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ICMI Study 26
ADVANCES IN GEOMETRY EDUCATION

REIMS (France), 23-26 April 2024

PREFACE

Our engagement with this ICMI Study Conference began when we accepted invitations from the
ICMI President, Frederick Leung, to co-chair the Study 26: Advances in Geometry Education.
Although we have both worked internationally in geometry education for decades, we had not
previously met one another. A briefing meeting with the President, and the Secretary General, Jean-
Luc Dorier, provided context and scope for the Study. As with all ICMI studies, the central aims are
to consider the topic (in our case geometry education) with respect to theory, research, practice, and
policy; and to suggest new directions of research that take into account contextual, cultural, national,
and political dimensions of the field. We then worked collaboratively with Professors Leung, Dorier,
and other members of the ICMI Executive, to establish an International Program Committee (IPC)
with expertise in geometry education. The IPC members have invested substantial time and effort to
be part of the IPC, over an extended period. We are grateful for their collective wisdom and technical
expertise in framing the core work of the Study. We are especially appreciative of Professor Fabien
Emprin’s commitment to the Study by taking on the responsibility of Conference Convenor. Fabien’s
leadership and organisational skills became on integral part of the Study’s success. We would also
like to acknowledge the effort that some participants from economically disadvantaged countries have
made to attend the conference, and the economic support we have received from ICMI and Trent
University (Canada) to support their attendance.

The IPC met in Valencia in February 2023 to develop the ICMI Study 26 Discussion Document,
included at the end of the Proceedings, which was finalized and distributed internationally in June
2023. We express our gratitude to the University of Valencia for providing working spaces and
facilities during the three-day meeting. The Study Document served as a call for papers for the ICMI
Study 26 Conference, hosted by the Université de Reims Champagne Ardenne, France, during April,
2024.

An ICMI Study Conference is quite different to a traditional conference. A majority of the time is
devoted to the engagement of Working Groups organized around the topics and led by IPC members.
During these Working Groups brief presentations by the participants, based on their papers, serve as
a catalyst for in-depth exploration of the topics and sub-topics —with the primary purpose being the
preparation and initial development of a published volume.

The activity of the Study is organized around four focused topics, aimed to provide complementary
perspectives and approaches to the teaching and learning of geometry. Contributions to the topics
were organized around sets of related sub-topics, each sub-topic focusing on a specific issue and
stating a set of questions aimed to lead discussions, as defined in the Discussion Document. The four
topics are:

A. Theoretical perspectives;
B. Curricular and methodological approaches;

C. Resources for teaching and learning geometry; and

Lowrie, T., Gutiérrez, A., Emprin, F. (Eds.), Proceedings of the 26th ICMI Study Conference (Advances in Geometry
Education) (pp. ix-x). ICML.



D. Multidisciplinary perspectives.

These topics and related sub-topics provided the basis for inviting papers. Each submission was
reviewed by at least two IPC members, and authors of accepted papers were invited to participate in
the Study Conference. Accepted papers were then revised (when necessary) by the authors, before
being published in these electronic conference proceedings. The conference proceedings include 60
papers from around the world. The countries represented in the Proceedings include: Argentina,
Australia, Brazil, Canada, Chile, China, Colombia, Costa Rica, Croatia, France, Germany, Greece,
Hong Kong, India, Iran, Israel, Italy, Japan, Malawi, Mexico, New Zealand, Portugal, Serbia, South
Africa, Spain, Sweden, Switzerland, United Kingdom, and the United States.

In addition, we invited two esteemed scholars to present plenary lectures and another five to
participate in a plenary panel on geometry practices within diverse cultural settings. To ensure that
teachers’ voices were well-represented at the Study Conference, we invited several practitioners
actively involved in collaborative geometry projects to participate in a plenary panel that focused on
French perspectives of teaching geometry.

We would like to thank the Local Organizing Committee members and their support staff and students
of the 'IREM de Reims at the Université de Reims Champagne-Ardenne for all their work in hosting
a successful ICMI Study 26 Conference. Preparation of the ICMI Study 26 volume, begun during the
Study Conference, will continue in four virtual collaborative groups, during 2024-25. We aim for the
Study Volume to be published in 2026 by Springer Nature in the New ICMI Studies Series.

An ICMI Study requires sustained commitment on three major projects (the Discussion Document,
Study Conference and Study Volume) throughout its focused program of work. Along with the
unwavering support and guidance we have received from Frederick Leung and Jean-Luc Dorier, we
would like to acknowledge the help we have received from Merrilyn Goos (Vice President of ICMI),
and Lena Koch (IMU Secretariat) at critical times during the development of the work program.

Angel Gutiérrez and Thomas Lowrie

26" ICMI Study co-chairs
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RESEARCH ON TEACHING KNOWLEDGE IN GEOMETRY: THE CASE
OF PROOF IN THE UNITED STATES

Patricio Herbst

University of Michigan

High school geometry courses, at least in the United States, have historically been places where
students could encounter important elements of mathematical practice—proofs in particular. But a
quick look at this practice also attests to a cleavage between expert mathematical practice and school
mathematical practice. For instructional improvement to bridge that cleavage (improving the
curriculum or improving teachers), our understanding of existing instructional practice needs to be
informed by more than a quick look. How can we describe the teaching knowledge implicit in the
instructional practices of proof in geometry and how can this knowledge assist in the design and study
of improvements in instruction?

In this lecture, I will describe a program of descriptive research that seeks to understand what we call
the practical rationality of mathematics teaching and how this rationality can make room for
instructional resources and practices that seek to improve instruction. The program of research on the
practical rationality of mathematics teaching has had research on the teaching of mathematical proof
in geometry as one of its core cases for empirical investigation. Hence, this presentation goes back
and forth between relatively general theoretical ideas and specific research and development projects
involving geometric proof.

I argue for a conceptualization of teaching knowledge that includes both explicit and tacit knowledge,
knowledge that can be located in individuals as well as knowledge that is held collectively in the
practice of teaching. I illustrate the first type of knowledge with examples of mathematical knowledge
for teaching proof in geometry that include knowledge needed to manage instructional situations in
geometry and knowledge needed to enact mathematical tasks of teaching. I illustrate the second type
of knowledge with recognition of the norms of the situation of doing proofs in geometry. I will
describe, in particular, how we measure teachers’ recognition of situational norms in geometry and
how this recognition relates to measures of explicit mathematical knowledge for teaching geometry.
The main results of this line of research are theoretical and methodological: We have been able to
demonstrate that the practice of teaching geometry affords particular categories of perception that
play a role in the teaching of proof in geometry and that teachers’ reactions to scenarios can be used
to measure the extent to which teachers recognize those categories. Our work has also contributed to
instructional improvement by uncovering possibilities for developing instructional resources and
practices that support an enhanced role for proof in the study of geometry.

Lowrie, T., Gutiérrez, A., Emprin, F. (Eds.), Proceedings of the 26th ICMI Study Conference (Advances in Geometry
Education) (p. 3). ICML



TEACHING AND LEARNING GEOMETRY IN EARLY GRADES WITH
TECHNOLOGY

Nathalie Sinclair

Simon Fraser University, Canada

This plenary talk will be divided into three parts. In the first, I will provide an overview of the main
findings of my research on the teaching and learning of geometry using of dynamic geometry software
(specifically, The Geometer’s Sketchpad) at the primary school level. This will include studies
focussing on a number of different curricular concepts such as symmetry, angles, triangles and area
involving students from 6 to 12 years old. I will discuss the specific affordances of Sketchpad that
were relevant to these findings, as well as task design principles employed, and the specific theoretical
constructs that were used to generate insights into the teaching and learning of geometry. In the
second part, [ will discuss this research in light of more contemporary perspectives. Indeed, since this
research was carried out, for the most part, a decade ago, I am now in a position to reflect on how it
could be conjugated with some new directions in the research literature, including recent work on
spatial reasoning and the duo of artefact approach. Finally, in the third part of the talk, I will discuss
more recent exploratory work involving new digital technologies (including 3d pens and the
multitouch application The Griddler), and less Euclidean-based concepts (including 3d geometry,
modelling and perspective geometry). I will use this work to propose some productive directions for
future research in the teaching and learning of geometry using technology at the primary school level.
I will link my proposals to some recent theorising about the role of geometry in contemporary
mathematics, about alternative curriculum approaches that challenge both Western and Piagetian
progressions and about pedagogical approaches that centre making and acting.

Lowrie, T., Gutiérrez, A., Emprin, F. (Eds.), Proceedings of the 26th ICMI Study Conference (Advances in Geometry
Education) (p. 5). ICML
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ICMI Study 26
ADVANCES IN GEOMETRY EDUCATION

REIMS (France), 23-26 April 2024

FRAMING GEOMETRIC REPRESENTATIONS AND PRACTICES IN
CULTURALLY DIVERSE SETTINGS

Tom Lowrie

University of Canberra

Our plenary panel will draw upon the experiences of mathematics educators from five countries,
spanning four continents. The focus of the panel is to consider new directions for geometry education
research framed with the political, cultural, and contextual dimensions of practice.

INTRODUCTION

One way to better understand the complexities of classroom practices in diverse contextual, cultural,
and political contexts is to position mathematics education as a practice. Mathematics education
practice differs across classrooms within a school but is likely more diverse across countries and
continents. This plenary panel is initially framed within a theoretical stance that acknowledges that
practice is informed by the social-political (relatings), cultural-discursive (sayings), and material-
economic (doings) conditions of practice both from within the school community and across the
broader professional context. These arrangements of practice (relatings, sayings and doings) are a
mechanism for understanding how educational practices take place and are influenced by policies,
the discourse of school communities, and the economic conditions of place and work (Practice
Architectures, Kemmis, 2019; Kemmis & Grootenboer, 2008).

Relatings are shaped by the prefigured existing social orders and norms of schools and systems. It is
acknowledged that the practice of education is conducted in and through relationships with others
(teacher/student, teacher/teacher, teacher/principal, teacher/student’s family). Sayings are shaped by
culturally-discursive conditions that emerge from the ‘living out’ of traditions and theory. In a digital
age, access to various forms of communication influence the specialized language of the practice of
‘education’ including how policies, rules, and curricula are reported. Doings are shaped by the
economies that enable and constrain education, the materials available, and the settings where the
practice of education takes place. In terms of doings, much of the work that takes place is influenced
by the traditions of the settings and context.

Framing geometry education in diverse settings

It could be argued that the school mathematics curriculum should reflect the political, cultural, and
contextual contexts of the students for which it is planned. Political influences include the way power
is achieved or used in a society. Increasingly, political influences involve the way politicians and the
media provide personal views on how curricula should be shaped. Cultural practices include the
shared values, attitudes, beliefs, and arrangements of a community. These practices can influence the
language used in instruction or the degree to which informal and formal geometric knowledge is
valued and represented.

Lowrie, T., Gutiérrez, A., Emprin, F. (Eds.), Proceedings of the 26th ICMI Study Conference (Advances in Geometry
Education) (p. 7-10). ICML.
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Geometric representations and sense-making exist in all cultural groups and their meaning may differ
from one culture to another.

Making sense of practice(s) across settings

Cultural artifacts are objects created by members of distinct cultural groups that convey cultural
meanings and information about their creators and users. Geometric ideas, procedures, techniques,
and (indeed) practices are related to the development of cultural artifacts that are socio-culturally
situated as well as distributed among these members from generation to generation. This approach
also includes embodied cognition in which cognitive activities use symbols as external resources that
assist these members to develop their mental representations and manipulation of objects.

THEORETICAL AND METHODOLICAL CONSIEDERATIONS

A Practice Architecture Framework provides a theoretical lens for understanding small-scale
classroom and community initiatives as well as large-scale national agendas and curriculum reform
(Lowrie, 2014). Practice architectures (Schatzki, 2002) are based on the premise that many practices
are designed, especially the meta-practices associated with educational policy making and
administration, curriculum development, and teaching and learning. Consequently, the relative fixed
nature of facilities, equipment, resources, policy mandates, and curricula associated with specific
subject areas all play a part in how practices are constructed, enabled, developed, and repurposed
(Lowrie, 2014). To this point, practices are influenced by the context, culture, and infrastructure of
the architecture that has been designed (see Figure 1). Consequently, practices are situated and shaped
by the circumstances and conditions of the physical location in which they occur, and of course the
time, and space of the circumstances.

Cultural-discursive
arrangements In physical space-time,

In semantic space, in the in the medium of activity

medium of language or work Material-economic

arrangements

Sayings  Doings

Project

Relatings
Social-political In social space. in the
arrangements o gium of solidarity and

power

Figure 1: Geometry performance by spatial level and strategy dominance

This panel provides an opportunity to explore the diverse circumstances and conditions of spaces in
classrooms and systems in Australasia, Africa, Asia, and South America.
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An ethnomathematics methodology (Rosa & Orey, 2016) will be used to examine and make sense of
the mathematical and geometrical knowledge (ideas, processes, and practices) that originate from
diverse cultural contexts through history. The ethnomathematics methodology is multi-dimensional
and provides a broad scope of affordances, namely: cognitive; conceptual; educational;
epistemological; historical; and political. According to Rosa and Orey (2016) these dimensions are
interrelated and aim to analyze sociocultural roots of mathematical knowledge. Moreover, the
theoretical underpinnings of practice architectures, and the methodological tools established within
ethnomathematics, align well and provide synergies for a rich panel discussion. Ethnomathematics is
also a program that studies geometric concepts and theories developed locally as well as it is related
to dynamic pedagogical actions that respond to the environmental, social, cultural, political, and
economic needs of the students, which enables them to develop their imagination and creativity.

Questions to be consider by the panelists

. How can socio-political and cultural contexts of mathematics curricula help to recognize
and respect the history, tradition, and mathematical thinking developed by members of
distinct cultural groups through the development of geometric thinking?

o What is the significance of the influence on the curriculum of different political and cultural
contexts for researchers, policy makers, and teachers?

o What cultural traits contribute to the construction of local geometric knowledge?

o What role does ethnomathematics play in the understanding of diverse indigenous ways of
doing geometry?

. What are the sociocultural influences of the use of this knowledge in distinct cultural
groups?

DISCUSSION

The forthcoming papers describe the complex interactions between practice arrangements within
distinct contexts in Africa (Malawi), Asia (Iran), and South America (Argentina and Brazil). The
cultural traditions, political and social constructs, and the economic arrangements of these countries
differ dramatically, even with continents. Nevertheless, some common tensions endure across these
cases, particularly in relation to tensions that exist between formal (represented) school geometry and
meaningful geometric practices that play out in lived contexts. Geometry education has a sustained
and important history in these contexts, however, culturally-meaningful practices are not necessarily
valued.

It may be the case that that the global (and dominant) understanding of geometry education is too
narrow, and consequently, it undoes the relationship between knowing and practicing. The following
four cases propose that geometry practices should value cultural and contextual traditions in order to
flourish and sustain communities.
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CONTEXT AND LANGUAGE IN MALAWAI CLASSROOMS

Lisnet Mwadzaangati

University of Malawi

THE CONTEXT OF MATHEMATICS EDUCATION IN MALAWI

Malawi gained independence from a British colony to an authoritarian political regime in 1964 and
later to a democratic regime in 1994. The difference on type and quality of education prior to and
during the authoritarian political regime was very little as there were no spaces for negotiating
education reform (Mwakapenda, 2002). From 1994, the major reforms in education began to take
place, including the introduction of free primary education and a curriculum review by the Malawi
government through the Ministry of Education (MoE). The introduction of free primary education
led to a massive increase in enrolment at primary school, which resulted in an increase in secondary
education to an extent that the Malawi government converted Malawi College of Distance Education
(MCDE) centres into community day secondary schools (CDSSs) in 1998 (Malawi Government,
2008). The increase in access to primary and secondary education exerted enormous pressure on the
education infrastructure, learning materials, and education human resources. In primary school, there
was a problem of teaching resources, infrastructure, and lack of teachers because many experienced
teachers were deployed to teach at the CDSSs. In the secondary schools, the challenge was a lack of
teaching resources and lack of qualified teachers in quality and quantity. The challenge of quality
rose because the teachers who were deployed into CDSSs were not trained thoroughly while the
challenge of quantity rose because the government did not deploy enough teachers to the CDSSs.

Despite making strides in achieving education access through introduction of free primary education,
education quality remains a challenge as the Malawi education system continues to grapple with the
effects of introduction of free primary education as well as the rapid increase in population growth
(MoE, 2023). The deteriorating of education quality perpetuates learners’ poor performance at both
national and international assessments in literacy and numeracy at both local and international
primary education level assessments (Milner et al., 2011), which in return led to students’ low
performance in mathematics at secondary level national examinations (Ministry of Education,
Science and Technoloy [MoEST], 2020).

Several education reforms have taken place in all subjects and at all education levels since 1994 with
an aim of improving education quality and democratising education (Mwakapenda, 2002). In 2006,
the Malawi government shifted from objective education model (OEM) to outcome-based education
model (OBE) with underlying argument that OEM was teacher centred, hence teachers played a more
active role in achieving learning objectives than the learners (MoE, 2006). The assumption was that
OBE enhances education quality and students’ performance by promoting students’ active
participation during instruction and sustaining independent learning after instruction (Chang &
Salalahi, 2017). Although the curriculum review was accompanied by several other interventions to
improve education quality such as training of more primary and secondary school teachers and
building more classrooms, the teaching and learning of mathematics (especially geometry) remains a
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challenge (MoEST, 2020). The main contributing factor being the lack of qualified teachers. The
Malawi education statistics reports that only 10 percent of the secondary school teachers are qualified
to teach mathematics (MoE, 2023). This implies persistence of two worrisome challenges on
development of mathematics education in Malawi; (1) access to secondary mathematics education is
limited in Malawi, and (2) low quality of mathematics education in Malawi, hence limiting students.
This is in contradiction with Malawi’s aspirations that the quality of education has to be at par with
international standards in an increasingly knowledge based world (MoE, 2023). This means that
mathematics education will continue to be a challenge if there are no concerted and consolidated
efforts amongst the education stakeholders to address the teacher knowledge issues.

To achieve learner centred education and education quality in Malawi, teachers continue to be urged
to move from traditional teaching methods, which are characterized as ‘chalk and talk’, to more
inquiry-based learning characterized as ‘student-centred’ (MoEST, 2020). However, due to the
challenges of teacher knowledge, large class sizes, and very few resources for schools, most
classrooms in Malawi continue to be dominated by teacher talk, hence learners find the learning of
mathematics hard (Phiri, 2018). Both Malawian primary and secondary school class sizes can average
100 learners especially in CDSSs. Nevertheless, the teachers do try to use different student centred
strategies including discussions in small groups where students learn from and support each other
using carefully designed hands-on teaching activities. This is evidenced by Malemya (2018) who
reports that Malawian mathematics classroom instruction includes the following characteristics:
combines both learner-centred and teacher centred approaches where not much is done to help learners
deeply understand the concepts to be able to independently develop thinking capabilities, relies on a

textbook, focuses on developing a mathematical skill, devotes most available time to practising routine
procedures, features isolated tasks, there is more listening from a teacher talking, relatively large classes.

(p- 171)

These characteristics point to the challenge of knowledge of mathematical language use in Malawian
classrooms, also called language responsive teaching as evidenced by some researchers in secondary
geometry teaching in Malawi (Adler, 2022; Planas et al., 2022).

LANGUAGE AND THE TEACHING OF GEOMETRY IN MALAWI

Some of the reforms that have been made in the education sector since Malawi got her independence
in 1964 have been in the area of language education. The education system in Malawi comprises 8
years of primary education, (Standard 1 to Standard 8), 4 years of secondary education (Form 1 to 4)
and 4 years of university education year 1 to 4). There are over 15 local languages in Malawi, but
Chichewa remains the Malawi’s national language, which is used as a mandatory medium of
instruction from standards (grade) 1 to 4 in all public primary schools. Since 1989, all pupils’ books
(except those for English studies) for standards 1 to 4 are written in Chichewa (Kunje, 2009;
Malemya, 2018). Although the language policy changed in 1996, instructing that the language of
instruction from standards 1 to 4 be the pupils’ mother tongue, classroom evidence reveal that
Chichewa remains the language that children learn mathematics even in areas where it is not
dominantly spoken, probably lack of support to teachers in the form of mother tongue training and
development of mother tongue instructional material (Kunje et al., 2009). This is of great worry
because learning in unfamiliar language especially during early years implies learning the language
itself and the content of the subject being studied at the same time.
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From standard 5, the language policy dictates that instruction should be in English, which remains
Malawi’s official language even in the postcolonial period. As such, all curriculum materials from
standard 5 up to secondary level mathematics are in English, including the syllabus and all textbooks.
Unlike in other developed countries where the language of instruction is the language of the majority,
in Malawi, the majority of learners speak a different language than the language of instruction. There
is rich literature that argues for the benefit of engaging learners in rich mathematical discourse
practices especially for learners in multilingual classrooms to enable them to access the mathematics
register, ways of speaking, reading and writing mathematics, which emphasizes mathematical
reasoning and explanations (e.g., Prediger, 2019).

Both the Malawian primary and secondary geometry entails a relatively formal, static, and deductive
approaches. The routine approach to secondary geometry starts from definitions to illustrations of
geometric concepts, and then examples for practicing and applying the geometric concepts in usually
what is called dialogic instruction. For some teachers who embrace learner-centred education related
values, and are concerned with learner involvement, there is use of everyday examples, concrete
objects and diagrams for empirical measurement tasks, which are suggested in curriculum materials
such as the syllabus and textbooks (Mwadzaangati et al., 2022). However, there remains a challenge
of engaging learners in discussing and exploring of meanings even in classrooms where these learner-
centred approaches are practiced (Adler et al., 2022). Consequently, the deductive approach prolongs
the well-known student difficulties in geometry and obscures them from working simultaneously and
in connected ways with the visual and verbal representations of geometric objects (See Bansilal &
Ubah, 2019).

Seago et al. (2014) has argued that although presenting of both static approach and the dynamic
approaches (in their case the transformations-based approach to the teaching of similarity) to the
teaching of geometry are mathematically precise, the dynamic approach provides learners with robust
learning opportunities because it offers more clarity to geometric concepts than the static approach.
In Mwadzaangati (2019), I have argued that while dynamic approaches to geometry are considered
to be effective in enhancing learners understanding of geometric concepts, its conceptualization is
not possible in developing countries like Malawi, which are characterized by dire lack of teaching
and learning resources. As such the Malawian curriculum recourses such as textbooks are designed
in a way that can enable teachers and learners to use readily accessible resources to them such as
pencil and paper. Furthermore, there are attempts in some of the textbooks to include empirical
exploration tasks that can serve as attempts to address limitations of pencil and paper tasks, hence the
instructional approach used in the textbook, which present some proof problems as experimental
problems and then as a formal proof, might help the learners to both discuss and explore inductive
and deductive reasoning geometric process (Mwadzaangati, 2019). This means that the challenges
for mathematics researchers, educators, and even policy makers in addressing the teachers’ challenges
in geometry teaching in resource constrained contexts like Malawi require strategic actions of dealing
with how to teach geometry effectively using static approaches. Thus, how can we help the teachers
to promote learners discussions and explorations using the readily available recourses (e,g., paper and
pencil)?
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INTRODUCTION

In Argentina, compulsory education covers children and young people from 4 to 18 years of age. In
the province of Santa Fe, these 14 years are divided into 2 years of Initial Education, 7 years of
Primary Education and 5 years of Secondary Education (6 years in technical-vocational schools). At
the curricular level, the mathematics area is present in all these years (and even in numerous higher-
level courses: university and tertiary). With respect to geometry education, compulsory education
deals with geometric, linear, plane, and spatial forms, their characteristics and properties, providing
a connection with aspects of daily life while training in observation, visualization, representation,
estimation and deduction, among other mental operations. Measurements of different magnitudes are
also developed, with their systems of units, conversions, and procedures.

The Ministry of Education of the Nation is responsible for guaranteeing comprehensive, permanent,
and quality education for all the inhabitants of the country, setting the educational policy and
controlling its compliance. The Ministry of Education of the Province of Santa Fe, in concert and
concurrently with the first one, is responsible for planning, organization, supervision and financing,
and guaranteeing access.

For the coordinated planning and academic organization of educational actions, and in harmony with
the Priority Learning Nuclei at the national level, the provincial Ministry prepares Curriculum
Designs in which it establishes general guidelines for teaching, as well as specifications of topics to
be developed in each area along with methodological considerations. Focusing on Primary and
Secondary Education, the topics are organized into four axes: Numbers and Operations; Geometry
and Measurement; Statistics and Probability; Algebra and Functions.

Geometry and Measurement in Argentina’s Curricula

The Geometry component includes the study of geometric figures (non-empty sets whose elements
are points) in different dimensions—including points, lines, segments, curves, planes, angles,
polygons, circles, polyhedra, and round bodies. In addition, students study geometric places, conic
sections, and vectors. Initial understandings involve synthetic approaches associated with the
geometry of shapes in primary school and the basic cycle of secondary school, where some simple
demonstrations can be carried out, but very formative in reasoning, to be integrated with the analytical
approach geometry of coordinates in the last section of secondary school. Classifications of geometric
figures are made, taking into account their constituent elements, shapes, and properties, and geometric
constructions are carried out. For example, drawings of figures with ruler and compass, which
consolidates the importance of geometric invariants and criteria to consider. Relationships between
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geometric “objects” are also analyzed—parallelism and perpendicularity of lines; tangency between
curves; adjacency of angles; and congruence and similarity of figures.

The Measurement part could be a separate axis since it has its own identity and sufficient relevance
due to its direct applicability in numerous situations of daily life. Measurement systems are studied
and students learn to measure time, angles, length, area, volume, capacity, both directly using some
unit of measurement to measure objects; and indirectly, through the use of formulas and arithmetic
operations. It is therefore an interesting space for integrating topics. For example, geometry with the
field of numbers (to calculate the volume of a cylinder, two geometric elements must be identified
that define its shape and size—the radius of the base  and the height ~—and its measurements for
the calculation Volume=n*r’*h). The notion of independence of the measurements of perimeter, area
and volume 1s worked on, analyzing concrete and simple situations of non-linearity (if the area of one
figure is equal to twice the area of another, the same relationship between its perimeters does not have
to be replicated), to strengthen the meaning of each of these concepts. Trigonometry fits here,
conceptually based on the similarity between triangles, an extremely useful topic in the measurement
of numerous practical situations -in surveying, astronomy, satellite navigation, it can be used to
calculate inaccessible distances through the measurements of angles and measurable sides of
appropriate triangles. Furthermore, its subsequent amplification to the field of trigonometric functions
constitutes a basic area for the modeling of physical phenomena, particularly electrical ones.

THE ROLE OF CONTEXT

This type of teaching organization is metaphorically designated ‘“helical”, which is the shape of a
surface like that of a spiral staircase, since when climbing it you pass over a point already traveled,
but with another height, representing the idea that over time the degree of formalization and
complexity with which a previously discussed concept is worked on increases. A risk that is presented
and we must try to avoid is that the helical strategy of approaching the issues becomes a “carousel”,
which always rotates and rotates at the same height level.

In accordance with the global context, references to information and communication technologies
have been growing, transversally to the curriculum, as well as to interdisciplinarity. Regarding the
latter, in particular in Santa Fe, there are proposals to address teaching through Interdisciplinary
Content Nuclei in terms of bringing school disciplines into dialogue to promote the appropriation of
socially significant knowledge by students. In effect, they suggest taking social problems, understood
as events, as a starting point; among others: “problematic substance use”, “food”, “energy”, “the
challenges of democracy”, “dengue”, “cultures”, “climate change”, “the universe”, “technology in
the digital age”. This provides a concrete and conducive way to give voice to cultural and contextual
issues to break them down from mathematics education in each singular classroom from situated

institutional frameworks.

Likewise, in primary school classrooms, work on the Numbers and Operations axis is usually
prioritized, and from a purely procedural level. This unbalances the other axes, such as Geometry and
Measurement, which are sometimes addressed very superficially, leaving many relevant concepts or
properties untreated.

Sometimes the teacher feels that he cannot “move on” to another topic because what is related to
numbers and their operations has not yet been well learned by all the students. But you must keep in
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mind that this topic can most likely be used in another subject through integration, such as in the
calculation of volumes.

In the case of geometry specifically, many topics and aspects are not taught because they are
unknown, due to the teacher's own school experiences. Typically, teachers have not been provided
with appropriate formative understandings of this branch of mathematics. As a result, they generally
view it with fear and distrust. Regarding measurement, those relating to volume and capacity are
usually neglected, in line with the little or no treatment of the notion and calculation of volumes of
bodies.

A similar phenomenon occurs in many Secondary Education classrooms, when the emphasis is on
the simplification of long arithmetic or algebraic expressions, with combined operations, with
multiple parentheses, brackets and keys, and strictly memorized cases of factoring, without prior
motivations or later applications. The somewhat more formal approach to new topics in geometry
such as congruence and similarity of figures and trigonometry seems to have no chance of being
deployed. Among the arguments are those of the type ‘“students need to master operations with
algebraic expressions for higher studies”, “they cannot understand the basics, how we are going to
advance towards other things” and so on. These naturalized statements denote deep-rooted

epistemological positions that condition and configure the teaching practices of mathematics.

However, at the prescribed level it is expected that all the axes in which school mathematics is
organized will be developed. Furthermore, activities that integrate topics from different axes are
promoted; for example, work with algebraic expressions can be combined with geometric
interpretations, as well as with situations that can be modeled using such expressions. And even with
historical-socio-cultural practices of the spatio-temporal context of the vast national territory, which
remains a pending matter. In this framework, a student to be a teacher is trained in the specific aspects
of the discipline/s that he/she will teach, placing himself at the educational level in which he will do
so (Specific Training Field), learning the general humanistic and pedagogical foundations that will
support his work as an educator (Field of General/Pedagogical Training) and having the possibility
of deploying and rehearsing own abilities of teaching in making classroom decisions (Field of
Professional Practice).

In the provincial proposal for the Teacher Training at the Initial Level of Education (2752 hours), the
distribution of the minimum suggested hours for each Training Field is summarized as: Specific
(1365, 50%), General (768 hours, 28%) and Practical Professional (619 hours, 22%). Punctually,
mathematical disciplinary training is specified only in some portions of three curricular units, which
also include aspects of didactics: Problem Solving and Creativity in the first year (42.7 h),
Mathematics and its Didactics I in the second year (85.3 h), and Mathematics and its Didactics II in
the third year (85.3 h). Thus, training in Mathematics is less than 213.3 h, which represents 16% of
the Specific Training Field and, in turn, 8% of the total career proposal.

Likewise, within this scarcity, relevance is given to geometric issues, with two of the three blocks
assigned to them: Number; Space and Geometry; Measurement. In addition, among the proposals for
optional reduced formats, seminars on Ethnomathematics, geometry and movement, as well as
plastic-visual language and Mathematics are included.
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In the Teacher Training at the Primary Level of Education (2816 h) the Specific Training Field is
made up of the same spaces mentioned for the Initial Education Teaching Staff. The workloads by
Field are similar: Specific (1429, 51%), General (768 hours, 27%) and Professional Practice (619
hours, 22%). Regarding training in Mathematics, an analogous proportion is allocated to the previous
level (Initial), even slightly lower (15% of the Specific Training Field; 7.5% of the total Plan). How
could a teacher, qualified to teach Mathematics many hours a week, from first to seventh grade
(children from 6 to 12 years old), have acquired tools for effective professional development in such
a short training time? In turn, the proposal for the area is arranged in six blocks, two of which are:
Space and Geometry; Measurement.

In Argentina, the training of teachers to work in Secondary Education is already by discipline
(mathematics in our case) and two types of institutions coexist: provincial higher education institutes
and national universities. To provide context, currently in the field of state management, there are
around 30 Mathematics Professorships (universities) and 14 at the provincial level in Santa Fe. The
study plans that govern them and the institutional cultures are typical of each one (each university is
autonomous and each province too). In these Teacher Training Courses, the Specific Training Fields
comprise at least 60% of the total hourly load of the Study Plan. Among the branches that make up
the mathematics area, there is a greater emphasis on calculus, with geometry along with algebra being
the other two classic branches of development. Others mentioned are statistics and probability,
mathematical modeling, discrete mathematics, and applications.

To this point, the relative weight of Geometry within the Curriculum is between 10 and 11%, and is
developed gradually throughout the four years of the degree: Synthetic Geometry, Analytical
Geometry, Dynamic Geometry, Euclidean geometry, Fractal geometry, Non-Euclidean geometries,
Language in Geometry, Euclid's axiomatic system, Construction to conceptualization, Invariant
properties, Transformations, Hilbert axiomatics, Contributions of Descartes and Klein, Erlangen
Program, Incursion into Topology. In spaces of specific didactics and professional practice,
disciplinary content is integrated with relevant theoretical currents and contexts located where future
teachers carry out their immersion in real educational institutions. This is with the purpose of
substantiating from initial training a specialized knowledge of the content (particular mathematical
domain expected of a teacher). For example, calculating the perimeter of a rectangle requires
activating knowledge different from that necessary to analyze a student's conjecture about a possible
relationship between perimeter and area. The first requires only knowing ways to calculate the
perimeter of the rectangle (common knowledge), while the second requires an ability to think flexibly
about the notion of perimeter in order to analyze a statement, correct or not, of another person
(knowledge specialized).

In general terms, it can be noted that, from the analysis of the curricular designs for teacher training
in force, it emerges that in the case of Primary Education Teachers it is difficult to develop common
knowledge of the content corresponding to that section, due to the scarcity of the time allocated to
specific Mathematics topics (or geometry specifically). Hence the need for a review and readjustment,
because a teacher cannot teach what he does not know, or even manage at the same level at which he
must teach it. Even fewer will be able to articulate it in terms of specialized knowledge and/or
integrate it with cultural practices in situated contexts.
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DISCUSSION

In its origins, the province of Santa Fe was a territory inhabited by groups of natives, organized into
tribes (Tobas, Guaranies, Mocovies, Pilagas, Guaycurties, Querandies, Abipones, Timbues,
Quiloazas, Mocoretas, and Corondas). Inquiring into their worldviews, in connection with nature and
about how geometry has been intrinsically present in their practices also presents fertile, unexplored
territory. As an example, cultural diversity is celebrated on October 12 each year—it is a very
emotional moment of reflection that can be recovered through school projects that bring disciplines,
or branches of these, into dialogue, such as geometry. Some possibilities may be to explore geometric
shapes in cultural legends, develop geometric art inspired by cultures, study monuments and iconic
structures of various cultures, recognize the presence of geometry in Nature, or build geometric
models.

At the national and provincial level, in particular, agricultural and industrial-based activity is
influential, proving interesting activities that can support geometry with transversal themes such as
environment, gender, technologies, and human rights. This is on the agenda, with initial developments
in the daily classroom. Starting with Teacher Training, initial and continuous, is considered a
favorable path for this; punctually, from socialization of examples of similar practices in relatively
close fields.
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INTRODUCTION

The purpose of this paper is to provide a glimpse of the evolution of geometry education from the
foundation of the first modern education institution in the late 18™ century to the establishment of the
formal education system in 1925. From inception until 2011, geometry education was divided into
three different periods. This paper will give a brief account of the characteristics of each period in
terms of the geometry curricula/textbooks in Iran.

Geometry is part of the Iranian scientific history and the contribution of Iranian mathematicians to
the advancement of geometry has been remarkable in the history of mathematics. Scholars include
Abu al-wafa Buzjani (10% century), al-Karaji (11" century), Khayyam (11" to 12" century) and Nasir
al-Din al-Tusi (12" century), to name a few. Furthermore, geometry has been part of the Iranian
culture, artistry, architecture, and handcrafts. Nevertheless, geometry education in Iran, did not take
the soul of this cultural wealth and in contrast, was influenced by abstract aspects of geometry adapted
from French geometry curricula. In the following, I will take a glimpse at the geometry education
from Dar ul-Funun' to the new century.

Geometry Education since the first modern institution

Dar ul-Funun was the first modern education institution in Iran, founded in Tehran in 1851. The
tradition of geometry education in Dar ul-Funun was drawn from French traditions. Teachers taught
in their own language and translators were in classes to translate them into Farsi for students.
Gradually several of the translators started to write geometry textbooks in Farsi with an emphasis on
abstraction and rigor as presented in Euclid’s Elements. This synthetic approach had almost no
relation with traditional geometry that was developed in Iran in the past.

After the establishment of formal secondary education in Iran in 1925, the senior high school started
with two streams: namely, “science” and “literature”. Geometry was one of the main subjects of the
science stream. The approach to geometry education continued the tradition of Dar ul-Funun and
focused on deductive reasoning and proof. However, in the beginning of formal secondary education,
the number of students was low and those choosing the science stream for the senior high school were
limited. Typically, elite students entered the science stream and for most of them, the abstract level
of deductive practice of geometry was attractive and manageable. With the expansion of secondary
education, this approach prevented many students selecting the “science stream” and the abstract
approach to mathematics education, acted as “gatekeeper” for general students.

From the creation of the secondary education in 1925, three distinct periods of practice took place.

! polytechnic
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First period from 1942 to 1970: In this period, the Ministry of Education allowed different
publishers to produce textbooks for each subject from different perspectives, including geometry.
However, the approach to geometry education continued to focus on deductive reasoning and proof.
In this period, various changes took place at the senior secondary science stream and later, the
“mathematics-physics” stream, but geometry subjects autonomously. There were various school

subjects under the geometry umbrella such as “descriptive geometry”, “spatial geometry”, “analytical
geometry” and “conic sections”, all faithful to an axiomatic, Euclidian approach.

Second period from 1970 to 1995: In early 1970’s the school mathematics curriculum in Iran
adapted the “new math”, except for geometry education and geometry textbooks. Geometry endured
intact, despite Dieudonné’s desire to replace Euclidean approaches with transformational geometry
based on vectors and vector space in two dimensions (Dieudonné, 1972). In fact, Euclidian
approaches were mandated until 1995 despite not being aligned with the traditional Iranian geometry.
European influences prevailed with the expansion of formal education and the rapid increase of high
school students. Geometry textbooks were written to teach proof, using deductive reasoning.

After the revolution of 1979 and the end of the eight-year Iran-Iraq war in 1988, the secondary
education system underwent change in 1991 and the curriculum and textbooks for all subjects
changed accordingly2. Regarding mathematics curriculum, the “new math” subject including the
emphasis on formal logic was eliminated and new textbooks were written towards moderate reform
and as usual, two geometry textbooks for grades nine and ten, were written with the same axiomatic
Euclidean tradition. However, in contrast to the past, the number of students entering secondary
education and willing to choose mathematics-physics and science streams increased rapidly ensuring
geometry’s audience was much broader. The consequence was that in less than one year, and after
the report of the national assessment of progress in geometry (Kiamanesh, 1994), the Ministry
decided to re-author two geometry textbooks. I was invited with several others to develop the
geometry curriculum and write Geometry I and Geometry II textbooks3. From my perspective, this
was an opportunity to take a different stance on geometry education, allowing secondary students to
enjoy learning geometry. To start the new endeavor, we first reviewed the historical development of
geometry education from Dar ul-Funun to two periods of the foundation of formal education system
in Iran and the influence of new math describing the third period.

Third period from 1995 to 2014: To begin the work, we believed that cultural practices of geometry
in Iran, its tradition and its place in the Iranian heritage should be our first step towards developing
the curriculum. As well, the historical trend of modern and formal education should be considered
seriously. In the meanwhile, I participated at PME 18 in Lisbon in 1994 when the study document
for the 14th ICMI Study titled “Perspectives on the teaching of geometry for the 21st century” was
released. By reviewing the related documents at the national and international level, we concluded
that school geometry should encourage students to formulate conjectures and proofs, through
activities that were accessible to as many students as possible. Relations between intuition, inductive

2 Iran education system is centralized and there is one national textbook for every school subject.

3 The details of this development have been presented in various conferences and the team and myself, have written
several papers to describe that new trend. The last paper written by Gholamazad, Gooya & Zangench is ready for
submission.
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and deductive proofs, age of students at which proofs can be introduced, and different levels of rigor
and abstraction needed to be accounted for.

Geometry I started with simple and computational/algebraic examples and used axioms implicitly
that were based on student experiences. For example, for the similarity of two triangles, we relied on
what students knew from junior high school related to the concept of rectangle and area rather than
focusing on computational examples. We used inductive and deductive reasoning across the book.
Students calculated the volume of spheres by first calculating the area of circles.

Geometry 2 encouraged students to use inequality, deductive reasoning, and indirect proof as tools
and methods for direct proof. Analytic approaches included considering transformational geometry
with coordinated geometry. A serious difficulty for university graduates was that they could not use
their higher mathematics knowledge fluently to teach axiomatic Euclidian high school geometry.
However, the new approach gave them confidence to use their new knowledge for teaching geometry.
For the development of Geometry 1 and Geometry II textbooks, the following principles were
considered:

1 Guessing (conjecturing) using inductive reasoning and proving using mathematical
induction is a great opportunity for students to develop logical thinking.

2 Coordination and unification of different parts of mathematics as a legacy of Golden Age
of Iranian-Islamic era and its potential that was the opposite of new math in which various
mathematics branches, topics or even concepts dealt with differently.

3 Teaching theorems are important, but not in a way that in traditional or new math approach,
teaching a theorem and its proof with all its details at once. On the contrary, we broke
famous theorems such as Thales into several parts and through suitable activities, students
engaged in doing the proof with other students in small groups and via whole class
discussions and contributed to the development of proof. In this manner, each part acted as
a scaffolder to build the other part and at last, the textbook brought all pieces in one big
picture as “proving the theorem”.

To give an example, the following activity is taken from Geometry 1 (1995):

This regular dodecahedron has been divided into six parts. Cut the pieces and put them together in a
way that makes a square. Note that one of the pieces is an equilateral triangle. In the first step,
students should solve it by manipulating the pieces. But in the next step they were asked to show it is
a square. In other word they should prove that the new figure is a square.

Figure 1. Puzzle posed by Abu al-Wafa al-Buzjani (11 century)
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Discussion

Geometry has strongly rooted in Iranian culture and thus, in every period of schooling, has had its
own dominant place in school mathematics curricula. Since the foundation of Dar ul-Funun and later,
the establishment of formal education system in Iran, geometry has always been “of its own merit”
and not necessarily regarded as part of school mathematics. Reviewing the history of geometry in
Iran, shows that great mathematicians, philosophers, and poets created the most sophisticated
geometry that have boosted mathematics and science throughout the history of humankind and had a
certain role in the development of the western renaissance. This cultural and traditional geometry is
heavily based on practices and real-life problems and its move has been from intuition and reality to
abstraction. Geometry is strongly rooted in Iranian culture, and it is the soul and base of many
artifacts, buildings, handcrafts, and carpet weavings and is part of our cultural heritage. However,
since the modern and formal education was imported from Europe and particularly France, the
approach to its education as school subject, was purely focused on the Euclidean tradition. This
resulted in two independent and strong culture practices in geometry education in Iran. Before the
reform of 1995, the formal geometry education in Iran was disconnected from the real world, and the
other mathematics subjects as well. Its Euclidean axiomatic approach, prepared the scene for
memorization of facts, proofs and procedures, and the language used was unfamiliar for students.

