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Drawing on evidence from two longitudinal studies from the LieCal project, I discuss issues related 
to mathematics curriculum reform and student learning.  The LieCal Project was designed to 
longitudinally investigate the impact of a reform mathematics curriculum called the Connected 
Mathematics Program (CMP) in the United States on teachers’ teaching and students’ learning.  I 
recommend attending to three levels of curriculum—intended, implemented and attained—when 
searching for evidence of the impact of mathematics curricula on student learning. A variety of 
evidence from the LieCal Project is presented to show the impact of mathematics curriculum reform 
on teachers’ teaching and students’ learning. 
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MATHEMATICS EDUCATION REFORM IN THE UNITED STATES 

Education is commonly seen as the key to a nation’s economic growth and prosperity and to 
its ability to compete in the global economy. For years, the United States of America has 
adopted national strategies for development and reform in education with a focus on 
improving the quality of individual life and the competitiveness of the nation (National 
Commission on Excellence in Education, 1983; National Council of Teachers of 
Mathematics, 2000; National Governors Association Center for Best Practices & Council of 
Chief State School Officers, 2010; National Science Board, 2010; Nie, Zheng, Sun, & Cai, 
2010; Ravitch, 2000).  Historically across the nations, changing the curriculum has been 
viewed and used as an effective way to change classroom practice and to influence student 
learning to meet the needs of the ever-changing world (Cai & Howson, in press; Cai, 
Moyer, Wang, & Nie, 2011; Cai, Wang, Moyer, & Nie, 2011; Howson, Keitel, & 
Kilpatrick, 1981; Senk & Thompson, 2003). In fact, curriculum has been called a change 
agent for educational reform (Ball & Cohen, 1994; Darling-Hammond, 1993).  The school 
mathematics curriculum remains a central issue in efforts to improve students’ learning. 

The curriculum plays a significant role in mathematics education because it effectively 
determines what students learn, when they learn it, and how well they learn it. In recent 
years, some reform materials have been accepted into the curriculum and some have been 
rejected, leading towards more commonly accepted learning goals in school mathematics 
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(Cai & Howson, in press). In addition to developing traditionally accepted mathematical 
knowledge and skills through mathematics instruction, increasing emphasis has been placed 
on developing students’ higher-order thinking skills. Although there are no commonly 
accepted definitions of such skills, the frequently cited list found in Resnick (1987) might 
help. According to Resnick, higher-order thinking:  

• Is non algorithmic. That is, the path of action is not fully specified in advance.  
• Tends to be complex. The total path is not “visible” (mentally speaking) from any 

single vantage point.  
• Often yields multiple solutions, each with costs and benefits, rather than unique 

solutions.  
• Involves nuanced judgment and interpretation.  
• Involves the application of multiple criteria, which sometimes conflict with one 

another.  
• Often involves uncertainty; not everything that bears on the task at hand is known.  
• Involves self-regulation of the thinking process. 
• Involves imposing meaning, finding structure in apparent disorder.  
• Is effortful; considerable mental work is involved in the kinds of elaborations and 

judgments required.  

This list clearly shows that higher-order thinking skills involve the ability to think flexibly 
so as to make sound decisions in complex and uncertain problem situations. In addition, 
such skills involve monitoring one’s own thinking—metacognitive skills. In particular, 
mathematics instruction should ideally provide students with opportunities to: (1) think 
about things from different points of view, (2) step back to look at things again, and (3) 
consciously think about what they are doing and why they are doing it. Resnick’s list does 
not include the ability to collaborate with others, but being able to work together with others 
is also an essential higher-order thinking skill. Collaborative work encourages students to 
think together about ideas and problems as well as to challenge each other’s ideas. 

The desirable aim of developing such skills is related to the view that mathematics 
education should be seen as contributing to the intellectual development of individual 
students: preparing them to live as informed and functioning citizens in contemporary 
society, and providing them with the potential to take their places in the fields of commerce, 
industry, technology, and science (Robitaille & Garden, 1989). In addition, mathematics 
education should seek to teach students about the nature of mathematics. In this view, 
mathematics is no longer simply a prerequisite subject but rather a fundamental aspect of 
literacy for a citizen in contemporary society (Mathematics Sciences Education Board 
[MSEB], 1993; NCTM, 1989). Education in general and mathematics education in 
particular have the responsibility for nurturing students’ creativity and critical thinking 
skills not only for their lifelong learning but also for their general benefit and pleasure. 

In the United States, NCTM specified five goals for students in its monumental Standards 
document published in 1989: (1) learn to value mathematics, (2) learn to reason 
mathematically, (3) learn to communicate mathematically, (4) become confident of their 
mathematical abilities, and (5) become mathematical problem solvers. NCTM also specified 
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major shifts to achieve these goals in teaching mathematics, including movement toward: 
(1) Classrooms as mathematical communities--away from classrooms as simply collections 
of individuals; (2) Logic and mathematical evidence as verification--away from the teacher 
as the sole authority for right answers; (3) Mathematical reasoning--away from merely 
memorizing procedures; (4) Conjecturing, inventing, and problem solving--away from an 
emphasis on mechanistic answer-finding; and (5) Connecting mathematics, its ideas, and its 
applications--away from treating it as a body of isolated concepts and procedures.  

THE LIECAL PROJECT 

With extensive support from the National Science Foundation (NSF), a number of school 
mathematics curricula were developed and implemented to align with the recommendations 
of the NCTM Standards. The Connected Mathematics Program (CMP) is one of the 
Standards-based middle school curricula developed with NSF funding. CMP is designed to 
build students’ understanding of important mathematics through explorations of real-world 
situations and problems. It is a complete middle-school mathematics program. Students 
using the CMP curriculum are guided to investigate important mathematical ideas and 
develop robust ways of thinking as they try to make sense of and resolve problems based on 
real-world situations.  

The research reported here was part of a large project designed to longitudinally compare 
the effects of a Standards-based curriculum (CMP) to the effects of more traditional middle 
school curricula on students’ learning of algebra (hereafter called non-CMP curricula). In 
this project, Longitudinal Investigation of the Effect of Curriculum on Algebra Learning 
(LieCal)1, we investigated not only the ways and circumstances under which these curricula 
could or could not enhance student learning in algebra, but also the characteristics of the 
curricula that led to student achievement gains (Cai, Wang, et al.;  Moyer et al., 2011).  

The LieCal project was conducted in 14 middle schools in an urban school district serving a 
diverse student population in the United States. Approximately 85% of the participants were 
minority students: 64% African American, 16% Hispanic, 4% Asian, and 1% Native 
American. Male and female students were about evenly distributed.  

