at math.
These children, most of whom are African American or Latinx, refer to having
gotten low marks on tests or to not getting right answers. Many have been “in
trouble” in school for not “paying attention” or “talking” to others when they are
supposed to be working quietly. Thus, their identities are already shaped by these
structures of institutionalized racism and normalized practices of instruction (Nasir,
Shah, Snyder, & Ross, 2012). The work for the teacher is situated in these broader
systemic and historical patterns and is, in the moment, about connecting with and
supporting these particular children and their opportunities to learn and grow
(Nasir, 2016). In teaching, considerations of the individual and the systemic, the
present and the historical, come together in the minute-to-minute of classroom
dynamics. And they are embedded in and inextricably intertwined in subtle issues
of mathematical ideas and talk, relationships, and maintaining a classroom envi-
ronment focused on learning. Whereas research can be analytic, and can take apart
the complex phenomena in order to probe and understand them, teaching is an
integral and interactive whole. Studying the work of teaching therefore necessarily
requires that we seek ways to see and understand that integration and simultaneity
of differences.

To unpack what this might mean, we turn next to look inside the classroom
where these children are learning mathematics. As we notice their work and their
thinking, our purpose is to try to consider the surrounding integral work of teaching
that is supporting their mathematics learning.

The Work of Teaching in One Lesson

On this particular morning, the children have worked on the problem in Fig. 2 in
their notebooks.

This problem represents a significant turning point in the class’s mathematical
work, from naming fractions as parts of areas to identifying fractions as points on
the number line. One important shift is to understand that on the number line, the
whole is defined as the interval from O to 1. With area models, the whole can be
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Fig. 3 Naming fractions as
parts of wholes

greater than 1. For example, in Fig. 3, it is possible to name the green shaded
portion as 1 3/8 or 11/8, if one identifies one circle as the whole. But it is also
correct to identify two circles as the whole, and then the fractional part that is green
is 11/16.

For the children, it is an important new understanding to learn that, on the
number line, the whole is always defined as the interval from O to 1 and the problem
on which they are working is designed to press on this issue and bring it to explicit
understanding.

During the beginning of class, known as the “warm up” (about five minutes), the
children pasted this opening problem in their individual notebooks and wrote their
answers and explanations individually. The correct answer is 1/3. Eight (6 African
American, 1 Latinx, and 1 White) children do have 1/3 as the answer, but no one
has explained his or her answer. The other 22 children have other answers,
including 1/4, 2/4, and 1.

See Fig. 4 for some examples of what students have in their notebooks before
the class discussion.

The teacher has been walking around while the children are thinking and writing
and has been looking at the range of ideas and explanations, noticing what different
children have written and thinking about what will be important to work on
together.

The teacher launches the class discussion of the problem.” The children are
seated at tables arranged in a U-shape, and they are all able to see the large white
boards at the front of the room, on which the problem is drawn.

Teacher: (standing near the back of the room) Who would like to try to explain
what you think the answer is? And show us your reasoning by coming
up to the board? Who’d like to come up to the board and try to tell- And
you know, it might not be right. That’s okay because we’re learning
something new.

I’d like someone to come up and sort of be the teacher and explain how
you are thinking about it. Who’d like to try that this morning? (Several
children raise their hands to volunteer.)

SThe video for this segment is available for viewing at http://hdl.handle.net/2027.42/134321.
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Students:

Teacher:
Aniyah:
Teacher:

Aniyah:

Teacher:

Toni:

Teacher:
Toni:

Dante:
Teacher:

Aniyah:
Teacher:
Aniyah:

Lakeya:
Teacher:

Okay, Aniyah? (Aniyah, a Black girl, gets up from her seat and walks to
the whiteboard at the front of the classroom.) When someone’s
presenting at the board, what should you be doing?

Looking at them.

Looking at that person—uh-huh.

(to the teacher) You want me to write it?

(to Aniyah) You’re trying to mark what you think this number is and
explain how you figured it out.

(to class) Listen closely and see what you think about her reasoning and
her answer. (Teacher moves to back of the classroom; Aniyah is in front
at the whiteboard. Aniyah writes '/, by the orange line).

I put one-seventh because there’s—

Toni, an African American girl, sitting close to where Aniyah is
standing, asks quietly, almost to herself: “Did she say one-seventh?”
Hearing her question, Aniyah turns toward her and nods: “Yeah.
Because there’s seven equal parts, like one, two, three, four, five, six,
and then seven,” and demonstrates using her fingers spread to measure
the intervals to count the parts on the number line.

(still standing at the back, addresses the class) Before you agree or
disagree, I want you to ask questions if there’s something you don’t
understand about what she did. No agreeing and disagreeing. Just—all
you can do right now is ask Aniyah questions. Who has a question for
her?

Okay, Toni, what’s your question for her?

Why did—(looks across at children opposite her and laughs, twisting
her braid on top of her head)

(to Toni) Go ahead, it’s your turn.

(to Aniyah) Why did you pick one-seventh? (Toni giggles, twisting her
braid.)

(laughing across the room at Toni) You did not!

Let’s listen to her answer now. (fo Toni) That was a very good question.
(to Aniyah) Can you show us again how you figured that— why you
decided one-seventh?

First, I thought it might be seven because there’s seven equal parts.
Did you write one-seventh? I can’t see very well from here.

Uh-huh. Yes.

The teacher nods affirmatively, and turns to the class, “Okay, any more
questions for Aniyah? In a moment, we’re going to talk about what you
think about her answer, but first, are there any more questions where
you’re not sure what she said, or you’d like to hear it again or something
like that? Lakeya?”

(looks back at the teacher at the back of the room) If you start at the—
(gestures toward Aniyah) Talk to her, please.
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Lakeya:  Oh! (turns toward Aniyah) If you start at the zero, how did you get one-
seventh?

Aniyah:  Well, I wasn’t sure it was one-seventh, but first, I thought that the seven
equal parts.

Teacher: Okay, would some— You’d like to ask another question, Dante?

Dante: Yeah.

Teacher: Yes, what?

Dante: So, if it’s at the zero, how did you know that if like if I took it and put it
at the— Hold on. Which line is— What if it didn’t like— What if the
orange line wasn’t there, and you had to put it where the one is? What if
the orange line wasn’t there? And how would you still know it was
one-seventh to put it where the orange line is now?

Aniyah:  (pauses) I don’t know.

Teacher: (pauses) Okay. Does everyone understand how Aniyah was thinking?

Students: Yes.

Teacher: Yes? Okay. (fo Aniyah) You can sit down now. We’re going to try to get
people to comment. Do you want to take comments up there? Would
you like to stand there and take the comments, or do you want to sit
down and listen to the discussion?

What would you prefer?
Aniyah:  Sit down.
Teacher: Sit— You’d like to sit down? Okay.

During these three minutes of class, four children speak in the whole group
discussion: Aniyah, Toni, Lakeya, and Dante. The class discussion continues for
another 48 minutes. During this time, the discussion emphasizes the importance of
partitioning the unit interval in equal parts and being sure to count spaces (i.e.,
intervals, not hash marks) to determine the distance from O for a given point on the
line. The students practice naming points on the line and also explaining carefully
with reference to the “whole” and to “equal parts” and to counting spaces to
determine the number.

At the end of the lesson, to learn what the children are thinking now, the teacher
chooses a new fraction and a new number line and poses the question in Fig. 5 for
the children to answer independently in their notebooks.

The correct answer is 2/3, and the target explanation would draw on the notions
of the whole (the interval from O to 1), equal partitions of that whole, naming one
part, and naming the number of equal parts (Fig. 5).

The results are interesting. Before the class discussion, when working inde-
pendently on the problem in Fig. 2, 8 children (27%) can correctly name the point
on the number line with a correct number name, but without a clear mathematical
justification. 22 have other answers. After the discussion, 26 (87%) can label the
point correctly and can provide mathematical explanations for their choice. Of the
four students who did not name the point correctly, they nevertheless refer to
important aspects of the definition, including “equal parts” and “spaces.”
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Fig. 5 Naming two-thirds on the number line (end of class)

Fig. 6 shows the work on the end-of-class check by the same six students whose
beginning-of-class problems are shown in Fig. 4. It is interesting to compare their
answers before and after the 51-minute in-class discussion of how to name fractions
as points on the line.

What Is the (Mathematical) Work of Teaching?

We examined only three minutes of a lesson. This is in some ways little time, yet it
is filled with intense demands on the teacher. What does studying this segment
closely reveal about the work of teaching? What, for example, is involved in setting
up and guiding the children to think about and learn mathematics? To listen to one
another? To have confidence in their own thinking? What is involved for the
teacher in tracking on what each of the 30 children is thinking, puzzling about, and
learning? In knowing who might be drifting off and who might be feeling confused?

One key element of the work has occurred earlier: the decision about the
problem to pose. Before the discussion described above, the students had indi-
vidually worked on and answered the question in their notebooks. Even before that,
the teacher had decided on the task. Why the number 1/3? Why, for example, a unit
fraction? Why also draw a number line that extends just a little past 2? Would it
have worked the same way with a number line precisely drawn from 0 to 1? What if
the point she had selected was 1/4 or 4/5 instead of 1/3? Each of these decisions
shaped the mathematical context in which the children were immersed, and created
the space for their thinking, writing, and learning.

A second aspect of the work of teaching is to see and make sense of the work of
individual children while they are working on the task. To do this, the teacher
circulated around the room to scan what the children were writing in their note-
books. She did this to get a sense of what the children were thinking and to see the
range of answers in the room. Reading children’s writing and reasoning is math-
ematically demanding. Notice how this sort of examination is different than being a
researcher on students’ thinking and using digitized copies of students’ work with a
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Fig. 7 Makayla’s notebook before the class discussion

lot of time to examine and mark things and notice nuances. Instead, the work of
teaching requires thinking and reading mathematically in real time. It involves
walking around the room, surveying and trying to read 30 different responses,
including the numbers they have identified and the explanations written. It involves
sorting them mentally, and making a careful decision about choosing which answer
to begin the discussion and whom to call on.

For example, what is Makayla thinking? (Fig. 7).

She records 1/3 but also writes 3/10, and explains in detail, “Count from zero is
and then make it equal and then it’s a equal then count from the 1 I saw the
one then 3 = 1/3. Maybe not. It has to be equal. 1 2 3 and 3 equal parts.” Her
use of the equals sign is of interest, signaling that after counting three equal parts,
the number she writes is 1/3. Her circling of the segment of the number line up to
the orange arrow also shows her focus on the three, starting at 0. What does she
think the whole is? Reading children’s mathematical writing and representations is
not linear, reading from top to bottom in order. Instead, reading as a teacher requires
a more multi-directional examination, making sense of the logic, detecting where
the writing is sequential and where it is discontinuous, either in time or thinking.
For example, does Makayla think that 1/3 is the same number as 3/10 or did she
change her mind and not cross it out? Some of what is involved is general and some
involves knowing the particular child and some of her ways of expressing. Makayla
tends to make a diagram or representation before writing, and sometimes goes back
and forth as she represents her explanation, altering the diagram and writing a new
thought based on that. She, like many other children, does not always cross out
something about which she has changed her mind.

And what does Dante’s explanation suggest about his thinking? (Fig. 8).

One part of reading is the actual decoding of children’s writing accurately. Here
Dante writes, “Because if you look at it and count.” The words “look™ and “count”
might not be easy for readers not skilled in reading and interpreting children’s
writing. What is he saying exactly? Does Dante think it is 1/2 because it is between
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0 and 1, a common idea, or is it because he started at O and counted the tick marks
at 0 and at 1?

The work of teaching involves a fluency of mathematical reading and inter-
pretation, to surmise what 30 (or more) different children might mean, and
preparing to ask questions or to probe wisely or to comment strategically, all in real
and rapidly moving time. At least three kinds of reasoning and interpretation are
involved. First is to consider the mathematical issues embedded in the task or
problem. For example, this task involves interpreting the number line, including
what is considered the “whole,” what to count—intervals or tick marks—and how
to determine the name of a point on the number line. That the point is named by the
distance from O in terms of the number of intervals of a particular length (e.g., 1/3)
embeds all of these dimensions. Reading children’s writing is supported if the
reader has a firm orientation to the things that a child’s representation contains.
Second, and closely related, is to anticipate how the children might interpret the
task or decide on their answer. Knowing, for example, that many children might
count tick marks instead of intervals or start at O instead of at 1 can help a reader to
see and interpret what a child has written. Finally, this work entails a fluency in
reading children’s written representations, including spelling, spacing, handwriting
(formation and orientation of letters, numbers, and symbols), ellipses and missing
words or letters, and the composition on the page (for instance, that their writing is
often not linear from top to bottom).

There is also the complex work of leading a discussion, often misleadingly
represented as “getting out of the way” and “letting the children do the teaching.”
First, the teacher chooses whose work launches the discussion. This is a key and
consequential decision. In this case, while circulating as the children worked
independently, the teacher saw many different answers by different children. Her
decision about whose answer to start with involves considering the particular
children and how they are positioned in the class and how who gets the floor and is
given recognition for their thinking influences that positioning. The teacher’s
decision also involves thinking about the mathematical issues on which the children
are focused and those key to her instructional goal. She chooses Aniyah to present
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1/7, which puts the issue of the “whole” in focus, and provides an opportunity to
position this African American girl as competent because of the clarity of her
mathematical explanation, structured logically and based on the core elements of
the definition (Boaler & Staples, 2008; Cohen & Lotan, 2003; Featherstone et al.,
2011).

To be sure, when Aniyah presents her answer (1/7), the teacher is physically out
of the way. She stands at the back of the room, and she does position Aniyah in the
role of “teacher.” But to see this as moving away and letting the children have the
freedom to learn misleads us about the intricacy of the work. The teacher firmly
structures the discourse: “No agreeing and disagreeing. Just—all you can do right
now is ask Aniyah questions.” This move shapes what the children may talk about.
Instead of jumping to offer another answer, they must think about what Aniyah
wrote and explained, compare it with what they wrote in their own notebooks, and
ask some sort of question. This move buffers a possible tendency to develop pat-
terns of discourse that are all about critique, objection, and competition to be
“right,” rather than about careful attention, consideration, and collective develop-
ment of ideas and arguments.

Setting the children up to do the work of learning also involves careful work for
the teacher. She must watch Aniyah closely and be ready to offer support for her
presentation if it seems needed. She watches the other children: Are they following?
When Toni giggles while posing a question to Aniyah, the teacher can choose to
interpret her as making fun of her classmate—or she can read her as seriously
engaged in her classmate’s idea. Toni, who has an unexplained 1/3 in her notebook,
asks, “Why did you pick one-SEVENTH?” The teacher must take note of her
emphasis on the “seventh”—this, after all, diverges from her choice of “third.” And
less than a minute later, Lakeya, who has written 2/4 in her notebook, asks, “If you
start at the zero, how did you get one-seventh?” and now the teacher must hear the
emphasis on the “one” for Lakeya has TWO fourths. Listening like this entails a
close and mathematically sensitive attention, which draws not on the teacher’s own
knowledge of 1/3 as the answer, but on her ability to focus on the children’s thinking
and talk. This focus on hearing others’ mathematical thinking, through their talk,
gesture, inflection, and tone, depends on deliberately suspending quick assumptions
about what others mean, but yet listening in mathematically nimble ways. To name
the work of discussion-leading as moving out of the way and “facilitating” is
reductive and misrepresents the multiple aspects of the careful work of teaching.

The work of teaching involves disrupting the tendency to classify children’s
answers as either correct or incorrect. Helping children learn depends on seeing
what they do know and can do, not absorption with what is missing. This is neither
natural nor obvious. Math is a subject, perhaps like spelling, in which the focus is
often on errors. For Aniyah, the main thing most observers notice is that her answer
is wrong. For Toni, people notice she is playing with her hair, they interpret her as
trying to get attention from other children in the class, and they often think she is
trying to embarrass Aniyah. These reactions are shaped not only by the tendency to
notice mistakes but also by the reproduction of racialized and gendered biases that
mask these African American girls’ strong mathematical capabilities (Martin,
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= She identifies the “whole”; presentation.
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= She counts intervals and not tick marks; how Aniyah decided on 7 parts.
and e Asks a pointed mathematical question.

= She knows how to write “one-seventh”.
e Produces a mathematically well-structured
explanation.
e Presents her ideas clearly.

Fig. 9 Aniyah’s and Toni’s mathematical competence

2015). The persistent patterns of marginalization of particular groups are certainly
produced and reproduced in systemic ways. In fact, both Aniyah and Toni know
and can do a lot. The work of teaching involves actively seeing and naming what
each girl shows she knows and can do (Fig. 9).

