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The OECD PISA international survey for 2012 is based on a new Framework. This features an 
improved definition of mathematical literacy; the separate reporting of mathematical processes 
involved in using mathematics to solve real world problems; and a computer-based component to 
assess mathematical literacy as it is likely to be encountered in modern workplaces. Issues that arise 
in the preparation of an assessment for use in many countries around the world will be illustrated 
with some items and results from the recent international field trial.  
KEY WORDS: Mathematical literacy; assessment; comparative studies; computer-based 
assessment; achievement.  
 

INTRODUCTION 

This paper reports on the work done in preparation for the OECD 2012 Programme for 
International Student Assessment (PISA) survey of mathematical literacy. PISA surveys are 
conducted every three years. The first was in 2000, so that the 2012 survey is the fifth in the 
series. As well as making inter-country comparisons and linking achievement data to 
information on schools and teaching, it is now possible to examine trends in achievement 
over about a decade. In each cycle, the major focus of the survey rotates through reading 
literacy, scientific literacy and mathematical literacy. The 2012 survey focuses on 
mathematical literacy, for the first time since 2003. Because of this focus, a large number of 
new mathematical literacy items have been created and trialled for 2012, the Framework 
which specifies the nature of the assessment has been revised and an optional additional 
computer-based assessment has been developed. The questionnaires for students and schools 
will emphasise mathematics. In 2012, at least 67 countries (including all 33 of the OECD 
member countries) will participate in the main survey, with many undertaking the optional 
components, including computer-based assessment of mathematical literacy (CBAM), 
general problem solving, financial literacy, parent and teacher questionnaires and a student 
questionnaire on familiarity with ICT. The first results from the 2012 survey should appear 
near the end of the year.  

There is a great deal of information freely available about PISA, past and present. The official 
OECD website (http://www.pisa.oecd.org) includes general descriptions of the project, 
official reports, links to all released items from previous cycles, and secondary analyses of 
data on topics of interest. The MyPisa website https://mypisa.acer.edu.au hosted by the 
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Australian Council of Educational Research which leads the International Consortium of 
contractors, contains or links to copies of student and school questionnaires, national and 
international reports, research publications, technical manuals and all released items (e.g. 
http://pisa-sq.acer.edu.au and http://cbasq.acer.edu.au). It is possible to download data bases 
and manuals for analysis, or to submit a query to an automated data analysis service. In 
addition to official sites, there are many reports of scientific procedures (e.g. Turner & 
Adams, 2007), secondary analyses of PISA data and many reports with a policy or local focus 
(see, for example, Stacey & Stephens, 2008; Stacey, 2010; Stacey, 2011). 

In this paper, I will outline briefly some of the changes and developments for the PISA survey 
in 2012 that have been the concern of the Mathematics Expert Group (MEG). The outcome of 
this work is summarised in the new PISA 2012 Mathematics Framework (OECD, 2010), 
accepted by the PISA Governing Board in 2010, but not yet formally published as it is subject 
to revision in the light of the results of the main study. The purpose of the Framework is to 
describe the rationale of the assessment and to define its constructs, describe the components 
for reporting and specify the nature of the items and the proportion of each type. With the 
guidance of the Mathematics Expert Group, the Framework was prepared under contract by 
ACER and Achieve (www.achieve.com) who organised feedback on drafts from over 170 
experts in 40 countries.  

NEW FRAMEWORK AND NEW EMPHASES  

The new Framework has clarified the definition of mathematical literacy, including 
emphasising the fundamental role that mathematics plays. The intention is to clarify the ideas 
underpinning mathematical literacy so that they can be more transparently operationalised, 
whilst retaining have strong continuity with past assessments so that the survey outcomes 
provide clear evidence of trends in educational outcomes.  

Mathematical literacy is still seen as the understanding of mathematics central to a young 
person’s preparedness for life in modern society, from simple everyday activities to preparing 
for a professional role. Even more than when the PISA project was first devised, a growing 
proportion of problem situations encountered in work and life require some level of 
understanding of mathematics, mathematical reasoning and use of tools with a mathematical 
aspect. The notion of mathematical modelling (especially through de Lange’s theorisation of 
mathematisation) was the cornerstone of the PISA Framework for mathematics from the start 
(OECD, 2003) and it remains so. Now it has been more explicitly drawn into the new 
definition, with explicit reference to the component processes of modelling namely (i) 
formulating real world problems mathematically, (ii) employing mathematics to solve the 
mathematically formulated problem and then (iii) interpreting and evaluating the 
mathematical results in real world terms. The new PISA 2012 definition of mathematical 
literacy is as follows. 

