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In this article I present some findings of an ongoing 5-year longitudinal research program with 
young students. The chief goal of the research program is a careful and systematic investigation of 
the genesis of embodied, non-symbolic algebraic thinking and its progressive transition to culturally 
evolved forms of symbolic thinking. The investigation draws on a cultural-historical theory of 
teaching and learning—the theory of objectification— that emphasizes the sensible, embodied, 
social, and material dimension of human thinking and that articulates a cultural view of 
development as an unfolding dialectic process between culturally and historically constituted forms 
of mathematical knowing and semiotically mediated classroom activity. 
Key Words: Sensuous cognition, Vygotsky, Arithmetic versus algebraic thinking. 
 
INTRODUCTION 

Algebra is one of the most frightening branches of school mathematics. As one prospective 
teacher confessed, prompted by the question of his past experience with mathematics, 
everything was going well until he met algebra in junior high school. Suddenly, he found 
himself in front of an abstract symbolic language, the meaning of which he could not 
grasp—a kind of hieroglyphic text that, to the dismay of many, has become like the 
Esperanto of modern sciences. 

In light of the legendary difficulties that the learning of algebra presents to students, it has 
been suggested that a progressive introduction to algebra in the early grades may facilitate 
students’ access to more advanced algebraic concepts later on (Carraher & Schliemann, 
2007). An early development of algebraic thinking may, in particular, ease students’ contact 
with algebraic symbolism (Cai & Knuth, 2011).  

The theoretical grounding of this idea and its practical implementation remain, however, a 
matter of controversy. Traditionally, algebra has been taught only after students have had 
the opportunity to acquire a substantial knowledge of arithmetic. That is, arithmetic thinking 
has been assumed to be a prerequisite for the emergence and development of algebraic 
thinking. Clearly, an introduction to algebra in the early grades does not conform to such an 
assumption. Now, if this is so, if algebra needs not to come after arithmetic, the question is: 
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What is the difference and relationship between these two disciplines?  

Evading these questions does not do us any favours. Let me give an example. In the Ontario 
Mathematics Curriculum, teachers are supposed to introduce their students to algebra, 
resorting in particular to the study of patterns, through the investigation of sequences and 
their generalization. A specific expectation in Grades 1, 2 and 3 states that students must 
identify, describe, and extend patterns. In Grade 5 they are asked to predict a specific 
remote term of the sequence. Now, are describing and extending sequences, and predicting 
remote terms really algebraic processes, or are they arithmetic? What would make these 
processes algebraic? What would be the algebraic concepts required in those kinds of tasks? 
By evading these questions we may end up trivializing matters, as Yale University 
mathematician Roger Howe claims: 

In recent years, “algebra” has been construed somewhat differently by some mathematics 
educators, and this is reflected in NAEP [the USA National Assessment of Educational 
Progress]. In particular, the study of “patterns” has been declared by some to be algebra. 
I am skeptical that this has been productive. (Howe, 2005, p. 1) 

In defense of a pattern approach to early algebra, it could be argued that there is something 
inherently arithmetic in algebra and something inherently algebraic in arithmetic, and that 
pattern activity brings these two aspects together. In other words, there are filiations 
between the two disciplines. But, since they do not coincide, there must also be differences 
between them. Finding these differences, I want to argue, is important from an educational 
viewpoint. Otherwise we might be teaching arithmetic while thinking that we are teaching 
algebra. In doing so, we might be failing to promote genuine elementary forms of algebraic 
thinking in the students. This is why the distinction between arithmetic and algebra is a task 
that cannot be dismissed in early algebra research. Without providing a clear distinction 
between arithmetic and algebra and the epistemological relationships between these 
disciplines (at least as far as school mathematics is concerned), it will be difficult (not to say 
impossible) to organize classroom activities that would mobilize algebraic concepts in the 
early years and prepare the student to learn more sophisticated algebraic concepts later on. 
Without a clear distinction between arithmetic and algebra it would be impossible to claim 
that the patterns to which Howe refers in the aforementioned citation may be useful in the 
introduction to early algebra. 

In the next section, I briefly discuss the question of the relationship between algebra and 
arithmetic. Drawing on historical and educational research, I suggest an epistemological 
distinction between the forms of thinking that are required in both disciplines. Then, I 
present some findings of a 5-year longitudinal classroom research program where 8-year old 
students were followed as they moved from Grade 2 to Grade 6. I shall focus in particular 
on the genesis and development of embodied, non-symbolic algebraic thinking and its 
progressive transition to cultural forms of symbolic thinking. 

ARITHMETIC AND ALGEBRA: FILIATIONS AND RUPTURES 

The question of the filiations and ruptures between arithmetic and algebra was one of the 
major educational research themes in the 1980s and 1990s. This question was at the heart of 
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several research programs (e.g., one conducted by Filloy and Rojano (1989) in Mexico, and 
one by Bednarz and Dufour-Janvier (1996) in Canada). It was often discussed in various 
PME’s Working Groups and research reports (Sutherland, Rojano, Bell, & Lins, 2001).  

Filloy and Rojano’s (1989) work points to one of the fundamental breaks between 
arithmetic and algebra—what they call a cut. This cut was observed in clinical studies 
where students faced equations of the form Ax+B=Cx+D. To solve equations of this form, 
the arithmetic methods of “reversal operations”—which are effective to solve equations of 
the type Ax+B = D (the students usually subtract B from D and divide by A)—are no longer 
applicable. The students have to resort to a truly algebraic idea: to operate on the unknown. 
In order to operate on the unknown, or on indeterminate quantities in general (e.g., 
variables, parameters), one has to think analytically. That is, one has to consider the 
indeterminate quantities as if they were something known, as if they were specific numbers 
(see, e.g., Kieran 1989, 1990; Filloy, Rojano, and Puig (2007); for some epistemological 
analysis, see Radford and Puig (2007); Serfati (1999)). From a genetic viewpoint, this way 
of thinking analytically—where unknown numbers are treated on a par with known 
numbers—distinguishes arithmetic from algebra. And it is so characteristic of algebra that 
French mathematician François Viète (one of the founders of modern symbolic algebra) 
identified algebra as an analytic art. (Viète, 1983). 

