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I discuss teachers' disciplinary knowledge of mathematics, developing three main points as I report 
on a two-year study involving 22 practicing teachers. First I argue that teachers' knowledge of 
mathematics might be productively construed as a complex evolving form, a significant dimension of 
which is tacit knowledge. Second, based on the first point, I suggest that this knowledge is better 
understood as a learnable disposition within a participatory frame than a body of knowledge within 
a mastery frame. Finally, I address the question of how teachers might learn such knowledge by 
describing an design experiment that unfolded in collaboration with multiple groups of practicing 
teachers, oriented to structuring settings to support teachers disciplinary knowledge of mathematics. 
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INTRODUCTION 

Since the 1970s, investigations of the impact of teachers’ formal mathematical preparation 
on their effectiveness in the classroom have reaffirmed an early finding by Begle (1979): 
there is little correlation between the number of mathematics courses that teachers took in 
college and the performance of their students on standardized tests. These findings have 
troubled many within the field of mathematics education for decades. How could it be that 
deeper disciplinary backgrounds are not more strongly linked to teacher effectiveness? 

Widely endorsed answers to this question began to emerge in the 1990s. Several researchers 
noted that stock courses in mathematics are focused on completed results that often hide the 
messiness and complications that led to their production. In contrast, teaching in primary 
school entails struggling with the messiness and working through the complications as 
students produce novel mathematical insights. Since teachers must regularly employ 
associative reasoning as they grapple with the images, analogies, logical connections, and 
other associations that tend to be buried inside finalized formulations, their knowledge is 
necessarily different from mathematicians’ knowledge. As Ball and Bass (2003) 
characterized this difference, whereas it is the research mathematician’s task to pack 
insights into tight formulations (theorems, formulae, etc.), it is the teacher’s task to unpack. 
Aligned with this insight, Ma (1999) elaborated Shulman’s (1986) notion of “pedagogical 
content knowledge” to put forward the construct of “profound understanding of 
fundamental mathematics.” The name describes the particular character of teachers’ 
disciplinary knowledge of mathematics as fundamental – that is, “foundational, primary, 
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and elementary” (p. 116) – and as profound – that is referring to a “deep, vast, and 
thorough” knowledge of concepts and their interconnections (p. 120).  

The suggestion that a specific type of pedagogical content knowledge is associated with the 
teaching of mathematics has reached near-consensus among researchers. In a recent review 
of studies of teachers’ disciplinary knowledge of mathematics, Baumert and colleagues 
(2010) summed it up as follows:  

Findings show that [teachers’ content knowledge of mathematics] remains inert in the 
classroom unless accompanied by a rich repertoire of mathematical knowledge and skills 
relating directly to the curriculum, instruction, and student learning. (p. 139, emphasis 
added) 

Despite widespread agreement on this point, there is a decided lack of consensus around the 
nature of teachers’ “inert” mathematical content knowledge, and how it might be accessed 
or activated. A large number of formal investigations have focused on explicit 
manifestations of disciplinary knowledge – that is, the sorts of insights that can be assessed 
directly through observation, interviews, or written tests. Such explicit knowledge is 
typically deemed to be teachable, as reflected in studies of the disciplinary content of 
teacher preparation programs (e.g., Schmidt, Houang, & Cogan, 2011). 

Other researchers (e.g. Adler & Davis, 2006; Davis, 2011; Davis & Renert, 2009), 
influenced largely by the work of Polanyi (1966), have suggested that the most important 
knowledge for teaching tends to be enacted and tacit, and so neither easily identified nor 
readily measured. While in no way denying the importance of teachers’ ability to 
demonstrate competence in formal mathematics, some of these investigations have 
emphasized the networks of association that underlie the conceptual fluency of expert 
teachers. As has been established in other domains of expertise, expert performance is 
enabled by well-established and automatized (i.e., not necessarily accessible to 
consciousness) webs of association, from which the expert effortlessly “selects” an 
interpretation, scenario, or cluster of actions that is likely to best fit unfamiliar situations 
(see Ericsson et al., 2006). Experts are typically unable to explain or justify their choices 
when asked about them; they simply recognize their interpretations or actions as appropriate 
in the circumstances encountered. I believe that teachers’ content knowledge manifests 
largely in this way. As I elaborate, viewing teachers’ knowledge in this way carries 
significant implications for how it is studied, assessed, and developed. 

This discussion is framed by a critique of Ma’s notion of profound understanding of 
fundamental mathematics. While I resonate with her interpretation of the word profound, 
particularly as illustrated through her highly networked diagrams, I am less comfortable 
with the adjective fundamental. Specifically, I propose that characterizing teachers’ 
disciplinary expertise as “foundational, primary, and elementary” – terms which suggest a 
closed set of insights and understanding that might be catalogued and assessed — may be 
antithetical to the project of researching the complexity of teachers’ knowledge. As an 
alternative to Ma’s construct, I develop the notion of “profound understanding of emergent 
mathematics.” In brief, I argue that the knowledge needed by teachers is not simply a 
clear-cut and well-connected set of basics, but a sophisticated and largely enactive mix of 
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familiarity with various realizations of mathematical concepts and awareness of the 
complex processes through which mathematics is produced. (Note: the term realizations 
borrows from Sfard, 2008, and is used to refer to associations that a learner might use to 
make sense of a mathematical construct.) In anchoring my usage of the term “emergent” to 
the adaptive, evolutionary dynamics described by complexity researchers, I intend to flag 
the coherent-but-never-fixed character of the complex form of teachers’ knowledge. 