The work of teaching involves not only seeing and naming the girls’ mathe-
matical competence with fractions, definitions, and explanations, but also attending
to their positioning and their mathematical identities, and building on their strengths
and resources to support their growth (Langer-Osuna, 2016).

Many other examples of the mathematical work of teaching can be seen in this
lesson. The teacher kneels beside a student to talk to her about how she understands a
problem and to respond to her in a way that is mathematically sensible, that she can
understand, and that does not distort the math. When Aniyah is at the board, teaching
involves listening carefully to what she is saying and showing and what others are
asking or commenting, and watching carefully to see how Aniyah is experiencing
this attention on her answer. Based on these, there is the deciding whom to call on
next, whether to make a point oneself, or whether to revoice or ask a student to
restate what has been said, or perhaps allow another student to comment. Another
example is translating from intensively mathematical (e.g., “Understand a fraction
1/b as the quantity formed by I part when a whole is partitioned into b equal
parts”—a learning goal in the U.S. Common Core Standards for Mathematics) to
usable terms (e.g., using a variable notation such as “call one of the equal parts 1/d”
to represent the unit fraction). And this also involves being able to “talk” the terms,
saying them in accessible ways and helping the children learn to talk with them. Still
another is deciding whom to name as competent and how to intervene on inequities
that may be reproduced in the classroom (Boaler & Staples, 2008; Cohen & Lotan,
2003; Featherstone et al., 2011).

Each of these represents part of the intricate mathematical work of teaching. It is
not an exhaustive list, but the examples illustrate the mathematical aspects inside
particular moves or interpretations. Naming them as “mathematical” is not intended
to suggest that mathematical reasoning is all that is involved. Rather, the point is
that these decisions, moves, ways of talking, doing, and moving, all crucially
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involve mathematical sensibility, thinking, and understanding. For example, it
would not be possible to identify competence in students’ work in a high school
chemistry or music class without being fluent in these domains in the special ways
demanded for teaching. Without substantial and nuanced understanding of the
domain and its practices, one would not be able to read and interpret student
writing, pose questions, or revoice students’ comments. Neither could one broaden
students’ notions about what competence is in that domain and see and name
students’ competence in ways that would intervene on status hierarchies.

Conclusion

The quest to answer the perennial question of what mathematical ‘“knowledge”
teachers need should be based on a deep and nuanced understanding of what
teachers actually do. How does mathematical listening and hearing, as well as
writing, representing, and talking play a role in the work of teaching? What sorts of
mathematical sensibility and insight matter for seeing minoritized children as not
deficient but as emergent and thoughtful mathematical thinkers and actors? What
mathematical disposition and fascination does it take to nurture children’s seri-
ousness as thinkers and their creative playfulness as mathematical explorers? When
Toni asks, “Did she one-seventh?” as she watches her classmate present, she is
seriously surprised. When Dante asks, “What if the orange line wasn’t there, and
you had to put it where the one is?” he is genuinely wondering. Respecting and
nourishing the brilliance of these African American children entails a kind of
mathematical care that deserves acknowledgement (Leonard & Martin, 2013).
Probing and naming the work of teaching means identifying and articulating what is
involved in these many, complex, and simultaneous actions, decisions, and moves
entailed in the broader and moment-to-moment intellectual and moral tasks and
considerations of the work. It means coming to see not just what an observer or an
analyst might see or infer, but what is involved in actually doing those things, from
the inside.

Trying to study the work of teaching from the perspective of what is involved in
doing it presents several challenges. One challenge is that teaching is fundamentally
relational work. This means that the work is constructed simultaneously with
individual children, who are themselves not static and whose identities-in-action are
refracted through their memberships in multiple and overlapping communities. The
work of teaching is also constructed in the social contexts of the collective setting,
as well as in the broader socio-political, historical, and community contexts
(Lampert, 2001). Uncovering the work from this perspective is crucial, yet it is
easier to focus on one dimension, such as the teacher’s questioning of one student
or her representation on the board. However, to understand the work of teaching,
the simultaneity and complexity are fundamental (Ball & Lampert, 1999). This
implies that interdisciplinary teams and tools and methods to get inside the work
will be important (see Bullock, 2012, for a useful discussion of methodological
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choices). It will often be confusing to distinguish the effort to study the work of
teaching from other worthwhile foci for classroom studies or studies of teachers,
which contribute importantly to our understanding of classrooms and of teaching,
learning, students, and teachers.

A second challenge regards the issue of teaching quality, and normative versus
descriptive perspectives on the work of teaching. Does the teaching used to study
the work have to be skillful? And what should that mean and who or what would
determine this? How would considerations of equity and the disruption of dominant
norms and reproduction figure in such appraisals, or of mathematical integrity, or of
caring? One might examine teaching work from the perspective of the endemic
problems to be managed (Kennedy, 2016; Lampert, 2001), but this would not
resolve the issue of whether some approaches to managing would more useful—or
not worthwhile—to study. Who would decide what teaching is worth studying and
how would such decisions either focus or constrain the effort to understand the
work of teaching? Bullock (2012) argues that decisions about what and how to
study should be guided by the moral imperative to “make life better for people,” to
serve the interests of children, families, and communities who have been
marginalized and disenfranchised. How can our study of the work of teaching be
careful not to be falsely “impartial” but, instead, to honor the goal of making
responsive and responsible teaching learnable by others? This implies making and
justifying explicitly deliberate decisions about the practice to be studied.

A third is that existing theoretical frames and the aspects of teaching that are
already used or studied will make it difficult to focus on some aspects of the work of
teaching, such as reading students’ work “on the fly” and processing it to prepare
for launching a discussion, or disrupting normative practices of control. In the case
of reading students’ work, and considering whose work might be good to invite to
share in a discussion and why, there are many things that the teacher is doing, some
visible and some invisible (Lewis, 2007). Some of the most important demands of
studying the work of teaching will be to see and name aspects of the doing that are
taken for granted and so lack names or foci. Another will be the acts that are
“not-doings.” Some of the work of teaching is to refrain purposefully at a given
moment from doing something, such as rebuking a child for fidgeting or talking in
class (Noel, 2014), interrupting a child’s language, or explaining a “standard”
method. These other invisible (Lewis, 2007) but deliberate acts are surely also to be
included in our unpacking of the work of teaching.

The third challenge leads to a fourth—namely, what should be the warrants for
claiming that a particular move or non-move, a particular action or thought, is part
of the work of teaching? Because, as in many domains of expertise, skillful per-
formance is often partly tacit, teachers might not always be able to articulate the
inside work, or to name the complex intertwined kinds of moves, ways of talking,
and practices on which their practice is built. What does it mean, then, for an
observer to claim that something is part of that work when the person doing it
cannot isolate or name it? Examining the work of teaching requires careful con-
sideration of this challenge and ways of using productively both insider and out-
sider perspectives.
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Finally, threaded throughout a focus on the work of teaching is the challenge of
examining and identifying the mathematical entailments of that work. This is a
complex undertaking that will require ongoing articulation of what counts as
“mathematical,” and what it means for work to “demand” mathematical reasoning,
knowing, thinking, or talking (Ball, 1999). Hoover (2009) argues that this work
involves coordination of perspectives, not merely annotating practice with mathe-
matical commentary or analysis. What is the mathematical reading involved in
scanning children’s writing and representations? What kinds of mathematical
interpretation and reasoning does this take? What does it take to teach mathematics
in ways that disrupt dominant patterns of marginalization?

Answering questions such as these will not be easy, but the potential is
important. For it is through such analysis and naming that we will come to
understand much more about the ways in which the teaching of mathematics
requires specialized mathematical ways of thinking and reasoning. And it is with
such insight that we will make headway on the longstanding and important question
of how teachers need to know mathematics in and for their work.
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Mathematics, Education, and Culture:
A Contemporary Moral Imperative

Bill Barton

Abstract In 1984 Ubiratan D’Ambrosio gave a plenary address at ICME-5 in
Adelaide that set a new direction for a major research effort in socio-cultural issues in
mathematics education. His recent work uses the metaphor of mathematics as a
“dorsal spine” on which monsters, not beautiful creatures, are often built. What must
we do, what action must we take, to prevent ourselves from building monsters with
mathematics and in mathematics education? This paper argues that theoretical
approaches drawing on ecological concepts can lead us to understand the inter-
connectedness of teaching and scholarship with culture and society. I postulate three
principles for action that may help guide moral behaviour within our discipline.

Introduction

I am thinking back to 1984, when I was a secondary mathematics teacher in New
Zealand, and I attended my first ICME conference in Adelaide. The very first
session [ attended was Ubiratan D’Ambrosio’s talk (D’Ambrosio, 1985).
I remember being completely blown away by this. Here was Ubiratan D’ Ambrosio
bringing to my very small world in New Zealand a vision of a caring world society
in mathematics education. And that changed my life, so it is a very great honour to
be invited to come here at the end of my career and be able to present some
thoughts about where that agenda has gone.

First, let us remember the pleasure within mathematics. Remember that this
beauty is accessible to all, and exists even in the most elementary mathematics. An
example is the visceral pleasure of a visual proof of a mathematical idea.

And there can be pleasure in all the mathematics of any curriculum. My personal
favourite topic to teach was trigonometric equalities because I could talk about how
the equation of the sum of sines helps us to understand the common knowledge of
surfers that big ways come in threes, or that every seventh wave is a big one. Waves
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arriving on surf beaches come from more than one storm, and if we add two similar
sine functions we get a curve with three peaks.

Everyone has their own examples—ICMI’s Klein Project is a multilingual
collection of contemporary mathematics written for teachers.

It would be nice if the pleasure that we get from mathematics imbued the whole
of mathematics education, but we know it does not. Why not? How do we manage
to take the pleasure out of mathematics? This question underlies all that follows.

Let me now return to Ubiratan D’ Ambrosio. It is an honour to be following up
Ubiratan D’Ambrosio’s thinking, so let me briefly, and with a broad brush-stroke,
go over what he was on about.

He questioned inequity within mathematics education in a very fundamental
way, and gave us some models for working towards creating a fairer world through
a mathematics education that really paid attention to social and cultural issues.
Many, many people have worked very strongly in this area, and I do not intend to
give a summary of the comprehensive work that has been done.

In more recent years, Ubiratan D’ Ambrosio started to talk about mathematics as
a dorsal spine. I want to highlight this metaphor because it is a very nice way of
thinking about what has happened.

He sees mathematics as the dorsal spine of civilization, the basis of science and
technology (D’Ambrosio, 2007, 2015). The trouble is that you may have a spine
and skeleton on which an animal may be built, but that animal sometimes turns into
a monster rather than a beautiful creature. This has happened within mathematics,
and, I would argue, within mathematics education.

D’Ambrosio suggests that our essential goals are responsible creativity and
ethical citizenship. What he did was highlight the role of mathematics and math-
ematics education in achieving both of those goals. In other words, he was pointing
us to the wider reasons for our work as mathematicians and mathematics educators.

But how? How do we do this? What is it I am supposed to do to engender
responsible creativity and ethical citizenship? When I walk up the steps and go into
my office, what actions will I take?

I can presumably do some things in the way I behave, but how do I help to
engender appropriate actions in the students that I teach? How are we to build a
beautiful creature and not a monster. I think that D’ Ambrosio’s essential message is
that we should reinstate cultural processes within mathematics education in order to
build beautiful creatures. I wish to think about what other things we might do.

To develop a basis for making possible actions more explicit I would like to
invoke ecological systems theory, which was developed in the context of child
development by Urie Bronfenbrenner in 1979, a couple of years after D’ Ambrosio
introduced the ethnomathematical approach. The two theories have some over-
lapping principles (Bronfenbrenner, 1992).
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Theoretical Frame—Ecological Systems

Ecological systems theory is the idea of thinking about development within a wider
environment. Ecology is the study of living things, hence the ecology of mathe-
matics, or mathematics education, is thinking about these fields as living entities in
a large environment. That’s what I want to do, and you can see the links with what
D’Ambrosio was doing. Bronfenbrenner identified five environmental systems to
help his analysis. The five systems are not intended to be discrete.

The first is the microsystem. This includes the institutions and groups most
directly involved. For mathematics, we might consider a university mathematics
department; for mathematics education we could think of the group of mathematics
teachers in a school. If we think only at this level, the actions we might take to
create a more equitable or humane mathematics education are reasonably clear:
schools and universities should be equally resourced—and maintained at those
levels. Seems simple enough, but it does not happen. A deeper analysis is required.

The mesosystem is the interactions within the microsystem and between it and
the living object. For example a lecture is part of the mathematics mesosystem, a
school mathematics lesson is part of the mathematics education mesosystem. This is
the context in which it might be useful to ask, for example, how interactions differ
for girls and boys, men and women.

The exosystem is a slightly wider social setting. For example, some parts of
mathematics develop and grow within the financial world. What influence does that
have on the kind of mathematics that develops. In schools, mathematics learning
takes place in an environment that includes other subjects. In what way does the
fact that children go from a mathematics class to, say, a physical education lesson,
affect how they learn mathematics? We can see that relevant questions concerning
the exosystem would be whether mathematics represents the interests of one section
of society over another, or how mathematics education takes on different charac-
teristics in all girls schools compared with all boys schools.

The macrosystem lifts us to the cultural context and to regional or national
features such as socioeconomic status and ethnicity. In what way, for example, does
the mathematics developed in, say, a Chinese university reflect the fact that it is in
the Republic of China or that particular part of China and is spoken and written in
Chinese? In mathematics education, we might ask how the socioeconomic status of
a community relates to the kinds of mathematics experiences each child receives.

The chronosystem is the one in which I have developed a personal interest, and
represents the extension to D’Ambrosio’s work that I would like to focus upon.
This refers to the rather larger environment: the events, transitions, and historical
circumstances within which mathematics and mathematics education sit. For
example we know that not only did Archimedes and other classical mathematicians
work on the development of war machines, but still, today, much mathematics
research is funded by Departments of Defense and contributes to armament pro-
duction. Also it is secret. We can immediately think of some of the monsters built
on the dorsal spine of mathematics.
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Another question arising from considering the chronosystem would be what
difference does it make to the endeavour of mathematics that we are now in a time
of global warming? What role does mathematics and mathematics education have
in the weather crises that strike communities?

So we come back to the essential question. What sorts of things should we be
doing in our mathematics education classrooms to address the way we respond to
the environments in which we live and build things of beauty rather than monsters?

Bronfenbrenner’s theory has expanded the research field of the sociology of
mathematics education and heightened the imperative for ethnomathematical
understanding. But we still do not have an action plan for helping students to
achieve responsible creativity and ethical citizenship.

Ecological systems theory is related to other ecological concepts. Ecology has
come out of its biological environment. Ecological humanity is a field that seeks to
bridge the divide between science and the humanities (Rose & Robin, 2004). It
assumes that the organic and inorganic worlds are a single linked system. In order
to make appropriate responses to issues that arise in all fields, we need to visualise
ourselves within this whole system. For example, justice and education are part of a
larger environment in which there is more than one “way of knowing”, resulting in
a diversity of knowledge.

If we think about ourselves living in one system, not separated from each other
or from other aspects of our world, then the links between ourselves, each other,
and our world define our existence. Furthermore these links are more than the
“laws” of our existence, but they also become a guide for our behaviour. Amongst
other effects, the links start to guide our behaviour in moral ways.

This leads to what I regard as the most important statement in this paper: the
extent to which we free mathematics and mathematics education from society and
culture is the extent to which we are absolving ourselves from responsibility to
others and to our world. It frees us from social and cultural responsibility.
Ultimately, this makes us amoral.

In other words, when we behave as if mathematics is culture free (whether we
believe it or not), then we are saying that we are not responsible for inequality and
discrimination, cultural or environmental degradation, damaging technology, or
destructive social institutions. And we are responsible for these things. We all are.

A further theoretical idea linked to those I have mentioned is deep ecology, as
developed by the Norwegian philosopher Arne Naess (1973), who argues that the
way we approach environmental management is anthropocentric—focussing on its
effect on humans. This is an error because our environment is not only more
complex than we imagine, it is more complex than we are able to imagine. There
will always be things about our environment that we cannot imagine. We are
fundamentally incapable of grasping the enormity and interconnectedness of
ecology. I argue that this is also true of mathematics and mathematics education.

The point I take from all this is that we are part of a global morality. Thus I
should not just be thinking about whether I am being equitable to the students in my
class, but I have to think about whether the way that I am conducting myself
contributes to any wider inequities.
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So what does accepting that I live in a global environment mean for what I must
now do? Out of this theoretical milieu, I distil three principles for us to use in
carrying forward D’Ambrosio’s agenda in both mathematics and mathematics
education. I am beginning to try to act on these.

