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Assessment is a key component of all teaching and learning, and for many students is a key driver of 

their activity. This paper considers automatic computer aided assessment (CAA) of mathematics. 

With the rise of communications technology this is a rapidly expanding field. Publishers are 

increasingly providing online support for textbooks with automated versions of exercises linked to the 

work in the book. There are an expanding range of purely online resources for students to use 

independently of formal instruction. There are a range of commercial and open source systems with 

varying levels of mathematical and pedagogic sophistication. 

HISTORY AND BACKGROUND 

Assessment is a key component of all teaching and learning, and for many students is a key driver of their 

activity. Computer aided assessment (CAA) has a history going back over half a century, for example 

(Hollingsworth, 1960) reports a “grader” programme which automatically checked some aspects of students’ 

computer programmes. “We are still doing considerable hand filing of punched cards at this stage. This large 

deck of cards which includes the grader program is then run on the computer. Our largest single run has been 

106 student programs covering 9 different exercises.” By the mid-1960s computers were being used to teach 

arithmetic, e.g. (Suppes, 1967), and by the 1980s there were a number of separate strands of research in this 

area including the artificial intelligence (AI) community, e.g. (Sleeman & Brown, 1982). The ambitious goals 

of such artificial intelligence-led systems have only been achieved in confined and specialized subject areas. 

These difficulties were acknowledged early, for example in their preface to (Sleeman & Brown, 1982). 

Early CAI [Computer Aided Instruction] workers set themselves the task of producing teaching systems 

which could adapt to the needs of individual students. It is now generally agreed that this is a very difficult 

task, and one that will only be accomplished as a result of extensive research in both AI and Cognitive 

Science. 

For example, in the case of multi-digit subtraction, sixty separate skills were identified by (Burton, 1982), 

including “27. Borrow once in a problem”, and “46. Subtract numbers of the same length”. The majority of 

these skills involve borrowing, and they are linked in a hierarchy. Assuming a student gives incorrect final 

answers, their goal was to identify which parts of the algorithm are not being performed correctly. Clearly this 

is necessary to provide specific feedback to the student. They defined a “bug” as a “discrete modification to 

the correct skills which effectively duplicate the student’s behaviour”, such as 0 - n = n when subtracting 

individual digits. 

[...] we were able to design a test capable of distinguishing among 1200 compound bugs with only 12 

problems! A second important property of a test is that it cause each bug to be involved often enough to 

determine that it is consistent. The current tests that we are using are designed to cause each primitive bug 

to generate at least three errors. To accomplish this it was necessary to have 20 problems on the test. 

(Burton, 1982, pg 172) 
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The validity of such tests can be confirmed, they are reliable and (subject to the availability of computing 

resources) practical. Consistency in making particular errors can be checked in an online adaptive system by 

choosing the next question based on the responses received so far. 

The skills were organized into a hierarchy in order that an expert system could make inferences on student 

knowledge from the answers previously given and select the most appropriate question to ask next. This 

reduces the number of questions asked for a variable ability group. (Appleby, Samuels, & Jones, 1997, pg 

115) 

The central difficulty is designing a good network of questions. 

Alternative approaches have focused more on formative assessment. Rather than generating reliable diagnoses 

of a student’s difficulties, they provide feedback which is designed to help students learn particular skills. For 

example, the group at Heriot-Watt University in the United Kingdom have more than a quarter of a century of 

experience in this area (see (Beevers, Cherry, Foster, & McGuire, 1991) and (Ashton, Beevers, Korabinski, & 

Youngson, 2006)). From the outset, one goal of this project was to assess students’ steps in working. 

By giving the correct answer at each stage the student is encouraged to carry on but still has to work at each 

part before the answer is revealed. In a traditional text book example either the only answer given will be 

the final one or, if the question is answered in stages, it is difficult to avoid seeing all the answers at once. 

(Beevers et al., 1991, pg 112) 

In the CALM system of (Beevers et al., 1991), as in some contemporary systems, the extent to which the 

mathematical properties of students’ individual mathematical expressions can be established was limited. We 

shall expand on this issue below. The problem of assessing a complete mathematical argument, without 

providing a template of teacher-designed answer boxes, remains an elusive goal. However, by the early 1980s 

there was a backlash from some about the use, indeed as they saw it abuse, of computers for testing in this way. 

E.g. 

In most contemporary educational situations where children come into contact with computers the 

computer is used to put children through their paces, to provide exercises of an appropriate level of 

difficulty, to provide feedback, and to dispense information. The computer is programming the child. 

(Papert, 1980) 

One result of this dissatisfaction was LOGO. Other exploratory computer environments, sometimes called 

microworlds, were another, see for example (Noss & Hoyles, 1996). 

