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This paper focuses on my 20 year program of research into the teaching and learning of applications 
and modelling in secondary classrooms. The focus areas include the impact of task context and prior 
knowledge of the task context during the solution of applications and modelling tasks, mathematical 
modelling in secondary school, metacognition and modelling and applications, curriculum change 
with respect to applications and modelling and affinity of pre-service secondary teachers with 
modelling in lower secondary school. Some of the analysis tools used in this research will be 
presented. 
Modelling, secondary school, applications 

INTRODUCTION  

Research into teaching and learning through mathematical modelling and applications has 
been quite strong for several decades now (Blum, Galbraith, Henn, & Niss, 2007; Kaiser, 
Blum, Borromeo Ferri, & Stillman, 2011) and a feature in regular lectures at recent 
congresses (e.g., Blum, 2008; Galbraith, 2008). However, in many countries it would be 
true to say, “there is still a substantial gap between the forefront of research and 
development in mathematics education, on the one hand, and the mainstream of 
mathematics instruction, on the other” (Blum, 1993, p. 7) when it comes to this area of 
teaching and learning. My colleagues and I have been researching in this area for many 
years. In my work I have focused on a range of significant issues that impact on the field of 
applications and modelling in mathematics education, and I take this opportunity to reflect 
on some of these from the perspective of my own work and that of others.  The focus areas 
include the impact of task context and prior knowledge during applications and modelling 
tasks, mathematical modelling in school particularly in secondary school, metacognition 
and modelling and applications, curriculum change with respect to applications and 
modelling and affinity of pre-service teachers with modelling in lower secondary school. 

Given the various idiosyncrasies associated with some localised curricular initiatives within 
and between countries the meanings and interpretations ascribed to terms such as 
applications and mathematical modelling in my work will first be clarified. These meanings 
are consistent with those adopted by the International Community for the Teaching of 
Mathematical Modelling and Applications (ICTMA), which is an Affiliated Study Group of 
ICMI.  
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Various intermediate stages exist between completely structured word problems and open 
modelling problems where the structuring must be supplied entirely by the modeller. One such 
stage involves contexts where the aim of the problem is well defined, where the problem is 
couched in everyday language, but where some additional mathematical information must be 
inferred on account of the real world setting in which the problem is presented. This is a level 
between textbook word problems and modelling problems contextualised fully within real-life 
settings. (Stillman & Galbraith, 1998, p. 158) 

These I call applications tasks. With applications the direction (mathematics  reality) is 
the focus. “Where can I use this particular piece of mathematical knowledge?” The model is 
already learnt and built. With mathematical modelling the reverse direction (reality  
mathematics) becomes the focus. “Where can I find some mathematics to help me with this 
problem?” The model has to be built through idealising, specifying and mathematising the 
real world situation. Both types of task have their place in school classrooms. 

The term mathematical modelling when used in curricular discussions and implementations 
is often interpreted differently. One interpretation sees mathematical modelling as 
motivating, developing, and illustrating the relevance of particular mathematical content 
(e.g., Chinnappan, 2010). A second perspective views the teaching of modelling as a goal 
for educational purposes not a means for achieving some other mathematical learning end. 
The models and modelling perspectives of Lesh and Doerr (2003), for example, while 
clearly associated with the first interpretation, extend beyond to include elements of the 
second.  My own approach sees the second interpretation as encompassing the first. Both 
approaches agree that modelling involves some overall process that involves formulating, 
mathematisating, solving, interpreting, and evaluating as essential components. 

IMPACT OF TASK CONTEXT AND PRIOR KNOWLEDGE DURING 
APPLICATIONS TASKS 

There is a plethora of meanings that the word context conveys in mathematics education. 
Two of these are situation context, the “context for learning, using and knowing 
mathematics” (Wedege, 1999, p. 207) and task context, “representing reality in tasks, word 
problems, examples, textbooks, teaching materials” (p. 206). Although the influence of the 
situation context on student solutions cannot be denied, the focus here is on the effects of 
task context using the meaning above. 

The location of mathematical tasks in meaningful contexts for both teaching and assessment 
purposes can be enriching according to Van den Heuvel-Panhuizen (1999). She claims that 
contexts can achieve this by enhancing accessibility, contributing to "the latitude and 
transparency" (1999, p. 136) of the tasks, and by providing students with solution strategies 
inspired "by their imagining themselves in the situation[s]" (1999, p.136) portrayed in the 
tasks. On the other hand, she acknowledges that the use of tasks embedded in familiar 
contexts is not always supportive of students' solution attempts and may also create 
difficulties, particularly in assessment. Students sometimes refuse to engage with the 
intended mathematical interpretation of the problem by appealing to plausible alternative 
realistic scenarios that resolve the task non-mathematically (see Gravemeijer, 1994). At 
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other times they ignore the task context entirely and therefore exclude their "real-world 
knowledge and realistic considerations" (Van den Heuvel-Panhuizen, 1999, p. 137). 