The Perspective Principle is the idea that we need to be aware of other ways of
understanding. There always will be other ways of understanding, and some of
them I will not be able to even imagine. I must constantly be aware of that and
thinking about what that means.

The Reflexive Principle is the idea that we should do unto others as we would
have them do unto us. This is not just personal: I must do to you as I would like you
to do to me, but also, for example, mathematics and mathematicians must do to art
and artists as they would like to be treated. Or schools must do to financial insti-
tutions as they would like financial institutions to respond to them. New Zealand
must treat Germany as it would have Germany treat it. The Reflexive Principle must
occur at all levels.

The Pleasure Principle is the idea that we should act so as to increase pleasure.
Pleasure as a motivation is underneath everything. It is where we are headed,
bringing pleasure on a global scale is really what we are about. We do spend a lot of
time making mathematics pleasurable for the children in our classes, but do the
systems that we support bring pleasure in general to the society in which we live?

Examples

I will now give some examples, some of which will relate to more than one
principle. The examples will come from mathematics itself as a discipline and from
mathematics education.

Mathematics is, par excellence, an example of the Perspective Principle. It
embodies this principle in how it works—much of the mathematics of today could
not have been imagined even two hundred years ago, it required shifts in con-
ceptualisations of basic mathematical ideas. The very concept of a number has
changed many times over mathematical history. This reminds us, of course, that
today we cannot imagine aspects of the mathematics of the future. This has serious
implications for university level mathematics education.

But the principle works at another level. How do people outside the field see
mathematics? Do we have a good understanding of other ways of seeing our
subject. This is critical for us as educators since many of our students come from
other fields and are studying mathematics for its relationship to those fields. We are
the poorer for not understanding their perspectives properly.

The consequences of developing any particular mathematical idea are also more
complex than we can imagine. This highlights the responsibility for might happen
in society as a result of a mathematical idea. What responsibility does a mathe-
matician, or mathematicians as a group, have when their mathematics gets misused,
or deliberately used for destructive ends?
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For example, where does responsibility lie for the 2007/8 global financial crisis?
The argument concerning the role of mathematical models continues to rage. This
implicates financial mathematicians, and indeed, the responses of mathematicians
were defensive: “the banks did not listen to us enough”, “our models worked well
throughout the crisis”, “it was greed, not the models, that caused the crisis”, or
“everyone knows that risk cannot be 100% calculated”.

However, as soon afterwards as 2009, the mathematicians Emanuel Derman and
Paul Wilmott were moved to develop an ethical manifesto for inventors of financial
models (Derman, 2011). They thereby acknowledged that those devising mathe-
matics to be used in society do bear some responsibility for the uses to which it is
put. Perhaps this is where the International Mathematical Union needs to take
leadership, and I invite members of the IMU Executive to consider these questions,
and to undertake some research on the relationship between what mathematicians
are doing and the meso- and chronosystems within which they work.

My second example concerns the Reflexive Principle, and also focuses on
mathematicians. Mathematicians, rightly, expect teachers to love or respect math-
ematics, the subject they teach, and appreciate the work of mathematicians. The
Reflexive Principle would have mathematicians, in return, to love or respect
mathematics education and appreciate those who work in that field. In my experience
they do: mathematicians I know have a deep interest in teaching and enjoy their
interaction with students. However there have been exceptions, which mainly occur
because someone believes that knowing mathematics is all that is required to teach it.

So on a personal level, generally, the principle is met. On a systems level, [ am not so
sure. For example, in many universities 20-30% of students are failed. Every year we
reduce our cohort of students by 20%, much of it through labelling students as failures.
Do we do that to ourselves? That would be interesting. Every year we could evaluate all
the teaching staff and declare the least effective 20% as failures and sack them.

The third example is about mathematics education. Let us think about our
application of the Pleasure Principle. I know that most mathematicians regularly
indulge their love for the subject, pursue news, puzzles, opportunities to explore
ideas, and have (interminable) mathematical discussions. Do teachers similarly
continue to seek and find pleasure in mathematics? I believe that although many do,
there are also many who do not—and I think that there are probably good reasons for
that. Most of these teachers would love to nurture their love for mathematics, but they
do not have the time, or space, or resources to do that. Their exo- and macro-systems
are not constructed to allow it. We must ask ourselves, what is it about the envi-
ronments in which we live and teach that so degrades the ability of teachers to
maintain their love for the subject? Why is it so difficult—it should not be.

The Perspective Principle applied to mathematics education is the ethnomathe-
matical agenda. Many people are doing great work in this area, and I acknowledge
their efforts. The basic idea has been taken and has branched out into political,
cultural, sociological, and many other directions (see, for example, Gerdes, 1994).

I will not comment further except to link the Perspective Principle to Ubiratan
D’Ambrosio’s statement that a universal educational approach is to allow all stu-
dents to begin with the essential cultural processes, which he explains as techniques
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of doing, explaining, and knowing about our natural and social environment. This,
he says, is where a full understanding of the nature of mathematics will start. That
is, the social and cultural ways of knowing of the child must be the starting point of
mathematics education. As teachers we have a responsibility to at least be aware of
diverse ways of knowing and their possible presence in those we teach.

We also need to keep thinking about the Perspective Principle on a personal
level. For example, at international mathematics education conferences there are
very few simultaneous translations, or even multilingual slide presentations. ICME
as an institution could being doing more to be multilingual in its communications,
and more “language-friendly” in its conferences. The Klein Project is one model of
how this could work, reaching out to the various language communities for help in
preparing translations of key documents.

My next example is again about the Reflexive Principle, this time looking at the
way in which it works on a cultural and social group level. Working from the
assumption that we are all in this together, it can be the basis for thinking about, and
acting upon, mathematics education for migrant, cultural, and social groups. We all
have the same rights to a mathematics education of quality.

So, if you do not speak the language of the teacher or the classroom that does not
mean that your human rights or educational rights are suspended. Offering fewer
mathematical opportunities in any way because of language is unacceptable.

Another example is streaming or banding or organising classes on ranking. What
does research say about this practice? There are no significant differences on student
achievement for either higher, middle or lower ranked students, although some studies
show slight gains for higher groups and losses for middle and lower groups
(Sukhnandan & Lee, 1998). Streaming or banding has a proven detrimental effect on
the self-esteem and attitudes to mathematics of middle and lower groups. It also
reinforces social grouping and accentuates socio-economic differences (Hallam &
Parsons, 2014). In a recent paper, Alexander Pais (2013) makes the point that if we say
that mathematics is essential for effective citizenship that means that anyone who fails
at mathematics cannot be an effective citizen. Everyone we determine does not meet the
mark in mathematics is excluded from effective citizenship. That is what we are doing.

Another way of looking at streaming is to imagine that it took place in our lives.
Imagine, for example, that who you are allowed to dine with and what foods are
available to you is determined by your ability as a cook as measured in a single 1-hr
cooking examination that everyone takes when they turn 21 years old. The results
are made public and it defines your culinary future. This is what we do with
mathematics if we implement streaming or grouping or banding.

I believe in a stronger statement, however. In my eyes, streaming is against
human rights. It is very simple. Every charter of human rights includes articles that
prevent inhuman or degrading treatment, articles that assert your right to be free
from any sort of discrimination, and, in particular, articles that state that no-one will
be denied the right to education. Yet streaming or banding or grouping does all
those things. Perhaps we are all open to being prosecuted sometime in the future?

Finally, let us return to the Pleasure Principle. If our students do not like
mathematics, or learning, then we are unlikely to be able to teach them very much.
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“Pleasure” in this sense is not a momentary good feeling, but includes things like
the feeling you get when you persist at something and achieve it, when you face and
overcome a challenge, become awakened to new ideas, or share in group
achievement.

However, I fear that rather than creating opportunities for these sorts of expe-
riences and the pleasures they generate, we sometimes (often?) create a monster on
the “dorsal spine” of mathematics education. Here are two of them.

No mathematician I know would rather be doing something else—but we do not
let our students do what mathematicians do. Most students go through their 12—
18 years of mathematics education without having many authentic mathematical
experiences. It is all learning what is already known and practicing it. It is what I
call the 14 year apprenticeship. Imagine if you were a carpenter or a musician and
for your first fourteen years you never actually built anything or played a whole
piece of music, but simply learned theory and practiced skills. There would not be
many builders around, and our concert halls might be empty.

Where is playing with mathematics, exploring its wonders, and creating new
mathematical ideas or objects? 1 do acknowledge that many teachers and
researchers are working to improve our practice in this area.

The other monster that we create as mathematics educators that engenders fear
amongst large proportions of our students is frequent high stakes testing. Again the
research is interesting (see Amrein & Berliner, 2003; Nichols & Berliner, 2007).
Achievement does go up—but only on the tests themselves and the gains do not
transfer elsewhere. High stakes testing also has negative systems effects. It
diminishes the curriculum; has negative effects on students, teachers and schools;
and decreases critical thinking.

We also know that it causes fear and loathing, not just amongst our students, but
amongst parents and the society in which we live. So if we complain about those
who exhibit math phobia, we must remember that we create it. Our whole system is
designed that way, and we are part of the system. As Pogo, Walt Kelly’s cartoon
character says: “We have met the enemy, and he is us.”

Again, using the Reflexive Principle makes this clear. Imagine there was fre-
quent high stakes testing for carpenters, landscape gardeners, or, heaven forbid,
Ministers of Education.

It seems to me that ICMI can take some leadership responsibility in this area.
I argue that it is time to be a strong political voice that makes clear the conse-
quences of certain practices in mathematics education that are destructive to our
wider ecological environment. Such a stance would need to be clearly based on our
collective research and experience.

But we also have a personal responsibility to make ourselves aware of how what
we do reinforces poor, discriminatory, or destructive practices. By doing nothing, or
by staying quiet, we reinforce an immoral status quo. Each of us has a responsibility
to act. This means: actively seek understanding of others, others’ ideas, and our
environment; remaining aware of our participation in the structures within which we
work; creating opportunities to discuss these issues with our colleagues; and standing
up, individually and collectively, when we perceive monstrous features, horns, and
claws growing on the dorsal spine of mathematics and mathematics education.
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Mathematics Classroom Studies:
Multiple Lenses and Perspectives

Berinderjeet Kaur

Abstract In some ways, the Third International Mathematics and Science Study
(TIMSS) Video Studies of 1995 and 1999 may be said to be the impetus for
classroom studies in many countries. These studies created an awareness of how
vast video data and how endless the possibilities of rich analysis were. They also
stimulated thought and academic discourse about the conceptual framework and
methodology, which led to subsequent video studies such as the Learner’s
Perspective Study (LPS). This paper recounts how mathematics classroom studies
have developed over the past decades in Singapore. It shows that the use of par-
ticular types of lenses does have an impact on images of mathematics teaching that
emerge from the analysis. It also examines the stereotype of East Asian mathe-
matics classroom instruction and suggests that instructional practices for mathe-
matics classrooms cannot be considered Eastern or Western but a coherent
combination of both.

Keywords TIMSS video studies - Learner’s perspective study - Mathematics
classroom studies in Singapore - East Asian pedagogy - Models of instruction

Background

In some ways, the Third International Mathematics and Science Study (TIMSS)
Video Studies of 1995 (Stigler & Hiebert, 1999) and 1999 (Hiebert et al., 2003)
may be said to be the impetus for classroom studies in many countries. These
studies created an awareness of the vastness of video data and the possibilities of
endless rich analysis. They also stimulated thought and academic discourse about
the conceptual framework and methodology of such studies, which led to subse-
quent video studies such as the Learner’s Perspective Study (LPS; Clarke, Keitel, &
Shimizu, 2006).
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Three countries, Germany, Japan and the United States, participated in the
TIMSS 1995 Video Study. Eighth-grade mathematics lessons were studied and
national samples of teachers in the three countries participated. One lesson per
teacher was recorded. Altogether 100 lessons in Germany, 50 in Japan and 81 in the
United States were recorded. A significant finding of the study was that:

To put it simply, we are amazed at how much teaching varied across cultures and how little
it varied within cultures ... Teaching is a cultural activity. We learn how to teach
indirectly through years of participation in classroom life, and we are largely unaware of the
most widespread attributes of teaching in our own culture. (Stigler & Hiebert, 1999, p. 11)

The study adopted a big-picture perspective and created portraits of eighth-grade
mathematics lessons in the three countries. Figure 1 shows the patterns of teaching
in the three countries.

The study also made generalisations such as the following:

American mathematics teaching is extremely limited, focussed for the most part on a very
narrow band of procedural skills. Whether students are in rows working individually or
sitting in groups, whether they have access to the latest technology or are working only with
paper and pencil, they spend most of their time acquiring isolated skills through repeated
practice. (Stigler & Hiebert, 1999, p. 10)

Japanese teaching is distinguished not so much by the competence of the teachers as by the
images it provides of what it can look like to teach mathematics in a deeper way: teaching
for conceptual understanding. Students in Japanese classrooms spend as much time solving
challenging problems and discussing mathematical concepts as they do practicing skills
(Stigler & Hiebert, 1999, p. 11).

These generalisations, which resulted from the coding schemes developed for
the study, were not helpful in explaining the what and how of mathematics
instruction in the three countries.

The German Pattern The Japanese Pattern The U.S. Pattern

[4 activities]

Reviewing previous
material

Presenting the topic and
problems for the day
Developing procedures
to solve problem(s)
Practicing

[5 activities]

. Reviewing the previous

lesson

. Presenting the problem

for the day

. Students working

individually or in groups

. Discussing solution

methods

. Highlighting and

summarising the major
points

[4 activities]

. Reviewing previous

material

. Demonstrating how to

solve problems for the
day

. Practicing
. Correcting seatwork and

assigning homework

Fig. 1 Big picture perspective: patterns of teaching (Stigler & Hiebert, 1999, pp. 78-81)
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The TIMSS 1999 Video Study (Hiebert et al., 2003) not only involved more
countries but also expanded the scope of the previous video study. Seven countries,
Australia, Czech Republic, Hong Kong SAR, Japan, Netherlands, Switzerland and
the United States, were involved in the study. The method of data collection was
similar to the past study. However, several changes were made to the process of
analysing the data. Recognising the limitations of big picture perspectives using the
wide-angle lens approaches in the past study, the TIMSS 1999 Video Study added
close-up lens approaches for meaningful interpretations of findings (Hiebert et al.,
2003). When comparing mathematics teaching across countries, a close-up lens
provides a more in-depth and nuanced perspective to the similarities in teaching. It
makes apparent aspects such as the problems students solve and how they solve
them.

Most importantly, the study made a significant contribution towards comparative
studies on mathematics teaching by encouraging readers to digest the contents of
the report(s) arising from the study and engage in ‘more nuanced international
discussions of mathematics teaching’ (Hiebert et al., 2003, p. 13). One study that
arose from such international discussions was the Learner’s Perspective Study
(Clarke et al., 2006).

The Early Stages of Mathematics Classroom Studies
in Singapore: The 1990s

The good performance of Singapore students in the Third International
Mathematics and Science Study (TIMSS) 1995 (Mullis et al., 1997; Beaton et al.,
1997) and also subsequent Trends in International Mathematics and Science Studies
(TIMSS) (Mullis et al., 2000; Mullis, Martin, Gonzalez, & Chrostowski, 2004,
Mullis, Martin, Foy, & Arora, 2012; Mullis, Martin, & Foy, 2008) has drawn a lot
of attention to the teaching and learning of mathematics in Singapore schools.
Educators in Singapore have also become more curious about activities in their
mathematics classrooms. Two studies amongst the few that may be considered to be
the first to document activities in mathematics classrooms were the Kassel Project
(Kaur & Yap, 1997) and A Study of Grade 5 Mathematics Lessons (Chang, Kaur,
Koay, & Lee, 2001). In the proceeding subsections the studies are detailed.

Kassel Project (1995-1996)

The Kassel project (Kaur & Yap, 1997) was an international comparative project on
the teaching and learning of mathematics helmed by the Centre for Innovation in
Mathematics Teaching at the University of Exeter. It was Prof Gabriele Kaiser who
initiated Singapore’s participation in the project. As part of the project, 21 Grade 8
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mathematics lessons in 1995 and 22 Grade 9 mathematics lessons in 1996 were
observed by Professor Kaur and Dr Yap at the National Institute of Education
(NIE). Lesson review sheets, shown in Fig. 2, were used to document observations.