CONCLUSION

However, the beauty and flexibility of geometry is partly due to its capacity for developing intuition,
visualization, imagination, and application in the real world that is not limited to an axiomatic
framework. In our view, this is the central reason for geometry having a self-contained place in school
mathematics since no other parts of mathematics have the potential of geometry to include both
extremes of far intuition and far abstraction within one frame! In addition, geometry is closely
connected with culture and cultural artifacts and people in different regions around the world feel that
they are part of this endeavor and thus could contribute to its development. Rather than using artificial
cultural symbols, it is more appropriate to implement the findings of various ethnomathematics to
help students to see the relation between mathematics and culture (Gooya & Gholamazad, 2021).
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INTRODUCTION

In the struggle for agrarian reform, the access to a plot of land and to live and produce on it makes
the practices of measuring the land to be a central activity of the members of the Landless Peoples’
Movement (Movimento dos Sem Terra - MST), in Southern Brazil, mainly because of the importance
placed on sustainability and planning of agricultural production. In the study conducted by Knijnik
(1993) it was proposed that the elaboration of curricular mathematics activities related to the
demarcation of land with participants of this movement. These activities were related to the method
of cubagdo of land, which is a traditional mathematical practice applied by participants of this specific
cultural group to measure and determine the area of the land in their settlements (occupation sites).

The daily necessities of the MST members caused them to capture the procedures of these techniques,
showing that, despite their low level of schooling, they were able to apprehend and apply knowledge
related to the methods of cubacao of land, which is one of the tools used to solve problems related to
the measurement of land with irregular shapes by applying distinct methods to determine this area.
According to Knijnik (1996), this method met the specific needs of the members of this movement
because they applied it to determine land areas related to the delimitation of planting sectors as well
to demarcate the plot of land of each family in the settlement.

They established production goals related to their own logistic possibilities such as storage and
drying, bagging, transport, and selling products at local markets. The land worked by MST members
was prepared according to the type of farm and quantity of the product these members harvested and
commercialized. The emic knowledge related to the development of these methods was orally
transmitted and diffused to MST family members by their ancestors across generations. Thus, the
mathematical knowledge involved in these local methods is also related to productive activities that
members of this specific cultural group performed in their daily routines. For example, the need for
the development of cubagdo of land with irregular shapes was in accordance with its accessibility
depending on its topology and the quality of desired agricultural products.

This method is used to calculate the total area of a land in order to calculate the amount of money
needed to be paid or received for the cleaning work of the property, or for the preparation of the land
for planting as well the demarcation of areas to be cultivated, to plan and to delimitate areas for the
construction of houses and shelters for animals. It is also used to make payments for work done by
the members of a settlement in the state of Bahia, in Brazil, according to the land frames or shapes.
For example, there is job related to land with two corners, three corners, or four corners in accordance
with to the shape of the cultivated area (Silva, 2012). According to D’ Ambrosio (1999), the validation
of these methods within agricultural communities and settlements results from the development of
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informal agreements of signification that results from a long cumulative process of generation,
intellectual organization, social organization, and diffusion of this knowledge.

CUBACAO WITH QUADRILATERAL SHAPES: CALCULATION OF LAND AREA
WITH FOUR CORNERS

Mathematical practices investigated in the study conducted by Knijnik (1993) consisted of two
methods that were called by her students in the classroom as Addo’s Method and Jorge's Method.
These two students who were members of the Landless Peoples’ Movement (MST) presented,
explained, and taught these specific ways of measuring their land in their settlements to the other
learners in the classroom. The investigation of these two methods discusses the interrelations between
local (emic) and academic (etic) mathematical knowledge concerning the upper bound estimation of
the area of a tract of land with irregular shapes.

Transforming the Shape of an Irregular Quadrilateral into a Rectangle

The first method is called the Addo’s Method that transforms the shape of an irregular quadrilateral
into a rectangle. In this context, Addo explained how to determine his method, which we consider as
an emic ethnomodel:

Well folks, this is the most common formula that is used on the countryside, up there on the farm, right?
And, let’s assume that I am the owner of a crop and I lent this frame here to a friend fo mow and I told him
that I will pay three thousand by the fourth. Then, he mowed this land and he even passed the rope himself
to find its area. Then, he measured this wall here, 90 meters, the other, 152 meters, 114 meters, 124 meters.
Did you notice that there is no wall, no base, and no height that has the same measure, right? The two
landmarks that are lying down are the bases and the heights are those that are standing up. Ok. So, I did the
following here, right: I added the two bases and divided the sum by 2. I found 138. So, the base is 138 here
and 138 there, understood? So, I have here the two heights, 114 plus 90. I found 204 and divided it by 2,
102, right? So, now we just need to multiply the base times height, Ok? I think the answer is 14076 square
meters, right? This is the area that he mowed.

124 meters
a

d

114 meters

b

90 meters

152 meters

It is important to state that, during his narrative, Adao used expressions such as:
a) Walls (paredes) that mean the landmarks of the land.
b) Frame (quadro) that means the area of a land with a quadrilateral shape.
c¢) To mow (carpir) means to clean or to prepare the land for planting.

d) Fourth (quarta) that means an area measurement used in the Brazilian rural context that is
equivalent to a quarter of a Paulista bushel that is used in the state of Sdo Paulo, Brazil, which
measures 24200 square meters.

e) Pass the rope (passar a corda) means to measure the land by using a rope.

-26 -



ICMI Study 26 - Rosa

These terms are the vocabularies (jargons) used by the members of this distinct cultural group to
describe the procedures of the development of their local mathematical practices. Table 1 shows
Adao’s method of estimating an area of a land with irregular shape.

Adao’s explanation (Emic/Local Academic explanation (Etic/Global
knowledge) Knowledge)
This is a piece of land with four walls This is a convex quadrilateral

First, we add two of the opposite walls and | First, we find the average of two opposite sides
divide them by two

Second, we add the other two opposite Second, we find the average of the other two
sides and also divide them by two opposite sides

Third, we multiply the first obtained Third, we determine the product of the two
number by the second one average numbers previously determined

That is the cubagdo of the land This is the area of the rectangle whose sides are

the average of the two pairs of opposite sides of
the convex quadrilateral

Table 1: Adao’s method of estimating an area of a land with irregular shape. Source: Adapted from
Knijnik (1993, p. 24)

Thus, this emic (local) mathematical knowledge can be represented by an etic (global) ethnomodel
that transforms the shape of the given land into a rectangle of 138 metres x 102 metres with an area
of 14076 square meters.

Area — (aﬁ—c)’(b+—d)
rea = 2 X 2

e — (124 - 152) (90 + 114)
rea = 2 2
ren (276) ‘_ (204)
rea = 2 X 2

Area = 138x102
Area = 14076 square meters

The representation of this mathematical practice can be explained by the following etic ethnomodel
procedures: a) transform the shape of the irregular quadrilateral in a rectangle whose area can be
determined through the application of the area formula, b) determine the dimensions of the rectangle
by calculating the average of the two opposite sides of the irregular quadrilateral, and ¢) determine
the area of the rectangle by applying the formula: 4 = b x A.

138 meters

Area = 14076 square meters | 102 meters
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It is important, indeed relevant here to state that there is historical evidence that the method of
cubagdo in which a quadrilateral is transformed into a rectangle was used with the purpose of land
taxation in Ptolemaic and Roman periods, as well in ancient Egypt (Peet, 1970). This method is also
used in Chile and Nepal, and in the Brazilian states of Bahia, Pernambuco, Rio Grande do Norte, Rio
Grande do Sul, Sao Paulo e Sergipe (Silva, 2012).

Transforming the Shape of an Irregular Quadrilateral into a Square

The second approach is called Jorge's Method that is related to how to square the land, which means
to transform the initial quadrilateral into a square with the same perimeter. Table 2 shows Adao’s
method of estimating an area of a land with irregular shape.

Adao’s explanation (Emic knowledge) Academic explanation (Etic knowledge)
Here is a piece of land with four walls This is a convex quadrilateral
First, we add all the walls First, we determine the perimeter of this convex

quadrilateral

Second, we divide the sum by four Second, we divide the perimeter by four
Third, we multiply the obtained number by | Third, we determine the area of the square whose
itself side is given by diving its perimeter by four
This is the cubagdo of this land This is the area of the square obtained from the

perimeter of the convex quadrilateral

Table 2: Adao’s method of estimating an area of a land with irregular shape. Source: Adapted from
Knijnik (1993, p. 24)

In this context, Jorge explained that “Since the land has four different sides [irregular shape], I added
all four sides: 90, 124, 114, and 152 and the result is 480. Now, I divide this result by 4, which gives
120. Then, I multiply 120 by 120, which gives me 14400”. Thus, the quadrilateral is transformed into
a square whose side is the fourth part of the perimeter of the original polygon.

124 meters
a

d

114 meters
b

90 meters

C
152 meters

Thus, their emic mathematical knowledge can be represented by an etic ethnomodel that transforms
the shape of the given land into a square of 120 metres each side.

a+b+c+d
Area = (7)
4
124 +90+ 152+ 114
Area = ( 2 )
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480)

area=(
rea 4

Area = 120 square meters

The representation of this mathematical practice can be explained by the following ethnomodel: a)
transform the shape of the irregular quadrilateral in a rectangle whose area can be easily determined
through the application of the area formula, b) determine the dimensions of the rectangle by
calculating the average of the two opposite sides of the irregular quadrilateral, and c¢) determine the
area of the square by applying the formula A=a x a = a°.

120 meters

120 meters | A = 14400 square meters 120 meters

120 meters

In this context, Knijnik (1996) has affirmed that the methods used by Addo and Jorge are
mathematical practices that rural workers in southern Brazil employ in order to transform irregular
figures into regular ones. For example, in the Addo's Method, there is a reduction of the area of the
land in a rectangular shape while in the Jorge's Method this area is reduced into a quadrangular shape.
Nevertheless, it is important to state that the method applied by Jorge shows that there is an increase
in area in relation to the method used by Adam because among all the quadrilaterals with the same
perimeter, the square has the largest area.
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1t is traditional for ICMI Studies to enable participants to visit classes in the host country. This 26th
ICMI Study took place in France during the school vacations, so we were able to organize a plenary
session of discussion with French teachers. They will present their school context, their practices,
and their questions to the group of researchers.

AN OVERVIEW OF THE FRENCH EDUCATIONAL SYSTEM
The main principles

The French educational system is guided by five principles, namely: academic freedom, free
provision, neutrality, secularism, and compulsory education.

The freedom of education and relations with private education defines that parents can choose
between public schools at no cost or private school subjected to state control, which can benefit from
state aid [in return for a contract signed with the state] (“Debré Law” n°59-1557, December 31,
1959). Only the government is authorized to issue university diplomas and educational degrees.
Teachers and students are expected to be philosophically and politically neutral. Neither religious
instruction nor proselytizing are allowed. Education is compulsory for all children from 3 to 16 years
old residing in France (the compulsoriness of school for the three-year-old child is recent, dating from
September 2019). Regardless of their nationality, students must be educated, whether at school or at
home (with a prior declaration).

Student With Special Needs

French public schools aim at welcoming all children of all intellectual and physical abilities from the
age of three in normal classes (disabled students; students with language and learning difficulties;
students with long-term educational difficulties; gifted students). This schooling in mainstream
education can be with or without specific support or arrangements according to the need of the
student. A local service, the Departmental House for Disabled People (MDPH in French) can work
out a personalized education plan for those children. Depending on the nature of a child’s disability,
they can either be homeschooled, taught in the local school within an educational inclusion unit or
hosted in a specialized educational unit or at the hospital.

Organization of the School Year

In metropolitan France, the school year runs from early September to early July. The school calendar
is standardized but with variations within the regions (3 areas of vacation: for example, students of
Créteil, or Toulouse are at work during ICMI Study, but Reims’ students are not). Typically schools
cycle around 7 weeks of work and 2 weeks of vacation. Summer vacation lasts approximately 2
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months (July and August).

Most schools are open 4 days a week (Monday, Tuesday, Thursday, Friday). Some schools are open
on Wednesday evening and secondary school often work on Wednesday and/or Saturday evening.

Organization of scholarship

French school is divided into preschool, elementary school, middle school, high school and upper
education including university, preparatory class for the “grandes écoles”, University Institute of
Technology.

Age French name French name/English name
3 Petite section Maternelle / Preschool
4 Moyenne section
5 Grande sections
6 Cours préparatoire — CP Elémentaire / Primary school
7 Cours ¢lémentaire premicre année — CE1
8 Cours ¢lémentaire seconde année — CE2 (EC(?le mate@ el.le + €lémentaire =
¢école primaire)
9 Cours moyen premiere année — CM1
10 Cours moyen seconde année — CM2
11 6e — sixiéme College / Secondary school
12 5e — cinquiéme
13 4e — quatrieme
14 3e — troisieéme
15 2de — seconde Lycée / High school
16 lére — premiére (College + lycée = enseignement
. secondaire)
17 Terminale
Baccalauréat Examen / exam

Licence (3 years)

University grades

Master (2 years)
Doctorat (3 years)

University post-grades

Table 1. French school system by student age
Teachers’ education and recruitment

In France, teachers are public servants. They must pass a competitive entrance examination. There
are three possible examinations: CAPE (certificate of aptitude to teach in preschool or primary
school), CAPES (certificate of aptitude to teach in secondary school) and Agrégation which also
allows teaching in secondary school (but also to some extent in preparatory classes and university).
All teachers must have a master’s degree.

Students with a bachelor’s degree can enroll in a master’s degree in teaching, education, and training
(MEEF) at an Institut Supérieur du Professorat et de 1’Education (INSPE). At the INSPE they prepare
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for a master’s degree and for the competitive examination.
Some Peculiarities of the French System

Schools do not recruit teachers. The system for assigning teachers to their posts is governed by a
national and regional system based on the allocation of points according to seniority, career, and
family situation.

The agrégation allows teachers to teach at the same level as the CAPES, but an “agrégé” teacher
teaches fewer hours per week (15h vs. 18h) and at a higher salary.

In higher education, there are several stages in the process of obtaining a research position. First, you
need to obtain a PhD, and then apply to a section of the national university committee (CNU). This
involves putting together a dossier outlining how your research fits into a particular disciplinary field.
There are two CNU sections for math education researchers: Applied Mathematics and Application
of Mathematics (26th section) and Education and Training Sciences (70th CNU section). Only PhDs
who have obtained this national qualification are eligible to take part in competitive examinations for
positions as lecturers (associate professor).

To become a full professor, you need to obtain a second diploma, the “habilitation a diriger des
recherches” (habilitation to supervise research), and then apply for a position. Qualification has
existed in the same way as for lecturers but is no longer compulsory for associate professors working
at a French university.

THE FRENCH SYSTEM IN FIGURES

Average salary (in July 2021, source Ministry of Education):

Certified teachers: 2490 euros net per month. Time in front of pupils: 18 h per week
e Primary school teachers: 2407 euros net per month. Time in front of pupils: 24h per week

Agrégé: 3719 euros net per month. Time in front of students: 15 h per week
e Lecturer: 2805 euros net per month. Time in front of students: 192 h/year

University professor: 4200 euros net per month. Time in front of students: 192 h/year
Pupils:

e 11,997,900 schoolchildren (public and private, forecast for the start of the 2023 school year)

e 6,349,600 primary school pupils

e 5,648,300 secondary school students, including 3,397,300 middle school students and
2,251,000 high school students (including 627,100 vocational high school students)

Schools:

e 58,910 public and private secondary schools under contract (back to 2022) [48,220 schools;
6,980 colleges]

e 3,710 lycées and Erea (établissement régional d’enseignement adapté), including 2,080
lycées for vocational high school students

Teachers:

e 853,700 national education employees teach 1st and 2nd grade students (public and private
under contract, back to 2022)

-33-



ICMI Study 26 — Emprin, F., Audra, 1., Binet, M., Da Motta, B., Foy, M.-P-, Marche, A., Trouillet, C.

Class sizes (back to 2022)
Public and private primary education

e 224 pupils per class, average number of pupils in pre-elementary classes
e 21.6 pupils per class, average number of pupils in elementary schools

Secondary public and private

e 25.9 students per class, average number of students in college training (excluding Segpa)

e 17.9 students per class, average number of students in vocational high school courses

e 30.3 students per class, average number of students in general and technological high school
courses

Diplomas (session 223)

e §89.1 % Diplome national du brevet (DNB) pass rate (after 3e)
e 90.9 % Baccalauréat pass rate (after terminale)
e 79.3% Proportion of baccalaureate holders in a generation

Average expenditure per pupil per year (calendar year 2018, provisional data)

e €7,440 per primary school pupil

e €9,150 per middle school student

e €11,570 per general and technological high school student
e €13,220 per vocational high school student

TEACHER’S PRESENTATION
The plenary session will begin with a presentation of a few schools with successive zoom in:

e FElements (photos, short video clips, data, information) about the teacher’s town, school and
classroom.

e Place of geometry in the cursus.

e Examples of geometric activities proposed in the classroom, in the form of resource
documents, materials used, video extracts, typical errors, and specific characteristics of the
audience.

e The special-needs audiences they cater to.

e The technological tools they use in their classrooms.

e Their equipment.

e Problems and difficulties associated with teaching geometry.

The presentations will be followed by a discussion with the researchers of the ICMI study.
Participant teachers:

e Kindergarten: classes of colleagues presented by Christine Trouillet

e Primary school: Bernadette Da Motta (CE2), Aurélie Marche (CP-CE1) and M¢lanie Binet:
teachers in Reims

e Secondary school: Isabelle Audra (Paul Langevin’s Middle school in Romilly-sur-Seine)
accompanied by Marie-Paul Foy

e University: to be determined
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The aim of this study is to analyze the extent to which a problem-solving approach in geometry
activities engages undergraduate students in mathematical discussions and tasks to formulate
conjectures, seek different ways to support and validate those conjectures and communicate their
findings to peers and the instructor. To this end, the participants were encouraged to use a Dynamic
Geometry System (GeoGebra) to model the tasks dynamically and identify and explore the
relationships between objects in terms of empirical and analytic arguments. As a result, the
participants initially interpreted concepts involved in tasks statements in terms of their geometric
meaning to represent them. Subsequently, they proceeded to explore the model by moving select
elements within it. After conducting this exploration, the participants formulated conjectures
regarding objects’ behaviors or relationships that were explained and supported through empirical
and formal arguments. In other words, students extended their ways of reasoning transitioning from
empirical to formal arguments to support and validate their conjectures.

INTRODUCTION

Over the last three decades, research in mathematics education has been interested in identifying,
explaining, and understanding the difficulties that first-year students face during their integration into
university-level education. For instance, Leviatan (2008) argues that these difficulties are related to
the contrast between how mathematics is taught at a high school level versus at a university level.
While the former tends to focus on developing algorithmic skills aimed at solving concrete and
routine exercises, the latter demands abstraction skills and inquiry questioning and emphasizes non-
routine problem-solving and mathematical rigor. The data obtained from diagnostic admission exams
for bachelor’s degrees in mathematics in Mexico indicate that the majority of students lack a basic
understanding of fundamental mathematical concepts and are primarily focused on reproducing
problem-solving algorithms. This means that most students begin their college education with limited
knowledge of mathematical concepts and problem-solving strategies.

This highlights how crucial it is to shift the focus in mathematics education towards perspectives that
prioritize the development of problem-solving and sense-making skills about mathematical concepts.
That is, activities and instructions ought to be designed in such a way that they foster the development
of students’ mathematical thinking. Such instructional frameworks should empower students to
articulate and address diverse problem types across the spectrum of their academic and social
education. Santos-Trigo (2019) argues that, in a problem-solving based instruction, students can
engage in mathematical knowledge by conceptualizing the discipline as a set of dilemmas that need
to be represented, explored, analyzed, explained and justified, i.e., learners need to develop and value
an inquiring approach to understand concepts and to solve problems. Additionally, the use of digital

Lowrie, T., Gutiérrez, A., & Emprin, F. (Eds.), Proceedings of the 26th ICMI Study Conference (Advances in
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technologies as a problem-solving tool allows students to explore mathematical tasks in different
ways. In this sense, we argue that exposing students to a problem-solving approach where students
can rely on digital technologies can foster crucial skills to elaborate conjectures, justify and
communicate results, which promote their integration to university education.

Therefore, in this research, we aimed to characterize, through geometry activities based on a problem-
solving approach (Polya, 1965; Schoenfeld, 1985) and mediated by the coordinated use of GeoGebra,
the tools, skills and difficulties exhibited by undergraduate students as they work on geometric tasks
that encouraged them to formulate conjectures, explore different ways to support and validate those
conjectures and to communicate their results. The research seeks to address the question: To what
extent do these geometric activities, mediated by the use of GeoGebra, promote the development of
mathematical processes, such as formulating, supporting and validating conjectures, and elaborating
mathematical arguments among undergraduate students?

CONCEPTUAL FRAMEWORK

When students begin their university education, they face difficulties related to their lack of
abstraction skills, inquiry reasoning, general sense of mathematical rigor, and non-routine problem-
solving skills (Leviatan, 2008). This indicates that moving from a secondary-level of education to a
university-level entails a process of transition and integration. Research on the secondary-tertiary
transition in mathematics, has considered undergoing perspectives to explain and address the
problems and stages that students experience during this period. In this matter, it has been found that
some aspects influencing students during the secondary-tertiary transition are related to their previous
experiences in learning mathematics, the quality of study strategies, the way of thinking in/for
mathematics, and conceptual background about mathematics ideas (Rach & Heinze, 2016; D1 Martino
& Gregorio, 2019). In this sense, Schoenfeld (2022) highlights the importance of providing
challenging activities to students, i.e., non-routine problems as well as generating educational
environments that promote “learning to think in and with the discipline, internalizing the discipline’s
habits of mind and practices of doing mathematics”. Thus, students need to have close encounters
with processes linked to mathematical reasoning as the formulation of conjectures, examples and
counterexamples, and arguments that allows validation of mathematical states.

On the subject of argumentation and proof in university-level mathematics education, Meyer (2020)
expresses that several aspects need to be considered when analyzing how students formulate their
arguments, such as the structure, the mathematical content involved, and the recipient-orientation.
Furthermore, De Villiers (2010) states that it is essential for teachers to explore authentic and
meaningful ways of incorporating experimentation and proof into mathematics education, to provide
students with a deeper, more holistic insight into the nature of mathematics. In respect of this matter,
as mentioned by De Villiers (2010), we understand that experimentation involves any intuitive,
inductive, or analogical reasoning employed when:

a) Mathematical conjectures and/or statements are evaluated numerically, visually,
graphically, diagrammatically, physically, kinesthetically, analogically, etc.;

b) Conjectures, generalizations or conclusions are made based on intuition or experience
obtained through any of the above methods. (p.205)

In this regard, Liljedahl (2016) and Schoenfeld (2022, et al., 2016) state that it is fundamental to
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create robust learning environments that support students in not only developing the qualified
knowledge and processes underlying mathematical thinking but also fostering the development of a
sense of agency and authority to make sense of mathematical objects and practices. Thus, we
considered aspects related to TRU framework (Schoenfeld, 2014) to create powerful mathematics
classrooms in which exist 1) Mathematical content; 2) Cognitive demand; 3) Access to mathematical
content; 4) Agency, authority and identity and 5) Use of assessments. Moreover, Santos-Trigo (2019)
highlights the importance of incorporating technologies such as Dynamic Geometry Systems as the
foundation to represent, explore and extend mathematical tasks when designing a powerful
mathematical classroom.

Thus, first, we provide a general description of the teaching practices carried out during our research
and the task design implemented; then, we present a qualitative analysis of the processes set in motion
by the participants. Regarding the data analysis, we identified the resources and heuristics
(Schoenfeld, 1985), as well as the conceptual and procedural tools (Melhuish et al., 2022) that
students activated during their problem-solving work. For this purpose, we considered the Authentic
Mathematical Proof Activity (AMPA) theoretical framework proposed by Melhuish et al. (2022). Out
of the ten procedural tools expressed by those authors, we sought to identify: 1) the refinement or
analysis of a proof, a statement, or definition by focusing on the attainment of assumptions; 2) the
process of translating informal ideas into formal or symbolic rhetorical forms; 3) the elaboration of
analogies, i.e., the process of importing proofs, statements or concepts across different domains
adapting them to new schemas; 4) the use of examples, such as using a specific and concrete
representation of a statement, concept or proof that represents a class of objects; and 5) the elaboration
of diagrams and visual representations of mathematical objects (statements, concepts or proofs) that
capture structural properties.

METHODOLOGY AND TASK DESIGN

The data gathered from this research resulted from the implementation of a geometry course with 30
first-year undergraduate students. The main objective of the course was to lead students to develop
deductive reasoning through problem-solving activities through of a DGS (GeoGebra). This allowed
them to make sense of the problem statements and explore, represent, and identify geometric relations
between the mathematical objects involved through direct manipulation, namely dragging. Due to
space constraints in this paper, we will describe the analysis of one team’s work (E1) regarding one
of the four implemented activities (T3). However, we will provide a brief discussion of all 15 teams.
We summarize the methods followed during the tasks down below:

1. All tasks were presented as problems, whether they had a situational context or not. Tasks
were adapted from rutinary textbook problems into open-ended problems that required
the formulation of conjectures.

2. Students were then asked to validate their conjectures by generating an argument or
giving a counterexample. Both the elaboration of the conjecture and its validation or
refutation were expected to be done with the support of GeoGebra.

3. The activities were conducted by a teacher, one of the researchers, by guiding the
participants’ work through questions and prompts. These had the dual purpose of
fostering reasoning and argumentation skills and encouraging exploration and
understanding of mathematical concepts by manipulating dynamic models.
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4. Students had an average of three days to tackle the task and were permitted to work in

Task T3

pairs or individually, depending on the task; this allowed students to socialize and share
their initial ideas.

After exploring each task, a face-to-face session was held to discuss questions,
difficulties, conjectures, and possible initial arguments expressed by students. They were
encouraged to share their work with the rest of the class to gain insight into their ideas
and receive feedback from their peers and the teacher. The objectives of this type of
session were to lead the students 1) to identify the concepts involved in the problem as
well as weak resources or cognitive obstacles; 2) to identify the conditions given by the
problem’s statement and its relation to the problem’s representation, 3) to decide and raise
an initial statement of the proposed conjecture, and 4) to exchange possible strategies to
approach the argumentation of the conjecture.

Students were asked to register their problem-solving processes, as well as questions,

ideas, or actions that arose while tackling the task and during face-to-face sessions. This
constituted the main source of data for this research. For this purpose, the teacher asked
students to include in their registries the following elements:

e Description of all explorations oriented to understanding the problem statement and
generating conjectures. For both data analysis and the statement of a conjecture, we
sought to determine what concepts, strategies, processes and/or digital tools were
activated by the students when exploring and understanding the problem.

e Description of the process followed for the proposal of a plan or strategy that leads
to solving the problem. We sought to identify what resources (concepts,
mathematical content, evidence, or previous results) students recognized as helpful
when tackling the problem, how they activated them when they sought a solution
strategy, and what type of inquiries they made.

e Description of the problem-solving process, as well as all types of algebraic or
empirical procedures, diagrams, etc. We analyzed the types of arguments students
used when they proved or validated their conjectures, the use of mathematical
notation they exhibited, and the logical structure exhibited in their proofs.

e Problem extensions. We analyzed whether students could pose new or similar
questions or problems to be solved based on what they had learned, explored
innovative solutions and/or generalized their strategies. Through these questions, we
aimed to encourage students to engage in the activity of problem-posing.

Now, we present the instructions and questions given to the students to guide their reasoning process
in Task 3 (it is worth noting that the original language of the instructions was Spanish). Figure 1
shows the problem statement.

Instructions: The solution process for this problem must be thoroughly registered on a logbook.
Section 1. Exploring and obtaining a conjecture: a) Create a model of the embedded figure in the

problem using GeoGebra; then, explore the problem by manipulating the elements of your model

using the available tools in GeoGebra; b) Register any questions you asked yourself during the
construction of the model. Establish the assumptions given in the problem and those that you have

- 40 -



ICMI Study 26 - Chicalote-Jiménez, Ortiz-May, Gomez-Arciga

considered for the construction. Write an initial guess (conjecture) about the answers to the questions
stated in the problem; ¢) If you move the sides of the quadrilateral, does your guess still work? If you
move point F along segment CD, is your conjecture still true? d) Considering the initial conditions
that you think are necessary to solve the problem, determine a possible conjecture about the ratio of
the shaded area to the non-shaded area. Section 2. Elaboration of a solution plan: a) Describe the
mathematical concepts you consider are underlying in the formulation of your conjecture. Which of
them do you master, and which don't? b) Use online platforms, videos, or books to do some research
on those concepts. Add your query sources. ¢) Describe how these concepts or results could help you
to solve the problem.

En la siguiente figura se muestra el A b
cuadrilatero ABCD con BC paralelo &
a AD. Se traza el segmento EF donde
E y F son puntos medios de AB y
CD respectivamente. ;Serd posible o ° ® ° ®
establecer una relacion entre el area
sombreada y el drea no sombreada?
(Cuadl seria esa relacion?

B C

Translation: The following figure shows the quadrilateral ABCD with BC
parallel to AD. Segment EF is drawn, with E and F being the midpoints of AB
and CD, respectively. Is it possible to establish a relationship between the
shaded and the non-shaded areas? What would that relationship be?

Figure 1: Problem corresponding to Task T3

Section 3. Development of an argument and solution: a) Describe an argument that allows you to
validate the conjecture you have established. If you realize that your conjecture is false, present a
counterexample and then seek to establish a new conjecture and validate it. Repeat this process until
you can find an argument (or proof) that shows that your conjecture is true. Section 4. Extension of
the problem. a) Pose at least another way to solve the problem, a new similar problem, or question
that you could solve based on what you found out during this problem.

Analyzing these elements, we derive several results regarding the reasoning methods and approaches
students employed to solve problems and support statements.

ANALYSIS AND FINDINGS ON TASK 3

We now show the analysis of the types of reasoning and problem-solving processes followed by the
team E1 when arguing the validation of their statements. We also provide some insight on the
difficulties or obstacles faced by students and how they overcame them.

Team EIl initially approached the problem by employing paper drawings despite the problem
indicating the use of GeoGebra. Realizing that this method complicated their exploration, the students
subsequently shifted to using GeoGebra to construct the figure and represent the given problem and
its conditions. Then, students manipulated (dragged) points along parallel sides, leading to the
identification of various triangles with similar properties. They further posed the question “What
happens when the points are evenly distributed on the parallel lines?”” and explored potential changes
to the figure by dragging its vertices, examining how their initial ideas were influenced. In this sense,
manipulating the model was important for students to identify the existence of similar triangles. Then,
students constructed rectangles by focusing on the points along the AD, BC and EF segments,
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viewing it as a helpful approach to reaching conclusions for the given problem (Figure 2a). Their
initial state was: “The shaded area is 1/4 of the total area”. Afterward, they utilized the measure area
tool in GeoGebra to compare the areas of the shaded and unshaded triangles, along with the entire
rectangle ABCD (Figure 2b) as they formulated the conjecture: “[In rectangle ABCD] The shaded
area is 1/4 of the total area, and the unshaded area is 3/4 of the total. .. The unshaded area is three
times the shaded area.” This approach allowed them to visually confirm the validity of their
conjecture and state verbally that the shaded area is invariant to the position of the points on AD and
BC as long as the shaded regions do not intersect each other. To support the validity of their statement,
students employed pivotal concepts from the exploration and understanding phase, such as parallel
lines and angle relationships, midpoint of a line segment and similarity. They considered angles
formed by transversal lines (BG, GH, HI, IC) intersecting parallel lines (AD, EF, BC) (Figure 2b).
This approach led to the establishment of triangle similarity. Consequently, they applied Thales’s
first theorem along with the area formulas for triangles and rectangles. Using these methods, they
conducted a detailed analysis, comparing the areas of the shaded and unshaded triangles to the overall
area of the rectangle, which allowed them to support their conjecture (Figure 2c). Although the
students successfully argued their conjecture, it is evident that there is room for improvement in the
use of mathematical notation, particularly regarding the establishment of similar triangles and the
ratio of areas. Enhancing this notation could lead to a more concise and effective argument. Finally,
team E1 did not explicitly pose a new problem or additional questions related to that posed initially.

A P G R:Z Q.0 S D
* —tTr i +
I 1 I 1 1. I
1 N1 1 /i 1
I B 1 /1 1
I 1 1 LI | 1
E Jif Ni VK1 yLi M [F
\ g T i
1 IREINEY 1 1 o enang,
1 A 1 . grhomado, wapn
' SNy ! : M gy
R S LI b o
B 8 VAHUW T C
(2)
A g ‘I D
12 = 385 | t4\= 3.65
IE JANAK /L M_IF
t5 =\2.52
tl/= 2.53
t3/ = 2.45
B =60.66" ¢
B H (2
rectingulo = 60
ST =15
(b) (©

Figure 2: Illustrations of the exploration processes followed by team E1

In general terms, the students used GeoGebra to construct the figure and represent the problem and
its conditions. They established initial conditions and made plausible conjectures about the type of
quadrilateral involved and its area. During exploration, common questions were raised about point
distribution on parallel lines and the impact on the quadrilateral when it is a parallelogram without
restrictions, for example: “What happens when the points are evenly distributed on the parallel lines?
What happens if there are no restrictions on the points but it [the quadrilateral] is a parallelogram?”
While 80% of teams shared similar conjectures, variations on hypotheses existed; for example, Team
E2 generalized to the parallelogram ABCD instead of the rectangle. Following a feedback session,
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students collaboratively, along with the teacher, used GeoGebra to represent and discuss the
generalization or particularization of the conjecture, as well as visual principles for argumentation.
The manipulation of the model played a crucial role, enabling students to articulate a more structured,
albeit not entirely rigorous, reasoning.

Summarizing findings, we assert that: 1) students developed skills for analyzing statements by
identifying assumptions; 2) the process of translating informal ideas into formal or symbolic
rhetorical forms requires more activities and guidance from teachers to develop this particular skill;
3) students applied previous concepts and statements to this new problem; 4) they constructed and
manipulated a dynamic and concrete representation to explore the problem and concepts related to
stating a conjecture, allowing them to actively participate into the processes of argumentation; and 5)
they elaborated diagrams and visual representations of the proposed statement and related concepts,
capturing their structural properties.

CONCLUSIONS

The teaching dynamics aimed to provide students with equal access to geometric content through
course notes, suggested bibliography, interactive GeoGebra applets, and the opportunity for online
research. The problems and questions posed prompted students to generate conjectures, explore
different ways to validate them, and consequently develop the ability to argue rather than solely rely
on predetermined solutions. Group discussions fostered individual and collaborative engagement
with the activities. While it is observed that students improved their reasoning and argumentation
skills through the activities, it is also evident that this development is a gradual process that may
evoke feelings of confusion and frustration, particularly due to their familiarity with routine problems.
Furthermore, it has been noted that there is a lack of motivation for students to formulate their
problems, whether derived from those suggested by the teacher or independently conceived.
Therefore, the role of the teacher is considered crucial in guiding and providing feedback throughout
the monitoring and control processes.

Given this, the dynamics in mathematics courses must provide activities that bring students closer to
the realization of activities of a high mathematical level and empower students to recognize their
mathematical resources and to make decisions on applying them in problem-solving. This entails
manipulating auxiliary tools, namely technologies, to explore and construct mathematical objects and
formulate conjectures. Creating spaces that cultivate oral and written arguments, using mathematical
notation and symbology, and refining proofs are essential aspects of developing geometrical
mathematical thinking guided by a logical sequence that progressively leads students toward the
processes of abstraction and demonstration. Such practices strengthen mathematical reasoning,
particularly during the transition from high school to university.

Finally, developing course content based on non-routine problem-solving or initial questions posed
by the teacher, requiring students to conduct preliminary exploration mediated by the use of a GDS
like GeoGebra during class, promotes: 1) the exploration and manipulation of geometrical models,
as well as the understanding of the problem and mathematical content; 2) the formulation of
conjectures; 3) the visual validation or generation of visual geometrical counterexamples to initial
conjectures; and 4) the development of many possible solution strategies. By engaging in these
processes, the structuring of arguments and proofs for the conjectures is facilitated, contributing to
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the development of robust reasoning within the mathematics field. It was observed that students were
afforded opportunities to actively use diverse mathematical skills and explore various approaches to
construct compelling arguments, substantiating the relevance and validity of their conjectures. The
results indicate that students extended their ways of reasoning, enabling them to transition from
empirical to formal arguments in presenting the solutions to the problems.
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We report on results of a study featuring kindergarten students solving an engineering challenge of
constructing a shelter for a stuffed animal using carton materials and tools in a makerspace. Our
analysis focuses on spatial reasoning (SR) skills that were manifested in the children’s intuitive
exploration of space and shapes as they were planning, realizing, testing, and adjusting the shelters
they constructed. The construction context allowed the children to enact creativity and flexible
thinking through spatial reasoning. We suggest that makerspaces contexts carry promising ways to
surface SR. We underscore the need to make explicit the mathematics employed so that this can be
recognized by teachers, students, and parents. We offer a four-part model as a working mechanism.
Questions remain, however, pertaining to connections of SR in engineering tasks with aspects such
as affect, materiality, agency, authorial identity, accessibility to high-ceiling mathematical concepts
and the socio-ecological turn in mathematics education.

CONTEXT AND RESEARCH FOCUS

Along with other places around the world, school makerspaces are taking ground in New Brunswick
(NB), Canada, K-12, emphasizing STEM education (NBED, 2016). Several non-profit organizations
and charity associations in NB provide much-needed support and assistance to teachers in developing
a variety of making activities to foster students’ creativity, innovation, computational skills, coding
capacity, and an entrepreneurial spirit across grade levels and educational curricula, both in formal
and informal contexts. Among these organizations, Brilliant Labs, had initiated a research
collaboration with the CompeTI.CA (Compétences en TIC en Atlantique/ICT competences in the
Atlantic Canada) and had set up a partnership network team to conduct case studies of school
makerspaces (Freiman, 2020).

Overall, CompeTI.CA’s main objectives are three pronged: (1) to identify information and
communication technological competencies continuum; (2) to research exemplary practices (case
studies) in school makerspaces; and (3) to develop new practices for teachers to use. To respond to
the call of the 26th ICMI Study on Advances in Geometry Education, we aim to zoom in and out on
kindergarten students’ intuitive SR during their work on an engineering challenge at the school’s
STEM Lab (makerspace). In the next section, we present key concepts that frame our work.

CONCEPTUAL FRAMEWORK
An engineering challenge and design in making activities

Learning activities that provide students with engineering challenges and design opportunities are
considered as beneficial in supporting and further developing modeling, discourse, and natural
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scaffolding processes in which students collaborate with their peers to solve real-life problems
(DeJarnette, 2012). In these activities, students develop understanding through interaction and
observation of their environment (Vygotsky, 1978). Design projects help students to see connections
between science concepts and solutions to real-world problems (Sadler et al., 2014). In mathematics,
LeBlanc et al. (2022) documented rich mathematical connections in students” work in makerspaces.
Similarly, Bush et al. (2022) suggest that teaching through design is learner-driven and goal-oriented,
provides authentic contexts, incorporates constraints, and allows for use of a variety of materials,
resources, and tools. Teaching through design involves teamwork and also requires the use of tangible
artifacts and discrete processes to suggest varied solutions (Sluis-Thiescheffer et al., 2016).

Among several types of materials and technologies available to support design activities, Deed et al.
(2022) provide several arguments for the use of cardboard as it supports embodied experiences;
creative and imaginative play; students’ wellbeing—social emotional and physical safety; a process
of idea generation; and reconfiguring classroom spaces to support engagement and productivity
through construction processes to resolve an engineering challenge. These are qualitatively and
fundamentally connected to the development of spatial reasoning (Omundsen, 2014).

Hatzigianni et al. (2021) conceptualize makerspaces as workspaces where open-ended resources are
used as enablers of learning through integration of the elements of design, creation, and innovation
that position young children as equally capable makers. The maker mindset is promoted in Papert’s
theory of constructionism, which emphasizes child-led activities, where thinking processes are more
valuable and critical than end-products, and where exploration and experimentation are positioned as
core to the learning process. Constructionist thinking draws on constructivism, another learning
theory that considers how learners construct knowledge through interaction with experience and ideas
(Hatzigianni et al., 2021). Heroman (2017) emphasizes the open-ended tinkering in making
experiences. That is, as children mature, their ability to use tools, collaborate with others, experiment,
observe, make discoveries, tap into prior knowledge, communicate, and persevere continue to
develop and flourish. These are key developmental experiences that are made available to learners
working in contexts of makerspaces. Hughes et al. (2019) offer a model for a design thinking cycle
(ask, imagine, plan, create, improve; Figure 1), which we used to frame manifestations of SR (Ramey
et al., 2018)—a construct that we will examine in the next sections.

Figure 1. A design thinking cycle (Hughes et al., 2019)
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Spatial reasoning: What is it? And why should it be developed from early grades?

Being considered as a critical aspect of intelligence (Smith, 1964), SR involves everything from how
we perceive the world, to locating and navigating within it, to imagining, manipulating, and
transforming two- and three-dimensional figures. SR is malleable and can be refined and improved
upon regardless of age or gender (Stepankova et al., 2014) while tapping into “the ability to recognize
and (mentally) manipulate the spatial properties of objects and the spatial relations among objects”
(Bruce et al., 2017, p. 147). In mathematics curricula, SR is, more often than not, assigned to the
geometry strand. The issue with this is that in spite of its critical role in the development of the learner,
teachers find themselves less equipped to teach geometry (Moss et al., 2015)—and by extension SR.

SR grounds “relations among two or more objects or between one’s moving body and objects or
landmarks in the environment” (Davis & the Spatial Reasoning Study Group, 2015, p. 5). It includes
transformations in 2D and 3D shapes, angles, and direction (Mulligan et al., 2018) and takes place
through interactive processes by locating, orienting, comparing, scaling, re/de/composing objects,
finding/creating symmetry, rotating, classifying, balancing, diagramming, transforming, navigating,
and sensing (Mulligan et al., 2018). SR can also “be practiced with limited or no use of the eyes—
with the hands, with the moving body and gestures” (Whiteley et al., 2015, p. 11).

But how can SR be noticed and identified and why should we care about SR? Several studies shed
light on important aspects of SR that can be noticed in a variety of out-of-school situations, and further
enhanced in school situations (McCluskey et al., 2018). For instance, at a very young age (K-2),
children can already develop very robust understandings of parallel lines (Sinclair & Bruce, 2014),
which can be built upon in teaching/learning geometrical properties. In terms of learning outcomes,
SR can be associated with mathematics performance (Hawes et al., 2022). In addition, those with
developed SR are more likely to enter and succeed in STEM (Wai et al., 2009).

Pulling all these threads together, we recognize the compatibility of and interdependence between
different conditions for SR to be noticed and worked on. We follow Latour’s (1990) idea of objects
as actants to suggest that as much as humans enact manipulations and transformations on objects,
objects as well enact their affordances to direct the ways they are used. In this regard, we see discourse
patterns, instructional approaches, and teaching strategies as non-reified actants. To us, the entry point
to noticing manifestations of SR is located at the context-specific, situated arrangement of objects
both reified and non-reified. The idea of the situatedness of SR is then a manifestation of the
allowable, reproducible, imitable, transferable, yet contextually bounded spatial-related actions and
reactions. Understanding SR as context dependent, relational, goal oriented, and interactive (Figure
2) helps us identify and potentially expand context-dependent affordances (Das & Winter, 2016).

