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Concerns about the divide between school mathematics and the discipline of mathematics are known 

in math education circles. At the heart of the debate is the sense that imperatives in school 

mathematics differ from those in the discipline of mathematics. In the former case, the focus is on 

remembering mathematical facts, mastering algorithms, and so on. In the latter case, the focus is on 

exploring, conjecturing, proving or disproving conjectures, generalizing, and evolving concepts that 

unify. It is clearly of value to find ways to bridge the divide. Certain topics offer greater scope at the 

school level for doing significant mathematics; one such is the estimation of irrational quantities 

using rational operations. This problem is ideal for experimentation, forming conjectures, heuristic 

reasoning, and seeing the power of calculus. The underlying logic is easy to comprehend. It would 

therefore be very worthwhile if we could make such topics available to students in high school. 

Keywords: Numerical analysis, school mathematics, discipline of mathematics, estimation, irrational 

quantity, rational operation. 

 

SCHOOL MATHEMATICS AND THE DISCIPLINE OF MATHEMATICS 

Concerns about the divide between school mathematics and the discipline of 
mathematics are well known in math education circles. At the heart of the debate is the 
sense that imperatives in school mathematics differ in a fundamental way from those 
in mathematics as ‘done’ by practicing mathematicians. 

In the former case, the focus is on the concrete, measurable and reproducible: on 
remembering mathematical facts (formulas, theorems, etc); mastering algorithms; 
reproducing proofs and derivations; answering questions in tests; and (typically) 
being answerable to an authority figure. In the latter case, the focus is on exploring; 
conjecturing; testing conjectures; proving or disproving them; establishing theorems; 
generalizing; creating; inventing; evolving concepts that unify; and so on. 

Anne Watson writes in (Watson, 2008):  

In this paper I argue that school mathematics is not, and perhaps never can be, a subset of 

the recognized discipline of mathematics, because it has different warrants for truth, 

different forms of reasoning, different core activities, different purposes, and necessarily 

truncates mathematical activity. In its worst form, it is often a form of cognitive bullying 

which neither develops students’ natural ways of thinking in advantageous ways, nor leads 

obviously towards competence in pure or applied mathematics as practiced by adult 

experts. … For me, the starting point [in this debate] is what it means to do mathematics, 
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and to be mathematically engaged. In the discipline of mathematics, mathematics is the 

mode of intellectual enquiry, and effective methods of enquiry become part of the 

discipline – so much so that mathematics theses do not have chapters explaining 

methodology and methods. … ‘Doing mathematics’ is predominantly about empirical 

exploration, logical deduction, seeking variance and invariance, selecting or devising 

representations, exemplification, observing extreme cases, conjecturing, seeking 

relationships, verification, reification, formalization, locating isomorphisms, reflecting on 

answers as raw material for further conjecture, comparing argumentations for accuracy, 

validity, insight, efficiency and power. It is also about reworking to find errors in technical 

accuracy, and errors in argument, and looking actively for counterexamples and refutations. 

It can also be about creating methods of problem-presentation and solution for particular 

purposes, and it also involves, after all this, proving theorems. … 

Here is Ramanujam in (Ramanujam, 2010): 

There are several ways in which mathematics in school classrooms misses elements that 

are vital to mathematicians’ practice. Here, we wish to emphasize processes such as 

selecting between or devising new representations, looking for invariances, observing 

extreme cases and typical ones to come up with conjectures, looking actively for 

counterexamples, estimating quantities, approximating terms, simplifying or generalizing 

problems to make them easier to address, building on answers to generate new questions 

for exploration, and so on. In terms of content area and the methodology of content 

creation, it may be hard to mirror the discipline of mathematics in the school classroom, 

but we suggest that bringing these processes into school classrooms is both feasible and 

desirable. This not only enriches school mathematics but can also help solve problems that 

are currently endemic to mathematics education: perceptions of fear and failure, and low 

participation. 

