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The paper addresses the three dimensions of history, application, and philosophy of mathematics in 

the teaching and learning of mathematics. It is discussed how students’ overview and judgment – 

interpreted as ‘sets of views’ and beliefs about mathematics as a discipline – may be developed 

and/or changed through teaching activities embracing all three dimensions of history, application, 

and philosophy. More precisely, an example of such a teaching activity for upper secondary school is 

described along with a method for both accessing and assessing students’ overview and judgment. 

Examples of data analysis are given based on a concrete implementation of the teaching activity. 

 

History, applications, and philosophy of mathematics; overview & judgment; students’ beliefs, views, 

and images of mathematics as a discipline. 

 

INTRODUCTION 

Recalling Imre Lakatos’ introductory statement to his History of Science and Its Rational 

Reconstructions from 1970, “philosophy of science without history of science is empty; 

history of science without philosophy of science is blind”, I intend in this regular lecture to 

address interrelations between the two dimensions of history of mathematics and philosophy 

of mathematics in the teaching and learning of mathematics and further relate this to the 

dimension of applications of mathematics in mathematics education.  

Besides my personal interest in history, application, and philosophy of mathematics in 

mathematics education, my academic motivation for wanting to address interrelations 

between history, applications, and philosophy in mathematics education is twofold; one from 

the international scene and one from the national. 

Research on history, application, and philosophy in mathematics education 

Internationally speaking, with the creation of the ICMI affiliated International Study Group 

on the relations between History, Pedagogy, and Mathematics, known as HPM 

(http://www.clab.edc.uoc.gr/hpm/), the four past decades has offered a vast amount of 

literature on the inclusion of a historical dimension in the teaching and learning of 

mathematics (e.g. Jankvist, 2009a). Although the first couple of decades mainly provided 

literature of an advocating or descriptive nature, often drawing on teachers’ own positive 

experiences, a shift towards actual research studies, including empirical studies, has occurred 
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in the past decade or so (Jankvist, 2012a), and this in particular since the publishing of the 

ICMI Study on History in Mathematics Education (Fauvel & van Maanen, 2000). One 

initiative which has been taken is that of setting up a working group at the Congress of the 

European society for Research in Mathematics Education (CERME) specifically devoted to 

research on history in mathematics education.  

Regarding application – and modeling – equally much, if not more, has also been done, in 

particular by the International Community of Teachers of Mathematical Modelling and 

Applications (ICTMA), which has as its declared purpose “to promote Applications and 

Modeling (A&M) in all areas of mathematics education – primary and secondary schools, 

colleges and universities” (http://www.ictma.net/). ICTMA has had biennial meetings since 

1983 and in 2003 it became the last of the five affiliated study groups under ICMI. As HPM, 

ICTMA is also present at general mathematics education conferences with topic study 

groups, discussion groups, working groups, etc. and an ICMI Study has been devoted to 

Modelling and Applications in Mathematics Education (Blum, Galbraith, Henn & Niss, 

2007).  

In comparison to the number of studies on history and applications/modeling of mathematics 

found in international journals of mathematics education, including special issues, etc., 

studies on a philosophical dimension in the teaching and learning of mathematics are close to 

non-existing. When one performs a search on ‘philosophy’ and ‘mathematics education’ the 

hits found almost all concern the use of philosophy in developing mathematics education 

theory, not its inclusion in the classrooms, etc. (For a list of the few exceptions I am aware of, 

see Jankvist, preprint). Now, why is this so? Is it the case that a philosophical dimension has 

nothing to offer mathematics education? To the best of my knowledge, the answer to this 

question is ‘no’. To illustrate it, I turn to the second part of the motivation; the national one. 

“Overview and judgment” 

In Denmark in 2002 a report was published as the final product of a government funded 

project on Competencies and Mathematical Learning, edited by Mogens Niss and Thomas 

Højgaard (Niss & Højgaard, 2011, English edition). Besides listing and discussing eight (1
st
 

order) mathematical competencies (mathematical thinking; problem tackling; modeling; 

reasoning; representation; symbols and formalism; communication; and the tools and aids 

competency), the KOM-project also lists three (2
nd

 order) competencies, known as three types 

of overview and judgment (OJ). These are: 

 OJ1: the actual application of mathematics in other subject and practice areas;  

 OJ2: the historical evolvement of mathematics, both internally and from a social point 

of view; and  

 OJ3: the nature of mathematics as a subject.  

Where mathematical (1
st
 order) competencies comprise “having knowledge of, 

understanding, doing, using and having an opinion about mathematics and mathematical 

activity in a variety of contexts where mathematics plays or can play a role”, or in other words 

a kind of “well-informed readiness to act appropriately in situations involving a certain type 

of mathematical challenge”, the three types of overview and judgment are “‘active insights’ 

http://www.ictma.net/
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into the nature and role of mathematics in the world” (pp. 49, 73). Niss and Højgaard state that 

“these insights enable the person mastering them to have a set of views allowing him or her 

overview and judgement of the relations between mathematics and in conditions and chances 

in nature, society and culture” (p. 73). As we shall see below, the three types of overview and 

judgment largely resemble the dimensions of history (~OJ2), applications (~OJ1), and 

philosophy (~OJ3) in mathematics education. 

The first type of overview and judgment (OJ1) concerns actual applications of mathematics to 

extra-mathematical purposes within areas of everyday life, society, or other scientific 

disciplines. The application is brought about through the creation and utilization of 

mathematical models of some kind. As examples of questions to be considered in relation to 

this, Niss and Højgaard (p. 74) mention: “Who, outside mathematics itself, actually uses it for 

anything? What for? Why? How? By what means? On what conditions? With what 

consequences? What is required to be able to use it? Etc.” 

The second type (OJ2) should not be confused with knowledge of the history of mathematics 

viewed as an independent topic (as taught per se). The focus is on the actual fact that 

mathematics has developed in culturally and socially determined environments, and the 

motivations and mechanisms responsible for this development. On the other hand, the 

KOM-report says, it is obvious that if overview and judgment regarding this development is 

to have any weight or solidness, it must rest on concrete examples from the history of 

mathematics. Examples of OJ2 questions are (p. 75): “How has mathematics developed 

through the ages? What were the internal and external forces and motives for development? 

