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The gulf between empirical and deductive reasoning is a global problem that has produced many 
students who have extreme difficulties learning proofs. In this paper, we explore the conditions that 
aid students in entering into proof learning and how they can increase their ability before learning 
proofs through design experiments. First we discuss the theoretical backgrounds of the holistic 
perspective and didactical situation theory, and set our research framework as the transition from 
empirical to theoretical recognition consisting of the three aspects of inference, figure, and social 
influence. Next, we report our design experiments in plane geometry redesigned for the seventh grade, 
and examine how students may enter the world of proof by learning geometric transformation and 
construction as summarized in the three aspects of the framework. Finally, we suggest key ideas for 
designing lessons that promote transition. 
Key words: Transition to geometric proof, holistic perspective, empirical and deductive reasoning 
 

PROBLEMS WITH PREREQUISITES AND THE NECESSITY OF LEARNING 
PROOF 

Proving is an essential activity in mathematics that has occupied an important content area in 
school mathematics. However, extreme difficulties with proof learning have continued to be 
a global problem. Research has indicated that the gaps between empirical and deductive 
reasoning cause a large number of secondary students to fail to learn proof (Hirabayashi, 
1986; Harel and Sowder, 2007). Nevertheless, it remains unclear how students can increase 
their abilities to bridge this gap, which is the issue we explore in this paper. 

We consider the gap between empirical and deductive reasoning as being identified by the 
van Hiele model (1986) as a difference between the second and third levels of thinking. In the 
second level of thinking, students “explicitly attend to, conceptualize, and specify shapes by 
describing their parts and spatial relationships between the parts” while in the third level they 
“explicitly interrelate and make inferences about geometric properties of shapes” and 
“logically organize sets of properties (Battista, 2007). Several researchers have indicated that 
even after students learned formal proof many of them continue to use empirical arguments 
from the second level of thinking (Chazan, 1993; Koseki, 1984), such as basing their 
responses on appearances in drawings or proving statements by providing specific examples, 
and are not able to distinguish between inductive and deductive arguments (Harel and 
Sowder, 2007). However, our intention is not to compare between the empirical-inductive 
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and deductive forms of argument, but rather to reexamine them from the perspective of 
transition from the former to the latter. 

Moreover, several Japanese researchers with teaching experience have indicated a 
problematic situation in proof teaching whereby students do not feel the necessity for 
learning proofs (Ohta, 1998; Souma, 1998; Kunimune, 2003). As reasons for this they 
suggested that students already know the properties and thus few new properties need to be 
explored, so it is a determined geometric system that is given to students. For example, the 
equality of base angles in an isosceles triangle has already been confirmed by folding a piece 
of paper in elementary school, and therefore the students find it hard to understand the 
significance of proving the properties of isosceles triangles and parallelograms. Instead they 
proposed the idea of “proving as inquiry” (Ohta, 1998; Sekiguchi, 2002). For proof learning 
to be accompanied by necessity, Ohta insists that we should “situate proofs in the learning 
tasks to solve problems from a real life or to explore the interesting properties of geometric 
figure, and to encourage students to see the significance and structure of proof through 
gradually systemizing them”. Stylianides (2007) also indicated that the sudden introduction 
of proof causes difficulties. We think that these factors cause students to miss the point of 
why they are learning proof. 

We thus consider it important to emphasize the functions of proof (de Villiers, 1990), in 
particular the function of explanation because formal proof that only focuses on verification 
causes students to remove much of the significance (Hanna and Jahnke, 1996). Furthermore, 
as Hanna (1991) shows, mathematicians regard the appeal of the theorem to be more 
important than that of rigorous proof, and it may be necessary to consider what interesting 
situations the theorem can treat and solve. Tall (2008) also indicated that “written formal 
proof is the final stage of mathematical thinking; it builds on experiences of what theorems 
might be worth proving and how the proof might be carried out, often building implicitly on 
embodied and symbolic experience”. Without considering this, students may not direct their 
attention towards formal proof. 

We examine in this paper what conditions enable students to learn proof and how they can 
develop their reasoning abilities before learning proof so that they overcome the gap between 
empirical and deductive reasoning. We think that this is consistent with recent attempts that 
continually foster proving of statements from the elementary stage under a wider concept of 
proof (NCTM, 2000; Stylianides, 2007). At the same time, we think that we cannot avoid the 
problem of necessity. If students begin learning the significance of proof, they will have a 
good chance of learning successfully. Thus, our second focus is how we can create a situation 
in which students are able to prove with necessity. For these purposes, a large number of 
practical studies will be necessary. However, very little research has so far looked at proving 
practices in the classroom (Knipping, 2008). We later examine how students get their ability 
for proof learning through our classroom design experiments. 

Below, we begin by considering a perspective that permits proving as inquiry. 
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THE HOLISTIC PERSPECTIVE AND DIDACTICAL SITUATION THEORY 

We now introduce the philosophical stances of the holistic and systemic perspectives (Miller, 
2007; Wittmann, 2001), not distinguishing between the two terms but showing the central 
ideas. 

The holistic perspective is in a sense an antithesis of the mechanistic and atomistic view that 
has dominated our way of thinking and living in various respects since the industrial 
revolution (Hirabayashi, 1987; Sato, 1996; Wittmann, 1995, 2001). In the atomistic view, the 
whole consists of the separate parts and so the whole is acquired by learning the parts 
separately. This view may induce teachers to break up the content, arrange it sequentially and 
teach it piece by piece. Harel and Sowder (2007) reported that the stereotype of a US class is 
“students check homework, teacher illustrates something new, students then do seat-work or 
homework to practice the new material,” which we suggest to be an influence of the atomistic 
and mechanistic view. 