The distinction between fundamental and emergent is not a subtle one. As I argue, teachers’ 
disciplinary knowledge of mathematics is vast, intricate, and evolving. Moreover, no 
individual could possibly be aware of the whole range of interpretations that might be 
invoked in primary school mathematics. Rather than think of this knowledge as a discrete 
body of foundational knowledge held by individuals, then, it may be more productive to 
view it as a flexible, vibrant category of knowing that is distributed across a body of 
professionals. With regard to individual teachers, then, I frame teachers’ knowledge of 
mathematics as a learnable participatory disposition within an evolving knowledge domain. 

The notion of “learnable participatory disposition” is central to my research, and it is one 
that I attempt to explicate as this report unfolds. The participatory “concept study” research 
project that I report on in this article was undertaken with teachers rather than on teachers 
with the intention of affecting the ways they think about, feel about, and engage with 
mathematical concepts – as individuals, with colleagues, and with their students. The 
deconstructive and constructive activities in which the teachers engaged included: 
identifying extant interpretations, investigating entailments, blending them into new 
meta-interpretations, and using resultant insights to inform teaching. Although still in its 
early stages, my research indicates that teachers’ involvement in such shared activities can 
have immediate and significant impact on their knowledge of mathematics and on their 
teaching practices. In particular, these activities appear to support a shift in teachers’ 
perceptions of the nature of mathematics, away from pre-given and unchanging facts, 
toward open and evolving human understandings that can be discussed and debated. 

The bulk of this article describes my collaborative work with teachers in the framework of a 
concept study of multiplication. I begin with a brief introduction to the notion of emergence. 
I then move on to recount a series of meetings in which practicing teachers took part in 
critical examinations of some of their mathematical understandings. In the process, I explain 
my conception of teachers’ knowledge of mathematics as a learnable disposition, and of 
structures that might be used to support the development of disciplinary knowledge. 

EMERGENCE 

Capra (2005) offered a systemic analysis of the building blocks of life in diverse 
phenomena: biological cells, consciousness, and social reality. Capra’s synthesis is based on 
the assumption that there is a fundamental unity to life and that different living systems 
exhibit similar patterns of organization. This assumption is supported by the major findings 
of complexity science, systems theory, and cognitive sciences of the past three decades. 
Accordingly, the pattern of organization of living systems is the self-generating network. 
Living systems are cognitive learning systems, where cognition is closely related to the 
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process of autopoiesis (self-organization, self-generation) and can be observed as evolution 
on multiple scales. Within the complexity sciences, the word emergence has been adopted 
to collect these notions. 

As Goldstein (1999) explained, emergence is “the arising of novel and coherent structures, 
patterns and properties during the process of self-organization in complex systems” (p. 51). 
The notion of emergence can be applied in a number of ways to mathematics for teaching. 
Specifically, it can be used to understand and characterize the dynamics and structures of 
this branch of knowledge. It highlights not only situation-specific selections and adaptations 
but the systemic, distributed, and self-organizing character of teachers’ content knowledge.  

It is not uncommon to encounter suggestions that mathematics “is a living, breathing, 
changing organism …” (Burger & Starbird, 2005, p. xi) or that it “emerges as an autopoietic 
[i.e., self-creating and self-maintaining] system” (Sfard, 2008, p. 129). As an example, 
Mazur (2003) offered some historical case studies of the emergence of mathematical 
concepts. Multiplication, for example, was likely originally conceived as repeated addition 
and/or some sort of a grouping process. However, this conception breaks down when one 
attempts to add ⅝ to itself ¾ times, π to itself d times, or to assemble –2 groups of –3. 
Mathematicians struggled to elaborate multiplication as new number systems unfolded. 
Their responses were never purely logical and, in most cases, new realizations – that is, 
associations that might be used to interpret a concept, including definitions, rules, analogies, 
applications, and so on – arose out of emergent arguments and were incorporated into 
always evolving conceptual constructs.  

It is this sense of emergence I intend to invoke in the phrase “profound understanding of 
emergent mathematics.” This construct gestures toward an understanding of teachers’ 
disciplinary knowledge as a responsive and evolving autopoietic system of realizations that 
is distributed across a body of educators. Staying with the example of multiplication, and on 
the basis of my analyses of North American textbooks, I feel justified in asserting that most 
learners will have encountered at least a dozen distinct realizations of multiplication by the 
8th grade. They include: skip counting, hopping along a number line, stretching and 
compressing a number line, grid making, area generation, dimension jumping, scaling, a 
linear function, and a process that might be illustrated by repeated folding, splitting, or 
layering. Such diversity contributes to robust and flexible understandings (see, e.g., English, 
2003; Harel & Confrey, 1994; Lakoff & Núñez, 2000). 

The subtleties of the capacity to move among interpretations tend to be difficult for expert 
practitioners to appreciate. In particular, teachers and other expert knowers are often unable 
to differentiate among realizations which novices are unable to reconcile (Sfard, 2008). To 
illustrate, figure 1 shows four different interpretations of multiplication along with 
entailments for the meanings of multipliers, multiplicands, and products. While some 
obvious overlaps exist among these instances, shifting from one instance to the next 
involves significant conceptual leaps. It is not simply that the underlying images are 
different; the actions that are mapped onto the concept of multiplying (i.e., clustering vs. 
rectangulating vs. compressing vs. sloping) are lodged in very different webs of association. 
Each mapping opens up and shuts down different interpretive possibilities. 
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          (a) 

 

        (b) 
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Figure 1. “2 × 3” as viewed through four interpretations of multiplication: 
Multiplication as (a) repeated grouping, (b) grid (or area) making, (c) number-line stretching 

or compressing, and (d) a linear function (y = mx). 