What types of actors were involved in the development? In which social situations did it take 

place? What has the interplay with other fields been like? Etc.” 

The third type (OJ3) concerns the fact that mathematics as a subject area has its own 

characteristics, as well as the characteristics themselves. Some of these, mathematics has in 

common with other subject areas, while others of them are unique. As examples of OJ3 

questions Niss and Højgaard (pp. 75-76) mention: What is characteristic of mathematical 

problem formulation, thought, and methods? What types of results are produced and what are 

they used for? What science-philosophical status does its concepts and results have? How is 

mathematics constructed? What is its connection to other disciplines? In what ways does it 

distinguish itself scientifically from other disciplines? Etc.” 

Narrowing down the problématique 

As can be seen from the set of example questions above, the third type of overview and 

judgment (OJ3) embraces quite a few elements related to aspects of philosophy of 

mathematics. Clearly, due to the lack of studies discussion a philosophical dimension in the 

teaching and learning of mathematics, not much has been said about the interrelation between 

such a dimension and the dimensions of history and application, respectively. 

One observation which may be made in regard to the use of history, application, and 

philosophy in mathematics education is that these dimensions may play either the role of a 

means for improving the usual mathematical instruction in one way or another, or they may 

play the role of an end. Regarding application (and modeling), Niss (2009) argues that, on the 
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one hand, such a dimension may serve as a means to support the learning of mathematics, 

either by providing interpretation and meaning to mathematical ideas, constructs, 

argumentation, and proof, or by motivating students to study mathematics. On the other hand, 

it may be seen as an end in itself that students become acquainted with the use of mathematics 

in extra-mathematical contexts (and in relation to modeling, also become able, themselves, to 

actively put mathematics to use in such contexts). As discussed by Jankvist (2009a), the same 

situation applies to the historical dimension: history may be used as a tool for teaching and 

learning mathematical ideas, concepts, theories, methods, algorithms, ways of argumentation 

and proof; and history may be used as a goal, meaning that it is considered a goal to teach 

students how mathematics has come into being, the historical development of it as well as 

both human and cultural aspects of this development, etc. Not surprisingly, the role of a 

philosophical dimension subordinates to a similar categorization (Jankvist, preprint), where 

philosophy as a means/tool would embrace arguments stating that philosophy may assist 

students in their sense-making of e.g. mathematical argumentation and the notion of 

mathematical proof, including also how and why we argue and prove, mathematical ideas and 

constructs, etc., philosophy as a goal would include arguments stating that it serves a purpose 

in its own right for students to know something about e.g. the epistemology and/or ontology 

of mathematics and its concepts and constructs, the philosophical foundations of mathematics 

as a discipline as well as questions of why mathematics is constructed the way it is, its 

science-philosophical status, etc. 

Looking at the above description of the three types of overview and judgment, it is clear that 

these concern history, applications, and philosophy in the role of ends/goals. However, what 

is not clear, nor from the KOM-report’s normative description of overview and judgment, is: 

1. How may teaching activities be designed in order to assist students in their 

development of the three types of overview and judgment?; and 

2. How may students’ possession and/or development of the three types of overview 

and judgment be both accessed and assessed?  

In respect to these questions – which shall make up the research questions of this paper – it is 

worth noticing that the KOM-report talks about a person who is able to master his or her 

active insights in relation to the three types of overview and judgment as being equipped with 

a set of views regarding mathematics and its role in relation to nature, society, culture, and the 

world in general. Without entering into the long discussion of the difference between 

knowledge and beliefs, it seems fair to say that such a set of views is related to a student’s 

beliefs about mathematics as a (scientific) discipline as well as his or her knowledge. Thus, I 

shall address these issues next.  

BELIEFS ABOUT MATHEMATICS (AS A DISCIPLINE) 

One recent definition of beliefs, although given in the context of teacher education, is that of 

Philipp, who in the Second Handbook of Research on Mathematics Teaching and Learning, 

describes beliefs as “lenses through which one looks when interpreting the world” and: 

Psychologically held understandings, premises, or propositions about the world that are 

thought to be true. [...] Beliefs might be thought of as lenses that affect one’s view of some 
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aspect of the world or as dispositions toward action. Beliefs, unlike knowledge, may be 

held with varying degrees of conviction and are not consensual. (Philipp, 2007, p. 259) 

Thus, what is knowledge for one person may be belief for another. Regarding beliefs, people 

are generally aware of the fact that others may believe differently, and even that their stances 

may be disproved. Concerning knowledge, on the other hand, people find “general agreement 

about procedures for evaluating and judging its validity” (Thompson, 1992, p. 130). 

Various attempts have been made to try and organize people’s beliefs about mathematics. 

One of the more recent categorizations of students’ mathematics-related beliefs is that of Op’t 

Eynde, de Corte and Verschaffel (2002). They review four earlier categorizations of students’ 

beliefs (due to Underhill, 1988; McLeod, 1992; Pehkonen, 1995 – also to be found in 

Pehkonen and Törner, 1996; and Kloosterman, 1996), and provide a new more 

comprehensive framework of their own, structured under three different topics: 

1. Beliefs about mathematics education: a. beliefs about mathematics as a subject; b. 

beliefs about mathematical learning and problem solving; c. beliefs about mathematics 

teaching in general 

2. Beliefs about the self: a. self-efficacy beliefs; b. control beliefs; c. task-value beliefs; d. 

goal-orientation beliefs 

3. Beliefs about the social context: a. beliefs about the norms in their own class (a1. the role 

and the functioning of the teacher; a2. the role and the functioning of the students); b. 

beliefs about the socio-mathematical norms in their own class (Op’t Eynde et al., 2002, p. 

28) 

I shall not go into a detailed discussion of the components of these three categories of beliefs, 

only mention that in the context of this framework of students’ mathematics-related beliefs it 

is point 1a, students’ beliefs about mathematics as a subject, which is closest related to the 

KOM-report’s ‘set of views’ in relation to overview and judgment. However, due to the 

embeddedness of point 1a in an educational context, it is fair to argue that there is a dimension 

missing in the above categorization – one we may call beliefs about mathematics as a 

discipline. In fact, this dimension is dealt with more independently by Underhill (1988) and 

Pehkonen (1995), but Op’t Eynde et al. (2002) play it down significantly. Nevertheless, the 

shortage may be remedied by adding the extra dimension – as in figure 1 (right). (For further 

discussion of this, see Jankvist, forthcoming). 