Meanwhile, holism is the view that the whole is not the sum of its parts but is the whole itself 
in principle. When students, even those who have good mathematical competence, often say, 
“I don’t know what we are learning, where we are going, what mathematics is good for”, 
these comments can be interpreted as anxiety at not seeing the whole. In this regard, we may 
note that holism does not approve of totalism which consolidates all things into the fixed total, 
but emphasizes the relations between the whole and the parts, or that the whole can come to 
be a part of the larger whole.  

Holistic education is also a result of reflection on the history of education in which policy has 
gone back and forth between emphases on the individual child’ knowledge and skills and on 
the application to real life contexts, and tries to synthesize both to open up new horizons for 
education (Yoshida, 1999). We think that the definition of holistic education given by Miller 
(2007) is important in mathematics education: 

The focus of holistic education is on relationships: the relationship between linear thinking 
and intuition, the relationship between mind and body, the relationships among various 
domains of knowledge, the relationship between the individual and community, the 
relationship to the earth, and our relationship to our souls. In the holistic curriculum the 
student examines these relationships so that he or she gains both an awareness of them and 
the skills necessary to transform the relationships where it is appropriate. 

Holistic education has several keywords such as “relationships”, “balance”, “inclusion”, and 
“connection”. We may consider at least three aspects of this even if we limit our scope to 
mathematics. One aspect is knowledge formation where emphasis is placed on connections 
between intuition, logic, prior or everyday knowledge, and the ideas of others. The second 
aspect is human relationships, which may include fellowships, norms, or attitudes in the 
classroom. The third aspect is the innermost self. Education aims to give students encounters 
of experience so that the self is moved, where there is a connection between the external ego 
and the internal self. Here “the student is not reduced to a set of learning competencies or 
thinking skills but is seen as a whole being” that includes aesthetic, ethical, physical and 
spiritual aspects. 
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Holistic education integrates two strands. One is humanistic education that concerns the 
growth of humanity in each student, and the other concerns social change towards an equal 
and cooperative society. In mathematics education, the former has been integrated into 
mathematics as a human activity by several founders, such as Gattegno, Wheeler, Brown and 
Hirabayashi (Hirabayashi, 1987, 2001; Koyama, 2007). The latter strand has been recognized 
by teachers in Japan. Here, some excellent teachers share their thoughts: “Only after the 
feelings of ‘everybody is different and everybody is nice’ come into being in child’s mind the 
rich mathematics lesson in creativity is possible” (Tsubota, 2001), and “I specialize 
elementary mathematics teaching. Through teaching mathematics, I am guiding students’ life, 
deepening child’s compassion, and fostering classroom camaraderie” (Takii, 2001). We 
think that the holistic view may reflect more or less an East Asian way of thinking. The theme 
of PME 31 in Korea was “School Mathematics for Humanity Education”. The holistic view 
sympathizes with the Chinese philosophy of Laozi and Zhuangzi (Hirabayashi, 2001; 
Wittmann, 2001). Wittmann expresses it as “leaders should not interface with the natural 
powers and inclinations of their clients, but should instead build upon self-organization and 
offer help for self-help”. Here, Wittmann considers mathematics education as design science, 
which sympathizes with our research stance. 

We may then consider how we can realize the holistic view in the classroom. We think that it 
may be a basic didactical device for constructing rich situations in which students can 
identify various relationships (Hirabayashi, 2001; Wittmann, 2001; Yoshida, 1999). In this 
sense, we turn out attention to Brousseau’s (1997) didactical situation theory for that 
realization. Brousseau conceives of knowledge (knowing) as characterized by a (or some) 
“adidactical situation” and describes the learning process by which knowledge and situation 
develop reciprocally. He distinguishes three statuses of knowledge in the history of 
mathematics: protomathematical, paramathematical, and mathematical. An example he gives 
of the protomathematical stage is that al-Khowarizmi had constructed many ideas with 
rational numbers but not really with real numbers. An example of the paramathematical stage 
is function in the nineteenth century, where “in the absence of recognized mathematical 
status, their terms used are tools which respond to the needs of identification, formulation and 
communication and that their use is based on a semantic control”. In the final mathematical 
stage, a concept is put “under the control of a mathematical theory” and has “its exact 
definition in terms of structures in which it intervenes and of the properties that it satisfies”. 

The three types of knowledge are sustained by situations for action, formulation, and 
validation, respectively. Students first construct their (informal) ideas from their interaction 
with a fundamental situation like a game or a problem that is the situation for action. In 
situations for formulation they use their ideas practically or explain them to others, so the 
ideas may take on a character of usability (tool) and the ideas of others enter the situation. 
Furthermore, in situations for validation, students objectify the messages that have been 
exchanged with others and develop their knowledge of mathematical and theoretical ideas. 
Okazaki (2003) schematized the process by which the three situations develop as follows 
(Fig. 1). 

 



Last names of authors in order as on the paper 

 

ICME-12, 2012 abcde+2 

 

    

 

 

Figure 1. Learning process in didactical situation theory 

There are several holistic characteristics within didactical situation theory. The process shows 
that students develop their ideas among various relationships through interacting with the 
situations and with other people. It also attempts to design mathematics classes that cover the 
improvement of human relationships by didactical engineering (Douady, 1997). It seems that 
didactical situation theory suggests a way of realizing holistic views. 