Results from a study by Busse and Kaiser (2003) indicate that task context effects can be 
very individual and unpredictable. They found that at times emotional involvement with 
issues, such as environmental destruction, which students associated with the situation 
portrayed in a task context had a distracting effect. A rich store of knowledge about the task 
context also sometimes became a hindrance as it expanded, rather than limited, the 
real-world associations a student was able to activate, resulting in confusion. These 
extraneous associations were occasionally used by students to accept incorrect results. For 
example, a decrease in global oil consumption was seen as reasonable when there should 
have been an increase based on extrapolation from given data as the imposition of an 
“eco-tax” could explain such a spurious result. On the positive side, other students in their 
study reported the use of contexts of interest to them as being highly motivational, whilst 
others used knowledge of the task context to correctly verify results. Busse (2011) 
concludes that it might be useful “to use the notion of contextual idea … to indicate the 
mental representation of the real-world context offered in the task” (p. 42). He points out 
that such ideas are dynamic changing as the student works on the task. 

Abstraction Within Versus Abstraction Away From the Task Context 

Students often have great difficulty formulating adequate mathematical representations of 
applications tasks for a variety of reasons. The traditional view of the mathematisation of a 
task context necessitates the extraction of the inherent mathematics from the situation 
through a process of abstraction. An alternative viewpoint involves “abstracting within, not 
away from,” the task context (Noss & Hoyles, 1996, p. 125). In approaching the task, 
students are viewed as having the potential to activate a web of connections between the 
situation described in the task statement, their mental models of that situation (both 
contextual and mathematical) (see Figure 1) and the written mathematical model which they 
construct (Noss & Hoyles, 1996). 

As applications tasks are presented to students as written text, text comprehension strategies 
come into play. Nathan, Kintsch and Young (1992) theorise that for the comprehension and 
solving of worded problems to be successful three mental representations of the problem 
need to be constructed (a) a textbase from the textual input in the problem statement, (b) a 
situational model of the events described in the task statement and inferred or elaborated 
from it using the task solver’s general knowledge base, and (c) a model of its mathematical 
structure (the problem model). Thus, to understand an applications task in order to construct 
a mental situational model (Nathan et al., 1992), a student must possess sufficient resources 
to comprehend the situation described together with the appropriate strategies to generate 
the necessary inferences and elaborations to fully specify the situation being modelled or 
mathematised. The situational model draws on the student’s prior knowledge to fill in the 
gaps in the description presented (see Figure 1). Prior knowledge of task contexts can be 
from (a) vicarious experiences in other academic subjects (academic knowledge), (b) 
general encyclopaedic knowledge of the world (encyclopaedic knowledge), or (c) truly 
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experiential knowledge developed from personal experiences outside school or in practical 
school subjects (episodic knowledge). Episodic prior knowledge is personal but it may be 
derived directly from actions or from observation of actions. This derivation can have 
implications for the role of episodic prior knowledge in model formulation (see Stillman, 
2000, for further details).  

 
Figure 1. Abstraction within or away from task context (Stillman, 2002b)   
According to Nathan et al. (1992), a set of problem schemas guide construction of a mental 
problem model from the mental situation model. This is where abstraction away from the 
context can occur with the mental situational model becoming divorced from the mental 
problem model instead of the two being integrated if coordination fails (i.e., jagged arrow in 
Figure 1). If this occurs, the task solver could use mathematical procedures that are invalid 
within the task context. “There is not necessarily any smooth transition from the situation 
model” to the problem model and this might not even be possible if the student does not 
possess the necessary mathematical schemas, selects inappropriate ones, or a mathematical 
representation of the relationship involved does not exist (MacGregor & Stacey, 1998, p. 
58). In these instances the student must recognise the need to discard the situational model 
(MacGregor & Stacey, 1998), make new inferences, and construct another model. 

In a study of a group of Australian senior secondary school students (Years 11 and 12) 
solving applications tasks (Stillman, 2002a, 2002b), many of the students appeared to use a 
general problem solving schema rather than specific schemas when attempting the tasks, 
except when the problem was recognised as being parallel to one they had attempted 
previously. Different students in the study reasoned within the task context for the purposes 
of (a) initial comprehension and problem representation, (b) progressing throughout the 
solution, (c) verifying the final solution and/or (d) recovering from errors. Other students 
ignored or backgrounded extra-mathematical knowledge. This is a sensible tactic with 
injudicious problems where the context is not authentic to reality or in problems where the 
context acts as a border around the mathematics and the two are completely separable. 
However, even though a task may be appropriately classified as a border problem, in 
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practice the separation process may not be obvious for a student inexperienced in applying 
mathematics to real situations. Mathematically equivalent contextualised and 
decontextualized forms of such tasks give rise to quite different success rates in solution. 
The contextualised task involves sorting out the order in which contextual cues need to be 
applied, determining their relevancy, coordinating and integrating. The integration of 
information is the critical aspect of the difference in cognitive demand of the two versions 
of the task which may account for differences in success rates in mathematically equivalent 
contextualised and decontextualized forms of tasks when mathematical and language 
competency are adequate (see Stillman, 2001, for examples). A student who was able to 
abstract the mathematics away from the contextual detail would not have to address the high 
cognitive load that is imposed by the need of students with little previous experience in 
doing so, having to integrate data cues. 