The shibboleth between those who focus on skills and their acquisition and conceptual understanding is a 

classic dichotomy in mathematics education. The classical algorithms of elementary mathematics, including 

place-value addition, subtraction, multiplication and division of numbers, together with algebra are 

sophisticated. The lattice of skills in basic subtraction of (Burton, 1992) provides graphic evidence of this 

complexity.  To achieve basic competence requires focus of attention and diligent practice. Methods in 

calculus, linear algebra and progressively more advanced topics rely on these foundations. Practice of such 

material has provided, and remains, a significant and important use of computer aided assessment systems. 

The popularity of freely available resources such as the Khan Academy (see 

http://www.khanacademy.org) is testament to this assertion. Publishers are increasingly providing 

online support for textbooks with automated versions of exercises linked to the work in the book. There are a 

range of commercial and open source systems with varying levels of mathematical and pedagogic 

sophistication. Therefore teachers are likely to increasingly mix CAA with traditional assessments. 

Furthermore, CAA is increasingly being used to automate high stakes final examinations.  Currently, this is not 

widespread for school or university exams, but CAA forms a component of professional exams and in other 
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areas such as the UK hazard perception test, an automated component of the UK driving test.  This use is likely 

to increase significantly over the next decade. 

The focus here is on CAA where the teacher may, at least in principle, author their own questions. However, 

this requires a new level of sophistication in using technical software packages, in particular of using CAS. In 

this regard, (Sangwin & Grove, 2006) commented that “teachers are often neglected learners” themselves. It 

is necessary to have a detailed understanding in order to automate both the mathematics itself and details of the 

assessment process. Therefore CAA provides us with an opportunity to reconsider assessment, both its 

purposes and practices. All forms of assessment, from multiple choice questions, written answers under exam 

conditions, project work and oral examinations provide opportunities within certain constraints. CAA is no 

exception and while CAA does not claim to enable us to “assess everything” current CAA systems have a 

mathematical sophistication which enable them to assess much more than shallow procedural skills.  Charles 

Babbage is reputed to have said the following: 

Propose to an Englishman any principle, or any instrument, however admirable, and you will observe that 

the whole effort of the English mind is directed to find a difficulty, a defect, or an impossibility in it. If you 

speak to him of a machine for peeling a potato, he will pronounce it impossible: if you peel a potato with it 

before his eyes, he will declare it useless, because it will not slice a pineapple. 

CAA is just a tool, and it has some uses while not claiming to achieve everything. 

As for the CAA system designer, it is interesting to recall how few tools were available to help the CAA 

system designer during the mid-1980s, and the power and sophistication of machines available to students. 

Even code to evaluate an expression at a point, crucial to establishing algebraic equivalence, had to be written 

from scratch by (Beevers et al., 1991). In the last ten years software development increasingly takes advantage 

of code libraries for specific purposes, for example MathJax (http://www.mathjax.org) enables most 

web browsers to display mathematical expressions. Furthermore, teams of like-minded individuals collaborate 

on software projects and freely share the results. These include content management systems, such as Moodle 

(http://moodle.org/). For many students, at least in the more economically developed counties, the last 

ten years have enabled wide access to wireless networks through laptop computers and hand-held mobile 

devices. 

STACK 

In this section we describe STACK, an advanced general CAA system for mathematics, with an emphasis on 

formative assessment. The primary design goal was to enable a student to enter a mathematical answer in the 

form of an algebraic expression. While multiple choice questions (MCQ) have a place, the student selects an 

option from a list provided by the teacher. The purpose of many questions is grotesquely distorted by using a 

MCQ for mathematics, and hence the assessment is invalid. For example, solving an equation from scratch is 

significantly different than checking whether each potential response is indeed a solution. We preferred a 

system which evaluates student provided answers. 

An example question, with student’s response and feedback, is shown in figure 1, (see (Sangwin, 2010)). The 

student’s answer is a mathematical expression which they must enter into a form through a web browser. 

STACK then establishes the mathematical properties of the answer. For many questions the teacher will seek 

to establish that (i) the answer is algebraically equivalent to the correct answer and (ii) the student’s answer is 

in the appropriate form, (e.g. factored). However, the answer need not be unique and STACK establishes 

properties of expressions, but remains an objective testing system. In the case of figure 1 the teacher does not 

http://www.mathjax.org/
http://moodle.org/
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simply establish that the student’s answer is “the same” as their answer. A list of separate properties is needed, 

and many different answers may satisfy these. Notice that the feedback in figure 1 is specific to the answer and 

directly related to possible improvement on the task. STACK may include and display results of computer 

algebra calculations within such feedback which can be as detailed as appropriate to the question. This is a 

particular distinguishing feature of STACK. 

 

Figure 1. An example STACK question 

In particular STACK uses the computer algebra system Maxima to 

 randomly generate problems in a structured mathematical way; 

 establish the mathematical properties of expressions entered by the student; 

 generate feedback, as necessary, which may include mathematical computations of the student’s 

answer; 

 help the teacher analyse the attempts at one question, or by one student. 