“Mathematical literacy is an individual’s capacity to formulate, employ, and interpret 
mathematics in a variety of contexts. It includes reasoning mathematically and using 
mathematical concepts, procedures, facts, and tools to describe, explain, and predict 
phenomena. It assists individuals to recognise the role that mathematics plays in the world 
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and to make the well-founded judgments and decisions needed by constructive, engaged 
and reflective citizens.” (OECD, 2010, p. 4)  

The Framework directly addresses the misconception that mathematical literacy is 
synonymous with minimal, or low-level, knowledge and skills. It proposes a continuum of 
mathematical literacy from low levels to high levels, not a cut-off point above which one is 
mathematically literate.  Mathematical literacy is intended as a construct applicable to all ages 
and levels of expertise.  However, assessment of 15-year olds must take into account relevant 
characteristics of these students, including the mathematical content they are likely to know.  

The various components of the Framework are illustrated in Figure 1. Consistent with the 
definition of mathematical literacy, PISA items are almost all set in a real world context 
(indicated by the outside box) although there is variation in the degree to which solving the 
problem requires engagement with the context (whether the context functions as a border, 
wrapper or tapestry in the terms of Stillman (1998) or as first to third order context in the 
terms of de Lange (1987)). The personal, societal, occupational and scientific context 
categories point to the areas of life where mathematical literacy is required (from the 
everyday to the professional) and from which item contexts will be drawn. The Framework 
specifies the percentage of PISA items to be in these (and other) categories, to ensure a 
balance in the assessment. The context categories are renamed (a simplification) from the 
previous Framework, and there is some minor regrouping. The few intra-mathematical items 
are in the scientific category.  

 

Figure 1. A model of mathematical literacy in practice. 
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Still in the outside “Problem in real world context” box, PISA items can also be categorised 
according to the 4 major mathematical themes which underlie the situations and structures 
involved. In the 2003 Framework, these categories were called the ‘overarching ideas’, but 
they are now called mathematical content categories, although the construct is the same. 
There has been minor renaming, so that ‘Uncertainty’ is now ‘Uncertainty and data’ in order 
to more formally recognise that dealing directly with data (not uncertainty about data) is a key 
ability for citizens making judgements and decisions. Feedback on the draft Framework 
highlighted the difficulty that some experts around the world had with this point, so hopefully 
the renaming will communicate more clearly. The content categories classify the items 
according to major mathematical structure and themes inherent in the mathematical core of 
the problem. These are the underlying ideas which have inspired the various branches of 
mathematics. For example, change is a theme encountered in many contexts, which can be 
handled with rates, functions or calculus. The Space and shape description describes 
geometry and measurement as foundational to activities such as perspective drawing, creating 
and reading maps, transforming shapes with or without technology, dealing with images of 
three dimensional scenes and representing objects and shapes.  

An important addition to the Framework is a move towards a more explicit description of 
mathematical content that is appropriate for assessment of 15 year old students. Expert advice 
was moderated by a survey conducted by Achieve (www.achieve.com) of published curricula 
from 11 countries. The aim was to clarify what 15 year olds will have had the opportunity to 
learn and also what countries deem realistic and important preparation as students 
approaching entry into the workplace or higher education. As the examples below show, the 
content is described in broad terms, in contrast to the careful curriculum analysis used in the 
TIMSS tests. The list is intended to be a guide for item writers, rather than prescriptive. It is 
also recognised that there is not a one-to-one relationship between mathematical topics and 
the content categories.  

“Algebraic expressions: Verbal interpretation of and manipulation with algebraic 
expressions, involving numbers, symbols, arithmetic operations, powers and simple roots.  
Equations and inequalities: Linear and related equations and inequalities, simple 
second-degree equations, and analytic and non-analytic solution methods”.  
(OECD, 2010, p 13) 

FUNDAMENTAL MATHEMATICAL CAPABILITIES  

Dealing with a problem in the PISA assessment necessarily involves mathematical thought 
and action. As depicted in the middle box of Figure 1, this is conceptualised as having three 
components. The first is Mathematical concepts, knowledge and skills: the knowledge base, 
consisting of mathematical concepts, known facts, and skills in performing mathematical 
actions (the topics described above). Second, activating the knowledge base, are the seven 
fundamental mathematical capabilities (FMC) for mathematical action. These capabilities 
are derived from the mathematical competencies of the 2003 Framework, and indeed the 
original PISA Framework (OECD, 1999) which were based on work done by Mogens Niss ( a 
longstanding member of the MEG) and colleagues (Niss, 1999; Niss, 2003; Niss and 
Højgaard, 2011). In the new Framework, these have been renamed to fit better with 
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terminology in other OECD assessments, and simplified based on empirical work conducted 
with the Mathematics Expert Group (Adams, 2012; Turner, 2009; Turner, Dossey, Blum & 
Niss, in press; Turner, 2012).  Given the importance of new technology for doing 
mathematics, and the new possibilities of the CBAM, Using mathematical tools is an 
additional FMC.  

