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The question of the teaching and learning of geometry has been profoundly renewed by the  
appearance of Dynamic Geometry Software (DGS).  These new artefacts  and tools  have  
modified the nature of geometry by changing the methods of construction and validation.  
They also have profoundly altered the cognitive nature of student work, giving new meaning  
to visualisation and experimentation. In our presentation, we show how the study of some  
geneses (figural, instrumental and discursive) could clarify the transformation of geometric  
knowledge  in  school  context.  The  argumentation  is  supported  on  the  framework  of  
Geometrical paradigms and Geometric Work Space that articulates two basic views on a  
geometer's  work:  cognitive  and  epistemological.  A  possible  extension  to  all  the  
mathematical work is explored in the concluding section.

Geometric work, figural and instrumental genesis, geometrical paradigm

INTRODUCTION

The influence of tools, especially drawing tools, on Geometry development at school has 
recently improved greatly due to the appearance of DGS. As Straesser (2001) suggested, we 
need to think more about the nature of Geometry embedded in tools, and the traditional 
opposition between practical and theoretical aspects of geometry has to be rethought. It's 
well known that we can approach Geometry through two main routes:

1.  A concrete  approach  which  tends  to  reduce  geometry  to  a  set  of  spatial  and 
practical knowledge based on material world.

2. An abstract approach oriented towards well organized discursive reasoning and 
logical thinking.
With the social cynicism of the Bourgeoisie in the mid-nineteenth century, the first approach 
was  for a long time reserved to children coming from the lower class and the second was 
introduced to train the elite who needed to think and manage society. 
Today, in France, with the “college unique”, this conflict between both approaches stays 
more hidden in Mathematics Education but such discussions have reappeared with the social 
expectation  supported  by  the  OECD  (Organisation  for  Economic  Co-operation  and 
Development) and its “bras armé” PISA (Programme for International Student Assessment) 
with the opposition between “Mathematical literacy” and “Advanced Mathematics”.
In the present paper, I will leave aside sociological and ideological aspects and focus on 
what could be a didactical approach, keeping in mind a possible scientific approach to a 
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more practical geometry referring to approximation and measure, in the sense Klein used 
when he suggested a kind of approximated Pascal's theorem on conics:

Let six points be roughly located on a conic: if we draw the lines roughly joining points and 
they intersect at a, b and c, then these points are roughly aligned. (Klein, 1903) 

The  present  presentation  will  be  supported  by  a  first  example  showing  what  kind  of 
contradiction exists in French Education where no specific work on approximation exists 
during  compulsory  school.  This  contradiction  appears  as  a  source  of  confusion  and 
misunderstandings  between  teachers  and  students.  We  were  lead  to  introduce  some 
theoretical perspectives aiming at understanding and solving this trouble. In the following, 
our theoretical framework for studies in Geometry will be introduced and used to launch 
some perspectives.

COMPLEXITY OF THE GEOMETRIC WORK

Mathematical domains are constituted by the aggregation and organization of knowledge. 
As Brousseau (2002) emphasized, this organization will not inevitably be the same as the 
actual  implementation  in  a  classroom.  A mathematical  domain  is  the  object  of  various 
interpretations when it is transformed to be taught. These interpretations will also depend on 
school institutions. The case of geometry is especially complex at the end of compulsory 
school, as we will show in the following.
The following problem was given for the French examination at Grade 9 in 1991 and was 
used in a study we conducted (Houdement and Kuzniak, 2003a).
 
Construct a square ABCD with side 5 cm.

1) Compute BD.

2) Draw the point I on [BD] such that 
BI=2,8 cm, and then the point J on [BC] 
such that JC=3 cm.
Is the line (IJ) parallel to the line (DC)?

Table 1. A geometric problem 

The intuitive evidence (the lines are parallel) contradicts the conclusion expected from a 
reasoning based on properties (the lines are not parallel). Students are faced with a variety 
of tasks referring to different,  somewhat contradictory conceptions and the whole forms a 
fuzzy landscape:

1.  In  the  first  question,  a  real  drawing  is  requested.  Students  need  to  use  some 
drawing and measure tools to build the square and control and validate the construction. 