Finally, if we see the theory in terms of proving activity, it places us in situations for 
validation. The theory suggests that the preceding stages are necessary to reach proof 
learning. Brousseau (1997) also indicates that the paramathematical stage has continued for a 
long period in the history of mathematics. If we wish to invite all students into a world of 
proving, we should clarify what activities are needed in situations for action and formulation 
to prepare for effective proof learning, what opportunities create the feeling of the necessity 
to prove something and how these proving activities can emerge and develop. 

TRANSITION FROM EMPIRICAL TO DEDUCTIVE RECOGNITION 

First let us briefly introduce the teaching of proof in Japan. The importance of proof has been 
recognized since the end of the nineteenth century when Japan imported western 
mathematics. Formal proof is now introduced in the eighth grade where propositions about 
isosceles triangles, right triangles, and parallelograms are proved mainly using conditions for 
congruent triangles. In the seventh grade, a year before introducing proof, students learn 
geometric constructions and transformations, not in a rigorous way, but rather intuitively as a 
prerequisite for learning proof. However, the connection between constructions, 
transformations and proof has not succeeded so far, and proof has remained one of most 
difficult concepts for Japanese students to learn.  

Empirical and deductive proof schema 

Harel and Sowder (2007) indicate several typical views of proof that students have: (A) 
external conviction proof schemes (authoritarian, ritual, and non-referential symbolic), (B) 
empirical proof schemes (inductive and perceptual), and (C) deductive proof schemes 
(transformational and axiomatic). (A) is a heteronomous case that depends on the authority of 
the teacher and textbook, or the superficial appearance of a written proof. (B) is a conception 
of proof by giving examples or experimenting and measuring. Kunimune (2003) reported 
that 92% of Japanese eight graders and 77% of ninth graders thought it acceptable to use 
experimentation and measurement. Chazan (1993) also reports that students have the belief 
that evidence is proof and that proof is just evidence. (C) is divided into deductive reasoning 
and the understanding of the meaning and roles of axioms. 

Situation for action Situation for formulation Situation for validation 

Protomathematical 
(Idea) 

Paramathematical 
(Tool) 

Mathematical 
(Object) 

Problem, game [P] P + Others [O] 

Knowledge 
(Characteristic) 

Situations P + O + Message [M] 
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(B) and (C) may be historically likened to pre-Greek and Greek mathematics, respectively. 
Harel and Sowder see not just that the Greeks pushed mathematics from a practical tool to the 
study of abstract entities and produced a proof method, but also that the consideration of the 
nature of existence and inference applied to existence progressed in parallel, namely that the 
object and the method are epistemologically dependent. If so, even if we teach students just 
the method of proof without changing the existence of a geometric figure, an inconsistency 
between the method and the object may arise. Moreover, they indicated that Greeks wished to 
create a consistent system that avoided paradoxes. The study of consistency presupposes the 
existence of a substantial number of laws, as was the actual situation in Greece. However, it 
does not seem that current geometry students have as many laws as they feel necessary for 
organization before learning proof. Hirabayashi (1991) indicated that “an introduction of 
proof may be impossible until students come to view geometric figure as a set of properties 
and relations, but not as the intuitive shape”. 

They also point to the continuity between the empirical and the deductive proof schemes. 
They state that “the construction of new knowledge does not take place in a vacuum but is 
shaped by existing knowledge,” and “the empirical proof schemes are inevitable because 
natural, everyday thinking utilized examples so much. Moreover, these schemes have value 
in the doing and the creating of mathematics... The question is how to help students utilize 
their existing proof schemes, largely empirical and external, to help develop deductive proof 
schemes?” Our research question addresses this very point. We consider the teaching and 
curriculum for developing empirical proof schemes towards deductive schemes below. 

THE RESEARCH FRAMEWORK FOR ANALYZING THE TRANSITION FROM 
EMPIRICAL TO DEDUCTIVE RECOGNITIONS 

We consider next the research framework for analyzing the transition process students follow 
towards geometric proof, which consists of inference, figure, and social influence. 

Learning geometric construction is crucial for extending students’ empirical recognition to 
deductive recognition. Mariotti (2000) states that “geometrical constructions have a 
theoretical meaning. The tools and rules of their use have a counterpart in the axioms and 
theorems of a theoretical system, so that any construction corresponds to a specific theorem,” 
where she emphasized a need to shift from the construction procedure to a justification of the 
procedure itself. Tall (2008) also refers to the shift of the focus of attention from the steps of 
a procedure to the effect of the procedure in the compression from procedure to process.  

Okazaki and Iwasaki (2003) identified several functions of geometric constructions in the 
teaching experiments: evoking shapes and putting their properties into play, constructing 
propositions, facilitating the recognition of hypothesis-conclusion, and enhancing the 
recognition of definition. However, we do not think this is possible with the current teaching 
where the procedures of drawing perpendicular bisector, perpendicular, and angle bisector 
are taught in a manner such as: ‘Draw a circle with center O and any radius and let the 
intersections with side OA and OB be C and D respectively. Draw circles with centers C and 
D of equal radius and let the intersection be P. Draw the ray OP’. Such knowledge may not 
provide a good basis for students in their proof learning. 
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Instead, we should consider that perpendicular 
bisector, perpendicular, and angle bisector are 
integrated in a kite or a rhombus (van Hiele, 
1986). Thus, if we imagine a kite, then we can 
construct each of these (Figure 2). Because of 
the definition for constructing a kite (“two 
pairs of adjacent sides are equal”), 
perpendicular and angle bisector are then deduced as properties of the diagonals. If we 
symbolize this as if AB = AD and BC = DC then AC BD, then it may be changed into a 
proposition. Thus, geometric construction is not just the procedure but also the tool for 
exploring the relationships between the properties of geometric figure. Therefore, it is 
important to adequately situate geometric construction in the transition stage. 

