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Understanding how students construct abstract mathematical knowledge is a central aim of research 
in mathematics education. Abstraction in Context (AiC) is a theoretical-methodological framework 
for studying students’ processes of constructing abstract mathematical knowledge as they occur in a 
mathematical, social, curricular and learning-environment context. AiC builds on ideas by 
Freudenthal, Davydov and others. According to AiC, processes of abstraction have three stages: 
need, emergence and consolidation.  The emergence of new (to the student) constructs is treated by 
means of a model of three observable epistemic actions: Recognizing, Building-with and 
Constructing – the RBC-model. In this paper, I give an introduction to AiC, and an overview of 
pertinent research studies.  
Keywords: abstraction, knowledge construction, context. 
 

INTRODUCTION 

The approach described in this presentation took shape in the course of research that 
accompanied innovative curriculum development, when questions arose such as “What did 
students learn? What new deep mathematical knowledge, what concepts and strategies have 
been consolidated? And how did the processes of learning and consolidation happen?” The 
salient characteristics of mathematical curricula and classroom learning environments in 
which these questions have been investigated are that curricula are organized as successions 
of activities proposed to the students, and that mathematical themes arising along these 
activities very often are transformations of previous mathematical themes. Hence curricula 
express an intention of continuous transformation. There is an underlying expectation of 
students’ responsibility for their own learning in an environment that encourages inquiry. 
Students have the responsibility to report and justify their work and their conclusions to 
their peers and their teacher, for example during whole class discussions. The reader is 
referred to the literature for a more detailed treatment of the curriculum standards and 
design principles (Hadas, Hershkowitz & Ron, 2008; Hershkowitz et al., 2002). 

The research problem that arose was how to understand students’ construction of 
knowledge, especially of deep, abstract mathematical knowledge such as concepts and 
strategies in learning situations, in particular in classrooms, using these curricula. A main 
aim was to describe processes of constructing knowledge in order to get insight into such 
processes and the conditions under which they happen or fail to happen. Additional aims 
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were to use the understanding of students’ learning processes in order to improve the design 
of activities and inform teacher behaviour.  

For this purpose, a theoretical framework for describing processes of abstraction was 
required. Rina Hershkowitz, Baruch Schwarz and I developed such a framework over the 
past 15 years (Hershkowitz, Schwarz & Dreyfus, 2001; Schwarz, Dreyfus & Hershkowitz, 
2009). The framework takes into account the particularities of the context of learning. This 
context includes the students’ prior history of learning, the learning environment, including 
possibly available technological and other tools, as well as mathematical, curricular and 
social components. In particular, the social and interactional context may vary considerably 
from one class to another according to the teacher’s decisions. In view of the above, we 
called our theoretical framework Abstraction in Context, or briefly, AiC. 

THEORETICAL BACKGROUND AND THE AiC FRAMEWORK 

The attention to a special kind of curriculum and to learning processes within various 
contexts required a rather hybrid reference to theoretical forefathers that belong to different 
traditions, Freudenthal and Davydov. Freudenthal (1991) provided what mathematicians 
have in mind when they think of abstraction. Freudenthal has brought forward some of the 
most important insights to mathematics education in general, and to mathematical 
abstraction in particular. These insights constitute a cultural legacy that led his collaborators 
to the idea of vertical mathematization (Treffers & Goffree, 1985). Vertical 
mathematization points to a process that typically consists of the reorganization of previous 
mathematical constructs within mathematics and by mathematical means, by which students 
construct a new abstract construct. In vertical reorganisation, previous constructs serve as 
building blocks in the process of constructing. Often these building blocks are not only 
reorganised but also integrated and interwoven, thus adding a layer of depth to the learner’s 
knowledge, and giving expression to the composite nature of the mathematics. Sequences of 
problem situations provide opportunities to capitalise on the new constructs repeatedly, and 
to turn them into building blocks for further constructions where each construct includes 
‘pockets’ of past constructs on one hand, and is itself a potential component for new 
constructs. 

Davydov was one of the most prominent followers of the historical cultural theory of human 
development initiated by Vygotsky. For Davydov (1990), scientific knowledge is not a 
simple expansion of people’s everyday experience. It requires the cultivation of particular 
ways of thinking, which permit the internal connections of ideas and their essence to 
emerge; it also requires enriching rather than impoverishing reality. According to 
Davydov’s “method of ascent to the concrete”, abstraction starts from an initial, simple, 
undeveloped and vague first form, which often lacks consistency. The development of 
abstraction proceeds from analysis, at the initial stage of the abstraction, to synthesis. It ends 
with a more consistent and elaborated form. It does not proceed from concrete to abstract 
but from an undeveloped to a developed form.  

The reference to both Freudenthal and Davydov’s theories of abstraction implies that the 
curriculum affords certain kinds of abstraction, but at the same time, students and teachers 
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are free to capitalize or not on those affordances. AiC adopts the views of vertical 
mathematization and ascent to the concrete and builds on them to define abstraction as a 
process of vertically reorganizing some of the learner’s previous mathematical constructs 
within mathematics and by mathematical means so as to lead to a construct that is new to 
the learner. Activity theory proposes an adequate framework to consider processes that are 
fundamentally cognitive while taking into account the mathematical, historical, social and 
learning contexts in which these processes occur. In this, AiC follows Giest (2005), who 
considers activity theory as a theoretical basis, which has an underlying constructivist 
philosophy but allows avoiding a number of problems presented by constructivism. 