The FMC describe the various processes that are increasingly seen as central to an 
individual’s understanding of mathematical ideas and capacity to apply his or her 
mathematical knowledge. Evidence of this recognition can be seen in the formal curriculum 
statements of various educational jurisdictions around the world. Empirical evidence of the 
centrality and importance of these capabilities to mathematical performance would be 
established if a strong relationship can be found between item difficulty (measured 
empirically) and ratings of items on the capabilities. Consortium staff and members of the 
MEG have been engaged in this work; describing four graduated levels of operation of each 
of the capabilities and judging the extent to which successfully answering PISA questions 
demands their activation. It is recognised that the chosen capabilities overlap to some extent, 
and that they frequently operate in concert and interact with each other; nevertheless the 
rating procedure has been to treat each competency as distinctly as possible. Early statistical 
work reduced the number of (then) competencies to the present number and examined 
inter-rater consistency, leading to improved level descriptions in an iterative process (Turner, 
2012; Turner et al, in press). Ongoing work will test the power of the ratings according to the 
refined levels to predict item difficulty in the new PISA study (Adams, 2012). It is expected 
that the completed scheme will have wide application in understanding the capabilities that 
underpin mathematical literacy and creative mathematical activity more generally, as a useful 
tool for item developers in many situations, and as a guide for teachers to demonstrate both 
capabilities to emphasise and levels of development through which they students may 
progress. The FMC with their level descriptions are used to describe the 6 levels of the 
proficiency scale, which (along with point scores) are used for reporting PISA performance.  

NEW REPORTING OF PROCESSES 

The third part of mathematical thought and action are the processes of solving problems 
involving mathematical literacy. In previous cycles, mathematical literacy has been reported 
on one overall proficiency scale and also by the ‘overarching ideas’ (now the mathematical 
content categories). However in 2012 an attempt will be made to report also against the 
processes of using mathematics to solve real world problems. Figure 1 lists the processes and 
the inner box sketches a very simplified description of how they are related to mathematical 
literacy. A real world problem first needs to be transformed into a mathematical problem: 
This is the formulate process (full name Formulating situations mathematically.), indicated 
by the top arrow. The mathematical problem is solved by the employ process (full name 
Employing mathematical concepts, facts, procedures, and reasoning). This is indicated by the 
rightmost arrow. The mathematical results that are produced then need to be translated into 
real world terms and judged for their adequacy. If inadequate, the problem situation may need 
to be reformulated. This is the interpret process (full name Interpreting, applying and 
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evaluating mathematical outcomes) which is indicated by the bottom and left arrows of the 
mathematical modelling cycle in the diagram.  

The intention is that in 2012, PISA mathematical literacy results will be reported as overall 
score, scores for each of the four mathematical content categories, and (new) scores for each 
of the three processes. It is hoped that this additional reporting structure will provide useful 
and policy-relevant results. The scores on the formulate scale should show how effectively 
students are able to recognise and identify opportunities to use mathematics in problem 
situations and then provide the necessary mathematical structure needed to formulate that 
contextualised problem into a mathematical form. The employ scale should indicate how well 
students are able to perform computations and manipulations and apply the concepts and facts 
they know to arrive at a mathematical solution to a problem formulated mathematically. The 
interpret scale should indicate how effectively students are able to reflect upon mathematical 
solutions or conclusions, interpret them in the context of a real-world problem, and evaluate 
whether the results or conclusions are reasonable. Students’ facility at applying mathematics 
to problems and situations is dependent on all three of these processes, and an understanding 
of their effectiveness in each process can help inform both policy-level discussions and 
decisions being made closer to the classroom level.  