Engagement with the Task Context 

The impact of engagement with the task context of these applications tasks on the students’ 
performance on the tasks was also investigated (see Stillman, 1998b). Moderate to high 
engagement with a task context was not often associated with poor performance which was 
more likely to be associated with no to low engagement. High engagement with task context 
was not a necessary condition for success as the degree of engagement necessary for 
success appeared to be task specific. Students identified a sense of realism and having an 
objective to work towards as facilitators of their engaging with task context. Many students 
in the study were unable to engage with the context of an applications task to any significant 
degree and only a few of these students were successful at solving them. Engagement with 
task context alone was not of sufficient explanatory power to account for all the patterns in 
the data. Other factors clearly came into play. To develop the meta-knowledge associated 
with the successful modelling of situations in their environment, students need tasks that 
require them to engage with the context in order to solve them successfully. They need 
experience in abstracting within, not away from the situation described in the task statement 
so engagement with a task context continues throughout the solution process. This requires 
the setting of tasks that allow this and the modelling of this process by teachers. 

Task Accessibility 

A cognitive/metacognitive framework developed in Stillman (2002a) proved useful in 
identifying and examining the conditions that facilitated or impeded task access for the 
students in the study through an analysis of students’ responses to the tasks (see Stillman, 
2004a). When the conditions facilitating task access were examined some conditions 
reduced the difficulty level of a task for particular students whilst others were related to 
reduced complexity of a task. Personal conditions that reduced difficulty were personal 
attributes of the task solver such as being able to visualise, possessing metacognitive 
knowledge that encouraged task access, or prior knowledge of the task context. Other 
conditions reducing task difficulty were attributes of the task that were susceptible to 
individual variation when a particular student interacted with the task (e.g., how recent a 
particular piece of mathematics required in the task had been studied or how well rehearsed 
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the required mathematics was). On the other hand, facilitating conditions associated with 
tasks being of lower complexity occurred when particular task attributes were present (e.g., 
the presence of salient cues, Kaplan & Simon, 1990, in the form of trigger words or visual 
features). Similarly, impeding conditions that increased the difficulty of a task for particular 
individuals often resulted from the interaction of a student’s personal attributes with the 
attributes of the task (e.g., reluctance to make assumptions, cuing words not being salient, 
recall difficulties, interference from prior knowledge, metacognitive task knowledge which 
discouraged access) but sometimes were purely personal (e.g., possessing metacognitive 
personal knowledge that discouraged access). Impeding conditions that were associated 
with increased complexity of the task were task attributes such as the mathematics or the 
goal of the task not being obvious, the need to integrate given and derived contextual 
information in order to construct a mental representation of the situation described in the 
task, or the need to make assumptions in order to formulate a mathematical model. 

Task difficulty varied from student to student whilst task complexity was fixed as it was 
determined by the attributes of the task. This is in agreement with Williams’ (2002) 
distinction between these two terms. It is foreshadowed, however, that these attributes may 
be related to particular solution methods rather than the task per se (e.g., one solution 
approach may require a deeper level of integration of information than another). Personal 
attributes of the student also appear to act as intervening conditions between task 
complexity and task difficulty. These would explain the different consequences that occur 
(e.g., different difficulty levels or whether or not impeding conditions were overcome) when 
different students attempt tasks of the same complexity.  

For students to benefit from facilitating conditions in applications tasks, they need: a 
well-developed repertoire of cognitive and metacognitive strategies as well as a rich store of 
mathematical concepts, facts, procedures, and experiences; vicarious general encyclopaedic 
knowledge of the world and word meanings; and truly experiential knowledge from 
personal experiences outside school or in more practical school subjects. In particular, a 
variety of retrieval, recognition, mental imaging, perceptual, and integration strategies 
together with metacognitive strategies for monitoring, regulating, and coordinating the use 
of these cognitive strategies is necessary (see Stillman, 2004a, for further details). The tasks 
used in this study were highly reading-oriented and thus, as suggested by Nathan et al. 
(1992), relied on students (a) accessing a good store of relevant prior knowledge for 
generating the inferences and elaborations necessary for understanding the situation fully 
and (b) having good comprehension skills to enable the student to specify a valid problem 
model for the task through the application of mathematical procedures. In some instances 
use of both cognitive and metacognitive strategies was enhanced by students (e.g., in a task 
about ice hockey) imagining or pretending to be in the situation described confirming Van 
den Heuvel-Panhuizen’s (1999) assertion cited previously. This facilitation of access was 
also enhanced by the development of metacognitive knowledge which encouraged students 
to engage with the task (e.g., knowledge of task structure that has facilitated access to 
applications tasks for this task solver previously). However, once a modest degree of skill 
has been achieved in accessing complex tasks such as applications, the work of Schneider 
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and Detweiler (1988) and Carlson et al. (1990) point to coordination and integration of 
multiple representations, further cues, and mathematical processes and procedures as 
becoming critical as the solution attempt progresses. 

Failure of a student to possess a well-developed strategic repertoire or rich store of 
mathematical, encyclopaedic, semantic, or experiential knowledge can lead to the situation 
where conditions that facilitate one student’s access to the task become impeding conditions 
for another. For example, a task about road construction, with apparent obvious 
mathematical and contextual cues for one student, may prove inaccessible for another who 
does not have the appropriate knowledge base or fails to activate an appropriate knowledge 
base because of a poorly developed strategic repertoire. If the student does have the 
appropriate knowledge and strategic bases but fails to activate either initially, an initial 
period of difficulty may be experienced but then overcome. At other times, particular 
attributes of an applications task such as unusual wording, a lengthy problem statement, or 
the required mathematical model or method not being obvious, can impede access. These 
difficulties can be overcome, however, by students possessing and activating a 
well-developed strategic store together with an appropriate knowledge base. A wide variety 
of cognitive strategies that include retrieval, comprehension, information organising, 
attention focussing, information representing, and visualising are necessary for overcoming 
the potential array of impeding conditions that a student may encounter in attempting to 
access an applications task. The effective use of these strategies is enhanced by an equally 
rich and varied store of metacognitive strategies. See Stillman (2004a) for further details. 

