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Argumentation and proof have received increasing attention in mathematics education in recent 
years. However, social dimensions of proof and argumentation have not been emphasised. These 
include the social, argumentational dimension of proving in academic mathematical practice, the 
social process that transforms mathematical proving and argumentation in the context of school 
mathematics classrooms, and the interplay between the socio-cultural backgrounds of students and 
the social expectations around proving and argumentation in schools. Without adequate attention 
to these dimensions there is a danger that classroom argumentation could become a social filter, 
emphasising students’ preexisting advantages and disadvantages. Attention to the structures of 
argumentations in mathematics classrooms combined with research on social dimensions can 
provide a better understanding of the filtering effect of argumentation in classrooms. This could 
provide a basis for minimising unexpected and undesirable consequences of a greater focus on 
argumentation and proof.  
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INTRODUCTION 

Argumentation and proof have received increasing attention in mathematics education 
research in recent years (Hanna & de Villiers 2012, Mariotti 2006). There have also been 
calls for a new focus on argumentation and proof in mathematics classrooms from the 
beginning of schooling on (e.g., NCTM 2000). In research a range of conclusions have been 
reached on the role and relationship of argumentation and proof for the learning of 
mathematics. But the nature of the argumentation, the nature of proof and the nature of the 
relationship between them is far from clear. Beginning with an examination of mathematical 
practice, including social dimensions, is helpful in bringing some clarity to this situation. In 
this paper I will discuss the ‘social dimension of argumentation and proof’ in three different 
ways. First, the social, argumentational dimension of proving in academic mathematical 
practice. Second, the social process that transforms mathematical proving and 
argumentation in the context of school mathematics classrooms. And third, the interplay 
between the socio-cultural backgrounds of students and the social expectations around 
proving and argumentation in schools.  

 

MATHEMATICAL PROOFS AS ARGUMENTS 

Reuben Hersh is one of those who bases his reflections on the investigation of mathematical 
practice. He characterizes mathematical proofs as follows: 

Mathematical discovery rests on a validation called ‘proof’, the analogue of experiment 
in physical science. A proof is a conclusive argument that a proposed result follows from 



accepted theory. ‘Follows’ means the argument convinces qualified, sceptical 
mathematicians. Here I am giving an overtly social definition of ‘proof’ (1997, p. 6) 

In his definition Hersh emphasises the ‘social’ dimension of proof. A proposed result is 
validated not through introspection and not by formal derivation, but through the 
formulation of an argument that convinces other colleagues in the field. In mathematics 
education Balacheff (1988) was one of the first who pointed out the significance of this 
social process for proofs in mathematics and in the context of learning about mathematical 
proof. Unlike Hersh, Balacheff makes a distinction between proof (‘preuve’ in French, 
Balacheff, 1991, p. 109, Note 2; 1987) and mathematical proof (‘démonstration’ in French) 
He describes ‘preuve’ as an explanation accepted by a given community at a given moment 
and ‘demonstration’ as an explanation of a specific form, organized as a succession of 
statements following specified rules (Balacheff, 1987, p. 148). In his early writings 
Balacheff states that only explanations of this form are accepted as proof within the 
mathematical community. 

Aberdein (2012) offers a model of proof that is based on mathematical practice. He 
characterises mathematical proof as an argument with a parallel structure, comprised of 
argumentational and inferential structures (see Figure 1). 
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soundness of the inferential structure, and thereby of the acceptability of the infor-

mal counterparts of those statements. In Hardy’s terms, it is the inferential structure

which is responsible for ‘exhibiting the pattern’ while the argumentational structure

is responsible for ‘obtaining assent’. Fig. 17.2 summarizes this picture.
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Fig. 17.2 The parallel structure of mathematical reasoning

This account both conserves and transcends the conventional view of mathemat-

ical proof. The inferential structure is held to strict standards of formal rigour, with-

out which the proof would not qualify as mathematical. However, the step-by-step

compliance of the proof with these standards is itself a matter of argument, and sus-

ceptible to challenge. Hence much actual mathematical practice takes place in the

argumentational structure. Careful demarcation of these two levels is essential to the

proper understanding of mathematics. If this account is correct, important concepts

in the philosophy of mathematics, such as mathematical rigour and mathematical

explanation, can only properly be addressed when both of the parallel structures

are accounted for. In order to do so, we need to say more about the details of the

individual components of the two structures. The formal nature of the inferential

structure makes its characterization comparatively straightforward. It is a graph of

vertices linked by edges, where the vertices are statements expressed in some for-

mal system and the edges are derivations admissible in that system. The underlying

formal system might, for example, be a natural deduction presentation of a partic-

ular system of logic, but more characteristically it will be a higher-level language,

such as MIZAR (see Alama and Kahle, 2012, for further details of such systems).

The argumentational structure poses more of a challenge, which I shall turn to in the

next section.

17.3 The Argumentational Structure of Mathematics

Wilfrid Hodges offers a brief analysis of ‘unformalised deductive argument[s]’ that

is of help here (although I shall argue that it is necessary to generalize his account

beyond deductive argumentation). For Hodges, such arguments contain components

of three sorts:
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Figure : The parallel structure of mathematical reasoning (Aberdein, 2012, p. 353) 

The argumentational structure is composed of arguments by means of which 
mathematicians seek to persuade each other of their results or, more generally, to achieve 
goals appropriate for whatever dialogue they are having. The inferential structure is 
composed of derivations which offer a formal counterpart to these arguments (p. 352).  