A consequence of this difference between arithmetic and algebra is the following. Because 
of algebra’s analytic nature, formulas in algebra are deduced. Failing to notice this central 
analytic characteristic of algebra may lead us to think that the production of formulas in 
patterns (regardless of how they were produced) is a symptom of algebraic thinking. But as 
Howe (2005) notes, producing a formula might merely be a question of guessing the 
formula and trying it. I completely agree with him that there is nothing algebraic in trying 
and guessing. Try-and-guess strategies are indeed based on arithmetic concepts only.  

Epistemological research has also made a contribution to the conversation about the 
distinction between arithmetic and algebra. This research suggests that the difference 
between these disciplines cannot be cast in terms of notations, as it has often been thought. 
The alphanumeric algebraic symbolism that we know today is indeed a recent invention. In 
the west it appeared during the Renaissance, along with other forms of representation, like 
perspective in painting and space representation, underpinned by changes in modes of 
production and new forms of labour division (Radford, 2006). The birth of algebra is not the 
birth of its modern symbolism. In his Elements, Euclid resorted to letters without mobilizing 
algebraic ideas (Unguru, 1975). Ancient Chinese mathematicians mobilized algebraic ideas 
to solve systems of equations without using notations. Babylonian scribes used geometric 
diagrams to think algebraically (Høyrup, 2002). As a result, the use of letters in algebra is 
neither a necessary nor a sufficient condition for thinking algebraically. Naturally, our 
modern algebraic symbolism allows us to carry out transformations of expressions that may 
be difficult or impossible with other forms of symbolism. However, as we shall see in a 
moment, the rejection of the idea that notations are a manifestation of algebraic thinking, 
opens up new avenues to the investigation of elementary forms of algebraic thinking in 
young students.  
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SOME BACKGROUND OF THE RESEARCH  

The investigation of young students’ algebraic thinking that I report here started in 2007. 
The decade before, I was interested in investigating adolescent and young adults’ algebraic 
thinking. From 1998 to 2006 I had the opportunity to follow several cohorts of students 
from Grade 7 until the end of high school. Like many of my colleagues, I started focusing 
on symbolic algebra, that is, an algebraic activity mediated by alphanumeric signs. One of 
my goals was to understand the processes students undergo in order to build symbolic 
algebraic formulas. My working hypothesis was that in order to understand the manner in 
which students bestow meaning to alphanumeric expressions, we should pay attention to 
language (Radford, 2000). However, during the analysis of hundreds of hours of videotaped 
lessons, it became apparent that our students were not resorting only to language, but also to 
gestures, and other sensuous modalities in ways that were far from mere byproducts of 
interaction. It was clear that gestures and other embodied forms of action were an integral 
part of the students’ signifying process and cognitive functioning. The problem was to come 
up with suitable and theoretically articulated explanatory principles, in order to provide an 
interpretation of the students’ algebraic thinking that would integrate those embodied 
elements that the video analyses put into evidence. Although by the early 2000s, some 
linguists and cognitive psychologists had developed interesting work around the question of 
embodiment (Johnson, 1987; Lakoff & Núñez, 2000), their accounts were not easy to apply 
to such complex settings as classrooms; nor were they necessarily taking into account the 
historical and cultural dimension of knowledge. In the following years, with the help of 
some students and collaborators, I was able to refine our theoretical approach (Radford, 
2002) and reveal non-conventional, embodied forms of algebraic thinking (Radford, 2003). 
In Radford, Bardini, and Sabena (2007), we reported a passage in which Grade 9 students 
displayed an amazing array of sensuous modalities to come up with an algebraic formula in 
a pattern activity. What is amazing in the reported passage is the subtle coordination of 
words, written signs, drawn figures, gestures, perception, and rhythm. Figure 1 presents an 
interesting series of gestures that a student makes while trying to perceive a mathematical 
structure behind the sequence. Focusing on the first term of the sequence (which is shown in 
the three first pictures of Figure 1), Mimi, the student, points with her index to the first 
circle on the top row and says “one;” she moves the finger to the first circle on the bottom 
row and repeats “one.” Then she moves the index to her right and makes a kind of circular 
indexical gesture to point to the three remaining circles, while saying “plus three.” She 
starts again the same series of gestures, this time pointing to the second term of the 
sequence (see second term in Pic 4 of Figure 1), saying now “two, two plus three.” She 
restarts the same series of gestures in dealing with the third term (see third term of the 
sequence in Figure 1, Pic 4); we have added dashed lines to the terms of the sequence to 
indicate the circles that Mimi points to as she makes her gestures). In doing so, Mimi 
reveals an embodied formula that, instead of being made up of letters, is made up of words 
and gestures: the formula is displayed in concreto: “one, one, plus three; two, two plus 
three; three, three, plus three.” She then applied the formula to Term 10 (which was not 
drawn and had to be imagined): “you will have 10 dots [i.e., circles] (she makes a gesture 
on the desk to indicate the position of the circles), 10 dots (she makes a similar gesture), 
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plus 3.” The embodied formula rests on a use of variables and functional relations that 
conform to the requirement of analyticity that, as I suggested previously, is characteristic of 
algebra. Although the variable ‘number of the term’ is not represented through a letter, it 
appears embodied in its surrogates—the particular numbers the variable takes. The formula 
is then shown as the series of calculations on the instantiated variable. And, as such, the 
formula is algebraic. Now, our Grade 9 students did use alphanumeric symbolism and built 
the formula “n + n + 3,” which was then transformed into “nx2+3” (Radford, Bardini, & 
Sabena, 2007). Hence, these Grade 9 students went unproblematically from an embodied 
form of thinking to a symbolic one. 