These webs of association, I contend, are not merely accumulative, but aspects of emergent 
forms. That is, as they interact, they cohere into grander constructs that can open up 
surprising new dimensions. In this sense, a concept such as multiplication is one element in 
an ever-evolving ecosystem of elements, which constitutes the dynamic system of Western 
mathematics. A profound understanding of emergent mathematics, then, entails both the 
complex dynamics at work in the development of mathematical knowledge and the specific 
realizations of elementary concepts that might be relevant and meaningful to learners.  

In critiquing Ma’s construct I do not intend to dispose of it or minimize its importance. On 
the contrary, emergent mathematics does not preclude what has already been embodied in a 
cultural system. With regard to teachers’ knowledge, profound understanding of emergent 
mathematics includes but broadens profound understanding of fundamental mathematics. In 
particular, a profound understanding of emergent mathematics foregrounds and embraces 
the necessary tensions of stability-and-novelty and coherence-and-decentralization, 
affording the latter elements of these dyads the same status as the former. 

CONCEPT STUDY 

This report is organized around what I call “concept study”, a collaborative structure to 
engage with teachers in the examination and elaboration of mathematical understandings. 
The phrase “concept study” combines elements of two prominent notions in contemporary 
mathematics education research: concept analysis and lesson study. Concept analysis, which 
was well represented in mathematics education research from the 1960s to the 1980s, 
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focuses on explicating logical structures and associations that inhere in mathematical 
concepts. As Usiskin et al. (2003) described it, concept analysis 

involves tracing the origins and applications of a concept, looking at the different ways in 
which it appears both within and outside mathematics, and examining the various 
representations and definitions used to describe it and their consequences. (p. 1)  

Usiskin et al. extended their description to include ways of representing ideas to learners, 
alternative definitions and their implications, histories and evolutions of concepts, 
applications, and learners’ interpretations of what they are learning. 

I blend this emphasis with the collaborative structures of lesson study, through which 
“teachers engage in to improve the quality of their teaching and enrich students’ learning 
experiences” (Fernandez & Yoshida, 2004, p. 2). Lesson studies are oriented towards new 
pedagogical possibilities through participatory, collective, and ongoing engagements. 
Concept study is thus guided by these assumptions: 

• At the individual level, understandings of mathematical concepts and conceptions of 
mathematics are emergent. 

• At the cultural level, teachers are vital participants in the creation of mathematics, 
principally through the selection of and preferential emphasis given to particular 
interpretations over others. 

• As the level of social collectives, teachers’ knowledge of mathematics is largely tacit 
but critical elements of it can be made available to interrogation in group settings. 

• Individual and collective knowing cannot be dichotomized; collective possibilities 
are enfolded in and unfold individual understandings. 

The last two points are of particular relevance. A common observation across concept 
studies has been that individual teachers can rarely identify more than a handful of 
interpretations of a given concept when presented with a direct question (e.g., “What is 
multiplication?”). In contrast, in my experience, cross-grade groups of teachers consistently 
generate rich lists of metaphors, analogies, and images when invited to situate the concept 
in the context of their teaching experiences. These lists then act as gateways into the 
excavation of embodied and figurative dimensions, a process that can quickly result in a 
reworking of the concept itself. I refer to this process as substructing. 

Substructing is derived from the Latin sub-, “under, from below” and struere, “pile, 
assemble” (and the root of strew and construe, in addition to structure and construct). To 
substruct is to build beneath something. In industry, substruct refers to reconstructing a 
building without demolishing it – and, ideally, without interrupting its use. Likewise, in 
concept studies, teachers rework mathematical concepts, sometimes radically, while using 
them almost without interruption in their teaching.  

While the term “substructing” may connote a descending motion, substructing is both 
reductive and productive. It is reductive in that it starts by re-collecting and re-membering 
experiential, linguistic, and other elements that infuse the meaning of a concept. It is 
productive in a complexivist sense, in which acts of re-presentation often compel new 
integrative structures and novel interpretations. These constructs may become substructs of 
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subsequent knowing. This recursive process corresponds with the understanding of 
emergent knowledge as both dynamic and stable/coherent: always deepening, crystallizing, 
and becoming, while always embodying the memory of its evolution in its structures. To 
this end, the process of substructing operationalizes the structures of emergent mathematical 
knowledge. Substructing might be contrasted with the process of “unpacking” (Ball & Bass, 
2003), which corresponds with a view of mathematical knowledge as manifesting in 
compressed and relatively static forms. In any case, the purpose of concept study and 
substructing activities is not to immerse teachers in ongoing debate on the ontological status 
of multiplication, specifically, or mathematics, more generally. Rather, the focus is on how 
humans come to understand mathematical concepts. 

This report focuses on concept study work carried out over a period of two years with a 
cohort of 22 teachers enrolled in a Master’s program focused on the theme of Mathematics 
for Teaching. The teachers in the group represented almost all grade levels. Mathematics 
backgrounds varied from no formal coursework beyond high school to graduate level study. 