Version 1 of STACK was a stand-alone quiz system. Version 2 was partially integrated into the Moodle 

content management system while version 3 provides a question type for the moodle quiz. STACK was 

designed and developed by the author, with substantial code for version 3 being written by Tim Hunt of the 

Open University in the UK. Numerous other colleagues have contributed to the design, code, testing and 

documentation. Version 2 of STACK has been translated into Finnish, Portuguese, German, Dutch and 

Japanese and is in regular use by large groups of students for formative and summative assessments. See 

(Sangwin, 2010). 

ESTABLISHING PROPERTIES 

The key issue for teachers is to articulate the properties sought in an expression, and then encode an algorithm 

which establishes each of these. Where only some of the properties are satisfied the system may provide 

feedback to the student. The most common property a teacher will wish to establish is that two expressions are 

equivalent, for example the student’s and teacher’s respective answers. In many systems, e.g. (Beevers et al., 

1991), the algebraic equivalence of two expressions is established by choosing random numbers and 

evaluating each expression at these points as floating point approximations. Numerical analysis assures us that 

a reasonable match between the values for each expression gives a reasonable probability of the two 

expressions being identical. Since students’ expressions are usually relatively simple the probability of a false 

result is very low indeed. This approach was also used by (Appleby et al., 1997) and many others. An 



Sangwin 

 

ICME-12, 2012 abcde+2 

alternative approach is to assign the variable SA to represent the student’s answer and TA to be the teacher’s 

and use the computer algebra command simplify and evaluate the following pseudocode. 

if simplify(SA-TA)=0 then true else false. 

If this test returns true then we have established the two expressions are equivalent. However, if the test returns 

false are we really sure they are not equivalent? What matters in this approach is the strength of the “simplify” 

command, and the ability to know with certainty that the zero expression really means zero, and a non-zero 

expression is really non-zero. Different CAS implement functions such as “simplify” in a surprising variety of 

ways, and (Wester, 1999) provides an interesting, but dated, comparison of CAS capabilities. From a 

theoretical perspective implementing this test is not possible in all cases! (Richardson, 1966) showed that there 

is no algorithm which can establish that a given expression is zero in a finite number of steps for a reasonable 

class of elementary expressions. These results have been refined, e.g. by (Matiyasevich, 1993) and sharpened, 

e.g. by (Caviness, 1970) who showed that for the sub-class of polynomials over the complex rational 

expressions together with unnested exponential functions then zero really means zero, i.e. we do have a 

canonical form. (Moses, 1971) comments 

In fact, the unsolvability problem may lie in Richardson’s use of the absolute value function. When one 

adds the absolute value function to a class of functions which forms a field (e.g. the rational functions), then 

one introduced zero divisors. For example, (x+|x|)(x-|x|)=0, although neither factor is 0. 

While Richardson’s result is a theoretical restriction on the effectiveness of our test for algebraic equivalence, 

in practice for learning and teaching such tests work very well indeed on the limited range of expressions 

which arise as answers to typical assessments. As (Fenichel, 1966) comments “recursive undecidability can be 

a remote and unthreatening form of hopelessness”. 

Many systems, including STACK, make use of computer algebra in this way. What then, does “simplify” 

mean? This is a phrase which is in common currency throughout elementary teaching we now argue that this is 

ambiguous and is often used for the opposite mathematical operations. For example, 1 is simpler than 7
0
 but 

7
7^(10)

 is probably simpler than writing the integer it represents. There are many algebraic examples, e.g. 

compare the expanded and factored forms of x
12

-1 and (x - 1)
12

. Similar examples can be found for many other 

pairs of forms, e.g. single fractions and partial fractions, or various trigonometrical forms. It is not difficult to 

find examples in textbooks. The word “simplify” may mean little more than transform an expression into an 

equivalent, but perhaps unspecified form.  

(Fitch, 1973) gave three reasons for simplifying expressions, the last of which was deciding if an expression is 

identically zero. The first is what he calls compactness of expressions, to make the expression smaller and this 

idea can be found in older writers, for example (Babbage, 1827, pg 339) comments 

whenever in the course of any reasoning the actual execution of operations would add to the length of the 

formula, it is preferable to merely indicate them. 

Or further back (Euler, 1990, x50), “[...] the simplicity of the equation expressing the curve, in the sense of the 

number of terms.” Designers of contemporary CAA have also reached this conclusion, e.g. (Beevers et al., 

1991, pg 113) 

It has long been accepted in science that “the simplest answer is the right one”. We have translated this 

premise into “the shortest answer is the right one”.  

For these CAA designers the length of the representation was a key property of an expression. Of course, 

compactness is strongly related to the way in which information is represented, so this measure only makes 
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sense in a particular context. Simplicity can also be interpreted as the ease with which calculations can be 

carried out. This view was developed by (Moses, 1971): 

Of course the prevalence in algebraic manipulation systems of simplification transformations which 

produce smaller expressions is due mostly to the fact that small expressions are generally easier to 

manipulate than larger ones. 