By longitudinally comparing the effects of the CMP curriculum on students’ learning of 
algebra to the effects of more traditional middle-school mathematics curricula, the LieCal 
Project was designed to provide: (a) a profile of the intended treatment of algebra in the 
CMP curriculum and a contrasting profile of the intended treatment of algebra in non-CMP 
curricula; (b) a profile of classroom experiences that CMP students and teachers had, with a 
contrasting profile of experiences in non-CMP classrooms; and (c) a profile of student 
performance resulting from the use of the CMP curriculum, with a contrasting profile of 
student performance resulting from the use of non-CMP curricula. Accordingly, the project 
was designed to answer three research questions:  

                                         
1 In 2006 and 2009, the CMP authors published revised editions of the CMP curriculum under the name 
CMP2.  This article is based on the original CMP curriculum because the students in the LieCal project used 
CMP, not CMP2.  
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• What are the similarities and differences between the intended treatment of algebra 
in the CMP curriculum and in the non-CMP curricula?  

• What are key features of the CMP and non-CMP experience for students and 
teachers, and how might these features explain performance differences between 
CMP and non-CMP students?  

• What are the similarities and differences in performance between CMP students 
and a comparable group of non-CMP students on tasks measuring a broad spectrum 
of mathematical thinking and reasoning skills, with a focus on algebra?  

In previous years of the LieCal Project, we compared the performance of middle school 
students in classrooms that used CMP with the performance of students in classrooms that 
used non-CMP curricula. Currently, we are following the same cohort of middle school 
students during their four high school years to investigate how the use of different types of 
middle school mathematics curricula affects the learning of high school mathematics in the 
same urban school district. More importantly, we are examining how students’ curricular 
experiences in the middle grades affect their algebra learning in high school by providing 
empirical evidence about the relationships between the development of conceptual 
understanding, symbol manipulation skills, and problem-solving skills in middle school and 
the learning of mathematics in high school. 

The findings from the LieCal-Middle School Project (Cai, Wang, et al., 2011) exhibit 
parallels to the findings from research on the effectiveness of Problem-Based Learning 
(PBL) on the performance of medical students (Barrows, 2000; Hmelo-Silver, 2004; 
Norman & Schmidt, 1992; Vernon & Blake, 1993). Researchers found that medical students 
trained using a PBL approach performed better than non-PBL students (trained, for 
example, using a lecture approach) on clinical components in which conceptual 
understanding and problem-solving ability were assessed. However, PBL and non-PBL 
students performed similarly on measures of factual knowledge. When these same medical 
students were assessed again at a later time, the PBL students not only performed better 
than the non-PBL students on clinical components, but also on measures of factual 
knowledge (Norman & Schmidt, 1992; Vernon & Blake, 1993). This result may imply that 
the conceptual understanding and problem-solving abilities learned in the context of PBL 
facilitated the retention and acquisition of factual knowledge over longer time intervals. As 
we described above, the CMP curriculum can be characterized as a problem-based 
curriculum. Analogous to the results of research on PBL in medical education, in the LieCal 
Project, CMP students outperformed non-CMP students on measures of conceptual 
understanding and problem solving during middle school. In addition, CMP and non-CMP 
students performed similarly on measures of computation and equation solving. Continuing 
the analogy, it is reasonable to hypothesize that the superior conceptual understanding and 
problem-solving abilities gained by CMP students in middle school could result in better 
performance on a delayed assessment of manipulation skills such as equation solving, in 
addition to better performance on tasks assessing conceptual understanding and problem 
solving in high school. We are currently testing this hypothesis as we follow the LieCal 
cohort through their high school years. 
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THREE LEVELS OF CURRICULUM 

In the LieCal Project, we made use of a three-level conceptualization of curriculum 
(intended, implemented, and attained) which has been widely accepted in mathematics 
education (Cai, 2010). The intended curriculum refers to the formal documents that set 
system-level expectations for the learning of mathematics. These usually include goals and 
expectations set for the educational system along with textbooks, official syllabi, and/or 
curriculum standards. The implemented curriculum refers to school and classroom 
processes for teaching and learning mathematics as interpreted and implemented by the 
teachers, according to their experience and beliefs for particular classes. Thus, the 
implemented curriculum deals with the classroom level. The classroom is central to 
students’ learning since students acquire most of their knowledge and form their attitudes 
from classroom instruction (Robitaille & Garden, 1989). Regardless of how well a 
curriculum is designed, it has little value outside of its implementation in classrooms. 
Finally, the attained curriculum refers to what is learned by students and is manifested in 
their achievements and attitudes. It exists at the level of the student, and deals with the 
aspects of the intended curriculum that are taught by teachers and actually learned by 
students.  

 

 

 

                   System Level                 Classroom Level                 Student Level 

Figure 1.  The conceptualization of the three levels of curriculum 

 

As shown in Figure 1 above, conceptualization of the three levels of curriculum is quite 
useful for comparative studies of mathematics curriculum. It highlights the differences 
between what a society would like to have taught, what is actually taught, and what students 
have actually learned.  At the same time, all three levels are related to each other, and each 
one supports the others in the evaluation process. In the following sections, I will 
specifically discuss the issues and methods of studying mathematics curricula. In this 
discussion, I will draw examples from the LieCal Project to discuss the theoretical and 
methodological issues that arise in each of these three levels.  

Intended Curriculum 

The intended curriculum specifies goals, topics, sequences, instructional activities, and 
assessment methods and instruments. The most common method of evaluating an intended 
curriculum is content analysis, which involves judging the quality of the content of a 
curriculum and the quality of its presentation. The National Research Council (2004) has 
proposed a list of factors to consider when conducting content analysis to evaluate the 
intended curriculum (see Table 1). When conducting comparative studies of curricula, we 
may focus on one or more factors, depending on the specific purpose of the study.  

Intended 
Curriculum 

Implemented 
Curriculum 

Attained 
Curriculum 
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Table 1: Factors to consider in content analysis of mathematics materials (Adapted from 
NRC (2004), p. 42.) 

            

Listing of topics 
Sequence of topics 
Clarity, accuracy, and appropriateness of topic presentation 
Frequency, duration, pace, depth, and emphasis of topics 
Grade level of introduction 
Overall structure: integrated, interdisciplinary, or sequential 
Types of tasks and activities, purposes, and level of engagement 
Use of prior knowledge, attention to (mis)conceptions, and student strategies 
Reading level 
Focus on conceptual ideas and algorithmic fluency 
Emphasis on analytic/symbolic, visual, or numeric approaches 
Types and levels of reasoning, communication, and reflection 
Type and use of explanation 
Form of practice 
Approach to formalization 
Use of contextual problems and/or elements of quantitative literacy 
Use of technology or manipulatives 
Ways to respond to individual differences and grouping practices 
Formats of materials 
Types of assessment and relation to classroom practice 
            

In the LieCal Project, we first searched for evidence of the impact of reform by conducting 
a detailed analysis of the intended curriculum.  If a curriculum is to be considered a reform 
curriculum, it must have conceptualizations and features which distinguish it from the 
traditional curricula.  I highlight two sets of findings from the LieCal Project that identify 
such distinguishing characteristics at the level of the intended curriculum: (1) the 
introduction of mathematical concepts and (2) the analysis of mathematical problems. 