Analysing actual mathematical proofs Aberdein comments that proofs generally comprise 
not single arguments, but structures of arguments “by which mathematicians attempt to 
convince each other of the soundness of the inferential structure” (p. 352-353). According to 
Aberdein: 

This account both conserves and transcends the conventional view of mathematical 
proof. The inferential structure is held to strict standards of formal rigour, without which 
the proof would not qualify as mathematical. However, the step-by-step compliance of 
the proof with these standards is itself a matter of argument, and susceptible to challenge. 
Hence much actual mathematical practice takes place in the argumentational structure. 
(p. 353).  



He concludes that an adequate characterisation of mathematical reasoning requires an 
account of both structures.  

Aberdein describes different argumentation schemes according to how “their instantiations 
are related to the corresponding steps (if any) of the inferential structure” (p. 356). 
Arguments that “correspond directly to a derivation of a rule of the inferential structure” 
(p. 356), he calls A-schemes. Mathematical proofs of this form can be described as rigorous 
and are considered as the only form of acceptable proofs in a foundational, formalist view of 
mathematics.  

B-schemes, according to Aberdein, are “less directly tied to the inferential structure” 
(p. 356). They collapse many inferential steps into a single argument, and may refer to 
propositions proved elsewhere. But they could be, in principle, “formalized as multiple 
inferential steps” (p. 357). The use of B-schemes in proofs is “intrinsic to established 
mathematics, and fluency in their use is a prerequisite for participation in mathematical 
practice” (p. 360).  

Mathematical practice is not limited to established mathematics and methods. It also 
includes argumentations involving innovative and informal mathematical practices, both 
deductive and non-deductive. Aberdein describes these as C-schemes. “C-schemes are even 
looser in their relationship to the inferential structure, since the link between their grounds 
and claim need not be deductive” (p. 357). C-schemes allow one to describe arguments in 
informal mathematical practice, for example plausible mathematical reasoning, analogies or 
visual arguments. 

Which argumentational schemes are acceptable in a mathematical proof and the relationship 
between the argumentational and the inferential structure, depends on the context of the 
mathematical practice. In a proof in formal logic, only A-schemes are used and the 
argument is simply a representation of the inference. Typical proofs published in 
mathematics journals make use primarily of B-schemes, referring to results proved 
elsewhere, skipping over steps that the reader can easily provide, and leaving implicit 
definitions that the reader is expected to know.  

Any steps which are purely mechanical may be omitted from an ordinary mathematical 
text. It is sufficient to give the starting point and the final result. The steps that are 
included in such a text are those that are not purely mechanical — that involve some 
constructive idea, the introduction of some new element into the calculation. (Davis & 
Hersh, 1981, p. 139)  

C-schemes are used in informal discussion of proofs, at conferences and in classrooms, to 
help an audience unfamiliar with the context of the proof understand its topic and basic 
structure. “There is often a long distance between the original proof and textbook or oral 
classroom versions, full of hints aimed at making it accessible to a wider audience.” 
(Dufour, 2012, p. 177). C-schemes are also used in research when a new conjecture or a 
new proof is sought.   

It is important to note that unlike mathematical inference, mathematical argumentation does 
not follow explicit rules. Instead what is acceptable argumentation is negotiated in a social 



community. In the community of academic mathematicians implicit criteria for 
argumentation in proofs are established, except in unusual cases like the computer assisted 
proof of the four colour theorem. When proof becomes a topic in school mathematics, 
however, there are no previously negotiated criteria for argumentation. In addition, 
academic mathematicians recognise the mathematical inferences that are referenced by A-
schemes and B-schemes, but the existence of these inferences is unknown to school 
students. This is a serious issue for the teaching of proof. How can one make the nature of 
mathematical inferences known to students while negotiating the criteria for mathematical 
argumentation at the same time?  

Next I will describe some attempts to solve this problem. The first attempted to establish 
explicit criteria for argumentation by introducing a specific format, the two-column proof, 
into school mathematics. This format uses A-scheme argumentations to make the structure 
of the mathematical inference more visible. The others embed the process of proving in a 
larger process of conjecturing and proving, but in very different ways. 

 “DOING PROOFS” – A HISTORICAL PERSPECTIVE 

Patricio Herbst (2002) analyses the history of two-column proofs in the US. At the 
beginning of the twentieth century the traditional high school course in Euclidean geometry 
underwent important modifications, intended to make it a good context for learning proof, 
while learning the content of geometry was largely shifted to the junior high school and 
earlier. In the high school course ‘proof’ was defined, and textbook definitions included a 
requirement that every step be stated and justified, as in a mathematical inference. A proof 
that followed this definition was considered a ‘formal’ proof. 