Such a dimension about mathematics as a discipline of course embraces a student’s ‘set of 

views’ in relation to the three types of overview and judgment. The reason for placing the 

dimension outside the triangle in figure 1, i.e. not just turning this into a square, has to do with 

the fact that mathematics as a discipline is rather different than mathematics as a subject, as 

included under beliefs about mathematics education. However, if students are to obtain an 

image of and develop beliefs about mathematics as a discipline through their teaching and 

learning of mathematics, then this can only happen in the interplay between their social 

context (class), their mathematics education, and their self, which is to say the triangle 

making up the base of the tetrahedron. 
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Figure 1. Left: “Constitutive dimensions of students’ mathematics-related belief systems” illustrated by a 
triangle with the corners: mathematics education, social context (the class), and the self (Op’t Eynde et al., 

2002, p. 27, figure 2). Right: An expansion of the left hand side triangle to a tetrahedron, the dimension above 

the triangle illustrating mathematics as a discipline. 

Thus, one way of trying to create a setting in which students’ beliefs/set of views about 

mathematics as a discipline may be developed is to design an activity to be carried out in class 

(social context) as part of the students’ regular mathematics program (mathematics 

education), during which the students also are exposed to both individual questionnaires and 

interviews (self) in order to access and assess their overview and judgment. I shall explain this 

in detail in the following sections.  

DESIGNING A HISTORY, APPLICATION, AND PHILOSOPHY (HAPH) MODULE 

As stated by Niss & Jensen (2011), it is clear that if overview and judgment regarding the 

historical evolvement of mathematics (OJ2) is to have any weight or solidness, it must rest on 

concrete examples from the history of mathematics. Although the KOM-report only states 

this in relation to OJ2, it is equally clear that something similar applies to OJ1 and OJ3 as 

well: to know about actual applications of mathematics in other subject and practice areas one 

must be exposed to concrete examples; and to know about the nature (and philosophy) of 

mathematics as a subject or discipline, one also needs concrete examples in order to hold 

one’s beliefs/set of views more evidentially (Green, 1971) or more knowledge-based. 

Mathematical problems: Euler paths, shortest path, and minimum spanning trees 

The main idea of the design to be described is to have the students read and work with one 

original source for each of the three types of overview and judgment, all of them adhering to a 

common mathematical theme and/or topic. I shall illustrate this by describing a concrete 

teaching module, which was implemented in a mathematics class in first year of Danish upper 

secondary school in 2010. The class consisted of 27 students of age 16-17 years.  

The three texts (in Danish translation) included in the teaching material for this module were: 

 LEONHARD EULER, 1736: Solutio problematis ad geometriam situs pertinentis 

 EDSGER W. DIJKSTRA, 1959: A Note on Two Problems in Connexion with Graphs 
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 DAVID HILBERT, 1900: Mathematische Probleme – Vortrag, gehalten auf dem 

internationalen Mathematiker-Kongreß zu Paris 1900 (the introduction only). 

The overall theme was mathematical problems, which was what Hilbert addressed in general 

terms in the introduction of his lecture from 1900. To make Hilbert’s general observations a 

bit more concrete, the students were first to read the two other texts, each of which addresses 

a mathematical problem. Euler’s paper from 1736 is on the Königsberg bridge problem: how 

to take a stroll through Königsberg crossing each of its seven bridges once and only once – 

and today the paper is considered the beginning of mathematical graph theory. Two centuries 

later, with the dawn of the computer era, graph theory (and discrete mathematics in general) 

found new applications. Dijkstra’s algorithm from 1959 solves the problem of finding 

shortest path in a connected and weighted graph, and today it finds its use in almost every 

Internet application that has to do with shortest distance, fastest distance or lowest cost. 

Furthermore Dijkstra also discussed a method for finding minimum spanning trees, a problem 

relevant for the building of computers at the time, but also highly relevant today.  

Because original sources often are difficult to access, the presentation of these were supplied 

with explanatory comments and tasks along the way – a so-called ‘guided reading’ of the 

sources, inspired by the format developed by Barnett, Lodder, Pengelley, Pivkina & Ranjan 

(2011) and others related to the group at New Mexico State University who consider the use 

of original historical sources in the classroom. Practically no mathematical requirements were 

needed beforehand on the students’ behalf to study the text of Euler – a major reason for 

choosing this text initially – and many of those needed for the Dijkstra text were introduced in 

commentaries along with the Euler text, thereby also bringing the students somewhat up to 

date with modern notation, etc.  

The students’ way into the first original text was by looking at Euler’s diagram of landmasses 

and rivers in Königsberg (figure 2, middle) and then verify that this is in fact an accurate 

representation of (or model for) the Königsberg bridge problem by comparing with a picture 

of the town (figure 2, left). Afterwards the students were told that in modern graph theory, 

landmasses are represented by vertices (or nodes) and links between them by edges. Students 

were asked to transform Euler’s diagram into such a modern graph individually and then 

compare their own representation to the students next to them, this illustrating that graph 

representations can look different. The idea was to have the students adapt more and more 

schematic representations of the Königsberg bridge problem until arriving at something 

looking like figure 2 (right), gradually increasing the level of abstractness. 

  

Figure 2. Left: A picture of Königsberg with its 7 bridges from 1652. Middle: Euler’s 1736 simplification of 

Königsberg’s bridges. Right: A modern graph representation. 
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Once being familiar with the modern representation of a graph, the students were introduced 

to the problem of representing multiple edges, such as for example the two edges between 

vertices A and B in the Königsberg graph. These cannot be represented by only their pair, 

(A,B), since this causes ambiguity (which also is why Euler named them a and b, 

respectively). To illustrate a formal and general way of dealing with this to the students, they 

were provided with the following modern definition:  

A graph G is a set of vertices V(G) and a set of edges E(G) together with a function ψ, 

which for every edge e ϵ E(G) assigns a pair, called ψ(e), of vertices from V(G).  