2. Students then have to compute a length BD using the Pythagorean theorem and not 
measure it with drawing tools. But which is the nature of the numbers students have to use 
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to give the result: An exact value with square roots, or an approximate one with decimal 
numbers which is well adapted to using constructions and that allows students to check the 
result on the drawing?

3.  In  the  third  question  –  are  the  lines  parallel?  –  students  work  again  with 
constructions and have to place two points (I and J) by measuring lengths. Moreover, giving 
the value 2.8 can suggest that the length is known up to one digit and could encourage 
students to use approximated numbers rounded to one digit. In that case  is equal to 1.4 and 
both  ratios  are  equal,  which  implies  the  parallelism  by  the  Thales'  Theorem related  to 
similarity.  If students keep exact values and know that  is irrational,  the same Theorem 
implies that the lines are not parallel.

With Grade 9 students
The problem was given in a Grade 9 class (22 students), one week after a lecture on exact 
value with square roots and its relationships to length measurement. After they had spent 30 
minutes working on the problem, half of the students answered that the lines were parallel 
and the other  half  answered that  they were not.  On the teacher's  request,  they used the 
problem of approximated values to explain the differences among them. At the teacher's 
invitation, they started again to think about their solutions. At the end, 12 concluded the 
lines were not parallel, 8 that they were and 2 hesitated.
Indeed, after studying their solutions and their comments on the problem, we can conclude 
that  students'  difficulties  did  not  generally  relate  to  a  lack  of  knowledge  on  geometric 
properties, but to their  interpretations of the results. They had trouble with the conclusions 
to  be  drawn  from  Thales'  Theorem.  Even  after  discussion,  students  expressed  their 
perplexity about the result and its fluctuation. One student said “I don't know if they are 
parallel for when I round off, the ratios are equal and so the lines are parallel, but they are 
not parallel when I take the exact values”. For students, one answer is not more adequate 
than another. This gives birth to a geometric conception where some properties could be 
sometimes  true  or  false.  How  to  make  students  overcome  the  contradiction?  A first 
possibility is to force the entrance in the didactical contract expected by the class's teacher, 
who explained us that at this moment in Grade 9, it must be clear that “a figure is not a 
proof”. 
Working  on  approximation  and  thinking  about  the  nature  of  geometry  taught  during 
compulsory school open a second way we will explore with geometrical paradigms in the 
following. 

GEOMETRICAL PARADIGMS AND THREE ELEMENTARY GEOMETRIES

The previous example and numerous others of the same kind show that a single viewpoint 
on geometry would miss the complexity of the geometric work, due to different meanings 
that depend both on the evolution of mathematics and school institutions. At the same time,  
we saw that students are strongly disturbed by this diversity of approaches. Geometrical 

abcde



12th International Congress on Mathematical Education
Program Name XX-YY-zz (pp. abcde-fghij)
8 July – 15 July, 2012, COEX, Seoul, Korea (This part is for LOC use only. Please do not change this part.)
paradigms were introduced into the field of didactics of geometry to take into account the 
diversity of points of view (Kuzniak and Houdement, 1999, 2003b).
The idea of geometrical paradigms was inspired by the notion of paradigm introduced by 
Kuhn (1962, 1966) in his work on the structure of the scientific revolutions. In a global 
view, one paradigm consists off all the beliefs, techniques and values shared by a scientific 
group.  It  indicates the correct  way for putting and starting the resolution of  a problem. 
Within the restricted frame of the teaching and learning of geometry, our study is limited to 
elementary  geometry,  and  the  notion  of  paradigm is  used  to  pinpoint  the  relationships 
between geometry and belief or mathematical theories. 
With  the  notion  of  paradigms,  Kuhn  has  enlarged  the  idea  of  a  theory  to  include  the 
members of a community who share a common theory.

A paradigm  is  what  the  members  of  a  scientific  community  share,  and,  a  scientific 
community consists of men who share a paradigm (Kuhn, 1966, p. 180).

When  people  share  the  same  paradigm,  they  can  communicate  very  easily  and  in  an 
unambiguous way. By contrast, when they stay in different paradigms, misunderstandings 
are frequent and can lead, in certain cases, to a total lack of comprehension. For instance, 
the  use  and  meaning  of  figures  in  geometry  depend  on  the  paradigm.  Sometimes  it’s 
forbidden to use the drawing to prove a property by measuring and only heuristic uses of 
figures are allowed. 
To bring out geometrical paradigms, we used three viewpoints: epistemological, historical 
and didactical. That led us to consider the three following paradigms described below. 

