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Students are often advised to visualise when they are stuck on a problem as a way of generating new 
ideas. However, visualisation can also help students generalise mathematical discoveries and 
communicate mathematical ideas. This paper describes how the nature of students’ visualisation can 
change depending on the purpose for which it is used. A pair of participants used embodied 
visualisation methods while trying to discover maxima and minima in an antiderivative problem. 
Their visualisation techniques changed to encourage more local analysis when they began 
generalising a rule for discovering maxima and minima. Then, they developed a simple visualisation 
tool to communicate their rule to layperson clients. The study highlights the need for students and 
teachers to be aware of the different mathematical purposes for which visualisation can be used, and 
the kinds of semiotic systems that are appropriate in each case.  
 
Visualisation; calculus; mathematical discovery; generalisation; communication.  

INTRODUCTION 
Visualisation is often considered to be a generative activity that helps us develop new 
insights. Students solving mathematics problems are often encouraged to visualise during 
the initial stages of their problem solving activity by using diagrams, graphs and gestures to 
discover mathematical patterns and relationships (Tall, 2004). When it comes to 
generalising their discoveries and communicating their findings, students are usually 
encouraged to use more formal kinds of semiotic systems such as written language, 
mathematical symbol notation and algebra. Yet visualisation can play a productive role in 
these latter stages of mathematical problem solving, just as it does in the earlier stages.  
This paper describes a case study of a pair of participants, who use visualisation to discover, 
generalise and communicate a rule for determining whether an x-axis intercept on a gradient 
graph of a function corresponds to a maximum or a minimum on a graph of the original 
function. As the reasons for visualising changed, so did the kinds of semiotic systems they 
employed. The case study demonstrates that the nature of students’ mathematical 
visualisation can vary according to the purpose for which it is used.    



Last names of authors, in order on the paper 

  
Abcde+3 ICME-12, 2012 

VISUALISATION IN CALCULUS 
Visualisation has been promoted as a powerful tool for enhancing students’ conceptual 
understanding of calculus. Researchers caution that overemphasising algebraic procedures 
in calculus can lead to students applying rules without understanding their meaning 
(Aspinwall, Shaw & Presmeg, 1997; Thompson, 1994). Modern calculus reform 
movements (for example, Hughes-Hallet et al., 2002) advocate teaching calculus using 
graphical and visual representations in addition to the algebraic and numerical 
representations that are often heavily favoured in practice. Eisenberg and Dreyfus (1991) 
argue that the overemphasis on algebraic techniques in teaching has led to students being 
reluctant to use graphical or visual techniques to solve calculus problems, even when the 
problems are presented visually. Instead, students typically resort to more familiar algebraic 
methods, despite the problem being much simpler to solve through visualisation.  
Two studies have explored students’ visualisation of antiderivative graphs from functions 
presented graphically. Berry and Nyman (2003) found that students who exhibited an 
algebraic symbolic view of calculus had trouble constructing antiderivative graphs within 
the graphical domain. However, when they experienced the “physical feel” of “walking” a 
displacement time graph using graphic calculators, they developed a deeper understanding 
of the relationships between a graph of a function and a graph of its antiderivative. Another 
study (Haciomeroglu, Aspinwall & Presmeg, 2010) presented students with derivative 
graphs, and observed the visual and analytical techniques that the students used to sketch 
the corresponding antiderivative graphs. They found that students who synthesised both 
visual and analytical approaches were more adept at the task than those who favoured one 
approach exclusively. These studies suggest that visualisation can help students to 
understand relationships between a function and its antiderivative in the graphical domain.  