Introduction of Mathematical Concepts.  A common approach in curricular comparisons 
is to examine how a mathematical concept is introduced in various curricula (Cai et al., 
2002). In the LieCal Project, we conducted detailed analyses of the introduction of key 
mathematical concepts in the CMP and non-CMP curricula and found significant 
differences between them (Cai, Nie, & Moyer, 2010; Nie, Cai, & Moyer, 2009; Moyer, Cai, 
& Nie, 2012). Overall, our research revealed that the CMP curriculum takes a functional 
approach to the introduction of algebraic concepts in the teaching of algebra, whereas the 
non-CMP curricula take a structural approach. The functional approach emphasizes the 
important ideas of change and variation in situations. It also emphasizes the representation 
of relationships between variables. In contrast, the structural approach avoids contextual 
problems in order to concentrate on developing the abilities to generalize, work abstractly 
with symbols, and follow procedures in a systematic way (Cai et al., 2010). In this section, 
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we highlight specific differences in the ways that the CMP curriculum and the non-CMP 
curricula define and introduce variables, equations, equation solving, and functions.  

Defining and introducing the concept of variables.  Because of the importance of variables 
in algebra, and in order to appreciate the differences between the CMP and non-CMP 
curricula, it is necessary to understand how the CMP and non-CMP curricula introduce 
variable ideas (Nie et al., 2009). The learning goals of the CMP curriculum characterize 
variables as quantities used to represent relationships. Though the CMP curriculum does not 
formally define variable until 7th grade, CMP’s informal characterization of a variable as a 
quantity that changes or varies makes it convenient to use variables informally to describe 
relationships long before formally introducing the concept of variables in 7th grade. The 
choice to define variables in terms of quantities and relationships reflects the functional 
approach that the CMP curriculum takes.  

In contrast, the learning goals in the non-CMP curriculum characterize variables as 
placeholders or unknowns. The non-CMP curriculum formally defines a variable in 6th 
grade as a symbol (or letter) used to represent a number. It treats variables predominantly as 
placeholders by using them to represent unknowns in expressions and equations. By 
introducing the concept of variables in this fashion, the non-CMP curriculum supports its 
structural approach to algebra. 

Defining and introducing the concept of equations.  Given the functional approach to 
variables in the CMP curriculum and the structural approach in the non-CMP curriculum, it 
is not surprising that the concept of equation is similarly defined functionally in CMP, but 
structurally in the non-CMP curriculum. In CMP, equations are a natural extension of the 
development of the concept of variable as a changeable quantity used to represent 
relationships. At first, CMP expresses relationships between variables with graphs and 
tables of real-world quantities rather than with algebraic equations. Later, when CMP 
introduces equations, the emphasis is on using them to describe real-world situations. 
Rather than seeing equations simply as objects to manipulate, students learn that equations 
often describe relationships between varying quantities (variables) that arise from 
meaningful, contextualized situations (Bednarz et al., 1996). In the non-CMP curriculum, 
the definition of a variable as a symbol develops naturally into the use of context-free 
equations and places the emphasis on procedures for solving equations. These are all 
hallmarks of a structural focus. For example, the non-CMP curriculum defines an equation 
as “…a sentence that contains an equals sign, =” illustrated by examples such as 

, , and . Students are told that the way to solve an equation is to 
replace the variable with a value that results in a true sentence. 

Defining and introducing equation solving.  The CMP and non-CMP curricula use 
functional and structural approaches, respectively, to introduce equation solving, consistent 
with their approaches to defining equations. In the CMP curriculum, equation solving is 
introduced within the context of discussing linear relationships. The initial treatment of 
equation solving does not involve symbolic manipulation, as found in most traditional 
curricula. Instead, the CMP curriculum introduces students to linear equation solving by 
using a graph to make visual sense of what it means to find a solution. Its premise is that a 
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linear equation in one variable is, in essence, a specific instance of a corresponding linear 
relationship in two variables. It relies heavily on the context in which the equation itself is 
situated and on the use of a graphing calculator.  

After CMP introduces equation solving graphically, the symbolic method of solving linear 
equations is finally broached. It is introduced within a single contextualized example, where 
each of the steps in the equation-solving process is accompanied by a narrative that 
demonstrates the connection between what is happening in the procedure and in the real-life 
situation. In this way, CMP justifies the equation-solving manipulations through contextual 
sense-making of the symbolic method. That is, CMP uses real-life contexts to help students 
understand the meaning of each step of the symbolic method of equation solving, including 
why inverse operations are used. As with the introduction of variables and equations, 
CMP’s functional approach to equation solving maintains a focus on contextualized 
relationships among quantities.  

In the non-CMP curriculum, contextual sense-making is not used to justify the 
equation-solving steps as it is in the CMP curriculum. Rather, the non-CMP curriculum first 
introduces equation solving as the process of finding a number to make an equation a true 
statement. Specifically, solving an equation is described as replacing a variable with a value 
(called the solution) that makes the sentence true. Equation solving is introduced in the 
non-CMP curriculum symbolically by using the additive property of equality (equality is 
maintained if the same quantity is added to or subtracted from both sides of an equation) 
and the multiplicative property of equality (equality is maintained if the same non-zero 
quantity is multiplied by or divided into both sides of an equation). This approach to 
equation solving is aligned with the non-CMP curriculum’s structural focus on working 
abstractly with symbols and procedures.  

Defining and introducing functions. Consistent with their approaches to variables and 
equations, the CMP and non-CMP curricula once again use functional and structural 
approaches, respectively, to introduce the concept of functions. Their respective approaches 
can be seen quite clearly in the differences between their stated learning goals for the 
function concept.  CMP’s learning goals for students are (1) that they be able to understand 
and predict patterns of change in variables, and (2) that they be able to represent 
relationships between real-world quantities using word descriptions, tables, graphs, and 
equations. In contrast, the non-CMP curriculum’s stated learning goals are (1) that students 
explore the use of algebraic equations to represent functions, and (2) that they be able to 
identify and graph functions, calculate slope, and distinguish linear from nonlinear 
functions. 