The field trial results have been analysed by Ray Adams (personal communication). It shows 
that there are very high correlations between the student scores on the three process scales, 
especially for the paper-based assessment. This indicates a redundancy in the information. 
However, they are comparable to the correlations between component scales for other 
domains in previous field trials, and these have proved to be useful for country comparisons 
and comparisons of identified subgroups of students. In part, the high correlations may be 
explained by the difficulty of allocating items to only one of the processes (multiple 
allocation is not advisable for the data processing). Additionally, there is a tension between 
writing items with strong face validity for mathematical literacy (which tend to involve all 
stages of the modelling cycle) and writing items which can be unequivocally allocated to one 
of the three processes. Another factor is that the significant time limits on answering a PISA 
question means that items often hone in on a specific aspect, but in such a case it can be 
unclear whether the student understands this to be putting them at the beginning (formulate) 
or the end (interpret) of the modelling process. Despite these inevitable ‘boundary disputes’ 
for categorisation the first analysis shows some country-level spread across processes.. The 
first glimpse of the field trial data also shows potentially interesting differences in the 
performance of countries on the process scales derived from paper-based tests and 
computer-based items. The field study showed that items classified as formulate (i.e. items 
where this was judged to be the main source of cognitive demand) tended to be harder than 
other items. This observation concurs with the lament of many teachers: “my students cannot 
do word problems”.  For the test as a whole, items should be selected so that there is a good 
range of difficulty for items of every type, so easy formulate items were in demand when 
selecting items. 
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ITEM DEVELOPMENT 

The 2012 mathematics assessment required 72 new items to be used with 36 link items from 
earlier surveys to calculate trends. New items, proposed by teams around the world, went into 
a large pool which was approximately halved for the field trial and halved again for the main 
study in the light of empirical results. Before selection for the field trial, items were subject to 
intensive scrutiny by the MEG, by external experts organised by Achieve, and by the national 
teams in every country. Items were generally very well received by these reviewers, 
indicating the substantial imagination and expertise of the writing teams. The field trial 
showed that all but a few of the items had very good statistical properties, so there were good 
options for making a final selection that meets the Framework’s multiple criteria of balance 
across the 4 context, 4 content and 3 process categories, with items of an appropriate range of  
difficulty in each cell of the matrix. 

Although many items are publically released from previous cycles (see links above), I will 
illustrate some of the points about item development three new items of one unit, which went 
into the field trial in 2011 but were not selected for the main study. There are many reasons 
for not selecting an item. These include differential performance in countries (likely to be due 
to cultural or linguistic factors); lack of support from national teams; statistical anomalies at 
the field trial (e.g. poor discrimination, worrying gender or country differences, too hard or 
too easy); occasionally a logical or mathematical content flaw identified late in the process; or 
simply because it is surplus to requirements.  

For the 2012 survey, as in the past, a disproportionately large number of the harder items were 
not selected, because an efficient test should bunch the difficulty of the items near the ability 
of most of the students, and the items in the field trial tended to be relatively hard for the 
students. It is a waste of time and money to include in PISA surveys, items which only a small 
percentage of students can do, since they do not contribute meaningfully to the reported 
results. Item writers, even those who are very experienced, tend to create relatively too many 
items which have very low success rates.   

Many people (myself included) who examine the mathematics in the PISA items feel that it is 
not of a ‘high standard’ for Year 10 students, and there was an attempt in the field trial to 
ensure that this concern was addressed.  However, in evaluating the nature and level of 
mathematics in the PISA items, it is important for everyone concerned to focus on whether 
the tested mathematics is important – whether knowing it makes a significant contribution to 
students’ mathematical literacy as they require it in their lives. A trap is to confuse significant 
mathematics with hard mathematics. Percentage calculations and the associated proportional 
reasoning, for example, are clearly of significance in mathematical literacy, although not seen 
as hard for 15 year olds. That being said, it is still of concern that the success rates in PISA 
items are in general surprisingly low, even in countries that are highly ranked. There is a great 
deal of room for improvement in mathematical achievement even in countries that do well. 
One hypothesis is that the difficulty of PISA items stems from the mathematical literacy 
focus, presenting them in contexts, but potentially it may be caused by the conditions of 
taking the test. This is not known, but use of the polished scheme for rating the influence of 
the capabilities may provide a research tool to help in understanding this.  
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In order to match item difficulty better with student ability, some countries which have had 
low achievement in the past have chosen to test in 2012 with an item pool which includes 
relatively more easy items. This will enable more reliable measures to be made at the lower 
end of the achievement scale, and so enhance the usefulness of their results for policy 
development. Complex statistical procedures, using a Rasch model place individual students 
on one common scale, despite the fact that they do different booklets (subsets) of items, and 
then combine student level data to create comparable country scores. Because of the complex 
processing involved, individual students cannot be given meaningful feedback on their 
performance immediately after completing the test.   