MODELLING IN SECONDARY SCHOOLING 

Figure 2, developed from a corresponding diagram in Galbraith and Stillman (2006), has 
multiple purposes as described below. It will provide a useful launching point for issues 
discussed later in this paper. Modelling in schooling has two concurrent purposes – (a) to 
solve a particular problem at hand, and (b) over time to develop modelling skills, that 
empower students to describe and solve problems in their personal and social worlds. These 
purposes have characterised my work in the field. The task begins with the messy  real 
world situation [A]. The respective entries B-G in Figure 1 represent stages when particular 
products (e.g., the mathematical model [C] or decisions about acceptance or rejection of the 
model [F]) have been produced in the modelling process. The thicker arrows signify 
transitions between the stages. The overall solution process is described by following these 
arrows clockwise around the diagram from the top left. It culminates either in the report of a 
successful modelling outcome, or a further cycle of modelling if evaluation indicates that 
the solution is unsatisfactory in some way. The kinds of mental activity that individuals 
engage in as modellers attempt to make the transition from one modelling stage to the next 
are given by the broad descriptors of cognitive activity 1 to 7 in Figure 2. 

The light double-headed arrows are included to emphasise that thinking within the 
modelling process is far from linear, or unidirectional as has been confirmed empirically by 
Oke and Bajpai (1986) and Borromeo Ferri (2006). The light arrows indicate the presence 
of reflective metacognitive activity as widely recognised and articulated by many 



Stillman 

  
Abcde+3           ICME-12, 2012 

researchers (e.g., Maaß, 2007; Stillman, 2011; Tanner & Jones, 1993). Such reflective 
activity can look both forwards and backwards with respect to stages in the modelling 
process. The double-headed arrows in Figure 2 are indicative rather than exhaustive. In 
theory they connect every pair of stages, for example C to E, but diagrammatic clarity 
precludes inclusion of them all as was done previously in Stillman (1998a, p. 145) where a 
regulatory mechanism was included in a process rather than a product diagram as here. 

    

Figure 2. Modelling cycle from Stillman, Galbraith, Brown and Edwards (2007)   
Foci for teaching and research 

Such a modelling diagram, as Figure 2, serves a variety of purposes. At its most 
fundamental level it captures and depicts the modelling cycle familiar to those who work 
within the paradigm of modelling as real world problem solving. It thus shares 
commonalities with many of these. Secondly, it can be employed as a scaffolding device to 
articulate and support the practice of modelling for those beginning modelling (e.g. as 
described in Galbraith & Clatworthy, 1990). Used in this way it both defines and helps to 
bridge zones of proximal development that exist for beginning modellers.  Thirdly, as Blum 
(2008) points out, such a representation is indispensable as “an instrument for teachers for 
diagnosis and well-aimed intervention” (p. 8). Fourthly, it serves to define and identify key 
foci for research with respect to individuals learning mathematical modelling. For example, 
with colleagues I have developed a research tool from the diagram and researched factors 
seen as blockages to progress, when students have difficulty in making transitions between 
stages of a modelling task as will be overviewed below.    

Issues in formulating models 

I now briefly indicate how my own work and interests relate to aspects of the structure 
displayed in Figure 1. A key part of the modelling process relates to the transition between 
stages B and C. This transition has been known as a “bottleneck” in modelling for quite 
some time (see, e.g., Hickman, 1986). Arguably making this transition is the most 
demanding part of the majority of modelling projects and its presence as a prime focus 
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separates modelling as real world problem solving, from other educational approaches that 
also use the term ‘modelling’. Helping students to achieve this transition is a continuing and 
major teaching and research priority. Differences of emphasis, and indeed of structure, have 
been introduced (e.g., Blum & Leiß, 2005, as cited in Leiß & Wiegard, 2005), through the 
addition of a ‘real model’ between B and C.  Clearly, there is a connection to the worded 
applications tasks abstraction models that were based on text comprehension models. As “in 
applied mathematics one does not distinguish a real model from a mathematical model, but 
regards the transition from real life situation into a mathematical problem as a core of 
modelling” (Kaiser, 2005, p. 100), my colleagues and I have maintained the transition as 
shown. This has proved a useful basis for researching this transition nevertheless. 