According to activity theory, outcomes of previous activities naturally turn to artefacts in 
further ones, a feature which is crucial to trace the genesis and the development of 
abstraction through a succession of activities. The kinds of actions that are relevant to 
abstraction are epistemic actions – actions that pertain to the knowing of the participants 
and that are observable by participants and researchers. As researchers with loyalty to 
Freudenthal, we were a priori attentive to certain constructs afforded by the activities we 
designed. In tune with Davydov and a cultural-historical theory of development, we also 
looked at other constructs that emerged from classroom activities.  

This is well expressed by Kidron and Monaghan (2009) when dealing with the need that 
pushes students to engage in abstraction, a need that emerges from a suitable design and 
from an initial vagueness of the learner’s notions:   

The learners’ need for new knowledge is inherent to the task design but this need is an 
important stage of the process of abstraction and must precede the constructing process, 
the vertical reorganization of prior existing constructs. This need for a new construct 
permits the link between the past knowledge and the future construction. Without the 
Davydovian analysis, this need, which must precede the constructing process, could be 
viewed naively and mechanically, but with Davydov’s dialectic analysis the abstraction 
proceeds from an initial unrefined first form to a final coherent construct in a two-way 
relationship between the concrete and the abstract – the learner needs the knowledge to 
make sense of a situation. At the moment when a learner realizes the need for a new 
construct, the learner already has an initial vague form of the future construct as a result 
of prior knowledge. Realizing the need for the new construct, the learner enters a second 
stage in which s/he is ready to build with her/his prior knowledge in order to develop the 
initial form to a consistent and elaborate higher form, the new construct, which provides 
a scientific explanation of the reality. (p. 86-87) 

Hence we postulate that the genesis of an abstraction passes through a three-stage process, 
which includes the need for a new construct, the emergence of the new construct, and the 
consolidation of that construct.  

A central component of AiC is a theoretical - methodological model, according to which the 
emergence of a new construct is described and analysed by means of three observable 
epistemic actions: recognizing (R), building-with (B) and constructing (C). Recognizing 
refers to the learner realizing that a specific previous knowledge construct is relevant in the 
situation at hand. Building-with comprises the combination of recognized constructs, in 
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order to achieve a localized goal such as the actualization of a strategy, a justification or the 
solution of a problem. The model suggests constructing as the central epistemic action of 
mathematical abstraction. Constructing consists of assembling and integrating previous 
constructs by vertical mathematization to produce a new construct. It refers to the first time 
the new construct is expressed or used by the learner. This definition of constructing does 
not imply that the learner has acquired the new construct once and forever; the learner may 
not even be fully aware of the new construct, and the learner’s construct is often fragile and 
context dependent. Constructing does not refer to the construct becoming freely and flexibly 
available to the learner. Becoming freely and flexibly available pertains to consolidation. 

Consolidation is a never-ending process through which students become aware of their 
constructs, the use of the constructs becomes more immediate and self-evident, the students’ 
confidence in using the construct increases, and the students demonstrate more and more 
flexibility in using the construct (Dreyfus & Tsamir, 2004). Consolidation of a construct is 
likely to occur whenever a construct that emerged in one activity is built-with in further 
activities. These further activities may lead to new constructs. Hence consolidation connects 
successive constructing processes and is closely related to the design of sequences of 
activities. 

In processes of abstraction, the epistemic actions are nested. C-actions depend on R- and 
B-actions; the R- and B-actions are the building blocks of the C-action; at the same time, the 
C-action is more than the collection of all R- and B-actions that make up the C-action, in the 
same sense as the whole is more than the sum of its parts. The C-action draws its power 
from the mathematical connections, which link these building blocks and make them into a 
single whole unity. It is in this sense that we say that R- and B-actions are constitutive of 
and nested in the C-action. Similarly, R-actions are nested within B-actions since 
building-with a previous constructs necessitates recognising this construct, at least 
implicitly. Moreover, a lower level C-action may be nested in a more global one, if the 
former is made for the sake of the latter. This nested character was observed in classrooms 
and in interviews in which we studied abstraction and it substantiated our theoretical tenets 
according to which the curriculum was intended to afford a continuous transformation of 
constructs. Given these characteristics, we named the model the dynamically nested 
epistemic actions model of abstraction in context, more simply the RBC model, or RBC+C 
model using the second C in order to point at the important role of consolidation. The 
RBC-model is the theoretical and micro-analytic lens, through which we observe and 
analyse the dynamics of abstraction in context.  