THEORETICAL FRAMEWORK: SEMIOTIC SYSTEMS  
This paper uses the framework of semiotic systems (Ernest, 2006; Arzarello, Paola, Robutti 
& Sabena, 2009) to analyse students’ visualisation. Ernest defines a semiotic system as 
consisting of three components: 

First, there is a set of signs, each of which might possibly be uttered, spoken, written, drawn, or 
encoded electronically. Second, there is a set of rules of sign production, for producing or 
uttering both atomic (single) and molecular (compound) signs… Third, there is a set of 
relationships between the signs and their meanings embodied in an underlying meaning 
structure. (Ernest, 2006, p. 69) 

The above excerpt emphasises that a semiotic system is more than just an individual sign 
taken in isolation—it is a system of related signs that are linked in their production and in 
the way they give rise to meaning. Arzarello et al. (2009) point out that a semiotic system 
may draw on many different modes, including:  

…words (orally or in written form); extra-linguistic modes of expression (gestures, glances,…); 
different types of inscriptions (drawings, sketches, graphs,…); various instruments (from the 
pencil to the most sophisticated information and communication technology devices); and so on. 
(p. 97) 

Furthermore, a semiotic system may also include multiple linked mathematical 
representations, such as tables, graphs, formal symbols, diagrams and so forth. Thus, the 
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framework of semiotic systems requires one to examine the connections between different 
sets of signs produced in different modes, and within different mathematical 
representations. When applied to analyses of students’ visualisation activities, the 
framework encourages researchers to focus not only on semiotic systems produced through 
modes and representations commonly associated with visualisation, such as gestures, 
diagrams and graphs, but also on the written and spoken words and symbols with which 
they are linked.  

THE ANTIDERIVATIVE TASK 
The antiderivative problem used in the study was set in the context of tramping (a term used 
in New Zealand to describe hiking), and was created using Model Eliciting Activity design 
principles (Lesh, Hoover, Hole, Kelly, & Post, 2000). Accordingly, it begins with a 
newspaper article that describes how a person died while tramping a dangerous track 
because he was misled by the track’s vague difficulty rating, and calls for tracks to be 
described more carefully in terms of how steep they become. Afterwards, participants are 
given warm-up activities in which they calculate gradients of a given distance-height graph 
of a tramping track, and then sketch the gradient graph (derivative) of the track. This sets up 
the problem statement, which asks participants to design a method that can be used to find 
the distance-height graph of any tramping track from its gradient graph. Students are asked 
to explain their method in the form of a written letter to hypothetical clients, the O’Neills, 
and to apply their method to find features of a specific track whose gradient graph is given 
in Figure 1.  
 

  
Figure 1: The tramping problem and the graph of the tramping track’s gradient 

This task is mathematically equivalent to creating instructions for finding the graphical 
antiderivative of a function presented graphically. However, the task doesn’t mention the 
term “antiderivative”, nor does it require formal prior knowledge of antiderivatives. In order 
to encourage students to reason visually, the gradient graph is intentionally given without a 
scale on the vertical axes, so that students are not inclined to compute the values of the 
distance-height graph numerically. Similarly, the function of the gradient of the track is 
presented graphically without an algebraic formula, and is not an immediately recognisable 
function (such as a quadratic, cubic, or sin or cosine function). These measures were taken 
to discourage students from solving the question algebraically.  

