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Mathematical leaps of insight – those Aha! moments that seem so unpredictable, magical even – are 
often the result of a change in perception. A stubborn problem can yield a surprisingly simple 
solution when one changes the way one looks at it. In mathematics, these changes in perception are 
usually structural – new insights develop as one notices new mathematical objects, properties and 
relationships in the underlying mathematical structure. This paper describes a methodological 
approach for studying these insights visually. The approach uses diagrams to display evidence of 
students’ mathematical knowledge structures as they evolve over time. Significant reorganisations in 
these structures correspond to mathematical leaps of insight, and the diagrams are used to compare 
the strength, depth and robustness of students’ resulting mathematical structures. 
Mathematical insight; calculus; diagrammatic analysis 

INTRODUCTION 

Mathematical leaps of insight are often described on affective and aesthetic levels—the 
excitement of understanding something that was previously incomprehensible (Liljedahl, 
2005), the pleasure of a beautiful, elegant solution (Hadamard, 1954; Poincaré, 1956). On a 
mathematical and conceptual level, leaps of insight involve shifts in perceived structure, 
whereby students notice and create deeper, stronger and more robust mathematical 
structures to replace older ones. In this paper, I propose a way of visualising these leaps of 
insight through network diagrams that display evidence of the mathematical structures 
students perceive as they work on challenging mathematical tasks. This visual approach is 
inspired by the success of another visual technique in a cognate field: functional magnetic 
resonance imaging (fMRI). Just as fMRI techniques enable neuroscientists to document and 
measure neural activity visually, so the diagrams described in this paper are intended to 
provide a visual way of studying shifts in students’ perceived mathematical structure. 

Not all shifts in perceived mathematical structure qualify as a leap of insight, however. 
Sometimes, students will elaborate on an existing mathematical structure by adding new 
mathematical objects, properties, operations and relationships, like a variation on a theme. 
By contrast, a leap of insight involves a significant reorganisation of mathematical structure 
that goes beyond incremental additions to an extant structure. This paper uses network 
diagrams to compare the size and quality of the shifts in mathematical structure that two 
participants perceived while working on an antiderivative task. 
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PERCEIVED MATHEMATICAL STRUCTURE 

The discipline of mathematics can be characterised as consisting of different types of 
structure: “Pure mathematics is the study of structures” (Shapiro, 1997, p. 75). These 
structures are made up of mathematical objects (such as counts, measures, sets), properties 
(e.g. few, large, open), operations (e.g. combine, enlarge, invert), and relationships (e.g. 
greater than, equivalent to, isomorphic), and different mathematical structures have different 
mathematical components. Applied mathematics also involves creating and manipulating 
mathematical models to describe structures in the world: “Mathematical models are distinct 
from other categories of models mainly because they focus on structural characteristics 
(rather than, for example, physical, biological, or artistic characteristics) of systems they 
describe” (Lesh & Harel, 2003, p. 159).  

The term “structure” is also used in theories of learning to describe how mathematical 
knowledge is represented in the mind. For example, Skemp (1987) describes understanding 
as the development of schemas, which are interconnected networks, and Piaget (1970) 
describes the growth of children’s cognitive structures. In this instance, the term “structure” 
is used to characterise mathematical knowledge, rather than simply mathematics, although 
the two characterisations are closely linked. I adopt a structural view of mathematics in my 
analysis of students’ mathematical insights. Accordingly, I seek to identify the mathematical 
structures (and consequently the mathematical objects, properties, operations and 
relationships) that students perceive and work with. I am more interested in characterising 
the content of students’ mathematical interpretations (i.e., what mathematical structures 
have they constructed and perceived?) than theorising how those interpretations are 
represented in their mind. Therefore, I use the term “mathematical structure” in this paper to 
refer to the mathematical objects, properties, operations and relationships that students 
perceive, rather than terms such as “construct”, “conceptual system” or “schema”, which are 
often associated with assumptions about the representation of knowledge more generally.  