Situated
Relational
Goal Oriented

Interactive

Figure 2: Elements of spatial reasoning
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SR is an important part of the NB K-12 mathematics curriculum and is included in the Geometry
Strand (MEDPENB, 2016). Over the past decades, the STEM movement pushed center stage new
opportunities for noticing and fostering spatial reasoning through more informal contexts of school
makerspaces (Freiman, 2020). The question we investigate in this context is What aspects of SR
emerge when kindergarten students work on an engineering challenge design task?

RESEARCH SETTING AND METHODS

As part of a bigger case study of school makerspaces, we observed two groups of 20 students and
their classroom teachers from a K-5 elementary school working in a STEM Lab (makerspace) in an
urban area in NB, Canada. After obtaining ethics approval and parents’ consent, the first author
entered the Lab to video record students’ work and conduct post-project interviews with some
students. Our analysis focuses on one group working on building a shelter for a stuffed animal. The
shelter needed to be waterproof and protect the animal from high winds. Twelve video-segments
were first analyzed on the presence of spatial reasoning as per the actions listed above. Then initial
codes were assigned to each video-segment. We then identified aspects across all segments.

Observing the children as they were working on constructing their shelter, we realized that we needed
to adjust Hughes et al.’s (2019) design thinking cycle to reflect the design phases the children
manifested in their collaborative work. We created a three-phase process: Planning - Realization -
Testing and Adjusting (Figure 3).

Testing &
Adjusting

Realization

Planning

Figure 3: Interconnected cogs in makerspaces (Fellus, Freiman, & Lurette, forthcoming)

To better understand how the children engaged with SR, the following overarching questions guided
our analysis that align with the three stages of planning, realization, and testing and adjusting: 1)
What aspects of SR do children manifest in planning their work? 2) What elements of SR are
observable during prototyping? 3) How do they modify their geometric structures in testing and
adjusting their engineered product? In particular, we looked into the ways children articulated their
ideas of how to approach the task (planning stage). We also looked into how children organized and
managed their space to realize their construction (realization stage). Finally, we learned how children
test, readjust, and improve the prototype through SR.

FINDINGS AND DISCUSSION

The process of solving the challenge is highly complex. Students were mostly working in small
groups on their own with little or no intervention from the teacher. As the children were planning,
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realizing, and testing and adjusting, we noticed multiple instances of SR, which were built on the
situatedness of the context (i.e., minimal teacher intervention, available tools and materials, the space)
that allowed children to work with relation to others and to their environment towards the goal of
constructing the shelter through actions of locating, orienting, comparing, scaling, composing,
decomposing and recomposing objects (Mulligan et al., 2018).

In the planning stage, which was the initial phase of the project, students were discussing the problem
and exchanging ideas. They used gestures to estimate the size of their shelter and organized their
space as they were getting ready to start their construction of their imagined shapes (Figure 4).

Figure 4: Children estimate and compare lengths and sizes of stuffed animals and projected designs

The second phase consisted of building a prototype. Students tried to construct walls using some
spatial relationships. At first, students opted for a rectangular shape by synchronizing their
movements to produce the desired shape. They also had to decide how to fasten the joints of the faces
of the structure to make their construction more solid. They adjusted for size (pushing a toy through
a “door”) and trying to make the structure more sturdy by adding screws. This was accompanied by
a vivant discussion and coordinated actions (Figure 5; Clements, 2004).

Figure 6: Children orienting, rotating, balancing, transforming, and synchronizing their movements

Some of the students decided to follow the line of the folds in the cardboard (intuitively grasping a
concept of a straight line). We also see two children doing their cuts simultaneously holding their
knives perpendicular to the cardboard and trying to synchronize their movements to create parallel
sides of the rectangle (Figure 6; Clements & Battista, 1990). Then they pull all pieces together to set
up their shelters in a shape of rectangular prisms (Figure 7).
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Figure 7: Children complete their 3D prototype

The final phase was testing and making their construction more sturdy: “waterproof” and
withstanding against the “wind.” Many had to readjust their construction by switching to a triangular
shape, for example. Indeed, when testing their constructions, students realized that their construction
needs to be more solid and well sealed to protect their animal from winds and rain. They undertook
a process of transformation of their initial constructions (Figure 8; Pruden et al., 2011).

Figure 8: Children testing, rebuilding, and transforming their constructions

Children transitioned shapes of structures as they were navigating toward their goal of constructing
the shelter for their stuffed animal. Figure 9 showcases an example of decomposing a rectangular
prism and recomposing it as a triangular prism by bending the two side walls to create symmetrically
centered, balanced walls for the shelter (Mulligan et al., 2018).

Figure 9: Children composing, de/re/composing and transforming structures
CONCLUSIONS

Overall, we found that engineering challenges enrich young children’s spatial explorations by
providing them with a sense of spatial insight into complex mathematical structures and relationships
between objects and self (Ramey et al., 2018), at least at the intuitive level. The concept of SR is
enmeshed with the expression and experience of movement (embodiment) allowing students to
design, build, test, and adjust sophisticated geometric constructions within situated contexts that are
relational, goal oriented, and interactive. While our findings seem to corroborate with existing
literature on SR showing the importance of early STEM learning opportunities, the context of
makerspaces lets us direct the discussion towards theoretical concepts that emerge when we reflect
on students’ intuitive understanding of geometry. Hence, the construct of agency seems to be a
promising entry point into the realm of the socio-ecological turn in mathematics education (Bush et
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al., 2022). This is a necessary step that allows us to reflect on the multidirectional relationship
between one’s embodied self and their environment. This reorientation of mathematics education
through the lens of agency is how we navigate public discourse in the volatile, uncertain, complex,
and ambiguous world. These ideas require further exploration and discussion.
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Developing an effective teaching sequence for deductive proving in geometry still faces many
challenges. In this paper, we aim to contribute to this issue by identifying ‘core skills’ for deductive
geometry. By analysing the survey data from 238 G8, and 208 G9 students, we identified 7 items
related to the generality of proofs, the structure of proofs, the economical nature of hierarchical
relationships, and spatial reasoning. Our findings have implications for the teaching of deductive
proofs in geometry as our results suggest guidance in considering a sequence of geometry teaching
for deductive proving.

INTRODUCTION

Mathematics education research documents how the teaching of geometrical reasoning still faces
challenges, and how students continue to have difficulties to write and read geometrical proofs, to
solve problems in both 2D/3D contexts, are heavily influenced by visual aspects of geometrical
figures, and so on (e.g., Sinclair et al., 2016).

Given that proof is one of the forms of geometrical reasoning that is important to be taught and learnt
in school geometry, and while there can be many different forms of proof (e.g., visual proofs, formal
proofs, etc.), in this paper we focus on deductive geometrical proofs in lower secondary schools
because a) deductive proofs are often one of the main topics in geometry curricular in secondary
schools and b) it is still recognised one of the most challenging areas for both teachers and students.
In particular, our goal is to explore what types of teaching sequences might be helpful in promoting
the learning of geometric proofs in lower secondary schools, a theme identified by the Discussion
Document for ICMI Study 26 on geometry education. In order to achieve our goal, we analyse data
from 238 G(rade) 8 and 208 G9 students to address the following research questions (RQ): What
skills are particularly important for students to solve deductive proofs and reasoning problems in
geometry, what question items might be used to characterise these skills, and how can this
information inform a teaching sequence for the teaching of deductive proofs in geometry.

We define ‘core skills’ as ‘those that may be particularly related to students’ successful problem
solving’ (Fujita et al., 2022), and can be used to suggest a teaching sequence for particular topics. For
example, Fujita et al. (2022) identified specific core skills in 3D geometry by analysing a total of
2303 G4-9 Japanese students, and use the result to inform a teaching sequence for developing spatial
reasoning. In what follows, we first present our theoretical framework in relation to our research
questions. This informs what types of skills are necessary for deductive proving in geometry. Second,
we explain our research methodology - survey items, participants, and analytical approaches. We then

Lowrie, T., Gutiérrez, A., & Emprin, F. (Eds.), Proceedings of the 26th ICMI Study Conference (Advances in
Geometry Education) (pp. 53-60). ICML.
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present the results of our analysis, identifying ‘core skills’ and critically discuss how our findings can
be used to consider a teaching sequence to support the learning of geometric proofs in lower
secondary schools.

THEORETICAL FRAMEWORK OF THIS STUDY

In this study we take Miyazaki et al.’s definition for a deductive proof — “a deductive proof to consist
of the following components: singular propositions (premises, conclusions, and intermediate
propositions between them), universal propositions (theorems, definitions, etc.), and the appropriate
connectives between singular propositions and universal propositions” (p. 255). Understanding
deductive proofs require certain skills and understanding of the various aspects. One of them is the
understanding of the structure of the proofs (Koseki, 1987; Moore, 1994). For example, Miyazaki et
al. (2017) propose the three levels of the understanding of the structure of proofs from seeing a proofs
as a cluster of unrelated elements such as assumptions, conclusions, theorems used etc. to a logical
network of these elements as well as logical inferences such as syllogism. Also, in addition to these
structural/logical aspects of proofs, it is essential to understand the generality of deductive proofs
(Koseki, 1987; Kunimune et al., 2010). For example, once a statement is proved deductively, then it
1s not necessary to use a few examples or measurement to verify the statement. However, this is
known to be quite difficult for students to develop the skills to understand this generality of deductive
proofs (e.g., Hoyles & Healy, 2007; Marco et al., 2020).

Another important set of skills relate to the nature of geometrical figures. Geometry is a domain with
a dual nature — the practical and visual element of a geometrical figure can, at the same time, be
studied theoretically and conceptually (Fujita & Jones, 2003). Geometrical figures are figural
concepts (Fischbein, 1993), having both visual and conceptual aspects. This notion is useful when
considering, for example, students’ reasoning of hierarchical relationships between geometrical
figures. As studies have shown (e.g., Fujita, 2012), if students rely on visual aspects of figures, then
their reasoning might be restricted by such visual information, and they may not accept why squares
or rectangles are also parallelograms. The skills in understanding hierarchical relationships help
develop the economical nature of geometrical reasoning and proofs (de Villiers, 1994), which is also
related to the generality of proofs described above.

Finally, in geometry various skills related to visualising and manipulating geometrical figures are
essential. In recent years the importance of spatial reasoning skills is increasingly recognised (e.g.
Lowrie et al., 2021), such as mental rotations of geometrical figures (e.g. Bruce & Hawes, 2015),
using domain specific knowledge to reason about 3D shapes (e.g. Fujita et al., 2020; Fujita et al.,
2022) and so on.

In summary, we consider that students’ understanding of deductive proving in geometry can be
studied through identifying skills relating to the structure of proofs, the generality of proofs, the nature
of geometrical figures, and spatial reasoning.

METHODOLOGY
Context and survey items

In this study, we used a survey with a total of 33 items. The survey items, which were also based on
our theoretical framework, were taken from our previous studies (e.g., Koseki, 1987; Kunimune, et
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al., 2010; Fujita, 2012; Fujita et al., 2020, Fujita et al., 2022) and have the following three main
components, namely 1) Deductive proof, 2) Geometric figures, and 3) 3D geometry (see Appendix).
In the first section 1) Deductive proof, students were asked to judge the generality of a deductive
proof (Q1), write a simple proof (Q2), identify the definition, assumptions, conclusions and theorems
used, and point out a circularity (see also Kunimune, et al., 2010). The second section 2) Geometric
figures tests students’ knowledge and understanding of geometric figures in the context of
hierarchical relationships between quadrilaterals. The questions are adopted from Koseki (1987) and
Fujita (2012) In this section, students were asked to select parallelograms (Q5), write a definition of
a parallelogram (Q6) and solve problems using their knowledge and understanding of the
relationships (Q7-10). The third section tests students' geometrical thinking in 3D geometry contexts.
The items are almost identical to those used in Fujita et al. (2022).

Participants

It 1s expected that G8 students who have studied the required Japanese curriculum content would be
able to answer all the questions. From February to March 2022, a survey was conducted with 238 G8,
and 208 G9 students aged from 14 to 15 years from three state, nonselective lower secondary schools
in two different cities in Japan. The recruitment process was exactly the same as described in Fujita
et al. (2022). The schools were recruited through the authors’ contacts and the study aims and survey
procedures were explained to teachers, and then they agreed to participate in the survey. The period
from February to March was chosen as students in each grade have experienced the prescribed
mathematical curriculum (the Japanese school academic year is from April to March). The survey
question items were directly distributed to the students by their class teachers with paper forms, and
in general, students completed answering them within 30 min.

Analysis procedure

In this study, we attempt to identify which survey items might be particularly related to the core skills
in deductive proofs in geometry. In order to identify a few items from 33 questions, we used the
method developed and explored in Fujita et al. (2022), which utilises 2PLM analysis with the
following procedure, in which “we divide the question items (set C) into two groups, set A from the
extracted items and set B from the others (i.e., C=A+B), and calculate the Pearson correlation
coefficient r between the sum of the scores of sets A and B” (p. 446). Also, this step employs the
following principles (ibids., p. 446):

1. Consistency with theory: The extracted question items are closely related to our theoretical
framework.

2. Consistency with past research evidence: The extracted question items are also identified as
important in past/other related surveys.

3. Lessis more (or Occam’s razor): Consider the whole set of question items as C. Suppose from
C we extract five items (set A) but four items are also suggested (set A’). The rest of the items
are B (and B’). It is better if the cardinal number of set A is less than set B(= C—A), that s,
|A|<|B| (and |A’|<|B’|). Then we calculate correlations between (set A, set B) and (set A’, set
B’), and if the correlation value r’ between sets A’ and B’ (r’ A‘B¢) is higher than r between
sets A and B (rAB) (i.e., |A[>|A’| but ’A‘B* > rAB) then set A’ will be more likely to be
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considered as a set of core skill items as we use fewer question items but have more
explanatory power.

For the analysis, R 4.3.1 with “Itm” package was used.
RESULT
Overall performance from the survey

Overall, the average mean scores are 18.27 (out of 33) for G8 and 18.33 for G9, there was no
significant difference between G8 and G9, t(428.79)=- 088542, p=.9295, despite G9 (M=18.33,
SD=7.15) attaining higher scores than G8 (M=18.27, SD=6.77). The following Tables 1-4 summarise
the detailed results of correct answers (%s, N=238(G8) and 208 (G9)).

Grade Qla Q1b Qlc Q2 Q3a Q3b Q3¢ Q4a Q4b

G8 53.8 479 73.9 62.6 84.0 81.9 55.5 65.1 38.7
G9 41.3 33.2 69.2 63.9 82.7 80.8 52.9 70.2 46.2

Table 1: Survey results for Section 1) Deductive proof

Grade Q5 Qo6 Q7a Q7b Q8a Q8b Q9 Q10
G8 57.1 81.1 60.1 9.2 73.5 19.7 37.8 60.9
G9 42.3 73.6 534 9.1 70.7 154 24.0 46.6

Table 2: Survey results for Section 2) Geometrical figures

Grade QIK Q2K Q3aK Q3bK Q3cK Q4K Q5K
G8 92.4 80.3 89.1 78.2 96.6 31.1 32.8
G9 93.8 86.1 88.0 81.3 91.8 45.2 26.0

Table 3: Survey results for Section 3) 3D Geometry (Q1K-Q5K)

Grade Q6aK Q6bK Q6cK Q7aK Q7bK Q8K Q9K Q10K Q11K
G8 55.0 563 52.1 42.0 139 639 466 273 6.7
G9 654 582 529 519 221 79.3 64.4  34.1 17.3

Table 4: Survey results for Section 3) 3D Geometry (Q6aK-Q11K)

The key findings from the survey are summarised as follows. First, both G8 and G9 students had a
relatively good understanding of proof writing, but struggled with the generality of proofs and proofs
with logical circularity: In the first section 1. Deductive Proof, while over 60% of G8/9 students were
able to write a simple proof (Q2), less than 50% of them were unsure whether they could accept or
reject the use of some examples to prove the sum of the interior angles of a triangle (Q1). Similarly,
only 38.7% of the G8 students and 46.2% of the G9 students were able to give their reasons for not
accepting a proof with a logical circularity (Q4b). This result is similar to that reported by Kunimune
et al. (2010).

Second, both G8 and G9 students had a rather limited understanding of geometric figures in the
context of hierarchical relationships between quadrilaterals: By the time the students participated in
the survey, they had studied the hierarchical relationships between quadrilaterals, but less than 60%
of the students could correctly identify images of parallelograms (Q5). Similarly, less than a quarter
of G8 and GY students were able to state their reasons for not having to prove the lengths of the
diagonals of a square again once we have proved the rectangles, because the square is a special type
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of rectangle (Q8b, 19.7% of G8 and 15.4% of G9 gave correct answers). Only 10% or fewer students
were able to give a correct answer and reason for a parallelogram whose four vertices are on the
circumference of a circle, e.g. a rectangle (Q7b). Again, this result is quite similar to that reported by
Koseki (1987) or Fuyjita (2012).

Third, while both G8 and G9 students demonstrated their good understanding of simple 3D geometry
problems, they struggled to solve problems using both spatial reasoning skills and domain-specific
knowledge: The results are very similar to our previous study (Fujita et al., 2022). Both G8 and G9
students struggled to identify the size of angles formed in a cube, implying they have limited spatial
reasoning skills.

Identifying items which represent “core” skills for deductive proving in geometry

Whereas all the 33 items are important to grasp the current Japanese students’ understanding of
deductive proving in geometry, our interest is which items can be extracted from the 33, and what
core skills might be related to these extracted items (NB: Core skills are those that may be particularly
related to students' successful problem solving).

Our analysis with 2PLM analysis suggests each item’s relative difficulty and discrimination values.
We took these values with the three principles described in the methodology, and the following 7
items were suggested, summarised in the table 5 and figure 1 below.

Suggested item Reasons based on the principles
From section 1 e These 7 items have relatively higher discrimination
Qla, Q3b and Q4b values from 2PLM analysis.

e rAB=0.81 (p<.001), that is, the sum of the seven
items (set A) correlates very high with the sum of the
Q8b other twenty six items (set B), see figure 1.

From section 2

From section 3 e Section 1. Deductive proof: Qla is related to the

Q2K, Q8K and Q11K generality of proofs (e.g., Kunimune et al., 2010;
Marco, et al., 2022), and Q3b and Q4b are related to
the elemental and holistic aspects of the structure of
deductive proofs (e.g., Moore, 1994; Miyazaki et al.,
2017).

pray ek e e Section 2. Geometrical figure: Q8b is related to the
e e economical nature of hierarchical classification of
geometrical shapes (e.g., de Villiers, 1994; Fujita,

2012).

Figure 1. Jittered scatter graph for Section 3. 3D geometry: The three items were also

_ ' suggested as the items related to core skills in Fujita et
items (y-axis) al. (2022).

the sum of 7 items (x-axis) and 26

Table 5: Suggested items which represent the “core” reasoning skills
DISCUSSION AND CONCLUDING REMARK

The results presented in the previous section indicate a few remarks. From Section 1) Deductive
proof, we extracted 3 items. For Qla, if a student accepts an explanation for this question but can
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write a proof, then s/he might not fully understand the generality of proof, which has been reported
as one of the challenges in the learning of proofs (e.g., Koseki, 1987; Hoyles & Healy 2007;
Kunimune et al., 2010; Marco, et al., 2022). Q3b asks why AB=CD (a property of parallelogram) can
be said in a proof. Also, Q4b asks to state a reason why a proof with logical circularity cannot be
accepted. These questions are related to the structure of deductive proofs (Moore, 1994) and identify
the assumptions of a proof and the logical circularity are both indicated as essential for understanding
of the structure of proofs (Miyazaki, et al., 2017). From Section 2). From Section 2) Geometrical
figures, Q8b is indicated to be extracted. This question asks if ‘the lengths of the two diagonals of a
square are equal’ can be true without any proofs or measurement if we have proved for rectangle. If
a student can answer this question correctly, then this student is likely to understand the economical
nature of hierarchical classification of geometrical shapes (e.g., de Villiers, 1994; Fujita, 2012).
Also, the students who answered this question correctly are likely to understand what diagrams drawn
for a proof might be representing in problem contexts, and have a good understanding of geometrical
figures in a sense of Fishbein (1993). From Section 3) 3D geometry, Q2S asks students to draw a
cylinder from a front view, and a drawing skill is suggested as important by Sinclair et al. (2018).
Q8K and Q11K are related how the students use their spatial skills such as spatial visualisation and
mental rotations as well as property-based reasoning, which are again important skills in 3D geometry
(e.g., Bruce & Hawes, 2015; Lowrie et al., 2021). Also, the suggested items are the same as the items
which were also suggested in our previous study with the different data set (Fujita et al., 2022).

Our findings suggest that our students still have challenges in their understanding of deductive
reasoning in geometry, and a more effective teaching sequence might be needed to improve our
students’ understanding of proof in geometry. We can identify an effective teaching sequence by
taking the core skills and activities derived from the 7 items. First, the high correlation coefficient
value (0.81, p < .001) indicates that if students could answer these 7 items, then they are likely to
answer the other 26 questions correctly in the survey. This implies that the skills to be used for
answering these chosen 7 items might be particularly important for success in not only constructing
and reading simple deductive proofs in geometry, but also answering problem solving which require
deductive reasoning and proving in wider geometry problem solving contexts.

We can use these 7 items for considering the teaching sequence. When designing a teaching sequence,
one way is to locate activities and questions related to these 7 questions explicitly as such activities
might be related to the core skills in deductive reasoning in geometry, i.e., the generality of proofs,
the structure of proofs, the economical nature of hierarchical relationships, and spatial reasoning. For
example, when introducing what a geometry proof is, not only check the fundamental structure of
deductive proofs such as definition, assumptions and conclusions (Q3a-c in our survey items), but
also provide an opportunity for students to critically reflect why such an argument might be necessary
or valid (Qla or Q4b). Also, the roles of geometrical figures should be checked carefully at some
point, and the economical nature of the hierarchical relationships between geometrical shapes should
be explicitly taught (Q8b). Even where proof tasks might be heavily related to 2D geometry, checking
if students can visualise geometrical figures, mentally manipulate them by using 3D geometry tasks
(e.g., Q2K, Q11K etc.) can be done before students learn how to write and read deductive proofs in
geometry. As our tentative conclusion, a teaching sequence might be considered as follows: 1) first,
learning opportunities for the generality of proofs and structure of proofs are included (e.g., Q1 and
Q3, Deductive proof) with some spatial reasoning skills training (e.g., Q2K, Q8K, Q11K, 3D
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geometry); 2) students then learn how to write and read proofs, but logical circularity (e.g., Q4,
Deductive proof) and the economical nature of hierarchical classification of shapes should be
explicitly addressed (e.g., Q8, Geometrical figures); 3) their understanding of deductive proofs and
reasoning can be strengthened through more proof tasks (e.g., Q2), and problem solving in 2/3D
geometry contexts (e.g., Q7, Q7K etc.). Also, these 7 items can be used to quickly check the extent
to which students have understood the basic elements of deductive proofs. For example, in the case
of Japanese students, we could use these 7 items with G9 students to quickly check their
understanding, who have already completed their study of geometric proofs in G8, but will begin to
learn more proofs in similar triangles.
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APPENDIX

Section 1 Deductive proof

Section 2 Geometrical figures

Section 3D geometry

Q1 Which explanation do you
agree with as a proof (you can

accept as many as you like)?

A: ‘I have measured each of the
angles and they are 50, 53 and 77.
50+53+77=180. So the sum is 180

degrees.’

B: 'l drew a triangle and cut off
each angle and put them together.
They formed a straight line. So

the sum is 180 degrees.

C: Demonstration using the
properties of a parallel line (an

acceptable proof).

Q2 Prove that AD=CB when
2A=¢£C, and AE=CE.

Q3 Reading a proof of the
diagonals of a parallelogram
intersect at their middle points’,
and point out why we can say a)
AB//DC, b) AB=CD, and c)
AABO=ACDO?

Q4 Do you accept the following
argument which demonstrates that
in an isosceles triangle ABC, the
base angles are equal? ‘Draw an
angle bisector AD from £A. In
AABD and AACD, AB=AC,
¢BAD=/CAD and «B=<C.
Therefore, AABD=AACD and
hence £B=2C’. If you do not
accept, then write down your
reason (Q4b).

Q5 Choose parallelograms from the

figure below.

s S e [ A
+oof Je
‘A_,,f_J.b_}. N
0
FEHEE !
1
>

Q6 What is a parallelogram? Describe it

in words.

Q7b Is it possible to draw a
parallelogram whose four vertices are
on the circumference of a circle? State

your reason as well.

Q8b We know that ‘the lengths of the
two diagonals of a rectangle are equal’.
From this, is it also true that 'the lengths
of the diagonals of a square are equal’
without having to draw a diagram,
measure the lengths, etc.? State your

reason.

Q9 Name the shape described by the
following statement — ‘A parallelogram

with one vertex as a right angle.’

Q10 Tick the ones you think are

correct.

(a) A rhombus is different from a

parallelogram.

(b) You can say that a rhombus is a

parallelogram.

(c) It is acceptable to say that a

parallelogram is a rhombus.

Q2K Draw and complete the front
view of the cylinder in the given box.

Front view

a

Top view

O

Q3-2K Next, we stack 5 cubes and
make a different solid. When we
look at this new solid from the top
view, then it is like fig. 4. Chose the
correct solid from a)-e).

9 By &0
I Oy

Q5K Sketch possible two solids
whose plan and elevation.

1
]

Q8K In a cube, find the size of the
angle ABC in each cube.
3

Q11K What is the size of the angle
DEB in a cube? Write your reasons
why.
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Our research aims to investigate how the presence of visual mediators can affect the resolution
process of university students. Specifically, our study is focused on analyzing students' problem-
solving processes in reference to tasks that require them to determine the straight lines intersecting
a given parabola. This study allowed us to identify two different categories of strategies implemented
by the students, which are framed by Sfard's theory of Commognition. This categorization allowed
us to investigate the impact of the presence of visual mediators in the text of the tasks, and their role
in the resolution processes enacted by students.

RATIONALE

Geometrical spatial thinking is the ability to visualize, represent and manipulate objects in our minds;
as shown by literature (e.g. Presmeg, 2006), spatial visualization skills are those cognitive abilities
that an individual can acquire to process images in his or her mind and, thus, also provide solutions
to various problems. These are fundamental skills for understanding and solving geometry problems
and due to their crucial contribution in the process of advancing mathematical knowledge, they are
currently further studied in mathematics education (Presmeg, 2020).

As envisaged in the ICMI Study 26 Discussion Document, this contribution aims to explore the
following key question: “In what ways are visualization and geometry linked, and how does
visualization support geometric thinking?”. This delicate and crucial issue plays a fundamental role
in the teaching and learning processes of geometry and is linked to the management of semiotic
transformations.

The management of different representations of a mathematical object, and the difficulties in
managing different semiotic representations that may hinder student learning have been the subject
of several studies in the literature (e.g., Duval, 2006). As per Duval (2006), in order to address the
challenges in comprehension that numerous students face during mathematical tasks, it is necessary
to take a cognitive perspective and delve into the fundamental traits that underlie the various
mathematical processes. The access to mathematical objects themselves, as well as their
manipulation, are strictly linked to the possibility of representing them; the impossibility of direct
access to mathematical objects also gave rise to Duval's (1993) well-known paradox.

Sfard's "Theory of Commognition" (Sfard, 2008) highlights the significance of visualization in the
context of acquiring these mathematical concepts. This theory is focused on the mathematical
discourse; the combination of the terms “cognition” and “communication” highlights the fact that
cognition and communication are closely related to each other and represent different manifestations,
one intrapersonal and the other interpersonal, of the same phenomenon. In this theory, four main
properties characterize mathematical discourse: the visual mediators, the routines, word use and

Lowrie, T., Gutiérrez, A., & Emprin, F. (Eds.), Proceedings of the 26th ICMI Study Conference (Advances in
Geometry Education) (pp. 61-68). ICML.
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narratives. In this research study, we focus attention on the role of routines and visual mediators in
resolution processes enacted by university students.

The routines — which in a very broad sense can be seen as the repetition of a previously performed
action — enact the mathematical concept, since the invariant that identifies the concept provides the
schema used to repeat the action done before. Lavie, Steiner and Sfard (2019) propose a refined and
complete definition of routines, which we will adopt throughout our study, and conceptualize the
learning of mathematics as a process of routinization of learners’ actions. Sfard (2008) identified
three kinds of routines: deeds, explorations, and rituals. The first type occurs when there is a physical
change in the mathematical object; the second type occurs in the production of the narratives; the last
type regards the discursive sequence aimed at maintaining a relationship with people. As we will see
later, rituals will play a key role in our categorization.

The visual mediators are means by which objects of discourse are identified within mathematical
discourses, and their communication is coordinated. While colloquial discourses are usually mediated
by images of independently existing material things, mathematical discourses often involve symbolic
artifacts created specifically for this particular form of communication, including graphical
representations. Visual mediators are visual elements that play a role during the communication
process; they can be gestures, graphs, drawings, but also algebraic representations or material objects
used during the teaching of mathematics. The visual mediators help during the communicative
process, whether they are actually present or only imagined; in fact, they have been defined as
“providers of the images with which discursants identify the object of their talk and coordinate their
communication” (Sfard, 2008, p.147). Stard shows several examples where visual objects (described
as realizations of signifiers) are used during communication. The signifiers are the object of discourse,
while the realizations of signifiers allow us to perceive the signifiers. There are different types of
realizations of signifiers in mathematical discourse, with one of the most important being the visual
type as this category allows us to gain a lot of information about the manipulation and representation
of mathematical objects (Sfard, 2008). In the field of mathematics education research, there are many
studies about the role of visual mediators, especially in their use in group communication (Ryve et
al., 2013) and in the students’ resolution processes (Gambini et al., 2023). In Dell'Agnello et al.’s
study (2022) it is shown how the use of visual mediators could help students to recognize the presence
of polynomial roots.

As pointed out by ICMI Study 26 - Discussion Document, visualization plays an important role in the
students' learning process, and it is very important to work with students with different inputs. Our
study fits in this line of thought; in fact, we presented the same task to students in two different
versions with two different inputs, to analyze how this difference could affect their solvisng
processes. Our research aims to investigate the role of visual mediators in university students’
resolution processes for a task that requires them to determine the straight lines intersecting a given
parabola. The research questions that guided our study are: in an analytical geometry task concerning
the parabola and straight lines intersecting it, are there differences (both in terms of performance and
the solution procedures chosen) if the same task is administered with the aid of different visual
mediators? Does the use of different visual mediators in solving processes affect performance?
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METHODOLOGY

In our study, our attention was focused on the role of visual mediators and routines in the sense of
theory of commognition (Sfard, 2008). To investigate the role of visual mediators, a task composed
of three multiple-choice questions was designed and administered in two different versions (Type 1
and Type 2, Figure 1). In the first version (Type 1), we provided the algebraic representation of a
parabola, while in the second version (Type 2) we showed the graphical representation of the same
parabola. In both iterations, the questions remain identical and require the identification of
intersections between straight lines passing through specified points and the parabola. Each multiple-
choice question offers four answer choices: 0, 1, 2, 3. At the conclusion of each question, students
are prompted to provide a rationale for their selected response.

Type 2

Type 1

Consider the parabola of equationy = o+ 1

How many lines through A(0, 0) have a single intersection with the given
parabola?
e 0 e 2
o | 3
Justify your answer.
How many lines through B(0, 1) have a single intersection with the given

% Consider the parabola in the figure,
parabola?

How many lines through A(0, 0) have a single intersection with the given
e 0 * 2 parabola?
ol *3 e 0 2
And through C(0, 2)? °:1 3
e 0 ° 2 How many lines through B(0, 1) have a single intersection with the given
. parabola?
o | o3
e 0 * 2
Justify your answer. o1 3
And through C(0, 2)?
e 0 * 2
e | * 3

Justify your answer.

Figure 1: Tasks of Type 1 and Type 2

The subjects in this research are 48 freshers of the Faculty of Engineering; the study was conducted
at the end of the Calculus course in the first semester. To carry out a comparison between resolution
processes and choices in relation to the proposed stimulus, half the students were given Type 1 and
the other half Type 2; the students were randomly divided. The answers to the closed questions and
corresponding explanations were collected and analysed with the aim to investigate the role of the
presence of different visual mediators in the task text and their use in the solving processes.

CATEGORISATION OF THE ANSWERS

To answer the research questions, we consider students’ protocols by performing a qualitative content
analysis (Mayring, 2015). Specifically, we sorted the resolution processes according to a concept-
driven categorization in the sense of Kuckartz (2019), identifying two main concept-driven
categories: Guided by Graph (GG) and Guided by Routines (GR).

The GG category consists of those protocols in which a graphical element, in terms of a visual
mediator, is explicitly used and wherein use of the graph is relevant to the resolution process. This
category includes both Type 1 solving protocols, in which one or more graphic elements were used
even though they were not present in the text, and Type 2 procedures, in which the graphic element
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is also explicitly present in the text. An example of a protocol that belongs in this category is shown
in Figure 2.

Figure 2: Example of a GG protocol of Type 2

In the protocol (Fig. 2), the student used graphical representation not only to solve the task but also
to explain his answers. In fact, for each case, the student showed the intersection of the line with the
parabola and the passage to the assigned point. Specifically, in the figure, the student wrote: “3 lines
passing through A(0; 0)”; “2 lines passing through B(0; 1)” and “1 line passing through C(0; 2)”.

In Figure 3 we can see an example from a student who solved Type 1 task and whose resolution
strategy is included in the GG category.

Figure 3: Example of GG protocol of Type 1

This example is in reference to a Type 1 task, where there was no figure in the text, but only the
algebraic representation of the parabola. The student drew the parabola and represented on this the
given points and straight lines passing through them. He supported his answers with this drawing and
an explanation regarding the position of the point. In particular, he stated: “As we can see in the
figure, each point stays on the y-axis”.

The protocols that show an attempt to find the straight lines with the algebraic method and without
the aid of a graphic element belong to the GR category. The techniques predominantly used in these
protocols allow them to find only tangent lines and, more relevantly, only lines that are functions.
These protocols reveal use of the routine for applying the standard solving formula, which consists
of setting up the equation of the parabola and the bundle of straight lines passing through a point, and
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then finding the angular coefficient, m, by setting the discriminant equal to zero of the second-degree
equation dependent on m. This procedure is commonly used and is widespread in Italian high schools;
we can consider it both as a ritual technique and, in a broader sense, a Sfard routine. We have named
the protocols in which this solving procedure is used ‘Guided by Rituals — GR’. Also in this case,
both the protocols referring to Type 1 and those referring to Type 2 can belong to this category. In
Figure 4 we can see an example of a protocol belonging to the GR category.

Figure 4: Example of a GR’s protocol of Type 1

In the example (Fig. 4), the student tried to find the angular coefficient m of the tangent lines of the
curve; in this way, he failed to find the vertical line. In addition, he used the technique to find the
tangent lines of the parabola even when the point is internal (point C). As a result of adopting this
procedure, the student concluded that there are two straight lines that intercept the parabola through
C. This is an example of using routines to solve the task and also to justify one’s answers.

Figure 6: Example of GR protocol of Type 2

Figure 6 shows an example of a Type 2 protocol, in which a strategy belonging to the GR category
was implemented. In this protocol it is possible to observe that the student tried to find the equations
of the straight lines through the ritual procedure, but this technique was not completed, and the student
was not confident of the given answer. Despite the presence of the graph in the text, the student made
no reference to, or use of, this and he enacted a ritual procedure (probably because he or she was used
to applying it in similar situations in high school).

ANALYSIS

Through the analysis it was possible to investigate, on one hand, the impact of the presence of
different visual mediators in the text of the task and, on the other hand, the influence of the use of
graphical representation in the resolution processes.

The presence of the graph in the text of the task affected the percentage of correct answers. We
consider "correct”" answers as those given correctly to all three questions of the task. The overall
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correct answer percentages are very low: in total, 35 % of students answered correctly but there is a
relevant difference between the correct answers in reference to the two Types. In fact, only 25% of
students responding to the Type 1 task answered correctly, while almost half (46%) of the students
who tackled the Type 2 task (in which the graphic element is present in the text) provided the correct
answer. Moreover, the use of graphical representation also played a decisive role in the resolution
processes. Comparing the GG and GR categories allows us to highlight how graphical representation
can facilitate the resolution process and the production of a justification.

Students who used a GG strategy were those who explicitly used graphical representation to solve
the task or to justify their answers. Among all students who answered correctly, 88% used graphical
representation in their solving processes. Specifically, all students who performed the Type 1 task
(without a parabola graph) and used graphical representation all answered correctly (Tab. 1). In GR’s
category protocols, students used routines to solve the task; in particular, they used the technique to
find the angular coefficient of the tangent lines, and this procedure prevents finding the vertical line
because it is not a function. Conversely, none of those students in the GR category answered correctly
either Type 1 or Type 2.

Table 1: Percentage of correct answers in relation to the GG category

% Correct Answers % GG % CA of GG
Type 1 25% 54% 100%
Type 2 45.8% 58% 78.5%

This is also evident from the different approach to solving the task and interpreting the questions. In
fact, in this task it was not required to find the equations of the lines, but to indicate how many lines
intersect the parabola at a single point passing through a given point. Those who used the graphical
representation were able to determine the number of the straight lines more easily and were able to
draw the straight lines qualitatively. Students who implemented a GR category strategy, on the other
hand, had difficulty visualizing the situation, and the algebraic approach did not allow them to find
all straight lines. The technique implemented in the protocols of the GR category is a widespread
procedure in Italian teaching practices and was most likely used in a ritual manner at high school by
the students involved when they encountered tasks with intersections between a parabola and straight
line.

CONCLUDING REMARKS

Spatial visualization skills are fundamental for understanding and solving problems in geometry; in
this study we investigated these abilities framing within two elements of the commognitive theory of
Stfard: visual mediators and routines. We investigated and analyzed solving analysis tasks interpreting
them with these theoretical elements and investigating their influence in the solving procedures
implemented by university students. The inclusion of graphical representation in the task had a
discernible impact on students' performance, resulting in a notably higher percentage of correct
responses compared to the same task conducted without visual mediators. Specifically, it was evident
that students who engaged in the Type 2 task achieved a higher proportion of accurate answers
compared to those who undertook the Type 1 task. These results are in line with what is stated in the
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ICMI Study 26 document where it is emphasized how much “it is important to consider how students
can be offered a much wider variety of experiences (and inputs)” (p. 4).

Regarding the second research question, it became evident that the choice of visual mediators during
students' performance significantly influenced their ability to provide correct answers. This
phenomenon likely arises from the fact that the use of graphical representation facilitated students in
visually discerning the number of straight lines intersecting with the parabola. Conversely, when
employing the algebraic approach, students attempted to determine the angular coefficient, a method
that did not enable them to identify all the requisite straight lines. This study underscores the efficacy
of incorporating and utilizing graphical representation in successfully tackling the task at hand.
According to Duval’s (2006) research, this study showed the importance of management of different
representations, particularly the graphical representation of a mathematical object. The correct use of
graphical representation to solve the task showed students’ ability to handle the representations of a
parabola. Moreover, those who used the GG strategy correctly in the Type 1 task revealed an ability
to switch between algebraic and graphical representations. This grasp and management of different
representations failed when routines took over.

When tackling a new mathematical topic, the student is involved in mathematical activity pushed by
social needs such as acceptance, expectations and consensus of the teacher or schoolmates. The
mathematical routine has no link with the objective of the task situation and instead of being outcome-
oriented (as it should be in nature), it becomes process-oriented. Students who adopted a process that
belongs to the GR category (probably because they preferred to use a familiar practice that meets the
expectations of the teacher) instead focus attention on the request made by the task.

The use of the GG or GR categories strategies affected not only the percentage of correct answers,
but also the approach to the problem and the aim of this approach; in one case, it is geared toward
solving the task, while in the case of routines it is focused on the procedure employed. Further studies,
combined with interviews, will provide further insight into the causes and features of the choice and
implementation of respective resolution strategies.
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This contribution to the theoretical strand and the visualization substrand provides a commentary on
possibilities for research and development in secondary geometry. We argue that visualization tools
need to include tools for representing the human practices of doing geometry, particularly in the
service of problematizing and supporting the evolution of concrete experiences with shape and space
into mathematizing those experiences in social interaction and reflecting on those experiences.

TWO DIFFERENT POSITIONS IN RESEARCH IN GEOMETRY EDUCATION

Poincaré classically described geometry as “the art of reasoning well from badly-drawn figures.” In
their graduate textbook on the subject, Herbst et al. (2017) build a definition of secondary geometry
on that quote, assuming that, after elementary school, youth have had formative experiences with
shape and space that knowledgeable adults might recognize as geometrical. They propose that
the development of geometric knowledge at the secondary level consists of the progressive sophistication
of students’ intellectual means to model, predict, and control geometric representations — that is, the

progressive sophistication in students’ ways of organizing those artifacts (words, diagrams, and others) so
that they can be reliably used in making and transacting meanings (p. 3).

In proposing that definition, the authors complicate our field’s relationship to two positions that have
currency in the education research community. The first of them can be called the study of geometry
and takes for granted that geometry is a scholarly body of knowledge produced by mathematicians
over centuries, converted into content of studies for students to acquire. The second can be called
experiencing geometry and takes for granted that human experiences with shape and space across the
lifespan confront them with challenges that they undertake by acting in ways that mathematically
educated observers might describe as differentially knowledgeable of geometric concepts and
properties. In the latter, it 1s worth noting that space alludes to any of the three spaces described by
Berthelot and Salin (1995): The microspace of the page or screen (with objects much smaller than
the human handling them), the macrospace of sea and landscapes (which much smaller human beings
traverse), and the mesospace of objects of size commensurate with the human body.

Each of those positions, the study of geometry and experiencing geometry, has warranted distinct
research agendas and educational proposals. In the area we call the study of geometry, the research
questions concern understanding how students learn and teachers teach the academic content derived
from that store of scholarly knowledge (Du & Zhang, 2019; Lawson & Chinappan, 2000; Levav-
Waynberg & Leikin, 2012). This research has also included studies of the cognition involved in
reading and doing geometric proofs (e.g., Braithwaite, 2022; Cirillo & Hummer, 2021; Koedinger &
Anderson, 1990; Heinze et al., 2008; Lin & Yang, 2007). This research has tended to focus on
modeling the cognitive operations students make use of in tasks designed to study geometric
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knowledge and investigate the effectiveness of teaching and learning approaches to promote this
study. This research on the study of geometry has led to the development of interventions (e.g.,
cognitive tutors) whose effectiveness might be measured in terms of students’ successful completion
of school tasks. In contrast, the current we call experiencing geometry has warranted research on how
children and youth’s activity in the physical (or in virtual) world(s) calls for them to act and develop
more sophisticated ways of acting geometrically (Hall et al., 2014, Herbst & Boileau, 2018; Nathan
& Walkington, 2017; Dimmel, et al., 2021; Soto, 2022). This research done by educational
psychologists and mathematics educators has concentrated on interpreting human activity using
geometry concepts and casting human actions as attesting to geometric meanings even if those actions
are not valued in school. In this line of research, the extent to which students can consciously relate
their activity to geometric knowledge has been less of a focus. This line of research has also led to
the design of experiences, spaces, and technologies in which students can experience geometry and
act in increasingly sophisticated ways (e.g., Ludwig & Jesberg, 2015).
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Figure 1. Experiencing geometry and Figure 2. A modeling perspective
the study of geometry (from Herbst et al., 2017, p. 4)

The diagram in Figure 1 can help represent these two research perspectives in their differences and
their similarities. While research on the study of geometry is concerned with understanding the
interactions between school students and school geometry content (bottom of Figure 1), research on
experiencing geometry is concerned with interpreting the interactions between children and youth
and the real world (top of figure 1). In both cases, geometry is a resource for the observer: In the first,
the discipline of geometry legitimizes the content of studies as well as informs researchers’
interpretation of what students do in those tasks; in the second, the discipline of geometry informs
the researchers’ selection of the real world objects and activities in which they observe youth and the
researchers’ interpretation of what the youth do therein. Geometry is wielded by the observer to
sanction youth’s meanings either by certifying matches and mismatches (in the study of geometry)
or by providing the key for projecting correspondences (in the case of experiencing geometry). In
both cases, one still has to ask on what basis may one assert that the subjective experience of the
youth can be described as geometric.