    
Pic. 2 Pic. 2 Pic. 3 Pic. 4 

Figure 1. A Grade 9 student displaying an impressive multimodal coordination of semiotic 
resources. Recostructed from the video. 

We came back to other published and unpublished analyses and noticed that the subtle 
multimodal coordination of senses and signs was a widespread phenomenon in adolescents. 
Then arose a research question that has kept me busy for the past 6 years: would similar 
embodied forms of algebraic thinking be accessible to young students? And if yes, how 
would these embodied forms of thinking develop as the students moved from one grade to 
the next? As Grade 2 students are still learning to read and write in Ontario, Grade 2 looked 
like a good place to start. This is how I moved to a primary school and embarked on a new 
longitudinal research.  

GRADE 2: YOUNG STUDENTS’ NON-SYMBOLIC ALGEBRAIC THINKING  

The first generalizing activity in our Grade 2 class was based on the sequence shown in 
Figure 2: 

 
Figure 2. The first terms of a sequence that Grade 2 students investigated in an algebra 
lesson.  

We asked the students to extend the sequence up to Term 6. In subsequent questions, we 
asked them to find out a procedure to determine the number of rectangles in Terms 12 and 
25. Figure 3 shows the answers provided by two students: Carlos and James. 

Term 1 Term 2 Term 3 Term 4
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Fig. 3. To the left, Carlos, counting aloud, points sequentially to the squares in the top row 
of Term 3. In the middle, Carlos’ drawing of Term 5. To the right, James’ drawing of Terms 
5 (top) and 6 (bottom).  

Contrary to what we observed in our research with adolescent students, in extending the 
sequence, most of our Grade 2 students focused on the numerical aspect of the terms only. 
Counting was the leading activity. 

Generally speaking, to extend a figural sequence, one needs to grasp a regularity that 
involves the linkage of two different structures: one spatial and the other numerical.  From 
the spatial structure emerges a sense of the rectangles’ spatial position, whereas their 
numerosity emerges from a numerical structure. While Carlos attends to the numerical 
structure in the generalizing activity, the spatial structure is not coherently emphasized. This 
does not mean that Carlos, James and the other students do not see the figures as composed 
of two horizontal rows. What this means is that the emphasis on the numerical structure 
somehow leaves in the background the geometric structure. We could say that the shape of 
the terms of the sequence is used to facilitate the counting process. Thus, as picture 1 in 
Figure 3 shows, Carlos always counted the rectangles in a spatial orderly way. The 
geometric structure, however, does not come to be related to the numerical one in a 
meaningful and efficient way. It is not surprising within this context, then, that the students 
encountered difficulties in answering our questions about Terms 12 and 25. Without 
resorting to an efficient way of counting, the counting process of rectangles one-by-one in 
remote terms beyond the perceptual field became extremely difficult. 

Because of their spatial connotation, it might not be surprising that, in extending the 
sequences, our young students did not use deictic terms, like “bottom” or “top.” In the cases 
in which the students did succeed in linking the spatial and numerical structures, the spatial 
structure appeared only ostensibly, i.e., “top” and “bottom” rows were not part of the 
students’ discourse but were made apparent through pointing and actual row counting: they 
remained secluded in the embodied realm of action and perception. The next day, the 
teacher discussed the sequence with the students and referred to the rows in an explicit 
manner to bring to the students’ attention the linkage of the numerical and spatial structures. 
To do so, the teacher drew the first five terms of the sequence on the blackboard and 
referred to an imaginary student who counted by rows. “This student,” she said to the class, 
“noticed that in Term 1 (she pointed to the name of the term) there is one rectangle on the 
bottom (and she pointed to the rectangle on the bottom), one on the top (pointing to the 
rectangle), plus one dark rectangle (pointing to the dark rectangle).” Next, she moved to 
Term 2 and repeated in a rhythmic manner the same counting process, coordinating the 
spatial deictics “bottom” and “top,” the corresponding spatial rows of the figure, and the 
number of rectangles therein. To make sure that everyone was following, she started again 
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from Term 1 and, at Term 3, she invited the students to join her in the counting process, 
going together up to Term 5 (see Fig. 4). 

    
Figure 4. The teacher and the students counting rhythmically say (see Pic 1) “Term 5”, 
(Pic 2) “5 on the bottom”, (Pic 3) “5 on top”, (Pic 4) “plus 1.” 

Then, the teacher asked the class about the number of squares in Term 25. Mary raised her 
hand and answered: “25 on the bottom, 25 on top, plus 1.” The class spent some time 
dealing with “remote” terms, such as Terms 50 and 100. Figure 5 shows Karl explaining to 
the teacher and his group-mates what Term 50 looks like. 

there would 
be 50 white 

[rectangles] 
on the 
bottom 

50 white 
on the 
top 

and one 
dark 

Figure 5. Karl explaining Term 50. 

 In picture 1, Karl moves his arm and his body from left to right in a vigorous manner to 
indicate the bottom row of Term 50, while saying that there would be 50 white rectangles 
there. He moves his arm a bit further and repeats the moving arm-gesture to signify the top 
row of Term 50. Then he makes a semi-circle gesture in the air to signify the dark square.  

The students played for a while with remote terms. In Karl’s group, one of the questions 
revolved around Term 500 and Term 50: 

Karl: How about doing 500 plus 500? 
Erica: No. Do something simpler. 
Karl: (Talking almost at the same time) 500 plus 500 equals 1000. 
Erica: plus 1, 1001. 
Karl: plus 1, equals 1001. 
Cindy: (Talking about Term 50) 50 plus 50, plus 1 equals 101. 