And here is what the widely cited NCF document (National Council for Educational 
Research and Training [NCERT], 2005) states: 

What can be leveled as a major criticism against our extant curriculum and pedagogy is its 

failure with regard to mathematical processes. We mean a whole range of processes here: 

formal problem solving, use of heuristics, estimation and approximation, optimization, use 

of patterns, visualisation, representation, reasoning and proof, making connections, 

mathematical communication. Giving importance to these processes constitutes the 

difference between doing mathematics and swallowing mathematics, between 

mathematisation of thinking and memorizing formulas, between trivial mathematics and 

important mathematics, between working towards the narrow aims and addressing the 

higher aims.' 

Is there a way out? 

The passages quoted above describe the problem eloquently. Is there a way out? Can 
we bridge this divide in any way? 

Bridging the divide would imply helping students learn the ways that mathematicians 
think about problems, enabling them to experience the process of creating, 
conjecturing and exploring. If we do not attempt to do this, then we help perpetuate 
the divide.  
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Many writers have commented on the ‘discontinuities’ or ‘transitions’ that occur 
during a student’s growth years; Klein has even talked of a ‘double discontinuity’ (Siu, 
2008). These singular points clearly need to be taken note of and factored into our 
teaching methodology. The most crucial of these transitions is perhaps in the area of 
problem solving: the fact that “the answer, if there is one, is not the end of the process” 
(Ramanujam, 2010).  

Is it possible to build bridges across these transition points? Help students learn how 
to mathematize alongside their learning of content? Let students in on the process of 
experimenting, creating and conjecturing? In this paper we suggest that this is indeed 
possible, and that numerical analysis is a convenient topic for enabling the passage 
through this transition. We report on a real classroom experience. 

It may be true that in the ultimate analysis, it is the mode of transacting a class that is 
of greater importance than the subject matter itself: the manner in which the teacher 
opens up an issue for exploration or reflection; engages students as a group or as 
individuals; draws them into reflecting on a question or a problem; and turns even the 
tiniest of opportunities into avenues for learning. But there are some topics where this 
becomes easier to do, inasmuch as opportunities for asking open, accessible questions 
are greater, as also opportunities for using platforms such as computer software. 

Two such topics which in our view offer succor and which do not find a place in the 
regular high school mathematics curriculum are Elementary Number Theory (ENT) 
and Numerical Analysis (viewed as a subtopic of mathematical modeling). The reasons 
for these choices are simple. In both cases it is possible to do many of the things 
described above – experimenting, looking for patterns, conjecturing, looking for 
counterexamples, and so on – in a way that is accessible at the school level. Both are 
well suited for computer based exploration. In (Shirali, 2010) the present author 
explored the possibilities offered by ENT. In this article we explore the possibilities 
offered by Numerical Analysis, which is a subtopic of mathematical modeling. 

We list some desirable features of school level mathematical modeling activity: (i) The 
activity should use school level algebra, geometry, coordinate geometry and calculus, 
(ii) it should require working with computer software (e.g., GeoGebra, Derive and 
Excel, or any of their multi-platform equivalents), (iii) the methodology should be: 
exploration, data collection or generation, analysis of data, followed by theoretical 
investigation to understand the data. 

A TOPIC FOR EXPLORATION: ESTIMATION OF IRRATIONAL QUANTITIES 

The specific topic in numerical analysis that we take up is: Estimation of irrational 
quantities using rational operations. This simply stated problem contains a veritable 
wealth of opportunity. It is ideal for experimentation using software for computer 
algebra and dynamic geometry, and it provides a wonderful context in which we can 
form conjectures and reason heuristically, using elementary algebra and calculus. 
Finally, it provides a fertile ground for engaging with a historical perspective, because 
such kinds of reasoning go far back into human history. 
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Example: Estimating the square root of 2 

Consider the problem of finding good rational approximations to   . Numerous 
heuristic approaches can be envisaged, but here is one that is very straightforward. 