The students were then asked to write up the sets V(G) and E(G) for the Königsberg graph and 

the seven function values of ψ(e). On the one hand, the idea of this was to enable them to 

perceive the definition of a graph as a triplet G={V(G), E(G), ψG}, and on the other hand to 

have them realize how the above definition in a general fashion resolves the problem of 

ambiguity when two vertices in a graph have multiple edges.  

As Euler himself in his text introduces various constructs, the students were introduced to the 

somewhat equivalent modern terminology in the intermediate commentaries, e.g. route, path, 

Euler path (open and closed), subgraph, degree of a vertex as well as a few small theorems 

which Euler explicitly or implicitly uses, such as for example the so-called handshake 

theorem. At the end of his paper, Euler states his three main results (Euler, 1736, p. 139 in 

Fleischner, 1990, p. II.19, numbering is mine):  

(i) If there are more than two regions with an odd number of bridges leading to them, it can 

be declared with certainty that such a walk is impossible.  

(ii) If, however, there are only two regions with an odd number of bridges leading to them, 

a walk is possible provided the walk starts in one of these two regions.  

(iii) If, finally, there is no region at all with an odd number of bridges leading to it, a walk 

in the desired manner is possible and can begin in any region.  

The students were first asked to formulate these three results using the modern terminology 

and notation they had been introduced to. Next they were provided with a modern definition 

of a connected graph, i.e. that there exists a route between every pair of vertices, a property 

Euler does not state explicitly. Using this property, the three results may be reformulated as: 

If a connected graph G has more than two vertices of uneven degree, then it does not 

contain an Euler path. 

Let G be a connected graph, then G contains an (open) Euler path if and only if G contains 

exactly two vertices of uneven degree. 

Let G be a connected graph, then G contains a (closed) Euler path if and only if all vertices 

of G have even degree. 

Most of Euler’s efforts goes into proving his first result (i), and regarding the third (iii), which 

today is considered the main theorem of the paper, he only proves it in one direction. To 

introduce the students to the notion of if-and-only-if theorems, they were to consider result i 

as being of the form P : A ⇒ B, and then identify P, A, and B. After having the students prove 
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that A ⇒ B ≡ ¬A ⇐ ¬B (by means of a truth table), they were asked to write up ¬B ⇒ ¬A for 

result i, i.e. formulating the contrapositive of this theorem, which states that  

If G is connected and has an Euler path (open or closed), then G has two or less vertices of 

uneven degree.  

Since Euler has shown, in his own context of course, that a graph will always contain an even 

number of vertices with uneven degree, we may distinguish between two different cases: 

when G has exactly two vertices of uneven degree and when it has none, i.e. when all vertices 

have even degree. These cases correspond to the ⇒–direction in results ii and iii, respectively. 

Thus, by looking at Euler’s original text again, the students would be able to deduce that the 

missing parts of the proofs are the ⇐–directions for results ii and iii. For result iii this is 

ascribed to Carl Hierholzer (published posthumous in 1873), and the students were shown 

this proof. Then they were asked to prove the ⇒–direction for iii and both ways for result ii 

using modern terminology. 

While employed at Mathematical Centrum in Amsterdam in 1956, Dijkstra was asked to 

demonstrate how powerful the center’s computer, the so-called ARMAC, was. He did so by 

devising an algorithm for finding shortest path between two nodes in a connected, weighted 

graph – today known simply as Dijkstra’s algorithm. Dijkstra’s description of his algorithm 

appeared in 1959 in a paper which also described an algorithm for finding minimum spanning 

trees in connected, weighted graphs. Unlike Euler’s text the text by Dijkstra is short and 

builds on a large apparatus of existing graph theory. In fact, the text is only a few pages long. 

Also, Dijkstra only provides the description of his algorithms and he gives no examples of 

running these and no proofs of their correctness either, only a few remarks about running 

time. Thus, this text needed some ‘unpacking’ for the students in the form of explanatory 

comments, additional examples, tasks, etc. For example, the students were provided with 

definitions of a weighted graph, a tree, and a spanning tree:  

A connected graph T without any subgraphs that are circuits is called a tree, and a tree that 

for some graph G contains all vertices of V(G) is called a spanning tree.  

And to illustrate that finding a least spanning tree is not trivial, they were asked to look at the 

Königsberg graph (figure 2, right) and find the number of different spanning trees that can be 

constructed from this and then explain their method for finding the answer. (The answer, 

which is 21, may be calculated using the so-called (Kirchhoff-Trent) Matrix-Gerüst-Satz. 

Deleting the i’th row and column of this matrix and taking the determinant of the one 

dimension smaller matrix reveals it. But the students had to do it by systematic inspection.)  

In fact, Dijkstra’s motivation for devising an algorithm for finding minimum spanning tree 

had to do with a very specific problem related to the construction of the ARMAC computer. 

The massive size computers at the time required vast amounts of expensive copper wire to 

connect their components. Finding a minimum spanning tree corresponds to leading 

electricity to all electric circuits while using the least amount of expensive copper wire. (A 

few comments were of course made about the earlier discoveries of the algorithms by Jarník, 

Borůkva, Kruskal and Prim, respectively.) 
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Having worked through the Dijkstra text, the commentaries and examples to this, and a 

modern proof of the shortest path algorithm’s correctness, the students got to the third text by 

Hilbert; the introduction of his 1900-lecture in which he discusses ‘mathematical problems’. 

Paraphrasing Hilbert roughly, he states that often some mathematical development is spurred 

on by a problem in the extra-mathematical world. Then it is drawn into mathematics and 

rephrased so that it is hardly recognizable anymore and embedded in a much more general 

context. Years later, when this has grown into a mathematical discipline, what often happens 

is that it may then again be used to solve some new extra-mathematical problem:  

Surely the first and oldest problems in every branch of mathematics spring from 

experience and are suggested by the world of external phenomena. [...] 

But, in the further development of a branch of mathematics, the human mind, encouraged 

by the success of its solutions, becomes conscious of its independence. It evolves from 

itself alone, often without appreciable influence from without, by means of logical 

combination, generalization, specialization, by separating and collecting ideas in fortunate 

ways, new and fruitful problems, and appears then itself as the real questioner. [...] 