Geometry I: Natural Geometry
Natural  Geometry  has  the  real  and  sensible  world  as  a  source  of  validation.  In  this 
Geometry, an assertion is supported using arguments based upon experiment and deduction. 
Little distinction is made between model and reality and all arguments are allowed to justify 
an assertion and convince others of its correctness. Assertions are proven by moving back 
and  forth  between  the  model  and  the  real:  The  most  important  thing  is  to  develop 
convincing arguments. Proofs could lean on drawings or observations made with common 
measurement and drawing tools such as rulers, compasses and protractors.  Fold or cutting 
the drawing to obtain visual proofs is also allowed. The development of this geometry was 
historically motivated by practical problems. 
The perspective of Geometry I is of a technological nature.

Geometry II: Natural Axiomatic Geometry
Geometry  II,  whose  archetype  is  classic  Euclidean  Geometry,  is  built  on  a  model  that 
approaches reality.  Once the axioms are set  up,  proofs have to be developed within the 
system of axioms to be valid. The system of axioms could be incomplete and partial: The 
axiomatic process is a work in progress with modelling as its perspective. In this geometry, 
objects such as figures exist only by their definition even if this definition is often based on 
some characteristics of real and existing objects.
Both Geometries have a close link to the real world even if it is in different ways.
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Geometry III: Formal Axiomatic Geometry
To  these  two  approaches,  it  is  necessary  to  add  a  third  Geometry  (Formal  Axiomatic 
Geometry)  which  is  little  present  in  compulsory  schooling  but  which  is  the  implicit 
reference of teachers’ trainers when they have studied mathematics in university, which is 
very influenced by this formal and logical approach.
In  Geometry  III,  the  system of  axioms itself,  disconnected  from reality,  is  central.  The 
system of axioms is complete and unconcerned with any possible applications in the world. 
It is more concerned with logical problems and tends to complete “intuitive” axioms without 
any “call in” to perceptive evidence such as convexity or betweenness. Moreover, axioms 
are  organized  in  families  which  structure  geometrical  properties:  affine,  euclidean, 
projective, etc.
These three approaches (and this is one original aspect of our viewpoint) are not ranked: 
Their perspective are different and so the nature and the handling of problems change from 
one to the next. More than the name, what is important here is the idea of three different 
approaches of geometry: Geometry I, II and III.

Back to the example
If we look again at our example, students – and teachers – are not explicitly aware of the 
existence of two geometrical approaches to the problem, each coherent and possible. And 
students  generally  think  within  the  paradigm  which  seems  them  natural  and  close  to 
perception  and  instrumentation  –  Geometry  I.  But  in  this  geometry,  measurement  is 
approximated and known only over an interval. Parallelism of lines depends on the degree 
of approximation. Teachers insist on a logical approach – Geometry II – which leads the 
students to conclude blindly that the lines are not parallel, against what they see. 
It  could  be  interesting  to  follow Klein's  ideas  and introduce  a  kind  of  “approximated” 
theorems,  more  specifically  here  an  “approximated”  Thales'  Theorem:  If  the  ratios  are 
“approximately” equal then the lines are “almost” parallel. In that case, it would be possible 
to reconcile what is seen on the drawing and what is deduced based on properties. 
Developing thinking on approximation in Geometry can be supported by DGS which favour 
a geometric work into Geometry I but with a better control of the degree of approximation. 
It  is  the  case,  for  instance,  with  the  CABRI  version  we  used  during  the  session  with 
students. In this version, an “oracle” is available which can confirm or not the validity of a 
property seen on the drawing.  Here, the parallelism of both lines was confirmed by the 
“oracle” according to the approach with approximation of the problem. 
Many problems allow discussion of the validity of a theorem or property in relationship to 
numerical fields. For instance, CABRI oracle asserts that (EF) and (BC) are parallels in a 
triangle ABC when E and F are respectively defined as the middles of [AB] and [AC]. But, 
if E is defined as the middle of [AB], when we drag a point F on [AC] it is possible that 
CABRI oracle never concludes that (EF) and (BC) are parallel for any position of F. These 
variations in the conclusion need an explanation and provoke a discussion among students 
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which can be enriched by the different perspectives on Geometry introduced by geometrical 
paradigms.
To discuss the question in-depth and think about new routes in they teaching and learning of 
geometry,  we  will  introduce  some  details  about  the  notion  of  Geometric  Work  Space 
(Kuzniak 2010 & 2011).