The cohort met twice a month in daylong sessions. About two hours of each session were 
devoted to concept study work. I led some of the concept studies; the teachers led others. 
Each of the participating teachers was required to design and lead a concept study, either 
individually or as part of a group, and to report on the findings in a concluding paper for the 
program. The participants’ motivations to engage in concept studies were therefore very 
different from those we encountered in previous concept study sessions, which tended to be 
less formal and involved in-service teachers seeking to improve their practice. 

The structures of concept study described in this report have a 10-year history, and arose 
initially out of casual encounters of groups of teachers who shared an interest in better 
understanding specific concepts and topics in mathematics (cf. Davis & Simmt, 2006). 
Based on that work, four emphases were identified that had proven productive for the 
ongoing collective elaboration of mathematical concepts within various groups and across 
various mathematical topics (Davis & Renert, 2009): realizations, landscapes, entailments, 
and blends. These emphases served as starting points for organizing the cohort’s concept 
study work, and first introduced them, in the context of a course on research methods, as 
strategies that had previously proven useful for substructing mathematical concepts. 

I proceed with brief descriptions of the four emphases and end by describing a more recent 
fifth emphasis, pedagogical problem solving, which unfolded through work with the cohort. 
It is important to note that I do not offer the emphases as “steps” or “levels.” I see them as 
aspects that are always already present (alongside other interpretive strategies that we either 
have not noticed or have not made explicit). The word emphasis was chosen to signal the 
simultaneity of such elements. That said, the strategies were not implemented rigidly. 
Indeed, as events unfolded, the members of the cohort revised and refined the strategies in a 
recursively elaborative manner.  

EMPHASIS 1: REALIZATIONS  

As noted above, the term realizations is used to collect all manner of associations that a 
learner might draw on and connect in efforts to make sense of a mathematical construct 
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(Sfard, 2008). More precisely, a realization of a signifier S refers to “a perceptually 
accessible object that may be operated upon in the attempt to produce or substantiate 
narratives about S” (p. 154). The distinction between a signifier and a realization is often 
blurred, as mathematical realizations can often be used as signifiers and realized further. 
Among many possible elements, realizations might draw on: 

• formal definitions (e.g., multiplication is repeated grouping) 
• algorithms (e.g., perform multiplication by adding repeatedly) 
• metaphors (e.g., multiplication as scaling) 
• images (e.g., multiplication illustrated as hopping along a number line) 
• applications (e.g., multiplication used to calculate area) 
• gestures (e.g., multiplication gestured in a step-wise upward motion). 

To be clear, the assertion and assumption here is not that any particular realization is right, 
wrong, adequate, or insufficient. It is that personal understanding of a mathematical concept 
is an emergent form, arising in the weaves of such experiential and conceptual elements.  

The process of collectively identifying realizations, and their related signifiers, is neither 
linear nor obvious. Each knower holds and utilizes a personal set of realizations. Some of 
these are common to all participants, while others are idiosyncratic or shared by only a few. 
Moreover, realizations are not fixed. They evolve through the process of learning. Not only 
they become more numerous, some earlier ones are discarded or expanded when new 
applications arise. Well-rehearsed realizations (e.g., “multiplication is repeated addition”) 
can be so well rehearsed that they may eclipse other interpretive possibilities.  

To circumvent the tendency to go directly to well-rehearsed definitions, I framed the first 
concept study session as an invitation to explore how the concept of multiplication is 
introduced, taken up, applied, and/or elaborated at different grade levels. The collected 
response, assembled after small groups worked for 30 minutes, is presented in figure 2.  
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Figure 2:  Teacher-generated realizations of multiplication, and related concerns 

It bears noting that there are some striking similarities and differences between this list and 
those generated by other groups (e.g., Davis & Renert, 2009; Davis & Simmt, 2006). I have 
observed remarkable stability across groups of teachers – pre-service and practicing, novice 
and experienced, grade-specific and cross-grade – in the range and quantity of 
interpretations generated. In every context so far, participants have generated about a dozen 
interpretations, of which GROUPING and REPEATED ADDITION are always the first. A 
distinction is almost always made between realizations appropriate to continuous 
applications and those appropriate to discrete applications. In contrast, the list in figure 2 
lacks some distinctions made by other groups – e.g., grouping realizations that use number 
lines and reordering according to grade level. I suspect this lack of consolidation is due to 
the rather short timeframe allocated to this concept study. 

Returning to the construct of profound understanding of emergent mathematics, I see 
realizations as interacting elements within the evolving system of teachers’ mathematics 
knowledge. Since realizations evolve through learning, part of mathematics learning might 
be productively understood as the evolution of networks of realizations. 

EMPHASIS 2: LANDSCAPES 

There are dramatic differences of conceptual worth among realizations. Some can reach 
across most contexts in which a learner might encounter a concept; others are 
situation-specific or perhaps learner-specific. This realization compelled a strategy to 
organize and contrast assembled lists of realizations. Briefly, a landscape is a macro-level 
view, whereas a realization is a micro-level view, of a concept. The strategy was to invite 
participants to identify moments in the K–12-mathematics curriculum that compel 
significant shifts in understandings of multiplication. 