The CMP curriculum informally introduces the concepts of function and variable at the 
same time in 6th grade, identifying a function as a relationship between real-world quantities 
(variables). At the beginning of 7th grade, when the concept of variable is formally 
introduced in the Variables and Patterns unit, coordinate graphs are used as a way to tell a 
story of how changes in one variable are related to changes in another. In an introductory 
investigation, students graph how many jumping jacks they can do in successive 10-second 
intervals for two minutes. Then they analyze the graph to determine whether a relationship 



Cai 

 

ICME-12, 2012 abcde+2 

exists between time and the number of jumping jacks. At the same time, students are 
exposed to the concepts of independent variable and dependent variable. This occurs well 
before the concept of function is formally introduced during the second half of 7th grade in 
the Moving Straight Ahead unit. Although the concept of function is introduced in this unit, 
the term “relationship” is almost always used instead of the word “function.” Furthermore, 
in the teacher’s guide, the term “function” is explicitly identified as nonessential. In fact, the 
term “function” is not given any importance in the CMP curriculum until the introduction of 
quadratic functions in the 8th grade unit Frogs, Fleas, and Painted Cubes.  

The non-CMP curriculum informally introduces the concept of function in the preview to 
Lesson 9-6 in 6th grade by having students make a function machine out of paper. The 
function machine has three key elements: input, output, and operation. The operation, or 
rule, lies at the core of the function machine, while input and output are external to it. 
Immediately after the introduction of the function machine, the non-CMP curriculum 
formally introduces the concepts of function, function table, and function rule in Lesson 
9-6. This formal introduction begins with the following situation: “A brown bat can eat 600 
mosquitoes an hour.” The student is then asked to write expressions to represent the number 
of mosquitoes a brown bat can eat in 2 hours, 5 hours, and t hours. Finally, the terms 
function and function table are illustrated, and the term function rule is defined.  The 
function rule is characterized as a rule giving the operation(s) that will transform an input 
into an output.  The non-CMP curriculum defines a function as a relationship where one 
thing depends on another. However, it treats a function as a process of starting with an input 
number, performing one or more operations on it, and getting an output number. The main 
purpose of the function machine and the function table seems to be for students to 
experience the process of computing the output values from given input values and vice 
versa. That is, the development of the concept of function in the non-CMP curriculum 
emphasizes operations on input variables rather than the relationship between two variables. 

Analysis of Mathematical Problems.  Comparative studies of intended curricula must take 
into account the quality of activities, their use in instruction, and their frequency of use. 
Indeed, a number of researchers have analyzed problems and worked examples in 
mathematics curricula (e.g., Cai et al., 2002, 2010; Fan & Zhu, 2007; Li, 2000). In the 
LieCal Project, we compared both the types of mathematical problems involving linear 
equations in the CMP and non-CMP curricula and the level of cognitive demand of the 
problems in the two curricula.  

Types of Problems Involving Linear Equations.  In both the CMP and non-CMP curricula, 
the vast majority of the equation problems involved linear equations. Thus we further 
classified problems involving linear equations in the CMP and non-CMP curricula into 
three categories:  

• One equation with one variable (1eq1va)--e.g., 2x + 3 = 5;  

• One equation with two variables (1eq2va)--e.g., y = 6x + 7;  

• Two equations with two variables (2eq2va)--e.g., the system of equations y = 2x + 
1 and y= 8x + 9.  
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Table 2 shows the percentage distribution of these categories of problems involving linear 
equations in each of the two curricula. The two distributions are significantly different (χ2 
(2) = 1262.0, p< .0001). The CMP curriculum includes a significantly greater percentage of 
one equation with two variables problems than the non-CMP curriculum (z = 35.49, p < 
.0001). However, the non-CMP curriculum includes a significantly greater percentage of 
one equation with one variable problems than the CMP curriculum (z = 34.15, p < .0001). 
These results resonate with the findings reported above. Namely, the CMP curriculum 
emphasizes an understanding of the relationships between the variables of equations, rather 
than an acquisition of the skills needed to solve them. In fact, of the 402 equation-related 
problems in the CMP curriculum, only 33 of them (about 8% of the linear equation-solving 
problems) involve decontexualized symbolic manipulations of equations. However, the 
non-CPM curriculum includes 1,550 problems involving decontexualized symbolic 
manipulations of equations (nearly 70% of the linear equation solving problems in the 
non-CMP curriculum).  

Table 2: Percentage distribution of problems involving linear equations in the CMP and 
non-CMP curricula 

 

 1eq1va 1eq2va 2eq2va 

CMP (n=402) 5.72 93.03 1.24 

Non-CMP (n=2,339) 86.19 11.67 2.14 
 
The non-CMP curriculum not only incorporates many more linear equation-solving 
problems into the curriculum, but it also carefully sequences them based on the number of 
steps required to solve them. Of the 2,339 problems involving linear equations, over 50% 
are one-step problems like, x + b = c, ax = c or x = a * b.  About 30% of the problems are 
two-step problems, like ax + b = c or x/a = b/c. Only a small fraction of the linear equations 
involve three steps or more, like ax + bx + c = d or ax + b = cx + d. Each grade level of the 
non-CMP curriculum includes one-step, two-step, and three-plus-step problems involving 
linear equations. As the grade level increases, however, the curriculum provides 
increasingly more comprehensive procedures, suitable for solving all forms of linear 
equations. 

Cognitive Demand of Mathematical Problems.  If an intended curriculum claims to be 
problem-based, we should expect to see it contain a large proportion of cognitively 
demanding tasks. In the LieCal Project, we analyzed the cognitive demand of mathematical 
problems in both the CMP and non-CMP curricula (Cai et al., 2010). We classified the 
problems into four increasingly demanding categories of cognition: memorization, 
procedures without connections, procedures with connections, and doing mathematics 
(Stein & Lane, 1996). As Figure 2 illustrates, the CMP curriculum had significantly more 
high-level tasks (procedures with connections or doing mathematics) (χ2(3, N = 3311) = 
759.52, p < .0001) than the non-CMP curricula.  This kind of analysis of the intended 
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curriculum provides insight into the degree to which different curricula expect students to 
engage in higher-level thinking and problem solving.  

 

 

 

 

 

 

 

Figure 2. Percentages of various types of tasks in CMP and non-CMP curricula 

 

Implemented Curriculum 

The implemented curriculum is concerned with what mathematics is actually taught in the 
classroom and how that mathematics is taught. Therefore, a key issue for the implemented 
curriculum is the recognition that what teachers teach may or may not be consistent with the 
intended curriculum. When the implemented curriculum, as seen in teachers’ instruction, is 
congruent with the goals of the intended curriculum, we may say that there is fidelity of 
implementation.  Teachers may vary widely in their commitment to the intended 
curriculum. Therefore when evaluating the implemented curriculum, it is important to 
determine whether, how, and to what extent teachers’ instruction is influenced by the 
intended curriculum. 