In line with the aims of the Committee of Ten, a premium was put on students learning to 
write formal proofs, even if some propositions in a text were only ‘informally’ proved. 
The fact that the two-column format emphasized in so evident ways the formal aspects of 
proving, enforcing the notion that a proof consisted of steps of statements and reasons, 
made it useful at the time. (p. 298) 

In the textbooks of the time a distinction was made between two kinds of statements to be 
proven. ‘Fundamental propositions’ were significant theorems in geometry that students 
were expected to know, but not to prove. The teacher proved the fundamentals and in so 
doing provided the students with a model of how they should prove the ‘exercises’. These 
exercises were intended to give the students many easy opportunities to prove, and they 
could be proven directly from the fundamentals. This meant that the subject of geometry 
was presented as divided into two sorts of propositions. There were mathematically 
significant theorems with lengthy or otherwise challenging proofs, the ‘fundamentals’, and 
trivial theorems with simple proofs, the ‘exercises’. What unified the subject was no longer 
the importance of the theorems studied (as it had been in the nineteenth century) but instead 
the way the theorems were proven. The teachers’ proofs of the fundamentals showed the 
students what a proof should be, and that meant it had to follow the same definition and 
format as the proofs the students were intended to prove. The two-column proof format was 
invented to make this clear. 



The invention of the two-column proof served an additional purpose. In the beginning  of 
the twentieth century high school enrollments increased “at a striking rate” (Stanic, 1986 
p. 194). The percentage of 14 to 17 year olds in school doubled between 1890 and 1910 
(p. 194). “It was claimed during this period … that with the increase in the school 
population came a decrease in the overall quality or intellectual capacity of that population” 
(p. 194). So at the same time the curriculum of the high school geometry course shifted 
from learning significant theorems of geometry to learning to produce proofs, the audience 
for that curriculum was becoming more diverse.  

Teachers had to take proactive steps to ensure that the course served its purpose. The 
argument was common at the time and addressed what educators thought of students as 
learners. D.E. Smith (1911, p. 70) suggested that to give the opportunity to prove might 
not be enough because the diversity of students in geometry classes made it unrealistic 
for teachers to expect all students in their classes to be enthusiastic “over a logical 
sequence of proved propositions.” But whereas it was not reasonable to expect that all 
students would “discover new truths,” proving truths stated by somebody else was 
something that all students should be able to do (ibid., p. 160). The task of ensuring that 
all students would do proofs was one that the teaching profession had to take on. (Herbst, 
2002, pp. 299-300) 

The two-column proof format supported teachers as they attempted to ensure that “all 
students would do proofs”.   

In terms of the distinctions Aberdein (2012) makes between different types of 
argumentation schemes, two-column proofs are supposed to employ only A-schemes, so 
that the inference structure is more evident. This comes at some cost, however.  

For one thing, it means that the proofs students see in high school do not resemble the 
proofs of academic mathematicians, including the proofs they will see if they study 
mathematics at a university. B-scheme argumentations that were part of high school 
geometry proofs in the nineteenth century (e.g., “Similarly it can be proved that the angles 
BEC and AED are also equal.” Euclid’s Elements, Book I, Prop. 15) were replaced with 
lengthier sequences of A-scheme argumentations.  

A second cost is the shift in attention from the construction of geometrical knowledge to 
proofs. “The two-column proving custom … brought to the fore the logical aspects of a 
proof at the expense of the substantive role of proof in knowledge construction” (Herbst, 
2002, p. 307). Because the focus was on revealing the inferential structure, the meaning of 
the theorem, its role in geometry and its place in relationship to other theorems was 
obscured. 

To make student proving possible, a system of resources had to be developed and 
coordinated with a norm for accomplished proofs. The integration of all those elements 
produced a stable geometry course oriented toward students’ learning the art of proving 
embodied in the two-column format. However, that stability came with a price – that of 
dissociating the doing of proofs from the construction of knowledge. (p. 307)  



Senk (1985) and others have studied empirically the extent to which the high school 
geometry course as it evolved actually succeeded in making student proving possible, and 
she concludes that writing proofs remains difficult for most students at the end of the 
geometry course. Herbst’s (2002) analysis includes some indications of why students do not 
learn to prove well in spite of the support of the two-column format. The form of the two-
column proof and the teaching practices associated with it serve to make the task of writing 
a proof easier for the students to do and for the teacher to teach. However, they also lead to 
the teacher providing significant guidance to the students resulting in a division of labour 
that could be described by saying “the teacher proves and the students write down the 
proof” (Reid & Knipping, 2010, p. 217). This mostly tacit division of labour in classroom 
undermines the goal of engagement in mathematical reasoning by students. This historic 
lesson also shows the didactic complexity of approaching proof, due to the complexity of 
proof itself, to external social factors, and to the constraints on teaching in schools.  

The approach of using two-column proofs attempted to address this complexity by 
focussing on the inference structure, at the cost of trivialising proofs. Next, I will describe 
some approaches that attempt to address this complexity by relating the process of proving 
to the process of conjecturing, in various ways.  

CONJECTURING AND PROVING – RECENT PERSPECTIVES 

In this section three teaching approaches will be described that rely on conjectures 
generated by students. These approaches differ in the way they conceptualise 
argumentation, proof and the relationship between them. 

Serious attention to the relationship between conjecturing and proving could be said to have 
begun with the work of Lakatos (1976). His starting point was an examination of 
mathematical practice and a critique of formalist descriptions of mathematics. Rather than 
beginning with axioms and definitions, Lakatos says, mathematicians begin with 
conjectures. After a conjecture comes a proof, but proving is a means of analysing the 
conjecture, not establishing its truth. It is “a rough thought-experiment or argument, 
decomposing the primitive conjecture into subconjectures or lemmas” (p. 127). He 
emphasises the argumentational structure of the proof, which he sees as a means to improve, 
but never finalise, the proof as a whole. 