We will below come back to the RBC-model in order to show how the model as a part of 
the theory interacts with the same model as methodological tool, and hence theory and 
methodology mutually depend on and influence each other in AiC. The successive analyses 
by several researchers who used the RBC-model to identify abstraction processes through 
the unveiling of its epistemic actions not only helped understanding these abstraction 
processes: The theory as well as the methodology underwent successive refinements as they 
served as lenses to understand mathematical learning activities.   
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AN EXAMPLE 

While it is not possible to illustrate all aspects of AiC by means of a single example, I 
present one that fairly well illustrates many of the main aspects. It stems from a 7th grade 
class whose beginning algebra curriculum consisted of seventeen activities, thirteen with a 
spreadsheet, and four without computer. In these activities students learned to use algebra to 
express generality. For example, by generalizing from a few numerical examples or from a 
“story”, they generated an algebraic relation, which they could insert into the spreadsheet. 
By dragging, they could then obtain sequences of numbers to describe and investigate a 
phenomenon. We know from weekly observations and teacher reports that the children 
increasingly used algebra for expressing generality throughout the year. For example, the 
following fact will be crucial below: The students had experience with the use of the simple 
distributive laws a(b + c) = ab + ac  and (a + b)c = ac + bc  but had never yet used the extended 
distributive law (a + b)(c + d) = ac + ad + bc + bd . Even more importantly, students had never 
yet been asked to justify general properties by using algebraic manipulation. 

The following activity was carried out by the class toward the end of the school year. The 
students were asked to consider two-by-two number arrays, called seals, of the form shown 
in the diagram; two numerical seals were given to the students, but not the 
general form. The students were asked to find as many properties of the 
seals as possible, and to establish whether some of these properties were 
true for all seals. The research focus was on the diagonal product property 
(DPP): The difference of the products of the diagonals in the array equals 12. More detail on 
the curriculum and the activity may be found elsewhere (Dreyfus, Hershkowitz & Schwarz, 
2001). 

According to the a priori analysis, the activity was designed toward two new (to the 
students) constructs: algebra as a tool for justifying a general statement, and the extended 
distributive law. We will call the corresponding knowledge elements E and E1, respectively.  

We focus on how a pair of students, Ha and Ne, collectively called HaNe, dealt with 
justifying the DPP. After about 25 minutes of discussing other properties of the seals, HaNe 
reached the stage in the worksheet where they are explicitly asked whether the DPP holds 
for all seals.  

Ha 111 We didn’t want to think about this before. This is really somehow like 
that. Because this is the first diagonal, and that is the second, right? 

Ne 112 No. Yes. 
Ha 113 So, well, see: X plus 8, X, well, then it is 8X plus XX. 
Ne 114 Again? 
Ha 115 Wait.  X times X plus 8, right?  This is XX, like, X, X twice, so it’s XX. 
Ne 116 Yes. 
Ha 117 And X times 8 is 8X. 
Ne 118 Why times 8? 

X X+2 

X+6 X+8 



Dreyfus 

  

Abcde+3 ICME-12, 2012 

Ha 119 Why not?  Because, one multiplies this by this, right? 
Ne 120 Yes. 
Ha 121 So, like, one does the distributive law. 

Our interpretation of 112-121 according to the RBC-model is that the students recognize the 
simple distributive law as relevant in this new context, and build-with it a component of 
what they apparently need for justifying the DPP. Hence they consolidate the simple 
distributive law by making use of it in a new context. They then soon turn their attention to 
the other diagonal. 

Ha 133 And this... 
Ne 134 It’s impossible to do the distributive law here. Wait, one can do... 
Ha 135 This is 6X. 
Ne 136 This is 6X times X and 6X times 2. 
Ha 137 Wait, first, no... 
Ne 138 Yes. 
Ha 139 No because this is X plus 6, this is not 6X, it's different. Wait. First one 

does... X; then it's XX plus 2X, and here 6X plus 24. Then... 

In 133-139 HaNe deal with the applicability and application of the distributive law to the 
more complex case of the second diagonal. The strategy of comparing the two diagonals 
caused the students’ need (134, see also 152) for a technique that would be applicable in this 
context, and this need led to some progress in constructing such a technique, namely the 
extended distributive law (135-139), to be completed later (157-163). 

Ha 141 Ah, 12. Like, for this one needs to know X... never mind. 
N 145 One simply needs to know what X is. 

In 141, 145 he students wonder whether they need to know the value of X to proceed. The 
interviewer reminds them that they were able to deal with the first diagonal without 
knowing X. This leads to progress. 

Ha 152 Ah, it’s XX plus 8X, but I don’t know, like, how this will also be XX plus 
8X. Like, it HAS to be. 

Ha 154 I have the first part. This is XX, so this is OK. 
Ha 157 … plus 8X. Here I have 6X... 
Ha 159 Ah, and 2X, can I do this? Because 6X... 
Ha 161 You can write this. Ah, yes, XX is X to the power 2, because it is X times 

X. Wait. XX is X to the power 2 plus 8X, wait... 
Ha 163 Wait, it’s X to the power 2 plus 6X, plus 8X, but there is also, like, plus 

12. Ah, so, like, plus 12 because this is bigger by 12. Understand? 
Ne 164 Like, yes, it’s the same thing but this is bigger by 12. 
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In 152-164, the students construct the extended distributive law in the context of the 
comparison of the two diagonals. We denote this constructing process by C1 since it leads 
to a student’s construct that corresponds to knowledge element E1. Utterance 163 has been 
interpreted as the completion of C1: Even though the students may not be aware that they 
have used a new law, they have, in fact, for the first time applied the extended distributive 
law. Moreover, the difference of 12 between the two diagonals becomes significant in 
163-164. The students use this soon thereafter for justifying the DPP – they construct C, the 
construct corresponding to knowledge element E, a justification by means of algebraic 
manipulation.  