In the meantime, while the creative power of pure reason is at work, the outer world again 

comes into play, forces upon us new questions from actual experience, opens up new 

branches of mathematics, and while we seek to conquer these new fields of knowledge for 

the realm of pure thought, we often find the answers to old unsolved problems and thus at 

the same time advance most successfully the old theories. (Hilbert, 1902, quoted from the 

2000-reprint, p. 409) 

In a certain sense, the case of graph theory illustrates this: first, spurred on by the Königsberg 

bridge problem, which Euler generalized so that the answer to the original problem falls out 

as a small corollary to his more general results; and next, two centuries later when we have a 

much clearer idea about the discipline of graph theory, Dijkstra solves the extra-mathematical 

problem of shortest path (and also considers minimum spanning trees) in this graph 

theoretical context.  

Three student essay-assignments 

For the students to realize this connection between the three original texts, and thus the three 

dimensions of history, application, and philosophy, they were asked to identify the criteria 

that Hilbert proposes for a good mathematical problem (e.g. that it must be explainable to 

laymen and that it must be challenging but not inaccessible, etc.) and see to what degree the 

problems treated by Euler and Dijkstra fulfill these, and then relate these cases to Hilbert’s 

comments on the development of mathematics in general. The context in which they were 

asked to do so was as part of a so-called essay assignment. In a previous study I found that 

having groups of students prepare small essays was a good way of bringing them to work with 

the history of mathematics (Jankvist, 2009b; 2010; 2011). So the same approach was taken to 

bring in the two other dimensions of application and philosophy. The module included three 

essay assignments, each addressing different aspects in relation to overview and judgment. 

The first essay was on the just discussed topic of mathematical problems, linking the three 

texts by Euler, Dijkstra, and Hilbert together.  
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The second essay was on mathematical proofs and first dealt with different kinds of proofs 

and proof techniques as well as the use and need for new signs and symbols (both arithmetical 

and graphical) in the development of new mathematics (concepts, definitions, etc.), 

something that Hilbert also addresses. The students were asked to discuss this with relation to 

Hilbert’s text and try to draw connections to the two cases, in particular the advantages 

Dijkstra had in 1959 with a fully developed graph theoretical and conceptual apparatus at his 

disposal as compared to Euler who had to start from scratch in 1736. In the end, this essay 

moved into Hilbert’s actual discussion of proofs and their role in solving mathematical 

problems as well as the role of rigor in mathematical proofs. On the overall, the idea of this 

was to spur some reflections on the students’ behalf regarding the epistemological 

development of the notion of proof. 

The third essay was about mathematics’ status as a (scientific) discipline, in its own right and 

in comparison to other disciplines, e.g. physics. Based on their readings of Hilbert, and the 

two texts by Euler and Dijkstra, the students were asked to try to point out some 

characteristics of mathematical problems, methods, and ways of thinking as well as to say 

something about the types of results mathematics delivers and what they may possibly be 

used for. They were invited to discuss this by comparing mathematics to other academic 

disciplines. Then they were asked to identify what Hilbert says about the differences and 

connections between mathematics and other disciplines, and then discuss to what extent they 

agree or disagree. 

ACCESSING STUDENTS’ OVERVIEW AND JUDGMENT 

In order to access the upper secondary students’ overview and judgment, and the 

development of this, they were given an ‘overview and judgment questionnaire’ and a 

selection of the students (half the class) was interviewed about their answers. This 

questionnaire included three sets of 8 questions, each set connected to a type of overview and 

judgment. The first set, which was connected to OJ1, asked about application and 

sociologically oriented aspects of mathematics as a discipline: 

(a1) Do you believe it to be important for you to learn mathematics? If ‘yes’, why? If ‘no’, why not? 

(a2) Do you believe it to be important for people in general to learn mathematics? If ‘yes’, for whom 

is it then most important and why? If ‘no’, why not? 

(a3) From time to time you hear that mathematics is used in many different contexts. Can you mention 

any places from your everyday life or elsewhere in society where mathematics is being applied, either 

directly or indirectly? 

(a4) Not counting the ordinary types of calculation (the four basic arithmetical operations, 

calculation of percentages, etc.) where do you then find mathematics applied in your everyday life 

and society in general? 

(a5) Do you think mathematics has a greater or lesser influence in society today than 100 years ago? 

(a6) Is mathematics a science? If ‘yes, about what? If ‘no’, what is it then? 

(a7) If you believe mathematics to be a science, is it then a natural science? Why or why not? 

(a8) What do you understand by a mathematical model or that of carrying out mathematical 

modeling? 

The word science in a5 and a6 is to be understood in the more broad sense of Scandinavian 

videnskab and German Wissenschaft, including natural science, social science and the 
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humanities (see Jankvist, 2009a for further explanation). The second set, related to OJ2, 

asked about historical and developmental aspects of mathematics as a discipline: 

(b1) How do you think that the mathematics in your textbooks came into being? 

(b2) Why do you think it came into being? 

(b3) When do you think it came into being? 

(b4) From when does the coordinate system, as we know it, originate do you think? 

(b5) When did Euclid live (approximately)? 

(b6) What do you think a researcher in mathematics (at universities and the like) does? What does the 

research consist in? 

(b7) When do you think the negative numbers were (formerly) defined in mathematics (in the Western 

world): approx. 2000 BC; approx. 300 BC; 15
th
 century; or 19

th
 century? 

(b8) When do you think mathematicians (and others) began using negative numbers (in the Western 

world): approx. 2000 BC; approx. 300 BC; 15
th
 century; or 19

th
 century? 

And the third set, for OJ3, asked more philosophically oriented questions of mathematics as a 

discipline: 

(c1) Do you think that parts of mathematics can become obsolete? If yes, in what way? 

(c2) Do geometrical figures, e.g. triangles, exist independently of us humans or are they human 

constructions? 

(c3) Does the number ‘square root of 2’ exist independently of us humans or is it a human 

construction? 

(c4) Are the negative numbers discovered or invented? Why? 

(c5) Do you believe that mathematics in general is something you discover or invent? 