For Lakatos, proof and conjecture are intertwined, a hypothesis that has been adopted by 
many, but not all, mathematics educators interested in proof teaching. In the following 
sections I will describe the teaching approach of Duval and Egret, who reject Lakatos’ 
hypothesis while seeing conjecturing as important, the debate approach which is strongly 
influenced by Lakatos but which empirically turned out to be problematic, and an approach 
based on the idea of cognitive unity between conjecturing and proving. 

Duval and Egret 

Duval and Egret (1989, 1993) advocate teaching students to produce proof-texts involving 
only deductive reasoning. They propose having students come to a conjecture in a ‘heuristic 
phase’ which also includes identifying the key ideas in their conjectures. This is followed by 



a distinct phase of ‘deductive organisation’ in which the students develop a graphical 
representation of their conjecture, breaking apart its antecedents and consequents and citing 
theorems that connect them. Once this graphical representation is complete the students use 
it to produce a proof-text. 

The use of graphical representations addresses the problem of students’ lack of awareness of 
inference structures. They are supposed to make the logical structure of the proof visible, 
prior to the construction of the proof-text. Hence, they can be considered A-scheme 
argumentations. One would expect this focus on an argument closely tied to the inference 
structure to suffer the same drawbacks as two-column proofs. However, because no 
analyses from empirical research on the use of this approach in classrooms have been 
reported, we can only speculate. 

Duval and Egret would reject the description of the graphical representations and the proof-
text as argumentations, as they see argumentation in a more restricted way. They see no link 
between the argumentation that occurs in the heuristic phase and the activity of deductive 
organisation. On the contrary, they see proving as opposed to argumentation. They adopt the 
position of Perelman and Olbrechts-Tyteca, expressed in their famous New Rhetoric: A 
Treatise on Argumentation (1958), that arguments and mathematical proofs 
(demonstrations) are by their nature distinct. Dufour (2012) presents this approach as one of 
the two “mid-twentieth century renewal of academic reflection on argumentation, Toulmin 
being the other” (p. 166) and characterizes its rationale as follows: 

Perelman’s starting point was his dissatisfaction with the principle held by some 
philosophers … that (formal) logic could provide a general theory of human reasoning 
and a suitable tool to analyse human inferences. He did share the positivist idea that logic 
is convenient for science, but denied that beyond the area of logic, mathematics and 
empirical sciences, human thinking is fuzzy and even irrational since it does not lend 
itself to logical analysis. As a jurist, Perelman could not discard value or moral 
judgments as irrational since they are an essential part of legal argumentation (p. 166). 

In the Treatise and other writings of Perelman (1977) it is obvious that scientific, logical 
and mathematical reasoning is not distinguished, but construed as opposed to dialectical and 
rhetorical arguments. Dufour (2012) questions this dichotomy for different reasons. First of 
all he criticizes “the Perelmanian confusion between logic and mathematics” (p. 167). He 
then problematizes the “purely semantic” view of  mathematics, only concerned with the 
truth of propositions, as “it lacks any pragmatic dimension brought about by human 
interactions” (p. 167). This becomes problematic when it comes to the evaluation of an 
argument or a proof. “For Perelman, as far as argumentation is concerned, it is up to the 
audience to decide” (p. 168). At the same time, “Perelman seems to believe that scientific 
proofs cannot be controversial since they are ‘logical’ … his conception of scientific 
reasoning precludes the possibility of an argument among scientists, especially in 
mathematics.” (p. 169). 

But as the quote from Hersh (1997) above indicates, proofs are not simply logical, they are 
convincing not in themselves but by convincing someone, “qualified, sceptical 
mathematicians” (p. 6). And in fact, proofs can be controversial.   



Even to the “qualified reader,” there are normally differences of opinion as to whether a 
real proof (i.e., one that is actually spoken or written down) is complete and correct. 
These doubts are resolved by communication and explanation, never by transcribing the 
proof into first-order predicate calculus. Once a proof is “accepted,” the results of the 
proof are regarded as true (with very high probability). (Davis & Hersh, 1981, p. 354)   

In other words, the argumentational structure of the proof, that part “that is actually spoken 
or written down” can itself be the subject of argumentation, as to whether there in fact exists 
an inference structure to which it corresponds.  

I have described two approaches (two-column proofs and Duval and Egret’s) that focus on 
the inferential structure. I will now describe a third approach that focuses on the 
argumentational structure, and is strongly influenced by Lakatos’ ideas about the connection 
between conjecturing and proving.  

The debate approach 

Colleagues working in Grenoble and Lyon in the late 1980s explored the potential of a 
teaching approach centring around ‘scientific debates’ (Arsac, Chapiron, Colonna, Germain, 
Guichard & Mante, 1992, Arsac, Balacheff & Mante, 1992). The teaching is based on 
students’ exploring mathematical tasks chosen so as to be within the students’ capabilities to 
explore and likely to provoke disagreement and debate. In the ‘research’ phase the students 
explored the tasks in groups and presented their solutions on a poster. Then, in the ‘debate’ 
phase, they critique each other’s solutions with the teacher intervening to manage the 
debate. In the debate evidence for a conjecture is offered to the community and others 
comment on it and point out flaws. These are then corrected and perhaps new arguments are 
brought forth until finally the proposition is accepted into the body of mathematical 
knowledge. The influence of Lakatos (1976) on this teaching model is clear. It is through a 
social process that conjectures are refined, with proofs being argumentations that support 
that process. But Lakatos was describing the practice of mathematicians who have some 
idea of the inferential structures of their proofs to guide their argumentations. School 
students lack this knowledge of inferential structures. 