A glossary of terms, resulting in a shared vocabulary, was created by the two
researchers who observed the lessons to write the lesson narratives. Table 1 shows
part of the glossary. In this paper, only the data for the 21 Grade 8 mathematics
lessons observed in seven schools is presented. The lesson narratives were coded
and descriptive statistics used to arrive at the findings (see Kaur & Yap, 1997 for
details of the coding and descriptive statistics).

The wide-angle lens findings of the study tell us that the teachers were task
oriented, presented knowledge by telling and explaining and demonstrated how to
solve mathematical problems (step by step and placed more emphasis on proce-
dures, answers and accuracy than on concepts and processes). They were enthu-
siastic about their teaching, had high expectations of their pupils, handled the
mathematics confidently, gave instructions that were candid and clear and their
lessons were highly structured with specific achievable objectives. They almost
always assigned homework and graded it. They used the chalkboard, textbook and
overhead projector to assist them in their classroom instruction. Their students were
quiet, appeared attentive (even though at times teacher talk was too lengthy to
sustain student attention), looked happy, seldom volunteered responses or raised
doubts and were task-oriented and receptive to the teaching.

Furihar Detaty
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Fig. 2 Lesson review sheets
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Table 1 Glossary of terms

Term Explanation

Teacher exposition | Teacher presents knowledge by telling and explaining

Teacher Teacher works solution to a task highlighting procedure and explaining
demonstration how the procedure is used

Deductive Teacher asks a sequence of questions which guide pupils to form ideas by
questioning reasoning and drawing on prior knowledge

Whole class Teacher structures the flow of the interaction and directs students’
discussion involvement and participation; teacher is responsible to ensure that there

is a central focus of discussion and that questions keep coming back to
the key issue(s)

Direct questions Questions which call for recall of knowledge (facts/algorithms)

Seatwork Pupils do mathematical tasks in class on their own/in pairs
(individual/pair)

A Study of Grade 5 Mathematics Lessons (1998-1999)

This was a small-scale study to investigate the pedagogical practices of Grade 5
mathematics teachers in Singapore (Chang et al., 2001). Lesson observations using
lesson review sheets and self-reports by teachers about how they taught a lesson
were deemed unsuitable for the study. In lesson observations, based on the expe-
rience of the Kassel project, the researchers (observers) found it difficult to observe
and note all that was happening in the class concurrently. In self-reports, due to the
lack of a shared vocabulary, it is difficult to know how accurately the teachers
document their lessons and what they mean by the words they use; for example, if a
teacher says she did ‘problem solving’ with her students, what exactly did she do?
Different teachers may use the same word to mean different things. Therefore, this
study video-recorded mathematics lessons and may be considered to be the first to
do so in Singapore. The study investigated the pedagogical practices of Grade 5
mathematics teachers following two initiatives, namely the infusion of thinking
skills and the use of information technology in Singapore schools. Four Grade 5
teachers from two schools (two from each school) with distinctively different stu-
dent profiles participated in the study. Altogether 5 one-hour lessons were recorded.
Teachers were also interviewed about their lessons.

For the first phase of the data analysis, a wide-angle lens was adopted. The
researchers were interested in locating at the macro-level: (i) similarities and dif-
ferences in the lessons in the two schools and (ii) the impact of the initiatives
(thinking skills & IT) on the pedagogy of the teachers. The findings of this phase
were that in both schools, lessons were mainly teacher directed with two thirds of
the lesson time devoted to teacher talk and a third to student work (individually or
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group-work). Student talk consisted of answering teacher-initiated questions or
seeking clarifications. The tasks enacted during the lessons mainly encouraged
comprehension and application of knowledge. Furthermore, classwork and home-
work focused mainly on development of skills and use of knowledge to complete
routine tasks and prepare for examinations. In School A, where the students were of
high ability, students were also provided with enrichment activities, but the activ-
ities were not tailored to enhance any specific thinking strategies or skills.
Regarding the impact of the initiatives, in both schools lessons were teacher
directed with little or no evidence of activities to engage students in thinking or
development of any thinking strategies, and the infusion of technology in the
lessons was also not evident.

For the second phase of data analysis, it was planned that a close-up lens would
be used to examine in depth the similarities of teaching in the classrooms of all the
four teachers. However, due to an incident the video data was unavailable for
analysis.

The Learner’s Perspective Study

The Learner’s Perspective Study (LPS) is an international study helmed by
Professor David Clarke at the University of Melbourne. It stated in 1999 with
Australia, Germany, Japan and the USA examining the practices of eighth-grade
mathematics classrooms in a more integrated and comprehensive manner than had
been attempted in past international studies, in particular the TIMSS Video Studies
of 1995 and 1999. The study has several distinguishing features amongst which are
(a) documentation of a sequence of lessons rather than just single lessons, (b) the
exploration of learner practices and (c) use of the complementary accounts
methodology developed by Clarke (1998) for data collection of classroom practice
—an activity where both teacher and students are key participants (Clarke et al.,
2006).

Singapore’s participation in the LPS marked the start of using video data to
explore perspectives of mathematics teaching in a comprehensive manner.
Singapore joined the LPS in 2004. The main objectives of the study in Singapore
were to (a) document practices of competent mathematics teachers in Grade 8
mathematics classrooms, (b) study from the perspectives of students the roles of the
textbook and homework and what constitutes good mathematics lessons and
(c) identify common classroom pedagogies from the perspectives of both teachers
and students that enhance the teaching and learning of mathematics (Kaur & Low,
2009).

Three mathematics teachers, T1, T2 and T3, recognised by their local commu-
nities for ‘teaching competence’, and their respective classes of Grade 8 students
participated in the study (see Kaur, 2009 for details). In the following subsections
some selected data and findings of mathematics teaching in Grade 8 classrooms are
presented.



Mathematics Classroom Studies: Multiple Lenses ... 51

Instructional Approaches

The video records of the 10-lesson sequence for each of the teachers were the main
source of the data analysed. For the first phase of the data analysis, a wide-angle
lens was adopted. The researchers viewed the video records and located global
features related to the patterns of instruction of the three teachers. For the second
phase of the data analysis, a close-up lens was used and the grounded theory
approach was adopted. An activity segment, ‘the major division of the lessons’,
served as an appropriate unit of analysis for examining the structural patterns of
lessons since it allowed us ‘to describe the classroom activity as a whole’
(Stodolsky, 1988, p.11). According to Stodolsky:

In essence, an activity segment is a part of a lesson that has a focus or concern and starts
and stops. A segment has a particular instructional format, participants, materials, and
behavioural expectations and goals. It occupies a certain block of time in a lesson and
occurs in a fixed physical setting. A segment’s focus can be instructional or managerial.
(Stodolsky, 1988, p. 11)

For the purpose at hand, the activity segments were distinguished mainly by the
instructional format that characterised them, although there were other segment
properties, such as materials that differed among the various activity segments
identified. Six categories of activity segments emerged through reiterative viewing
of the video data. These mutually exclusive segments were found to account for
most of the 30 lessons, 10 each from T1, T2 and T3. Table 2 shows the categories
and Table 3 shows the analysis of lesson structure with mathematical content of T2.

Coding of the video data revealed patterns of instructional cycles that consisted
mainly of combinations of the three main categories of classroom activity:
whole-class demonstration [D], seatwork [S] and whole-class review of student
work [R] for the sequences of 10 lessons each for T1, T2 and T3. Figure 3 shows
the segment sequence for the 10 lessons each for T1, T2 and T3. Activity segments
that served different instructional objectives were separated by a dotted vertical line.
In an instructional cycle, the mathematical tasks shared the same instructional
objective.

Table 2 Categories of activity segments

Whole-class Whole-class mathematics instruction that aimed to develop

demonstration [D] students’ understanding of mathematical concepts and skills

Seatwork [S] Students were assigned questions to work on either individually
or in groups at their desks

Whole-class review of Teachers’ primary focus was to review the work done by

student work [R] students or the task assigned to them

Miscellaneous [M] A catch-all category during which the class was involved in

managerial and administrative activities

Group quiz [Q] Found in T2’s lessons; students solved tasks in groups in a
competitive manner

Test [T] Found only in the lessons of T1 and T3
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Fig. 3 Structural patterns of the lesson sequences of T1, T2 and T3

To understand the instructional approaches further, it is necessary to go beyond
structural patterns of the lesson sequence. The key features of the classroom talk
through which the teachers realised their roles in not just the teaching of mathe-
matics but also in engaging students to learn it are described elsewhere (see Kaur,
2009).
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The wide-angle lens findings show that the pattern of instruction in the Grade 8
classrooms of the three competent teachers was as follows: (1) Set the stage for a
topic/review past knowledge, (2) present a concept/procedure and show how to
work out the solution of a problem, (3) do seatwork and (4) correct seatwork and
assign homework. Lessons were also deemed to be teacher-centred, mainly com-
prising teacher exposition coupled with student practice. This is often interpreted as
‘drill and practice’ by many who have no other information about the what and the
how of the lessons. On the contrary, the close-up lens findings show that lessons
consisted of instructional cycles that were highly structured combinations of D, S
and R. Specific instructional objectives guided each instructional cycle, with sub-
sequent cycles building on the knowledge. Carefully selected examples that sys-
tematically varied in complexity from low to high were used during whole-class
demonstrations. There was also active monitoring of student’s understanding during
seatwork (teachers moved from desk to desk guiding those with difficulties and
selecting appropriate student work for subsequent whole-class review and discus-
sion). Most importantly, student understanding of knowledge expounded during
whole-class demonstrations was reinforced by detailed review of student work done
in class or as homework, and lessons were both teacher and student centred.

Students’ Perceptions of Their Teachers’ Teaching

A distinguishing feature of the LPS is the exploration of learner practices using
post-lesson video-stimulated interviews. The interviews of the ‘focus students’
consisted of two parts. The first part was based on the video record of the lesson for
which they were the focus students. The second part was stimulated by several
prompts. Fifty-nine students were interviewed: 19 from T1’s class, 20 from T2’s
class and 20 from T3’s class. The interview transcripts of the 59 students to two
prompts in the second part of the interview were the source of the data analysed.
The two prompts were:

e Would you describe that lesson as a good one for you?
e What has to happen for you to feel that a lesson was a ‘good’ lesson?

For all three teachers, T1, T2 and T3, 94, 85 and 84% of their students,
respectively, felt that the lesson for which they were the ‘focus students’ was a good
one. A close-up lens was used and the grounded theory approach adopted to analyse
the responses to the second prompt. Three categories and 12 subcategories were
derived for coding the responses (see Kaur, 2008 for details). Table 4 shows the
categories and subcategories.

Analysis of the interview responses using a close-up lens revealed that students
deemed a mathematics lesson a good one when some of the following character-
istics were present. The teacher
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Table 4 Categories and subcategories for coding teachers’ teaching

Instructional practice

Subcategory

Exposition (whole class
instruction)

EC: teacher explained

D: teacher demonstrated a procedure, ‘taught the method’ or
showed using manipulatives concepts/relationships

NK: teacher introduced new knowledge

GI: teacher gave instructions (assigned homework/showed how
work should be done/when work should be handed in for grading,
etc.)

RE: teacher used real-life examples during instruction

Seatwork

IW: students worked individually on tasks assigned by teacher or
made/copied notes

GW: students worked in groups

M: material used as part of instruction (worksheet or any other
print resource)

Review and feedback

PK: teacher reviewed prior knowledge

SP: teacher used student’s presentation or work to give feedback
for in-class work or homework

IF: teacher gave feedback to individuals during lesson

GA: teacher gave feedback to students through grading of their
written assignments

explained clearly the concepts and steps of procedures;
made complex knowledge easily assimilated through demonstrations, use of
manipulatives and real-life examples;
reviewed past knowledge;
introduced new knowledge;
e used student work/group presentations to give feedback to individuals or the

whole class;

e gave clear instructions related to mathematical activities for in-class and

after-class work;

e provided interesting activities for students to work on individually or in small

groups and

e provided sufficient practice tasks for preparation towards examinations.

A Juxtaposition of Teachers’ Practice and Students’

Perception

Findings about how competent teachers teach Grade 8 mathematics and their stu-
dents’ perceptions about a good mathematics lesson are essential for the creation of
an image of good mathematics teaching. This is exactly what the data and nature of
analysis adopted in the Singapore LPS allowed the researchers to do. In so doing,
the researchers questioned the stereotype of East Asian mathematics teaching and
have been motivated to delve deeper into their classrooms and create a model of
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mathematics teaching in Singapore schools. The next section reports on the research
done so far and in progress.

Traditional Teaching and East Asian Countries: Is the East
Asian Stereotype an Accurate Guide to the Teaching
of Mathematics in Singapore Schools?

Leung (2001) has noted that mathematics teaching in East Asia is ‘predominantly
content orientated and exam driven. Instruction is very much teacher dominated and
student involvement minimal’. Teaching is ‘usually conducted in whole group
settings, with relatively large class sizes’. There is ‘virtually no group work or
activities, and memorization of mathematics is stressed’ and ‘students are required
to learn by rote’. Students are ‘required to engage in ample practice of mathematical
skills, mostly without thorough understanding’ (pp. 35-36). In the following sub-
section, we examine Grade 9 mathematics instruction in Singapore.

The CORE 2 Study in Singapore

The CORE 2 Study in Singapore was a study of pedagogical practices in Grade 9
mathematics and English language. The study has been reported on in detail
elsewhere (see Hogan, Towndrow, Chan, Kwek, & Rahim, 2013a). The data
reported here is from a nationally representative sample of over 4000 Grade 9
students in approximately 120 mathematics and English classes across 32 sec-
ondary schools in Singapore collected in 2010. A split-half multi-level sampling
strategy was used. In each class, half of the students were randomly assigned to a
230-item survey focused on students’ perceptions of instructional practices in
mathematics or English language. In this paper, we focus on the four models of
instruction explored in the study. The models are Traditional Instruction (TI), Direct
Instruction (DI), Teaching for Understanding (TfU) and Co-Regulated Learning
Strategies (CRLS). Figure 4 shows the models of instruction and their respective
constructs and scales. Tables 5 and 6 show the means and standard deviations of the
models, and correlation matrix of the models respectively.

As shown in Table 5, the means for TI, DI, TfU and CRLS are 3.69, 3.67, 3.38
and 3.01, respectively. Although the strength of TI might lead one to conclude that
mathematics instruction at least conforms to the East Asian stereotype, the relative
strengths of the other instructional strategies suggest otherwise. This conclusion is
supported by the high correlations between DI, TI and TfU (shown in Table 6). The
substantially lower correlations between TI and DI with CRLS, as shown in
Table 6, explains the active instructional role of the teacher in the classroom. An
in-depth analysis of the data was shown in Hogan et al. (2013b). As reported in
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Models of Instruction

Traditional Instruction (TI; 5 constructs)

o A focus on worksheets and workbooks (e.g., ‘How often does your mathematics/English teacher
ask you to do worksheets or workbooks?’)

o Afocus on textbooks (e.g., ‘How often does your mathematics teacher asks you to answer
questions from the textbook?’)

o Drill and practice of basic facts, rules and procedures (e.g., ‘How often does your
mathematics/English teacher ask you to drill and practice on basic facts, rules or procedures?’)

o Afocus on memorization (e.g., ‘How often does your mathematics teacher ask you to remember
formulae or rules?’)

o Exam preparation (‘My teacher emphasizes studying problems that may occur in the exams’, ‘My
teacher spends a lot of class time preparing for exams’, ‘My teacher teaches us test-taking
strategies’ and ‘My teacher emphasizes practicing past year exam papers’.)

Direct Instruction (DI; 5 constructs)

o Maximum learning time (e.g., ‘The teacher makes sure that pupils focus on the lesson’.)

o Teacher revision (e.g., ‘The teacher checks that pupils understand the lesson’.)

o Structure and clarity (e.g., ‘The teacher clearly states the objectives of the lesson’, ‘The teacher
organizes information in an orderly way’ and ‘The teacher explains things very clearly’.)

o Frequency of practice (e.g., ‘We spend a lot of time practicing what we learned’.)

o Frequency of questioning (e.g., ‘The teacher asks the class lots of questions’.)

Teaching for Understanding (TfU; 11 constructs)

o Focus on understanding (e.g., ‘The teacher’s explanations really help me understand the topic’.)

o Quality of questions (e.g., ‘The teacher asks good questions to see if we really understand’.)

o Communicating learning goals and performance standards (e.g., ‘The teacher explains the
standard of good performance in our tests and exams’.)

o Curiosity and interest (e.g., ‘The teacher makes mathematics/English really interesting’.)

o Flexible teaching (e.g., ‘The teacher tries different kinds of teaching to help us understand
better’.)

o Whole-class discussion (e.g., ‘The teacher supports long class discussions about topics’.)

o Collaborative group work (e.g., ‘The teacher encourages students to work as a team in group
work’.)
Teacher scaffolding of group work (e.g., ‘The teacher shows us how to work together in groups’.)

o Monitoring of student learning (e.g., ‘The teacher asks the class questions to see how well we
understand the topic at the beginning of the class’.)

o Personal feedback (e.g., ‘The teacher gives me personal comments on my homework’.)

o Collective feedback (e.g., ‘The teacher gives the class detailed comments on exams or tests’.)