The second reason (Fitch, 1973) gives for simplifying expressions, also discussed by (Fenichel, 1966), is 

intelligibility. That is making it easier for users to understand. It is not immediately clear that compactness and 

intelligibility are different. As one example, consider the replacing trigonometric functions by complex 

exponentials. Using these we remove the need for any trigonometric identities. The formal rules e
x
e

y
 = e

x+y
, 

(e
x
)

y
 = e

xy
 and e

0
 = 1 suffice. In this process we also remove the redundancy in using tan, cosec etc. and a 

plethora of separate rules. Hence, these transformations render expressions much easier for the machine to 

manipulate, with fewer rules and fewer operations. A user, on the other hand, may expect their answer in terms 

of these traditional trigonometric forms rather than as complex exponentials. Ease of computation and 

intelligibility are different issues. 

Notice here the first issue we have to address, i.e. whether the teacher’s expression is equivalent to the 

student’s, immediately raises very interesting theoretical issues in computer science, and implicitly raises 

pedagogic issues. What is a student to make of the instruction to “simplify”? Is it any wonder some of our 

students remain perpetually confused? Appreciation of this potential ambiguity of ‘simplify’ suggests we 

develop a much more sophisticated vocabulary with which to talk about algebraic operations and the senses in 

which two expressions can be compared. Others, e.g. (Kirshner, 1989) agree with this need. 

This analysis, we believe, points the way to a new pedagogical approach for elementary algebra, an 

approach that requires syntactic and transformational processes to be articulated declaratively, enabling 

more, rather than fewer, students to escape from the notational seductions of nonreflective visual pattern 

matching. (Kirshner, 1989, p.g. 248) 

The approach in STACK is to enable the teacher to specify four senses in which two expressions might be the 

same or different, and separately to enable the teacher to test whether an expression is written a number of 

forms. To do this, STACK provides the user with a number of answer tests. Testing for properties is 

significantly different than performing calculations, and so requires specific computer algebra functionality to 

enable this. Inequalities, equations, and particularly systems of polynomial equations (see e.g. (Badger & 

Sangwin, 2011)) all have interesting elementary mathematical issues of this type which teachers, and students 

would benefit from appreciating more deeply. 

QUESTION MODELS 

In many situations the teacher will seek to establish more than one property and so need a mechanism by which 

a number of tests can be applied, perhaps in a specific order, and outcomes assembled on the basis of the 

results.  An example STACK question is shown in figure 2 which was written by Vesa Vuojamo at Aalto 

University, Finland (see (Rasila, 2010) for details of their use of STACK) This question asks students to find 

the polynomial p(x) which makes the function f(x) continuously differentiable.  

In this case the correct answer is the cubic spline which is unique up to algebraic equivalence.  However, in use 

STACK actually establishes five separate properties and provides separate feedback in each case.  These 

properties establish that the student’s answer is a cubic in x; that the polynomial passes through the points 

p(-1)=1 and p(1)=0, and the derivative of the student’s answer matches f(x) at x=-1 and x=1.  For brevity we 
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have omitted a screen shot of this automatically generated feedback.  Notice the significant shift here between 

“comparing the answer with the right answer” and articulating the properties needed separately.  This is the 

central issue for the teacher.  

An important goal of the STACK project was to enable teachers to write their own questions. Previous systems, 

in particular the AiM system of (Strickland, 2002), forced the question author to become a computer 

programmer, in effect writing substantial pieces of computer algebra code to generate the required response 

processing commands for each question. While AiM does have an authoring system, many other CAA 

implementations do not: each question is essentially a bespoke computer programme making it impossible for 

anyone other than an expert developer to write questions. By providing answer tests which enable specific 

properties to be established we both reduce the amount of code and articulate what is intended in a way which 

is much clearer than expressions such as simplify(SA-TA). There is also an important conceptual shift 

needed here by the teacher, who must specify properties explicitly, and not use proxies for those properties.  

Experience has demonstrated, however, that writing reliable, valid questions remains a difficult task, requiring 

expertise. 

 

Figure 2: testing for individual properties in STACK  

While early CAA pioneers had to write everything from scratch, this did provide great freedom with respect to 

the underlying interaction model which the students are forced to use. Essentially the “model” is the flow-chart 

through which user’s interactions change the internal state of the system until an end point is reached. For 

example, how many “attempts” can a user make? What form do these attempts take? What response does the 

system make and to what extent can a particular teacher make choices? How are questions sequenced, e.g. does 

the student see a fixed quiz at the outset, or are questions sequenced in an adaptive way as in the DIAGNOSYS 

system of (Appleby et al., 1997)? 

As we said before, the attempt to encode something forces you to be very specific about the details of what you 

are trying to do. We have discussed one example, “simplify”, at the level of computer algebra. Next we 

consider one example at the level of the question model. 