Schematically speaking, the students’ answer to the question of the number of rectangles in 
remote particular terms was “x + x +1” (where x was always a specific number). The 
formula, I argue, is algebraic in nature, even if it is not expressed in standard notations. In 
this case, indeterminacy and analyticity appear in an intuited form, rather than explicitly. A 
natural question is: Is this all that Grade 2 students are capable of? In fact, the answer is no. 
As we shall see in the next section, we were able to create conditions for the emergence of 
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more sophisticated forms of algebraic thinking. 

Beyond intuited indeterminacy: The Message Problem 

On the fifth day of our pattern generalization teaching-learning sequence, the teacher came 
back to the sequence from the first day (Fig. 2). To recapitulate, she invited some groups to 
share in front of the class what they had learned about that sequence in light of previous 
days’ classroom discussions and small group work. Then, she asked a completely new 
question to the class. She took a box and, in front of the students, put in it several cards, 
each one having a number: 5, 15, 100, 104, etc. Each one of these numbers represented the 
number of a term of the sequence shown in Fig. 2. The teacher invited a student to choose 
randomly one of the cards and put it into an envelope, making sure that neither the student 
herself nor the teacher nor anybody else saw the number beforehand. The envelope, the 
teacher said, was going to be sent to Tristan, a student from another school. The Grade 2 
students were invited to send a message that would be put in the envelope along with the 
card. In the message the students would tell Tristan how to quickly calculate the number of 
rectangles in the term indicated on the card. The number of the term was hence unknown. 
Would the students be able to generalize the embodied formula and engage with 
calculations on this unknown number? In other terms, would our Grade 2 students be able to 
go beyond intuited indeterminacy and its corresponding elementary form of algebraic 
thinking? As in the previous days, the students worked in small groups of three. The usual 
response was to give an example. For instance, Karl suggested: “If the number [on the card] 
is 50, you do 50, plus 50, plus 1.” The teacher commended the students for the idea, but 
insisted that the number could be something else and asked if there would be another way to 
say it without resorting to examples. After an intense discussion, the students came up with 
a suggestion:  

Erica: It’s the number he has, the same number at the bottom, the same number at the top, 
plus 1 . . . 

Teacher: That is excellent, but don’t forget: he doesn’t have to draw [the term]. He just 
has to add . . .  So, how can we say it, using this good idea? 

Erica: We can use our calculator to calculate! 
Teacher: Ok. And what is he going to do with the calculator? 
Erica: He will put the number. . . (she pretends to be inserting a number into the 

calculator) . . . plus the same number, plus 1 (as she speaks, she pretends 
to be inserting the number again, and the number 1). 

Another group suggested “twice the number plus 1.” Naturally, the use of the calculator is 
merely virtual. In the students’ real calculator, all inputs are specific numbers. Nevertheless, 
the calculator helped the students to bring forward the analytic dimension that was 
apparently missing in the students’ explicit formula. Through the virtual use of the 
calculator, calculations are now performed on this unspecified instance of the variable—the 
unknown number of the figure. 

Let me summarize our Grade 2 students’ accomplishments during the first week that they 
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were exposed to algebra. In the beginning, most of our students were dealing with figural 
sequences like the one in Figure 1 through a focus on numerosity. Finding out the number 
of elements (rectangles, in the example here discussed) in remote terms was not easy. The 
joint counting process in which the teacher and students engaged during the second day 
helped the students to move to other ways of seeing sequences. The joint counting process 
made it possible for the students to notice and articulate new forms of mathematical 
generalization. In particular, they became aware of the fact that the counting process can be 
based on a relational idea: to link the number of the figure to relevant parts of it (e.g. the 
squares on the bottom row). This requires an altogether new perception of the number of the 
term and the terms themselves. The terms appear now not as a mere bunch of ordered 
rectangles but as something susceptible to being decomposed, the decomposed parts bearing 
potential clues for algebraic relationships to occur. Interestingly enough, historically 
speaking, the “decomposition” of geometric figures in simpler forms (e.g., straight lines) 
was systematically developed in the 17th century by Descartes in his Geometry (Barbin, 
2006), a central book in the development of algebraic ideas. The decomposition of figures 
permitted the creation of relationships between known and unknown numbers and the 
carrying out of calculations on them “without making a distinction between known and 
unknown [parts]” (Descartes, 1954, p. 8). Our examples—as well as those reported by other 
researchers with other Grade 2 students (e.g. Rivera, 2010)—suggest that the linkage of 
spatial and numerical structures constitutes an important aspect of the development of 
algebraic thinking. Such a linkage rests on the cultural transformation in the manner in 
which sequences can be seen—a transformation that may be termed the domestication of the 
eye (Radford, 2010). For the modern mathematician’s eye, the complexity behind the 
perception of simple sequences like the one our Grade 2 students tackled remains in the 
background, to the extent that to see things as the mathematician’s eye does, ends up 
seeming natural. However, as our results intimate, there is nothing natural there. To 
successfully attend to what is algebraically meaningful is part of learning to think 
algebraically. This cultural transformation of the eye is not specific to Grade 2 students. It 
reappears in other parts of the students’ developmental trajectory. It reappears, later on, 
when students deal with factorization, where discerning structural syntactic forms become a 
pivotal element in recognizing common factors or prototypical expressions (Hoch & 
Dreyfus, 2006). 