Next, we must also consider that proving can be essentially characterized as the interactions 
between an individual’s discursive inferences and visualizations (Koseki, 1987; Duval, 2002; 
Battista, 2007). Murakami (1994) states that the figures in proof have characteristics of the 
proof model which shows structure, tool and variability. Also, Duval (1998) sees the figure in 
proof as configurations of several constituent gestalts in 1D, 2D, and 3D, and states that the 
relationships between several constituents need to be recognized by discursive language for 
each constituent figure. Thus it is necessary to recognize that the figure can represent 
geometric relations and contain the data, and if we can clarify the nature of reasoning using 
shape then proof teaching will be improved. However, the opportunities for reasoning by 
seeing a figure as a set of constituents are rarely encountered before the introduction of proof 
in the current curriculum. Later, we consider this in the learning of geometric transformation. 

 Moreover, social influence is another factor that we regard as essential in the proof learning. 
Fawcett’s (1938) study remains fresh today. He emphasizes the importance of re-examining 
the hypothesis of orienting human behavior behind belief or of clarifying the significance of 
definition and premise, with the purpose of cultivating critical and reflective thinking in 
accepting or rejecting conclusions. We think it necessary to clarify the characteristics of the 
social influences when students construct proof in classroom discussions. 

We determine our research framework by considering the three aspects of inference, figure 
and social influence so as to clarify students’ development towards proof learning, and we 
clarify the substance in a bottom up manner through the design experiments below. We also 
regard the three aspects not as independent but as interrelated with each other. 

Elementary stage: To comprehend the properties of figure inductively and empirically 

Transitional stage: 

- Aspects of inference 
- Aspects of figure 
- Aspects of social influence 

Secondary stage: To prove the statements deductively and using symbols and languages 

Figure 3. Triad of aspects for analyzing the transition towards geometric proof. 

 
Figure 2. 
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DESIGN EXPERIMENTS ON THE TRANSITION TOWARDS PROOF 

Participants, the design of teaching units, and methods 

We conducted our design experiments around the seventh grade unit on plane geometry in 
two classrooms at a public junior high school in Japan. We had 21 lessons of 40 minutes each 
for each classroom. The classrooms were typical in Japan in which the students’ abilities 
were judged as average for public schools from the usual tests. They had already learned the 
properties of geometric figures empirically in elementary school. 

We intended to redesign the lessons on geometric transformations and 
constructions to bridge the gap to formal proof in the eighth grade. We 
chose the hemp leaf figure (Fig. 4) from traditional Japanese design as 
a fundamental reference figure for the whole unit, and constructed the 
teaching based on figure. The teaching unit was divided into four 
subunits: (1) the discovery game for figures, (2) the jintori game 
(transformations), (3) the discovery game for constructions, and (4) 
the construction and proof of the center of rotation. In designing the 
teaching sequence for each subunit, we referred to the ideas of situations for action, 
formulation and validation from Brousseau's (1997) didactical situation theory. Moreover, 
for teaching and learning, the classroom was often divided into two groups where the 
students were encouraged to propose their discoveries and refute them with each other, each 
proposal being given a point and each counter-example two points. Brief lesson overviews 
are given in the following table. 

Subunit Nth lesson Overview of the lesson 
1 1 

2 
3-7 
 
 
8-9 

Making the hemp leaf using Origami 
The construction of a hexagon using compass and ruler 
The discovery game for figures. The students found the figures included in 
the hemp leaf (e.g. rhombus, kite, cube) and the properties (e.g. parallel, 
perpendicular, symmetry), and justified their findings with each other. 
The properties of the figures of line symmetry and point symmetry 

2 1 
2 
3 
4 

Introduction of three transformations and jintori game (described below) 
The games within small groups and the reflections 
Multiple transformations and how to transform to the empty places 
The games in the whole class session and summary 

3 1 
2-3 
 
4 

Introduction and discovery games for geometric constructions 
The construction of a kite and its relationship with the constructions of 
perpendicular, perpendicular bisector, and angle bisector 
Symbolizing the procedures of the three constructions 

4 1-4 The construction and proof of the center of rotation (described below) 
Our design experiment was conducted according to the methodologies of Cobb et al. (2003). 
All lessons were recorded on three video cameras and using field notes. We then made 
transcripts of the video data and conducted two types of data analysis. First was an ongoing 
analysis after each lesson. Here we analyzed what happened in the classroom in terms of the 
students’ activities and utterances. Thus, the original lesson plans would often be modified as 

 

Figure 4 
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a result of the analysis. Second was a retrospective analysis after all the classroom activities 
had finished. We used the grounded theory approach (Glaser and Strauss, 1967) to encode 
and conceptualize the students’ views by analyzing the transcripts and video data. Finally, we 
summarized those views in the theoretical framework. 

Jintori (position taking) game by transformations in the hemp leaf 

The second subunit dealt with geometric transformations in the Jintori (position taking) game. 
Our aim was to clarify how students may enhance their views of geometric figures and 
reasoning towards geometric proof. The rules of the game are that a pair of students first each 
decide upon a base position from the 18 isosceles triangles in the hemp leaf, then obtain the 
remaining positions alternately by translation, symmetry, and rotation from the base position. 
The person with the most positions wins. We also added the rule that they obtain a position if 
their explanation of how to transform from the base to the target position is accepted by the 
partner, since the intention is to improve recognition of relationships between figures and to 
have rich experiences of justification. We also prepared a tool for checking the 
transformations of each student. 