I acknowledge that a person’s perceived mathematical structures can only be identified 
through the observable signs the person produces and works with. According to Arzarello, 
Paola, Robutti and Sabena (2009), these signs or semiotic systems may involve spoken 
language, gestures, written text, symbols, diagrams, graphs and physical artefacts. 
Consequently, I analyse the semiotic systems that students produce while working on a task 
in order to identify the mathematical structures they perceive. The use of the term 
“perceive” is not meant to suggest that the mathematical structures are “in” the problem, 
hidden for students to find. Instead, I use the term “perceived mathematical structure” to 
emphasise that I am trying to identify the mathematical structures that students themselves 
construct, recall and manipulate in order to solve the problem. 

METHOD 

The data used in this paper were collected as part of a project that investigated students’ 
construction of calculus concepts (Yoon, Dreyfus & Thomas, 2010). Twelve participants 
worked in pairs on four calculus tasks of one-hour duration each. Ten participants were 
undergraduate students, two were secondary school mathematics teachers, and all had basic 
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school-level knowledge of calculus at the time. The participant pairs worked in the presence 
of a researcher who clarified task instructions but refrained from giving mathematical 
direction. The pairs were videotaped and audiotaped on each of the four tasks, which led to 
24 verbal transcripts. These transcripts were annotated to include the gestures, inscriptions 
and nonverbal cues that participants performed or created. 

This paper reports on the shifts in perceived structure identified from participants working 
on the first task—the tramping activity (described below). In order to identify these shifts in 
structure, I developed a coding scheme using design research principles (Kelly, Baek, & 
Lesh, 2008). I began by developing an initial list of codes to identify the mathematical 
objects, properties, operations and relationships that could be encountered during the 
activity. Then, two research assistants and I entered into design cycles of implementing, 
testing and revising the coding scheme on three transcripts (which were analysed in 
conjunction with the associated video and images of student work). We coded portions of 
transcripts independently then met to compare and identify coding discrepancies. I used 
these discrepancies to inform revisions in the coding scheme, which we again tested through 
independent coding, comparisons, and further revisions. Following this, a third research 
assistant who had not been involved in the process joined us in further design cycles. This 
measure was taken to enhance the reusability of the coding scheme.  

Table 1: A selection of objects and properties from the coding scheme 
 OBJECTS PROPERTIES 

Related to the 
gradient graph 

y-value  Large, small, zero, bigger than, etc. 
Change in y-value  Increasing, decreasing, constant 
Sign of y-value Positive, negative 
Maxima/minima Number, order, location 
x-axis intercepts Number, order, location 
Size of bumps/dips on g-graph Big, small, relative size 

Related to the 
tramping track 
(antiderivative) 

Steepness of slope  Steep, gentle, flat, steeper than, etc. 
Change in steepness of slope  Getting steeper, getting gentler, no change 
Direction of slope  Up, down, flat 
Absolute height  High, low, at or below sea level, etc. 
Points of inflection Location, number, order 
Horizontal distance of track Long, short, longer than, shorter than, etc 

The design process lasted six months, during which the design team met more than 20 times 
to compare and discuss our coding. The process was repeated to develop a coding scheme 
for the fourth task (for a description of the fourth task, see Yoon, Thomas & Dreyfus, 
2011a), which informed further revisions of the coding scheme for the first task. All of the 
six transcripts of the first task were then recoded using the final coding scheme (which 
consists of over 100 codes), and the mathematical structures were represented in network 
diagrams. Table 1 shows a small selection of the codes from the final scheme that were used 
to identify mathematical objects and properties that students perceived during the first task. 
Antidifferentiation was the main mathematical operation in this task, and the list of 
mathematical relationships included equivalences, comparisons, and logical relationships. 
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Description of the tramping activity 

The activity begins with a warmup, where students are given a distance-height graph of a 
tramping (hiking) track (Figure 1a), and instructed to calculate gradients of the track at 
certain points, and sketch the gradient graph (derivative) of the track (Figure 1c). Students 
are then shown a graph of a similar, flatter tramping track (Figure 1b), and are asked to 
sketch the gradient graph of this track (Figure 1d) without calculating any actual gradients.  