All in all, the linkage of spatial and numerical structures resulted, as we have seen, in the 
emergence of an elementary way of algebraic thinking that manifested itself in the 
embodied constitution of a formula where the variable is expressed through particular 
instances, which we can schematize as “x + x +1” (where x was always a specific number). 
This formula, I argued on semiotic and epistemological grounds, is genuinely algebraic. 
That does not mean that all formulas provided by young students are algebraic. To give an 
example, one of the students suggested that to find out the number of elements in Term 100, 
you keep adding 2, and 2 and 2 to Term 1 until you get to Term 100. This is an example of 
arithmetic generalization—not of an algebraic one, as there is no analyticity involved. The 
“Message Problem” offered the students a possibility to go beyond intuitive indeterminacy 
and to think, talk, and calculate explicitly on an unknown number. Although several 
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students were able to produce an explicit formula (e.g., “the number plus the number, plus 
1” or “twice the number plus 1”), other students produced a formula where the general 
unknown number was represented through an example. This is what Mason (1996) calls 
seeing the general in or through the particular. Both the explicit formula and the 
general-through-the-particular formula bear witness to a more sophisticated form of 
elementary algebraic thinking than the embodied one where the variable and the formula are 
displayed in action.  

Revealing our Grade 2 students’ aforementioned elementary, pre-symbolic forms of 
algebraic thinking  responded to our first research question—i.e., whether the embodied 
forms of thinking that we observed in adolescents are accessible to younger students. Yet, 
there are differences. Adolescents in general tend to gesture, talk and symbolize in 
harmonious coordinated manners (often after a period of mismatch between words and 
gestures (Arzarello & Edwards, 2005; Radford, 2009a). Our young students, in contrast, 
tend to gesture with energetic intensity (see e.g. Figure 5). The energetic intensity may 
decrease as the students become more and more aware of the variables and the relationship 
between known and unknown numbers. However, the energetic intensity remains relatively 
pronounced as compared to what we have seen in adolescents (Radford, 2009a, 2009b). 
This phenomenon may be a token of a problem related to our second research question, 
namely: How does young students’ algebraic thinking develop?  

Developmental questions are very tricky, as psychologists know very well. It is not enough 
to collect data year after year and merely compare what students did in Year 1, to what they 
did in Year 2, etc. Exposing differences shows something but does not explain anything. I 
struggled with the question of the development of students’ mathematical thinking for about 
a decade when I was doing research with adolescents, and I have to confess that I was 
unable to come up with something satisfactory. Yet, my research with adolescents helped 
me to envision a sensuous and material conception of mathematical cognition (Radford, 
2009b) that was instrumental in tackling the developmental question. Before going further 
in my account of what the students did in the following years, I need to dwell on the 
question of development first. 

THINKING AND ITS DEVELOPMENT 

In contrast to mental cognitive approaches, thinking, I have suggested (Radford, 2009b), is 
not something that solely happens ‘in the head.’ Thinking may be considered to be made up 
of material and ideational components: it is made up of (inner and outer) speech, objectified 
forms of sensuous imagination, gestures, tactility, and our actual actions with cultural 
artifacts. Thus, in Figure 5, for instance, Karl is thinking with and through the body in the 
same way that he is thinking through and in language and the arsenal of conceptual 
categories it provides for us to notice, highlight, and attend to things, and intend them in 
certain cultural topical ways.  The same can be said of the teacher in Figure 4. Although it 
might be argued that the teacher and the student are merely communicating ideas, I would 
retort that this division between thinking and communicating makes sense only within the 
context of a conception of the mind as a private space within us, where ideas are created, 
computed and only then communicated. This computational view of the mind has a long 
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history in our Western idealist and rationalist philosophical traditions. The view that I am 
sketching here goes against the dualistic assumption of mind vs. body or ideal vs. material. 
Thinking appears here as a an ideal-material form of reflection and action, which does not 
occur solely in the head but also in and through a sophisticated semiotic coordination of 
speech, body, gestures, symbols and tools. This is why, during difficult conversations, 
rather than digging in the head first to find the ideas that we want to express, we hear 
ourselves thinking as we talk, and realize, at the same time as our interlocutors, what we are 
thinking about.  

Now to say that thinking is made up of (inner and outer) speech, objectified forms of 
sensuous imagination, gestures, tactility, and our actual actions with cultural artifacts does 
not mean that thinking is a collection of items. If we come back to our examples, Carlos 
(see Figure 3, left), while moving the upper part of his body, was resorting to pointing 
gestures and words to count the rectangles in the first terms of the sequence. Words and 
gestures were guiding his perceptual activity to deal with the numerosity of the terms. Like 
Carlos, Karl moved his upper body, made arm- and hand-gestures and resorted to language 
(Figure 5). In stating the formula “the number plus the number, plus 1,” Erica gestured as if 
she was pressing keys in the calculator keyboard (Radford, 2011). Yet, the relationship 
between perception, gestures and words is not the same. What it means is that thinking is 
not a mere collection of items. Thinking is rather a dynamic unity of material and ideal 
components. This is why the same gesture (e.g. an indexical gesture pointing to the 
rectangles on top of Term 3) may mean something conceptually sophisticated or something 
very simple. That is, the real significance of a component of thinking can only be 
recognized by the role such a component plays in the context of the unity of which it is a 
part. 

Now I can formulate my developmental question. If thinking is a systemic unity of 
ideational and material components, it would be wrong to study its development by 
focusing on one of its components only. Thus, the development of algebraic thinking cannot 
be reduced to the development of its symbolic component (notation use, for instance).  The 
development of algebraic thinking must be studied as a whole, by taking into account the 
interrelated dialectic development of its various components (Radford, 2012a). If in a 
previous section I talked about the ‘domestication of the eye,’ this domestication has to be 
related to the ‘domestication of the hand’ as well. And, indeed, this is what happened in our 
Grade 2 class from the second day on. As we recall, the teacher (Figure 4) made extensive 
use of gestures and an explicit use of rhythm, and linguistic deictics, followed later by the 
students, who started using their hands and their eyes in novel ways, opening up new 
possibilities to use efficient and evolved cultural forms of mathematical generalization that 
they successfully applied to other sequences with different shapes. 