In the LieCal Project, we collected data on multiple aspects of implementation. We 
conducted 620 detailed lesson observations of CMP and non-CMP lessons over a three-year 
period. Approximately half of the observations were of teachers using the CMP curriculum, 
while the other half were observations of teachers using non-CMP curricula. Two retired 
mathematics teachers conducted and coded all the observations. The observers received 
extensive training that included frequent checks for reliability and validity throughout the 
three years (Moyer et al., 2011).   

Each class of LieCal students was observed four times, during two consecutive lessons in 
the fall and two in the spring. The observers recorded extensive information about each 
lesson using a 28-page project-developed observation instrument. During each observation, 
the observer made a minute-by-minute record of the lesson on a specially designed form. 
This record was used later to code the lesson. The coding system had three main 
components: (1) the structure of the lesson and use of materials, (2) the nature of the 
instruction, and (3) the analysis of the mathematical tasks used in the lesson. 
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The analyses of the data we obtained from the classroom observations revealed striking 
differences between classroom instruction using the CMP and non-CMP curricula. In this 
paper, we briefly discuss the differences related to three important instructional variables: 
(1) the level of conceptual and procedural emphases in the lessons, (2) the cognitive level of 
the instructional tasks implemented, and (3) the cognitive level of the homework problems. 

Conceptual and Procedural Emphases. The second component of the coding section 
included twenty-one 5-point Likert scale questions that the observers used to rate the nature 
of instruction in a lesson. Of the 21 questions, four of them were designed to assess the 
extent to which a teacher’s lesson had a conceptual emphasis. Another four questions were 
designed to determine the extent to which the lesson had a procedural emphasis. Factor 
analysis of the LieCal observation data confirmed that the four procedural-emphasis 
questions loaded on a single factor, as did the four conceptual-emphasis questions. 

There was a significant difference across grade levels between the levels of conceptual 
emphasis in CMP and non-CMP instruction (F = 53.43, p < 0.001). The overall (grades 6-8) 
mean of the summated ratings of conceptual emphasis in CMP classrooms was 13.41, 
whereas the overall mean of the summated ratings of conceptual emphasis in non-CMP 
classrooms was 10.06. The summated ratings of conceptual emphasis were obtained by 
adding the ratings on the four items of the conceptual-emphasis factor in the classroom 
observation instrument, which implies that the mean rating on the conceptual-emphasis 
items was 3.35 (13.41/4) for CMP instruction and 2.52 (10.06/4) for non-CMP instruction. 
That is, CMP instruction was rated 0.40 points above the midpoint, whereas non-CMP 
instruction was rated 0.5 points below the midpoint. Thus, on average, CMP instruction was 
rated about 4/5 of a point higher (out of 5) on each conceptual emphasis item than non-CMP 
instruction, which was a significant difference (t = 11.44, p < 0.001).  

In contrast, non-CMP lessons had significantly more emphasis on the procedural aspects of 
learning than the CMP lessons. The procedural-emphasis ratings for the non-CMP lessons 
were significantly higher than the procedural-emphasis ratings for the CMP lessons (F = 
37.77, p < 0.001). Also, the overall (grades 6-8) mean of summated ratings of procedural 
emphasis in non-CMP classrooms (14.49) was significantly greater than the overall mean of 
the summated ratings of procedural emphasis in CMP classrooms, which was 11.61 (t = 
-9.43, p < 0.001). The summated ratings of procedural emphasis were obtained by adding 
the ratings on the four items of the procedural-emphasis factor, which implies that the mean 
rating on the procedural emphasis items was 3.62 (14.49/4) for non-CMP instruction and 
2.91 (11.61/4) for non-CMP instruction. On average, non-CMP instruction was rated about 
7/10 of a point higher (out of 5) on each procedural emphasis item than CMP instruction, 
which was a significant difference.  

Instructional tasks.  As we did with the mathematical problems in the intended curricula, 
we again used the scheme developed by Stein et al. (1996) to classify the instructional tasks 
actually used in the CMP and non-CMP classrooms into four increasingly demanding 
categories of cognition: memorization, procedures without connections, procedures with 
connections, and doing mathematics. Figure 3 shows the percentage distributions of the 
cognitive demand of the instructional tasks implemented in CMP and non-CMP classrooms 
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(note that Figure 2 referred to problems from the intended, not the implemented, curricula). 
The percentage distributions in CMP and non-CMP classrooms are significantly different 
(X2(3, N = 1318) = 219.45, p < .0001). The difference confirms that a larger percentage of 
high cognitive demand tasks (procedures with connection or doing mathematics) were 
implemented in CMP classrooms than were implemented in non-CMP classrooms (z = 
14.12, p < .001). On the other hand, a larger percentage of low cognitive demand tasks 
(procedures without connection or memorization) were implemented in non-CMP 
classrooms than were implemented in CMP classrooms. Additional analyses showed that, 
not only did CMP teachers implement a significantly higher percentage of cognitively 
demanding tasks than non-CMP teachers across the three grades, but also within each grade 
(z values range from 6.06 – 11.28 across the three grade levels, p < .001). 

Over 45% of the CMP lessons implemented at least one high level task (involving either 
procedures with connections or doing mathematics), but only 10% of the non-CMP lessons 
did so (z = 14.12, p < .0001). Nearly 90% of the non-CMP lessons implemented low-level 
tasks involving procedures without connections, whereas only 55% of the CMP lessons did 
so (z = 14.12, p < .0001).. 

 
Figure 3. The percentage distributions of the cognitive demand of the instructional tasks 

implemented in CMP and non-CMP classrooms 

 

Homework Problems. Each of the participating teachers was asked to keep logs and 
submit all of their assigned homework problems as part of the logs. The analysis of 
homework problems was based on all of the homework problems recorded in the logs of the 
CMP and non-CMP teachers. Each homework problem was coded in terms of its source, 
contexts, representations, and cognitive demand.  

We randomly sampled half of the homework problems in each grade.  A total of 10,310 of 
the homework problems assigned by middle school teachers during the three years were 
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included in the analysis. Most of the homework problems (about 90%) came from the 
respective textbooks for each curriculum; only a small proportion of the assigned homework 
problems (about 10%) was supplemented by teachers. Overall, the profile of representations 
used in CMP homework problems was significantly different from the profile of 
representations used in non-CMP homework problems (χ2(1, N = 10310) = 34.95, p < 
0.0001). Of note, a larger percentage of non-CMP homework problems (39%) than CMP 
homework problems (20%) involved symbolic representations (z = 19.90, p < 0.0001). In 
contrast, a larger percentage of CMP problems (45%) than non-CMP problems (22%) 
involved a table, picture or graph (z = 24.49, p < 0.0001).  However, nearly all homework 
problems, CMP or non-CMP, involved written words (97.7% of the non-CMP problems and 
99.8% of the CMP problems). 