(c6) What is a mathematical problem? 

(c7) Can you give a short description of how an area of mathematics is built? 

(c8) Why do we prove mathematical theorems? 

(For a more thorough discussion of a selection of the above questions, see Jankvist, 2009b). 

During a two-year period the students were asked to answer the above questions three times, 

intervened by two HAPh-modules; the one on mathematical problems, graph theory and 

shortest paths described above and another on the unreasonable effectiveness of mathematics, 

Boolean algebra and Shannon circuits (see Jankvist, 2012b; preprint). HAPh-module 1 ran 

over twelve 90-minutes lessons and module 2 over seven 90-minutes lessons (due to practical 

constraints). After each module, the students were also given a test on the content of the 

module including its related tasks and essays. For a timetable of the study, see table 1. 

                                              Table 1: Timeline for complete empirical study. 

Year Dates Activity 

2010 February 8
th

  

February 

April - May 

May 8
th

  

May 

1
st
 O&J questionnaire 

Follow-up interviews (round 1) 

Implementation of HAPh-module 1 

1
st
 test questionnaire 

Follow-up interviews (round 2) 

2011 

2012 

May 4
th

  

September - October 

October 12
th
  

November 

2
nd

 O&J questionnaire 

Implementation of HAPh-module 2 

2
nd

 test questionnaire 

Follow-up interviews (round 3) 

 March 8
th

  

March - April 

3
rd

 O&J questionnaire 

Follow-up interviews (round 4) 
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ASSESSING STUDENTS’ OVERVIEW AND JUDGMENT 

When assessing the students’ possession and development of overview and judgment, I shall 

regard this as a kind of reflected image of mathematics as a discipline. This requires an 

explanation – or two to be more precise. 

First, with reference to the literature describing beliefs (see earlier), beliefs are considered as 

something rather persistent. Therefore, to state that any developments and/or changes in 

beliefs are in fact permanent is difficult, if not impossible, based on a two-year study as the 

one described here. Of course, following a class of students for two years should make it more 

possible to verify observed developments and/or changes than if only following them for one 

year – but still. However, what we may say is that observed developments and changes occur 

in the students’ views (and ‘sets of views’), if we think of (and define) views to be something 

less persistent than beliefs, but with the potential to develop into beliefs at a later point in 

time. In this respect, we may also consider (and define) students’ images of mathematics (as a 

discipline) to be made up of their beliefs as well as their views (Jankvist, 2009a; 

forthcoming), including of course also their knowledge, e.g. in the form of evidentially or 

knowledge-based beliefs/views. 

Second, what then are we to consider as a student’s reflected image of mathematics as a 

discipline? The definition of this will be based on empirical findings from a previous study, 

which concerned the use of history in mathematics education (as a ‘goal’) and students’ 

development of their image of mathematics as a discipline, in particular in relation to OJ2. In 

this study it was found that upper secondary student’ beliefs/views of mathematics as a 

discipline developed in (at least) three ways, namely in terms of (Jankvist, 2009a): 

 a growth in consistency between a student’s related beliefs/views;  

 the extent to which a student sought to justify his or her beliefs and views; and  

 the amount of provided exemplifications in support of the beliefs and views a student 

held, i.e. that the beliefs appeared to be held more evidentially or knowledge-based. 

Of course, a prerequisite condition for this is that the students are explicit about their beliefs, 

i.e. that they are able to express them, but the continuous rounds of questionnaires and 

interviews provided a setting for this – in the previous as well as the present study. 

 

                          

Figure 3. Students’ reflected images of mathematics as a discipline as consisting of three dimensions on a basis 

of explicitness: consistency, justification, and exemplification (evidence) (Jankvist, 2009a). 
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On the one hand, the three observed dimensions of consistency, justification, and 

exemplification may be used define what is to be understood by students’ reflected images of 

mathematics as a discipline (held on a basis of explicitness) – a definition which also 

provides some depth to the previously introduced fourth dimension of “students’ 

mathematics-related beliefs” in figure 1. The situation is illustrated in figure 3.  

On the other hand, we may consider figure 3 as a model of students’ reflected images which 

tells us that in order to understand the degree of reflection in their images we need to consider 

each of these three dimensions. That is to say, the model in figure 3 may provide us with a 

way of assessing the students’ development of overview and judgment – and, so to speak, 

operationalize the KOM-report’s normative description of overview and judgment. 

EXAMPLES OF DATA ANALYSIS 

In order to illustrate how the three O&J questionnaires and the follow-up interviews from the 

above presented study can be used to access students’ beliefs and/or views about mathematics 

as a discipline and thereby assess their possession/development of overview and judgment, I 

shall make some illustrative ‘downstrokes’ in the data and questionnaire questions, taking an 

approach of tracking changes on an individual student basis. 

Accessing and assessing: Consistency  

One of the places where consistency, and a growth of such, often shows is in the philosophy 

oriented questions c2 through c5. As illustration of how to search for consistency in the 

answers to these questions we shall look at two students, Samuel and Larry.  

In the 1
st
 questionnaire, Samuel answered the following to the question about geometrical 

figures and square root of 2, c2 & c3: “I guess it always existed, but we have defined it.” To 

the question of the negative numbers, c4: “I don’t think they are discovered. Should they have 

been discovered on a rock? Neither were they invented, we had to think to find them.”  And 

regarding mathematics in general, c5: “Neither. You can’t discover mathematics in the 

ground, like fossils, for example. You can’t invent mathematics, because then it’d be concrete 

– like a pencil, for example. It has always been there, but we had to think it, not discover or 

invent. In a way it is quite philosophical.”  What we may notice here is that Samuel’s answers 

are both contradictory and somewhat inconsistent, because on the one hand mathematics has 

always been there, but on the other hand humans had to think it and define it. The statement 

that mathematics is neither a discovery, nor an invention, may be explained by the student not 

counting immaterial things as something which is subject to discovery or invention. One year 

later, in the 2
nd

 questionnaire, Samuel provides the following answer to c2: “Human 

construction – nothing is coincidental” and refers to this answer in the other questions. Two 

years later, in the 3
rd

 questionnaire, he answered to c2: “It is a human construction. Let us say 

that triangles can be found in the nature, but humans have defined them, i.e. a human 

construction.” In c3 he referred to this answer also, and in c4 and c5 he answered: “It is 

something which has been invented.” Now, even though Samuel states that maybe triangles 

can be found in nature (many students said so with reference to the shape of mountains, etc.), 
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his answers in both the 2
nd

 and the 3
rd

 questionnaire are very consistent; in all answers he 

believes ‘invented’. Thus, there is a growth in consistency from the 1
st
 to the 2

nd
 and 3

rd
.  