In moving the development of STACK from version 1 to version 2 we (somewhat naively) assumed that there 

would be a clean separation of the “question” from the ”quiz”. That is, it would be possible to “insert 
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questions” into a more general quiz structure in a flexible way. This turns out to be exceedingly difficult to do, 

which was a significant and unexpected surprise. For example, many teachers using CAA for formative 

assessments will ask a group of students to complete a “quiz” of a predetermined number of questions each 

week. Formative feedback is available, and where necessary multiple attempts are encouraged to help students 

ultimately succeed in these tasks. However, there is a strict time limit, after which further attempts are 

prevented and the teacher’s model solutions become available. This model of interaction essentially replicates 

traditional teaching in an online manner, which may or may not be efficacious. Notice that the concept of “due 

date” is a property of the “quiz”, but availability of the “worked solution” is a property of the “question”. It is 

simply impossible to divorce the two cleanly. 

In STACK version 3, we have opted to provide a question type for the quiz system in moodle (version 2.3). In 

these recent developments the designers of moodle have provided much greater flexibility in the separation of 

“question” and “quiz” by the use of “behaviours”, which enable the better integration of the model used by 

STACK which we have designed for use with a wide variety of types of mathematical questions. 

When CAA “question types” are relatively simple, e.g. multiple response or numeric input and even when they 

are confined to single answers, a variety of models for interactions are available which are also relatively 

straightforward to understand. However, in mathematics, especially when we aim to accept (i) mathematical 

expressions as answers, or (ii) multi-part questions, then the situation becomes much more complex. Any 

model must provide interactions which the student clearly understands at each stage.  There should be no doubt 

as to the consequences of each action with the system.  In this way it should not raise concerns which distract 

from the actual mathematics. Teachers must also be able to author questions confident that forms of use are 

available which are sensible. 

 

Figure 3. Follow through marking in STACK 
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STACK implements multi-part mathematical questions. Figure 3 shows an example of a relatively elementary 

calculus question. Notice that all three parts refer to a single randomly generated mathematical object. Hence, 

we cannot really claim this is three separate questions. Furthermore, recall that unlike early CAA systems 

which were application software, students interact with STACK through a web browser. There is already an 

implicit interaction model here, which requires the student to submit a whole page at once. I.e. asking for 

individual parts to be marked separately is difficult. Indeed, if a student changes all parts, but only asks for one 

to be marked, then the model becomes quite intricate. What should the system do with data which has changed 

or input fields which are empty? Notice that we have used the word “part” without a definition. To the student, 

there are three inputs and so they might perceive this as having three parts. To the teacher, the first and second 

parts are linked, so are they separate parts or one?  

In STACK a key design feature is a total separation of the inputs, into which students enter their answers, and 

potential response trees, which are the algorithms through which the mathematical properties are established. 

Response trees may rely on inputs in an arbitrary fashion, e.g. one-one or many-one. 

Tied to the inputs is a concept of validity.  The prototype input is an algebraic expression, and we expect the 

student to enter their answer using a traditional linear syntax into a web form box.  Clearly the student needs to 

match brackets, indeed they need to enter a syntactically valid expression.  STACK also enables teachers to 

permit a less strict syntax, e.g. omitting explicit * symbols for multiplication, where this is unambiguous.  

However, it is not clear in the twenty first century that this is helpful to students.  As (Beevers et al., 1991) 

commented: 

We would like to make input simpler but have also recognised that restrictions can be advantageous.  Most 

students will be using computers in other areas of their work and will need to learn to adapt to the rigours of 

computer input.  The student is also forced to think much more carefully about the format of their answer 

since any ambiguity is punished mercilessly.  This may be frustrating at first but can lead to a better 

understanding whereas a written answer may contain an ambiguity which is not recognised by the student 

and can lead to a misunderstanding later.  (Beevers et al., 1991) 

The design issues associated with syntax were addressed in detail by (Sangwin & Ramsden, 2007).  Essentially, 

an unambiguous informal syntax is impossible, and when combined with international differences in 

notational conventions the situation becomes hopeless.  Some conventions, particularly those for inverse 

trigonometric functions, are particularly problematic.  Hence STACK provides a number of options for the 

input, which enables a teacher to tailor the meaning to the question and their group of students.  Furthermore, 

the concept of syntactic correctness is only one part of the validation process.  In some situations the teacher 

may wish to reject any floating point numbers, or rational coefficients not in lowest terms, as “invalid” and not 

“wrong”.  Not only is there a subtle pedagogic difference (e.g. “Since you have floats I’m not going to think 

about your answer!”) but the way scores are calculated may depend on the number of valid attempts.  Hence 

rejecting answers as invalid avoids penalising students on technicalities while reinforcing issues important to 

that teacher in a particular situation.  All these decisions are at the control of the teacher of course.  There are 

other reasons for invalidating an expression.  If a student types an expression in place of an equation then the 

system can reject this as invalid, with explicit feedback of course.  In practice students do need educating on 

how to enter their answer, and they take some time to become used to the interface.  However, ultimately the 

majority of our students cease to find the interface especially problematic for the majority of questions.  