We examined the contexts of the homework problems using the following categories: no 
context, context without tables or pictures, context with tables and pictures, and context 
with manipulatives. Overall, the distributions of homework problem contexts for CMP and 
non-CMP students were significantly different (χ2(3, N = 10310) = 431.43, p < 0.0001). 
Non-CMP teachers assigned a larger percentage of homework problems without contexts 
than CMP teachers (56% and 37%, respectively) (z = 18.30, p < 0.0001). CMP students 
were assigned a larger percentage of homework problems involving contexts with tables or 
pictures than non-CMP students (39% and 22%, respectively) (z = 18.92, p < 0.0001). In 
both the CMP and non-CMP groups, about one quarter of the homework problems involved 
contexts without tables or pictures. There were very few homework problems in either 
group with contexts involving manipulatives. 

Our analysis of the cognitive demand of the homework problems produced similar results to 
the instructional tasks. The levels of cognitive demand in the CMP and non-CMP 
homework problems were significantly different (χ2(3, N = 10310) = 793.08, p < .0001). A 
larger percentage of CMP homework problems (29%) than non-CMP homework problems 
(9%) were high cognitive demand problems (procedures with connections or doing 
mathematics) (z = 26.08, p < 0.0001). However, a larger percentage of non-CMP homework 
problems (91%) than CMP homework problems (71%) were low cognitive demand 
problems (memorization or procedures without connections) (z = 26.08, p < 0.0001). 

Attained Curriculum 

The ultimate goal of educational research, curriculum development, and instructional 
improvement is to enhance student learning. Thus the evaluation of a mathematics 
curriculum at the student level—evaluation of the attained curriculum—is of critical 
importance. In studies of the attained curriculum, we must address multiple facets of 
mathematical thinking (Cai, 1995; Sternberg & Ben-Zeev, 1996). Therefore, mixed methods 
such as observing students doing mathematics, performing tasks, and taking tests, should be 
used to collect information to evaluate the attained curriculum. Special attention must be 
paid to the selection of assessment tasks and methods of analysis when conducting 
comparative studies of attained curricula.   
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Assessment Tasks. Even though various methods can be used to measure students’ 
learning, the heart of measuring mathematical performance is the set of tasks on which 
students’ learning is to be evaluated (National Research Council, 2001). It is desirable to 
use various types of assessment tasks, thereby measuring different facets of mathematical 
thinking. For example, different formats of assessment tasks (such as multiple-choice and 
open-ended tasks) may be used to measure students' learning. Multiple-choice tasks have 
many advantages. For example, more items can be administered within a given time period, 
and scoring can be done quickly and reliably. However, it can be difficult to infer students’ 
cognitive processes based on their responses to such items. To that end, open-ended tasks 
may be used to supplement multiple-choice tasks. In open-ended tasks, students are asked to 
produce answers, but also to show their solution processes and provide justifications for 
their answers. In this way, open-ended tasks provide a better window into the thinking and 
reasoning processes involved in students’ mathematics learning. Of course, a disadvantage 
of open-ended tasks is that only a small number of these tasks can be administered within a 
given period of time. Also, grading students’ responses is labor-intensive. To help 
overcome the disadvantages of using open-ended tasks, we recommend using a matrix 
design with samples of students’ responses to the administered open-ended tasks. This 
reduces both testing time and grading time while maintaining a good overall estimate of 
students’ learning of mathematics.  

 

 
 
 
 

 

 

 

 

 

Figure 4.  Mean for CMP and non-CMP middle school students on the open-ended tasks. 

 

In the LieCal Project, we used both multiple-choice tasks and open-ended problems to 
assess student learning. On the open-ended tasks, which assessed conceptual understanding 
and problem solving, the growth rate for CMP students over the three years was 
significantly greater than that for non-CMP students (Cai, Wang, et al., 2011). Figure 4 
shows the mean scores for CMP and non-CMP students on the open-ended tasks. In 
particular, our analysis using Growth Curve Modeling showed that over the three middle 
school years the CMP students’ scores on the open-ended tasks increased significantly more 
than the non-CMP students’ scores (t = 2.79, p < .01).  CMP students had an average annual 
gain of 25.09 scale points whereas non-CMP students had an average annual gain of 19.39. 
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An additional analysis using Growth Curve Modeling showed that the CMP students’ 
growth rate remained significantly higher than non-CMP students on open-ended tasks even 
when students’ ethnicity was controlled (t = 3.61, p < .01). Moreover, CMP and non-CMP 
students showed similar growth over the three middle school years on the multiple-choice 
tasks assessing computation and equation solving skills. 

These findings suggest that, regardless of ethnicity, the use of the CMP curriculum was 
associated with a significantly greater gain in conceptual understanding and problem 
solving than was associated with the use of the non-CMP curricula. However, those 
relatively greater conceptual gains did not come at the cost of basic skills, as evidenced by 
the comparable results attained by CMP and non-CMP students on the computation and 
equation solving tasks. Thus, by using both multiple-choice and open-ended assessment 
tasks in the LieCal Project, we were able to obtain a more comprehensive comparison of the 
attained CMP and non-CMP curricula. 

Performance Beyond the Middle School.  In the 2008-2009 academic year, the CMP and 
non-CMP LieCal middle school students entered high school as 9th graders.  We followed 
about 1,000 of these students who were enrolled in 10 high schools in the same urban 
school district. In these high schools, the CMP and non-CMP students were mixed together 
in the same mathematics classrooms and used the same curriculum.  

As we noted above, the results of the LieCal middle school project presented parallels to the 
results of research on the learning of medical students using the PBL approach. CMP 
students outperformed non-CMP students on measures of conceptual understanding and 
problem solving during middle school. In addition, CMP and non-CMP students performed 
similarly on measures of computation and equation solving. Thus, we hypothesized that the 
superior conceptual understanding and problem-solving abilities gained by CMP students in 
middle school could result in better performance on a delayed assessment of manipulation 
skills, such as equation solving, in addition to better performance on tasks assessing 
conceptual understanding and problem solving in high school. We therefore examined 
several student learning outcome measures to examine the impact of middle school 
curriculum on students’ learning in high school.  In general, all of the student learning 
outcome measures, CMP students performed better than or as well as non-CMP students in 
high school. Here, we present evidence from three outcome measures.   

Ninth grade achievement.  An analysis of covariance (with middle school achievement as 
the covariate showed that 9th graders who used CMP in middle school performed as well as 
or significantly better than 9th graders who used non-CMP curricula in middle school (F = 
4.69, p < .05) on open-ended tasks in the district assessment. 