One role of the teacher in this approach was to compensate for the students’ lack of 
knowledge of inferential structures. She was expected not to interfere at a mathematical 
level during the so called research period, but had the responsibility of “to institutionalize 
the debate’s outcome at the very end” (Arsac, Balacheff & Mante, 1992, p. 9). So in the 
final synthesis of the debate it was her role to draw attention to the “mathematical rules” 
that have been used in the debate and note the insufficiency of “pragmatic proofs” as 
insufficient. In other words, the teacher formulates B-schemes used in the debate and 
endorses their use, while rejecting C-schemes, using her awareness of the inferential 
structure to do so. 

However, in practice this approach was not entirely successful. Arsac, Balacheff and Mante  
report that the arguments offered were often not founded on mathematical bases, but include 
appeals to social and personal factors. Students relied on their personal authority as 
members of the social structure of the class to verify their statements by reference to their 



own authority. They used C-schemes instead of B-schemes. As the teacher’s role was 
limited to endorsing some arguments and rejecting others this presented her with a dilemma. 
What should she do if the only arguments available were C-schemes?  

When examined in terms of the argumentational and inferential structures of a proof, a 
further shortcoming of this method becomes evident. Even if B-schemes are offered and 
endorsed by the teacher, such schemes give little access to the inferential structure. As the 
students cannot be expected to have such a structure in mind (they were about 11 years old) 
they experience only the argumentational structure. Without access to the inferential 
structure they have no independent way to evaluate arguments in the argumentation 
structure. They must rely on the teacher to indicate what kinds of arguments are acceptable.  

Cognitive unity 

Lakatos’ (1976) vision of mathematics has also inspired colleagues from Italy who have 
developed a teaching approach and studied it in different learning and school contexts (see 
e.g., Boero, Garuti, Lemut, & Mariotti, 1996, Pedemonte, 2007). Some teaching 
experiments took place over an extended period of time, including individual and group 
work as well as whole class discussions; other experiments were conducted in a much 
shorter period of time without teacher interventions. Common to all these experiments is the 
design of a phase of conjecturing and a phase of proving, as the aim was to investigate 
empirically the ‘cognitive unity’ between the ‘logic of discovery’, where argumentation 
plays a major role, and the ‘logic of justification’, which leads to proof.  

During the production of the conjecture, the student progressively works out his/her 
statement through an intensive argumentative activity functionally intermingling with the 
justification of the plausibility of his/ her choices. 
During the subsequent statement proving stage, the student links up with this process in a 
coherent way, organising some of the previously produced arguments according to a 
logical chain. (Boero et al. 1996, p. 113) 

Sun shadows provided one basis for conjecturing and proving in grade 8 classrooms, which 
allowed explorations of the mathematics of triangles and parallel lines supported by 
everyday experiences, experiments, and drawings. In this context it was observed that: 

When the phase of producing a conjecture had shown a rich production of arguments that 
aimed to support or reject a specific statement, it was possible to recognise an essential 
continuity between these arguments and the final proof; such continuity was referred to 
as Cognitive Unity. (Mariotti, 2006, p. 183) 

In other words, in this context students were able to recast their argumentation in the 
conjecture phase, which may have included C-schemes, into B and A-schemes in the 
proving phase. Boero and his colleagues did their work in schools with many students from 
low socio-economic environments, who would be expected to find engaging in 
mathematical argumentation difficult (see below), but given “very strong teacher 
mediation” they were able to engage in conjecturing and proving similar in some ways to 
that of academic mathematicians’ practice. (Boero, 1999). “The teacher must necessarily 
play the role of a committed ‘dissenter’ opposing the naive or non-‘scientific’ ways of 



thinking of the students and, often, of the same environment they come from.” (Boero, 
Dapueto, Ferrari, Ferrero, Garuti, Lemut, Parenti, & Scali, 1995, p. 164) 

Pedemonte (2007) uses the Toulmin (1958) layout of arguments to describe and compare 
the production of a mathematical conjecture and the construction of a proof-text by pairs of 
students solving a problem with no teacher intervention. She reports that also in this context  
“argumentation activity might favour the construction of a proof” (Pedemonte, 2007, p. 25) 
and that “the idea of cognitive unity can be used to foresee and analyse some difficulties 
that students might have in the construction of proof” (p. 25).  

It is significant that Pedemonte builds on Toulmin’s work. Toulmin set out to develop a 
model that could be used to represent both arguments in everyday discourse and proofs in 
mathematics, a strong contrast to Perelman who opposed argumentation and proof. 
However, Pedemonte goes beyond Toulmin who used his layout to model finished proofs 
(1958, Toulmin, Rieke & Janik, 1979), but not to show connections between the 
argumentation in conjecturing and the argumentation in proving.  