(1) Introduction of game and imagining transformations 

The teacher explains translation, symmetry, and rotation with 
demonstration, and then introduces the game with a help of a 
student (Noza) seated in the front row. Noza (base position 

JDE∆ ) and the teacher ( HOC∆ ) alternately got the positions as 
shown in Fig. 5 (No.: turn, triangle: teacher, star: Noza, T, S, and 
R: translation, symmetry, and rotation). After the explanation, the 
students played the game in pairs without being confused by the 
rules. The teacher instructed them to articulate the direction of 
translation, the axis of symmetry, and the center and the angle of 
rotation. 

We noted several characteristics among the students. First, they often envisioned their 
partner’s move by pointing to the target place just after his or her initial utterance like “I 
chose BE as the axis”. Second, they tried to get to positions that the partner may target. That 
is, they imagined how their partner may act. We also observed that they discussed with each 
other how the remaining positions could be reached beyond winning or losing. 

(2) Utilizing transformations as tools  

In the second lesson, we found that they used several strategies 
such as trying the same moves with their partner and changing the 
home position. Here, it seems that their interests were shifting from 
just enjoying the game to exploring the strategies and structure of 
the game. When the teacher asked what strategies they used, Noza 
stated that “I summarized all the positions I can get” (Fig. 6: base 
position: AGO∆ ). We think that Noza’s memo is essentially his 
strategy for winning the game and more importantly that it played 
a role in orienting the learning of the structure of the hemp leaf by transformations. The 

 
Figure 5 Noza vs teacher 

 
Figure 6 Noza’s memo 
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teacher asked whether there are other transformations different from Noza, and many students 
showed their interest by stating that there were the multiple transformations. Moreover, 
although he also asked whether moves to the three empty places in Noza’s memo were 
possible, nobody was able to respond. 

The teacher proposed that all students create Noza’s memo from another base place, KEF∆ , 
after confirming that there were two kinds of the base place, outer and inner. We found that 
they came to fully comprehend what places can be reached. We consider that the 
transformations gradually became their tools for exploring the structure of the hemp leaf. 

(3) Objectifying transformations 

In the third lesson, the teacher again asked them whether it is possible to move to the empty 
places. After some small group discussion, Miya explained “We use two moves. We first 
rotate it 60 degrees clockwise with the center at O and next flip it with BH as a crease. Then 
we can move it to the empty BCH∆ ”. However, the other students argued against this 
because the rules did not allow two consecutive transformations. The teacher then negotiated 
with the students and they agreed on the new rule that two moves are permitted. Under this 
rule they were able to fill in all the empty places. 

The teacher again asked if these transformations were possible by a 
single move. Ura stated “if we use the midpoint of BO and rotate 180 
degrees, we can move to HCB∆ ” and demonstrated it on the blackboard. 
The teacher gave each student a checking sheet and asked them to check 
it (Fig. 7). As many students had thought that one move was impossible, 
they were surprised and became inquisitive. Next, Noza proposed “we 
can maybe move to EJD∆  if we put C as the center and rotate 120 
degrees anticlockwise”, though the angle was wrong. The students 
checked it using a sheet and marveled at being able to move to a place 
they had thought impossible. When the teacher asked Noza how he 
found it, Noza stated “there is a rhombus A, B, C, and O, and C, O, E, 
and D also form a rhombus. Then, I displaced them.” We found that he 
not only considered the move from AGO∆ to EJD∆ , but the 
correspondence in terms of the rhombuses ABCO and EOCD, which 
include the object figures (Fig. 8). This idea helped the students 
recognize the rotation more clearly. 

At this point, the only remaining target was ICD∆ . The students were convinced 
that some move existed, saying “we can absolutely move it”. A little later, Hato 
discovered and stated that “point H is center and we rotate 120 degrees” and all 
the students checked it using a sheet. They were astonished about this, too. When 
we examined Noza’s notebook after the lesson, there was the picture of a kite in 
it (Fig. 9). While we assumed that the discoveries made by Ura, Noza, and Hato 
initially were exclusively for them, all students were able confirm them, with 
feelings of surprise, imaginarily or using the checking sheet.  

 

 
Figure 7 checking 

 
Figure 8 

 
Figure 9 
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(4) Discussion 

We next discuss the three aspects of the transition in the framework. 

From the aspect of inference, we think that the idea of 2-fold correspondences as seen above 
shows the characteristic of deductive reasoning. We can describe it as (a) the transformation 
from rhombuses ABCO to EOCD is possible (the major premise), (b) the triangle AGO in 
rhombus ABCO is same position as triangle EJD in EOCD (the minor premise), and therefore 
(c) the transformation from triangles AGO to EJD is possible (the conclusion). We think that 
this reasoning echoes Duval’s (1998) view of proof in which the relationships among the 
subfigures in the given figure are recognized through discursive language. It is noteworthy 
that this emerged from the students’ own explanations. 

We think that this is rooted in several conditions. First, the students used their abilities to 
imagine the transformations in their minds. They seemed to progress from predicting their 
partner’s move from his or her words to trying to take positions that the partner would not 
wish them to take. Next, the students were able to examine the possibilities and limits of 
transformations. Here, Noza’s memo that organized the transformations beforehand was a 
new horizon. It led to examining different moves and pursuing whether all positions can be 
reached. We think that the transformations became a tool for exploring the hemp leaf 
situation in the students’ recognition. 