Both approaches seem to ignore that the geometries that serve such sanctioning are the products of
mathematicians practice and that mathematical practice is what endows the eventual mathematical
knowledge with this mathematical status. Poincaré’s notion of “thinking correctly about poorly drawn
figures” is an epigram of this mathematical practice and alludes to how mathematicians’ work with
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representations (e.g., diagrams, inscriptions) seeks to overcome the limitations of representations
through disciplined thinking. The communications about that thinking that have served to build
geometries as bodies of knowledge (using publications and letters) over more than 5000 years (Scriba
& Schreiber, 2015) in which concrete problems (e.g., architectural design) interacted with theoretical
problems (e.g., the possibility of a construction) have been key for constituting geometry as a body
of knowledge. While the approach we call the study of geometry seems to extract the product of such
evolution to use it as an academic text of studies, the approach we call experiencing geometry takes
for granted how mathematical practice has historically connected human experiences with shape and
space and imposes on these experiences a geometric status that is in fact contingent on mathematical
practice. The modeling perspective Herbst et al. (2017) propose seeks to create in classrooms the
practices that would allow students to turn their experiences with shape and space into discourses that
might be comparable to the geometries produced through mathematical practice.

A MODELING PERSPECTIVE ON SECONDARY GEOMETRY EDUCATION

Figure 2 represents that mathematical activity as a process of modeling: The construction of
representations of real world objects and activities (e.g., drawing perspective diagrams of buildings)
and the visualization of real world phenomena (e.g., buildings) in terms of such diagrams is at once
a first concrete modeling activity (what Kuzniak, 2018, would call the first geometric working space)
and the source of a second modeling activity where the key features of those representations are
proposed (e.g., in the form of definitions and assumptions; such as Piero della Francesca’s theory of
perspective; Peterson, 1997; or what Kuzniak, 2018, would call the second geometric working space).
This second, geometric modeling, as it accumulates and gets organized by logical principles (e.g.,
axiomatics), may give rise to the geometries that eventually legitimate the school geometry content
(what Kuzniak, 2018, calls the third geometric working space). A key feature of the mathematical
modeling described is an epistemological shift in the relationship with representations (e.g.,
diagrams): While at one time representations portray the real and hence they can be read as disclosing
(e.g., through visualization) other features of the real, at another time, these representations are
constrained by stipulations (e.g., definitions, norms for visualization) that allow some visualizations
as reasonable but discourage others, and furthermore necessitate some visualizations as reasonable
even if they are not perceived. This is what Herbst (2004) called a generative interaction with
diagrams; other representations (e.g., configurations of objects taken as representations of real-world
objects and activities, or media representing geometric objects over time) are open to the same
considerations.

The conceptualization of secondary school geometry offered by Herbst et al. (2017) seeks to organize
the teaching and learning of geometry so that students can engage in a similar mathematical modeling
of their relationships with diagrams and other representations as Poincaré and other geometers have
done. They represent this engagement with the diagram in Figure 2. In this conception of secondary
geometry, the geometric experience in the world (e.g., the human creation of artifacts that others
might endow of geometric meaning) is the beginning of a modeling process that aims at producing
those meanings as ways of controlling inferences about the represented world. If the research and
development agendas that motivated geometers to create geometric knowledge in the first place are
not available to teachers and students at present, the general question one needs to ask is in what
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experiential context can specific geometric concepts become sensible ways of giving students control
over the meanings they make of those experiences.

The general question raised above is not new and indeed it represents a whole field of research in
geometry education—the didactique of geometry (Houdement & Kuzniak, 2006). An important
question within that approach concerns students’ development of the need to represent (including the
need to characterize discursively) the properties of concrete representations of their geometry
experiences. Poincaré’s notion of “reasoning well” does not stress enough the importance that actual
statements (i.e., semiotic productions about those poorly drawn diagrams) have in the production of
such reasoning (Duval, 1995). If the study of geometry may take those statements as canonical
elements of the content of studies, experiencing geometry may take those statements as unnecessary
to constitute the geometric meaning of experience. In contrast, the didactique of geometry asks in
what conditions might the statement of properties about geometric representations be instrumental
for students to control how those representations are made and interpreted.

Didacticians of mathematics are mathematics education researchers concerned with the meaningful
construction of mathematical knowledge in schools. Didacticians of geometry can see value in both
types of research described above (research on the study of geometry and on experiencing geometry)
while still noting that there is a gap that practitioners are bound to recognize: Students at times might
produce the right answers to school tasks without providing any evidence that their actions in the real
world are informed by geometric understanding; students might also encounter school tasks for which
their actions in the world could provide valuable prior knowledge to use but fail to recognize those
connections. That is, it is possible, even common, to see that knowledge fails to inform action and
that skilled action fails to inform knowing. A compelling illustration of this gap in practice can be
read in Schoenfeld’s (1989) observation of students who had proved theorems about lines tangents to
circles but failed to use them to control the ways in which they constructed a circle tangent to
intersecting lines. Equally interesting are observations of adults who know geometry but fail to use
this knowledge to understand practical problems in housekeeping such as moving furniture or fixing
exercising equipment. For sure, we are not saying that those practical activities require an explicit use
of geometry, but that a way to make geometric knowledge and its meanings valuable to people is to
create the conditions in which they recognize this knowledge as enabling them to act differently.

The separation between problem types that Schoenfeld (1989) alluded to suggests not only an
undesirable outcome in geometry education, but also a gap in education design and research. The
definition of secondary geometry proposed by Herbst et al (2017) seeks to bridge the gap illustrated
by those examples by proposing a modeling approach to geometry. By this they mean

the development of the capacity to intellectually organize, predict, and control the world of representations

of physical objects and experiences. We describe this as a modeling perspective insofar as it sees as central
the process of creating models of diagrams and other concrete representations (p. 3)

Fleshing out this conception of secondary geometry requires the development of a kind of instruction
that connects meaningful experiences in the spaces in which students (could) live with the
mathematical ontologies, epistemologies, and axiologies produced by the discipline of mathematics.
The reasons one might want to do that have been articulated over more than a century of geometry
instruction (Gonzalez & Herbst, 2006). They boil down to the belief that geometric knowledge can
make lives better in a variety of ways (where lives include those of the mathematics enthusiast, the
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manual worker, the city dweller, the computer gamer, etc.). Inasmuch as secondary schools can be
places where students explore various possible lives, the design of such instruction does not need to
be limited to any given conception of the real (material or social) world but can make different worlds
(including virtual worlds in immersive digital environments) available to students’ exploration.

The added complexity of secondary geometry instruction is how to make experience in real worlds
an object of mathematical modeling in which geometric ontologies, epistemologies, and axiologies,
can emerge. By geometric ontologies we refer to the notion that geometric objects and concepts as
construed in the discipline of mathematics are different kinds of beings than the beings students
encounter in their daily, real or virtual, experiences with space and shape; and that one role of
secondary geometry is for students to create models of the beings they encounter in their experiential
world that are comparable with the concepts and objects of geometry. By geometric epistemologies
we refer to the notion that coming to know in the discipline of mathematics (including calculating,
constructing, exploring, proving) involves a different relationship to knowledge than coming to know
in concrete experiences with shape and space: While the latter may seek timely effectiveness or
efficiency in context, the former seeks enduring truth and reproducibility across contexts. By
geometric axiologies we mean that the production of geometric knowledge in the discipline is
sustained by ethical and aesthetical values that are not necessarily present in the experiences with
shape and space in which youth are involved daily: While the latter may privilege the self’s well-
being (succeeding, feeling good) and their preferred relationship with their temporal and physical
surroundings (seeking usefulness or comfort), the ethical and aesthetical values of the discipline seek
to add an outer orientation (to develop knowledge that enlightens the world) and depersonalizable
ways of appreciating the world (seeking intersubjective truth and beauty, for example). Clearly, that
secondary geometry may pursue the expansion of students ontological, epistemological, and
axiological relations with the world, does not denigrate earlier experiences with shape and space or
suggest that the mathematics discipline provides the only way of expanding those experiences—the
visual and performative arts clearly are other such disciplines that expand similar earlier experiences
toward alternative relationships with the world. Just as the recognition of a drawing as art requires an
artistic processing of the drawing, the recognition of experiences with shape and space as geometry
require a geometric modeling of those experiences. If outside observers may bestow the labels of art
or geometry to such drawing or experiences, the possibility that the producer of such drawing or the
protagonist of such experience might be able to construct meaning for such labels, use them
productively in later practice, and be able to allocate them appropriately are still different, compelling
possibilities. And we are saying that secondary geometry is the place where learning to do such
geometric modeling needs to happen—a geometric practice may unfold there: A reflective discourse
of action with shapes and spaces in social circumstances that require communication progressively
commensurate with that of mathematicians. In what follows we are much more concrete, focusing on
construction as part of geometric practice and for the sake of illustrating the intricacies of a pedagogy
(or, should we say, a didactique) that seeks to induct students into a geometric practice.

USING REPRESENTATIONS OF EXPERIENCES WITH SHAPE AND SPACE TO
TEACH

Students’ induction into a geometric practice can be supported by a different kind of curriculum
development, one that engages students with representations of practice. We propose that for
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experiences with shape and space to become objects of geometric practice in which students may
produce knowledge compatible with what is typically aimed for in the study of geometry, students
needs to engage in work that problematizes those experiences, making them subject of inquiry.
Ontological, epistemological, and axiological transitions can be promoted through multimodal
argumentation via a a semiotic infrastructure of practice.

Consider as an example the theorem that characterizes an angle bisector as the locus of the points
equidistant from the sides of an angle. Earlier in their studies, students have likely constructed angle
bisectors using a protractor. How can that experience be turned into an object of reflection and
argument in which the theorem listed above can be conjectured and become a useful control?
Arguably, this requires appropriating the goal to describe the drawing as a set of points with some
properties. Figure 3 shows a storyboard that can support discussions promoting students’ conjecturing
of the theorem and their use to engage in arguments in which points are singled out and described in
terms of being or not being on the angle bisector as well as in terms of their distance to the sides.

450 tor these two points it seeom

Wi wants 1 chack i e bhcior
, [tersects the segment between =
| |those points

Figure 3. Toward seeing the angle bisector as made of points with particular properties.

Consider high school students being asked to annotate this storyboard, including answering questions
such as “What is the point of posing these questions at the board as opposed to giving them to each
student on a worksheet?”, “How is the teacher choosing which points to erase and to keep in Frames
4 and 67, “Would there be a way to know whether a segment determined by two points will cross
the angle bisector without drawing the angle bisector?”, “What could you do to find a point that would
turn out to be on the angle bisector?,” or, “If a segment is such that you think it would intersect the
angle bisector, could you find out where they would intersect before drawing the angle bisector?”
These questions would likely get students to make a conjecture along the lines that for a segment to
intersect the bisector, one of its extremes would need to be closer to one side than the other and the
other extreme closer to the other side and then that for a point to be on the angle bisector, it should
be at the same distance from both sides of the angle. The task itself could be used to promote the
conjecture as a theorem-in-action; it might be sensible to start the lesson by having students try
themselves the question in Frame 1.
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Offering the storyboard and posing questions that involve the interpretation of the storyboard may
help initiate the above-named transitions. The storyboard instantiates a semiotic infrastructure (icons,
indices, and symbols organized in a multimodal grammar; see Herbst et al., 2023) that supports
talking about points as both actual and potential depending on events in the storyline (e.g., between
Frames 4 and 5) and of constructions as anticipated and performed (e.g., between Frames 1 and 3).
In the context of a discussion of that semiotic environment (e.g., the narration or critique of the story),
there is a possible transition in the ontological status of points: Points are no longer only specific
objects in the diagram, but also can be described (i.e., modeled) as possible contingencies among
properties (i.e., points can be characterized as closer or farther from one or the other side). Further,
the storyboard supports an epistemological transition away from drawing to see whether something
is the case to anticipating what could or would happen if one were to draw. The storyboard medium
provides also access to the storyline not only as a vicarious experience but also as a replayable
experience that can support an applied rationalist (as opposed to empirical) construction of reality
along the lines of Bachelard’s “Le réel n'est jamais ce qu'on pourrait croire, mais il est toujours ce
qu'on aurait di penser.”* The surveyability of experiences with shape and space that a storyboard
provides allows for someone who would initially only know from observing what happened to one
who might come to realize they should have anticipated the outcome. Finally, and perhaps this is the
most important aspect of the storyboard representation of geometric experience, this semiotic
mediation supports decentering knowledge from the function of serving a selfish goal (e.g., solving
one’s problems) to solving problems that anyone could have, without eliding the human need for
knowing. Thus, while the reader of the storyboard is not herself on the spot in Frame 6, they might
feel empathy with the student at the board that could compel them to offer a characterization of the
points as a solution to a human need. The ethical option of helping the student at the board may further
support the aesthetical value of obtaining a good definition of the distance between a point and a line.
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The topic regarding advances in geometry teaching leads us to reflect on the past of this teaching,
mainly about changes in curricular proposals and how they were reflected in textbooks, aiming to
identify progress or setbacks. This study focuses on investigating, from a cultural historical
perspective, how the teaching of geometric proofs has been proposed and discussed in Brazilian
regulations, as well as in textbooks. We analyzed three educational reforms from the first half of the
20th century, the 1998 National Curricular Parameters and the 2018 National Common Curricular
Base, and we examined four textbooks representing different moments of changing approaches to
teaching geometry, from 1930 to the present day. One result throughout the various regulations and
pedagogical approaches found in textbooks is the persistent tension between intuitive and deductive
geometry. The importance of the transition between pragmatic proofs and conceptual proofs in
geometry teaching is a topic that remains central and relevant in the Brazilian reality.

INTRODUCTION

The call for ICMI 26 (Advances in Geometry Education) encourages us to think about the past of
geometry teaching, changes in pedagogical proposals and how they were translated into didactic-
pedagogical tasks in textbooks, to identify progress and setbacks. It is in this context that the present
work is inserted, by choosing the theme of proofs in geometry teaching and analyzing, from a cultural
historical perspective (Chartier, 2009), how this theme has been proposed and discussed in official
curricular regulations in Brazil, as well as in textbooks. Thus, we took a period of almost one hundred
years, from 1930 to the present day, beginning our analysis at the time of the unification of the fields
of Algebra, Arithmetic and Geometry into a single school subject called Mathematics for secondary
school programs (aimed at students aged 11 to 14, after primary school). The research sources were
the regulations of three educational reforms from the first half of the 20" century (1931, 1942 and
1951), the National Curricular Parameters (PCN) at the end of the same century, and the last
regulation, approved in 2018, the Base National Common Curricular (BNCC). We also selected four
textbooks as representative of important moments in changing perspectives, the books by Osvaldo
Sangiorgi from the 1950s and 1960s, to examine the approach of the Modern Mathematics Movement
and the books by Edwaldo Bianchini from the 2010s and 2020s, to investigate possible changes
between the last two regulations, the PCN (Brasil, 1998) and the BNCC (Brasil, 2018).

It is necessary to highlight that the study considers and examines national regulations, however Brazil
is a country of continental dimensions, with 27 states distributed in 5 regions, with important social,
economic, cultural, and educational differences, each state having the autonomy to organize its school
programs under national regulations. Thus, the choice of textbooks, which will be explained below,
represents a sample that we consider significant, but without any intention of representing the entire
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national reality. The focus of the investigation is not on an in-depth study of specific moments, but
rather on analyzing long-term processes with the necessary methodological care, to support the
historical narrative of the issue at hand. The objective is to analyze how the proofs were and are
proposed in this selection to discuss the different conceptions of proofs for teaching geometry to
students aged 11 to 14, in the period.

Educational Reforms in Brazil in the first half of the 20th century

The reflections of the international movement to reform mathematics teaching, discussed at the 1V
International Mathematics Congress, held in Rome in 1908, under the leadership of Félix Klein
(1849-1925), were appropriated in Brazilian regulations only in the 1930s. Euclides Roxo (1890-
1950), engineer and teacher at Colégio Pedro II (a reference in Brazilian secondary education) was
the leader of the renovation in the Francisco Campos Reform in 1931, which instituted, for the first
time, the subject Mathematics for the secondary course.

According to Roxo, this reform brought together the trends of the international movement, both from
a methodological point of view, as in the contents, by merging the different fields of mathematics:
arithmetic, algebra, and geometry into a single discipline. The instructions for teaching mathematics
recommended that:
Starting from the living and concrete intuition, the logical feature will grow, little by little, until it gradually
reaches formal exposition; [...] knowledge will be acquired, at first through experimentation and sensory
perception and then, slowly, through analytical reasoning. Thus, regarding geometry, the formal

demonstrative study must be preceded by a propaedeutic course, aimed at intuitive teaching, of an
experimental and constructive nature (Bicudo, 1942, p. 157).

The detailed analysis of the regulations emphasizes the importance of intuitive and experimental
teaching preceding geometric proofs. The 1931 Reform lasted a short time and was reorganized in
1942, by the Capanema Reform. In 1951, the Simdes Filho Reform kept the 1942 structure. For
geometry teaching, the three reforms designated deductive geometry, that is, the introduction to the
study of geometry proofs for the final grades (students aged 13 to 14) as we can see in Table 1.

Reform Geometry organization Instructions

- Geometry propaedeutic course
- Starting from intuition to gradually reach formal exposure: from
experimentation and sensory perception to analytical reasoning

Campos Geometric Initiation
(1931) Geometry

Intuitive Geometry

Capanema Deductive Geomet - Intuitive geometry as a smooth transaction between experiences
(1942) "y with shapes and deductive conception of Geometry
o Geometry - Do not ignore appeal to intuition
Simdes Filho (Only to students - Gradually awaken the feeling of the need for justification and
(1951) Y roof
13 and 14 years old) p

Table 1: Geometry Teaching in prescribed programs (1931-1951). Source: The authors based on the
regulations.

The three reforms emphasized the need for an intuitive geometry, with experimentation, and sensory
perception, as preparation for understanding a deductive geometry, but the 1951 reform excluded the
space allocated to introductory and intuitive part of previous reforms, maintaining only the deductive
approach. Chervel (1990) warns us about the difficulties in distinguishing objective finalities and real
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finalities and, in this sense, the study of regulations indicates the objective finalities of teaching,
however, pedagogical practices are those that reveal the real finalities, and they do not always
converge. For instance, in the 1950s, despite the regulations signaling attention for intuitive study
and gradually awakening the need for justifications, the reports on practices in classrooms that took
place at the II National Congress of Mathematics Teaching, in 1957, constitute traces of what the
approach to deductive geometry was like, associated with memorizing the proofs of theorems:

The lack of initial logical concatenation of the theorems and the intuitive character of most of them produces

the harmful impression, in the student's mind, that the proofs constitute juggling on the part of the teacher.

[...] It also does not form a clear idea of what a theory is or does not have a theory at all. [...] The ill-fated

theorems have been the lifeline of mediocre students who, in exams, achieve the minimum grade thanks to
a memorized formal proofs (Congresso ..., 1959 apud Burigo, 2015, p. 8).

Despite the attempt to insert the principles of the international movement of the beginning of the 20th
century into Brazilian regulations, the innovations suffered a lot of resistance from a traditional school
culture (Julia, 2001), based on the rigor and abstraction that was expected from a study of deductive
geometry. We reached the middle of the 20th century with the teaching of deductive geometry
characterized by the exposition of a set of postulates, followed by numerous formal proofs of a
significant set of theorems, to be memorized and taken in exams, as we will see below.

Textbooks by Osvaldo Sangiorgi in the 1950s and 1960s

Osvaldo Sangiorgi (1921-2017), mathematician and teacher, author of best-selling textbooks in
several editions since the 1950s, was a relevant name in the process of appropriation and
dissemination of the ideas of the Modern Mathematics Movement (MMM) in Brazil. He did an
internship at the University of Kansas, in the USA, in the mid-60s and when he returned to Brazil,
even without changing the regulations, he created a new collection of textbooks with modern
proposals and expressive editions.

The study of Jahn and Leme da Silva (2023) compared the first textbooks by Osvaldo Sangiorgi (OS)
that introduced students to deductive geometry (13-year-old students) in the 1950s, considered pre-
modern and, in 1960, modern. An initial quantitative analysis indicated that practically the number
of pages dedicated to the study of geometry remained stable, however the approach between the two
textbooks proved to be completely different. When comparing the topics related to the teaching of
geometry - in common in the two textbooks - it was identified that the same concepts started to occupy
28% more space in the modern collection. On the other hand, the number of theorems proved in the
two textbooks went from 54 to 28, that is, a reduction of around 50% in the number of theorems. For
the study of proofs, the same have indicated changes in the selection of theorems and in the approach
to presenting them. The qualitative analysis made it possible to understand the numerical differences:
120 preparatory pages were inserted before starting the presentation of postulates and theorems, and
the author explains the change:
At this stage, the student is already “accustomed” to seeing that some properties are consequences of other
more elementary ones. It is the preparation for the beginning of a simple axiomatization, where the
situations encountered in the exploratory exercises will be brought together in the form of postulates
(axioms). A theory (recommended by Hilbert) is thus constructed from primitive concepts, postulates, and
theorems, easily proved, through a logical chain of reasoning. [...] The current treatment used to begin

deductive geometry is very different from what was traditionally done. Only after much experience can
the student be initiated into the proofs themselves (Sangiorgi, 1966, p. 51, emphasis added).
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OS clarifies that the exploratory exercises were introduced so that the student can experiment with
verifying some properties as a result of others, an attempt to insert preparatory experimental geometry
before the deductive study. The author also indicates the construction of a new axiomatization for
proofs in which the exploratory exercises carried out by students become postulates when proving
the theorems. Everything indicates that the main point is the understanding of a deductive process,
which incorporates “new postulates”, to allow a more adequate understanding of logical-deductive
reasoning.

An example of exploratory exercises proposed by OS in the 1960 textbook were the geometric
constructions of triangles involving cases of congruence, in which students were invited to carry out
the constructions of triangles with the respective data, for example, the case side, angle and side
(LAL) and then compare their triangle with their classmates in order to identify congruence. In the
1950 textbook, the four cases of triangle congruences were stated as theorems and proved; while in
the 1960 textbook, after the exploratory study carried out with geometric constructions, they were
then taken as postulates. The list of postulates between the two textbooks was significantly altered,
both in quantity and choice (Jahn & Leme da Silva, 2023). Another example that helps us understand
the change in the proposal made by OS is the way the theorems are presented. The theorem on the
property of the base angles of an isosceles triangle, in the 1950 textbook, was done in a classic way:
the theorem is stated, with the figure on the side, the hypothesis and thesis are identified, and the
proof is carried out. In the modern approach, students were first invited to carry out exploratory
exercises, which correspond to constructing an isosceles triangle, measuring the angles, comparing
with their colleagues whether the result obtained was also verified by the group and stating the
identified property. Other exercises complement this stage, such as attention tests, which ask students
to 1dentify the corresponding vertices in different triangle congruence situations. OS presents three
distinct proofs: the first as an “action plan”, which corresponds to drawing the bisector of the angle
between the congruent sides; the second, as “another way” for the proof, tracing the height relative
to the base of the isosceles triangle and the third, through “drawn diagrams”, colored preferably,
where a series of deductions appear, through constructions (—), of equivalences (<) and implications
(=). The emphasis of different resolutions and different representations to proof the same theorem,
so that the student can understand the diversity of paths in the deductive process, is an innovative
aspect in Brazilian textbooks from the 1960s. OS encourages students to develop their own proofs,
warning: “Don't 'memorize' proof of theorem! Value yourself, using any of the methods presented.
Do it your way by using these methods and you will be accomplishing in Mathematics!” (Sangiorgi,
1967, p. 258).

It is necessary to consider that the appropriation made by OS for the study of modern deductive
geometry must have been influenced by the North American trend based on Birkhoff; however, other
trends were present in Brazilian textbooks, such as the proposal to teach geometry through geometric
transformations linked to Klein. Anyhow, OS's modern approach to deductive geometry significantly
changed the representation of geometry teaching in the 1950s of a formal deductive geometry, of
memorization, both within the scope of Euclidean geometry and in the methodological didactic
aspects, by proposing the insertion of exploratory exercises, in addition to different records of
representations as a way of make understandable the deductive geometry.
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In summary, in the period examined, from 1930 to 1960, it can be said that deductive geometry was
present, both in Brazilian regulations and in textbooks, from the perspective of conceptual proofs’.
However, the moment described above, of the incorporation of modernist ideals by OS, seems
representative to us, which, even without abandoning the conceptual proof, the exposition of the
postulates and the many theorems to 13-year-old students, innovates in the textbooks, through a
differentiated proposal to prepare the study of deductive geometry, by inserting pragmatic proofs, a
call to the student to build their own proofs, to argue, to justify. Everything indicates that the insertion
of this new approach was not incorporated into school culture, however, it seems to have been the
moment to decrease the formal approach, that of many theorems to be memorized.

Educational reforms in Brazil at the end of the 20th century and beginning of the 21st century

From the 1970s onwards, criticism of the MMM became increasingly accentuated and, in parallel, a
movement of reflection on mathematics teaching began, bringing together study groups, teachers,
mathematicians, psychologists, educators, without, however, result in new curricular programs at a
national level. At the end of the 20th century, and with the presence of mathematics educators
participating in the development of curricular programs, the National Curricular Parameters (PCN)
were implemented. Recently, in 2018, with controversy and criticism from educators, the National
Common Curricular Base (BNCC) was implemented, which we began to examine comparatively, on
how deductive geometry has been proposed.

The PCN (Brasil, 1998) continue to advise that the study of deductive geometry should be started for
students aged 13 and emphasize that the skills of arguing and proving in Mathematics are very
important for the formation of a critical spirit:
Therefore, it is desirable to work on developing argumentation, so that students are not satisfied with just
producing responses to statements but have the attitude of always trying to justify them. [...] Geometry
activities are very suitable for the teacher to build, with his students, a path that, based on concrete

experiences, leads them to understand the importance and need for proof to legitimize the hypotheses
raised (Brasil, 1998, p. 71 and 126, emphasis added).

The document explains the relevance of tasks that favor the path from concrete experiences to the
need for evidence, in this case, in the sense of pragmatic evidence. The formal proofs are not
explained in the regulations. It is understood that the focus must be on arguing, justifying, and proving
with usual language.

Twenty years later, the BNCC (Brasil, 2018) removes any discussion about proofs processes, the
need for proof and the transition between intuitive and experimental geometry to deductive geometry.
The regulations emphasize tasks involving concepts of congruence and similarity so that students
“know how to apply this concept to perform simple proofs, contributing to the formation of an
important type of reasoning for mathematics, hypothetical-deductive reasoning” (Brasil, 2018, p 272,
emphasis added). However, we do not discuss or comment on what is meant by simple proofs. In this
way, we can infer that the BNCC, compared to the PCN, presents a setback for the study of proofs,

> We mobilize the concepts of pragmatic proofs as proofs that include resources of action and empirical observation on
mathematical objects, aiming to verify or prove the mathematical property and conceptual or intellectual proofs are
based on the formulation of relevant properties and connections are established between them in accordance with
Balacheff (1988).
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which ceases to occupy a prominent place and becomes specific applications for the study of
congruences and similarities of triangles.

Textbooks by Edwaldo Bianchini in the 2010s and 2020s

Edwaldo Bianchini (1935-2018), science graduate, mathematics teacher and textbook author since
the end of the 20th century. Bianchini's collection was selected for its positive emphasis on the
approach to geometry at PNLD® 2011, which proposes the study of geometry in a rigorous and
extensive manner, with frequent formal proofs. We seek to comparatively analyze the introduction of
deductive geometry in two textbooks by Edwaldo Bianchini (EB), aimed at 13-year-old students, one
from the 2010s (book 1), in which the PCN were in force, and the other, from the 2020s (book 2),
shortly after the implementation of the BNCC.

An initial quantitative analysis showed that the number of pages dedicated to teaching geometry
decreased, from 46% of the total in book 1 to around 27% in book 2. However, the same does not
occur when comparing the common themes that deal with of deductive geometry, in which the
number of pages in both textbooks was practically the same, with a very similar approach. For
example, regarding postulates, the same list appears in both volumes, with no mention of students'
familiarity or prior experience with such propositions. This choice may represent the stability of the
Euclidean Geometry model at this level of education.

Regarding the theorems proved, in both textbooks, EB begins with a topic on geometric proofs, in
which he defines what a theorem is, but he no longer uses this term in the sequence, adopting the
designation of “property” as a synonym. The number of properties proved in each textbook remains
the same, with 16 proofs. In both textbooks, the author explains the need to prove without resorting
to measurements or observations on the figure: “measurement or simple observation are not always
sufficient to confirm whether a geometric property is true or false. As evident as it may seem, it can
only be considered true after being proven” (Bianchini, 2015, p. 156). Complementarily, in book 2,
the author drew attention to the fact that “Verification is not proof” (Bianchini, 2022, p. 181),
referring to verification through measurements with instruments (ruler and protractor). We can
interpret it as a way for EB to differentiate pragmatic proofs from conceptual proofs and to highlight
the need for mathematical proofs, that is, validation using a hypothetical-deductive method. On the
other hand, in both textbooks, pragmatic proofs are not explicitly identified in the exercises proposed
to students. For example, in the two volumes, after the introduction of the concept of congruence of
triangles, the cases of congruence were presented in an expository way, stated, accepted as true
without proof and exemplified. In other words, such cases are not explored, discovered, or verified
experimentally by students, they must be accepted as truths, and are used in identification exercises
as an assumed result, similar to applying a formula. Only when he properly begins the proofs of the
properties, EB states that: "In the following situations, we will consider that cases of triangle
congruence are already proved truths’" (Bianchini, 2015, p. 158; 2022, p. 180). We also note that in
the book 1 Teacher's Manual there are no suggestions for exploratory tasks or experimental proposals

¢ From the 1990s onwards, Brazilian textbooks started to be periodically evaluated by a team of experts designated by the
Brazilian Ministry of Education, in the National Textbook Program (PNLD) and distributed at no charge to public
schools.

7 This choice was not justified, EB bluntly states that: “we chose not to present the proofs of congruences of triangles
cases as we consider them didactically inappropriate for this moment” (Bianchini, 2105, p. 158).

-8 -



ICMI Study 26 - Jahn, Leme da Silva

that could represent pragmatic tests, as was done in the book 2 Teacher's Manual, which contains
suggestions for students to represent triangles with a ruler and protractor, cut out these triangles and
compare them with the productions of other colleagues, in order to verify that all the triangles
produced are congruent (Bianchini, 2022, p. 166).

The theorem on congruence of the angles of the base of an isosceles triangle, in both textbooks, was
made through the classic presentation: statement, identification of hypothesis and thesis, an
illustrative figure and the proof steps for which the student is called to “to follow". In this sense, we
can recognize the same approach as the pre-modern OS textbook. Furthermore, EB exposes only one
way of proving properties, both in its deductive path and in its way of representing, which can reiterate
the idea of a single solution to be memorized. This way, students, in general, are not called upon to
reflect or carry out any deduction steps, much less to try to produce their own proof.

In summary, the examination of the textbooks revealed that the tone of the proposal reinforces the
conclusion of Martins and Mandarino (2013): in most textbooks, formal proofs (or conceptual proofs)
are presented ready and finished, not giving space for the student to develop their own conjectures
and conclusions. The exercises, in most cases, approach the content under analysis with a procedural
focus, “where calculations and formulas are the basis of the questions with no apparent intention of
developing the spirit of argumentation in the student” (Martins & Mandarino, 2013, p. 112).

CONCLUSIONS

The objective of this study, in creating a long-term retrospective is to construct a broad trajectory on
proofs in geometry, emphasizing significant historical moments and seeking to identify tensions,
ruptures, and continuities. We reinforce it is important not to generalize the notes obtained in the
analytical exercise but rather to discuss the complexity of the teaching of proofs in geometry.

The tension between intuitive and deductive geometry in geometry teaching is evident in the
regulations and pedagogical proposals of textbooks. Curriculum programs state the importance of
intuitive approaches for students aged 11 to 14 but also highlight the need to introduce deductive
practices from the age of 13. Striking a balance between these approaches is challenging, requiring
strategies for the transition between pragmatic and conceptual proofs. The reforms of 1931 and 1942,
the modern ideas of the MMM appropriated by Sangiorgi, along with the PCN, constitute
convergences in valuing intuitive geometry. They also indicate pertinent perspectives for the current
moment. The results reinforce the relevance of spaces such as the 26th ICMI to internationally debate
advances in geometry teaching and collectively discuss indicators of continuity from different
realities and cultures in the search for balance. On the other hand, we identified moments of ruptures
and setbacks, such as the 1951 reform, which removed the space allocated to the study of intuitive
geometry, as well as the current BNCC, which in normative terms, retreats by giving little emphasis
to the transition between tense approaches — intuitive and deductive. However, according to Chervel
(1990), objective finalities do not always follow teaching finalities; the production of OS is an
example of the insertion of new approaches, even if they are not explained in the regulations.
Regarding EB production, few differences were identified, despite regulations indicating detachment.

The study invites us to reflect on how the past can teach us by examining old proposals that evoke
current issues, such as the expressions “intuitive geometry as a smooth transition between experiences
and deductive conceptions” from 1942, or the OS's option in 1966 to postulate cases of triangle
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congruence after experimental conjectures. All these debates precede the carefully developed study
by Balacheff, who, since the 1980s, highlighted the complexity of teaching mathematical proof. In
summary, it is crucial to reinforce the importance of the transition between pragmatic proofs and
conceptual proofs in geometry teaching, at least in Brazilian reality.

The study also allows for identifying connections, interactions, and appropriations of international
movements (particularly Klein and Birkoff) by Brazilian educators. However, such appropriations
were not fully integrated into the school culture, and what becomes relevant is the complexity of
changing pedagogical practices, especially, breaking with the tradition of conceptual proofs,
balancing them appropriately with pragmatic proofs enables a mathematical practice supported by
perspectives from the field of Mathematics Education. We can conjecture that factors such as teacher
training, cultural differences, and educational policies may not contribute as significantly to advances
in geometry teaching as desired.
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We propose a more dynamic and spatial way of teaching and learning geometry in primary school.
Based on the NCTM's "Essential Understanding Series”, which sets out four main ideas and ten
essential understandings for the teaching of geometry and the report on recent research in this field
(see Sinclair et al., 2012), we propose strategies to enrich classical geometry tasks. This contribution
is based on research showing the central role of spatial reasoning in learning geometry (Battista,
2020) as well as the need to further value the dynamic aspects of geometric objects (Sinclair et al.,
2016). Our reflection on new ways of implementing a geometry lesson is anchored in the theory of
grounded cognition (Barsalou, 2008) and more specifically on the “Activity Generating Structure”
(Marchand, 2020) which takes into account, among other things, the model of Uttal et al. (2013)
which highlights the static/dynamic duality at play in the development of spatial reasoning. Our study
exemplifies how this framework can lead to more dynamic and spatial experiences of geometry.

INTRODUCTION

The teaching of geometry has always been a part of the mathematic elementary curriculum, but its
importance may vary according to the different reforms in recent decades. In Canada, geometry has
received little attention in the curriculum and in classroom teaching (e.g., Bruce et al., 2012).
However, there has been a recent push for spatialized the curriculum (Hawes et al., 2023), which is
part of the more general trend in research focusing on "advances in the understandings of visuospatial
reasoning", as identified in Sinclair et al. (2016). This push is based on growing research that shows
that spatial reasoning® (SR) is correlated with mathematical success and that it is malleable (see Davis
et al., 2015; Lowrie et al., 2017; Mulligan et al., 2020). Our work fits within this spatializing trend
but focusses specifically on geometry. Although the role of spatial reasoning should be an obvious
part of geometry, if teachers focus only on naming shapes and measuring them, little spatial reasoning
is actually needed. We are particularly interested in dynamic forms of spatial reasoning, given their
importance in mathematics, and the availability of digital technologies to support dynamic imagery
and interactions. In our work, we have been focussed on how to transform static and quantitative
geometric activities and tasks into dynamic and spatial ones.

The role of the SR is central to develop geometric reasoning (GR), but it is also distinct yet
inextricable from it. Behind the understanding of a geometric object is also a spatial understanding
of the object in question. Students must create a mental image of the geometry object, which they
may do by simulating the experience of seeing and/or manipulating an object (Barsalou, 2020),
connect this image with their geometric understanding and transform them according to the situation

8 Globally, SR referred to “the reasoning [...] that helps each individual better anticipate the effects of their actions on
space, to control these effects, and to communicate spatial information” (Berthelot & Salin, 1992, p. 9, freely translated).

Lowrie, T., Gutiérrez, A., & Emprin, F. (Eds.), Proceedings of the 26th ICMI Study Conference (Advances in
Geometry Education) (pp. 85-92). ICML.
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to conceptualize them. SR can represent not only a gateway to the study of geometry, but it constitutes
also a powerful cognitive tool for the study of formal geometry (Moss et al., 2016; Clements &
Battista, 1992). For example, it is used to anticipate the figure-image of a rotation or establish the
relevant properties to find a missing measure of a figure from geometric statements. Research
conducted in Italy by Gioftr¢ et al. (2013) cited in Sinclair et al. (2016) shows that SR is not only
central, but it is essential for geometric learning: “According to these researchers, the importance of
visuospatial working memory is critical in learning geometry” (p. 697). Our research is rooted in this
work and has as its starting point the conclusion that Sinclair et al. (2016) had following their review
of the research conducted so far and recommendations for future research to be carried out:
Since geometry is a school mathematics topic that explicitly engages visuo-spatial reasoning, several
authors have argued that an increased focus on geometry in the curriculum would be well advised (Sinclair
& Bruce 2015). In particular, given the importance of dynamic forms of spatial reasoning, highlighted in
the work of Newcombe and others, and the relevance to motion and time across ages and cultures (humans
live in a world that is constantly moving, changing), there is reason to conjecture that developing dynamic
and haptic forms of visuospatial reasoning would have a positive impact on children’s learning. There are
interesting and long-standing mathematical challenges in moving away from paper-based static
representations, taking inspiration perhaps from non-Western geometric ways of making sense of the world,

but as shown in the Sect. 5, digital technologies can provide alternatives to such representations that offer
learners more opportunities to create and reason with dynamic imagery. (pp. 698-699)

The research question asked in this proposal is: How can we conduct a classic geometry activity in
class to enhance a more spatial and dynamic approach? To respond to this question, we present the
frame of reference on which we based our analysis and examples of experiments we have carried out.

FRAMEWORK

In recent years, frameworks for studying SR have been developed in different fields of research
(psychology, cognition, didactics, etc.). The framework of this project fits globally into embodied
approaches that ground cognition in the body and the environment (see Barsalou, 2020) and more
specifically on the exploitation of a dynamic approach focused on the development of SR to enrich
the teaching and learning of geometry. Grounded cognition guides several choices in the design and
analysis of the activities proposed in classrooms for both the mathematical teaching components. This
framework is not based on the study of information processing, but rather on the study of the sensory
experiences of learners, including their actions and perceptions. In grounded cognition, all learning
is based on a perceptual and physical interaction of the student within their affective, material and
social environment. Actions and perception shape and are shaped by sociocultural forces such as
language, tools and values (de Freitas & Sinclair, 2013).

And more specifically, the activity generating structure (AGS) guides us in our choices to enhance
the development of SR in the proposed activities (Marchand, 2020). This framework provides
different benchmarks for generating and analyzing SR development in the classroom. Thus, the
benchmarks chosen for this project will be detailed in the methodology since they constitute the
analysis variables of our Design-based research. The Uttal et al. (2013) model offers a typology of
SR according to four categories, as in Figure 1 (the hammer could be any object, such as a cube):
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Intrinsic Extrinsic
Relationships between parts of an object; | Coding the location of objects relative to
static geometric characteristics. other objects or a reference frame.

Static

-
-

Folding, bending, rotating, scaling, cross- | How one’s perception of the relations
sectioning, comparing 2-d and 3-d views. | among objects changes as one moves
through the environment.

get’s Throo-Mountain Task

Dynamic &"

Figure 1. A 2x2 classification of spatial skills (adapted from Uttal et al., 2013, p. 354)

The development of SR is based as much on activities involving objects that remain static as on
activities involving dynamic objects by moving or transforming them or by observing them from
different perspectives. As mentioned above, the geometric activities usually offered to students are
static. This absence of dynamic consideration in activities is also rooted in a number of education
programs, including in the mathematic education programs of Québec (Ministére de I’Education, du
Loisir et du Sport, 2003). Dynamic and spatial approaches to teaching and learning geometry at
school are rare, despite the fact that psychology research has for many years shown a correlation
between, for example, the development of SR related to mental object rotations, which falls under
the dynamic category, and student performance in elementary and high school (Hawes et al., 2015).

The other angle used to characterize SR is the type of spatial relationships at play. These relationships
can be between a whole and one or more of its parts (intrinsic) or between different wholes (extrinsic).
The emphasis for us here is to consider the management of these relationships as a central element in
the design and implementation of geometric activities in the classroom.

By articulating this framework with our overall approach based on grounded cognition theory, it is
possible to highlight another element of Marchand (2020). For each of these four categories, the three
type of action will necessarily interact with each another. The development of SR and GR is an
iterative process between action (physical and mental) on the one hand, and reflection and abstraction
on the other (Battista, 2007). In the activities that we propose, students will be in action or be called
upon to manipulate physical or virtual objects; they will therefore be in what we have called an
archaeological level of action/reflection (Marchand, 2020): they will have to move, observe,
manipulate and deduce spatial and geometric regularities, relationships or properties. This action must
be accompanied by spatial and geometric mental work. To ensure that students can have access to
this internalization, the activities we propose must create this bridge. It is therefore necessary to value
activities that require students to create mental images, photographic level of action/reflection
(Marchand, 2020) of the manipulated objects. A good example of an activity that enhances this bridge
is the Tangram activity of Yackel and Wheatley (1990) in which students are asked to observe an
image composed of Tangram pieces for three seconds, and then reproduce the image in his absence.
Students can observe the image two or three times; emphasis is placed on the spatial and geometric
strategies they use to reproduce it (What do you see in your head? How do you take into account the
position of the figures and their articulation? What were your actions between each observation?).
This activity is located in the static/intrinsic category and it allows students to connect, several times
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through a back and forth between action and reflection (observation, construction and verbalization),
through archaeological and photographic tasks. For both dynamic categories, it will be necessary to
extend the action/reflection to tasks that stage the geometric objects studied in motion (by moving,
decomposing, transforming, folding them, etc.) physically and mentally. This requires a dynamic and
articulated vision of the objects in play (the scenographic level of action/reflection). This study falls
into both dynamic categories and therefore we will focus on these aspects henceforth.