The researchers and teachers who work with the idea of cognitive unity address the social 
dimension of proof at several levels. They see proof as a social practice of mathematicians, 
and also look at the actual practices of students, social practice in classrooms and what this 
means for learning mathematics and teaching. Boero and his colleagues are also concerned 
with the socio-cultural backgrounds of students and the role they play in the classroom 
(Boero, Dapueto, Ferrari, Ferrero, Garuti, Lemut, Parenti, & Scali, 1995). However, they 
don’t specifically focus on the heterogeneity of students and how students’ different 
approaches to learning mathematics could relate socio-cultural differences of students’ 
backgrounds.  I will take up this issue in the next section. 

ARGUMENTION AND STUDENTS’ BACKGROUNDS 

While the increased emphasis on argumentation in the mathematical classroom is a 
welcome development, we need to be careful that classroom argumentation does not 
become a social filter, emphasizing students’ preexisting advantages and disadvantages. 

Lubienski (2000) describes how efforts to improve the teaching of problem solving, in ways 
that were expected to help especially students with lower socio-economic status, had the 
opposite effect. She notes that “instruction centered around open, contextualized problems 
might seem particularly promising for lower SES students” (p. 456) because research has 
shown that such students have less exposure to open problems, and their “families tend to be 
more oriented towards contextualized language” (p. 456). However, in her research she 
found that a focus on teaching through open, contextualised problems “could improve both 
lower SES and higher SES students’ understanding of mathematics while also increasing the 
gap in their mathematics performance” (p. 478). In giving a central role to argument in 
mathematics teaching we risk similar unintended consequences, unless attention is paid to 
the structures of argumentations in mathematics classrooms combined with research on the 
mechanisms of stratification in them. This could provide a better understanding of the 
filtering effect of argumentation in classrooms and in turn provide a basis for minimising 
undesirable consequences of a greater focus on argumentation and proof. 



Next I will introduce a sociological framework that allows one to describe different forms of 
discourse that are essential to mathematical argumentation, and students differential access 
to them. 

FORMULATION AND DECONTEXTUALISATION 

Basil Bernstein has theorised language and knowledge acquisition from a sociological 
perspective (Bernstein, 1971, 1996, 1999). His concepts of a ‘horizontal’ and a ‘vertical 
discourse’ allow one to not only describe different forms of discourse, specifically features 
of school discourse, but also to account for the differential access of students to knowledge 
in school.  

Bernstein (1999) says horizontal discourse:  
is likely to be oral, local, context dependent and specific, tacit, multi-layered, and 
contradictory across but not within contexts. However […] the crucial feature is that it is 
segmentally organized. (p. 159) 

Speech acts and the immanent knowledge of horizontal discourse are focused on concrete 
people and situations, a direct correspondence is characteristic for this type of discourse. 
Formulation might be incomplete, but coherent within a given situation. But as the 
discourse is sequentially organised it tends to be inconsistent and contradictory between 
different situations. Much of everyday language, focussed as it is on the here and now, is 
horizontal.  

Vertical discourse on the other hand aims for coherence across situations, independent of 
specific contexts. Vertical discourse: 

takes the form of a coherent, explicit, and systematically principled structure, 
hierarchically organized as in the sciences, or it takes the form of a series of specialised 
languages with specialised modes of interrogation and specialised criteria for the 
production and circulation of texts, as in the social sciences and humanities. (p. 159) 

Mathematics, like other academic disciplines, uses vertical discourse, and axiomatic 
inference structures could be considered the most vertical kind of discourse possible. 
Mathematical argumentation is unlike everyday argumentation, because it parallels an 
inferential structure. This is especially true of argumentation composed of B and 
A-schemes.  

Gellert (2011) points to work of Martin (1993, 2007) and Halliday (1985), who have 
analysed characteristics of vertical discourse from a systemic functional linguistic 
perspective. Martin summarises the role of abstract metaphorical text and grammatical 
metaphors for the construction of vertical discourse in schooling as follows: 

It appears that the institutional boundary between primary and secondary school 
symbolizes the ontogenesis of grammatical metaphor in students’ language development; 
and discipline-specific secondary school discourses depend on abstract metaphorical text 
to construe specialized knowledge. Such a transition makes apprenticeship into written 
abstraction a fundamental rite of passage in secondary school. (Martin, 1993, p. 152, 
cited by Gellert, 2011, p. 103, my emphasis) 



As Epstein (2012) notes, mathematics is based on abstraction, “much more than any 
science” and so engaging in mathematical argumentation requires that students recognise 
the need to use abstractions and develop ways of doing so.  

As Gellert (2011) notes the transition into ‘written abstraction’ is not limited to writing, but 
is also characteristic for the oral instructional discourse in school. Writing can actually 
support students in engaging in learning mathematics and this form of abstraction, as 
Morgan (1998) describes, but is not typical for all mathematics classrooms. In German 
classrooms that I have studied proof-texts were scarce, even when considerable time was 
spent on proving activities (Knipping, 2003b). For participation in horizontal discourse 
contextualised language is characteristic and sufficient, but for vertical discourse, which is 
structured by an internal ‘logic’ of a specialised practice, a decontextualised language is 
needed (Gellert, 2011, p. 103).  

Hasan (2001) clarifies the nature of decontextualised language:  
A discourse is decontextualised/disembedded, not because what it refers to is not 
physically present to the senses here and now, but because it refers to something that is 
by its very nature incapable of being present in any spatio-temporal location whatever. 
(pp. 53-54) 

Of course, how one comes to know of “something that is by its very nature incapable of 
being present in any spatio-temporal location whatever” is through a process of abstraction. 
And the objects of proof, of mathematical argumentation in parallel with inference, are all 
abstractions. Proving requires recognising and engaging in a decontextualised discourse. 