Entering a particularly complex expression is always going to be difficult.   Notice however, that validity is 

significantly more involved that a syntactic check, and that validity is a concept tied to the input.  It is separate 

from the notion of an answer being correct. 
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The algebraic expression is the prototype input, but the separation of inputs enables a variety of other 

interactions to be implemented.  For example, HTML elements such as drop-down lists, “radio buttons” and 

checkboxes for MCQs have been implemented in a relatively straightforward way.  MCQs do have a place, 

and often these can be combined as multi-part questions with algebraic inputs.  Even when used alone, the 

support of CAS in randomly generating questions enables STACK to provide mathematical MCQs.  The 

HTML text area enables multiple lines to be submitted by a student, although the primary use so far has been to 

provide more space when entering systems of equations.  Systems of equations arise naturally when answering 

algebra story problems, see for example (Badger & Sangwin, 2011).  Asking a student to transform an algebra 

story into a system of equations, and then solve these, is a basic and classical mathematical task.   

Normally, the student sees some validation feedback tied to the input, as shown in figure 2. The first time they 

submit their answer it is validated, and displayed in a two dimensional format.  This double submission is 

actually an artefact of the interaction model imposed by web page forms – there are other interaction models.  

For example, a student might see their expression build up in a two dimensional format as they type it, with 

brackets automatically closed, or mismatched brackets highlighted.   In figure 3 feedback from the inputs 

showing expressions in two-dimensional traditional notation is separated out from feedback from the potential 

response trees which have established properties of the answers. 

For some inputs, such as drop-down lists or multiple choice interactions, this double submission is irritating to 

users and the teacher can over-ride it.  Another option is to make use of an equation editor to build up the 

expression in a two dimensional traditional way. Such equations editors are relatively standard in many CAA 

systems.  STACK version 2 makes use of the DragMath editor, written by Alex Billingsly at the University of 

Birmingham. 

The computer environment also enables other kinds of interactions which are not possible in a paper and pencil 

environment.  Dynamic mathematics environments, such as GeoGebra, enable exploration and mathematical 

experiments to be undertaken.  As exploration tools for learning, these are rather well established.  These kinds 

of interactions can also be incorporated into assessments.  The geometrical configuration of the diagram 

constitutes the mathematical answer.   

One example of a STACK question with this type of interaction is shown in figure 4.  Here, the student must 

move the point P by dragging on screen.  As this is done, the values of the angles shown update dynamically as 

the dragging takes place giving a particular form of immediate feedback.  Once the student is satisfied they 

have the correct answer they can submit the page, and the value of the angle at a is returned as part of the 

answer.  Such inputs potentially accompany other interactions in a multi-part question. Extensions to STACK 

to accommodate interactions such as this were first made at the University of Aalto in Finland, see (Rasila, 

2010). 
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Figure 4. GeoGebra input interactions in a STACK question. 

Now we turn to establishing the properties of an answer.   Each potential response tree is an algorithm which 

relies on some (at least one) of the inputs. The fundamental requirement is that each input should provide a 

valid CAS expression.  Once all the inputs upon which a potential response tree relies are valid, then the tree 

can be evaluated.   

The potential response tree, technically an acyclic directed graph, consists of nodes with branches.  Each node 

takes two expressions, e.g. the student’s input and the teacher’s answer, and compares them using a specified 

answer test.  As discussed above the answer test might establish algebraic equivalence or one of a ranger other 

properties.  On the basis of this test, either the true or false branch is executed.  The branches update numerical 

scores, generate feedback for students, create a “note” for later statistical analysis and then link to the next 

node or halt.  Notice the first three of these actions generate outcomes which correspond broadly to the 

summative, formative and evaluative functions of assessment.  Which outcomes are available to the student is 

an option which the teacher must choose.  In figure 2 we have included only textual feedback and numerical 

scores have not been shown.   

This separation between inputs and the algorithms which establish the properties of answers is not an obvious 

design advantage, however it actually enables many useful situations to be immediately implemented without 

having to have separate models for each “type” of interaction. The possibility of arbitrary mappings between 

inputs and outputs, together with an ability to place feedback in any position, enables a richer set of questions 

to be implemented. 

The student in figure 3 has chosen to answer the first two parts. Notice that follow-through marking has been 

implemented, i.e. the student’s expression in the first part has been used when marking the second. The student 

has correctly evaluated their expression, but actually they need to correct their original error and re-evaluate to 

correctly answer the whole question. 

Immediately, a whole host of questions arise about how the student will interact with this system. Currently in 

STACK, all the “parts” of the question are visible to the student immediately. The question as phrased in figure 

3 presupposes a particular method. Of course, other methods for finding tangent lines are perfectly valid. Does 

the teacher expect a particular method to be used, or are they simply interested in whether the student can find 
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a correct answer using a valid method? Unless steps are laid out, to what extent can CAA assess which method 

is used? 