Drawing on Greer’s (1994) observation that many different criteria could be used to 
organize this information, the group explored distinctions that might be used as axes in a 
mapping. The following dimensions were proposed: grade level, grounding metaphor, 
underlying image (e.g., number line; grid; area, graph), dimension(s) of underlying image 
(0, 1, 2, 2+), types of factors (i.e., discrete/continuous), curriculum topics, processes versus 
objects, keywords (e.g., “by,” “of,” “times”), applications, factors with/without units, and 
errors/misconceptions. The collective settled on grade level and grounding metaphor as 
most useful. The mapping presented in figure 3, in which Lakoff and Núñez’s (2000) notion 
of “grounding metaphor” is used to organize constructs along the horizontal axis, is one of 
more than a dozen distinct landscapes created by the group. 
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Figure 3: A collective mapping of some of the realizations 

It is important to emphasize that this exercise is not merely representative. In fact, in this 
case it proved to be quite productive. Some observations that arose in the discussion were: 

• Multiplication is introduced informally (but not explicitly) in terms of motion as 
early-grade teachers skip count (in particular, by 2, 3, 5, and 10). Frequently, skip 
counting is accompanied by tracing out the movement on number lines and in 
number charts. 

• The movement across categories of interpretation in different grade levels seems to 
be fluid and deeply connected; yet it is rarely made explicit. For example, the 
sequence of “skip-counting  number-line hopping  repeated addition” had not 
been previously noticed by any of the participants. 

• There are also pedagogical moments in which elaborations are important yet 
non-intuitive. In particular, there appears to be a major conceptual leap in the shift 
from “object collection” interpretations (suited to whole numbers applications) to 
“object construction” interpretations (useful for continuous applications). 

EMPHASIS 3: ENTAILMENTS 

As mentioned, each realization of a concept carries a set of implications. The intention of 
this emphasis is to examine the entailments of different realizations to related concepts (e.g. 
how does understanding multiplication as number-line hopping impact our understanding of 
the commutative property of multiplication). In the process of exploring entailments, 
participants are forced to consider the concept afresh and not only in well-rehearsed ways. 

The third session was thus organized around “entailments charts” (fig. 4), a strategy 
developed by a different group of teachers in an earlier concept study (Davis, 2008) to 
explore connections and differences. A chart comprises a list of realizations in the first 
column, with as many additional columns as desired to record unpackings of the usually 
uninterrogated implications of those realizations for related concepts and topics. 
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Figure 4:  Some analogical implications of different realizations of multiplication (Note: 

UPPERCASE is used to flag realizations and their analogical entailments) 

The teachers worked on aspects the entailment chart in small groups. Figure 4 represents a 
subsequent consolidation of their work into a single chart. Just as had been encountered in a 
previous concept study with a different group of teachers (Davis, 2008), the resulting chart 
was met with expressions of surprise and confusion. For example, upon comparing different 
‘readings’ of commutativity, one participant commented, “I get the idea of the 
communicative property – flipping the factors doesn’t change the product – but I’m 
realizing I don’t get what’s under it.” This comment was in specific reference to the 
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“obviousness” of commutativity when multiplication is interpreted in array or area terms, 
and the obscurity of the concept for most other interpretations of multiplication. 

Another topic of engagement was the implicit criteria that teachers might be using to select 
realizations. Possibilities included mathematical appropriateness, sufficiency, and 
familiarity. Agreement was quickly reached that, while not often considered, other vital 
criteria might be conceptual reach, potential for elaboration, and transparency. That was 
coupled to the qualification that the teacher must also be thinking systemically while 
choosing. As the example of commutativity illustrates, some concepts become incoherent 
when associated with particular realizations. 

The discussion closed with some reflection on the likelihood that the ability to move fluidly 
among realizations was not so much a matter of “having a firm handle” on those 
realizations; it was, rather, more about having lost the ability to differentiate among them – 
reminiscent of Sfard’s (2008) reminder that, as with many expert knowers, teachers are 
often unable to distinguish among elements that their students and novices cannot reconcile. 

EMPHASIS 4: BLENDS 

The three emphases described so far are focused mainly on making fine-grained distinctions 
among realizations and their entailments. Not surprisingly, many of the participating 
teachers voiced some frustrations as the shared work unfolded. Multiplication is, after all, a 
mathematically coherent concept, not an assemblage of images and implications. The 
blending emphasis is about seeking out meta-level coherences by exploring the deep 
connections among identified realizations and/or assembling those realizations into a more 
encompassing interpretation – which, of course, might introduce emergent possibilities. 

For this emphasis, I drew on research into conceptual blends (Fauconnier & Turner, 1998). 
As diSessa described, metarepresentational skills comprise “modifying and combining 
representations, and … selecting appropriate representations” (p. 296), subcomponents of 
which include inventing and designing new representations, comparing and critiquing them, 
applying and explaining them, and learning new representations quickly. In previous 
concept studies, a few blends/metarepresentations arose spontaneously (Davis, 2008; Davis 
& Renert, 2009; Davis & Simmt, 2006). However, in this group, I tried to condition the 
emergence of blends in a more deliberate manner. I found out that causing emergent insight 
was impossible. This is not to say that the time set aside for this layer was unproductive. I 
had decided in advance that, should explorations stall, I would introduce 
metarepresentations from other concept studies, which sponsored some rich discussion.  