Hasan has studied the opportunities children have to engage in this kind of discourse in their 
homes before they begin schooling. In some homes the talk of adults to small children 
remains tied to the context, related directly to the activities and objects that are present to 
the senses. In others there is already at this early age a fluid shifting between 
decontextualised and contextualised language. Hasan says that in these homes there are 
‘con/textual shifts’, by this she means “that on the one hand the speakers are shifting from 
an ongoing context, they are reclassifying the discursive situation, and on the other hand the 
new context to which the shift has been made is still being integrated into the discursive 
context from which the shift is being indicated” (p. 63). For example children and their 
mothers shift from talking about the immediate context, a cat walking by, to talking about 
abstract notions such as death, and then back again to use the fruit in the garden as a specific 
example of something that dies. 

There is reason to believe that the division Hasan found, between home situations in which 
con/textual shifts occur often and those where they occur rarely, is not random. Rather, 
social class influences the use of decontextualised and contextualised language and the 
shifting between them. 

Bernstein (1975) argued that linguistic codes (or the underlying principles of speech) are 
affected by the class system. … Lower status families use restricted codes, language with 
implicit and context-dependent meanings that make sense in contexts in which emphasis 
is placed on the community and common knowledge and values are assumed to be 



shared. Additionally, Holland (1981) found that middle-class children tended to 
categorize pictures in terms of transituational properties (e.g., grouping foods together 
that were made from milk or came from the sea), whereas working-class children tended 
to categorize pictures in terms of more personalized, context-dependent (e.g., grouping 
foods they eat at Grandma’s house). Holland concluded not that children could not 
thinking differently but that they had been raised with a particular orientation.  
(Lubienski, 2000, p. 456-457) 

In other words, the middle-class children used abstract categories and vertical discourse to 
classify the pictures, while the working-class children use contextualised, horizontal 
discourse. When encountering a mathematical argumentation pointing to an abstract, 
hierarchical, and invisible inference structure it is understandable that children from 
different classes might perceive and engage with the argumentation differently. 

Not only in mathematics, but in schooling in general decontextualised language is expected 
and privileged. Hasan (2001) has observed that the kinds of environments that she believes 
are “the best … for learning to use disembedded language” (p. 74) allow for contextual 
shifts. However, such environments are rare in schools. This means that “it seems very 
unlikely that schools provide the best environment for learning how to use such language 
for those children who do not already possess this expertise to some extent before they enter 
the school” (p. 74). 

If some children are not exposed to environments in which they can learn to use 
decontextualised language before they start school, and schools do not provide such 
environments, then it is not surprising that these children have difficulty recognising 
decontextualised language and ‘written abstraction’ in mathematics in general and in proofs 
in particular.  

When, for example, a proof in geometry makes reference to a triangle ABC, and a triangle 
with that labelling is present on the page or chalkboard, it is being used as a generic 
example, to stand for all triangles, so that the proof applies generally. But to see that triangle 
as a generic example requires abstraction, requires that it be recognised as a generic 
example, rather than a specific triangle, and that the argument be understood as 
decontextualised, independent of the specific triangle depicted. If a student cannot recognise 
that the argumentation is meant to be general, or cannot abstract the generic example from 
the specific context, or cannot engage with the decontextualised language of the 
argumentation, then that student will be at a disadvantage in learning what mathematical 
argumentations and proofs are.  

On the other hand, a student who can engage in con/textual shifts is at an advantage in the 
mathematics classroom. For example, in Knipping (in press) I describe how a student, Max, 
shifts from filling in a table describing specific information about two children, to 
describing in contextual language an abstract relation he sees, to describing the same 
relation symbolically. Such a student can both recognise that making such shifts is expected 
in mathematics, and can make them when needed. For others, it is difficult to recognise the 
implicit expectation to make these shifts and to recognise these shifts when Max makes 



them in his discourse. This makes it unlikely that they will be able to learn to make such 
shifts in this context. 

But this does not mean that pre-school experiences with decontextualised language 
determines success in school mathematics and specifically success in learning what proofs 
are and how to produce them. It is admittedly challenging to see, given the diversity of the 
students, how we can make the inferential structure visible and the argumentational 
structure accessible. One step towards this is the already common practice of developing a 
classroom version of a proof “full of hints aimed at making it accessible to a wider 
audience” (Dufour, 2012, p. 177).  

We do not hesitate to qualify seemingly different proofs as versions of the same one. This 
allows modification or rephrasing of the initial version to make it more explicit or to 
make its necessity more salient for people who are not experts. In my opinion, these 
strategic reworkings belong to the field of mathematical argumentation. (p. 177) 

Such argumentation that makes a proof more accessible has analogues in conjecturing and 
proving that offer some hope for students who begin school at a disadvantage. Recall that 
Boero and his colleagues found that students from low socio-economic environments, who 
would be expected to find engaging in mathematical argumentation difficult, were able to 
engage in conjecturing and proving given “very strong teacher mediation” (Boero, 1999). 
Further research on and description of such mediation would be helpful. 

Another way in which proof might be made more accessible focuses on gradually making 
the inference structure more visible, by beginning with local deductions. I will consider this 
idea next. 