To sum up, it is not only the tactile, the perceptual, or the symbol-use activity that is 
developmentally modified. In the same way as perception develops, so do speech (e.g., 
through spatial deictics) and gesture (through rhythm and precision). Perception, speech, 
gesture, and imagination develop in an interrelated manner. They come to form a new unity 
of the material-ideational components of thinking, where words, gestures, and signs more 
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generally, are used as means of objectification, or as Vygotsky put it, “as means of 
voluntary directing attention, as means of abstracting and isolating features, and as a means 
of […] synthesizing and symbolising” (1987, p. 164). Within this context, to ask the 
question of the development of algebraic thinking is to ask about the appearance of new 
systemic structuring relationships between the material-ideational components of thinking 
(e.g., gesture, inner and outer speech) and the manner in which these relationships are 
organized and reorganized. It is through these developmental lenses that I studied the data 
collected in the following years and that I summarize in the rest of this article, focusing on 
Grades 3 and 4. 

GRADE 3: SEMIOTIC CONTRACTION 

As usual, in Grade 3 the students were presented with generalizing tasks to be tackled in 
small groups. The first task featured a figural sequence, 𝑆!, having n circles horizontally 
and n-1 vertically, of which the first four terms were given. Contrary to what he did first in 
Grade 2, from the outset, Carlos perceived the sequence taking advantage of the spatial 
configuration of its terms. Talking to his teammates about Term 4 he said: “here (pointing 
to the vertical part) there are four. Like you take all this [i.e., the vertical part] together (he 
draws a line around), and you take all this [i.e., the horizontal part] together (he draws a line 
around; see Figure 6, pic 1). So, we should draw 5 like that (through a vertical gesture he 
indicates the place where the vertical part should be drawn) and (making a horizontal 
gesture) 5 like that” (see Fig. 6, pics 2-3). 

When the teacher came to see the group, she asked Carlos to sketch for her Term 10, then 
Term 50. The first answer was given using unspecified deictics and gestures. He quickly 
said: “10 like this (vertical gesture) and 10 like that” (horizontal gesture). The specific 
deictic term “vertical” was used in answering the question about Figure 50. He said: “50 on 
the vertical… and 49…” When the teacher left, the students kept discussing how to write 
the answer to the question about Term 6. Carlos wrote: “6 vertical and 5 horizontal.” 

In developmental terms, we see the evolution of the unity of ideational-material components 
of algebraic thinking. Now, Carlos by himself and with great ease coordinates gestures, 
perception, and speech. The coordination of these outer components of thinking is much 
more refined compared to what we observed in Grade 2. This refinement is what we have 
called a semiotic contraction (Radford, 2008a), that is, a genetic process in the course of 
which choices are made between what counts as relevant and irrelevant; it leads to a 
contraction of previous semiotic activity, resulting in a more refined linkage of semiotic 

    
Figure 6. To the left, Term 4 of the given sequence. Middle, Carlos’s vertical and horizontal 
gestures while imagining and talking about the still to be drawn Term 5. To the right, 
Carlos’s drawings of Terms 5 and 6. 
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resources. It entails a deeper level of consciousness and intelligibility of the problem at hand 
and is a symptom of learning and conceptual development.  

GRADE 4: THE DOMESTICATION OF THE HAND 

To check developmental questions, in Grade 4 we gave the students the sequence with 
which they started in Grade 2 (see Figure 2). This time, from the outset, Carlos perceived 
the terms as being divided into two rows. Talking to his teammates and referring to the top 
row of Term 5, he said as if talking about something banal: “5 white squares, ‘cause in 
Term 1, there is 1 white square (making a quick pointing gesture) … Term 2, 2 [squares] 
(making another quick pointing gesture); 3, (another quick pointing gesture) 3.” He drew 
the five white squares on the top row of Term 5 and added: “after that you add a dark 
square.” Then, referring to the bottom row of Term 4: “there are 4; there [Term 5] there are 
5.” When the teacher came to see their work, Carlos and his teammates explained “We 
looked at Term 2, it’s the same thing [i.e., 2 white squares on top] . . . Term 6 will have 6 
white squares.”  

   
Fig. 7. Left, Carlos’ drawings of Terms 5 and 6. Right, Carlos’s formulas. 

There was a question in the activity in which the students were required to explain to an 
imaginary student (Pierre) how to build a big term of the sequence (the “Big Term 
Problem”). In Grade 2, the students chose systematically a particular term. This time, Carlos 
wrote: “He needs [to put as many white squares as] the number of the term on top and on 
the bottom, plus a dark square on top.”  

The “Message Problem” again 

At the end of the lesson, the students tackled the “Message Problem” again. As opposed to 
the lengthy process that, in Grade 2, preceded the building of a message without particular 
examples (Radford, 2011), this time the answer was produced quicker: 

David : The number of the term you calculate twice and add one. That’s it!  
Carlos: (Rephrasing David’s idea) twice the number plus one. 

The activity finished with a new challenge. The teacher asked the students to add to the 
written message a “mathematical formula.” After a discussion in Carlos’s group concerning 
the difference between a phrase and a mathematical formula, the students agreed that a 
formula should include operations only. Carlos’s formula is shown in pic 3 of Fig. 7. 

From a developmental perspective, we see how Carlos’s use of language has been refined. 
In Grade 2 he was resorting to particular terms (Term 1,000) to answer the same question 
about the “big term.” Here he deals with indeterminacy in an easy way, through the 
expression “the number of the term.” He even goes further and produces two symbolic 
expressions to calculate the total of squares in the unspecified term (Figure 7, right). The 
semiotic activities of perceiving, gesturing, languaging, and symbolizing have developed to 
a greater extent. They have reached an interrelational refinement and consistency that was 
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not present in Grade 2 and was not fully developed in Grade 3. This cognitive 
developmental refinement became even more apparent when the teacher led the students to 
the world of notations, as we shall now see.  