THE NOTION OF GEOMETRIC WORK SPACE WITHIN THE FRAMEWORK OF 
DIDACTICS OF GEOMETRY.

At school, Geometry is not a disembodied set of properties and objects reduced to signs 
manipulated by  formal  systems:  It  is  at  first  and mainly  a  human activity.  Considering 
mathematics as a social activity that depends on the human brain leads to understanding 
how a community of people and individuals use geometrical paradigms in everyday practice 
of the discipline. When specialists are trying to solve geometric problems, they go back and 
forth between the paradigms and they use figures in various ways, sometimes as a source of 
knowledge and, at least for a while, as a source of validation of some properties. However, 
they always know the exact status of their hypotheses and the confidence they can give to 
each one of these conclusions. 
When students do the same task, we are not sure about their ability to use knowledge and 
techniques related to Geometry. That requires an observation of geometric practices set up 
in a school frame, and, more generally, in professional and everyday contexts, if we aim to 
know common uses of mathematics tools. The whole work will be summarized under the 
notion of Geometric Work Space (GWS), a place organized to enable the work of people 
solving geometric problems. Individuals can be experts (the mathematician) or students or 
senior students in mathematics. Problems are not a part of the Work Space but they justify 
and motivate it.
Architects define Work Spaces as places built to ensure the best practice of a specific work 
(Lautier, 1999). To conceive a Work Space, Lautier suggests thinking of it according to three 
main  issues:  a  material  device,  an  organization  left  at  the  designers'  responsibility  and 
finally a representation which takes into account the way the users integrate this space. We 
do  not  intend  to  take  up  this  structure  oriented  to  the  productive  work  without  any 
modifications, but it seems to us necessary to keep in mind these various dimensions, some 
more material and the others intellectual. 

The epistemological level
To define the Geometric Work Space, we introduced three characteristic components of the 
geometrical  activity  into  its  purely  mathematical  dimension.  These  three  interacting 
components are the following ones: 

A real and local space as material support with a set of concrete and tangible objects.
A set of artefacts such as drawing instruments or software.
A theoretical frame of reference based on definitions and properties. 
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These components are not simply juxtaposed but must be organized with a precise goal 
depending on the mathematical domain in its epistemological dimension. This justifies the 
name of epistemological plane given to this first level. In our theoretical frame, the notion of 
paradigms brings together the components of this epistemological plane. The components 
are  interpreted  through  the  reference  paradigm  and  in  return,  through  their  different 
functions, the components specify each paradigm. When a community can agree on one 
paradigm, they can then formulate problems and organize their solutions by favouring tools 
or thought styles described in what we name the reference GWS. To know this GWS, it will 
be necessary to bring these styles out by describing the geometrical work with rhetoric rules 
of discourse, treatment and presentation. 

The cognitive level 
We introduced a second level, centred on the cognitive articulation of the GWS components, 
to  understand  how  groups,  and  also  particular  individuals,  use  and  appropriate  the 
geometrical knowledge in their practice of the domain. From Duval (2005), we adapted the 
idea of three cognitive processes involved in geometrical activity. 

A visualization process connected to the representation of space and material support;
A  construction  process  determined  by  instruments  (rules,  compass,  etc.)  and 
geometrical configurations; 
A discursive process which conveys argumentation and proofs. 

From Gonseth (1945-1952), we retained the idea of conceiving geometry as the synthesis 
between different modes of knowledge: intuition, experiment and deduction (Houdement 
and Kuzniak, 1999). The real space will be connected to visualization by intuition, artefacts 
to construction by experiment and the reference model to the notion of proof by deduction. 
This can be summarized in the following diagram:

Figure 1. The Geometric Work Space
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BUILDING A GEOMETRIC WORK SPACE: A TRANSFORMATION PROCESS

On the meaning of genesis
In the following, we will consider the formation of GWS by teachers and students. Our 
approach intends to better understand the creation and development of all components and 
levels existing in the diagram above. The geometric work will be considered as a process 
involving  creation,  development  and transformation.  The  whole  process  will  be  studied 
through the notion of genesis, used in a general meaning which is not only focused on origin 
but  also on development  and transformation of  interactions.  The transformation process 
takes place and, finally, forms a structured space, the Geometric Work Space.