From the outset, CALM system of (Beevers et al., 1991) made a serious attempt to automate the assessment of 

steps in students’ working. The interaction model they developed still had pre-defined templates through 

which students answered a question. However, in their system steps were revealed in a number of possible 

ways. For example, a student could ask for steps (possibly sacrificing some implied method marks as a result), 

or this could be triggered automatically if a student was unable to complete the whole question unaided. This 

kind of interaction model has been successful, and is widely used, e.g. see (Ashton et al., 2006). The STACK 

system has been modified and extended at Aalto University, Finland and is in regular use by large groups of 

engineering students.  Their extensions include “question blocks” which can be revealed by correct or 

incorrect responses, providing very similar mechanisms to CALM.  It is likely that a combination of the 

interaction model used by CALM, the mathematical sophistication underlying STACK, and the depth of 

adaptive design of DIAGNOSYS (see (Appleby et al., 1997)) will ultimately combine into a single CAA 

system. 

STUDENTS’ REACTIONS TO STACK 

The most important issue is students’ reactions to tools such as STACK. Their reaction includes a number of 

aspects, such as their level of engagement, their reported affective reaction and ultimately their achievement. 

CAA tools do not operate in isolation: they are part of the whole experience. Clearly tools could be used in 

inappropriate, or even harmful ways, or they could simply replicate traditional teaching with little or no 

examination of the strengths and weaknesses relative to traditional methods. The difficulty in evaluating the 

effectiveness of such tools is isolating a specific effect from the general teaching. We also need to take account 

of the potential for innovator/novelty effects which might exaggerate the actual long term benefits. Of course, 

if a genuine benefit exists, even temporarily, some students will have taken advantage of this. 

A common use of CAA at the university level is to automate routine practice exercises alongside traditional 

paper based tasks. This enables students to receive immediate feedback on tasks which assess competencies 

with manipulative skills. Teachers no longer have to undertake repetitive marking of such work by hand. This 

was our motivation for introducing CAA to the University of Birmingham mathematics degree programme in 

2001. In the majority of situations where this kind of activity takes place, colleagues report a strong correlation 

between engagement with, and success on, STACK-based formative exercise questions and final marks in 

traditional exams. For typical data, see (Rasila et al., 2010). This is not surprising, and corresponds with the 

author’s experience at the University of Birmingham. However, evidence and appreciation of this reinforces 

the ongoing need for regular monitoring of student activity to identify and support students who are not 

engaging with the online activities. These students have a high probability of ultimately failing the course. 

Many university courses have very large student groups, and with inevitable delays in marking paper-based 

formative work and collating such marks it is otherwise difficult to monitor such students individually. 

To try to evaluate STACK we have undertaken focus groups with students to ask specifically about their 

experiences and reactions. The author has undertaken such focus groups, both at the University of Birmingham 

and with students at other institutions using STACK. A semi-structured interview provides a freedom to follow 

up themes or concerns in a way a paper-based questionnaire does not. From these interviews, some consistent 

themes emerge. Capital letters refer to individuals, although the quotations below are representatives from 

more than one focus group session. 
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Syntax is initially a problem 

A: I agree, but when you get used to STACK all that goes away [B: “yes”] but when you start that is a 

problem. It is very annoying when you try to type something ... well you have the “check syntax”, but if the 

check syntax is always incorrect you are like !!! 

This is particularly problematic if a diagnostic test is the student’s first experience of a university course. It is 

relatively common for students to sit such a test at the start of their course, (Lawson, 2003). However, the 

novelty of the university setting and unfamiliarity with the syntax combine to make this an unhappy 

experience. 

C: in the beginning, September or something like that, [...] I think it was really annoying to use it then 

because you didn’t know how to write it down, the syntax, [...] You had a time to do the problems and it was 

very annoying that it said “wrong, wrong” all the time when it was the syntax. [...] I didn’t know how to 

write it down, so I got the wrong answer. 

It was clear that it was syntax which was a barrier here. For one student prior knowledge removed this 

problem. 

B: Yes, I took this test but because I have a little bit of background of computer programming so I [...] knew 

the syntax a bit. I was more frustrated because I didn’t know the answers myself! [C: laughs] So I guess I 

have time to deal with the real mathematical problems, so I guess my frustration is based on my own lack of 

mathematical knowledge. So, I think the test worked quite well for me. But there you have it, I had some 

background with things like this. 

Ultimately the syntax is learned in a relatively short space of time by the majority of our students. While there 

are differences between mathematical input notations, many systems share a common core of notational 

conventions. This in itself constitutes a valuable skill, as identified by (Beevers et al., 1991), quoted above. 

However, it needs to be addressed specifically. I.e. we need to teach students how to express themselves 

unambiguously using this syntax. The feature most appreciated by students is the immediate feedback. 

C: Yes, I think it is good. Because of the feedback. [...] with the paper you have to wait and then when you 

see the right answers you can look through those with the teacher probably too quickly, and you can’t take 

your time to understand, but with STACK you can take your own time with those exercises. So that is the 

good thing with them. 