METHODOLOGY

Broadly speaking, we draw on the Design-based Research methodology for the lesson design
(Anderson & Shattuck, 2012). However, in this paper, we present already-designed lessons and
analyze them based on the two dynamic categories of activities proposed by Uttal et al. (2013) and
the three types of action/reflection proposed by Marchand (2020). We considered three variables that
appear to be crucial, given that they are recurring in our work and that of other researchers. We chose
the two lessons analyzed in this paper both because their static versions will be familiar to most
mathematics educations researchers and because they have been used numerous times in our research.

The first variable is the conception of space (micro, meso and macro) (Berthelot & Salin, 1992;
Brousseau, 1983). Briefly, micro-space is the space of small objects that can be manipulated, or the
space of a sheet of paper. This is the space usually exploited in mathematics classrooms. Meso-space
is the space encompassing the movements of a student or object and is fully accessible via the
student’s field of view. The Tangram activity mentioned before was in the micro-space, but it can be
carried out in the meso-space using figures constructed from sheets.

Figure 2. Example of a Tangram constructed from sheets

Macro-space is too large for a student “to be able to take in at once” (Brousseau, 2001, p. 6, our
translation). Only a local, partial view of the space is possible. The connection between micro- and
meso-space seems to be a promising avenue for conceptualizing both SR (Braconne-Michoux &
Marchand, 2021; Brousseau, 1983) and GR and this variable is consistent with grounded cognition
theory. The second variable is the nature and the chronology of tasks that can be given to students.
Davis et al. (2015) have identified 29 possible tasks (ex.: observe or touch, coordinate perspectives,
move, break down, fold or reorganize). One of the main findings of our previous research is that the
chronology of tasks is a decisive factor in the level of difficulty of the activity. Specifically, the
following two chronologies seem promising to enrich the teaching/learning of geometry from a
dynamic and spatial point of view: 1) anticipate the sufficient and necessary materials required before
proceeding to any construction, build, and then describe the solid obtained (Marchand, 2006, 2009)
and 2) observes to anticipate geometric properties and spatial relations to be retained for construction,
construct without reference to the object to be made and describe the Tangram (Yackel & Wheatley,
1990). In these two cases, the anticipation task is carried out differently, but always takes place before
the manipulation or resolution (Michoux-Braconne & Marchand, 2021). Finally, the third variable
is the nature and dimension of the objects in play, which can be 0D (points), 1D (lines), 2D (figures)
or 3D (solids) and can be prototypical or non-prototypical and positioned in a typical or non-typical
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orientation. This variable plays a key role in geometric conceptualization. The fact that we are in a
dynamic approach necessarily implies that students will be confronted with geometric objects in
motion and therefore in non-typical positions and spatial relationships.

A FIRST STEP TOWARDS A DYNAMIC AND SPATIAL APPROACH TO ENRICH THE
TEACHING AND LEARNING OF GEOMETRY IN PRIMARY SCHOOL

We explore this avenue through the analysis of two classical activities: the reproduction of an image
formed by geometric figures (as in the Tangram activity) and the representation of the possible
developments of a solid, such as those of the cube.

The Tangram activity discussed earlier is a classic in the SR literature and involves students
identifying and manipulating 2D shapes’ to create certain designs. Changing the orientation and
chirality of the shapes allows students to experience transformation directly, which might help them
mentally rotate these shapes. Geometrically, the main pedagogical benefits might be (1) to identify
the names of shapes, such as triangles, squares and parallelograms) and (2) to decompose and
recompose shapes in such a way that preserves area. Given the research showing that students tend
to develop prototypical images of shapes (squares that are sitting on their sides, triangles that are
equilateral, etc.), and the role that dynamic geometry can play in which students experience a wider
variety of these target shapes, as well as a sense of their properties (Sinclair & Yurita, 2008), this
sequence of DGE tasks'? was designed to support both SR and GR.

In this activity, students are asked to use a set of arbitrary triangles (triangles that can be dragged into
any shape) and fit them into a given shape (such as a square, a pentagon, a start, etc.) (see Figure 2a).
Instead of manipulating a fixed figure, they are producing triangles of various shapes and sizes. While
we often see the flat figures statically at school, here they are dynamic as much in relation to the
intrinsic spatial relationships, between the triangles and the reference figure (square, pentagon, star),
as extrinsic between each of the triangles that make up this figure since they can take any shape and
they must fill, without leaving a hole, the reference figure (see Figure 2b). Students use
archaeological, photographic and scenographic actions/reflections here. They transform the triangles,
they position them in the reference figure (archaeologic), anticipate how to position it in relation to
the reference figure (photographic) and in relation to the next triangle to be placed (scenographic).
The main tasks required are deformation, anticipation, decomposition and recomposition. The
activity takes place in micro-space and students drag the vertices (0D), segments (1D) and figures
(2D) to fill in the reference figure (2D). Finally, since students will necessarily deform the triangles
to fill the figure, their positions and appearance will not be typical. A conceptualization of the figures
involved (triangle, square, pentagon) and the notion of area will thus be enriched.

N

Figure 3a: Triangles to fill the square; b: one solution; c: fitting the last triangle into a pentagon

(14

° They are meant to be treated as figures, as they are called squares and triangles, and so on, but are in fact solids, which
introduces a complexity that is rarely discussed in the mathematics education research.
10 http://www.sfu.ca/content/dam/sfu/geometry4yl/sketchpadfiles/Triangle%20Designs/index.html
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The concept of folding a net into a solid is in the curriculum at the primary and secondary levels.
And, in this sense, several textbooks present the classic static task: Observe these nets and say which
can be folded into a cube. We propose a more dynamic and spatial approach, as follows. Provide
students with eleven nets of the cube, each on a different page, all having semicircles on the centre
of each side of the six squares of the net (see below) and inform students they must remain on their
desks and cannot be cut or folded. The eleven nets are also available at the front of the classroom and
can be folded, but they cannot be written on (the semicircles are also not coloured). In teams, the
students must colour each net, each semicircle of twelve distinct colours so that they form a circle of
the same colour when the cube is formed (one side with a blue semicircle joins another side with a
blue semicircle to form an edge of the cube). The students can manipulate the net, are challenged to
go do to at the front of the classroom as few times as possible.

Figure 4a: One page from the student leaflet; b: the nets available in front of the classroom

The didactic choices of not being able to cut the net to colour the semicircles and not being able to
manipulate the net so easily function to force students to resort to other strategies that are not only
rooted in archaeological action/reflection, but also in the photographic and scenographic. They have
to imagine the cube formed, to take into account each of the rotations made by each of the six squares
that constitute the cube and retain the relationships that each of the segments of the squares maintain
once folded to form the twelve edges of the cube. To do this, students can perform these movements
mentally, but also with the help of gestures. These gestures express their starting point (the square on
which the cube is placed), the transformations they anticipate, one rotation at a time, the relationship
between the different segments to identify the colour to be inscribed and the end point of the folding
envisaged. These gestures are very telling about how each of the students folds and designs the cube,
as are their verbalization to the other members of the team.

In this activity, the actions/reflections also represent a back and forth between archaeological (the net
in front of the class), photographic (the image of the cube to obtain) and especially scenographic
(anticipation of how to fold the cube). Students are in the micro-space; they mainly deal with the 2D-
to-3D passage, but to identify the corresponding semicircles, they must also resort to the study of
segments (1D). In addition, activity lies within the dynamic/intrinsic quadrant since students analyze
the relationships that each of the segments has with the others forming the whole, the cube. Usually,
of the eleven developments in the cube, students see the one shown in Figure 3a, but as they complete
this activity, they will explore the eleven nets and understand how each one forms the cube. This
more dynamic and spatial way of approaching this mathematical concept seems to be conducive to a
richer understanding of nets.
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CONCLUSION

Given the important role that dynamic thinking plays in SR, which in turn correlates strongly with
mathematical success, we are interested in not only spatializing the curriculum, but also dynamizing
it. With a specific focus on geometry, we have provided two examples in this paper of ways to render
well-known primary school tasks more dynamic. One involved inviting students to work with
dynamic objects, with the help of digital tools, while the other involved drawing on pedagogical
strategies to increase students’ dynamic thinking. In both examples, we highlighted the presence of
archeological, photographic and scenographic forms of SR. We also highlighted opportunities for
working across dimensions. Both activities include direct feedback—in the first case from the
dynamic environment itself and in the second case from self-checking at the front of the classroom—
which we see as a significant aspect of task design, as per Laborde (2001). In our presentation, we
will provide other examples of dynamising geometric tasks for primary school learners, including
ones not confined to the micro-space, and share results of our classroom experimentations.
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Building on the theory of figural concepts, this paper describes geometric prediction as a process
that lies at the interplay between the pure manipulation of figural elements and the pure selection
and use of theoretical ones. In this paper I use a geometric prediction model to analyze the cognitive
processes of an expert solver, while she is solving a geometric open problem, showing how it is
instrumental in addressing the issue of zooming into the tension between spatial reasoning and
geometric understanding.

SPATIAL REASONING BETWEEN TRANSFORMING AND UNDERSTANDING

Spatial reasoning is strongly intertwined with geometrical activity, as highlighted by the amount of
research that lies at the intersection of these two topics. As for research in mathematics education,
almost invariably, the definitions of spatial reasoning have in common the activity of imagining static
or dynamic objects and interacting with them through mental transformations (e.g., rotation, stretch,
reflection, to name a few). However, during the resolution of a geometric task, mental or physical
transformations alone may not be sufficient, and they need to be accompanied by “analytical thought
processes” (Presmeg 1986, p. 45). This is particularly evident when the solver must manage spatial
and theoretical dimensions, for instance in the case of open problems, where the solvers are free to
explore the problem and draw their own conclusions. In such problems the solution process often
ends with the formulation of a conjecture after a (physical or mental) exploration of the situation
(Mariotti et al., 1997), but the complexity of the processes elicited by the task cannot be fully
explained by the intervention of mental transformations alone (Mariotti & Baccaglini-Frank, 2018).

Also for this reason, recently researchers have taken a transdisciplinary perspective and defined
spatial reasoning as an overarching term used to refer to several dynamic processes that benefit from
the constant challenge between two major dimensions: transforming and understanding (Davis &
Spatial Reasoning Study Group, 2015, p. 140). Although this is a fresh take on a traditional theme of
the research in mathematics education, the intertwining of spatial reasoning and geometric
understanding has not yet been fully unraveled. In this paper I tackle such an issue within the domain
of 2D Euclidean geometry.

The main assumption is that specific bridging processes lie at the interplay between spatial
transformations and geometric understanding. Geometric prediction (GP) is one of such bridging
processes. It builds on the Theory of figural concepts (Fischbein, 1993) and some of its effects can
be captured as solvers deal with geometric open problems. This paper focuses on unraveling aspects
of the intertwining of transforming and understanding thanks to a GP model (originally introduced in
Miragliotta, 2020) developed specifically to analyze the prediction processes of an expert solver.

Lowrie, T., Gutiérrez, A., & Emprin, F. (Eds.), Proceedings of the 26th ICMI Study Conference (Advances in
Geometry Education) (pp. 93-100). ICMI.
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THEORETICAL FRAMEWORK AND RESEARCH QUESTION

In the case of Euclidean geometry, the tension between transforming and understating is particularly
intrigued, since it mirrors the well-known tension between spatial and theoretical aspects (Mariotti,
1995). The Theory of figural concepts (Fischbein, 1993) capitalizes on this tension by considering
the cognitive counterpart of a geometrical object as comprising a theoretical and a figural component.
Indeed, as part of a mathematical theory it is ideal, abstract, perfect, and general (conceptual or
theoretical component), but it also reflects spatial properties like shape, position, and magnitude
(figural component). Ideally, figural and conceptual components should be fused together in the
figural concept, that is the actual object we are reasoning upon. During the resolution of a geometric
task, the solver might alternatively operate on the figural components, through manipulations, or they
might consider the theoretical nature of the objects in focus; however, it can be difficult to identify
the contribution of each component when they act in harmony (Mariotti, 1995). In light of this theory,
in the following we operationally consider:

o transforming as manipulating figural components through physical or mental
transformations, that can be more or less isomorphic to geometrical transformations,

. (geometric) understanding as the act of recalling and using suitable theoretical components
which belong to the mathematical reference theory at stake,

J in order to manage the complex mutual relationships between figural and theoretical
components that comprise the figural concepts in focus.

In geometry, one of the processes at the interplay between figural manipulation and theoretical
elaboration, triggered by open problems, takes place when the solver’s exploration is carried out by
mentally transforming a figure and imagining how it will change given certain constraints (Mariotti
& Baccaglini-Frank, 2018). When this happens within the specific domain of Euclidean geometry,
we have identified the process of Geometric Prediction (GP) as the generation of a new figural
concept through the manipulation of its figural elements that maintain invariant certain theoretical
elements belonging to the solver’s mathematical reference theory (Miragliotta, 2022, p. 16). The
process has been modeled, as shown in the visual diagram in Figure 1a, in order to highlights its main
components and all their possible connections (see Miragliotta, 2022, for further details).

In a nutshell, the model is composed of two main sides, connected in the center through a sort of
funnel, which metaphorically shows the dynamic interaction of the elements that flow into a GP
process, producing a new object that is more than the sum of the original elements, but which retains
some traces of both. On the left side of the visual diagram, there are theoretical elements recalled by
the solver; they include all the properties that solvers attribute to the figure (or part of it), theorems
and mathematical results. On the right side there are figural elements, on which the solver can focus,
and which can be manipulated; these are elements of the solver’s productions that belong to the figural
domain at a specific moment as the solver looks at the figure represented.

Manipulations can be accomplished in two ways: continuously, that is solvers can imagine, perform,
or mimic a continuous movement of one or more parts of the configuration (i.e., points, segments);
discretely, that is solvers can locate these parts at a specific position on the plane and reconstruct the
corresponding configuration. The solver’s interaction with the drawing (if any) can be direct mainly
by bottom-up (perceptually driven) or top-down (theory driven) processes (Gal & Linchevski, 2010).
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Speech and gestures can occur at any time, shaping the process and providing the researcher windows
onto the elements in focus.

Recalling theoretical o
elements Introduction of

| new elements
Interpretation of the given
theoretical elements

Manipulation of Prediction open problem
figural elements

Consider the right triangle in the

figure, with the hypotenuse of
fixed length.

A and B are fixed. The length of
AB must always be the same.
C

Theoretical |
elements

Theoretical
Control

Top-down
A B
G ('speech | Gestures | Drawings | What can you say about the

Product of GP

vertex with the right angle?

(a) (b)

Figure 1: (a) Visual diagram of the GP process (b) An example of prediction open problem

The solver’s act of mentally imposing onto the figure theoretical elements that are coherent in the
mathematical reference theory at stake, 1.e. theoretical control (Mariotti & Baccaglini-Frank, 2018),
is central and guides each phase. In order to reach a coherent product of GP, a solver has to cover the
whole path: starting by recalling theoretical elements referred to particular figural elements, and by
continuing to manipulate the corresponding figural elements, under the strict supervision of the
theoretical control. The product of GP is a new figural concept (for the given task) enriched by the
figural and theoretical components that emerged during the process.

Although prediction processes may be different because their components may have different
interactions — resulting in multiple paths through the model — they are all characterized by the
interplay between pure manipulation of figural elements and pure recollection and use of theoretical
elements.

Research question

Given the theoretical framework outlined above, this paper addresses the following question: What
insight does the model of geometric prediction provide into the intertwining of spatial reasoning and
geometric understanding, in the case of dynamic processes involved in the resolution of geometric
open problems?

METHODS

The data analyzed was part of a larger data collection aimed at observing and describing prediction
processes of volunteer solvers with a mathematical background, i.e. expert solvers. Individual task-
based interviews were carried out and focused on prediction tasks, that are particular kind of open
problems in which the solver is asked to describe possible alternative arrangements of a geometric
configuration (imagined, given by a drawing and/or by a step-by-step construction) maintaining given
properties. Each solver spent 60 min with the interviewer and worked through as many prediction
tasks as they could. Data was collected in the form of video recordings behind the solver, in order to
capture all of their productions (verbal, gestural, diagrammatic). Here we focus on a solver, fictionally
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named Giulia, who at the time of the interview had just graduated with a master’s degree in
mathematics.

This paper presents excerpts from Giulia’s interview as an instrumental case study (Stake, 2003),
since it provides a telling example of GP processes in a quite short time span. The selected excerpts
allow us to navigate the multifaceted aspects of the GP model in depth. More specifically, excerpts
report on Giulia’s resolution of the prediction task shown in Figure 1b. Interpreting the resolution
process using only figural manipulations could be quite challenging. Indeed, the solvers need to
consider what has to remain invariant (the right angle at C, the length of AB, the hypotenuse is at
AB) while other elements can be modified (the position of C, the legs length); this involves many
theoretical aspects. For example, four positions of C can be figurally reached by imagining
symmetries, but the right-angled and isosceles triangle can only be considered as a possible
configuration by means of a conceptual elaboration.

During the resolution of this task, several GP processes can be accomplished, leading the solver to
describe possible alternative configurations. We have called configuration an instance of a
geometrical figure expressed by a drawing and/or a gesture (see C;in Figure 2A). Excerpts are
analyzed using the GP model (Figure la), in order to describe in greater depth how figural
manipulation and theoretical elements come into play. The unit of analyses is the interview while the
solver is solving each task. Each transcript is divided into segments, delimited by two configurations
given or elaborated by the solver. We focus on the segments in which one or more products of GP
are communicated by the solver. A product of GP is labeled using a progressive number (GP;) when
the solver refers to elements (a geometrical object or part of it) which are not present in the drawing
or to a new arrangement of the configuration without drawing anything. Gesture and speech are
considered jointly as a window onto the solver’s processes. A wider description of data analyses along
with the analytical scheme is available in (Miragliotta, 2022).

ANALYSIS
Two selected excerpts from Giulia’s interview are presented here and analyzed using the GP model.
First excepts: Giulia communicates GP; and GP;

The excerpt starts right after the first question (see Figure 1b and watch the video here).

Giulia: [She points at C] That I can move C so that it makes...[using her finger, she traces an arc
from C to A and then a semicircle, starting from A, passing through C and ending at B,
see Figure 2B-a]...a half circle [she repeats the same gesture as in Figure 2B-a].

Giulia: Where does this semicircle [she moves her finger upon AB from A to B] has its
center...[she points at a position on AB between A and B, see Figure 2B-b]...at the
midpoint of AB [she points at A and B one after the other].

Giulia: There, the hypotenuse AB always has a fixed length, because I am only moving C.

Giulia: Since C is...the vertex of a triangle that lies on a semicircle circumscribed to the triangle,
it is always right, so the triangle always stays... right. In any place I move C [using her
finger, she outlines the beginning of a circular path].

The first product of prediction (see GP; in Figure 2A) is reached quite soon in the first line. At the
beginning Giulia looks at the drawing silently, while she points at C. The initial stage of interpretation
of the givens is so fast and silent that we cannot gather information on how the configuration is
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interpreted; however, looking at the whole excerpt we can say that an interpretation took place and
the solver refers to the figural components of the figural concepts in focus using specific theoretical
elements (i.e., hypothenuse, right triangle, right angle). The most observable part of the process is the
continuous manipulation of figural elements (point C). Giulia engages in a dialogue with the given
drawing: after she mimics the semicircle for the first time, she looks at the drawing silently; then she
concludes that C “makes a half circle” and simultaneously she repeats the circular gesture. We can
infer that the theoretical control intervenes for checking the coherence of the figural manipulation
outcome (i.e., the circular path) and then recalling the most suitable theoretical counterpart (i.e., the
semicircle). The dynamic and silent gestures coupled with the following utterance suggest that the
outcome of the process is not a mere recollection from long-term memory of a theoretical element in
a crystallized form (as she will do later), but an actual construction of a new figural concept, i.e. a
prediction. She repeats the same gesture twice (Figure 2B-a), but with slight differences: the first
gesture is performed silently and slowly, it is fragmented and quite tentative; the second gesture is
fast, confident, and coupled with speech. These differences might correspond to different roles. The
first gesture seems to be performed in order to look at a possible manipulation; so far, the outcome is
quite fuzzy, and the gesture provides figural support to solver’s processes of prediction. The second
gesture seems to be made only to emphasize the solver’s verbal production and to confirm her now
less vague prediction. Finally, the gesture serves to crystallize the product of Giulia’s prediction: the
dyad composed of the drawing and the circular gesture is the initial configuration (Cz in Figure 2A)
for the next GP processes. Indeed, she keeps talking about the semicircle as if it is actually part of the
drawing (see the deixis “this” in the second utterance of the excerpt).

/ ~
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a |

1
F ﬂﬂﬂﬂﬂ »| GP;: the locus of Cis a semicircle
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Figure 2: (A) Overview of Giulia’s GP processes and their connections, each GP; is a reformulation
of the solver’s productions; (B) instances of Giulia’s gestural production

f

The second process shows an intense interplay between figural and theoretical elements. A new
figural element is discretely introduced (a point on AB) and it is seen as part of different figural
concepts, as demonstrated by the introduction of two theoretical elements (the circle center, the
midpoint of 4B8). The theoretical control allows the solver to manage this complexity. The utterance
shows the intertwinement of theoretical and figural components of the figural concepts in focus,
which leads the solver to refine the first prediction by communicating additional geometrical
properties of the semicircle: its center and radius. GP; is refined in GP> (see Figure 2A) through the
top-down imposition of additional properties. This GP process is condensed into a single static
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utterance (“this semicircle has its center at the midpoint of AB”), but the claims that follow suggest
a more dynamic dimension that is only verbally recalled (“I am only moving C”) and not gesturally
performed. Indeed, Giulia says that when C is moving “there” on the semicircle she has imagined,
the hypothenuse 4B “has a fixed length”, stressing that the given constraint on 4B is maintained.

The tone of the voice and the long pauses suggest that Giulia is quite hesitant, until she recalls a
theorem that connects the properties of right angles, circles, and triangles. It is not formally stated,
rather Giulia simply recalls the theoretical elements that support her prediction. The tone of her voice
suggests that she is recalling a piece of previous knowledge, suggesting the intervention of theoretical
control. We notice that Giulia uses a statically stated theorem to justify a dynamically reached
prediction. As already stressed, although the positions of C were dynamically explored, when the
semicircle emerges as a product of prediction it becomes part of the configuration, to the extent that
the point now “lies on” the semicircle that was created by that point instead. In the same way, Giulia
seems to start from a generic triangle that is inscribed on a semicircle: the right-angled triangle, which
was a given, becomes a result that is drawn from the rightness of the angle at C. Therefore, the product
of GP becomes a hypothesis, while the right angle at C is the thesis.

Excerpt 2: Giulia undertakes two additional prediction processes that lead to GP3; and GP4

A new process of prediction starts when the interviewer asks for positions for point C (video here).

Giulia: So that it maintains this configuration? If I draw...[using her finger, she points at C and
traces a line downwards to a specific point, see Figure 2B-c]...point transformed from C
[she points at A and B] with respect to AB, so I send the perpendicular from C to AB [she
points at C and traces a line towards AB], that is I draw [she uses two fingers, see Figure
2B-d] a segment that is always perpendicular to AB of the same length [she uses two
fingers between C and AB and then as in Figure 2B-d] of the one that I drew before.

Giulia: So, C can...can also stay on the opposite side [she traces a small arc from A to the
imagined symmetric point, Figure 2B-e]. And so, in the end C can be on the...[she traces
a circle, see Figure 2B-f]...can be, yes, lies on a circle with center at the midpoint of AB.

GP;s is reached quite quickly and it incorporates all the theoretical and figural elements that were part
of GP; and GP,. Giulia starts reconsidering all the given constraints (see the first interrogative
statement), she focuses on the figural element point C, and mimics the motion of C towards and below
AB (Figure 2B-c). The gesture follows continuously a straight trajectory (as if the solver were holding
a fictional pencil), but it is quite fast and confident as she were anticipating the final destination, so
in this sense the manipulation is also discrete. The final pointing gesture communicates GP3, which
is silently contemplated for a while. There is a silent top-down and bottom-up interaction with the
drawing, and finally the verbal production informs us that the new point is “transformed with respect
to AB”, that is according to a line symmetry. We can infer that the theoretical control supports the
solver in evaluating the coherence of this manipulation, before continuing the exploration. The
theoretical control also supports the introduction of new theoretical elements which add detail to the
prediction. Indeed, Giulia claims that the new point is obtained by a geometric transformation of C
and then she starts explaining how the symmetric point can be geometrically constructed. In doing
this, she introduces a number of new theoretical elements (perpendicular line, length transport,
opposite position), coupled with new figural elements, which blend together in a dense interplay.
Here again some figural elements are interpreted as part of different figural concepts: now the
hypothenuse and diameter AB is conceived as an axis for the line symmetry.
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The process moves in a constant interplay between the left and right side of the model, driven by
theoretical control. The output of this process, which blends the recollection of theoretical elements
and the manipulation of figural elements, culminates in GPs.

The products of all these prediction processes flow into a final one (see Figure 2A). Right after the
symmetric point is described, Giulia summarizes her findings (“So, C can [...] and so, in the end”).
She starts from the last GP, stressing the new position of C, and outlines a small arc with her finger
(see Figure 2B-f). This gesture blends the initial locus (GPi, GP2) and the symmetric position of C
(GPs) in a new locus. GP;4 constitutes a refined and extended version of the previously communicated
predictions (see Figure 2A). Finally, we observe that the last claim on C is purified of any dynamic
dimension and crystallized into a static statement. Indeed, at the very beginning of the interview, the
solver has stated that she “can move C so that it makes” a certain locus, while now, at the end of the
exploration, C “lies on” a certain fixed locus.

DISCUSSION AND CONCLUSION

We set out to describe GP as a bridging process between spatial reasoning and geometric
understanding in order to gain a deep insight into their interplay in the case of Euclidean geometry.

Following the GP model while an expert solver is solving an open problem, we can see how the
process contains a constant interplay between the theoretical and the figural elements as they are
embedded into the two sides of the model. In particular, we can identify two catalyzers of the GP
process: the prominent role played by the theoretical aspects and the dynamic approach. Indeed, from
the beginning Giulia’s figural manipulations seem to be prompted by the aim of looking at possible
positions of point C; this dynamic view guides her GP processes. At the same time, she needs fixed
products of the manipulation to be reinvested into a new process, giving rise to chains of GP processes
(Figure 2A). We can confirm that GP processes involve many components of spatial reasoning, but
only a strong geometric understanding can support and suggest spatial transformations that are
effective and controlled. This is particularly evident when Giulia recalls theoretical elements that are
part of a theorem she knows and when she describes the isometric transformation of point C. On the
other hand, figural manipulations could guide the introduction of new theoretical elements,
suggesting that spatial transformations might affect geometric understanding. Indeed, before
introducing the theoretical elements of the theorem in a crystallized form, Giulia seems to need the
figural manipulation of point C. Moreover, very often the figural component, that is mainly
communicated gesturally, precedes the verbal description of the theoretical counterpart of the figural
concepts at stake.

More generally, expert solvers demonstrate a productive combination of theoretical and figural
aspects, which come together into play in an immediate and condensed processes of GP. An essential
part of the process consists in giving (multiple) geometrical interpretations to spatial elements.
Indeed, looking diachronically at the elements in focus during the four GP processes, gestural and
verbal productions reveal that the figural elements (e.g., AB) change their theoretical status (e.g.,
hypothenuse or side of a right triangle, diameter of a circle, axis of a line symmetry). The graphical
element is always the same (e.g., the straight line between A and B), but each time it is addressed as
a different geometrical object. Giving different geometric meanings to the same object could involve
the spatial transformations (e.g., decomposing, rearranging), but it deals also with the geometrical
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interpretation of the configuration and, in particular, with the (meta)cognitive act of seeing the same
figural element as part of different figural concepts. In the case of GP processes, theoretical control
collects many metacognitive acts: monitoring and checking the coherence of a figural manipulations,
managing the temporality (from dynamism to crystallization and back), supporting the selection of
theoretical elements to be recalled and recognizing invariants, (re)interpreting given figural elements,
considering or rejecting the outcome of a manipulations as suitable for a new dynamic process.

Zooming out from the particular case in focus and considering the GP model as a prototypical
example of bridging processes, we can say that the interplay between spatial transformations and
geometric understanding is driven by specific metacognitive acts that deserve our explicit attention
in order to be further explored and identified; the GP model allows us to highlight that theoretical
control is one of them. Therefore, the study shows the explanatory potential of analyzing processes
which lie at the intersection between different cognitive activities, but further research is needed in
order to identify other bridging processes within and beyond Euclidean geometry.

From the educational point of view, this study provides further evidence of the importance of
supporting the blending of theoretical and figural components of figural concepts. This must become
an educational goal. Since open problems seem to spontaneously trigger processes that elicit a
dialectic between the two components, we can advance the hypothesis that their use in geometrical
activity could help educators in pursuing this goal. Investigations on open problem is not new,
however the new perspectives on spatial reasoning can stimulate a new fresh insight into their use
both for researcher and educators.
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A central educational goal of higher-level mathematics undergraduate courses is to foster the
development of competences that enable students to use mathematical abstraction and formalism
and, at the same time, to develop mathematical creativity. Does it mean mathematical maturity?
Research in university mathematics education suggests that to grasp the characteristics of maturity,
it might be beneficial to introduce students to theoretical objects by engaging them in the autonomous
construction of examples, conjecturing, and proving, especially in geometry. This approach is
generally fruitful, but students sometimes have difficulty providing counterexamples to false
conjectures, formulating conjectures, or proving statements. Starting from the point that there is no
way to acquire mathematical maturity except by doing math, we introduce a path that stimulates
students to construct knowledge by themselves in the realm of topology. We face the issue of
promoting students’ maturity through designing paths that stimulate geometric reasoning. We
present the first findings on some students’ development and self-perceptions of their maturity.

INTRODUCTION

Mathematical maturity is one of those expectations in higher education that is often mentioned but
not yet clearly defined (Steen, 1983; Lew, 2019). There is no empirically based description of
mathematical maturity currently. Lew explores existing descriptions of mathematical maturity as well
as descriptions of the related concepts of mathematical intuition and mathematical beliefs,
investigating how mathematicians describe mathematical maturity. Interviewed mathematicians
report using this term in various ways: ways of thinking about mathematics, mathematical intuition,
and comfort with and competence in mathematics. Even more obscure is how exactly to reach
mathematical maturity, both for educators and students. Research in mathematics education agrees
that encouraging students to work on their own to generate examples of mathematical concepts, to
conjecture, to prove or refute a statement, or to prove a theorem is an effective way to reach maturity.
We firmly believe that two components, both stimulating conceptual understanding, can decisively
contribute to its achievement at every school level: the first one concerns the topic, and a powerful
candidate is geometry, which with its visual push can be an excellent springboard, and the second
one deals with the teaching practices to be implemented, designing suitable paths that start from the
construction of examples and pass through conjecture, proving or disproving, and giving alternative
proofs of known theorems. In geometry, properties of figures derive from definitions within an
axiomatic system: a figure is “controlled by its definition” (Fischbein, 1993). The construction of a
visual representation of a key definition or concept in the statement of a theorem can lead to the
recognition of the key idea of the proof (Gallagher & Infante, 2022). A primary goal of advanced
mathematics courses at the university level is to have students become proficient at writing proofs.
However, research has reported that this goal is rarely met. The difficulty seems to be in passing from

Lowrie, T., Gutiérrez, A., & Emprin, F. (Eds.), Proceedings of the 26th ICMI Study Conference (Advances in
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the stage in which the operational aspects of a mathematical concept and, more generally, the
procedural knowledge of mathematics is gained to the stage at which the structural aspects and
conceptual knowledge of mathematics are acquired (Sfard, 1991). Tall and Vinner (1981) relate the
understanding of a concept to the distinct notions of concept image and concept definition. Moore
integrates the construct with the notion of concept usage, “which refers to the ways one operates with
the concepts in doing proofs” (Moore, 1994). An efficient way to develop conceptual understanding
is to approach it through examples. The exploration of example spaces is essential to learning
mathematics, and this power manifests particularly in geometry. Watson and Mason (2005) propose
that “examples can be perceived or experienced as members of structured spaces” and introduce the
term "example space." Example space exploration and extension activities play an important role in
students’ mathematical thinking as they make formal mathematics more familiar. Dahlberg and
Housman (1997) argue that creating examples can be a powerful “learning event” in which students
make real progress in understanding and that it might be beneficial to introduce students to new
concepts by starting with a concept definition and going on to enrich the concept image. Conceptual
understanding is necessary for advanced mathematical thinking (Tall, 1992) and creativity, two
essential characteristics of maturity. We could say that:

mathematical maturity refers to cognitive, communicative, metacognitive, and affective problem-solving

competences dealing with generating examples and counterexamples, conjecturing, proving, and

mathematical creativity in constructing original examples, modifying some already known or generating

new ones, producing original proofs of already known theorems using different techniques or new
theorems, and, in the meantime, to a sense of self-efficacy and mastery, even in collective discussions.

Once given an attempt at the definition of maturity, it comes naturally to face the following questions:
how can we encourage students’ mathematical maturity? What specific paths or trajectories during
the process of learning could help them to be able to independently learn and apply geometry? In
what ways can students be engaged in formulating conjectures and doing geometric proofs? Our
attempt at an answer lies in the design of specific paths that engage students in self-constructing
knowledge. We address the issue of promoting students’ maturity by designing suitable paths in the
realm of geometry, which in our setting is topology. Topology is a tool encouraging undergraduate
students’ maturity, as counterexample constructions (Steen & Seebach, 1970), intuition, abstraction,
and generalization are highly valued. Its dual figural-conceptual power arises from the impulse to
abstract essential features from complex situations and then to let our curiosity roam while striving
to truly understand what is essential about fundamental ideas (Fischbein, 1993; Tall, 1992; Weber &
Alcock, 2004; Selden & Selden, 2013). The designed path aims to engage students in example
construction, conjecturing, and proving in topology, helping them to make deeper sense of known
theorems and techniques and to discover new ones. In the paper, we give a taste of students’ answers
to highlight the figural-conceptual power of topology and analyze how students show and perceive
their own maturity after the implemented path.

RESEARCH FRAMEWORK AND RESEARCH QUESTIONS

The theoretical model to which we refer to design the path is that of concept usage (Moore, 1994), in
the form proposed by Dahlberg and Housman (1997), integrated with the construct of example space
(Watson & Mason, 2005) and with the notion of figural concept (Fishbein, 1993), essential in the
realm of geometry. Dahlberg and Housman assign students some exploration "pages," starting from
a concept definition, to develop their own related concept images: to define the concept (definition
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page); to generate two examples of objects, one satisfying that definition and the other not (generation
page); to verify whether some given objects do or do not satisfy the definition (verification page);
and to explore some statements linking that concept to others (conjecture page). We make Dahlberg
and Housman’s model more powerful by adding a page named the bridge page (Miranda, 2023b),
requiring the example space extension through bridging examples suitable to overcome students’
difficulty in providing counterexamples and in formulating conjectures. The lens with which we look
at students’ maturity and how students perceive it refers to the descriptions reported by Lew (2019).
In this proposal, considering how mathematicians describe mathematical maturity (Lew, 2019), we
give a taste of students’ answers in a particular step of the path, the last proving/disproving
conjecturing phase, highlighting the power of figural and conceptual aspects in developing an aware
concept usage and investigating students’ perceived maturity. We address this research question:
What is the impact of such an approach on students’ outcomes and perceptions of advanced
mathematics and their personal maturity in knowing or constructing it?

METHODOLOGY

The research is part of a project concerning the transition to advanced mathematical thinking
(Miranda, 2023a), supported by paths starting with the example of space extensions and going
towards generalization and abstraction (Miranda, 2023b). The implementation, held in the academic
years 2021-22 and 2022-23, involved 34 students attending an introductory algebraic topology
course within a Bachelor of Mathematics, in which we gave definitions of algebraic objects that are
topological invariants, such as the fundamental group. The path was designed to encourage the
transition from informal to formal, from intuition to logic deduction, from empirical to theoretical
thinking, and to stimulate those thinking processes that are activated when facing a conjecture. Our
design choices were inspired by the learning model of concept image/concept definition/concept
usage (Moore, 1994; Tall & Vinner, 1981), the example space construct (Watson & Mason, 2005),
and the theory of figural concepts (Fischbein, 1993). The path was packaged by integrating the pages
(definition, generation, verification, and conjecture) of the Dahlberg and Housman task model (1997)
with another page, the bridge page. The path is composed of three phases. In the first phase, the
example phase, it starts with a given definition and requires generating examples and non-examples
satisfying the definition (generation page) and verifying if a given object belongs or not to the
example space (verification page). The bridge page connects the example phase with the conjecturing
phase, requiring comparing the definition with some constraints that must or must not be satisfied
and the conjecturing phase. The path concludes with proving or disproving a given statement
(conjecture page). In the bridge page, assuming that one of the constraints is the beginning definition,
we associate with each constraint the value 1 if it must be satisfied and the value 0 if it must not:
Give an example, if possible, of a mathematical object satisfying/not satisfying Constraint 1,
Constraint 2, Constraint 3.

This requirement generates a matrix containing eight rows, corresponding to eight subtasks, and three
columns. Students explore the subtasks to solve them. If, in a particular case, they fail to find an
example, they must understand why they cannot do so. It could be difficult to find an example or
impossible to generate one. In the latter case, it is necessary to prove this impossibility. The students
worked individually on each task in the first phase and collectively in the second phase to discuss,
compare, or improve their solutions. Students constructed personal examples and proofs. They were
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then asked to explain and comment on their solving process to the class, explaining the reasons why
a particular example does or does not satisfy the required property, whether an example exists, and
why no example exists. Personal examples were collectively analyzed initially to compare all the
outputs and identify common aspects and differences, and then a second time to identify interesting
features, such as accessibility, and to choose a representative of a larger class. The first phase
concludes with the collective choice of the less complex example, if it exists, for every row. If they
found a difficulty, all the components acted as prompts to modify an example or recall a useful result,
with the aim of constructing the solution together. The second phase deals with conjecturing by
looking at the matrix columns. The collective discourse is a very strong pedagogical tool because it
encourages questions and discussions (Sfard, 1996) to explore the links between the properties
expressed by the constraints, to discover whether these properties are independent, to open a
conjecture-oriented exploration, and to foster generalizations. As an example: Why is this an
example? Why is there no example? Does a mathematical object that satisfies constraint i satisfy
constraint j? And vice versa? Some examples then become counterexamples, showing that certain
implications are false. Others generate conjectures. Finding that a set of constraints seems mutually
incompatible is an excellent way to generate a conjecture. Looking at the columns and comparing
them, some conjectures are produced. The last phase deals with proving or disproving given
conjectures. The model represents a teaching-learning opportunity to explore students’ understanding
and usage of definitions. It aims to encourage fluency, flexibility, and originality through different
solution paths and making use of different representations (Duval, 2006), therefore shaping maturity.

About a specific path

The definition running through the selected path (Table 1) is simply connectedness (c2), a concept in
which two complementary operational-structural views and figural aspects coexist and can be
combined to ensure its reification (Sfard, 1991; Fishbein, 1993).

Definition page Bridge page

Instructions. You will have a few minutes to study the following definition. | [nstructions. Consider conditions ¢/, ¢2, ¢3,
Definition A subspace of a topological space is said 10 be simply connected | gq50ciated with the value of 1 if you require
if it path connected and has a trivial fundamental group.

Generation page

Instructions. Answer the following questions.

1. Give an example of a space that is simply connected and explain why it

that it be satisfied by the example you are
looking for and the value 0 if it shouldn't be.
Construct examples, if they exist, according

is. to the requests of the following dichotomous
2. Give an example of a space that is not simply connected and explain matrix. Choose, comparing collectively, a
why it is not. generic example. What can you conjecture by
3. In your own words and/or images, simply explain what a simply comparing the columns?

connected space is. ¢;: X contratbile | ¢p : X semplicemente connesso | ¢3 : X stellato | Example, if it exists

Verification page ! I I
Instructions. Determine which of the following spaces is a space simply
connected. Explain why.

1 0
0 1 1
1 0 1
T -

I.R 4. {(x, sin(1/x)): x ER} 0 0
2. {(x, cos X): x ER} 5.Z 0 1 0
3.8t 6. S? 0 0 1

0 0 0

Table 1: A specific path from the example phase to the conjecturing phase

Explored the first three pages, the bridge task requires comparing the property c2: simply connected
with cl: contractible and c3: star-shaped: give an example, if possible, of a topological space
satisfying/not satisfying constraints c/, c¢2, ¢3. In some cases, it is possible to generate examples, but
this is not possible for subtasks such as (0,1,1) because “a star-shaped space is contractible." Different

-104 -



ICMI Study 26 - Miranda

kinds of tasks entail different processes and, consequently, different behaviors. Looking at the
columns, students are required to generate conjectures about the relationships between the constraints.
Exploring the links, they could ask themselves: “Is a contractible space simply connected?” The
bridge page opens the door to the conjecture that “a contractible space is simply connected”. In the
last conjecture page, students are involved in a prove-disprove activity dealing with the concepts of
contractibility and simple connectedness (Table 2), intuitive concepts sometimes wrongly identified.

Data collection and data analyses

All data related to the training activity were digitally stored via the Moodle platform: written notes,
recorded discussion, and a feedback questionnaire. To shed light on the impact that the practice had
on the students’ development and self-perception of mathematical maturity, we focused our analyses
on some selected answers to conjecture page and questions 1 and 2 of the feedback questionnaire.
Conjecture page (Prove/disproving) Instructions. Say which of the following statements are true. Justify
the answer.
If a topological space is contractible then it is simply connected.
If a topological space is simply connected, then it is contractible.

The quotient of a simply connected space is simply connected.
Identity id: S' — S’ can be continuously extended on disk D.’

We searched for sentences providing evidence about the characteristics of conceptual understanding
(concept usage) and the meaningful processes towards maturity students experienced and perceived.

Question 1. The activities included the construction of examples, counterexamples, and proofs. Have they been
useful for you to interpret a definition, to acquire a concept, or to acquire autonomy in proving? Did you happen to
produce a proof by yourself? What has changed compared to previous experiences?

Question 2 Beyond the exam, what do you have left of these experiences? Would you recommend a friend to have
similar experiences? Why?

FIRST FINDINGS

Due to space restrictions, we confine our analysis to some selected answers to the mathematical
problem in the last conjecture page (see Table 2) and to two questions of the feedback questionnaire.
Students’ first attention is focused on the topological object and properties that must be visualized or
empirically produced to sketch the first attempt at a proof; they, through the graphical representations,
explored and found a preliminary proof. This was the prelude to its formal proof. We search where
concepts have been used in the sense of Moore (1993), with what improvement towards conceptual
understanding, and which processes have determined maturity.

In Fig 1. St5 starts from the intuitive idea that a contractible space is a space collapsing into a point
and then recalls the notion of deformation and gives a logical proof. She uses her prior knowledge
(definitions) to create a new one, a logic proof (concept usage). 2. The graphical register through
which the simple connectedness of the sphere can be intuitively deduced is convincing and preludes
to its proving. She uses graphical and then verbal register (concept usage) to prove that the implication
is false. In 3. StT3, mimics the passage to the quotient while explaining and says: 'It is as if you
consider a string and join it to the extremes’ (empirically reasoning), and makes previsions (geometric
predictions). Then she justifies formally and generalizes (concept usage). Some difficulties can be
seen in other protocols: StT10 seems to confuse the properties of a quotient of topologic space with
those of the quotient group of its fundamental group and deduce that the quotient of a simply
connected space has a trivial fundamental group by quotienting the group. Finally, to prove that the
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identity id: S' — S" is not continuously extendable to the disk, StT13 translates the negation of the
statement in terms of retraction to explicit semantics (Weber & Alcock, 2004) and produces a
contradiction. This reveals a crucial choice, giving impetus to a syntactically valid proof (concept
usage) different from other students’ attempts. At the beginning of the proof, which is a delicate step
(Moore, 1994), some students need to review the definitions. We observe that students who
reinterpreted the meaning reached proof success (StT13), while StT6 invoked the Brower Fixed Point
Theorem without arguing correctly. Some findings delineating signs of maturity emerged from the
last step of the path: students’ use of different semiotic representations (Duval, 2006), among which
the figural one (Fishbein, 1993) is strategic to apply geometric reasoning to prove the conjecture; the
transition from an intuitive to a more structural approach to understanding (Sfard, 1991).