 
Figure 1: Graphs of two tramping tracks (1a & 1b) and their gradient graphs (1c & 1d) 

Next, students are given the problem statement (see Figure 2), which asks them to design a 
method for drawing the distance-height graph of any tramping track from its gradient graph. 
This task is mathematically equivalent to finding the graphical antiderivative of a function 
presented graphically. Students are asked to explain their method in the form of a letter 
addressed to hypothetical clients (the O’Neills) and to use their method to find features of a 
specific track whose gradient graph is given in Figure 2.  

  
Figure 2: Graph of a tramping track’s gradient and the problem statement 
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RESULTS 

The diagrams presented in this section describe the evolution of two kinds of mathematical 
structure that Ava and Noa (the pair of teachers in the study) perceived during the tramping 
activity (for more detail about these participants, see Yoon, Thomas & Dreyfus, 2011b). 
The first type of perceived structure involved determining whether x-axis intercepts in the 
gradient graph correspond to maxima or minima in the tramping track. The second dealt 
with interpreting how the “bump size” in the gradient graph relates to the height (y-value) of 
summits and valleys in the tramping track. Ava and Noa also perceived many other types of 
mathematical structures, but these two were chosen because they illustrate different kinds of 
shifts in perceived structure. Ava and Noa frequently referred to features of the gradient 
graph and the tramping track in their work. These features are shown in Figures 3a and 3b: 
the latter diagram shows the distance-height graph of the tramping track that Ava and Noa 
drew, which is a reasonably accurate depiction of the main features of the track.  

 
Figure 3. Some features of the gradient graph (a) and the tramping track (b) 

1. Perceived mathematical structure regarding x-axis intercepts on the gradient graph 

During the warmup to the activity, Ava and Noa notice that the gradient is zero at the 
summit of the track (Figure 1a), and they plot this in the corresponding gradient graph 
(Figure 1c). When they begin the actual antiderivative problem (Figure 2), they reason that 
the first x-axis intercept in the gradient graph (point A in Figure 3a) corresponds to a flat 
gradient of the track, but are unsure whether this is due to a summit or a valley. They notice 
that the shape of the warmup gradient graph (Figure 1a) to the left of the x-axis intercept is 
similar to the shape of the analogous part of the given gradient graph (i.e., the curve to the 
left of point A on Figure 3a). They reason that the first x-axis intercept in the given gradient 
graph corresponds to a summit since the x-axis intercept in the warmup gradient graph does. 

The diagrams in Figure 4a and 4b portray the relevant mathematical structures described so 
far. Notably, Ava and Noa do not interpret the shape of the graph to the left of the x-axis 
intercept in terms of the gradient of the track (e.g., positive gradient, with increasing then 
decreasing steepness), but rather in terms of its geometry, and its similarity to that of the 
warmup gradient graph was used to argue the presence of a summit. This changes when 
Ava and Noa trace along the gradient graph (from left to right) with one hand, and visualise 
the track using gestures in their other hand, then draw the graph of the track (see Yoon et 
al., 2011b for more detail on these gestures). They attend to the sign and changing size of 
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the y-value of the gradient graph before each x-axis intercept, interpret the corresponding 
direction and changing steepness of the gradient, and thereby determine whether the 
intercepts corresponded to peaks or valleys in the track. For example, they notice that the 
y-value is positive but decreasing over section a in Figure 3a, they reason that this 
corresponds to the track being uphill but getting gentler over section a in Figure 3b, and that 
point A in Figure 3a corresponds to a summit. They reason similarly for sections b and c and 
points B and C in Figures 3a and 3b. The elaborations to the previous mathematical 
structures are shown in Figure 4c.  

 
Figure 4(a-c): Diagrams showing the construction of concepts related to x-axis intercepts 

The next shift involves a more significant reorganisation in Ava and Noa’s perceived 
mathematical structure. They generalise that when a gradient graph crosses from positive 
values to negative values, the x-axis intercept corresponds to a peak (maximum) in the track 
and vice versa for valleys (minima). In this new perceived structure, Ava and Noa widen 
their focus to consider the gradient after the x-axis intercept as well as before. At the same 
time, they narrow their focus to consider only the discrete change in the sign of the gradient 
graph (positive to negative) rather than the shape of the graph, or the continuous variation in 
its y-value. The revised structure is simpler and more elegant as it uses few elements to 
synthesise many of the previous objects and relationships: the change in sign eliminates the 
need to consider the continuous change in y-value before each x-axis intercept.  
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Figure 5: The final mathematical structure regarding x-axis intercepts on the gradient graph 