Next, we think of the aspects of figures with reference to the above ideas as seeing various 
correspondences or relationships among the figures and the umbrella figures. As a premise 
for this, it may be necessary to be able to variously combine the figures. 

We should also pay attention to the above factors emerging with some social influences. It 
was by imagining the partner’s moves and pursuing the others’ thinking that the initial 
activity proceeded. The influence of Noza’s memo was crucial as stated above. Moreover, the 
idea of 2-fold correspondences emerged as a way of explaining concepts to others. We may 
thus think of the progress of learning as a process that internalizes and objectifies others 
peoples’ actions and thinking. 

Geometric construction of the center of rotation and its proof 

The task for the fourth unit was the construction of the center of rotation and the 
corresponding proof, since the students had already realized that rotation played a big role in 
the Jintori game in the second subunit and had just learned geometric constructions in the 
third subunit. As the students had not been taught what formal proof was, we regarded it as 
important that their arguments were based on some given premises and that they had feelings 
of conviction and persuasion. 

In the first lesson the teacher explained that in the jintori 
game, rotation made moves from one place to many 
other places possible. Then, after putting two triangles 
from the hemp leaf in arbitrary places on the blackboard, 
he asked “We want to superpose triangle ABC on 
triangle DEF. Where is the center of rotation?” 

 
Figure 10 
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(1) Investigation by trial and error 

The students first formed small groups to explore the problem. At the end of the lesson, each 
group presented its investigation to the whole class (Fig. 11). 

 
Construction (a) is an exploration based on the figures done by connecting an intuitively 
assumed point with the vertices of the triangles. Construction (b) shows an equilateral 
triangle that has edges of the length of AD. In (c), the students find the points equidistant 
from the vertices B and E and connect them with the other vertices, where they try to find the 
center by trial and error. In (d), we found from the remarks that they considered the 
perpendicular bisectors of AF, CD and BE. In (e), they connect the corresponding points to 
each other. We think that all ideas are effective in solving the problem, since if these are 
integrated it would lead to the discovery of how to construction the center of rotation.  

(2) Construction using the perpendicular bisector 

In the second lesson, a student, Simi, connected the pairs of 
corresponding points A and D, B and E, and C and F, and drew the 
perpendicular bisectors of the three segments. Although the third 
perpendicular bisector deviated a little from the intersection of first 
two bisectors, he displayed these as a point by making a small circle 
(Fig. 12). He seemed to be conscious of concurrency. Next, Miya 
drew three circles centered at the point Simi found that passed 
through the points A, B and C, and stated that the points D, E and F 
were on each circle (Fig. 13). The classmates agreed. By the end of 
the second lesson, Simi’s construction was accepted as a way of 
finding the center. 

(3) Justification of the construction 

In the third lesson, the teacher asked the students to justify why Simi’s 
construction was correct. After the individual activities, Seki stated, 
“I used the hemp leaf” (Fig. 14) and explained: 

Seki: The transformation from triangle AGO to CIO is 
possible by a rotation with the center at O. And we 
connect the corresponding points of triangles AGO 
and CIO. Then the intersection of the perpendicular 
bisectors of segments AC and GI is point O. So it is 
correct. 

 

Figure 11. Students’ constructions ((a), (b), (c), (d) and (e) from the left) 

 
Figure 12. 

 
Figure 13. 

 
Figure 14. 
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They became more convinced by her idea that used an example from the hemp leaf and thus 
extended the application field inductively. We found that the activities involving the hemp 
leaf in the former subunits formed a foundation. However, Oda then tried to refute the idea. 

Oda: When they are lined up like triangles FLO 
and OHC, the perpendicular bisectors of the 
segments connecting the corresponding 
points do not intersect. So the explanation 
does not apply to the parallel case. Therefore, 
it can’t be valid (Fig. 15). 

Many students agreed with the counterexample Oda presented. However, at the beginning of 
the fourth lesson Oda himself stated his opinion that the explanation is valid if we exclude the 
parallel cases, and the classmates again agreed with it. Here, while the teacher reformulated it 
as a proposition, his argument seemed to be acknowledged as natural by the others, as they 
were able to immediately begin the proof construction activities in small groups. After the 
group session, some students explained: 

Matu: The center of A and D is this line, the center of C and F 
is that line. Also, the center of the circle of B and E is 
the perpendicular bisector. So, the intersection O of 
these lines is the center of all circles (Fig. 16). 

Iori: O is a point that satisfies all things 
Noza: They are equal anywhere on perpendicular bisector 

CF. 

We think that Matu was explaining that if O is the point of intersection 
of the perpendicular bisectors of segments AD and CF, then O is also at 
the center of a circle through B and E, and is the center of rotation of the 
figure. The teacher then augmented the sketch (Fig. 17), which was 
followed by Noza’s statement “Because O is equidistant from A and D 
as well as from C and F, it is a center”. The other students agreed with 
this statement. We observe here that the teacher’s indication of the 
relationship using the segments in Fig. 17 guided Noza’s second 
statement. 

To complete the proof, the students had only to show the congruence between △OAC and 
△DOF by adding the statement of AC = DF. However, they did not reach this stage within the 
given hours. We note further that in several experiments conducted later, students were 
deeply influenced by the argumentation. We think that this is due to continuity through the 
idea of 2-fold correspondences in the hemp leaf in the second unit. 

(4) Discussion 

We now discuss the three aspects of transition in the framework. 

 
Figure 16. 

 
Figure 17. 