A number of comments on these constructing processes are in order. 

Nesting During C1, the students have recognized as relevant and built-with the simple 
distributive law, in 135-136 as well as in 157-163; elaborating the inappropriate 
6X(X + 2) = 6XX + 6X2  (in 135-136) appears to have helped them bridge from the simple to 
the extended distributive law. Not only are R- and B-actions with previous constructs, such 
as the simple distributive law, nested in C1 but C1 itself is nested in C.  

Need The need for C1 (134, 152) derives from the mathematical situation as discussed 
above. A need for C can be identified from the beginning (111), but this appears to be an 
external need imposed by the worksheet. In fact, the students had earlier stated the DPP and 
referred to it without exhibiting any need for justifying it. However, as they progress, this 
need becomes an internal personal one as expressed by the “it HAS to be” in 152, 
interpreted as “must be equal in order for an algebraic comparison to become possible”. 

Vertical mathematization When approaching C1 – constructing a new algebraic law - the 
students enter an “adventure” without any knowledge about the needed mathematical 
structures; they have to discover as well as to construct these structures. The C1-action thus 
makes the C–action, within which it is nested into a deep holistic construction, which goes 
beyond the specific construction of the DPP justification, and in which the constructions of 
unfamiliar algebraic structures are nested. In this sense C is an activity of vertically 
reorganising previously constructed mathematical knowledge into a new mathematical 
structure, which is the AiC definition of abstraction. 

Building-with versus constructing We claim that HaNe built-with the simple distributive law 
(113-121, 135-136), but constructed the extended one (154-163). The difference between 
building-with and constructing lies in the students’ personal learning history: They had 
previously constructed the simple law and here applied it – built-with it - in a somewhat 
different context, whereas they had never yet met the extended law and hence needed to 
construct it as a new (to them) mathematical law. Other students, for whom the extended 
law was a previous construct, would presumably have built-with it to justify the DPP. 

Co-constructing The above analysis did not attempt to separate the roles of Ha and Ne in 
the constructing process. While Ha is leading in 152-163, Ne has made two possibly crucial 
contributions: the inappropriate but helpful application of the simple law in 135 and a three 
times repeated question “Is XX a square root?” in 153, 156, and 160 (not cited above) that 
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led to Ha’s “XX is X to the power 2” in 161. I will return to the issue of  social interaction 
during constructing processes below.  

Unexpected constructs A careful reanalysis of the data (Kidron & Dreyfus, 2009) revealed 
an additional C-action, to be called C2, that had not been predicted by the a priori analysis: 
the transition from a procedural mode, in which students ‘do’ expressions (115, 121, 134, 
139) to an object mode, which allows to ‘trade’ expressions against each other because the 
‘are’ (152) something that one ‘has’ (157).  

Combining constructing actions This reanalysis showed that C1 and C2 are two strands that 
come closer to each other and start combining in 152. The justification of the DPP was the 
motivation, which enticed the students to construct C1 and C2, and the combining of C1 and 
C2 enabled the justification. C1 and C2 had to combine in order to enable to students to 
reach the goal C, the justification of the DPP. This could not have happened in the process 
mode afforded by C1. The transition C2 to the object mode was necessary for the 
justification to be completed. Hence, C1 and C2 are interacting parallel constructions, which 
complete and reinforce each other, and the combining between C1 and C2 constitutes C. 

The aspects discussed here, in particular nesting, need, unexpected constructs, social 
interaction during constructing, and combining constructions in justification have been 
observed in other research studies; in the next section, some of these aspects will be 
discussed more generally and connections will be established.  

OTHER AiC BASED STUDIES 

In this section, a selection of other research studies using AiC as theoretical framework are 
reviewed without being described in detail. The reader is referred to the research literature 
for more information on these studies. Studies have been selected for inclusion in order to 
point out what I consider to be the main achievements of the AiC research program. 

Constructing processes may have characteristics linked to the kind of construct (a concept, a 
strategy, a justification), which students are constructing. A sequence of studies has 
established such a result for constructing justifications; this is discussed in the first 
subsection. In the second subsection, a sequence of studies is presented, that deals with the 
central issue of partial correctness of students’ constructs. Both, the studies on justification 
and the studies on partially correct constructs show the analytic power of the AiC 
framework and the RBC-model associated with it. In the third subsection, I report on studies 
relating to consolidation and the mechanisms that support it. In the fourth and fifth 
subsections, two components of the context and their influence on constructing processes 
are reviewed: the role of the social context and the role of technological and other tools in 
the construction of knowledge.  