We start with a known reasonably good approximation to    , say    . We now make 

use of the fact that            . From this we deduce that        
 
     . 

Expanding the expression on the left side we get:  

 
            ,     

  

  
  (1) 

This yields an estimate for    which is accurate to   decimal places. We can easily 

carry this further. Squaring the expression         we get 

          
 
                       (2) 

From this we get the approximation 

 
   

     

     
  (3) 

This is accurate to   decimal places. 

Note the following important features of the underlying process:  

 It needs an initial good approximation. If the starting estimate is not so close to the true 

answer, then the process will not yield good results. 

 It is iterative in nature: starting with a close approximation, we get successively closer 

approximations. 

 It may be applied to find a good rational approximation to the square root of any 

rational number, and if greater accuracy is required, the process allows for it; thus, it is 

generalizable. At the same time it is not infinitely generalizable: it can be applied to 

find an estimate for    or   , but not  . 

 The mathematics involved is simple; indeed, in this example, nothing more than tenth 

grade algebra was used. This is the case with many estimation problems – the 

underlying logic is elementary in nature, yet the different elements combine together to 

give a result that is highly satisfactory. 

RATIONAL APPROXIMATIONS TO IRRATIONAL FUNCTIONS 

Consider the problem of finding rational functions that yield close approximations to a 
given irrational function      in the neighbourhood of      . Simple heuristic 
reasoning can lead us to find the first several terms of the Maclaurin series for this 
function. The reasoning proceeds thus: If we want two curves to stay close together in 
the neighbourhood of a point P where they meet, then surely we must ensure that they 
have equal slope at P; else the curves will quickly draw apart as we travel away from P. 
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Next, if their second derivatives differ at P, then this will lead to a steadily widening 
gap between the slopes and hence to a widening gap between the curves; so we would 
do well to make the second derivatives coincide too. Continuing, if their third 
derivatives differ at P, then this will lead to a widening gap between their second 
derivatives; and so on. So to achieve significant closeness of the graphs of two 
functions in the vicinity of a given value of   , we should try to ensure that the two 
functions coincide in their first several derivatives at that value – as many as possible. 

Such ‘kitchen’ logic appeals readily to students, and the fact that we can actually test 
the resulting formulas using a hand-held calculator is most reassuring; a bonus in fact. 
As we show below, we can even reconstruct the famous Bakhshāli square root formula 
by arguing this way. 

RATIONAL APPROXIMATIONS TO THE SQUARE ROOT FUNCTION 

Let            , defined for     . The first few derivatives of     , evaluated at 
      (and starting with the zeroth derivative, which is   itself), are: 

 
 ,     

 

 
,  

 

 
,

 

 
,  

  

  
,

   

  
,    (4) 

Note that these numbers are rational. We wish to generate rational functions      of   
that closely approximate      in the neighbourhood of      ; naturally, we want all 
their coefficients to be rational. The simplest such functions are the polynomials with 
rational coefficients, and the polynomials of successively higher degrees which agree 
with      in its successive derivatives at       are simply the partial sums of the 
Maclaurin series of      about      : 
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,    (5) 

The graphs of these functions, for            are shown in Figure 1, together with 

the graph of     . Their closeness in the vicinity of       is very visible, as also the 
growing error when   goes beyond  . 

Next in line are the rational functions with rational coefficients; they have the form 
    where   and   are polynomials with rational coefficients and low degree. Here we 
consider the following three kinds of rational functions: 

     

     
,

    

        
,

        

    
  (6) 

By equating their successive derivatives at       with the respective derivatives of 
     we find the values of the coefficients. We get the following rational functions 
which we call, respectively,   ,    ,   ,     and   ,    : 
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Figure 1. Graphs of      and the first few partial sums of its Maclaurin series about       
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Figure 2. Graphs of       and the functions    ,    ,   ,     and   ,     

The graphs of these functions over            are shown in Figure 2. We see that 

the curves stay much closer to the curve      than do the polynomials obtained 
from the Maclaurin series. 