Development of  Framework for Identifying Blockages in Transitions 

A new research tool was developed with colleagues from Figure 2 and refined in attempting 
to address our goals of (a) identifying and classifying critical aspects of modelling activity 
within transitions between stages in the modelling cycle, and (b) identifying pedagogical 
insights for implementation through task design and organisation of learning. Typically, a 
genuine modelling task begins with a messy real world problem which is then transformed 
and solved mathematically as the modeller carries out various processes in the modelling 
cycle. Initially, the tool consisted of an empty frame of the transitions between stages as 
shown in Figure 2. Using preliminary data analysis an emergent framework was developed 
(Galbraith & Stillman, 2006; Galbraith, Stillman, Brown, & Edwards, 2007) for identifying 
potential places where student blockages could occur in these transitions. Details for the 
first two transitions are shown in Figure 3. These have been illustrated with data from tasks 
used at year 9 level. Generic elements are shown in ordinary type, instantiations for a 
particular task in small capitals. Continuing analysis of task implementations led to further 
refinements such as a further construct, level of intensity of a blockage, to explain the 
robustness of particular blockages to change and to identify student or teacher interventions 
to overcome these (Stillman, Brown, & Galbraith, 2010; Stillman, 2011). 

1. MESSY REAL WORLD SITUATION →  REAL WORLD PROBLEM STATEMENT 
1.1 Clarifying context of problem [ACTING OUT, SIMULATING, DISCUSSING PROBLEM SITUATION]  
1.2 Making simplifying assumptions [NO GOALKEEPER, RUNNERS WILL MOVE IN STRAIGHT LINES] 
1.3 Identifying strategic entit(ies) [RECOGNISING LENGTH OF LINE SEGMENT AS THE KEY ENTITY] 
1.4 Specifying correct elements of strategic entit(ies) [IDENTIFYING SUM OF TWO CORRECT LINE SEGMENTS] 
2. REAL WORLD PROBLEM STATEMENT →  MATHEMATICAL MODEL 
2.1 Identifying dependent and independent variables [TOTAL RUN LENGTH AND DISTANCE FROM CORNER] 
2.2 Representing formulae in terms of ‘knowns’ [LENGTH EXPRESSED IN TERMS OF FIELD EDGE DISTANCES] 
2.3 Realising independent variable must be uniquely defined [X-CANNOT BE DISTANCE FROM BOTH A AND B] 
2.4 Making relevant assumptions [LINEAR MODEL APPROPRIATE EVEN WHEN DATA POINTS APPEAR TO FOLLOW CURVE] 
2.5 Choosing technology to enable calculation [RECOGNISING HAND METHODS ALONE ARE IMPRACTICAL] 
2.6 Choosing technology to automate formulae for multiple cases [LISTS HANDLE MULTIPLE X-VALUES] 
2.7 Choosing technology to produce graphical representation of model [SPREADSHEET OR GRAPHING CALCULATOR]  
2.8 Choosing to use technology to verify algebraic equation  [RECOGNISING GRAPHING CALCULATOR FACILITY TO 

GRAPH L VERSUS X] 
2.9 Perceiving a graph can be used on function graphers but not data plotters to verify an algebraic equation 

[GRAPHING CALCULATOR CAN PRODUCE GRAPH OF FUNCTION TO FIT POINTS – SPREADSHEET CANNOT] 

Figure 3. Initial transitions in Galbraith, Stillman, Brown, and Edwards (2007) Framework. 
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The Framework systematically documents activities and content with which modellers need 
competence in order to successfully apply mathematics at their level. Given that the 
elements in the framework were identified by observing students working, (and in particular 
wrestling with blockages to progress), there are two immediate potential applications. First 
are the insights obtained into student learning, and how these can inform our understanding 
of the ways that students act when approaching modelling problems. Second, closely allied 
to this are associated pedagogical insights. By identifying difficulties with generic 
properties, the possibility arises to anticipate where, in given problems, blockages of 
different types might be expected. This understanding can then contribute to the planning of 
teaching and task design, in particular the identification of prerequisite knowledge and 
skills, preparation for intervention at key points if required, and scaffolding of significant 
learning episodes. For example, blockages of low intensity appear to be able to be resolved 
by students themselves engaging in genuine reflection so tasks can be scaffolded in such a 
way to allow this to occur (e.g., by asking students to pause and write about their interim 
results in terms of what they would expect from real world experiences) (see Galbraith, 
Brown, & Stillman, 2010). Blockages of high intensity, on the other hand, might need direct 
intervention by the teacher to facilitate revision of mental models by students when they 
have resisted doing so for some time by failing to accommodate new contradictory 
information (see Stillman, 2011). 

Evolving perceptions: ‘assumptions’ and ‘technology’ 

Reflection on the modelling diagram calls to mind two other areas that have evolved over 
time. The first is the role of assumptions. Originally assumptions were perceived as 
confined to the process of setting up a mathematical model in the first place. While they 
play a major role in formulation, it is now realised that they permeate the whole of the 
modelling process (see detailed examples in Galbraith, 1996; Galbraith & Stillman, 2001; 
Galbraith, Stillman, & Brown, 2010). Galbraith and Stillman (2001), for example, identified 
three different classes of assumption. Firstly, assumptions associated with model 
formulation are those which have traditionally been accorded the descriptor ‘assumption’. 
Secondly, assumptions associated with mathematical processes are also identified as 
important in the solution process. Examples here would include that domain requirements 
for mathematical functions invoked in the solution process will be satisfied by the real 
world values existing within the problem context, or that the sign of terms in inequalities 
can be confidently assigned from real data such that they can be manipulated 
unambiguously. Thirdly, assumptions associated with strategic choices in the solution 
process, influence the progress of a solution. These assumptions are central in providing 
global choices to the modeller, and determine how the direction of a solution path may 
change. Typically they are required when an interim result has been obtained which creates 
a temporary impasse that was not foreseen at the outset. This can occur either from a 
mathematical impasse, or within a process of evaluating a model against the real context. 
Examples include a physically impossible outcome, which might suggest either an incorrect 
use of a particular model (e.g., the particle model in mechanics), a need to reformulate the 
modelling question, or indeed to revisit the original assumptions used to set up the model. 
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Increased sensitivity to the different and pervasive types of assumptions at work in 
modelling problems have come to influence the ways in which such problems are 
addressed, notably in respect to different approaches that are sometimes possible.   