Constructing justifications 

The nesting of two combining constructing actions C1 and C2 within a more encompassing 
constructing action C in the case of HaNe constitutes a rather elaborate interaction between 
constructing actions going on in parallel. The importance of such interacting parallel 
constructing actions has been pointed out by Kidron and Dreyfus (2010a). They identified 
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this specific pattern of interaction as being typical for constructing a justification. They 
established this in the case of justifying the second bifurcation point in a logistic dynamical 
system by a solitary learner L. L is an experienced mathematician and her motivation for 
finding a justification drives her learning process. The researchers inferred her epistemic 
actions from her detailed notes during the learning experience and from her interaction with 
the computer. They found an overarching constructing action, within which four secondary 
constructing actions were nested. These secondary constructing actions relate to different 
modes of thinking: numerical (C1), algebraic (C2), analytic (C3), and visual (C4). They are 
not linearly ordered but took place in parallel and interacted. Interactions included 
branching of a new constructing action from an ongoing one, combining or recombining of 
constructing actions, and interruption and resumption of constructing actions. Here, the 
combining of constructing actions is of particular interest. 

L aimed to justify results obtained empirically from her interaction with a computer. Her 
aim was not to convince herself or others, nor was she looking for conviction in the logical 
sense of the term; rather, she wanted to gain more insight into the phenomena causing the 
second bifurcation point. The term enlightenment, introduced by Rota (1997) seems 
appropriate to express her interpretation of the word justification. Rota also pointed out that 
contrary to mathematical proof, enlightenment is a phenomenon, which admits degrees. 
Kidron and Dreyfus show how, at each of three successive stages during L’s learning 
experience, combining C-actions indicate steps in the justification process that lead to 
enlightenment. 

The relationship between combining constructions and justification has been confirmed in 
other contexts with students of different age groups dealing with different mathematical 
topics. One of these is the case of HaNe discussed above. Still another one has been briefly 
discussed by Kidron and Dreyfus elsewhere (2009). Combining of constructions leads to 
enlightenment, not in the sense of a formal proof of the statement the learner wants to 
justify but as an insight into the understanding of the statement. This observation gives an 
analytic dimension to the RBC model and to its parallel constructions aspect: It allows 
researchers to use RBC analysis in order to identify a learner’s enlightening justification.  

Moreover, the analysis of the relationships between justification and parallel constructions 
led to the realization that often a weak and a strong branch are involved in the combining 
constructions, and that reinforcement of the weak branch plays a crucial role in the 
construction of a justification. The realization that a weak and a strong branch combine 
considerably strengthens the theoretical root of the RBC-model in Davydov’s ideas as 
exposed above. Indeed, reinforcing the weak branch towards combination of constructions 
closely matches the description of the genesis of abstraction as expressed by Davydov's 
(1990) method of ascent, according to which abstraction starts from an initial, simple, 
undeveloped first form, which need not be internally and externally consistent, and ends 
with a consistent and elaborate final form. 

Just like the case of HaNe, the case of L demonstrates vertical mathematisation representing 
a process of constructing new mathematical knowledge within mathematics and by 
mathematical means. These processes often include a kind of insight or ‘AHA’. This 
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expresses that the reorganisation processes of the already constructed pieces of knowledge 
into a new construct are driven and strengthened by the genuine and creative mathematical 
thinking of the learner. 

Partially correct constructs 

It is an open secret that students’ correct answers sometimes hide knowledge gaps. On the 
other hand, incorrect answers often overshadow substantial knowledge students have 
constructed. These two phenomena, which can reflect aspects of partially correct 
knowledge, raise questions about the essence of partially correct knowledge and about its 
emergence. It is essential to understand situations in which partially correct knowledge 
emerges because these situations are very common, and because of the role of existing 
knowledge in the constructing of further knowledge.  

Ron (2009) proposed the term Partially Correct Construct (PaCC), as a general term for 
constructs that only partially match the corresponding mathematical knowledge elements 
that underlie the learning context. Obviously one cannot expect that a student will construct 
every aspect and meaning of a knowledge element. In this sense, knowledge is always 
partial. Thus, discussion of PaCCs requires clarifying with respect to which whole entity a 
construct is partially correct. For that reason the research on PaCCs was restricted to 
intentional learning situations, like school learning, which is, not always explicitly, directed 
by teachers and designers to the constructing of specific knowledge elements that can be 
identified by an a priori analysis. Hence, the identification of a construct as a PaCC is 
always related to a specific learning context and requires a detailed a priori analysis of the 
content and of the knowledge elements that the student is intended to construct. 

In a study in the content domain of elementary probability, Ron, Dreyfus and Hershkowitz 
(2010) found that situations in which articulations or actions of a student seem inconsistent 
with other articulations or actions of the same student, can be explained, at least in some 
cases, by the identification of some of the student’s constructs as PaCCs. Micro-analysis of 
students’ knowledge constructing processes by means of the RBC-model has been used to 
identify such cases. Indeed, using the epistemic actions of the RBC-model as tracers, some 
of the student’s constructs were identified as partially correct. PaCCs can emerge in the 
early stages of learning when the student’s articulations and actions are correct and do not 
yet raise any clues for the existence of PaCCs or for an expected difficulty.  