We also see that of the three functions considered, the one that best approximates 

     is   ,    . Now a simple manipulation yields the following: 

     
  

 

  
 
 

   
 

 
 

 
 
 
 
 

    
 
 
 
  (10)  

The form given on the right side is the famous Bakhshāli approximation ― a formula 
whose origins go back to the seventh century or earlier (the formula appears in a birch 
bark manuscript found in 1881 during an excavation in the village of Bakhshāli, in 
north west Pakistan). It is expressed in the following form: 

In the case of a non-square number, subtract the nearest square number, divide the 

remainder by twice this nearest square; half the square of this is divided by the sum of the 

approximate root and the fraction. This is subtracted and will give the corrected root. 



Shirali 

  

Abcde+3 ICME-12, 2012 

In other words: 

 
        

 

  
 

 
 

  
 
 

    
 

  
 
  (11)  

 

(To see the connection between this and the formula obtained above, put        .) Most 

unfortunately, there are no clues as to how the people of Bakhshāli found such a formula. For 

more on the historical background of the formula, see (Bakhshāli manuscript, 2012). 

 

We see from this account how a fairly simple development of ideas has uncovered a formula 

that is not only very impressive but also connects with the distant past, allowing us to engage 

with questions about the people who lived in those regions, questions about anthropology and 

history, and questions about the history of mathematics itself. 

RATIONAL APPROXIMATIONS TO THE TANGENT FUNCTION 

Here is an approach to finding a rational approximation to the tangent function, as 
described in (Cheney, 1945). Let      t n     . We seek a rational function      
that closely approximates     . To this end we impose the following conditions: 

             and            ; 

               and               are very small. 

We have the following values: 

       ,       ,       
 

 
,       

 

 
  (12)  

We search for a candidate      by using the approximation        and demanding 
that 

 
      ,       ,       

  

  
,       

  

 
  (13)  

Since 

 

t n
  

 
 

sin     

cos     
 

  
       

    

      

   
 

   

 
 

      

   

      

   
, (14)  

we look for functions      of the following form: 

 
     

         

    
, (15)  

where  ,  ,   are real numbers. On setting up the equations and solving for  ,  ,   we 
get 
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  (16)  

This very simply produced approximation yields three accuracy to three significant 
figures for all values of   between   and  . For example: 

 
  

 

 
  

  

  
       , t n

 

 
              (17)  

and 

 
  

 

 
  

   

   
        , t n

 

  
               (18)  

RATIONAL APPROXIMATIONS TO THE SINE AND COSINE FUNCTIONS 

In much the same way, we may search for rational approximations to the sine and 
cosine functions. The exploration not only brings forth some striking results but also 
connects with an extraordinary formula dating from the seventh century. Unlike the 
Bakhshāli formula this one is well documented; it occurs in the text Mahabhaskariya, 
written by Bhāskarā I, who belonged the school founded by Āryabhatā. (Here too we 
see no sign of a justification or rationale given for the formula.) 

We consider the function      cos      and look for rational approximations of low 
degree to     , over the interval       . Since              and          , we 
look for approximations of the following kind: 

 
     

       

    
  (19)  

The form chosen ensures that:            ,            ,              . 
We find   using the condition            .  

From              and                   , we solve for   and get           . 
Using the approximation        this yields: 

 
cos

  

 
 

        

      
  (20)  

On testing this out we find that it yields only two decimal place accuracy. Can we do 
better? It turns out we can. The analysis given below, from (Shirali, 2011), shows how. 

Since the graph of      over        is a concave arch passing through the points 
   ,    and   ,   , a first approximation to      over the same interval is the function 
      , whose graph shows the same features. But this function consistently yields an 
overestimate (except, of course, at      ,   ); see Figure 3. 