Larry provided the following answers to c2 in the 1
st
 questionnaire: “Can’t think of places in 

nature where ‘perfect’ geometrical figures exist, so (even though there may be places where 

they do) it is human made.” And for the square root of 2 in c3: “Can’t give a qualified 

answer.” Regarding negative numbers in c4, he wrote: “In the beginning invented. But 

physics have now proven the energy of the universe to equal 0, because of negative forces and 

quantum mechanics oscillation (which was believed to create everything), so now it is also 

proven.” And for mathematics in general, in c5: “First invent (including providing 

arguments) and then proven by means of physics, etc.” As the majority of students, Larry had 

never given thought to the question of invention versus discovery of mathematics before. But 

once the question had been raised, it kick started some thought processes. Already in round 1 

of the follow-up interviews it was clear that he had thought about this, and perhaps altered his 

view a bit: 

Well, it depends on how you define ‘invention’. I mean, if it is something where we say it’s 

like that, and it is something that humans invented themselves. I mean, we know that there 

are some connections between things. [...] It is just the way we describe nature, by 

formulas. [...] It is our way of writing it. On the one hand, it is discovered, but at the same 

time it’s ourselves who have invented it... [...] All things considered, it may be discovery. 

In the 2
nd

 questionnaire, Larry answered to c2: “They exist, we just defined them.” To c3 he 

provided a conditioned answer: “Does it describe a relationship which exists in nature? If not, 

it is a human construction.” To c4 he said: “Discovered. Things can have negative energy 

(electrons), i.e. something exists on the other side of the spectrum.” And finally regarding 

mathematics in general in c5: “Discover through understanding of earlier mathematics.” 

Clearly, there is a shift in Larry’s answers from the 1
st
 to the 2

nd
 questionnaire, somehow 

reflecting his considerations from round 1 of the interviews, although there still appears to be 

some ambiguity present, e.g. in his answers to c2 and c5. By the time of the 3
rd

 questionnaire, 

however, Larry’s answers appear more consistent. c2: “Yes, a lot of math exists 

independently of us, the figures mentioned here.” c3: “If the constant is used as for example π, 

then independently.” c4: “Discovered.”  c5: “Discover, most often.”  

Accessing and assessing: Exemplification  

In order to illustrate how exemplification can play a role in the development of a student’s 

overview and judgment, let us stay with Larry. In round 3 of the interviews, after the 

HAPh-module 2, Larry said the following about discovery and invention: 

Larry: Well... There can be connections in mathematics which we discover. For 

example the equation with Euler’s number in the power of π times i minus 

or plus 1 equals 0 [e
iπ 

+ 1 = 0]. These are some interrelations which we have 

not made ourselves. It is a lot of independent things which we have found 

and which then fits together and reveals a beautiful connection. [...] I think 

it is a good example of something which we just discover. As far as I know 

these [π, e, and i] were not that associated. But that they fit together in this 
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way, it kind of shows... that there must be a... that no matter what, we did 

something right.  

Interviewer: Yes? 

Larry: So regarding invention or discovery in mathematics, I think... I think that 

some things are invented and some discovered. I will risk claiming that. 

Interviewer: Alright. Can you give some examples? 

Larry: Well... for example our way... in graph theory, to translate bridges into 

numbers and the way of writing it all up. That is something we’ve made. 

While things as... what is a good example? Things as π is something we 

discovered. [...] 

Interviewer: Okay. Is it possible to say if one precedes the other? Does discovery 

precede invention or does invention precede discovery?  

Larry: In most cases it must... well, not necessarily... With π, for instance, I guess 

that discovery was before invention, because... If we say that we invented, 

that we set a circle to 360 degrees. But when we calculate π [...] then we 

don’t use the 360 degrees, as far as I recall. [...] It is different within 

different areas of mathematics, but with π I think we discovered that there 

was a connection first, and then we built on that. But it’s quite related; when 

we choose something we quickly arrive at some further discoveries. 

Worth noticing here is that Larry, in his process of going from believing mainly in invention 

(1
st
 questionnaire) to mainly in discovery (3

rd
 questionnaire), is able to provide several 

examples of one or the other. To illustrate discovery he first mentions Euler’s identity – on the 

interrelation between the additive identity 0, the multiplicative identity 1, the base of natural 

logarithms e, the imaginary unit i, and the number π – as something which he finds it unlikely 

to have been invented. And he then carries on to elaborate on the number π in relation to 

discovery (see also answer to c3 in 3
rd

 questionnaire). As an example of mathematics which is 

invented he refers to the cases of the HAPh-modules, as seen above when mentioning graph 

theory and Euler’s way of solving the Königsberg bridge problem, but also elsewhere in the 

interview when he refers to Boolean algebra as a human construction and invention. Such 

exemplification helps Larry to hold his beliefs and views more evidentially. And it also 

assists him in justifying his beliefs and views as well as the development and changes in 

these. However, as we shall see below, justification does not always include exemplification.  

Accessing and assessing: Justification 

In the 1
st
 and 2

nd
 questionnaires the student Jean justified his answers to question a5, on the 

influence of mathematics in society today as compared to earlier, as follows: “I think it has 

greater influence today since mathematics is used to more and more and many things are 

about numbers.” “I think it has greater influence since it is used for so many things.” As 

compared to the students who would just answer either ‘greater’ or ‘lesser’, Jean clearly tried 

to justify his answers. But he did so without any exemplification whatsoever, which may be 

illustrated by his answer to a5 in the 3
rd

 questionnaire: “Greater. Everything today is based on 

numbers and models. In particular computers and cell phones, which we couldn’t live 



Last names of authors in order as on the paper 

 

ICME-12, 2012 abcde+2 

without, are based on numbers and do thousands of calculations per second.” The mentioning 

of computers and cell phones is an exemplification made to support the justification that 

mathematics has greater influence today. Whether there is a connection between Jean’s 

mentioning of computers and the HAPh-modules is not clear, although it was emphasized that 

Dijkstra’s algorithms made up the basis of software used practically everywhere and that 

Shannon’s circuit design ideas among other places were used in computer hardware. 