Knowledge constructing processes, in which PaCCs emerge and are consolidated, take place 
in parallel and simultaneously with the construction and consolidation of knowledge that 
does fit the learning aims. These processes are not different in their essence from other 
processes of knowledge constructing as they are presented in the AiC framework and are 
based on the same epistemic actions. Characteristics that are specific to the knowledge 
construction processes that lead to PaCCs find their expression in different types of PaCCs. 
The partiality of the fit between the student’s construct and the corresponding mathematical 
knowledge element can be related to the building blocks of the knowledge elements and/or 
to the context in which the student recognizes the construct as relevant and makes use of it. 
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This distinction is a basis for defining two categories of PaCCs: structural PaCCs and 
contextual PaCCs (Ron, Dreyfus & Hershkowitz, 2009). 

Three types of structural PaCCs were identified: a missing-element PaCC in which at least 
one of the constituent elements of the knowledge element is missing from the student’s 
construct, an incompatible-element PaCC in which the student’s construct includes an 
element that contradicts the mathematical knowledge element, and a disconnected-element 
PaCC which is characterized by disconnected constituent elements in the student’s 
construct. The two types of contextual PaCCs that were identified are a narrow-context 
PaCC, where the student recognizes the construct as relevant in a too narrow a context, and 
a wide-context PaCC, where the student implements his constructs in a context that is wider 
than warranted. 

In summary, PaCCs are useful as explanatory tools for correct answers based on (partially) 
faulty knowledge and for wrong answers based on largely correct knowledge. Ron’s 
research shows that AiC is a suitable framework for defining the notion of PaCC and that 
the RBC-model is an efficient tool for identifying PaCCs and their nature. 

Consolidation 

Consolidation of students’ constructs has been conceptualized and studied within the AiC 
framework by Tsamir and Dreyfus (Dreyfus & Tsamir, 2004; Tsamir & Dreyfus, 2002), as 
well as by Monaghan and Ozmantar (2006). Dreyfus and Tsamir (2004) proposed the 
criteria of immediacy, self-evidence, confidence, flexibility, and awareness, as indicating 
that a construct has been consolidated. The study of consolidation usually requires data 
taken over a longer period than the study of constructing; typically studying consolidation 
requires data from several subsequent activities. 

Using a study of a 10th grade student learning about the comparison of infinite sets, Dreyfus 
and Tsamir (2004) have identified mechanisms of consolidation. In particular, consolidating 
a recent construct during building-with this construct is the most frequent and most easily 
observed one. Another mechanism, consolidating a recent construct when recognising it as 
an object of reflection, often stems from opportunities for reflection provided to students 
(e.g., requests for written reports). Reflection tends to lead to the use of more elaborate 
language about the construct, expressing a more acute and fine-tuned awareness; and as 
mentioned above, awareness is an important characteristic of consolidation. A third 
mechanism of consolidation has been identified by Dreyfus, Hadas, Hershkowitz and 
Schwarz (2006): Consolidating a previous construct as it is used as a building block in the 
course of a new constructing process. The example of HaNe above provides an excellent 
example of this: The students used the simple distributive law as building block when 
constructing the extended one, and in the process became progressively quicker, more 
flexible and more self-confident in applying the simple distributive law. An independent 
instance of the same mechanism of consolidation is a student’s consolidation of her 
construct of derivative as limit during the process of constructing Euler’s numerical method 
of solving differential equations (Kidron, 2008). 
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Notwithstanding these and several other examples of apparently clear consolidation, the 
question how well a construct has been consolidated is a delicate one. This has been shown 
by Tsamir and Dreyfus (2005), who showed that under slight variations of context, 
knowledge structures that have apparently been well consolidated may become inactive and 
subordinate to more primitive ones. In other words, even when a construct has apparently 
been consolidated, it is a delicate issue to determine the extent of such consolidation.  

Social interaction in constructing processes 

In the above example, Ha and Ne were mostly treated as a single student. While this was a 
conscious and acceptable methodological decision by the researchers, it provides only a 
limited view of the learning processes that occur. Dreyfus et al. (2001) have considered 
processes of abstraction in pairs of collaborating peers and investigated the distribution of 
the process of abstraction in the context of peer interaction. This was done by carrying out 
two parallel analyses of the protocols of the work of the student pairs, an analysis of the 
epistemic actions of abstraction as well as an analysis of the peer interaction. The parallel 
analyses led to the identification of types of social interaction that support processes of 
abstraction. In classrooms, however, the situation is often even much more complex. 
Abstraction often takes place in interacting groups of students. Hence, the focus ideally 
should be on groups as composed of individuals and two dual issues become central: On the 
one hand, constructing by individual students and on the other the knowledge shared by the 
group. The relationship and interaction between these two dual issues were investigated by 
Hershkowitz, Hadas, Dreyfus & Schwarz (2007). Their data emphasize the interactive flow 
of knowledge from one student to the others in the group, until they reach some shared 
knowledge — a common basis of knowledge, which allows them to continue the 
construction of further knowledge in the same topic together. 