In order to fix the overestimate, we examine the following quotient more closely: 
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cos
  
 

 
  (21)  

Figure 4 shows the graph of      for       . (At        the indeterminate form 
    is encountered, but if we require   to be continuous at        and use 
L’Hospital's rule, we get               .) 

 

Figure 3. Graphs of      and cos      

The shape is suggestive of a parabolic function, so we look for such a function to fit the 
data. To this end we mark three points on the graph:   ,    and      ,      ; rather 
conveniently for us, points with rational coordinates are available. For the parabola 
             to pass through them we must have       and                , 
giving        . So the desired parabolic function is              , and we have the 
approximate relation 

     

cos     
   

  

 
  (22)  

Hence: 

 
cos

  

 
 

    

      
 

       

    
  (23)  

All the coefficients in this approximation are rational numbers. Note that it is of the 
type considered earlier,                , with      ; earlier we had got 
        . But the change of coefficient works wonders. The above approximation 
turns out to be extremely close. 
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Figure 4. Graph of        cos       

Let us now change the unit of angle from radian to degree. Since      radians equals 
      the above relation may be written as 

 
cos       

       

    
                     (24)  

The replacement        yields: 

 
cos    

          

        
                       (25)  

Finally, the replacement        yields: 

 
sin    

         

              
                      (26)  

This is the approximation given by Bhāskarā I. Call the function on the right side     . 
Here is a comparison of the values of sin    and     , given to three significant figures: 

  0 15 30 45 60 75 90 

sin                                    
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It is evident that      yields a very good approximation to the sine function over the 
interval from    to     .  

See (Plofker, 2008) and (Shirali, 2011) for more on the Bhāskarā approximation. 

CLASSROOM STUDY AND STUDENTS' RESPONSES 

The author held three one-hour classes on these topics for a group of twelfth graders 
in his school (Rishi Valley School in A.P., India), and asked the students to write about 
their experiences at the end. Here are some of the problems posed, which were used as 
a basis for class discussion: 

1. A well known ‘rule of thumb’ in banking, relating to the number of years it takes for a 

fixed deposit to double in size, is the following: If the interest rate is     then deposits 

take      years to double in size. How do you justify this ‘rule’? How accurate is it? 

2. Examine the values given here of the tangents of some angles close to    , in each 

case to two decimal places, and explain the pattern you see in the values. 

t n          , t n             , t n               ,
t n                 , t n                      

3.  (This finding was reported to me two decades back by a student of the 11th standard. 

It led to a wonderful exploration. But we’ll leave that story for another day.) We wish 

to find a good approximation to   . We now use the following observed fact: If 

      is close to   , then             is still closer to   . Using this 

iteratively, we get a sequence of steadily closer approximations. We stop when we feel 

we have come close enough to   . How do you account for this strange ‘rule’? 

(There was also a question on the Bakhshāli formula, which we do not repeat here.) 

As all this was done in an informal way, in an interactive, problem solving mode, the 
students were relaxed; there was no ‘exam pressure’. Here are a few of the comments 
they turned in (not categorized in any way):  

“Everything in maths is interconnected.” “Calculus is powerful in answering questions 

whose solutions may not be intuitively apparent.” “We now see how different areas in 

mathematics, learnt as separate chapters – calculus, binomial theorem, series and 

sequences – come together. It leaves in us a sense of wonderment about mathematics.” “It 

shows the power of addition, subtraction, multiplication and division!” “We now see how 

by using just the basic functions ( , , , ) we can get really good approximations to 

complicated functions.” “I did not expect even for a moment that calculus could be used to 

find out the square root of a number.” “It was nice to see things beyond our syllabus!” “The 

history of mathematics and mathematicians is itself an enticing topic.” 

We feel there is enough in this experience to suggest that dwelling on such topics in an 
enabling, problem solving environment will enhance students’ mathematical maturity 
and their understanding of mathematics, and also their appreciation of the culture and 
history of mathematics; and to some measure help chip away at the Great Divide. 
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