Tenth Grade State Math Test.  A series of analyses of covariance were conducted using the 
10th grade state math test scaled score as the dependent variable along with various 
covariates. We found that CMP students had significantly higher 10th grade scaled scores 
than the non-CMP students, regardless of covariate, as shown in Table 3. 

Table 3:  Analysis of co-variance on 10th grade state math scaled score 



Cai 

 

ICME-12, 2012 abcde+2 

Covariate F-Value Significant Level 

PI-Developed 6th Grade Multiple-Choice (MC) Tasks 5.13 < .05 

PI-Developed 6th Grade Open-ended (OE) Tasks 3.90 < .05 

Both PI Developed 6th Grade MC and OE tasks 7.76 < .01 

6th grade State math scaled score 9.58 < .01 

7th grade State math scaled score 9.57 < .01 

8th grade State math scaled score 11.79 < .001 

 

Eleventh Grade Problem Posing.  In the 11th grade, we used 13 open-ended tasks to measure 
students’ conceptual understanding and problem solving.  Two of these tasks were 
problem-posing tasks, where students were given problem situations and were required to 
pose mathematical problems based on the situation. We divided the students into thirds 
based on their performance on baseline exam tasks taken in the 6th grade. We then 
compared the performance of the CMP and non-CMP students in each third on the 11th 
grade problem posing tasks. When comparing the problem posing performance of the CMP 
students in each third to the non-CMP students in the same third, the CMP students 
performed as well as or better than their non-CMP counterparts. For example, when 
grouped into thirds using the baseline equation solving scores, the CMP students in the top 
third were more likely (z = 2.01, p < .05) to generate a problem situation that matched at 
least one of the graph conditions (slope and intercept). Similarly, the CMP students in the 
top third were more likely to generate a problem situation that reflected the linearity of the 
graph (z = 2.40, p < .05). 

CONCLUSION 

Curriculum reform is often seen as holding great promise for the improvement of 
mathematics teaching and learning. However, the realization of that promise requires 
careful attention to the different levels on which curriculum exists and functions. In the 
LieCal project, we have analyzed the nature and impact of the intended, implemented, and 
attained levels of the Connected Mathematics Program curriculum as compared to more 
traditional middle-school mathematics curricula. Our goals have been correspondingly 
threefold: to characterize the intended treatment of algebra in the CMP curriculum and 
identify how it is different from the intended treatment of algebra in non-CMP curricula; to 
understand how the intentions of the CMP and non-CMP curricula are implemented and 
embodied in the classroom experiences of students and teachers; and to understand how 
these distinct experiences may translate into different levels of student attainment.  

With respect to the intended curriculum, CMP paints a distinctly different picture from 
traditional curricula of what middle school mathematics, and particularly the learning of 
algebraic concepts, should be. The stated goals and their embodiment in texts and 
mathematical problems indicate that the CMP curriculum intends for students to take a 
functional approach to algebra, focusing on the understanding relationships between 
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quantities in contextualized, real-life problems. This stands in contrast to a more traditional, 
structural approach to algebra that puts the focus on decontextualized operations and 
procedures with symbols and mathematical objects. These two approaches to the learning of 
algebra are evident in the ways that the two types of curricula introduce concepts such as 
variables and equations and in the kinds of problems the curricula provide. 

The implementations we have observed of the CMP and non-CMP curricula strongly reflect 
the intentions embedded in the curriculum materials. As teachers take each curriculum and 
shape it into actual instruction in their classrooms, the underlying functional and structural 
approaches continue to be evident in the choices that teachers make in balancing the 
conceptual and procedural aspects of the mathematics. In addition, the types of instructional 
tasks that teachers choose to use and the homework problems they assign to their students 
further illustrate that the implementation of the CMP curriculum looks very different from 
the implementation of the non-CMP curricula.  

Finally, when we look to the results of the implementation of the CMP and non-CMP 
curricula in terms of student attainment, we see that CMP students experience greater 
growth in their conceptual understanding and problem-solving abilities than their non-CMP 
counterparts without having to sacrifice procedural skills. It would appear that the intentions 
that guided the development of the CMP curriculum materials, combined with classroom 
implementations that reflect those intentions, are associated with student learning along the 
intended lines. In other words, students using the CMP curriculum experience instruction 
that emphasizes a conceptual understanding of algebra as a way to represent and solve 
problems involving relationships among quantities, and they learn accordingly. In addition, 
they continue to develop procedural skill on par with other students, even when those 
students use more traditional curricula that have very different intentions and 
implementations.  The advantages of CMP students continue as they enter high school.  In 
fact, in various learning outcome measures, CMP students performed better than or equally 
well as the non-CMP students. 

Thus, the three-level construct of curriculum we have used to examine the CMP curriculum 
affords us a powerful mechanism for understanding how curriculum reform can have an 
impact. In addition, we suggest that this conceptualization of curriculum provides a fruitful 
structure for curricular comparisons, both within and across nations. Indeed, as 
cross-national comparisons of curricula continue to be conducted, it is important to 
recognize and remember the relationships between the levels. Understanding how 
curriculum can be used to improve student learning requires an understanding of the goals 
of the curriculum and their embodiment in instruction. 

Acknowledgments  

Research reported in this paper has been supported by grants from the National Science Foundation 
(ESI-0454739 and DRL-1008536). Any opinions expressed herein are those of the author and do 
not necessarily represent the views of the National Science Foundation. This research was 
conducted in collaboration with John Moyer, Ning Wang, and Bikai Nie. We are very grateful for 
the support from a number of researchers and research assistants, including, Maria Alyson,Pat 



Cai 

 

ICME-12, 2012 abcde+2 

Bolter, Darlene Boyle, Carole Bryan, Janis Freckmann, Tony Freedman, Tammy Garber, Joan 
Grampp, Yuichi Handa, Patrick Hopfensperger, Stephen Hwang, Connie Laughlin, Victorial 
Robison, Mark Roche, Maxwell Scheinfield, Chelsey Schwander,Carly Toth, Matt Wells, Courtney 
White, Libby Wenner, and Yue Zeng.  

References 
Ball, D. L., & Cohen, D. K. (1996). Reform by the book: What is—or might be—the role of 

curriculum materials in teacher learning and instructional reform? Educational Researcher, 
25(9), 6-8, 14. 

Barrows, H. S. (2000).  Problem-based learning applied to medical education. Springfield, IL: 
Southern Illinois University School of Medicine. 

Bednarz, N., Kieran, C., & Lee, L. (Eds.). (1996). Approaches to algebra: Perspectives for research 
and teaching. Dordrecht, The Netherlands: Kluwer Academic Publishers. 