Of course, a student could simply use a textbook for this. When specifically asked about this students 

responded 

A: yeah, yes but then you look at the answer before you have solved the problem. STACK won’t tell you! 

B: it is a bit of cheating.  

A:You don’t learn if you just go ahead and look at the back. And usually when we have homework during 

the course from the book they are usually problems you don’t have the answers to so you can’t find out if 

you are wrong or right. 

When combined with the random questions, particularly when the teacher encourages repeated practice, this 

gives an interesting environment for self-motivated repeated practice. Students can try questions, respond to 

the feedback, perhaps look at complete worked solutions and then work on new problems from the same 

template. The use of random problems for each student provides a behaviour which does not occur when using 

fixed and static books. 

D: The questions are of the same style and want the same things but they are subtly different which means 

you can talk to a friend about a certain question but they cannot do it for you. You have to work it all out for 

yourself which is good.  
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This view was appreciated by other students on another occasion. 

B: I think one of the best things about STACK was the way it created the values, or the problems, for, like, 

meant for you. But they are still the same as your friend has so you can, like, collaborate on them and do 

some team work, and work on the difficulty with your friends, but you still have to do the exercise for 

yourself [A: yeah!] you have values and 

A: so you can’t just copy! 

B: it won’t help if you just copy the answer from your friend. 

Notice here the appreciation of the surface variation in the context of an underling structure.  In many 

situations, particularly in mastery of technique, the purpose of routine exercises is precisely to enable students 

to reach a point where they can recognise and successfully complete any problem from a particular class.  

Students who use STACK exercises at universities for mathematics are often amongst the highest achieving in 

their generation. It is not surprising to find recognition and appreciation of the mathematical sophistication. 

E: Recognising the turning points of the functions produced in question 2 was impressive, as there are a lot 

of functions with stationary points at x = 1 and it would be difficult to simply input all possibilities to be 

recognised as answers. 

This was in response to a question such as show in figure 1 where the student is asked to find examples. In 

many situations the properties required by a correct answer can be established automatically, although it would 

be time consuming and somewhat tedious for a teacher to do so by hand. These kinds of questions have been 

widely discussed, e.g. (Watson & Mason, 2002), but they reinforce the fundamental issue for CAA: the teacher 

must articulate the specific mathematical properties which an answer should satisfy. 

CONCLUSIONS 

Notice, however, the fundamental challenge remains here. We, as yet, have very few effective tools to encode 

a complete elementary mathematical argument on a machine. This document was originally prepared in 

LaTeX, which despite the steep learning curve still sets the standard for quality of mathematical typesetting. It 

was then converted to MSWord, which has very poor support for mathematics. What we cannot do is easily 

encode the meaning of an expression, and combine this with simple logic and automatic CAS calculations. 

Until we can achieve this simple interface, marking student’s extended work automatically will be impossible. 

Given the theoretical difficulties of establishing equivalence of two expressions, establishing the validity of 

whole arguments automatically appears totally hopeless.  For example, in finding the tangent line to answer the 

question posed in figure 3, the student could simply find the remainder when the polynomial is divided by 

(x-2)
2
. The remainder after polynomial long division of p(x) by (x-a)

2
 always yields the tangent line at x=a (see 

(Sangwin, 2011) for details and other methods) without using calculus.  Did the teacher want the answer using 

a valid method or using the method as taught?  If we seek to automatically assess the working without 

providing a template this issue must be addressed. 

Despite the fact that it is impossible to assess extended working, CAA is routinely used by thousands of 

students in many settings.  These students and their teachers find many aspects of CAA very helpful. The 

ability to generate random questions, the immediacy of feedback and the detailed reporting are all cited as 

benefits.  In particular, the use of randomly generated questions to enable discussion, and the ability to assess 

example generation tasks where the answers are difficult for a teacher to mark, are affordances which are 

unique to CAA.  It is clear, at least to the author, that uptake of CAA will increase, in informal and self-directed 

situations and in formative settings.  It is highly likely that CAA will become used in high-stakes examinations.  



Sangwin 

 

ICME-12, 2012 abcde+2 

In mathematics we do have objective notions of correctness and the progressive automation of mathematical 

knowledge provides our subject with an opportunity to implement valid assessment which are not apparent in 

essay or more subjective artistic disciplines.  Hence, we have a responsibility to ensure the tools we use move 

beyond multiple choice questions or primitive string match to check expressions.  

I end this paper with two comments. Firstly, for the arguments we encounter in many areas of elementary 

mathematics the theoretical difficulties do not arise: we can automatically decide if they are correct, or not 

(Beeson, 2003). Secondly, automatic tools can be combined to establish the correctness, or otherwise, of parts 

of an argument. For example, a routine calculation within a longer proof can be checked automatically. It 

would be potentially very helpful to a student and teacher to have this confirmed automatically before the 

whole piece of work is submitted to an intelligent human marker. This semi-automatic approach, a pragmatic 

combination of human and automatic marking, seems to offer the most promising direction for future effort in 

computer aided assessment. 
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