Co-Regulated Learning Strategies (CRLS) consists of three multi-item first-order scales for
self-directed learning: The teacher encourages us to

- set our own learning goals,

- identify strategies to achieve our learning goals and

- check frequently that our work is acceptable.
self-assessment: The teacher

- asks us to grade our own work,

- explains how we can grade our own work,

- expects us to discuss our own grading of our own work and
- encourages us to comment on our own work.
peer-assessment: The teacher

- asks students to grade each other’s work,

- explains how we can grade each other’s work,

- expects us to discuss our grading of each other’s work and
- encourages us to comment on each other’s work.

Fig. 4 Models of instruction and their respective constructs/scales
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Table 5 Means and standard deviations (SD) of the models

Grade 9 mathematics N = 1166

Instructional model Mean (1-5) SD
Traditional instruction 3.69 0.642
Direct instruction 3.67 0.670
Teaching for understanding 3.38 0.602
Co-regulated learning strategies 3.01 0.770

Table 6 Correlation matrix: instructional models

Grade 9 Mathematics (N = 1166) TI DI TfU CRLS
Traditional Instruction (TI) 1

Direct Instruction (DI) 0.72%%* 1

Teaching for Understanding (TfU) 0.58%%* 0.70%* 1

Co-Regulated Learning Strategies (CRLS) 0.28** 0.35%* 0.73%* 1

**Significant at p<0.01 level

Hogan et al. (2013b), resulting from the structural equation modelling
(SEM) analysis carried out, the integrated model for all the four instructional
strategies is very large and complex. Nevertheless, the goodness-of-fit statistics are
exceptionally good. The model is fully recursive—there are no feedback loops from
TfU back into TI or DI practices. The internal structure of each of the instructional
strategies is remarkably stable. There is a linear, fully recursive sequence to
instructional practice that underscores the coherent and hybridic nature of the
instructional regime for mathematics in Singapore Grade 9 classrooms.

Therefore, we conjecture that instructional practices for mathematics in
Singapore classrooms, based on the data of the CORE 2 study, cannot be consid-
ered either Eastern or Western but a coherent combination of both. The basis of our
claim is that (i) TT provides the foundation of the instructional order and (ii) DI
builds on TI practices and extends and refines the instructional repertoire, while
TfU/CRLS practices build on TI and DI practices and extend the instructional
repertoire even further in ways that focus on developing student understanding and
student-directed learning. It also appears that four instructional practices—two TI
practices (exam preparation and textbook focus) and two DI practices (structure and
clarity, and revision)—tie or link the four instructional groupings together in an
orderly chain of instructional practice. Of the four, exam preparation is the most
significant. It is highly generative both directly and indirectly, reaching well beyond
its own close family of TI practices into DI and TfU practices.

In addition, there are nine separate direct pathways leading from exam prepa-
ration to DI and TfU practices and numerous indirect paths that link exam prepa-
ration, on the one hand, to all of the remaining instructional practices, on the other.

The findings of both the LPS in Singapore and CORE 2 study have motivated
researchers at the NIE, Singapore, to embark on a very large-scale study to explore
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the enacted school mathematics curriculum in Singapore secondary schools. In the
next section we provide a brief of the study.

A Study of the Enacted School Mathematics Curriculum

This study is funded by the Ministry of Education through the Office of Education
Research at the NIE, helmed by professors Berinderjeet Kaur and Toh Tin Lam and
involving six other colleagues. It is the first of its type, i.e., a programmatic research
project at NIE. Two studies with distinct goals form the programmatic research. The
studies and their respective goals are as follows:

Study 1: Pedagogies adopted by mathematics-experienced teachers when
enacting the curriculum

e How do teachers introduce and engage students in constructing conceptual
knowledge?

e How do teachers engage students in developing fluency with skills in
computing?
What mathematical processes are used and developed by teachers?
How do the teachers imbue desired attitudes for the learning of mathematics
amongst their students?

Study 2:

How do teachers select instructional materials?
How do teachers modify the selected instructional materials?
e What are the characteristics of instructional materials that will

(1) help teachers enact worthy instructional goals of teaching mathematics and
(i) help students improve desirable outcomes?

In a nutshell, the project examines the pedagogies commonly adopted by
competent secondary mathematics teachers. It also documents the match between
the enacted and planned curriculum in the classrooms of competent secondary
mathematics teachers. In the context of the study, ‘competent’ teachers are those
considered by the local community to be teachers whose pedagogical practices are
exemplary and result in good student learning outcomes. Over a period of two
years, 30 competent mathematics teachers and their students will participate in the
study.

The project adopts the complementary accounts methodology, similar to that of
the LPS (Clarke, 1998). A sequence of about 6-10 lessons from each teacher
encompassing a complete mathematical topic will be video-recorded using a
three-camera approach. The video cameras will be trained on the teacher, the whole
class and selected pairs of students referred to as focus students. After each lesson,
on the same day, the focus students will be interviewed about their learning during
the lesson. The interview will also be video-recorded. Students’ work done during
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the lesson and interview may be digitized for use of the project. Teachers will also
be interviewed a few times during their participation in the study.

As the teachers studied in the project are the upper bound of the mathematics
teacher fraternity, the findings will help us understand the why, what and how of
mathematics learning in our secondary schools. In addition, the findings will help
mathematics educators at the NIE shape the preparation of pre-service teachers and
development of in-service teachers. We look forward to sharing the findings of the
study at future international meetings.

Conclusion

This paper has shared with readers the very humble beginnings of mathematics
classroom studies in Singapore by the author and her colleagues at the NIE—the
sole teacher education institute in the country. It has also, through the very small
segments of the data and findings of studies carried out in Singapore mathematics
classrooms, shown how images of teaching are affected by the type of lens—
wide-angle or close-up. Lastly, the paper has also initiated the conversation about
the myth of the East Asian mathematics-classroom teaching stereotype by exam-
ining models of mathematics instruction in Singapore schools. The present study, a
study of the enacted school mathematics curriculum underway in Singapore, aims
to paint a comprehensive portrait of mathematics instruction in Singapore schools.
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“What is Mathematics?” and why we
should ask, where one should experience
and learn that, and how to teach it

Giinter M. Ziegler and Andreas Loos

Abstract “What is Mathematics?” [with a question mark!] is the title of a famous
book by Courant and Robbins, first published in 1941, which does not answer the
question. The question is, however, essential: The public image of the subject (of
the science, and of the profession) is not only relevant for the support and funding it
can get, but it is also crucial for the talent it manages to attract—and thus ultimately
determines what mathematics can achieve, as a science, as a part of human culture,
but also as a substantial component of economy and technology. In this lecture we
thus

discuss the image of mathematics (where “image” might be taken literally!),
sketch a multi-facetted answer to the question “What is Mathematics?,”

e stress the importance of learning “What is Mathematics” in view of Klein’s
“double discontinuity” in mathematics teacher education,

e present the “Panorama project” as our response to this challenge,

e stress the importance of felling stories in addition to teaching mathematics, and
finally,

e suggest that the mathematics curricula at schools and at universities should
correspondingly have space and time for at least three different subjects called
Mathematics.
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What Is Mathematics?

Defining mathematics. According to Wikipedia in English, in the March 2014
version, the answer to “What is Mathematics?” is

Mathematics is the abstract study of topics such as quantity (numbers),? structure,™

space,™ and change.'! There is a range of views among mathematicians and
philosophers as to the exact scope and definition of mathematics./”11®!

Mathematicians seek out patterns (Highland & Highland, 1961, 1963) and use them to
formulate new conjectures. Mathematicians resolve the truth or falsity of conjectures by
mathematical proof. When mathematical structures are good models of real phenomena,
then mathematical reasoning can provide insight or predictions about nature. Through the
use of abstraction and logic, mathematics developed from counting, calculation, mea-
surement, and the systematic study of the shapes and motions of physical objects. Practical
mathematics has been a human activity for as far back as written records exist. The research
required to solve mathematical problems can take years or even centuries of sustained
inquiry.

None of this is entirely wrong, but it is also not satisfactory. Let us just point out
that the fact that there is no agreement about the definition of mathematics, given as
part of a definition of mathematics, puts us into logical difficulties that might have
made Godel smile.'

The answer given by Wikipedia in the current German version, reads (in our
translation):

Mathematics [...] is a science that developed from the investigation of geometric figures
and the computing with numbers. For mathematics, there is no commonly accepted defi-
nition; today it is usually described as a science that investigates abstract structures that it
created itself by logical definitions using logic for their properties and patterns.

This is much worse, as it portrays mathematics as a subject without any contact
to, or interest from, a real world.

The borders of mathematics. Is mathematics “stand-alone”? Could it be
defined without reference to “neighboring” subjects, such as physics (which does
appear in the English Wikipedia description)? Indeed, one possibility to characterize
mathematics describes the borders/boundaries that separate it from its neighbors.
Even humorous versions of such “distinguishing statements” such as

e “Mathematics is the part of physics where the experiments are cheap.”
e “Mathematics is the part of philosophy where (some) statements are true—
without debate or discussion.”

' According to Wikipedia, the same version, the answer to “Who is Mathematics” should be:

Mathematics, also known as Allah Mathematics, (born: Ronald Maurice Bean'') is a
hip hop producer and DJ for the Wu-Tang Clan and its solo and affiliate projects.

This is not the mathematics we deal with here.
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e “Mathematics is computer science without electricity.” (So “Computer science
is mathematics with electricity.”)

contain a lot of truth and possibly tell us a lot of “characteristics” of our subject.
None of these is, of course, completely true or completely false, but they present
opportunities for discussion.

What we do in mathematics. We could also try to define mathematics by “what
we do in mathematics”: This is much more diverse and much more interesting than
the Wikipedia descriptions! Could/should we describe mathematics not only as a
research discipline and as a subject taught and learned at school, but also as a
playground for pupils, amateurs, and professionals, as a subject that presents
challenges (not only for pupils, but also for professionals as well as for amateurs),
as an arena for competitions, as a source of problems, small and large, including
some of the hardest problems that science has to offer, at all levels from elementary
school to the millennium problems (Csicsery, 2008; Ziegler, 2011)?

What we teach in mathematics classes. Education bureaucrats might (and
probably should) believe that the question “What is Mathematics?” is answered by
high school curricula. But what answers do these give?

This takes us back to the nineteenth century controversies about what mathe-
matics should be taught at school and at the Universities. In the German version this
was a fierce debate. On the one side it saw the classical educational ideal as
formulated by Wilhelm von Humboldt (who was involved in the concept for and
the foundation 1806 of the Berlin University, now named Humboldt Universitét,
and to a certain amount shaped the modern concept of a university); here mathe-
matics had a central role, but this was the classical “Greek” mathematics, starting
from Euclid’s axiomatic development of geometry, the theory of conics, and the
algebra of solving polynomial equations, not only as cultural heritage, but also as a
training arena for logical thinking and problem solving. On the other side of the
fight were the proponents of “Realbildung”: Realgymnasien and the technical
universities that were started at that time tried to teach what was needed in com-
merce and industry: calculation and accounting, as well as the mathematics that
could be useful for mechanical and electrical engineering—second rate education in
the view of the classical German Gymnasium.

This nineteenth century debate rests on an unnatural separation into the classical,
pure mathematics, and the useful, applied mathematics; a division that should have
been overcome a long time ago (perhaps since the times of Archimedes), as it is
unnatural as a classification tool and it is also a major obstacle to progress both in
theory and in practice. Nevertheless the division into “classical” and “current”
material might be useful in discussing curriculum contents—and the question for
what purpose it should be taught; see our discussion in the Section “Three Times
Mathematics at School?”.

The Courant-Robbins answer. The title of the present paper is, of course,
borrowed from the famous and very successful book by Richard Courant and
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Herbert Robbins. However, this title is a question—what is Courant and Robbins’
answer? Indeed, the book does not give an explicit definition of “What is
Mathematics,” but the reader is supposed to get an idea from the presentation of a
diverse collection of mathematical investigations. Mathematics is much bigger and
much more diverse than the picture given by the Courant—Robbins exposition. The
presentation in this section was also meant to demonstrate that we need a
multi-facetted picture of mathematics: One answer is not enough, we need many.

Why Should We Care?

The question “What is Mathematics?” probably does not need to be answered to
motivate why mathematics should be taught, as long as we agree that mathematics
is important.

However, a one-sided answer to the question leads to one-sided concepts of what
mathematics should be taught.

At the same time a one-dimensional picture of “What is Mathematics” will fail to
motivate kids at school to do mathematics, it will fail to motivate enough pupils to
study mathematics, or even to think about mathematics studies as a possible career
choice, and it will fail to motivate the right students to go into mathematics studies,
or into mathematics teaching. If the answer to the question “What is Mathematics”,
or the implicit answer given by the public/prevailing image of the subject, is not
attractive, then it will be very difficult to motivate why mathematics should be
learned—and it will lead to the wrong offers and the wrong choices as to what
mathematics should be learned.

Indeed, would anyone consider a science that studies “abstract” structures that it
created itself (see the German Wikipedia definition quoted above) interesting?
Could it be relevant? If this is what mathematics is, why would or should anyone
want to study this, get into this for a career? Could it be interesting and meaningful
and satisfying to teach this?

Also in view of the diversity of the students’ expectations and talents, we believe
that one answer is plainly not enough. Some students might be motivated to learn
mathematics because it is beautiful, because it is so logical, because it is sometimes
surprising. Or because it is part of our cultural heritage. Others might be motivated,
and not deterred, by the fact that mathematics is difficult. Others might be motivated
by the fact that mathematics is useful, it is needed—in everyday life, for technology
and commerce, etc. But indeed, it is not true that “the same” mathematics is needed
in everyday life, for university studies, or in commerce and industry. To other
students, the motivation that “it is useful” or “it is needed” will not be sufficient. All
these motivations are valid, and good—and it is also totally valid and acceptable
that no single one of these possible types of arguments will reach and motivate all
these students.
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Why do so many pupils and students fail in mathematics, both at school and at
universities? There are certainly many reasons, but we believe that motivation is a
key factor. Mathematics is hard. It is abstract (that is, most of it is not directly
connected to everyday-life experiences). It is not considered worth-while. But a lot
of the insufficient motivation comes from the fact that students and their teachers do
not know “What is Mathematics.”

Thus a multi-facetted image of mathematics as a coherent subject, all of whose
many aspects are well connected, is important for a successful teaching of math-
ematics to students with diverse (possible) motivations.

This leads, in turn, to two crucial aspects, to be discussed here next: What image
do students have of mathematics? And then, what should teachers answer when
asked “What is Mathematics”? And where and how and when could they learn that?

The Image of Mathematics

A 2008 study by Mendick, Epstein, and Moreau (2008), which was based on an
extensive survey among British students, was summarized as follows:

Many students and undergraduates seem to think of mathematicians as old, white,
middle-class men who are obsessed with their subject, lack social skills and have no
personal life outside maths.

The student’s views of maths itself included narrow and inaccurate images that are often
limited to numbers and basic arithmetic.

The students’ image of what mathematicians are like is very relevant and turns
out to be a massive problem, as it defines possible (anti-)role models, which are
crucial for any decision in the direction of “I want to be a mathematician.” If the
typical mathematician is viewed as an “old, white, male, middle-class nerd,” then
why should a gifted 16-year old girl come to think “that’s what I want to be when I
grow up”? Mathematics as a science, and as a profession, looses (or fails to attract)
a lot of talent this way! However, this is not the topic of this presentation.

On the other hand the first and the second diagnosis of the quote from Mendick
et al. (2008) belong together: The mathematicians are part of “What is
Mathematics™!

And indeed, looking at the second diagnosis, if for the key word “mathematics”
the images that spring to mind don’t go beyond a per se meaningless “a” + b*> = ¢2”
scribbled in chalk on a blackboard—then again, why should mathematics be
attractive, as a subject, as a science, or as a profession?

We think that we have to look for, and work on, multi-facetted and attractive
representations of mathematics by images. This could be many different, separate
images, but this could also be images for “mathematics as a whole.”
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Four Images for “What Is Mathematics?”