The first blend to be introduced was from a concept study reported by Davis & Simmt 
(2006), in which a grid-based algorithm was used to highlight some connections among 
standard algorithms (fig. 5). The second was from a study reported by Davis & Renert 
(2009), through which participants developed an interpretation that brought together 
multiplication as NUMBER-LINE STRETCHING/COMPRESSING, as SCALING, as a LINEAR 
FUNCTION (fig. 6). The emergent product had several ‘bonus’ features, among which was a 
new interpretation of integer multiplication in terms of a number line that inverts as it 
compresses through zero. (The explanation is not a brief one, and so is omitted here.)  
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Figure 5:  A grid-based blend that highlights the similarities of multiplicative processes 

involving additive multiplicands 

 

 
Figure 6:  A graph-based meta-realization that blends linear models of multiplication 

The surrounding conversation focused mainly on the manner in which some of the 
previously identified realizations did or did not fit within these metarepresentations. 
Another prominent theme was the extent to which the two metarepresentations might be 
reconciled into a unifying blend. More generally, discussions revolved around the 
conceptual novelty that can emerge in metaprepresentations – and how in turn, such 
metarepresentations might be blended into even more encompassing interpretations. 

And so, although there were no new constructs, outcomes of expanded awarenesses of the 
web of associations and the relevance of mathematics education research were met. 

EMPHASIS 5: PEDAGOGICAL PROBLEM SOLVING 

By the completion of the fourth session together, participants appeared to be comfortable 
with the construct of “emergent mathematics” insofar as it related to learning and teaching – 
that is, with the suggestion that mathematics understandings and insights arise in the 
interplay of realizations and other experiences. 
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The encounter described in this section took place seven months after the fourth session. 
During the intervening period, participants were involved in small-group concept studies. 
Clusters organized in self-selected groups, and each group took on an investigation of a 
specific mathematical topic of their choice, employing and adapting the emphases described 
above. Groups varied in size from two to five, with most involving three participants.  

By the time that I introduced this emphasis, then, participants were comfortable with 
“emergent mathematics.” The hope at this point was to focus their explorations of concepts 
onto persistent conundrums of mathematics teaching. I thus introduced an emphasis on 
“pedagogical problem solving,” defined in terms of grappling with questions that are 
commonly encountered in schools and that may be deceptively easy to pose but very 
difficult to answer in a manner that satisfies many students. Participants were asked to 
identify examples in advance of the concept study meeting, and their suggestions included: 
• Is ∞ a number? 
• What does it mean to divide by zero? 
• What’s the difference between undefined, indeterminate, and infinite? 

To the experienced mathematics knower, these questions might seem trivial, with 
established and unambiguous (or, at least, context-specific) responses. Such is not usually 
the case for novices, as most experienced teachers will attest. 

The unexpressed (to the group) intentions around the notion of profound understanding of 
emergent mathematics were very specific here. I wondered if challenging participants to 
bring their diverse areas of conceptual expertise to bear on a common question might 
occasion a sophisticated and productive exploratory conversation that would be useful to 
them in their teaching. 

In this specific concept study meeting, I posed the question, “What’s 5/0?”, with the 
intention of addressing the last three of the five questions listed in the previous paragraph. 
Before delving into the discussion, I offer three preliminary definitions, taken from 
Wolfram MathWorld: 

Indeterminate: A mathematical expression can … be said to be indeterminate if it is not 
definitively or precisely determined. 
Infinite: Greater than any assignable quantity of the sort in question.  
Undefined: An expression in mathematics which does not have meaning and so which is 
not assigned an interpretation. (http://mathworld.wolfram.com/) 

It bears noting that, despite the very different definitions, these three words have similar 
original meanings. According to the Oxford English Dictionary, indeterminate is drawn 
from the Latin in- (“not”) + de- (“off”) + terminare (“to mark the end or boundary”); 
infinite derives from the Latin in- (“not”) + finis (“end”); undefined combines un- (“not”) + 
definire (“to limit, determine” – which, in turn derives from the root finis). In other words, 
all three terms carry senses of openness, unending, and unspecifiability, which likely 
contribute to confusions and conflations. To complicate matters, it turns out that all three 
words can be applied to 5/0, depending on the perspective taken. I offer three such 
perspectives from among the many that arose during the concept study. 
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The complexity of the situation arises in the fact that there are a great many interpretations 
of ‘5’ (as a discrete count, a position on a continuous number line, comparison value, etc.), 
the slash ‘/’ (as divided by, inverse of, out of, per, in, to, etc.), and 0 (nothing, starting 
position, center point, stationary, etc.). Participants were invited to bring their particular 
expertise to bear on the discussion. For the sake of brevity, I focus only on those from the 
subgroups that had concentrated on division and factoring. 

Among the interpretations of division that the division group brought to bear on the 
construct, 5/0 were sharing, inverse of multiplication, and repeated subtraction. If the 
division is interpreted as sharing and the 5 and 0 as quantities, 5/0 can be understood either 
quotitively (i.e., how many groups of 0 are in 5?) or partitively (i.e., what is the size of each 
group when 5 is partitioned into 0 groups?). The group consensus was that the former 
“makes more sense” than the latter, which seems to contain a contradiction (i.e., if there are 
no groups, it makes no sense to ask about the size of each group). Following the definitions 
presented above, they argued, it seems that multiple answers are defensible. That is, 5/0 is 

infinite, in the quotitive interpretation, because there are clearly a boundless number of 
size-0 groups can be drawn from a group of 5 – i.e., the quotient is greater than any 
assignable quantity of the sort in question.  
undefined, in the partitive interpretation, because the expression is meaningless and 
cannot be assigned a sensible interpretation. 

Similar responses were derived by interpreting division as repeated subtraction. The 
situation was not much clarified when subgroup that had been focusing on factoring offered 
their response. As they saw things, the quotient 5/0 is equivalent to the missing factor, n, in 
0 × n = 5 (or n × 0 = 5). There is no such factor, and so 5/0 must be 

indeterminate, because although the expression can be assigned a sensible interpretation, 
it cannot be definitively or precisely determined. 