Another illustration of the development of overview and judgment and the role of 

justification is that of the student Salma and her answers to questions a5 and a6 on 

mathematics being a scientific discipline and if it belongs to the natural sciences. In the 1
st
 

questionnaire she answered to a5: “I don’t know if I’d call it so. But it is a tool for the other 

scientific disciplines within the natural sciences.” And to a6: “A means for describing and 

understanding natural science.” A year later in the 2
nd

 questionnaire she said for a5: “It is a 

scientific discipline as well as a tool for understanding other sciences.” And for a6: “Yes, it is 

a natural science since it is primarily used within the natural sciences. But at the same time it 

is also used within the social sciences, and for that reason it is difficult to ‘classify’.” And yet 

a year later in the 3
rd

 questionnaire, she answered to a5: “Yes, I would say it is. In 

mathematics you show a theorem’s validity through proofs, so yes.” And for a6: “It is its own 

scientific discipline which may be used within the faculty of natural science as well as that of 

social science.” Salma’s answers to the questions a5 and a6 illustrate well how her image of 

mathematics as a (scientific) discipline gradually becomes more and more reflected over the 

two year period – a finding which is supported both by the four rounds of interviews and by 

the essay assignment hand-ins from HAPh-module 2, where one essay concerned the five 

faces of mathematics: a pure science; an applied science; an educational subject (both taught 

and studied); a system of tools for societal practice; and a certain kind of platform for gaining 

aesthetic experiences (Niss, 1994). 

RECAPITUALTION AND FINAL REMARKS 

As the reader will have noticed by now, this paper is mainly concerned with method:  

 method for designing teaching modules bringing out aspects of all of the 

KOM-report’s three types overview and judgment; and  

 method for accessing and assessing students’ possession and development of overview 

and judgment (through considerations of their beliefs and/or views of mathematics as a 

discipline) 

But let us briefly recapitulate these methods as presented so far in order to provide possible 

answers for the paper’s two research questions.  

The way of addressing the first question on how to design activities which can assist the 

development of overview and judgment has been one of ‘answer by example’. By this I am of 

course referring to the presentation of the HAPh-module on early graph theory in the form of 

Euler’s solution to the Königsberg bridge problem, Dijkstra’s algorithms, and Hilbert’s 

discussion of mathematical problems. Through the description of this module and the 

essay-assignments that the students were to work with it was illustrated how a setting can be 

created in order for students to develop their overview and judgment regarding mathematics 
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by challenging their existing ‘set of views’. As pointed to earlier, in order for students’ 

overview and judgment to have weight and solidity they must be provided with concrete 

examples. And that was what the module sought to do; provide examples in regard to the 

three dimensions of history, applications and philosophy of mathematics.  

Regarding the second question on how to access and assess students’ overview and judgment, 

the above may be rephrased to state that the HAPh-modules sought to provide the students 

with ‘evidence’ in order for them to make and hold their beliefs and views more evidentially 

and knowledge-based. As we know from Green (1971), we cannot expect students’ to change 

or alter their beliefs and views – and consequently their overview and judgment – are they not 

provided with concrete evidence to ‘measure’ these against, the reason being that 

Not until students have access to evidence – or counter-evidence – are they likely to 

criticize rationally, reason about, and reflect upon their beliefs, and possibly accommodate 

and change them, should they find it necessary. (Jankvist, 2009a, p. 257) 

This was illustrated in particular by the student Larry when he used the mathematical cases 

from the HAPh-modules as evidence for examples of invention and Euler’s identify and the 

number π as evidence of discovery of mathematics. Thus, by means of examples Larry was 

able to justify by exemplification his gradually more consistent views regarding the question 

of invention versus discovery; illustrating the more reflected image of mathematics as a 

discipline, which he ended up with. (Something similar could be argued for the student Salma 

by a further display of data.) Of course, the HAPh-modules are not the only things which may 

cause the students to alter and accommodate their view of mathematics as a discipline – 

Larry’s example with Euler’s identity was not part of the modules and neither was Salma’s 

example with mathematics being used within the social sciences. But whether the students’ 

possible changes in beliefs/views can be linked to the modules through the choice of 

examples or not, the study illustrates that an approach through students’ beliefs with 

repetitive questionnaires and follow-up interviews does appear to be one sensible way of 

accessing students’ overview and judgment about mathematics and the development of such. 

Furthermore, basing the assessment on the presence and growth of consistency, 

exemplification, and justification is an approach which reveals some insight regarding the 

students’ beliefs and views (and knowledge) of mathematics as a discipline. Due to the 

connectedness of the definition of students’ mathematics related beliefs regarding 

mathematics as a discipline (cf. figure 1) and the KOM-report’s three types of overview and 

judgment, it is clear that the students for whom it may be concluded that they have come to 

possess more reflected images of mathematics as a discipline also are the students who have 

developed their overview and judgment about mathematics. Again, Larry and Salma served 

as examples of such students. 

Having now described and discussed the proposed methods for accessing and assessing 

students’ overview and judgment as well as a design method for including the three 

dimensions of history, application, and philosophy in the upper secondary school 

mathematics program, let us return to our point of origin; the Lakatos quote. Thus, with 

apologies to Lakatos for abusing the quote, I end this regular lecture by stating that:  
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history and/or applications of mathematics (as well as other concrete, clarifying cases) can 

assist in making a use of philosophy of mathematics in mathematics education less empty;  

applications of mathematics can assist in making a use of history of mathematics in 

mathematics education less blind; and 

philosophy (and/or philosophizing) can assist in making uses of history and/or applications 

of mathematics in mathematics education less blind. 

Additional information 

The study presented above was supported by the Danish Agency for Science, Technology and 

Innovation under the Ministry of Science, Innovation and Higher Education. 
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