LOCAL ORGANISATION AND ARGUMENTATION 

As I noted above, it is not evident how a teacher could make the nature of mathematical 
inferences known to students. In reaction to the emphasis on axiomatic approaches in vogue 
at the time, Freudenthal (1971, 1973) offered an alternative.  

Freudenthal (1971) claims that proving must begin with what he calls “local organization” 
as opposed to the “global organization” of an axiomatic system. In a globally organized 
system the definition of parallelogram would either be explicitly taught or would become 
known through its use in proofs. Freudenthal describes another approach: A discussion, for 
example, of the properties of parallelograms can begin by simply listing all those that are 
apparent to the students. Similar lists might be made for rectangles and rhombuses. In 
examining such lists, Freudenthal claims, “There are a host of visual properties which ask 
for organization. Here starts deductivity; rather than being imposed it unfolds from local 
germs. The properties of the parallelogramme become deductively interrelated” (p. 424). 
Finally, one property emerges as a definition from which the others can be deduced.  This is 
local organisation. It can be extended as the properties of parallelograms are related to the 
properties of rectangles, rhombuses and squares.  

At first C-schemes justify the properties that are listed. They are evident from drawings, or 
recalled from authoritative texts or people. But to organise those properties simple links are 



made between them. These links might also be justified using C-schemes if the simple 
coincidence of a parallelogram having two properties used to justify that one property 
implies the other.  However, the situation is one in which there are a host of simple 
deductions that relate the properties, simple enough that they can be pointed to by A-
schemes. As the A-schemes developed in this local context become interrelated, a deductive 
structure grows, one that follows closely the applicable part of the inference structure. This 
could make that part of the inference structure visible to students, giving them some access 
to its nature. Later, perhaps much later, these glimpses into parts of inference structures will 
provide the basis for global organisation.   

Freudenthal’s implications for teaching are clear: 
In general, what we do if we create and if we apply mathematics, is an activity of local 
organization. Beginners in mathematics cannot do even more than that. Every teacher 
knows that most students can produce and understand only short deduction chains. They 
cannot grasp long proofs as a whole, and still less can they view substantial part of 
mathematics as a deductive system. (p. 431) 

If mathematical knowledge is not globally organised, but rather left as a set of islands of 
local organization, this raises the question for teaching of what islands to develop. What 
parts of the inference structure should be made visible through A-scheme arguments, and 
what parts can be left implicit? Freudenthal’s examples (in Mathematics as an Educational 
Task, 1973) offer a resolution to this problem. The decision as to what to leave implicit and 
what to make explicit must be made in order to develop students’ understanding of 
mathematical concepts and ability to apply them. In cases where the A-scheme proof brings 
a new understanding of the concepts involved, the proof is useful.  

CONCLUDING REMARKS 

Here I have discussed the teaching of proof while taking into consideration the social 
dimension of argumentation and proof. This includes the social process of argumentation 
that is a part of a proof, parallel to its inference structure.  As I have described, if one pays 
attention to the actual practices of mathematics, this element of social argumentation is 
inescapable. Another social dimension occurs in classrooms, where teaching proof is tied to 
argumentation. There mathematical practices are transposed into the context of schooling, 
and argumentation and proof take place in a new community with different needs and goals. 
Finally, I have discussed the social backgrounds of students, which must be taken into 
consideration in mathematics education whenever argumentation is involved.  

There is more to be said about teaching proofs than I could here, and much more to be said 
about social aspects of mathematics education. For example I have not even mentioned 
cultural differences in approaches to argumentation, or issues related to argumentation in a 
second or further language. Both of these are important, and either could have been the 
basis for an equally long discussion.  

I have argued that there must be a focus on argumentation in mathematics teaching. Will 
this shift make the teaching and learning proof easier? No. As I have discussed above, it 
presents many obstacles. But I agree with Boero (1999) who says that the relationship 



between argumentation and proof is complex, but also unavoidable. If we want to teach 
proof we have to include argumentation. And if we want to acknowledge the social 
dimension of argumentation we must understand better the argumentation that takes place in 
the practice of teaching mathematics. My work on argumentation structures (e.g., Knipping, 
2003a,b, 2008, Knipping, C. & Reid, D., in press) is a step in this direction. The next step is 
to integrate this work with research on the relationships between social background and 
argumentation. Much work remains to be done in this area.  

Faced with these challenges in teaching and research, some might propose giving up on 
teaching proof. They could ask the same question Schoenfeld (1994) raises, “Do we need 
proof in school mathematics?” (p. 75). And I would echo his answer: 

Absolutely. Need I say more? Absolutely. Proof is one of the most misunderstood 
notions of the mathematics curriculum, and we really need to sort it out. What is it, what 
roles does it play in mathematics and mathematical thinking, and how and when can 
students learn to deal with it? (p. 75) 

We need to sort out especially the social dimension of proof and argumentation, and not 
only because this is important for the learning of mathematics. As we become aware of the 
ways that sociological factors related to the use of decontextualized language in proof and 
argumentation, and as we explore ways of taking these factors into account, we have to 
opportunity to change mathematics education so that it allows all students to engage in 
mathematical argumentation, and in so doing we can help students to be successful not only 
in learning about mathematical proof, but also in negotiating the language of academic 
discourse more generally, opening up opportunities for students that would otherwise be 
closed.  
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