Various GWS levels
In a particular school institution, the resolution of geometric tasks implies that one specific 
GWS has been developed and well organized to allow students to enter into the problem 
solving process. This GWS has been named appropriate and the appropriate GWS needs to 
meet two conditions: it enables the user to solve the problem within the right geometrical 
paradigm, and it is well built, in the sense in which its various components are organized in 
a valid way. The designers play here a role similar to architects conceiving a working place 
for  prospective  users.  When the  problem is  put  to  an actual  individual  (young student, 
student or teacher), the problem will be treated in what we have named a personal GWS. 
The geometric  work at  school  can be described thanks to  three  GWS levels:  Geometry 
intended by the institution is described in the reference GWS, which must be fitted out in an 
appropriate GWS, enabling an actual implementation in a classroom where every student 
works within his or her personal GWS. 

Various geneses of the Geometric Work Space
As we have seen, geometrical work is framed through the progressive implementation of 
various GWS. Each GWS, and specifically the personal GWS, requires a general genesis 
which will lean on particular geneses connecting the components and cognitive processes 
essential  to  the  functioning  of  the  whole  Geometric  Working  Space.  The  GWS 
epistemological plane needs to be structured and organized through a process oriented by 
geometrical  paradigms  and  mathematical  considerations.  This  process  has  been  named 
“epistemological genesis”. In the same way, the cognitive plane needs a cognitive genesis 
when it  is used by a generic or particular individual.  Specific attention is due for some 
cognitive processes such as visualization, construction and discursive reasoning. 
Both  levels,  cognitive  and  epistemological,  need  to  be  articulated  in  order  to  ensure  a 
coherent and complete geometric work. This process supposes some transformations that it 
is  possible  to  pinpoint  through  three  fundamental  geneses  strictly  related  to  our  first 
diagram: 
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Figure 2. Geneses into the  geometrical Work Space
An instrumental genesis which transforms artefacts in tools within the construction 
process.
A figural  and semiotic genesis which provides the tangible objects their  status of 
operating mathematical objects.
A discursive  genesis  of  proof  which  gives  a  meaning  to  properties  used  within 
mathematical reasoning.

We will examine how it comes into geometrical work by clarifying each genesis involved 
into the process. 

On figural genesis
The visualization question came back recently to the foreground of concerns in mathematics 
and didactics after a long period of ostracism and exclusion for suspicion. 
In geometry, figures are the visual supports favoured by geometrical work. This led us, in a 
slightly  restrictive  way,  to  introduce  a  figural  genesis  within  the  GWS  framework  to 
describe the semiotic process associated with visual thinking and involved in geometry. This 
process has been especially studied by Duval(2005) and Richard (2004). Duval has given 
some perspectives to describe the transition from a drawing seen as a tangible object to the 
figure conceived as a generic and abstract  object.  For  instance,  he  spoke of  a biologist 
viewpoint when it is enough to recognize and classify geometric objects such as triangle or 
Thales' configurations often drawn in a prototypical way. He also introduced the idea of  
dimensional deconstruction to explain the visual work required on a figure to guide the 
perceptive process. In that case, a figure need to be seen as a 2D-object (a square as an 
area), a set of 1D-objects (sides) or 0D-objects (vertices). Conversely, Richard insists on the 
coming down1 process from the abstract and general object to a particular drawing. 

On instrumental genesis
A viewpoint  on  traditional  drawing and  measuring  instruments  depends  on  geometrical 
paradigms. These instruments are usually used for verifying or illustrating some properties 
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of the studied objects. The appearance of computers has completely renewed the question of 
the role of instruments in mathematics by facilitating their use and offering the possibility of 
dynamic proofs. This aspect is related to the question of proof mentioned in the preceding 
paragraph,  but  the  ability  to  drag  elements  adds  a  procedural  dimension  which  further 
increases the strength of proof in contrast to static perception engaged in paper and pencil 
environments. But the ability with the use of artefacts is not easy to reach by the students. At 
the same time, teachers need to develop specific knowledge for implementing software in a 
classroom.  Based on Rabardel's works on ergonomic, Artigue (2002) stressed the necessity 
of  an instrumental  genesis  with two main  phases  that  we can insert  in  our  frame.  The 
coming up transition, from the artefacts to the construction of geometric configurations, is 
called  instrumentation  and  gives  information  on  how users  manipulate  and  master  the 
drawing tools. The coming down process, from the configuration to the adequate choice and 
the correct use of one instrument, related to geometric construction procedures, is called 
instrumentalisation.  In  this  second  process,  geometric  knowledge  are  engaged  and 
developed.