 
Figure 15. 
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We consider there to be two critical points in inference: examining the validity and extent of 
the proposition in inductive and empirical ways and by presenting a counterexample, and 
objectifying the construction procedure and using it for justification. 

There are several important reasons for examining the validity and extent of the proposition. 
First, the students’ justification began with a demonstration to confirm whether the 
corresponding points were on the same circles, and they checked inductively to see if the 
construction method remained valid in the hemp leaf situation. We found that they were able 
to enhance their conviction of the proposition through these approaches. Second, they 
reconceived the extent to which the construction method was sound after Oda proposed the 
counterexample of the parallel case. Moreover, we think that the teacher reformulating the 
method as a proposition in the if-then form played a role in shifting their empirical reasoning 
towards the deductive scheme. We note that the proposition here became meaningful for 
them through their explorations, and we think that they took a vital step towards proving it 
through these processes. 

We found that their proof proceeded by objectifying the construction procedure and then 
using it to support the justification. The first half of the process was as follows. First, Matsu 
reflected on the construction procedure and stated that the distances from two corresponding 
points to any point on the perpendicular bisector were equal to each other. Next, the teacher 
visualized these as segments. Finally, Noza made the logical step ‘any point on the 
perpendicular bisector of segment AD is equidistant from A and D, and likewise any point on 
the bisector of segment CF is equidistant from C and F. The intersection O of the 
perpendicular bisectors satisfy OA = OD and OC = OF. Therefore, O is a center of rotation’. 
We remark that they reinterpreted the construction procedures as the conditions for 
justification and drew a conclusion based on them. 

Next, we examine the aspects of figure so as to understand the development of their reasoning 
in terms of recognition of the figures. First, we focus on the students drawing the equilateral 
triangles in exploring the construction and trying to find the center of rotation by changing 
the radius. The figures here were not static for them but entailed images of equilateral 
relations and the continuous movement of points. We think these were the resources that they 
used to discover the construction method. Second, we think it important that, when in the 
justification stage a student found that the distances from two corresponding points to any 
point on the perpendicular bisector were equal to each other, the teacher visualized these as 
segments, because through that visualization the later reasoning proceeded to a successful 
conclusion. The segments here are variable and with equality relations, and thus consist of a 
part of the reasoning. We think that the figures implying movement, variability or 
relationship may be used to produce the construction and deductive reasoning. 

Finally, regarding the aspect of social influences, we first found that the counterexample led 
to exploring the extent to which the construction method was valid and to making sense of the 
proposition. Also, through the proving process, the efforts to reformulate and improve each 
others’ explanations helped to develop their reasoning. We can list the social influences in 
this subunit as the classroom lessons in the form of conjectures, refutations and agreements, 
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absorbing criticism from others, giving the counterexample and reflecting on its meaning, 
and stating other people’s ideas more clearly. 

DESIGNING AND CLARIFYING THE TRANSITION FROM EMPIRICAL TO 
DEDUCTIVE RECOGNITION 

We here clarify our framework for transition by incorporating the findings of our analysis in 
design experiments and give some suggestions on the design of lessons and units for the 
transition. 

On the theoretical framework for analyzing the transition from empirical to deductive 
recognition 

What we identified from our experiments as the aspect of inference in the second unit (U2) 
was the importance of finding the transformation by using and combining figures and 
properties, including examination of different or multiple transformations and working with 
the idea of 2-fold correspondences. In particular, we note that the idea of 2-fold 
correspondence takes on an aspect of deductive reasoning, though it may not be developed 
using only language. In the fourth unit (U4), we identified two main things. One is enhancing 
recognition of the proposition through examining the validity and extent of the construction 
method, in the same way that students checked validity empirically in the special situation of 
hemp leaf and shifted their focus on the limit to which the construction method worked out. 
The other is that it was necessary to objectify the construction procedure and using it for 
justification. We regard this as deductive, and also as the reflective abstraction that extracts 
ideas from actions of the construction and reorganizes them mathematically (Piaget, 2000). 

We may regard the aspects of figure as emerge from inference as the flip side of the same coin. 
For example, the idea of 2-fold correspondences in U2 was dependent on seeing the 
configurations and relations in the figure. Also, the reasoning in U4 was based on seeing the 
figure dynamically to actualize the meaning of construction. We think that it is crucial to be 
able to see the figure as implying variables and relations for the transition to proof. 

Last, when we examine the aspects of social influence, we may see whether the first two 
aspects go hand in hand with this one. In U2, we observe the students’ attitudes towards 
assuming or pursuing others’ actions and thoughts, trying transformations different from 
others, and revising explanations in their justification. Further, in U4 we may consider the 
attitude of giving a counterexample and efforts to reformulate and revise the explanations of 
others as solid background factors for development from the game to proving. 

We summarize these three aspects of the framework in Fig. 18. We think that this framework 
will play a useful role in designing classroom lessons for transition and in evaluating 
students’ activities. Moreover, we think that with refinement and further design experiments, 
this framework can be applied more widely, in particular to the upper grades in elementary 
school. It is our intention to further investigate this. 
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We note that our discussion does not suggest that these three aspects work separately, but 
rather that they have an integrated and interdependent nature. 

Moreover, if we think that a certain type of 
learning transformations and constructions 
produced the above aspects in students’ 
recognition, it may be reasonable to see these 
aspects as in Fig. 19. It is useful to note that the 
students’ reuse of the construction procedures in 
their justifications and seeing the figure as 
implying variables and relations, both of which 
aided the proving process, are reflectively 
abstracted from the dynamic actions when 
learning constructions and transformations. We may thus proceed to study the curriculum for 
how teaching the content of geometric construction, transformation and proof can be 
reorganized as teaching units for introducing secondary geometry to students. 