The introduction to notations 

The introduction to notations occurred when the students discussed their answers to 
homework based on the sequence shown in Figure 8. The discussion took place right after 
the general discussion about the “Message Problem” alluded to in the previous sub-section.  

  
Fig. 8. Pic 1 (left), the sequence of the homework. Pic 2 (right), Carlos’ decomposition of 
Term 3. 

The teacher gave the students the opportunity to compare and discuss their answers to the 
homework by working in small groups. In Carlos’ group, the terms of the sequence were 
perceived as made up of two rows, each one having the same number as the number of the 
term plus an addition of two squares at the end (see pic 2 in Figure 8). As Carlos suggests, 
referring to Term 15, “15 on top, 15 at the bottom, plus 2, that is 32.” Or alternatively, as 
Celia, one of Carlos’ teammates, explains, “15+1 equals 16, then 16+16 . . . which makes 
32.” After about 10 minutes of small-group discussion, the teacher encouraged the students 
to produce a formula like the one that they just provided for the “Message Problem.” Then, 
the class moved to a general discussion where various groups presented their findings. Erica 
went to the Interactive White Smart Board (ISB) and suggested the following formula: “1 + 
1 + 2x__=__” The teacher asked whether it would be possible to write, instead of the 
underscores, something else. One student suggested putting an interrogation mark. The 
teacher acknowledged that interrogation mark could also be used, and asked for other ideas. 
Samantha answered with a question: 

Samantha: A letter? 
Teacher:  Ah! Could I write one plus one plus two times n? What does n mean?  
A student: A number…  
Teacher: Could we write that (i.e., one plus one plus two times n) equals n? (Some 

students answered yes, others no; talking to Erica who is at the 
whiteboard) Ok. Write it, write your formula (Erica writes 1 + 1 + 2xn = 
n). 

Carlos: No, because n (meaning the first one) is not equal to n (meaning the second one) 
Teacher: Ah! Why do you say that n is not equal to n?  

Carlos: Because if you do 2 times n, that will not equal [the second] n.  
Teacher: Wow!  
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In order not to rush the students into the world of notations, the teacher decided to delay the 
question of using a second letter to designate the total. As we shall see, this question will 
arise in the next activity. In the meantime, the formula was left as 1 + 1 + 2xn = __.  

The next activity started right away. The students were provided with the new activity sheet 
that featured the sequence shown in Figure 9. The students were encouraged to come up 
with as many formulas as possible to determine the number of squares in any term of the 
sequence.  

 
Fig. 9. The featured sequence of the new activity. 

During the small-group discussion, William offers a way to perceive the terms. Talking to 
Carlos, and referring to Term 6, which they drew on the activity sheet, William says 
(talking about the top row): “There are 8 [squares], because 6+2=8. You see, on the bottom 
it’s always the number of the term, you see?” His utterance is accompanied by a precise 
two-finger gesture through which he indicates the bottom row (see Fig. 10, left). He 
continues: “then, on the top, it’s always plus 2” (making the gesture shown in Figure 10, 
right).  

  
Figure 10. William making precise gestures to refer to Term 6.  

The answer to the “Message Problem” was provided without difficulties. Without 
hesitation, Carlos said: “Ok. Double the number and add 2.” The class moved to a general 
discussion, which was a space to discuss different forms of perceiving the sequence and of 
writing a formula. Marianne went to the ISB and suggested that the terms could be 
imagined as divided into two equal rows and that one square is added to the left and one to 
the right of the top row. In Figure 11, referring to Term 3, she points first to the top row 
(imagined as made up of three squares; see Fig. 11, Pic 1). Then she points to the bottom 
row (Pic. 2), then to the extra square at the top right (Pic. 3) and to the extra square at the 
top left (Pic. 4). Celia proposed that a term was the same as the previous one to which two 
squares are added at the right end. In Figure 11, Pic 5 and 6, she hides the two rightmost 
squares in Terms 2 and 3 to show that what remains in each case is the previous term. The 
developmental sophistication that the perception-gesture-language systemic unity has 
achieved is very clear.  

Then, the students presented their formulas. Carlos presented the following formula: N + N 
+ 2 = _. The place for the variable in the formula is symbolized with a letter and the 
underscore sign. Letters in Carlos’s formula appear timidly drawn, still bearing the vestiges 
of previous symbolizations (see Figure 7, right). 
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Pic 1 Pic 2 Pic 3 

   
Pic 4 Pic 5 Pic 6 

Figure 11. Marianne’s (Pic. 1-4) and Celia’s (Pic. 5-6) gestures. 

The teacher asked if it would be possible to use another letter to designate the result: 
Teacher: Well, we started with letters [in your formula]. Maybe we could continue with 

letters?  
Carlos: No! 
Teacher: Why not?  
Carlos: An r? 
Teacher: Why r? 
Caleb : The answer (in French, la réponse). 

Carlos completed the formula as follows: : N + N + 2 = R . Other formulas were provided, 
as shown in Figure 12: 

  
Figure 12. Left, some formulas from the classroom discussion. Right, formulas from Erica’s 
group. 

SYNTHESIS AND CONCLUDING REMARKS  

In this article, I dealt with two research questions. The first one revolved around whether 
embodied forms of algebraic thinking—already evidenced in adolescents in previous 
research—can be made accessible to young students. The second research question was 
about how to provide an account of the development of the young students’ algebraic 
thinking. 