 The second area to benefit from reflection on Figure 2 is the role of technology in 
modelling. Within an approach to modelling as mathematical content, appropriate use of 
technology is essential. With colleagues I have been particularly interested in exploring the 
intersections in Figure 4. Galbraith, Stillman, Brown and Edwards (2007) argue that for 
beginning modellers the mathematics required for solution needs to be within the range of 
known and practised knowledge and techniques. However, it might not be known exactly 
which mathematics is appropriate for a situation under investigation but such decisions are 
part of the modelling process. Additionally, the presence of a technology-rich teaching and 
learning environment impacts on the modelling process, changing the mathematics that is 
accessible to students. 

 
 
 
 

 
Figure 4. Interactions between modelling, mathematics content, and technology (Galbraith, 
Stillman, Brown & Edwards, 2007) 
The use of electronic technologies in real-world settings for example as analysis tools such 
as graphing and CAS calculators and real-world interfaces (e.g., image digitisers) can 
reduce the cognitive demand of applications and modelling tasks. This can be achieved 
through supplementation and reorganisation of human thought (Tikhomirov, 1981) by 
carrying out routine arithmetic calculations, algebraic manipulations, graph sketching, 
acting as an external store of interim results, or overlaying visual images (e.g., digital 
photographs of real phenomena) within an interactive coordinate system to facilitate 
analysis. However, the use of these technologies has the potential to bring in a degree of 
complexity as they transform classroom activity and allow new forms of activity to occur. 
Regulation of this complexity allows teachers a further opportunity to mediate the cognitive 
demand of lessons involving real world contexts through the careful crafting of tasks for 
teaching, learning and assessment (Stillman, Edwards, & Brown, 2004). Figure 5 provides a 
list of questions that teachers could consider in relation to complexity of technology use to 
inform decisions related to the regulation of cognitive demand over time. These are 
particularly important in an introductory modelling environment where there is the intention 
of a progression from “supplantive modelling where the modelling structure is supplied by 
the task setter to generative modelling where the students generate the modelling 
themselves” (p. 490).  
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COMPLEXITY OF TECHNOLOGY USE 
General Attributes Dimensional Ranges 
LEVEL OF COMPLEXITY simple … complex 

Specific Attributes  

How many electronic technologies are involved? 1…many 
How are these technologies used? analysis tool, real-world interface 
How much technological knowledge is required? little…a lot 
How easy is the technology to use? easy…very difficult 
How obscure is the choice of techniques? fairly obvious…fairly obscure 
How complex is each technique? quite simple…quite complex 
How complex is the combination of techniques? all quite simple…most quite complex 
How visible are the links between techniques? fairly apparent…quite obscure 
How many steps are involved? 1…many 
How many features of the technology are involved? 1…many 
What amount of guidance is given?  none…high 
How much decision making is necessary? none…a lot 
How many representations can the technology provide? 1…many 

Figure 5. Complexity of technology use in real world settings (Stillman, Edwards, & 
Brown, 2004, p. 494). 

METACOGNITIVE ACTIVITY AND APPLICATIONS AND MODELLING 

One of the most significant aspects of the additional detail of Figure 2 is the focus it 
supports on metacognitive activity, which permeates every aspect of the modelling process 
as proposed by Stillman (1998). Earlier work (Andrews & McLone, 1976) foreshadowed a 
regulatory mechanism validating processes and products throughout the modelling cycle. 
On-going research has confirmed the presence of this metacognitive activity. 

Stillman and Galbraith (1998) inferred from a previous study of applications tasks 
(Stillman, 1993), that applications teaching should focus on reducing the time students 
spend on orientation activities. This was suggested as being able to be achieved by 
“developing cognitive skills that facilitate more effective problem representation and 
analysis, and by promoting the development of metacognitive strategy knowledge” (p. 185) 
to facilitate appropriate decision making during orientation. Since this time there has been a 
limited number of studies in the area. 

Goos (2002) identified three generic types of metacognitive failure during problem solving 
that she called red flag situations. These were (a) lack of progress, (b) error detection, and 
(c) anomalous results. Red flag situations can emerge at any stage of a problem solving 
process, where their occurrence should elicit metacognitive monitoring, and regulatory 
actions. In mathematical modelling such red flags may be triggered by incorrect 
mathematics, or outcomes that, while mathematically accurate, are inconsistent with real 
world aspects of the problem. Goos typified three prevalent forms of metacognitive failure. 
Metacognitive blindness occurs when a red flag situation is not recognised, and so no 
appropriate action is taken. Metacognitive vandalism occurs when a perceived red flag 
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results in drastic and often destructive actions being taken that not only fail to address the 
issue, but also alter or invalidate the problem itself. Metacognitive mirage occurs when 
solvers take unnecessary actions derailing a solution, because they perceive a non-existent 
difficulty. Two more classifications have been added from our work. Metacognitive 
misdirection describes a potentially relevant but inappropriate response to a perceived red 
flag that represents inadequacy, not vandalism. Metacognitive impasse occurs when 
progress stalls, and no amount of reflective thinking or strategic effort by the problem 
solver(s) alone is able to release the blockage. All five forms of metacognitive failure have 
been identified in my modelling work with students (see Stillman, 2011).  