Example: Chinese Lamp (PM999) 

This example illustrates a new unit containing three items from the field trial that, because of 
unpredicted poor statistical performance (low discrimination), will not be used in the main 
study and hence can now be released.  Chinese Lamp was a unit that was well regarded by all 
the reviewers, and so can be used to illustrate the nature of mathematical literacy items, and 
the processes of item development and categorisation. Its poor statistical performance was not 
predicted, showing the importance of the field trial. The Chinese Lamp items were generally 
approved by the national PISA teams, with the average “priority for inclusion” at 3.5, 3.4 and 
3.2 on a 5 point scale across countries. Item statistics reported below are based on over 6000 
students from the 25 OECD countries whose results had been fully analysed at the time when 
selection of items for the main study was undertaken. The sampling for the field trial is not 
strictly controlled as it is in the main study, but previous experience indicates the field trial 
results are a good guide.   

The three items in the unit Chinese Lamp (PM999) shown in Figure 2 (stem) and Figure 3 
(items) belong to the Shape and Space content category in the personal context category. 
With only a minor change of the cover story, the unit could be altered to belong to the 
occupational context category. The first two items (Questions 1 and 2 in Figure 3) were 
allocated to the mathematical process category ‘formulate’ and Question 3 was allocated to 
‘interpret’. This will be discussed below.  

Figure 2 retains the notes that assist translators to distinguish those parts of the text which are 
intended to be common language descriptions (in this case both ‘outside angle’ and the 
description of the folding) from those which have specific mathematical terminology which 
needs to be translated precisely. The PISA project has very high standards of translation, with 
multiple procedures requiring translating into the third language from very carefully matched 
originals in both English and French, then comparing the third language product as well as 
back and cross translations. Although mathematics is often thought of as a universal 
language, PISA items present many translation challenges. A major source of the challenge is 
the relatively informal language that is authentically used in mathematical literacy items to 
describe real world contexts contrasting with formal mathematical language. The Chinese 
Lamp provides examples of this (‘triangle shapes’, ‘sheets are 20 cm high’, ‘outside angle’).  
Differences also come in mathematical descriptions. English, for example, has many ways of 
expressing a ratio:  “three times longer than” (Figure 3), the more correct ‘three times as long 
as”), “a ratio of 3:1” or ‘triple’. Some languages do not have such a wide range of alternatives 



Stacey 

 
ICME-12, 2012 abcde+2 

and so in some cases less translation from colloquial language to formal mathematics may be 
required by students undertaking the assessment in some languages than others. This is 
guarded against in the field trial by checking for unexpected country differences.   

Chinese Lamp 

Mira is organising a party at her house and would like to make Chinese lamps. Each lamp is 
made of two sheets of special paper: an internal sheet rolled in a cylinder (Picture 1) and a 
second sheet folded to create 12 triangles (Picture 2). The diameter of the internal paper 
cylinder is 9 cm and its height is 20 cm. The triangle shapes in Picture 2, that are created by 
the folding, form approximately equilateral triangles. 

Translation Note: In this unit please retain metric units throughout. 
Translation Note: Please adapt the terminology if you have a specific expression for this kind of 
folding. For example, in FRE it is “feuille pliée en accordéon”. 
 

  Picture 1  Picture 2 

Figure 2: Chinese Lamp (PM999Q01) unit stem. Copyright OECD. 

Question 1 (see Figure 3) requires spatial reasoning to identify how the paper will be folded to 
make the cylinder and to link the length of paper to the perimeter of a circle through the 
cross-sectional view, and then calculating the perimeter approximately. This item is allocated 
to the ‘formulate’ process (rather than ‘employ’) because it was judged that the main 
cognitive demand came from the spatial reasoning rather than from the calculation of the 
approximate circumference from the diameter. This item was a middle difficulty item in the 
field trial with 45.63% of students correct. Another 35% of students were approximately 
equally spread between the answers of (a) 20 cm and (c) 40 cm, and about 7% selected each of 
(d) 50 cm and (e) 60 cm.  This item had low discrimination. One indicator of this is that the 
7% of students who selected (e) had higher average proficiency (as judged by the rest of the 
test) than students selecting the correct answer. Their ability was considerably higher than 
students who selected (d), which is an indicator that there may be quite different reasons for 
making these two choices. Because the aim of the PISA survey is to measure students’ 
mathematical literacy as effectively and efficiently as possible, items of low discrimination 
are normally discarded. In a school assessment or public examination, there are other goals of 
assessment to consider – such as testing across a curriculum and illustrating to teachers 
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important aspects of mathematics in accordance with the MSEB’s “Learning Principle” 
(Stacey & Wiliam, to appear). However, in an international assessment which is kept secure, 
the considerations are different. There was a moderate gender difference favouring girls on 
this item and also on Question 2, but not on Question 3 where the sexes performed equally.  

Question 1 

In Mira’s favourite hobby shop they sell several 
sheet sizes. The sheets are all 20 cm high but have 
different lengths. 