METHOD 
The participants in this study were two female New Zealand secondary school mathematics 
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teachers: Ava and Noa. Both teachers had studied calculus, but neither had taught it at the 
Year 13 level (the last year of secondary school in New Zealand). In this study, Ava and 
Noa functioned as students working on calculus tasks for their own professional 
development, rather than as teachers teaching in a classroom. The data were collected as 
part of a larger study that looked at students’ construction of calculus concepts (see 
acknowledgements). 
Ava and Noa worked together on the tramping problem for an hour in the presence of a 
researcher who clarified the task instructions but refrained from directing them 
mathematically. Their work on the problem was videotaped and audiotaped to produce 
verbal transcripts, which were then annotated to include the gestures and nonverbal cues 
that Ava and Noa performed during the problem. The annotated transcripts were then coded 
to identify: the semiotic systems Ava and Noa created using drawings, symbols, graphs, 
speech, written language, and gestures; the mathematical relationships, objects and 
properties that Ava and Noa described through these semiotic systems; the goals Ava and 
Noa set for themselves during the course of the problem. The author performed the initial 
coding. Two research assistants then used the same coding schemes to code parts of the 
annotated transcript independently (see acknowledgements). These were compared with the 
author’s codes, and consensus was reached on how to revise the coding.   
The tramping problem led Ava and Noa to engage with a number of mathematical concepts 
such as maxima and minima, points of inflection and the area under the curve and its 
relationship to vertical displacement. In order to compare visualisation in three stages of 
problem solving, I restrict my focus to the first of these concepts, which was the 
development of rules for finding maxima and minima in antiderivative graphs. The task 
called for students to deal with maxima and minima properties of antiderivative graphs in 
three ways. First, the students were required to describe the tramping track (the 
antiderivative)—consequently, they had to discover the maxima and minima for the given 
track. They were also required to generalise their method for finding graphs of any tramping 
tracks and identify the maxima and minima from any gradient graph. Finally, they were 
asked to communicate their generalised method in the form of a nontechnical written letter 
to layperson clients. 

VISUALISATION IN THREE STAGES OF MATHEMATICAL PROBLEM 
SOLVING 
Ava and Noa engaged in visualisation during three stages of mathematical problem solving: 
while discovering, generalising, and communicating maxima and minima properties of 
antiderivatives. In each case, Noa initiated the semiotic systems that were associated with 
visualisation, and Ava copied and appropriated them.  

1. Visualising while discovering maxima and minima 
Noa (and later Ava too) used gestures to visualise the slope of the tramping track by tracing 
with her right hand finger along the curve of the gradient graph (in Figure 2a) and 
performing gestures with her left hand to describe the corresponding gradient of the 
tramping track (see Yoon, Thomas & Dreyfus, 2011 for more detail on the gestures). Figure 
2b shows the trace of Noa’s gestures, which has been superimposed onto the snapshot 
image. The following excerpt describes how Noa takes into account the direction and 



Last names of authors in order as on the paper 

 
ICME-12, 2012 abcde+2 

changing steepness of the slope indicated in the gradient graph to gesture the shape and 
slope of the track. This excerpt only describes the gestures that correspond to sections 2-4 
on the gradient graph (in Figure 2a), but Noa had previously performed similar gestures for 
the first section also. 

Noa: It’s quite gentle gradient, getting steeper gradient to the point where it is the 
hardest gradient and then it starts levelling off and getting easier again (traces 
finger along section 2 in the gradient graph shown in Figure 2a and gestures 
corresponding negative gradients) until you get to like a bottom (points to 3 on 
Figure 2 and gestures a flat gradient). And then we start going back up (traces 
finger along section 4 on Figure 2 and gestures a positive gradient as shown in 
Figure 2b). 

 
Figure 2: (a) Noa traces her finger along sections of the gradient graph. (b) Noa gestures the 

slope of the tramping track 
As the excerpt shows, Noa describes the journey along the tramping track from the point of 
view of walking the track herself. She takes into consideration the continuously changing 
y-values of the gradient graph, and varies the tilt of her hand smoothly to reflect the 
corresponding changes in the track’s gradient. While visualising the track thus, she 
encounters maxima and minima on the tramping track—not by deducing their presence 
from basic principles, but by noticing them as they occur, much like trampers would notice 
the summits and valleys while walking the terrain of the track. Ava and Noa then convert 
their gestures of these maxima and minima into a graph of the track shown in Figure 3.   
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Figure 3. Ava and Noa’s graph of the tramping track 

2. Visualising while generalising a rule for finding maxima and minima  
After drawing the graph, Ava asks Noa “how are we going to generalise that?” At this point, 
Noa shifts her attention from discovering maxima and minima by encountering them while 
visualising the track as a whole, to examining more closely the mathematical properties that 
give rise to maxima and minima. She compares the incidence of maxima and minima in the 
graph of the tramping track they have drawn, with the behaviour of the gradient graph 
immediately before and after the corresponding x-axis intercepts.  