St.5.: True. If X is a contractible topological space, then it
\ - has as a deformation retract a point, so it is homotopy

(/ equivalent to a point (since the retraction is a homotopic

h equivalence); therefore, X has the same fundamental group as
‘ the point which is the trivial one. Furthermore is path

connected, as you see in the figure.

’

‘ )
»> L‘.‘ '
% ) } St. 4: True: A topological space, which is homotopy
#o T equivalent to a point, has its fundamental group.
< Furthermore, the path connection is a homotopy invariant, so
since the point is connected by paths, X is too. It follows that

X is simply connected.

(R
.\‘_

TN <l S T o W o S StT3: False. The n-sphere is simply connected (it is
4 pop-fpmenbali S e o b it path connected and has trivial fundamental group for
Il n>2), but it is not contractible.

! 0 | NN St. 6: False. The surface of any polyhedron is simply
‘ ‘ j connected but it is not contractible.

2.

(& b \Mmmh A e e Ampliomats. ommae ¢ MMTL&NNA\l comup

StT3: False. The quotient space of a simply connected space
is simply connected

D oI ot [08] 2 papliomnts ponestte - ova 2L s False. Interval [0,1] is simply connected, but its quotient

(o S * S (Le ‘\uz\m\‘u Muh?e« xrome
M Catrils (081) mam Ao

not.
t——1
0 s C O St. 5: False. The square is simply connected but the torus, the

cylinder, the projective plane are not.

[0.1] / 01}~ S* (the quotient map identifies the extremes) is

3.

St.10 True. The quotient of a trivial group is trivial, therefore
it is simply connected

4. stTe: False. A a way extending the StT13: False. If id: S' — S' was continuously

identity map idg1 to a map D* — S', if it was extendable over the disk D?, then S! would be a retract
possible to extend it, it would have no fixed of D?, which is a simply connected space, and therefore
points = [ would violate Brouwer’s fixed-point S' should be simply connected, too, but it is a

theorem contradiction.

Table 2: Some excerpts selected from the students’ answers to the proving/disproving task
Identifying some characteristics of maturity from answers to question 1 of the questionnaire

The protocols show that the activities were very useful to internalize a definition, to acquire awareness
(StT7), autonomy, mastery, self-confidence, and self-efficacy, and to develop a natural propensity
towards abstraction and formalization (StT1).

StT1: [...] were of fundamental importance for the focus of the notions. Without them, I

probably would not have grasped the more sophisticated and interesting aspects of some
concepts. [...] In many cases, intuition was a guide, and formalization was quite natural.
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StT7: Absolutely, there is no better way to internalize a definition in mathematics than by
producing examples and counterexamples. [...] The activities were very important to
acquire greater awareness of the topics covered in the course. [...] Thanks to them, I was
able to have more mastery of many concepts and proof techniques.

The vision of the proof changes. The term “methodical” in the following excerpt would seem to recall
an idea of a reproductive, procedural approach to proof, with respect to which the student applies
according to a procedure, while the term “reasoned” is linked to a productive idea with respect to
which the student autonomously reason by himself and therefore has an active thinking approach:

StT1: [...] Compared to previous experiences, | had a less methodical and more reasoned
approach to proof. [...]

Another fundamental ingredient to deepen maturity is inspired by the discourse, communication,
negotiation, and participation in a mathematical community that are dominant (Sfard, 1996):

StT7: The experiences that will surely remain more impressive are the independent
reflections and the moments of collective discussion. The former because they fully
immerse the student in the subject, while the latter allow for many different ideas and
points of view, even just in understanding where two ideas of different proofs for the

same result come from. The discourse is fundamental, I believe, a comparison I found
in many moments of the path, and these are formative experiences for the our career.

Identifying some characteristics of maturity from answers to question 2 of the questionnaire

From the first analysis, it seems that the students perceived the experience as very demanding but
received many benefits. They declare that they have lived a rewarding experience, with serenity and
as a protagonist (StT1), leaving the students’ comfort zone:

StT1: This experience has been challenging for me, but really rewarding. 1 am satisfied with
the contents studied and the method used. I lived the journey with serenity, never feeling
the weight of the study load or the pressure of deadlines. [...] I would recommend
similar experiences to a friend because they allow you to live a course fully, keeping

in mind the objective of passing the exam, but making you the real protagonist of the
path made for the mere pleasure of studying and doing mathematics.

StT3: Personally, the more we got to the heart of the course, the more stimulating it was to
be engaged in the activities [...].

StT2: Surely being out of the comfort zone of the student and having put his hand to a topic not
mediated by a professor was beneficial. [...] to exhibit their work was very interesting,
and certainly I would recommend someone with similar experiences.

StT3: I would recommend it to colleagues; indeed, / would also include it in the other
courses.

Students recognize that it was a formative experience although difficult:

StTS5: Pages paths are a great idea; the difficulty of some tasks should be moderated, but I think
that stops are very formative for a math student and quite pleasant.

CONCLUSIONS

Topology is a topic in which visual reasoning is a prelude to maturity because it allows the key idea
to be identified to go towards formal reasoning and proving. Generating examples reveals itself as a
good way to achieve an understanding of definitions; exploring the links between constraints is an
excellent way to generate conjectures; and, finally, transporting personal example choices to a
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collective discussion forces students to become aware of a more general class of examples and aids
proof productions. Our results confirm that example-space activities are crucial in developing
students’ theoretical thinking and supporting their undergraduate-graduate transition to maturity. We
find that the collective manipulation of the personal examples contributes to a deeper understanding
and shapes the premises for abstracting and generalizing. The value of geometry for enhancing
competences in conjecturing and proving came out. However, we believe that further comparative
studies are needed at every level to improve the design of activities and the power of geometry to
develop a structural approach to knowledge towards maturity. The question of how to define
mathematical maturity and encourage students to build it remains open.
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Geometry learning pivots on perceiving and reasoning upon geometrical objects and relationships.
This paper develops theoretical and didactical ideas on ways to evolve students’ perceptive and
analytical discernment ability for learning spatial geometry. I locally integrate Duval’s framework
on geometric apprehension with Mason’s theory on shifts of attention for analyzing 10th-grade
student R’s experience with spatial geometry problem-solving facilitated by a 3D pen. This analysis
suggests that active engagement with a 3D medium and tools, such as the construction and
manipulation of models, play a vital role in the evolution of students’ geometric perception and
reasoning. Shifts in attention lead to the need for different forms of figural apprehension. This study
underscores the need for enactive, dynamic learning experiences in geometry education.

ENCULTURATING PERCEPTION AS A POSSIBLE KEY TO GEOMETRY LEARNING

Perception is critical in learning, especially in geometry. Johnston-Wilder and Mason (2005)
articulate that the crux of geometric learning is rooted in the ability to “see,” i.e., to identify and
comprehend geometrical objects and their relationships. However, what enables to educate this ability
of perceptive and analytical discernment, this learning to “see,” remains less understood.

Bryson (1988) posits that learning involves enculturation of the senses. He argues that one’s
perception is not directly interacting with the environment but is mediated by a system of socially
constructed symbols and discourses. This notion resonates with Gibson’s (2014) ecological approach
to perception, in particular the concept of affordances as potentialities for action, and with scholars
of cognitive and learning sciences addressing the construct of culturally conditioned vision—
‘professional vision’ (Goodwin, 2018), ‘educated perception’ (Goldstone et al., 2010). Goldstone et
al. (2010) claimed, “A credible and worthy hope for education is to teach students to take the natural
affordances of our long-tuned perceptual systems, which are at their core spatial and dynamic, and
retask them for new purposes” (p.280). This contribution aims to develop theoretical and didactical
ideas on possible ways to retask students’ perception for spatial geometry learning.

The geometric characteristics of the environment, such as right angles and parallel lines, are not
inherently obvious. Instead, they become apparent through interacting with and manipulating cultural
artifacts (Bartolini Bussi & Mariotti, 2008). Consequently, adopting these cultural mediators alters
one’s perception (Goodwin, 2018). Johnston-Wilder and Mason (2005) recount the case of a young
girl struggling to recognize a specifically oriented wooden shape as a triangle (Figure 1a). This
narrative exemplifies one of the ways in which geometric perception may be educated: “I’m not sure,
but it is a triangle for her’, pointing to her friend on the other side of the desk.” (p. 3). By
acknowledging a different perspective, the student comes closer to grasping the invariant essence of
geometric forms, such as triangles. Our preliminary research (Palatnik & Abrahamson, 2022)

Lowrie, T., Gutiérrez, A., & Emprin, F. (Eds.), Proceedings of the 26th ICMI Study Conference (Advances in
Geometry Education) (pp. 109-116). ICMI.
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exemplified how students solved a spatial geometry problem (Figure 1b) by shifting their perception
through moving, sketching, manipulating the model, and being attentive to others’ actions and
discourse (Figure Ic), thereby enculturating each other perception and reconciling their spatial and
analytic reasoning (Fujita et al., 2020).

Figure 1: Learning to perceive a(n equilateral) triangle
Role of figural apprehension in learning to perceive

Raymond Duval’s seminal work provides a useful lens on the mechanisms of seeing and interacting
with figures mathematically (Duval, 1995, 2005, 2017). Duval (1995) distinguishes four distinct types
of apprehending geometric figures: perceptual, sequential, discursive, and operative. According to
Duval, perceptual apprehension is the most basic level and pertains to recognizing geometric figures
and their constituent parts at first glance. Sequential apprehension focuses on the procedural aspects
of how a geometric shape is formed and the order in which the figure’s elements are assembled,
relates to the figure’s construction, and depends on technical constraints that change with construction
tools. Discursive apprehension involves recognizing and processing attributes of geometric figures
mediated through language, definitions, and mathematical properties. It requires the learner to make
discursive statements that define and determine the figure’s properties. According to Duval, operative
apprehension is the most advanced level of apprehension. It requires learners to actively engage with
a figure by modifying it mentally or physically, often to gain insights into problem solving or proving.
Duval asserts that learners must distinguish and coordinate between these different forms of
apprehension to understand geometric figures comprehensively. However, various forms of
apprehension may collide. For example, emphasizing discursive apprehension may impede the
insights obtained through operative apprehension. These classifications provide a useful framework
to study the cognitive processes involved in learning geometry and to design environments facilitating
students’ coordination of different forms of apprehension.

Developing Duval’s (1995, 2017) ideas, Mithalal and Balacheff (2019) explored conditions in which
construction tasks in 3D DGE (dynamic geometry environment) stimulate students’ transition from
working with drawings to perceiving geometric properties of figures. Recently, Palatnik (in press)
adopted a figural apprehension framework to characterize the affordances of the different novel
medium—3D pen (a hand-held device enabling spatial sketching with hot, fast-hardening plastic) for
spatial geometry learning. Preliminary findings suggest that 3D sketching as a form of embodied and
enactive math activity (Ng & Ferrara, 2020; Palatnik et al., 2023) may evoke coordination between
various types of apprehension, thus facilitating learning and teaching spatial geometry. The
importance of operative apprehension aligns with other key ideas from Duval’s (2017) framework.
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Specifically, Duval proposes two figural operations that facilitate students’ progression from
“discriminated recognition of forms to the identification of the objects to see” (Duval, 2005, p. 13,
translated by Herbst et al., 2017, p.86): the mereological division of shape (transformation of the
geometric figure into figural units of the same dimension) and the dimensional deconstruction of
shape (decomposition into elements of dimension lower than in given figure). However, Duval
remarks that introducing a new element into a figure does not necessarily mean the student becomes
aware of a new property. This insight mirrors John Mason’s (2008) ideas about attention and
awareness: “someone may be attending to something in a particular way but unaware explicitly of
the what or the how” (p. 12). The What and the How pertain to the focus and structures of attention.

Role of shifts of attention in learning to perceive

Mason (2010) describes learning as a transformation of attention that involves ‘shifts in the form as
well as the focus of attention’ (p. 24). Mason (2008) distinguishes five different structures of
attention: (1) holding wholes, (2) discerning details, (3) recognizing relationships, (4) perceiving
properties, and (5) reasoning based on perceived properties. The structure of holding wholes 1s related
to a macroscopic view, where learners consider the overall structure or context. Discerning details
involves zooming in on specific elements, which might be akin to focusing on individual vertices or
edges in a geometric model. Recognizing relationships emphasizes the interconnections between the
elements, such as equal sides in a geometric shape. Perceiving properties pertains to an active search
of the elements possessing the inherent characteristics. Reasoning based on perceived properties is
the advanced structure of attention, where learners make logical conclusions or predictions based on
selected properties. Mason’s framework is frequently used to understand problem-solving processes.

Palatnik (2022) applied shifts of attention as an analytical framework for investigating spatial
geometry learning in the context of collaborative geometric activity in which students constructed
tangible models of a geometric object on different scales. This study documented shifts between foci
of attention and the shifts between all five attention structures. These shifts in attention were linked
to students’ visual and tactile senses, proprioception, and physical interactions with the models. For
example, by positioning the model at its vertex, students could visually segment the icosahedron into
three distinct sets, leading to a breakthrough in establishing the number of edges.

Next, I will illustrate the idea of learning geometry as the evolution of geometric perception by
analyzing an episode involving a 10th-grade student who tackled a spatial geometry question while
utilizing a 3D pen. This episode is part of a larger data set from an extensive research project focusing
on the design of embodied learning for spatial geometry (e.g., Palatnik & Abrahamson, 2022). In this
analysis, two theoretical frameworks will be integrated: Mason’s (2008, 2010) theory on shifts of
attention and Duval’s (1995) framework concerning the cognitive apprehension of geometric figures.
By employing a local integration of these disparate viewpoints (Bikner-Ahsbahs & Prediger, 2014),
I aim to provide a theoretical foundation for learning geometry as the evolution of students’ geometric
perception in the context of spatial geometry problem-solving activities facilitated by 3D sketching.

THE CASE STUDY

The episode illustrating the evolution of student geometric perception in spatial geometry problem
solving presents the student R, facing the Triangle task (Figure 2). While R did not formally study
spatial geometry, he had knowledge of planar geometry for the presented challenges. When facing
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the previous tasks, he already used 3D sketching to facilitate problem solving (see Palatnik, in press).
He also knew that due to the structure of the task (succession of four questions), he may change his
initial answer to the true/false questions. The whole episode took little less than 5 minutes. The first
T/F question in the task was: CB’D’ is a right-angled triangle. The right angle is  ?

ABCDA’B’C’D’ is a cube. Answer the true/ false questions and explain your reasoning.
CB’D’ is a right-angled triangle. The right angle is  ?
B’D’ is the shortest side of the triangle CB’D’.

1
2
3. Triangle CB’D’ has an obtuse angle.
4

In triangle CB’D’, all angles are equal.

Figure 2: Triangle task (adopted from Widder et al., 2019)
Interaction with a 3D model conflicts with the perception of a 2D diagram

R started by observing the illustration on the computer screen while tilting a head in different
directions. He pointed with a 3D pen at a model’s vertices C, B’, and D’. Then, he drew an imaginary
triangle by outlining segments CB’, B’D’ (Figure 3a), and D’C on a model.

R: I don’t even need to (3D) sketch this to see that this is a right angle. Cause it seems...
[draws imaginary angle CB’D’ on a model]. Wait a minute... [tilts a head]

I: You should (sketch), I think.

R: Well, here, actually, I should. But also on the diagram, it is a right angle. [starts sketching

CB’]. But it doesn’t say anything. [sketches] But... I assume it is true [the angle is right]
: _ "

Figure 3: Actions advancing learning to perceive: gesturing, sketching, rotating the model (red
arrows are added to show the movement)

Analysis. In terms of shifts of attention, R’s attention is split between two main foci: a diagram and
a model. On a diagram, he discerns a detail—angle B’ and identifies it as a right angle. R’s actions—
tilting his head, pointing with a 3D pen, and drawing the imaginary angle and triangle- help him
establish a correspondence between the two focal objects. Through these actions, he discerns details
on the model, too: vertices of a triangle, its sides, and eventually an angle CB’D’ as a candidate for a
right angle. In terms of figural apprehension, perceptual apprehension is dominant (mostly vision
within a flat and static medium). In addition, R starts to apprehend the problem sequentially (the
imaginary construction of a triangle on a cube’s model is sequential).

Sketching and rotating the model shapes the perception of a geometric problem

R: [sketches CB’ and then B’D’ (Figure 3b)] Ok. Now it becomes a little bit different.
[continues to sketch D’C]. Nice! It is good that I sketched. It is a right-angled triangle,
but the right angle is not this, but instead, in fact... Wait a minute... [fixes the sketch]
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R: [inclines a head]. Now, according to how it looks now, well... [points with a pen] D’CB’
is a right angle. Well, I don’t have to explain why.

I: Yes, it is better to explain.

R: Well, what? Acute [points at the angle D’], acute [points at the angle B’], right [points at
C]. Nu, [points with a pen] CB’ D’...

I: You can rotate the trian(gle), the square, the cube if you want (to show me).

R: Ok, so I will rotate it [starts to rotate the model, looks at the model while rotating it back

and forth]. Now it looks different. Now it looks as if it is not like this. [tilts a model] Wait
a minute. [rotates a model again, changing axes of rotation]. Ah. No! It is not a right-
angled [triangle]. It is, in fact, isosceles. [gestures two sides with two strokes of a pen].

R: [rotates a model, Figure 3c]. It is confusing. [looks at the model] No! It is not a right-
angled (triangle). False.

Analysis. R is focused mainly on a model. His exclamation while sketching: “Now it becomes a little
bit different,” indicates that his perception takes shape through the action of sketching. This process
is gradual (R’s first candidate for a right angle now looks acute to him). Further action of rotation
provides additional perspectives and reshapes perception further: “Now it looks as if it is not like
this”. R discerns new details. His attention is now shifted from angles to the sides (his stroking gesture
indicates this), probably by the action of sketching. R establishes a relationship of equality between
two sides and perceives the triangle as isosceles. In terms of figural apprehension, sketching provides
both perceptual and sequential apprehension. The 3D pen tool affords immediate materialization of
an imagined geometric element (the way R sketches emulates the sequence of his previous imaginary
drawings). The rotations accompanying sketching and further exploration of the model add
operational apprehension. R states, “it is confusing”, and we can attribute this confusion to
incoherence between various forms of figural apprehension.

Consolidated forms of figural apprehension support reasoning

R: [Checks the question on the screen] Where we were at? B’D’ is the shortest side (T/F?)
in the triangle C, B’, D’ [points on model’s vertices with a pen]. No. These are diagonals.
These are diagonals of the cube (faces). So, they all are equal. In fact, it looks now as an
equilateral triangle. Yes. Well, it is [B’D’] not the shortest side because they are all equal.

R: [reads the next question] (Does) Triangle CB’D’ have an obtuse angle?

R: No. There is no obtuse angle. After all, it is an equilateral triangle, so 60, 60, 60. All the
angles are equal, so 60, 60, 60. That’s it.

Analysis. R is focused solely on the model. He continues with discerning details—the triangle’s
sides. But structures of attention evolve further, first to recognizing relationships “These are
diagonals of the cube”, then to perceiving properties ...they all are equal”. R’s reasoning is based
on perceived properties—" [B’D’] is not the shortest side”. From a perspective of figural
apprehension types, the utterance “In fact, it looks now as an equilateral triangle” indicates that the
perceptual, operational, and discursive apprehensions are “now” coherent.

Following a protocol, each task was ended with a question about a confidence level (out of five) in
the correctness of the answer.

R: Between 3 and 4. Cause, I don’t have backing for this, except for vision.
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I: Ok.

R: Well, I can bring a ruler, put out (the segments), and measure [gestures with a finger an
upper diagonal]. But what (for)? Again, [takes a model in hand and rotates, Figure 3d] it
is a cube, after all. And these are its diagonals. Thus, these (triangle) sides are equal.

I: Ok. So?

R: Thus, it is an equilateral triangle
I: Are you sure about this? 100%?
R: I think that, yes, I’'m sure of it.

Analysis. This segment shows how R consolidates different forms of figural apprehension of triangle
CB’D’. The perceptual form of apprehension is still very dominant: “I don’t have backing for this,
except for vision”. By his relatively low initial self-confidence assessment, R acknowledges a
deficiency of a visual argument. However, he is aware of the possibility of establishing the equality
of segments by measuring, and he rotates the model for alternative perspectives (both actions are
forms of operative apprehension). His concluding deductive chain is correct and adds a discursive
apprehension. This argument structure follows R’s previous structures of attention shifts: from
holding the wholes (a cube with a triangle) to discerning details—cube’s (faces) diagonals as sides
of a triangle to recognizing relationship “equal” to confident reasoning, “it is an equilateral triangle”.

DISCUSSION

R answered the questions correctly, and his argumentation was valid. In studying spatial reasoning
skills about 2D representations of 3D geometrical shapes, Fujita et al. (2020) reported just a 52.4%
success rate for Japanese 9th graders (N=225) on a similar task. It is easy to dismiss R’s success with
the task as trivial. After all, he had additional tools—a 3D model and a sketching pen. However, as
Shvarts et al. (2021) note, simply providing culturally developed tools is insufficient for students to
discover their affordances (Gibson, 2014), nor does the existence of motor-perceptual systems
guarantee the realization of their body potentialities. Drawing from Duval’s figural apprehension and
Mason’s shifts of attention frameworks offers insights into his success and, in general, “how students
chose particular spatial reasoning skills and domain-specific knowledge” (Fujita et al., 2020, p. 254).

Contesting the initial and misleading perceptual apprehension of a problem was challenging for the
student in agreement with the findings of Widder et al. (2019). While the tools afford active ways to
interact with a diagram, the student was initially reluctant (see also Palatnik & Abrahamson, 2022).
Thus, the interventions of the interviewer: “You should (sketch)...” and “You can rotate...” served
as action-perception catalysts for shifts in foci and forms of the student’s attention and triggered other
types of apprehension. These ‘calls for action’ with an intention to change perception appeared
thought-provoking. The need to coordinate a 2D diagram with a 3D model by mapping a vertex to
vertex and side to side through 3D sketching led to alternate attention foci and the occurrence of
unusual dual sequential apprehension. Moreover, the continuous change of a 3D display during
sketching and rotating contrasted to a static 2D diagram let R notice the inconsistency between 2D
and 3D representations, creating a productive doubt in perceptual apprehension. When backing based
on one of the apprehension types is discredited, a need for other types of apprehension arises.

The nature of the final attention structure—reasoning based on perceived properties (Mason, 2008)
may appear as a purely cognitive act contrasting perceptually and action-oriented holding, discerning,
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recognizing, and perceiving. However, an enactivist stance in which cognition is perceived as an
active, ongoing engagement with the world: “All doing is knowing, and all knowing is doing”
(Maturana & Varela, 1987, p. 26) resolves a dichotomy of perceptual and cognitive aspects of
attention structures. Within this framework, “perception consists of perceptually guided action,” and
“cognitive structures emerge from the recurrent sensorimotor patterns that enable action to be
perceptually guided.” (Varela, 1999, p.12). Indeed, R’s actions led to shifts in perceptual structures
of attention, which informed his further actions. A shift to discerning details (vertices, sides of the
triangle) was associated with a figural operation of dimensional deconstruction. 3D sketching and
rotating actions were related to sequential and operative apprehension, shifting the student’s attention
to the triangle sides and enabling a discursive apprehension of them as diagonals of the cube’s faces.
When all forms of figural apprehension appear coherent, they support geometric reasoning.

The exchange concluding the episode demonstrates that an enactive approach goes beyond the ability
to recognize the model’s geometric properties empirically. The student briefly considered measuring
the segments but chose an alternative path. He starts the argument with a rotation of a model, helping
him relieve his previous actions and perceptions and situate the application of relevant geometric
knowledge. However, this material scaffolding fades out as R constructs an almost complete chain of
deductions, increasing his confidence level about the correctness of his answer.

The presented episode contrasts with R’s (and most of our students) usual form of learning geometry,
which involves merely observing and rarely interacting with any form of diagram. It was a learning
activity since it allowed R to use his senses to guide his actions, change his perspective on a problem,
and recall adequate geometric content to improve his perception of it. To solve a problem, R overcame
initially deceptive perceptions and combined different kinds of apprehension. By designing such
experiences and letting students and teachers reflect on them, noticing and guiding shifts of attention,
we may facilitate learning geometry by evolving our geometric perception.
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There is growing evidence that spatial reasoning learning causally supports improvements in
geometry performance. However, the mechanism that explains this transfer is not yet well understood.
The current study provides a systematic literature review on all existing experimental studies that
examine the impact of spatial learning on mathematics. We have found that, despite an increasing
interest in mechanism and uptake of experimental studies, only a few studies have explicitly assessed
mechanistic pathways. The two most promising pathways are the use of specific spatial skills within
specific geometric tasks and visuospatial working memory. Although changes in strategy is
understudied, this may be another pathway. We identify process models, mixed-methods (including
qualitative research), and mediation/moderation as important aspects of future experimental work.

SPATIAL REASONING SKILLS SUPPORT GEOMETRY LEARNING

There is growing evidence that improving spatial reasoning skills causally transfers to improvements
in mathematics achievement, including within the field of geometry (Adams et al., 2022). For
example, a recent meta-analysis of 28 spatial intervention studies found that spatial reasoning learning
consistently improves mathematics performance with average effect sizes between .20 and .42,
depending on transfer distance (Hawes et al., 2022). Despite the strong evidence supporting spatial
transfer to mathematics, the mechanisms behind transfer are not yet clear (Young et al., 2018) — that
is, why does spatial learning support mathematics achievement?

Understanding why spatial reasoning supports geometry learning has theoretical and practical
implications for a range of research disciplines (e.g., mathematics education, cognition, development,
neuropsychology), which are interested in characterizing the relation between the constructs. For
example, there are currently qualitatively and functionally different theoretical models (described
below). Characterizing an accurate theoretical model of mechanism would, in turn, inform the
development of more targeted and effective mathematics learning interventions. That is, the value in
understanding spatial mechanism for research on the teaching, learning, and understanding of
geometry, is the optimization of instruction strategies (e.g., what spatial techniques are the most
beneficial); effective integration of technology (e.g., what spatial barriers may students face); and the
development of individualized learning plans, valid assessments, and curriculum.

The current study provides a systematic review of existing experimental research, to characterize
what we know about why spatial reasoning learning transfers to support geometry and mathematics
achievement. Correlational research was not included because, by design, it is unable to establish
causal mechanisms (Rohrer, 2018). The current study then suggests innovative methodologies for
capturing mechanism in future research, which includes mechanisms not yet considered.

Lowrie, T., Gutiérrez, A., & Emprin, F. (Eds.), Proceedings of the 26th ICMI Study Conference (Advances in
Geometry Education) (pp. 117-124). ICMI.
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Spatial reasoning, spatial learning, and geometry

Spatial reasoning is an umbrella term for a wide range of different, but interrelated, skills that involve
thinking about two-dimensional and three-dimensional relations between and within objects. For
example, being able to imagine an object rotating (mental rotation) or a perspective different from
your own (perspective-taking) are two separate spatial reasoning skills (Hegarty & Waller, 2004).
Spatial visualization is also a kind of spatial reasoning skill that refers to the multi-step mental
manipulation and transformation of spatial information.

There is extensive empirical evidence spanning the past three decades that show spatial reasoning
skills, and in particular spatial visualization and mental rotation, support geometry performance (e.g.,
Clements & Battista, 1992). This relation is consistent, predictive, and strengthens over time (Resnick
et al., 2019). More recently, there has been experimental evidence that shows improving spatial
reasoning skills causally improves geometry understanding. Some spatial learning interventions have
included targeted spatial learning opportunities, such as origami (Arict & Aslan-Tutak, 2015; Boakes,
2009), mental rotation or spatial scaling training (Gilligan et al., 2020); whereas others have included
a wider range of spatial learning opportunities, such as mental rotation, spatial orientation, spatial
visualization, and the integration of these spatial skills (Adams et al., 2022; Lowrie et al., 2017, 2019).

Current theories of mechanism

We are not aware of any broad theoretical models that characterize potential pathways between spatial
reasoning and geometry, and so we will focus here on general mathematics achievement. Existing
theoretical models are based primarily on correlational research (Battista et al., 2018). Hawes and
Ansari (2020) have identified four possible mechanisms based on this work: (a) individuals map
number onto space to better understand them (spatial representation of numbers); (b) completing both
spatial and numerical tasks involve the same brain areas (shared neural processing); (c) individuals
use spatial visualization skills as a “mental blackboard” to organize and manipulate mathematics
problems (spatial modelling); and (d) spatial reasoning is a proxy for other cognitively demanding
skills (working memory). Notably, these models are not mutually exclusive and may reflect varying
levels of analysis (e.g., activation in the intra-parietal sulcus during spatial and geometric tasks may
be functionally equivalent to using spatial visualization skills to complete geometric tasks).

Interestingly, none of the Hawes and Ansari’s (2020) models positioned mathematics as inherently
spatial (e.g., numerical-spatial mappings serve as a tool for understanding; cognitive architecture
originally specialized for interacting with the physical world was co-opted to understand
mathematics). This may be due to their focus on numerical reasoning rather than geometry. That
geometry is inherently spatial is a common description in geometry literature (e.g., Battista et al.,
2018; Boakes, 2009). Although such an explanation highlights the affordances embedded within task
demands, it falls short of providing a causal mechanism. That is, it does not answer questions of how,
when, or which kind of spatial skills are employed to complete different geometry tasks.

To address the complexity of multiple, overlapping mechanisms, Mix (2019) characterizes broader
attributes of mechanism. They argue that the relation between spatial reasoning and mathematics is
general, and not limited to specific spatial and mathematics sub-skills. However, elsewhere they
acknowledge that this relation is fragile and difficult to replicate. In contrast, most research to date
assumes that specific spatial skills underlie specific mathematics tasks (e.g., Gilligan et al., 2018).
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Mix (2019) suggested that spatial skills can perform several functions in real-time problem solving,
such as decoding, mapping referents, and the use of mental models. Although there is some automatic
processing between spatial reasoning and mathematics, strategic recruitment of spatial processes is
more predictive of achievement. Finally, they find that the relation between spatial reasoning and
mathematics is consistent but may change qualitatively as both familiarity and task demands change.

Methods for characterizing mechanism

Most research characterizing the relation between spatial reasoning and geometry (and mathematics)
has been correlational. These approaches can involve completing of a range of different spatial and
mathematics tasks to examine the relative correlations and emergence of factors (Young et al., 2018).
For example, mental rotation has been found to predict performance in geometry and not algebra,
whereas visuospatial working memory (the ability to keep spatial information active in the mind) had
the opposite relation (Kyttdld & Lehto, 2008). Although it is speculated that geometry involves
reasoning about transformations whereas algebra can involve mental operations (Newcombe et al.,
2019), correlational analyses are unable to establish causal mechanisms (Rohrer, 2018), and factor
analytic approaches have practical, statistical, and interpretative limitations (Young et al., 2018).

Experimental research is required to empirically assess hypothesized mechanisms. Unfortunately,
such research is limited, especially in geometry. There are currently only nine existing experimental
studies connecting spatial learning with geometry. The primary aim of these studies was to develop
effective spatial learning materials to support geometry learning. Subsequently, what these studies
can tell us about mechanism (why the spatial learning materials help) may be limited in scope.
Nevertheless, these studies, and the broader context of experimental spatial learning studies, are an
important starting point to examine the mechanism connecting spatial reasoning within geometry.

METHODS

A systematic literature review was conducted to characterize how experimental studies, examining
the causal effects of spatial reasoning learning on mathematics achievement, have considered
mechanism in their justification, experimental design, and explanation of findings.

Data collection and inclusion criteria

A recent meta-analysis by Hawes et al. (2022) identified 28 experimental studies that examine the
causal effect of spatial training studies on mathematics achievement. To be included in the Hawes et
al. meta-analysis, studies were required to (a) involve humans, (b) be published in English, (c) report
on behavioral outcomes, (d) use a pretest-training-posttest design, (e) have at least one mathematics
outcome measure, (f) include sufficient spatial training, and (g) compare a spatial training group with
a control group. Although Hawes et al. included unpublished findings and doctoral theses in their
analysis, we have included only those publications that have undertaken peer-review (n = 23). An
additional literature search was conducted using the same criteria, to identify studies published after
the Hawes et al. study (n = 7). Taken together, a total of 30 studies were included in this review.

Data coding

A thematic analysis (Guest et al., 2012) was used to identify and characterize mechanistic
explanations for how spatial learning may support mathematics learning. The operational definition
of mechanism used in this study was phrases that considered how or why spatial reasoning may
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support mathematics learning. For example, the phrase, “children might use spatial visualization...
to picture and rotate the shapes presented to count the number of sides (faces) on the shape.,”
(Gilligan et al., 2020, p. 15) would be counted as a mechanistic explanation because it explains how
a spatial reasoning skill may be used to solve mathematics problems. In contrast, the phrase, “Spatial
ability and visualization have been shown to be related with academic success in mathematics and
geometry,” (Aric1 & Aslan-Tutak, 2015, p. 181) would not be counted as a mechanistic explanation
because it does not provide an explanation of why this relation is observed.

An initial reviewer coded each instance of mechanistic explanation for emergent themes within the
literature review, methods, and discussion sections (results sections were not coded because they do
not include explanation or connections to the literature). New codes were created as required. Once
the full set of codes were identified, the initial reviewer re-coded the full sample to ensure a
subsequent code wasn’t more appropriate. In a final step, two new reviewers independently coded
the full sample of mechanistic explanations using the developed coding system. Although new codes
could be created during this step, none were required. One code was renamed to capture that theme
more accurately and another code was split into two for greater specificity. Discrepancies were
resolved through discussion, resulting in 100% interrater reliability.

RESULTS

Of the 30 studies examined, 76% justified their study (Introduction section), and 66% explained the
results from their study (Discussion section), by speculating a causal mechanism connecting spatial
reasoning and mathematics achievement. Explored in depth below, is that these mechanistic models
(a) varied, (b) were largely absent from the experimental design, and (c) changed over time. A
summary of the findings where methodological design considers mechanism is also included.

Varied mechanisms that have been considered (description of emergent themes)

The most prevalent mechanistic pathways involved using improved spatial skills to complete
mathematics tasks (60%). This could include using proportional reasoning skills to complete quantity
processing tasks (Gilligan et al., 2020), spatial visualization to create mental models (Lowrie et al.,
2019), form perception to interpret shapes and graphs (Burte et al., 2017), or mental number line to
compare magnitude (Mix et al., 2021). All these specific connections reflect the idea that there are
specific spatial skills that are recruited to complete specific mathematics tasks.

Visuospatial working memory (vsWM) was also identified frequently as required to complete
mathematics tasks (37%). In this view, keeping in mind a spatial organization of sequences of moves
and transformations when completing multi-step problems would require vsWM. Some related
discussion referenced working memory and executive function skills more broadly (7%). We
separated out this coding to distinguish between the two explanations.

Although 30% of studies acknowledge the possibility of priming spatial strategies, this discussion
was usually framed around not being able to rule this explanation out, while favoring an improved
spatial skill or vsWM model. Only two studies (7%) described strategy change as a main outcome.
Another common explanation was that mathematics is inherently spatial (27%), though notably this
does not actually address mechanism. Shared cognitive resources (i.e., the same brain area is
responsible for completing spatial and mathematics tasks) and consideration of moderators (e.g., how
mechanisms may vary based on age or task demands) were also commonly mentioned (23%).
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Experimental evidence for mechanism

There were seven studies that were able to address mechanism through their experimental design.
Five of these studies had separate conditions to compare the effects of training different spatial skills,
finding broadly that specific spatial skills support specific mathematics tasks. Only two of these
studies had geometry outcomes. Gilligan et al. (2020) found that, although mental rotation supported
missing term problems and spatial scaling supported number line, improvements in both skills
supported geometry performance. Gilligan et al. (2020) suggest that form perception might be useful
for distinguishing between different symbols and identifying information presented in charts. Adams
et al. (2022) found that spatial learning (which included a range of different visualization-based skills)
transfers to geometry outcomes and not algebra outcomes. Adams et al. (2022) suggest that spatial
visualization might be useful in geometry because it involves reasoning about transformations.

Visuospatial working memory (vsWM) may also provide support. Both mental rotation and vsWM
training equally transferred to improved mathematics performance, with no transfer on one another
(Zhang et al., 2021). Notably, Mix et al. (2020) found that age moderates the relation between spatial
learning and mathematics, with spatial skills being more important early on and vsWM more
important later. These contributions appear to be unique to vsWM and not improvements in general
cognitive processing, with one study including cognitive skills as co-variates (Cornu et al., 2019) and
another not finding transfer to general skills (Cheung et al., 2019).

There were four studies that considered mechanism in their research aims, but did not have a sufficient
experimental design to adequately address it. Three of these studies, instead, addressed best teaching
practices, finding benefits of embedded (Lowrie & Logan, 2023) and embodied (Gilligan et al., 2023)
approaches that include strong pedagogy (Mulligan et al., 2020). There were also three studies that
found socio-economic status (SES) mediated the impact of training. Although this does not provide
a mechanism, it highlights the importance of including contextual factors as well as potential
mediators / moderators when characterizing mechanistic pathways.

How consideration of mechanism has changed over the last three decades

Across the 1990’s and early 2000’s, there was no experimental research examining the impact of
spatial learning on mathematics, despite a large literature showing strong correlations between the
two constructs. Experimental studies begin to emerge starting in 2009. However, discussion of
mechanism is limited; from 2009 to 2016, seven studies do not consider mechanism at all (with four
justifying their study by characterizing mathematics as inherently spatial). Only two studies identify
the potential role of vsWM and one study identifies spatial visualization. From 2017 to present, there
has been a marked increased interest in mechanism, both in frequency and range of explanation.
However, explanations have focused on skills and vsWM, with only one study (Lowrie & Logan,
2023) centering the possibility of changes in strategy.

DISCUSSION

As research into the relation between spatial reasoning and mathematics has progressed, researchers
have shown increasing interest in the mechanisms supporting this connection. Earlier studies focused
on establishing correlations, and later veritfying that spatial learning causally supports improvements
in mathematics. Although studies have provided speculative explanations by drawing on correlational
work, only more recently have a few studies sought to assess this directly within their methods.
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The most common explanations for transfer are built on the idea that specific spatial skills are utilised
within specific mathematics tasks. Although this contrasts Mix (2019), who argues for a general
connection, Mix’s (2019) work is based on correlational research. The experimental work described
here suggests there may be specific connections, including within geometry (Adams et al., 2022;
Gilligan et al., 2020). This experimental work also highlights a separate role for vsWM. Hawes and
Ansari (2020) consider vsWM in the broader context of improvements in general cognition; however,
this is not supported by the experimental findings, which instead finds a unique role for vsWM
separate from improved spatial skills (e.g., Zhang et al., 2021). Spatial skills and vsWM may work
together by providing a larger “mental blackboard” to keep more spatial information in mind as well
as the skills required to mentally manipulate that spatial information. Given the small number of
experimental studies, and the inclusion of broad geometry measures, more experimental research is
needed to characterize the kinds of spatial skills that support specific geometry tasks.

A new model for mechanism — the role of strategic choice

Independent of any gains due to improved execution of spatial skills and vsWM (as described above),
it is possible that spatial learning might encourage students to apply different strategic approaches
when solving geometry problems. Changes in strategy are largely absent from correlational and
experimental literatures (Lowrie et al., 2021; 2023), and, when included, described as a priming effect
that cannot be ruled out (e.g., Gilligan et al., 2020). However, students know multiple ways of solving
problems and will balance efficiency and accuracy when selecting an appropriate strategy (Siegler,
2006). These strategic decisions are influenced by the nature of the problem, their familiarity with
different strategies, and their beliefs about potential success. This is aligned with the finding that
spatial skills versus vsWM are relatively more important when solving mathematics problems as
familiarity and task demands change (Mix et al., 2020), and that strategic processing of spatial-
mathematics relations is more predictive of mathematics performance than automatic processing
(Mix, 2019). Importantly, completing geometry problems can involve a multi-step problem-solving
process, and students may use different cognitive and meta-cognitive strategies at any given step.

Future directions — how to capture mechanism

We suggest that it is possible to characterize mechanism with experimental research explicitly
designed to assess potential mechanisms. Such work would be benefited from process models (Young
et al., 2018) to identify the specific tasks involved in geometry (previous work often uses broad
measures). Mixed-methods approaches would also be helpful, with qualitative methods well suited
to characterize when and how strategies may change. Also missing from the literature is analysis of
changes in quality, accuracy, and relevancy of (external and internal) representations, which would
inform how spatial learning supports mathematics performance. For example, future research may
explore if spatial learning leads to representations becoming more detailed, abstract, or focused on
relevant spatial information; or perhaps the quality of representation remains the same, but the ability
to manipulate it improves. Another key approach to determining mechanism is the inclusion of key
mediators and moderators to parse out how basic cognitive skills may manifest in different
mathematics contexts (Resnick & Stieff, 2024).
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Educational implications for incorporating spatial learning in geometry

Although more research is required to determine mechanism, there is growing evidence that spatial
learning does, indeed, support geometry learning. Successful spatial learning interventions tend to be
embedded within authentic mathematics contexts, and not separate decontextualized training (Lowrie
et al., 2023). This likely provides better alignment between the spatial reasoning skill and relevant
mathematics tasks, which enables students to see the connections. Interestingly, most of the research
described in the current study came from the field of cognitive science, which tended to focus on
broad mathematics achievement. However, given that geometry is the part of the curriculum most
associated with spatial reasoning (e.g., Battista et al., 2018), the development of effective spatial
intervention to support geometry seems particularly important.
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One type of spatial reasoning involves the skill of mental imaging, a capacity initially acquired by
children through physical experiences and gradually refined through mental manipulation (Clements
etal., 2004). The development of children’s mental manipulation skills necessitates the cultivation of
concrete manipulation skills in geometry. However, there is a significant research gap concerning
the specific classroom instruction and experiences that contribute to the enhancement of children’s
mental imaging abilities. In this study, we initiated a lesson centered around free play with geometric
toys to gauge children’s geometric aptitude, and then we implemented guided play sessions enhance
their geometric abilities. By incorporating discussion using appropriate materials at the beginning
of guided play and allowing children to select and work on three-dimensional objects themselves,
children can create three-dimensional objects at a more advanced level.

INTRODUCTION

Recent studies have highlighted the close relationship between spatial ability and mathematical
performance (Casey et al., 1995; Geary et al., 2000; Mix & Cheng, 2012). Researchers have not only
observed a correlation between spatial thinking and mathematics but have identified spatial thinking
as a predictor of subsequent mathematics performance (Mix & Cheng, 2012). Moreover, early spatial
experiences contribute significantly to the later development of spatial and geometric reasoning skills
(Okamoto et al., 2014).