Which of the following is the smallest length Mira 
could buy in order to make the paper cylinder (see 
Picture 1)? (Note that at least 0.5 cm extra is needed 
for gluing.) 

 
a) 20 cm 
b) 30 cm 
c) 40 cm 
d) 50 cm 
e) 60 cm 

Question 2 

In a finished Chinese lamp (see Picture 2), 
how many times longer is the folded sheet of 
paper compared to the length of the internal 
sheet rolled in a cylinder? 

 
a) Approximately 1.5 times 
b) Approximately 2 times 
c) Approximately 3 times 
d) Approximately 12 times 

Question 3 

Mira wants to create another Chinese lamp in a similar style. 

Which of the following changes to the lamp shown in Picture 2 will affect the length of the 
folded sheet of paper? 

Circle “Yes” or “No” for each change. 

a) Keep the same size paper cylinder, change the size of the outside angle in each of 
the 12 triangles of the folded sheet of paper from about 60o to about 30o.  Yes / No 

b) Keep the same size paper cylinder, increase the number of equilateral triangles of 
the folded sheet of paper from 12 to 20. Yes / No 

c) Change the diameter of the internal paper cylinder, keep the folded sheet of paper 
with 12 equilateral triangles. Yes / No 

 
Translation Note: Please do not translate “outside angle” as “external angle” as this term has a 
different and precise mathematical meaning.  

Figure 3: Chinese Lamp questions with correct answers underlined. Copyright OECD. 

Question 2 (see Figure 3) again requires considerable spatial reasoning, to identify the 
importance of the view from the top and to see the 12 nearly equilateral triangles, and then to 
see that the circumference of the cylinder is made up of one side of each ‘equilateral triangle’. 
The folded paper is therefore close to twice the length of the circumference of the cylinder. 
Again this is categorised as ‘formulate’, identifying the spatial reasoning as a more important 
source of cognitive demand than employing knowledge of equal side length of equilateral 
triangles. The percentages of students correct (option (b)) was 42.22%, whilst about 20% of 
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students chose each of options (a) and (c). Only 9.71% chose option (d), where the 12 times in 
the response superficially matches the 12 triangles in the diagram. This item also has low 
discrimination.  Perhaps this is because it can be solved by the relatively complex spatial 
reasoning above, or by simpler methods such as direct estimation of comparative length from 
the diagram, or even by measuring the folds in the picture with a ruler (about 1 cm each on my 
copy).  

Question 3 (see Figure 3) is a complex multiple choice item. This format significantly reduces 
the chance of randomly choosing a correct response, in this case to 1 in 8. As with most 
complex multiple choice items, a response to this item was only scored correct if all parts are 
right.  In total, 24.21% of students were correct (i.e. all parts right), and about 60% were right 
on one or two parts, but scored no credit for the whole item. Again, the item has low 
discrimination. For example, the correlation of the score on this item with the score on the rest 
of the test was 0.06. Statistics for individual parts are not available. I guess that the second 
part was the most difficult. This item was classified as ‘interpret’ but arguments could also be 
made for a classification as ‘formulate’. It is important to note that the ‘interpret’ process is 
not about interpreting the meaning of the statements (i.e. receptive communication) or 
reading mathematical representations (e.g. understanding a graph), but about putting 
mathematical outcomes into real world terms, and evaluating the adequacy of solutions. It 
refers to the shift back from the mathematical world into the real world.  

COMPUTER-BASED ASSESSMENT OF MATHEMATICS (CBAM) 

A major initiative for the 2012 survey is the introduction of the optional computer-based 
assessment of mathematics CBAM. This follows the development of assessment of electronic 
reading (2009) and computer-based assessment of scientific literacy (2006). In CBAM, 
specially designed PISA units are presented on a computer, and students respond on the 
computer. They are also able to use pencil and paper to assist their thinking processes.  

 Behind the introduction of all of these computer-based assessments is a long term view to 
shift all PISA assessment from paper-based to computer-based. Developing expertise and 
infrastructure is therefore valuable. However, there are specific reasons why computer-based 
assessment is important for mathematics and for mathematical literacy. First, computers are 
now so commonly used in the workplace and in everyday life that a level of competency in 
mathematical literacy in the 21st century includes using computers. Hoyles, Wolf, 
Molyneux-Hodgson, & Kent (2002) note that mathematical literacy in the workplace is now 
completely intertwined with computer literacy, at all levels of the workforce. Doing 
mathematics with the assistance of a computer is now part of mathematical literacy.  