Striking pictorial representations of mathematics as a whole (as well as of other
sciences!) and of their change over time can be seen on the covers of the German
“Was ist was” books. The history of these books starts with the series of “How and
why” Wonder books published by Grosset and Dunlop, New York, since 1961,
which was to present interesting subjects (starting with “Dinosaurs,” “Weather,”
and “Electricity”) to children and younger teenagers. The series was published in
the US and in Great Britain in the 1960s and 1970s, but it was and is much more
successful in Germany, where it was published (first in translation, then in volumes
written in German) by Ragnar Tessloff since 1961. Volume 18 in the US/UK
version and Volume 12 in the German version treats “Mathematics”, first published
in 1963 (Highland & Highland, 1963), but then republished with the same title but a
new author and contents in 2001 (Blum, 2001). While it is worthwhile to study the
contents and presentation of mathematics in these volumes, we here focus on the
cover illustrations (see Fig. 1), which for the German edition exist in four entirely
different versions, the first one being an adaption of the original US cover of
(Highland & Highland, 1961).

All four covers represent a view of “What is Mathematics” in a collage mode,
where the first one represents mathematics as a mostly historical discipline (starting
with the ancient Egyptians), while the others all contain a historical allusion (such
as pyramids, GauB}, etc.) alongside with objects of mathematics (such as prime
numbers or 7, dices to illustrate probability, geometric shapes). One notable object
is the oddly “two-colored” Mobius band on the 1983 cover, which was changed to
an entirely green version in a later reprint.

One can discuss these covers with respect to their contents and their styles, and
in particular in terms of attractiveness to the intended buyers/readers. What is
over-emphasized? What is missing? It seems more important to us to

e think of our own images/representations for “What is Mathematics”,
e think about how to present a multi-facetted image of “What is Mathematics”
when we teach.

Indeed, the topics on the covers of the “Was ist was” volumes of course rep-
resent interesting (?) topics and items discussed in the books. But what do they add
up to? We should compare this to the image of mathematics as represented by
school curricula, or by the university curricula for teacher students.

In the context of mathematics images, let us mention two substantial initiatives
to collect and provide images from current mathematics research, and make them
available on internet platforms, thus providing fascinating, multi-facetted images of
mathematics as a whole discipline:

e Guy Meétivier et al.: “Image des Maths. La recherche mathématique en mots et
en images” [“Images of Maths. Mathematical research in words and images”],
CNRS, France, at images.math.cnrs. fr (texts in French)
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BAND 12
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Fig. 1 The four covers of “Was ist was. Band 12: Mathematik” (Highland & Highland, 1963;
Blum, 2001)
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e Andreas D. Matt, Gert-Martin Greuel et al.: “IMAGINARY. open mathemat-
ics,” Mathematisches Forschungsinstitut Oberwolfach, at imaginary.org
(texts in German, English, and Spanish).

The latter has developed from a very successful travelling exhibition of math-
ematics images, “IMAGINARY—through the eyes of mathematics,” originally
created on occasion of and for the German national science year 2008 “Jahr der
Mathematik. Alles was zdhlt” [“Year of Mathematics 2008. Everything that
counts”], see www.jahr-der-mathematik.de, which was highly successful in com-
municating a current, attractive image of mathematics to the German public—where
initiatives such as the IMAGINARY exhibition had a great part in the success.

Teaching “What Is Mathematics” to Teachers

More than 100 years ago, in 1908, Felix Klein analyzed the education of teachers.
In the introduction to the first volume of his “Elementary Mathematics from a
Higher Standpoint” he wrote (our translation):

At the beginning of his university studies, the young student is confronted with problems
that do not remind him at all of what he has dealt with up to then, and of course, he forgets
all these things immediately and thoroughly. When after graduation he becomes a teacher,
he has to teach exactly this traditional elementary mathematics, and since he can hardly link
it with his university mathematics, he soon readopts the former teaching tradition and his
studies at the university become a more or less pleasant reminiscence which has no
influence on his teaching (Klein, 1908).

This phenomenon—which Klein calls the double discontinuity—can still be
observed. In effect, the teacher students “tunnel” through university: They study at
university in order to get a degree, but nevertheless they afterwards teach the
mathematics that they had learned in school, and possibly with the didactics they
remember from their own school education. This problem observed and charac-
terized by Klein gets even worse in a situation (which we currently observe in
Germany) where there is a grave shortage of Mathematics teachers, so university
students are invited to teach at high school long before graduating from university,
so they have much less university education to tunnel at the time when they start to
teach in school. It may also strengthen their conviction that University Mathematics
is not needed in order to teach.

How to avoid the double discontinuity is, of course, a major challenge for the
design of university curricula for mathematics teachers. One important aspect
however, is tied to the question of “What is Mathematics?”: A very common
highschool image/concept of mathematics, as represented by curricula, is that
mathematics consists of the subjects presented by highschool curricula, that is,
(elementary) geometry, algebra (in the form of arithmetic, and perhaps polynomi-
als), plus perhaps elementary probability, calculus (differentiation and integration)
in one variable—that’s the mathematics highschool students get to see, so they
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might think that this is all of it! Could their teachers present them a broader picture?
The teachers after their highschool experience studied at university, where they
probably took courses in calculus/analysis, linear algebra, classical algebra, plus
some discrete mathematics, stochastics/probability, and/or numerical analysis/
differential equations, perhaps a programming or “computer-oriented mathematics”
course. Altogether they have seen a scope of university mathematics where no
current research becomes visible, and where most of the contents is from the
nineteenth century, at best. The ideal is, of course, that every teacher student at
university has at least once experienced how “doing research on your own” feels
like, but realistically this rarely happens. Indeed, teacher students would have to
work and study and struggle a lot to see the fascination of mathematics on their own
by doing mathematics; in reality they often do not even seriously start the tour and
certainly most of them never see the “glimpse of heaven.” So even if the teacher
student seriously immerges into all the mathematics on the university curriculum,
he/she will not get any broader image of “What is Mathematics?”. Thus, even if
he/she does not tunnel his university studies due to the double discontinuity, he/she
will not come back to school with a concept that is much broader than that he/she
originally gained from his/her highschool times.

Our experience is that many students (teacher students as well as classical
mathematics majors) cannot name a single open problem in mathematics when
graduating the university. They have no idea of what “doing mathematics” means—
for example, that part of this is a struggle to find and shape the “right”
concepts/definitions and in posing/developing the “right” questions and problems.

And, moreover, also the impressions and experiences from university times will
get old and outdated some day: a teacher might be active at a school for several
decades—while mathematics changes! Whatever is proved in mathematics does
stay true, of course, and indeed standards of rigor don’t change any more as much
as they did in the nineteenth century, say. However, styles of proof do change (see:
computer-assisted proofs, computer-checkable proofs, etc.). Also, it would be good
if a teacher could name “current research focus topics™: These do change over ten or
twenty years. Moreover, the relevance of mathematics in “real life” has changed
dramatically over the last thirty years.

The Panorama Project

For several years, the present authors have been working on developing a course
[and eventually a book (Loos & Ziegler, 2017)] called “Panorama der Mathematik”
[“Panorama of Mathematics™]. It primarily addresses mathematics teacher students,
and is trying to give them a panoramic view on mathematics: We try to teach an
overview of the subject, how mathematics is done, who has been and is doing it,
including a sketch of main developments over the last few centuries up to the
present—altogether this is supposed to amount to a comprehensive (but not very
detailed) outline of “What is Mathematics.” This, of course, turns out to be not an
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easy task, since it often tends to feel like reading/teaching poetry without mastering
the language. However, the approach of Panorama is complementing mathematics
education in an orthogonal direction to the classic university courses, as we do not
teach mathematics but present (and encourage to explore); according to the
response we get from students they seem to feel themselves that this is valuable.
Our course has many different components and facets, which we here cast into
questions about mathematics. All these questions (even the ones that “sound
funny”) should and can be taken seriously, and answered as well as possible. For
each of them, let us here just provide at most one line with key words for answers:

e When did mathematics start?
Numbers and geometric figures start in stone age; the science starts with
Euclid?
e How large is mathematics? How many Mathematicians are there?
The Mathematics Genealogy Project had 178854 records as of 12 April 2014.
e How is mathematics done, what is doing research like?
Collect (auto)biographical evidence! Recent examples: Frenkel (2013), Villani
(2012).
e What does mathematics research do today? What are the Grand Challenges?
The Clay Millennium problems might serve as a starting point.
e What and how many subjects and subdisciplines are there in mathematics?
See the Mathematics Subject Classification for an overview!
e Why is there no “Mathematical Industry”, as there is e.g. Chemical Industry?
There is! See e.g. Telecommunications, Financial Industry, etc.
e What are the “key concepts” in mathematics? Do they still “drive research”?
Numbers, shapes, dimensions, infinity, change, abstraction, ...; they do.
e What is mathematics “good for”?
It is a basis for understanding the world, but also for technological progress.
e Where do we do mathematics in everyday life?
Not only where we compute, but also where we read maps, plan trips, etc.
e Where do we see mathematics in everyday life?
There is more maths in every smart phone than anyone learns in school.
e What are the greatest achievements of mathematics through history?
Make your own list!

An additional question is how to make university mathematics more “sticky” for
the tunneling teacher students, how to encourage or how to force them to really
connect to the subject as a science. Certainly there is no single, simple, answer for this!

Telling Stories About Mathematics

How can mathematics be made more concrete? How can we help students to
connect to the subject? How can mathematics be connected to the so-called real
world?
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Showing applications of mathematics is a good way (and a quite beaten path).
Real applications can be very difficult to teach since in most advanced, realistic
situation a lot of different mathematical disciplines, theories and types of expertise
have to come together. Nevertheless, applications give the opportunity to demon-
strate the relevance and importance of mathematics. Here we want to emphasize the
difference between teaching a topic and telling about it. To name a few concrete
topics, the mathematics behind weather reports and climate modelling is extremely
difficult and complex and advanced, but the “basic ideas” and simplified models can
profitably be demonstrated in highschool, and made plausible in highschool level
mathematical terms. Also success stories like the formula for the Google patent for
PageRank (Page, 2001), see Langville and Meyer (2006), the race for the solution
of larger and larger instances of the Travelling Salesman Problem (Cook, 2011), or
the mathematics of chip design lend themselves to “telling the story” and “showing
some of the maths” at a highschool level; these are among the topics presented in
the first author’s recent book (Ziegler, 2013b), where he takes 24 images as the
starting points for telling stories—and thus developing a broader multi-facetted
picture of mathematics.

Another way to bring maths in contact with non-mathematicians is the human
level. Telling stories about how maths is done and by whom is a tricky way, as can
be seen from the sometimes harsh reactions on www.mathoverflow.net to postings
that try to excavate the truth behind anecdotes and legends. Most mathematicians
see mathematics as completely independent from the persons who explored it.
History of mathematics has the tendency to become gossip, as Gian-Carlo Rota
once put it (Rota, 1996). The idea seems to be: As mathematics stands for itself, it
has also to be taught that way.

This may be true for higher mathematics. However, for pupils (and therefore,
also for teachers), transforming mathematicians into humans can make science
more tangible, it can make research interesting as a process (and a job?), and it can
be a starting/entry point for real mathematics. Therefore, stories can make mathe-
matics more sticky. Stories cannot replace the classical approaches to teaching
mathematics. But they can enhance it.

Stories are the way by which knowledge has been transferred between humans
for thousands of years. (Even mathematical work can be seen as a very abstract
form of storytelling from a structuralist point of view.) Why don’t we try to tell
more stories about mathematics, both at university and in school—not legends, not
fairy tales, but meta-information on mathematics—in order to transport mathe-
matics itself? See (Ziegler, 2013a) for an attempt by the first author in this direction.

By stories, we do not only mean something like biographies, but also the way of
how mathematics is created or discovered: Jack Edmonds’ account (Edmonds,
1991) of how he found the blossom shrink algorithm is a great story about how
mathematics is actually done. Think of Thomas Harriot’s problem about stacking
cannon balls into a storage space and what Kepler made out of it: the genesis of a
mathematical problem. Sometimes scientists even wrap their work into stories by
their own: see e.g. Leslie Lamport’s Byzantine Generals (Lamport, Shostak, &
Pease, 1982).
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Telling how research is done opens another issue. At school, mathematics is
traditionally taught as a closed science. Even touching open questions from research
is out of question, for many good and mainly pedagogical reasons. However, this
fosters the image of a perfect science where all results are available and all prob-
lems are solved—which is of course completely wrong (and moreover also a source
for a faulty image of mathematics among undergraduates).

Of course, working with open questions in school is a difficult task. None of the
big open questions can be solved with an elementary mathematical toolbox; many
of them are not even accessible as questions. So the big fear of discouraging pupils
is well justified. On the other hand, why not explore mathematics by showing how
questions often pop up on the way? Posing questions in and about mathematics
could lead to interesting answers—in particular to the question of “What is
Mathematics, Really?”

Three Times Mathematics at School?

So, what is mathematics? With school education in mind, the first author has argued
in Ziegler (2012) that we are trying cover three aspects the same time, which one
should consider separately and to a certain extent also teach separately:

Mathematics I: A collection of basic tools, part of everyone’s survival kit for
modern-day life—this includes everything, but actually not much
more than, what was covered by Adam Ries’ “Rechenbiichlein”
[“Little Book on Computing”] first published in 1522, nearly
500 years ago;

Mathematics II: A field of knowledge with a long history, which is a part of our
culture and an art, but also a very productive basis (indeed a
production factor) for all modern key technologies. This is a
“story-telling” subject.

Mathematics III: An introduction to mathematics as a science—an important,
highly developed, active, huge research field.

Looking at current highschool instruction, there is still a huge emphasis on
Mathematics I, with a rather mechanical instruction on arithmetic, “how to compute
correctly,” and basic problem solving, plus a rather formal way of teaching
Mathematics III as a preparation for possible university studies in mathematics,
sciences or engineering. Mathematics II, which should provide a major component
of teaching “What is Mathematics,” is largely missing. However, this part also
could and must provide motivation for studying Mathematics I or III!
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What Is Mathematics, Really?

There are many, and many different, valid answers to the Courant-Robbins question
“What is Mathematics?”

A more philosophical one is given by Reuben Hersh’s book “What is
Mathematics, Really?”” Hersh (1997), and there are more psychological ones, on the
working level. Classics include Jacques Hadamard’s “Essay on the Psychology of
Invention in the Mathematical Field” and Henri Poincaré’s essays on methodology;
a more recent approach is Devlin’s “Introduction to Mathematical Thinking” Devlin
(2012), or Villani’s book (2012).

And there have been many attempts to describe mathematics in encyclopedic
form over the last few centuries. Probably the most recent one is the gargantuan
“Princeton Companion to Mathematics”, edited by Gowers et al. (2008), which
indeed is a “Princeton Companion to Pure Mathematics.”

However, at a time where ZBMath counts more than 100,000 papers and books
per year, and 29,953 submissions to the math and math-ph sections of arXiv.
org in 2016, it is hopeless to give a compact and simple description of what
mathematics really is, even if we had only the “current research discipline” in mind.
The discussions about the classification of mathematics show how difficult it is to
cut the science into slices, and it is even debatable whether there is any meaningful
way to separate applied research from pure mathematics.

Probably the most diplomatic way is to acknowledge that there are “many
mathematics.” Some years ago Tao (2007) gave an open list of mathematics that
is/fare good for different purposes—from ‘“problem-solving mathematics” and
“useful mathematics” to “definitive mathematics”, and wrote:

As the above list demonstrates, the concept of mathematical quality is a high-dimensional
one, and lacks an obvious canonical total ordering. I believe this is because mathematics is
itself complex and high-dimensional, and evolves in unexpected and adaptive ways; each of
the above qualities represents a different way in which we as a community improve our
understanding and usage of the subject.

In this sense, many answers to “What is Mathematics?” probably show as much
about the persons who give the answers as they manage to characterize the subject.
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International Comparative Studies
in Mathematics: Lessons and Future
Directions for Improving Students’
Learning

Jinfa Cai, Ida A.C. Mok, Vijay Reddy and Kaye Stacey

Abstract This chapter is based on the Plenary Panel on International Comparative
Studies we delivered at the 13th International Congress on Mathematical Education
(ICME-13) in 2016. In the past a few decades, international comparative studies have
transformed the way we see mathematics education and provide insight for improving
student learning in many ways. Out of several possibilities, we selected four lessons we
have learned from international comparative studies: (1) examining the dispositions
and experiences of mathematically literate students, (2) documenting variation in
students’ thinking in different cultures, (3) appreciating the varying meanings and
functions of common lesson events, and (4) the importance of making global research
locally meaningful. Throughout the paper, we point out future directions for research to
expand our understanding and build up capacity in international comparative studies.