Some suggestions for designing lessons for the transition to geometric proof 

We consider that, to accomplish the transition to geometric proof, it is essential not only to 
propose the theoretical framework but also to develop and show the classroom practices and 
situations for the transition, which was one of our efforts in this paper. We finish by 

Elementary stage: To comprehend the properties of figure inductively and empirically 

Transitional stage: 

A. Aspects of inference 
(1) to find methods of construction and transformation by using and combining 

 figures and their properties. 
(2) to confirm whether a proposition works empirically and the extent to which it works 
     inductively and with counterexamples, and to enhance the understanding of the 

 proposition. 
(3) to reinterpret and use the construction procedures as conditions for proving. 

            B. Aspects of figure 
(1) to select suitable figures and to use them in combination for constructions and  

inference. 
(2) to see figures as variables which can be changed by dynamic transformations. 
(3) to see figures as relations among the whole and partial figures through reasoning 
      diagrammatically. 

            C. Aspects of social influence 
(1) to base the learning environment on students’ conjectures, refutations and consensus. 
(2) to make and develop conjectures while accepting criticism from others. 
(3) to interpret others’ explanations and express them more precisely. 

Secondary stage: To prove the statements deductively and using symbols and languages 

Figure 18. Revised triad of aspects for analyzing the transition towards geometric proof. 

 
 
 
 
 
 
Figure 19. A modality of three aspects 

C. Social Influence 

A. Inference B.  Figure 

Construction Transformation 
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commenting on the design of the lessons and units in terms of the continuity of context and 
necessity, the recursive growth of explanation, and the humanistic aspects. 

We first consider that continuity of context through the whole unit was crucial for the 
students’ construction of the proof. This should be made clear by conceiving of the fourth 
unit as the situation for validation in terms of didactical situation theory. The first three units 
can then be regarded as situations for action and formulation, where the fundamental ideas 
and concepts like rotation and perpendicular bisector, the ways of reasoning using the figure, 
and the learning style of conjecture and refutation were fostered. Such stages seem to be 
inevitable when we consider how long the stage of formulation has lasted in the history of 
mathematics. Moreover, as the students explored proving by returning to the hemp leaf 
situation, we conclude that the Jintori game was a solid foundation for them as the situation 
for action. If this situation had not existed, they would not have explored the meaning of the 
proposition and the extent to which the construction method works. In other words, we 
consider that learning the three aspects of our transition framework in the same situation 
facilitated the students’ development of proving. 

In association with the above points, our experiments show that the students’ activities in 
understanding the theorem itself occupied more time than of the actual proof. In the Jintori 
game, it was important to find whether a single rotation enabled the move from the base 
triangle to the separate target triangle. Also, in constructing the center of rotation the 
exploration of whether the three perpendicular bisectors intersect or not was important. If we 
regard the activity of understanding the theorem as a situation for formulation in didactical 
situation theory, we think that more focus should be given to understanding theorems and 
how this understanding is intertwined with the proving process. This is important for solving 
the problem of necessity. 

Second, we think that it is important to design the 
lessons for transition as a generalization process. 
In our experiments, the idea of 2-fold 
correspondences in the Jintori game has the same 
structure as the proof of the center of rotation. 
They are both deductive, while the former is 
action based and the latter is a language-symbol 
based exploration of the general case (Fig. 20). 
Thus the students can reciprocate between the particular and the general cases. We use the 
terminology of Pirie and Kieren (1994), concluding that students develop their understanding 
of the latter situation through folding back to the former situation. This implies that the 
students’ proving ideas may grow transcendent-recursively. This process will become one of 
our important tasks. 

Finally, we think it important to consider the aspects of humanity when introducing proof to 
students. That is, students’ justification and proving are conducted by exploring and 
explaining curious phenomenon, and it is necessary that they include human relationships 
such as collaboration with each other, accepting criticism from others, and refining others 
people’s explanations, as our design experiment demonstrated. More importantly, we 

 
Figure 20. 
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emphasize that students construct knowledge of proof with surprise or good emotion. In this 
we find the relationship between humanity and mathematics. 

FINAL COMMENTS 

In view of the increasing gulf between empirical and deductive recognition of geometry, we 
have explored in this paper what connections exist between these recognitions and how they 
can be developed. We think that clarifying students’ recognition of the transitional state is 
paramount in the global research that falls under a wider concept of proof and proving. 

We challenged our exploration through the design experiments from a holistic perspective. 
One reason why we adopt the holistic perspective is that we think students can better embody 
mathematical concepts with affirmative emotions such as interestingness, surprise and beauty, 
whereas many students experience negative affects alongside their difficulty in understanding 
proof. Therefore, we have just not investigated the proving process, but how the students feel 
the necessity of proving from the games in the hemp leaf situation and how they enhance their 
power of reasoning from the three aspects of inference, figure, and social influence. 

In research into learning algebra we often see discussion of what prerequisites are necessary 
for understanding symbolic expressions, and it is indicated that seeing the special case of 
numerical expressions as a general case from the perspective of algebra is important in this 
respect. For geometry, we consider the ability to see transformations and constructions from 
the perspective of deductive geometry. Thus, we hope that the theoretical framework 
discussed in this paper contributes to clarifying the geometrical perspective in the transitional 
stage. More importantly, we hope that our efforts make a substantial contribution to practical 
requirements for teachers and students in the mathematics classroom. 
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