A second consideration is that the computer provides a range of opportunities for designers to 
write test items that are more interactive, authentic and engaging, and which may move 
mathematics assessment away from the current strong reliance on verbal stimuli and 
responses, enabling different student abilities to be tapped (Stacey & Wiliam, in press).  
These opportunities include using new item formats (e.g., drag-and-drop or hotspots), 
presenting students with flexible access to real-world data (such as a large, sortable dataset), 
moving stimuli and simulations, representations of three-dimensional objects that can be 
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rotated, or to use colour and graphics to make the assessment more engaging.  The effect of 
the latter apparently trivial factor has been immediately recognised in the cognitive 
laboratories where individual students are interviewed solving the items during initial item 
development. By permitting a wider range of response types, CBAM could give a more 
rounded picture of mathematical literacy. 

Future PISA cycles may feature more sophisticated computer-based items, as developers and 
item writers become more fully immersed in computer-based assessment and the 
infrastructure develops. Indeed, PISA 2012 represents only a starting point for the 
possibilities of the computer-based assessment of mathematics. In the future, I expect to see 
assessment of proficiencies the interface of mathematics and ICT. Examples would include 
making a chart from data, including from a table of values, (e.g., pie chart, bar chart, line 
graph) or producing graphs of functions to answer questions about them. In the present 
assessment, due to expectations of what 15 year olds around the world may be able to manage 
now, using generic mathematical tools does not go beyond the on-screen calculator.  

A key challenge is to distinguish the mathematical and mathematics-with-ICT demands of a 
PISA computer-based item from demands unrelated to mathematical proficiency such as 
using a mouse, understanding basic conventions such as clicking on arrows to move to a new 
screen. The latter category of demand needs to be minimised.   

Examples from the CBAM field trial 

In the field trial, computer-based assessments were administered to 39970 students in 52 
locales (a locale is a language by country combination) across 43 countries in 30 languages, 
with considerable operational success. For CBAM, the field trial tested 86 items, from which 
the final pool of 45 items were to be selected.  Each student will do about a quarter of these in 
the main study, with data on time taken being used to select the subsets.  

Four sample units (translated into 14 languages) are available on the website 
(cbasq.acer.edu.au). Please note that these items will not be included in the main study, either 
because of statistical anomalies from the field trial, a flaw in the item, or because they are 
surplus to requirements.  

The two sample units Graphs (CM010) and Car cost calculator (CM013) provide examples 
of items that could equally well be paper-based items, items where computer presentation 
enables a new response type, and items which require use of some computational power of the 
computer.  The first item of the unit Graphs asks students, in multiple choice format, to 
identify a real world situation that could relate to a given bar graph. In this case, the bar graph 
shows regular cycling, and the correct choice is maximum monthly temperature of a city, 
rather than to temperature of a cup of coffee, weight of a baby, or diminishing coal reserves.  
There were 49.53% correct in the 15 OECD countries of the CBAM field trial. This could be 
a paper-based item: it does not need computer presentation.  

The second and third items take advantage of the computer presentation for enhanced 
responses and automated marking. Here the computer-based format offers both new 
opportunities and increased convenience. Students have to construct bar graphs, by dragging 
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prepared bars onto the graph to match a giving situation. Item 3 is shown in Figure 4, partially 
completed with three bars already dragged onto the axes. The instruction is “Drag and 
position each of the bars onto the Time axis to show how Jenny's yearly income changed over 
the 10-year period.” Answering in paper-based format would be very impractical, because 
students would have to draw bars of precise heights and would be likely to need several trials. 
Also scoring by hand would be time consuming. Mathematically, this is a difficult item, 
because the information about the constant annual increase needs to be carefully considered, 
but using qualitative reasoning about the constant gradient property of constant increase. 
Only 10.57% of students were correct, taking an average of 167 seconds to respond. The 
capacity to track additional characteristics of computer-based responses, such as response 
time or number of attempts, can provide researchers and test developers with additional 
insights into students’ performance (Stacey & Wiliam, in press). This capacity will grow as 
infrastructure for computer-based tests is refined in the future. One reason why this item has 
been released is that it had low discrimination in 6 of 15 OECD countries in the field trial.  

 
Figure 4. Partially completed Item 3 of Graphs (CM010Q03). Copyright OECD. 

Some of the computer-based items have students directly use the computational power of a 
computer, both for calculation and exploring the mathematical structure inherent in a real 
world context.  Items requiring use of specific mathematically-able software (e.g. to program 
a spreadsheet, or use a generic tool to plot of graph) have not been used at this early stage, 
because of the very varied abilities of students around the world to use it. However, there are 
a great number of user-friendly calculators available on websites around the world to assist 
consumers, so mimicking this provides an opportunity for mathematical thinking in a very 
realistic setting.  