In the first part of the article I suggested, on both historical-epistemological and semiotic 
grounds, that algebraic thinking cannot be reduced to an activity mediated by notations. 
Although the modern alphanumeric symbolism constitutes a very powerful semiotic system, 
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in no way can it characterize algebraic thinking. As I argued in previous work, a formula to 
calculate the number of rectangles in sequences like the one presented in Figure 2, such as 
“2n+1,” can be attained by arithmetic trial-and-error methods. This is indeed what often 
happens when adolescents tackle figural or purely numeric sequences (Radford, 2008a). 
Algebraic thinking, I suggested, is rather characterized by the analytic manner in which it 
deals with indeterminate numbers—something where, as two father of algebra, Viète (1983) 
and Descartes (1954), explicitly stated, no difference is made between known and unknown 
numbers. Looking at algebraic thinking from this perspective opens up new possibilities to 
rethink the manner in which indeterminate quantities can be signified. It is here where 
semiotics enters the scene. Indeed, semiotics is interested in understanding the manner in 
which individuals signify (Eco, 1988). A rigorous video analysis convinced us that students 
signify indeterminate numbers through recourse to a plethora of semiotic resources. I then 
suggested that, rather than being merely a by-product of thinking, these material and 
corporeal resources constitute the very sensible texture of it. Of course, in order to do that, 
one has to abandon the idea of the mind as a computational or adaptive internal engine. A 
different conception of thinking has to be brought to the fore. To come up with an 
articulated view, that I tried to elaborate through the concept of sensuous cognition 
(Radford, 2009b), I drew on the work of psychologists like Leontyev (1981) and 
anthropologists like Geertz (1973) and, recently, Malafouris and Renfrew (2010), who all 
plea for a sensuous and material conception of human cognition. From a sensuous 
perspective on human cognition, it is not difficult to appreciate that 7–8-year-old students 
can effectively start thinking algebraically. To move to the second research question was 
much more difficult. How to account for the development of cognitive formations?  The 
term development came into use in the 18th century and was understood as an unfolding of 
pre-formed structures or as the bringing out of latent or somehow built-in possibilities that 
would blossom naturally. The view that I have espoused here is different. Algebraic 
thinking—like all cultural forms of thinking (e.g., aesthetic, legal, political, artistic)—is a 
theoretical form that has emerged, evolved and refined in the course of cultural history. It 
pre-existed in a developed ideal form before the students engaged in our classroom 
activities. The greatest characteristic of child development, Vygotsky (1994) argued, is not 
that this cultural and historically constituted ideal form is already there in the environment 
or in society. The greatest characteristic of child development consists in how this ideal 
form exerts a real influence on the child’s thinking. But how can this ideal form exert such 
an influence on the child? Vygotsy’s answer is: under particular conditions of interaction 
between the ideal form and the child (1994). In our case, the particular conditions of 
interaction between algebraic thinking as a historical ideal form and our Grade 2 students 
were constituted by a sequence of activities that were intentional bearers of this ideal form. 
The intentionality is revealed in the main recurrent themes of our mathematical questions 
(e.g., extending the sequences, dealing with “big terms,” the “Message Problem,” the 
notational issues), which, far from being innocent or conceptually neutral, were already 
imbued with cultural significations and an intended teleological developmental direction. 
Naturally, the students cannot discern the theoretical intention behind our questions, as this 
cultural ideal form that we call algebraic thinking has still to be encountered and cognized. 
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The lengthy, creative, and gradual processes through which the students encounter, and 
become acquainted with historically constituted cultural meanings and forms of (in our case 
algebraic) reasoning and action is what I have termed, following Hegel, objectification 
(Radford, 2002; 2008b).  

The theoretical intentionality that underpins classroom activity, however, is not enough to 
ensure the success of the objectification of the ideal form. The success is always contingent, 
as the activity as such—that is, the activity as event—is unique and unpredictable. This is so 
because no one can implant a cultural ideal form of thinking in the students’ heads. 
Vygotsky used to complain that much of the educational theory of his time “treated the 
student like a sponge which absorbs new knowledge” (1997, p. 48). The objectification of 
ideal forms requires a temporal continuity and stability of the knowledge that is being 
objectified (our students were, for instance, aware of the recurrence of our main didactic 
themes). The objectification of ideal forms requires also the mutual emotional and ethical 
engagement of teacher and students in the joint activity of teaching-learning (Radford & 
Roth, 2011). Yet, the precise account of any developmental process requires an accurate 
theoretical description of the phenomenon under consideration and of its experimental 
investigation. Drawing on the aforementioned idea of sensuous cognition and development, 
I suggested that the development of algebraic thinking can be studied in terms of the 
appearance of new systemic structuring relationships between the material-ideational 
components of thinking (e.g., gesture, inner and outer speech) and the manner in which 
these relationships are organized and reorganized in the course of the students’ engagement 
in activity. The analysis of our experimental data focused on revealing those relationships 
and their progressive refinement. We saw how, for instance, the development of perception 
is consubstantial with the development of gestural and symbolic activity.  

The whole story, however, is much more complex. One the one hand, I did not mention here 
other parts of the students’ encounter with algebra that include a work on tables (see, e.g., 
Roth & Radford, 2011) and a very large part that deals with equations. I limited my account 
to patterns or the generalization of figural sequences. On the other hand, I did not include 
here, at least not in an explicit way, a crucial aspect of the students’ development of 
mathematical thinking, namely the one that deals with questions of subjectivity and agency 
(Radford, 2012b). As Valero (2004) has cogently argued, mathematics education research 
has to a great extent reduced the student to a cognitive subject. Yet, Vygotsky (1994) argued 
forcefully that development can only be understood if we take into consideration the manner 
in which the student is actually emotionally experiencing the world. The emotional 
experience [perezhivanie] is, the Russian psychologist contended in a lecture given at the 
end of his life, the link between the subject and his/her surrounding, between the always 
changing subject (the perpetual being in the process of becoming) and his/her always 
conceptually, politically, ideologically moving societal environment. The explicit and 
meaningful insertion of perezhivanie into developmental accounts is, I suppose, still a 
trickier problem to conceptualize and investigate—an open research problem for sure. 
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