The issues involved in knowledge construction by groups of students are too complex to 
allow detailed discussion here. However, I will come back to some of these issues from a 
wider perspective in the concluding section.  

Computer tools and other artefacts  

Kidron and Dreyfus (2010b) have reexamined the study of L’s justification of bifurcations 
in a dynamical system described above with a view to how instrumentation led to cognitive 
constructions and how the roles of the learner and a computer algebra system (CAS) 
intertwine during the process of constructing the justification. The main contribution of their 
research lies in showing that certain patterns of epistemic actions, specifically those of 
branching and combining, have been facilitated by certain contextual factors, specifically 
the CAS context. They found that the branching and combining patterns have been enabled 
by the work with the CAS. This is due to the fact that the computer provides a context that 
is very rich in resources. The richness of these resources activates the branching of 
constructions even if the learner is unable to immediately make sense of the input provided 
by the CAS.  Constructions are interrupted by lack of knowledge. Nevertheless, the seeds 
for the future combinations are already present. The fact that the computer can perform the 
computations even if the learner does not really understand its mechanism encourages the 
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learner to make sense of the rich resources offered by the computer. Therefore the 
branching, interruptions after branching and resumptions of the interrupted constructions 
were a necessary stage preceding the integration of the knowledge structures. The 
combining process which ends in the integration of knowledge structures was facilitated by 
the potential offered by the CAS and the learner’s ability to make sense of the resources 
offered by the computer. The relations between the learner and the computer as a dynamic 
partner were different in the branching and in the combining phases: the impression is that 
the computer had the upper hand during branching and the learner took command during 
combining.  

A recent study by Weiss (2010) also focuses on the role of tools in the construction of 
knowledge; more specifically, Weiss considers teaching and learning situations that utilize 
the potential of an analogical model for creating meaningful abstraction processes. Such 
situations combine challenging construction tasks with an analogical model, which supports 
students in handling the task. In order to create a meaningful combination between the 
challenging construction task and the analogical model, Weiss has developed model based 
construction tasks – tasks that lead naturally to using the analogical model. He then 
described and analysed the role of the analogical model in knowledge constructing during 
model based construction tasks.  

The subject matter that was chosen for designing the model based construction tasks is 
taken from the domain of fractions, and more specifically the complete to whole rule, which 
says that if the completion to a whole unit of fraction A is smaller than the completion to a 
whole unit of fraction B, then fraction A is bigger than fraction B. Weiss developed a unit 
for 4th graders based on an analogical model. In the last decade researchers have been 
calling for more emphasis on linear models in the learning of fractions in general and of 
fraction comparison in particular. In light of the above, the tower-of-bars model, an 
analogical model for fractions, was chosen as model.  

For the purpose of analysing the role of the model in knowledge construction, AiC turned 
out to be insufficient. Hence, Weiss also used RME (Realistic Mathematics Education) – a 
theoretical framework that was originally presented by Freudenthal - which is also dealing 
with the role of the mathematical model in the learning of mathematics based on the 
emergent models approach of Gravemeijer (1999). Transcripts were subjected to a dual-lens 
analysis by using the two theoretical frameworks: RBC-analysis focusing on constructing 
actions and RME analysis of the role of the model with the emphasis on the transition 
between Model-Of and Model-For modes according to the emergent models approach.  

Weiss found that among the 21 students (out of 24) who had constructed the complete to 
whole rule there was a linkage between the transition from Model-Of to Model-For and 
knowledge construction. In addition to that, three empirical linkages between the 
functionality of the model (taking the RME approach) and knowledge constructing (taking 
the RBC approach) were discovered: The linkage between the model as a tool for visual 
reasoning and comparative building-with; the linkage between the model as cognitive 
desktop and connective building-with; and the linkage between the model as a tool for 
mental justification and justifying during knowledge construction and consolidation. These 
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three empirical linkages reveal an important aspect of the analogical model as a tool for 
mathematical reasoning, refine and enrich the descriptive language of the RBC 
methodology, and establish an empirical linkage between RBC and RME.  

CONCLUDING REMARKS 

AiC has been successfully used to analyse constructing of abstract mathematical knowledge 
by students aged nine to adult, and on many mathematical topics including fractions, 
beginning algebra, probability, geometrical proofs, rate of change, function transformations, 
integration, bifurcations in dynamical systems. The longitudinal dimension of the studies 
varied from a single session to sequences of ten and more lessons. A large variety of 
learning environments have been studied, and social settings ranged from activities of 
individuals via tutoring situations, and small-group work to (teacher-led) classroom 
discussions. Researchers’ aims have included the relationships between affect, creativity 
and constructing (Williams, 2002, 2011), issues of social interaction when co-constructing, 
the role of technological tools in knowledge construction, questions of cognition relating to 
justifications and conceptual change, and others. This has rendered the use of the 
RBC-model a well validated methodological and analytical tool for research. It has also led 
to instances where the micro-design of activities was improved on the basis of the 
RBC-microanalysis of student’s learning processes (e.g., Kouropatov & Dreyfus, 2011). 