Noa: I was just wondering if we were going to be able to say, the first one, you know, 
when it goes from a positive (points to positive segment above point 1 in Figure 
4a) to a negative (points to negative segment below point 1), that’s going to be a 
maximum (points to point 1), when it goes from negative (points to negative 
segment below point 2) to positive (points to positive segment above point 2), 
that’s going to be a minimum  (points to point 2).  

   
Figure 4: (a) Noa points to the positive and negative segments of the graph adjacent to the 

two x-axis intercepts. (b) Noa’s drawing of a curve. 
Noa notices that in the gradient graph they were given, a change from positive to negative 
y-value corresponded to a maximum in the track, whereas a change from negative to 
positive y-value corresponded to a minimum in the track, and she wonders whether this 
pattern applies to any gradient graph. She then draws a new curve with two local maxima 
and one local minimum (Figure 4b) to explore the behaviour of peaks more generally. She 
reasons: 

Noa: For that to be a peak (points to first maximum in the curve in Figure 4b) and not 
just a variation in the positive gradient – an actual peak, it has to have a 
downhill (points to the downhill section to the right of the first maximum in 
Figure 4b). So you will have to cross over (traces with her finger, a curve 
crossing over an x-axis on the gradient graph in Figure 4a)… from above to 
below. 

Here, Noa generalises a rule: A peak in a graph will occur at the corresponding x-value 
where its gradient graph changes from positive to negative y-values. Interestingly, she 
describes the change from positive to negative y-value in the gradient graph as an embodied 
experience of crossing over the x-axis, similar to the embodied experience of walking the 
track. Ava agrees, and applies the generalisation back to the gradient graph they were given, 
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saying, “if it goes from positive to negative then it’s a maxima”, while analysing the 
behaviour around point 1 on Figure 4a. Ava and Noa’s focus shifts away from considering 
the continuous variation in the y-value of the gradient graph to considering the discrete 
changes in the y-value (positive to negative) and the corresponding change in the track’s 
direction.  

3. Visualising while communicating a general method for finding maxima and minima 
Towards the end of the activity, Ava and Noa switch back and forth between generalising 
the method and communicating their method to the O’Neills—the layperson clients 
described in the problem statement. Initially, Ava writes the following instruction to the 
O’Neills: “Find where the graph cuts the horizontal axis. This is either a valley or a peak!” 
She reflects on the vagueness of this instruction saying, “That’s very helpful [laughter], 
you’re either up high or you’re down low. You’ll know when you’re there.” Her sarcasm 
suggests that she is aware of the inadequacy of these instructions, and that they need clearer 
directions on how to identify peaks and valleys from the gradient graph, rather than relying 
on the O’Neills identifying them experientially.  
Noa constructs a visual tool for communicating to the O’Neills the maxima/minima rule that 
they had previously generalised. She suggests they tell the O’Neills to draw a rough sketch 
of the track first, showing uphill, flat and downhill portions of the track. She demonstrates 
this by drawing straight lines on the graph of the tramping track they had drawn (see Figure 
5), which correspond to positive, zero, and negative gradients. This rough sketch only 
describes the direction of the track’s slope, and ignores many of the other features they had 
considered previously, including the variation in the track’s steepness and the height of 
valleys and summits. Nevertheless, the simplicity of the sketch makes it a compelling, 
visual tool that the O’Neills can use to identify the location of summits and valleys easily.  

 
Figure 5. Noa draws straight lines on the graph of the tramping track, indicating positive, 

negative and zero gradients. 