On discursive genesis of reasoning
The geometrization process, which combines geometric shapes and mathematical concepts, 
is central to mathematical understanding. We saw the strength of images or experiments in 
developing or reinforcing certainty in the validity of an announced result. However, how 
can we make sure that students understand the logic of proof when they do not express their 
argumentation  in  words,  but  instead  base  it  on  visual  reconstructions  that  can  create 
illusions? A discursive explanation with words is necessary to argue and to convince others.
The nature and importance of written formulations differ from one paradigm to another. In 
most axiomatic approaches, it is possible to say that mathematical objects exist only in and 
by  their  definition.  This  is  obviously  not  the  case  in  the  empiricist  approach,  where 
mathematical objects are formed from a direct access to more or less prototypical concrete 
objects. Such as for artefacts, we can pinpoint two geneses. The coming up sense relates to a 
proof process based on initial properties (Balacheff, 1982) and the other sense could be seen 
such as  a  defining  process  (Ouvrier-Buffet,  2007)  and  relates  to  institutionalization  for 
Coutat and Richard (2011).

TOWARDS  A  COHERENT  GEOMETRIC  WORK  AT  THE  END  OF 
COMPULSORY SCHOOL

In  practice,  the  personal  and  adequate  Geometric  Work  Spaces  do  not  lean  on  a  sole 
paradigm but  rather  on articulated and connected paradigms.  When users know how to 
recognize and connect them effectively, we will speak about a game between paradigms 
otherwise we speak of a shift to emphasize that the user does not control these relationships.
Using  the  theoretical  framework  introduced  above,  we  will  insist  here  on  some 
contradictory ways we encountered in French geometry education and highlight what could 
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be  a  coherent  approach  using  both  geometric  paradigms.  For  that,  we  draw  some 
conclusions from a work of Lebot (2011) who has studied different teaching organization 
for introducing the notion of angles at Grades 6 to 8. Using the GWS diagram, it is possible 
to describe possible routes students may take when they use software or drawing tools to 
construct figures and solve problems. Lebot has observed interesting differences visible on 
the following diagrams and we will discuss some among them. 

Besides this complex routes, he had observed some very incomplete schemas like this

A coherent GI Work Space
Generally, a geometric task begins with a construction performed using either traditional 
drawing tools or digital geometric software. Each time, the construction is  adjusted and 
controlled by the gesture and vision. 
In this approach to geometry, the trail into the GWS diagram is like the one of Diagram 5 
and done in a first sense (Instrumental - Figural and then Discursive) which characterizes an 
empirical view on geometric concepts. 
A coherent  way  to  work  theoretically  in  Geometry  I  would  be  to  use  “approximated” 
theorems in the  sense  we introduced (sec.  2)  where  the  numerical  domain  is  based on 
decimal numbers rather than real numbers. Theoretical discourse must justify what we see 
and not contradict it. This approach has been developed by Hjelmsev (1939) among others. 