It is noteworthy that the spatial ability of young children demonstrates greater improvement than that
of adolescents and adults, which aligns with the prediction of the sensitive period hypothesis
(Baenninger & Newcombe, 1989). Research on spatial abilities in young children involves
educational resources such as blocks, origami, and computer games (e.g., Cakmak et al., 2014). A
variety of measures, including verbalization, pictorial imagery, and construction, have been employed
to assess children’s spatial abilities (e.g., Thom & McGarvey, 2014). As spatial training transfers to
other spatial skills that have not been directly trained (Uttal et al., 2013), it is imperative to consider
specific training that enhances children’s spatial abilities.

Recent studies have shifted their focus to classroom-based learning, with teachers opting for shorter
interventions rather than semester-long training sessions (e.g., Sinclair & Bruce, 2014). These studies
suggest that young children who engage in diverse activities, particularly those who initially perform
poorly on spatial skills tests, may benefit from training (Baenninger & Newcombe., 1989). However,
it is important to note that performance ratings in these studies are often based on children’s
mathematics assessments, which do not fully reflect their individual spatial skills. Tailoring
classroom instruction to each child’s spatial ability has been proposed as a more effective approach
to increasing students’ overall spatial ability.

Lowrie, T., Gutiérrez, A., & Emprin, F. (Eds.), Proceedings of the 26th ICMI Study Conference (Advances in
Geometry Education) (pp. 125-132). ICML.
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Development of the mental imaging in young children

One facet of spatial reasoning involves mental imaging, which entails visualizing and mentally
transforming objects, often transitioning between two-dimensional (2-D) and three-dimensional (3-
D) representations. Children acquire this skill through physical experiences and subsequently
progress to mental manipulation (Clements et al., 2004). The memory of physically manipulating
figures observed through hand movements and visual perception contributes to reducing working
memory demands for spatial tasks. However, the developmental progression of children’s physical
manipulation of 2-D figures and 3-D solids is crucial, as without such advancement, children may
struggle with mental manipulation.

In this study, the author explored the developmental stages of 3-D construction leading to mental
imaging, drawing upon Clements’ developmental framework for the composition of 2-D plane
figures. Clements delineated four stages in children’s developmental progression for the composition
of 2-D shapes (Clements et al., 2004, p. 168). The first stage, termed “Precomposer” denotes a phase
where children are unable to combine shapes to form a larger shape. The second stage, “Piece
Assembler,” involves children placing shapes contiguously to create pictures. The third stage,
“Picture Maker,” signifies the ability of children to concatenate shapes to form pictures where
multiple shapes serve a unified role. The fourth stage, “Shape Composer,” indicates children’s
capacity to combine shapes to generate new shapes or complete puzzles. In addition to these four
stages, Clements et al. (2004) described three detailed developmental progressions in shape
composition. “Substitution Composition” is the stage where children intentionally form composite
units of shapes, understanding, for instance, that two trapezoidal pattern blocks can construct a
hexagon. “Shape Composite Iterator” marks the stage where children construct and manipulate
composition units while maintaining the integrity of their pattern shapes. Lastly, “Shape Composer
with Superordinate Units” represents the stage wherein children build a unit and iterate it to create
new units, showcasing an advanced level of spatial reasoning.

Preliminary observations were conducted to assess the developmental stages of 2-D and 3-D
construction in four- and five-year-old children, particularly in geometric toy play with Polydrons.
Polydron shapes, including equilateral triangles, isosceles triangles, squares, pentagons, and
hexagons, were employed because of their ease of manipulation, even for young children. During
free play at a nursery school, four-year-olds demonstrated the developmental composition stage of
“Picture Maker,” connecting 2-D images to represent people and flowers using Polydrons.
Additionally, both four- and five-year-olds exhibited the “Shape Composure” stage, connecting the
same shapes on a plane to create larger 2-D flat shapes.

The developmental stages of constructing 3-D solids were further observed in the work of five-year-
olds. The initial stage involved constructing cylinders and cones surrounded by squares or isosceles
triangles, representing the “Shape Composure” stage for 3-D solids. Subsequently, the five-year-olds
created 3-D pyramids by connecting triangles to the sides based on squares, pentagons, and hexagons.
The second stage featured the construction of solids with multiple faces at the bottom and sides,
including a child producing a large composite solid by combining multiple cubes, reflecting the
“Shape Composure Iterator.” stage. The third stage saw the creation of complex 3-D structures
combining various 3-D objects, representing the “Shape Composer with Superordinate Units” stage.
To enhance a child’s mental imaging, progressing through the developmental stages of 3-D solid
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construction through rich geometric experiences is crucial (Clements et al., 2004). Encouraging
geometric play involves providing free geometric toys; however, not all children may be equally
interested. Furthermore, some children may face challenges owing to insufficient finger dexterity.
Therefore, it is essential to establish an environment that promotes 3-D object creation and offers
support based on each child’s developmental stage.

However, current spatial training programs often lack child-driven choices (Vogt et al., 2018) and
may be distant from children’s play-based lifestyles (Bruce & Hawes, 2015). To address this issue,
research that focuses on play-based lifestyles that foster spatial abilities tailored to individual stages
of geometric development is needed (Weisberg et al., 2013). Therefore, this study aimed to create an
environment that motivates children to play and develop their geometric abilities, mainly focusing on
the following research question:

RQ: How can teachers and classes motivate children’s geometric play and develop their individual
geometric abilities?

CONCEPTIONAL FRAMEWORK: GUIDED PLAY

Kindergarten educators often employ mathematics training programs to explicitly develop
mathematical abilities (Sakakibara, 2004). However, few comprehensive studies have compared the
effectiveness of these approaches in terms of learning outcomes for all children, including those with
different abilities (Vogt et al., 2018). In preschool classrooms, teachers must create an environment
in which children are free to interact with the content and participate in play according to their
abilities. (Chien et al., 2010).

Two prominent pedagogical methods frequently contrasted in preschool education are direct
instruction and free-play (Brant, 2013). Direct instruction involves the teacher playing an active role
in instructing students, who largely assume passive roles. In contrast, free play allows children to
choose their own activities and play independently. Children engaged in free play may encounter
challenges in achieving learning goals as they might not be guided to focus on appropriate dimensions
(Weisberg et al., 2013). Weisberg et al. (2013) emphasized that playful and child-centered
approaches, incorporating some level of adult scaffolding, prove more effective than directed
instruction in achieving outcomes in young children. Guided play has emerged as a balanced and
effective pedagogical approach in preschool education that integrate the learning objectives of adult
scaffolding while maintaining a child-directed environment (Weisberg et al., 2013). In guided play,
adults initiate the learning process, set learning goals, and are responsible for maintaining focus on
the objectives that guide children’s discoveries. The training program demonstrates significant
benefits for children with very low competency, whereas the play-based approach serves all children,
irrespective of their competency levels, ranging from low to high (Vogt et al., 2018).

In early childhood education in Japan, as outlined by the Ministry of Education, Culture, Sports,
Science and Technology (2018), interaction between children and teachers plays a crucial role in
fostering curiosity and inquisitiveness. Teachers strive to establish an environment that encourages
children to take initiative, allowing them to act independently and engage with both peers and
educators to deepen their learning experiences. Therefore, guided play aligns seamlessly with the
principles of Japanese early childhood education and has emerged as an effective method for
nurturing individual geometric abilities. This study specifically investigated how guided play can
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support children in learning about geometry. As part of our approach, while guiding children to tackle
more complex 3-D figures, we encouraged them to set their own guided play goals to enhance their
geometric abilities. The rationale behind this approach is rooted in the belief that by allowing children
to establish their own goals, they would be more motivated to undertake the construction of more
intricate 3-D solids. This personalized goal-setting process was intended to empower the children and
engage them in their geometric learning journey.

METHODS

The data for this study were gathered through experimental lessons on shapes conducted at a local
nursery in Tokyo, Japan. The objectives of this study were to assess the efficacy of guided play in
teaching and learning 3-D shapes and to identify the outcomes of children’s learning experiences
through guided play. A design-based research method (Bakker & Van Eerde, 2014) was employed
for a detailed retrospective analysis to elucidate the educational environment and teacher guidance
that contribute to the development of individual geometric ability. Three experimental classes were
held on February 18, 19, and 21, 2020, at a local nursery school in Tokyo. Each lesson lasted 40
minutes and was conducted by the author with teacher support. In all, 18 children (8 girls and 10
boys) aged five and six years participated in the class. This guidance plan was approved by the nursery
school. The purpose of the class was communicated in advance to parents and to the children whose
parents agreed to participate. Three lessons were video recorded to understand the stages of geometric
development of all the children and were used to reflect on each child’s 3D-making history. All
children’s works were photographed and recorded by trained research assistants for use in personal
development records. Excerpted photos were used for documentation.

In the first class, children played freely with the geometric toy Polydron and created their own
geometric works. After the class, the author and class teacher classified and organized the objects
created by the children. We then discussed and selected some three-dimensional objects that could
challenge the children based on their abilities and created documentation for the next lesson.

Guided play was conducted in the second and third lessons. At the beginning of the first guided play
session, we presented documentation of the previous three-dimensional work to the children and
discussed the names and characteristics of the three-dimensional objects to encourage them to think
about what they wanted to create next and guide their own goals. After the discussion, the author told
the children that they could try new three-dimensional objects or imitate the work that their friends
had made. During the class, the author and class teacher asked each student what they were making
and encouraged them to create it. In addition, if a child was not motivated to work on it, we asked
them what they wanted to make and helped them create it.

After the first guided play, the author and class teacher classified and organized the objects that the
children created. Depending on the children’s abilities, we discussed the goal of creating a three-
dimensional object which was more difficult than that in the previous lesson, selected multiple three-
dimensional objects, and created documentation. At the beginning of the second guided play, the
author facilitated a discussion of the characteristics of the three-dimensional object that we wanted
the children to try and proceeded with the discussion in a way that encouraged them to want to create
that object. During the class, the author and teacher asked each child what they had created and
encouraged them. The author worked with the class teacher to ask children who were not keen on
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playing with geometric toys what they wanted to create and then helped them create it. This
collaborative approach aims to ensure a supportive and engaging learning environment for all
participants.

RESULTS

The first lesson involved free play with geometric toys, specifically Polydron, in which the author
gathered the children and instructed them to create something independently or collaboratively with
their peers. The observations during this lesson revealed five developmental stages in the construction
of 2-D and 3-D figures. The first stage saw the connection of the same shapes to create a 2-D surface,
exemplified by three children creating a flat surface with hexagons, marking the “Shape Composure”
stage for 2-D figures.

The second stage involved creating cones or columns by connecting the same shape to the sides of a
base, resulting in four children constructing triangular and hexagonal prisms, signifying the “Shape
Composer” stage for 3-D solids. Two of the four children constructed hexagonal prisms, while the
remaining two constructed a triangular pyramid and a hexagonal pyramid. The third stage entailed
creating solids with multiple faces at the bottom and sides, with five children developing solids, such
as a spaceship and a slide, representing the “Shape Composure Iterator” stage. The fourth stage
involved creating solids by connecting multiple shapes, with four children making a star and a pillar,
reflecting the “Substitution Composure” stage. The fifth stage comprised complex 3-D solids,
including spheres created by connecting pentagons and hexagons, illustrating the “Shape Composer
with Superordinate Units” stage.

The second lesson introduced guided play, in with the author showed documentation of the shapes
created individually by the children and discussed their characteristics. Following the discussion, the
children were encouraged to replicate their friends’ creations or design new 3-D objects. Peer
influence was leveraged to challenge the children to create more complex 3-D objects. The children
were instructed to seek assistance from the teacher if needed. Table 1 presents the 2-D and 3-D objects
created during the second lesson.

The following characteristics were observed in the works created by the children during the second
lesson: First, three children connected squares to create a flat 2-D surface. In the previous lesson,
these three children made a flat 2-D surface by connecting hexagons. These children were still at the
“Shape Composer” stage of developmental progression for the composition of 2-D shapes (Clements
et al., 2004). Second, six children started to spin tops connected to eight isosceles triangles. In
addition, the number of children who formed closes polyhedral (henceforth, “spheres”) by connecting
pentagons and hexagons increased from two to five. After completing the second lesson, the author
and classroom teacher discussed two tasks: assisting children with difficulty constructing 3-D solids
and challenging children who were enthusiastic about spinning tops to create more difficult 3-D
objects. For the first task, we showed the documentation of tops at the beginning of the third lesson
to guide children who had difficulty making 3-D solids and to inspire them to make tops. They could
connect the faces by pushing them together on the floor and easily expanding the flat 2-D faces.
However, when making a top, it is necessary to connect the isosceles triangles with the fingers;
therefore, we thought that making a top would develop hand dexterity. The second task was to inspire
the children to construct more complex 3-D solids. For this purpose, we presented the documentation
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of the sphere and discussed its characteristics. In the second lesson, several friends became interested
in the large sphere that one girl created by connecting pentagons and hexagons. To create a large
sphere, three hexagons must be connected at one vertex and pentagons must be connected between
them. This requires strength in the children’s fingertips because they must connect them face-to-face
in the air. Creating a sphere can assist children in developing their fingertips and understanding the
characteristics of 3-D solids that can be made by connecting pentagons and hexagons.

First lesson Second lesson Third lesson
(Free play) (First guide play) (Second guided play)
2-D Shape 3 3 0
Composer Hexagonal tiling (3) Square tiling (3)
3-D Shape 4 6 5
Composer Hexagonal prism (2) Tops (6) Tops (5)
Triangular pyramid (1)
Hexagonal pyramid (1)
Shape Composure 5 0 I
Iterator Spaceship (4) Castle (1)
Slider (1)
Substitution 4 3 1
Composure Star column (4) Star column (3) Star column (1)
Shape Composer 2 6 9
with Sl:ﬁ)z;[:rdinate Sphere (2) Sphere (5) Sphere (8)
3-D cat face (1) Hexagonal composite
solid (1)

Tablel. Types and numbers of 2-D planes and 3-D solid figures created by children

The third lesson consisted of guided play session. Commencing the lesson, the author presented
documentation of the previously constructed tops and engaged the children in a discussion of their
characteristics. One boy suggested that alternately arranging triangles of two colors to create a frame
would result in a visually appealing effect during spinning. Another boy recommended spinning the
top as flat as possible to prolong the spin duration. Following this, the author showcased the
documentation of the sphere and flat surfaces, prompting the children to identify the differences. One
boy noted that the sphere was round, and the surface was flat.

Concluding the discussion, the author asked the children what they wanted to construct next, guiding
them toward the challenge of creating spheres. Eight children formed three groups and collaborated
to construct the spheres. Simultaneously, five children chose to construct tops and derive enjoyment
from playing with them. Notably, two of the children created a 2-D square tiling during the second
lesson. Additionally, a child who had constructed a 2-D square tiling in the preceding lesson evolved
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in geometric development, progressing from the “2-D Shape Composure” stage to the “Substitution
Composure” stage. This advancement involved using composite units of shapes to construct 3-D
solids, as exemplified by the creation of a star-shaped cylinder while referencing the documentation.
The child ingeniously used five equilateral triangles to form a pentagon, showcasing a more
sophisticated level of geometric composition.

DISCUSSION

The objective of this study was to explore how teachers and classes can enhance the motivation for
individual geometric play and foster unique geometric abilities through guided play using
documentation. Preliminary discussions using documentation before the two guided play sessions
facilitated the children’s contemplation of the challenge of creating more intricate 3-D solids.

An analysis of the changes in the 3-D works created by the children, as depicted in Table 1, reveals
a noteworthy increase in the number of children engaging in 3-D creations at more advanced
developmental stages in each successive round. Furthermore, guided play allows us to offer
personalized guidance based on individual geometric abilities. For instance, a girl who had previously
created a 2-D flat plane twice in a row expressed uncertainty about what to make the third time, but
when prompted by the classroom teacher, she chose to make a top. While connecting the triangles
with the teacher’s assistance, the girl gained confidence and successfully connected the last five
triangles, creating a top independently. This illustrates how environmental settings, including playing
with geometric toys and engaging in discussions using documentation, have the potential to motivate
children and propel them through various developmental stages of geometry.

In future research, we will examine the broader impact of guided play on children’s everyday play
and the ongoing development of their geometric skills.
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This paper offers an empirical study for supporting teachers’ educators. It presents a new form of
professional learning based on the use of a classroom simulator in training courses. Among the
various research questions that this training approach makes it possible to tackle, we choose to focus
in this paper on the way in which teachers’ beliefs and geometry knowledge can be revealed by means
of the simulation.

INTRODUCTION

This paper offers an empirical study for supporting teachers’ educators. It presents a new form of
professional learning based on the use of a classroom simulator in training courses. The design of the
simulator is guided both by the outcomes of research into the characteristics and needs of geometric
learning at lower secondary school level, and by the effective difficulties experienced by these
students in solving geometric tasks. The simulated class situation consists of solving a problem within
a Dynamic Geometry Environment (DGE) starting by drawing and manipulation, to pass afterwards
to conjecturing and analytic visualization and then to proving.

Among the various research questions that this training approach makes it possible to tackle, we
choose to focus in this paper on the way in which teachers’ beliefs and geometry knowledge can be
revealed by means of the simulation. Indeed, Thomas and Palmer (2014) highlight that teachers not
only need a special kind of knowledge for technology implementation, but that beliefs play a crucial
role since they frame, guide and filter situations, actions and intentions. Training courses that directly
address teachers’ competencies are therefore regarded as important in supporting the development of
knowledge, beliefs and practices (Hegedus et al. 2017). The specific research question we address is:
what do trainee teachers’ simulated practices reveal about their professional knowledge and beliefs
about geometry teaching and particularly about the role of DGEs in solving geometric problems?

The rationale behind our questioning is informed by a range of factors and contextual elements. First,
in French curriculum, students are expected to know how to draw figures before engaging in
geometrical reasoning. Constructing with instruments is compulsory and is expected to help students
passing from tangible to abstract and understanding geometric concepts. DGEs could be the
appropriate place to make this passage. Constructing tasks play thus a key role in curricula, as they
help students to move from spatial to geometrical thinking from “seeing on a drawing” to proving
(Mithalal & Balacheft, 2019). Second, it is nowadays widely shared that DGEs could contribute in
developing geometrical learning, particularly in supporting solving geometrical problems. It is
acknowledged that they have the potential to “encourage both exploration and proof, because it makes
it so easy to pose and test conjectures” (Hanna, 2000, p. 13). Nevertheless, researchers, such as

Lowrie, T., Gutiérrez, A., & Emprin, F. (Eds.), Proceedings of the 26th ICMI Study Conference (Advances in
Geometry Education) (pp. 135-142). ICML.
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Mariotti (2006) underline that even if dragging within DGEs provides the students with strong
perceptual evidence that a certain property is true, this may reinforce a critical point in the teaching
of geometry concerning the relationship between empirical evidence and theoretical reasons. Finally,
one of the challenges that research has attempted to meet is to design and/or analyze situations where
the connection between spatial and geometric reasoning is effective. Fischbein (1993) has
emphasized that one of the main tasks of mathematics education (in the domain of geometry) is “to
create types of didactical situations which would systematically ask for a strict cooperation between
the two aspects [image and concepts], up to their fusion in unitary mental objects” (p. 161). However,
many researchers highlighted that although the situations designed and analyzed were very
promising, they have been little used in teaching. The problem of the usability of these situations and
“their communication to teachers has not been yet solved” (Bloch & Pressiat, 2009, p 66 [personal
translation]).

To address these issues in the context of teacher training, we designed and used a computerized
classroom simulator (SIC). The advantage of using such simulator is that it enables teachers to
experiment classroom practices in an environment that is both safe - all types of experiments are
allowed (no impact on real students) - and allows experiments to be repeated. Indeed, simulation is
often used in professional training because it is less risky and speeds up the process of acquiring
experience (Pastré¢, 2005). Moreover, the designed training course includes an analysis of the
geometric problem, as well as a collective discussion of the concepts involved and the role of DGEs.

LEARNING GEOMETRY IN THE TRANSITION FROM PRIMARY TO SECONDARY
SCHOOL

This section is far from being exhaustive, its aim is rather to highlight some of the research findings
on which our work is based, firstly with regard to the learning of geometry in general, and secondly
in the specific context of DGEs. A significant amount of research has been devoted to studying
students’ learning in the transition from the tangible geometry of elementary school to the reasoning
geometry of early secondary school; characteristics and difficulties have been identified.

Within French research, two main conceptual perspectives inform the field of geometry didactics.
Houdement and Kuzniak (1998) distinguish three paradigms of geometry: natural geometry (GI),
natural axiomatic geometry (GII) and formalist axiomatic geometry (GIII). The passage from GI to
GII 1s identified as difficult to implement in the classroom and even if students entering secondary
school have certain knowledge within GI, they don’t necessarily link geometric constructions to the
properties and theorems that justify them; their geometry tends to amalgamate GI and GII. Berthelot
& Salin (1998) differentiate between spatial and geometric knowledge and Parzysz (1991) shows that
spatial objects and physical representations play an important role in the conceptualization of
geometrical concepts. Moreover, Sinclair et al. (2019) underline the strong link between drawing,
spatial reasoning and the learning of geometry. This leads us to reflect on the place of construction in
geometric work. It is not the precise technical mastery of drawing processes with instruments, but
rather the mental objects constructed by the student to accomplish this process, and what ensues for
a better apprehension of the figure (Duval, 2006) that is at stake in the school-level transition that
interests us here.
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The use of DGEs in geometry learning and teaching is nowadays recognized as offering novel ways
of carrying out geometrical activities in mathematics education and participating to the progress in
students’ conceptualization, influencing thereby different aspects of geometry learning. Within an
exploratory approach, research studies stress the key role of dragging in forming a mathematical
conjecture (Healy, 2000). By making it possible to drag and drop points and to multiply experiments,
DGEs encourage access to conjecture and possibly reasoning to validate this conjecture. Furthermore,
Hoyles and Jones (1998) claim that dynamic geometry, supported by “what if” and” what if not”
questions, has the potential to promote links between empirical and deductive reasoning. Yet,
teaching approaches involving a cycle of exploration-conjecturing-proving require thoughtful design;
“engaging students in situations which make them aware of the constructive character of
mathematical activities, especially those involving conjecture and proof, possess complex
challenges” (Durand-Guerrier et al., 2012, p. 364). Even if dragging is a powerful tool for
conjecturing, the resistance of the objects drawn brings a conviction that could slow down students’
understanding of the need to prove by arguments. Similarly, while the above comments show the
importance of manipulating geometric figures in a DGE, constructing these figures using the
software’s tools is a separate task from the conjecturing/proving process. Thus, the importance of
designing appropriate tasks and the role the teacher should play in their implementation seem even
more important in order to meet some learning aims.

SIMULATOR AND TEACHER TRAINING COURSE DESIGN
Tasks implemented in SIC: transition between spatial and geometric reasoning within DGEs

Designing a Classroom Simulator means first and foremost to find a teaching situation that is
conducive to raising the professional and mathematical questions that will become the focus of
training. To encourage teachers to question the role of geometric construction within DGEs in the
proof process, we used the problem described in Figure 1. This task considers the epistemological
aspects identified by Lesnes-Cuisiniez (2021) in his synthesis of research on the double break
between physical and theoretical geometry. These include the need to distinguish figure drawing,
instrumental mobilization, heuristic arguments, and theoretical validation. We also added a promising
idea: using a problem in which perception is challenged to highlight the need to rely on reasoning
rather than measurement or perception. For SIC, we have chosen a problem where perception is
distorted (segment [AC] seems larger than segment [EG] in Figure 1), which is reinforced by the
question posed which is not: “are the lengths the same?” but “Say which of the two segments is
larger.”

Make the figure shown n the opposite. m
Say which of the two segments, [EG] or [AC], is larger. /
E

Explain why. =
B

This problem is available in several resources for lower secondary school teachers in paper-and-
pencil environment; we have adapted it to be solved in a DGE. It is considered both in these resources

Figure 1: Problem implemented in SIC.

and by the teachers who have tested it as an open problem that is simple to understand and enables
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the learner to engage in an experimental approach. To begin, the student is asked to draw the figure
in a DGE. This requires specific knowledge that is not the same as that required to draw the figure in
paper-and-pencil, notably the order of construction steps, the commands available in the software
(the software commands that the teacher can choose to authorize or not such as “perpendicular
bisector”) and the robustness of drawing under dragging (Healy, 2000). Afterwards, the student is
asked to conjecture the answer to the question: “Say which of the two segments is larger.” Finally,
the student is asked to explain why, which refers to the process of argumentation and/or proof. From
a didactic point of view, there are several analyzable difficulties. The one we are aiming at here is
that there is little connection between the construction work in the DGE and the conjecture work. In
fact, the conjecture can be made by using the “measurement” command or by moving the points
connected to the circle to superimpose them; the construction command adds nothing to the
conjecture. The proof phase requires to have noticed that the two segments are the diagonals of two
rectangles and that the second one is in fact the radius of the circle. The construction does not allow
identifying the rectangles (since it rather directs towards the idea of an orthogonal projection). In
conclusion, being able to manipulate the figure in the DGE is important and sufficient to conjecture
and prove; constructing it step by step doesn’t provide necessarily additional means to complete these
two tasks.

The Design of SIC

Our goals in building SIC (available at http://www.fabien-emprin.ovh) are to get trainees to reflect
on their practices, using their professional knowledge to solve a professional problem and to test
several hypotheses by having the possibility to try again and again. To achieve these goals, we used
part-scale simulators, which enable the user to make choices (what the teacher says, to whom he/she
says it: one student or the whole classroom, what he/she does: act directly on a student’s screen or
projecting the same screen on the white board, etc.) and to see the effect of his/her choices on what
students do (actions on the DGE, verbal responses, etc.). According to Pastré (2005), it is a way of
“impoverishing the situation to make it more accessible to learning” (p. 27). We use a non-random
model in which an action always has the same effect each time it is repeated, with no introduction of
random phenomena, enabling to carry out analyses between trials by the same user and between users.
In this sense, it’s an experience-building accelerator.

To design a simulation, combined with a tool for computing these interactions, we needed to define
the possible choices of the teacher and the effects of these choices for students in real classrooms.
Our method was based on recording enough classroom settings. To do this, we set up a learning
situation and a support-resource accessible to the teacher to implement in his/her classroom (which
could have been found in an educational resource (textbook, website)). We carried out an a priori
analysis of the situation, based on didactic knowledge of geometry, highlighting possible choices in
terms of tasks and class management. We then provided the situation to teachers, who were free to
interpret it according to how they plan to carry it out in their classrooms. By observing these
classrooms’ settings, we gathered information that enabled us to compare the a priori analysis with
actual implementations, and to identify the training knowledge that can be updated in the simulation.
We observed around ten classroom settings, then built a simulation reproducing the teachers’ choices
and the students’ reactions, while respecting the average proportion observed.
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The feedback provided by the simulator is twofold: during the simulated session, the user can access
the student’s work, either by observing it (on the DGE screen, for example) or by questioning it; at
the end of the session, the user can access what each student found (his/her construction, his/her
answer to the question) and what the student remembers one week after the session. The latter could
help the user measure the effect on students’ learning.

A TRAINING COURSE USING SIC

First, we emphasize that we do not consider that SIC has any intrinsic value; playing the simulation
doesn’t inherently develop professional skills. It’s the debriefing that follows the simulation that
allows questions and analyses to emerge and brings out the trainees’ professional knowledge and thus
possibly enables effective training to take place (Pastré, 2005). Secondly, we consider that the trainee
teacher’s professional knowledge develops by going back and forth between the deployment of
existing knowledge and the information derived from the interactions first with SIC, and afterwards
with other trainees (with and without the trainer’s interventions). The training course centered on the
simulator, as described below, aims both to immerse teachers in a (simulated) professional context
and to provide reflective feedback on their choices and actions with the simulator. An alternation of
moments of experimentation and discussions is therefore supposed to develop the teachers’
professional knowledge.

The course, designed for in-service secondary school mathematics teachers, is organized in five
phases following the more general training approach proposed by Abboud et al. (2022). This process
is presented to trainees at the beginning of the course. The aim of the first phase is to make trainees
analyze the mathematical task possibly by carrying it out themselves and anticipating possible
students’ difficulties. The second phase takes the form of a group discussion on what the trainees
were able to anticipate throughout the task analysis: what problems and difficulties the students are
likely to encounter, what objective should be assigned to the teaching/learning situation... During the
third phase, the trainees use SIC. Thanks to the fact that the time is simulated (independent of real
time), they can make several trials, but without having to complete the simulation each time. At the
end of each simulation, they obtain summary information on the students’ learning, which enables
them to adapt their choices and test new hypotheses during the next trial. The fourth phase is again a
collective discussion on the performance of the virtual students and the comparison with the real
students (their own) and ways of helping them to learn geometry when accomplishing the task.
Finally, during the fifth phase, the trainees are asked to design a class session based on the geometric
task they had tried out and its implications in terms of promoting students’ geometric reasoning.

It is during phases 2 and 4 that the trainer can pick up on elements of the teachers’ practices and can
intervene by supplying/sharing knowledge for professional development. It is these two phases that
interest us in this article. In what follows we propose to analyze some exchanges from phase 2 and
others from phase 4. In addition, as SIC makes it possible to keep track, in the form of a chronological
table, of the actions undertaken by the trainee teacher during the various trails made during phase 3,
we provide examples of these traces in order to gain an overall view of how the training session
unfolded.
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Analysis of interactions from Phase 2

After clarifying, at the request of the trainees, that the virtual students had already experienced the
DGE, the discussion turns to the difference between construction within a DGE and within paper-
and-pencil environment; the trainer provides then several clarifications on this point. Given the risk
of multiple difficulties, one of the trainees suggests that the drawing should be carried out on paper-
and-pencil instead. This first exchange informs us that the teachers are primarily concerned with the
students’ ability to construct the figure correctly so that they can then engage in conjecture. They
have the feeling that using the DGE could generate several difficulties. This leads them to favor to
abandon its use for the construction phase. Another exchange takes place with the trainer on the
construction process, which is different in paper-and-pencil, particularly about constraints on the
order of construction. We can notice here that, although the task was chosen for its potential in the
DG environment in terms of two aspects - construction and manipulation - the teachers seemed
doubtful about the usefulness of the first and preferred to start with paper-and-pencil to ensure less
difficulty in the construction phase and favorable conditions to engage in the manipulation one. In
the course of the ensuing discussion, we observe an exchange relating to the conjecture and the
usefulness of using a DGE to “see it” in the sense highlighted by Mariotti (2006) where dragging
provides the students with strong perceptual evidence that a certain property is true. The trainees
emphasis the dynamic nature of the software and the fact that it allows them to visualize an infinite
number of figures (thus permitting the generalizing the observed property).

The whole discussion in phase 2 thus seems to show teachers’ beliefs that distinguish between the
role of the DGE in the drawing process and its role in the conjecturing own. In the first case, it seems
more efficient to go back to the usual paper-and-pencil tools to make sure that the students are
constructing the figure correctly (by using skills they have already acquired) before engaging in a
more complex (for this class level) conjecturing task, where the dynamic aspect of DGEs seems to
be unequaled in paper-and-pencil and is therefore very useful.

Analysis of interactions from Phase 4

Following the same thread, we observe an exchange in phase 4 initiated by a trainee who suggests
giving the students the “right” figure from the start, so that they can move on to conjecture. The
trainer then informs him that there were three variations of this proposal within SIC to help students
make the right figure, without giving them everything straight away. This gives rise to a discussion
about how to help the students make the conjecture. In the ensuing discussion, we observe the trainer
attempting to provoke a reflection on the fact that giving the students the correct figure without them
having constructed it themselves doesn’t guarantee that they can engage in the conjecturing process.
This attempt fails to achieve its objective, and the trainees prefer to direct the discussion towards
ways of finding and/or validating the conjecture. They suggest providing “instrumental” help to
students: make the software display the measurements so that equality can be seen. Another
possibility of instrumental help was raised in the discussion: asking students to superimpose the points
but recognizing it as a special case that doesn’t lead to generalizing the conjecture.

Using the simulator seems thus to make it possible to question the trainees’ professional knowledge
and make them aware of the link that can exist between the construction phase and the conjecture
phase and the role that the DGE’s functionalities can play in the latter.
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Analysis of traces from Phase 3

The analysis of these traces aims first to identify the moments of transition from the construction
phase to the conjecture phase in the various trials and second to examine how trainees use SIC as a
professional tool for experimentation. We give here the example of the traces of trials of two trainee
teachers. Greg carried out 3 trials. On the first one, the transition to the conjecture took place at the
38th minute. Noticing that this does not leave enough time within an average duration of a classroom
session (55 min) to complete the conjecture phase, he suggests that the task has to be carried out in
two sessions. In the second trial, he thus took the time needed for the construction (43 min with
session duration of 109 min). He then questioned the need for students to engage in the construction,
and rather chose at the third trial to give the figure that had already been constructed switching to the
conjecture phase after 12 minutes. Chris carried out 4 trials. The first two trials were used to explore
the possibilities of SIC, in particular by going to check on all the virtual students during the
construction phase and asking some of them whether the figure resists or constructing the figure for
them. On trial 3, he accelerated the construction phase by showing the correct figure to the class (at
the 33rd min) before asking for the conjecture and giving two minutes later the indication to display
the measurements of the two segments. He didn’t move on to the proof phase until the 75th minute
and he accelerated this phase by immediately asking students to put OB in the radius position and
measure it. On trial 4, he first did much the same thing before moving to a pooling of the conjecture
at the 62nd minute and then writing down the results at the 73rd minute to close the session.

In broad terms, the analyses show that the trainees who appropriate the simulator as a tool for testing
and experimenting, carry out trials that evolve into shorter construction phase and realize that it is the
manipulation of the figure and not the drawing that is useful for the proof.

CONCLUSION

This exploratory study highlights the potential of simulation-based training approach to reveal
teachers’ professional knowledge of geometry and particularly about supporting students to link
geometrical construction and geometrical reasoning.

The aim of using SIC was also to engage teachers in collective reflection on their classroom practices
in geometry, with SIC acting as a revealer of these practices. We showed how it has revealed to the
trainer some of the trainees’ geometric beliefs and practices. We also looked at the knowledge that
the trainer considered relevant to contribute in situ to promote professional learning on key elements
to geometry teaching enhanced by dynamic geometry.

While geometric construction work, under certain conditions, is conducive to the transition from GI
to GII, the technical skill of drawing, whether on paper-and-pencil environment or in a DGE, is a
specific skill. However, simulated practices show that teachers remain attached to this activity, with
certain confusion between constructing and conjecturing. Feedback from the simulator may lead them
to reconsider this role.

This study shows the potential of simulated practices for both the trainer and the researcher. For the
moment, the data extracted from the software can only be used by the researcher because of its
complex format, but it is possible to imagine transforming it into learning analytics so that the trainer
can also use it directly in his/her training sessions.
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This paper presents the process of designing a questionnaire aimed at measuring the degree of
acquisition in the definition process in Geometry among individuals at advanced levels of the Van
Hiele model. Our theoretical framework encompasses not only the seminal references of the Van
Hiele model but also prior work by the authors in which indicators were designed to characterize the
abilities of a high-level Geometry student. In conjunction with the questionnaire, we elucidate the
content validation process, conducted through expert judgment. This process entailed semi-
structured interviews to refine the task design and closed-ended questions regarding the agreement
between the questionnaire items and the indicators describing the definition processes at Van Hiele
level 5. As a result, the questionnaire is presented along with its corresponding agreement indices as
assessed by Fleiss's Kappa.

THEORETICAL FRAMEWORK

In this section, we will briefly introduce the fundamental aspects of the Van Hiele model (Van Hiele,
1957) and the prior research that underpins the questionnaire's design. Our primary focus lies on the
fifth level of the model, as an in-depth understanding of this level is of particular interest for analyzing
geometry learning at the university level. Given the limited existing research on this level, we initially
had to design and describe its indicators for each process (Arnal-Bailera & Manero, 2023).
Subsequently, our task is to design a questionnaire that facilitates an assessment of the acquisition of
this level among undergraduate mathematics students. The specific objective here is to delineate the
ongoing validation process of a questionnaire designed for assessing the definition process.

The Van Hiele model (Van Hiele, 1957) stands as one of the most significant theoretical frameworks
pertaining to the teaching and learning of geometry across all educational tiers. This model posits the
existence of five distinct levels of geometric reasoning. The highest level (fifth-rigor) can be
succinctly summarized as follows: individuals at this stage can compare systems grounded in
different axioms and can investigate various geometries in the absence of concrete models. What is
essential is not merely the ability to work within different geometries or with varying metrics, but
rather the capacity to establish relationships among them. It is imperative to comprehend that shifting
geometric contexts (by changing the geometry or metric) yields objects of distinct natures,
propositions with differing demonstrations, and varying mathematical facts that are transferable
between contexts, while others are not.

In previous works (Arnal-Bailera & Manero, 2023), we have developed specific indicators
delineating how individuals operating at a Van Hiele level 5 should manifest these abilities when
mobilizing skills associated with the processes of definition, proof, and classification. Specifically,

Lowrie, T., Gutiérrez, A., & Emprin, F. (Eds.), Proceedings of the 26th ICMI Study Conference (Advances in
Geometry Education) (pp. 143-150). ICML.
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when delving into the process of definition at level 5, we have identified five indicators (see Table
1): indicators Defl and Def2 constitute the initial set of indicators that pertain to the influence of
working within diverse geometrical contexts, whereas indicators Def3, Def4, and Def? are associated
with the rationale underlying the formulation of new definitions or the selection between existing
ones. In the context of the definition process, the utilization and formulation of definitions are
typically investigated as distinct aspects. At this level, the indicators that have emerged are
predominantly linked to the formulation of definitions.

Indicator Description

Defl Constructs and uses definitions in different axiomatic systems.

Understands that defining a given mathematical object is not absolute, but is
Def2 an action relative to the geometric context in which one works, implying for
example that the defined object may have different properties in each context.
Defines new objects, for example, because it may be necessary to generalize

Def3 .
existing ones or to prove a statement.

Def4 Understands that a definition arises out of the necessity to introduce a new
mathematical object or to emphasize a property.

Def5 Compares equivalent definitions to choose the most interesting one, depending

on the work to be done.

Table 1: Indicators for the definition process (Arnal-Bailera & Manero, 2023)
METHODOLOGY

The methodology employed in the design and validation of the questionnaire consisted of two phases.
The first phase involved conducting three semi-structured interviews with experts who possessed
teaching and/or research experience in the field of Geometry at the university level. During these
interviews, the questionnaire was presented to the experts, and their opinions were sought regarding
1) the mathematical difficulty of the proposed activities, considering Mathematics undergraduate
students as future respondents, and i) the correspondence between items and indicators in the process
of definition. Based on the insights gathered from each of these interviews, certain aspects of the
questionnaire were reformulated to ensure a clearer evaluation of certain items or to enhance the
comprehensibility of the wording. This revised version was then presented to the following expert.

In the second phase, closed questionnaires regarding the agreement between indicators and items
were sent to five Ph.D. holders in Mathematics with research experience. These questionnaires
required a dichotomous response (Y es/No) concerning this agreement. Subsequently, using the SPSS
software, the Fleiss's Kappa coefficient was analyzed to assess the content validity of the
questionnaire (Meyer & Booker, 2001). Future validation processes require the administration and
analysis of the questionnaire to undergraduate students.

RESULTS

We present below some of the results obtained in each of the two phases. Due to space constraints,
we summarize the most significant findings derived from the semi-structured interviews with experts,
which contributed to the improvement of the initial versions of the questionnaire. After that, we
provide an interpretation of a summary of the output obtained using SPSS about the Fleiss Kappa.
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Semi-structured interviews

The first interview (conducted with Expert 1) reviewed the initial version of the questionnaire,
revealing that the indicator def4 was not clearly presented. Consequently, the questionnaire would
not be able to accurately assess the level of acquisition of this indicator.

Item 3

Normally to measure distances in the plane we use the Euclidean metric, which is defined as follows: Given two
points, the distance between them is the length of the segment joining them. However, we can define other distances,
such as the so-called postman's (or Taxicab) distance, which is defined as follows: the distance between two points is
given by the shortest route joining those using only horizontal and vertical lines.

Item 3.1: If we define the circumference as the set of points that are equidistant (at the same distance) from another
point, what is the shape of the circumferences with the Taxicab metric? Justify your answer.

Item 3.2: If we define a circumference as a set of points that are equidistant from another
point, what shape do they have with the distance from the postman? Justify your answer. You SR
can use the grid to draw the points that are equidistant from the point indicated.

Item 3.3: If we define a circle as a set of points that are equidistant (at the same distance) from another point. Look at
the different drawings below:

All the marked points are, with the All the marked points are, with the What is the shape of the circles with
Taxicab metric, at distance __ from Taxicab metric, at distance __ from the Taxicab metric? Justify your
point Q. point P. answer.

Figure 1. Item 3 as presented to the first expert.

We analyze the moment when Expert 1 was reviewing the third item (see Figure 1): a discussion
ensued regarding whether someone who correctly answers item 3.1 demonstrates an understanding
that a definition arises from the need to introduce a new mathematical object or emphasize a property.
The interview excerpt illustrates the utility of the item, with the expert suggesting a reversal of the
ideas presented in this item. It was proposed to start by presenting specific cases and then inquire
about the property that the red points have in relation to the blue, with the (imprecise at that moment)
idea that asking about the property would prompt the need to define distance.
Expert 1: I don't quite see it. This task is similar to the previous one. It's essentially the same
question with a different distance. Maybe we can approach it differently and start by
asking what the red points in the middle square have in common with the blue ones. Let's

see if someone mentions that they are at the same distance, without defining distance.
Let's see if the need to define distance arises.

Interviewer:  Yes, we could use diagrams like the one in the center and ask for a distance so that the
red points are equidistant from P.

Expert 1: Or, without using the word "distance", what do the red points have in common with the
blue ones? Or, define something that all these points have in relation to the blue ones.

Between the interview with the first expert and the second one (Expert 2), the idea explained earlier
was implemented. However, the researchers found it more suitable to implement it in item 2, whose
initial formulation can be seen in Figure 2, and its subsequent formulation in Figure 3. This decision
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was made to maintain the structure of the item 3 super-item (Jaime & Gutiérrez, 1994), which is
convenient if the test would aim to measure the acquisition of lower levels than level 5.

Item 2
Normally, to measure distances in the plane, we use the Euclidean distance, which is defined as follows: given points
A=(x1,y1) and B=(x2,y2), the distance between them is given by the length of the line segment that connects them:
dp(A,B):=/(x, — x)* + (v, — y1)*
However, we can define other different distances, such as the radial distance, which is defined as follows:
o (A B) = {dE(A, B) if A, B and O are aligned
R ETT dz(4,0) + d: (0, B) otherwise
Here, O represents the origin of coordinates, i.c. , the point with coordinates O=(0,0). If we define a circle as the set of
points equidistant (at the same distance) from another point, what shape do the circles have with the radial
distance?

Figure 2. Item 2 as presented to the first expert.

The modifications to item 2 (see Figure 3) involved adding images with discrete sets of points that
have a relationship with another point. Firstly, in Sub-item 2.1, the question asked was about
identifying that relationship (i.e., what property these points satisfy). Then, in Sub-item 2.2,
respondents were asked to construct the definition of the (continuous) set of points that satisfy that
property. The continuous set was presented based on a single image.