Keywords International comparative studies - Mathematical thinking
Mathematical literacy - Dispositions « Classroom instruction « Contextual factors -
Large-scale studies - Small-scale studies - TIMSS - PISA

This chapter is based on the Plenary Panel at the 13th International Congress on
Mathematical Education. In preparation for the Plenary Panel presentation, we
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published a topical survey (Cai, Mok, Reddy, & Stacey, 2016) that provides further
detail on the issues raised in this chapter. Here, we have summarized four lessons
that international comparative studies provide for improving students’ learning, and
we suggest directions for future work to expand the scope of research and build up
capacity in international comparative studies.

In the past several decades many international comparative studies of mathematics
have been conducted, first to examine differences in mathematical proficiency and
later to examine dispositions among students from different countries and understand
the influence of factors such as curriculum, teacher preparation, the nature of class-
room instruction, home and school resources, and context, including parental
involvement and the organizational structure of education. We use the phrase ‘in-
ternational comparative studies’ to refer to studies involving at least two countries
(using ‘country’ loosely to include significant parts of countries), with the intention of
making comparisons at the country level. Other names in the literature include
cross-national and cross-cultural studies. We include in our definition studies that are
small and large, qualitative and quantitative, and initiatives of government or indi-
vidual researchers. With this definition, we see international comparative studies in
mathematics evolving from informal observations to rigorous measurement of the
outcomes of schooling, and from the examination of factors that contribute to per-
formance differences to the generation and testing of theories and policies. Current
international comparative studies range from small-scale studies involving a few
classes with in-depth analyses to large-scale studies like TEDS (M), TIMSS, and PISA
that have upwards of half a million participants and multiple measured variables.

International comparative studies in mathematics have provided a large body of
knowledge about how students do mathematics in the context of the world’s varied
educational institutions. In addition, they examine the cultural and educational
factors that influence the learning of mathematics and help identify effective aspects
of educational practice in homes, classrooms, schools, and school systems.
Examining the learning of mathematics in other countries helps researchers, edu-
cators, and government policymakers to understand how mathematics is taught by
teachers and how it is learned and performed by students in different countries. It
also helps them reflect on theories, practices, and organizational support for the
teaching and learning of mathematics in their own culture. Stigler, Gallimore, and
Hiebert (2000), themselves researchers conducting international studies, explain the
value of this research on trends over time and context in a more nuanced way:

‘We may be blind to some of the most significant features that characterize teaching in our
own culture because we take them for granted as the way things are and ought to be.
Cross-cultural comparison is a powerful way to unveil unnoticed but ubiquitous practices.
(pp. 86-87)

The highest-profile international comparative studies, such as PISA and TIMSS,
have had a significant impact on thinking about education around the world,
especially related to the broad characteristics of educational systems and govern-
ment policy, of which mathematics is just one of several important components.
The fundamental purpose of large-scale studies like PISA and TIMSS is to meet
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governments’ need for objective evidence to monitor educational outcomes,
demonstrate possibilities, and assist in developing new policies. There is no sign of
a slowing down of international comparative studies either large or small, so the
purpose of this paper is to take a step back and reflect on such studies and the
lessons we can learn from them.

In this chapter, we discuss four of the many lessons we can learn from inter-
national comparative studies for improving students’ learning. We chose these four
lessons in particular because they represent different styles and strands of work in
this area and because they all have the potential to impact students’ learning. The
first two lessons focus on students’ mathematical thinking and achievement. The
third lesson focuses on classroom instruction, and the fourth lesson focuses on
policy and the effect of contextual factors on learning.

Lesson 1: Promoting Students’ Mathematical Literacy

The results of large-scale studies provide many lessons for educational policy
related to overall achievement and its links to instruction and student background
variables. This section tells just one of the many stories that arise from the PISA
2012 survey: What curriculum, experiences, and dispositions promote mathematical
literacy in students? This story shows a side of the PISA survey that is very different
from the country rankings that grab newspaper headlines.

Mathematical literacy, the achievement construct measured by PISA, refers to
the ability to use mathematical knowledge in situations that are likely to arise in the
lives and work of citizens in the modern world. A precise definition is given by the
Organisation for Economic Co-operation and Development (OECD, 2013a, p. 25)
and discussed by Stacey and Turner (2015a). The 2012 PISA survey examined
many aspects of mathematical literacy: the achievement profiles of students across
three processes that are involved in exercising mathematical literacy, the learning
opportunities that contribute to achievement, in-class experiences and dispositions
that influence mathematical literacy, and the effect of classroom experiences with
mathematical literacy on more general student attitudes. This section briefly out-
lines some of the lessons from this work and draws attention to new directions and
research questions for mathematics educators.

Country Profiles of the Processes of Mathematical Literacy

Using mathematics to meet a real-world challenge involves three ‘processes,’
depicted in Fig. 1:

e Formulating situations mathematically (abbreviated to Formulate);
¢ Employing mathematical concepts, facts, procedures, and reasoning (Employ); and
e Interpreting, applying, and evaluating mathematical outcomes (Interpret).
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Fig. 1 The PISA 2012/2015
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literacy in practice (OECD, context problem
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Resultsin Interpret Mathematical
context results

Readers will note the intentional similarity of Fig. 1 to many diagrams depicting
the mathematical modeling cycle. The Formulate process transforms the real-world
challenge into mathematical form by identifying variables and relationships and
making assumptions. The Employ process takes place within the mathematical
world, using the knowledge and skills that form the bulk of school mathematics.
The Interpret process (which, for the purposes of PISA, includes both interpretation
and evaluation of the real-world solution) transforms the mathematical answers
back to the real-world context and judges their real-world adequacy.

PISA 2012 measured the performance of students on each of these three pro-
cesses, revealing, for the first time, interesting country patterns and differences. The
average score for overall mathematical literacy across the OECD was 494, made up
of 492 for Formulate, 493 for Employ, and 497 for Interpret (all standard errors
0.5). Interpret items were the easiest for students, despite the survey design’s
intention to select items to measure each process in such a way that the three overall
means would be the same. As with most studies, PISA 2012 showed that boys have
higher mathematics achievement than girls (OECD average gap 11 scale points).
PISA 2012 located the biggest gap between these two groups (OECD average 16
points) to be on the Formulate items. These and other results in this section are
derived from reports from the OECD (2013b, c).

Top-performing countries are generally Asian, and stereotypes might have
predicted their greatest strength to be in routine procedures and hence in the
Employ process. Surprisingly, however, 9 of the 10 top-performing countries’
highest scores were in Formulate. Figure 2 shows this pattern for the
high-achieving country of Japan (mean 536), contrasting with the patterns of rel-
ative scores for the Netherlands and the United Kingdom. Another interesting result
is that the four highest performing countries’ lowest scores were in Interpret—the
easiest set of items for the worldwide sample.

Other groups of countries showed consistent but different patterns. The
Netherlands (see Fig. 2), Denmark, and Sweden had their highest scores in both
Formulate and Interpret, the two processes where real-world contexts matter.
Non-Asian English-speaking countries (Canada, Australia, New Zealand, United
Kingdom, United States) were relatively stronger in Interpret only. Nine European
countries scored relatively low in Formulate but higher in both Employ and Interpret.
These newly discovered patterns warrant detailed investigation, especially to
investigate links with curriculum and teaching practices (Stacey & Turner, 2015b).
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Fig. 2 Sample of PISA 2012 scores on the three processes of mathematical literacy

What Curriculum Experiences Build Mathematical Literacy?

Since PISA’s construct of mathematical literacy involves mathematics that is likely
to be useful to citizens in all walks of life, it is of interest to know whether a
curriculum produces better mathematical literacy outcomes if it is oriented towards
abstract mathematics or towards its applications. To answer this question, a sample
of PISA students rated how confident they felt about solving a set of mathematics
problems and later rated how frequently they had encountered similar problems in
class. The sample problems included ‘formal’ mathematics items lacking any
context, such as solving a linear equation or finding the volume of a box, and
‘applied’” mathematics items, such as using a train timetable and interpreting a
newspaper graph. The student ratings were used to create measures of confidence
and exposure to applied and formal mathematics' (OECD, 2013b, c).
Performance in PISA 2012 was very strongly related to opportunities to learn
formal mathematics and secondarily to opportunities to learn applied mathematics.
The relationship of PISA performance with exposure to formal mathematics was
linear, but quadratic for applied mathematics. The more frequently students are
exposed to applied mathematics problems, the better is their PISA performance, but
only up to a point—very high exposure is associated with a decline in performance.
This may be an outcome of a tendency to place low-performing students in classes
with a focus on the ‘everyday’ applications of mathematics. PISA data reveals this
relationship but focused studies are needed to provide a causal explanation.
Japan and the Netherlands, both high-achieving countries, show contrasting
patterns of exposure. Students in Japan and other Asian high-performing countries
reported low exposure to applied mathematics and high exposure to formal math-
ematics (OECD, 2013b, c), whereas students in the Netherlands reported high

"The correct name is “index of experience with pure mathematics,” rather than formal mathe-
matics. Confidence is also referred to as self-efficacy. Slightly different constructs in the full
reports are conflated here for brevity.
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exposure to applied mathematics and low exposure to formal mathematics, perhaps
indicating the influence of Realistic Mathematics Education (RME) there. The
Netherlands exposure is consistent with the pattern of mathematical process scores
shown in Fig. 2, but the Japanese pattern is not. Japanese students perceive an
emphasis on formal mathematics but they have nonetheless learned to identify
mathematical relationships within real situations and to create appropriate models.
How this has happened is an important research question.

Students’ Disposition Towards Formal and Applied
Mathematics

PISA 2012 also provided some important lessons about student dispositions.
Dispositions are especially relevant to the current international governmental cli-
mate in which the importance of mathematical literacy to economic well-being is
widely acknowledged, with many countries aiming to entice students into STEM
careers. Figure 3 shows a strong association between students’ reporting of high
exposure to a task and their confidence in solving it. Figure 3 also illustrates a
general finding that confidence is higher for solving formal mathematics problems
than applied problems, at each level of exposure. One explanation is that solving
applied mathematics problems requires both a good understanding of the under-
lying abstract structure as well the ability to analyze the real-world situation—in
other words, it requires the PISA mathematical processes of Formulate and
Interpret, as well as Employ.

Most countries display a gender difference in confidence in mathematics: PISA
2012 located this difference in the applied problems. Figure 4 compares boys’ and
girls’ reported confidence in solving a sample of applied problems (first six column
pairs) and formal problems (last two column pairs; OECD, 2013b). The gender

100 g soive equation

% OECD students confident m Use map scale
to solve task 80 ¢
by level of exposure 6o |
40 +
20 ¢ .
0

Never Rarely Sometimes Frequently
Exposure to task

Fig. 3 Percentage of OECD students reporting confidence in solving a formal problem and an
applied problem (data from OECD, 2013b)
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Fig. 4 Confidence of boys and girls in solving eight problems for all OECD countries, Australia,
and Shanghai

difference is large for applied problems but is not evident for formal mathematics
problems. For example, across OECD countries, 75% of girls reported being
confident or very confident when calculating a 30% discount on a TV (second
column pair), compared to 84% of boys. The two small graphs on the right side of
Fig. 4 show the gender differences for a typical OECD country (Australia) and the
lack of gender differences in Shanghai. These gender gaps for applied mathematics
problems are likely to have an impact on gender differences in achievement and
also on career choices. How can the gender equality of confidence in Shanghai be
made a reality everywhere?

PISA 2012 also linked dispositions to exposure to formal and applied mathe-
matics. Overall, students who reported having been more frequently exposed to
formal mathematics tasks reported more positive engagement, drive, motivation,
and self-beliefs. The same relationship held for applied mathematics tasks, but it
became a very strong relationship when controlling for students’ achievement.
Because of the clear instructional importance, more detailed analyses of the PISA
data and further studies are warranted to better understand the links between dis-
positions, achievement, and exposure to various types of mathematics.

Summary

This section discussed findings from PISA on the curriculum, experiences, and
dispositions that promote mathematical literacy in students. These findings illustrate
the power of large-scale studies to go well beyond providing country rankings to
identify new phenomena worth studying. Better understanding of results such as
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these requires both large- and small-scale research, within and between countries,
looking at standards, curriculum, teaching, learning, and assessment.

Lesson 2: Understanding Students’ Thinking

Over 20 years ago, Bradburn and Gilford (1990) suggested that studies with rela-
tively small, localized samples in a small number of sites can provide useful
international comparisons. They can reveal unique findings beyond the scope of
large-scale studies and also complement large-scale studies by providing deep
understanding about different societies and education systems, thereby enhancing
interpretations and implications. Examples of such small-scale studies are Cai
(1995, 2000), Cai, Ding, and Wang (2014), Ma (1999), Silver, Leung, and Cai
(1995), Song and Ginsburg (1987), and Stevenson et al. (1990).

In Cai et al. (2016), we shared the analysis of two problems to show the value of
such in-depth studies. Here, we provide another example from a study by Cai and
Hwang (2002), in which they examined Chinese and U.S. sixth graders’ mathe-
matical problem solving and problem posing and the relations between them. One
pair of tasks is in Fig. 5.

Doorbell (Problem Solving version)
Sally is having a party.
The first time the doorbell rings, 1 guest enters.
The second time the doorbell rings, 3 guests enter.
The third time the doorbell rings, 5 guests enter.
The fourth time the doorbell rings, 7 guests enter.
Keep on going in the same way. On the next ving a group enters that has 2 more persons
than the group that entered on the previous ring.

Question 1: How many guests will enter on the 10‘h ring? Explain how you found your
answer.

Question 2: In the space below, write a rule or describe in words how to find the number
of guests that entered on each ring.

Question 3: 99 guests entered on one of the rings. What ring was it? Explain or show how
you found your answer.

Doorbell (Problem Posing version)
Text as above with Questions 1, 2. and 3 replaced with the following:
For his student’s homework, Mr. Johnson wanted to make up three problems BASED ON
THE ABOVE SITUATION: an easy problem, a moderate problem. and a difficult
problem. These problems can be solved using the information in the situation. Help Mr.

Miller make up three problems and write these problems in the space below|

Fig. 5 Problem-solving and problem-posing versions of the Doorbell task
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Problem-Solving Results

The U.S. and Chinese students had almost identical success rates (70%) when they
were asked to find the number of guests who entered on the 10th ring (Question 1).
However, the success rate for Chinese students (43%) was significantly higher than
that of the U.S. students (24%) for Question 3 (ring number for 99 guests). The
difference is due to their use of different strategies.

Appropriate solution strategies for Questions 1 and 3 were classified into three
types: abstract, semi-abstract, and concrete. An abstract strategy generally followed
one of two paths: the number of guests who entered on a particular ring of the
doorbell is equal to two times that ring number minus one (i.e., y = 2n — 1, where y
represents the number of guests and n represents the ring number) or the number of
guests is equal to the ring number plus the ring number minus one (i.e., y = n +

[n — 1]). Students used their rule to answer Question 3 (99 guests).

Students who used a semi-abstract strategy made a number of computation steps
to yield a correct answer. Students who used a concrete strategy made a table or a
list or noticed that each time the doorbell rang two more guests entered than on the
previous ring and sequentially added twos to find an answer.

Of the students with appropriate strategies, 44% of the Chinese students and 1%
of the U.S. students used abstract strategies for Question 1. For Question 3, 65% of
Chinese students used an abstract strategy, compared to only 11% for the U.S.
sample. Most U.S. students (75%) chose concrete strategies, compared to 29% of
the Chinese students.

Problem-Posing Results

There were similarities and differences in the kinds of problems generated by the
two samples. In general, as students in both samples moved towards generating
problems of greater difficulty, they tended to move away from posing problems
solely about the given information. By far the least common problem types for both
groups were those based on reversed thinking (e.g., find ring number given number
of guests, as in Question 3, or find total number of rings for a given total number of
guests). Chinese students, however, were much more likely to pose problems
involving only the given information. U.S. students posed more extension problems
than did Chinese students, and a smaller percentage U.S. students (29%) posed no
extension problems compared to Chinese students (41%). Similarly, more U.S.
students (31%) than Chinese students (21%) posed only extension problems.

The most frequently generated types of problems differed between the two
samples. The most frequently generated problems for U.S. students involved
finding the number of guests at a particular ring for the easy and moderate prob-
lems, and computing the total number of guests after a specific ring for the difficult
problem. In contrast, the most frequently generated problems among Chinese
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students were non-extension problems (e.g., How many guests entered on the fourth
ring?) for the easy problem, and problems asking for the number of guests entering
on a ring beyond the fourth ring for moderate and difficult problems.