A coherent GII Work Space
In the Geometry II conception, the focus is first on the discourse that structures the figure 
and controls its construction. This time, the route is trailed (Diagram 8) in an opposite sense 
(Discursive - Figural – Instrumental) and figure rests on its definition: All properties could 
be derived from the definition without surprises.
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In the traditional teaching and learning of geometry, students are frequently asked to start 
geometric problems with the construction of real objects. This leads them to work in the 
sense (I-F-D) of the Diagram 5. But for the teacher, the actual construction of an object is 
not really important. The  discursive approach is preferred and expected, as in the Diagram 
8 covered in sense (D-F-I) : what I know is stronger than what I see and measure.  In this 
pedagogical  approach,  elements coming from Geometry I  support  students'  intuition for 
working in Geometry II, leading the formation of a (GII /gI)1 Work Space. But at the same 
time, students may believe that they work in a (GI /gII) Work Space where the objective is 
to think about real objects using some properties coming from Geometry II (Thales and 
Pythagorean Theorems) to avoid direct measurement on the drawing.The geometric work 
made  by  students  could  be  incomplete  as  in  Diagram  6  where  students  stay  in  an 
experimental approach without any discursive conclusion. They have paid attention to the 
construction task which requires  time and care,  but this  work is  neglected in  the  proof 
process expected by the teacher, where figures play only a heuristic supporting role. That 
can  lead  to  another  form of  incomplete  work  but  this  time favoured  by teachers  as  in 
Diagram 4 where there exists only interaction between proof and figure.
The inverse circulation of the geometric work in Geometry I and Geometry II can lead to a 
break in the geometric work that forms, when only one approach is explicitly privileged. 
We support the idea that both geometric paradigms must be included in geometry learning to 
develop a coherent (G|GII) Work Space where both paradigms have the same importance. 
Only when this condition is met can an approximation could have both a numerical and 
geometrical  meaning,  and can a work space be created suitable for  introducing “almost 
parallel” lines in relationship to decimal numbers and where “strictly parallel” relate to real 
numbers.  That  would  help  resolve  problems  of  mathematical  coherency  such  as  those 
experienced by students  who asserted that they did not know if  the lines were parallels 
because “the lines (IJ) and (DC) are parallel if we round off, but they are not if we take the 
exact value”.

BEYOND THE GEOMETRIC WORK SPACE

How the notion of GWS could be extended beyond the Geometry? First, we can take into 
account the context within the geometric work is developed. This context can be of social 
and cultural nature as in a socio-epistemological approach (Cantoral and ali, 2006). Another 
extension could deal with the cognitive dimension in the teaching and learning processes as 
Arzarello (2008) did by introducing the “Space of Action, Production and Communication” 
viewed as metaphorical  space where  the  student's  cognitive  processes  mature  through a 
variety of social interactions. Within these frameworks, it is clear that the notion of GWS 
can operate and pinpoint on what,  at the end, is the goal of an educational approach in  
mathematics: to make an adequate mathematical work. This assertion leads us to another 
kind of  generalization related to  what  is  mathematical  work.  In  this  direction,  we have 
started some investigations with researchers interested in Calculus, Probability or Algebra. A 
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third symposium on this topic will be held at Montreal in 2012 and some elements on this 
approach  are  given  in  Kuzniak  (2011).  The  generalization  supposes  an  epistemological 
study  in-depth  of  the  specific  mathematical  domain  and  of  its  relationships  to  other 
domains.  Indeed,  each  domain  relates  to  a  particular  class  of  problems and the  crucial 
question is  to  find an equivalent to the role that  space has  in  geometry.  Variations  and 
functions for calculus, chance and data for probability and statistics, can play the same role 
as  space and figures  in  geometry.  If,  it  seems that  the  two planes,  epistemological  and 
cognitive, keep the same importance as in geometric work, figural genesis and visualisation 
should  be  changed  and  reinterpreted  through  semiotic  and  representation  processes  in 
relationship to the mathematical domain concerned. 