Once again, this reporting is only a thin slice of the discussions in the concept study. 
Another subgroup, for example, approached the question by focusing on the meaning of the 
zero and found distinct rationales for all three responses.  

SUBSTRUCTING TEACHERS’ MATHEMATICAL KNOWLEDGE 

The intention in identifying and describing the five emphases of concept study above is to 
better understand aspects of the complexity of teachers’ profound understanding of 
emergent mathematics. The first four emphases are focused on realizations of mathematical 
concepts: their multiplicity, their roles in teaching and learning, their shifting significances, 
their nuanced interconnections and varied entailments, and their blending potentials. 
Whereas the first four emphases are focused on mathematical concepts, the fifth emphasis – 
pedagogical problem solving – represents a deliberate movement into processes entailed in 
pedagogical practice. Pedagogical problem solving aims to capitalize on the interpretive 
potentials that arise on the collective level when individual expertise is drawn together 
around perplexing problems of shared interest. It resituates the enterprise of concept study 
in the everyday complexities of mathematics teaching and problem solving, where multiple 
concepts are more typically at play. 
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It is important to emphasize that the purpose of engaging with the question of the meaning 
of 5/0 was not to home in on a correct response. The core concern is not with the nature of 
mathematics but with the complexities of learning and teaching mathematics. Enhanced 
understandings of established mathematics was important but not the primary consideration. 
The intention was to attune awareness to the complexity of such constructs as 5/0, and in the 
process to grapple with the confusions and frustrations that young learners might 
experience. All of the teachers in the group confessed to having brushed aside “division by 
0” in their teaching with the dismissive comment “it can’t be done”. In contrast, subsequent 
to this concept study, several of the teachers undertook studies of division by 0 with some of 
their classes, adapting discussions as appropriate to Grades 5, 7, 10, and 11. These teachers 
reported back that not only were their students able to engage in nuanced discussions when 
prompted to consider diverse interpretations of number, division, and zero, they did so with 
an enthusiasm that was unusual for mathematics classes. 

Much of the literature on teachers’ disciplinary knowledge to date has sought to identify 
clear connections between mathematics for teaching and teacher effectiveness. The belief 
that such clear connections do exist appears to be founded on a prevailing view of teachers’ 
mathematical knowledge as concerned with a relatively static collection of established 
results. Since I view teachers’ disciplinary knowledge as an emergent phenomenon, I tend 
to look for more fulsome descriptions of classroom impact. These might, for example, 
include teacher narratives. I offer one illustrative account written by a Grade 6/7 teacher: 

“Thou Shalt Not” 
In 2007, the mathematics curriculum was changed. While reviewing the new document, I 
noticed an addition to the standard learning outcome that covers the divisibility rules for 
2, 3, 4, 5, 6, 8, 9, and 10: explain “… why a number cannot be divided by zero.” 
My first response was, “That’s new.” My second response was, “Wait, I don’t have any 
idea why you can’t divide by zero! How can I teach that?” 
In my first try teaching the concept I relied on the grade-level resources, which 
recommended an “exploratory” lesson. I did this after a warm up intended to highlight 
the relationship between division and the other operations (particularly subtraction and 
multiplication). Reading student work afterwards, I realized that the lesson had failed in a 
fundamental way: students didn’t differentiate between the questions 0 ÷ 8 and 8 ÷ 0. 
Even though they gave an answer of “zero” for the first and an answer of “no answer”, or 
“undefined”, for the second, students concluded that both of these responses meant 
“nothing”, and therefore the two questions were the same. This led to re-teaching with 
explicit instruction: 0 ÷ 8 = 0, which is an answer. 8 ÷ 0 is undefined, which means it has 
no answer, and is not possible. It is not the same question as 0 ÷ 8. 
For my second try the next year, I went back to the teacher’s guide. I found more explicit 
background information using models of repeated subtraction and inverse multiplication. 
After the failure of the exploratory lesson, I tried a more structured approach, where I 
introduced the models to the students first with possible divisions, then with division by 
zero. This time, students were able to differentiate the different questions, but their 
explanations tended to ignore the models I had provided for their own responses based on 
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grouping. These explanations were fuzzy, vague, and often incorrect; students were able 
to state that a number could not be divided by zero, but could not explain why.  
I sought out several grade-level colleagues for advice on how they taught the lesson.  The 
responses? They didn’t – they skipped the concept entirely. I asked some high school 
teachers how they respond to student questions on division by zero. The responses: don’t. 
Just don’t. 
My third try teaching the concept was the first after participation in the M4T cohort,1 and 
in a concept study of multiplication. At the beginning of the year, I had engaged my 
students in an exploration of the models of multiplication, with some of the results from 
our concept study that the students would have encountered so far (multiplication is 
repeated addition, grouping, array making, and area). Two months later, my introduction 
for the division-by-zero lesson was the question: what is division? Students worked in 
groups to brainstorm models of division, which we brought together on chart paper as a 
class. Collectively, students had developed models based on grouping, repeated 
subtraction, number line hopping (including the goal being zero), fractions and the 
inverse of multiplication. We then used the models to specifically model the equation 
6 ÷ 2 = 3. Next, the students were asked to use the models to represent 6 ÷ 1 = 6, and 
0 ÷ 6 = 0. I then changed the question to 6 ÷ 0 = ?, and asked students to work with the 
models. Students began to respond with phrases like “it doesn’t make sense” and “it’s all 
wonky”, which lead to introduction of the term “undefined”. In follow-up work, the 
success was clear: students could answer the questions about division by zero correctly, 
and also clearly explain why, using the meaning of division. The concept study of 
multiplication seems to have led directly to students being able to grasp this difficult 
mathematical concept. 