The unit Car Cost Calculator (CM013) (Figure 5) provides an example of this. Dragging the 
car causes the distance and monthly cost of travelling to work and back by car to change. 
Figure 5 shows a simplified interface.  The first item requires direct use of the car cost 



Stacey 

  
Abcde+3 ICME-12, 2012 

calculator followed by other calculation (perhaps with an ordinary or on-screen calculator). It 
asks what percentage of car travel cost would be saved by buying a monthly transport ticket 
for a person travelling 15km (36.46% correct). The second item could as well be paper-based, 
asking students to select a formula for working out petrol costs as a function of distance to 
work, given appropriate data (18.80% correct, with low discrimination in most countries). 
The third item (see Figure 5) requires obtaining sensible data from the car calculator to work 
with algebra. On average, the National Program Managers of the participating countries 
expressed approval for all of these items to be included (average scores between 3.4 and 3.9 
on a 5 point scale) which indicates that they judged the mathematical content and real world 
setting to both be appropriate for their students. The poor discrimination was not predicted by 
the expert teams. 

 

To promote train travel, the Zedtown 
Transportation Service is distributing a car 
cost calculator. The calculator compares 
costs for car travel from home to work and 
back with the cost of a monthly train ticket 
worth 98 zeds.  

 

 

Question 3. (CM013Q03)  
The formula for working out the car travel costs needs to take into account more than just the 
petrol costs. The Zedtown Transportation Service adds an additional value of b zeds per 
month to the monthly petrol costs to allow for other car costs such as insurance and 
registration. 

The formula they use to work out the costs is: C = 6d + b 

C is the total cost in zeds, d is the distance to work in kilometres, and b is the additional 
non-petrol costs in zeds per month. 

Use the car cost calculator to help you calculate the value of b.  

The value of b = ………………. zeds 

Figure 5. Illustrated item CM013Q03 – drag the car and the distance and car costs change.  

 

STUDENT QUESTIONNAIRE 

In 2012, the questionnaires for students and schools (20 to 30 minutes) will contain many 
general items about school as well as items that focus on mathematics, prepared by the PISA 
questionnaire expert group and consortium staff. There will be questions about the 
mathematics learning environment, students’ opportunity to learn mathematical literacy at 
school, their interest in mathematics and their willingness to engage in it. Responses will be 
related to achievement scores.  Opportunity to Learn items relate to student experience with 
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applied mathematics problems, familiarity with mathematical concepts by name, and student 
experience in class or tests with PISA style items. Interest in mathematics relates to present 
and future activity: mathematics at school, perceived usefulness in real life and intentions to 
undertake further study and/or mathematics-oriented careers. Willingness to engage in 
mathematics taps into emotions of enjoyment, confidence and (lack of) mathematics anxiety, 
and the self-related beliefs of self-concept and self-efficacy. There is international concern 
about interest and willingness because of a decline in the percentage of students who are 
choosing mathematics-related future studies, whereas at the same time there is a growing 
need for graduates from these areas. A recent analysis of the subsequent progress of young 
Australians who scored poorly on PISA at age 15 found that those who “recognise the value 
of mathematics for their future success are more likely to achieve this success, and that 
includes being happy with many aspects of their personal lives as well as their futures and 
careers” (Thomson & Hillman, 2010, p. 31). The study recommends that a school focus on 
the practical applications of mathematics may go some way to improving the outlook for 
these low-achieving students.   

CONCLUSION 

The aim of this paper was to outline some aspects of the PISA 2012 mathematical literacy 
assessment, and to highlight some of the theoretical and practical changes that have been 
introduced. The new Framework has strong continuity of the past, so that trends can be 
measured, but it has also addressed earlier critiques, by some clarification and simplification, 
by emphasising the centrality of mathematics more strongly, and placing the multiple 
components of the Framework into a holistic picture. A major strength of PISA lies in the 
rigorous procedures for item development, review, trialling and selection, for translation and 
coding (not addressed above), for sampling in the main survey and expert data analysis for 
reporting the results. It is hoped that the additional reporting categories (the three processes) 
of PISA 2012 will enhance the usefulness of the results for public policy development and 
provide further insights into how the nature of the mathematics provision in schools affects 
mathematical literacy. On-going work in rating the influence of the fundamental 
mathematical capabilities on the total cognitive demand of items (checked against empirical 
measures as they become available) may prove useful to item developers for PISA and other 
assessments, and provide new insights into what makes mathematical literacy items difficult. 
The new initiative of computer-based assessment of mathematics is an important one, which 
opens up new avenues for probing mathematical literacy with and without technological 
assistance. I look forward to the release of the first results at the end of 2012.  
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