2. Perceived mathematical structure regarding the height of the tramping track 

 
Figure 6(a-e): Diagrams showing the construction of concepts related to height 

Ava and Noa first consider the height (y-value) of features of the tramping track when Ava 
draws the graph of the track. Initially, she draws the valley at sea level (this is visible in 
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Figure 3b), but Noa points out that the valley may be above sea level. Ava revises her 
drawing, reasoning that as the first bump is bigger than the second bump on the gradient 
graph (see Figure 3a), the ascent to the first summit is steeper than the descent to the valley 
and therefore, the valley must be above sea level. Noa agrees, saying, “Steeper for longer 
must be higher”. Figure 6b shows that this comment suggests the structure Noa perceives is 
slightly different to Ava’s (Figure 6a): Noa’s structure introduces a new mathematical 
object and relationship, the horizontal distance during which steepness is measured. Next, 
they notice that the larger bumps in Figure 1c correspond to a higher summit in Figure 1a, 
and the smaller bumps in Figure 1d correspond to a lower summit in Figure 1b, and reason 
that these relationships hold generally. Figure 6c shows that their perceived mathematical 
structure is an elaboration of the same basic structure perceived in Figure 6a. 

Then, Ava and Noa try to consider how integration and the area under the curve could help 
them establish the height of the track’s features more accurately. Ava says, “If you’ve got 
the gradient function how do you get back to the initial function? You need to integrate. 
Right, so we could integrate this function to provide a value? Yes, we could, couldn’t we?” 
and shades in the area under the bumps in Figure 3a. Noa agrees and they try to apply their 
knowledge of integration and area under the curve to the problem. However, their 
discussion of integration is firmly rooted in the context of distance, time, and speed, rather 
than the context of slope and height, and they abandon this pursuit after failing to link their 
knowledge of integration to the mathematical structures they have created. 

     
Figure 7: The final mathematical structure regarding the height of the tramping track 

They return to their previous assertion that the size of bumps on the gradient graph 
corresponds to the steepness of the track, and is consequently an indicator of the vertical 
displacement in the track. Noa then rejects this, saying, “You could have [a bump] that’s 
just got a shallow gradient but just goes on for ages (traces shallow gradient from point C in 
Figure 3a), so you could end up being really high, but not really steep to get there.” This 
demonstrates a more sophisticated understanding of the interaction between steepness and 
track height, as it incorporates (like Figure 6b) the additional dimension of horizontal 
distance (see Figure 6e). However, Noa uses this as a counterexample of their previous rule, 
rather than an opportunity to expand the mathematical structure. In the end, they adopt a 
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more conservative rule—that the vertical amplitude of the bumps on the gradient graph 
indicates the steepness, but not the height of the track.  

The diagram in Figure 7 displays the final mathematical structure perceived by Ava and 
Noa regarding the question of the height of the antiderivative. Their final structure fails to 
incorporate many of the objects and relationships that were considered throughout Figures 
6a-e, and which could be linked to explain how the area under the curve of the bumps 
(approximated by their vertical amplitude multiplied by their horizontal length) informs the 
height of the track at various points. Instead, the structure shrinks to a more conservative set 
of objects and relationships, and abandons the question of the height of the track altogether.  

DISCUSSION AND FUTURE DIRECTIONS 

The results show considerable variation in the size of shifts in perceived mathematical 
structure. Incremental changes are characterised by the objects being refined, and varied, 
without changing the structure significantly: such changes are visible between Figures 4b to 
4c, and 6a to 6c. More significant changes occur when new objects, properties and 
relationships are incorporated into the structures. For example, Figure 6b shows a new 
object, the horizontal distance, being connected to the previous structure from Figure 6a, 
and Figure 6d shows the introduction of a completely new structure.  