The above narrative is one of many that I have collected through the course of working with 
the teachers. Rather than thinking of it as evidence of increased teaching effectiveness, I 
view it as an indication of the profound conceptual shifts that can occur through subtle 
pedagogical adjustments. It provides one answer to the question: why does concept study 
matter? The third lesson described above demonstrates the emergent interpretive 
possibilities that can arise when conceptual diversity and learner collectivity are engaged.  

I continue to receive regular and consistent reports (some of which are supported by 
objective in-class observations) that this freely interpretive manner of engagement is readily 
generalized to many topics in mathematics class, not just those into which the teachers 
delved in concept study. The key benefit of concept studies is not so much that they foster 
familiarity with specific substructed mathematical concepts, but that they impart strategies 
for substructing any and all mathematical concepts. Participating teachers regularly report 
that their amount of class time that they spend on active and explicit discussion of 
interpretations has increased dramatically. In some cases it has become the principal mode 
of engagement. In other words, casting teachers’ disciplinary knowledge of teaching as an 
emergent, participatory domain – at least on the level of the group at the centre of this report 

                                         
1 The “M4T [mathematics-for-teaching] cohort” is the title of the Master’s of Education program that served as the 
context of the events described in this paper.  
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– appears to contribute to immediate, generalizable, and sustained transformations in 
pedagogy.  

The manner in which specialized knowledge of specific mathematical topics (e.g., division, 
zero) can be excavated from a cluster of teachers who engage in a sustained dialogue about 
them offers a cogent illustration of how expert knowledge can be distributed across a 
system. The distributed nature of knowledge provides all participants in the system with 
enhanced access to deeper insights. From this vantage point, mathematics for teaching 
appears to be more about conscious and deliberate participation in a professional 
community than it is about a specifiable and testable body of knowledge. 

One of the more interesting “accidental” areas of investigation that has arisen in ongoing 
work with teachers revolves around which aspects of their formal mathematics knowledge 
are invoked as they substruct concepts and engage in pedagogical problem solving. For 
example, the construct 0/0 arose regularly in investigation of division by 0. This construct is 
often analyzed using the tools of differential calculus. Participants in the group who were 
familiar with differential calculus were able to drill deeper into the construct than others. It 
bears mention that early decades of research into teachers’ knowledge of mathematics did 
not draw distinctions among areas of advanced disciplinary competence. As concept studies 
expand to include more concepts within the school curriculum, it would be interesting to 
keep track of other areas of advanced study, such as number theory and topology, that might 
engender deeper analysis these concepts. 

Generally, we found that many of the participants with extensive mathematical preparation 
were reluctant at first to depart from their well-rehearsed interpretations of concepts. 
However, once they began to do so, they were able to go much further than their colleagues 
in identifying emergent interpretations, articulating connections, and crafting extensions. 
My observations are consistent with the long-standing commonsense suspicion that 
advanced mathematical study must matter in effective teaching. It appears that preparation 
in advanced mathematics both constrains and enables. The concept study environment can 
serve to remove some of the constraints of formal mathematical study and to bring about an 
openness to novel interpretations and elaborations. 

LOOKING AHEAD 

Returning to the Baumert et al.’s statement about the inert nature of teachers’ mathematical 
knowledge, we assert that concept studies point to a critical element of pedagogical content 
knowledge needed to activate otherwise “inert” formal mathematics – emergence. I also 
believe much could be gained if math teaching included concept-study emphases.  

Teachers’ disciplinary knowledge of mathematics might be productively framed in terms of 
their profound understanding of emergent mathematics. Given the extensive, evolving, and 
distributed character of emergent mathematics, teachers’ disciplinary knowledge is then 
better understood as a learnable disposition than as a specific body of knowledge. I end by 
clarifying that how I understand the relationship between mathematics and mathematics for 
teaching. The principal focus in concept study is on the creation of new possibilities for 
mathematics teaching that are rooted in more nuanced understandings and elaborations of 
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extant mathematics; the goal is not to create new formal mathematics – a task that would 
require very different validation criteria. The essential questions for us do not revolve 
around the ontological status of mathematical concepts or around teachers’ production of 
new mathematics. Rather, I seek to study new emergent possibilities for understanding 
mathematics. This framing is consistent with and elaborates the now-common observation 
that effective teaching is never simple a matter of transmission. Teaching always entails 
transformation, but that transformation is typically understood to happen to the learners. 
Following others, I include the body of mathematical knowledge within the space of 
teachers’ transformative influence. After all, teachers have the most direct and pervasive 
influence in defining what is mathematically interpretable for most of the population. 

As a research community, mathematics educators are still far from making definitive claims 
about the relationships between teachers’ profound understandings of mathematics and their 
students’ mathematical understandings. My suspicion is that efforts to address this vexing 
quandary will require more fine-grained analyses than large-scale assessments, in large part 
because many of the most important aspects of teachers’ knowledge are simply unavailable 
for explicit and immediate assessment. They are tacit and can only emerge through 
participation in collective explorations, such as concept studies. 
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