Meta - metacognition 

Given that metacognitive activity is located heavily at the transitions in Figure 2, how 
pedagogy addresses the fostering of associated metacognitive competencies is crucial to 
producing consistently able modellers. This leads to the concept of meta-metacognition as a 
significant factor in teaching (Stillman, 2011). For a teacher in a classroom where 
mathematical modelling is being undertaken, a key task is monitoring progress of 
individuals or groups, and intervening strategically where necessary. One needs to appraise 
the enactment of metacognitive activities on the part of students – whether, for example, a 
student is undertaking sufficiently perceptive and rigorous reflection in considering the 
approach to, or quality of, a solution. In considering whether metacognitive activity on the 
part of students is appropriate, or if appropriate is being properly conducted, teachers are 
reflecting on metacognitive activity itself, both situation specific and with respect to its role 
in the overall modelling process. That is, they may be thought of as undertaking mental 
activity that is meta – metacognitive in nature.  

At the macro level, how teachers generally undertake such meta-metacognition in relation to 
student activities, and subsequently act, is crucial to the way mathematical modelling is 
nurtured or stifled in their classrooms generally. At the micro level, students’ capacity to 
develop skills in making transitions between modelling stages and to release blockages in 
the process, depends critically upon how they are facilitated and supported in learning and 
applying the modelling process, and the metacognitive strategies central to it. This in turn 
depends upon the perceptiveness and skill with which teachers assess, mediate, and provide 
for student metacognitive activity. This extends beyond intervening to help with the solution 
of a specific problem, to ensuring that the intervention also contributes to the long term goal 
of developing modelling competency. “What should this student be asking her/himself at 
this point in the modelling process?” is a meta-metacognitive reflective prompt that more is 
required than a suggestion about how to progress past a problem specific obstacle.   

CURRICULUM CHANGE 

Australian states and territories have their own educational jurisdictions and curricula. 
Several of these have attempted to include applications and modelling topics more centrally 
within their curricula in the past or currently do so. An on-going study by Stillman (2004b, 
2007) has examined the implementation of applications and mathematical modelling 
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curricula in Victoria and Queensland where the path of curriculum change has been 
different with markedly different outcomes.  

Findings resulting from the Victorian case study were reported in Stillman (2007). 
Subsequent to the examination of extant curriculum documents and materials from the 
1980s onwards, purposeful samples of 6 key curriculum figures (e.g., expert advisory 
committees members or curriculum managers), 6 teachers in key implementation roles (e.g., 
as seconded project officers and state or regional chairs of verification panels), and 6 
classroom teachers were selected. These 18 participants were interviewed about their 
experiences during the change and subsequently and about their beliefs regarding conditions 
that promoted or hindered introduction and ongoing use of mathematical applications and 
modelling in upper secondary classrooms. Practising teachers were also asked about the 
impact of the changing role of applications and modelling in the various mathematics study 
designs on their teaching and assessment practices. Classroom artefacts typifying their 
current practice in applications and modelling at the upper secondary level were collected. 
Two major conditions identified that threatened the ability of the Victorian system to sustain 
change were (a) the extent of the change and (b) the rapid pace of the change (Stillman, 
2007). These contrast with the Queensland implementation which is on-going. 

Findings from the Queensland case study were reported in Stillman and Galbraith (2009, 
2011) and Stillman and Brown (2011a). Curriculum documents from the late 1980’s to the 
latest syllabus implementation in 2009 were examined. In addition purposeful samples of 5 
key curriculum figures (e.g., non-teacher members of expert advisory committees, 
curriculum officers, statutory board or authority officers overseeing syllabus 
implementation), 6 secondary mathematics teachers in key implementation roles (e.g., state 
or district review panel chairs or state panel members), and 12 secondary mathematics 
classroom teachers were selected. Interview questions covering the introduction, state-wide 
implementation and modification were asked of these 23 interviewees. In addition, 
practising teachers provided artefacts that typified their use of real world applications and 
modelling in teaching and assessment, and their use of technology in these contexts. 

Tasks collected varied from those that were open, with the making of assumptions, choice 
of mathematics, and interpretation in context essential aspects to ones that merely asked 
students to carry out specified mathematical calculations with no assessment of whether the 
proposed models made sense in the real problem context. The latter are examples of 
applications in which activities central to modelling are absent. From participant responses, 
it was noted that opportunities provided by modelling were grasped by some who welcomed 
the legitimacy of a syllabus requirement in supporting a desire for change.  Others wanted 
to remain within the comfort provided by interpretation of ‘applications’ as little different 
from previous activity as was found in the early implementation of the 1992 syllabus 
(Stillman, 1998b). Several teachers welcomed a symbiotic relationship between modelling 
and technology use, with these two curricular elements seen as mutually supportive. 