Cai, J. (1995). A cognitive analysis of US and Chinese students' mathematical performance on tasks 
involving computation, simple problem solving, and complex problem solving. Journal for 
Research in Mathematics Education Monographs Series, 7, Reston, VA: National Council of 
Teachers of Mathematics. 

Cai, J. (2010).  Evaluation of mathematics education programs.  In P. Peterson, E. Baker, & B. 
McGraw (Eds.), International Encyclopaedia of Education (Vol. 3, pp. 653-659).   Oxford: 
Elsevier. 

Cai, J. & Howson, A. G. (in press).  Toward an international mathematics curriculum.  In M. A. 
Clements, A. Bishop, C. Keitel, J. Kilpatrick, & K.S. F. Leung (Eds.), Third International 
Handbook of Mathematics Education Research.  Springer. 

Cai, J., Lew, H. C., Morris, A., Moyer, J. C., Ng, S. F. & Schmittau, J. (2005).   The Development 
of students' algebraic thinking in earlier grades: A Cross-Cultural Comparative Perspective.  
ZDM-International Review on Mathematics Education, 37(1), 5-15. 

Cai, J., Lo, J. J., & Watanabe, T. (2002). Intended treatment of arithmetic average in U.S. and Asian 
school mathematics textbooks. School Science and Mathematics, 102(8), 391-404. 

Cai, J., Moyer, J. C., Wang, N., & Nie, B. (2011).  Examining students’ algebraic thinking in a 
curricular context: A longitudinal study. In J. Cai & Knuth, E.  (Eds.), Early algebraization: A 
global dialogue from multiple perspectives (pp. 161-186).  New York, NY: Springer. 

Cai, J., Nie, B., & Moyer, J. C. (2010). The teaching of equation solving: Approaches in 
Standards-based and traditional curricula in the United States. Pedagogies: An International 
Journal, 5(3), 170–186. 

Cai, J., Wang, N., Moyer, J. C., & Nie, B. (2011). Longitudinal investigation of the curriculum 
effect: An analysis of student learning outcomes from the LieCal Project. International Journal 
of Educational Research, 50(2), 117-136. 

Darling-Hammond, L. (1993). Reframing the school reform agenda. Phi Delta Kappan, 74(10), 
752-761. 

Fan, L., & Zhu, Y. (2007). Representation of problem-solving procedures: a comparative look at 
China, Singapore, and US mathematics textbooks. Educational Studies in Mathematics, 66(1), 
61-75. 

Hmelo-Silver, C. E. (2004). Problem-based learning: What and how do students learn? Educational 
Psychology Review, 16, 235-266. 

Howson, G., Keitel, C., & Kilpatrick, J. (1981). Curriculum development for school mathematics. 
Cambridge: Cambridge University Press. 

Husen, T. (1967).  International study of achievement in mathematics: A comparison of twelve 
countries, Volume I & II.  New York: John Wiley & Sons.  

Li, Y. (2000). A comparison of problems that follow selected content presentations in American 
and Chinese mathematics textbooks. Journal for Research in Mathematics Education, 31(2), 



Cai 

  

Abcde+3 ICME-12, 2012 

234-241. 
Lloyd, G. M., & Frykholm, J. A. (2000). How innovative middle school mathematics materials can 

change prospective elementary teachers’ conceptions. Journal for Research in Mathematics 
Education, 21, 575–580. 

Mathematical Sciences Education Board. (1993). Measuring what counts: A conceptual guide for 
mathematics assessment. Washington, DC: National Academy Press. 

Moyer J. C., Cai, J., and Nie, B. (2012).  Developing function sense in middle school: approaches in 
Standards-based and traditional curricula. Paper presented at the ICME-12, South Korea, July 
8-15, 2012. 

Moyer, J. C., Cai, J., Nie, B., & Wang, N. (2011). Impact of curriculum reform: Evidence of change 
in classroom instruction in the United States. International Journal of Educational Research, 
50(2), 87-99. 

National Commission on Excellence in Education (1983). A nation at risk. The imperative for 
education reform. U.S. Government Printing Office. 

National Council of Teachers of Mathematics (1989). Curriculum and evaluation standards for 
school mathematics.  Reston, VA: Author. 

National Council of Teachers of Mathematics (2000). Principles and standards for school 
mathematics. Reston, VA: Author.  

National Governors Association Center for Best Practices, & Council of Chief State School 
Officers. (2010). Common core state standards: Mathematics. Retrieved 
fromhttp://www.corestandards.org/assets/CCSSI_Math Standards.pdf 

National Research Council. (2001). Knowing what students know: The science and design of 
educational assessment. Committee on the Foundations of Assessment.  Pelligrino, J., 
Chudowsky, N., Glaser, R., Editors.  Washington, DC: National Academy Press. 

National Research Council. (2004). On evaluating curricular effectiveness: Judging the quality of 
K-12 mathematics evaluations. Washington, DC: National Academy Press. 

National Science Board (NSB). (2010). Preparing the next generation of STEM innovators: 
Identifying and developing our nation’s human capital. Arlington, VA: National Science 
Foundation. 

Nie, B., Cai, J., & Moyer, J. C. (2009). How a Standards-Based mathematics curriculum differs 
from a traditional curriculum: With a focus on intended treatments of the ideas of variable. 
ZDM-International Journal on Mathematics Education, 41(6), 777-792. 

Nie, B., Zheng, T., Sun, W., & Cai J. (2010). Current mathematics education reform in the United 
Stated of America. Beijing, China: People’s Education Press. 

Norman, G. R., & Schmidt, H. G. (1992). The psychological basis of problem-based learning: A 
review of the evidence. Academic Medicine, 67, 557-565. 

Ravitch, D. (2000). Left back: A century of battles over school reform. New York: Touchstone. 
Resnick, L. (1987). Education and learning to think. Washington, DC: National Academy Press. 
Robitaille, D. F. & Garden, R. A. (1989).  The IEA study of mathematics II: Contexts and outcomes 

of school mathematics.  New York:  Pergamon Press. 
Senk, S. L., & Thompson, D. R, (Eds.). (2003).  Standards-Based School Mathematics Curricula:  

What are they?  What do students learn?  Mahwah, N.J.: Erlbaum. 
Stein, M.K., & Lane, S. (1996). Instructional tasks and the development of student capacity to think 

and reason: An analysis of the relationship between teaching and learning in a reform 
mathematics project. Educational Research and Evaluation, 2(1), 50-80. 

Sternberg, R. J., & Ben-Zeev, T. (Eds.) (1996). The nature of mathematical thinking.  Hillsdale, NJ: 
Erlbaum. 

Vernon, D. T., & Blake, R. L. (1993). Does problem-based learning work? A meta-analysis of 
evaluative research. Academic Medicine, 68, 550–563. 

 