Epistemological and cognitive levels: a double articulation
From our study of  geometric work,  we retain the idea of  articulating two levels  in  the 
Spaces of the Mathematical Work, one of epistemological nature related to mathematics 
content and the other to cognitive aspects. The mathematical work is the result of a gradual 
and evolutionary process that will allow an inner joint at each of the epistemological and 
cognitive levels and  the articulation of these two levels.
If  artefacts  and  theoretical  frame  of  reference  are  two  basic  components  of  any 
epistemological level associated with a particular mathematical field, the component related 
to  space  and  geometric  configurations  must  be  changed.  In  the  case  of  GWS,  this 
component is closely related to the visible and tangible form of geometric objects. To extend 
it to other areas of mathematics and in accordance with a conception of mathematics based 
on  semiotic  representations,  we  think  relevant  to  introduce  the  notion  of  sign  or 
representamen,  according  Peirce.  The  representamen or  sign  is  a  thing  that  represents 
something  else:  its  object.  The  interest  of  the  idea  of  representamen is  that  it  can  be 
connected to objects in more or less abstract forms: icons, indexes and symbols.
A sign  refers  to  its  object  in  a  iconic  way  when  it  evokes  its  object  in  a  similarity 
connection. It refers to its object in an indexed way when it is really affected by this object,  
for example, a knock at the door is the sign of a visit or a symptom of a disease is the index 
of this disease. A sign is a symbol when referring to its objects under rules. Rules may have 
been made  a  priori,  by  agreement,  or  have  been made  a  posteriori,  by  attendance  and 
cultural habit. Mathematics is generally concerned with the symbolic level but in learning 
and in an empirical conception of mathematics, some signs may have an iconic or indexed 
meaning. This is, for example, the case with figures in geometry or dice in probabilities. On 
the other hand, these signs will be organized in registers of semiotic representation to enable 
a mathematical work.
The cognitive level is influenced by the importance we grant to signs and representation in 
the formation of mathematical work. Indeed, processes at work in the cognitive level have 
to  allow the development  of  some components  by using  specific  modes of  knowledge. 
Notions  of  proof  and  construction  could  be  kept  without  any  change  but  visualization 
process requires a fundamental adaptation to find its place in the Space of Mathematical 
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Work.  
We propose the following diagram to describe our first approach on Spaces of Mathematical 
Work. 

Figure 3: Space of Mathematical Work  and its Geneses
We introduced the idea of a semiotic genesis associated to representations of  mathematical 
objects.  We  keep  the  term  of  visualization  which  should  be  associated  strictly  to  the 
operating schemes and to intuition.

Tools for a study of Spaces of Mathematical Work
The study of the mathematical workspace seems to rely on various tools that were used in 
the study of GWS, these tools should allow including:

Description  and  differentiation  of  various  GWS  such  reference,  appropriate  or 
personal GWS. 
Description  of  the  specific  epistemological  and  didactic  issues  in  connection  to 
mathematics domains and paradigms.
Studies  of the  development  of  the  various  geneses  at  work  in  formation  of 
mathematical work.

Some of these tools were evoked in the text as the instrumental, semiotic, ergonomic or 
praxeologic approach.  This list  is  not restrictive and have to be completed with precise 
studies on specific subjects. 

CONCLUSION
The  presentation of the notion of Geometric Work Spaces and of its extension to all the 
mathematical work was based on different geneses. Our objective was to define and also to 
clarify  how  these  notions  could  impact  on  didactics  of  mathematics  and  relate  to  the 
teaching and learning of mathematics. 
A first genesis, internal to our works in didactics, is concerned by the passage of the initial 
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notion of GWS limited to geometry to the more general notion of Spaces for Mathematical 
Work. Around the central notion of GWS, the notions of geometric work and spaces of work 
are linked and organised. The first one relates to the impact of specific contents on the 
evolution and transformation of the work and the second defines the structure which allows 
this particular work. Thanks to the Spaces of Work, it is possible to introduce three views on 
mathematical work concerned by the material device with its components, the organization 
of this space by its designers and the mental representations of its users. 
Space of Mathematical Work is structured in two levels by epistemological and cognitive 
geneses to better understand the interactions that exist within the teaching and learning of 
mathematics.

The epistemological genesis structures the mathematical organization of MWS by 
giving  it  a  meaning  which  geometrical  paradigms  help  to  define  in  the  case  of 
geometry.
The  cognitive  genesis  structures  the  working  space  when a  generic  or  particular 
individual  use  it.  Even there,  the  example  of  geometry  attract  attention  on some 
cognitive  processes  as  visualization,  construction  and  the  discursive  reasoning 
already important within the framework of GWS. 

How then to articulate both levels in order to realize the expected mathematical work? It  
seems possible  to  introduce three  fundamental  geneses  strictly  related to  the  theoretical 
frame developed:

An instrumental genesis makes artefacts operative in the construction process.
A semiotic genesis based on semiotic registers of representation which provides the 
status of mathematical objects to the tangible objects.
A discursive  genesis  of  proof  which  gives  a  meaning  to  properties  used  within 
mathematical reasoning.

To answer to theses questions, we need further studies on specific contents similar at that  
we  made  in  Geometry.  In  this  direction,  some  investigations  are  done  by  researchers 
interested in Calculus, Probability or Algebra and will be presented during the third ETM 
symposium at Montreal in October 2012. 
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