On the other hand, Expert 1 pointed out that def5 was not reflected in item 2 because equivalent
definitions were not being compared. Since it was also necessary to reinforce this indicator in the
questionnaire, it was decided to expand this item with a Sub-item 2.3, including a new formulation
of the definition of radial distance for comparison with the original. This new formulation is of a
verbal nature and provides a more descriptive explanation of the process by which radial distance
between two points is determined: radial distance between two points is the minimum length of the
segment or segments that connect them and lie on lines passing through the origin.

In the following, we present an excerpt from the interview with the second expert (Expert 2) when
discussing the revised version of item 2. On one hand, the expert finds it challenging to identify a
specific relationship among the discrete set of points based on the examples presented, as multiple
different relationships appear to exist. Consequently, the expert considers it appropriate to increase
the number of images for both discrete and continuous cases. On the other hand, the expert
acknowledges the presence of indicator def4 in question 1 but expresses doubts about its accurate
evaluation in the form it had in that version. Additionally, the expert agrees that question 2 in the
Sub-item 2.3 assesses indicator def5.

Expert 2: When I first thought about it, I gave an answer that does not say much: all points are at a

positive distance... then I thought of something else... that the absolute values of the
coordinates of the other points are larger... (...)

Expert 2: This one does not really evaluate anything [item 2.2]; it puts you in a situation to do this
one [item 2.3], prepares you for the next one... It's like good marketing; they've created
the need to construct a definition... now this one [item 2.3] will really evaluate
something... def4 is important... you understand... it's a complicated thing,
understanding... (...)

Interviewer: ~ We could give item 2.2 a super-item structure with several images...

Expert 2: Yes, I could have four examples, and I want a definition for all four cases. That way, it
generalizes, going from the concrete to the abstract... It's about understanding... you guys
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will know about that. About understanding, I don't know how to answer that. (...)

Interviewer:  So, here we could put 4 images, ask for the property, and then here, another 4 images,
and ask for the definition. That way, we would convince more of the presence of def4.

Item 2.1.A: Could you describe
a property that all the blue
points (B-G) have in relation to
the red point (A) in the given
image?

Item 2.1.B: Could you describe
a property that all the blue ;
points (B-G) have in relation to =
the red point (A) in the given

images?

Item 2.2: In the given image,

the blue points share a property

with respect to the red point (A).

Construct a definition for the set

of blue points with respect to VAR :
the red point (A). We will call A s
this set Sa. iR RI? ¢

Item 2.3: Normally, to measure distances in the plane, we use the Euclidean distance, which is defined as follows.
Given two points A=(x1,y1) y B=(X2,y2), the distance between them is given by the length of the line segment that
connects them, that is,

dg (A, B): = /(o = x1)2 + (v, — y1)?
However, we can define other different distances, such as the radial distance, which can be defined as follows:
Definition 1:
do(A B) = {dE(A, B) if A,B and O are aligned
RAB T d:(4,0) + dz(0,B) otherwise
Here, O represents the origin of coordinates, that is, the point with coordinates O=(0,0).
Question 1. Could you describe a situation/moment/context that can be modeled using this metric or in which this
metric may be necessary/useful?
PAGE BREAK
Similarly, the radial distance can be described as follows:
Definition 2: The radial distance between two points is the minimum length of the segment or segments that
connect them, with these segments contained in lines that pass through the origin. As you can see, these two
definitions, one algebraic and the other verbal, are of different natures.
Question 2: Compare both definitions (algebraic and verbal) by describing in which contexts you would use one
and when you would use the other.

Figure 3. Item 2 as presented to the second expert.

It should be noticed that a page break has been included in Sub-item 2.3 since the second part of this

Sub-item could produce answers to the previous part, thus the page break indicates that when the

second part is reached the previous responses cannot be changed.

Through the questions and answers in the interview with the second expert, the conclusion was

reached to reformulate item 2 to facilitate its resolution. In Sub-item 2.1, four discrete sets of points
were presented (in addition to the ones shown in Figure 3-Sub-item 2.1), and participants were asked
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to infer, for each set, the property that connects them to another point marked in a different color.
Then, in Sub-item 2.2, another four sets were presented (in addition to the one shown in Figure 3-
Sub-item 2.2), this time continuous, and participants were asked to construct the definition for all of
them. The objective was for the first group of sets to prompt reflection on the existence of a common
property among all blue points with respect to the red one. Subsequently, a definition would be
constructed based on this property, which could be related to the presence of def4. No changes were
made in Sub-item 2.3.

This new version of item 2 was presented to the third expert who was interviewed (Expert 3). Despite
the changes made, this expert concurred with expert 2 regarding the difficulty in eliciting a relevant

property when discrete sets of points were presented in Sub-item 2.1.
Expert 3: The first Sub-item is exceedingly challenging to solve; it is conceivable that some
students may provide an unexpected property, in the sense that a discrete set of points

always possesses a connecting property, even if it takes the form of a 27th-degree
equation. This approach would not be beneficial for addressing the following Sub-item.

Interviewer: ~ Would you consider a version without the first Sub-item (the one concerning discrete
sets) to be better?

Expert 3: Yes, as the first Sub-item does not contribute anything, and no indicators from the ones
you propose can be identified.

Item 2.1: In the given images, the blue points share a property with respect to the red point (A). Construct a
definition for the set of blue points with respect to the red point (A). We will call this set Sa

Item 2.2: Normally, to measure distances in the plane, we use the Euclidean distance, which is defined as follows.
Given two points A=(x1,y1) y B=(x2,y2), the distance between them is given by the length of the line segment that
connects them, that is,

dg(A, B): =y (x, — x)? + (72 — y1)?.
However, we can define other different distances, such as the radial distance, which can be defined as follows:
Definition 1:
dp(A B) = {dE(A,B) if A,Band O are aligned
RVB TS d:(4,0) + d-(0,B) otherwise
Here, O represents the origin of coordinates, that is, the point with coordinates O=(0,0).
Question 1. Could you describe a situation/moment/context that can be modeled using this metric or in which this
metric may be necessary/useful?
PAGE BREAK
Similarly, the radial distance can be described as follows:
Definition 2: The radial distance between two points is the minimum length of the segment or segments that
connect them, with these segments contained in lines that pass through the origin.
Question 2: Compare both definitions (algebraic and verbal) by describing in which contexts you would use one
and when you would use the other.

Figure 4. Final version of Item 2
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Furthermore, Expert 3 suggested that both definitions were not truly of distinct natures, as they were
different only in terms of the representation but similar in terms of the aspects of the concept used to
construct them. This suggestion was incorporated by removing the phrase "are of different natures"
in the final version of item 2 (see Figure 4), once Sub-item 2.1 had been eliminated, and the following
items had been renumbered.

Based on the discussions with the experts during the interviews, we wish to emphasize that when an
expert validates an indicator in an item, they are not necessarily thinking about the possibility of
finding written evidence. Rather, they infer that the indicator is necessary to address the question
posed by the item. We bring this up with the understanding that when students in the Mathematics
Bachelor's program respond to this questionnaire, they may not necessarily provide written evidence
for all these indicators in every item. Nevertheless, we will consider that an item serves to assess
specific indicators because this is the expert's opinion, rather than relying on the presence of specific
sentences that can be associated with each indicator.

Fleiss Kappa Indicator

After the interviews, the questionnaire was dispatched to four experts in the field of Geometry, who
provided responses concerning the presence of each indicator across various Sub-items.
Consequently, each expert provided 35 dichotomous (Yes/No) responses, which were subsequently
analyzed using the SPSS software to calculate Fleiss's Kappa statistic, both for the entire
questionnaire and for each individual item (see Table 2). This statistic expresses the level of
consensus among experts regarding which process definition indicators are measured by the entire
questionnaire or each individual item.

Analysis type  Kappa and agreement strength (Landis & Koch, 1977) p-value

Questionnaire 0,533 — Moderate 0,000
Item 1 0,306 — Fair 0,018
Item 2 0,231 — Fair 0,073
Item 3 0,864 — Almost perfect 0,000

Table 2: Results for the Fleiss Kappa statistic

Notably, there is a statistically significant moderate agreement concerning the entire questionnaire.
However, when analyzing the items separately, almost perfect and significant agreement is observed
for Item 3, while only acceptable agreement is found for the other two items.

From the descriptive analysis of expert responses, it can be inferred that there is unanimity among
experts that indicator defl is measured in all three items, while def2 is measured in Item 3 and def5
is measured in Items 1 and 2. Additionally, a majority of experts believe that def2 is also measured
by items 1 and 2, and def3 is measured by Item 2.

CONCLUSIONS

In the initial phase of questionnaire design, three interviews were conducted proving cautious
optimism regarding the potential completion of item validation. The analysis of the interviews
contributed to the refinement of the questionnaire: some items were clarified in their wording, others
were removed, and some others were adapted to encompass a greater number of indicators.
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Secondly, the analysis of the Fleiss Kappa indicator suggests that the work is not yet entirely finished.
Item 3 shows nearly perfect agreement in its ability to measure indicators defl and def2. Nevertheless,
experts did not express a high level of consensus about Item 2 despite the careful reflection process
undertaken during its design. Specifically, our intention was for Sub-item 2.1 to measure def3 as it
introduces a new object (radial distance) through graphic language and requests the construction of
its definition. Similarly, in Sub-item 2.2, we expected experts to recognize that def4 is being
evaluated, as we understood that the first definition of radial distance would be necessary to describe
the objects appearing in Sub-item 2.1 more simply. Another expected response for this Sub-item was
consider this distance as modeling real-life situations, such as the operation of a train network passing
through a station. Only 2 out of 4 experts agreed with this interpretation, indicating that a more
explicit wording of Sub-item 2.2 and others, could enhance expert agreement. For instance, revising
Sub-item 2.2 as follows: "What is the need for introducing this new distance? What intra-
mathematical or extra-mathematical situations or contexts can it model?" may improve consensus.

In addition to deliberating on the content of the items, there appears to be a need for enhancing certain
methodological aspects, such as offering a more thorough elucidation of the meaning of each item to
enhance experts' comprehension of the questionnaire they are assessing. This recommendation is
rooted in informal feedback received from some experts and is substantiated by existing literature
(Meyer & Booker, 2001).

We understand that the process we have presented in this contribution corresponds only to content
validation via experts in the area. Subsequently, a second validation process is requisite, including
the analysis of the responses of actual students answering the questionnaire and analyzing if in such
responses the corresponding indicators appear.
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This paper presents the results of a quasi-experimental research study conducted with pre-service
primary education teachers in Croatia aged 19 to 23. The purpose of the research was to evaluate
an alternative approach to learning and teaching geometry to develop visualization skills and
geometric thinking and achieve better learning outcomes. The alternative teaching approach was
based on van Hiele’s theoretical framework, on the visual-analytical method of directed observation,
and on the balancing of visual, linguistic, and symbolic expressions. The control group was taught
in the traditional way. In order to collect data on the research participants, the three tests were used
before and after teaching: the first to measure the level of geometric thinking, the second to gain
insight into geometric knowledge and visual skills, and the third to measure special visual-spatial
ability. At the beginning of teaching, there were no statistically significant differences among the
research participants. After teaching, the progress of the participants in the experimental group was
statistically significant compared to the participants of the control group.

INTRODUCTION

The results of research in education indicate that students at all levels of mathematics education have
the most difficulties when learning geometry (e.g., PISA, 2012; TIMMS 2017), especially when
establishing connections between geometric concepts (e.g., Baranovi¢, 2019). This problem comes
to the fore especially when students transfer from school to higher mathematics education, because
the discourses of learning mathematics at school and at the university level are significantly different.
At the university level it is difficult for students to resolve cognitive conflicts that they develop during
pre-tertiary education which they are often not even aware of (e.g., Thoma & Nardi, 2018).

Mastering the geometry program at the university level requires at least the fourth level of geometric
thinking according to van Hiele, but practice and various research in education show that students are
not ready for this (e.g., Usiskin; 1982; Crowley 1987; De Villiers, 2009). To learn geometric concepts
with understanding and their efficient application in solving problems and proving statements,
students should have appropriate visual-spatial skills, since perception alone is not sufficient for
mathematical processing of visual representations (Duval 1995; 1998). The causes of weak
visualization skills of students of all ages, which are indicated by practice and various research in
education, are primarily a dislike of the mathematical community to visualization as well as the
difficulties that arise during visual processing (Presmeg, 1986; 2014). In the last few decades, the
need for continuous and systematic development and use of visual-spatial abilities in teaching of
mathematics throughout the entire educational vertical has been recognized and intensive work is
being done to build a theoretical framework that would enable this (Presmeg, 2014).

Lowrie, T., Gutiérrez, A., & Emprin, F. (Eds.), Proceedings of the 26th ICMI Study Conference (Advances in
Geometry Education) (pp. 151-158). ICML.
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As a result of the above, geometric concepts are largely mastered procedurally by memorizing
appropriate definitions, rules and formulas without conceptual understanding. Hence, students are
usually not ready to continue studying geometry at the university level. Therefore, it is possible to
ask: How can we teach geometry to future teachers and prepare them to effectively teach geometry
in primary education if they are not ready to continue learning according to the university discourse?
In order to answer this question, an alternative teaching approach was prepared and implemented.

THEORETICAL BACKGROUND

For effective learning and teaching of Euclidean geometry, it is necessary to know: the characteristics
of the axiomatic construction of the deductive system, possible difficulties in learning and teaching
geometric concepts, the appropriate theoretical framework for the development of geometric thinking
as well as the characteristics of visualization elements in the context of geometry.

Learning and teaching geometry as a deductive system

In the process of axiomatic construction of a deductive system, the processes of defining terms and
the classifications based on them, the processes of setting statements, testing and proving their truth
are important. The results of mathematics education research indicate the multiple benefits of learning
formal definitions through the defining process, because in the case of giving ready-made definitions
as they are usually learned by heart and without understanding (e.g., de Villiers, 2009). In addition,
one should also take into account the duality of the process of acquiring a mathematical (as well as
geometrical) concepts, especially the mutuality and completeness of these two processes (Viner,
1983) as well as the duality of the nature of geometric concepts and the balancing between its abstract
and concrete properties (Fischbein & Nachlieli, 1998). In particular, in working with concrete visual
representations, which are used to gain intuitive insight into abstract geometric concepts, various
difficulties arise due to the particularity of the representation, the use of prototypes or the
impossibility of "seeing" the representation in different ways (Yerushalmy & Chazan, 1990).

The defining process naturally continues by establishing connections between properties, of the same
or different concepts, and ends with assertion (de Villiers, 2003). Making statements is based on basic
logical operations, principles and reasoning, which serve as "glue" to connect the two essential parts
of the statement (the assumption and the conclusion) and to ensure its exact meaning (Hammack,
2013). The skill of recognizing and parsing the assumption and the conclusion of a statement is a
necessary prerequisite in setting up a converse statement, contrapositive and negation of a statement
and proving or disproving its truth. Given that proven statements are most often used in mathematics
classes, proof is used more for the purpose of persuasion, explanation, discovery, systematization,
communication or intellectual challenge instead of determining the truth of the statement. In addition,
a proof is a means of transmitting mathematical knowledge because a whole series of mathematical
concepts, strategies, methods, established connections, and systematization are woven into the proof
(de Villiers, 2003).

Finally, in the process of learning and teaching mathematics, one of the important activities is solving
problems. Therefore, every teacher should know the characteristics of different types of tasks,
different strategies and solving skills in order to provide his students with a suitable environment in
which everyone will develop the necessary knowledge and skills according to their abilities. In this
paper, three tasks classifications are considered: according to goal, demandingness and
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purposefulness. According to the goal to be achieved there are: 'tasks to find', 'tasks to prove' and
‘tasks to construct' (Polya, 1966). According to the level of thinking required for solving there are:
tasks with lower cognitive demands that serve to develop procedural knowledge and skills and tasks
with higher cognitive demands that serve to develop conceptual knowledge (Smit & Stein, 1998).
According to purpose there are tasks that facilitate the transition from school to university level
mathematics education, also known as "unusual tasks" (Breen et al., 2013), which are a type of tasks
with higher cognitive demands. For learning and teaching the process of solving tasks, as well as for
the process of proving Polya (1966) proposed four phases: (1) understanding the task, (2) devising a
plan, (3) carrying out of the plan and (4) looking back.

Numerous studies in education confirm the multiple benefits of solving tasks with higher cognitive
demands. For example, solving unusual tasks requires relying on previous experience, higher mental
work, more patience and perseverance, searching for and establishing relationships between different
concepts, etc., which results in flexibility in the thinking process and the development of
mathematical thinking and reasoning. At the same time, they can serve as a real detector of difficulties
and misunderstandings because when solving them, typical mistakes of students coming to the fore
as well as their creativity (Leikin & Lev, 2007; Breen et al., 2013).

Development of geometric thinking

Van Hiele's theoretical framework is widely accepted to monitor and ensure the development of
geometric thinking, through three aspects. The first aspect refers to the process of developing abstract
thinking, hierarchically through five levels: recognition, analysis, informal deduction, formal
deduction and level of rigor. The second aspect refers to considering the characteristics of the five-
part model: structure, principle of object duality and methods of thinking, communication, mutual
(mis)understanding, age. The third aspect refers to the learning process in five stages that contribute
to progress from one level of thinking to another: inquiry/information, directed orientation,
explication, free orientation and integration (Van Hiele, 1986; Crowley, 1987). The results of
education research confirm the effectiveness of the teaching strategy according to van Hiele's stages
of learning: the stages provide an effective framework for clearly structuring teaching units and
guiding students from one level to another (e.g. Dongawi, 2014), and their application improves
students' geometric thinking, understanding geometric concepts, and consequently learning outcomes
(e.g., Crowley, 1987; Teppo, 1991).

Development of visual-spatial abilities

In recent years, the Cattell-Horn-Carroll (CHC) theory of cognitive abilities, which represents the
most comprehensive structural model of intelligence, has been increasingly used. According to the
CHC model, spatial ability is referred to visual processing (labeled Gv), and implies "the ability to
generate, perceive, analyze, synthesize, store, retrieve, manipulate, transform, and think with visual
patterns and stimuli" (Flanagan & Shauna, 2014, p. 7). According to Lohman (1993), individual
differences in spatial abilities are realized in the speed of performing transformations, especially
rotation, then in the skill of creating and retaining mental images, the amount of visual-spatial
information that a person can maintain in an active state, and finally in the sophistication and
flexibility of available strategies to solve certain tasks.

Through various types of research, a strong mutual connection between visual-spatial abilities and
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mathematical (especially geometric) achievements has been confirmed (e.g., Clements et al., 1997;
Bruce & Hawes, 2015). In mathematics education research, the definition of visualization proposed
by Arcavi (2003), which includes products and processes, is widely accepted. Visualization products
include various types of mental images (Presmeg 1986), various types of external representations
(Nakahara, 2007) as well as their mutuality. Visualization processes include the processes of creation
and use of products, and differ with respect to the place, manner or purpose of creation/use. For
successful work in geometric figures, Duval (1998) proposes a theoretical framework that considers
four types of figure apprehension: perceptual, sequential, discursive and operational. The processing
of the figure begins in a pure perceptual recognition of what is shown, and then, through mutual use
of sequential, discursive and operational processing of the figure, the mathematical message that the
figure represents in the appropriate context is revealed. To master the transition from pure perceptual
apprehension to recognizing what is mathematically important, students need to know and develop
different visualization processes, first separately and then in mutual coordination (Duval, 1995). In
order to successfully learn geometry, it is necessary to develop the "geometric eye" through various
types of tasks in which one should first gain certain practical experiences: by experimenting,
measuring, drawing, etc., then make statements based on what has been observed and finally prove
these statements by connecting them with definitions, axioms and theorems which are already known
(Godfey 1903 according to Fujita & Jones, 2002).

RESEARCH DESIGN AND QUESTIONS

The empirical research is a form of quasi-experimental research with two non-equivalent groups
(Cohen et al., 2007) and was carried out in real-time during one semester during regular classes of
Euclidean geometry with all enrolled students of the respective university. Both groups were tested
at the beginning and at the end of the semester with three identical written tests. The experimental
group participants were taught using an alternative approach, while the control group participants
were taught in a traditional way.

The purpose of this research was to evaluate the chosen alternative approach in learning and teaching
geometry at the tertiary level. The main goal was to examine whether an alternative approach leads
to improvement of visual-spatial abilities and progress in geometric thinking, a greater tendency to
visualize and consequently to better outcomes of learning geometry (or not). In accordance with the
main goal, five groups of research tasks were set, and in this paper two groups are distinguished: (1)
immediately before learning geometry, determine the relationship between the visual-spatial abilities,
levels of geometric thinking and geometric prior knowledge of the participants, especially in the sense
of a possible predictor progress, (2) after the teaching of geometry, determine whether the
participants, who were taught with an alternative approach, made significant progress in the
accumulated geometric knowledge and visualization skills and visual-spatial abilities compared to
the participants who were taught in the traditional way (or not).

METHODOLOGY

To obtain answers to the questions raised, the collected data were processed by integrating
quantitative and qualitative methods because complex research questions can be more fully answered
using a mixed methodology than individual analyzes separately.
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Sample

The research includes all students of teacher studies at two universities in Croatia, who attended the
geometry classes in the summer semester of 2015/2016. A total of 90 students participated: 52
students (average age 21.8) who attended geometry classes at one University made up the
experimental group, and 38 students (average age 19.4) who attended geometry classes at another
University made up the control group. These two groups were chosen because of the greatest
congruence of the curriculum for learning geometry.

Instrument

To collect data on the knowledge and skills of the participants immediately before learning and after
learning geometry, three tests were used. To measure levels of geometric thinking according to van
Hiele's model (VH test), the test from the CDASSG project was used with permission (Usiskin, 1982).
A test designed for this research (GEO test) was used to measure knowledge of geometry and
visualization skills. The final design of the GEO test was achieved after the results of a pilot study
and consultation with three experts. Elementary geometric concepts, their definitions, visual
representations, and applications were tested through 28 tasks, grouped into four parts. The SPAC
test (Smith & Whetton, 1998) was used to measure a special factor of spatial abilities.

Data collection and analysis

All of the three tests were conducted at the beginning of the summer semester in the first week and
at the end of the semester in the last week. The evaluation of the VH test was carried out according
to the proposal of Usiskin (1982): first, each correct answer was evaluated by levels, and then the
entire test using mild (3 out of 5) and more strict (4 out of 5) criteria within the classic (C) and
modified scale (M). The evaluation of the GEO test was carried out first for each of the four parts of
which is composed, and then collectively: each correct solution 2 points, incorrect or incomplete 1
point, no answer 0 points. Due to space limitations, it is not possible to provide a detailed description
of the GEO test in this paper. The SPAC test was conducted and evaluated by a psychologist
according to strictly defined rules of psychological testing.

Intervention

During the intervention in experimental group, two main teaching strategies dominated: (1)
structuring teaching topics according to van Hiele's stages of learning and (2) teaching based on the
visual-analytical method of directed observation. Both strategies were permeated by three-layered
teaching by balancing three ways of expression: visual, linguistic and symbolic (VLS system and
teaching for short; Figure 1). The teaching activities included: tangram activities, drawing,
constructing, defining, making statements, testing the truth with proving or disproving, and solving
problems. The selected activities were intertwined and built on each other through different topics,
and were chosen with the aim of developing visual-spatial abilities, thinking processes and learning
geometric concepts with understanding.

Traditionally, teaching in a control group means: first, the teacher teaches frontally, emphasizing
theoretical description and symbolic writing, and then the participants do the tasks individually,
usually imitating their teacher. Visualization is used, but to a lesser extent and only as an intermediary.
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Figure 1. VLS system and VLS teaching

Given that the data on the research participants was collected through three tests of different forms
and purposes, mixed data processing was used and the analysis of the results and discussion were
done through different aspects. Due to space limitations, this paper presents only some summative
results that indicate the outcomes of learning geometry, achieved within the experimental and control
groups and between them.

After the characteristics of the participants of the experimental and control groups were determined
by analyzing the results of the three tests, a t-test was performed with the aim of determining the
statistical significance of the difference between these two groups before the intervention (table 1).

Experimental group Control group t-test
Measuring N M SD N M SD t df p
1CVH4 37  1.486 768 30 1.567 679 -447 65 .656
IMVH4 38 1.500 762 31 1.548 675 -276 67 783
1GEO 52 5962 2368 34 5.676  2.889 .500 84 618
ISPAC 46 55.609 10.697 31 58419 9.113 -1.198 75 235

Table 1. Results of the t-test for the experimental and control groups before the intervention

Based on the results (Table 1) there is no statistically significant difference (p > 0.05) between the
groups in any of the considered categories. Considering some parameters, the mean values of the
control group are slightly better compared to the mean values of the experimental group (1CVH4,
IMVH4 and 1SPAC). Considering that there was no statistically significant difference between the
research participants before the intervention, reliability was tested for each test on the whole data of
both groups using Cronbach's alpha coefficient (o). According to the coefficient values the tests can
be considered reliable measuring instruments: the VH test has satisfactory internal consistency (o =
0.576), the GEO test is really reliable (o = 0.921) and the SPAC test is a highly reliable instrument
(o =0.754) (Novak, 2020).

The statistical significance of the difference in achievements between the experimental and control
groups after teaching, for all of the three tests, was tested in the t-test (Table 2). Based on the results
the progress in the two tests was statistically significant in favor of the experimental group. The
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statistical significance of 1% was on the GEO test (p < 0.001) and on all parameters of the VH test,
except for the VH3 criterion where the statistical significance is 5%. The difference in achievements
on the SPAC test is not statistically significant between the groups (p = 0.287). From the analysis by
groups it is evident that progress was achieved within each group: in the experimental group it was
statistically significant (p < 0.01), while in the control group it was not (p = 0.465).

Experimental group Control group t-test
Test N M SD N M SD t a  p
2CVH4 38 2.026 1.078 30 1.267 .640 3.412 66 .001
2MVH4 38 2.026 1.078 30 1.267 .640 3.412 66 .001
2GEO 45  29.378  6.994 33 16485  6.690 8.191 76 .000
2SPAC 44 59.659  9.906 26 57.077  9.398 1.074 68  .287

Table 2. Comparison of achievement in all three tests between groups, after the intervention

The presented results are in line with the results of other research in education: by mutual use of
visual and analytical methods; by adapting teaching strategies to the participants' prior knowledge;
by respecting the process of axiomatic construction of the deductive system; and by using different
representations and their interconnections geometric achievements can be improved (e.g., Presmeg
1986; van Hiele, 1986; Bruce & Hawes, 2015).

CONCLUSION

These results indicate that the geometry learning outcomes of pre-service primary education teachers
and, thus, their preparation for work can be better when the teaching is adapted to their prior
knowledge, and geometry is learned and taught through the systematic and mutual development of
geometric knowledge, thinking and visual-spatial skills. In addition, these results can be an incentive
for teachers at all levels of education to pay more attention to the three-layer teaching method,
mutually and in harmony. It would be important to investigate what teaching outcomes would be
achieved by applying this teaching strategy to groups with other characteristics.
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Geometry has been taught for millennia and we have rather detailed references of the geometry
taught in Scribal Schools in Babylon, 4000 years ago. Today, with the computer revolution and
Artificial Intelligence available, nobody seems to be proposing we stop teaching Geometry. But which
Geometry should we teach, why and how? Which are the driving forces that influence each
curriculum? How the new computing tools open new pathways for Geometry teaching? We will
mention in some detail the controversies around the official Syllabus in Portugal in the last decades
to try to identify which are the prevalent ideas in the curriculum and which are the different cultures
involved in the decision process, from a purely abstract approach to a more applied approach, that
answer to different societal and cultural views and mix the proposals of mathematicians, mathematics
educators and teachers in the classroom. We observe that amid societal changes and advances in
knowledge, Geometry is always focused on Problem Solving, use and exploration of diagrams to
conjecture and achieve some kind of proof. We need to take intelligent paths to make the most of
technology and not be a slave to it.

In order to mention the main ideas in some detail we have included diagrams, tables and the longer
quotations in a web page available here: https://www.geogebra.org/m/cfnjéch2

THE SYLLABUS IN PORTUGAL

In the years 2021-2023 a new syllabus has been approved by the Portuguese Ministry of Education
for the Mathematics courses of Basic Education (years 1 to 9) and Secondary Education (years 10 to
12), and this was done only for Mathematics. In Portugal the compulsory education includes all 12
years of school but there were no changes in other areas, as the Ministry of Education recognized
there were unacceptable failure rates in Mathematics in Portugal. The Ministry began commissioning
a special report to receive proposals to change the situation. The report Recommendations for
improving student learning in Mathematics was published in 2020 (Carvalho e Silva, 2020) and was
based on all the reports produced in Mathematics Education in Portugal in the last 30 years as well
as on most international reports produced in this period, including international reports from OECD
and UNESCO, as well as international assessments. It recommended a global revision of the
mathematics curriculum in Portugal, that should be based on a certain number of principles, namely:

1) Universality, internal coherence, relevance, focus and higher cognitive level.

i1) Fulfill all the goals that justify the universality of the access to this course, taking into
account the cultural, social and political dimensions of mathematics learning;

111) Value understanding and look for an equilibrium of problem solving, mathematical
reasoning, communication, connections, multiple representations, procedural fluency,
creativity, digital literacy, reflection, resilience and individual and work group.

Lowrie, T., Gutiérrez, A., & Emprin, F. (Eds.), Proceedings of the 26th ICMI Study Conference (Advances in
Geometry Education) (pp. 159-166). ICML.
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These are general principles but particular topics like Geometry are not discussed. New syllabuses
were produced in 2021 for Basic Education (Canavarro, 2021) and in 2023 for Secondary Education
(Carvalho e Silva, 2023). Other details that do not relate to Geometry will not be discussed here.

Geometry in Basic Education

Geometry occupies a substantial space in the new curriculum for Basic Schools. In the first four years
the students begin their “development of spatial reasoning, with an emphasis on visualization and
spatial orientation” (Canavarro, 2021); they use various types of materials and also technology
(namely visual programming with Scratch and robots). In the second cycle of studies (years 5 and 6)
the measure of angles and the study of triangles is introduced and dynamic geometry environments,
such as GeoGebra are recommended. In the last three years of Basic Education (3" cycle, years 7 to
9) the goal for Geometry is to “continue developing students' spatial reasoning, expanding their
understanding of space”, as well as “the establishment of algebraic relationships from the study of
geometric objects (...) accompanied by experience (where technology plays a fundamental role)”
(Canavarro, 2021). Also geometric transformations are studied in a progressively more abstract and
formal way.

Geometry in Secondary Education

Secondary Education in Portugal offers several paths of study that lead to further studies in Higher
Education or offer a possibility of looking for a job immediately after school with a more profession
oriented study. Students encounter six possible paths and in all of them we find some Geometry. The
path Mathematics Applied to Social Sciences includes a chapter on Graph Theory and we will not
discuss the details here (Carvalho e Silva, 2018). The Science and Technology path and the
Economics path share the same Mathematics course spanning 3 years and 4.5 hours of class a week
(Carvalho e Silva, 2023). This Mathematics course is called Mathematics A. The geometry topics
studied in Mathematics A go from the notable points on the triangle with a synthetic perspective to
matrices and geometric transformations, and include analytical geometry and trigonometry.

The chapter “Synthetic geometry in the plane” is a classical one but is new as such in the Portuguese
curriculum. It is intended as a crossroad between classical geometry and experimentation with
dynamical geometry systems, in order to “develop in students a taste for argumentation in general
and proof as a central element of mathematics, for example with regard to the inscribed circle and the
circumscribed circle” (Carvalho e Silva, 2023).

Analytic geometric is classic also but has a more algebraic flavor; in the curriculum students are
encouraged to make software explorations (namely with Geogebra 3D) and work with mathematical
modeling problems.

Implementation of the curricular change

We all know that an official document (intended curriculum) does not guarantee its implementation
(enacted curriculum) even with good orientations (planned curriculum). Lots of countries have
devised ways of connecting the intended curriculum to the enacted curriculum. We can quote the
example of Costa Rica whose Reform has been very well documented by its mentor Angel Ruiz; this
was a curricular change in mathematics only, that began in 2012. It developed original and innovative
ideas and instruments, including blended courses for teachers, fully virtual courses with MOOC
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modality for high school teachers and students, and shorter virtual courses called Mini-MOOCs
(Ruiz, 2015).

In Portugal several curricular changes were accompanied by a number of measures to work towards
the coherence of the curriculum. Since 2021 several actions were taken: some classes (pilots) to
anticipate the implementation of the new syllabus were run, tested materials were afterwards made
available to the rest of the schools including comments from pilot classes, tasks were published
online, continuous professional development courses were made in two phases: the first one to
prepare schools leaders that in the sequence propose themselves continuous professional development
courses to other teachers in all schools.

Using the history of education tool

The options taken in the new syllabus were publicly discussed, there was a preliminary version for
an open discussion and public sessions were held to discuss with teachers, associations and other
partners. There was no consensus on a number of issues so the team writing the curriculum (including
mathematicians, mathematics educators and experienced teachers) had to choose paths in a number
of issues. Why these options were ultimately held? Are they promising? Will the global situation in
mathematics education improve? The tools used to make choices in the curriculum were the
experience of different countries, the most successful ones including international schools with its
own curriculum, and past history of mathematics education, namely in Portugal. The educational
system in Portugal was structured in 1772 and greatly revamped in 1836, so there is a long history of
mathematics education in Portugal. Other countries and regions have an even longer history. What
can we learn from our collective past experience teaching Geometry?

HISTORY FLASHBACK ON GEOMETRY TEACHING

It is always useful to study which were the guiding principles and the school practice in past times.
The Portuguese document Recommendations for improving student learning in Mathematics
(Carvalho e Silva, 2020), produced before the last rewriting of the curriculum, made a summary of
the main documents produced in Portugal in the last 30 years and discussed what happened in France,
Finland, Estonia and Singapore. In the end a lot of experience was gained from the emphasis on
problem solving, applications and mathematical modeling these countries have, and also on the use
of technology namely with computational thinking with a large practical work in schools particularly
in France (numerous classroom materials are available on the web also through the work of the well-
known IREM).

Let’s go back here some millennia.
Teaching in Babylon

Scribal Schools from the Old Babylonian period are fascinating. Some 4000 years ago, we can find
that “education went hand in hand with creative activity, supported by a very active milieu. (...) The
most active centers were able to influence other, less creative ones, where the educational framework
was less institutional. (...) These scribes conferred together and traveled.” (Proust, 2014). A lot of
researchers have studied scribal schools and it is clear that Geometry was present from the beginning.
As Friberg puts it: “to divide given parcels of land into shares according to some intricate set of rules,
or dividing given amounts of food stuff into rations of various sizes according to some other intricate
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set of rules, must have been an important part of the metro-mathematical education given to the young
scribes in the scribe schools” (Friberg, 2014). It is clear that Geometry, Arithmetic and Algebra were
studied together. Geometrical diagrams were frequent in clay tablets.

Euclid, the Elements and Pseudaria

As Robin Hartshorne points out “Throughout most of its history, Euclid’s Elements has been the
principal manual of geometry and indeed the required introduction to any of the sciences.”
(Hartshorne, 2000). More than one thousand editions and translations are known. In the great
reformation of the studies in Portugal, around 1772, Mathematics took center place at the University
and so all students at the University had to study Geometry, Euclidian style, and the textbook used
was a translation of the Elements in Portuguese.

A lost work attributed to Euclid, with a more marked pedagogical character, Pseudaria, never made
into mainstream teaching and the knowledge of its content is almost completely lost because,
possibly, as points out Fabio Acerbi, “the tradition of its pedagogical use was soon broken (...) as a
consequence of a likely increase of the dogmatic character of mathematical teaching in post-
Hellenistic times” (Acerbi, 2007).

Multiple translations and uses of the Elements

As was already mentioned, more than one thousand editions and translations of Euclid’s Elements
are known. It was used at almost all schools in the world at some point. The first Chinese translation
was made by the Jesuit Matteo Ricci (1552—-1610), in 1607, when he was assigned to work in China
(Joseph, 2011).

The contents and style of Euclid’s Elements were imitated by numerous school textbooks for Basic
and Secondary schools. The most used textbook in Geometry in Portugal for some 30 years, from
1944 to 1974, was the first in Portugal to use “the treatment of demonstrations in justified steps, as
Americans and English use it, [and] it seems to us very advisable” (Paulo, 1944). The price to pay
with this more formal approach, as the reviewer quoted wrote, is “that despite everything, sometimes
the author makes an appeal to students' intuition, it is a shame that it is no longer done often”.

Modern Mathematics

The so called Modern Mathematics Movement changed completely the teaching of Mathematics in
numerous countries including Portugal. The Portuguese mathematics curriculum for Basic and
Secondary School saw a considerable reduction of the study of classical Geometry and some
emphasis on the study of geometric transformations. Euclid’s approach completely disappeared.

The coordinator of the modernization of Mathematics teaching in Portugal, mathematician José
Sebastido e Silva (1914-1972), wrote that the teaching of Geometry should find an equilibrium
between abstractions and the real world. He was very much influenced by Emma Castelnuovo (1913-
2014).

As the 24" ICMI Study volume puts it:

Classical synthetic geometry was completely eliminated and the main aim was not to study geometrical
figures but to construct an algebraic tool to describe first the affine, then the Euclidian plane and space.
Principal notions were projections, vectors, frames, transformations, etc. (Gosztonyi et al., 2023, p. 53)
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Tensions in the XXIst Century — Basic School

From 1990 to 2023, there were several changes in the mathematics curriculum for Basic School and
Secondary School in Portugal. The reform of the educational system of 1990 introduced new
syllabuses at all levels for all courses, but other changes were mainly concentrated on changes in
Mathematics, in part because in the first TIMMS and PISA Portugal was in a very modest position.

The 1990 syllabus for mathematics in Basic School initiated an extensive study of geometric
transformations in a rather intuitive and balanced way; but, with an overcrowded curriculum
(reformers were very ambitious) geometric transformations tended to be omitted. The next change of
the curriculum in basic school in 2007 took a different approach, more visual and connected to the
real world, insisting in the development of the spatial sense of students, based on exploration,
manipulation and experimentation with concrete materials. Small chains of deductions should be
introduced in years 7 to 9 in topics like Parallel Lines, Similar Triangles, Pythagoras Theorem and
Geometric Transformations (Breda et al, 2011).

But there were radical changes again in 2012-2013, and a highly structured approach, based on logic
and set theory was introduced in Basic School with an extensive study of axiomatics in the 9 grade;
numerous proofs became compulsory along the official “correct” use of the vocabulary of the
axiomatic method and a rather detailed knowledge of the history of the axiomatization of Geometry.
The axiomatization of Geometry with points, relation “a point is between two other points” and “pairs
of points are equidistant” are mentioned as objects of study, as well as Hyperbolic Geometry. This
syllabus was a huge failure, some minor modifications were introduced and in 2021 a new syllabus
was approved by the Ministry of Education, somehow recovering the syllabus from 2007, that had
been very well received by mathematics teachers at the time.

Tensions in the XXIst Century — Secondary School

We will consider here the official documents for mathematics teaching at secondary school in
Portugal on the course called “Mathematics A”. There are big contrasts between the documents of
2013 and 2023. In 2013 the main goal was “the comprehension and hierarchization of mathematical
concepts, the systematic study of their properties and the clear and precise argumentation, typical of
this discipline” (Bivar et al. 2013). Mathematical modeling could “transmit to students a distorted
vision of how one can, in fact, correctly apply Mathematics to the real world” (Bivar et al., 2013) and
the use of intuition was discouraged as “conjectures formulated but not demonstrated are of limited
interest” (Bivar et al., 2013). In contrast to this vision, the new documents of 2023 present the work
in mathematics at secondary school as following:
(...) develop in students the ability to identify relevant mathematical concepts to solve real problems, apply
appropriate mathematical procedures and interpret results in different contexts. Mathematical reasoning is
the basis of the processes of understanding mathematical concepts and objects, which can and should be
analyzed, represented and related in different ways. The formulation of hypotheses, testing of conjectures,
deduction, generalization and abstraction are equally important, in the construction of logical arguments

and conclusions, whose communication in an appropriate way is increasingly important in today's world.
(Carvalho e Silva, 2023).

Which contents and methods are the most suitable for our century?
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XXIst Century: a world full of smart technology

As some people said (no quote necessary) in a world of technology that draws nice graphs and images,
why study so much Mathematics (Functions or Geometry)? In fact we are in a world that already
produces algorithms that can make automatic deductions in Geometry and this has the potential of
changing completely the way Geometry is taught. We face three types of essentially new challenges:

a) Dynamic Geometry Software (DGS);

b) Automated proof assistants, that can be Interactive Theorem Provers (ITP) or Automated
Theorem provers (ATP);

c) Large language models (LLM) like ChatGPT.

DGS has been around for some time and has always been considered “rather efficient in the learning
of geometry” (Balacheff, de La Tour, 2019); it is being continuously upgraded, and a surprising
challenge is Geogebra that can run on smartphones with Augmented Reality (AR) tools; we are in a
world where all students (at least from 12 years old) have a smartphone at a rate that surpasses 90%;
which are the implications?

Beyond mechanizing computation, these technologies are now mechanizing mathematical reasoning
and proofs with unprecedented consequences. DGS and ATP have been combined in a software with
AR and used in an educational setting outdoors (Botana, Kovécs, Martinez-Sevilla & Recio, 2019),
(Botana, Kovacs & Recio, 2020). In a recent paper Nuno Baeta and Pedro Quaresma describe an
algorithm (a “Geometry Automated-Theorem-Prover”) that will “be able to efficiently prove a large
set of geometric conjectures, producing readable proofs” and “will open its use by third-party
programs, e.g. the dynamic geometry systems” (Baeta and Quaresma, 2023). These methods began
being tested in secondary schools (Teles, Baeta and Quaresma, 2022) and, even if practical difficulties
are enormous, one day they will surely be used regularly in classrooms. How?

Large language models are a recent acquisition to the world of pedagogical tools and have become
very controversial because they produce mathematical errors frequently: the outputs a LLM gives are
just words that have a high probability of showing up together in a sentence that was produced
millions of times in the texts the LLM “read”. But LLM are already being used in school
environments, associated to sophisticated mathematical software like Mathematica or as just a tool to
give better feedback like in Geogebra as an Al Math Assistant (Hohenwarter, 2023) and Khan
Academy as a text builder assistant. Will they help us teach Geometry better?

Po-Shen Loh, the coach of the American Math Olympiad team, calls the use of ChatGPT the
“invasion” and thinks “the key to survival is knowing how to solve problems - and knowing which
problems to solve” (Loh, 2023). He urges school to focus on “creativity, emotion and the stuff that
distinguishes man from machine” (Loh, 2023).

LESSONS FOR TODAY

In this extremely brief historical excursion, we see that in each period of time, Geometry had a
different character but it always had some kind of relevance related to the reasoning that it conveyed
and to the real life situations it was connected to; diagrams were always used from Babylon to Euclid
and the Computer Era. Somehow, connecting diagrams to its abstract representation can lead to errors
(like in Pseudaria) but this also stimulates a healthy or corrected reasoning, enabling students to be
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able to deal with new problems, understanding them, looking for strategies, producing and criticizing
conjectures and trying to prove them, learning how to deal with similar problems or problems that
might in part benefit from the new strategies found.

The necessity to produce diagrams is a constant and our computer era is the most fertile in the
availability of tools that enable us to produce a wide range of diagrams, static or dynamic.
Pedagogical tools like Geogebra 3D, GeoGebra A