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The idea of transformation is very important for electronic engineering, computer science, computer 
graphics, etc. But at the secondary school in Japan, idea of transformation is not emphasized and 
students learn mainly the conditions of congruence and similarity between two triangles. Therefore, 
most students compare the shape of two figures and then only think about the positional relation 
between each side, angle, etc. It is very hard for students to think that one figure is transformed to the 
other. We will propose the activities to emphasize the idea of transformation through visualized circle 
inversion. In this activities even junior high school students drew Steiner’s rings by thinking the 
transformed figure how inverted an original one. 
 
Visualization, DGS, Transformation, circle Inversion, Steiner’s rings. 
 

1. INTRODUCTION 

For more than 20 years, many kinds of educational software have been developed to visualize 
mathematics and show mathematics dynamically. And geometrical figures have been 
dynamically visualized and graphs, algebraic expressions and data for leaning functions have 
been visually integrated. Then new approaches with using these kinds of software have been 
developed in school mathematics. Then students’ activities have been changed from 
manipulating difficult mathematical expressions or writing deductive proof to exploring a 
relation between figures or behaviors of functions and thinking inductive proof. Then by 
using technology new interesting activities are developed and students’ activities are 
expanded. Students jump out to a new mathematical world. And many interesting activities to 
visualize mathematics will be introduced more and more. In this paper, we would like to show 
activities for a circle inversion to be visualized and to be worked by from secondary students 
to college ones.  

 

2. LEARNING TRANSFORMATION. 

The idea of transformation is very important for electronic engineering, computer science, 
computer graphics, etc. In the new Japanese Education Ministry guidelines announced in 
2008, sixth grade students are expected to understand “stretching”, “shrinking” and 
“symmetry”. In junior high school, the first grade students learn “translation” and “rotation” 
and it is emphasized to understand how to move one figure to another. And second grade 
students learn “congruence” and third grade students learn “similarity”. Each topic has been 
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taught separately. The Japanese word “ido”, which means “move from one position to 
another”, is used for transformation of figures. Students mainly learn the conditions of 
congruence and similarity for two triangles. Therefore, most students compare the shape of 
two figures, and then only think about the positional relation between each side, angle, etc. 
They never think one figure is transformed to the other. Students major in engineering course 
in a high school and a university have a hard time to learn various transformations. In these 
days, it has become easy to visualize the relation of transformations using dynamic geometry 
software (DGS). Many materials using technology for learning translation, rotation, 
reflection, line symmetry, point symmetry, dilation and similar transformations which are 
taught in elementary and secondary schools have been developed. Through these materials 
students can see how each point is transformed, understand the relation between points on the 
figure and find what parts are variant or invariant. The experience of this kind of activities 
will help them to learn advanced math. There are very few materials for learning an inversion. 
An inversion causes unexpected results and unpredictable situations. Inversion is not taught 
in elementary and secondary schools. But there are many interesting topics related to 
inversion and very interesting activities for investigation are expected and it is available for 
even secondary students to learn it, when they use technology.  And these activities continue 
to advanced mathematics. 

In the “Erlangen Program”, Klein, Felix said geometric properties are not changed by the 
transformations of the principal group (Felix Klein, 1892-1893). And, conversely, geometric 
properties are characterized by their remaining invariant under the transformations of the 
principal group. It means transformation is the way to find the invariant properties in a 
geometric figure. Therefore, we expect students to focus on the variant or invariant properties 
of a geometric figure by transformation.  

 

3. WHAT IS CIRCLE INVERSION? 

Draw a point P and a reference circle R (T, t). 
In this paper, “circle R (T, t)” means a circle 
R which has the central point T and radius t. 
When point P’ exists on the line TP with 
(TP) ･ (TP’) = t２, point P ' is the inversion 
point of point P with respect to the circle R. 
This circle R used for the definition is called 
“the reference circle”. Fig. 1(a) shows point 
P is inside the reference circle and Fig. 1(b) shows point P is outside the reference circle.  

In the next section we would like to show activities which assist students to learn 
inversion. Students will learn how to draw these beautiful figures from easy simple 
figures. Students will find rules for the relationship between an original figure and the 
transformed figure by inversion through activities. And then Steiner’s rings will be 
able to draw by students even though they are junior high school students. We tried to 
do these activities with  junior high school students and university students 
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(3) Explore the position of the original circle for transformed one.  

In this step, students move one original circle on the line through the center of the reference 
circle R  and draw the trace of the transformed figure. They can see the area of  transformed 
figures (red part of the Fig.4) . When they use the “animation” in Cabri, they can see the locus 
of transformed figures for all through the line.  Students find that there are parts where 
transformed figures do not exist. And then they move the origial circle on the line not through 
the center of the reference circle . They find  that  an inversion confines any circle which  
exixts  far away in infinity  to the closed area(red part of  the Fig.5) and see this movoment  
interestingly.  

 

 

 

 

 

Fig.4   trace of transformed figures by moving the original circle O on the line through the 
center of the reference circle 

 

 

 

 

Fig. 5 trace of a transformed figure by moving the original circle O on the line not through the 
center of the reference circle 

They can also find there is the position where the original circle O overlaps with the inverted 
one. Or students will find that there is the position where an original figure is transformed to a 
line.  If  they are high school or upper level studnts, they can use  the Cartesian coordinate and 
then make sure it by the eqauation showed by the Cabri’s “equation and coordinate”(Fig. 6) . 
And then they find the special case, i.e. when the original cirle is through the center point of 
the reference circle, transformed figure is line(Fig.7). They think the center of this 
transformed cirle must be the point at infinity. This fact must be connected with spherical 
geometry. And they can also generalize this relation and get the equation by themselves. 
When one student found this fact he said “man who found this geometry must have drawn the 
figure on the earth not on the desk!” 

 

 

 

 

        Fig. 6 a transformed figure overlapped with the original circle. 
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Circle inversion is an important and powerful geometrical method. In addition, when we 
express this transformation by complex number, it’s a good introduction to “complex plane” 
which Johann Carl Friedrich Gauss connected “complex number” with. Although, complex 
numbers had been thought of as only a symbol to express a number formally, they were later 
connected to geometry and this idea has expanded to “complex analysis”, electromagnetism 
and other applications. We will continue to develop materials of learning transformation for 
this advanced mathematics  

 

6. CONCLUSION 

In this paper we showed the examples which difficult problems become much more tractable 
and one activity is expanded to outside of regular course of study by using technology. The 
use of technology in education started from CAI for helping basic learning and has changed to 
a tool to explore mathematics and construct their knowledge. In these days Internet can be 
used any place and any time and a mobile terminal and game equipment are used in education. 
Our activities are able to do on the Moodle course through Internet. The game equipment is 
used for practice of basic calculations in a class (Suehiro, 2011). And also technology is 
used to present students’ idea or communicate each other even in mathematics education. 
Materials and activities with technology will change and expand students’ mathematical 
world more and more 

 

Software for Education 

Cabri Geometry II Plus. Dynamic Geometry Software, Product of Cabrilog.  
http://www.cabri.com/ 

GeoGebra. Developed by Markus Hohenwarter, It’s a multi-platform dynamic mathematics 
software for all levels of education that combines arithmetic, geometry, algebra and 
calculus. Recently includes spread sheets. Free download from following website.  
http://www.geogebra.org/ 
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