DISCUSSION 
Although Ava and Noa drew heavily on visualisation throughout the activity, the nature of 
the visualisation they used varied depending on the purpose for which it was employed. 
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While they were engaged in discovering maxima and minima on the antiderivative graph, 
their visualisation took the embodied, contextual form of gestures, which simulated the 
experience of actually walking along the track. These gestures enabled them to imagine the 
physical exertion involved in walking up or down a hill, to notice the continuous variation 
in the incline, and to encounter summits and valleys along the way. This “physical feel” is 
similar to what Berry and Nyman (2003) described when observing students use graphic 
calculators to make sense of gradient graphs in the context of speed. In both instances, the 
students’ visualisations enabled them to imagine and experience the physical feelings 
associated with the contexts in which the gradient graphs were set.  
The nature of Ava and Noa’s visualisation changed when they began to generalise a rule for 
determining whether an x-axis intercept in a gradient graph corresponded to a maximum or 
a minimum in the original graph. Previously they had visualised the entire tramping track, 
but their attention turned toward the behaviour of the gradient graph (and the tramping 
track) immediately before and after the x-axis intercepts. In order to focus their attention on 
this narrower set of mathematical objects and relationships, they drew a portion of a 
tramping track (Figure 4b) that emphasised maxima and minima, and began pointing at 
small regions of the gradient graph surrounding x-axis intercepts. These semiotic systems 
enabled them to shift their structure of attention (Mason, 2004) from the global graph to the 
local behaviour of the track and its gradient graph in these smaller regions. In doing so, they 
focused less on the continuous variation in the gradient, and more on the discrete change in 
the sign of the gradient, which formed the foundation of their rule for determining maxima 
and minima.  
Ava and Noa continued to visualise discrete components of the tramping track when their 
goals changed from generalising a rule for determining maxima and minima, to 
communicating that rule to layperson clients. The sketch of uphill, downhill and flat 
sections constituted a simple tool for visualising the peaks and valleys in the track. Again, 
the semiotic systems used are indicative of the shift in attention: whereas the gestures used 
during the discovery phase led to a graph of the complete track (Figure 3), the rough sketch 
in the communication phase (Figure 5) distilled only those components of the track that 
would help the clients identify maxima and minima. Both semiotic systems are graphs of 
the track, but they focus on different mathematical features of the track, due to the different 
purposes for which they are built. In the first instance, the detailed accuracy of the drawing 
(and gestures) was important for discovering maxima and minima in the track, as it was the 
faithful simulation of the experience of walking the track that counted as evidence of 
maxima and minima in the track. Once the general rule had been developed, however, that 
faithful accuracy was deemed unnecessary for convincing clients of the presence of maxima 
and minima. It became more important to develop a simple way of visualising the maxima 
and minima, and the rough sketch was more appropriate for this goal.  

CONCLUSION 
This case study supports calls for visualisation to be used in calculus teaching and learning 
to provide an alternative way of making sense of calculus concepts. It demonstrates that 
visualisation can be used for reasons other than simply helping students generate or discover 
mathematical ideas—visualisation can also help students generalise and communicate those 
ideas. However, this doesn’t mean any kind of visualisation will be successful automatically 
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in each case. Rather, different semiotic systems can be constructed and manipulated to 
allow for different types of visualisation, depending on the desired goal.  
This paper showed that initially, Ava and Noa used complicated gestures to engage in a 
kind of embodied visualisation, which helped them make mathematical discoveries. When it 
came to generalising those discoveries, however, Ava and Noa turned to local pointing 
gestures and simple diagrams that facilitated a visual analysis of key mathematical objects 
and relationships. In order to communicate their generalisation, Ava and Noa created a 
simplified graph that could be used as a visualisation tool by layperson clients. Ava and 
Noa’s case study should not be interpreted as suggesting a trajectory of visualisation 
approaches, or a guide for matching semiotic systems or modes to visualisation needs. 
Instead, it highlights the importance of being aware of the reasons for which students may 
engage in visualisation, and challenges educators to evaluate critically the kinds of semiotic 
systems that they use and encourage in each case.  
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