A leap of insight can be identified in Figure 5, where previous objects describing the 
continuous variation in size of the y-value from Figure 4c are incorporated into a 
mathematical structure that is stronger, deeper and more robust. I will clarify what I mean 
by these terms by comparing the structures depicted in Figures 5 and 7. First, the strength of 
a structure refers to its internal connectivity. Whereas the structure shown in Figure 5 is 
well connected, with previous objects being incorporated into new objects, the structures in 
Figure 7 are poorly connected, with the structure regarding integration disconnected 
altogether to the size of the bump on the gradient graph. The depth of a structure can be 
visualised as layers in a structure. The structure in Figure 5 consists of two layers: the 
objects and relationships with dotted lines can be visualised as sitting below the rest of the 
structure, much like a secondary layer of explanation that props up the first. In comparison, 
the structures in Figure 7 are all of the same depth as there has been no incorporation of one 
layer into another. Finally, the robustness of a structure describes its explanatory power. 
The structure in Figure 5 can be expanded easily to identify points of inflection from x-axis 
intercepts in the gradient graph, not just turning points. Thus, it is more robust than the 
structure in Figure 4c, which would need to be altered significantly to include objects and 
relationships that describe the behaviour of the gradient graph after an x-axis intercept in 
order to identify points of inflection. Similarly, the structure in Figure 7 is less robust than 
that in Figure 6a, as it cannot explain the height of the antiderivative track.  

The results shown in this paper are a small part of a larger research programme dedicated to 
mapping students’ mathematical conceptual shifts in order to understand how such shifts 
come about, and how to facilitate their occurrence in practice. Similar analyses have been 
carried out to identify the shifts experienced by different participants working on different 
tasks. My immediate goal is to display the network diagrams in a dynamic format, so that 
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researchers can observe the mathematical structures evolve over time. In the long term, I 
plan to create a software programme that automates the construction of these dynamic 
network diagrams, so that other researchers can use similar procedures to study 
mathematical leaps of insight in any mathematical domain.  

ACKNOWLEDGEMENTS 

I wish to thank Tommy Dreyfus and Mike Thomas, who gave me permission to use in this 
paper data that we collected together in a joint project, and Tessa Miskell, Joseph Nelson 
and John Moala, who tested and helped revise the coding scheme described in the paper.  

REFERENCES 
Arzarello, F., Paola, D., Robutti, O., & Sabena, C. (2009). Gestures as semiotic resources in 

the mathematics classroom. Educational Studies in Mathematics, 70(2), 97-109. 
Hadamard, J. (1954). The psychology of invention in the mathematical field. New York: 

Dover Publications. 
Kelly, A., Baek, J., & Lesh, R. (2008). The Handbook of Design Research. Mahwah, NJ: 

Lawrence Erlbaum Associates 
Lesh, R., & Harel, G. (2003). Problem solving, modeling, and local conceptual development. 

Mathematical Thinking and Learning, 5(2&3), 157-189. 
Liljedahl, P. (2005). Mathematical discovery and affect: The effect of AHA! experiences on 

undergraduate mathematics students. International Journal of Mathematical Education in 
Science and Technology, 36(2-3), 219-236. 

Piaget, J. (1970). Genetic epistemology (E. Duckworth, Trans.). New York: Columbia 
University Press. 

Poincaré, H. (1956). Mathematical creation. In J. Newman (Ed.), The world of mathematics 
(pp. 2041–2050). New York: Simon & Schuster. (Original work published in 1908) 

Shapiro, S. (1997). Philosophy of mathematics: Structure and ontology. New York, NY: 
Oxford University Press. 

Skemp, R. R. (1987). The psychology of learning mathematics. Hillsdale, New Jersey: 
Lawrence Erlbaum Associates, Inc. 

Yoon, C., Dreyfus, T., Thomas, M. O. J. (2010). How high is the tramping track? 
Mathematising and applying in a calculus model eliciting activity. Mathematics 
Education Research Journal, 22(2), 141-157. 

Yoon, C., Thomas, M. O. J. & Dreyfus, T. (2011a). Gestures and insight in advanced 
mathematical thinking. International Journal on Mathematics Education in Science and 
Technology, 42(7), 891-902.  

Yoon, C., Thomas, M. O. J. & Dreyfus, T. (2011b). Grounded Blends and Mathematical 
Gesture Spaces: Developing Mathematical Understandings via Gestures. Educational 
Studies in Mathematics, 78(3), 371-303. 

 