With respect to the extent of technology use in teaching and alternative assessment 
involving real world contexts, some teachers clearly had welcomed the opportunity to 
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expand their teaching and assessing repertoires with respect to applications and modelling 
that technology brought. Others saw technology providing little more than a computational 
device removing tedium and potential inaccuracies of repetitive calculations or graphing 
associated with the solution of a mathematical model. The latter was usually associated with 
a view of modelling as no different from using mathematical applications and opportunities 
for technology use being more prominent in assessment than teaching. In classrooms where 
technology was said to play a significant role in teaching applications and modelling, the 
classroom culture was described as very different as the “internet generation” was more 
engaged by immediate feedback and dynamical displays available with technology. The 
constructive function of technology in concept formation was acknowledged by these 
teachers. Exploration, sustaining interest and engagement, and playing with the 
mathematical ideas and the situation being explored were mentioned as elements of 
classroom culture where technology was readily available and its use expected. Again, the 
teacher’s view of modelling limited the perceived potential and promoted use to solving or 
expanded it to pervade the modelling cycle. Some saw technology use as essential to 
successfully fulfilling syllabus intentions with respect to modelling. Even though several 
saw this as enriching the whole teaching/learning experience as intended by the syllabus, 
the unfulfilled potential of a borderless learning community networking amongst modelling 
groups across geographical boundaries further enriching that experience was mentioned. 

The elaboration of modelling assessment criteria in a later syllabus revision was generally 
viewed as helpful in providing enhanced guidelines for task design and assessing 
performance. On the other hand, the reduction of rich criteria to box ticking procedures, 
flagged a desire by some to continue with minimalist approaches, attempting to assimilate 
challenging new requirements into traditional conservative practices. In this respect the 
impact of review panels emerged as ambivalent facilitators of change. If panels are viewed 
as agents for change and guardians of comparability, the appearance of implementations 
along the continuum from minimalist to very rich, suggests these functions require further 
work. The assessment by interviewees of current practice reflected this variety. In this sense 
the acceptance of more conservative implementations over time than some would wish, was 
seen as assuring that at least some progress occurred, perhaps more than in an environment 
requiring full immediate compliance where ‘failure’ is a real possibility. On the other hand 
some respondents enthused that schools were thereby enabled to do “fantastic things”. 

PRE-SERVICE TEACHERS’ AFFINITY WITH USING MODELLING TASKS 

Results with respect to teaching modelling from Australian data collected in an international 
study of pre-service mathematics teachers, Competencies of Future Mathematics Teachers, 
are reported in Stillman and Brown (2011b). Data were collected from 73 volunteer 
pre-service secondary mathematics teachers from 6 cohorts at 5 university sites in eastern 
Australia. Questionnaire responses targeting affinity of pre-service teachers with using 
modelling tasks in Years 8-10 were analysed from the perspective of possible differences 
associated with length of preparation program undertaken. 
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The general belief is that longer pre-service preparation programs such as a 4-year double 
degree are of more benefit and that those exiting from short programs such as 1-year 
postgraduate diplomas are underprepared for teaching. In some areas such as discerning 
whether the modelling task was appropriate for the target schooling level and whether they 
were prepared to use such a task in classrooms at this level, there was little difference in the 
responses of these groups with a high level of agreement reflecting the emphasis on these 
types of tasks in Australian curricula for this level of schooling. Pre-service teachers who 
were educated in Australia would perhaps have experienced such tasks when they were in 
schooling as well as in their practicum experience.  

With respect to diagnostic competencies and the ability to analyse student responses for 
appropriateness of modelling approach, surprisingly a much higher proportion of 4-year 
program students could not do this. As they had more experience in schools over an 
extended period, they could be expected to acquire more pedagogical content knowledge in 
this regard than their 1-year counterparts. However, all students in 4-year programs prepare 
for two teaching areas one of which is mathematics and this can be a minor focus in 
mathematics. They thus may place less emphasis on their preparation for mathematics 
teaching than another area of more personal interest. The 1-year programs in contrast 
included some students preparing only as mathematics teachers. Usually, these students had 
a strong mathematics background and could be expected to place a strong emphasis on 
being as prepared as possible to teach mathematics.  

Differences with respect to beliefs about the nature of mathematics were also surprising 
especially as a higher proportion of pre-service teachers in 1-year programs acknowledged 
the dual nature of mathematics. Perhaps this is related to the higher proportion of 
pre-service teachers in the 1-year groups basing this view on mathematically oriented 
arguments being commensurate with a deeper orientation towards mathematics teaching.  
The number of students in the 4-year programs who gave no reasons for their position is 
disappointing as pre-service programs emphasise the importance of reflection on practice. 

CONCLUSION 

Throughout this paper I have focused on issues that are both productive and challenging that 
I have researched with respect to mathematical applications and modelling in secondary 
schooling. By conducting research in classrooms about issues perceived by teachers as of 
concern I have endeavoured in my research program to closing the gap allude to by Blum 
(1993). In addition, I have begun researching the new generation of teachers in whose hands 
is future mainstream classroom instruction. By understanding how these future teachers are 
formed mathematically and pedagogically might give use more purchase on scaling up 
changed practices throughout educational systems. 
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