In the course of these research studies, it became apparent that the RBC-model in fact 
carries a dual role as a methodological tool and as a theory in development. This was first 
pointed out by Hershkowitz et al. (2001): “Our definition is thus a product of our oscillating 
between our theoretical perspective on abstraction and experimental observations of actions 
(experimental data)” (p. 202). Hershkowitz (2009) discussed this phenomenon in some 
detail and named it the contour lines (boundaries) between the theoretical framework and 
the methods and methodological tools within the same research. She argued that these 
boundaries may be flexible and even a bit vague in the sense that the same scheme or 
model, in this case the RBC-model, may serve as a theoretical framework in one piece of 
research, as a methodological tool in a second one, and as both of them in a third piece of 
research.  

This apparently happened as follows: The researchers approached the problem of 
investigating the construction of abstract mathematical knowledge. They began with a first 
hypothesis for a scheme or a model, using both theoretical considerations and the analysis 
of considerable amounts of data. In this undertaking, they were led by the need to give 
theoretical expression to the specific characteristics of their data, which pointed to 
constructing of knowledge by means of mathematical thinking. In the process, they took 
into account and incorporated elements of existing theories. Abstracting, for example, was 
taken as human activity of mathematization, specifically vertical mathematization. They 
realized the importance of contextual factors and described illustrative examples in different 
contexts.  

At that stage, a circular situation arose where theory stemmed from the analysis of data, and 
the analyzed data served as evidence for validating the theory. We were quite aware of this 
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situation and explained: “This definition (of abstraction) is a result of the dialectical 
bottom-up approach . . . a product of our oscillations between theoretical perspective on 
abstraction and experimental observations of students’ actions, actions we judged to be 
evidence of abstraction” (Hershkowitz et al., 2001, p. 202). It is clear that for analysing the 
above actions, we had to use some basic methodologies, which fit transcript analyses of an 
individual and the more complicated analysis of cognitive and interactive work within pairs 
and groups. The three epistemic actions, recognizing, building-with and constructing, and 
the dynamically nested relationships between them were hypothesized as the main building 
blocks of the model, and at the same time used as the lens and compass to describe and 
interpret the data analyses themselves. Such a situation held for the first steps towards the 
validation of the model as a theoretical framework.  

Further research made it clear that the RBC+C model for AiC is an appropriate theoretical 
tool and methodology to describe and provide insight into processes of abstraction and 
consolidation in a wide range of situations. About ten years of research and more than 50 
research publications, contributed by more than a few people, separate the ‘birth’ of the AiC 
framework and the RBC+C model, as an empirically based theoretical framework, from 
recent publications that use this model as one of two or more ‘conceptual frameworks’ 
(Bikner-Ahsbahs et al., 2010; Weiss, 2010; Wood, Williams & McNeal, 2006). These 
studies show some maturation of the model as a theoretical framework and as a 
methodology. In each case, the researchers needed two or more conceptual frameworks in 
their study and AiC is one of them. The RBC+C model is then not any more the focus of the 
study but exemplifies the flexible contour lines between a model as theory and a model as 
methodological tool: the model aims to serve as a framework for describing, analysing and 
interpreting a human mental activity and at the same time is appropriate for exploring 
individual student mental activity as well as for exploring collective mental activity that is 
distributed in a group or a classroom among different individuals.  

The model with its three epistemic actions, has a very general nature, general in the sense 
that it can be used in many and varied contexts. The nested relationships among the 
epistemic actions of the RBC+C model, are global and the three actions of the model are 
observable and can be identified. Therefore the model lends itself easily to be adapted and 
to contribute to research in many different contexts of constructing abstract knowledge.  

However, the notion of collective abstracting raises many questions, such as: What can we 
learn from this kind of research about abstracting, or more generally about learning 
processes and knowledge constructing in classrooms? What can we say about the individual 
students in the classroom and the classroom community not only as one entity, but as a 
community that consists of all the individuals who belong to this community? Do we have a 
methodology/methodological tool by which we will be able to conduct the kind of research 
that gives some answers to such questions?  

Looking back on the development of AiC over the years, one may discern a trend from 
investigating an individual learner or dyad with an interviewer in a laboratory setting via 
investigating focus groups in a working classroom, to investigating students’ knowledge 
construction, and shifts of the constructed knowledge in a working mathematical classroom. 
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The first phase served to develop the AiC framework and the RBC+C model, whereby the 
RBC+C model was used in two parallel roles: as a methodological tool for analysing the 
data and for validating the theory. In the second phase, the RBC+C model was applied for 
analysing students’ processes of abstraction as they worked in a group in a working 
classroom. This is a big challenge because of the many variables that play a role in a whole 
class situation and the potentially messy data. Hence we had to deal with the issue of the 
shared knowledge of a group of individual students as they construct and consolidate it in 
the mathematical classroom. In the third phase, which is an even bigger challenge, we aim 
to develop a methodology, based on the RBC model and other methodological tools, in 
order to coordinate analyses of the individual, the group in the classroom and the classroom 
collective in a working mathematical classroom. First results from this recent line of 
research are being presented at the current ICME conference by Tabach, Hershkowitz, 
Rasmussen and Dreyfus (2012). 
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