Summary

Scores arising from large-scale studies are useful for providing an overall picture of
students’ performance in mathematics and enable rigorous statistical examination of
patterns and relationships among variables, including those which may predict
students’ learning outcomes. However, scoring on the basis of correctness alone
conceals some important aspects of students’ performance. The results above
demonstrate that different students can use different strategies to obtain the same
score. Such important differences in students’ mathematical thinking may reflect
differences in teachers’ beliefs and instructional practices (e.g., Cai et al., 2014; Cai
& Wang, 2010). In order to provide the education community with a deeper
understanding of the teaching and learning of mathematics, it is essential for
international comparative studies to provide in-depth evidence of students’ thinking
and reasoning, including the qualitative analysis of solution strategies, mathemat-
ical errors, mathematical justifications, and representations (Cai, 1995).

Lesson 3: Changing Classroom Instruction

Complementary Roles of the TIMSS Video Study
and the Learner’s Perspective Study

This section draws upon the work of two studies of teaching practice, the TIMSS
Video Study and the Learner’s Perspective Study (LPS). By zooming in on these
two studies, we discuss what we may learn from international comparative studies
concerning classroom instruction. The first TIMSS Video Study took place in 1995
(Stigler & Hiebert, 1999) and the over-arching conclusion, reported in The
Teaching Gap (Stigler & Hiebert, 1999), was that teaching is a cultural activity. The
follow-up TIMSS 1999 Video Study (Mathematics) compared teaching practices in
the U.S. with six countries that showed higher performance in TIMSS: Australia,
the Czech Republic, Japan, the Netherlands, Switzerland, and Hong Kong (Hiebert
et al., 2003). Taking the stance that teaching is a cultural activity, the study aimed to
build a picture of what typical teaching looked like in different countries and to give
researchers and teachers the opportunity to discover alternative ideas about how
mathematics might be taught (Stigler & Hiebert, 2004).
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LPS (Clarke, Emanuelsson, Jablonka, & Mok, 2006) was designed to examine
the practices of eighth grade mathematics classrooms in an integrated, compre-
hensive way. The project has now developed into a research community in
Australia, China, the Czech Republic, Finland, Germany, Israel, Japan, Korea, New
Zealand, Norway, the Philippines, Portugal, Singapore, Slovakia, South Africa,
Sweden, the United Kingdom, and the U.S. LPS juxtaposes the observable practices
of the classroom and meanings attributed to those practices by teachers and stu-
dents. Instead of aiming for a representative national sample as the TIMSS Video
Study did, LPS aimed to understand what might be made possible by competent
teachers, locally recognized as such.

Lesson Structures and Lesson Events

The TIMSS Video Study explored lesson structures via the coding of processes like
reviewing, demonstrating the problem for the day, practicing and correcting seat-
work, and assigning homework (Stigler & Hiebert, 1999), aiming to present a
typical “average” lesson for international comparison. LPS used the coding of the
TIMSS Video Study to explore patterns of lesson structures of a sequence of
consecutive lessons. The findings indicated that the teachers documented in LPS
showed little evidence of a consistent lesson pattern, but instead appeared to vary
the structure of their lessons purposefully across a topic sequence.

Another viable unit for comparison employed by LPS was the “lesson event,”
characterized by a combination of form (visual features and social participants) and
function, such as intention, action, inferred meaning, and outcome (Clarke et al.,
2006; Clarke, Keitel, & Shimizu, 2006). For example, Kikan-Shido (also known as
between-desk instruction or seatwork) had a recognizable structural form evident
across all classrooms in all countries. However, the findings suggested that the
Kikan-Shido lesson events in Shanghai, German, and Japanese lessons had unique
emphases:

e Shanghai lessons: correcting errors, encouraging students to think further
(Lopez-Real, Mok, Leung, & Marton, 2004)

e German lessons: questioning to stimulate student mathematical thought (Clarke
et al., 2006)

e Japanese lessons: eliciting students’ mistakes, their puzzlement, and their
opposing solutions; pointing out different solutions or difficulties and giving
explanations; and making their way of thinking visible to the group (Hino,
2006)

Overall, the findings from the LPS study suggested reasons additional to those
identified in the TIMSS Video Study about why the enactment of Japanese lessons
differed from other countries (Mok, 2015).
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Multiple Accounts of a Teacher’s Practice

Another advantage of the LPS data set is that it allows researchers to reconstruct
multiple accounts of classroom scenarios by combining data from all of the lesson
materials, including videos, student interviews, and teacher interviews, thereby
providing the opportunity to study the practice of a particular teacher in a specific
cultural system in depth. For example, an explanation has been sought for the
“Asian Learner’s Paradox,” which refers to the seemingly contradictory phe-
nomenon of outstanding student performance in Asian regions but reports of
classroom environments being non-conducive to learning, with characteristics such
as directive teaching and large classes (Watkins & Biggs, 2001). Mok (2006)
analyzed the LPS data of a Shanghai teacher. To illustrate the teacher’s skillfulness,
a lesson episode about the train-ticket problem is depicted in Fig. 6.

A student, Dora, who first solved the problem mentally, was invited to share her
solution with the class. Dora’s answer was arithmetic and intuitive in nature, and
was immediately followed by the teacher’s paraphrasing with an emphasis on the
idea of subtraction. Following this, the teacher asked the class to do the problem
again using equations, writing the Equations 3x + y = 560 and 3x + 2y = 640 and
obtaining the answer by subtracting one equation from the other. Mok’s (2006)
analysis showed that the teacher had created three levels of contrasts to support a
deep understanding of the problem. The first level of contrast is between Dora’s
answer and the teacher’s paraphrase, the second level between the arithmetic
method and the equation method, and the third level between the equation-solving
methods of subtracting equations (elimination) and substitution. Mok argued that
the lesson was by no means spontaneous, but rather represented a synthesis based
on that experienced teacher’s understanding of a pedagogical framework of vari-
ation that was well established in his region (Experimenting Group of Teaching
Reform in Mathematics in Qingpu County, Shanghai, 1991). The strong teacher
guidance in the lesson arose from the teacher’s interpretation of student-
centeredness, which was different from its interpretation in Western education
communities. The teacher saw himself as non-traditional and made use of his
understanding of his students in order to create a planned experience for them with

Train Ticket Problem

Xiu-min and his family went to Beijing for a holiday. They booked 3 adult tickets and 1
student ticket, costing a total of 560 dollars. His classmate Xiu-wang, learning this,
decided to join Xiu-ming’s family for the trip. Consequently, they bought 3 adult tickets
and 2 student tickets, costing a total of 640 dollars. Please calculate the cost of 1 adult
ticket and the cost of 1 student ticket.

Fig. 6 Train ticket problem
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minimal side-tracking (Mok, 2006). The conceptions of this teacher and his per-
formance in the lesson were quite consistent with the findings of another study that
compared conceptions of effective teaching between Chinese and U.S. teachers. Cai
and Wang (2010) suggested that the constraints of content coverage, teaching pace,
and large class size affected teaching flexibility and student-centeredness.

Lessons for the Implementation of Mathematical Tasks

Both the TIMSS Video Study and LPS classified mathematical problems as “using
procedure” problems (success requiring only a memorized procedure or algorithm)
and “making connections” problems (success requiring the establishment of rela-
tionships between ideas, facts, and procedures and engagement in mathematical
reasoning). The TIMSS Video Study showed that all of the countries except Japan
used more “using procedure” problems than “making connections” problems. In
this way, the U.S. was not different from higher-achieving countries in the kinds of
problems that teachers presented to students. What or where was the difference?
The videos of each country revealed some interesting cultural activities. For
example, lessons in the Netherlands frequently used calculators and real-world
problem scenarios, and Japanese students spent on average a longer time working to
develop their own solution procedures for problems that they had not seen before.
In all of the high-performing countries except Australia the teachers implemented a
higher percentage of “making connections” problems as “making connections”
problems than did U.S. teachers. In contrast, U.S. teachers changed “making
connections” problems to “using procedures” problems, thereby lowering the
cognitive demand of the problems (Roth & Givvin, 2008; Stigler & Hiebert, 2004).

LPS team members have also made some significant achievements in studying
the use of mathematical tasks in classroom instruction (Shimizu, Kaur, Huang, &
Clarke, 2010). For example, Huang and Cai (2010) found that LPS teachers from
the US and China were willing to implement cognitively demanding tasks in their
lessons, yet the Chinese teachers were more frequently able to sustain the cognitive
demand of the mathematical tasks during implementation. Mesiti and Clarke (2010)
analysed the mathematical tasks in the LPS data from China, Japan, and Sweden
and concluded that the classroom performance of a task was ultimately a unique
synthesis of task, teacher, students, and situation.

Summary

To conclude, the two international comparative studies discussed in this section
played complementary roles in contributing to the understanding of classroom
instruction. The TIMSS Video Study, building upon the tradition of large-scale
surveys of national samples, suggested seeing teaching as a cultural activity. LPS
compared mathematics lessons through analysis of lesson events during a sequence
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of lessons and included the perspectives of the teacher and the learners. Although
teachers in different cultural systems spent time on the same lesson event, they
might in fact have been carrying out the activities with different meanings and
functions. The attempt to explain the Asian Learner’s Paradox is an example of how
the investigation of an effective case might take into account many constraints (such
as examination orientation, content coverage, teaching pace, and large class size in
a specific cultural system) and culturally-rooted clues (such as the teacher’s con-
ceptions and beliefs, students’ expectations, the locally-implemented pedagogical
framework). Lastly, seeking a common language for comparison has a specific
implication for understanding effective instruction in different cultures. Both the
TIMSS Video Study and LPS have chosen tasks as a theme for comparison.
Different kinds of tasks play different roles in the agenda of effective classroom
instruction; nonetheless, how the teacher sustains the intended roles of the tasks
during implementation is important.

Lesson 4: Making Global Research Locally Meaningful—
TIMSS in South Africa

This lesson illuminates how a country can find its own voice in using international
comparative studies to extend to analyses that are meaningful for the local agenda.
South Africa is characterised as a country with high levels of poverty, inequality,
and unemployment. These characteristics have an impact on the quality of educa-
tion and become both determinants and outcomes of the level of development of the
country.

As expected in unequal societies, there are high levels of variation between
schools. While many countries focus on interventions inside classrooms to improve
subject matter knowledge and achievement scores, low-income countries have to
focus on two challenges. On the one hand they have to focus on what happens
inside the classroom to improve teachers’ and students’ mathematical knowledge.
On the other hand they must identify the effects of the many contextual factors and
conditions that influence educational achievement. In this section we share expe-
riences of using the TIMSS achievement data sets and information on South Africa
to inform educational policy.

Mathematics Achievement Trends Over 20 Years

Participation in TIMSS 1995 provided the first indicative estimate of national
mathematics and science achievement for South Africa. This was followed by the
widely publicized results for TIMSS 1999, which lamented the low South African
scores and the rank order which placed South Africa last in the set of 38
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participating countries. This international comparison catalysed a debate about
educational performance in South Africa and involved many sectors of society—
politicians, policymakers, academics, teachers, and the public. Newspaper headli-
nes in South Africa asserted, for example, that ‘South African pupils are the dunces
of Africa’ (Sunday Times, 16 June 2000) or that South African students were the
‘Bottom of the class in maths’ (Sunday Times, 14 October 2001). Low mathematics
performance and country rank were repeated again in TIMSS 2003. The newspaper
headlines and reaction from politicians and policymakers echoed those following
TIMSS 1999, but the challenge for research was to embark on deeper analysis and
extend the story to one which could provide policy directions.

An important but overlooked finding from the TIMSS analysis was the range of
performance between the Sth and 95th percentiles of performance. Of all the
countries participating in TIMSS 2003, South Africa had the widest range of scores
between these two percentiles. This wide range led to the characterization that there
were two systems of education in the country and that the performance scores in
TIMSS were reflective of wide disparities in society and in schools.

The story of South African performance cannot be told through a single national
score but through appropriate disaggregation. The disaggregation of the achieve-
ment scores revealed a strong correlation between socioeconomic status and
achievement scores. Africans, who were most disadvantaged by the apartheid
policies, had the lowest performance. African schools are located in areas where
most Africans live and these areas have high levels of poverty and unemployment.

South Africa’s participation in TIMSS 2011 provided an opportunity to measure
the changes in educational performance since 1995. TIMSS was the only study that
provided a scientifically rigorous methodology to measure trends over the previous
20 years. Analysis of the four rounds of TIMSS participation showed that the
average national mathematics score remained the same over the years 1995, 1999,
and 2003 (Reddy, Van der Berg, Janse van Rensburg, & Taylor, 2012). In contrast,
from 2003 to 2011 the national average mathematics score increased by 63 points
(see Fig. 7). The increases over the last two cycles of TIMSS can be translated to
say that overall student performance, though still low, has improved by one and a
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Fig. 7 Trends in mathematics achievement for TIMSS 1995, 1999, 2003, and 2011
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half grade levels. In 2011, the range of mathematics scores decreased, suggesting
that the country is progressing (albeit slowly) towards more equitable educational
outcomes.

Contextual Factors Influencing Educational Achievement

We need to go beyond the achievement scores to investigate the factors that
influence mathematical performance. The results of our analyses confirmed the
effects of home and school socioeconomic factors. As expected, students who speak
the language of the test at home are more likely to achieve higher scores than those
who do not.

We explored the effects of two contemporary South African factors on
achievement—gender and school violence—and found new complexities in the
schooling experience of South African boys and girls. On average, across South
Africa, gender differences in mathematics scores were small or non-existent. We also
probed students about their attitudes towards mathematics and found that mathe-
matics mattered to both boys and girls. A particularly worrisome finding was the
level of indifference among boys about their education. Boys were found to have
lower aspirations about their academic careers, showed less interest in mathematics,
and engaged less often with an adult regarding their school work. The link between
negative attitudes and weak performance was stronger for boys than for girls.

The second factor we explored was the extent of violence in South African
schools and its effect on mathematics achievement. Although concerns about school
safety are increasing internationally, violence in schools is considered more serious
in South Africa than elsewhere. The degree of school safety largely depends on the
type of school that learners attend. We found that children attending public schools
experienced more frequent threats of violence than children attending independent
schools. The socioeconomic status of students is an indicator for potential exposure
to acts of violence, with higher chances of being bullied regularly for students from
poor families. There is a higher frequency of bullying for boys than for girls who
attend schools with similar characteristics. Schools where there are fewer discipline
or safety problems achieve better results, but this relationship is dependent on the
size of the school.

Student Progression and Pathways Through
Secondary School

In addition to concerns about low mathematics achievement, there is also concern
about progression through secondary schools. We analysed the pathways and
performances in mathematics of secondary school students in South Africa using a
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Table 1 Educational pathways of students in the South African Youth Panel Study

Smooth Staggered Stuck Stopped

Neat, Learners in school for all Learners in school for all Individuals who
year-on-year 4 years of SAYPS, who 4 years of SAYPS, but leave school before
grade make some grade stuck in grade 9 or 10 final data
progression progress but have at for three or more periods | collection and do
through least one episode of not return

school grade repetition

panel-like data set of Grade 8 students who participated in TIMSS 2003 and were
tracked to Grade 12 examination data sets. Firstly, students who began with similar
Grade 8 mathematics scores had different educational outcomes 4 years later.
Secondly, in middle class schools, Grade 8 mathematics scores were a good indi-
cator of who would pass the exit level examination in Grade 12, but this rela-
tionship was not as strong in schools for poorer students. Thirdly, there was a
stronger association between TIMSS Grade 8 mathematics scores and subject
choice of secondary school mathematics in middle class schools than in poorer
schools. Fourthly, there was a strong correlation between mathematics performance
at Grade 8 and the exit level examination. Overall, this study adds to the body of
evidence that suggests that to improve educational outcomes, the policy priority
should be to build foundational knowledge and skills in numeracy.

To extend our understanding of the pathways and transitions followed by South
African youth, the longitudinal South African Youth Panel Study (SAYPS) was
initiated, with the first annual data collection wave in 2011. SAYPS followed Grade
9 learners who participated in TIMSS 2011 for 4 years to explore their educational
transitions. We found that students followed one of four educational pathways
(Table 1) through secondary school.

Almost half of the sample (47%) followed the smooth pathway while 39%
followed a staggered pathway and 14% were either stuck or stopped. There is a
predictable story of ‘advantage begetting advantage’ for students who experience a
smooth pathway: With higher than average TIMSS scores and better-educated
parents, these students come from homes with more books and have positive
attitudes about school. Our analy